
~

·
~

c3 ~

~ ~ &

ObiectW
indows

R
eference G

uide
• O

bjectW
indow

s C
lasses

•
E

vent-handling F
unctions

• D
ispatch F

unctions

• O

bjectC
om

ponents C
lasses

• L
inking and E

m
bedding

• A
utom

ation
Borland

Reference Guide

Borland®
ObjectWindows®
Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT© 1991, 1994 Borland International. All rights reserved. All Borland products are trademarks or
registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.

1EOR1094
9495969798-9 8 7 6 5 4 3 2
Hl

Contents
Introduction
What's new in ObjectWindows 2.5.
Contents of this manual
Typefaces used in this manual . .
Conventions used in this manual

Part I
ObjectWindows reference

Chapter 1
Overview of ObjectWindows

1
. .1
.. 2
.. 3
.. 3

5

7
Hierarchy diagram 7

Using ObjectWmdows classes 10
Base classes . 10
Wmdow management classes 11

Frame windows11
Decorated windows11
Common dialogs 11
Controls . 12
Gadgets 12
Menus 13

Module management classes 13
Doc/View classes 13
Printer classes . 14
Graphics classes 14

DC classes . 14
GDI classes . 14

Validator classes 14
Exception handling classes 15
Command enabling classes 15
ObjectSupport library classes 15

ObjectWindows Libraries 16
Compiler options for building and using

ObjectWindows libraries 17
Building ObjectWindows libraries 18
Using ObjectWindows libraries 18

The ObjectWmdows header files 19
The ObjectWindows resource files 23
The ObjectWindows data types 24

Chapter2
ObjectWindows library reference 25
TBird class [sample] 25

Type definitions. 25
Public data members. 26
Public constructor and destructor 26
Public member functions 26

Protected data members 27
Protected constructors. 27
Protected member functions 27
Response table entries 27

BF _xxxx button flag constants 28
BN_xxxx button message constants 28
CBN_xxxx combo box message constants . . 28
CM_xxxx edit constants 29
CM_xxxx edit file constants. 29
CM_xxxx edit replace constants .. 30
CM_xxxx edit view constants. . . . 30
CM_xxxx MDI constants. 31
DECLARE_RESPONSE_TABLE macro. . . 31
DEFINE_APP _DICTIONARY macro 31
DEFINE_DOC_TEMPLATE_CLASS macro .. 32
DEFINE_RESPONSE_TABLE macros. . . 32
DLGC_xxxx dialog control message

constants 33
dmxxxx document manager mode

constants 33
dnxxxx document message constants . . . 34
dtxxxx document template constants . . 34
END_RESPONSE_TABLE macro . 35
EN_xxxx edit message constants 35
EV _xxxx macros. 36
Factory template classes 36
GetApplicationObject function . . . 40
GetWindowPtr function 40
ID_ xxxx file constants 40
ID_xxxx printer constants 41
IDA_xxxx accelerator ID constants. . 41
IDA_xxxx OLE accelerator ID constants . 41
IDM_xxxx menu ID constants 41
IDM_xxxx OLE menu ID constants 41
IDS_xxxx edit view ID constants 42
IDS_Mode constants 42
IDS_xxxx document string ID constants. . . 42
IDS_xxxx editfi}.e ID constants 43
IDS_xxxx exception message constants . . . 43
IDS_xxxx listview ID constants. 44
IDS_xxxx printer string ID constants. . . 44
IDS_xxxx validator ID constants 44
IDW _MDICLIENT constant. 45
IDW _MDIFIRSTCHILD constant . . . 45
LangXxxx ID constants. 45

LBN_xxxx list box message constant · . 45
lmParent constant. 46
LongMulDiv function 46
MAX_RSRC_ERROR_STRING constant 46
MB_Xxxx message constants , . 46
NBits function . 47
NColors function 47
ofxxxx document open enum 48
pfxxxx property attribute constants 48
_BUILDOWLDLL macro 49
_OWLCLASS macro 49
_OWLDATA macro 49
_OWLDLL macro 49
_OWLFAR macro 50
_OWLFARVTABLE macro 50
_OWLFASTTHIS macro 50
_OWLFUNC macro '50
OWLGetVersion function 50
SB_Xxxx scroll bar constants 51
shxxxX document sharing enum 51
TActionFunc typedef. 51
TActionMemFunc typedef 51
TAnyPMF typedef 51
TAnyDispatcher typedef. . ; 52
TAppDictionary class 52

Type definitions 53
Public constructor and destnictor 54
Public member functions 54

TApplication class 55
Public data members. 55
Type definitions 56
Public constructor and destructor 56
Public member functions 57
Protected data members. 61
Protected member functions 62

TApplication::TXInvalidMainWmdow class .. 63
Public construe.tor 63
Public II\ember functions 63

TAutoFactory<> class 64
Public member functions 64

TBandlnfo struct 65
TBitmap class . 65
· Public constructors 65

Public member functions 66
Protected constructor. 68
Protected member functions 68
Operators 68

TBitmapGadget class 68
Public constructor and destructor ·. 68

ii

/Public member functions , . . . 69
Protected member functions : . . 69

TBitSet class . 69
Public constructors 69
Public member functions. 70

TBIVbxLibrary class 71
Public constructor and destructor 71

TBrush class . 71
Public constructors 71
Public member functions 72

TButton Class . 72
Public data members 72
Public constructors 73
Protected data member 73
Protected member functions , 73
Response table entries 74

TButtonGadget class 74
Type definitions 75
Public constructor and destructor. 75
Public member functions 75
Protected data members 76
Protected member functions 77

TButtonGadgetEnabler class 79
Public constructor 79
Protected data member 80
Public member functions 80

TCelArray class 80
Public constructors and destructor 80
Public member functions 81
Protected data members 82

TCharSet class . 82
Public constructors 82
Public member function 83

TCheckBox class. 83
Public data member' : . . . 83
.Public constructors 83
Public member functions 84
Protected member functions 85
Response table entries. 86

TChooseColorDialog class. 86
Public constructors 86
Public member function 86
Public data members 86
Protected member functions 87
Response table entries. 87

TChooseColorDialog::TData class 87
Public data members 87

TChooseFontDialog class 88 ·
Public constructor 88
Protected data members 89
Protected member functions 89

Response table entries 89
TChooseFontDialog::TData class 89

Public data members. 90
TClientDC Class 91

Public constructors 91
TClipboard class 92

Public destructor 93
Public data members. 93
Public member functions . . 93
Protected data members. . . 96
Protected constructor. 97

TClipboardViewer Class 97
Protected data member 97
Protected constructors 97
Protected member functions . . 97
Response table entries 98

TColor Class . 98
Public constructors 98
Public data members. 99
Public member functions 100
Protected data member 101

TComboBox class. 102
Public constructors 102
Public data member 102
Public member functions 102
Protected member functions 106

TComboBoxData class 106
Public constructor and destructor . 106
Public member functions 107
Protected data members 108

TCommandEnabler class 108
Public constructor . . . 111
Type definitions. 111
Public data members. . . 111
Public member functions 111
Protected data members . 112

TCommonDialog class.112
Public constructor 113
Public member functions . . 113
Protected data member . . . 113
Protected member functions 113
Response table entries 114

TCondFunc typedef114
TCondMemFunc typedef114
TControlBar class 115

Public constructor 115
Public member function 115
Protected member function 116

TControlGadget class 116
Public constructor and destructor . 116
Protected data member 116

iii

Protected member functions116
Response table entries. 117

TControl class 117
Public constructors 117
Protected member functions 118
Response table entries. 120

TCreatedDC class 120
Public constructors and destructor120
Protected constructor120

TCursor class. 121
Public constructors and destructor . .121
Public member function121
Operators .122

TDC class . 122
Public constructor and destructor . .122
Public member functions . . .123
Protected constructors.158
Protected data members158
Protected member functions . . .159

TDecoratedFrame class. 159
Type definitions160
Public constructor160
Public member functions . . .160
Protected data members . . .161
Protected member functions161
Response table entries.162

TDecoratedMDIFrame class 162
Public constructor162
Protected member function162
Response table entries 162

TDesktopDC class 163
Public constructor163

TDialog class. 163
Public data members164
Public constructor and destructor. 164
Public member functions164
Protected member functions167
Response table entries. 168

TDialog class::TDialogAttr struct. 168
Public data members168

TDib class. 169
Type definitions169
Public constructors and destructor . .169
Public member functions170
Protected data members17 4
Protected member functions175

TDibDC Class 176
Public constructors176

TDocManager class. 176
Public constructor and destructor. .177
Public data members177

Public member functions . . . 177
Protected member functions . 181
Response table entries 182

TDocument class 182
Public data members. 183
Type definition 183
Public constructor and destructor 184
Public member functions 184
Protected data members. 189
Protected member functions 189

TDocument::List class 189
Public constructor and destructor 189
Public member functions 190

TEdgeConstraint struct 190
Public member functions 190

TEdgeOrSizeConstraint struct 191
Public member functions 192

TEdit class . 192
Public constructors. . . . 193
Public member functions . . 193
Protected data member . . . 198
Protected member functions 198
Response table entries 201

TEditFile class 201
Public constructors and destructor. . . . 201
Public data members. 202
Public member functions 202
Protected member functions . . 203
Response table entries 204

TEditSearch class 204
Public constructor 204
Public data members. 204
Public member functions . . 205
Response table entries 206

TEditView class 206
Public constructor and destructor . . 206
Public member functions . . . 206
Protected data member 207
Protected member functions . 207
Response table entries 208

TEqualOperator typedef. 208
TEventHandler class 209

Public member functions 209
Protected member function 209

TEventHandler::TEventlnfo class 209
Public constructor 209
Public data members. 210
TEventStatus enum. 210

TFileDocument class 210
Public constructor and destructor . . 211
Type definitions. 211

iv

Public member functions. . . .211
Protected data member213
Protected member functions . .213

TFileOpenDialog class 213
Public constructor 214
Public member function 214

TFileSaveDialog class 214
Public constructor 214
Public member function 214

TFilterValidator class 215
Public constructor215
Public member functions215
Protected data members215

TFindDialog class 216
Public constructor 216
Protected member functions. 216

TFindReplaceDialog class 216
Public constructor216
Public member functions. . . .217
Protected data members217
Protected member functions. .217
Response table entries.218

TFindReplaceDialog::TData class. 218
Public constructor and destructor.218
Public data members218

TFloatingFrame class ... · 219
Public constructor220
Public member functions220
Protected member functions . . .220
Response table entries.221

TFont class . 221
Public constructors , 221
Public member functions 222

TFrameWmdow class 222
Public constructors and destructor . .222
Public data members223
Public member functions . .223
Protected data members . .225
Protected constructor226
Protected member functions . . .226
Response table entries.228

TGadget class 228
Public constructors and destructor . .229
Public data members229
Public enums and structs. . .229
Public member functions . . .230
Protected data members232
Protected member functions233

TGadgetWmdowFont class 234
Public constructor235

TGadgetWmdow class 236

Public constructor and destructor 236
Type definitions. 236
Public member functions . . · . 236
Protected data members. . . . 239
Protected member functions 241
Response table entries 243

TGauge class 243
Public constructor 243
Public member functions . . . 243
Protected data members. . . . 244
Protected member functions . 245
Response table entries 245

TGdiObject class 245
Public destructor 246
Type definitions. 246
Public member functions . . . 246
Protected data members. . . . 248
Protected member functions . 248
Protected constructors 248
Macros. 248

TGdiObject::TXGdi class. 250
Public constructor 250
Public member functions 250

TGroupBox class 250
Public data members. . . . 251
Public constructors 251
Public member functions 251

THatch8x8Brush class 252
Public data members. 252
Public constructors 253
Public member functions 253

TIC class 253
Public constructor 254

Tlcon class . 254
Public constructors and destructor 254
Public member functions 255

TlnputDialog class 255
Public data members. . . . 255
Public constructor 255
Public member function 256
Protected member function . . 256

TlnStream class 256
Public constructor 256

TLayoutConstraint struct 256
Public data members. 257

TLayoutMetrics class. 258
Public data members. 259
Public constructor 259

TLayoutWindow class 261
Examples. 261
Public constructor and destructor 263

v

Public member functions263
Protected data member.264
Protected member functions . .264
Response table entries.264

TListBox class 264
Public constructors265
Public member functions265
Protected member function270

TListBoxData struct. 270
Public data members270
Public constructor and destructor. 271
Public member functions. 271

TListView class 272
Public constructor and destructor. . .272
Public data member272
Public member functions.273
Protected data members273
Protected member functions . . .27 4
Response table entries.276

TLocaleString struct. 276
Public member functions277

TLookup Validator class 278
Public constructor278
Public member functions. 278

TMDIChild class 279
Public constructors and destructor . .279
Public member functions279
Protected member functions280
Response table entries.281

TMDIClient class 281
Public constructor and destructor. .281
Public data member281
Public member functions281
Protected member functions. . .283
Response table entries.284

TMDIFrame class 284
Public constructors285
Public member functions285
Protected member functions. . .286
Response table entries.286

TMeasurementUnits enum 286
TMemoryDC class 287

Public constructors287
Public member functions287
Protected data member287

TMenu class 288
Public constructors and destructor . . .288
Public member functions288
Protected data members292
Protected member functions292

TMenuDescr class. 293

Public constructors and destructor 295
Type definitions. 296
Public member functions 296
Protected data members. 297
Protected member functions 298

TMenultemEnabler class 298
Public constructor 298
Protected data member 298
Public member functions 299

TMessageBar class 299
Public constructor 299
Public member functions 299
Protected data members. 300
Protected member functions 300

TMetaFileDC class 300
Public constructor and destructor 301
Public member function 301

TMetaFilePict class 301
Public constructors and destructor. 301
Public member functions 302
Protected data members 303

TModule class 303
Public constructors and destructor. 303
Public data members. 304
Public member functions 304
Protected data members. ·. 309

TModule::TXInvalidModule class 310
Public constructor 310
Public member functions 310

TOleClientDC class. 310
Public constructor 311

TOleDocument class311
Public constructor and destructor 311
Public member functions 312

TOleFactoryBase<> class 314
Public member functions 315
Template arguments 315

TOleFrame class. 316
Public constructor and destructor 317
Public member functions 317
Protected member functions 317
Protected data members. 320
Response table entries 321

TOleMDIFrame class 321
Public constructor and destructor 322
Protected member functions 322
Response table entries 323

TOle View class 323
Public constructor and destructor 323
Public member functions 324
Protected member functions 324

vi

Response table entries 326
TOleWmdow class 326

Public constructor and destructor.327
Public member functions327
Protected data members329
Protected member functions330
Response table entries 341

TOpenSaveDialog class 342
Public constructor 342
Public member functions342
Protected data members343
Protected constructor343
Protected member functions343
Response table entries 344

TOpenSaveDialog::TData struct 344
Public constructors and destructor344
Data members345
Public member functions 346

TOutStrearn class 346
Public constructor346

TPaintDC class. 347
Public constructor and destructor.347
Public data member347
Protected data member 347

TPalette class. 347
Public constructors 347
Public member functions348
Protected member functions350

TPaletteEntry class 350
Public constructors351

TPen class. 351
Public constructors 351
Public member functions352

TPicResult enum 353
TPlacement enum. 353
TPopupMenu class 353

Public constructors353
Public member functions 353

TPreviewPage class 354
Public constructor354
Public member functions355
Protected data members355
Protected member functions355
Response table entries 356

TPrintDC class. 356
Public constructors356
Public member functions356
Protected data member363

TPrintDialog::TData struct. 364
Public data members364
Public member functions 366

TPrintDialog class. 367
Public constructor 368
Public member functions 368
Protected data members. 368
Protected member functions 369
Response table entries 369

TPrinter class 369
Public constructor and destructor 369
Public member functions 369
Protected data members. 370
Protected member functions 371

TPrinter::TXPrinter class. 372
Public constructors 372

TPrinterAbortDlg class. 372
Public constructor 372
Protected member functions 372

TPrintout class. 373
Public constructor and destructor 373
Public member functions 373
Type definitions 374
Protected data members. 375

TPrintPreviewDC class 375
Public constructor and destructor 376
Public member functions 376
Protected data members. 379
Protected member functions 379

TProfile class 379
Public constructor and destructor 379
Public member functions 380

TPXPicture Validator class 380
Public constructor 380
Public member functions 380
Protected data member 382

TRadioButton class 382
· Public constructors 382

Protected member functions 383
Response table entries 383

TRange Validator class 383
Public constructor 383
Public member functions 383
Protected data members. 384

TRegion class 384
Type definitions 384
Public constructors 384
Public member functions 385

TRelationship enum 387
TReplaceDialog class. 387

Public constructor 388
Protected member function 388

TResponseTableEntry class 388
Public data members. 388

vii

Type definitions389
TRgbQuad class 389

Public constructors389
TRgbTriple class 390

Public constructors390
TScreenDC class. 390

Public constructor390
TScrollBar class 391

Public data members391
Public constructors391
Public member functions392
Protected member functions394
Response table entries 394

TScrollBarData struct. 394
Public data members394

TScroller class 395
Public data members395
Public constructor and destructor396
Public member functions396

TSeparatorGadget class 398
Public member function399

TSlider class . 399
Public constructor and destructor400
Public member functions400
Protected member functions401
Protected data members404
Response table entries405

THSlider class 405
Public constructors406
Protected member functions406

TVSlider class 407
Public constructor407
Protected member functions407

TSortedStringArray class 408
Public constructor408
Type definitions408
Public member functions408

TStatic class. 410
Public data members410
Public constructors411
Public member functions411
Protected member functions412
Response table entries 412

TStatus class . 412
Public constructor412
Public data members412

TStatusBar class 413
Type definitions413
Public constructor414
Public member functions 414
Protected data members415

Protected member functions 415
TStorageDocument class. 416

Type definitions. 416
Public constructor and destructor . . . 417
Public member functions 417
Protected data members. 420

TStream class 420
Public destructor 420
Public member functions . 420
Protected data members. . 421
Protected constructor. . . . 421

TStringLookupValidator class 421
Public constructor and destructor 421
Public member functions 421
Protected data member 422

TSystemMenu class. 422
Public constructor 422

TTextGadget class. 422
Public constructor and destructor 423
Public member functions . . . 423
Protected data members. 423
Protected member functions 423

Type definitions 424
TTmyCaption class 424

Protected data members. 425
Protected constructor and destructor . . . 426
Protected member functions 426
Response table entries 430

TToolBox class. 430
Public constructor 431
Public member functions . . . 431
Protected data members. 431
Protected member function 432

TTransferDirection enum 432
TUIHandle class. 432

Type definitions 433
Public constructor 435
Public member functions 435

TValidator class 436
Public constructor and destructor 437
Public member functions 437
Protected data members 439
Type definitions 439

TValidator::TXValidator class 440
Public constructor 440

TVbxControl class 440
Public constructors and destructor. .. 441
Public member functions 442
Protected member functions 446
Response table entries 446

TVbxEventHandler class 447

Protected member functions450
Response table entries.451

TView class. 451
Public data members452
Public constructor and destructor . .452
Public member functions452
Protected data member454
Protected member functions454

TWidthHeight enum 454
TWindow class. 454

Public data members455
Public constructors and destructor456
Public member functions457
Protected data members489
Protected constructor490
Protected member functions . . .491
Response table entries.494

TWindow Attr struct 494
Public data members495

· TWindowFlag enum496

viii

TWindowDC class 497
Public constructor and destructor. .497
Protected constructor497
Protected data member497

TWindowView class 498
Public constructor and destructor. .498
Public member functions498
Response table entries.499

TWindow::TXWindow class. 499
Public constructors499
Public data members499
Public member functions499

TXCompatibility class 500
Public constructors 500
Publicmember functions. 500

TMenu::TXMenu class 501
Public constructors501
Public member functions501

TXOutOfMemory class. 501
Public constructors501
Public member functions501

TXOwl class 502
Public constructors and destructor . . .503
Public data member503
Public memberfunctions. 504

vnxxxx view notification constants. 504

Chapter3
ObjectWindows event handlers 505

Chapter4
ObjectWindows dispatch functions 513
List of ObjectWmdows dispatch functions . . 514

i_LPARAM_Dispatch 514
i_U_W_U_Dispatch 514
i_WPARAM_Dispatch 515
132_Dispatch. 515
132_LPARAM_Dispatch 515
132_ WPARAM_LPARAM_Dispatch 515
132_MenuChar_Dispatch 515
132_U_Dispatch 515
U_Dispatch 515
U_LPARAM_Dispatch 516
U_POINT_Dispatch 516
U_POINTER_Dispatch 516
U_U_Dispatch 516
U_U_U_U_Dispatch 516
U_WPARAM_LPARAM_Dispatch 516
v _Activate_Dispatch. 516
v _Dispatch 516
v _LPARAM_Dispatch 517
v _MdiActivate_Dispatch 517
v _ParentNotify _Dispatch 517
v _POINT_Dispatch. , 517
v _POINTER_Dispatch. 517
v_U_Dispatch 517
v_U_POINT_Dispatch 518
v_U_U_Dispatch 518
v_U_U_U_Dispatch 518
v_U_U_W_Dispatch 518
v_WPARAM_Dispatch 518
v _ WPARAM_LPARAM_Dispatch 518

Part II
ObjectComponents reference 519

Chapters
Overview of ObjectComponents 521
ObjectComponents libraries. 521
ObjectComponents header files 522
Gen~r~ .OLE classes, macros, and type

definitions · 522
Global utility functions. 523
ObjectComponents exception classes 523
Automation classes. 523
Automation enumerated types and type

definitions . 524
Automation data types. ·. 524
Declarations and definitions of automation

data types. 524

ix

Automation declaration macros 525
Automation definition macros 526
Automation hook macros 527
Automation proxy macros 528
Registration keys 529
Linking and embedding classes 530
Linking and embedding enums 532
Linking and embedding messages. 532
Linking and embedding structs. 532
ocrxxxx constants 533

Chapter6
ObjectComponents library

reference 535
_ICLASS macro 535
_IFUNC macro. 535
_ OCFxxxx macros. 535
aspectall registration key. 536
aspectcontent registration key. 536
aspectdocprint registration key 537
aspecticon registration key. , 537
aspectthumbnail registration key. 537
AUTOARGS macros 538
AUTOCALL_xxxx macros 538
_AUTOCLASS macro 539
AUTODATAmacros 539
AutoDataType enum 540
AUTODETACHmacro 540
AUTOENUM macros 541
AUTOFLAG macro 541
AUTOFUNC macros 542
AUTOINVOKE macro 543
AUTOITERATOR macros 543
AUTONAMESmacros 544
AUTONOHOOKmacro 544
AUTOPROP macros 545
AUTORECORD macro 545
AUTOREPORT macro 545
AutoSymFlag enum 546
AUTOSTAT macros 546
AUTOTHIS macro 547
AUTOUNDO macro 548
AUTOVALIDATE macro 548
clsid registration key ; 548
cmdline registration key 549
debugclsid re~tration key 549

debugdesc registration key 549
debugger registration key 550
debugprogid registration key. 550
DECLARE_AUTOCLASS macro. 551
DECLARE_COMBASESnmacros 551
DEFINE_AUTOAGGREGATE macro. 552
DEFINE_AUTOCLASS macro 552
DEFINE_COMBASESnmacros 553
description registration key 553
directory registration key 554
docfilter registration key. 554
docflags registration key. . . , . ,· 554
DynamicCast function 555
END-'-AUTOAGGREGATE macro. 555
END_AUfOCLASSmacro 555
EXPOSE_ APPLICATION macro. 556
EXPOSE'--DELEGATE macro 556
EXPOSE_INHERIT macro. 557
EXPOSE_ITERATOR macro 557
EXPOSE_METHODmacros 558
EXPOSE_PROPxxxx macros 559
EXPOSE_ QUIT macro 560
extension registration key 560
filefmt registration key. 561
form.atn registration key 561
handler registration key 561
helpdir registration key 562
HR_xxxx return constants. 562
iconindex registration key. 563
insertable registration key. 563
language registration key 564
menuname registration key. · . , 564
MostDerived function 564
ObjectPtr typedef 564
OC_APPxxxx messages 565
OC_ VIEWxxxx messages 565
ocrxxxx aspect constants. 566
ocrxxxx Clipboard constants 567
ocrxxxx direction constants 568
ocrxxxx limit constants 568
ocrxxxx medium constants · . . 568
ocrxxxx object status constants 569
ocrxxxx usage constants 570
ocrxxxx verb attributes constants. 570
ocrxxxx verb menu flags. 570
OPTIONAL ARG macro 571
path registration key' 571

x

permid registration key , . 572
permname registration key 572
progid registration key 572
REQUIRED _ARG macro 573
TAutoBase class 573

Public destructor.573
TAutoBool struct 574

Public data member 574
TAutoCommand class 574

Public constructor and destructor 574
Type definitions 574
Public member functions575
Protected data members577

TAutoCurrency struct 577
Public data member577

TAutoDate struct 578
Public data members578
Public constructors578
Public member function578

TAutoDouble struct. 578
Public data member578

TAutoEnumerator<> class. 579
·Public constructors and destructor579
Public member functions579

TAutoFloat struct 580
Public data member580

TAutolterator class 581
Public member functions581
Protected constructors.583
Protected data member583

TAutoLong struct 583
Public data member583

TAutoObject <> class 584
Public constructors584
Public member functions584
Protected data member585

TAutoObjectByVal<> class 585
Public data member585
Public constructors586

TAutoObjectDelete <> class 586
Public constructors586
Public member functions586

TAutoProxy class 587
Public destructor.587
Public member functions587
Protected constructor589
Protected member function589

TAutoShort struct 590
Public data member590

TAutoStack class. 590

Public constructor and destructor 590
Public member function. 591
Public data members 591
Constant . 592

TAutoString struct 592
Public constructors and destructor 592
Public member functions 593
Public data member 593

TAutoType struct 594
Public member function 594

TAuto Val class. 594
Public member functions 595

TAuto Void struct 598
Public data member 599

TComponentFactory type definition 599.
1Localeld type d,efinition 599
TOcApp class 600

Type definitions 600
Public member functions 601
Protected constructor and destructor 606
Protected member functions 606

TOcAppMode enum. 607
TOcAspect enum 608
TOcDialogHelp enum 608
TOcDocument class 609

Public constructors and destructor 610
Public member functions 610

TOcDragDrop struct 613
Public data members 613

TOcDropAction enum 613
TOcFormatLlst class 614

Public constructor and destructor 614
Public member functions 614

TOcFormatListlter class 615
Public constructor 616
Public member functions 616

TOcFormatName class 616
Public constructors and destructor 617
Public member functions 617

TOclnitHow enum 618
TOclnitlnfo class 618

Public data members. 618
Public constructors 620
Public member functions 620

TOclnitWhere enum 620
TOclnvalidate enum 621
TOcMenuDescr struct 621

Public data members. 622
TOcModule class 622

Public constructor and destructor 623

xi

Public member functions 623
Public data members 623

TOcNameList class 624
Public constructor and destructor.624
Public member functions625

TOcPart class 626
Public constructors626
Public member functions·.626
Protected destructor 631

TOcPartCollection class 631
Public constructor and destructor.632
Public member functions632

TOcPartCollectionlter class 633
Public constructor633
Public member functions633

TOcPartName enum 634
TOcRegistrar class. 634

Public constructor and destructor.635
Public member functions635
Protected member functions636

TOcRem View class 637
Public constructor637
Public member functions638

TOcSaveLoad struct 639
Public data members 640

TOcScaleFactor class 640
Public constructors640
Public data members 641
Public member functions641

TOcScrollDir enum 642
TOcToolbarlnfo struct 642

Public data members643
TOcVerb class 644

Public constructor 644
Public data members 644

TOcView class 645
Public constructor 645
Public member functions 646
Protected destructor 649
Protected member functions649
Protected data members 650

TOcViewPaint struct 651
Public data members 651

TOleAllocator class 652
Public constructors and destructor 652
Public member functions653
Public data member653

TRegistrar class 653
Public constructor and destructor.654
Public member functions654
Protected data member 657

Protected constructor 657
TUnknown class 658

Public member functions 658
Protected constructor and destructor 659
Protected member functions 660
Protected data member 660

TXAuto class. 660
Public constructor 660
Public data member 661
Type definition 661

TXObjComp class. 661
Public constructor ; 661
Public member function 662
Type definition 662

TXOle class. 662
Public constructors and destructor. 663
Public member functions 663
Public data member 664

TXRegistry class. 664
Public constructors 664
Public member functions 664

typehelp registration key 665
usage registration key 665
verbn registration keys. 665

, verbnopt registration keys. 666
version registration key 666
WM_OCEVENT message _, ... 667

Part ID
ObjectSupport reference 669

Chapter7
Overview of ObjectSupport 671

Chapter8
ObjectSupport library reference 673
Registration macros. 673
BEGIN_REGISTRATION macro 674
END _REGISTRATION macro 675
REGDATA macro. 675
REGITEM macro 676
REGFORMATmacro 676
REGSTATUS macro. 677
REGVERBOPT macro 677
REGICON macro 678
REGDOCFLAGS macro , 678
REGISTRATION· FORMAT BUFFER

macro - -: 679

xii

TDocTemplate class~ 679
Public member functions ,679
Protected constructor and destructor 683

TDocTemplateT<D,V> class 683
Public constructors684
Public member functions684

TDroplnfo class • 685
Public constructor685
Public member functions 685

TLangld typedef. 686
TPoint class. 686

Public constructors687
Public member functions . ·.687

TPointer<> class. 689
Public con8tructors689
Public member functions 689

TProclnstance class 690
Public constructor and destructor.690
Public member function 690

TRect class . 690
Public constructors691
Public member functions691

TResld class · 696
Public constructors697
Public member functions697
Friend functions697

TSize class . 697
Public constructors698
Public member functions ,698

TXBase class . 699
Public constructors and destructor 700
Public data member 700
Public member functions 700

Appendix A
Windows API encapsulated
functions

AppendixB
Windows API structs

701

707
ABC struct . 707
BITMAP struct 707
BITMAPCOREHEADER struct 708
BITMAPCOREINFO struct 709
BITMAPINFO struct 710
BITMAPINFOHEADER struct 711
COLORREF typedef 713
COMPAREITEMSTRUCT struct 713
DELETEITEMSTRUCT struct 714

DEVMODE struct. 714
DRAWITEMSTRUCT struct 718
FINDREPLACE struct 720
GLYPHMETRICS struct 722
HANDLETABLE struct 722
ICONINFO struct. 722
KERNINGPAIR struct 723
LOGBRUSH struct 723
LOGFONT struct 724
LOGPALETTE struct 727
LOGPEN struct 727
MDICREATESTRUCT struct 728

xiii

METARECORD struct 729
MEASUREITEMSTRUCT struct 729
MSG struct . 730
OUTLINETEXTMETRIC struct 730
RGBQUAD struct 733
RGBTRIPLE struct 733
TEXTMETRIC struct 733
WNDCLASS struct 736
PAINTSTRUCT struct 737
PALETTEENTRY struct 738
XFORM struct 738

Index 741

Tables
1.1 Summary of the ObjectSupport library

files 16
1.2 Summary of static libraries 16
1.3 Summary of dynamic link libraries 17
1.4 Target applications and compiler options. . . 17
1.5 Summary of options for building an

ObjectWmdows static or dynamic library. . . 18
1.6 Summary of options for using an

ObjectWmdows static or dynamic library ... 19
1.7 Compile options for _OWLCLASS macro .. 19
1.8 Summary of header files 19
1.9 Summary of resource files 23
1.10 New ObjectWmdows data types 24
2.1 Button flag constants 28
2.2 Button message constants 28
2.3 Combo box message constants 28
2.4 Command-based constants 29
2.5 Command-based constants 29
2.6 Command-based constants 30
2.7 Command-based constants 30
2.8 Command message constants. 31
2.9 Dialog control message constants 33
2.10 Edit message constants. 35
2.11 TWmdow attribute masks 496
3.1 Button notification messages 505
3.2 Child ID notification messages 505
3.3 Combo box notification messages 506

3.4 Command messages. 506
3.5 Document manager messages 506
3.6 Document view messages 506
3.7 Edit control notification messages. 507
3.8 List box notification messages 507
3.9 ObjectComponents messages 507
3.10 Scroll bar notification messages 508
3.11 Standard Wmdows messages 509
3.12 VBX messages 512
3.13 User-defined messages 512
7.1 Summary of the ObjectSupport library

files 672
A.1 Encapsulated inline HWND functions 702
A.2 Encapsulated Wmdow messages 702
A.3 Wmdow coordinates and dimensions 702
A.4 Wmdow properties 703
A.5 Window placement 703
A.6 Window relationships 703
A.7 Wmdow painting functions 704
A.8 Wmdow scrolling functions 704
A.9 Child window ID functions 705
A.10 Menu and menu bar functions 705
A.11 Clipboard functions 705
A.12 Tuner functions 705
A.13 Caret and cursor functions 706
A.14 Hot key functions 706
A.15 Help and task functions. 706

Figures
1.1 Base class with several derived classes 7
1.2 ObjectWmdows hierarchy. 8
1.3 ObjectWmdows hierarchy. 9

xiv

5.1 Hierarchy of ObjectComponents connector
classes . 531

Introduction

This Reference Guide can be used to help you perform the following tasks in
Object Windows:

• Look up the overall purpose for each class.

• Learn the details about how to use a particular ObjectWindows class and its members
and functions.

• View the virtual and nonvirtual multiple inheritance relationships among
ObjectWindows classes.

• Learn which classes introduce or redefine functions.

• Determine which ancestor of a class introduced a data member or member function.

• Learn how data members and member functions are declared.

• Create OLE2 applications easily by using ObjectComponents classes.

• Use the ObjectSupport Library (OSL) to support mathematical and file operations.

• Use event-handling functions to respond to messages.

• Use dispatch functions to crack Windows messages.

What's new in ObjectWindows 2.5
ObjectWindows 2.5 provides several new features that make it easier for you to design
applications that run faster, write code that's easier to debug, and create programs that
implement linking and embedding technology. ObjectWindows 2.5 provides the
following enhancements over version 2.0:

• Complete encapsulation of OLE2 using ObjectComponents including

• Linking and embedding containers

• Linking and embedding servers

• Automation servers

• Automation controllers

• OLE clipboard operations

Introduction 1

• OLE drag and drop operations

• In-place editing

• OLE user interface, including menu merging, pop-up menus for activated object
verbs on the container's Edit menu

• Compound file storage

• Registration

• Localized strings for international support

• Type libraries

• New data type definitions. See Chapter 1 of this manual for a list of the new data type
definitions.

• Internal diagnostic classes for increased debugging capabilities

• ObjectSupport classes that include new classes as well as utility classes previously
included in the ObjectWindows library. See Chapter 1 of this manual for a
description of the new support classes.

Contents of this manual
This manual is divided into three parts and includes two appendixes.

Part I, "ObjectWindows reference," includes the following four reference chapters:

Chapter 1, "Overview of ObjectWindows," provides an overview of the
ObjectWindows classes, libraries, and header files. It organizes the classes according
to functional groups and explains the purpose of each class within that group.

Chapter 2, "ObjectWindows library reference," is an alphabetical listing of all the
standard ObjectWindows classes, including explanations of their purpose, usage,
and members. It also describes the nonobject elements such as structures, constants,
variables, and macros that classes use.

Chapter 3, "ObjectWindows event handlers," lists the ObjectWindows functions
and notification codes that crack Windows messages.

Chapter 4, "ObjectWindows dispatch functions," lists all of the ObjectWindows
functions that dispatch Windows messages.

Part II, "ObjectComponents reference." The second second part of this manual
describes all of the ObjectComponents classes, structures, constants, types, and macros.
It includes the following chapters: ·

Chapter 5, "Overview of ObjectComponents," provides an overview of the
ObjectComponents classes, libraries, and header files. It describes the classes
according to their functional groups and explains their purpose within that group.

Chapter 6, "ObjectComponents library reference," is an alphabetical listing of all
the standard ObjectComponents classes, including explanations of their purpose,
usage, and members. It also describes the nonobject elements such as structures,
constants, variables, and macros that classes use.

2 ObjectWindows Reference Guide

Part III, "ObjectSupport reference." The third part of this manual describes all of the
ObjectSupport classes, structures, constants, types, and macros. It includes the following
chapters:

Chapter 7, "Overview of ObjectSupport," provides an overview of the
ObjectWindows classes, libraries, and header files. It organizes the classes into
functional groups and explains the purpose of each class within that group.

Chapter 8, "ObjectSupport library reference," is an alphabetical listing of all the
standard ObjectSupport classes, including explanations of their purpose, usage, and
members. It also describes the nonobject elements such as structures, constants,
variables, and macros that classes use.

Appendix A, "Windows API encapsulated functions," lists the ObjectWindows
functions that encapsulate Windows API functions.

Appendix B, "Windows API structs," lists the Windows structures that
ObjectWindows uses.

Typefaces used in this manual
Boldface

Italics

Mono space

Keyt

Keyt+
Key2

Menul
Command

Note

Boldface type indicates language keywords (such as char, switch, and begin) and
command-line options (such as -m).

Italic type indicates program variables and constants that appear in text. This typeface is
also used to emphasize certain words, such as new terms.

Monospace type represents text as it appears onscreen or in a program. It is also used for
anything you must type literally (such as TD32 to start up the 32-bit Turbo Debugger).

This typeface indicates a key on your keyboard. For example, "Press Esc to exit a menu."

Key combinations produced by holding down one or more keys simultaneously are
represented as Key1 +Key2. For example, you can execute the Program Reset command by
holding down the Ctr/ key and pressing F2 (which is represented as Ctrl+F2).

This command sequence represents a choice from the menu bar followed by a menu
choice. For example, the command "File I Open" represents the Open command on the
File menu.

This icon indicates material you should take special notice of.

Conventions used in this manual
Cross-referenced entries to ObjectWindows functions include the class name, the scope
resolution operator, and the function name. For example,

See also: T Application::Pump WaitingMessages

C++ data types that are keywords (such as int and long) are in lowercase bold.
Predefined Windows types (such as HWND) are in capital letters; for example,

bool TrackPopupMenu(uint flags, int x, int y, int rsvd, HWND wnd, TRect* rect=O);

Introduction 3

4 ObjectWindows Reference Guide

ObjectWindows reference

Part I, ObjectWindows reference 5

6 Objec!Windows Reference Guide

Overview of ObjectWindows
This chapter provides an overview of the ObjectWindows classes, libraries, and header
files. It describes the classes according to the functional groups represented on the
ObjectWindows hierarchy diagram.

Hierarchy diagram
The ObjectWindows hierarchy diagram shows the classes that are described in this
manual. The classes are grouped according to functiqnal categories, and all related
classes are in one shaded unit. A rectangle surrounds the name of the class. A class is
enclosed in dashed lines if it is a parent class for a multiply-inherited class. For example,
TListBox is the parent class for TList View, which is derived from both TView and
TListBox. Base classes are placed above inherited classes and are connected to inherited
classes by straight lines. The triangle on the connecting lines indicates the type of
inheritance association that exists between the classes. A filled-in triangle indicates
virtual inheritance between the parent and its derived classes; an open triangle
illustrates nonvirtual inheritance.

Figure 1.1 Base class with several derived classes

Base Class

Derived Class Derived Class Derived Class

Chapter 1, Overview of ObjectWindows 7

Figure 1.2 ObjectWindows hierarchy

TEventHandler

t ______ 1_

--- -c~TW2~~i-----

• ---,r-~=-­
I l~~e~indow j--

I l ___ L_

I

8 ObjectWindows Reference Guide

TStreamableBase

Figure 1.3 ObjectWindows hierarchy

Chapter 1, Overview of ObjectWindows 9

Using ObjectWindows classes
The ObjectWindows hierarchy includes a forest of classes that you can use, modify, or
derive from in order to create your own application. This section describes these groups
of classes and how you can use them to build your application. These classes, which are
displayed on the ObjectWindows hierarchy chart, can be divided into the following
groups.

• Base classes

• Window management classes
• Frame windows
• Decorated windows
<> Common dialogs
<> Controls
• Gadgets
• Menus

• Module and application management classes
• Command enabling
• Doc/view
• Print and print/preview

• Graphics classes
• GDI objects
• Device contexts

• Validators
• Exception handling classes
• Support classes

Base classes
TEventHandler, TStreamableBase, and TGdiBase are important base classes. All
ObjectWindows classes are derived from one or more of these classes. Classes that
inherit from TEventHandler are able to respond to window messages. Classes that inherit
from TStreamableBase support streaming, that is their objects can write to and read from
streams. Almost all of the ObjectWindows classes are derived from TStreamableBase. You
can use multiple inheritance to derive a class from both TEventHandler and
TStreamableBase. Classes that inherit from TGDIBase, a private base class, support GDI
drawing objects such as pens, brushes, fonts, and bitmaps.

• TEventHandler sends messages to the appropriate message handler.
• TStreamableBase provides support for C++ streaming and persistence.
• TGdiBase is the root class for all derived GDI classes that support Windows' GDI

library.

10 0 bj ectWi n d ows Rete ren ce Guide

Window management classes
Derived from TEventHandler and TStreamableBase, TWindow is the parent class for all
window classes. It represents the functionality common to all windows, whether they
are dialog boxes, controls, multiple document interface (MDI) windows, or layout
windows. One of the fundamental ObjectWindows classes that implements OLE
functionality, TOleWindow provides support for embedding objects in a compound
document application.

Frame windows
A frame window, which is actually an application's main window, has the ability to
contain other client windows and also support UI elements such as menus and icons.
Serving as main windows of MDI-compliant applications, MDI frame windows manage
multiple documents or windows in a single document (SDI) application.
ObjectWindows also provides OLE support for both SDI and MDI applications. A
floating frame window provides the same functionality but lets you position the
window anywhere within the parent window.

• TFrameWindow adds special functionality designed to simplify the managment of
main windows.

• TFloatingFrame, derived from TFloatingFrame and TTinyCaption, provides the
functionality of a frame window enhanced with a tiny caption bar.

• TMDIChild defines the behavior of MDI child windows.

• TMDIFrame provides support for frame windows designed to be used as MDI
windows.

• TOleFrame provides OLE support for the main window of an SDI application.

• TOleMDIFrame provides OLE support for the main window of an MDI application.

Mix-in window classes such as TLayoutWindow and TClipboardViewer add the special
functionality of layout capabilities and clipboards to the main window classes. Use
TLayoutWindow to design the placement of a window on the screen and
TClipboardViewer to view the data shared between applications.

Decorated windows
Multiply inherited from TFramewindow and TLayoutWindow, decorated window classes
let you add decorated control bars, and status bars to the frame of a window and adjust
the child window to accommodate the placement of these decorations.

~ TDecoratedFrame is basically a frame window with added decorations.
• TDecoratedMDIFrame is an MDI frame window that supports decorations.

Common dialogs
TDialog lets you create specialized windows referred to as dialog boxes. Dialog boxes
typically ask users for information about fonts, colors, files, printing options, or
searching and replacing text. Depending on their purpose, dialog boxes can be either

Chapter 1, Overview of ObjectWindows 11

modal, those which prevent a user from selecting other windows, or modeless, those
which permit a user to select other windows.

You can create your own customized dialog boxes or use one of the ObjectWindows
classes that encapsulates Windows' common dialog boxes. The following common
dialog classes are derived from TCommonDialog which is itself derived from TDialog, the
base dialog box class.

• TChooseFontDialog objects represent modal dialog boxes allow font selection, style,
point, size, and color.

• TChooseColorDialog objects represent modal dialog boxes that allow color selection
and custom color adjustment.

• TOpenSaveDialog is the base class for modal dialog boxes that let you open and save a
file under a specified name.

• TPrintDialog displays a modal print or a printer setup dialog box.

• TFindReplaceDialog is the base class for modeless dialog boxes that let you search for
and replace text.

Controls
The control classes support standard Windows controls such as list boxes, combo boxes,
group boxes, check boxes, scroll bars, buttons, radio buttons, edit controls, and static
controls.

Although most windows come with scroll bars already installed, you can use TScrollBar
to create a standalone vertical or horizontal scroll bar, for example, as a dialog box
control.

Unlike standard Windows controls, ObjectWindows supports widgets, specialized
controls written entirely in C++. The widget classes ObjectWindows provides include
support for sliders, controls that are used for providing nonscrolling position
information, and gauges, controls that provide duration or analog information about a
particular process.

• TSlider defines the basic behavior of sliders.
• THSlider implements horizontal sliders.
• TVSlider implements vertical sliders.
• TGauge defines the basic behavior of gauge controls.

Gadgets
TGadget is the base class for several derived classes that support gadget objects that
belong to a gadget window, have borders and margins, and their own style attributes.
Derived from TWindow, TGadgetWindow maintains a list of gadgets, controls the display
of the gadgets, and sends the necessary messages to the gadgets.

Additional gadget classes derived from TGadgetWindow such as TToolBox, TMessageBar,
TStatusBar, and TControlBar manipulate gadgets in different ways so that you can
enhance a bar or tool box attached to a frame window.

• TToolBox lets you place a set of gadgets in a matrix of columns and rows.

12 0 b j e ct W i n d o w s R e f e r e n c e G u i d e

• TMessageBar implements a message bar with one text gadget.

• TStatusBar lets you include multiple text gadgets and different border styles in a
status bar.

• TControlBar implements a control bar that provides a set of buttons on a bar in a
frame window.

Menus
TMenu and its derived classes let you construct, modify, and create menu objects. The
classes derived from TMenu include

• TPopupMenu lets you add a popup menu to an existing window or popup menu.
• TSystemMenu creates a system menu object.

Module management classes
Derived from TModule, T Application supplies functionality common to all
Object Windows applications. Classes derived from T Application have the ability to
create instances of a class, create main windows, and process messages. TModule defines
behavior shared by both library (DLL) and application modules. Virtually derived from
TModule, TBiVbxLibrary lets you add Visual Basic (VBX) controls to your application.

DocNiew classes
Doc/View class support the Doc/View model, a system in which data is contained in
and accessed through a document object, and displayed and manipulated through a
view object. Any number of views can be associated with a particular document type.
Various classes control the flow of information within this system. Several classes also
provide support for OLE's compound document and compound file structure within
the Doc/View model.

TDocManager is the base class designed to handle documents, templates, messages and
soon.

• TDocument is an abstract base class that serves as an interface between the document,
its views and its document manager.

• TStorageDocument supports OLE's compound file structure and lets you create
compound documents with embedded objects.

• TOleDocument implements the document half of an OLE-enabled Doc/View
application.

• TView is the base class that displays the document's data and gets user input.

• TListView supports views for list boxes.

• TOleView supports the view half of an OLE-enabled Doc/View application.

Chapter 1, Overview of ObjectWindows 13

Printer classes
TPrinter, TPrintout, and TPreviewPage provide various functions that make it easy for
you to set up a printer dialog box, view a document in a print preview window, and
print a document.

• TPrinter represents the physical printer device.
• TPrintout represents the physical printed document sent to the printer
• TPreviewPage displays a page of a document in a print preview window.

Graphics classes
ObjectWindows GDI classes encapsulate Windows' Graphics Device Interface (GDI) to
make it easier to use device context (DC) classes and GDI objects. The GDI library
supports device independent drawing operations using DIBS (device independent
bihnaps).

DC classes
Instead of drawing directly on a device (like the screen or a printer), you can use GDI
classes to draw on a bihnap using a device context (DC). A device context is a structure
that contains information about the drawing attributes (pens, brushes, text color, and so
on) of a particular device. DC classes support a variety of device context operations.

• TDC is the root class for GDI DC wrapper classes.

• TWindowDC and its derived classes such as TClientDC and TScreenDC provide access
to the area owned by a window.

• TCreatedDC and its derived classes provide access to various DCs that are created
and deleted such as memory and print DCs.

GDI classes
ObjectWindows graphics library contains several classes that you can use to create
DIBS, brushes, palettes, pens, and other drawing tools.

• TGdiBase is the private base class from which TGDIObject, Ticon, TCursor, and TDib
are derived.

• TGDIObject is a base class for several other GDI classes that support drawing tools.

• TDib encapsulates the creation of structures containing format and palette
information.

• TCursor encapsulates GDI cursor objects.

Validator classes
TValidator forms the base class for several ObjectWindows classes that encapsulate
validation objects. The following derived classes make it easy for you to add data
validation to your applications.

14 Objec!Windows Reference Guide

• TFilterValidator and its derived class, TRangeValidator, check an input field as the user
types data into the field in order to determine the validity of the entered data.

• TPXPictureValidator compares user input with a picture of a data format.

• TLookupValidator compares a string typed by a user with a list of acceptable values.

Exception handling classes
Exception handling classes provide various functions that help you write error-free
ObjectWindows applications. TXBase is the base class for all ObjectWindows and
ObjectComponents classes. Derived from the TXBase class, TXOwl is the base class for
the following ObjectWindows exception classes:

• TXCompatibility is included for backward compatibility with ObjectWindows 1.0
code.

• TXOutOfMemory describes exceptions that arise from out of memory conditions.

• Nested exception classes such as TXInvalidMain Window, TXInvalidModule,
TXWindow, TXMenu, TXValidator, TXGdi, and TXPrinter describe specific error
conditions such as those that occur when a main window, a module, a menu object, a
validator object, a GDI object, or a printer device context is invalid.

Command enabling classes
Although several ObjectWindows classes process commands, there are three classes
specifically devoted to enabling and disabling the commands available to an
application.

• TCommandEnabler is the base class from which TButtonGadgetEnabler and
TMenuitemEnabler are derived.

• TButtonGadgetEnabler enables and disables button gadgets.

• TMenuitemEnabler enables and disables menu options and places check marks by
menu options.

ObjectSupport library classes
ObjectSupport classes provide various services that help you design your
ObjectWindows application. For example, the class TLocaleString localizes OLE
registration information required for containers and servers. These classes include the
following groups:

• Mathematical classes such as TPoint, TSize, and TRect that define screen coordinates
and properties of rectangles.

• Registration and localization classes such as TRegList and TLocaleString simplify the
process of registering OLE containers and servers.

• Document template classes that make it easier to design Doc/View applications.

C h a p I e r 1 , 0 v e r v i e w o f 0 b j e c I W i n d o w s 15

The following table lists the files included in the Object Support Library (.. \OSL
directory).

Table 1.1 Summary of the ObjectSupport library files

defs.h

doctpl.h TDocTemplate

Contains common definitions, including
windows.h definitions, and deals with BOOL data
types.

Creates the Doc/View classes.

TDocTemplateT <D,V> Registers the associated document and view
classes.

except.h TXBase

geometry.h TDroplnfo

locale.h

TPoint, TSize, TRect

TPointer

TProclnstance

TResld

TLocaleString

TRegltem

TRegList

ObjectWindows Libraries

Base exception-handling class for ObjectWindows
and ObjectComponents classes.

Supports file name drag and drop operations.

Mathematical classes.

Provides exception-safe pointer manipulation.

A Win16 support class.

A resource ID.

Localizable substitute for char*.

An item for the system registry.

List of registration items.

The following tables list the ObjectWindows static and dynamic libraries, their uses, and
the operating system under which the library is available. These files are in your library
directory.

The name of the OWLWx.LIB file varies, depending on several factors-whether you
are building a small, medium, or large memory model application or a WIN16 or
WIN32 application. For example, if the application is built for a 16-bit, small memory
model, the name of the library file is OWLWS.LIB. If you're building a flat model
WIN32 application, the name of the library file is OWL WP.LIB where "F'' indicates a flat
model application. If runtime diagnostics are enabled, ObjectWindows adds "D" to the
name of the libary.

Different versions of these files are included on your installation disk. If the diagnostic
files are not shipped, you can build these files by adding the switch -'DDIAGS to the
ObjectWindows makefile located in your .. \EXAMPLES subdirectory.

Table 1.2 Summary of static libraries

OWLWS.LIB Winl6

OWL WM.LIB Winl6

OWLWL.LIB Winl6

OWL WI.LIB Winl6

OWLDWS.LIB Winl6

16 ObjectWindows Reference Guide

16-bit small model

16-bit medium model

16-bit large model

16-bit import library for OWL250.DLL

16-bit diagnostic small model

Table 1.2 Summary of static libraries (continued)

OWLDWM.LIB Winl6 16-bit diagnostic medium model

OWLDWL.LIB Win16 16-bit diagnostic large model

OWLDWl.LIB Win16 16-bit diagnostic import library

OWLWIU.LIB Winl6 16-bit large static for user .DLL

OWLWLU.LIB Win16 16-bit import static for user .DLL

OWLWF.LIB Win32, Win32s 32-bit library

OWLWFI.LIB Win32, Win32s 32-bit import library for OWL250F.DLL

OWLDWF.LIB Win32, Win32s 32-bit diagnostic library

OWLDWFI.LIB Win32, Win32s 32-bit diagnostic import library

The dynamic-link library (DLL) versions of ObjectWindows are contained in the \BIN
subdirectory of the installation. The following table lists the DLL names and uses, and
the operating system under which each library is available.

Table 1.3 Summary of dynamic link libraries

OWL250.DLL Win 16

OWL250F.DLL Win 32

16-bit dynamic library

32-bit dynamic library

OWL250D.DLL Win 16

OWL250DF.DLL Win 32

Diagnostic version of 16-bit dynamic library

Diagnostic version of 32-bit dynamic library

Compiler options for building and using ObjectWindows libraries
You need to use different compiler options depending on whether you are building or
using ObjectWindows DLLs or static libraries. Unless you specify otherwise,
ObjectWindows makes several assumptions about the default values for system
platforms and memory models. That is, ObjectWindows assumes that the platform is
win16 unless MODEL is explicitly set to "f," in which case ObjectWindows assumes that
the platform is Win32. The default MODEL setting is "d," where "d" indicates that you
are building the DLL version of an library.

The following table lists the combinations of SYSTEM and MODEL settings you can use
to build the specified target applications.

Table 1.4 Target applications and compiler options

16-bit Windows small model static version

16-bit Windows medium model static version

16-bit Windows compact model static version

16-bit Windows large model static version

16-bit Windows large model DLL

32-bit Windows static version

32-bit Windows DLL

W!N16

W!N16

W!N16

W!N16

W!N16

W!N32

W!N32

s

m

c

d

d

Chapter 1, Overview of Objec!Windows 17

Building ObjectWindows libraries
If you are building ObjectWindows DLLs and libraries, you need to use several pre­
defined macros. For example, defining the make macro USERDLLbuilds
ObjectWindows for use in a user DLL and adds the suffix, "U" to the name of the library.
The preprocessor macro _BUILOOWLDLL, which must be defined to build the
ObjectWindows DLL, sets the values for the _OWLCLASS, _OWLDATA, _OWLFUNC
macros.

The following table lists the make options you need to use if you are building either 16-
or 32-bit ObjectWindows. You can specify the system model as either s (small), m
(medium), 1 (large), f (flat), or d (DLL). The make options you set are then responsible
for generating the specified preprocessor macro, which, in tum, generates the indicated
values for the _OWLCLASS, _OWLDATA, and _OWLFUNC macros and builds the
appropriate library. For an example of how these settings are used, see the makefile in
the \SOURCE\ OWL directory or owldefs.h in the INCLUDE\ OWL directory.

Table 1.5 Summary of options for building an ObjectWindows static or dynamic library

ObjectWindows DLL
16-bitEXE MODEL=d _BUILDOWLDLL All are defined OWL WI.LIB

as_export.

32-bit EXE or DLL MODEL=d _BUILDOWLDLL All are defined OWLWFI.LIB
-DWIN32 as_export

MODEL=d _BUILDOWLDLL All are defined OWLWIU.LIB
-DUSERDLL as_export.

16-bitDLL

ObjectWindows static library
16-bitEXE MODEL= s or m or 1 Nothing Nothing OWLWS.LIB

OWL WM.LIB
OWLWL.LIB

32-bit EXE or DLL MODEL=f Nothing Nothing OWLWF.LIB

16-bitDLL

-DWIN32

MODEL=l Nothing Nothing OWLWLU.LIB
-DUSERDLL

Using ObjectWindows libraries
This table lists the make options you need to specify if you are using either 16- or 32-bit
ObjectWindows applications. You can specify the memory model as either s (small), m
(medium), 1 (large), f (flat), or d(DLL). (Keep in mind that the make options
SYSTEM=WIN32 and -DWIN32 are the same.) The make options you set are then
responsible for generating the specified preprocessor macro, which, in tum, generates
the indicated values for the _OWLCLASS, _OWLDATA, and _OWLFUNC macros and

18 ObjectWindows Reference Guide

builds the appropriate library. For an example of how these settings are used, see
MAKEFILE.GEN in the \OWL \EXAMPLES directory.

Table 1.6 Summary of options for using an ObjectWindows static or dynamic library

OWL CLASS
-OWLDATA

If you are using an: Ose these Make options: Preprocessor macro = OWLFUNC Libraries

ObjectWindows DLL

16-bitEXE MODEL=d _OWLDLL All are defined OWL WI.LIB
as_import

32-bitDLL MODEL=d _OWLDLL All are defined OWLWFl.LIB
-DWIN32 as_import

16-bitDLL MODEL=d _OWLDLL All are defined OWL Will.LIB
as_import

ObjectWindows static library

16-bitEXE MODEL= s or m or 1 Nothing Nothing

32-bit EXE or DLL MODEL=f Nothing Nothing

OWLWS.LIB
OWL WM.LIB
OWLWL.LIB

OWLWF.LIB

16-bitDLL

-DWIN32

MODEL=! Nothing Nothing OWLWLU.LIB

The following table lists the makefile and compiler options for the_ OWLF ARVT ABLE
macro, which moves ObjectWindows virtual function tables (vtables) out of the
DGROUP of the data segment and stores them in the code segment.

Table 1.7 Compile options for_ OWLCLASS macro

_OWLFARVTABLE
_BIDSFARVTABLE
_RTLFARVT ABLE

_FASTIHIS

OWLFARVTABLE

Doesn't apply

Adds _huge to the _OWLCLASS class
modifier when static models are used.

Adds _fastthis to the _OWLCLASS macro.

The ObjectWindows header files
Header files contain prototype declarations for class functions, and definitions for data
types and symbolic constants.

Table 1.8 Summary of header files

Directory of \INCLUDE\OWL

appdict.h I App Dictionary

applicat.h I Application

Contains a set of assoications between an application and
a process ID.

Controls the basic behavior of all Object Windows
applications.

Chapter 1, Overview of ObjectWindows 19

Table 1.8

bitmapga.h

bitset.h

button.h

buttonga.h

celarray.h

checkbox.h

chooseco.h

choosefo.h

clipboar.h

clipview.h

color.h

combobox.h

commdial.h

compat.h

control.h

controlb.h

controlg.h

dc.h

decframe.h

decmdifr.h

dialog.h

dispatch.h

docmanag.h

doctpl.h

docview.h

Summary of header files (continued)

TBitmapGadget

TBitSet
TCharSet

TButton

TButtonGadget

TCelArray

TCheckBox

TChooseColor

TChooseFont

TClipboard

TClipboardViewer

TColor

TCombobox

TCommonDialog

TControl

TControlBar

TControlGadget

TBandlnfo, TClientDC,
TCreatedDC, TDC,
TDesktopDC, TDibDC TIC,
TMemoryDC, TMetaFileDC,
TPaintDC TPrintDC,
TScreenDC, TWindowDC

TDecoratedFrame

TDecoratedMDIFrame

TDialog

TDialogAttr

TDocManager

TDocTemplate
TDocTemplateT

TDocument, TView,
TWindowView, TStream,
TlnStream, TOutStream

A set including but no more than 256 items managed by
bits.

Sets or clears one or more bits.
A set of characters

Creates different types of button controls.

Creates button gadgets that can be clicked on or off.

Creates an array of bitmap eels.

Represents a check box control.

Represents modal dialog boxes that allow color selection.

Represents modal dialog boxes that allow font selection.

Contains functions that control how Clipboard data is
handled.

Registers a TClipboardViewer as a Clipboard viewer.

Contains functions used to simplify standard Windows
color operations.

Creates combo boxes or combo box controls in a window,
and class TComboBoxData, which is used to transfer data
between combo boxes.

Abstract base class for TCommonDialog objects.

Defines functions and constants used internally by
Object Windows.

Used to create control objects in derived classes.

Implements a control bar that provides mnemonic access
for its button gadgets.

Allows controls to be placed in a gadget window.

GDI DC wrapper classes that create DC objects.

Creates a client window into which decorations can be
placed.

Creates a frame object that supports decorated child
windows.

Creates modal and modeless dialog box interface
elements.

Holds the dialog box element's attributes.

Defines dispatch functions designed to crack Windows
messages.

Creates a document manager object that manages the
documents and templates.

Creates the templates.
Registers the associated document and view classes

Create, destroy, and send messages about document
views.
Define streams for documents.

20 ObjectWindows Reference Guide

Table 1.8

edit.h

editfile.h

editsear.h

editview.h

eventhan.h

except.h

filedoc.h

findrepl.h

floatfra.h

fyamewin.h

gadget.h

gadgetwi.h

gauge.h

gdibase.h

gdiobjec.h

geometry.h

groupbox.h

inputdia.h

layoutco.h

layoutwi.h

listbox.h

Summary of header files (continued)

1Edit

1EditFile

1EditSearch

1EditView

1EventHandler

TXBase
TX Owl
TX Compatibility
TXOutOfMemory
TStatus

TFileDocument

TFindDialog,
TFindReplaceDialog::

TFloatingFrame

TFrameWindow

TGadget

TGadgetWindow
TGadgetWindowFont
TSeparatorGadget

TGauge

TGdiBase

TGdiObject
TPen, TBrush, TFont
TPalette, TBitmap,
Tlcon, TCursor, TDib,
TRegion

TPoint, TSize, TRect
TDropinfo
TProclnstance
TPointer
TResld

TGroupBox

TlnputDialog

TLayoutConstraint

TLayoutMetrics
TLayoutWindow

TListBox
TListBoxData

Creates an edit control interface element.

Creates a file editing window.

Creates an edit control that responds to search and
replace commands.

View wrapper for 1Edit.

Used to derive class capable of handling messages.

Base exception-handling class for ObjectWindows and
ObjectComponents classes.
Base exception-handling class for ObjectWindows
classes.
Included for backward compatibility.
Describes an out-of-memory exception.
Describes a status exception.

Opens and closes document views.

These classes create and define the attributes of modeless
dialog boxes that respond to search and replace
commands.

Implements a floating frame within a parent window.

Controls window-specific behavior such as keyboard
navigation and command processing.

Creates gadget objects that belong to a gadget window
and have specified attributes.

Maintains a list of tiled gadgets for a window.
Defines the font used in gadget windows.
Creates a separator between gadgets.

Establishes the behavior of gauge controls.

Abstract base class for all GDI classes.

Base GDI class.
These classes create specified GDI objects.

Mathematical classes.
Supports file name drag and drop operations.
A Win16 support class.
Provides exception-safe pointer manipulation.
Creates a resource ID.

Creates a group box object that represents a group box
element in Windows.

Creates a generic dialog box that accepts text.

Creates layout constraints.

Contains the layout constraints used to define the layout
metrics for a window.
Provides layout options for a window.

Creates a list box object.
Used to transfer the contents of a list box.

Chapter 1, Overview of ObjectWindows 21

Table 1.8

listview.h

locale.h

mdi.h

mdichild.h

menu.h

messageb.h

'metafile.h

module.h

oledoc.h

olefacto.h

olefacto.h

oleframe.h

olemdifr.h

oleview.h

olewindo.h

opensave.h

owlall.h

owlcore.h

owldefs.h

owlpch.h

preview.h

printdia.h

printer.h

radiobut.h

scrollba.h

scroller.h

signatur.h

Summary of header files (continued)

TLlstView

TLocaleString

TMDIClient
TMDIFrame

TMDIChild

. TMenu, TPopupMenu,
TSystemMenu
TMenuDescr

TMessageBar

TMetaFilePict

TModule

TOleDocument

TAutoFactory<>

TOleFactory<>

TOleFrame

TOleMDIFrame

TOleView

TOleClientOC

TOpenSave

TPreviewPage

TPrintPreviewOC

TPrintDialog

TPrinter
TPrintout
TPrinterAbortDlg

TRadioButton

TScrollBar
TScrollBarData

TScroller

Provides views for list boxes.

Localizable substitute for char*.
Manages MDI child windows.
The main window of MDI-compliant applications.

Defines the behavior of MDI child windows.

Create menu objects .
Base menu class.
A menu bar with groups.

Implements a message bar.

A wrapper class used with TMetaFileOC.

Defines the basic behavior for ObjectWindows libraries
and applications.

Implements the Document half of the Doc/View pair.

Template class that supports component create callbacks
for automated OLE-enabled applications.

Template class that supports component create callbacks
for Doc/View and non-Doc/View OLE-enabled
applications.

Supports OLE-enabled main windows for SDI
applications.

Supports OLE-enabled main windows for MDI
applications.

Supports the View half of the Doc/View pair.

Translates between two different coordinate systems.

Base class for modal open and save dialog boxes.

Include file for all of the ObjectWindows classes.

Include file for the core ObjectWindows classes.

Inch1des definitions of macros used by all
ObjectWindows programs.

Contains definitions of macros, data, and functions used
by ObjectWindows.

Displays a document page in a print preview window.

Maps printer device coordinates to screen coordinates.

Displays a modal print or print setup dialog box.

Represents the printer device.
Represents the printed document.
Represents the printer-abort dialog box.

Create a radio button control.

Represents a vertical or horizontal scroll bar control.
Contains the values of the thumb position on the scroll
bar.

Implements automatic window scrolling.

Defines the message cracking signature templates used
by ObjectWindows event-handling functions.

22 ObjectWindows Reference Guide

Table 1.8

slider.h

static.h

statusba.h

stgdoc.h

textgadg.h

tinycapt.h

toolbox.h

uihandle.h

validate.h

vbxctl.h

version.h

window.h

windowev.h

Summary of header files (continued)

TSlider
THSlider
TVSlider

TS ta tic

TStatusBar

TStorageDocument

TTextGadget

TTinyCaption

TToolBox

TUlliandle

TValidator,
1PXPicture Validator
TFilterV alidator,
TRange Validator,
11..ookupValidator,
TStringLookup Validator

TVbxControl
TVbxEventHandler
TBIVbxLibrary.

TWindow

Defines the basic behavior of sliders.
A horizontal slider.
A vertical slider.

Create a static control in a window.

Constructs a status bar.

Supports compound file structure mechanisms.

Construct a text gadget object.

Produces a smaller caption bar for a window.

Creates a toolbox object with a specified number of rows
and columns.

Defines and draws UI handles.

Base validator class.
Picture validator.
Filter validator.
Range validatator.
Lookup validation.
String validation.

Interface for VBX controls.
Handles events from VBX controls.
Loads and initializes BNBXxx.DLL.

Defines the internal version number of the
ObjectWindows library.

Provides window-specific behavior and encapsulates
many of the Windows API functions.

Defines event handlers and response table macros for
Windows messages.

The ObjectWindows resource files
The ObjectWindows resource files define resource and command IDs.

Table 1.9 Summary of resource files

Directory of \INCLUDE\ OWL
docview.rh

edit.rh

editfile.rh

editsear.rh

editview.rh

except.rh

inputdia.rh

Defines resource and command IDs to use with docview.h and
docview.rc.

Defines command IDs to use with edit.h.

Defines resource and command IDs to use in editfile.rc and
editfile.h.

Defines resource and command IDs to use in editsear.rc and
editsear.h.

Defines accelerator and menu IDs to use with TEditView.

Defines string resource IDs to use with except.h and except.re.

Defines resource IDs to use with inputdia.rc and inputdia.h.

Chapter 1, Overview of ObjectWindows 23

Table 1.9 Summary of resource files (continued)

listview.rh Defines resource and command IDs to use with listview .h.

locale.rh Defines localization resource IDs.

mdi.rh Defines resource and command IDs to use with mdi.h.

oleview.rh Defines resource IDs to use with OLE-enabled views.

printer.rh Defines resource IDs to use with printer.re and printer.h.

slider.rh Defines resource IDs to use with slider.h.

statusba.rh Defines resource IDs to use with statusba.h

validate.rh Defines resources to use with TValidator and derived classes.

window.rh Defines command IDs to use with window.h.

The ObjectWindows data types
ObjectWindows data types have been updated to use more portable type names. The
following table lists the Windows API type names, the underlying C type definitions,
and the new ObjectWindows type names. To ensure that these new types are used
correctly, be sure to include the ObjectWindows header files before any Windows files,
such as windows.h, in your application files. The new C ++ type, which maps a nonzero
value to TRUE, lets you assign an integer to a bool type. You can then compare this
Boolean value to TRUE .

Table 1.10 New ObjectWindows data types

char int8 Used when 8 bit signed value is needed

BYTE unsigned char uint8 Always 8 bits

WORD unsigned short uintl6 Always 16 bits

int int int 16 or 32 bits depending on the platform

UINT unsigned int uint 16 or 32.bits depending on the platform

LONG long long, int32 Long (Could be 64 bits on some platforms)

ULONG unsigned long ulong, int32 Long (Could be 64 bits on some platforms)

long int32 Always 32 bits

DWORD unsigned long uint32 Always 32 bits

BOOL int boo! New C ++ type if available; otherwise,
emulated using an enum.

TRUE 1 true

FALSE 0 false

24 0 bj ectWi nd ows R efe re n ce Guide

ObjectWindows library reference
This chapter alphabetically lists the ObjectWindows classes, data members, member
functions, macros, constants, and data types. The header file that defines each entry is
listed opposite the entry name. Class members are grouped according to their access
specifiers, either public or protected. Within these categories, data members, then
constructors (and the destructor, if one exists), and member functions are listed
alphabetically.

Because many of the properties of the classes in the hierarchy are inherited from base
classes, only data members and member functions that are new or redefined for a
particular class are listed. Private members are not listed. If any response table entries
exist, they are also listed. The cross-referenced entries provide additional information
about how to use the specified entry. The first sample entry illustrates this format.

To find information about a particular inherited member function, use the inheritance
diagram included at the beginning of each class. The inheritance diagram shows the
virtual overridden functions that form the interface of the class, excluding
TEventHandler and TStreamableBase, from which all classes are inherited. For a list of all
the inherited as well as overridden virtual functions, see the online Help.

TBird class [sample]

Type definitions
This section alphabetically lists all typedefs and enums defined within a class.

typedef unsigned short TOwlld
typedef unsigned short TOwlld;
This text explains what this typdef contains, and how you use it.

See also Related data members, member functions, classes, constants, and types

bird.h

Chapter 2, ObjectWindows library reference 25

TBird class [sample]

Public data members
This section alphabetically lists all public data members and their declarations, and
explains how they are used.

anOwlBeak
anOwlType anOwlBeak;
anOwlBeak is a data member that holds information about this sample class. This text
explains what anOwlBeak contains, and how you use it.

See also Related data members, member functions, classes, constants, and types

anOwlWing
anOwlType anOwlWing;
anOwlWing is another public data member.

Public constructor and destructor
This section lists any public constructors and destructor for this class. Classes can have
more than one constructor; they never have more than one destructor.

Constructor
TBird(anOwlType aParameter);
Constructor for a new sample class; sets the anOwlBeak data member to aParameter.

Destructor
NTBird;
Destructor for a new sample class; destroys the TBird object.

Public member functions
This section alphabetically lists all public member functions that are either newly
defined for this class or that are redefined inherited member functions. The description
includes the purpose of each parameter and the return value of the function. If a
function overrides a virtual base class function, the text specifies this:

The inline keyword isn't provided because it doesn't affect usage.

EvGetDlgCode
UINT OwlHoot();
Responds to WM_GETDLGCODE messages.

Owl Hoot
void OwlHoot();
The OwlHoot member function causes the sample class to perform some action. This
function overrides the function OwlHoot in its base class, TParent.

See also TParent::OwlHoot

OwlSleep
virtual int OwlSleep(int index);

26 0 b j e ct W i n d o w s R e f e r e n c e G u i d e

TBird class [sample]

The OwlSleep function performs another action and overrides the function OwlSleep in
its base class, TParent.

See also TParent::OwlSleep

Protected data members

This section alphabetically lists all protected data members and their declarations, and
explains how they are used.

anOwlFeather
anOwlType anOwlFeather;
anOwlFeather is a protected data member that holds information about this sample class.

See also Related data members, member functions, classes, constants, and types

Protected constructors

Constructor
TBird(anOwlType bParameter);
If the class has a protected constructor, it is listed here.

Protected member functions

This section lists all protected member functions.

Owl Cry
BOOLEAN OwlCry;
The OwlCry member function causes the sample class to perform some action.

See also TSomethingElse::OwlCry

Zatslt
virtual int Zatslt(int index);
The Zatslt function performs a particular function in class TBird.

Response table entries

The TBird response table contains this predefined macro for the EV _xxxx messages and
calls this member function:

EV _WM_GETDLGCODE EVGetDlgCode

C h a p I e r 2 , 0 b j e c I W i n d o w s I i b r a r y r e I e r e n c e 27

BF _xxxx button flag constants

BF_ xxxx button flag constants checkbox.h

Check box and radio button objects use the button flag constants to indicate the state of a
selection box.

Table 2.1 Button flag constants

BF_CHECKED

BF_GRAYED

BF _UNCHECKED

Item is checked.

Item is grayed.

Item is unchecked.

See also TCheckbox::GetCheck, TCheckbox::SetCheck

BN _ xxxx button message constants windows.h

Mouse and radio button objects use the button message constants to indicate the state of
a button.

Table 2.2 Button message constants

BN_CLICKED

BN_DISABLE

BN_DOUBLECLICKED

BN_HILITE

BN_PAINT

BN_UNHILITE

Message sent when the user clicks a button

Message sent when a button is disabled

Message sent when the user double-clicks a button

Message sent when the user highlights a button

Message sent when a button needs to be repainted

Message sent when the highlighting needs to be removed from a button

See also TRadioButton::BNClicked

CBN _ xxxx combo box message constants windows.h

Combo box objects use these message constants to indicate the state of the combo box.

Table2.3 Combo box message constants

CBN_CLOSEUP

CBN_DBLCLK

CBN_DROPDOWN

CBN~EDITCHANGE

CBN_EDITUPDATE

CBN_ERRSP ACE

CBN_KILLFOCUS

Message sent when the list box of a combo box has closed

Message sent when the user double-clicks a text string in the combo box

Message sent when the list box of a combo box drops down

Message sent when the user changes text in the edit control portion of a
combo box

Message sent when edited text is going to be displayed

Message sent when the combo box is out of memory

Message sent when the combo box loses the input focus

28 ObjectWindows Reference Guide

CM xxxx edit constants

Table 2.3 Combo box message constants (continued)

CBN_SELENDCANCEL Message sent when the user's initial selection needs to be cancelled because
the user has selected another control or closed the dialog box.

CBN_SELENOOK

CBN_SETFOCUS

See also TComboBox

CM xxxx edit constants

Message sent if the user's selection is valid

Message sent when the combo box receives the input focus

window.rh

These command-based member functions are invoked in response to a particular edit
menu selection or command.

Table 2.4 Command-based constants

CM_EDITCLEAR TEdit::CMEditClear Edit I Clear

CM_EDITCOPY TEdit::CMEditCopy Edit I Copy

CM_EDITCUT TEdit::CMEditCut Edit I Cut

CM_EDITDELETE TEdit::CMEditDelete Edit I Delete

CM_EDITP ASTE TEdit::CMEditPaste Edit I Paste

CM_EDITUNDO TEdit::CMEditUndo Edit I Undo

CM_EXIT TWindow::CmExit File I Exit

See also TEdit::CMEditClear, TEdit::CMEditCopy, TEdit::CMEditCut,
TEdit::CMEditDelete, TEdit::CMEditPaste, TEdit::CMEditUndo, TWindow::CmExit

CM xxxx edit file constants docview.rh

These command-based member functions are invoked in response to open, close, print,
and save commands.

Table2.5 Command-based constants

CM_FILECLOSE File I Close

CM_FILENEW TEditFile::CmFileNew File I New

CM_FlLEOPEN TEditFile::CmFileOpen File I Open

CM_FILEPRINT File I Print

CM_FlLEPRINTERSETUP File I PrinterSetup

CM_FlLEREVERT TDocManager::CmFileRevert File I Revert

CM_FILESA VE TEditFile::CmFileSave File I Save

CM_FILESA YEAS TEditFile::CmFileSaveAs File I Save As

CM_ VIEWCREATE TDocManager::Cm ViewCreate File I View Create

C h a p t e r 2 , 0 b j e ct W i n d o w s Ii b r a r y r e f e r e n c e 29

CM xxxx edit replace constants

See also TEditFile::CmFileNew, TEditFile::CmFileOpen, TDocManager::CmFileRevert,
TEditFile::CmFileSave, TEditFile::CmFileSaveAs

CM_ xxxx edit replace constants editsear.rh

These command-based member functions are invoked when the corresponding find
and replace command is received.

Table 2.6 Command-based constants

CM_EDITFIND

CM_EDITFINDNEXT

CM_EDITREPLACE

TEditSearch::CMEditFind

TEditSearch::CMEditFindNext

TEditSearch::CMEditReplace

Edit I Find

Edit I Find I Next

Edit I Replace

See also TEditSearch::CMEditFind, TEditSearch::CMEditFindNext,
TEditSearch::CMEditReplace

CM xxxx edit view constants oleview.rh

These command-based view functions are invoked in response to menu and accelerator
key commands. The Edit I Verbs selection refers to one of the OLE-specific menu
commands, such as Edit or Open.

Table 2.7 Command-based constants

CM_EDITP ASTESPECIAL TOleWindow::CMEditPasteSpecial Paste I Special

CM_EDITPASTELINK TOleWindow::CMEditPasteLink Pastel Link

CM_EDITINSERTOBJECT TOleWindow::CMEditfusertObject Insert I Object

CM_EDITLINKS TOleWindow::CMEditLinks Edit I Links

CM_EDITOBJECT TOleWindow::CMEditObject Edit I Object

CM_EDITFIRSTVERB TOleWindow::EvCommandEnable Edit I Verbs

CM_EDITLASTVERB TOleWindow::EvCommandEnable Edit I Verbs

CM_EDITCONVERT TOleWindow::CMEdit Edit I Convert

30 ObjectWindows Reference Guide

CM xxxx MDI constants

CM xxxx MDI constants mdi.rh

These MDI functions are invoked when the corresponding MDI command message is
received.

Table 2.8 Command message constants

Constant

CM_ARRANGEICONS

CM_CASCADECHILDREN

CM_ CLOSECHILDREN

CM_ CREA TECHILD

CM_TILECHILDREN

CM_TILECHILDRENHORIZ

Member function .

TMDIClient::CmArrangelcons

TMDIClient::CmCascadeChildren

TMDIClient::CmCloseChildren

TMDIClient::CmCreateChild

TMDIClient::Cm TileChildren

TMDIClient::CmTileChildren

Men.u. ~quivalent
Window I Arrange Icons

Window I Cascade

Window I Close All

Window I Tile

Window I Tile

See also TMDIClient::CrnArrangeicons, TMDIClient::CmCascadeChildren,
TMDIClient::CmCloseChildren, TMDIClient::CmCreateChild,
TMDIClient::CmTileChildren

DECLARE RESPONSE TABLE macro eventhan.h

Declares a response table in the class definition. To handle events for a class, you need to
both declare a response table with this macro and define the response table using one of
the DEFINE_RESPONSE_TABLE macros. For example, to declare a response table, use
the following declaration, where the single parameter, Class, represents the name of the
current class:

DECLARE_RESPONSE_TABLE(Class);

ObjectWindows' response tables define the relationship between a window message
and a corresponding event-handling function. The description of TEventHandler has
more information about how ObjectWindows associates a response table entry with the
appropriate function.

See also DEFINE_RESPONSE_TABLE macros, END_RESPONSE_TABLE macro,
TEventHandler class

DEFINE APP DICTIONARY macro appdict.h

This macro defines an App Dictionary reference and object as needed for use in
component DLLs and EXEs. Unless a user dictionary is specified, the macro defines the
dictionary as OwlAppDictionary, which is a globally exported TAppDictionary. The macro
is defined as follows:

define DEFINE_APP_DICTIONARY(AppDictionary)

See also TAppDictionary

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 31

DEFINE_DOC_ TEMPLATE_CLASS macro

DEFINE DOC TEMPLATE CLASS macro doctpl.h

Creates a document ten;lplate. Takes three arguments: the name of the document class
that holds the data, the name of the view class that displays the data, and the name of
the template class, and then associates the document with one or more views. The
following example illustrates how you can associate document and view classes with
new template classes.

DEFINE_DOC_TEMPLATE_CLASS(TFileDocument, TListView, ListTemplate);
DEFINE_DOC_TEMPLATE_CLASS(TFileDocument, TEditView, EditTemplate);

See also TDocTemplate

DEFINE RESPONSE TABLE macros eventhan.h

Defines a response table. Takes one plus x number of arguments: one is the name of the
class that is defining the response table, and x is the immediate base class as well as any
virtual base classes. Use the END_RESPONSE_TABLE macro to end the definition for
the response table. Between the DEFINE_RESPONSE_TABLE macro and the
END_RESPONSE_TABLE macro, insert the message response entries for the messages
you want the class to handle. For example,

DEFINE_RESPONSE_TABLEl(TMyClass, TWindow)
EV_WM_PAINT,
EV_WM_LBUTTONDOWN,

END_RESPONSE_TABLE;

In this example, EV_ WM_PAINT and EV_ WM_LBUTTONDOWN illustrate the
message response entries for the class TMyClass derived from TWindow. These macros
call the corresponding event-handling functions, EvPaint and EvLButtonDown,
respectively. Note that response tables are sometimes defined, but have no entries .. In
such cases, the base class's response table entries are searched for the appropriate event­
handling function. You can also associate more than one message with an event­
handling function.

The following table shows the form the DEFINE_RESPONSE_TABLE macro takes
depending on the number of base classes.

0

1

2

3

DEFINE_RESPONSE_TABLE(Class)

DEFINE_RESPONSE_TABLE(Class, Base)

DEFINE_RESPONSE_TABLE2(Class, Basel, Base2)

DEFINE_RESPONSE_TABLE3(Class, Basel, Base2, Base3)

See also DECLARE_RESPONSE_TABLE macros, END_RESPONSE_TABLE macro,
TEventHandler class

32 0 b j e c I W i n d o w s R e f e r e n c e G u i d e

DLGC_xxxx dialog control message constants

DLGC _ xxxx dialog control message constants windows.h

Indicate the kind of input that the dialog manager needs to process. Returned by
EvGetDlgCode.

Table 2.9 Dialog control message constants

Constant Meitning
DLGC_BUTION

DLGC_DEFPUSHBUTTON
DLGC_HASSETSEL

DLGC_RADIOBUTION

DLGC_STATIC

DLGC_UNDEFPUSHBUTION

DLGC_WANTALLKEYS

DLGC_ WANT ARROWS

DLGC_W ANTCHARS

Indicates a button

Indicates a default button
Indicates a range of characters in an edit control

Indicates a radio button control message

Indicates a static control

Indicates a non-default push button control

Indicates all keyboard input

Indicates the direction keys

Indicates all key code messages

DLGC_W ANTMESSAGE

DLGC_WANTTAB

Indicates all keyboard input can be passed on to the control.

Indicates the TAB key

See also IButton::EvGetDlgCode, TCheckBox::EvGetDlgCode, TEdit::EvGetDlgCode,
TListView::EvGetDlgCode, TSlider::EvGetDlgCode

dmxxxx document manager mode constants docmanag.h

Used by TDocManager to indicate if a document supports single or multiple open
documents, and to indicate if it has file menu IDs.

dmMenu

dmMDI

dmNoRevert

dmSaveEnable

dmSDI

Sets IDs for file menu.

Supports multiple open documents.

Disables the File I Revert menu command.

Enables File I Save menu command.

Does not support multiple open documents.

See also TDocManager::TDocManager

Chapter 2, ObjectWindows library reference 33

dnxxxx document message constants

dnxxxx document message constants docmanag.h

Used by TDocManager to indicate that a document or view has been created or closed.
You can set up response table entries for these messages using the EV_ OWL VIEW or
EV _OWLOOCUMENT macros.

dnCreate

dnClose

A new document or view has been created.

A document or view has been closed.

See also TDocManager::TDocManager

dtxxxx document template .constants locale.h

Used byTDocument and TDocTemplate to create templates. Several constants are
equivalent to the OFN_xxxx constants defined by Windows in commdlg.h.

dtAutoDelete

dtAutoOpen

dtCreatePrompt

dtDynReglnfo

dtFileMustExist

dtHidden

dtHideReadOnly

dtNewDoc

dtNoAutoView

dtNoReadOnly

dtNoTestCreate

(OFN_CREATEPROMPT)

(OFN_FILEMUSTEXIST)

(OFN_HIDEREADONL Y)

(OFN_NOREADONLYRETURN)

(OFN_NOTESTFILECREATE)

34 ObjectWindows Reference Guide

Deletes the document when the last view
is deleted.

Opens a document upon creatic:ln.

Prompts the user before creating a
document that does not currently exist.

Used to register a container or server for
OLE 2 support. Indicates that the
registration information table is dynamic
not static.

Lets the user ent~r only existing file
names in the File Name entry field. If an
invalid file name is entered, causes a
warning message to be displayed.

Hides the template from the user's
selection.

Hides the read-only check box.

Creates a new document with no path
specified. .

Does not automatically create the default
view type.

Returns the specified file as writeable.

Does not perform document-creation
tests. The file is created after the dialog
box is closed. If the application sets this
flag, there is no check against write
protection, a full disk, an open drive
door, or network protection. For certain
network environments, this flag should
be set.

Constant
dtOverwritePrompt

dtPathMustExist

dtProhibited

dtReadOnly

dtRegisterExt

dtSelected

dtSingleUse

dtSingleView

dtUpdateDir

END_RESPONSE_TABLE macro

Window~ ~q\li\rale11t ••
(OFN_OVERWRITEPROMPT)

(OFN_PATHMUSTEXIST)

(OFN_ALLOWMUL TISELECT)

(OFN_ENABLEHOOK)

(OFN_ENABLETEMPLA TE)

(OFN_ENABLETEMPLATEHANDLE)

(OFN_REAOONL Y)

Meaning
When the Save As dialog box is
displayed, asks the user if it's OK to
overwrite the file.

Allows only valid document paths to be
entered. If an invalid path name is
entered, causes a warning message to be
displayed.

Doesn't support these specified

Windows options

Checks the read-only check box when the
dialog box is created.

Used to register a container or server for
OLE 2 support. Registers an extension
with this application.

Indicates the last selected template.

Indicates that the document is to be
registered as a sing! use document.

Provides only a single view for each
document.

Updates the directory with the directory
specified in the dialog box.

See also IOocTemplate::GetFlags, TLocaleString, TDocument class

END RESPONSE TABLE macro eventhan.h

END_ RESPONSE_ TABLE;
Indicates the end of a response table. For each class that contains a response table, add
this macro to the class definition.

See also DEFINE_RESPONSE_TABLE macro

EN_ mac edit message constants windows.h

Indicate the state of an edit control in various situations: after a user has changed text,
when the edit control receives the input focus, and so on.

Table 2.1 O Edit message constants

EN_CHANGE

EN_ERRSP ACE

EN_HSCROLL

EN_KILLFOCUS

Message sent when the display is updated after changes have been made to the
edit control

Message sent when the edit control is out of memory

Message sent when the user clicks the horizontal scroll bar

Message sent when th!.'. edit control is losing the input focus

Chapter 2, ObjectWindows library reference 35

EV xxxx macros

Table 2.10 Edit message constants (continued)

EN_MAXTEXT

EN_SETFOCUS

EN_ UPDATE

EN_VSCHOLL

Message sent when the text insertion is truncated

Message sent when the edit control receives input focus

Message sent when the edit control is going to display revised text

Message sent when the user clicks the vertical scroll bar

EV xxxx macros windowev.h

Create response table entries that match events to member functions.

EV_ CHlLD _NOTIFY(id,notifyCode,method)

EV_CHILD_NOTIFY_ALL_CODES

EV_CHILD_NOTIFY_AND_CODE(id,notifyCode,
method)

EV_ COMMAND(id, method)

EV_ COMMAND _AND_ID(id, method)

EV _COMMAND _ENABLE(id, method)

EV _MESSAGE(message, method)

EV _NOTIFY_AT_CHlLD(notifyCode, method)

EV _OWLDOCUMENT(id, method)

EV _OWLNOTIFY(id, method)

EV _OWL VlEW(id, method)

EV _REGISTERED(str, method)

EV_ VlEWNOTIFY

Factory template classes

Handles child ID notifications (for example,
button, edit control, list box, combo box, and
scroll bar notification messages) at the child's
parent window. Passes no arguments.

Passes all notifications to the response function
and passes the notification code in as an
argument.

Handles child ID notifications at the child's
parent window and passes the notification code
as an argument.

Handler for menu selections, accelerator keys,
and push buttons.

Handler for multiple commands using a single
response function. Passes the menu ID in as an
argument.

Enables and disables commands such as buttons
and menu items.

General purpose macro for Windows WM_xxxx
messages.

Handles all child ID notifications at the child
window.

Handles new document notifications.

Generic document handler.

Handles view notifications.

Handles registered MSG messages.

Sends a notification message from the document
to the views.

olefacto.h

The factory template classes create callback code for both automated and non
automated Doc/View and non-Doc/view ObjectWindows applications. Use these
factory template classes to make objects for embedding and linking. (That is, when an
application object needs to be embedded within another container, the callback function
is responsible for creating the embedded object.) Depending on the template arguments

36 Objec!Windows Reference Guide

Factory template classes

passed to the factory class, you obtain different kinds of factories designed to create the
object you need. All the templetized classes, however, assume that the application is
using a global App Dictionary (the application's dictionary), and a global Registrar (the
TOcRegistrar pointer that manages registering the application in the database).

ObjectWindows includes several factory template classes, divided into two main
categories: those designed for Doc/View applications and those designed for non-Doc/
View applications. Although all these classes contain the same functions, they are
designed to create different types of objects.

The hierarchy chart illustrates the inheritance relationship among these classes.

TOleFactoryBase

Nonvirtual inheritance

Each class takes three arguments: the application class, the automation class, and the
Doc/View class. The arguments indicate whether or not the application is a Doc/View
application and whether or not the application is automated. The factory classes and
their definitions include the following four classes.

Factory class for DocMew, non-automated, OLE components
template <class T> class TOleDocViewFactory
: public TOleFactoryBase<T, TOleFactoryDocView<T,

TOleFactoryNoAuto<T>>>{};

Factory class for DocNiew, automated OLE components
template <class T> class TOleDocViewAutoFactory
: public TOleFactoryBase<T, TOleFactoryDocView<T,

TOleFactoryAuto<T>>>{};

Factory class for non-DocNiew, non-automated, OLE components
template <class T> class TOleFactory

public TOleFactoryBase<T, TOleFactoryNoDocView<T,
TOleFactoryNoAuto<T>>>{};

Factory class for non-DocNiew, automated OLE components
template <class T> class TOleAutoFactory

Chapter 2, ObjectWindows library reference 37

, Factory template classes

: public TOleFactoryBase<T, TOleFactoryNoDocView<T,
TOleFactoryAuto<T>>>{};

For either a Doc/View or a non-Doc/View application, you need to register your
application in your OwlM.a.in function. The argument to TOcRegistrar (in this case,
TOleFactory<TDrawApp>) constructs an object and converts it to a TComponentFactory
type, using the operator TComponentFactory to create a function pointer. In reality, the
object is never created because all the factory class's functions are static.

Pass your application object derived from T Application as the parameter to TOleFactory,
as the following c~de from STEP15.CPP illustrates:

int
OwlMain(int /*argc*/, char* /*argv*/ [])
{

try {
Registrar= new TOcRegistrar(AppReg, TOleFactory<TDrawApp>(),

TApplication::GetCmdLine());
if (Registrar->IsOptionSet(TOcCmdLine::AnyRegOption))

return O;
//If this is a normal exe server, run the application now; otherwise,
II wait until the factory is called.

return Registrar->Run();

In general, these are the steps each factory class follows in the default callback code:

1 The factory gets the application. This is the application object derived from
TApplication. For a DLL server, there can be several instances of the object. Using
T AppDictionary::GetApplication, the factory verifies whether or not there is an entry in
the application dictionary for an application object for the current process.

2 If the application does not exist, the factory creates the application object and tests to
see if the application was created successfully before creating its corresponding
TOcApp object. If the shutdown option flag is set, it then exits. (If the application has
already been destroyed, the shutdown flag is set.)

3 If the factory is passed a shutdown option flag (one of the TOcAppMode enum
values), it then shuts down the application and calls the factory's DestroyApp function
to destroy the application.

4 If the application is automated, the factory creates a corresponding automation
object.

5 · If the object ID is not zero, the factory creates the object and gets the OLE interface.
Otherwise, it gets the application's OLE interface. At this point, the Doc/View and
non-Doc/View processes differ because they need to create different types of objects.
If the application is automated, the factory creates an automated helper object.

6 The factory checks to see if the option flag amRun (one of the TOcAppMode enum
values) is set, and, if so, it runs the application. This occurs if the application either
was built as an .EXE or is a DLL running as an .EXE. If the amRun flag is not set and
the application is an in-proc DLL server andBhould not be running, the factory just
starts the application.

38 ObjectWindows Reference Guide

Factory template classes

7 The factory returns either the OLE interface for the object or 0 if no interface was
requested or if an error occurred.

The following diagram illustrates this process.

N

Get the Application's N
OLE interface

Get Application

Does the y
Application

exist?
N

Shutdown y
Application

?
N

Call Create
Application

Was the
N Application

created?
y

CreateOC
Application

Automate
the

Application?
y

Create automated
Application

Object
ID

<>0?
y

Create Object and
Get OLE interface

Run?
y

N _____ __,

Return the
OLE interface

Shutdown
Application

?
N,

Run the
Application

y

Destroy Application

Return
0

The factory can be called back to walk through this process several times:

1 On the first callback, the factory creates the application, and if the amRun flag is set, it
enters a message loop.

Chapter 2, ObjectWindows library reference 39

GetApplicationObject function

2 On the second callback, OLE calls the factory to automate or embed or link an object.
In the case of an embedded and/ or linked object, this pass can occur one or more
times. (In the case of an automation object, however, this second pass occurs only
once because any subsequent requests pass through the automated application itself.)

3 On the final callback, the factory shuts down the application.

See also
TAutoFactory class, TAutoFactoty::DestroyApp, TComponentFactory typedef,
TOcAppMode enum, TOcRegistrar class, TOleFactoryBase class,
TOleFactoryBase::DestroyApp, TOleFactoryBase::TComponentFactory

GetApplicationObject function appdict.h

TApplication* GetApplicationObject(unsigned pid = O);
This global function is included mainly for backward compatibility with previous
ObjectWindows applications. To find the application object associated with a process
ID, GetApplicationObject calls TAppDictionary::GetApplication on an application
dictionary. Used by EXEs or DLLs statically linking ObjectWindows,
GetApplicationObject can return 0.

See also GetWindowPtr function, TAppDictionary::GetApplication

GetWindowPtr function window.h

TWindow* GetWindowPtr(HWND hWnd);
This global function is included mainly for backward compatibility with previous
ObjectWindows applications. First, GetWindowPtr calls the global function
GetApplicationObject to find the application. Then, calls TApplication's GetWindowPtr to
get the TWindow pointer associated with the window.

See also GetApplicationObject function, TApplication::GetWindowPtr

ID xxxx file constants inputdia.rh

Resource and control IDs for the input dialog box.

IDD _INPUTDIALOG Resource ID number for the input dialog box

ID _INPUT Control ID for the user input

ID _PROMPT Control ID for the static text

See also TinputDialog::SetUpWindow

40 ObjectWindows Reference Guide

ID xxxx printer constants

ID_ xxxx printer constants
Resource and control IDs for the printer abort dialog box.

IDD _ABORTDIALOG Resource ID number for the abort dialog box.

ID_TITLE Control ID for the selected printer driver.

ID _DEVICE Control ID for the selected printer.

ID _PAGE ID number for the page number text control.

ID _PORT Control ID for the selected printer port.

IDA xxxx accelerator ID constants
Resource ID for accelerator keys.

IDA_EDIIFILE Resource ID for accelerator keys.

IDA xxxx OLE accelerator ID constants
Resource ID for accelerator keys.

IDA_OLEVIEW Resource ID for accelerator keys for OLE enabled applications.

IDM xxxx menu ID constants
Resource ID for menu selections.

IDM_EDIIFILE Resource ID for menu selections.

IDM xxxx OLE menu ID constants
Menu IDs for OLE-enabled applications.

IDM_OLEPOPUP

IDM_OLEVIEW

OLE enabled application pop-up menu

OLE enable application view menu selection

printer.rh

ediHile.rh

oleview.rh

ediHile.rh

oleview.rh

Chapter 2, ObjectWindows library reference 41

IDS xxxx edit view ID constants

IDS xxxx edit view ID constants oleview.rh

String constants used to respond to edit view commands.

IDS_EDITOBJECT Edit the object

IDS_EDITCONVERT Convert the object

IDS_EXITSERVER Exit the server application

IDS Mode constants statusba.rh

Resource and command IDs to use with TStatusBar.

IDS_MODES

IDS_MODESOFF

String resource to define mode On indicators

String resource to define mode Off indicators

IDS_ xxxx document string ID constants docview.rh

String IDs that define resource IDs used to determine the status of the document.

IDS_DOCCHANGED

IDS_DOCLIST

IDS_DOCMANAGERFILE

IDS_DUPLICA TEDOC

IDS_NODOCMANAGER

IDS_NOMEMORYFORVIEW

IDS_NOTCHANGED

IDS_READERROR

IDS_UNTITLED

IDS_UNABLECLOSE

IDS_UNABLEOPEN

IDS_UNTITLED

IDS_ VIEWLIST

42 ObjectWindows Reference Guide

If the document has been changed, displays the message, "Do you
want to save the changes?"

Document is a document type.

This is a document manager file.

This is a duplicate document.

There is no document manager.

Not enough memory to view the document

The document has not been changed.

Error while reading the file

The file is untitled.

Document manager is unable to close the document.

Document manager is unable to open the document.

Document is untitled.

Document is a view type.

IDS_xxxx edit file ID constants

IDS xxxx edit file ID constants ediHile.rh

String constants used by edit and file classes to display information about files.

CQQ$bUtt
IDS_FILECHANGED

IDS_FILEFIL TER

IDS_UNABLEREAD

IDS_UNABLEWRTIE

IDS_UNTITLEDFILE

The text in the file has changed. Do you want to save
the changes?

Use this filter to display text files.

Unable to read the file from the disk.

Unable to write the file to the disk.

The default window title unless the file is being
edited.

IDS_ xxxx exception message constants except.rh

General and application exception message constants. The following list groups the
constants according to message type:

IDS_INV ALIDMAINWINOOW

IDS_INV ALIDMODULE

IDS_NOAPP
IDS_OKTORESUME

IDS_OWLEXCEPTION

IDS_OUTOFMEMORY

IDS_UNHANDLEDXMSG
IDS_UNKNOWNERROR

IDS_UNKNOWNEXCEPTION

Owl 1 compatibility messages:

IDS_INV ALIDCHILDWlNDOW

IDS_INV ALIDCLIENTWlNDOW
IDS_INV ALIDWlNDOW

TXWindow messages:

IDS_CHILDCREATEFAlL

IDS_CHILDREGISTERFAlL

IDS_CLASSREGISTERFAlL
IDS_LA YOUTCOMPLETE

IDS_LA YOUTBADRELWIN

IDS_MENUFAlLURE

IDS_PRINTERERROR

IDS_ VALIDATORSYNTAX

IDS_WINDOWCREATEFAlL

IDS_ WINDOWEXECUTEFAlL

Invalid Main Window

Invalid module specified for window

No application object

Resume in spite of error

Unknown exception

Out of memory

Unhandled xmsg error

Unknown error

Unknown exception error

Invalid child window

Invalid client window

Invalid window

Child create fail for window

Child class registration fails for window

Class registration fails for window

Layout window failure

Layout window failure

Menu creation failure

Printer error

Validator syntax error

Create fail for window

Execute fail for window

Chapter 2, ObjectWindows library reference 43

IDS_xxxx listview ID constants

GDI messages:

IDS_GDIALLOCFAIL

IDS_GDICREATEFAIL

IDS_GDIDELETEFAIL

IDS_GDIDESTROYFAIL

IDS_GDIFAILURE

IDS_ GDIFILEREADFAIL

IDS_INV ALIDDIBHANDLE

IDS_ GDIRESLOADFAIL

IDS xxxx listview ID constants

GDI allocate failure

GDI creation failure

GDI object delete failure

GDI object destroy failure

GDifailure

GDI file read failure

Invalid DIB handle

GDI resource load failure

listview.rh

Define operations performed on views. These include clearing the document, inserting a
new line, copying text to the Clipboard, and so on.

IDS_LISTVIEW Resource ID for listview constants.

IDS_ xxxx printer string ID constants
Constants used by printer classes to determine the printer status.

IDS_PRNCANCEL

IDS_PRNERRORCAPTION

IDS_PRNERRORTEMPLATE

IDS_PRNGENERROR

IDS_PRNMGRABORT

IDS_PRNON

IDS_PRNOUTOFDISK

IDS_PRNOUTOFMEMORY

Printing is canceled.

Printer error occurred.

Document was not printed.

Error encountered during printing.

Printing aborted in Print Manager.

Printer is on.

Out of disk space.

Out of memory.

IDS xxxx validator ID constants

printer.rh

validate.rh

Defines several constants used by validator classes to determine the validator status.

IDS_ VALPXPCONFORM

IDS_ V ALINV ALIDCHAR

44 ObjectWindows Reference Guide

Item doesn't conform to correct picture format.

Character isn't one of the valid entries.

IDW MDICLIENT constant

MeC:liling

IDS_ VALNOTINRANGE Entry isn't within the specified range.

IDS_ V ALNOTINLIS String isn't fotmd in the list of valid entries.

IDW MDICLIENT constant framewin.h

IDW MDICLIENT
Child ID constant used to identify MDI client windows.

IDW MDIFIRSTCHILD constant framewin.h

IDW _FIRSTMDICHILD
Child ID constant used to identify the first MDI client window.

LangXxxx ID constants locale.h

A language ID is 16-bit number representing a language. In ObjectComponents, a
language ID is a value of type TLangid.

A language ID is composed of two parts. The ten low-order bits identify a language and
the six high-order bits identify a dialect or sub-language. For example, a language ID
can specify simply French, or make use of the upper bits to designate Belgian French,
Swiss French, or Canadian French.

ObjectComponents defines constants to represent three common IDs:

LangSysDefault

LangUserDefault

LangNeutral

The default language set for the system.

The default language set for a particular user (which can differ from the system
setting on multi-user systems.)

A neutral setting signifying no particular locale. An application that receives this
value uses its own default setting.

See also TLangid typedef, TLocaleString

LBN _ xxxx list box message constant
Indicate changes in the status of the list box.

LBN_DBLCLK

LBN_ERRSP ACE

LBN_KlLLFOCUS

Message sent when the user double-clicks a string in a list box

Message sent when the list box is out of memory

Message sent when the list box is losing the input focus

windows.h

Chapter 2, ObjectWindows library reference 45

lmParent constant

LBN_SELCANCEL Message sent when the user cancels the selection in a list box

LBN_SELCHANGE Message sent when the user changes the selection in a list box

LBN_SETFOCUS Message sent when the list box receives the input focus.

lmParent constant layoutco.h

#define lmParent O
LmParent is used to construct layout metrics (for example, edge and size constraints).

See also TLayoutConstraint struct

LongMulDiv function scroller.h

long LongMulDiv(long mul1, long mul2, long div1);
TScroller uses this function to convert horizontal range values (XRange) from the scroll
bar to horizontal scroll values (XScrollValue) and vice versa, or to convert vertical range
values (YRange) from the scroll bar to vertical scroll values (YScrollValue) and vice versa.

See also TScroller

MAX RSRC ERROR STRING constant except.h

cons! int MAX_ RSRC _ERROR_ STRING = 255;
Maximum number of characters possible for an error message.

MB_ Xxxx message constants windows.h

Contain information about the style and behavior of a message dialog box. You can use
these constants to determine the kinds of information displayed in a message dialog
box.

MB_OK

MB_OKCANCEL

MB_ABORTRETRYIGNORE

MB_YESNOCANCEL

MB_YESNO

MB_RETRYCANCEL

MB_ICONHAND

MB_ICONQUESTION

MB_ICONEXCLAMATION

46 ObjectWindows Reference Guide

The message dialog box contains an OK push button.

The message dialog box contains Cancel and OK push buttons.

The message dialog box contains Abort, Retry, and Ignore push buttons.

The message dialog box contains Yes, No and Cancel push buttons.

The message dialog box contains Yes and No push buttons.

The message dialog box contains Retry and Cancel push buttons.

The message dialog box contains a stop sign icon.

The message dialog box contains a question mark

The message dialog box contains an exclamation mark

Constant

MB_ICONASTERISK

MB_ICONINFORMATION

MB_ICONSTOP

MB_ICONHAND

MB_DEFBUTTONl

MB_DEFBUTTON2

MB_DEFBUTTON'.i

MB_APPLMODAL

MB_SYSTEMMODAL

MB_TASKMODAL

NBits function

Meaning

The message dialog box contains an icon consisting of a lowercase letter i.

The message dialog box contains an icon consisting of a lowercase letter i.

The message dialog box contains a stop sign icon.

The message dialog box contains a stop-sign icon.

The first button is the default button in the message dialog box. This is
always the case unless MB_DEFBUTTON2 or MB_DEFBUTTON3 is
specified.

The second button is the default button in the message dialog box.

The third button is the default button in the message dialog box.

Before continuing to work in this window, the user must answer the
message dialog box. However, the user can work in other windows.
MB_APPLMODAL is the default unless MB_SYSTEMMODAL,
MB_TASKMODAL, or MB_NOFOCUS is specified.

Before continuing to work in this window, the user must answer the
message dialog box. Unless the application indicates MB_ICONHAND,
the message box does not become modal until after it is created. The
owning window and other windows can continue to receive messages.
You can use MB_SYSTEMMODAL to notify the user of serious errors,
such as lack of sufficient memory to run an application, that must be
taken care of immediately.

Before continuing to work in this window, the user must answer the
message dialog box. However, the user can work in other windows.
Unlike MB_APPLMODAL, all top-level windows in the current task are
disabled. Use this constant when the calling application does not have a
window handle available, and you want to prevent input to other
windows in the current application without actually preventing the other
applications from executing.

See also TDocument::PostError, TDocManager::PostDocError, TWindow::MessageBox

NBits function color.h

uint16 NBits(long colors);
Returns the bit count corresponding to the given color count.

See also NColors, TColor class

NColors function color.h

int NColors(uint16 bitCount);
Returns the color count corresponding to the given bit count, or -1 if the bit count is not
supported by Windows. Bit counts currently supported are 1, 4, 8, and 24.

See also NBits, TColor class

Chapter 2, ObjectWindows library reference 47

ofxxxx document open enum

ofxxxx document open enum docview.h

Defines the document and open sharing modes used for constructing streams and
storing data. Any constants that have the same functionality as those used by OLE 2.0
docfiles are indicated in the following table; for example, STGM_TRANSACTED,
STGM_CONVERT, STGM_PRlORITY, and STGM_DELETEONRELEASE.

Although files are typically used for data storage, databases or spreadsheets can also be
used. 1/0 streams rather than DOS use these bit values. Documents open the object
used for storage in one of the following modes:

ofParent

ofRead

ofWrite

ofReadWrite

ofAtEnd

ofAppend

ofTruncate

ofNoCreate

ofNoReplace

ofBinary

oflosMask

ofTransacted

ofPreserve

ofPriority

ofTemporary

A storage object is opened using the parent's mode.

A storage object is opened for reading.

A storage object is opened for writing.

A storage object is opened for reading and writing.

Seek to end-of-file when opened originally.

Data is appended to the end of the storage object.

An already existing file is truncated.

Open fails if file doesn't exist.

Open fails if file already exists.

Data is stored in a binary, not text, format. Carriage returns are not stripped.

All of the above bits are used by the ios class.

Changes to the storage object are preserved until the data is either committed to
permanent storage or discarded. (STGM_TRANSACTED)

Backs up previous storage data using before creating a new storage object with
the same name. (STGM_CONVERT)

Supports temporary, efficient reading before opening the storage.
(STGM_PRlORITY)

The storage or stream is automatically destroyed when it is destructed.
(STGM_DELETEONRELEASE)

See also TStream, TlnStream, TOutStream

pfxxxx property attribute constants docview.h

Define document and view property attributes. Documents, views, and applications use
these attributes to determine how to process a document or view.

pfGetText

pfGetBinary

pfConstant

pfSettable

pfUnknown

Property is accessible in a text format.

Property is accessible as a native nontext format.

Property can't be change,d for the object instance.

Property can be set as a native format.

Property is defined but unavailable for the object.

48 ObjectWindows Reference Guide

BUILDOWLDLL macro

M;eaning Constant
pfHidden

pfUserDef

Property should be hidden from the user during normal browsing.

Property has been user-defined at run time.

See also TDocument, TView

BUILDOWLDLL macro owldefs.h

BUILDOWLDLL
Used internally to control values for the _OWLCLASS, _OWLDATA, and _OWLFUNC
macros. This macro is defined when the user's module is built as a DLL. It must be
defined and included in ObjectWindows makefiles to build the ObjectWindows DLL.

See also _ OWLDLL macro

OWLCLASS macro owldefs.h

OW LC LASS
Used internally by ObjectWindows to modify an entire class for use in a DLL. It is the
ObjectWindows version of _RTLCLASS adjusted to export and import WIN32 DLLs.

For static WIN16 and WIN32 , the default models are used. When ObjectWindows is
being built, this macro evaluates to _export for WIN16 and WIN32 DLLs. For WIN32
DLLs, this macro evaluates to _import and performs necessary operations for WIN32
DLLs. For WIN16 DLL use, this macro evaluates to _import, which is essentially the
same as _huge.

_OWLDATA macro owldefs.h

OWLDATA
The ObjectWindows version of _RTLDATA adjusted to export and import WIN32 DLLs
for ObjectWindows. _OWLDATA modifies a specific data declaration.

For static WIN16 and WIN32, the default models are used. When ObjectWindows is
being built, this macro evaluates to _export for WIN16 and WIN32 DLLs. For WIN32
DLLs, this macro evaluates to _import and performs necessary operations for WIN32
DLLs. For WIN16 DLLs, this macro evaluates to nothing.

OWLDLL macro owldefs.h

OWLDLL
_OWLDLL, which is automatically defined if _RTLDLL is turned on, controls values for
the _OWLCLASS, _OWLDATA, and _OWLFUNC macros. It is also automatically
defined if the user _OWLDLL module is used as a DLL from another user module. It

C h a p I e r 2 , 0 b j e c I W i n d o w s I i b r a r y r e f e r e n c e 49

OWLFAR macro

must be defined if you are Writing ObjectWindows applications or DLLs that use DLLs.
This macro can also be turned on by a makefile.

OWLFAR macro owldefs.h

_OWLFAR
The macro _OWLFAR is the ObjectWindows version of _RTLFAR adapted to promote
far data pointers in DLLs for ObjectWindows.

OWLFARVTABLE macro owldefs.h

_OWLFARVTABLE
Moves the ObjectWindows virtual function tables (vtables) out of the DGROUP of the
data segment and stores them in the code segment. Use this macro in conjunction with
the _OWLCLASS mac:t;o to add the _huge option when static models are compiled.

OWLFASTTHIS macro owldefs.h

OWLFASTTHIS
The macro _OWLFASTTHIS causes _fastthis to be added to the _OWLCLASS macro so
that all ObjectWindows classes use the fastthis calling convention for passing the this
parameter in the registers. This macro, which has the same effect as using the -po
compiler option, applies to 16-bit code only.

OWLFUNC macro owldefs.h

_OWLFUNC
The ObjectWindows function version of _RTLFUNC adapted to export and import
functions for building WIN32 DLLs for ObjectWindows. _OWLFUNC modifies a
specific member or global function for use in a DLL.

For static WIN16 and WIN32 DLLs, the default models are used. When ObjectWindows
is being built, this macro evaluates to _export for WIN16 and WIN32 DLLs. For WIN32
DLLs, this macro evaluates to _import and performs necessary operations for WIN32
DLLs. For WIN16 DLL use, this macro evaluates to nothing.

OWLGetVersion function owldefs.h

unsigned short far OWLFUNC OWLGetVersion();
Returns the version number of the ObjectWindows library. The version number is
represented as an tinsigned short.

50 ObjectWindows Reference Guide

SB_Xxxx scroll bar constants

SB Xxxx scroll bar constants
The following constants define scroll bar modes:

SB_BOTH

SB_CTL

SB_HORIZ

SB_ VERT

~~::;t'-iiting
Displays or hides the horizontal and vertical scroll bars for a window.

Displays or hides a scroll bar's control button.

Displays or hides the horizontal scroll bars for a window.

Displays or hides the vertical scroll bar for a window.

shxxxx document sharing enum

windows.h

docview.h

The following file-sharing modes are available when opening document streams.

shCompat

shNone

shRead

sh Write

shReadWrite

shDefault

shMask

Used for noncompliant applications, but should be avoided if possible.

DENY_ALL functionality.

DENY_ WRITE functionality.

DENY_READ functionality.

DENY_NONE functionality

Use stream implementation default value.

Mask for file-sharing bits.

TActionFunc typedef
typedef void(*TActionFunc){TWindow* win, void* param);
Passes a function pointer to TWindow::ForEach.

See also TWindow::ForEach

TActionMemFunc typedef
typedef void{TWindow::*TActionMemFunc)(TWindow* win, void* param);
Passes a member function pointer to TWindow::ForEach.

See also TWindow::ForEach

TAnyPMF typedef
typedef void(GENERIC::*TAnyPMF)();
A generic pointer to a member function.

window.h

window.h

dispatch.h

Chapter 2, ObjectWindows library reference 51

TAnyDispatcher typedef

TAnyDispatcher typedef dispatch.h

typedef LRESULT(*TAnyDispatcher)(GENERIC&, TAnyPMF, WPARAM, LPARAM);
A message dispatcher type. All message dispatcher functions conform to this type and
take four parameters:

• A reference to an object

• A pointer to the member function in which the signature varies according to the
cracking that the function performs

• WPARAM

• LPARAM

TAppDictionary class appdict.h

A TAppDictionary is a dictionary of associations between a process ID and an
application. A process ID identifies a process, that is, a program (including all of its
affiliated code, data, and system resources) that is loaded into memory and ready to
execute. A TAppDictionary supports global application lookups using the global
GetApplicationObject function or T App Dictionary's GetApplication function. If you do not
define an application dictionary, ObjectWindows provides a default, global application
dictionary that is exported. In fact, for EXEs, this global application dictionary is
automatically used.

T App Dictionary includes a TEntry struct, which stores the process ID and the
corresponding application associated with the ID. The public member functions add,
find, and remove the entries in the appplication dictionary.

If you are statically linking ObjectWindows, you do not have to explicitly create an
application dictionary because the default global Object Windows application dictionary
is used. However, when writing a DLL component that is using ObjectWindows in a
DLL, you do need to create your own dictionary. To make it easier to define an
application dictionary, ObjectWindows includes a macro
DEFINE_APP _DICTIONARY, which automatically creates or references the correct
dictionary for your application.

Although this class is transparent to most users building EXEs, component DLLs need
to create an instance of a T Application class for each task that they service. This kind of
application differs from an EXE application in that it never runs a message loop. (All the
other application services are available, however.)

Although a component may consist of several DLLs, each with its own TModule, the
component has only one T Application for each task. A T App Dictionary, which is used for
all servers (including DLL servers) and components, lets users produce a complete, self­
contained application or component. By using a TAppDictionary, these components can
share application objects.

When 16-bit ObjectWindows is statically linked with an EXE or under Win32, with per­
instance data, the T App Dictionary class is implemented as a wrapper to a single

52 0 b j e c I W i n d ow s R e f e re n c e G u i d e

TAppDictionary class

application pointer. In this case, there is only one T Application that the component ever
sees.

To build a component DLL using the ObjectWindows DLL, a new T App Dictionary object
must be constructed for that DLL. These are the steps an application must follow in
order to associate the component DLL with the T App Dictionary, the application, and the
window class hierarchy:

Use the DEFINE_APP _DICTIONARY macro to construct an instance of
T App Dictionary. Typically, this will be a static global in one of the application's
modules (referred to as "App Dictionary"). The DEFINE_DICTIONARY macro allows
the same code to be used for EXEs and DLLs.

TAppDictionary AppDictionary;

2 Construct a generic TModule and assign it to the global ::Module. This is the default
provided in the ObjectWindows' LibMain function.

LibMain(... I
::Module =new TModule(O, hinstance);

3 When each T Application instance is constructed, pass a pointer to the T App Dictionary
as the last argument. This ensures that the application will insert itself into this
dictionary. In addition, for 16 bit DLLs, the gModule argument needs to be supplied
with a placeholder value because the Module construction has already been
completed at this point, as a result of the process performed in step 2.

TApplication* app =new TMyApp(... , app, AppDictionary);

4 If the Doc/View model is used, supply the application pointer when constructing the
TDocManager object.

SetDocManager(new TDocManager(mode, this));

5 When a non-parented window (for example, the main window) is being constructed,
pass the application as the module.

SetMainWindow(new TFrameWindow(O, "", false, this));

See also
T Application::GetWindowPtr, TWindow::GetWindowPtr,
DEFINE_APP _DICTIONARY macro

Type definitions
TEntry
struct TEntry {
unsigned Pid;
TApplication* App;

};
An application dictionary entry that associates a process ID (Pid) with an application
(App). The dictionary is indexed by (Pid) and can have only 1 entry per process ID.

See also TAppDictionary::TEntry struct, TAppDictionary::Iterate

Chapter 2, ObjectWindows library reference 53

TAppDictionary class

TEntrylterator
typedef void (*TEntrylterator) (TEntry&);
A dictionary iterator function pointer type that receives a reference to an entry. You can
supply a function of this type to the Iterate function to iterate through the entries in the
dictionary.

See also TAppDictionary::TEntryiterator typedef

Public constructor and destructor
Constructor
T AppDictionary();
Constructs a T App Dictionary object.

Destructor
N TAppDictionary();
Destroys the TAppDictionary object and calls DeleteCondemned to clean up the
condemned applications.

Public member functions
Add
void Add(TApplication* app, unsigned pid = O);
Adds an application object (app) and corresponding process ID to this dictionary. The
default ID is the current process's ID.

See also TAppDictionary::Remove

Condemn
void Condemn(TApplication* app);
Marks an application in this dictionary as condemned by zeroing its process ID so that
the application can be deleted later when DeleteCondemned is called.

See also TAppDictionary::DeleteCondemned

DeleteCondemned
bool DeleteCondemned();
Deletes all condemned applications and their associated process IDs from the
dictionary. If no applications remain in the dictionary, DeleteCondemned returns true.

See also TAppDictionary::Condemn

GetApplication
TApplication* GetApplication(unsigned pid = O);
Looks up and returns the application associated with a given process ID. The default ID
is the ID of the current process. If no application is associated with the process ID,
GetApplication returns 0.

Iterate
void lterate(TEntrylterator iter);

54 ObjectWindows Reference Guide

TApplication class

Iterates through a list of entries in the application dictionary, calling the iter callback
function for each entry.

See also TAppDictionary::TEntryiterator

Remove
Form 1 void Remove(TApplication* app);

Searches for the dictionary entry using the specified application (app). Then, removes a
given application and process ID entry from this dictionary, but does not delete the
application.

Form 2 void Remove(unsigned pid);
Searches for the dictionary entry using the specified process ID (pid). Then, removes a
given application and its associated process ID entry from this dictionary, but does not
delete the application.

See also TAppDictionary::Add

TApplication class applicat.h

Derived from TModule, T Application acts as an object-oriented stand-in for an
application module. TApplication and TModule supply the basic behavior required of an
application. TApplication member functions create instances of a class, create main
windows, and process messages.

Public data members

HAccTable
HACCEL HAccTable;
Included to provide backward compatibility, HAccTable holds a handle to the current
accelerator table being used by the application. New applications should instead use the
accelerator table handle TWindowAttr::AccelTable for each window object in the
application.

See also TWindow::LoadAcceleratorTable, TWindowAttr struct

hPrevlnstance
HINSTANCE hPrevlnstance;
Contains the handle of the previously executing instance of the Windows application. If
hPrevinstance is 0, there was no previously executing instance when this instance began
execution. Under Win32, this value is always 0.

nCmdShow
int nCmdShow;

Chapter 2, Objec!Windows library reference 55

TApplication class

Indicates how the main window is to be displayed (either maxim,ized or as an icon).
These correspond to the WinMain parameter nCmdShow. nCmdShow can contain one of
the following constants:

SW_SHOWDEFAULT

SW_HIDE

SW _MINIMIZE

SW_SHOW

SW _SHOWMAXIMIZED

SW _SHOWMINIMIZED

SW_SHOWNA

SW _SHOWNOACTIV ATE

SW _SHOWNORMAL

SW _SHOWSMOOTH

Type definitions
XS

Shows the default SW _xxxx command.

Hides the window.

Minimizes the specified window.

Activates a window using current size and position.

Displays a maximized window.

Displays a minimized window.

Displays window in its current state.

Displays the window as an icon.

Displays a window in its original size and position.

Shows a window by updating it in a bitmap and then copying the bits to
the screen.

enum {xsUnknown, xsBadCast, xsBadTypeid, xsMsg, xsAlloc, xsOwl};
These bit flags define the types of exceptions that are caught and suspended.
T Application::SuspendThrow and T Application::QueryThrow return the values of these bit
flags.

The following table shows the xs exception enum constants:

xsUnknown

xsBadCast

xsBadTypeid

xsMsg

xsAlloc

xsOwl

UnknoWll exception

Bad_cast exception

Bad_typeid exception

Any exception derived from xmsg
xalloc exception

TXOwl exception

See also TXOwl, TApplication::QueryThrow, TApplication::SuspendThrow

Public constructor and destructor
Constructor

Form 1 TApplication(const chaf far* name= 0, TModule*& gModule = ::Module, TAppDictionary* appDict = O);
This T Application constructor creates a new T Application object named name. You can use
gModule to specify the global module pointer that points to this application. The appDict
parameter specifies which dictionary this application will insert itself into. To override
the default ObjectWindows T App Dictionary object, pass a pointer to a user-supplied
appDict object.

, 56 ObjectWindows Reference Guide

TApplication class

Form 2 TApplication(const char far• name, HINSTANCE hlnstance, HINSTANCE hPrevlnstance,
canst char far* cmdline, int cmdShow, TModule*& gModule =::Module, TAppDictionary• appDict = O);

This T Application constructor creates a T Application object with the application name
(name), the application instance handle (instance), the previous application instance
handle (previnstance), the command line invoked (cmdLine), and the main window show
flag (cmdShow). The appDict parameter specifies which dictionary this application will
insert itself into. To override the default ObjectWindows T App Dictionary object, pass a
pointer to a user-supplied appDict object.

If you want to create your own WinMain, use this constructor because it provides access
to the various arguments provided by WinMain. You can use gModule to specify the
global module pointer that points to this application.

Destructor
~ TApplication();
~ T Application destroys the T Application object.

See also TApplication::nCmdShow, TModule, TAppDictionary

Public member functions
Begin Modal
int BeginModal(TWindow* window, int flags= MB_ APPLMODAL);
BeginModal is called to begin a modal window's modal message loop. After determining
which window to disable, saves the current status of the window, disables the window,
calls MessageLoop, and then reenables the window when the message loop is finished.
The flags determine how BeginModal treats the window.flags can be one of the following
values:

MB_APPLMODAL The window to be disabled (which is usually an ancestor of the modal window)
is identified by window. If window is 0, no window is disabled.

MB_SYSTEMMODAL The window to become system modal is identified by window.

MB_TASKMODAL All top-level windows are disabled, and window is ignored. BeginModal returns
-1 if an error occurs.

See also TWindow

BWCCEnabled
bool BWCCEnabled();
Indicates if the Borland Custom Controls library (BWCC) is enabled. Returns true if
BWCC is enabled and false if BWCC is disabled.

Can Close
virtual bool CanClose();
Returns true if it's OK for the application to close. By default, CanClose calls the CanClose
member function of its main window and returns true if both the main window and the
document manager (TDocManager) can be closed. If any of the CanClose functions return
false, the application doesn't close.

C h a p I e r 2 , 0 b j e c I W i n d o w s I i b r a r y r e f e r e n c e 57

TApplication class

This member function is seldom redefined; closing behavior is usually redefined in the
main window's CanClose member function, if needed.

See also TWindow::CanClose, TDocManager

Condemn
void Condemn(TWindow* win);
Performs window cleanup.

Ctl3dEnabled
bool Ctl3dEnabled() const;
Returns true if the Microsoft 3-D Controls Library DLL is enabled. This DLL gives
controls a three-dimensional look and feel.

See also TApplication::EnableCtl3d, TApplication::EnableCtl3dAutosubclass

EnableBWCC
void EnableBWCC(bool enable =true, uint Language= O);
Loads and registers BWCC.DLL if you are running 16-bit applications or BWCC32.DLL
if you are running 32-bit applications. By default, BWCC is enabled. To disable BWCC,
set enable to false.

See also TDialog

EnableCtl3d
void EnableCtl3d(bool enable= true);
Enables or disables the use of the CTL3D DLL. If enable is true, EnableCtl3d loads and
registers the CTL3nDLL if it's not already enabled.

See also TApplication::Ctl3dEnabled, TApplication::EnableCtl3dAutosubclass

EnableCtl3dAutosubclass
void EnableCtl3dAutosubclass(bool enable);
Enables or disables CTL3D's use of autosubclassing if CTL3D is already enabled using
Ctl3dEnabled. If autosubclassing is enabled, any non-ObjectWindows dialog boxes have
a 3-D effect. The common dialog classes and TDocManager use this function to turn on
autosubclassjng before creating a non-ObjectWindows dialog box to make it three­
dimensional and to turn off autosubclassing immediately after the dialog box is
destroyed. ·

See also TDialog::EvCtlColor, TApplication::EnableCtl3d, TApplication::Ctl3dEnabled

End Modal
void EndModal(int result);
EndModal is called to end a modal window's modal message loop. Sets result to -1 if an
error occurs.

Find
bool Find(TEventlnfo &, TEqualOperator = O);
Because T Application has no event table itself, it defers event handling to the
DocManager. If a DocManager has been installed, Find calls TDocManager to handle
events.

See also TEventHandler::TEventlnfo

58 ObjectWindows Reference Guide

TApplication class

GetBWCCModule
TModule* GetBWCCModule() const;
Returns a pointer to the enabled BWCC module.

GetCtl3dModule
TModule* GetCtl3dModule() const;
Returns a pointer to the enabled Ctl3d module.

GetDocManager
TDocManager* GetDocManager();
Returns a pointer to the document manager object that iii.voked the application.

See also TApplication::SetDocManager, TDocManager

GetMainWindow
TFrameWindow* GetMainWindow();
Returns a pointer to the application's main window.

See also TApplication::SetMainWindow, TFrameWindow

GetWindowPtr
TWindow* GetWindowPtr(HWND hWnd) const;
Retrieves a TWindow pointer associated with the handle to a window (hWnd). Allows
more than one application to share the same HWND.

See also TWindow::GetWindowPtr

GetWinMainParams
void GetWinMainParams();
Initializes a static instance of an application. ObjectWindows OwlMain uses this function
to support static application instances.

See also TApplication::SetWinMainParams

Messageloop
virtual int Messageloop();
Operates the application's message loop, which runs during the lifetime of the
application. Queries for messages; if one is received, MessageLoop processes it by calling
ProcessAppMsg. If the query returns without a message, MessageLoop calls IdleAction to
perform some processing during the idle time. MessageLoop calls PumpWaitingMessages
to get and dispatch waiting messages. MessageLoop can be broken if BreakMessageLoop is
set by EndModal.

See also TApplication::BreakMessageLoop, TApplication::IdleAction,
TApplication::ProcessAppMsg, TApplication::Pump WaitingMessages

PostDispatchAction
void PostDispatchAction();
If T Application's message loop is not used, this function should be called after each
message is dispatched

PreProcessMenu
virtual void PreProcessMenu(HMENU hmenu);

Chapter 2, ObjectWindows library reference 59

TApplication class

Your application can call PreProcessMenu to process the main window's menu before it
is displayed.

See also TDocmanager::EvPreProcessMenu, TMenu::TMenu

ProcessAppMsg
virtual bool ProcessAppMsg(MSG& msg);
Checks for any special processing thatis required for modeless dialog box, accelerator,
and MDI accelerator messages. Calls the virtmll TWindow::PreProcessMsg function of the
window receiving the message. If your application does not create modeless dialog
boxes, does not respond to accelerators, and is not an MDI application, you can improve
performance by overriding this member function to return false.

See also TWindow::PreProcessMsg, MSG struct

PumpWaitingMessages
bool PumpWaitingMessages();
Called by MessageLoop, PumpWaitingMessages processes and dispatches all waiting
messages until the queue is empty. It also sets BreakMessageLoop when a WM_ QUIT
message is received.

See also TApplication::MessageLoop, TApplication::BreakMessageLoop

QueryThrow
int Query Throw();
QueryThrow tests to see if an exception is suspended and returns one or more of the bit
flags in the xs exception status enum.

See also xs exception status enum

Resume Throw
void ResumeThrow();
ResumeThrow checks .and rethrows suspended exceptions. Call this function any time
you reenter Object Windows code from exception-unsafe code where an exception could
have been thrown.

Run
virtual int Run();
Initializes the instance, calling InitApplication for the first executing instance and
Initlnstance for all instances. If the initialization is successful, Run calls MessageLoop and
runs the application. If exceptions are thrown outside the message loop, Run catches
these exceptions.

If an error occurs in the creation of a window, Run throws a TXWindow exception. If
Status is assigned a nonzero value (which ObjectWindows uses to identify an error), a
TXCompatibility exception is thrown.

See also TApplication::InitApplication, TApplication::Initinstance,
TApplication::MessageLoop, TXWindow, TXCompatibility

SetWinMainParams
static void SetWinMainParams(HINSTANCE hlnstance, HINSTANCE hPrevlnstance, canst char far* cmdline,

int cmdShow);

60 ObjectWi.ndows Reference Guide

TApplication class

Object Windows default WinMain function calls SetMain WinParams so that T Application
can store the parameters for future use. To construct an application instance, WinMain
calls the OwlMain function that's in the user's code. As it's being constructed, the
application instance can fill in the parameters using those set earlier by
SetMain WinParams.

See also TApplication::GetWinMainParams

SuspendThrow
Form 1 void SuspendThrow(xalloc& x);

This version of SuspendThrow saves xalloc exception information.

Form 2 void SuspendThrow(xmsg& x);
This version of SuspendThrow saves xmsg exception information.

Form 3 void SuspendThrow(TXOwl& x);
This version of SuspendThrow saves a copy of a TXOwl exception.

Form 4 void SuspendThrow(int);
This version of SuspendThrow sets the xs exception status bit flags to the specified
exception, for example Bad_cast or Bad.:..typeid.

See also xs exception status enum, TXOwl

Un condemn
void Uncondemn (lWindow* win);
Removes condemned children from the list of condemned windows.

See also TWindow

Protected data members
BreakMessageLoop
bool BreakMessageloop;
Causes the current modal message loop to break and terminate. If the current modal
message loop is the main application, and your program sets BreakMessageLoop, your
main application terminates.

See also TApplication::EndModal, TApplication::MessageLoop,
TApplication::Pump W aitingMessages

MessageLoopResult
int MessageloopResult;
MessageLoopResult is set by a call to EndModal. It contains the value that is returned by
MessageLoop and BeginModal.

See also TApplication::BeginModal, TApplication::EndModal,
TApplication::MessageLoop

Chapter 2, ObjectWindows library reference 61

TApplication class

Protected member functions
ldleAction
virtual bool ldleAction(long idleCount);
ObjectWindows calls IdleAction when no messages are waiting in the queue to be
processed. You can override IdleAction to do background processing. However, the
default action is to give the main window a chance to do idle processing as long as
IdleAction returns true. idleCount specifies the number of times IdleAction has been called
between messages.

See also TFrameWindow::IdleAction

lnitApplication
virtual void lnitApplication();
ObjectWindows calls InitApplication to initialize the first instance of the application. For
subsequent instances, this member function is not called.

The following sample program calls InitApplication the first time an instance of the
program begins.

class TTestApp : public TApplication {
public:

};

TTestApp () : TApplication ("Instance Tester")
{strcpy (WindowTitle, "Additional Instance"); l

protected:
char WindowTitle[20];

void InitApplication() {strcpy(WindowTitle, "First Instance");}
void InitMainWindow() {MainWindow =new TFrameWindow(O, WindowTitle) ;}

static TTestApp App;

lnitlnstance
virtual void lnitlnstance();
Performs each instance initialization necessary for the application. Unlike
InitApplication, which is called for the first instance of an application, Initlnstance is
called whether or not there are other executing instances of the application. Initlnstance
calls InitMain Window, and then creates and shows the main window element by
TWindow::Create and TWindow::Show. If the main window can't be created, a
TXInvalidMain Window exception is thrown.

If you redefine this member function, be sure to explicitly call T Application::Initlnstance.

See also TApplication::InitApplication, TApplication::InitMain Window,
TApplication::Run, TModule::MakeWindow, TWindow::Show

lnitMainWindow
virtual void lnitMainWindow();
By default, InitMain Window constructs a generic TFrameWindow object with the name of
the application as its caption. You can redefine InitMain Window to construct a useftil
main window object of TFrameWindow (or a class derived from TFrameWindow) and
store it in Main Window. The main window must be a top-level window; that is, it must
be derived from TFrameWindow. A typical use is

62 ObjectWindows Reference Guide

TApplication::TXlnvalidMainWindow class

virtual void TMyApp_InitMainWindow(){
SetMainWindow(TMyWindow(NULL, Caption));

InitMainWindow can be overridden to create your own custom window.

SetDocManager
TFrameWindow* SetDocManager(TDocManager* docManager};
Sets a pointer to the document manager object that invoked the application.

See also TApplication::GetDocManager, TDocManager, TFrameWindow

SetMainWindow
TFrameWindow* SetMainWindow(TFrameWindow* window};
Sets up a new main window and sets the window's WM_MAINWINDOW flag.

See also TApplication::GetMainWindow, TFrameWindow

Termlnstance
virtual int Termlnstance(int status};
Handles the termination of each executing instance of an ObjectWindows application.

TApplication::TXlnvalidMainWindow class applicat.h

A nested class, TXInvalidMain Window describes an exception that results from an
invalid Window. This exception is thrown if there is not enough memory to create a
window or a dialog object. Initlnstance throws this exception if it can't initialize an
instance of an application object.

Public constructor
Constructor
TXlnvalidMainWindow(};
Constructs a TXInvalidMain Window object with a default
IDS_INV ALIDMAINWINDOW message.

Public member functions
Clone
virtual TXOwl* Clone(};
Makes a copy of the exception object. Clone must be implemented in any class derived
from TXOwl.

Throw
virtual void Throw(};
Throws the exception object. Throw must be implemented in any class derived from
TX Owl.

Chapter 2, ObjectWindows library reference 63

TAutoFactory<> class

TAQtoFactory<> class . olefacto.h

A template class, T Autofactory<> .creates callback code for ObjectWindows classes. The
application class is passed as the argument to the template. By itself, TAutoFactory<>
does not provide linking or embedding support for ObjectWindows automated
applications.

Although T Autofactory<> simplifies the process of creating the callback function, you
can write your own callback function or provide alternate implementation for any or all
of T Autofactory<>'s functions.

See also
TComponentFactory typedef, TOcRegistrar class, TOleFactoryBase class

Public member functions

Create
static !Unknown* Create(IUnknown* outer, uint32 options, uint32 id);
Create is a TComponentFactory callback function that creates or destroys the application
or creates objects. If an application object does not already exist, Create creates a new
one. The outer argument points to the OLE2 !Unknown interface with which this object
aggregates itself. If outer is 0, the new object is not aggreg~ted, or it will become the
main object.

The options argument indicates the application's mode while it is ~g. The values for
options are either set from the command line or set by ObjectComponents. They are
passed in by the "Registrar" to this callback. The application looks at these flags to know
how to operate, and the factory callback looks at them to know what to do. For example,
a value of amExeMode indicates that the server is running as an .EXE either because it
was built as an .EXE or because it is a .DLL that was launched by an .EXE stub and is
now running as an executable program. See TOcAppMode enum for a description of the
possible values for the options argument.

If the application already exists, Create returns the application's OLE interface and
registers the options from TOcAppMode enum which contains OLE-related flags used in
the application's command line. For example, the amAutomation flag tells the server to
register itself as a single-user application. (In general, these flags tell the application
whether it has been run as a server, whether it needs to register itself, and so on.)

The id argument, which is not used for T Autofactory, is always 0.

See also TAutoFactory::DestroyApp, TOcAppMode enum

CreateApp
static T* CreateApp(uint32 options);
CreateApp creates a new automated application. By default, it creates a new application
of template type T with no arguments. The options argument is one of the TOcAppMode
enum values, for example, amRun, amAutomation, and so on that indicate the
application's mode when running.

See also TAutoFactory::DestroyApp, TOcAppMode enum

64 ObjectWindows Reference Guide

TBandlnfo struct

Destroy App
static void DestroyApp(T* app);
Destroys the previously created application referred to in app.

operator TComponentFactory
operator TComponentFactory();
Converts the object into a pointer to the factory. ObjectComponents uses this pointer to
create the automated object.

See also TAutoFactory::CreateApp

TBandlnfo struct dc.h

An ObjectWindows struct, TBandlnfo is used to pass information to a printer driver that
supports banding. TBandlnfo is declared as follows:

struct TBandinfo {
bool HasGraphics;
bool HasText;
TRect GraphicsRect;
};

HasGraphics is true if graphics are (or are expected to be) on the page or in the band;
otherwise, it is false.

HasText is true if text is (or is expected to be) on the page or in the band; otherwise, it is
false.

GraphicsRect defines the bounding region for all graphics on the page.

See also TPrintDC::Bandlnfo, TPrintDC::NextBand

TBitmap class gdiobjec.h

TBitmap is the GDI bitmap class derived from TGdiObject. TBitMap can construct a
bitmap from many sources. TBitmap objects are DDBs (device-dependent bitmaps),
which are different from the DIBs (device-independent bitmaps) represented by TDib
objects. ·

Public constructors
Constructors

Form 1 TBitmap(HBITMAP handle, TAutoDelete autoDelete = NoAutoDelete);
Creates a TBitmap object and sets the Handle data member to the given borrowed handle.
The ShouldDelete data member defaults to false,·ensuring that the borrowed handle will
not be deleted when the C ++ object is destroyed.

Form 2 TBitmap(const TClipboard& clipboard);
Creates a TBitmap object with values from the given Clipboard.

Chapter 2, ObjectWindows library reference 65

TBitmap class

Form 3 TBitmap(const TBitmap& bitmap);
Creates a copy of the given bitmap object.

Form 4 TBltmapOnt width, int height, uintB planes=1, uintB bitCount=1, void far* bits=O);
Creates a bitmap object from bitCount bits in the bits buffer with the given width, height,
and plan.es argument values.

Form 5 TBitmap(const BITMAP far* bitmap);
Creates a bitmap object with the values found in the given bitmap structure.

Form 6 TBitmap(const TDC& De, int width, int height, bool discardable =false);
Creates a bitmap object for the given device context with the given argument values.

Form 7 TBitmap(const TDC& De, const TDib& dib, uint32 usage=CBM_INIT);
Creates a bitmap object for the given device context with the given dib and usage
argument values.

Form 8 TBltmap(const TMetaFilePict& metaFile, TPalette& palette, const TSize& size);
Creates a bitmap object from the given metaFile using the given palette and size
arguments.

Form 9 TBltmap(const TDib& dib, const TPalette* palette = O);
Creates a bitmap object from the given dib and palette arguments. A working palette
constructed from the DIB's color table is used if no palette is supplied. The default
system palette can also be passed using &TPalette::GetStock(TPalette::Default);

Form 10 TBltmap(HINSTANCE instance, TReslD reslD);
Creates a bitmap object for the given application instance from the given resource.

See also TClipBoard::GetClipboardData, TDC, TDib, TGdiObject::Handle,
TGdiObject::ShouldDelete, TPalette, BITMAP struct

Public member functions
Bits Pixel
uintB BitsPixel() const;
Returns the number of bits per pixel in this bitmap.

See also TBitmap::GetObject

GetBitmapBits
uint32 GetBltmapBlts(uint32 count, void far* bits) const;
Copies up to count bits of this bitmap to the buffer bits.

GetBitmapDimension
bool GetBitmapDimension(TSize& size) const;
Retrieves the size of this bitmap (width and height, measured in tenths of millimeters)
and sets it in the size argument. Returns true if the call is successful; otherwise returns
false.

See also TSize

GetObject
bool GetObject(BITMAP far& bitmap) const;

66 ObjectWindows Reference Guide

TBitmap class

Retrieves data (width, height, and color format) for this bitmap and sets it in the given
BITMAP structure. To retrieve the bit pattern, use GetBitmapBits.

See also TBitMap::GetBitmapBits, BITMAP struct

Height
int Height{) const;
Returns the height of this bitmap.

See also TBitmap::GetObject

operator«
TClipboard& operator «(TClipboard& clipboard, TBitmap& bitmap);
Copies the given bitmap to the given clipboard argument. Returns a reference to the
resulting Clipboard, which allows normal chaining of<<.

See also TClipboard

operator HBITMAP{)
operator HBITMAP() const;
Typecasting operator. Converts this bitmap's Handle to type HBITMAP (the data type
representing the handle to a physical bitmap).

Planes
uintB Planes() const;
Returns the number of planes in this bitmap.

See also TBitmap::GetObject

SetBitmapBits
uint32 SetBitmapBns(uint32 count, const void far* bn&);
Copies up to count bits from the bits buffer to this bitmap.

SetBitmapDimension
bool SetBitmapDimension(const TSize& size, TSize far* oldSize=O);
Sets the size of this bitmap from the given size argument (width and height, measured in
tenths of millimeters). The previous size is set in the oldSize argument. Returns true if the
call is successful; otherwise returns false.

See also TSize

ToClipboard
void ToClipboard(TClipboard& clipboard);
Copies this bitmap to the given Clipboard.

See also TClipboard::SetClipboardData

Width
int Width{) const;
Returns the width of this bitmap.

See also TBitmap::GetObject

Chapter 2, ObjectWindows library reference 67

TBitmapGadget class

Protected constructor
Constructor
TBitMap();
Protected constructor for a TBitmap object.

Protected member functions
Create
void Create(const TDib& dib, const TPalette &palette);
void Create(const TBnmap &src);
Creates a bitmap handle from the given argument objects.

See also TDib, TPalette

Operators
operator«
TClipboard& operator «(TClipboard& clipboard, TBitmap& bnmap);
Copies the given bitmap to the given clipboard argument. Returns a reference to the
resulting Clipboard, which allows normal chaining of <<.
See also TClipboard

operator HBITMAP()
operator HBITMAP() const;
Typecasting operator. Converts this bitmap's Handle to type HBITMAP (the data type
representing the handle to a physical bitmap).

TBitmapGadget class bitmapga.h

Derived from TGadget, TBitmtipGadget is a simple gadget that can display an array of
bitmap images one at a time.

Public constructor and destructor
Constructor
TBitmapGadget(TResld bmpResld, int id, TBorderStyle borderStyle, TResld bitmapName, int numlmages,

int startl mage);
Constructs a TBitmapGadget and sets the current image to the beginning image
(startlmage) in the array of images. Then, sets the border style to the current TGadget
border style and numlmages to the number of images in the array.

Destructor
N TBitmapGadget();
Deletes the array of images.

68 ObjectWindows Reference Guide

TBitSet class

Public member functions
Selectlmage
int Selectlmage(int imageNum, bool immediate);
Determines the current image and repaints the client area if the image has changed.
Updates the client area if the image has changed.

SysColorChange
void SysColorChange();
When the system colors have been changed, SysColorChange is called by the gadget
window's EvSysColorChange so that bitmap gadgets can be rebuilt and repainted.

Protected member functions
GetDesiredSize
void GetDesiredSize(TSize& size);
Calls TGadget::GetDesiredSize, which determines how big the bitmap gadget can be. The
gadget window sends this message to query the gadget's size. If shrink-wrapping is
requested, GetDesiredSize returns the size needed to accommodate the borders and
margins. If shrink-wrapping is not requested, it returns the gadget's current width and
height. TGadgetWindow needs this information to determine how big the gadget needs
to be, but it can adjust these dimensions if necessary. If WideAsPossible is true, then the
width parameter (size.ex) is ignored.

Paint
void Paint(TDC& de);
Paints the gadget's border and the contents of the bitmap.

See also TGadget::Paint

SetBounds
void SetBounds(TRect& r);
Calls TGadget::SetBounds and passes the dimensions of the bitmap gadget. SetBounds
informs the control gadget of a change in its bounding rectangle.

See also TGadget::SetBounds

TBitSet class bitset.h

TBitSet sets or clears a single bit or a group of bits. You can use this class to set and clear
option flags and to retrieve information about a set of bits. The class TCharSet performs
similar operations for a string of characters.

Public constructors
Constructors

Form 1 TBitSet();
Constructs a TBitSet object.

Chapter 2, ObjectWindows library reference 69

TBitSet class

Form 2 TBitSet(const TBitSet& bs);
Constructs a TBitSet object as a copy of another TBitSet.

Public member functions
Disableltem

Form 1 void Disableltem(int Item);
Clears a single bit at item. ,

Form 2 void Disableltem(const TBltSet& bs);
Clears the set of bits enabled in bs.

Enableltem
Form 1 void EnableJtem(int Item);

Sets a single bit at item.

Form 2 void Enableltem(const TBltSet& bs);
Sets the set of bits enabled in bs.

Has
int Has(int item);
Is nonzero if item is in the set of bits.

lsEmpty
int TBitSet::lsEmpty();
Is nonzero if the set is empty; otherwi$e, is 0.

operator+=
Form 1 TBitSet& operator +=(int item);

Calls Enableltem to set a bit in the copied set. Returns a reference to the copied TBitSet
object.

Form 2 TBltSet& operator +=(const TBitSet& bs);
Calls Enableltem to set the bits enabled in bs. Returns a reference to the copied TBitSet
object.

operator-=
Form 1 TBitSet& operator -=(int item);

Calls Disableltem to clear a bit in the set. Returns a reference to the copied TBitSet object.

Form 2 TBitSet& operator -=(const TBltSet& bs);
Calls Disableltem to clear the bits enabled in bs. Returns a reference to the copied TBitSet
object.

operator&=
TBitSet& operator &=(const TBitSet&);·
ANDs all the bits in the copied set and returns a reference to the copied TBitSet object.

operator I=
TBitSet& operator l=(const TBitSet&);
ORs all of the bits in the copied set and returns a reference to the copied TBitSet object.

70 ObjectWindows Reference Guide

TBIVbxlibrary class

operator
TBitSet operator ~(const TBitSet&);
Returns the set of bits that is the opposite of a specified set of bits. For example, if the set
of bits is 01010101, the returned set is 10101010. Returns a reference to the copied TB it Set
object.

TBIVbxlibrary class vxbctl.h

Defined in vbxctl.h and virtually derived from TModule, TBIVbxLibrary handles loading
and initializing of BIVBXlO.DLL. If you want to use VBX controls, construct a
TBIVbxLibrary object with the same scope as your application. For example,

int OWlMain(int, char**)
{

TBIVbxLibrary vbxLib;
return TTestApp() .Run();

Public constructor and destructor
Constructor
TBIVbxLibrary();
Constructs a TBIVbxLibrary object.

Destructor
~ TBIVbxLibrary();
Destroys a TBIVbxLibrary object.

TBrush class gdiobjec.h

The GDI Brush class is derived from TGdiObject. TBrush provides constructors for
creating solid, styled, or patterned brushes from explicit information. It can also create a
brush indirectly from a borrowed handle.

Public constructors
Constructors

Form 1 TBrush(HBRUSH handle, TAutoDelete autoDelete = NoAutoDelete);
Creates a TBrush object and sets the Handle data member to the given borrowed handle.
The ShouldDelete data member defaults to false, ensuring that the borrowed handle will
not be deleted when the C ++ object is destroyed.

Form 2 TBrush(TColor color);
Creates a solid TBrush object with the given color. To save a brush creation this
constructor uses a cache that can detect any color that matches a stock color.

Form 3 TBrush(TColor color, int style);

Chapter 2, ObjectWindows library reference 71

TButton Class

Creates a hatched TBrush object with the given style and color.

Form 4 rarush(const TBitmap& pattern);
Creates a patterned TBrush object with the given pattern.

Form 5 TBrush(const TDib& pattern);
Creates a patterned TBrush object with the given DIB pattern.

Form 6 TBrush(const LOGBRUSH far* logBrosh);
Creates a TBrush object with values from the given logBrush.

See also TBitmap, TColor, TDib, TGdiObject::Handle, TGdiObject::ShouldDelete,
LOGBRUSH struct

Public member functions
GetObject
bool GetObject(LOGBRUSH far& logBrush) canst;

' Retrieves information about this brush object and places it in the given LOGBRUSH
structure. Returns true if the call is successful; otherwise returns false.

See also TGdiObject::GetObject, LOGBRUSH struct

operator HBRUSH()
operator HBRUSH() canst;
Typecasting operator. Converts .this brush's Handle to type HBRUSH (the data type
representing the handle to a physical brush).

UnrealizeObject
bool UnrealizeObject();
Directs the GDI to reset the origin of this brush the next time it is selected. Returns true if
call is successful; otherwise returns false.

TButton Class button.h

TButton is an interface class that represents a pushbutton interface element. You must
use a TButton to create a button control in a parent TWindow. You can also use a TButton
to facilitate communication between your application and the button controls of a
TDialog. This class is streamable.

There are two types of pushbuttons: rf:!gular and default. Regular buttons have a thin
.border. Default buttons (which represent the default action of the window) have a thick
border.

Public data members
ls Def PB
bool lsDef PB;

72 ObjectWindows Reference Guide

TButton Class

Indicates whether the button is to be considered the default pushbutton. Used for
owner-draw buttons, IsDejPB is set by a TButton constructor based on
BS_DEFPUSHBUTTON style setting.

Public constructors

Constructors
Form 1 TButton(Window *parent, int Id, canst char far* text, int X, int Y, int W, int H, bool isDefault =false,

TModule* module= O);
Constructs a button object with the supplied parent window (parent), control ID (Id),
associated text (text), position (X, Y) relative to the origin of the parent window's client
area, width (W), and height (H). If IsDefault is true, the constructor adds
BS_DEFPUSHBUTTON to the default styles set for the TButton (inAttr.Style).
Otherwise, it adds BS_PUSHBUTTON.

Form 2 TButton(TWindow* parent, int resourcelD, TModule* module = O);
Constructs a TButton object to be associated with a button control of a TDialog. Calls
DisableTransfer to exclude the button from the transfer mechanism because there is no
data to be transferred.

The resld parameter must correspond to a button resource that you define.

See also TControl::TControl

Protected data member

lsCurrentDef PB
bool lsCurrentDefPB;
Indicates whether the current button is the default pushbutton.

Protected member functions

BMSetStyle
LRESULT BMSetStyle(WPARAM, LPARAM);
Because a button can't have both owner-drawn and pushbutton styles, BMSetStyle keeps
track of the style if the button is owner-drawn and the system tries to set the style to
BS_DEFPUSHBUTTON. BMSetStyle sets IsCurrentDejPB to true if the button style is
BS_DEFPUSHBUTTON.

EvGetDlgCode
uint EvGetDlgCode(MSG far*);
Responds to WM_GETDLGCODE messages that are sent to a dialog box associated
with a control. EvGetDlgCode allows the dialog manager to intercept a message that
would normally go to a control and then ask the control if it wants to process this
message. If not, the dialog manager processes the message. The msg parameter indicates
the kind of message, for example a control, command, or button message, sent to the
dialog box manager.

Chapter 2, ObjectWindows library reference 73

TButtonGadget class

EvGetDlgCode returns a code that indicates how the button is to be treated. If this is the
currently used pushbutton, EvGetDlgCode returns either DLGC_DEFPUSHBUTTON or
DLGC_UNDEFPUSHBUTTON.

See also DLGC_xxxx dialog control message constants

GetClassName
char far* Ge!ClassName();
Overrides TWindow's GetClassName function. If BWCC is enabled, returns the name of
TButton's registration class, "BUTTON_ CLASS"; if BWCC isn't enabled, returns the
name "BUTTON."

Setup Window
void SetupWindow();
Overrides TWindow 's Setup Window function. If the button is the default pushbutton and
an owner-drawn button, Setup Window sends a DM_SETDEFID message to the parent
window.

Response table entries

EV_WM_GETDLGCODE EVGetDlgCode

EV _MESSAGE (BM_SETSTYLE, BMSetStyle) BMSetStyle

TButtonGadget class buttonga.h

Derived from TGadget, TButtonGadgets represent buttons that you can click on or off.
You can also apply attributes such as color, style, and shape (notched or unnotched) to
your button gadgets.

In general, button gadgets are classified as either command or attribute buttons.
Attribute buttons include radio buttons (which are considered exclusive), or check
boxes (which are nonexclusive). The public data member, TType, enumerates these
button types.

TButtonGadget contains several functions that let you change the style of a button. Use
SetAntialiasEdges to tum antialiasing on and off, SetNotchCorners to control comer
notching, and SetShadowStyle to change the style of the button shadow.

TButtonGadget objects respond to mouse events in the following manner: when a mouse
button is pressed, the button is pressed; when the mouse button is released, the button is
released. Commands can be entered only when the mouse button is in the "up" state.
When the mouse is pressed, TButtonGadget objects capture the mouse and reserve all
mouse messages for the current window. When the mouse button is up, button gadgets
release the capture for the current window. The public data member, TState, enumerates
the three button states.

74 ObjectWindows Reference Guide

Type definitions

TShadowStyle
enum TShadowStyle;

TButtonGadget class

Enumerates button shadow styles-either single (1) or double (2) shadow borders.

TState
enum TState;
TState enumerates the three button positions during which the button can be pressed:
up (0), down (1), and an indeterminate state (2). A nonzero value indicates a highlighted
button.

Tiype
enum TType;
Enumerates the types of buttons: command, exclusive, or nonexclusive.

Public constructor and destructor

Constructor
TButtonGadget(TResld bmpResld, int id, TType type= Command, bool enabled= false, TState state= Up, bool
repeat= false);
Constructs a TButtonGadget object using the specified bitmap ID, button gadget ID, and
type, with enabled set to false and in a button-up state. The button isn't enabled-its
initial state before command enabling occurs.

Destructor
N TButtonGadget();
Deconstructs a TButtonGadget object.

See also TButtonGadget::TState

Public member functions

CommandEnable
void CommandEnable();
Enables the button gadget to capture messages. Calls SendMessage to send a
WM_ COMMAND _ENABLE message to the gadget window's parent, passing a
TCommandEnable: EvCommandEnable message for this button.

GetButtonState
TState GetButtonState();
Returns the state of the button. If 0, the button is up, if 1, the button is down, if 2, the
state is indeterminate.

See also TButtonGadget::TState

GetButtonType
TType GetButtonType();
Returns the button type as 1 if the button is a command, 2 if exclusive, or 3 if
nonexclusive.

Chapter 2, ObjectWindows library reference 75

TButtonGadget class

SetAntialiasEdges
Se!AntialiasEdges(bool anti = true);
Tums the antialiasing of the button bevels on or off. By default, antialiasing is on.

SetButtonState
void SetButtonState(TState);
Sets the state of the button. ;If the state has changed, the button is exclusive, and is in the
down state, checks that the button is exclusive, sets State, and calls Invalidate to mark the
changed area of the gadget for repainting.

See also TButtonGadget::TState

SetNotchCorners
void SetNotchCorners(bool NotchCorners =true);
By default, SetNotchCorners implements notched comers for buttons. To repaint the
frame of the button if the window has already been created, call InvalidateRect with the
Bounds rectangle.

See also TButtonGadget::Invalidate, TGadget::InvalidateRect, TGadget::Paint

SetShadowStyle
void SetShadowStyle(TShadowStyle);
Sets the button style to a shadow style which, by default, is DoubleShadow. Sets the left
and top borders to 2 and the right and bottom borders to ShadowStyle + 1.

SysColorChange
void SysColorChange();
SysColorChange responds to an EvSysColorChange message forwarded by the owning
TGadgetWindow by setting the dither brush to zero. If a user-interface bitmap exists,
SysColorchange deletes and rebuilds it to get the new button colors.

Protected data members

AntialiasEdges
bool AntialiasEdges;
Is true if antialiasing is turned on.

BitmapOrigin
TPoint BitmapOrigin;
Points to the x and y coordinates of the bitmap used for this button gadget.

CelArray
TCelArray* CelArray;
The array of eels used by this button gadget.

NotchCorners
bool NotchCorners;
Initialized to 1, NotchCorners is 1 if the button gadget has notched comers or 0 if it
doesn't have notched comers.

76 ObjectWindows Reference Guide

Pressed
bool Pressed;

TButtonGadget class

Initialized to 1, Pressed is 1 if the button is released or 0 if it isn't released.

See also TButtonGadget::Activate, TButtonGadget::BeginPressed,
TButtonGadget::CancelPressed

Repeat
bool Repeat;
Initialized to 1, Repeat stores the repeat count for keyboard events.

Res Id
TResld Resld;
Holds the resource ID for this button gadget's bitmap.

ShadowStyle
TShadowStyle ShadowStyle;
Holds the shadow style for the button-1 for single and 2 for double.

State
TState State;
Holds the state of the button--either up, down, or indetermmate.

Type
Tiype Type;
Holds the type of the button--either command, exclusive, or nonexclusive.

Protected member functions

Activate
virtual void Activate(TPoint& p);
Invoked when the mouse is in the "up" state, Activate sets Pressed to false, changes the
state for attribute buttons, and paints the button in its current state. To do this, it calls
CancelPressed, posts a WM_ COMMAND message to the gadget window's parent, and
sends menu messages to the gadget window's parent.

See also TButtonGadget::Pressed

BeginPressed
virtual void BeginPressed(TPoint& p);
When the mouse button is pressed, Beginpressed sets Pressed to true, paints the pressed
button, and sends menu messages to the gadget window's parent.

See also TButtonGadget::Pressed

BuildCelArray
virtual void BuildCelArray();
Builds a eel array using the resource bitmap as the base glyph. Any existing eel array
should be deleted if a replacement is built.

See also TCelArray

Chapter 2, ObjectWindows library reference 77

TButtonGadget class

CancelPresseCJ
virtual void CancelPressed(TPoint& p);
When the mouse button is released, CancelPressed sets Pressed to false, paints the button,
and sends menu messages to the gadget window's parent.

See also TButtonGadget::Pressed

GetDesiredSize
.void GetDesiredSize(TSize& size);
Stores the width and height (measured in pixels) of the button gadget in size. Calls
TGadget's GetDesiredSize to calculate the relationship between one rectangle and
another.

GetGlyphDib
virtual TDib* GetGlyphDib();
Supplies the glyphdib. You can override this function to get a different dib, or to change
the attributes of the dib, such as the colors, and so on.

Invalidate
void Invalidate();
If a button is pressed or the state of the button is changed, Invalidate invalidates (marks
for repainting) the changed area of the gadget. Invalidate only invalidates the area that
changes. To repaint the entire gadget, call TGadget::InvalidateRect and pass the
rectangle's boundaries.

See also TButtonGadget::TState, TGadget::lnvalidateRect

LButtonDown
void LButtonDown(uint modKeys, TPoint& p);
Overrides TGadget member function and responds to a left mouse button click by calling
BeginPressed.

See also TButtonGadget::BeginPressed

LButtonUp
void LButtonUp(uint modKeys, TPoint& p);
Overrides TGadget member functions and responds to a release of the left mouse button
by calling Activate.

See also TButtonGadget::Activate

Mouse Enter
void MouseEnter(uint modKeys, TPoint& p);
Called when the mouse enters the boundary of the button gadget. modKeys indicates the
virtual key information and can be any combination of the following values:
MK_ CONTROL, MK_LBUTTON, MK_MBUTTON, MK_RBUTTON, or MK_SHIFT.
p indicates where the mouse entered the button gadget.

Mouseleave
void Mouseleave(uint modKeys, TPoint& p);
Called when the mouse leaves the boundary of the button gadget. modKeys indicates the
virtual key information and can be any combination of the following values:

78 ObjectWindows Reference Guide

TButtonGadgetEnabler class

MK_ CONTROL, MK_LBUTTON, MK_MBUTTON, MK_RBUTTON, or MK_SHIFT.
p indicates the place where the mouse left the button gadget.

Mouse Move
void MouseMove(uint modKeys, TPoint& p);
Calls TGadget::MouseMove in response to the mouse being dragged. If the mouse moves
off the button, MouseMove calls CancelPressed. If the mouse moves back onto the button,
MouseMove calls BeginPressed.

See also TButtonGadget::BeginPressed, TButtonGadget::CancelPressed

Paint
void Paint(TDC& de);
Gets the width and height of the window frame (in pixels), calls GetimageSize to retrieve
the size of the bitmap, and sets the inner rectangle to the specified dimensions. Calls
TGadget::PaintBorder to perform the actual painting of the border of the control. Before
painting the control, Paint determines whether the comers of the control are notched,
and then calls GetSysColor to see if highlighting or shadow colors are used. Paint
assumes the border style is plain. Then, Paint draws the top, left, right, and bottom of the
control, adjusts the position of the bitmap, and finishes drawing the control using the
specified embossing, fading, and dithering.

ReleaseGlyphDib
virtual void ReleaseGlyphDib(TDib* glyph);
Releases the glyph dib depending on how it was obtained by GetGlyphDib.

Set Bounds
void SetBounds(TRect& r);
Gets the size of the bitmap, calls TGadget::SetBounds to set the boundary of the rectangle,
and centers the bitmap within the button's rectangle.

See also TGadget::SetBounds

TButtonGadgetEnabler class buttonga.cpp

Derived from TCommandEnabler, TButtonGadgetEnabler serves as a command enabler for
button gadgets. The functions in this class modify the text, check state, and appearance
of a button gadget.

Public constructor
Constructor
TButtonGadgetEnabler(HWND hWndReceiver, TButtonGadget* g)
Constructs a TButtonGadgetEnabler for the specified gadget. h WndReceiver is the window
receiving the message.

Chapter 2, ObjectWindows library reference 79

TCelArray class

Protected data member
gadget
TButtonGadget* gadget;
The button gadget being enabled or disabled.

Public member functions
Enable
void Enable(bool enable);
Overrides TCommandEnable::Enable. Enables or disables the keyboard, mouse input and
appearance of the corresponding button gadget.

SetCheck
void SetCheck(int state)
Overrides TCommandEnable::SetCheck. Changes the check state of the corresponding
button gadget.

SetText
void Se!Text(const char far*)
Overrides TCommandEnable::SetText. Changes the text of the corresponding button
gadget.

TCelArray class celarray.h

TCelArray is a horizontal array of eels (a unit of animation) created by slicing a portion of
or an entire bitmap into evenly sized shapes. Gadgets such as buttons can use a
TCelArray to save resource space. TCelArray 's functions let you control the dimensions
of each eel and determine if the eel can delete the bitmap.

Offset from the top left corner of the bitmap

Bitmap

Public constructors and destructor
Constructors

Form 1 TCelArray(TBitmap* bmp, int numCels, TSize celSize = 0, TPoint Offset= 0, TAutoDelete = AutoDelete);
Constructs a TCelArray from a bitmap by slicing the bitmap into a horizontal array of
eels of a specified size. If autoDelete is true, TCelArray can automatically delete the
bitmap. The ShouldDelete data member defaults to true, ensuring that the handle will be
deleted when the bitmap is destroyed.

Form 2 TCelArray(TDib& dib, int numCels);

80 ObjectWindows Reference Guide

TCelArray class

Constructs a TCelArray from a DIB (Device Independent Bitmap) by slicing the DIB into
a horizontal array of evenly sized eels.

Form 3 TCelArray(eonst TCelArray& sre);
Constructs a TCelArray as a copy of an existing one. If the original TCelArray owned its
bitmap, the constructor copies this bitmap; otherwise, it keeps a reference to the bitmap.

Destructor
virtual N TCelArray();
If ShouldDelete is true (the default value), the bitmap is deleted. If ShouldDelete is false,
no action is taken.

Public member functions
CelSize
TSize CelSize() const;
Returns the size in pixels of each cell.

CelOffset
TPoint CelOffset(int eels);
Returns the position of the upper left comer of a given eel relative to the upper left
comer of the bitmap.

CelRect
TRect CelRect(int eel) const;
Returns the upper left and lower right comer of a given cell relative to the upper left
comer of the bitmap.

NumCels
int NumCels() const;
Returns the number of eels in the array.

Offset
TPoint Offset() eonst;
Returns the offset of the entire CelArray.

operator D
TRect operator O(int eel) eonst;
Returns CelRect.

operator=
TCelArray& operator =(const TCelArray&);
Returns TCelArray.

operator TBitmap&O
operator TBitmap&();
Returns a reference to the bitmap.

SetCelSize
void SetCelSize(TSize size);
Sets the size of each eel in the array.

Chapter 2, ObjectWindows library reference 81

TCharSet class

SetOffset
void SetOffset(TPoint offs);
Sets the offset for the eels in the array.

SetNumCels
void SetNumCels(int numCels);
Sets the number of eels in the array.

Protected data members
Bitmap
TBitmap* Bitmap;
Points to the bitmap.

CSize
TSize CSize;
The size of a cell in the array.

Offs
TPoint Offs;
Holds the offset of the upper left comer of the eel array from the upper left comer of the
bitmap.

NCels
int NCels;
The number of cells in the eel array.

Should Delete
bool ShouldDelete;
Is true if the destructor needs to delete the bitmap associated with the eel array.

TCharSet class bitset.h

Derived from TBitSet, TCharSet sets and clears bytes for a group of characters. You can
use this class to set or clear bits in a group of characters, such as the capital letters from
"A" through "Z" or the lowercase letters from "a" through "z." The class TBitSet performs
similar operations for a group of bits.

Public constructors
Constructors

Form 1 TCharSet();
Constructs a TCharSet object.

Form 2 TCharSet(const TCharSet&);
Copy constructor for a TCharSet object.

Form 3 TCharSet(const char far* str);

82 0 b j e ct W i n d o w s R e f e r e n c e G u i d e

TCheckBox class

Constructs a string of characters.

Public member function
operator!=
int operator !=(canst TBitSet& bs1, canst TBitSet& bs2);
ORs all of the bits in the copied string and returns a reference to the copied TCharSet
object.

TCheckBox class checkbox.h

TCheckBox is a streamable interface class that represents a check box control. Use
TCheckBox to create a check box control in a parent window. You can also use TCheckBox
objects to more easily manipulate check boxes you created in a dialog box resource.

Two-state check boxes can be checked or unchecked; three-state check boxes have an
additional grayed state. TCheckBox member functions let you easily control the check
box's state. A check box can be in a group box (a TGroupBox object) that groups related
controls.

Public data member

Group
TGroupBox* Group;
If the check box belongs to a group box (a TGroupBox object), Group points to that object.
If the check box is not part of a group, Group is zero.

See also TGroupBox::TGroupBox

Public constructors

Constructors
Form 1 TCheckBox(TWindow* parent, int Id, canst char far* title, int x, int y, int w, int h, TGroupBox* group = O,

TModule* module= O);
Constructs a check box object with the specified parent window (parent), control ID (Id),
associated text (title), position relative to the origin of the parent window's client area (x,
y), width (w), height (h), associated group box (group), and owning module (module).
Invokes the TButton constructor with similar parameters. Sets the check box's style to
WS_CHILD I WS_VISIBLE I WS_TABSTOP I BS_AUTOCHECKBOX.

Form 2 TCheckBox(TWindow* parent, int resourceld, TGroupBox* group= 0, TModule* module= O);
Constructs an associated TCheckBox object for the check box control with a resource ID
of resourceld in the parent dialog boxSets Group to group then enables the data transfer
mechanism by calling EnableTransfer.

See also TButton::TButton, TWindow::EnableTransfer

Chapter 2, ObjectWindows library reference 83

TCheckBox class

Public member functions
Check
void Check();
Forces the check box to be checked by calling SetCheck with the value of BF_ CHECKED.
Notifies the associated group box, if there is one, that the state was changed.

See also TCheckBox::GetCheckTCheckBox_ GetCheck,
TCheckBox::ToggleTCheckBox_Toggle, TCheckBox::UncheckTCheckBox_ Uncheck,
TGroupBox::SelectionChangedTGroupBox_SelectionChanged

GetCheck
uint GetCheck() cons!;
Returns the state of the check box.

TCheckBox check states

Checked

Unchecked

Grayed

BF_CHECKED

BF _UNCHECKED

BF_GRAYED

See also TCheckBox::SetCheck

GetState
uint GetState() cons!;
Returns the check, focus, and highlight state of the check box.

See also TCheckBox::SetState

SetCheck
void SetCheck(uint check);
Forces the check box into the state specified by check. See the table in GetCheck for
possible values of check.

See also TCheckBox::GetCheck

SetState
void Se!State(uint state);
Sets the check, focus, and highlight state of the check box.

See also TCheckBox::GetState

SetStyle
void SetStyle(uint style, bool redraw);
Changes the style of the check box.

Toggle
void Toggle();
Toggles the check box between checked and unchecked if it is a two-state check box;
toggles it between checked, unchecked, and gray if it is a three-state check box.

84 ObjectWindows Reference Guide

See also TCheckBox::SetCheck

Transfer
uint Transfer(void* buffer, TTransferDirection direction);

TCheckBox class

Overrides TWindow::Transfer. Transfers the check state of the check box to or from buffer,
using the values specified in the table in GetCheck. If direction is tdGetDate, the check box
state is transferred into the buffer. If direction is tdSetData, the check box state is changed
to the settings in the transfer buffer.

Transfer returns the size of the transfer data in bytes. To get the size without actually
transferring the check box, use tdSizeData as the direction argument.

Uncheck
void Uncheck();
Forces the check box to be unchecked by calling SetCheck with a value of
BF _UNCHECKED. Notifies the associated group box, if there is one, that the state has
changed.

See also TCheckBox::Check, TCheckBox::SetCheck, TCheckBox::Toggle

Protected member functions
BNClicked
void BNClicked();
Responds to notification message BN_CLICKED, indicating that the user clicked the
check box. If Group isn't 0, BNClicked calls the group box's SelectionChanged member
function to notify the group box that the state has changed.

See also TGroupBox::SelectionChanged

EvGetDlgCode
uint EvGetDlgCode(MSG far'* msg);
Overrides TButton 's response to the WM_ GETDLGCODE message, an input procedure
associated with a control that is not a check box, by calling DejaultProcessing. The msg
parameter indicates the kind of message, for example a control, command, or check box
message, sent to the dialog box manager.

EvGetDlgCode returns a code that indicates how the check box is to be treated.

See also TButton::EvGetDlgCode, TWindow::DefaultProcessing, DLGC_xxxx dialog
control message constants

GetClassName
char far'* GetClassName();
If BWCC is enabled, TCheckBox returns CHECK_ CLASS. If BWCC is not enabled,
returns "BUTTON."

Chapter 2, ObjectWindows library reference 85

TChooseColorDialog class

Response table entries

EV _NOTIFY_AT_CHILD (BN_CLICKED, BNClicked)

EV_ WM_GETDLGCODE

TChooseColorDialog class

BNClicked

EVGetDlgCode

chooseco.h

TChooseColorDialog objects represent modal dialog box interface elements that allow
color selection and custom color adjustment. TChooseColorDialog can be made to appear
modeless to the user by creating the dialog's parent as an invisible pop-up window and
making the pop-up window a child of the main application window.
TChooseColorDialog uses the TChooseColor::TData struct to initialize the dialog box with
the user's color selection.

Public constructors
Constructor
TChooseColorDialog(TWindow* parent, TData& data, TResld templatelD = 0, cons! char far* title = 0,

TModule* module= O);
Constructs a dialog box with specified parent window, data, resource identifier,
window caption, and module ID. Sets the attributes of the dialog box based on info in
the TChooseColor::TData structure.

See also TChooseColorDialog::TData

Public member function
SetRGBColor
void SetRGBColor(TColor color);
Sets the current RGB color for the open dialog box by sending a SetRGBMsgld. You can
use SetRGBColor to send a message to change the current color selection.

Public data members
cc
CHOOSECOLOR cc;
Stores the length of the TChooseColorDialog structure, the window that owns the dialog
box, and the data block that contains the dialog template. It also points to an array of 16
RGB values for the custom color boxes in the dialog box, and specifies the dialog-box
initialization flags.

See also TChooseColorDialog::TData

Data
TData& Data;

86 ObjectWindows Reference Guide

TChooseColorDialog::TData class

Data is a reference to the TData object passed in the constructor.

See also TChooseColorDialog::TData

SetRGBMsgld
static uint SetRGBMsgld;
Contains the ID of the registered message sent by SetRGBColor.

Protected member functions
Dialog Function
bool DialogFunction(uint message, WPARAM, LPARAM);
Returns true if a message is handled.

See also TDialog::DialogFunction

Do Execute
int DoExecute();
If no error occurs, DoExecute copies flags and colors into Data and returns zero. If an
error occurs, Do Execute returns the IDCANCEL with Data.Error set to the value returned
from CommDlgExtendedError.

EvSetRGBColor
LPARAM EvSetRGBColor(WPARAM, LPARAM);
Responds to the message sent by SetRGBColor by forwarding the to the original class.
This event handler is not in the response table.

Response table entries
The TChooseColorDialog response table has no entries.

TChooseColorDialog::TData class chooseco.h

Defines information necessary to initialize the dialog box with the user's color selection.

Public data members
Color
TColor Color;
Specifies the color thatis initially selected when the dialog box is created. Contains the
user's color selection when the dialog box is closed.

CustColors
TColor* CustColors;
Points to an array of 16 colors.

Error
uint32 Error;

Chapter 2, ObjectWindows library reference 87

TChooseFontDialog class

If the dialog box is successfully executed, Error is 0. Otherwise, it contains one of the
following codes:

CDERR_DIALOGFAILURE
CDERR_FINDRESFAILURE

CDERR_LOADRESFAILURE
CDERR_LOCKRESOURCEFAILURE
CDERR_LOADSTRFAILURE

Flags
uint32 Flags;

Failed to create a dialog box.

Failed to find a specified resource.

Failed to load a specified resource.

Failed to lock a specified resource.

Failed to load a specified string.

Flags can be a combination of the following values that control the appearance and
functionality of the dialog box:

CC_FULLOPEN
CC_PREVEN1FULLOPEN
CC_RGBINIT

CC_SHOWHELP

Causes the entire dialog box to appear when the dialog box is created.

Disables the "Define Custom Colors" push button.

Causes the dialog box to use the color specified in rgbResult as the initial
color selection.

Causes the dialog box to show the Help push button.

See also TChooseColorDialog::Data

TChooseFontDialog class choosefo.h

A TChooseFontDialog represents modal dialog-box interface elements that create a
system-defined dialog box from which the user can select a font, a font style (such as
bold or italic), a point size, an effect (such as strikeout or underline), and a color.
TChooseFontDialog can be made to appear modeless by creating the dialog's parent as an
invisible pop-up window and making the pop-up window a child of the main
application window. TChooseFontDialog uses the TChooseFontDialog::TData structure to
initialize the dialog box with the user-selected font styles.

Public constructor
Constructor
TChooseFontDialog(TWindow* parent, TData& data, TReslD templatelD = 0, const char far* title = 0,

TModule* module= O);
Constructs a dialog box with specified data, parent window, resource identifier,
window caption, and module ID. Sets the attributes of the dialog box based on the font
information in the TChooseFontDialog::TData structure.

See also TChooseFontDialog::TData

88 ObjectWindows Reference Guide

TChooseFontDialog::TData class

Protected data members
cf
CHOOSEFONT cf;
Contains font attributes. cf is initialized using fields in the TChooseFontDialog::TData
structure. It stores the length of the structure, the window that owns the dialog box and
the data block that contains the dialog template. It also specifies the dialog-box
initialization flags.

See also TChooseFontDialog::TData

Data
TData& Data;
Data is a reference to the TData object passed in the constructor.

See also TChooseFontDialog::TData

Protected member functions
CmFontApply
void CmFontApply();
Default handler for the third pushbutton (the Apply button) in the dialog box.

DialogFunction
bool DialogFunction(uint message, WPARAM, LPARAM);
Returns true if a dialog box message is handled.

See also TDialog::DialogFunction

Do Execute
int DoExecute();
H no error occurs, DoExecute copies the flag values and font information into Ddata, and
returns IDOK or IOCANCEL. Han error occurs, DoExecute returns an error code from
TChooseFontDialog::TData structure's Error data member .

. See also TChooseFontDialog::TData

Response table entries
The TChooseFontDialog response table contains no entries.

TChoosefontDialog::TData class choosefo.h

Defines information necessary to initialize the dialog box with the user's font selection.

Chapter 2, ObjectWindows library reference 89

TChooseFontDialog::TData class

Public data members
Color
TColor Color;
Indicates the font color that is initially selected when the dialog box is created; contains
the user's fontcolor selection when the dialog box is closed.

DC
HDCDC;
Handle to the device context from which fonts are obtained.

Error
uint32 Error;
If the dialog box is successfully executed, Error returns 0. Otherwise, it contains one of
the following codes:

CDERR_DIALOGFAILURE

CDERR_FINDRESFAILURE

CDERR_LOCKRESOURCEFAILURE

CDERR_LOADRESFAILURE

CDERR_LOADSTRFAILURE

CFERR_MAXLESSTHANMIN

CFERR_NOFONTS

Failed to create a dialog box.

Failed to find a specified resource.

Failed to lock a specified resource.

Failed to load a specified resource.

Failed to load a specified string.

The size specified in SizeMax is less than the size in SizeMin.
No fonts exist.

Flags
uint32 Flags;
Flags can be a combination of the following constants that control the appearance and
functionality of the dialog box:

CF_APPLY

CF_ANSIONLY

CF_BOTII

CF_EFFECTS

CF _FIXEDPITCHONL Y

Enables the display and use of the Apply button.

Specifies that the ChooseFontDialog structure allows only the selection of
fonts that use the ANSI character set.

Causes the dialog box to list both the available printer and screen fonts.

Enables strikeout, underline, and color effects.

Enables fixed-pitch fonts only.

CF _FORCEFONTEXIST Indicates an error if the user selects a nonexistent font or style.

CF _INITTOLOGFONTSTRUCT Uses the LOGFONT structure at which I.ogFont points to initialize the
dialog controls.

CF _LIMITSIZE
CF_NOSIMULATIONS

CF _PRINTERFO:NTS

CF _SCALABLEONL Y

CF _SCREENFONTS

CF_SHOWHELP

90 ObjectWindows Reference Guide

Limits font selection to those between SizeMin and SizeMax.
Does not allow GDI font simulations.

Causes the dialog box to list only the fonts supported by the printer
that is associated with the device context.

Allows only the selection of scalable fonts.

Causes the dialog box to list only the system-supported screen fonts.

Causes the dialog box to show the Help button.

Constant
CF_TTONLY

CF_USESTYLE

CF_WYSIWYG

FontType
uint16 Fon!Type;
Font type or name.

Log Font
LOGFONT LogFont;
Attributes of the font.

PointSize
int PointSize;
Point size of the font.

Size Max
int SizeMax;
Maximum size of the font.

Size Min
int SizeMin;
Minimum size of the font.

TClientDC Class

Meaning
Enumerates and allows the selection of True Type® fonts only.

Specifies that Style points to a buffer containing the style attributes used
to initialize the selection of font styles.

Allows only the selection of fonts available on both the printer and the
screen.

See also TChooseFontDialog::Data

Style
char far* Style;
Style of the font such as bold, italic, underline, or strikeout.

TClientDC Class
A DC class derived from TWindowDC, TClientDC provides access to the client area
owned by a window.

See also
TOleClientDC

Public constructors
Constructor
TClientDC(HWND wnd);

dc.h

Creates a TClientDC object with the given owned window. The data member Wnd is set
to wnd.

C h a pt e r 2 , 0 b j e c I W i n d o w s I i b r a r y r e f e r e n c e 91

TClipboard class

See also TWindowDC::Wnd, TDC::TDC

TClipboard class clipboar.h

TClipboard encapsulates and manipulates clipboard data. You can open, close, empty,
and paste data in a variety of data formats between the Clipboard and the open
window. An object on the clipboard can exist in a variety of clipboard formats, which
range from bitmaps to text.

Usually, the window is in charge of manipulating clipboard interactions between the
window and the clipboard. It does this by responding to messages sent between the
clipboard owner and the application. The following ObjectWindows event-handling
functions encapsulate these clipboard messages:

EvRenderFonnat-Responds to a WM_RENDERFORMAT message sent to the clipboard
owner if a specific clipboard format that an application has requested hasn't been
rendered. After the clipboard owner renders the data in the requested format, it calls
SetClipboardData to place the data on the clipboard.

EvR,enderAllFonnats-Responds to a message sent to the clipboard owner if the
clipboard owner has delayed rendering a clipboard format. After the clipboard owner
renders data in all of possible formats, it calls SetClipboardData.

The following example tests to see if there is a palette on the clipboard. If one exists,
TClipboard retrieves the palette, realizes it, and then closes the clipboard.

if (clipboard.IsClipboardFormatAvailable(CF_PALETTE)) {
newPal =new TPalette(TPalette(clipboard)); II make a copy
UpdatePalette(true);

II TryDIB format first.

if (clipboard.IsClipboardFormatAvailable(CF_DIB))
newDib =new TDib(TDib(clipboard)); II make a copy
newBitmap =new TBitmap(*newDib, newPal); II newPal==O is OK

II try metafile 2nd
II
} else if (clipboard.IsClipboardFormatAvailable(CF_METAFILEPICT))

if (!newPal)
newPal =new TPalette·((HPALETTE)GetStockObject(DEFAULT_PALETTE));

newBitmap =new TBitmap(TMetaFilePict(clipboard), *newPal,
GetClientRect() .Size());

II Gets a bitmap, keeps it, and sets up data on the clipboard.

II
delete Bitmap;
Bitmap = newBitmap;

if (!newDib)
newDib =new TDib(*newBitmap, newPal);

#endif

92 ObjectWindows Reference Guide

delete Dib;
Dib = newDib;

delete Palette;
Palette = newPal ? newPal : new TPalette(*newDib);
Palette->GetObject(Colors);

PixelWidth = Dib->Width();
PixelHeight = Dib->Height();
AdjustScroller();
SetCaption(" (Clipboard)");

clipboard.CloseClipboard(I;

Public destructor
Destructor
N TClipboard();
Destroys the TClipboard object.

Public data members
DefaultProtocol
static cons! char* DefaultProtocol;

TClipboard class

Points to a string that specifies the name of the protocol the client needs. The default
protocol is "StdFileEditing," which is the name of the object linking and embedding
protocol.

See also TClipboard::QueryCreate

Public member functions
CloseClipboard
void CloseClipboard()
If the Clipboard is closed (IsOpen is false), closes the Clipboard. Closing the Clipboard
allows other applications to access the Clipboard.

See also TClipboard::OpenClipboard

CountClipboardFormats
int CountClipboardFormats() const;
Returns a count of the number of types of data formats the Clipboard can use.

See also TClipboard::RegisterClipboardFormat

EmptyClipboard
bool EmptyClipboard();
Clears the Clipboard and frees any handles to the Clipboard's data. Returns true if the
Clipboard is empty, or false if an error occurs.

Chapter 2, Objec!Windows library reference 93

TClipboard class

GetClipboard
static TClipboard& Ge!Clipboard()
Returns a reference to the TClipboard object.

GetClipboardData
HANDLE GetClipboardData(uint format) cons!;
Retrieves data from the Clipboard in the format specified by format. The following
formats are supported:

CF_BI1MAP

CF_DIB

CF_DIF

CF _DSPMETAFILEPICT

CF_DSPTEXT

CF_METAFILEPICT

CF_OEMTEXT

CF _OWNERDISPLAT

CF_FALETTE

CF_FENDATA

CF_RIFF

CF_SYLK

CF_TEXT

CF_TIFF

CF_WAVE

Data is in a bitmap format.

Data is memory.

Data is in a Data Interchange Format (DIF).

Data is in a metafile format.

Data is in a text format.

Data is in a metafile structure.

Data is an array of text characters in OEM character set.

Data is in a special format that the application must display.

Data is in a color palette format.

Data is used for pen format.

Data is in Resource Interchange File Format (RIFF).

Data is in symbolic Link format (SYLK).

Data is stored as an array of text characters.

Data is in Tag Image File Format (TIFF).

Data is in a sound wave format.

See also TClipboard::SetClipboardData

GetClipboardFormatName
int GetClipboardFormatName(uint format, char far* formatName, int max:Count) cons!;
Retrieves the name of the registered format specified by format and copies the format to
the buffer pointed to by formatName. maxCount specifies the maximum length of the
name of the format. If the name is longer than maxCount, it is truncated.

See also TClipboard::CountClipboardFormats

GetClipboardOwner
HWND Ge!ClipboardOwner() cons!;
Retrieves the handle of the window that currently owns the Clipboard, otherwise
returns NULL.

GetClipboardViewer
HWND GetClipboardViewer() const;
Retrieves the handle of the first window in the Clipboard-view chain. Returns NULL if
there is no viewer.

See also TClipboard::SetClipboardViewer

94 ObjectWindows Reference Guide

TClipboard class

GetOpenClipboardWindow
HWND GetOpenClipboardWindow() const;
Retrieves the handle of the window that currently has the Clipboard open. If the
Clipboard is not open, the return value is false. Once the Clipboard is opened,
applications cannot modify the data.

GetPriorityClipboardFormat
int GetPriorityClipboardFormat(uint FAR • prioritylist, int count) const;
Returns the first Clipboard format in a list. priority List points to an array that contains a
list of the Clipboard formats arranged in order of priority. See GetClipboardData for the
clipboard formats.

See also TClipboard::GetClipboardData

lsClipboardFormatAvailable
bool lsClipboardFormatAvailable(uint format) const;
Indicates if the format specified in format exists for use in the Clipboard. See
GetClipBoardData for a description of clipboard data formats.

The following code tests if the clipboard can support the specified formats:

void
TBmpViewWindow::CePaste(TCommandEnabler& ce)
{

TClipboard& clipboard = OpenClipboard();
ce.Enable(

clipboard && (
clipboard.IsClipboardFormatAvailable(CF_METAFILEPICT) I I
clipboard.IsClipboardFormatAvailable(CF_DIB) I I
clipboard.IsClipboardFormatAvailable(CF_BITMAP)

) ;

clipboard.CloseClipboard();

See also TClipboard::GetClipboardData

Open Clipboard
HWND GetOpenClipboardWindow() const;
Retrieves the handle of the window that currently has the Clipboard open. If the
Clipboard is not open, the return value is false. Once the Clipboard is opened,
applications cannot modify the data.

See also TClipboard::CloseClipboard

boo I
operator bool() const;
Checks handle. Should use IsOk instead.

QueryCreate
bool QueryCreate(const char far• protocol= DefaultProtocol, OLEOPT_RENDER renderopt = olerender_draw,

OLECLIPFORMAT format= O);
QueryCreate determines if the object on the Clipboard supports the specified protocol
and rendering options. DefaultProtocol points to a string specifying the name of the

Ch apter 2, 0 b j e ct Windows I i bra r y reference 95

TClipboard class

protocol the client application needs to use. renderopt specifies the client application's
display and printing preference for the Clipboard object. renderopt is set to
olerender _draw, which tells the client library to obtain and manage the data presentation.
format specifies the Clipboard format the client application requests. The macros
_OLE_H or _INC_ OLE must be defined before this function can be used.

See also TClipboard::QueryLink

QueryLink
bool Querylink(const char far* protocol = DefaultProtocol, OLEOPT _RENDER renderopt = olerender _draw,

OLECLIPFORMAT format= O);
QueryLink determines if a client application can use the Clipboard data to produce a
linked object that uses the specified protocol and rendering options. See
TClipboard::QueryCreate for a description of the parameters. The macros _OLE_H or
INC OLE must be defined before this function can be used.

See also TClipboard::QueryCreate

RegisterClipboardFormat
uint RegisterClipboardFormat(const char far* formatName) const;
Registers a new Clipboard format. formatName points to a character string that identifies
the new format. If the format can be registered, the return value indicates the registered
format. If the format can't be registered, the return value is 0. Once the format is
registered, it can be used as a valid format in which to render the data.

See also TClipboard::CountClipboardFormats, TClipboard::GetClipboardFormatName

SetClipboardData
HANDLE SetClipboardData(uint format, HANDLE handle);
Sets a handle to the block of data at the location indicated by handle. format specifies the
format of the data block. The clipboard must have been opened before the data handle is
set. format can be any one of the valid clipboard formats (for example, CF _BITMAP or
CF _DIB). See GetClipboardData for a list of these formats. handle is a handle to the
memory location where the data data is stored. If successful, the return value is a handle
to the data; if an error occurs, the return value is 0. Before the window is updated with
the clipboard data, the clipboard must be closed.

See also TClipboard::GetClipboardData

SetClipboardViewer
HWND SetClipboardViewer(HWND Wnd) const;
Adds the window specified by Wnd to the chain of windows that
WM_DRA WCLIPBOARD notifies whenever the contents of the Clipboard change.

See also TClipboard::GetClipboardViewer

Protected data members
lsOpen
bool lsOpen;
Returns true if the Clipboard is open.

96 ObjectWindows Reference Guide

TheClipboard
static TClipboard TheClipboard;
Holds the current clipboard.

Protected constructor
Protected constructor
TClipboard();
Constructs a TClipboard object.

TClipboardViewer Class

TClipboardViewer Class

clipview.h

TClipboardViewer is a mix-in class that registers a TClipboardViewer as a Clipboard viewer
when the user interface element is created, and removes itself from the Clipboard­
viewer chain when it is destroyed.

Protected data member
HWndNext
HWND HWndNext;
Specifies the next window in the Clipboard-viewer chain.

Protected constructors
Constructors

Form 1 TClipboardViewer();
Constructs a TClipboardViewer object.

Form 2 TClipboardViewer(HWND hWnd, TModule* module= O);
Constructs a TClipboardViewer object with a handle (h Wnd) to the windows that will
receive notification when the Clipboard's contents are changed.

Protected member functions
DoChangeCBChain
TEventStatus DoChangeCBChain(HWND hWndRemoved, HWND hWndNext);
Tests to see if the Clipboard has changed and, if so, DoChangeCBChain forwards this
message.

Do Destroy
TEventStatus DoDestroy();
Removes the window from the Clipboard-viewer chain.

DoDrawClipboard
TEventStatus DoDrawClipboard();
Handles EvDrawClipboard messages.

Chapter 2, ObjectWindows library reference 97

TColor Class

EvChangeCBChain
void EvChangeCBChain(HWND hWndRemoved, HWND hWndNext);
Responds to a WM_ CHANGECBCHAIN message. h WndRemoved is a handle to the
window that's being removed. hWndNext is the window following the removed
window.

Ev Destroy
void EvDestroy();
Responds to a WM_DESTROY message when a window is removed from the
Clipboard-viewer chain.

EvDrawClipboard
void EvDrawClipboard();
Responds to a WM_DRA WCLIPBOARD message sent to the window in the Clipboard­
viewer chain when the contents of the Clipboard change.

Setup Window
void SetupWindow();
Adds a window to the Clipboard-viewer chain.

See also TWindow::Setup Window

Response table entries

EV_\tVrvi_CHANGECBCHAIN

EV_ \tVrvi_ DESTROY

EV_ \tVrvi_DRA WCLIPBOARD

TColor Class

EvChangeCbChain

Ev Destroy

EvDrawClipBoard

color.h

TColor is a support class used in conjunction with the classes TPalette, TPaletteEntry,
TRgbQuad, and TRgbTriple to simplify all color operations. TColor has ten static data
members representing the standard RGB COLORREF values, from Black to White.
Constructors are provided to create TColor objects from COLORREF and RGB values,
palette indexes, palette entries, and RGBQUAD and RGBTRlPLE values.

See the entries for NBits and NColors for a description of TColor-related functions.

Public constructors
Constructors

Form 1 TColor();
The default constructor sets Value to 0.

Form 2 TColor(COLORREF value);
Creates a TColor object with Value set to the given value.

98 ObjectWindows Reference Guide

TColor Class

Form 3 TColor(long value);
Creates a TColor object with Value set to the value defined in COLORREF.

Form 4 TColor(int r, int g, int b);
Creates a TColor object with Value set to RGB(r,g,b).

Form 5 TColor(int r, int g, int b, int ij;
Creates a TColor object with Value set to RGB(r,g,b) with the flag byte formed from f

Form 6 TColor(int index);
Creates a TColor object with Value set to PALETTEINDEX(index).

Form 7 TColor(const PALETTEENTRY far& pe);
Creates a TColor object with Value set to

RGB(pe.peRed, pe.peGreen, pe.peBlue)

Form 8 TColor(const RGBQUAD far& q);
Creates a TColor object with Value set to

RGB(q.rgbRed, q.rgbGreen, q.rgbBlue)

Form 9 TColor(const RGBTRIPLE far& t);
Creates a TColor object with Value set to

RGB(t.rgbtRed, t.rgbtGreen, t.rgbtBlue)

See also COLORREF typedef, PALETIEENTRY struct, RGBQUAD struct, RGBTRlPLE
struct, TColor::Value

Public data members
Black
static const TColor Black;
The static TColor object with fixed Value set by RGB(O, 0, 0).

Gray
static const TColor Gray;
Contains the static TColor object with fixed Value set by RGB(128, 128, 128).

LtBlue
static const TColor UBlue;
Contains the static TColor object with the fixed Value set by RGB(O, 0, 255).

LtCyan
static const TColor UCyan;
Contains the static TColor object with the fixed Value set by RGB(O, 255, 255).

LtGray
static const TColor LtGray;
Contains the static TColor object with the fixed Value set by RGB(192, 192, 192).

LtGreen
static const TColor LtGreen;
Contains the static TColor object with the fixed Value set by RGB(O, 255, 0).

Chapter 2, ObjectWindows library reference 99

TColor Class

LtMagenta
static const TColor LtMagenta;
Contains the static TColorobject with the fixed Value set by RGB(255, 0, 255).

LtRed
static const TColor LtRed;
Contains the static TColor object with the fixed Value set by RGB(255, 0, O)~

Lt Yellow
static const TColor LtYellow;
Contains the static TColor object with the fixed Value set by RGB(255, 255, 0) .

. White
static const TColor White;
Contains the static TColor object with the fixed Value set by RGB(255, 255, 255).

Public member functions
Blue
uint8 Blue() const;
Returns the blue component of this color's Value.

See also TColor::Red, TColor::Green, COLORREF typedef

Flags
uintB Flags() const;
Returns the peFlags value of this object's Value.

See also TPaletteEntry

GetSysColor
static TColor GetSysColor(int uiElement);
(Presentation Manager only) Returns the color of the given uiElement.

Green
uintB Green() const;
Returns the green component of this color's Value.

See also TColor::Red, TColor::Blue, COLORREF typedef

operator==
bool operator ==(const TColor& clrVal);
Returns true if this color's Value equals clrValue; otherwise returns false.

See also TColor::Value

operator COLORREF()
operator COLORREF() const;
Type-conversion operator that returns Value.

See also TColor::Value

100 ObjectWindows Reference Guide

TColor Class

Index
int Index() canst;
Returns the index value corresponding to this color's Value by masking out the two
upper bytes. Used when color is a palette index value.

See also TColor::Value, COLORREF typedef

Pallndex
TColor Pallndex() canst;
Returns the palette index corresponding to this color's Value. The returned color has the
high-order byte set to 1.

See also TColor::Value, TColor::Index, COLORREF typedef

Pal Relative
TColor PalRelative() canst;
Returns the palette-relative RGB corresponding to this color's Value. The returned color
has the high-order byte set to 2.

See also TColor::Value, TColor::Rgb, COLORREF typedef

Red
uint8 Red() canst;
Returns the red component of this color's Value.

See also
TColor::Blue, TColor::Green

Rgb
TColor Rgb() canst;
Returns the explicit RGB color corresponding to this color's Value by masking out the
high-order byte.

See also TColor::Value, COLORREF typedef

SetSysColors
static bool SetSysColors(unsigned nelems, canst int uiElementlndicesa, canst TColor colors[]);
(Presentation Manager only) Sets groups of UI element colors. nelems indicates the
number of element colors to change (and the size of the array parameters,
uiElementindices indicates which elements to change, and colors indicates what color to
change the corresponding element to. Returns true if successful.

Protected data member
Value
COLORREF Value;
The color value of this TColor object. Value can have three different forms, depending on
the application:

• Explicit values for RGB (red, green, blue)

• An index into a logical color palette

C h a p t e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e f e r e n c e 101

TComboBox class

• A palette-relative RGB value

See also COLORREF typedef

TComboBox class combobox.h

You can use TComboBox to create a combo box or a combo box control in a parent
TWindow, or to facilitate communication between your application and the combo box
controls of TDialog. TComboBox objects inherit most of their behavior from TListBox. This
class is streamable.

There are three types of combo boxes: simple, drop down, and drop down list. These
types are governed by the style constants CBS_SIMPLE, CBS_DROPDOWN, and
CBS_DROPDOWNLIST. These constants, supplied to the constructor of a TComboBox,
indicate the type of combo box element to create.

Public constructors
Constructors

Form 1 TComboBox(TWindow* parent, int id, int x, int y, int w, int h, uint32 style, uint textlen, TModule* module = O);
Constructs a combo box object with the specified parent window (parent), control ID
(Id), position (x, y) relative to the origin of the parent window's client area, width (w),
height (h), style (style), and text length (textLen).

Invokes the TListBox constructor with similar parameters. Then sets Attr.Style as
follows: ·

Attr.Style = WS_CHILD I WS_VISIBLE I WS_GROUP I WS_TABSTOP I CBS_SORT I CBS_AUTOHSCROLL I
WS_VSCROLL I style;

One of the following combo box style constants n:mst be among the styles set in style:
CBS_SIMPLE, CBS_DROPDOWN, CBS_DROPDOWNLIST,
CBS_OWNERDRAWFIXED, or CBS...:.OWNERDRAWV ARIABLE.

Form 2 TComboBox(TWindow* parent, int Resourceld, uint textlen = 0, TModule* module = O);
Constructs a default combo box with the given parent window control ID text length.

See also TComboBox::GetTextLen, TListBox::TListBox

Public data member
TextLen
uint Textlen;
Contains the length of the text in the combo box's associated edit control.

Public member functions
Add String
virtual int AddString(const char far* string);

102 Objec!Windows Reference Guide

TComboBox class

Adds a string to an associated list part of a combo box. Returns the index of the string in
the list. The first entry is at index zero. Returns a negative value if an error occurs.

Clear
void Clear();
Clears the text of the associated edit control.

Clearlist
virtual void Clearlist();
Clears out all associated entries in the associated list.

DeleteString
virtual int DeleteString(int index);
Deletes the string at the passed index in the associated list part of a combo box. Returns
a count of the entries remaining in the list or a negative value if an error occurs.

Directorylist
virtual int Directorylist(uint attrs, const char far* fileSpec);
Fills the combo box with file names from a specified directory.

FindString
virtual int FindString(const char far* find, int indexStart) const;
Searches for a match beginning at the passed Index. If a match is not found after the last
string has been compared, the search continues from the beginning of the list until a
match is found or until the list has been completely traversed. Returns the index of the
first string in the associated list part of a combo box or a negative value if an error
occurs.

GetCount
virtual int GetCount() const;
Returns the number of entries in the associated list part of the combo box or a negative
value if an error occurs.

GetDroppedControlRect
void GetDroppedControlRect(TRect& Rect) const;
For combo boxes, gets the screen coordinates of the dropped down list box.

GetDroppedState
bool GetDroppedState() const;
For drop down combo boxes, determines if a list box is visible.

GetEditSel
int GetEditSel(int &startPos, int &endPos);
Returns the starting and ending positions of the text selected in the associated edit
control. Returns CB_ERR if the combo box has no edit control.

GetExtendedUI
bool GetExtendedUI() const;
Determines if the combo box has the extended user interface, which differs from the
default user interface in the following ways:

• Displays the list box if the user clicks the static text field.

Chapter 2, ObjectWindows library reference 103

TComboBox class

• Displays the list box if the user presses the Down key.

• Disables scrolling in ~e static text field if the item list is not visible.

Returns true if the combo box has the extended user interface; otherwise returns false.

See also TComboBox::SetExtendedUI

GetltemData
virtual uint32 GetltemData(int index) const;
Returns the 32-bit value associated with the combo box's item.

See also TListBox::GetltemData

GetltemHeight
int GetltemHeightOnt index) const;
Returns the height in pixels of the combo box's list items, If .an error occurs, returns a
negative value.

See also TComboBox::GetltemData, TListBox::GetltemData

GetSellndex
virtual int GetSellndex() const;
Returns the index of the list selection or a negative value if none exists.

GetString
virtual int GetString(char far* str, int index) const;
Retrieves the contents of the string at the position supplied in index and returns it in
string. GetString returns the string length or a negative value if an error occurs. The
buffer must be large enough for the string and the terminating zero.

See also TListBox::GetString

GetStringLen
virtual int GetStringlen(int index) const;
Returns the string length (excluding the terminating zero) of the item at the position
index supplied in index. Returns a negative value if an error occurs.

See also TListBox::GetStringLen

Get Text
int GetText(char far* str, int maxChars) const;
Retrieves the number of characters in the edit or static portion of the combo box.

GetTextLen
int GetTextlen() const;
Returns the text length (excluding the terminating zero) of the edit control or static
portion of the combo box.

Hidelist
void HideList();
Hides the drop down list of a drop down or drop down list combo box.

lnsertString
virtual int lnsertString(const char far* str, int index);

104 0 bj e ctWind ows R efe re n c e Guide

TComboBox class

Inserts a string in the associated list part of a combo box at the position supplied in
Index. Returns the index of the string in the list or a negative value if an error occurs.

See also TListBox::InsertString

SetEditSel
int SetEditSel(int startPos, int endPos);
Selects characters that are between startPos and endPos in the edit control of the combo
box. Returns CB_ERR if the combo box does not have an edit control.

SetExtendedUI
int SetExtendedUl(bool extended);
If the combo box has the extended user interface, sets the extended user interface.

See also TComboBox::GetExtendedUI

SetltemData
virtual int SetltemData(int index, uint32 data);
Sets the 32-bitvalue associated with the TComboBox's item. If an error occurs, returns a
negative value.

SetltemHeight
int SetltemHeight(int index, int height);
Sets the height of the list items or the edit control portion in a combo box. If the index or
height is invalid, returns a negative value.

See also TComboBox::GetitemHeight

SetSellndex
virtual int SetSellndex(int index);
Selects a string of characters in a combo box. index specifies the index of the string of
characters in the list box to select. If the index is 0, the first line in the list box is selected.
If the index is -1, the current selection is removed. If an error occurs, a negative value is
returned.

See also TComboBox::GetSelindex

SetSelString
virtual int SetSelString(const char far* findStr, int indexStart);
Selects a string of characters in the associated list box and sets the contents of the
associated edit control to the supplied string.

Set Text
void SetText(const char far* string);
Selects the first string in the associated list box that begins with the supplied string. If
there is no match, SetText sets the contents of the associated edit control to the supplied
string and selects it.

Showlist
Form 1 void ShowList();

Shows the list of a drop down or drop down list combo box.

Form 2 void ShowList(bool show);

Chapter 2, Objec!Windows library reference 105

TComboBoxData class

Shows or hides the drop down or drop down list combo box depending on the value of
show. If show is true, shows the list; if show is false, hides the list.

See also TComboBox::HideList

Transfer
uint Transfer(void* buffer, TTransferDirection direction);
Transfers the items and selection of the combo box to or from a transfer buffer if
tdSetData or tdGetData, respectively, is passed as the direction. buffer is expected to point
to a TComboBoxData structure. ·

Transfer returns the size of a pointer to a TComboBoxData. To retrieve the size without
transferring data, your application must pass tdSizeData as the direction.

You must use a pointer in your transfer buffer to these structures. You cannot embed
copies of the structures in your transfer buffer, and you cannot use these structures as
transfer buffers.

See also TComboBoxData, TWindow::Transfer, Window::SetupWindow

Protected member functions
GetClassName
virtual char far* GetClassName();
Returns the name of TComboBox's registration class, "ComboBox."

Setup Window
void SetupWindow();
Sets up the window and limits the amount of text the user can enter in the combo box's
edit control to the value of TextLen minus 1.

TComboBoxData class
An interface object that represents a transfer buffer for a TComboBox.

Public constructor and destructor
Constructor
TComboBoxData();

combobox.h

Constructs a TComboBoxData object, initializes Strings and ItemDatas to. empty arrays,
and initializes Selection and Sellndex to 0.

Destructor
~ TComboBoxData();
Deletes Strings, ItemDatas, and Selection.

106 ObjectWindows Reference Guide

TComboBoxData class

Public member functions
Add String
void AddString(const char *sir, bool isSelected =false);
Adds the specified string to the array of Strings. If IsSelected is true, AddString deletes
Selection and copies string into Selection.

AddStringltem
void AddStringltem(const char* sir, uint32 itemData, bool isSelected =false);
Calls AddltemData to add the item data to the ItemDatas array, and calls AddString to add
a string to the array of Strings.

Clear
void Clear();
Flushes the Strings and ItemDatas members. Resets the index and selected string values.

GelltemDatas
TDwordArray& GetltemDatas();
Returns the array of DWORDs to transfer to or from a combo box's associated list box.

GetSelCount
int GetSelCount() cons!;
Returns the number of items selected, either 0 or 1.

GetSelection
string& GetSelection();
Returns the currently selected string (the Selection data member) to transfer to or from a
combo box.

GetSellndex
int GetSellndex();
Returns the index (the Sellndex data member) of the selected item in the strings array.

GetSelString
void GetSelString(char far* buffer, int bufferSize) cons!;
Copies the selected string into a buffer of the specified size. bufferSize includes the
terminating 0.

GetSelStringlength
int GetSelStringlength() cons!;
Returns length of the currently selected string excluding the terminating 0.

GetStrings
TStringArray& GetStrings();
Returns the array of strings (the Strings data member) to transfer to or from a combo
box's associated list box.

ResetSelections
void ResetSelections();
Resets the index of the selected item and the currently selected string.

Chapter 2, ObjectWindows library reference 107

TCommandEnabler class

Select
void Select(int index);
Selects the item at the given index.

SelectString
void SelectString(const char far* sir);
Selects the selection string (str) andmakes the matching String entry (if one exists) as
selected.

Protected data members

ltemDatas
TDwordArray ltemDatas;
Array of DWORDs to transfer to or from a combo box's associated list box.

Selection
string Selection;
The currently selected string to transfer to or from a combo box.

Sellndex
int Sellndex;
Index of the selected item in the strings array.

Strings
TStringArray Strings;
Array of class string to transfer to or from a combo box's associated list box.

TCommandEnabler class window.h

An abstract base class used for automatic enabling and disabling of commands,
TCommandEnabler is a class from which you can derive other classes, each one having its
own command enabler. For example, TButtonGadgetEnabler is a derived class that's a
command enabler for button gadgets, and TMenultemEnabler is a derived class that's a
command enabler for menu items. Although your derived classes are likely to use only
the functions Enable, SetCheck, a.nd GetHandled, all of TCommandEnabler's functions are
described so that you can better understand how ObjectWindows uses command
processing. The following paragraphs explain the dynamics of command processing.

Handling command messages
Commands are messages of the windows WM_ COMMAND type that have associated
command identifiers (for example, CM_FILEMENU). When the user selects an item
from a menu or a toolbar, when a control sends a notification message to its parent
window, or when an accelerator keystroke is translated, a WM_ COMMAND message is
sent to a window.

108 ObjectWindows Reference Guide

TCommandEnabler class

Responding to command messages
A command is handled differently depending on which type of command a window
receives. Menu items and accelerator commands are handled by adding a command
entry to a message response table using the EV_ COMMAND macro. The entry requires
two arguments:

• A command identifier (for example, CM_LISTUNDO)

• A member function (for example, CMEditUndo)

Child ID notifications, messages that a child window sends to its parent window, are
handling by using one of the notification macros defined in the header file windowev.h.

It is also possible to handle a child ID notification at the child window by adding an
entry to the child's message response table using the EV _NOTIFY_AT_CHILD macro.
This entry requires the following arguments:

• A notification message (for example, LBN_DBLCLK)

• A member function (for example, CmEdititem)

TWindow command processing
One of the classes designed to handle command processing, TWindow performs basic
command processing according to these steps:

1 The member function WindowProc calls the virtual member function EvCommand.

2 EvCommand checks to see if the window has requested handling the command by
looking up the command in the message response table.

3 If the window has requested handling the command identifier by using the
EV_ COMMAND macro, the command is dispatched.

TWindow also handles Child ID notifications at the child window level.

TFrameWindow command processing
TFrameWindow provides specialized command processing by overriding its member
function EvCommand and sending the command down the command chain (that is, the
chain of windows from the focus window back up to the frame itself, the original
receiver of the command message).

If no window in the command chain handles the command, TFrameWindow delegates
the command to the application object . Although this last step is theoretically
performed by the frame window, it is actually done by TWindow's member function,
DefaultProcessing.

Invoking EvCommand
When TFrameWindow sends a command down the command chain, it doesn't directly
dispatch the command; instead, it invokes the window's EvCommand member
function.This procedure gives the windows in the command chain the flexibility to
handle a command by overriding the member function EvCommand instead of being
limited to handling only the commands requested by the EV_ COMMAND macro.

Chapter 2, ObjectWindows library reference 109

TCommandEnabler class

Handling command enable messages
Most applications expend considerable energy updating menu items and tool bar
buttons to provide the necessary feedback indicating that a command has been enabled.
In order to simplify this procedure, ObjectWindows lets the event handler that's going
to handle the command make the decision about whether or not.to enable or disable a
command.

Although the WM_COMMAND_ENABLE message is sent down the same command
chain as the WM_ COMMAND event; exactly when the WM_COMMAND_ENABLE
message is sent depends on the type of command enabling that needs to be processed.

Command enabling for menu items
TFrameWindow performs this type of command enabling when it receives a
WM_INITMENUPOPUP message. It sends this message before a menu list appears.
ObjectWindows then identifies the menu commands using the command IDs and sends
requests for the commands to be enabled.

Note that because Object Windows actively maintains toolbars and menu items, any
changes made to the variables involved in the command enabling functions are
implemented dynamically and not just when a window is activated.

Command enabling for toolbar buttons
The type of command enabling is performed during idle processing (in the IdleAction
function). See the diagram following the description of TWindow::DefaultProcessing for a
graphical illustration of this process.

Creating specialized command enablers
Associated with the WM_COMMAND_ENABLE message is an object of the
TCommandEnabler type. This family of command enablers includes specialized
command enablers for menu items and toolbar buttons.

As you can see from TCommandEnable'sclass declaration, you can do considerably more
than simply enable or disable a command using the command enabler. For example,
you have the ability to change the text associated with the command as well as the state
of the command.

Using the EV_COMMAND_ENABLE macro
You can use the EV _COMMAND_ENABLE macro to handle
WM_COMMAND_ENABLE messages. Just as you do with the EV _COMMAND
macro, you specify the command identifier that you want to handle and the member
function you want to invoke to handle the message.

Automatically enabling and disabling commands
ObjectWindows simplifies enabling and disabling of commands by automatically
disabling commands for which there are no associated handlers. TFrameWindow's
member function EvCommandEnable performs this operation, which involves
completing a two pass algorithm.

110 0 bjectWi n d ows Reference Guide

TCommandEnabler class

1 The first pass sends a WM_COMMAND_ENABLE message down the command
chain giving each window an explicit opportunity to do the command enabling.

2 If no window handles the command enabling request, then ObjectWindows checks
to see whether any windows in the command chain are going to handle the
command through any associated EV _COMMAND entries in their response tables. If
there is a command handler in one of the response tables, then the command is
enabled; otherwise it is disabled.

Because of this implicit command enabling or disabling, you do not need to (and ·
actually should not) do explicit command enabling unless you want to change the
command text, change the command state, or conditionally enable or disable the
command.

If you handle commands indirectly by overriding the member function EvCommand
instead of using the EV_ COMMAND macro to add a response table entry, then
ObjectWindows will not be aware that you are handling the command. Consequently,
the command may be automatically disabled. Should this occur, the appropriate action
to take is to also override the member function EvCommandEnable and explicitly enable
the command.

Public constructor
Constructor
TCommandEnabler(uint id, HWND hWndReceiver = O);
Constructs the TCommandEnable object with the specified command ID. Sets the
message responder (h WndReceiver) to zero.

Type definitions

CheckState
enum CheckState{Unchecked, Checked, Indeterminate};
Enumerates the values for the check state of the command sender. This state applies to
buttons, such as those used for tool bars or to control bar gadgets.

Public data members
Id
cons! uint Id;
Command ID for the enabled command.

Public member functions

Enable
virtual void Enable(bool enable= true);
Enables or disables the command sender. When Enable is called, it sets the Handled flag.

Chapter 2, ObjectWindows library reference 111

TC o m m on D i a I o g c I as s.

GetHandled
bool GetHandled();
Returns Handled, a flag value that shows if this command enabler has been handled, in
which case Handled is true.

ls Receiver
bool lsReceiver(HWND hReceiver);
Returns true if receiver is the same as the message responder originally set up in the
constructor.

SetCheck
virtual void SetCheckOnt check) = O;
Changes the check state of the command sender to either unchecked, checked,. or
indeterminate. This state applies to buttons, such as those used for toolbars or to control
bar gadgets.

SetText
virtual void SetText(const char far* text) = O;
Changes the text associated with a command sender. This applies, for example, to text
associated with a menu item or text on a button.

Protected data members
Handled
bool Handled;
is true if the command enabler has been handled.

HWndReceiver
const HWND HWndReceiver;
The message responder (the window) that receives the command.

TCommonDialog class commdial.h

Derived from TDialog, TComnwnDialog is the abstract base class for TCommonDialog
objects. It provides the basic functionality for creating dialog boxes using the common
dialog DLL. The ObjectWindows classes that inherit this common dialog functionality
include

TChooseColorDialog-a modal dialog box that lets a user select colors for an application

TChooseFontDialog-a modal dialog box that lets a user select fonts for an application

TReplaceDialog-a modeless dialog box that lets a user specify a text selection to replace

TFindDialog-a modeless dialog box that lets a user specify a text selection to find

TFileOpenDialog-a modal dialog box that lets a user specify a file to open

TFileSaveDialog-a modal dialog box that lets a user specify a file to save

TPrintDialog-a modal dialog box that lets a user specify printer options

112 ObjectWindows Reference Guide

TCommonDialog class

Each common dialog class uses a nested class, TData, that stores the attributes and user­
specified data. For example, the TChooseColorDialog::TData class stores the color
attributes the user selects in response to a prompt in a common dialog box. In fact, to
create a common dialog box, you construct a TData object first, then fill in the data
members of the TData object before you even construct the common dialog box object.
Finally, you either execute a modal dialog box or create a modeless dialog box.

Public constructor

Constructor
TCommonDialog(TWindow* parent, cons! char far* title= 0, TModule* module= O);
Invokes a TWindow constructor, passing the parent window parent and constructs a
common dialog box which you can modify to suit your specifications. You can indicate
the module ID (title) and window caption (title), which otherwise default to 0.

Public member functions

DoCreate
HWND DoCreate();
Called by Create, DoCreate creates a modeless dialog box. It returns 0 if unsuccessful.

See also TDialog::Create

Do Execute
int DoExecute();
Called by Execute, DoExecute executes a modal dialog box. If the dialog box execution is
canceled or unsuccessful, DoExecute returns IDCANCEL.

See also TDialog::Execute

Protected data member

CDTitle
cons! char far* CDTitle;
CDTitle stores the optional caption displayed in the common dialog box.

See also TDialog::SetCaption

Protected member functions

Cm Help
void CmHelp();
Default handler for the pshHelp push button (the Help button in the dialog box).

CmOkCancel
void CmOkCancel();
Responds to a click on the dialog box's OK or Cancel button by calling DefaultProcessing
to let the common dialog DLL process the command.

Chapter 2, 0 bj ec!Wi n d ows Ii b rary reference 113

TCondFunc typedef·

See also TDialog::CmCancel, TDialog::CmOk

EvClose
void EvClose();
Responds to a WM_ CLOSE message by calling DejaultProcessing to let the common
dialog DLL process the .command.

See also TDialog::EvClose

SetupWindow
void SetupWindow();
Assigns the caption of the dialog box to CDTitle if CDTitle is nonzero.

See also TDialog::SetupWindow

Response table entries

EV _COMMAND(IOCANCEL, CmOkCancel) CmOkCancel

EV _COMMAND(IDOK, CmOkCancel) CmOkCancel

EV_WM_CLOSE EvClose

EV_WM_CTLCOLOR EvCtlColor

TCondFunc typedef window.h

typedef bool (*TCondFunc) {TWindow *win, void *param);
Defines a member function type used by TWindow's function FirstThat.

See also TWindow::FirstThat

TCondMemFunc typedef window.h

typedef bool {TWindow _ TCondMemFunc) (*win, void *param);
Defines a member function type used by TWindow's function FirstThat.

See also TWindow::FirstThat

114 ObjectWindows Reference Guide

TControlBar class

TControlBar class controlb.h

Derived from TGadgetWindow, TControlBar implements a control bar that provides
mnemonic access for its button gadgets. The sample MDIFILE.CPP ObjectWindows
program on your distribution disk displays the following example of a control bar.

Button gadgets Control bar

To construct, build, and insert a control bar into a frame window, you can first define
the following response table:

DEFINE_RESPONSE_TABLEl(TMDIFileApp, TApplication
EV_COMMAND(CM_FILENEW, CmFileNew),
EV_COMMAND(CM_FILEOPEN, CmFileOpen),
EV_COMMAND(CM_SAVESTATE, CmSaveState),
EV_COMMAND(CM_RESTORESTATE, CmRestoreState),

END_RESPONSE_TABLE;

Next, add statements that will construct a main window and load its menu, accelerator
table, and icon. Then, to construct, build and insert a control bar into the frame window,
insert these statements:

TControlBar* cb = new TControlBar(frame);
cb->Insert(*new TButtonGadget(CM_FILENEW, CM_FILENEW));
cb->Insert(*new TButtonGadget(CM_FILEOPEN, CM_FILEOPEN));
cb->Insert(*new TButtonGadget(CM_FILESAVE, CM_FILESAVE));
cb->Insert(*new TSeparatorGadget(6));
cb->Insert(*new TButtonGadget(CM_EDITCUT, CM_EDITCUT));
cb->Insert(*new TButtonGadget(CM_EDITCOPY, CM_EDITCOPY));
cb->Insert(*new TButtonGadget(CM_EDITPASTE, CM_EDITPASTE));
cb->Insert(*new TSeparatorGadget(6));
cb->Insert(*new TButtonGadget(CM_EDITUNDO, CM_EDITUNDO));
frame->Insert(*cb, TDecoratedFrame: :Top);

Public constructor

Constructor
TControlBar(TWindow* parent = 0, TiileDirection direction = Horizontal, TFont* font = new TGadgetWindowFont,

TModule* module= O);
Constructs a TControlBar interface object with the specified direction (either horizontal
or vertical) and window font.

Public member function

PreProcessMsg
bool PreProcessMsg(MSG& msg);

C h a pt e r 2 , 0 b j e c I W i n d ow s I i b r a r y r e f e r e n c e 115

TControlGadget class

Preprocesses messages. Because PreProcessMsg does not translate any accelerator keys
for TControlBar, it returns false.

Protected member function
PositionGadget
void PositionGadget(TGadget* previous, TGadget* next, TPoint& p);
Gets the border style, determines the direction of the gadget, and positions the button
gadget on either a horizontal or vertical border if any overlapping is required.

TControlGadget class controlg.h

TControlGadget serves as a surrogate for TControl so that you can place TControl objects
such as edit controls, buttons, sliders, gauges, or third-party controls, into a gadget
window. If necessary, TControlGadget sets a parent window and creates the control
gadget. See TGadget for more information about gadget objects.

Public constructor and destructor
Constructor
TControlGadget(TWindow& control, TBorderStyle = None);
Creates a TControlGadget object associated with the specified TControl window.

Destructor
N TControlGadget();
Destroys a TControlGadget object and removes it from the associated window.

Protected data member
Control
TWindow* Control;
Points to the control window that is managed by this TControlGadget.

Protected member functions
G~tDesiredSize
void GetDesiredSize(TSize& size);
Calls TGadget::GetDesiredSize and passes the size of the control gadget. Use
GetDesiredSize to find the size the.control gadget needs to be in order to accommodate
the borders and margins as well as the highest and widest control gadget.

See also TGadget::GetDesiredSize

GetlnnerRect
void GetlnnerRect(TRect&);
Computes the area of the control gadget's rectangle excluding the borders and margins.

116 0 b j e c I W i n d ow s R e f e re n c e G u i d e

TControl class

Inserted
void Inserted();
Called when the control gadget is inserted in the parent window. Displays the window
in its current size and position.

Invalidate
void lnvalidate(bool erase= true);
Used to invalidate the active (usually nonborder) portion of the control gadget,
Invalidate calls InvalidateRect and passes the boundary width and height of the area to
erase.

lnvalidateRect
void lnvalidateRect(const TRect&, bool erase= true);
Invalidates the control gadget rectangle in the parent window.

Removed
void Removed();
Called when the control gadget is removed from the parent window.

SetBounds
void SetBounds(TRect& reel);
Calls TGadget::SetBounds and passes the dimensions of the control gadget's rectangle.
SetBounds informs the control gadget of a change in its bounding rectangle.

See also TGadget::SetBounds

Update
void Update();
Updates the client area of the specified window by immediately sending a WM_P AINT
message.

Response table entries

The TControlGadget class has no response table entries.

TControl class control.h

TControl unifies its derived control classes, such as TScrollBar, TControlGadget, and
TButton. Control objects of derived classes are used to represent control interface
elements. A control object must be used to create a control in a parent TWindow or a
derived window. A control object can be used to facilitate communication between your
application and the controls of a TDialog. TControl is a streamable class.

Public constructors

Constructors
Form 1 TControl(TWindow* parent, int id, canst char far* title, int x, int y, int w, int h, TModule* module= O);

Chapter 2, 0 bj ectWi n d ows Ii brary reference 117

TControl class

Invokes TWindow's constructor, passing it parent (parent window), title (caption text),
and module. Sets the control attributes using the supplied library ID (Id), position (x, y)
relative to the origin of the parent window's client area, width (w), and height (h)
parameters. It sets the control style to WS_CHILD I WS_ VISIBLE I WS_GROUP I
WS_TABSTOP.

Form 2 TControl(TWindow* parent, int resourceld, TModule* module= O);
Constructs an object to be associated with an interface control of a TDialog. Invokes the
TWindow constructor then enables the data transfer mechanism by calling
EnableTransfer.

The resourceld parameter must correspond to a control interface resource that you
define.

See also TWindow::TWindow, TWindow::EnableTransfer

Protected member functions

Compareltem
virtual int Compareltem (COMPAREITEMSTRUCT far& comparelnfo);
Also used with owner-draw buttons and list boxes, Compareltem compares two items.
The derived class supplies the compare logic.

See also
COMPAREITEMSTRUCT struct

Deleteltem
virtual void Deleteltem (DELETEITEMSTRUCT far& deletelnfo);
Deleteltem is used with owner-draw buttons and list boxes. In such cases, the derived
class supplies the delete logic.

See also DELETEITEMSTRUCT struct

Drawltem
virtual void Drawllem(DRAWITEMSTRUCT far& drawlnfo);
Drawltem responds to a message forwarded to a drawable control by TWindow when the
control needs to be drawn. TControl::Drawitem calls ODADrawEntire if the entire control
needs to be drawn, calls ODASelect if the selection state of the control has changed, or
calls ODAFocus if the focus has been shifted to or from the control.

See also TControl::ODADrawEntire, TControl::ODASelect, TControl::ODAFocus,
DRA WITEMSTRUCT struct

EvCompareltem
LRESULT EvComparellem(uint ctrlld, COMPAREITEMSTRUCT far& comp);
Handles a WM_COMPAREITEM message for owner-draw controls.

See also COMPAREITEMSTRUCT struct

EvDeleteltem
void EvDeleteltem(uint ctrlld, DELETEITEMSTRUCT far& del);
Handles a WM_DELETEITEM message for owner-draw controls.

118 0 b j e ct Windows Reference Guide

See also DELETEITEMSTRUCT struct

EvDrawltem
void EvDrawltem(uint ctrlld, DRAWITEMSTRUCT far& draw);
Handles a WM_DRA WITEM message.

See also DRA WITEMSTRUCT struct

EvMeasu re Item·
void EvMeasureltem(uint ctrlld, MEASUREITEMSTRUCT far& meas);
Handles a WM_MEASUREITEM message.

See also MEASUREITEMSTRUCT struct

EvPaint
void EvPaint();

TControl class

If the control has a predefined class, EvPaint calls TWindow::DefaultProcesing for
painting. Otherwise, it calls TWindow::EvPaint.

See also TWindow::DefaultProcessing

Measureltem
virtual void Measureltem (MEASUREITEMSTRUCT far& measurelnfo);
Used by owner-drawn controls to set the dimensions of the specified item. For list boxes
and control boxes, this function applies to specific items; for other owner-drawn
controls, this function is used to set the total size of the control.

See also MEASUREITEMSTRUCT struct

ODADrawEntire
virtual void ODADrawEntire(DRAWITEMSTRUCT far& drawlnfo);
Responds to a notification message sent to a drawable control when the control needs to
be drawn. ODADrawEntire can be redefined by a drawable control to specify the
manner in which it is to be drawn.

See also TControl::Drawltem, DRA WITEMSTRUCT struct

ODAFocus
virtual void ODAFocus(DRAWITEMSTRUCT far& drawlnfo);
Responds to a notification sent to a drawable control when the focus has shifted to or
from the control. ODAFocus can be redefined by a drawable control to specify the
manner in which it is to be drawn when losing or gaining the focus.

See also TControl::Drawltem, DRA WITEMSTRUCT struct

ODASelect
virtual void ODASelect(DRAWITEMSTRUCT far& drawlnfo);
Responds to a notification sent to a drawable control when the selection state of the
control changes. ODASelect can be redefined by a drawable control to specify the
manner in which it is drawn when its selection state changes.

See also TControl::Drawltem, DRA WITEMSTRUCT struct

Chapter 2, Objec!Windows library reference 119

~TCreatedDC class

Response table entries

EV_WM_PAINT

EV _WM_COMPAREITEM

EV _WM_DELETEITEM

EV_WM_DRAWITEM

EV_ WM_MEASUREITEM

TCreatedDC class

Ev Paint

EvCompareltem

EvDeleteltem

Ev Draw Item

EvMeasureltem

An abstract TDC class, TCreatedDC serves as the base for DCs that are created and
deleted.

See TDC for more information about DC objects.

Public constructors and destructor
Constructors

Form 1 TCreatedDC(const char far* driver, const char far* device, const char far* output,
const DEVMODE far* initData=O);

dc.h

Creates a DC object for the device specified by driver (driver name), device (device name),
and output (the name of the file or device [port] for the physical output medium). The
optional initData argument provides a DEVMODE structure containing device-specific
initialization data for this DC. initData must be 0 (the default) if the device is to use any
default initializations specified by the user.

Form 2 TCreatedDC(HDC handle 1AutoDelete autoDelete);
Creates a DC object using an existing DC.

Destructor
-TCreatedDC();
Calls RestoreObjects clears any nonzero OrgXXX data members. If ShouldDelete is true
the destructor deletes this DC.

See also enum TDC::TAutoDelete, TDC::RestoreObjects, TDC::ShouldDelete,
DEVMODE struct

Protected constructor
Constructor
TCreatedDC();
Creates a device context for the given device. DC objects can be constructed either by
borrowing an existing HDC handle or by supplying device and driver information.

120 0 b j e c I W i n d o w s R e f e re n c e G u i d e

TCursor class

TCursor class gdiobjec.h

TCursor, derived from TGdiBase, represents the GDI cursor object class. TCursor
constructors can create cursors from a resource or from explicit information. Because
cursors are not real GDI objects, the TCursor destructor overrides the base destructor,
~TGdiBase.

Public constructors and destructor
Constructors

Form 1 TCursor(HCURSOR handle, TAutoDelete autoDelete = NoAutoDelete);
Creates a TCursor object and sets the Handle data member to the given borrowed handle.
The ShouldDelete data member defaults to false, ensuring that the borrowed handle will
not be deleted when the C ++ object is destroyed.

Form 2 TCursor(HINSTANCE instance, const TCursor& cursor);
Creates a copy of the given cursor object. The 32-bit version (for compiling a Win32
application) uses Copyicon() and does a cast to get to HICON.

Form 3 TCursor(HINSTANCE instance, Resld resld);
Constructs a cursor object from the specified resource ID.

Form 4 TCursor(HINSTANCE instance, const TPoint& hotspot, const TSize& size, void far* andBits, void far* xorBits);
Constructs a TCursor object of the specified size at the specified point.

Form 5 TCursor(const void* resBits, uint32 resSize);
32 bit only. Constructs a TCursor object from the specified resource.

Form 6 TCursor(const ICONINFO* iconlnfo);
32 bit only. Creates a TCursor object from the specified ICONINFO structure
information.

Destructor
~TCursor();

Destroys a TCursor object.

See also ~ TGdiObject, TGdiObject::Handle, TGdiObject::ShouldDelete, TPoint, TSize,
ICONINFO struct

Public member function
Getlconlnfo
bool Getlconlnfo(ICONINFO* iconlnfo) const;
32-bit only. Retrieves information about this icon and copies it in the given ICONINFO
structure. Returns true if the call is successful; otherwise returns false.

See also ICONINFO struct

Chapter 2, ObjectWindows library reference 121

TDC class

Operators
operator HCURSOR()
operator HCURSOR() cons!;
An inline typecasting operator. Converts this cursor's Handle to type HCURSOR (the
data type representing the handle to a cursor resource).

operator==
bool operator ==(cons! TCursor& other) cons!;
Returns true if this cursor equals other; otherwise returns false.

TDC class dc.h

TDC is the root class for GDI DC wrappers. Each TDC object inherits a Handle from
TGdiBase and casts that handle to an HOC using the HOC operator. Win API functions
that take an HOC argument can therefore be called by a corresponding TDC member
function without this explicit handle argument.

DC objects can be created directly with TDC constructors, or via the constructors of
specialized subclasses (such as TWindowDC, TMemoryDC, TMetaFileDC, TDibDC, and
TPrintDC) to get specific behavior. DC objects can be constructed with an already
existing and borrowed HOC handle or from scratch by supplying device driver
information, as with ::CreateDC. The class TCreateDC takes over much of the creation
and deletion work from TDC.

TDC has four handles as protected data members: OrgBrush, OrgPen, OrgFont, and
OrgPalette. These handles keep track of the stock GDI objects selected into each DC. As
new GDI objects are selected with SelectObject or SelectPalette, these data members store
the previous objects. The latter can be restored individually with RestoreBrush,
RestorePen, and so on, or they can all be restored with RestoreObjects. When a TDC object
is destroyed (via -TDC::TDC), all the originally selected objects are restored. The data
member TDC::ShouldDelete controls the deletion of the TDC object.

Public constructor and destructor
Constructor
TDC(HDC handle);
Creates a DC object 'borrowing" the handle of an existing DC. The Handle data member
is set to the given handle argument.

Destructor
virtual N TDC();
Calls RestoreObjects.

See also TCreatedDC, TDC::RestoreObjects, TDC::ShouldDelete

122 ObjectWindows Reference Guide

TDC class

Public member functions

AngleArc
bool AngleArc(int x, int y, uint32 radius, float startAngle, float sweepAngle);
bool AngleArc(const TPoint& center, uint32 radius, float startAngle, float sweepAngle);
32-bit only. Draws a line segment and an arc on this DC using the currently selected pen
object. The line is drawn from the current position to the beginning of the arc. The arc is
that part of the circle (with the center at logical coordinates (x, y) and positive radius,
radius) starting at startAngle and ending at (startAngle + sweepAngle). Both angles are
measured in degrees, counterclockwise from the x-axis (the default arc direction). The
arc might appear to be elliptical, depending on the current transformation and mapping
mode. AngleArc returns true if the figure is drawn successfully; otherwise, it returns
false. If successful, the current position is moved to the end point of the arc.

See also TDC::Arc, TPoint class

Arc
bool Arc(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4);
bool Arc(const TRect& r, canst TPoint& start, canst TPoint& end);
Draws an elliptical arc on this DC using the currently selected pen object. The center of
the arc is the center of the bounding rectangle, specified either by (xl, yl)/(x2, y2) or by
the rectangle r. The starting/ending points of the arc are specified either by (x3, y3)/(x4,
y4) or by the points start and end. All points are specified in logical coordinates. Arc
returns true if the arc is drawn successfully; otherwise, it returns false. The current
position is neither used nor altered by this call. The drawing direction default is
counterclockwise.

See also TDC::AngleArc, TPoint, TRect

Begin Path
bool BeginPath();
32-bit only. Opens a new path bracket for this DC and discards any previous paths from
this DC. Once a path bracket is open, an application can start calling draw functions on
this DC to define the points that lie within that path. The draw functions that define
points in a path are the following TDC members: AngleArc, Arc, Chord, CloseFigure,
Ellipse, ExtTextOut, LineTo, MoveToEx, Pie, PolyBezier, PolyBezierTo, Poly Draw, Polygon,
Polyline, PolylineTo, PolyPolygon, PolyPolyline, Rectangle, RoundRect, and TextOut.

A path bracket can be closed by calling TDC::EndPath.

BeginPath returns true if the call is successful; otherwise, it returns false.

See also TDC::FillPath, TDC::EndPath, TDC::PathToRegion, TDC::StrokePath,
TDC::StrokeandFillPath, TDC::WidenPath

BitBlt
bool BitBlt(int dstX, int dstY, int w, int h, canst TDC& srcDC, int srcX, int srcY, uint32 rop=SRCCOPY);
bool BitBlt(const TRect& dst, canst TDC& srcDC, canst TPoint& src, uint32 rop=SRCCOPY);
Performs a bit-block transfer from srcDc (the given source DC) to this DC (the
destination DC). Color bits are copied from a source rectangle to a destination rectangle.
The location of the source rectangle is specified either by its upper left-comer logical
coordinates (srcX, srcY), or by the TPoint object, src. The destination rectangle can be

C h a pt e r 2 , 0 b j e c I W i n d ow s I i b r a r y r e f e r e n c e 123

TDC class

specified either by its upper left-corner logical coordinates (dstX, dstY), width w, and
height h, or by the TRect object, dst. The destination rectangle has~ same width and
height as the source. The rap argument specifies the raster operation used to combine
the color data for each pixeL See TDC::MaskBlt for a detailed list ofrop codes.

When recording an enhanced metafile, an error occurs if the source DC identifies the
enhanced metafile DC.

See also TPoint class, TRect class

Chord
bool Chord(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4);
bool Chord(const TRect& r, cons! TPoint& start, cons! TPoint& end);
Draws and fills a chord (a region bounded by the intersection of an ellipse and a line
segment) on this DC using the currently selected pen and brush objects. The ellipse is
specified by a bounding rectangle given either by (xl, y1)/(x2, y2) or by the rectangle R.
The starting/ ending points of the chord are specified either by (x3, y3) I (x4, y4) or by the
points Start and End. Chord returns true if the call is successful; otherwise, it returns
false. The current position is neither used nor altered by this call. ,.

See also TDC::Arc, TPoint class, TRect class

CloseFigure
bool CloseFigure();
32-bit only. Closes an open figure in this DC's open path bracket by drawing a line from
the current position to the first point of the figure (usually the point specified by the
most recent TDC::MoveTo call), and connecting the lines using the current join style for
this DC. If you close a figure with TDC::LineTo instead of with CloseFigure, end caps
(instead of a join) are used to create the corner. The call fails if there is no open path
bracket on this DC. Any line or curve added to the path after a CloseFigure call starts a
new figure. A figure in a path remains open until it is explicitly closed with CloseFigure
even if its current position and start point happen to coincide.

CloseFigure returns true if the call is successful; otherwise, it returns false.

See also TDC::BeginPath, TDC::EndPath

DPtoLP
bool DPtoLP(TPoint* points, int count = 1) cons!;
Converts each of the count points in the points array from device points to logical points.
The conversion depends on this DC's current mapping mode and the settings of its
window and viewport origins and extents. DPtoLP returns true if the call is successful;
otherwise, it returns false.

See also TDC::LPtoDP, TPoint class

DrawFocusRect
bool DrawFocusRect(int x1 , int x2, int y1 , int y2);
bool DrawFocusRect(const TRect& reel);
Draws the given rectangle on this DC in the style used to indicate focus. Calling the
function a second time with the same rect argument will remove the rectangle from the
display. A rectangle drawn with DrawFocusRect cannot be scolled. DrawFocusRect
returns true if the call is successful; otherwise, ifreturns false.

124 0 b j e ct Windows Re I ere n c e Guide

TDC class

See also TRect class

Drawlcon
bool Drawlcon(int x, int y, cons! Tlcon& icon);
bool Drawlcon(const TPoint& point, cons! Tlcon& icon);
Draws the given icon on this DC. The upper left comer of the drawn icon can be
specified by x- and y-coordinates or by the point argument. Drawlcon returns true if the
call is successful; otherwise, it returns false.

See also Tlcon class

Draw Text
virtual bool DrawText(const char far* string, int count, cons! TRect& r, uint16 format= O);
Formats and draws in the given rectangle, r, up to count characters of the null­
terminated string using the current font for this DC. If count is -1, the whole string is
written. The rectangle must be specified in logical units. Formatting is controlled with
the format argument, which can be various combinations of the following values:

DT_BOTIOM

DT_CALCRECT

DT_CENTER

DT_EXP ANDTABS

DT_EXTERNALLEADING

DT_LEFT

DT_NOCLIP

DT_NOPREFIX

DT_RIGHT

DT_SINGLELINE

DT_TABSTOP

DT_TOP

DT_VCENTER

DT_WORDBREAK

Specifies bottom-justified text. This value must be combined (bitwise OR'd)
with DT_SINGLELINE.

Determines the width and height of the rectangle. If there are multiple lines
of text, DrawText uses the width of r (the rectangle argument) and extends
the base of the rectangle to bound the last line of text. If there is only one line
of text, DrawText uses a modified value for the right side of r so that it
bounds the last character in the line. In both cases, DrawText returns the
height of the formatted text but does not draw the text.

Centers text horizontally.

Expands tab characters. The default number of characters per tab is eight.

Includes the font external leading in line height. Normally, external leading
is not included in the height of a line of text.

Aligns text flush-left.

Draws without clipping. DrawText is somewhat faster when DT_NOCLIP is
used.

Tums off processing of prefix characters. Normally, DrawText interprets the
prefix character & as a directive to underscore the character that follows, and
the prefix characters && as a directive to print a single &. By specifying
DT_NOPREFIX, this processing is turned off.

Aligns text flush-right.

Specifies single line only. Carriage returns and linefeeds do not break the
line.

Sets tab stops. Bits 15-8 (the high-order byte of the low-order word) of the
format argument are the number of characters for each tab. The default
number of characters per tab is eight.

Specifies top-justified text (single line only).

Specifies vertically centered text (single line only).

Specifies word breaking. Lines are automatically broken between words if a
word would extend past the edge of the rectangle specified by r. A carriage
return/line sequence will also break the line.

Note that the DT_CALCRECT, DT_EXTERNALLEADING, DT_INTERNAL,
DT_NOCLIP, and DT_NOPREFIX values cannot be used with the DT_TABSTOP value.

C h a pt e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e I e r e n c e 125

TDC class

DrawText uses this DC's currently selected font, text color, and background color to
draw the text. Unless the DT_NOCLIP format is used, DrawText dips the text so that it
does not appear outside the given rectangle. All formatting is assumed to have multiple
lines unless the DT_SINGLELINE format is given.

If the selected font is too large for the specified rectangle, DrawText does not attempt to
substitute a smaller font.

If successful, DrawText returns true; otherwise, returns false.

See also TDC::GrayString, TDC::TabbedTextOut, TDC::TextOut, TRect class

Ellipse
bool Ellipse(int x1, int y1, int x2, int y2);
bool Ellipse(const TPoint& p1, const TPoint& p2);
bool Ellipse(const TPoint& point, const TSize& size);
bool Ellipse(const TRect& rect);
Draws and fills an ellipse on this DC using the currently selected pen and brush objects.
The center of the ellipse is the center of the bounding rectangle specified either by (xl,
yl)/(x2, y2) or by the rect argument. Ellipse returns true if the call is successful;
otherwise, it returns false. The current position is neither used nor altered by this call.

See also TDC::Arc, TPoint class, TRect class, TSize class

End Path
bool EndPath();
32-bit only. Closes the path bracket and selects the path it defines into this DC. Returns
true if the call is successful; otherwise, returns false.

See also TDC::BeginPath, TDC::CloseFigure

EnumFontFamilies
int EnumFontFamilies(const char far* family, FONTENUMPROC proc, void far* data) const;
Enumerates the fonts available to this DC in the font family specified by family. The
given application-defined callback proc is called for each font in the family or until proc
returns 0, and is defined as

typedef int (CALLBACK* FONTENUMPROC) (CONST LOGFONT *, CONST TEXTMETRIC *, DWORD, LPARAM);

data lets you pass both application-specific data and font data to proc. If successful, the
call returns the last value returned by proc.

See also TDC::EnumFonts, LOGFONT struct, TEXTMETRIC struct

EnumFonts
int EnumFonts(const char far* faceName, OLDFONTENUMPROC callback, void far* data) const;
Enumerates the fonts available on this DC for the given faceName. The font type,
LOGFONT, and TEXTMETRIC data retrieved for each available font is passed to the
user-defined callback function together with any optional, user-supplied data placed in
the data buffer. The callback function can process this data in any way desired.
Enumeration continues until there are no more fonts or until the callback function
returns 0. If faceName is 0, Enumfonts randomly selects and enumerates one font of each
available typeface. EnumFonts returns the last value returned by the callback function.
Note that OLDFONTENUMPROC is defined as FONTENUMPROC for Win32 only.

126 0 b j e ct W i n d o w s R e f e r e n c e G u i d e

TDC class

FONTENUMPROC is a pointer to a user-defined function and has the following
prototype:

int CALLBACK EnurnFontsProc(LOGFONT *lplf, TEXTMETRIC *lptrn, uint32 dwType, LPARAM lpData);

where dwType specifies one of the following font types: DEVICE_FONTTYPE,
RASTER_FONTTYPE, or TRUETYPE_FONTTYPE.

See also TDC::EnumFontFamilies, LOGFONT struct, TEXTMETRlC struct

EnumMetaFile
int EnumMetaFile(const TMetaFilePict& metaFile, MFENUMPROC callback, void* data) cons!;
Enumerates the GDI calls within the given metaFile. Each such call is retrieved and
passed to the given callback function, together with any client data from data, until all
calls have been processed or a callback function returns 0. MFENUMPROC is defined as

typedef int (CALLBACK* MFENUMPROC) (HDC, HANDLETABLE FAR*, METARECORD FAR*, int, LPARAM);

See also TDC::PlayMetaFile, MET ARECORD struct

EnumObjects
int EnumObjects(uint objec!Type, GOBJENUMPROC proc, void far* data) cons!;
Enumerates the pen or brush objects available for this DC. The parameter objectType can
be either OBJ_ BRUSH or OBJ_PEN. For each pen or brush found, proc, a user-defined
callback function, is called until there are no more objects found or the callback function
returns 0. proc is defined as

typedef int (CALLBACK* GOBJENUMPROC) (LPVOID, LPARAM);

Parameter data specifies an application-defined value that is passed to proc.

ExcludeClipRect
int ExcludeClipRect(const TRect& reel);
Creates a new clipping region for this DC. This new region consists of the current
clipping region minus the given rectangle, rect. The return value indicates the new
clipping region's type as follows:

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Clipping Region has overlapping borders.

Invalid DC.

Clipping region is empty.

Clipping region has no overlapping borders.

See also TDC::GetClipBox, TRect class

ExcludeUpdateRgn
int ExcludeUpdateRgn(HWND wnd);

C h a p I e r 2 , 0 b j e c I W i n d o w s I i b r a r y r e f e r e n c e 127

TDC class

· Prevents drawing vrithin invalid areas of a window by excluding an updated region of
this DC's window from its clipping region. The return value indicates the resulting
clipping region's type as follows:

COMPLEXREGION
ERROR
NULLREGION
SIMPLEREGION

ExtFloodFill

Clipping Region has overlapping borders.

Invalid DC.

Clipping region is empty.

Clipping region has no overlapping borders.

· bool ExtFloodFill(cbnst TPoint& point, TColor color, uint16 fillType);
Fills an area on this DC starting at point and using the currently selected brush object.
The color argument specifies the color of the boundary or of the region to be filled. The
fillType argument specifies the type of fill, as follows:

FLOODFILLBORDER The fill region is bounded by the given color. This style coincides with the filling
method used by FloodFill.

FLOODFILLSURF ACE The fill region is defined by the given color. Filling continues outward in all
directions as long as this color is encountered. Use this style when filling
regions with multicolored borders.

Not every device supports ExtFloodFill, so applications should test first with
TDC::GetDeviceCaps.

ExtFloodFill returns true if the call is successful; otherwise, it returns false.

See also TOC::Flood.Fill, TOC::GetDeviceCaps, TColor class, TPoint class

ExtTextOut
virtual bool ExtT extOutOnt x, int y, uint16 options, const TRect* r, cons! char far* string, int count, const

int far* dx = 0);
bool ExtTextOut(const TPoint& p, uint16 options, const TRect* r, const char far* string, int count, const

int far*.dx = O);

Draws up to count characters of the given null-terminated string in the current font on
this DC. If count is -1, the whole string is written.

An optional rectangle r can be specified for clipping, opaquing, or both, as determined
by the options value. If options is set toETO_CLIPPED, the rectangle is used for clipping
the drawn text. Ifoptions is set to ETO~OPAQUE, the current background color is used
to fill the rectangle. Both options can be used if ETO_CLIPPED is OR'd with
ETO_OPAQUE. .

The (x, y) o rp arguments specify the. logical coordinates of the reference point that is
used to align the first character. The current text-alignment mode can be inspected vrith
TDC::GetTextAlign and changed vrith TDC::SetTextAlign. By default, the current position
is neither used nor altered by ExtTextOut. However, if the align mode is set to
TA_UPDATECP, ExtTextOut ignores the reference point argument(s) and uses or
updates the current position as the reference point.

128 ObjectWindows Reference Guide

TDC class

The dx argument is an optional array of values used to set the distances between the
origins (upper left comers) of adjacent character cells. For example, dx[i] represents the
number of logical units separating the origins of character cells i and i+ 1. If dx is 0,
ExtTextOut uses the default inter-character spacings.

ExtTextOut returns true if the call is successful; otherwise, it returns false.

See also TDC::TextOut, TDC::GetTextAlign, TDC::TabbedTextOut, TPoint, TRect

Fill Path
bool FillPath();
32-bit only. Closes any open figures in the current pcun of this DC and fills the path's
interior using the current brush and polygon fill mode. After filling the interior, FillPath
discards the path from this DC.

FillPath returns true if the call is successful; otherwise, it returns false.

See also TDC::BeginPath, TDC::CloseFigure, TDC::StrokePath,
TDC::StrokeAndFillPath, TDC::SetPolyFillMode

FillRect
bool FillRect(int x1, int y1, int x2, int y2, const TBrush& brush);
bool FillRect(const TRect& rect, const TBrush& brush);
Fills the given rectangle on this DC using the specified brush. The fill covers the left and
top borders but excludes the right and bottom borders. FillRect returns true if the call is
successful; otherwise, it returns false.

See also TBrush, TRect

FillRgn
bool FillRgn(const TRegion& region, const TBrush& brush);
Fills the given region on this DC using the specified brush. FillRgn returns true if the call
is successful; otherwise, it returns false.

See also TDC::InvertRgn, TDC::PaintRgn, TBrush class, TRegion class

Flatten Path
bool FlattenPath();
32-bit only. Transforms any curves in the currently selected path of this DC. All such
curves are changed to sequences of linear segments. Returns true if the call is successful;
otherwise, returns false.

See also TDC::WidenPath, TDC::BeginPath

Flood Fill
bool FloodFill(const TPoint& point, TColor color);
Fills an area on this DC starting at point and using the currently selected brush object.
The color argument specifies the color of the boundary or of the area to be filled. Returns
true if the call is successful; otherwise, returns false. FloodFill is maintained in the WIN32
API for compatibility with earlier APis. New WIN32 applications should use
TDC::ExtFloodFill. ·

See also TDC::ExtFloodFill, TColor, TPoint

Chapter 2, ObjectWindows library reference 129

TDC class ,

FrameRect
bool FrameRect(int x1, int x2, int y1, int y2, const TBrush& brush);
bool FrameRect(const TRect& rect, const TBrush& brush);
Draws a border on this DC around the given rectangle, rect, using the given brush,
brush. The height and width of the border is one logical unit. Returns true if the call is
successful; otherwise, it returns false.

See also TBrush class, TRect class

FrameRgn
bool FrameRgn(<:onst TRegion& region, const TBrush& brush, const TPoint& p);
Draws a border on this DC around the given region, region, using the given brush, brush.
The width and height of the border is specified by the p argument. Returns true if the
call is successful; otherwise, returns false.

See also TBrush class, TRegion class

GetAspectRatioFilter
bool GetAspectRatioFilter(TSize& size) const;
Retrieves the setting of the current aspect-ratio filter for this DC.

See also TSize

GetBkColor
TColor GetBkColor() const;
Returns the current background color of this DC.

See also TDC::SetBkColor, TColor class

GetBkMode
int GeiBkMode() const;
Returns the background mode of this DC, either OPAQUE or TRANSPARENT.

See also TDC::SetBkMode

GetBoundsRect
bool GetBoundsRect(TRect& bounds, uint16 flags) cons!;
Reports in bounds the current accumulated bounding rectangle of this DC or of the
Windows manager, depending on the value of flags. Returns true if the call is successful;
otherwise, returns false.

The flags argument can be OCB_RESET or DCB_ WINDOWMGR or both. The flags value
work as follows:

DCB_RESET Forces the bounding rectangle to be cleared after being set in bounds.
DCB_ WINDOWMGR Reports the Windows current bounding rectangle rather than that of this DC.

There are two bounding-rectangle accumulations, one for Windows and orie for the
application. GetBoundsRect returns screen coordinates for the Windows bounds, and
logical units for the application bounds. The Windows accumulated bounds can be
queried by an application but not altered. The application can both query and alter the
DC's accumulated bounds.

130 ObjectWindows Reference Guide

TDC class

See also TDC::SetBoundsRect, TRect class

GetBrushOrg
bool GetBrushOrg(TPoint& point) const;
Places in point the current brush origin of this DC. Returns true if successful; otherwise,
returns false.

See also TPoint class

GetCharABCWidths
bool GetCharABCWidths(uint firstChar, uint lastChar, ABC* abc);
Retrieves the widths of consecutive characters in the range firstChar to lastChar from the
current TrueType font of this DC. The widths are reported in the array abc of ABC
structures. Returns true if the call is successful; otherwise, returns false.

See also TDC::GetCharWidth, ABC struct

GetCharWidth
bool GetCharWidth(uint firstChar, uint lastChar, int* buffer);
Retrieves the widths in logical units for a consecutive sequence of characters in the
current font for this DC. The sequence is specified by the inclusive range, firstChar to
lastChar, and the widths are copied to the given buffer. If a character in the range is not
represented in the current font, the width of the default character is assigned. Returns
true if the call is successful; otherwise, returns false.

See also TDC::GetCharABCWidths

GetClipBox
int GetClipBox(TRect& rect) const;
TRect GetClipBox() const;
Places the current clip box size of this DC in rect. The clip box is defined as the smallest
rectangle bounding the current clipping boundary. The return value indicates the
clipping region's type as follows:

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Clipping Region has overlapping borders.

Invalid DC.

Clipping region is empty.

Clipping region has no overlapping borders.

See also TDC::ExcludeClipRect, TRect class

GetClipRgn
bool GetClipRgn(TRegion& region) const;
Retrieves this DC's current clip-region and, if successful, places a copy of it in the region
argument. You can alter this copy without affecting the current clip-region. Returns true
if the call is successful; otherwise, returns false.

See also TRegion

GetCurrentObject
HANDLE GetCurrentObject(uint objectType) const;

Chapter 2, ObjectWindows library reference 131

TDC class

Returns a handle to the currently selected object of the given objectType associated with
this DC. Returns 0 if the call fails. objectType can be OBJ_ PEN, OBJ_ BRUSH, OBJ_P AL,
OBJ_FONT, or OBJ_BITMAP.

GetCurrentPosition
bool GetCurrentPosition(TPoint& point) const;
Reports in point the logical coordinates of this DC's current position. Returns true if the
call is successful; otherwise, returns false.

·see also TPoint class

GetDCOrg
bool GetDCOrg(TPoint& point) const;
Obtains the final translation origin for this device context and places the value in point.
This value specifies the offset used to translate device coordinates to client coordinates
for points in an application window. Returns true if the call is successful; otherwise,
returns false. ,

See also TPoint class

GetDeviceCaps
virtual int GetDeviceCaps{int index) const;
Used under WIN3.l or later, GetDeviceCaps returns capability information about this
DC. The index argument specifies the type of information required.

GetDIBits
bool GetDIBits{const TBitmap& bitmap, uint16 startScan, uint16 numScans, void HUGE* bits,

const BITMAPINFO far& info, uint16 usage);
bool GetDIBits{const TBnmap& bitmap, TDib& dib);
The first version retrieves some or all of the bits from the given bitmap on this DC and
copies them to the bits buffer using the DIB (device-independent bitmap) format
specified by the BITMAPINFO argument, info. numScan scanlines of the bitmap are
retrieved, starting at .scan line start Scan. The usage argument determines the format of
the bmiColors member of the BITMAPINFO structure, according to the following table:

DIB_PAL_COWRS

DIB_RGB_COLORS

DIB_PAL_INDICES

The color table is an array of 16-bit indexes into the current logical palette.

The color table contains literal RGB values.

There is no color table for this bitmap. The DIB bits consist of indexes into the
system palette. No color translation occurs. Only the BITMAPINFOHEADER
portion of BITMAPINFO is filled in.

In the second version of GetDIBits, the bits are retrieved from bitmap and placed in the
dib.Bits data member of the given TDib argument. The BITMAPINFO argument is
supplied from dib.info.

GetDIBits returns true if the call is successful; otherwise, it returns false.

See also TDC::SetDIBits, TBitmap, TDib, BITMAPINFO struct

GetFontData
uint32 GetFontData{uint32 table, uint32 offset, void* buffer, long data);

132 ObjectWindows Reference Guide

TDC class

Retrieves font-metric information from a scalable TrueType font file (specified by table
and starting at offset into this table) and places it in the given buffer. data specifies the size
in bytes of the data to be retrieved. If the call is successful, it returns the number of bytes
setinbuffer;othen-vise,-lisreturned.

GetGlyphOutline
uint32 GetGlyphOutline (uint chr, uint format, GL YPHMETRICS far& gm, uint32 buffSize, voidfar* buffer,

cons! MAT2 far& mat2);
Retrieves TrueType metric and other data for the given character, chr, on this DC and
places it in gm and buffer. The format argument specifies the format of the retrieved data
as indicated in the following table. (A value of 0 simply fills in the GLYPHMETRICS
structure but does not return glyph-outline data.)

:;va1~, ;'f:~e~~
1 Retrieves the glyph bitmap.

2 Retrieves the curve data points in the rasterizer's native format and uses the font's design units.
With this value of format, the mat2 transformation argument is ignored.

The gm argument specifies the GL YPHMETRICS structure that describes the placement
of the glyph in the character cell. buffSize specifies the size of buffer that receives data
about the outline character. If either buffSize or buffer is 0, GetGlyphOutline returns the
required buffer size. Applications can rotate characters retrieved in bitmap format
(format= 1) by specifying a 2 x 2 transformation matrix via the mat2 argument.

GetGlyphOutline returns a positive number if the call is successful; otherwise, it returns
GDI_ERROR.

See also TDC::GetOutlineTextMetrics, GL YPHMETRICS struct

GetKerningPairs
int GetKerningPairs(int pairs, KERNINGPAIR far* krnPair);
Retrieves kerning pairs for the current font of this DC up to the number specified in pairs
and copies them into the krnPair array of KERNINGP AIR structures. If successful, the
function returns the actual number of pairs retrieved. If the font has more than pairs
kerning pairs, the call fails and returns 0. The krnPair array must allow for at least pairs
KERNINGP AIR structures. If krnPair is set to 0, GetKerningPairs returns the total
number of kerning pairs for the current font.

See also KERNINGP AIR struct

GetMapMode
int GetMapMode() const;
If successful, returns the current window mapping mode of this DC; otherwise, returns
0. The mapping mode defines how logical coordinates are mapped to device

Ch apter 2 , 0 b j e ct Windows Ii bra r y re I ere n c e 133

TDC class

coordinates. It also controls the orientation of the device's x- and y-axes. The mode
values are shown in the following table:

MM_ ANISOTROPIC

MM_HIENGLISH

MM_HIMETRIC

MM_ISOTROPIC

MM_LOENGLISH

MM_LOMETRIC

MM_ TEXT

MM_TWIPS

Logical units are mapped to arbitrary units with arbitrarily scaled axes.
SetWindowExtEx and SetViewportExtEx must be used to specify the desired
units, orientation, and scaling.

Each logical unit is mapped to 0.001 inch. Positive x is to the right; positive y is at
the top.

Each logical unit is mapped to 0.01 millimeter. Positive xis to the right; positive y
is at the top.

Logical units are mapped to arbitrary units with equally scaled axes; that is, one
unit along the x-axis is equal to one unit along the y-axis. SetWindowExtEx and
Set ViewportExtEx must be used to specify the desired units and the orientation of
the axes. GDI makes adjustments as necessary to ensure that the x and y units
remain the same size (e.g., if you set the window extent, the viewport is adjusted
to keep the units isotropic).

Each logical unit is mapped to 0.01 inch. Positive xis to the right; positive y is at
the top.

Each logical unit is mapped to 0.1 millimeter. Positive xis to the right; positive y
is at the top.

Each logical unit is mapped to one device pixel. Positive x is to the right; positive
y is at the bottom.

Each logical unit is mapped to one twentieth of a printer's point (1/1440 inch).
Positive xis to the right; positive y is at the top.

See also TDC::SetMapMode

GetNearestColor
TColor GetNearestCalar(TCalor Color) const;
Returns the color nearest to the given Color argument for the current palette of this DC.

See also TColor

GetOutlineTextMetrics
uint32 GetOutlineTextMetrics(uint data, OUTLINETEXTMETRIC far& otm);
uint16 GetOutlineTextMetrics(uint data, OUTLINETEXTMETRIC far& otm);
Retrieves metric information for TrueType fonts on this DC and copies it to the given
array of OUTLINETEXTMETRlC structures, otm. This structure contains a
TEXTMETRlC and several other metric members, as well as four string-pointer
members for holding family, face, style, and full font names. Since memory must be
allocated for these variable-length strings in addition to the font metric data, you must
pass (with the data argument) the total number of bytes required for the retrieved data.
If GetOutlineTextMetrics is called with otm = 0, the function returns the total buffer size
required. You can then assign this value to data in subsequent calls.

Returns nonzero if the call is successful; otherwise, returns 0.

See also TDC::GetTextMetrics, OUTLINETEXTMETRlC struct, TEXTMETRlC struct

GetPixel
TCalor GetPixel(int x, int y) canst;
TColor GetPixel(const TPoint& point) canst;

134 0 b j e ct W i n d ow s R e I e r e n c e G u i d e

Returns the color of the pixel at the given location.

See also TDC::SetPixel, TPoint class

GetPolyFillMode
int GetPolyFillMode() cons!;

TDC class

Returns the current polygon-filling mode for this DC, either ALTERNATE or
WINDING.

See also TDC::SetPolyFillMode

GetROP2()
int GetROP2() cons!;
Returns the current drawing (raster operation) mode of this DC.

See also TDC::SetROP2

GetStretchBltMode
int GetStretchBl!Mode() cons!;
Returns the current stretching mode for this DC: BLACKONWHITE,
COLORONCOLOR, or WHITEONBLACK. The stretching mode determines how
bitmaps are stretched or compressed by the StretchBlt function.

See also TDC::SetStretchBltMode, TDC::StretchBlt

GetSystemPaletteEntries
uint GetSystemPaletteEntries(int start, int num, PALETIEENTRY far* entries) cons!;
Retrieves a range of up to num palette entries, starting at start, from the system palette to
the entries array of P ALETTEENTRY structures. Returns the actual number of entries
transferred.

See also P ALETTEENTRY struct

GetSystemPaletteUse
uinl GetSystemPaletteUse() cons!;
Determines whether this DC has access to the full system palette. Returns
SYSPAL_NOSTATIC or SYSPAL_STATIC.

See also TDC::SetSystemPaletteUse

GetTabbedTextExtent
bool Ge!TabbedTextExtent(const char far* string, int string Len, int numPositions, cons! int far* positions,

TSize& size) cons!;
TSize Ge!TabbedTextExtent(const char far* string, int stringlen, int numPositions, cons! int far* positions) cons!;
Computes the extent (width and height) in logical units of the text line consisting of
stringLen characters from the null-terminated string. The extent is calculated from the
metrics of the current font or this DC, but ignores the current clipping region. In the first
version of GetTabbedTextExtent, the extent is returned in size; in the second version, the
extent is the returned TSize object. Width is size.x and width is size.y.

The width calculation includes the spaces implied by any tab codes in the string. Such
tab codes are interpreted using the numPositions and positions arguments. The positions
array specifies numPositions tab stops given in device units. The tab stops must have
strictly increasing values in the array. If numPositions and positions are both 0, tabs are

C h a p t e r 2 , 0 b j e ct W i n d ow s I i b r a r y r e f e r e n c e 135

TDC class

expanded to eight times the average character width. If numPositions is 1, all tab stops
are taken to be positions[O] apart.

If kerning is being applied, the sum of the extents of the characters in a string might not
equal the extent of the string.

See also TDC::TabbedTextOut, TDC::GetTextExtent, TSize class

GetTextAlign
uint Ge!TextAlign() const;
If successful, returns the current text-alignment flags for this DC; otherwise, returns the
value GDI_ERROR. The text-alignment flags determine how TDC::TextOut and
TDC::ExtTextOut align text strings in relation to the first character's screen position.
GetTextAlign returns certain combinations of the flags listed in the following table:

TA_BASELINE

TA_BOTTOM

TA_TOP

TA_CENTER

TA_LEFT

TA_ RIGHT

TA_NOUPDATECP

TA~UPDATECP

The reference point will be on the baseline of the text.
The reference point will be on the bottom edge of the bounding rectangle.
The reference point will be on the top edge of the bounding rectangle.
The reference point will be aligned horizontally with the center of the bounding
rectangle.
The reference point will be on the left edge of the bounding rectangle.
The reference point will be on the right edge of the bounding rectangle.
The current position is not updated after each text output call.
The current position is updated after each text output call.
When the current font has a vertical default baseline (as with Kanji) the following
values replace TA_BASELINE and TA_ CENTER:

VTA_BASELINE The reference point will be on the baseline of the text.

VT A_ CENTER The reference point will be aligned vertically with the
center of the bounding rectangle.

The text-alignment flags are not necessarily single bit-flags and might be equal to 0. The
flags must be examined in groups of the following related flags:

• TA_LEFT, TA_RIGHT, and TA_ CENTER

• TA_BOTTOM, TA_TOP, and TA_BASELINE

• TA_NOUPDATECP and TA_UPDATECP

If the current font has a vertical default baseline (as with Kanji), these are groups of
related flags:

• TA_LEFT, TA_RIGHT, and VTA_BASELINE

• TA_BOTTOM, TA_TOP, and VTA_CENTER

• TA_NOUPDATECP and TA_UPDATECP

To verify that a particular flag is set in the return value of this function, the application
must perform the following steps:

1 Apply the bitwise OR operator to the flag and its related flags.

2 Apply the bitwise AND operator to the result and the return value.

136 ObjectWindows Reference Guide

TDC class

3 Test for the equality of this result and the flag.

The following example shows a method for determining which horizontal alignment
flag is set:

switch I (TA_LEFT TA_RIGHT I TA_CENTER) & dc.GetTextAlign(I I {
case TA_LEFT:

case TA_RIGHT:

case TA_CENTER:

See also TDC::SetTextAlign, TDC::TextOut, TDC::ExtTextOut

GetTextCharacterExtra
int Ge!TextCharacterExtra() cons!;
If successful, returns the current intercharacter spacing, in logical units, for this DC;
otherwise, returns INV AUD_ WIDTH.

See also TDC::SetTextCharacterExtra

GetTextColor
TColor Ge!TextColor() cons!;
Returns the current text color of this DC. The text color determines the color displayed
by TDC::TextOut and TDC::ExtTextOut.

See also TDC::SetTextColor, TDC::TextOut, TDC::ExtTextOut, TColor

GetTextExtent
bool Ge!TextExtent(const char far* string, int string Len, TSize& size);
TSize Ge!TextExtent(const char far* string, int string Len);
Computes the extent (width and height) in logical units of the text line consisting of
stringLen characters from the null-terminated string. The extent is calculated from the
metrics of the current font or this DC, but ignores the current clipping region. In the first
version of GetTextExtent the extent is returned in size; in the second version, the extent is
the returned TSize object. Width is size.x and height is size.y.

If kerning is being applied, the sum of the extents of the characters in a string might not
equal the extent of the string.

See also TSize class

GetTextFace
int Ge!TextFace(int count, char far* facename) cons!;
Retrieves the typeface name for the current font on this DC. Up to count characters of
this name are copied to facename. If successful, GetTextFace returns the number of
characters actually copied; otherwise, it returns 0.

See also TDC::GetTextAlign, TDC::GetTextMetrics

GetTextMetrics
bool Ge!TextMetrics(TEXTMETRIC far& metrics) cons!;

Chapter 2, 0 bj e ctWi ndows library reference 137

TDC class

Fills the metrics structure with metrics data for the current font on this DC. Returns true
if the call is successful; otherwise, returns false.

See also TEXTMETRIC struct

GetViewportExt
bool GetViewportExt(TSize& extent) const;
TSize GetViewportExt() const;
The first version retrieves this DC's current viewport's x- and y-extents (in device units)
and places the values in extent. This version returns true if the call is successful;
otherwise, it returns false. The second version returns only these x- and y-extents.

The extent value determines the amount of stretching or compression needed in the
logical coordinate system to fit the device coordinate system. extent also determines the
relative orientation of the two coordinate systems.

See also TDC::SetViewportExt, TSize class

GetViewportOrg
bool GetViewportOrg(TPoint& point) cons!;
TPoint GetViewportOrg() cons!;
The first version sets in the point argument the x- and y-extents (in device-units) of this
DC's viewport. It returns true if the call is successful; otherwise, it returns false. The
second version returns the x- and y-extents (in device-units) of this DC's viewport.

See also TDC::SetViewportOrg, TDC::OffsetViewportOrg, TPoint class

GetWindowExt
bool GetWindowExt(TSize& extent) const;
TSize GetWindowExt() const;
Retrieves this DC's window current x- and y-extents (in device units). The first version
places the values in extent and returns true if the call is successful; otherwise, it returns
false. The second version returns the current extent values. The extent value determines
the amount of stretching or compression needed in the logical coordinate system to fit
the device coordinate system. extent also determines the relative orientation of the two
coordinate systems.

See also TDC::SetWindowExt, TSize class

GetWindowOrg
bool GetWindowOrg(TPoint& point) cons!;
TPoint GetWindowOrg() cons!;
Places in point the x- and y-coordinates of the origin of the window associated with this
DC. Returns true if the call is successful; otherwise, returns false.

See also TDC::SetWindowOrg, TDC::OffsetWindowOrg, TPoint class

GrayString
virtual bool GrayString(const TBrush& brush, GRAYSTRINGPROC outputFunc, cons! char far* string, int count,

cons! TRect& r);
Draws in the given rectangle (r) up to count characters of gray text from string using the
given brush, brush, and the current font for this DC. If count is -1 and string is null­
terminated, the whole string is written. The rectangle must be specified in logical units.

138 0 b j e c I W i n d ow s R e f e re n c e G u i d e

TDC class

If brush is 0, the text is grayed with the same brush used to draw window text on this
DC. Gray text is primarily used to indicate disabled commands and menu items.

GrayString writes the selected text to a memory bitmap, grays the bitmap, then displays
the result. The graying is performed regardless of the current brush and background
color.

The outputFunc pointer to a function can specify the procedure instance of an
application-supplied drawing function and is defined as

typedef BOOL (CALLBACK* GRAYSTRINGPROC) (HDC, LPARAM, int);

If outputFunc is 0, GrayString uses TextOut and string is assumed to be a normal, null­
terminated character string. If string cannot be handled by TextOut (for example, the
string is stored as a bitmap), you must provide a suitable drawing function via
outputFunc.

If the device supports a solid gray color, it is possible to draw gray strings directly
without using GraySring. Call GetSysColor to find the color value; for example, G of
COLOR_GRA YTEXT. If G is nonzero (non-black), you can set the text color with
SetTextColor(G) and then use any convenient text-drawing function.

GrayString returns true if the call is successful; otherwise, it returns false. Failure can
result if TextOut or outputFunc return false, or if there is insufficient memory to create
the bitmap.

See also TDC::TextOut, TBrush class, TRect class

operator HOC()
operator HOC() const{return Handle;}
Typecasting operator. Converts a pointer to type HDC (the data type representing the
handle to a DC).

lntersectClipRect
int lntersectClipRect(const TRect& rect);
Creates a new clipping region for this DC's window by forming the intersection of the
current region with the rectangle specified by rect. The return value indicates the
resulting clipping region's type as follows:

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Clipping Region has overlapping borders.

Invalid DC.

Clipping region is empty.

Clipping region has no overlapping borders.

See also TDC::GetClipBox, TRect class

lnvertRect
bool lnvertRect(int x1, int x2, int y1, int y2);
bool lnvertRect(const TRect& rect);
Inverts the given rectangle, rect, on this DC. On monochrome displays, black and white
pixels are interchanged. On color displays, inversion depends on how the colors are

C h a pt e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e f e r e n c e 139

TDC class

generated for particular displays. Calling InvertRect an even number of times restores
the original colors. InvertRect returns true if the call is successful; otherwise, it returns
false.

See also TRect class

lnvertRgn
bool lnvertRgn(const TRegion& region);
Inverts the given region, on this DC. On monochrome displays, black and white pixels
are interchanged. On color displays, inversion depends on how the colors are generated
for particular displays. Calling InvertRegion an even number (n>=2) of times restores the
original colors. Returns true if the call is successful; otherwise, it returns false.

See also TDC::PaintRgn, TDC::FillRgn, TRegion class

Line To
bool LineTo(int x, int y);
bool LineTo(const TPoint& point);
Draws a line on this DC using the current pen object. The line is drawn from the current
position up to, but not including, the given end point, which is specified by (x, y) or by
point. If the call is successful, LineTo returns true and the current point is reset to point;
otherwise, it returns false.

See also TPoint

LPtoDP
bool LPtoDP(TPoint* points, int count= 1) canst;
Converts each of the count points in the points array from logical points to device points.
The conversion depends on this DC's current mapping mode and the settings of its
window and viewport origins and extents. Returns true if the call is successful;
otherwise, it returns false.

See also TDC::DPtoLP, TPoint

MaskBlt
bool MaskBlt(const TRect& dst, canst TDC& srcDC, canst TPoint& src, canst TBitmap& maskBm,

canst TPoint& maskPos, uint32 rop=SRCCOPY);
Copies a bitmap from the given source DC to this DC. MaskBlt combines the color data
from source and destination bitmaps using the given mask and raster operation. The
srcDC argument specifies the DC from which the source bitmap will be copied. The
destination bitmap is given by the rectangle, dst. The source bitmap has the same width
and height as dst. The src argument specifies the logical coordinates of the upper left
comer of the source bitmap. The maskBm argument specifies a monochrome mask
bitmap. An error will occur if maskBm is not monochrome. The maskPos argument gives
the upper left comer coordinates of the mask. The raster-operation code, rap, specifies
how the source, mask, and destination bitmaps combine to produce the new destination
bitmap. The raster-operation codes are as follows:

BLACKNESS

DSTINVERT

Fill dst with index-0 color of physical palette (default is black).

Invert dst.

140 Objec!Windows Reference Guide

Valueofrop
MERGECOPY

MERGEPAINT

NOTSRCCOPY

NOTSRCERASE

PATCOPY

PATINVERT

PATPAINT

SRCAND

SRCCOPY

SRCERASE

SRCPAINT

WHITENESS

TDC class

MeaiPng
Merge the colors of source with mask with Boolean AND.

Merge the colors of inverted-source with the colors of dst using Boolean OR.

Copy inverted-source to dst.

Combine the colors of source and dst using Boolean OR, then invert result.

Copy mask to dst.

Combine the colors of mask with the colors of dst using Boolean XOR.

Combine the colors of mask with the colors of inverted-source using Boolean
OR, then combine the result with the colors of dst using Boolean OR.

Combine the colors of source and dst using the Boolean AND.

Copy source directly to dst.

Combine the inverted colors of dst with the colors of source using Boolean AND.

Combine the colors of source and dst using Boolean OR.

Fill dst with index-1 color of physical palette (default is white).

If rap indicates an operation that excludes the source bitmap, the srcDC argument must
be 0. A value of 1 in the mask indicates that the destination and source pixel colors
should be combined using the high-order word of rap. A value of 0 in the mask indicates
that the destination and source pixel colors should be combined using the low-order
word of rap. If the mask rectangle is smaller than dst, the mask pattern will be suitably
duplicated.

When recording an enhanced metafile, an error occurs if the source DC identifies the
enhanced metafile DC.

If a rotation or shear transformation is in effect for the source DC when MaskBlt is called,
an error occurs. Other transformations are allowed. If necessary, MaskBlt will adjust the
destination and mask color formats to match that of the source bitmaps. Before using
MaskBlt, an application should call GetDeviceCaps to determine if the source and
destination DCs support MaskBlt.

MaskBlt returns true if the call is successful; otherwise, it returns false.

See also TDC::BitBlt, TDC::PlgBlt, TDC::GetDeviceCaps, TBitmap class, TPoint class,
TRectclass

ModifyWorldTransform
bool ModifyWorldTransform(XFORM far& xform, uint32 mode);
Changes the current world transformation for this DC using the given xform and mode
arguments. mode determines how the given XFORM structure is applied, as listed
below.

·value'
MWT_IDENTITY

· · .. Mea:ntrlg
Resets the current world transformation using the identity matrix. If this
mode is specified, the XFORM structure pointed to by lpXform is ignored.

Ch a pier 2, 0 bj e ctWi n d ows Ii b rary reference 141

TDC class

11VVT_LEFTJ\1ULTIPLY Multiplies the current transformation by the data in the XFORM structure.
(The data in the XFORM structure becomes the left multiplicand, and the
data for the current transformation becomes the right multiplicand.)

MWT_RIGHTMULTIPLY Multiplies the current transformation by the data in the XFORM structure.
(The data in the XFORM structure becomes the right multiplicand, and the
data for the current transformation becomes the left multiplicand.)
ModifyWorldTransform returns true if the call is successful; otherwise, it
returns false.

See also TDC::SetWorldTransform, XFORM struct

Move To
bool MoveTo(int x, int y);
bool MoveTo(const TPoint& point);
bool MoveTo(const TPoint& point, TPoint& oldPoint);
Moves the current position of this DC to the given x- and y-coordinates or to the given
point. The third version sets the previous current position in oldPoint. Returns true if the
call is successful; otherwise, returns false.

See also TPoint class

OffsetClipRgn
int OffsetClipRgn(const TPoint& delta);
Moves the clipping region of this DC by the x- and y-offsets specified in delta. The return
value indicates the resulting clipping region's type as follows:

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Clipping region has overlapping borders.

Invalid DC.

Clipping region is empty.

Clipping region has no overlapping borders.

See also TDC::GetClipBox, TPoint class

OffsetViewportOrg
virtual bool OffsetViewportOrg(const TPoint& delta, TPoint* oldOrg = O);
Modifies this DC's viewport origin relative to the current values. The delta x- and y­
components are added to the previous origin and the resulting point becomes the new
viewport origin. The previous origin is saved in oldOrg. Returns true if the call is
successful; otherwise, returns false.

See also TDC::SetViewportOrg, TDC::GetViewportOrg, TPoint class

OffsetWindowOrg
bool OffsetWindowOrg(const TPoint& delta, TPoint* oldOrg = O);
Modifies this DC's window origin relative to the current values. The delta x- and y­
components are added to the previous origin and the resulting point becomes the new
window origin. The previous origin is saved in oldOrg. Returns true if the call is
successful; otherwise, returns false.

142 ObjectWindows Reference Guide

See also TDC::GetWindowOrg, TDC::SetWindowOrg, TPoint class

OWLFastWindowFrame
void OWLFastWindowFrame(TBrush& brush, TRect& reel, int xWidth, int yWidth)

TDC class

Draws a frame of the specified size and thickness with the given brush. The old brush is
restored after completion.

See also TBrush, TRect

PaintRgn
bool Pain!Rgn(const TRegion& region);
Paints (fills) the given region on this DC using the currently selected brush. Returns true
if the call is successful; otherwise, returns, false.

See also TDC::FillRgn, TDC::SelectObject, TRegion class

PatBlt
bool Pa!Blt(int x, int y, int w, int h, uint32 rop=PATCOPY);
bool PatBlt(constTRect& dst, uint32 rop=PATCOPY);
Paints the given rectangle using the currently selected brush for this DC. The rectangle
can be specified by its upper left coordinates (x, y), width w, and height h, or by a single
TRect argument. The raster-operation code, rap, determines how the brush and surface
color(s) are combined, as explained in the following table:

PATCOPY
PATINVERT
DSTINVERT
BLACKNESS

WHITENESS

Copies pattern to destination bitmap.

Combines destination bitmap with pattern using the Boolean OR operator.

Inverts the destination bitmap.

Tums all output to binary Os.

Tums all output to binary ls.

The allowed values of rap for this function are a limited subset of the full 256 ternary
raster-operation codes; in particular, an operation code that refers to a source cannot be
used with PatBlt.

Not all devices support the PatBlt function, so applications should call
TDC::GetDeviceCaps to check the features supported by this DC.

PatBlt returns true if the call is successful; otherwise, returns false.

See also TDC::GetDeviceCaps, TRect class

PathToRegion
HRGN PathToRegion();
If successful, returns a region created from the closed path in this DC; otherwise, returns
0.

Pie
bool Pie(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4);
bool Pie(const TRect& reel, canst TPoint& start, canst TPoint& end);
Using the currently selected pen and brush objects, draws and fills a pie-shaped wedge
by drawing an elliptical arc whose center and end points are joined by lines. The center

Chapter 2, ObjectWindows library reference 143

TDC class

of the ellipse is the center of the rectangle specified either by (xl, yl) I (x2, y2) or by the
rect argument. The starting/ ending points of pie are specified either by (x3, y3) I (x4, y4)
or by the points Start and End. Returns true if the call is successful; otherwise, returns
false. The current position is neither used nor altered by this call.

See also TDC::Chord, TDC::Arc, TPoint class, TRegion class, TRect class

PlayMetaFile
bool PlayMetaFile(const TMetaFilePict& metaFile);
Plays the contents of the given metaFile on this DC. The metafile can be played any
nµmber of times. Returns true if the call is successful; otherwise, returns false.

See also class TOC::EnumMetaFile, TDC::PlayMetaFileRecord, TMetaFilePict

PlayMetaFileRecord
void PlayMetaFileRecord(HANDLETABLE far& Handletable, METARECORD far& metaRecord, int count);
Plays the metafile record given in metaRecord to this DC by executing the GDI function
call contained in that record. Handletable specifies the object handle table to be used.
count specifies the number of handles in the table.

See also TDC::PlayMetaFile, TOC::EnumMetaFile, HANDLETABLE struct,
METARECORD struct .

Pig Bit
bool PlgBlt(const TPoint& dst, const TDC& srcDC, const TRect& src, const TBitmap& maskBm, canst TPoint& m
askPos, uint32 rop=SRCCOPY);
32-bit only. Performs a bit-block transfer from the given source DC to this DC. Color bits
are copied from the src rectangle on srcDC, the source DC, to the parallelogram dst on
this DC. The dst array specifies three points A,B, and C as the comers of the destination
parallelogram. The fourth point Dis generated internally from the vector equation D = B
+ C - A. The upper left comer of src is mapped to A, the upper right comer to B, the
lower left comer to C, and the lower right comer to D. An optional monochrome bitmap
can be specified by the maskBm argument. (If maskBm specifies a valid monochrome
bitmap, PlgBlt uses it to mask the colorbits in the source rectangle. An error occurs if
maskBm is not a monochrome bitmap.) maskPos specifies the upper left comer
coordinates of the mask bitmap. With a valid maskBm, a value of 1 in the mask causes
the source color pixel to be copied to dst; a value ofO in the mask indicates that the
corresponding color pixel in dst will not be changed. If the mask rectangle is smaller
than dst, the mask pattern will be suitably duplicated.

The destination coordinates are transformed according to this DC (the destination DC).
The source coordinates are transformed according to the source DC. If a rotation or
shear transformation is in effect for the source DC when PlgBlt is called, an error occurs.
Other transformations, such as scaling, translation, and reflection are allowed. The
stretching mode of this DC (the destination DC) determines how PlgBlt will stretch or
compress the pixels if necessary. When recording an enhanced metafile, an error occurs
if the source DC identifies the enhanced metafile DC.

If necessary, PlgBlt adjusts the source color formats to match that of the destination. An
error occurs if the source and destination DCs are incompatible. Before using PlgBlt, an
application should call GetDeviceCaps to determine if the source and destination Des are
compatible.

144 ObjectWindows Reference Guide

TDC class

PlgBlt returns true if the call is successful; otherwise, it returns false.

See also TDC::GetDeviceCaps, TDC::MaskBlt, TDC::SetStretchBltMode,
TDC::StretchBlt, TBihnap class, TPoint class, TRect class

PolyBezier
bool PolyBezier(const TPoint* points, int count);
Draws one or more connected cubic Bezier splines through the points specified in the
points array using the currently selected pen object. The first spline is drawn from the
first to the fourth point of the array using the second and third points as controls.
Subsequent splines, if any, each require three additional points in the array, since the
previous end point is taken as the next spline's start point. The count argument (>= 4)
specifies the total number of points needed to specify the complete drawing. To drawn
splines, count must be set to (3n + 1). Returns true if the call is successful; otherwise,
returns false. The current position is neither used nor altered by this call. The resulting
figure is not filled.

See also TDC::PolyBezierTo, TPoint

PolyBezierTo
bool PolyBezierTo(const TPoint* points, int count);
Draws one or more connected cubic Beziers plines through the points specified in the
points array using the currently selected pen object. The first spline is drawn from the
current position to the third point of the array using the first and second points as
controls. Subsequent splines, if any, each require three additional points in the array,
since the previous end point is taken as the next spline's start point. The count argument
(>= 4) specifies the total number of points needed to specify the complete drawing. To
draw n splines, count must be set to 3n. Returns true if the call is successful; otherwise,
returns false. The current position is moved to the end point of the final Bezier curve.
The resulting figure is not filled.

See also TDC::PolyBezier, TPoint class

PolyDraw
bool PolyDraw(const TPoint* points, uint8* types, int count);
Using the currently selected pen object, draws one or more possibly disjoint sets of line
segments or Bezier splines or both on this DC. The count points in the points array
provide the end points for each line segment or the end points and control points for
each Bezier spline or both. The count BYTEs in the types array determine as follows how
the corresponding point in points is to be interpreted:

PT_BEZIERTO

PT_CLOSEFIGURE

This point is a control or end point for a Bezier spline. PT_BEZIERTO types must
appear in sets of three: the current position is the Bezier start point; the first two
PT_BEZIERTO points are the Bezier control points; and the third PT_BEZIERTO
point is the Bezier end point, which becomes the new current point. An error
occurs if the PT_BEZIERTO types do not appear in sets of three. An end-point
PT BEZIERTO can be bit-wise OR'd with PT CLOSEFIGURE to indicate that
the-current figure is to be closed by drawing a spline from this end point to the
start point of the most recent disjoint figure.

Optional flag that can be bit-wise OR'd with PT_LINETO or PT_BEZIERTO, as
explained above. Closure updates the current point to the new end point.

Chapter 2, ObjectWindows library reference 145

TDC class

PT_LINETO

PT_MOVETO

A line is drawn from the current position to this point, which then becomes the
new current point. PT_LINETO can be bit-wise OR'd with PT_CLOSEFIGURE
to indicate that the current figure is to be closed by drawing a line segment from
this point to the start point of the most recent disjoint figure.

This point starts a new (disjoint) figure and becomes the new current point.

Poly Draw is an alternative to consecutive calls to MoveTo, LineTo, Polyline, PolyBezier, and
PolyBezierTo. If there is an active path invoked via BeginPath, Poly Draw will add to this
path.

Returns true if the call is successful; otherwise, returns false.

See also TDC::MoveTo, TDC::LineTo, TDC::PolyBezier, TDC::PolyBezierTo,
TDC::Polyline, TDC::BeginPath, TPoint class

Polygon
bool Polygon(const TPoint* points, int count);
Using the current pen and polygon-filling mode, draws and fills on this DC a closed
polygon with a number of line segments equal to count (which .must be >= 2). The points
array specifies the vertices of the polygon to be drawn. The polygon is automatically
closed, if necessary, by drawing a line from the last to the first vertex .. The current
position is neither used nor altered by Polygon. Returns true if the call is successful;
otherwise, returns false.

See also TDC::Polyline, TDC::SetPolyFillMode, TDC::GetPolyFillMode, TPoint class

Polyline
bool Polyline(const TPoint* points, int count);
Using the current pen object, draws on this DC a count of line segments (there must be at
least 2). The points array specifies the sequence of points to be connected. The current
position is neither used nor altered by Polyline. Returns true if the call is successful;
otherwise, returns false.

See also TDC::Polygon, TDC::PolyPolyline, TPoint

Polyline To
bool PolylineTo(const TPoint* points, int count);
Draws one or more connected line segments on this DC using the currently selected pen
object. The first line is drawn from the current position to the first of the count points in
the points array. Subsequent lines, if any, connect the remaining points in the array, with
each end point providing the start point of the next segment. The final end point
becomes the new current point. No filling occurs even if a closed figure is drawn.
Returns true if the call is successful; otherwise, returns false.

See also TDC::PolyDraw, TDC::LineTo, !Point class

PolyPolygon
bool PolyPolygon(const TPoint* points, const int* PolyCounts, int count);
Using the current pen and polygon-filling mode, draws and fills on this DC the number
of closed polygons indicated in count (which must be >= 2). The polygons can overlap.
The points array specifies the vertices of the polygons to be drawn. PolyCounts is an array

146 Objec!Windows Reference Guide

TDC class

of count integers specifying the number of vertices in each polygon. Each polygon must
be a closed polygon. The current position is neither used nor altered by Polygon. Returns
true if the call is successful; otherwise, returns false.

See also TDC::PolyPolyline, TDC::SetPolyFillMode, TDC::GetPolyFillMode, TPoint
class

PolyPolyline
bool PolyPolyline(const TPoint* points, const int* PolyCounts, int count);
Using the currently selected pen object, draws on this DC the number of polylines
(connected line segments) indicated in count. The resulting figures are not filled. The
PolyCounts array provides count integers specifying the number of points (>= 2) in each
polyline. The points array provides, consecutively, each of the points to be connected.
Returns true if the call is successful; otherwise, returns false. The current position is
neither used nor altered by this call.

See also TDC::Polyline, TDC::PolyPolygon, TPoint class

PtVisible
bool PtVisible(const TPoint& point) const;
Returns true if the given point lies within the clipping region of this DC; otherwise,
returns false.

See also TDC::RectVisible, TPoint class

Realize Palette
int RealizePalette();
Maps to the system palette the logical palette entries selected into this DC. Returns the
number of entries in the logical palette that were mapped to the system palette.

See also TPalette class

Rectangle
bool Rectangle(int x1 , int y1, int x2, int y2);
bool Rectangle(const TPoint& p1, const TPoint& p2);
bool Rectangle(const TPoint& point, const TSize& s);
bool Rectangle(const TRect& rect);
Draws and fills a rectangle of the given size on this DC with the current pen and brush
objects. The current position is neither used nor altered by this call. Returns true if the
call is successful; otherwise, returns false.

See also TDC::RoundRect, TPoint class, TRect class, TSize class

RectVisible
bool RectVisible(const TRect& rect) const;
Returns true if any part of the given rectangle, rect, lies within the clipping region of this
DC; otherwise, returns false.

See also TDC::PtVisible, TRect class

Reset DC
virtual bool ResetDC(DEVMODE far& devMode);
Updates this DC using data in the given devMode structure. Returns true if the call is
successful; otherwise, returns false.

Chapter 2, ObjectWindows library reference 147

TDC class

See also DEVMODE struct

RestoreBrush
void RestoreBrush();
Restores the original ,GDI brush object to this DC.

See also TDC::OrgBrush, TBrush class '

Restore DC
virtual bool RestoreDC(int savedDC = -1);
Restores the given savedDC. Returns true if the context is successfully restored;
otherwise, returns false.

See also TDC::SaveDC

RestoreFont
virtual void RestoreFont();
Restores the original GDI font object to this DC.

See also TDC::OrgFont, TFont class

RestoreObjects
void RestoreObjects();
Restores all the original GDI objects to this DC.

See also TGdiObject class

RestorePalette
void RestorePalette();
Restores the original GDI palette object to this DC.

See also TDC::OrgPalette, TPalette class

RestorePen
void RestorePen();
Restores the original GDI pen object to this DC.

See also TDC::OrgPen, TPen class

RestoreTextBrush
void RestoreTextBrush();
Restores the original GDI text brush object to this DC.

See also TBrush class

RoundRect
bool RoundRect(int x1, int y1, int x2, int y2, int x3, int y3);
bool RoundRect(const TPoint& p1, const TPoint& p2, const TPoint& rad);
bool RoundRect(const TPoint& p, const TSize& s, const TPoint& rad);
bool RoundRect(const TRect& rect, const TPoint& rad);
Draws and fills a rounded rectangle of the given size on this DC with the current pen
and brush objects. The current position is neither used nor altered by this call. Returns
true if the call is successful; otherwise, returns false.

See also TDC::Rectangle, TPoint class, TRect class, TSize class

148 ObjectWindows Reference Guide

TDC class

Save DC
virtual int SaveDC() const;
Saves the current state of this DC on a context stack. The saved state can be restored later
with RestoreDC. Returns a value specifying the saved DC or 0 if the call fails.

See also TDC::RestoreDC

ScaleViewportExt
virtual bool ScaleViewportExt(int xNum, int xDenom, int yNum, int yDenom, TSize* oldExtent = O);
Modifies this DC's viewport extents relative to the current values. The new extents are
derived as follows:

xNewVE = (xOldVE * xNum)/ xDenom
yNewVE = (I * yNum) I yDenom

The previous extents are saved in oldExtent. Returns true if the call is successful;
otherwise, returns false.

See also TDC::SetViewportExt, TSize cass

ScaleWindowExt
virtual bool ScaleWindowExt(int xNum, int xDenom, int yNum, int yDenom, TSize* oldExtent = O);
Modifies this DC's window extents relative to the current values. The new extents are
derived as follows:

xNewWE = (xOldWE * xNum)/ xDenom
yNewWE = (yOldWE * yNum)/ yDenom

The previous extents are saved in oldExtent. Returns true if the call is successful;
otherwise, returns false.

See also TDC::SetWindowExt, TSize

Scroll DC
Form 1 bool ScrollDC(int x, int y, const TRect& scroll, const TRect& clip, TRegion& updateRgn, TRect& updateRect);

Form 2 bool ScrollDC(const TPoint& delta, const TRect& scroll, const TRect& clip, TRegion& updateRgn,
TRect& updateRect);

Scrolls a rectangle of bits horizontally by x (or delta.x in the second version) device-units,
and vertically by y (or delta.y) device-units on this DC. The scrolling and clipping
rectangles are specified by scroll and clip. ScrollDC provides data in the updateRgn
argument telling you the region (not necessarily rectangular) that was uncovered by the
scroll. Similarly, ScrollDC reports in updateRect the rectangle (in client coordinates) that
bounds the scrolling update region. This is the largest area that requires repainting.

Returns true if the call is successful; otherwise, returns false.

See also TPoint class, TRect class, TRegion class

SelectClipPath
bool SelectClipPath(int mode);

Chapter 2, ObjectWindows library reference 149

roe class

Selects the current path on this DC as a clipping region, combining any existing clipping
region using the specified mode as shown in the following table:

RGN_AND

RGN_COPY
RGN_DIFF

RGN_OR

RGN_XOR

The new clipping region includes the overlapping areas of the current clipping region
and the current path (intersection).

The new clipping region is the current path.

The new clipping region includes the areas of the current clipping region with those of
the current path excluded.

The new clipping region includes the combined areas of the current clipping region
and the current path (union).

The new clipping region includes the combined areas of the current clipping region
and the current path but without the overlapping area8.

Returns true if the call is successful; otherwise, returns false.

SelectClipRgn
int SelectClipRgn(const TRegion& region);
Selects the given region as the current clipping region for this DC. A copy of the given
region is used, letting you select the same region for other DC objects. The return value
indicates the new clipping region's type as follows:

COMPLEXREGION

ERROR
NULLREGION
SIMPLEREGION

Clipping Region has overlapping borders.

Invalid DC.

Clipping region is empty.

Clipping region has no overlapping borders.

See also TDC::OffsetClipRgn, TDC::GetClipBox, TRegion class

SelectObject
void SelectObject(const TBrush& brush);
void SelectObject(const TPen& pen);
virtual void SelectObject(const TFont& font);
void SelectObject(const TPalette& palette, bool forceBackground =false);
Selects the given GDI object into this DC. The previously selected object is saved in the
appropriate OrgXXX protected data member. For a palette argument, if forceBackgound
is set false (the default), the selected logical palette is a foreground palette when the
window has input focus. If forceBackground is true, the selected palette is always a
background palette whether the window has focus or not.

See also TDC::OrgBrush, TDC::OrgFont, TDC::OrgPalette, TDC::OrgPen,
TDC::OrgTextBrush, TBrush class, TFont class, TPalette class, TPen class,
TMemoryDC::SelectObject

SelectStockObject
virtual void SelectStockObjectQnt index);
Selects into the DC a predefined stock pen, brush, font, or palette.

See also TPrintPreviewDC::SelectStockObject

150 Objec!Windows Reference Guide

TDC class

SetBkColor
virtual TColor SetBkColor(TColor color);
Sets the current background color of this DC to the given color value or the nearest
available. Returns Ox80000000 if the call fails.

See also TDC::GetBkColor, TColor class

SetBkMode
int SetBkMode(int mode);
Sets the background mode to the given mode argument, which can be either OPAQUE or
TRANSPARENT. Returns the previous background mode.

See also TDC::GetBkMode

SetBoundsRect
uint SetBoundsRect(TRect& bounds, uint flags);
Controls the accumulation of bounding rectangle information for this DC. Depending
on the value of flags, the given bounds rectangle (possibly NULL) can combine with or
replace the existing accumulated rectangle. flags can be any appropriate combination of
the following values:

OCB_ACCUMULATE Add bounds (rectangular union) to the current accumulated rectangle.
OCB_DISABLE Turn off bounds accumulation.
OCB_ENABLE Turn on bounds accumulation (the default setting for bounds accumulation is

disabled).
OCB_RESET Set the bounding rectangle to empty.
OCB_SET Set the bounding rectangle to bounds.

There are two bounding-rectangle accumulations, one for Windows and one for the
applic;;i.tion. The Windows-accumulated bounds can be queried by an application but
not altered. The application can both query and alter the DC's accumulated bounds.

See also TDC::GetBoundsRect, TRect class

SetBrushOrg
bool SetBrushOrg(const TPoint& origin, TPoint* oldOrg = O);
Sets the origin of the currently selected brush of this DC with the given origin value. The
previous origin is passed to oldOrg. Returns true if successful; otherwise, returns false.

See also TDC::GetBrushOrg, TPoint class

Set DI Bits
bool SetDIBits(TBitmap& bitmap, uint16 startScan, uint16 numScans, const void HUGE* bits,

const BITMAPINFO far& Info, uint16 usage);
bool SetDIBits(TBitmap& Bitmap, const TDib& dib);
The first version sets the pixels in bitmap (the given destination bitmap on this DC) from
the source DIB (device-independent bitmap) color data found in the byte array bits and
the BITMAPINFO structure, Info.numScan scanlines are taken from the DIB, starting at
scanline startScan. The usage argument specifies how the bmiColors member of
BITMAPINFO is interpreted, as explained in TDC::GetDIBits.

Chapter 2, ObjectWindows library reference 151

TDC class

In the second version of SetDIBits, the pixels are set in bitmap from the given source TDib
argument. 1

SetDIBits returns true if the call is successful; otherwise, it returns false.

See also TDC::GetDIBits, TDC::SetDIBitsToDevice, TBitmap class, BITMAPINFO
struct, TDib class

SetDIBitsToDevice
bool SetDIBitsToDevice(const TRect& dst, const TPoint& src, uint16 startScan, uint16 numScans,

const void HUGE* bits, const BITMAPINFO far& bitslnfo, uint16 usage);
bool SetDIBitsToDevice(const TRect& dst, const TPoint& src, cons! TDib& dib);
The first version sets the pixels in dst (the given destination rectangle on this DC) from
the source DIB (device-independent bitmap) color data found in the byte array bits and
the BITMAPINFO structure, bitslnfo. The DIB origin is specified by the point src.
numScan scanlines are taken from the DIB, starting at scanline startScan. The usage
argument determines how the bmiColors member of BITMAPINFO is interpreted, as
explained in TDC::GetDIBits.

In the second version of SetDIBitsToDevice, the pixels are set in dst from dib, the given
source TDib argument.

SetDIBitsToDevice returns true if the call is successful; otherwise, it returns false.

See also TDC::GetDIBits, TDib class, TPoint class, TRect class, BITMAPINFO struct

SetMapMode
virtual int SetMapMode(int mode);
Sets the current window mapping mode of this DC to mode. Returns the previous
mapping mode value. The mapping mode defines how logical coordinates are mapped
to device coordinates. It also controls the orientation of the device's x- and y-axes. See
TDC::GetMapMode for a complete list of mapping modes.

See also TDC::GetMapMode

SetMapperFlags
uint32 SetMapperFlags(uint32 flag);
Alters the algorithm used by the font mapper when mapping logical fonts to physical
fonts on this DC. If successful, the function sets the current font-mapping flag to flag and
returns the previous mapping flag; otherwise GDI_ERROR is returned. The mapping
flag determines whether the font mapper will attempt to match a font's aspect ratio to
this DC's aspect ratio. If bit 0 of flag is set to 1, the mapper selects only matching fonts. If
no matching fonts exist, a new aspect ratio is chosen and a font is retrieved to match this
ratio.

SetMiterLimit
bool SetMiterlimit(float newlimit, float* oldlimit = O);
Sets the limit of miter joins to newLimit and puts the previous value in oldLimit. Returns
true if successful; otherwise, returns false.

SetPixel
TColor SetPixel(int x, int y, TColor color);
TColor SetPixel(const TPoint& p, TColor color); .

152 0 bje ctWi n d ows Reference Guide

TDC class

Sets the color of the pixel at the given location to the given color and returns the pixel's
previous color.

See also TDC::GetPixel, TColor, TPoint

SetPolyFillMode
int SetPolyFillMode(int mode);
Sets the polygon-filling mode for this DC to the given mode value, either ALTERNATE
or WINDING. Returns the previous fill mode.

See also TDC::GetPolyFillMode, TDC::Polygon

SetROP2
int SetROP2(int mode);
Sets the current foreground mix mode mode of this DC to the given mode value and
returns the previous mode. The mode argument determines how the brush, pen, and
existing screen image combine when filling and drawing. mode can be one of the
following values:

R2_BLACK

R2_COPYPEN

R2_MASKNOTPEN

R2_MASKPEN

R2_MASKPENNOT

R2_MERGEPEN

R2_MERGENOTPEN

R2_MERGEPENNOT

R2_NOP

R2_NOT

R2_NOTCOPYPEN

R2_NOTMASKPEN

R2_NOTMERGEPEN

R2_NOTXORPEN

R2_WHITE

R2_XORPEN

Pixel is always binary 0.

Pixel is the pen color.

Pixel is a combination of the colors common to both the display and the inverse
of the pen.

Pixel is a combination of the colors common to both the pen and the display.

Pixel is a combination of the colors common to both the pen and the inverse of
the display.

Pixel is a combination of the pen color and the display color.

Pixel is a combination of the display color and the inverse of the pen color.

Pixel is a combination of the pen color and the inverse of the display color.

Pixel remains unchanged.

Pixel is the inverse of the display color.

Pixel is the inverse of the pen color.

Pixel is the inverse of the R2_MASKPEN color.

Pixel is the inverse of the R2_MERGEPEN color.

Pixel is the inverse of the R2_XORPEN color.

Pixel is always binary 1.

Pixel is a combination of the colors in the pen and in the display, but not in both.

See also TDC::GetROP2, TDC::GetDeviceCaps

SetStretchBltMode
int SetStretchBltMode(int mode);
Sets the stretching mode of this DC to the given mode value and returns the previous
mode. The mode argument (BLACKONWHITE, COLORONCOLOR, or
WHITEONBLACK) defines which scan lines or columns or both are eliminated by
TDC::StretchBlt.

See also TDC::GetStretchBltMode, TDC::StretchBlt

C h a pt e r 2 , 0 b j e c t W i n d ow s Ii b r a r y r e f e re n c e 153

TDC class

SetSystemPaletteUse
int SetSystemPaletteUse(int usage);
Changes the usage of this DC's system palette. The usage argument can be
SYSPAL_NOSTATIC or SYSPAL_STATIC. Returns the previous usage value.

See also TDC::GetSystemPaletteUse

SetTextAlign
uint SetTextAlign(uint flags);
Sets the text-alignment flags for this DC. If successful, SetTextAlign returns the previous
text-alignment flags; otherwise, it returns GDI_ERROR. The flag values are as listed for
the TDC::GetTextAlign function. The text-alignment flags determine how TDC::TextOut
and TDC::ExtTextOut align text strings in relation to the first character's screen position.

See also TDC::GetTextAlign, TDC::TextOut, TDC::ExtTextOut

SetTextCharacterExtra
int SetTextCharacterExtra(int extra);
If successful, sets the current intercharacter spacing to extra, in logical units, for this DC,
and returns the previous intercharacter spacing. Otherwise, returns 0. If the current
mapping mode is not MM_TEXT, the extra value is transformed and rounded to the
nearest pixel.

See also TDC::GetTextCharacterExtra

. SetTextColor
virtual TColor SelTextColor(TColor color);
Sets the current text color of this DC to the given color value. The text color determines
the color displayed by TDC::TextOut and TDC::ExtTextOut.

See also TDC::GetTextColor, TColor

SetTextJustification
bool SetTextJustificalion(int breakExtra, int breakCount);
When text strings are displayed using TDC::TextOut and TDC::ExtTextOut, sets the
number of logical units specified in breakExtra as the total extra space to be added to the
number of break characters specified in breakCount. The extra space is distributed evenly
between the break characters. The break character is usually ASCII 32 (space), but some
fonts define other characters. TDC::GetTextMetrics can be used to retrieve the value of
the break character.

If the current mapping mode is not MM_TEXT, the extra value is transformed and
rounded to the nearest pixel.

SetTextfustification returns true if the call is successful; otherwise, it returns false.

SetViewportExt
virtual bool SetViewportExt(const TSize& extent, TSize* oldExtent = O);
Sets this DC's viewport x- and y-extents to the given extent values. The previous extents
are saved in oldExtent. Returns true if the call is successful; otherwise, returns false. The
extent value determines the amount of stretching or compression needed in the logical
coordinate system to fit the device coordinate system. extent also determines the relative
orientation of the two coordinate systems.

154 ObjectWindows Reference Guide

See also TDC::GetViewportExt, TSize class

SetViewportOrg
virtual bool SetViewportOrg(const TPoint& origin, TPoint* oldOrg = O);

TDC class

Sets this DC's viewport origin to the given origin value, and saves the previous origin in
oldOrg. Returns true if the call is successful; otherwise, returns false.

See also TDC::GetViewportOrg, TDC::OffsetViewportOrg, TPoint class

SetWindowExt
virtual bool SetWindowExt(const TSize& extent, TSize* oldExtent = O);
Sets this DC's window x- and y-extents to the given extent values. The previous extents
are saved in oldExtent. Returns true if the call is successful; otherwise, returns false. The
extent value determines the amount of stretching or compression needed in the logical
coordinate system to fit the device coordinate system. extent also determines the relative
orientation of the two coordinate systems.

See also TDC::GetWindowExt, TDC::ScaleWindowExt, TSize class

SetWindowOrg
bool SetWindowOrg(const TPoint& origin, TPoint* oldOrg = O);
Sets the origin of the window associated with this DC to the given origin value, and
saves the previous origin in oldOrg. Returns true if the call is successful; otherwise,
returns false.

See also TDC::GetWindowOrg, TDC::OffsetWindowOrg, TPoint class

SetWorldTransform
bool SetWorldTransform(XFORM far& xform);
32-bit only. Sets a two-dimensional linear transformation, given by the xform structure,
between world space and page space for this DC. Returns true if the call is successful;
otherwise, returns false.

See also TDC::ModifyWorldTransform, XFORM struct

Stretch Bit
bool StretchDIBits(const TRect& dst, const TRect& src, const void HUGE* bits, cons! BITMAPINFO far& bitslnfo,

uint16 usage, uint32 rop=SRCCOPY);
bool StretchDIBits(const TRect& dst, const TRect& src, const TDib& dib, uint32 rop=SRCCOPY);
Copies the color data from src, the source rectangle of pixels in the given DIB (device­
independent bitmap) on this DC, to dst, the destination rectangle. The DIB bits and color
data are specified in either the byte array bits and the BITMAPINFO structure bitsinfo or
in the TDib object, dib. The rows and columns of color data are stretched or compressed
to match the size of the destination rectangle. The usage argumentspecifies how the
bmiColors member of BITMAPINFO is interpreted, as explained in TDC::GetDIBits The
raster operation code, rop, specifies how the source pixels, the current brush for this DC,
and the destination pixels are combined to produce the new image. See TDC::MaskBlt
for a detailed list of rap codes.

See also TDC::GetDIBits, TDC::MaskBlt, TDib class, TRect class, BITMAPINFO struct

C h a pt e r 2 , 0 b j e ct W i n d ow s I i b r a r y r e f e r e n c e 155

TDC class

Stretch DI Bits
bool StretchDIBits(const TRect& dst, const TRect& src, const void HUGE* bits, cons! BITMAPINFO far& bitslnfo,

uint16 usage, uint32 rop=SRCCOPY);
bool StretchDIBits(const TRect& dst, const TRect& src, const TDib& dib, uint32 rop=SRCCOPY);
Copies the color data from src, the source rectangle of pixels in the given DIB (device­
independent bitmap) on this DC, to dst, the destination rectangle. The DIB bits and color
data are specified in either the byte array bits and the BITMAPINFO structure bitslnfo or
in the TDib object, dib. The rows and columns of color data are stretched or compressed
to match the size of the destination rectangle. The usage argument specifies how the
bmiColors member of BITMAPINFO is interpreted, as explained in TDC::GetDIBits The
raster operation code, rop, specifies how the source pixels, the current brush for this DC,
and the destination pixels are combined to produce the new image. See TDC::MaskBlt
for a detailed list of rop codes.

See also TDC::GetDIBits, TDC::MaskBlt, TDib class, TRect class, BITMAPINFO struct

StrokeAndFillPath
bool StrokeAndFillPath();
32-bit only. Closes any open figures in the current path of this DC, strokes the outline of
the path using the current pen, and fills its interior using the current brush and polygon
fill mode. Returns true if the call is successful; otherwise, returns false.

See also TDC::StrokePath, TDC::BeginPath, TDC::FillPath, TDC::EndPath,
TDC::SetPolyFillMode, TBrush class, TPen class

StrokePath
bool StrokePath();
32-bit only. Renders the current, closed path on this DC and uses the DC's current pen.

See also TDC::StrokeAndFillPath, TDC::BeginPath

TabbedTextOut
bool TabbedTextOut(const TPoint& p, const char far* string, int count, int numPositions, const int far* positions,

int tabOrigin);
virtual bool TabbedTextOut(const TPoint& p, canst char far* string, int count, int numPositions,

const int far* positions, int tabOrigin, TSize& size);
Draws up to count characters of the given null-terminated string in the current font on
this DC. If count is -1, the whole string is written.

Tabs are expanded according to the given arguments. The positions array specifies
numPositions tab stops given in device units. The tab stops must have strictly increasing
values in the array. If numPositions and positions are both 0, tabs are expanded to eight
times the average character width. If numPositions is 1, all tab stops are taken to be
positions[O] apart. tabOrigin specifies the x-coordinate in logical units from which tab
expansion will start.

The p argument specifies the logical coordinates of the reference point that is used to
align the first character depending on the current text-alignment mode. This mode can
be inspected with TDC::GetTextAlign and changed with TDC::SetTextAlign. By default,
the current position is neither used nor altered by TabbedTextOut. However, if the align
mode is set to TA_UPDATECP, TabbedTextOut ignores the reference point argument(s)
and uses/updates the current position as the reference point.

156 0 b j e ct Windows Reference G u id e

TDC class

The size argument in the second version of TabbedTextOut reports the dimensions (size.y
= height and size.x = width) of the string in logical units.

TabbedTextOut returns true if the call is successful; otherwise, it returns false.

See also TDC::TextOut, TDC::GetTextAlign, TDC::SetTextAlign, TPoint class, TSize
class

TextOut
virtual bool TextOut(int x, int y, canst char far* string, int count= -1);
bool TextOut(const TPoint& p, canst char far* string, int count= -1);
Draws up to count characters of the given null-terminated string in the current font on
this DC. If count is -1 (the default), the entire string is written.

The (x, y) or p arguments specify the logical coordinates of the reference point that is
used to align the first character, depending on the current text-alignment mode. This
mode can be inspected with TDC::GetTextAlign and changed with TDC::SetTextAlign. By
default, the current position is neither used nor altered by TextOut. However, the align
mode can be set to TA_UPDATECP, which makes Windows use and update the current
position. In this mode, TextOut ignores the reference po:int argument(s).

TextOut returns true if the call is successful; otherwise, it returns false.

See also TDC::ExtTextOut, TDC::GetTextAlign, TDC::SetTextAlign, TPoint class

TextRect
bool TextRect(int x1, int y1, int x2, int y2);
bool TextRect(const TRect& rect);
bool TextRect(int x1, int y1, int x2, int y2, TColor color);
bool TextRect(const TRect rect, TColor color);
Fills the given rectangle, clipping any text to the rectangle. If no color argument is
supplied, the current backgound color is used. If a color argument is supplied, that color
is set to the current background color which is then used for filling. TextRect returns true
if the call is successful; otherwise, it returns false.

See also TDC::SetBkColor, TColor class, TRect class

UpdateColors
void UpdateColors();
Updates the client area of this DC by matching the current colors in the client area to the
system palette on a pixel-by-pixel basis.

Widen Path
bool WidenPath();
32-bit only. Redefines the current, closed path on this DC as the area that would be
painted if the path were stroked with this DC's current pen. The current pen must have
been created under the following conditions:

If the TPen(int Style, int Width, TColor Color) constructor, or the TPen(const LOGPEN*
LogPen) constructor is used, the width of the pen in device units must be greater than 1.

If the TPen(uint32 PenStyle, uint32 Width, const TBrush& Brush, uint32 StyleCount,
LPDWORD pSTyle) constructor, or the TPen(uint32 PenStyle, uint32 Width, const

C h a p I e r 2 , 0 b j e c I W i n d ow s I i b r a r y r e f e r e n c e 157

TDC class

LOGBRUSH& logBrush, uint32 StyleCount, LPDWORD pSTyle) constructor is used, the
pen must be a geometric pen.

Any Bezier curves in the path are converted to sequences of linear segments
approximating the widened curves, so no Bezier curves remain in the path after a
WidenPath call.

WidenPath returns true if the call is successful; otherwise, it returns false.

See also TDC::FlattenPath, TDC::BeginPath, TPen class

Protected constructors

Constructors
Form 1 TDC();

For use by derived classes only. Calls Init to clear the OrgXXX data members and sets
ShouldDelete to true.

Form 2 TDC(HDC handle, TAutoDelete AutoDelete);
For use by derived.classes only. Constructs a TDC object using an existing DC handle.
Calls Init to clear the OrgXXX data members.

See also TDC::Init

Protected data members
Handle
TGdiBase::Handle;
The handle of this DC. Uses the base class's handle (TGdiBase::Handle.)

Seealso TDC

OrgBrush
HBRUSH OrgBrush;
Handle to the original GDI brush object for this DC. Holds the previous brush object
whenever a new brush is selected with SelectObject(brush).

See also TDC::SelectObject, TBrush class

OrgFont
HFONT OrgFont;
Handle to the original GDI font object for this DC. Holds the previous font object
whenever a new font is selected with SelectObject(jont).

See also TDC::SelectObject, TFont class

OrgPalette
HPALETTE OrgPalette;
Handle to the original GDI palette object for this DC. Holds the previous palette object
whenever a new palette is selected with SelectObject(palette).

See also TDC::SelectObject, TPalette class

158 0 bj ectWi n d ows Rel e ren ce Guide

OrgPen
HPEN OrgPen;

TDecoratedFrame class

Handle to the original GDI pen object for this DC. Holds the previous pen object
whenever a new pen is selected with SelectObject(pen).

See also TDC::SelectObject, TPen class

OrgTextBrush
HBRUSH OrgTextBrush
32-bit only. The handle to the original GDI text brush object for this DC. Stores the
previous text brush handle whenever a new brush is selected with
SelectObject(text _brush).

See also TDC::SelectObject, TBrush class

Should Delete
TGdiBase::ShouldDelete;
Set to true if the handle for this object should be deleted by the destructor; otherwise, set
to false.

Protected member functions
CheckValid

Form 1 TGdiBase::CheckValid(uint resld=IDS_GDIFAILURE)

Form 2 static void CheckValid(HANDLE handle, uint resld=IDS_GDIFAILURE)
Both versions of Check Valid check for a valid GDI object handle. If one is not found a
GDI exception is thrown for the given resource id. Both versions use
TGdiBase::CheckValid.

GetAttributeHDC
virtual HDC GetAttributeHDC() canst;
Returns the attributes of the DC object.

See also TPrintPreviewDC::GetAttributeHDC

GetHDC
HDC GetHDC() canst;
Returns a handle to the DC.

lnit
void lnit();
Sets OrgBrush, OrgPen, OrgFont, OrgBitmap, and OrgPalette to 0, and sets ShouldDelete to
true. This function is for internal use by the TDC constructors.

See also TDC constructors, TDC::SelectObject

TDecoratedFrame class decframe.h

TDecoratedFrame automatically positions its client window (you must supply a client
window) so that it is the same size as the client rectangle. You can add additional

C h a pt e r 2 , 0 b j e ct W i n d o w s I i b r a r y ref e r e n c e 159

TDecoratedFrame class

decorations like toolbars and status lines to a window.You can create a TDecoratedFrame
without a caption bar by clearing all of the bits in the style data member of the
TWindowAttr structure. TDecoratedFrame is a streamable class.

For OLE-enabled applications, use TOleFrame, which creates a decorated frame and
manages decorations such as toolbars for the main window of an SDI (Single Document
Interface) OLE application.

See also TOleFrame

Type definitions
Tlocation
enum Tlocation (Top, Bottom, Left, Right);
TLocation enum describes Top, Left, Bottom, and Right positions where the decoration can
be placed. Insert uses this enum to position the decoration.

Public constructor
Constructor
TDecoratedFrame(TWindow* parent, const char far *title, TWindow* clientWnd, bool trackMenuSelection = false,

TModule* module = O);
Constructs a TDecoratedFrame object with the specified parent window (parent), window
caption (title), and module ID. Sets TWindow::Attr.Title to the new title. Passes a pointer
to the client window if one is specified. By default set to false, trackMenuSelection
controls whether hint text appears at the bottom of the window when a menu item is
highlighted.

Public member functions
Insert
void Insert (TWindow& decoration, Tlocation =Top);
After you specify where the decoration should be placed, Insert adds it just above,
below, left, or right of the client window. This process is especially important when
there are multiple decorations. Insert looks at the decoration's Attr.Style member and
checks the WS_ VISIBLE flag to tell whether the decoration should initially be visible or
hidden.

To position the decoration, Insert uses TLocation enum, which describes Top, Left, Bottom,
and Right positions where the decoration can be placed.

PreProcessMsg
bool PreProcessMsg (MSG& msg);
Overrides the virtual function defined in TFrameWindow to give decorations an
opportunity to perform mnemonic access preprocessing.

See also TFrameWindow::PreProcessMsg, TWindow::PreProcessMsg

SetClientWindow
TWindow* SetClientWindow(TWindow* clientWnd);

160 ObjectWindows Reference Guide

TDecoratedFrame class

Overrides TFrameWindow's virtual function. Sets the client window to the specified
window. Users are responsible for destroying the old client window if they want to
remove it.

Protected data members
MenultemlD
uint MenultemlD;
Specifies the menu item ID.

TrackMenuSelection
bool TrackMenuSelection;
Specifies whether you want menu selection and help status information visible.

Protected member functions
EvCommand
LRESULT EvCommand(uint Id, HWND hWndCtl, uint notifyCode);
Automates hiding and showing of decorations.

EvCommandEnable
void EvCommandEnable(TCommandEnabler& ce);
Handles checking and unchecking of menu items that are associated with decorations.

EvEnterldle
void EvEnterldle(uint source, HWND hWndDlg);
Responds to a window message that tells an application's main window that a dialog
box or a menu is entering an idle state. EvEnterldle also handles updating the status bar
with the appropriate help message.

EvMenuSelect
void EvMenuSelect(uint Menultemld, uint flags, HMENU hMenu);
Responds to user menu selection. If Menultemld is blank, displays an empty help
message; otherwise, it displays a help message with the specified string ID. See
EvEnteridle for a description of how the help message is loaded.

EvSize
void EvSize(uint sizeType, TSize& size);
Passes a WM_SIZE message to TLayoutWindow.

Setup Window
void SetupWindow();
Calls TLayoutWindow::Layout to size and position the decoration.

See also TFrameWindow::SetUpWindow, TWindow::SetUpWindow,
TLayoutWindow::Layout

Chapter 2, ObjectWindows library reference 161

T D e c o r a I e d M D I Fr a !JI e c I a s s

Response table entries

EV _.WM_ENTERIDLE
EV_WM_l\1ENUSELECT

EV_WM_SIZE

EvEnterldle

EvMenuSelect

EvSize

TDecoratedMDIFrame class decmdifr.h

Derived from both TMDIFrame and TDecoratedFrame, TDecoratedMDIFrame is an MDI
frame that supports decorated child windows.

TDecorated MDIFrame supports custom toolbars. You can insert one set of decorations
(for example, toolbars and rulers) into a decorated frame. When a different set of tools is
needed, you can remove the previous set and reinsert another set of decorations.
However, be sure to remove all of the unwanted decorations from the adjusted sides
(that is, the top, left, bottom, and right) before reinserting a new set.

TDecoratedMDIFrame is a streamable class.

Public constructor
Constructor
TDecoratedMDIFrame(const char far *title, TResld menuResld, TMDIClient &clientWnd = *new TMDIClient,

bool trackMenuSelection =false, TModule* module = O);
Constructs a decorated MDI frame of the specified client window with the indicated
menu resource ID. By default, menu hint text is not displayed.

Protected member function
DefWindowProc
LRESULT DefWindowProc(uint message, WPARAM wParam, LPARAM IParam);
Overrides TWindow::DejWindowProc. If the message parameter is WM_SIZE,
DejWindowProc returns O; otherwise, DejWindowProc returns the result of calling
TMDIFRame::DejWindowProc.

See also TMDIFrame::DefWindowProc

Response table entries
The TDecoratedMDIFrame response table has no entries.

162 ObjectWindows Reference Guide

TDesktopDC class

TDesktopDC class
A OC class derived from TWindowDC, TDesktopDC provides access to the desktop
window's client area, which is the screen behind all other windows.

Public constructor
Constructor
TDesktopDC();
Default constructor for TDesktopDC objects.

dc.h

TDialog class dialog.h

Typically used to obtain information from a user, a dialog box is a window inside of
which other controls such as buttons and scroll bars can appear. Unlike actual child
windows which can only be displayed in the parent window's client area, dialog boxes
can be moved anywhere on the screen. TDialog objects represent both modal and
modeless dialog box interface elements. (A modal dialog box disables operations in its
parent window while it is open, and, thus, lets you function in only one window
"mode.")

A TDialog object has a corresponding resource definition that describes the placement
and appearance of its controls. The identifier of this resource definition is supplied to the
constructor of the TDialog object. A TDialog object is associated with a modal or
modeless interface element by calling its Execute or Create member function,
respectively.

You can use TDialog to build an application that uses a dialog as its main window by
constructing your dialog as a TDialog and passing it as the client of a TFrameWindow.
Your code might look something like this:

SetMainWindow(new TFrameWindow(O, "title" new TDialog(O, IDD_MYDIALOG)));

ObjectWindows provides three-dimensional (3-D) support for dialog boxes. If your
application expects to use Microsoft's C1L3D DLL, you need to register your application
by calling TApplication::EnableCtl3d. ObjectWindows will then automatically forward
the WM_CTLCOLOR message to the C1L3D DLL.

ObjectWindows also provides BWCC support for dialog boxes. Unless a custom
template is specified, TDialog uses the BWCC templates. (By default, T Application's
member function EnableBWCC enables BWCC support.)

TDialog is a streamable class.

ObjectWindows also encapsulates common dialog boxes that let the user select font, file
name, color, print options, and so on. TCommonDialog is the parent class for this group
of common dialog box classes.

Chapter 2, ObjectWindows library reference 163

TDialog class

Public data members
Attr
TDialogAttr Attr;
Attr holds the creation attributes of the dialog box (for example, size and style).

See also TDialogAttr

lsModal
bool lsModal;
IsModal is true if the dialog box is modal and false if it is modeless. -,

Public constructor and destructor
· Constructor
TDialog(TWindoW* parent, TResld resld, TModule* module = O);
Invokes a TWindow constructor, passing parent and module, and calls DisableAutoCreate
to prevent TDialog from being automatically created and displayed along with its
parent. TDialog then initializes Title to -1 and sets TDialogAttr.Name using the dialog
box's integer or string resource identifier, which must correspond to a dialog resource
definition in the resource file. Finally, it initializes TDialogAttr.Param to 0 and sets
IsModal to false.

Destructor
N TDialog();
If Attr.Name is a string and not an integer resource identifier, this destructor frees
memory allocated to Attr.Name, which holds the name of the dialog box.

See also TApplication::EnableBWCC, TWindow::-TWindow,
TWindow::DisableAutoCreate, TWindow::TWm.dow, TDialog::Attr

Public member functions
CloseWindow
void CloseWindow(int retValue = IDCANCEL);
Overrides the virtual function defined by TWindow and conditionally shuts down the
dialog box. If the dialog box is modeless, it calls TWindow::CloseWindow. If the dialog box
is modal, it calls CanClose. If CanClose returns true, Close Window calls TransferData to
transfer dialog box data, passing it retValue. The default value of retValue is IDCANCEL.

See also TWindow::CloseWindow

CmCancel
void CmCancel();
Automatic response to a click on the Cancel button of the dialog box. Calls Destroy,
passing IDCANCEL.

See also TDialog::CloseWindow

164 ObjectWin-dows Reference Guide

TDialog class

Cm Ok
void CmOk();
Responds to a click on the dialog box's OK button with the identifier IDOK. Calls
Close Window, passing IDOK.

See also TDialog::CloseWindow

Create
virtual bool Create();
Creates a modeless dialog box interface element associated with the TDialog object.
Registers all the dialog's child windows for custom control support. Calls DoCreate to
perform the actual creation of the dialog box.

Create returns true if successful. If unsuccessful, Create throws a TXInvalidWindow
exception.

See also TDialog::Execute, TModule::MakeWindow, TWindow::DisableAutoCreate

Destroy
virtual void Destroy(int retValue = IDCANCEL);
Destroys the interface element associated with the TDialog object. If the element is a
modeless dialog box, Destroy calls TWindow::Destroy. If the element is a modal dialog
box, Destroy calls EnableAutoCreate on all child windows. Then Destroy calls the
Windows function ::EndDialog, passing retValue as the value returned to indicate the
result of the dialog's execution. The default retValue is IDCANCEL.

See also TWindow::Destroy, TWindow::EnableAutoCreate

Dialog Function
virtual bool DialogFunction(uint message, WPARAM wParam, LPARAM IParam);
To process messages within the dialog function, your application must override this
function. DialogFunction returns true if the message is handled and false if the message
is not handled.

DoCreate
virtual HWND DoCreate();
DoCreate is called by Create to performs the actual creation of a modeless dialog box.

Do Execute
virtual int DoExecute();
DoExecute is called by Execute to perform the actual execution of a modal dialog box.

See also TDialog::Execute

EvClose
void EvClose();
Responds to an incoming EvClose message by shutting down the window.

EvCtlColor
HBRUSH EvCtlColor(HDC hDC, HWND hWndChild, uint ctlType);
Passes the handle to the display context for the child window, the handle to the child
window, and the default system colors to the parent window. The parent window then

Chapter 2, ObjectWindows library reference 165

TDialog class

uses the display-context handle given in hDC to set the text and background colors of
the child window.

If three-dimensional (3-D) support is enabled, EvCtlColor handles the
EV_ WM_CTLCOLOR message by allowing the CTL3D DLL to process the
WM_CTLCOLOR message in order to set the background color and provide a
background brush for the window.

See also TApplication::EnableCtl3d

EvlnltDlalog
virtual bool EvlnitDialog(HWND hWndFocus);
EvlnitDialog is automatically called just before the dialog box is displayed. It calls
Setup Window to perform any setup required for the dialog box or its controls.

See also TWindow::SetupWindow

EvPalnt
void EvPaint();
EvPaint calls TWindow's general-purpose default processing function, DefaultProcessing,
for Windows-supplied painting.

See also TWindow::DefaultProcessing

EvSetFont
virtual void EvSetFont(HFONT hfont, bool redraw);
Responds to a request to change a dialog's font.

Execute
virtual int Execute();
Creates and executes a modal dialog box interface element associated with the TDialog
object. If the element is successfully associated, Execute does not return until the TDialog
is closed.

Execute performs the following tasks:

1 Registers this dialog's window class and all of the dialog's child windows.

2 Calls DoExecute to execute the dialog box.

3 Checks for exceptions and throws a TXWindow exception if an error occurs.

Execute returns an integer value that indicates how the user closed the modal dialog box.
If the dialog box cannot be created, Execute returns -1.

See also TModule::ExecDialog, TWindow::DisableAutoCreate, TXWindow

GetDefaultld
uint GetDefaultld() const;
Gets the default resource ID.

GetltemHandle
HWND GetltemHandle(int childld);
Returns the dialog box control's window handle identified by the supplied ID. Because
GetltemHandle is now obsolete, new applications should use TWindow::GetDlgltem.

166 ObjectWindows Reference Guide

PerformDlglnit
bool PerformDlglnit();

TDialog class

Initializes the dialog box controls with the contents of RT_DLGINIT, the dialog box
resource identifier, which describes the appearance and location of the controls (buttons,
group boxes, and so on). Returns true if successful; otherwise, returns false.

PreProcessMsg
bool PreProcessMsg(MSG& msg);
Overrides the virtual function defined by TWindow in order to perform preprocessing
of window messages. If the child window has requested keyboard navigation,
PreProcessMsg handles any accelerator key messages and then processes any other
keyboard messages.

See also TWindow::PreProcessMsg, MSG struct

SendDlgltemMsg
uint32 SendDlgltemMsg(int Childld, uint16 Msg, uint16 WParam, uint32 LParam);
Sends a window control message, identified by Msg, to the dialog box's control
identified by its supplied ID, ChildID. WParam and LParam become parameters in the
control message. SendDlgitemMsg returns the value returned by the control, or 0 if the
control ID is invalid. This function is obsolete.

SetCaption
void SetCaption(const char far* title);
Sets the caption of the dialog box. to the value of the title parameter.

See also TWindow::SetCaption

SetDefaultld
void SetDefaultld(uint Id);
Sets the default resource ID.

Protected member functions
GetClassName
char far* GetClassName();
Overrides the virtual function defined in TWindow and returns the name of the dialog
box's default Windows class, which must be used for a modal dialog box. For a
modeless dialog box, GetClassName returns the name of the default TWindow. If BWCC
is enabled, GetClassName returns BORDLGCLASS.

See also TWindow::GetClassName

GetWindowClass
void GetWindowClass(WNDCLASS& wndClass);
Overrides the virtual function defined in TWindow. Fills WndClass with a TDialog
registration attributes obtained from an existing TDialog window or from BWCC if it is
enabled.

If the class style is registered with CS_GLOBALCLASS, you must unregister the class
style. You can do this by turning off the style bit. For example,

Ch a p I er 2, 0 b j e c I Windows Ii bra r y reference 167

T D i a I o g c I a s s : : T D i a lo g A I I r s I r u c I

baseclass::GetWindowClass(wndClass);

WndClass.style &= -CS_GLOBALCLASS:

See also TWindow::GetWindowClass, TWindow, WNDCLASS struct

SetupWindow
void SetupWindow();
Overrides the virtual function defined in TWindow. Sets up the dialog box by calling
SetCaption (sets Title) and TWindow::SetupWindow.

If three-dimensional (3-D) support is enabled, Setup Window calls the CTL3D DLL to
register the dialog box.

See also TCommonDialog::SetupWindow, TDialog::SetCaption,
TWindow::SetupWindow

Response table entries

EV_ COMMAND (IDCANCEL, CmCancel)

EV _COMMAND (IDOK, CmOk)

EV_WM_CTLCOLOR

EV _WM_ CLOSE

EV _WM_p AINT

See also TCommonDialog

TDialog class::TDialogAttr struct

CmCancel

Cm Ok

EvCtlColor

EvClose

Ev Paint

dialog.h

A TDialogAttr is used to hold a TDialog's creation attributes, which include the style,
appearance, size, and types of controls associated with the dialog box. TDialogAttr
contains two data members: Name (the resource id) and Param. These members contain
user-defined data used for dialog box creation.

Public data members
Name
char far* Name;
Name holds the identifier, which can be either a string or an integer resource identifier,
of the dialog box resource.

Pa ram
uint32 Param;

168 ObjectWindows Reference Guide

TDib class

Param is used to pass initialization data to the dialog box when it is constructed. You can
assign a value to this field in a derived class's constructor. Although any Param-type
information passed to the dialog box can be saved as a data member, Param is especially
useful if you want to create a dialog box that's implemented by non-ObjectWindows
code.

After Param is accepted it is then available in the message response functions (for
example, EvinitDialog), associated with WM_INITDIALOG.

See also TDialog::Attr

TDib class gdiobjec.h

The class TDib, derived from TGdiObject, represents GDI Device Independent Bitmap
(DIB) objects. TDibDCs encapsulate the creation of DCs using DIB.DRV (a GDI driver
provided with Windows MME and 3.1). DIBs have no Windows handle; they are just
structures containing format and palette information and a collection of bits or pixels.
TDib provides a convenient way to work with DIBs like any other GDI object. The
memory for the DIB is in one GlobalAlloc 'd unit so it can be passed to the Clipboard, OLE
2, and so on.

The TDib Destructor overloads the base destructor because DIBs are not real GDI
objects.

Type definitions

Map
enum Map{MapFace, MapText, MapShadow, MapHighlight, MapFrame};
Enumerates the values for the part of the window whose color is to be set. You can OR
these together to control the colors used for face shading on push buttons, the color of a
selected control button, the edge shading on push buttons, text on push buttons, the
color of the window frame, and the background color of the various parts of a window.
The function MapUIColors uses one of these values to map the colors of various parts of
a window to a specified color.

See also TDib::MapUIColors

Public constructors and destructor
Constructors

Form 1 TDib(HGLOBAL handle, TAutoDelete autoDelete = NoAutoDelete);
Creates a TDib object and sets the Handle data member to the given borrowed handle.
The ShouldDelete data member defaults to false, ensuring that the borrowed handle will
not be deleted when the C ++ object is destroyed.

Form 2 TDib(const TClipboard& clipboard);
Constructs a TDib object with a handle borrowed from the given Clipboard.

Form 3 TDib(const TDib& dib);

Ch a pier 2, 0 bj ectWi n d ows I ib rary reference 169

TDib class

This public copy constructor creates a complete copy of the given dib object as in

TDib myDib = yourDib;

Form 4 TDib(int width, int height, int nColors, uint16 mode= DIB _RGB _COLORS);
Creates a DIB object with the given width, height, number of colors, mode values.

Form 5 TDib(HINSTANCE instance, TReslD reslD);
Creates a DIB object from the resource with the given ID.

Form 6 TDib(const char* name);
Creates a DIB object from the given resource file.

Form 7 TDib(const TBitmap& bitmap, cons! TPalette* pal= O);
Creates a DIB object from the given resource bitmap and palette. If pal is 0 (the default),
the default palette is used.

Destructor
-TDib();
Overrides the base destructor.

See also ::GetClipboardData, -TGdiObject, TDib::InfoFromHandle, TDib::LoadFile,
TDib::LoadResource, TGdiObject::Handle, TGdiObject::ShouldDelete

Public member functions
operator BITMAPINFO()
operator const BITMAPINFO far*() cons!;
operator BITMAPINFO far*();

Typecasts this DIB by returning a pointer to its bitmap information structure
(BITMAPINFO) which contains information about this DIB's color format and
dimensions (size, width, height, resolution, and so on).

See also TDib::Getlnfo, BITMAPINFO struct

operator BITMAPINFOHEADER()
operator cons! BITMAPINFOHEADER far*() cons!;
operator BITMAPINFOHEADER far*();
Typecasts this DIB by returning a pointer to its bitmap info header.

See also TDib::GetlnfoHeader, BITMAPINFOHEADER struct

ChangeModeToPal
bool ChangeModeToPal(const TPalette& pal);
Converts the existing color table in place to use palette relative values. The palette that is
passed is used as a reference. Returns true if the call is successful; otherwise returns
false.

See also TDib::ChangeModeToRGB, TPalette::GetPaletteEntry

ChangeModeToRGB
bool ChangeModeToRGB(const TPalette& pal);

170 ObjectWindows Reference Guide

TDib class

Converts the existing color table in place to use absolute RGB values. The palette that is
passed is used as a reference. Returns true if the call is successful; otherwise returns
false.

See also TDib::ChangeModetoPal, TPalette::GetPaletteEntry

FindColor
int FindColor(TColor color);
Returns the palette entry for the given color.

See also TDib::GetColor, TColor, TDib::SetColor, TDib::MapColor

Find Index
int Findlndex(uint16 index);
Returns the palette entry corresponding to the given index.

See also TDib::Getlndex, TDib::Setlndex, TDib::Maplndex

Get Bits
cons! void HUGE* GetBits() cons!;
void HUGE* Ge!Bits();
Returns the Bits data member for this DIB.

See also TDib::Bits

GetColor
TColor Ge!Color(int entry) cons!;
Returns the color for the given palette entry.

See also TDib::SetColor, TColor, TDib::FindColor, TDib::MapColor

GetColors
cons! TRgbQuad far* GetColors() cons!;
TRgbQuad far* GetColors();
Returns the bmiColors value of this DIB.

See also TRgbQuad

Getlndex
uint16 Getlndex(int entry) cons!;
Returns the color index for the given palette entry.

See also TDib::Setlndex, TDib::Findlndex,, TDib::Maplndex

Getlndices
cons! uint16 far* Gellndices() cons!;
uint16 far* Gellndices();
Returns the bmiColors indexes of this DIB.

See also TDib::GetColors

Getlnfo
cons! BITMAPINFO far* Getlnfo() cons!;
BITMAPINFO far* Getlnfo();

Chapter 2, ObjectWindows library reference 171

TDib class

Returns this DIB's Info field. A DIB's BITMAPINFO structure contains information about
the dimensions and color of the DIB and specifies an array of data types that define the
colors in the bitmap.

See also TDib::Info, TDib::GetlnfoHeader

GetlnfoHeader
canst BITMAPINFOHEADER far* GetlnfoHeader() canst;
BITMAPINFOHEADER far* GetlnfoHeader();
Returns this DIB's bmiHeader field of the BITMAPINFO structure contains information
about the color and dimensions of this DIB.

See also TDib::lnfo, TDib::Getlnfo, BITMAPINFOHEADER struct

operator HANDLE()
operator HANDLE() canst;
Typecasts this DIB by returning its Handle.

See also TGdiObject::Handle

Height
int Height() canst;
Returns H, this DIB's height.

See also TDib::Info

lsOK
bool lsOK() const;
Returns false if Info is 0, otherwise returns true. If there is a problem with the
construction of the DIB, memory is freed and Info is set to 0. Therefore, using Info is a
reliable way to determine if the DIB is constructed correctly.

See also TDib constructors, TDib::Info

lsPM
bool lsPM() canst;
Returns true if IsCore is true; that is, if the DIB is an old-style PM DIB using core headers.
Otherwise returns false.

See also TDib::IsCore

MapColor
int MapColor(TColor fromColor, TColor toColor, bool doAll =false);
Maps the from Color to the toColor in the current palette of this DIB.

Returns the palette entry for the given color. Returns the palette entry for the toColor
argument.

See also TDib::GetColor, TColor, TDib::SetColor, TDib::FindColor

Maplndex
int Maplndex(uint16 fromlndex, Word tolndex, bool doAll =false);
Maps the fromindex to the to Index in the current palette of this DIB.

Returns the palette entry for the toindex argument.

172 0 bje ctWi n dows Reference Guide

See also TDib::Findlndex, TDib::Setlndex, TDib::Getlndex

MapUIColors
void MapUIColors(uint mapColors, TColor* bkColor = O)

TDib class

Maps the UI colors to the value specified in the parameter, mapColors, which is one of the
values of the Map enum. Use this function to get the colors for the face shading on
pushbuttons, the highlighting for a selected control button, the text on pushbuttons, the
shade of the window frame and the background color.

See also TDib::Map enum

NumColors
long NumColors() canst;
Returns NumClrs, the number of colors in this DIB's palette.

See also TDib::Info

NumScans
uint16 NumScans() cons!;
Returns the number of scans in this DIB.

See also TDib::StartScan

operator«
TClipboard& operator «(TClipboard& clipboard, TDib& dib);
Writes the given dib to the given clipboard. Returns a reference to the resulting Clipboard,
allowing the normal chaining of<<.

See also TClipboard

operator==
bool operator ==(const TDib& other) cons!;
Compares two handles and returns true if this DIB's handle equals the other (other)
DIB's handle.

See also Tdib::Handle

SetColor
void SetColor(int entry, TColor color);
Sets the given color for the given palette entry.

See also TDib::GetColor, TColor, TDib::MapColor, TDib::FindColor

Setlndex
void Setlndex(int entry, uint16 index);
Sets the given index for the given entry.

See also TDib::Getlndex, TDib::Findlndex, TDib::Maplndex

Size
TSize Size() canst;
Returns TSize(W,H), the size of this DIB.

See also TDib::Info, TSize

Ch apter 2, 0 b j e c I Windows Ii bra r y reference 173

TDib class

StartScan
uint16 StartScan() cons!;
Returns the DIB's starting scan line.

See also TDib::numScans

ToClipboard
void ToClipboard(TClipboard& clipboard);
Puts this DIB onto the specified Clipboard.

See also TClipboard

operator TRgbQuad()
operator cons! TRgbQuad far*() cons!;
operator TRgbQuad far*() cons!;
Typecasts this DIB by returning a pointer to its colors structure.

See also TDib::GetColors, TRgbQuad

Usage
uint16 Usage() cons!;
Returns the Mode for this DIB. This value tells GD I how to treat the color table.

See also TDib::Mode

Width
int Width() cons!;
Returns W, the DIB width.

See also TDib::Info

Write File
bool WriteFile(const char* filename);
Returns true if the call is successful; otherwise returns false.

Protected data members

Bits
void HUGE* Bits;
Bits points into the block of memory pointed to by Info.

See also TDib::GetBits

H
int H;
The height of this DIB in pixels.

See also TDib::Height, TDib::Size, TDib::NumScans

Info
BITMAPINFO far* Info;
Locked global allocated block.

See also TDib::Getlnfo

174 ObjectWindows Reference Guide

lsCore
bool lsCore;

TDib class

Set true if this DIB is an old-style PM DIB using core headers; otherwise, set false.

See also TDib::isPM

lsResHandle
bool lsResHandle;
Set true if this DIB is using a resource handle; otherwise, set false.

Mode
uint16 Mode;
If Mode is DIB_RGB_Colors, the color table contains 4-byte RGB entries. If Mode is
D IB _PAL_ COLORS, the color table contains 2-byte indexes into some other palette (such
as the system palette). Because either of these two cases might exist, two versions of
certain functions (such as GetColors and Getlndices) are required.

See also TDib::GetColors, TDib::Getlndices, TDib::Usage

NumClrs
long NumClrs;
The number of colors associated with this DIB.

See also TDib::NumColors

w
intW;
The width of this DIB in pixels.

See also TDib::Width, TDib::Size

Protected member functions
lnfoFromHandle
void lnfoFromHandle();
Locks this DIB's handle and extracts the remaining data member values from the DIB
header.

See also TDib::GetlnfoHeader

Load File
bool LoadFile(const char* name);
Loads this DIB from the given file name. Returns true if the call is successful; otherwise
returns false.

See also TDib::LoadResource, TDib constructors

Load Resource
bool LoadResource(HINSTANCE instance, TReslD reslD);
Loads this DIB from the given resource and returns true if successful.

See also TDib::LoadFile, TDib constructors

Chapter 2, ObjectWindows library reference 175

TDibDC Class

Read
bool Read(TFile& file, long offBits = O);
Reads data to this DIB, starting at offset of!Bits, from any file, BMP, or resource. Returns
true if the call is successful; otherwise returns false.

See also TDib::LoadFile

TDibDC Class dc.h

A DC class derived from TDC, TDibDC provides access to device-independent bitmaps
(DIBs).

Public constructors
Constructor
TDibDC(const TDib& dib);
Creates a TDibDC object with the data provided by the given TDib object.

See also classTDib, TDC::TDC

TDocManager class docmanag.h

TDoi::Manager creates a document manager object that manages the list of current
documents and registered templates, handles standard file menu commands, and
displays the user-interface for file and view selection boxes. To provide support for
documents and views, an instance of TDocManager must be created by the application
and attached to the application.

The document manager normally handles events on behalf of the documents by using a
response table to process the standard CM_FILENEW, CM_FILEOPEN,
CM_FILECLOSE, CM_FILESA VE, CM_FILESA YEAS, CM_FILEREVERT,
CM_FILEPRINT, CM_FILEPRINTERSETUP, and CM_ VIEWCREATE. and
CM_ VIEWCREATE File menu commands. In response to a CM_FILENEW or a
CM_FILEOPEN command, the document manager creates the appropriate document
based on the user's selections. In response to the other commands, the document
manager determines which of the open documents contains the view associated with
the window that has focus. The menu commands are first sent to the window that is in
focus and then through the parent window chain to the main window and finally to the
application, which forwards the commands to the document manager.

When you create a TDocManager or a derived class, you must specify that it has either a
multi-document (dmMDI) or single-document (dmSDI) interface. In addition, if you
want the document manager to handle the standard file commands, you must OR
dmMDI or dmSDI with dmMenu.

You can also enable or disable the document manager menu options by passing
dmSaveEnable or dmNoRevert in the constructor. If you want to enable the File I Save
menu option if the document is unmodified, pass the dmSaveEnable flag in the

176 0 bjectWi n d ows Reference Guide

TDocManager class

constructor. To disable the "Revert to Saved" menu option, pass dmNoRevert in the
constructor.

When the application directly creates a new document and view, it can attach the view
to its frame window, create MDI children, float the window, or create a splitter.
However, when the document manager creates a new document and view from the
File I Open or File I New menu selection, the application doesn't control the process. To
give the application control, the document manager sends messages after the new
document and view are successfully created. Then, the application can use the
information contained in the template to determine how to install the new document or
view object.

Public constructor and destructor
Constructors

Form 1 TDocManager(int mode, TDocTemplate*& templateHead = DocTemplateStaticHead);
Constructs a TDocManager object that supports either single (SDI) or multiple (MDI)
open documents depending on the application. mode is set to either dmMenu, dmMDI,
dmSDI, dmSaveEnable, or dmNoRevert. To install the standard TDocManager File menu
commands, you must OR dmMDI or dmSDI with dmMenu. For example,

DocManager =new TDocManager(DocMode I dmMenu);

The document manager can then use its menu and response table to handle these
events. If you do not specify the dmMenu parameter, you must provide the menu and
functions to handle these commands. However, you can still use your application
object's DocManager data member to access the document manager's functions.

Form 2 TDocManager(int mode, TApplication* app, TDocTemplate*& templateHead = DocTemplateStaticHead);
The constructor performs the same operations as the first constructor. The additional
app parameter, however, points to the application associated with this document.

Destructor
virtual ~ TDocManager();
Destroys a TDocManager object removes attached documents templates. The constructor
resets TDocTemplate::DocTemplateStaticHead so that it points to the head of the static
template list.

See also dmxxxx document manager mode constants

Public data members
Doc list
TDocument::List Doclist;
Holds the list of attached documents or 0 if no documents exist.

Public member functions
Attach Template
void AttachTemplate(TDocTemplate&);

Chapter 2, ObjectWindows library reference 177

TDocManager class

Inserts a template into the chain of templates.

CmFileClose
virtual void CmFileClose(); ,
Responds to a file close message. Tests to see if the document has been changed since it
was last saved, and if not, prompts the user to confirm the save operation.

CmFileNew
virtual void CmFileNew();
Calls CreateAnyDoc with no path specified.

See also TDocManager::Crea~eAnyDoc, dtxxxx document template constants

CmFileOpen
virtual void CrnFileOpen();
Lets the user select a registered template from the list displayed in the dialog box. Calls
CreateAnyDoc.

See also TDocManager::CreateAnyDoc

CmFileRevert
virtual void CmFileRevert();
Reverts to the previously saved document. Does not revert if the document has not been
changed since last save; that is, if the document's IsDirty function returns false.

CmFileSave
virtual void CmFileSave();
Responds to a file save message. Sets doc to the current document. CmFileSave checks
IsDirty only if the dmSaveEnable flag was not specified. Calls PostDocError with
IDS_NOTCHANGED if dmSaveE:nable was NOT specified and IsDirty returns false.

See also IDS_xxxx Document String ID constants

CmFileSaveAs
virtual void CmFileSaveAs();
Prompts the user to enter a new name for the document and saves the document to that
file.

CmViewCreate
virtual void CmViewCreate();
Creates a document view based on the view name of the current document. If more than
one template exists for the document, Cm ViewCreateallows the user to select the fype of
view from the template list.

CreateAnyDoc
virtaul TDocument* CreateAnyDoc(const char far'* path, long flags= O);
Creates a document based on the directory path and the specified template.flags, one of
the document template constants, determines how the document template is created. If
path is 0 and this is not a new document (the flag dtNewDoc is not set), it displays a
dialog box. If path is 0, dtNewDoc is not set, and more than one template exists, it
displays a dialog box and a list of templates.

See also TDocTemplate::CreateDoc, dtxxxx document template constants

178 ObjectWindows Reference Guide

TDocManager class

CreateAnyView
virtual TView* CreateAnyView(TDocument& doc, long flags= O);
Creates a document view based on the directory path and specified template. flags, one
of the document template constants, determines how the document template is created.

See also TDocument, TDocTemplate::CreateView, dtxxxx document templateconstants

Create Doc
TDocument* CreateDoc(TDocTemplate* tpl, canst char far*, TDocument* parent, long flags= O);
CreateDoc creates a document based on the directory path and the specified template.
flags contains one of the document template constants that determines how the
documentis created.

See also TDocument, TDocTemplate::CreateView, dtxxxx document template constants

Create View
TView* CreateView(TDocument* doc);
Create View creates a view of the specified document.

See also TDocTemplate::CreateView, dtxxxx document template constants

Delete Template
void Delete Template(TDocTemplate&);
Removes a template from the list of templates attached to the document.

See also TDocManager::RefTemplate

EvCanClose
bool EvCanClose();
Checks to see if all child documents can be closed before closing the current document.
If any child returns false, returns false and aborts the process. If all children return true,
EvCanClose calls TDocManager::FlushDoc for each document. If FlushDoc finds that the
document is dirty, it displays a message asking the user to save the document, discard
any changes, or cancel the operation. If the document is not dirty and EvCanClose
returns true, EvCanClose returns true.

See also TApplication::CanClose, TDocManager::FlushDoc

EvPreProcessMenu
void EvPreProcessMenu(HMENU hmenu);
Called from Main Window, EvPreProcessMenu loads and deletes a menu at the position
specified by MF _posITION or MF _poPUP. Your application can call EvPreProcessMenu
to process the main window's menu before it is displayed.

See also TApplication::PreProcessMenu

EvWakeUp
void EvWakeUp();
Used only after streaming in the doc manager, EvWakeUp allows for the windows to be
created after the streaming has occurred.

FindDocument
TDocTemplate* FindDocument(const char far* path);

Chapter 2, ObjectWindows library reference 179

TDocManager class

MatchDocument returns the first document whose pattern matches the given file name. If
no document is compatible with the supplied file name, or if the document is open
already, it returns 0. ·

See also TDocTemplate

Flush Doc
virtual bool FlushDoc(TDocument& doc);
Updates the document with any changes and prompts the user for confirmation of
updates. ·

See also TDocument

GetApplication
TApplication* GetApplication();
Returns the current application.

See also TApplication

GetCurrentDoc
virtual TDocument* GetCurrentDoc();
Calls TWindow::GetFocus to determine the window with the focus. Searches the list of
documents and returns the document that contains the view with the focus. Returns 0 if
no document has a view with focus.

See also TDocument

GetNextTemplate
TDocTemplate* GetNextTemplate(TDocTemplate* tpl);
Returns the next document template.

See also TDocTemplate

lnitDoc
TDocument* lnitDoc(TDocument* doc, const char far* path, long flags)
Initializes the documents, directory path for the document, and dtXXXX document flag
values (such as dtNewDoc) used to create document templates.

See also TDocTemplate, dt Documentview Constants

ls Flag Set
bool lsFlagSetOnt Flag);
Returns true if the dtXXXX document template constant specified in Flag is set.

See also dt Documentview Constants

Match Template
TDocTemplate* MatchTemplate(const char far* path);
MatchTemplate returns the first registered template whose pattern matches the given file
name. If no template is compatible with the supplied file name, or if the template is open
already, it returns 0.

See also TDocTemplate

180 0 b j e c I Windows Reference G u id e

TDocManager class

PostDocError
virtual uint PostDocError(TDocument& doc, uint sid, uint choice= MB_OK);
Displays a message box with the error message passed as a string resource ID in sid. By
default, the message box contains either an OK pushbutton or a question mark icon. If
an error message can't be found, PostDocError displays a "Message not found" message.
choice can be one or more of the MB_Xxxx message style constants. This function can be
overridden.

See also TDocument::PostError, MB_Xxxx Message Constants

PostEvent
Form 1 virtual void PostEvent(int id, TDocument& doc);

If the current document changes, posts a WM_OWLDOCUMENT message to indicate a
change in the status of the document.

Form 2 virtual void PostEvent(int id, TView& view);
If the current view changes, posts a WM_OWL VIEW message to indicate a change in
the status of the view.

See also TDocument, TView

RefTemplate
void RefTemplate(TDocTemplate&);
Adds a template to the list of templates attached to the document.

See also TDocManager::UnRefTemplate, TDocTemplate

SelectAnySave
virtual TDocTemplate* SelectAnySave(TDocument& doc, bool samedoc =true);
Selects a registered template to save with this document.

See also TDocTemplate, TDocument

SelectSave
bool SelectSave(TDocument& doc);
Prompts the user to select a file name for the document. Filters out read-only files.

See also TDocTemplate::SelectSave

UnRefTemplate
void UnRefTemplate(TDocTemplate&);
Removes a template to the list of templates attached to the document.

See also TDocManager::RefTemplate, TDocTemplate

Protected member functions
SelectDocPath
virtual int SelectDocPath(TDocTemplate** tpllist, int tplcount, char far* path, int buflen, long flags,

bool save=false);
Prompts the user to select one of the templates to use for the file to be opened. Returns
the template index used for the selection or 0 if unsuccessful. For a file open operation,

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 181

TDocument class

save is false. For a file save operation, save is true. This function can be overridden to
provide a customized user-interface.

See also TDocTemplate

SelectDoc Type
virtual int SelectDocType(TDocTemplate** tpllist, int tplcount);
SelectDocType, which can be overridden, lets the user select a document type from a list
of document templates. Returns the template index used for the selection or 0 if
unsuccessful.

See also TDocTemplate

SelectViewType
virtual int SelectViewType(TDocTemplate** tpllist, int tplcount);
Select View Type, which can be overridden, lets the user select a view name for a new view
from a list of view names. Returns the template index used for the selection or 0 if
unsuccessful.

See also TDocTemplate

Response table entries

EV_ COMMAND(CM_FILECLOSE, CmFileC!ose)

EV _COMMAND(CM_FILENEW, CmFileNew)

EV_ COMMAND(CM_FILEOPEN, CmFileOpen)

EV_ COMMAND(CM_FILEREVERT, CmFileRevert)

EV_ COMMAND(CM_FILESA VE, CmFileSave)

EV_ COMMAND(CM_FILESA VEAS, CmFileSaveAs)

EV_ COMMAND(CM_ VIEWCREA TE, Cm ViewCreate)

EV_ COMMAND _ENABLE(CM_FILECLOSE, CmEnableC!ose)

EV _COMMAND _ENABLE(CM_FILENEW, CrnEnableNew)

EV_ COMMAND _ENABLE(CM_FILEOPEN, CmEnableOpen)

EV_ COMMAND _ENABLE(CM_FILEREVERT, CmEnableRevert)

EV_ COMMAND _ENABLE(CM_FILESA VE, CmEnableSave)

EV_COMMAND_ENABLE(CM_FILESAVEAS,CmEnableSaveAs)

EV_ COMMAND _ENABLE(CM_ VIEW CREATE, CmEnableCreate)

EV_WM_CANCLOSE

EV _WM_PREPROCMENU

EV _WM_ WAKEUP

TDocument class

CmFileClose

CmFileNew

CmFileOpen

CmFileRevert

CmFileSave

CmFileSaveAs

Cm ViewCreate

CmEnableClose

CmEnableNew

CmEnableOpen

EmEnableRevert

CmEnableSave

CmEnableSaveAs

CmEnableCreate

EvCanClose

EvPreProcessMenu

EvWakeUp

docview.h

An abstract base class, TDocument is the base class for all document objects and serves
as an interface between the document, its views, and the document manager

182 0 bj e c!Wi n d ows R efe re n c e Guide

TDocument class

(TDocManager class). TDocument creates, destroys, and sends messages about the view.
For example, if the user changes a document, TDocument tells the view that the
document has been updated. The DEFINE_DOC_TEMPLATE_CLASS macro associates
a document with its views.

In order to send messages to its associated views, the document maintains a list of all the
views existing for that document and communicates with the views using
ObjectWindows event-handling mechanism. Rather than using the function
SendMessage, the document accesses the view's event table. The views can update the
document's data by calling the member functions of the particular document. Views can
also request streams, which are constructed by the document.

Both documents and views have lists of properties for their applications to use. When
documents and views are created or destroyed, messages are sent to the application,
which can then query the properties to determine how to process the document or view.
It is the document manager's responsibility to determine if a particular view is
appropriate for the given document.

Because the property attribute functions are virtual, a derived class (which is called first)
might override the properties defined in a base class. Each derived class must
implement its own property attribute types of either string or binary data. If the derived
class duplicates the property names of the parent class, it should provide the same
behavior and data type as the parent.

In order to add persistence to documents, TDocument contains several virtual functions
(for example, InStream and OutStream) that support streaming. Your derived classes
need to override these functions in order to read and write data.

Although documents are usually associated with files, they do not necessarily have to
be files; they can also consist of database tables, mail systems, fax or modem
transmissions, disk directories, and so on.

Public data members

Child Doc
List ChildDoc;
The list of child documents associated with this document.

Tag
void far* Tag;
Tag holds a pointer to the application-defined data. Typically, you can use Tag to install
a pointer to your own application's associated data structure. Tag, which is initialized to
0 at the time a TDocument is constructed, is not used otherwise by the document view
classes.

Type definition

TDocProp
enum TDocProp{ PrevProperty = 0, DocumentClass, TemplateName, ViewCount, StoragePath, DocTitle,

NextProperty, };

Chapter 2, 0 bj ectWi n d ows Ii brary reference 183

TDocument class

These property values, defined for TDocument, are available in classes derived from
TDocument. PrevProperty and NextProperty are delimiters for every document's
property list.

Public constructor and destructor
Constructor
TDocument(TDocument* parent= O);
Although you don't create a TDocument object directly, you must call the constructor
when you create a derived class. parent points to the parent of the new document. If no
parent exists, parent is 0.

Destructor
virtual~ TDocument();
Deletes a TDocument object. Normally, Close is called first. TDocument's destructor
destroys all children and closes all open streams. If this is the last document that used
the template, it closes the object's template and any associated views, deletes the object's
stream, and removes itself from the parent's list of children if a parent exists. If there is
no parent, it removes itself from the document manager's document list. .
See also TDocument::Close

Public member functions

CanClose
virtual bool CanClose();
Checks to see if all child documents can be closed before closing the current document.
If any child returns false, CanClose returns false and aborts the process. If all children
return true, calls TDocManager::FlushDoc. If FlushDoc finds that the document has been
changed but not saved, it displays a message asking the user to either save the
document, discard any changes, or cancel the operation. If the document has not been
changed and all children's CanClose functions return true, this CanClose function returns
true.

See also TDocManager::FlushDoc

Close
virtual bool Close();
Closes the document but does not delete or detach the document. Before closing the
document, Close checks any child documents and tries to close them before closing the
parent document. Even if you write your own Close function, call TDocument's version
so that all child documents are checked before the parent document is closed.

Commit
virtual bool Commit(bool force = false);
Saves the current data to storage. When a file is closed, the document manager calls
either Commit or Revert. If force is true, all data is written to storage. TDocument's Commit
checks any child documents and commits their changes to storage also. Before the
current data is saved, all child documents must return true. If all child documents return

184 0 b j e c I Windows Reference G u id e

TDocument class

true, Commit flushes the views for operations that occurred since the last time the view
was checked. Once all data for the document is updated and saved, Commit returns true.

See also TDocument::Revert

Find Property
virtual int FindProperty(const char far* name);
Gets the property index, given the property name (name). Returns the integer index
number that corresponds to the name or 0 if the name isn't found in the list of
properties.

See also pfxxxx property attribute constants, TDocument::PropertyName

GetDocManager
TDocManager& GetDocManager();
Returns a pointer to the current document manager.

GetDocPath
cons! char far* GetDocPath();
Returns the directory path for the document. This might change the SaveAs operation.

GetOpenMode
int GetOpenMode;
Gets the mode and protection flag values for the current document.

See also TDocument::SetOpenMode

GetParentDoc
TDocument* GetParentDoc():
Returns the parent document of the current document or 0 if there is no parent
document.

GetProperty
virtual int GetProperty(int index, void far* dest, int textlen=O);
Returns the total number of properties for this document where index is the property
index, dest contains the property data, and textlen is the size of the array. If textlen is 0,
property data is returned as binary data; otherwise, property data is returned as text
data.

See also pfxxxx property attribute constants, TDocument::SetProperty

GetTemplate
TDocTemplate* Ge!Template();
Gets the template used for document creation. The template can be changed during a
SaveAs operation.

GetTitle
CONST CHAR FAR* Ge!Title();
Returns the title of the document.

HasFocus
bool HasFocus(HWND hwnd);

Chapter 2, ObjectWindows library reference 185

TDocument class

Used by the document manager, HasFocus returns true if this document's view has
focus. hwnd is a handle to the document to determine if the document contains a view
with a focus.

The view associated with this document is the active view.

lnitDoc
virtual bool lni!Doc();
TDocument's InitDoc is a virtual method that is overridden by TOleDocument's InitDoc.

You can use this function to prepare the document before the dnCreate event, which
indicates that the document has been created, is posted and before the view is
constructed.

See also TOleDocument::InitDoc, dnxxxx document message enum

In Stream
virtual TlnStream* lnStream(int mode, canst char far* strmld=O);
Generic input for the particular storage medium, InStream returns a pointer to a
TinStream. mode is a combination of the ios bits defined in iostream.h. See the document
open mode constants for a list of the open modes. Used for documents that support
named streams, strmld is a pointer to the name of a stream. Override this function to
provide streaming for your document class.

See also TDocument::OutStream

lsDirty
virtual bool lsDirty();
Returns true if the document or one of its views has changed but has not been saved.

lsEmbedded
virtual bool lsEmbedded();
Returns true if the document is embedded in an OLE2 container.

See also TDocument::SetEmbedded

ls Open
virtual bool lsOpen();
Checks to see if the document has any streams in its stream list. Returns false if no
streams are open; otherwise, returns true.

NextStream
TStream* NextStream(const TStream* strm);
Gets the next entry in the stream. Holds 0 if none exists.

NextView
TView* NextView(const TView* view);
Gets the next view in the list of views. Holds 0 if none exists.

NotifyViews
bool NotifyViews(int event, long item=O, TView* exclude=O);
Notifies the views of the current document and the views of any child documents of a
change, In contrast to Query Views, Notify Views sends notification of an event to all views
and returns true if any views returned a true result. The event, EV _OWLNOTIFY, is

186 ObjectWindows Reference Guide

TDocument class

sent with an event code, which is private to the particular document and view class, and
a long argument, which can be cast appropriately to the actual type passed in the
argument of the response function.

See also TDocument::QueryViews

Open
virtual bool Open(int mode, cons! char far* path = O);
Opens the document using the path specified by DocPath. Sets OpenMode to mode.
TDocument's version always returns true and actually performs no actions. Other classes
override this function to open specified file documents and views.

See also TFileDocument::Open

OutStream
virtual TOutStream* OutStream(int mode, cons! char far* strmld = O);
Generic output for the particular storage medium, OutStream returns a pointer to a
TOutStream. mode is a combination of the ios bits defined in iostream.h. Used for
documents that support named streams, strmid points to the name of the stream.
TDocument's version always returns 0. Override this function to provide streaming for
your document class.

See also TDocument::InStream

PostError
virtual uint PostError(uint sid, uint choice = MB_ OK);
Posts the error message passed as a string resource ID in sid. choice is one or more of the
MB_Xxxx style constants.

See also TDocManager::PostDocError, MB_Xxxx message constants

PropertyCount
virtual int PropertyCount();
Gets the total number of properties for the TDocument object. Returns NextProperty-1.

See also pfxxxx property attribute constants

PropertyFlags
virtual int PropertyFlags(int index);
Returns the attributes of a specified property given the index (index) of the property
whose attributes you want to retrieve.

See also pfxxxx property attribute constants, TDocument::FindProperty,
TDocument::PropertyName

PropertyName
virtual cons! char* PropertyName(int index);
Returns the name of the property given the index value (index).

See also pfxxxx property attribute constants, TDocument::FindProperty

QueryViews
TView* QueryViews(int event, long item=O, TView* exclude=O);

Ch a p I er 2, 0 b j e c I Windows Ii bra r y reference 187

TDocument class

Queries the views of the current document and the views of any child documents about
a specified event, but stops at the first view that returns true, In contrast to Notify Views,
Query Views returns a pointer to the first view that responded to an event with a true
result. The event, EV _OWLNOTIFY, is sent with an event code (which is private to the
particular document and view class) and a long argument (which can be cast
appropriately to the actual type passed in the argument of the response function).

See also TDocument::NotifyViews

Revert
virtual bool Revert(bool clear =false);
Performs the reverse of Commit and cancels any changes made to the document since
the last commit. If clear is true, data is not reloaded for views. Revert also checks all child
documents and cancels any changes if all children return true. When a file is closed, the
document manager calls either Commit or Revert. Returns true if the operation is
successful.

See also TDocument::Commit

RootDocument
virtual TDocument& RootDocument();
Returns the this pointer as the root document.

SetDocManager
void SetDocManager(TDocManager& dm);
Sets the current document manager to the argument dm.

Set Doc Path
virtual bool SetDocPath(const char far* path);
Sets the document path for Open and Save operations.

SetEmbedded
virtual bool SetEmbedded();
SetEmbedded marks the document as being embedded in an OLE2 container. Typically,
this happens when the server is created and when the factory template class create the
component.

See also TDocument::lsEmbedded

SetOpenMode
void SetOpenMode(int mode);
Sets the mode and protection flag values for the current document.

See also TDocument::GetOpenMode

SetProperty
virtual boo I SetProperty(int index, const void far* src);
Sets the value of the property, given index, the index value of the property, and src, the
data type (either binary or text) to which the property must be set.

See also pfxxxx property attribute constants, TDocument::GetProperty

188 Objec!Windows Reference Guide

TDocument::List class

SetTemplate
bool Se!Template(TDocTemplate* tpl);
Sets the document template. However, if the template type is incompatible with the file,
the document manager will refuse to save the file as this template type.

Set Title
virtual void SetTitle(const char far* title);
Sets the title of the document.

Protected data members

DirtyFlag
bool DirtyFlag;
Indicates that unsaved changes have been made to the document. Views can also
independently maintain their local disk status.

Embedded
bool Embedded;
Indicates whether the document is embedded.

Protected member functions

Attach Stream
virtual void AttachStream(TStream& strm);
Called from TStream's constructor, AttachStream attaches a stream to the current
document.

DetachStream
virtual void DetachStream(TStream& strm);
Called from TStream's destructor, DetachStream detaches the stream from the current
document.

TDocument::List class docview.h

The TDocument::List nested class encapsulates the chain of documents. It allows
addition, removal, and destruction of documents from the document list.

Public constructor and destructor

Constructor
List();
Constructs a TDocument::List object.

Destructor
Nlist();
Destroys the TDocument::List object.

C h a p t e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e f e r e n c e 189

TEdgeConstraint struct

Public member functions .

Destroy
void Destroy();
Deletes all documents.

Insert
bool lnsert(TDocument* doc);
Inserts a new document into the document list. Fails if the document already exists.

Next
TDocument* Next(const TDocument* doc);
If the doc parameter is 0, Next returns the first document in the list of documents.

Remove
bool Remove(TDocument* doc);
Removes a document from the document list.

TEdgeConstraint struct layoutco.h

TEdgeConstraint adds member functions that set edge (but not size) constraints.
TEdgeConstraint always places your window one pixel above the other window and
then adds margins.

For example, if the margin is 4, TEdgeConstraint places your window 5 pixels above the
other window. The margin, which does not need to be measured in pixels, is defined
using the units specified by the constraint. Therefore, if the margin is specified as 8
layout units (which are then converted to 12 pixels), your window would be placed 13
pixels above the other window.

See also
TLayoutConstraint struct, TEdgeOrSizeConstraint struct, TLayoutWindow (layout
constraints example)

Public member functions

Above
void Above (TWindow *sibling, int margin = 0)
Positions your window above a sibling window. You must specify the sibling window
and an optional margin between the two windows. If no margin is specified, Above sets
the bottom of one window one pixel above the top of the other window.

See also TEdgeConstraint::Below

Absolute
void Absolute (TEdge edge, int value)
Sets an edge of your window to a fixed value.

See also TEdgeConstraint::PercentOf, TEdgeOrSizeConstraint::Absolute

190 0 b j e ct Windows Reference Guide

TEdgeOrSizeConstraint struct

Below
void Below(TWindow *sibling, int margin = O);
Positions your window with respect to a sibling window. You must specify the sibling
window and an optional margin between the two windows. If no margin is specified,
Below sets the top of one window one pixel below the bottom of the other window.

See also TEdgeConstraint::Above

Left Of
void LeftOf (TWindow *sibling, int margin = 0)
Positions one window with respect to a sibling window. You can specify the sibling
window and an optional margin between the two windows.

See also TEdgeConstraint::RightOf

PercentOf
void PercentOf (TWindow *otherWin, TEdge edge, int percent)
Specifies that the edge of one window indicated in edge should be a percentage of the
corresponding edge of another window (otherWin).

See also TEdgeConstraint::Absolute, TEdgeOrSizeConstraint::PercentOf

RightOf
void RightOf (lWindow *sibling, int margin = 0)
Positions one window with respect to a sibling window. You can specify the sibling
window and an optional margin between the two windows.

See also TEdgeConstraint::LeftOf

SameAs
void SameAs (TWindow *otherWin, TEdge edge)
Sets the edge of your window indicated by edge equivalent to the corresponding edge of
the window in other Win.

See also TEdgeConstraint::Set, TEdgeOrSizeConstraint::SameAs

Set
void Set(TEdge edge, TRelationship rel, lWindow *otherWin, TEdge otherEdge, int value = O);
Used for setting arbitrary edge constraints, Set specifies that your window's edge should
be of a specified relationship to other Win's specified edge.

See also TEdgeConstraint::SameAs

TEdgeOrSizeConstraint struct layoutco.h

Derived from TEdgeConstraint, TEdgeOrSizeConstraint is a template class that supports
size constraints in addition to all the operations that TEdgeConstraint provides. The
width or height is specified in the template instantiation of this class. There are two
versions of each member function: one sets both edge and size constraints; the other sets
only edge constraints.

Chapter 2, ObjectWindows library reference 191

TEdit class

Public member functions
Absolute

Form 1 void Absolute Ont value)
Sets the width or height of your window to a fixed value.

Form 2 void Absolute (TEdge edge, int value)
Used to determine edge constraints only, Absolute sets the edge of your window to a
fixed value.

See also TEdgeConstraint::Absolute

PercentOf
Form 1 void PercentOf (TWindow *otherWin, int percent, TWidthHeight otherWidthHeight = widthOrHeight)

Although a window's width or height defaults to being a percentage of the sibling or
parent window's corresponding dimension, it can also be a percentage of the sibling or
parent's opposite dimension. For example, one window's width can be 50% of the
parent window's height.

Form 2 void PercentOf (TWindow *otherWin, TEdge edge, int percent)
Used to determine edge constraints only, PercentOf specifies that the edge of one
window indicated in edge should be a percentage of the corresponding edge of another
window (otherWin.

See also TEdgeOrSizeConstraint::Absolute, TEdgeConstraint::PercentOf

SameAs
Form 1 void SameAs (TWindow *otherWin, TWidthHeight otherWidthHeight = widthOrHeight, int value = 0)

Although a window's width or height defaults to being the same as the sibling or parent
window's corresponding dimension, it can be the same of the sibling's or parent's
opposite dimension. For example, one window's width can be the same as the parent
window's height.

Form 2 void SameAs (TWindow *otherWin, TEdge edge)
Used to determine edge constraints only, SameAs sets the edge of one window the same
as the corresponding edge of the other window specified in other Win.

See also TEdgeOrSizeConstraint::PercentOf, TEdgeConstraint::SameAs

TEdit class edit.h

A TEdit is an interface object that represents an edit control interface element. A TEdit
object must be used to create an edit control in a parent TWindow. A TEdit can be used to
facilitate communication between your application and the edit controls of a TDialog.
This class is streamable.

There are two styles of edit control objects: single-line and multiline. Multiline edit
controls allow editing of multiple lines of text.

The position of the first character in an edit control is zero. For a multiline edit control,
the position numbers continue sequentially from line to line; line breaks count as two
characters.

192 ObjectWindows Reference Guide

TEdit class

Most of TEdit's member functions manage the edit control's text. TEdit also includes
some automatic member response functions that respond to selections from the edit
control's parent window menu, including cut, copy, and paste. Two important member
functions inherited from TEdit's base class (TStatic) are GetText and SetText.

Public constructors
Constructors

Form 1 TEdit(TWindow* parent, int Id, const char far *text, int x, int y, int w, int h, uint textlen = 0, bool multiline =false,
TModule* module = O);

Constructs an edit control object with a parent window (parent). Sets the creation
attributes of the edit control and fills its Attr data members with the specified control ID
(Id), position (x, y) relative to the origin of the parent window's client area, width (w),
and height (h).

If text buffer length (textLen) is 0 or 1, there is no explicit limit to the number of
characters that can be entered. Otherwise textLen - 1 characters can be entered. By
default, initial text (text) in the edit control is left-justified nd the edit control has a
border. Multiline edit controls have horizontal and vertical scroll bars.

Form 2 TEdit(TWindow* parent, int resourcelD, uint textlen = 0, TModule* module= O);
Constructs a TEdit object to be associated with an edit control of a TDialog. Invokes the
TStatic constructor with identical parameters. The resourceID parameter must
correspond to an edit resource that you define. Enables the data transfer mechanism by
calling EnableTransfer.

See also TStatic::TStatic

Public member functions
Can Undo
bool CanUndo();
Returns true if it is possible to undo the last edit.

See also TEdit::Undo

Clear
void Clear();
Overrides TStatic 's virtual member function and clears all text.

ClearModify
void ClearModify();
Resets the change flag of the edit control causing IsModified to return false. The flag is set
when text is modified.

See also TEdit::IsModified

Copy
void Copy();
Copies the currently selected text into the Clipboard.

Chapter 2, ObjectWindows library reference 193

TEdit class

Cut
void Cut();
Deletes the currently selected text and copies it into the Clipboard.

Deleteline
bool DeleteLine(int lineNumber);
Deletes the text in the line specified by lineNumber in a multiline edit control. If -1
passed, deletes the current line. DeleteLine does not delete the line break and affects no
other lines. Returns true if successful. Returns false if lineNumber is not -1 and is out of
range or if an error occurs.

DeleteSelection
bool DeleteSeleclion();
Deletes the currently selected text, and returns false if no text is selected,.

DeleteSubText
bool DeleteSubText(uint startPos, uint endPos);
Deletes the text between the starting and ending positions specified by startPos and
endPos, respectively. DeleteSubText returns true if successful.

EmptyUndoBuffer
void EmptyUndoBuffer();
If an operation inside the edit control can be undone, the edit control undo flag is set.
EmptyUndoBuffer resets or clears this flag.

Formatlines
void Formatlines(bool addEOL);
Indicates if the end-of-line characters (carriage return, linefeed) are to be added or
removed from text lines that are wordwrapped in a multiline edit control. Returns true
if these characters are placed at the end of word wrapped lines or false if they are
removed.

GetFirstVisibleLine
int GetFirstVisibleline() cons!;
Indicates the topmost visible line in an edit control. For single-line edit controls, the
return value is 0. For multiline edit controls, the return value is the index of the topmost
visible line.

GetHandle
HLOCAL GetHandle() const;
Returns the data handle of the buffer that holds the contents of the control window.

This function is obsolete, and is not available under Presentation Manager.

See also TEdit::SetHandle

Getline
bool Getline(char far* sir, int strSize, int lineNumber);
Retrieves a line of text (whose line number is supplied) from the edit control and returns
it instr (NULL-terminated). strSize indicates how many characters to retrieve. GetLine
returns false if it is unable to retrieve the text or if the supplied buffer is too small.

194 ObjectWindows Reference Guide

See also TStatic::GetT ext, TEdit::GetNumLines, TEdit::GetLineLength

GetlineFromPos
int GetlineFromPos(uint charPos);

TEdit class

From a multiline edit control, returns the line number on which the character position
specified by char Pas occurs. If char Pas is greater than the position of the last character, the
number of the last line is returned. If charPos is -1, the number of the line that contains
the first selected character is returned. If there is no selection, the line containing the
caret is returned.

Getlinelndex
uint Getlinelndex(int lineNumber);
In a multiline edit control, GetLinelndex returns the number of characters that appear
before the line number specified by lineNumber. If lineNumber is -1, GetLinelndex returns
the number of the line that contains the caret is returned.

Getlinelength
int Getlinelength(int lineNumber);
From a multiline edit control, GetLineLength returns the number of characters in the line
specified by lineNumber. If it is -1, the following applies: if no text is selected,
GetLineLength returns the length of the line where the caret is positioned; if text is
selected on the line, GetLineLength returns the line length minus the number of selected
characters; if selected text spans more than one line, GetLineLength returns the length of
the lines minus the number of selected characters.

GetNumlines
int GetNumlines();
Returns the number of lines that have been entered in a multiline edit control: 1 if the
edit control has no text (if it has one line with no text in it), or 0 if there is no text or if an
error occurs.

GetPasswordChar
uint GetPasswordChar() cons!;
Returns the character to be displayed in place of a user-typed character. When the edit
control is created with the ES_PASSWORD style specified, the default display character
is an asterisk (*).

See also TEdit::SetPasswordChar

GetRect
void GetRect(TRect& frmtRect) const;
Gets the formatting rectangle of a multiline edit control.

See also TEdit::SetRect, TEdit::SetRectNP

GetSelection
void GetSelection(uint& startPos, uint& endPos);
Returns the starting (startPos) and ending (endPos) positions of the currently selected
text. By using GetSelection in conjunction with GetSubText, you can get the currently
selected text.

See also TEdit::GetSubText

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 195

TEdit class

GetSubText
void GetSubText(char far* str, uint startPos, uint endPos);
Retrieves the text in an edit control from indexes startPos to endPos and returns it instr.

See also TEdit::GetSelection

GetWordBreakProc
EDITWORDBREAKPROC GetWordBreakProc() const;
Retrieves the current wordwrap function. Returns the address of the wordwrap
function defined by the application or 0 if none exists.

See also TEdit::SetWordBreakProc

Insert
void lnsert(const char far* str);
Inserts the text supplied instr into the edit control at the current text insertion point
(cursor position), and replaces any currently selected text. Insert is similar to Paste, but
does not affect the Clipboard.

See also TEdit::Paste

lsModified
bool lsModified();
Returns true if the user has changed the text in the edit control.

See also TEdit::ClearModify

ls Valid
bool lsValid(bool reportErr = false);
Returns true if the contents of the edit control are valid. reportErr is false so that, by
default, Is Valid doesn't bring up a system or custom message box with an error string
created from the default string table.

LockBuffer
char far* LockBuffer(uint newsize=O);
Locks the edit control's buffer and returns a pointer to the buffer. Passing newsize greater
than 0 causes the buffer to be resized to newsize. You must call Unlock when you are
finished. ·

See also TEdit::UnLockBuffer

Paste
void Paste();
Inserts text from the Clipboard into the edit control at the current text insertion point
(cursor position).

See also TEdit::CMEditPaste

Scroll
void Scroll(int horizontalUnit, int verticalUnit);
Scrolls a multiline edit control horizontally and vertically using the numbers of
characters specified in horizontalUnit and verticalUnit. Positive values result in scrolling
to the right or down in the edit control, and negative values result in scrolling to the left
or up.

196 Obje.ctWindows Reference Guide

TEdit class

Search
int Search{uint startPos, const char far* text, bool caseSensitive=false, bool wholeWord=false, bool up=false);
Performs either a case-sensitive or case-insensitive search for the supplied text. If the
text is found, the matching text is selected, and Search returns the position of the
beginning of the matched text. If the text is not found in the edit control's text, Search
returns -1. If -1 is passed as start Pas, then the search starts from either the end or the
beginning of the currently selected text, depending on the search direction.

SetHandle
void SetHandle(HLOCAL localMem);
Sets a handle to the text buffer used to hold the contents of a multiline edit control.

This function is obsolete, and is not available under Presentation Manager.

See also TEdit::GetHandle

SetPasswordChar
void SetPasswordChar(uint ch);
SetPasswordChar sets the character to be displayed in place of a user-typed character.
When the ES_PASSWORD style is specified, the default display character is an asterisk
(*).

See also TEdit::GetPasswordChar

SetReadOnly
void SetReadOnly(bool readOnly);
Sets the edit control to be read-only or read-write.

SetRect
void SetRect(const TRect& frmtRect);
Sets the formatting rectangle for a multiline edit control.

See also TEdit::GetRect, TEdit::SetRectNP

SetRectNP
void SetRectNP(const TRect& frmtRect);
Sets the formatting rectangle for a multiline edit control. Unlike SetRect, SetRectNP does
not repaint the edit control.

See also TEdit::GetRect, TEdit::SetRect

SetSelection
bool SetSelection(uint startPos, uint endPos);
Forces the selection of the text between the positions specified by startPos and endPos,
but not including the character at endPos.

SetTabStops
void SetTabStops(int numTabs, const int far* tabs);
Sets the tab stop positions in a multiline edit control.

SetValidator
void SetValidator(lValidator* validator);
Establishes the validator object for the edit control.

Chapter 2, ObjectWindows library reference 197

TEdit class

SetWordBreakProc
void SetWordBreakProc(EDITWORDBREAKPROC proc);
In a multiline edit control, SetWordBreakProc indicates that an application-supplied
word-break function has replaced the default word-break function. The application­
supplied word-break function might break the words in the text buffer at a character
other than the default blank character.

See also TEdit::GetW ordBreakProc

Transfer
uint Transfer(void* buffer TTransferDirection direction);
Transfers information for TEdit controls and sends information to the Validator if one
exists, and if it has the transfer option set. Transfer can perform type conversion when
validators are in place, for example, when TRange Validator transfers integers. The return
value is the size (in bytes) of the transfer data.

Undo
void Undo();
Undoes the last edit.

See also TEdit::CanUndo, TEdit::CMEditUndo

UnlockBuffer
void UnlockBuffer(const char far* buffer, bool updateHandle=false);
Unlocks a locked edit control buffer. If the contents were changed, updateHandle should
be true.

See also TEdit::LockBuffer

ValidatorError
void ValidatorError();
Handles validation errors that occur as a result of validating the edit control.

Protected data member
Validator
TValidator* Validator;
Points to the validator object constructed in your derived class to validate input text. If
no validator exists, Validator is zero.

Protected member functions
CanClose
bool CanClose();
Checks to see if all child windows can be closed before closing the current window. If
any child window returns false, CanClose returns false and terminates the process. If all
child windows can be closed, CanClose returns true.

CmCharsEnable
void CmCharsEnable(TCommandEnabler& commandHandler);

198 ObjectWindows R.eference Guide

TEdit class

Determines whether the Clear menu item is enabled for the currently selected text.

CmEditClear
void CmEditClear();
Automatically responds to a menu selection with a menu ID of CM_EDITCLEAR by
calling Clear.

See also TStatic::Clear

CmEditCopy
void CmEditCopy();
Automatically responds to a menu selection with a menu ID of CM_EDITCOPY by
calling Copy.

See also TEdit::Copy

CmEditCut
void CmEdi!Cut();
Automatically responds to a menu selection with a menu ID of CM_EDITCUT by
calling Cut.

See also TEdit::Cut

CmEditDelete
void CmEditDelete();
Automatically responds to a menu selection with a menu ID of CM_EDITDELETE by
calling DeleteSelection.

See also TEdit::DeleteSelection

CmEditPaste
void CmEditPaste();
Automatically responds to a menu selection with a menu ID of CM_EDITP ASTE by
calling Paste.

See also TEdit::Paste

CmEditUndo
void CmEdi!Undo();
Automatically responds to a menu selection with a menu ID of CM_EDITUNDO by
calling Undo.

See also TEdit::Undo

Cm Mod Enable
void CmModEnable(TCommandEnabler& commandHandler);
Determines whether the Undo menu item is enabled for the selected text.

Cm Paste Enable
void CmPasteEnable(TCommandEnabler& commandHandler);
Determines whether the Paste menu item is enabled for the selected text.

CmSelectEnable
void CmSelectEnable(TCommandEnabler& commandHandler);

Chapter 2, ObjectWindows library reference 199

TEdit class

Determines whether the Cut, Copy, or Delete menu items are enabled for the selected
text.

ENErrSpace
void ENErrSpace();
Sounds a beep in response to an error notification message that is sent when the edit
control unsuccessfully attempts to allocate more memory.

EvChar
void EvChar(uint key, uint repeatCount, uint flags);
Validates the text entered into the edit control. If the input is incorrect, the original text is
restored. Otherwise, the validated and modified text is placed back into the edit control,
so the results of the auto-fill (if any) can be viewed. When Is Validlnput is called, the
SupressFill parameter defaults to False, so that the string can be modified.

EvGetDlgCode
uint EvGetDlgCode(MSG far* msg);
Responds to WM_GETDLGCODE messages that are sent to a dialog box associated
with a control. EvGetDlgCode allows the dialog manager to intercept a message that
would normally go to a control and then ask the control if it wants to process this
message. If not, the dialog manager processes the message. The msg parameter indicates
the kind of message, for example a control, command, or edit message, sent to the dialog
box manager.

If the edit control contains valid input, then Tabs are allowed for changing focus and a
DLGC_WANTTABS code is returned.

See also DLGC_xxxxdialog control message constants

EvKeyDown
void EvKeyDown(uint key, uint repeatCount, uint flags);
EvKeyDown translates the virtual key code into a movement. key indicates the virtual
key code of the pressed key, repeatCount holds the number of times the same key is
pressed, flags contains one of the messages that translates to a virtual key (VK) code for
the mode indicators. If the Tab key is sent to the Edit Control, EvKeyDown checks the
validity before allowing the focus to change.

EvKillFocus
void EvKillFocus(HWND hWndGetFocus);
In response to a WM_KILLFOCUS message sent to a window that is losing the
keyboard, EvKillFocus hides and then destroys the caret. EvKillFocus validates text
whenever the focus is about to be lost and holds onto the focus if the text is not valid.
Doesn't kill the focus if another application, a Cancel button, or an OK button (in which
case CanClose is called to validate text) has the focus.

GetClassName
char far* GetClassName();
Returns the name of TEdit's registration class, "EDIT."

See also TWindow::GetClassName

200 ObjectWindows Reference Guide

TEditFile class

Setup Window
void SetupWindow();
If the textLen data member is nonzero, Setup Window limits the number of characters that
can be entered into the edit control to textLen -1.

See also TStatic::TextLen, TWindow::SetupWindow

Response table entries

R.:esponse table entry
EV _COMMAND (CM_EDITCLEAR, CmEditClear)

EV _COMMAND (CM_EDITCOPY, CmEditCopy)

EV_ COMMAND (CM_EDITCUT, CmEditCut)

EV _COMMAND (CM_EDITDELETE, CmEditDelete)

EV _COMMAND (CM_EDITP ASTE, CmEditPaste)

EV _COMMAND (CM_EDITUNDO, CmEditUndo)

EV _COMMAND_ENABLE(CM_EDITCLEAR, CmCharsEnable)

EV _COMMAND_ENABLE(CM_EDITCOPY, CmSelectEnable)

EV_ COMMAND _ENABLE(CM_EDITCUT, CmSelectEnable)

EV_ COMMAND _ENABLE(CM_EDITDELETE, CmSelectEnable)

EV_COMMAND_ENABLE(CM_EDITPASTE,CrnPasteEnable)

EV _COMMAND_ENABLE(CM_EDITUNDO, CmModEnable)

EV _NOTIFY_AT_CHILD (EN_ERRSPACE, ENErrSpace)

EV_WM_CHAR

EV_WM_GETDLGCODE

EV_WM_KEYDOVVN

EV_ WM_KILLFOCUS

EV_ WM_CHILDINV AUD

TEditFile class

,,,,, ,',,,, ,, "'','

•• ME?mi!1"e~~dli~n
CmEditClear

CmEditCopy

CmEditCut

CmEditClear

CmEditPaste

CmEditUndo

CmCharsEnable

CmSelectEnable

CmSelectEnable

CmSelectEnable

CmPasteEnable

CmModEnable

ENErrSpace

EvChar

EvGetdlgcode

EvKeydown

EvKillFocus

EvChildlnvalid

ediHile.h

TEditFile is a file-editing window. TEditFile's data members and member functions
manage the file dialog box and automatic responses for file commands such as Open,
Read, Write, Save, and SaveAs. TEditFile is streamable.

Public constructors and destructor
Constructor
TEditFile(TWindow* ()t = O, int Id= O, cons! char far* text= O, cons! char far* fileName = 0, TModule* module= O);
Constructs a TEditFile window given the parent window, resource ID (Id), text, file
name, and module ID. Sets Filename to fileName.

Destructor
~ TEditFile();
Frees memory allocated to hold the name of the TEditFile.

Chapter 2, ObjectWindows library reference 201

TEditFile class

Public data members
File Data
TOpenSaveDialog::TData FileData;
Contains information about the user's file open or save selection.

See also TOpenSaveDialog::TData struct

File Name
char far* FileName;
Contains the name of the file being edited.

Public member functions
Can Clear
virtual bool CanClear();
Returns true if the text of the associated edit control can be cleared.

Can Close
virtual bool CanClose();
Returns true if the edit window can be closed.

CmFileNew
void CmFileNew();
Calls Newfile in response to an incoming File New command with a CM_FILENEW
command identifier.

See also TEditFile::NewFile

CmFileOpen
void CmFileOpen();
Calls Open in response to an incoming File Open command with a CM_FILEOPEN
command identifier.

See also TEditFile::Open

CmfileSave
void CmFileSave();
Calls Save in response to an incoming File Save command with a CM_FILESA VE
command identifier.

See also TEditFile::Save

CmFileSaveAs
void CmFileSaveAs();
Calls SaveAs in response to an incoming File SaveAs command with a
CM_FILESA VEAS command identifier.

See also TEditFile::SaveAs

NewFile
void NewFile();

20t ObjectWindows Reference Guide

TEditFile class

Begins the edit of a new file after calling CanClear to determine that it is safe to clear the
text of the editor.

See also TEditFile::CanClear

Open
Open();
Opens a new file after determining that it is OK to clear the text of the Editor. Calls
CanClear, and if true is returned, brings up a file dialog box to retrieve the name of a new
file from the user. Calls Replace With to pass the name of the new file.

See also TEditFile::CanClear, TEditFile::ReplaceWith

Read
bool Read(const char far* fileName=O);
Reads the contents of a previously specified file into the Editor. Returns true if read
operation is successful.

Replace With
void ReplaceWith(const char far* fileName);
Calls SetFileName and Read to replace the file currently being edited with a file whose
name is supplied.

See also TEditFile::SetFileName, TEditFile::Read

Save
bool Save();
Saves changes to the contents of the Editor to a file. If Editor->IsModified returns false,
Save returns true, indicating there have been no changes since the last open or save.

See also TEditFile::SaveAs, TEditFile::Write

SaveAs
bool SaveAs();
Saves the contents of the Editor to a file whose name is retrieved from the user, through
execution of a File Save dialog box. If the user selects OK, SaveAs calls SetFileName and
Write. Returns true if the file was saved.

See also TEditFile::SetFileName, TEditFile::Write

SetFileName
void SetFileName (cons! char far* fileName);
Sets FileName and updates the caption of the window.

Write
bool Write(const char far* fileName=O);
Saves the contents of the Editor to a file whose name is specified by FileName. Returns
true if the write operation is successful.

Protected member functions

Setup Window
void SetupWindow();

C h a pt e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e f e re n c e 203

TEditSearch class

Creates the edit window's Editor edit control by calling TEditFile::SetupWindow. Sets the
window's caption to FileName, if available; otherwise sets the name to "Untitled."

See also TEditFile::SetFileName, TEditFile::Read

Response table entries

EV _COMMAND (CM_FILENEW, CmFileNew)

EV_ COMMAND (CM_FILEOPEN, CmFileOpen)

EV_ COMMAND (CM_FILESA VE, CmFileSave)

EV _COMMAND (CM_FILESA YEAS, CmFileSaveAs)

TEditSearch class

CmFileNew

CmFileOpen

CmFileSave

CmFileSaveAs

editsear.h

TEditSearch is an edit control that responds to Find, Replace, and FindNext menu
commands. This class is streamable.

Public constructor

Constructor
TEditSearch(TWindow* parent = 0, int Id = 0, cons! char far* text = 0, int x = 0, int y = 0, int w = 0, int h = 0,

TModule* module = O);
Constructs a TEditSearch object given the parent window, resource ID, and character
string (text).

Public data members

SearchCmd
uint SearchCmd;
Contains the search command identifier that opened the dialog box if one is open.

Search Data
TFindReplaceDialog::TData SearchData;
The SearchData structure defines the search text string, the replacement text string, and
the size of the text buffer.

See also TFindReplaceDialog::TData

Search Dialog
TFindReplaceDialog* SearchDialog;
Contains find or replace dialog-box information (such as the text to find and replace)
and check box settings.

204 0 b j e ct W i n d o w s R e f e re n c e G u i d e

TEditSearch class

Public member functions
CmEditfind
void CmEdttFind();
Opens a TFindDialog in response to an incoming Find command with a CM_EDITFIND
command.

CmEditfindNext
void CmEditFindNext();
Responds to an incoming FindNext command with a CM_EDITFINDNEXT command
identifier by calling DoSearch to repeat the search operation.

See also TEditSearch::DoSearch

CmEditReplace
void CmEdttReplace();
Opens a TReplaceDialog in response to an incoming Replace command with a
CM_EDITREPLACE command.

DoSearch
void DoSearch();
Performs a search or replace operation base on information in SearchData.

See also TFindReplaceDialog::TData

EvFindMsg
LRESULT EvFindMsg{WPARAM, LPARAM);
Responds to a message sent by the modeless find or replace dialog box. Calls DoSearch
to continue searching if text is not found or the end of the document has not been
reached.

See also TEditSearch::DoSearch

Setup Window
void SetupWindow();
Posts a CM_EDITFIND or a CM_EDITREPLACE message to re-open a find or replace
modeless dialog box. Calls TEdit::SetupWindow.

See also TEdit::SetupWindow

Chapter 2, ObjectWindows library reference 205

TEditView class

Response table entries

EV_ COMMAND(CM_EDITFIND, CmEditFind) CmEditFind

EV:_ COMMAND(CM_EDITFINDNEXT, CmEditFindNext) CmEditFindNext

EV_ COMMAND(CM_EDITREPLACE, CmEditReplace) CmEditReplace

EV _REGISlERED(FINDMSGSTRING, EvFindMsg) EvFindMsg

TEditView class editview.h

Derived from TView and TEditSearch, TEditView provides a view wrapper for
ObjectWindows text edit class (TEdit). A streamable class, TEditView includes several
event-handling functions that handle messages between a document and its views.

Public constructor and destructor

Constructor
TEditView(TDocument& doc, TWindow* parent = O);
Creates a TEditView object associated with the specified document and parent window.
Sets AttrAccelTable to IDA_EDITVIEW to identify the edit view. Sets TView::ViewMenu
fo the new TMenuDescr for this view.

Destructor
-TEditView()
Destroys a TEditView object.

Public member functions

CanClose
bool CanClose();
Returns nonzero if the view can be closed.

Create
bool Create()
Overrides TWindow::Create and calls TEditSearch::Create to create the view's window.
Calls GetDocPath to determine if the file is new or already has data. If there is data, calls
LoadData to add the data to the view. If the view's window can't be created, Create
indicates the view is invalid.

GetViewName
cons! char far* GetViewName();
Overrides TView::GetViewName and returns the descriptive name of the class
(StaticName).

See also TEditView::StaticName, TView::GetViewName

206 ObjectWindows Reference Guide

TEditView class

GetWindow
TWindow* GetWindow();
Get Window overrides Get Window in TView and returns this as a TWiJJdow.

See also TView::GetWindow

Perform Create
void PerformCreate(int menuOrld);
Allocates memory as necessary so that TEditView can handle files up to and including
30,000 bytes.

SetDocTitle
bool SetDocTitle(const char far* docname, int index)
Overrides TView::SetDocTitle and forwards the title to its base class, TEditSearch. index is
the number of the view displayed in the caption bar. docname is the name of the
document displayed in the view window.

See also TWindow::SetDocTitle, TView::SetDocTitle

Static Name
static canst char far* StaticName();
Returns "Edit View," the descriptive name of the class for the ViewSelect menu.

Protected data member

Origin
long Origin;
Holds the file position at the beginning of the display.

Protected member functions

EvNCDestroy
void EvNCDestroy();
EvNcDestroy is used internally by TEditView to manage memory.

This member is not available under Presentation Manager.

Load Data
bool LoadData();
LoadData reads the view from the stream and closes the file. It returns nonzero if the
view was successfully loaded. If the file can't be read, posts an error and returns 0.

VnCommit
bool VnCommit(bool force);
VnCommit commits changes made in the view to the document. If force is nonzero, all
data, even if it's unchanged, is saved to the document.

See also TEditView::vnRevert, vnxxxx view notification constants

VnDocClosed
bool VnDocClosed(int omode);

C h a p t e r 2 , 0 b j e c t W i n d o w s I i b r a r y r e f e r e n c e 207

TEqualOperator typedef

VnDocClosed indicates that the document has been closed. mode is one of the ofxxxx
document open constants.

See also ofxxxx document open enum, vnxxxx view notification constants

VnlsDirty
bool VnlsDirty();
VnlsDirty returns nonzero if changes made to the data in the view have not been saved
to the document; otherwise, itretums 0.

See also vnxxxx view notification constants

VnlsWindow
bool VnlsWindow(HWND hWnd);
VnlsWindow returns nonzero if the window's handle passed in hWnd is the same as that
of the view's display window.

VnRevert
bool VnRevert(bool clear);
VnRevert is nonzero if changes made to the view should be erased, and the data from the
document should be restored to the view. ff clear is nonzero, the data is cleared instead
of restored to the view.

See also TEditView::VnCommit

Response table entries

EV_ VN_COMMIT VnCammit

EV_ VN_OOCCLOSED VnDocClosed

EV_ VN_ISDIRTY VnlsDirty

EV_ VN_ISWINOOW VnlsWindow

EV_ WM_NCDESTROY EvNcDestroy
EV_ VN_REVERT VnRevert

TEqualOperator typedef eventhan.h

typedef bool(*TEqualOperator)(TGenericTableEntry RTFAR&, TEventlnfo&);
TEqualOperator is used to perform special kinds of searches and to faciliate finding
response table entries. TEqualOperator compares a particular message event
(TEventlnfo&) with a response table entry (TGenericTableEntry) to determine if they
match.

See also
TResponseTableEntry

208 ObjectWindows Reference Guide

TEventHandler class

TEventHandler class eventhan.h

TEventHandler is a base class from which you can derive classes that handle messages.
Specifically, TEventHandler performs the following event-handling tasks:

1 Analyzes a window message

2 Searches the class's response table entries for an appropriate event-handling function

3 Dispatches the message to the designated event-handling function

Most of ObjectWindows' classes are derived from TEventHandler and, therefore, inherit
this event-handling behavior. In addition, any user-defined class derived from
TEventHandler can handle message response functions that are associated with a
particular window message.

See also DECLARE_RESPONSE_TABLE macro

Public member functions
Dispatch
virtual LRESULT Dispatch(TEventlnfo&, WPARAM, LPARAM = O);
Takes the message data from TEventlnfo's Msg data member and dispatches it to the
correct event handling function.

Find
virtual bool Find(TEventlnfo&, TEqualOperator = O);
Searches the list of response table entries looking for a match. Because TEventHandler
doesn't have any entries, TEventHandler's implementation of this routine returns false.

Protected member function
Search Entries
bool SearchEntries(TGenericTableEntry _RTFAR* entries, TEventlnfo&, TEqualOperator);
Searches the entries in the response table for an entry that matches TEventlnfo or, if so
designated, an entry that TEqualOperator specifies is a match.

TEventHandler::TEventlnfo class eventhan.h

A nested class, TEventlnfo provides specific information about the type of message sent,
the class that contains the function to be handled, the corresponding response table
entry, and the dispatch function that processes the message.

Public constructor
Constructor
TEventlnfo(uint msg, uint id= 0) : Msg(msg), ld(id);
Constructs a TEventinfo object with the specified ID and message type.

Chapter 2, ObjectWindows library reference 209

TFileDocument class

Public data members
Entry
TGenericTableEntry _RTFAR *Entry;
Points to the response table entry (for example, EvActivate).

Id
const uint Id;
Contains the menu or accelerator resource ID (CM_xxxx) for the message response
member function.

Msg
const uint Msg;
Contains the type of message sent. These can be command messages, child ID messages,
notify-based messages such as LBN_SELCHANGE, or windows messages such as
LBUTTONDOWN.

Object
GENERIC *Object;
Points to the object that contains the function to be handled.

TEventStatus enum window.h

TEventStatus
enum {esPartial, esComplete};
Event status constants indicate the status of a mix-in window event implementation, for
example, a keyboard event. The constants indicate whether additional handlers are
needed.

Event status constants

esPartial Additional handlers can be invoked.

esComplete No additional handlers are needed.

TFileDocument class filedoc.h

Derived from TDocument, TFileDocument opens and closes views and provides stream
support for views. TFileDocument has member functions that continue to process
FileNew and FileOpen messages after a view is constructed. You can add support for
specialized file types by deriving classes from TFileDocument. TFileDocument makes this
process easy by hiding the actual processs of storing file types.

210 0 bj ectWi n d ows Reference Guide

Public constructor and destructor
Constructor
TFileDocument(TDocument* parent= O);

TFileDocument class

Constructs a TFileDocument object with the optional parent document.

Destructor
~ TFileDocument(TDocument* parent= O);
Destroys a TFileDocument object.

Type definitions

TFileDocProp
enum TFileDocProp {PrevProperty, CreateTime, ModifyTime, AccessTime, StorageSize, FileHandle,

NextProperty};
Contains constants that define the following properties of the document:

PrevProperty

Create Time

Modify Time

Access Time,

StorageSize

FileHandle

NextProperty

Des~tieii()n
TDocument::NextProperty-1. This is the first value for view and document objects.

The time the view or document was created.

The time the view or document was modified.

The time the view or document was last accessed.

An unsigned long containing the storage size.

The platform file handle.

The is the terminating value for the property.

Classes derived from TDocument and TView can use these generic file property values.

Public member functions
Close
bool Close();
Closes the document but does not delete or detach any associated views. Before closing
the document, Close calls TDocument 's Close to make sure all child documents are closed.
If any children are open, Close returns 0 and doesn't close the document. If all children
are closed, checks to see if any associated streams are open, and if so, returns 0 and
doesn't close the document. If there are no open streams, closes the file.

See also TDocument::Close

Commit
bool Commit(bool force= false);
Calls TDocument_Commit and clears TDocument's DirtyFlag data member, thus
indicating that there are no unsaved changes made to the document.

See also TDocument::Commit

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 211

TFileDocument class

Find Property
int FindProperty(const char far* name);
Gets the property index, given the property name (name). Returns 0 if the name isn't
found.

See also pfxxxx property attribute constants

GetProperty
int Ge!Property(int index, void far* dest, int textlen=O);
Overrides TDocument_GetProperty and gets the property ID for the current file
document.

See also pfxxxx property attribute constants

lnStream
TlnStream* lnStream(int rnode, cons! char far* strmld = O);
Overrides TDocument_InStream and provides generic input for the particular storage
medium. InStream returns a pointer to a TinStream. mode is a combination of the ios bits
defined in iostream.h. strmld is not used for file documents. The view reads data from
the document as a stream or through stream functions.

See also TFileDocument::OutStream

lsOpen
bool lsOpen();
Is nonzero if the document or any streams are open.

Open
Form 1 bool Open(HFILE fhdl);

Opens a file document using an existing file handle. Sets TDocument_OpenMode to
PREY_ OPEN and read/write. Sets the document path to 0. Sets FHd to fhdl. Always
returns nonzero.

Form 2 bool Open(int mode, canst char far* palh=O);
Overrides TDocument_Open and opens the file using the specified path. If the file is
already open, returns 0. Calls TDocument_SetDocPath to set the directory path. If omode
isn't 0, sets TDocument_OpenMode to omode. If the file can't be opened, returns 0.

See also TDocument::SetDocPath, TDocument::Open, ofxxxx document open enum

OutStream
TOutStream* OutStream (int mode, canst char far* strmld = O);
Overrides TDocument_OutStream and provides generic input for the particular storage
medium. OutStream returns a pointer to a TOutStream. mode is a combination of the ios
bits defined in iostream.h. strmld is not used for file documents. Instead, the view reads
data from the document through stream functions.

See also TFileDocument::InStream

PropertyFlags
int PropertyFlags(int index);
Returns the property attribute constants (pfGetText, pfHidden, and so on).

See also pfxxxx property attribute constants

212 ObjectWindows Re.ference Guide

TFileOpenDialog class

PropertyName
const char* PropertyName(int index);
Returns the text name of the property given the index value.

See also pfxxxx property attribute constants

Revert
bool Revert(bool clear= false);
Calls TDocument_Revert to notify the views to refresh their data. If clear is false, the data
is restored instead of cleared.

See also TFileDoc::Commit

SetProperty
bool SetProperty(int index, const void far* src);
Sets the property data, which must be in the native data type (either string or binary).

See also pfxxxx property attribute constants

Protected data member
FHdl
HFILE FHdl;
Holds the file handle to an open file document.

Protected member functions
CloseThisFile
void CloseThisFile(HFILE fhdl, int omode);
Closes the file handle if the associated file was opened by TFileDocument. Calls
TDocument_NotifyView to notify all views that the file document has closed.

See also ofxxxx document open enum

OpenThisFile
HFILE OpenThisFile(int omode, const char far* name, streampos* pseekpos);
Opens the file document after checking the file sharing mode (omode). If a file mode is
not specified as read, write, or read and write, OpenThisFile returns 0.

See also ofxxxx document open enum, shxxxx document sharing modes

TFileOpenDialog class opensave.h

TFileOpenDialog is a modal dialog box that lets you specify the name of a file to open.
Use this dialog box to respond to a CM_FILEOPEN command that's generated when a
user selects File I Open from a menu. TFileOpenDialog uses the TOpenSave::TData
structure to initialize the file open dialog box.

Chapter 2, ObjectWindows library reference 213

TFileSaveDialog class

Public constructor

Constructor
TFileOpenDialog(TWindow* parent, TData& data, TReslD templatelD = 0, const char far* title = O,

TModule* module= O);
Constructs and initializes the TFileOpen object based on information in the
TOpenSaveDialog::TData data structure. The parent argument points to the dialog box's
parent window. data is a reference to the TData object. templateID is the ID for a custom
template. title is an optional title. module points to the module instance.

See also TOpenSaveDialog::TData, TOpenSaveDialog, TResID, TModule

Public member function
Do Execute
int DoExecute();
Creates the TFileOpenDialog object.

See also TDialog::DoExecute

TFileSaveDialog class opensave.h

TFileSaveDialog is a modal dialog box that lets you enter the name of a file to save. Use
TFileSaveDialog to respond to a CM_FILESA VEAS command generated when a user
selects File I Save from a menu. TFileSaveDialog uses the TOpenSave::TData structure to
initialize the file save dialog box.

Public constructor

Constructor
TFileSaveDialog(TWindow* parent, TData& data, TReslD templatelD = 0, const char far* title = 0,

TModule* module = O);
Constructs and initializes the TFileOpen object based on the TOpenSaveDialog::TData
structure, which contains information about the file name, file directory, and file name
search filers.

See also TOpenSaveDialog::TData structure, TModule, TResID, TWindow

Public member function
Do Execute
int DoExecute();
Creates the TFileSaveDialog object.

See also TDialog::DoExecute, TOpenSaveDialog

214 Objec!Windows Reference Guide

TFilterValidator class

TFilterValidator class validate.h

A streamable class, TFilterValidator checks an input field as the user types into it. The
validator holds a set of allowed characters. When the user enters a character, the filter
validator indicates whether the character is valid or invalid. See TValidator for an
example of an input validation screen.

Public constructor
Constructor
TFilterValidator(const TCharSet& validChars);
Constructs a filter validator object by first calling the constructor inherited from
TValidator, then setting ValidChars to validChars.

Public member functions
Error
void Error();
Error overrides TValidator's virtual function and displays a message box indicating that
the text string contains an invalid character.

See also TValidator::Error

ls Valid
bool lsValid(const char far* str);
Is Valid overrides TValidator 's virtuals and returns true if all characters instr are in the set
of allowed characters, ValidChar; otherwise, it returns false.

lsValidlnput
bool lsValidlnput(char far* str, bool suppressFill);
IsValidlnput overrides TValidator's virtual function and checks each character in the
string str to ensure it is in the set of allowed characters, ValidChar. IsValidlnput returns
true if all characters in str are valid; otherwise, it returns false.

See also TValidator::lsValidlnput

Protected data members
ValidChars
TCharSet ValidChars;
Contains the set of all characters the user can type. For example, to allow only numeric
digits, set Valid Chars to "0-9". Valid Chars is set by the valid Chars parameter passed to the
constructor.

Chapter 2, ObjectWindows library reference 215

TFindDialog class

TFindDialog class findrepl.h

TFindDialog objects represents modeless dialog box interface elements that let you
specify text to find. TFindDialog communicates with the owner window using a
registered message. Derived from TFindReplaceDialog, TFindDialog uses the
TFindReplaceDialog::TData structure to initialize the dialog box with user-entered values
(such as the text string to find).

Public constructor
Constructor
TFindDialog(TWindow* parent, TData& data, TResld templateld = 0, const char far* title = 0,

TModule* module= O);
Constructs a TFindDialog object with the given parent window, resource ID, and
caption. Sets the attributes of the dialog box based onTFindReplaceDialog::TData
structure, which contains information about the text string to search for.

See also TFindReplaceDialog::TData

Protected member functions
DoCreate
HWND DoCreate();
Creates the modeless interface element of a find dialog.

TFindReplaceDialog class findrepl.h

TFindReplaceDialog is an abstract base class for a modeless dialog box that lets you search
for and replace text. This base class contains functionality common to both derived
classes, TFindDialog which lets you specify text to find, and TReplaceDialog which lets
you specify replacement text. TFindReplaceDialog communicates with the owner
window using a registered message.

Public constructor
Constructor
TFindReplaceDialog(TWindow* parent, TData& data, TResld templateld = 0, cons! char far* title = 0,

TModule* module= O);
Constructs a TFindReplaceDialog object with a parent window, resource ID, and caption.
Sets the attributes of the dialog box with the specified data from the
TFindReplaceDialog::TData structure.

See also TFindReplaceDialog::TData struct, TModule, TResID, TWindow

216 0 bjectWi n d ows Rel e ren ce Guide

TFindReplaceDialog class

Public member functions
Cm Cancel
void CmCancel();
Responds to a click of the Cancel button.

CmFindNext
void CmFindNext();
Responds to a click of the Find Next button.

Cm Replace
void CmReplace();
Responds to a click of the Replace button.

CmReplaceAll
void CmReplaceAll();
Responds to a click of the Replace All button.

EvNCDestroy
void EvNCDestroy();
Calls TWindow::EvNCDestroy, which responds to an incoming EV_ WM_NCDESTROY
message which tells the owner window that is nonclient area is being destroyed.

Protected data members
Data
TData& Data;
Data is a reference to the TData object passed in the constructor.

See also TFindReplaceOialog::TData class

fr
FINDREPLACE fr;
A struct that contains find-and-replace attributes, such as the size of the find buffer and
pointers to search and replace strings, used for find-and-replace operations.

See also FINDREPLACE class

Protected member functions
DoCreate
HWND DoCreate()=O;
DoCreate is a virtual function that is overridden in derived classes to create a modeless
find or replace dialog box.

Dialog Function
bool DialogFunction(uint message, WPARAM, LPARAM);
Returns true if a message is handled.

See also TDialog::DialogFunction

Chapter 2, ObjectWindows library reference 217

TFindReplaceDialog::TData class

lnit
void lnit(TResld templateld);
Used by constructors in derived classes, !nit initializes a TFindReplaceDialog object with
the current resource ID and other members.

Response table entries

EV_ WM_NCDESTROY EvNCDestroy

TFindReplaceDialog::TData class findrepl.h

The TFindReplaceDialog::TData class encapsulates information necessary to initialize a
TFindReplace dialog box. The TFindDialog and TReplaceDialog classes use the
TFindReplaceDialog::TData class to initialize the dialog box arid to accept user-entered
options such as the search and replacement text strings.

Public constructor and destructor
Constructor
TFindReplaceDialog(uin\32 flags = 0, int bufferSize = 81);
Constructs a TData object with the specified flag value thatinitializes the status of the
dialog box control buttons and the buffer size for the find and replace search strings.

Destructor
NTData();
Destroys a -TData object.

Public data members
BuffSize
int BuffSize;
Buf!Size contains the size of the text buffer.

Error
uint32 Error;
If the dialog box is successfully created, Error is 0. Otherwise, it contains one or more of
the following error coc;les:

CDERR_LOCKRESOURCEFAILURE
CDERR_LOADRESFAILURE

218 ObjectWindows Reference Guide

Failed to lock a specified resource.

Failed to load a specified resource.

CDERR_LOADSTRFAILURE

CDERR_REGISTERMSGFAIL

FindWhat
char* FindWhat;

TFloatingFrame class

Failed to load a specified string.

The window message (a value used to communicate between
applications) cannot be registered. This message value is used
when sending or posting window messages.

Contains the search string.

Flags
uint32 Flags;
Flags, which indicates the state of the control buttons and the action that occurred in the
dialog box, can be a combination of the following constants that indicate which
command the user wants to select:

FR_OOWN

FR_HIDEMA TCHCASE

FR_HIDEWHOLEWORD

FR_HIDEUPDOWN.

FR_MATCHCASE

FR_NOMATCHCASE

FR_NOUPOOWN

FR_NOWHOLEWORD

FR_REPLACE

FR_REPLACEALL

FR_ WHOLEWORD

Replace With
char* ReplaceWith;

The Down button in the Direction group of the Find dialog
box is selected.

The Match Case check box is hidden.

The Whole Word check box is hidden.

The Up and Down buttons are hidden.

The Match Case check box is checked.

The Match Case check box is disabled. This occurs when the
dialog box is first initialized.

The Up and Down buttons are disabled. This occurs when the
dialog box is first initialized.

The Whole Word check box is disabled. This occurs when the
dialog box is first initialized.

The Replace button was pressed in the Replace dialog box.

The Replace All button was pressed in the Replace dialog box.

The Whole Word check box is checked.

Replace With contains the replacement string.

See also TEditSearch::SearchData, TFindReplaceDialog::Data

TFloatingFrame class floatfra.h

Derived from TFrameWindow and TTinyCaption, TFloatingFrame implements a floating
frame that can be positioned anywhere in the parent window. Except for the addition of
a tiny caption bar, the default behavior of TFrameWindow and TFloatingFrame is the
same. Therefore, an application that uses TFrameWindow can easily gain the
functionality of TFloatingFrame by just changing the name of the class to TFloatingFrame.

Chapter 2, ObjectWindows library reference 219

TFloatingFrame class

If there is a client window, the floating frame shrinks to fit the client window, leaving
room for margins on the top, bottom, left, and right of the frame. Because the floating
frame expects the client window to paint its own background, it does nothing in
response to a WM_ERASEBKGND message. However, if there is no client window, the
floating frame erases the client area background using COLOR_BTNFACE.

See PAINT.CPP, the sample program on your distribution disk, for an example of a
floating frame.

Public constructor
Constructor
TFloatingFrame(TWindow *owner, char *title= 0, TWindow* clientWnd = 0, bool shrinkToClient =false,

int CaptionHeight = Defaul!CaptionHeight, bool popupPalette =false, Module* module= O);
Constructs a TFloatingFrame object attached to the specified parent window. By default,
the floating frame window doesn't shrink to fit the client window, and the floating
palette style isn't enabled.

Set popupPalette to true if you want to enable a floating palette style for the window. The
floating palette is a popup window with a tiny caption, astandard window border, and
a close box instead of a system menu box. There are no maximize or minimize buttons.
A one pixel border is added around the client area in case a toolbox is implemented.
This style must be turned on before the window is created. After the window is created,
its style can't be changed.

See also TFrameWindow::TFrameWindow, TTinyCaption::TTinyCaption

Public member functions
SetMargins
void SetMargins(const TSize& margin);
Sets the margins of the floating palette window to the size specified in margin and sets
the height of the tiny caption bar.

See also TTinyCaption::EnableTinyCaption

Protected member functions

DoNCHitTest
TEven!Status DoNCHi!Test(TPoint& screenPt, uint& evRes);
If the floating palette is not enabled, returns esPartial. Otherwise, sends a message to the
floating palette that the mouse or the cursor has moved, and returns esComplete.

220 ObjectWindows Reference Guide

TFont class

Response table entries

EV_ WM_SYSCOMMAND EvSysCommand

EV_ WM_NCCALCSIZE EvNCCalcSize

EV_ WM_NCP AINT EvNCPaint

EV_ WM_NCHIITEST EvNcHitTest

Tf ont class gdiobjec.h

TFont derived from TGdiObject provides constructors for creating font objects from
explicit information or indirectly.

Public constructors
Constructors

Form 1 TFont(HFONT handle, TAutoDelete autoDelete = NoAutoDelete);
Creates a TFont object and sets the Handle data member to the given borrowed handle.
The ShouldDelete data member defaults to false, ensuring that the borrowed handle will
not be deleted when the C ++ object is destroyed.

Form 2 TFont(const char far* facename = 0, int height = 0, int width = 0, int escapement = 0,
int orientation = 0 int weight = FW _NORMAL, uint8 pitchAndFamily = DEFAULT _PITCH!
FF DONTCARE, uintB italic = false, uintB underline = false, uintB strikeout = false, uintB charSet = 1,
uint8 outputPrecision = OUT_ DEFAULT _PRECIS, uintB clipPrecision = CLIP _DEFAULT _PRECIS,
uint8 quality= DEFAULT_QUALITY);

Creates a TFont object with the given values.

Form 3 TFont(int height, int width, int escapement= 0, int orientation= O, int weight= FW_NORMAL, uintB italic= false,
BYTE underline = false, uintB strikeout = false, uintB charSet = 1, uintB outputPrecision =
OUT_DEFAULT_PRECIS, uintB clipPrecision =CLIP _DEFAULT_PRECIS, uint8 quality=
DEFAULT_ QUALITY uint8 pitchAndFamily = DEFAULT _PITCH!
FF_ DONTCARE, const char far* face name = O);

Creates a font object with the given values. The constructor parameter list and default
values match the Windows API CreateFont call.

Form 4 TFont(const LOG FONT far* log Font);
Creates a TFont object from the given logFont.

Form 5 TFont(const TFont& font);
The TFont copy constructor.

See also ::CreateFont (Windows API), ::CreateFontindirect (Windows API),
TGdiObject::Handle, TGdiObject::ShouldDelete,

C h a pt e r 2 , 0 b j e c I W i n d o w s I i b r a r y r e f e r e n c e 221

TFrameWindow class

Public member functions
GetObject
bool GetObject(LOGFONT far& logFont) const;
Retrieves information about this pen object and places it in the given LOGFONT
structure. Returns true if successful and false if unsuccessful.

See also TGdiObject::GetObject, LOGFONT struct

operator HFONT()
operator HFONT() const;
Typecasting operator that converts this font's Handle to type HFONT (the data type
representing the handle to a physical font).

TFrameWindow class framewin.h

Derived from TWindow, TFrameWindow controls such window-specific behavior as
keyboard navigation and command processing for client windows. For example, when
a window is reactivated, TFrameWindow is responsible for restoring a window's input
focus and for adding menu bar and icon support. TFrameWindow is a streamable class.

In terms of window areas, the frame area consists of the border, system menus, toolbars
and status bars whereas the client area excludes these areas. Although frame windows
can support a client window, the frame window remains separate from the client
window so that you can change the client window without affecting the frame window.

ObjectWindows uses this frame and client structure for both TFrameWindow and
TMDIChild classes. Both these classes can hold a client class. Having a separate class for
the client area of the window adds more flexibility to your program. For example, this
separate client area, which might be a dialog box, can be moved into another frame
window, either a main window or an MDI child window.

See TFloatingFrame for a description of a floating frame with the same default
functionality as a frame window.

Public constructors and destructor
Constructors

Form 1 TFrameWindow(TWindow* parent, const char far *title= 0, TWindow* clientWnd = 0, bool shrinkToClient =false,
TModule* module= O);

Constructs a wiridow object with the parent window supplied in parent, which is zero if
this is the main window. title, which by default is zero, contains the title displayed in the
window's caption bar. clientWnd is the client window for this frame window or zero if
none exists. shrinkToClient controls whether the client window will size to fit the frame
or the frame window will fit the client. Note that this parameter only affects the size of
the main window. When a client window is used in a frame window that doesn't have
shrinktoClient set, the client window resizes to fit the frame window. When a client
window is used in a frame window that has the shrinktoClient set, the frame window
shrinks to fit the size of the client window.

222 ObjectWindows Reference Guide

TFrameWindow class

Form 2 TFrameWindow(HWND hWnd, TModule* module= O);
Constructor for a TFrame Window that is being used as an alias for a non-Object Windows
window. hWnd is the handle to the existing window object that TFrameWindow controls;
module contains the module passed to the base class's contructor.

Destructor
N TFrameWindow();
Deletes any associated menu descriptor.

See also TWindow::TWindow, TFloatingFrame::TFloatingFrame

Public data members

KeyboardHandling
bool KeyboardHandling;
Indicates if keyboard navigation is required.

Public member functions
Assign Menu
virtual bool AssignMenu(TResld menuResld);
Sets Attr.Menu to the supplied menuResid and frees any previous strings pointed to by
Attr.Menu. If HWindow is nonzero, loads and sets the menu of the window, destroying
any previously existing menu.

See also TMDIFrameWindow::SetMenu, TFrameWindow::SetMenuDescr

EnableKBHandler
void EnableKBHandler();
Sets a flag indicating that the receiver has requested keyboard navigation (translation of
keyboard input into control selections). By default, the keyboard interface, which lets
users use the Tab and arrow keys to move between the controls, is disabled for windows
and dialog boxes. ·

GetClientWindow
virtual TWindow* GetClientWindow();
Returns a pointer to the client window. If you are trying to access a window-based
object in a TMDIChild (which is a frame window), you can use this function.

See also TMDIChild

GetCommandTarget
virtual HWND GetCommandTarget();
Locates and returns the child window that is the target of the command and command
enable messages. If the current application does not have focus or if the focus is within a
toolbar in the application, GetCommandTarget returns the most recently active child
window.

If an alternative form of command processing is desired, a user's main window class can
override this function. TFrameWindow's EvCommand and EvCommandEnable functions

Chapter 2, ObjectWindows library reference 223

TFrameWindow class

use GetCornmandTarget to find the command target window. This member is not
available under Presentation Manager.

GetMenuDescr
const TMenuDescr* GetMenuDescr();
Returns a pointer to the menu descriptor.

See also TFrameWindow::SetMenuDescr, TMenuDescr

HoldFocusHWnd
bool HoldFocusHWnd(HWND hWndLose, HWND hWndGain);
Overrides TWindow' s virtual function. Responds to a request by a child window to hold
its HWND when it is losing focus. Stores the child's HWND in HwndRestoreFocus.

See also TWindow::HoldFocusHwnd

ldleAction
void ldleAction(long idleCount);
Overrides TWindow's virtual function. TApplication calls the main window's IdleAction
when no messages are waiting to be processed. TFrameWindow uses this idle time to
perform command enabling for the menu bar. It also forwards IdleAction to each of its
children. IdleAction can be overridden to do background processing.

See also TApplication::IdleAction

MergeMenu
bool MergeMenu(const TMenuDescr& childMenuDescr);
Merges the given menu descriptor with this frame's own menu descriptor and displays
the resulting menu in this frame. See TMenuDescr for a description of menu bar types
that can be merged.

See also TMenuDescr

PreProcessMsg
bool PreProcessMsg(MSG& msg);
Overrides TWindow 's virtual function. Performs preprocessing of window messages. If
the child window has requested keyboard navigation, PreProcessMsg handles any
accelerator key messages and then processes any other keyboard messages.

See also TWindow::PreProcessMsg

RestoreMenu
bool RestoreMenu();
Restores the default menu of the frame window.

SetClientWindow
virtual TWindow* SetClien!Window(TWindow* clientWnd);
Sets the client window to the specified window. Users are responsible for destroying the
old client window if they want to eliminate it.

SetDocTitle
bool Se!DocTille(const char far* docname, int index);

224 0 b j e ct Windows Re I ere n c e Guide

TFrameWindow class

Overrides TWindow 's virtual function. Pastes the number of the view into the caption
and then shows the number on the screen. This function can be overridden if you don't
want to use the default implementation, which displays a number on the screen. That is,
you might want to write "Two" instead of "2" on the screen. For an example of the
behavior of this function, see step 12 of the ObjectWindows tutorial, which renumbers
the views if one of them is closed.

Seti con
bool Setlcon(TModule* iconModule, TResld iconResld);
Sets the icon in the module specified in iconModule to the resource ID specified in
iconResld. See the sample file bmpview.cpp for an example of painting an icon from a
bitmap. You can set the iconResld to one of these pre-defined values as well as user­
defined values:

IDI_APPLICATION Default icon used for applications

IDI_ASTERISK Asterisk used for an informative message

IDI_EXCLAMATION Exclamation mark used for a warning message

IDI_HAND Hand used for warning messages

IDI_QUESTION Question mark used for prompting a response

See also TFrameWindow::EvQueryDraglcon

SetMenu
virtualBOOL SetMenu(HMENU newMenu);
Overrides TWindow's non-virtual SetMenu function, thus allowing derived classes the
opportunity to implement this function differently from TWindow. SetMenu sets the
window's menu to the menu indicated by newMenu. If newMenu is 0, the window's
current menu is removed. SetMenu returns 0 if the menu remains unchanged; otherwise,
it returns a nonzero value.

SetMenuDescr
void SetMenuDescr(const TMenuDescr& menuDescr);
Sets the menu descriptor to the new menu descriptor.

See also TFrameWindow::GetMenuDescr, TMenuDescr

Protected data members
ClientWnd
TWindow* ClientWnd;
ClientWnd points to the frame's client window.

DocTitlelndex
int DocTitlelndex;
Holds the index number for the document title.

HWndRestoreFocus
HWND HWndRestoreFocus;
Stores the handle of the child window whose focus gets restored.

Chapter 2, ObjectWindows library reference 225

TFrameWindow class

See also TFrameWindow::HoldFocusHwnd

MergeModule
TModule* MergeModule;
tells the frame window which module the menu comes from. TDecoratedFrame uses this
member to get the menu hints it displays at the bottom of the screen. It assumes that the
menu hints come from the same place the menu came from.

Protected constructor
Constructor
TFrameWindow();
Protected constructor used in conjunction with Init function for initializing virtually
derived classes.

Protected member functions
EvCommand
LRESULT EvCommand(uint id, HWND hWndCtl, uint notifyCode);
Provides extra processing for commands and lets the focus window and its parent
windows handle the command first.

EvCommandEnable
void EvCommandEnable(TCommandEnabler& ce);
Handles checking and unchecking of the frame window's menu items.

EvEraseBkgnd
bool EvEraseBkgnd(HDC);
EvEraseBkgnd erases the background of the window specified in HDC. It returns true if
the background is erased; otherwise, it returns false.

EvlnitMenuPopup
HANDLE EvlnitMenuPopup(HMENU hPopupMeriu, uint index, bool sysMenu);
Sent before a pop-up menu is displayed, EvlnitMenuPopup lets an application change
the items on the menu before the menu is displayed. EvlnitMenuPopup controls whether
the items on the pop-up menu are enabled or disabled, checked or unchecked, or
strings. HMENU indicates the menu handle. index is the index of the pop-up menu.
sysMenu indicates if the pop-up menu is the system menu.

EvPaint
void EvPaint();
Responds to a WM_P AINT message in the client window in order to paint the iconic
window's icon or to allow client windows a change to paint the icon.

See also TWindow::Paint, TScroller::BeginView, TScroller::EndView

EvParentNotify
void EvParentNotify(uint event, uint childHandleOrX, uint childlDOrY);

226 ObjectWindows Reference Guide

TFrameWindow class

Responds to a message to notify the parent window that a given event has occurred. If
the client window is destroyed, closes the parent window. If shrinkToClient is set and the
child window has changed size, the frame is adjusted.

When a TFrameWindow's client window is destroyed, the TFrameWindow object sees the
WM_PARENTNOTIFY message and posts a close message to itself. Without this
message, an empty frame would remain and the client window would then have to
determine how to destroy the frame. If you don't want this to happen, you can derive
from the frame window and have your application handle the EvParentNotify or EvClose
messages.

EvQueryDraglcon
HANDLE EvQueryDraglcon();
Responds to a WM_QUERYDRAGICON message sent to a minimized (iconic) window
that is going to be dragged. Instead of the default icon, EvQueryDraglcon uses the icon
that was set using Setlcon.

This member is not available under Presentation Manager.

See also TFrameWindow::Seticon

EvSetFocus
void EvSetFocus(HWND hWndlostFocus);
Restores the focus to the active window. hWndLostFocus contains the handle for the
window that lost focus.

Ev Size
void EvSize(uint sizeType, TSize& size);
Resizes the client window's size so that it is equivalent to the client rectangle's size. Calls
TWindow::EvSize) in response to an incoming WM_SIZE message.

See also TSize

I nit
void lnit (TWindow* clientWnd, bool shrinkToClient);
This initialize function is for use with virtually derived classes, which must call !nit
before construction is completed. This procedure provides necessary data to virtually
derived classes and takes care of providing the data in the appropriate sequence.

Setup Window
void SetupWindow();
Calls TWindow::SetUpWindow to create windows in a child list. Setup Window performs
the initial adjustment of the client window if one exists, assigns the frame's menu based
on the menu descriptor, and initializes HwndRestoreFocus.

See also TWindow::SetUpWindow

C h a pt e r 2 , 0 b j e ct W i n d o w s I i b r a r y ref e r e n c e 227

TGadget class

Response table entries

EV_WM_ERASEBKGND

EV_WM_INITMENUPOPUP

EV_WM_PAINT

EV _WM_P ARENTNOTIFY

EV _WM_QUERYDRAGICON

EV_ WM_SETFOCUS

EV_WM_SIZE

TGadget class

EvEraseBkgnd

EvinitMenuPopup

Ev Paint

EvParentNotify

EvQueryDragicon (Windows only)

Ev Set Focus

Ev Size

TGadget is the base class for the following derived gadget classes:

Displays a bitmap.

Uses a bitmap to similate a button gadget.

gadget.h

TBitmapGadget

TButtonGadget

TControlGadget Encapsulates inserting a control such as an edit control or a combobox, into a gadget
window.

TTextGadget

TSeparatorGadget

Displays text.

Separates logical groups of gadgets.

TGadget interface objects belong to a gadget window, have borders and margins, and
have their own coordinate system. The margins are the same as those for
TGadgetWindow and borders are always measured in border units.

To set the attributes for the gadget, you can either choose a border style (which
automatically sets the individual border edges) or set the borders and then override the
member function PaintBorder to create a custom look for your gadget. If you change the
borders, margins, or border style, the gadget window's GadgetChangedSize member
function is invoked.

Although, by default, gadgets shrink-wrap to fit around their contents, you can control
this attribute by setting your own values for ShrinkWrapWidth and ShrinkWrapHeight.

A gadget window, being an actual window, receives messages from the mouse. After
the gadget window receives the message, it decides which gadget should receive the
message by calling the member function directly instead of sending or posting a
message.

See also
TBitmapGadget, TButtonGadget, TControlGadget, TTextGadget, TSeparatorGadget

228 ObjectWindows Reference Guide

TGadget class

Public constructors and destructor

Constructor
TGadget(int id = 0, TBorderStyle = None);
Constructs a TGadget object with the specified ID and border style.

Destructor
virtual -TGadget();
Destroys a TGadget interface object and removes it from its associated window.

Public data members

Clip
bool Clip;
If Clip is false, clipping borders have not been established. If Clip is true, the drawing for
each gadget is restrained by the gadget's border.

WideAsPossible
bool WideAsPossible;
Initially set to false, WideAsPossible indicates whether the gadget width will be adjusted
by the gadget window to be as wide as possible in the remaining space.

See also TGadgetWindow::WideAsPossible

Public enums and structs

TBorders
struct TBorders {

unsigned Left;
unsigned Right;
unsigned Top;
unsigned Bottom;
TBorders(){Lefl=Right= Top=Bottom=O;}
};

TBorders structure holds the values for the left, right, top, and bottom measurements of
the gadget.

TBorderStyle
enum TBorderStyle {None, Plain, Raised, Recessed, Embossed};
Enumerates an exclusive list of border styles: none, plain, raised (the gadget appears to
be raised above the gadget window), recessed (the gadget appears to be recessed into
the gadget window), or embossed (the gadget appears to have an embossed border). For
an example of border styles, see the sample ObjectWindows program, MDIFILE.CPP,
on your distribution disk.

TMargins
struct TMargins {

enum TUnits {Pixels, LayoutUnits, BorderUnits};
TUnits Units;

C h a p t e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e f e r e n c e 229

TGadget class

int Left;
int Right;
int Top;
int Bottom;
TMarginQ{Unns=layoutUnits; Left= Right= Top=Bottom=O;}
};

Used by the TGadgetWindow and TGadget classes, TMargins contains the measurements
of the margins for the gadget. The constructor initializes Units to Layout Units and sets
Left, Right, Top, and Bottom equal to 0.

See also TGadgetWindow::SetMargins

Public member functions
CommandEnable
virtual void CommandEnable();
CommandEnable is provided so that the gadget can perform command enabling (so it can
handle an incoming message, if it's appropriate to do so).

GetBorders
TBorders& GetBorders();
Gets the gadget's borders measured in border units that are based on SM_OCBORDER
and SM_CYBORDER.

See also TGadget::SetBorders

GetBorderStyle
TBorderStyle GetBorderStyle();
Gets the style for the gadget's borders.

See also TGadget::SetBorderStyle

GetBounds
TRect& GetBounds();
Returns the boundary rectangle for the gadget.

See also TButtonGadget::SetNotchComers

GetDesiredSize
virtual void GetDesiredSize(TSize& size);
GetDesiredSize determines how big the gadget can be. The gadget window sends this
message to query the gadget's size. If shrink-wrapping is requested, GetDesiredSize
returns the size needed to accommodate the borders and margins. If shrink-wrapping is
not requested, it returns the gadget's current width and height. TGadgetWindow needs
this information to determine how big the gadget needs to be, but it can adjust th~se
dimensions if necessary. If WideAsPossible is true, then the width parameter (size.ex) is
ignored.

GetEnabled
bool GetEnabled();

230 ObjectWindows Reference Guide

TGadget class

Determines whether keyboard and mouse input have been enabled for the specified
gadget. If the gadget is enabled, GetEnabled returns true; otherwise, it returns false. By
default, keyboard and mouse input are enabled.

See also TGadget::SetEnabled

Getld
int Getld();
Gets the ID for the gadget.

GetMargins
TMargins& GetMargins();
Gets the margin dimensions.

GetOuterSizes
void GetOuterSizes(int& left, int& right, int& top, int& bottom);
Returns the amount of space (in pixels) taken up by the borders and margins.

NextGadget
TGadget* NextGadget();
Returns the next gadget in the list of gadgets.

Set Borders
void SetBorders(TBorders& borders);
Sets the borders for the gadget. If the borders are changed, SetBorders calls
TGadgetWindow::GadgetChangedSize to notify the gadget window of the change.

See also TGadget::GetBorders, TGadgetWindow::GadgetChangedSize

SetBorderStyle
void SetBorderStyle(TBorderStyle);
Sets the border style for the gadget.

See also TGadget::GetBorderStyle

SetBounds
virtual void SetBounds(TRect& rect);
SetBounds informs the gadget of a change in its bounding rectangle. Although the
default behavior updates only the instance variable Bounds, you can override this
method to also update the internal state of the gadget.

SetEnabled
virtual void SetEnabled(bool);
Enables or disables keyboard and mouse input for the gadget. By default, the gadget is
disabled when it is created and must be enabled before it can be activated.

See also TGadget::GetEnabled

SetMargins
void SetMargins(TMargins& margins);
Sets the margins of the gadget. If the margins are changed, SetMargins calls
TGadgetWindow::GadgetChangedSize to notify the gadget window.

See also TGadget::GetMargins

Chapter 2, ObjectWindows library reference 231

TGadget class

SetShrinkWrap
void SetShrinkWrap(bool shrinkWrapWidth, bool shrinkWrapHeight);
Sets the ShrinkWrap"W_idth and ShrinkWrapHeight data members. Your derived clas.s can
call TGadgetWindow' s GadgetChangedSize member function if you want to change the
size of the gadget.

See also TGadgetWindow::GadgetChangedSize

SetSize
void SetSize(TSize& size);
SetSize alters the size of the gadget and then calls TGadgetWindow::GadgetChangedSize for
the size change to take effect.

This function is needed only if you have turned off shrink-wrapping in one or both
dimensions; otherwise, use the GetDesiredSize member function to return the shrink­
wrapped size~

SysColorChange
virtual void SysColorChange();
SysColorChange is called when the system colors have been changed so that gadgets can
rebuild and repaint, if necessary.

Protected data members
Bounds
TRect Bounds;
Contains the bounding rectangle for the gadget in gadget window coordinates.

See also TGadget::GethmerRect

Borders
TBorders Borders;
Contains the border measurements fTGadget::GetlnnerRect

BorderStyle
TBorderStyle BorderStyle;
Contains the border style for the gadget.

Id
int Id;
Contains the gadget's ID.

Margins
TMargins Margins;
Contains the margin measurements of the rectangle or the gadget.

See also TGadget::GetlnnerRect

ShrinkWrapHeight
bool ShrinkWrapHeight;
Indicates if the gadget is to be shrink-wrapped to fit around its contents.

232 ObjectWindows Reference Guide

ShrinkWrapWidth
bool ShrinkWrapWidth;

TGadget class

Indicates if the gadget is to be shrink-wrapped to fit around its contents.

TrackMouse
bool TrackMouse;
Initialized to false. When TrackMouse is true, the gadget captures and releases the mouse
on LButtonDown and LButtonUp by calling TGadgetWindow's GadgetSetCapture and
GadgetReleaseCapture.

See also TGadget::LButtonDown, TGadget::LButtonUp

Window
TGadgetWindow* Window;
References the owning or parent window for the gadget.

Protected member functions
GetlnnerRect
void GetlnnerRect(TRect& rect);
Computes the area of the gadget's rectangle excluding the borders and margins.

Inserted
virtual void Inserted();
Called after a gadget is inserted into a window.

Invalidate
void lnvalidate(bool erase = true);
Used to invalidate the active (usually nonborder) portion of the gadget, Invalidate calls
InvalidateRect and passes the boundary width and height of the area to erase.

lnvalidateRect
void lnvalidateRect(const TRect& rect, bool erase = true);
Invalidates the gadget-relative rectangle in the parent window.

LButtonDown
virtual void LButtonDown(uint modKeys, TPoint& point);
Captures the mouse if TrackMouse is set. point is located in the gadget's coordinate
system.

See also TGadget::TrackMouse

LButtonUp
virtual void LButtonUp(uint modKeys, TPoint& point);
Releases the mouse capture if TrackMouse is set. point is located in the gadget's
coordinate system.

See also TGadget::TrackMouse

MouseEnter
virtual void MouseEnter(uint modKeys, TPoint& point);
Called when the mouse enters the gadget.

Chapter 2, ObjectWindows library reference 233

TGadgetWindowFont class

See also TGadget::MouseLeave

Mouseleave
virtual void Mouseleave(uint modKeys, TPoint& point);
Called when the mouse leaves the gadget.

See also TGadget::MouseEnter

MouseMove
virtual void MouseMove(uint modKeys, TPoint& point);
If mouse events are captured, EvMouseMove responds to a mouse dragging message.
point is located in the receiver's coordinate system.

See also TGadget::MouseEnter, TGadget::MouseLeave

Paint
virtual void Paint(TDC&);
Calls PaintBorder to paint the indicated device context.

See also TTextGadget::Paint

PaintBorder
virtual void PaintBorder(TDC& de);
Used to paint the border, PaintBorder calls ::GetSystemMetrics to obtain the width and
height of the gadget and uses the color returned by GetSyscolor to paint or highlight the
area with the specified brush. Depending on whether the border style is raised,
embossed, or recessed, PaintBorder paints the specified boundary. You can override this
function if you want to implement a border style that isn't supported by
ObjectWindows's gadgets.

Ptln
virtual bool Ptln(TPoint& point);
Ptin determines if the point is within the receiver's bounding rectangle and returns true
if this is the case; otherwise, returns false.

Removed
virtual void Removed();
Called after a gadget is removed from a window.

Update
void Update();
Repaints the gadget if possible.

TGadgetWindowFont class gadgetwi.h

Derived from TFont, TGadgetWindowFont is a specific font used in gadget windows for
sizing and default text. You can specify the point size of the font (not the size in pixels)

234 ObjectWindows Reference Guide

TGadgetWindowFont class

and whether it is bold or italic. You can use one of the following FF _xxxx constants to
indicate the font family type:

FF_DECORATIVE

FF _OONTCARE

FF_MODERN

FF_ROMAN

FF_SCRIPT

FF_SWISS

'M:~
Speciality fonts such as Old English.

The font type does not matter.

Fonts such as Pica, Elite or Courier with a constant stroke, width, and with or
without serifs.

Fonts such as Times New Roman and New Century Schoolbook with varied
stroke and with serifs.

Fonts such as Script that are designed to resemble handwriting.

Fonts such as MS Sans Serif with variable stroke width and without serifs.

Depending on the typeface, the font weight can be one of the following constants:

FW _OONTCARE The font weight does not matter.

FW_lHIN Thin
FW _EXTRALIGHT Extra light

PW _ULTRALIGHT Extra light

FW_LIGHT Light

FW_NORMAL Normal

FW_REGULAR Normal font weight

FW_MEDIUM Medium

FW _SEMIBOLD Somewhat bold

FW _DEMIBOLD Somewhat bold

FW_BOLD Bold

FW _EXTRBOLD Extra bold

FW_ULTRBOLD Extra bold

FW_BLACK Heavy weight

FW_HEAVY Heavy weight

The font's appearance depends on the typeface so that some fonts only have
PW _NORMAL, PW _REGULAR and PW _BOLD available. If FW _DONTCARE is
indicated, the default font weight is used.

Public constructor

Constructor
TGadgetWindowFont(int poin!Size = 10, bool bold =false, bool italic =false);
Constructs a TGadgetWindowFont interface object with a default point size of 10 picas
without bold or italic typeface. By default, the constructor creates the system font: a
variable-width, sans-serif Helvetica.

See also TFont

Chapter 2, ObjectWindows library reference 235

TGadgetWindow class

TGadgetWindow class gadgetwi.h

Derived from TWindow, TGadgetWindow maintains a list of tiled gadgets for a window
and lets y6u dynamically arrange tool bars. You can specify the following attributes of
these gadgets:

• Horizontal or vertical tiling. Positions the gadgets horizontally or vertically within
the inner rectangle (the area excluding borders and margins).

• Gadget font. Default font to use for gadgets and for calculating layout units. For font
information, see the description of TGadgetWindowFont.

• Left, right, top, and bottom margins. Specified in pixels, layout units (based on the
window font), or border units (the width or height of a thin window border).

• Measurement units. Specified in pixels, layout units, or border units.

• Gadget window size. A gadget window can shrink-wrap its width, height, or both to
fit around its gadgets. By default, horizontally tiled gadgets shrink-wrap to fit the
height of the window and vertically tiled gadgets shrink-wrap to fit the width of the
window.

TGadgetWindow is the base class for the following derived classes: TControlBar,
TMessageBar, TToolBox, and TStatusBar.

Public constructor and destructor

Constructor
TGadgetWindow(TWindow* parent = 0, TTileDirection direction = Horizontal,

TFont *font = new TGadgetWindowFont, TModule* module = O);
Creates a TGadgetWindow interface object with the default tile direction and font and
passes module with a default value of 0.

Destructor
~ TGadgetWindow();
Destructs the TGadgetWindow object by deleting all of its gadgets and fonts.

Type definitions

THintMode
enum THintMode{NoHints, PressHints, EnterHints};
Enumerates the hint mode settings of the gadget-€ither no hints, hints when a button is
pressed, or hints when the mouse passes over a gadget.

See also TGadgetWindow::GetHintMode

Public member functions

FirstGadget
TGadget* Firs!Gadget() const;

236 ObjectWindows Reference Guide

TGadgetWindow class

Returns the FirstGadget in the list.

See also TGadgetWindow::FirstGadget

GadgetChangedSize
void GadgetChangedSize(TGadget& gadget);
Used to notify the gadget window that a gadget has changed its size, GadgetChangedSize
calls LayoutSession to re-layout all gadgets.

See also TGadget::SetShrinkWrap, TGadgetWindow::GadgetChangedSize

GadgetFrom Point
TGadget* GadgetFromPoint(TPoint& point);
Returns the gadget at the given window coordinates.

GadgetReleaseCapture
void GadgetReleaseCapture(TGadget& gadget);
Releases the capture so that other windows can receive mouse messages.

See also TGadgetWindow::GadgetSetCapture

GadgetSetCapture
bool GadgetSetCapture(TGadget& gadget);
GadgetSetCapture reserves all mouse messages for the gadget window until the capture
is released. Although gadgets are always notified if a left button-down event occurs
within the rectangle, the derived gadget class must call GadgetSetCapture if you want the
gadget to be notified when a mouse drag and a mouse button-up event occurs.

See also TGadgetWindow::GadgetReleaseCapture

GadgetWithld
TGadget* GadgetWithld(int id) cons!;
Returns a pointer to the gadget associated with the given ID (id).

GetDirection
TiileDirection GetDirection() cons!;
Gets the horizontal or vertical orientation of the gadgets.

See also TGadgetWindow::SetDirection

GetFont
TFont& GetFont();
Returns the font (which is Sans Serifby default).

See also TGadgetWindowFont::TGadgetWindowFont

GetFontHeight
uint GetFontHeight() const;
Gets the height of the window's font.

GetHintMode
THintMode GetHintMode();
Returns the hint mode.

C h a p t e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e f e r e n c e 237

TGadgetWindow class

ldleAction
void ldleAction();
While no messages are waiting to be processed, IdleAction is called and iterates through
the gadgets, invoking their CommandEnable member function.

See also TGadget::CommandEnable

Insert
virtual void lnsert(TGadget& gadget, TPlacement = After, TGadget *sibling = O);
Inserts a gadget before or after a sibling gadget (TPlacement). If sibling is 0, then the new
gadget is inserted at either the beginning or the end of the gadget list. If this window has
already been created, LayoutSession needs to be called after inserting gadgets.

See also TGadgetWindow::LayoutSession, TGadgetWindow::Remove

LayoutSession
virtual void LayoutSession();
LayoutSession is typically called when a change occurs in the size of the margins or
gadgets or when gadgets are added or deleted. LayoutSession calls TileGadgets to tile the
gadgets in the specified direction and Invalidate to mark the area as invalid (needs
repainting).

See also TGadgetWindow::Insert, TGadgetWindow::Remove, TWindow::lnvalidate

NextGadget
TGadget* NextGadget(TGadget& gadget) const;
Returns the next gadget after gadget or 0 if none exists.

Remove
virtual TGadget* Remove(TGadget& gadget);
Removes a gadget from the gadget window. The gadget is returned but not destroyed.
Remove returns 0 if the gadget is not in the window.

If this window has already been created, the calling application must call LayoutSession
after any gadgets have been removed.

See also TGadgetWindow::Insert, TGadgetWindow::LayoutSession

SetDirection
virtual void SetDirection(TTileDirection direction);
Sets the horizontal or verticalorientation of the gadgets. If the gadget window is already
created, SetDirection readjusts the dimensions of the gadget window to fit around the
gadgets.

The setting of the direction parameter is also related to the setting of the second
parameter (Tlocation) in TDecoratedFrame's Insert function,. which specifies where the
decoration is added in relation to the frame window's client window. If the second
parameter in TDecoratedFrame::Insert is set to top or bottom, the direction parameter in
SetDirection must be horizontal. If the second parameter in TDecoratedFrame::Insert is set
to left or right, the direction parameter in SetDirection must be vertical.

See also TGadgetWindow::GetDirection

238 ObjectWindows Reference Guide

TGadgetWindow class

SetHintCommand
void SetHintCommand(int id);
Simulates menu selection messages so that ObjectWindows command processing can
display command hints for the given command id (CM_xxxx).

See also CM_xxxx edit constants, CM_xxxx edit file constants

SetHintMode
void SetHintMode(THintMode hintMode);
Sets the mode of the hint text. Defaults to PressHints (displays hint text when a button is
pressed).

See also THintMode enum

SetMargins
void SetMargins(TMargins& margins);
Sets or changes the margins for the gadget window and calls LayoutSession.

See also TGadgetWindow::Margins

SetShrinkWrap
void SetShrinkWrap(bool shrinkWrapWidth, bool shrinkWrapHeight);
Sets the width and height of the data members. By default, if the tile direction is
horizontal, ShrinkWrapWidth is false and ShrinkWrapHeight is true. Also by default, if the
direction is vertical, ShrinkWrapWidth is true and ShrinkWrapHeight is false.

Protected data members

AtMouse
TGadget* AtMouse;
The last gadget at the mouse position.

BkgndBrush
TBrush* BkgndBrush;
The color of the background brush.

Capture
TGadget* Capture;
Points to the gadget that currently has the mouse capture; otherwise, if no gadget has
the mouse capture, Capture is 0.

See also TGadgetWindow::GadgetSetCapture

Direction
TTileDirection GetDirection() const;
Gets the horizontal or vertical orientation of the gadgets.

See also TGadgetWindow::SetDirection

DirtyLayout
bool Dirtylayout;

Chapter 2, ObjectWindows library reference 239

TGadgetWindow class

Indicates the layout has changed and gadgets need to be re-tiled. Using DirtyLayout
avoids redundant tiling when gadget windows are created.

See also TGadgetWindow::LayoutSession

Font
TFont* Font;
Points to the font used to calculate layout units.

See also TGadgetWindow::GetFont

FontHeight
uint GetFontHeight() const;
Gets the height of the window's font.

Gadgets
TGadget* Gadgets; '
Points to the first gadget in the gadget list.

HintMode
THintMode HintMode;
Holds the hint text mode.

See also TIIintMode enum

Margins
TMargins Margins;
Holds the margin values for the gadget window.

S!te also TGadgetWindow::SetMargins

NumGadgets
uint NumGadgets;
The number of gadgets in the window.

$hrinkWrapHeight
bool ShrinkWrapHeight;
If ShrinkWrapHeight is true, the window will shrink its width to fit the tallest gadget for
horizontally tiled gadgets.

See also TGadgetWindow::SetShrinkWrap

ShrinkWrapWidth
bool ShrinkWrapWidth;
If ShrinkWrapWidth is true, the window will shrink its width to fit the widest gadget for
vertically tiled gadgets.

See also TGadgetWindow::SetShrinkWrap

WideAsPossible
uint WideAsPossible;
The number of gadgets that are as wide as possible.

240 ObjectWindows Reference Guide

TGadgetWindow class

Protected member functions
Create
bool Create();
Overrides TWindow member function and chooses the initial size of the gadget if shrink­
wrapping was requested.

See also TGadgetWindow::SetShrinkWrap

EvLButtonDown
void EvLButtonDown(uint modKeys, TPoint& point);
Responds to a left button-down mouse message by forwarding the event to the gadget
positioned under the mouse.

EvLButtonUp
void EvLButtonUp(uint modKeys, TPoint& point);
Responds to a left button-up mouse message by forwarding the event to the gadget that
has the capture.

EvMouseMove
void EvMouseMove(uint modKeys, TPoint& point);
Jf mouse events are captured, EvMouseMove responds to a mouse move message by
forwarding the event to the gadget that has the capture.

EvSize
void EvSize(uint sizeType, TSize& size);
Calls TWindow::EvSize to perform any default processing. If DirtyLayout true and
WideAsPossible is greater than 0, EvSize sets Dirty Layout to true and calls TileGadgets to
readjust the size and Invalidate to mark the area for redrawing.

EvSysColorChange
void EvSysColorChange();
EvSysColorChange, which is called when any system colors have changed, forwards the
event to all gadgets.

GetDesiredSize
virtual void GetDesiredSize(TSize& size);
If shrink-wrapping was requested, GetDesiredSize returns the size needed to
accommodate the borders and the margins of the widest and highest gadget; otherwise,
it returns the width and height in the window's Attr structure.

If you want to leave extra room for a specific look (for example, a separator line between
gadgets, a raised line, and so on), you can override this function. However, if you
override GetDesiredSize, you will probably also need to override GetlnnerRect to
calculate your custom inner rectangle.

See also TGadgetWindow::GetlnnerRect

GetlnnerRect
virtual void GetlnnerRect(TRect& rect);
GetlnnerRect computes the rectangle inside of the borders and margins of the gadget.

Chapter 2, ObjectWindows library reference 241

TGadgetWindow class

H you want to leave extra room for a specific look (for example, a separator line between
gadgets, a raised line, and so on), you can override this function. If you override
GetlnnerRect, you will probably also need to override GetDesiredSize to calculate your
custom total size.

See also TGadgetWindow::GetDesiredSize

GetMargins
void GetMargins(TMargins& margins, int& left, int& right, int& top, int& bottom);
Returns the left, right, top, and bottom margins in pixels.

LayoutUnitsToPixels
int LayoutUnitsToPixels(int units);
Converts layout units to pixels. A layout unit is determined by dividing the window
font height by eight.

See also TGadgetWindow::LayoutSession

Paint
void Paint(TDC& de, bool erase, TRect& rect);
Puts the font into the device context and calls PaintGadgets.

See also TGadgetWindow::PaintGadgets

PaintGadgets
virtual void PaintGadgets(TDC& de, bool erase, TRect& reet);
Called by Paint to repaint all of the gadgets, PaintGadgets iterates through the list of
gadgets, determines the gadget's area, and repaints each gadget.

You can override this function to implement a specific look (for example, separator line,
raised, and so on).

PositionGadget
virtual void PositionGadget(TGadget* previous, TGadget* next, TPoint& point);
PositionGadget is called to allow spacing adjustments to be made before each gadget is
positioned.

See also TGadgetWindow::TileGadgets

TileGadgets
virtual void TileGadgets();
Tiles the gadgets in the direction requested (horizontal or vertical).

Calls PositionGadget to give derived classes an opportunity to adjust the spacing
between gadgets in their windows.

See also TGadgetWindow::PositionGadget

242 ObjectWindows Reference Guide

TGauge class

Response table entries

EV _WM_LBUTTONDOWN
EV _WM_LBUTTONUP

EV _WM_MOUSEMOVE

EV_WM_SIZE

EV _WM_SYSCOLORCHANGE

TGauge class

EvLButtonDown

EvLButtonUp

EvMouseMove

Ev Size

EvSysColorChange

gauge.h

A streamable class derived from TControl, TGauge defines the basic behavior of gauge
controls. Gauges are display-only horizontal or vertical controls that provide duration
or analog information about a particular process. A typical use of a gauge occurs in
installation programs where a control provides a graphical display indicating the
percentage of files copied. In general, horizontal gauges with a broken (dashed-line) bar
are used to display short-duration, process information whereas horizontal gauges with
a solid bar are used to illustrate long-duration, process information. Usually, vertical
gauges are preferred for displaying analog information.

Public constructor
Constructor
TGauge(TWindow* parent, const char far* title, int id, int X, int Y, int W, int H, bool isHorizontal = true,

int margin= 0, TModule* module= O);
Constructs a TGauge object with borders that are determined by using the value of
SM_OCBORDER. Sets IsHorizontal to isHorizontal. Sets border thickness and spacing
between dashed borders (LEDs) to 0. Sets the range of possible values from 0 to 100.

Public member functions
GetRange
void GetRange(int& min, int& max) const;
Gets the minimum and maxilnum values for the gauge.

GetValue
int GetValue() const;
Gets the current value of the gauge.

SetColor
void SetColor(TColor color);
Sets the BarColor data member to the value specified in color.

Set Led
void Setled(int spacing, int thick = 90);
Sets the LedSpacing and LedThick data members to the values spacing and thick.

Chapter 2, ObjectWindows library reference 243

TGauge class

SetRange
void SetRange(int min, int max);
Sets the Min and Max data members to min and max values returned by the constructor.
If Max is less than or equal to Min, SetRange resets Max to Min plus 1.

SetValue
void SetValue(int value);
Restricts the value so that it is within the minimum and maximum values established
for the gauge. If the current value has changed, SetValue marks the old position for
repainting. Then, it sets the data member Value to the new value.

Protected data members
BarColor
TColor BarColor;
Holds the bar or LED color, which defaults to blue.

lsHorizontal
int lsHorizontal;
Set to the ishorizontal argument of the constructor. IsHorizontal is true if the gauge is
horizontal and false if it is vertical.

LedSpacing
int LedSpacing;
Holds the integer value (in gauge units) of the spacing between the broken bars of the
gauge. Note that TGauge does not paint the title while using LED spacing.

LedThick
int LedThick;
Holds the thickness of the broken bar.

Margin
int Margin;
Contains the border width and height of the gauge.

Max
int Max;
Holds the maximum value (in gauge units) displayed on the gauge.

Min
int Min;
Holds the minimum value (in gauge units) displayed on the gauge.

Value
int Value;
Holds the current value of the gauge.

244 ObjectWindows Reference Guide

TGdiObject class

Protected member functions
EvEraseBkgnd
bool EvEraseBkgnd(HDC);
Overrides TWindow's EvEraseBkgnd function and erases the background of the gauge.
Whenever the background is repainted, EvEraseBkgnd is called to avoid flickering.

Paint
void Paint(TDC& de, bool erase, TReet& reel);
Overrides TWindow's Paint function and paints the area and border of the gauge. Paints
the given rectangle on the given device context. Uses the values in LedSpacing and
IsHorizontal to paint draw a horizontal or vertical gauge with solid or broken bars.

See also TGauge::LedSpacing, TGauge::IsHorizontal, TDC, TRect

PaintBorder
virtual void PaintBorder(TDC& de);
Paints the gauge border using the specified device context. Depending on whether the
border style is raised, embossed, or recessed, PaintBorder paints the specified boundary.
You can override this function if you want to implement a border style that isn't
supported by ObjectWindows' gauges.

Response table entries

EV _WM_ERASEBKGND EvEraseBkgnd

TGdiObject class gdiobjec.h

GdiObject is the root, pseudo-abstract base class for ObjectWindows' GDI (Graphics
Device Interface) wrappers. The TGdiOject-based classes let you work with a GDI
handle and construct a C ++ object with an aliased handle. Some GDI objects are also
based on TGdiObject for handle management. Generally, the TGdiObject-based class
hierarchy handles all GDI objects apart from the DC (Device Context) objects handled
by the TDC-based tree.

The five DC selectable classes (TPen, TBrush, TFont, TPalette, and TBitmap), and the
Ticon, TCursor, TDib, and TRegion classes, are all derived directly from TGdiObject.

TGdiObject maintains the GDI handle and a ShouldDelete flag that determines if and
when the handle and object should be destroyed. Protected constructors are provided
for use by the derived classes: one for borrowed handles, and one for normal use.

An optional orphan control mechanism is provided. By default, orphan control is active,
but you can tum it off by defining the NO_GDI_ORPHAN_CONTROL identifier:

#define NO_GDI_ORPHAN_CONTROL

With orphan control active, the following static member functions are available:

Ch a p I er 2, 0 b j e ct Windows Ii bra r y reference 245

TGdiObject class

Ref Add, RefCount, RefDec, RefFind, Refine, and RefRemove.

These maintain object reference counts and allow safe orphan recovery and deletion.
Macros, such as OBJ_ REF _ADD, let you deactivate or activate your orphan control code
by simply defining or undefining NO_GDI_ORPHAN_CONTROL. When
NO_GDI_ORPHAN_CONTROL is undefined, for example, OBJ_REF _ADD(handle,
type) expands to TGdiObject::RefAdd((handle),(type)), but when
NO_GDI_ORPHAN_CONTROL is defined, the macro expands to handle.

Public destructor

Destructor
N TGdiObject();
If ShouldDelete is false no action is taken. Otherwise with ShouldDelete true, the action of
the destructor depends on whether orphan control is active or not. If orphan control is
inactive (that is, if NO_ORPHAN_CONTROL is defined)~ TGdiObject deletes the GDI
object. If orphan control is active (the default) the object is deleted only if the reference
count is 0.

Type definitions

TAutoDelete
enum TAutoDelete{NoAutoDelete, AutoDelete};
This enum, which is defined in the private base class, gdibase.h, enumerates the flag
values for GDI Handle constructors. This flag is. used to control GDI object deletion in
the destructors.

TType
enum TType {None, Pen, Brush, Font, Palette, Bitmap, TextBrush};
This enumeration is used to store the object type in the struct TObjinfo. This internal
structure is used to track object reference counts during debugging sessions.

See also TGdiObject::RefCount

Public member functions

GetObject
int GetObject(int count, void far* object) canst;
Obtains information about this GDI object and places it in the object buffer. If the call
succeeds and object is not 0, GetObject returns the number of bytes copied to the object
buffer. If the call succeeds and object is 0, GetObject returns the number of bytes needed
in the object buffer for the type of object being queried. Depending on what type of GDI
object is derived, this function retrieves a LOGPEN, LOGBRUSH, LOGFONT, or
BITMAP structure through object.

See also TPen::GetObject, BITMAP struct, LOGBRUSH struct, LOGFONT struct,
LOGPEN struct

246 0 bjectW ind ows Reference Guide

TGdiObject class

Ref Add
static void RefAdd(HANDLE handle, TType type);
Available only if orphan control is active (that is, if NO_ GD!_ ORPHAN_ CONTROL is
undefined). Ref Add adds a reference entry for the object with the given handle and type to
the ObjlnfoBag table and sets the reference count to 1. If the table already has a matching
entry, no action is taken.

See also TGdiObject::RefCount, macro OBJ_REF _ADD

RefCount
static int RefCount(HANDLE handle);
Available only if orphan control is active, that is, if NO_ GD!_ ORPHAN_ CONTROL is
undefined. RefCount returns this object's current reference count or -1 if the object is not
in the ObjlnfoBag table.

See also macro OBJ_REF _COUNT

Ref Dec
static void RefDec(HANDLE handle);
static void RefDec(HANDLE handle, bool wantDelete);
Available only if orphan control is active, that is, if NO_GDI_ORPHAN_CONTROL is
undefined. RefDec decrements this object's reference count by 1 and deletes the object
when the reference count reaches zero. A warning is issued if the deletion was supposed
to happen but didn't. Likewise, a warning is issued if the deletion wasn't supposed to
happen but did. The deleted object is also detached from the ObjlnfoBag table.

The second version of RefDec is available only if the __ TRACE identifier is defined. You
can vary the normal deletion strategy by setting wantDelete to true or false.

See also TGdiObject::RefCount, macro OBJ_REF _DEC

RefFind
static TObjlnfo* RefFind(HANDLE object);
Available only if orphan control is active (that is, if NO_ GD!_ ORPHAN the given object
is undefined). If found, the object's type and reference count are returned in the
specified TObjlnfo object. RefFind returns 0 if no match is found.

See also TGdiObject::RefCount

Refine
static void Reflnc(HANDLE handle);
Available only if orphan control is active (that is, if NO_GDI_ORPHAN_CONTROL is
undefined). Refine increments by 1 the reference count of the object associated with
handle.

See also TGdiObject::RefCount, macro OBJ_REF _INC

Ref Remove
static void RefRemove(HANDLE handle);
Available only if orphan control is active (that is, if NO_GDI_ORPHAN_CONTROL is
undefined). RefRemove removes the reference entry to the object with the given handle
from the ObjlnfoBag table. If the given handle is not found, no action is taken.

See also TGdiObject::RefCount, macro OBJ_REF _REMOVE

Chapter 2, ObjectWindows library reference 247

TGdiObject class

operator HGDIOBJO
operator HGDIOBJ() const
Type casting operator that converts this GDI object handle to type HGDIOBJ.

Protected data members
Handle
HANDLE Handle;
The GDI handle of this object.

See also TGdiObject protected constructors

Should Delete
bool ShouldDelete;
Set true if the Destructor needs to delete this object's GDI handle.

See also TGdiObject Protected Constructors

Protected member functions
CheckValid
void CheckValid(uint resld=IDS _ GDIFAILURE)
static void CheckValid(HANDLE handle, uint resld=IDS _ GDIFAILURE)

Both versions of Check Valid check for a valid GDI object handle. If one is not found a
GDI exception is thrown for the given resource id.

Protected constructors
Constructors

Form 1 TGdiObject();
This default constructor sets Handle to 0 and ShouldDelete tO true. This constructor is
intended for ust; by derived classes that must set the Handle member.

Form 2 TGdiObject(HANDLE handle, TAutoDelete autoDelete = NoAutoDelete);
This constructor is intended for use by derived classes only. The Handle data member is
"borrowed" from an existing handle given by the argument handle The ShouldDelete data
member defaults to false ensuring that the borrowed handle will not be deleted when
the object 1s destroyed.

See also TGdiObject::enumTAutoDelete, TGdiObject::Handle, TGdiObject::RefCount,
TGdiObject::ShouldDelete

Macros
OBJ_REF _ADD
OBJ_ REF_ ADD(handle, type)
If orphan control is active (the default), OBJ_REF _ADD(handle, type) is defined as
TGdiObject::ReJAdd((handle), (type)). The latter adds to the ObjinfoBag table a reference

248 0 b j e ctWi n d ows R efe re n ce Guide

TGdiObject class

entry for the object with the given handle and type, and sets its count to 1. If orphan
control is inactive, OBJ_REF _ADD(handle) is defined as handle. This macro lets you write
orphan control code that can be easily deactivated with the single statement #define
NO_GDI_ORPHAN_CONTROL.

See also TGdiObject::RefAdd

OBJ_REF _COUNT
OBJ_ REF_ COUNT(handle)
If orphan control is active (the default), OBJ_REF _COUNT(handle) is defined as
TGdiObject::RefCount((handle)). The latter returns the reference count of the object with
the given handle, or -1 if no such object exists. If orphan control is inactive,
OBJ_REF _COUNT(handle) is defined as-1. This macro lets you write orphan control
code that can be easily deactivated with the single statement #define
NO_GDI_ORPHAN_CONTROL.

See also TGdiObject::RefCount

OBJ REF DEC
OBJ_REF _DEC(handle, wan!Delete)
If orphan control is active (the default), OBJ_REF _DEC(handle, wantDelete) is defined as
either TGdiObject::RefDec((handle)) or TGdiObject::RefDec((handle), (wantDelete)). The
latter format occurs only if __ TRACE is defined. RefDec(handle) decrements the
reference count of the object associated with handle and optionally deletes orphans or
warns you of their existence. If orphan control is inactive, OBJ_REF _DEC(handle) is
defined as handle. This macro lets you write orphan control code that can be easily
deactivated with the single statement #define NO_ GD!_ ORPHAN_ CONTROL.

See also TGdiObject::RefDec

OBJ_REF _INC
OBJ_ REF _INC(handle)
If orphan control is active (the default), OBJ_REF _INC(handle) is defined as
TGdiObject::Reflnc((handle)). The latter increments the reference count of the object
associated with handle. If orphan control is inactive, OBJ_REF _DEC(handle) is defined as
handle. This macro lets you write orphan control code that can be easily deactivated with
the single statement #define NO _GDI_ORPHAN~CONTROL.

See also TGdiObject::Reflnc

OBJ_REF _REMOVE
OBJ_ REF_ REMOVE(handle)
If orphan control is active (the default), OBJ_REF _REMOVE(handle) is defined as
TGdiObject::RefRemove((handle)). The latter removes from the ObjinfoBag table the
reference entry for the object associated with handle. If orphan control is inactive,
OBJ_REF _REMOVE(handle) is defined as handle. This macro lets you write orphan
control code that can be easily deactivated with the single statement #define
NO_GDI_ORPHAN_CONTROL.

See also TGdiObject::RefRemove

Ch apter 2, 0 b j e ct Windows Ii bra r y re I ere n c e 249

TGdiObject::TXGdi class

TGdiObject::TXGdi class gdibase.h

Describes an exception resulting from GDI failures such as creating too many TWindow
DCs. This exception occurs, for example, if a DC driver can't be located or if a DIB file
can't be read.

The following code from the PAINT.CPP sample program on your distribution disk
throws a TXGdi exception if a new DIB can't be created.

void TCanvas: :NewDib(int width, int height, int nColors)
{

TDib* dib;
try {

dib =new TDib(width, height, nColors);

catch (TGdiObject::TXGdi& x) {
MessageBox("Could Not Create DIB", GetApplication()->Name,

MB_OK);
return;

Public constructor
Constructor
TXGdi(uint resld = IDS_GDIFAILURE, HANDLE= O);
Constructs a TXGdi object with a default IDS_ GDIFAILURE message.

Public member functions
Clone
TXOwl* Clone();
Makes a copy of the exception object. Clone must be implemented in any class derived
from TXOwl.

Msg
static string Msg(uint resld, HANDLE);
Converts the resource ID to a string and returns the string message.

Throw
void Throw();
Throws the exception object. Throw must be implemented in any class derived from
TX Owl.

TGroupBox class groupbox.h

An instance of a TGroupBox is an interface object that represents a corresponding group
box element. Generally, TGroupBox objects are not used in dialog boxes or dialog
windows (TDialog), but are used when you want to create a group box in a window.

250 ObjectWindows Reference Guide

TGroupBox class

Although group boxes don't serve an active purpose onscreen, they visually unify a
group of selection boxes such as check boxes and radio buttons or other controls. Behind
the scenes, however, they can take an important role in handling state changes for their
group of controls (normally check boxes or radio buttons).

For example, you might want to respond to a selection change in any one of a group of
radio buttons in a similar manner. You can do this by deriving a class from TGroupBox
that redefines the member function SelectionChanged.

Alternatively, you could respond to selection changes in the group of radio buttons by
defining a response for the group box's parent. To do so, define a child-ID-based
response member function using the ID of the group box. The group box will
automatically send a child-ID-based message to its parent whenever the radio button
selection state changes. This class is streamable.

Public data members

Notify Parent
bool NotifyParent;
Flag that indicates whether parent is to be notified when the state of the group box's
selection boxes has changed. Notify Parent is true by default.

Public constructors

Public constructors
Form 1 TGroupBox(TWindow* parent, int Id, const char far *text, int x, int y, int w, int h, TModule* module = O);

Constructs a group box object with the supplied parent window (Parent), control ID (Id),
associated text (text), position (x, y) relative to the origin of the parent window's client
area, width (w), and height (h). Invokes the TControl constructor with similar
parameters, then modifies Attr.Style, adding BS_GROUPBOX and removing
WS_TABSTOP. NotifyParent is set to true; by default, the group box's parent is notified
when a selection change occurs in any of the group box's controls.

Form 2 TGroupBox(TWindow* parent int resourceld, TModule* module = O);
Constructs a TGroupBox object to be associated with a group box control of a TDialog.
Invokes the TControl constructor with identical parameters resourceID must correspond
to a group box resource that you define.

See also TControl::TControl, TWindow::DisableTransfer

Public member functions

GetClassName
char far* GetClassName();
GetClassName returns the name of TGroupBox's Windows registration class, "BUTTON."
If BWCC is enabled, GetClassName returns BUTTON_ CLASS.

SelectionChanged
virtual void SelectionChanged(int controlld);

Ch apter 2, 0 bjectWi n d ows Ii brary reference 251

THatchBxBBrush class

If NotifyParent is true, Selectir;mChanged notifies the parent window of the group box that
one of its selections has changed by sending it a child-ID-based message. This member
function can be redefined to allow the group box to handle selection changes in its
group of controls.

THatch8x8Brush class gdiobjec.h

Derived from TBrush, THatch8x8Brush defines a small, 8x8, monochrome, configurable
hatch brush (a brush that fills an area with a pattern created from hatch marks). Because
the hatch brush is a logical brush created from device independent bitmaps (DIBs), it
can be passed to any DC, which then renders the brush into the appropriate form for the
particular device.

Although the default brush's color is a white foreground and a black background, you
can vary the colors of the hatched brush. The colors can be any one of the TColor object
encapsulated colors, namely the standard RGB values.

THatch8x8Brush contains static arrays that define common hatched brush patterns. The
hatched brush patterns you can select include

Forward Diagonal I I I I I

//////////
Backward Diagonal \ \ \ \ \ \

\\\\\\\\\\

You can use THatch8x8Brush to design a variety of hatched brush border patterns
around a simple rectangle or an OLE container. You can also use THatch8x8Brush in
conjunction with TU/Handle.

Public data members
Hatch11F1[8)
const static uint8 Hatch11 F1 [8];
The static array, Hatch11F1{8] holds the logical hatched brush pattern of 1 piXel on and
lpixel off in monochrome, offset 1 per row as the following pattern illustrates.

~
Hatch13B1 [8)
const static uint8 Hatch1381[8);
The static array, Hatch13B1[8] holds a hatched brush pattern of 1 pixel on and 3 pixels off
in backward diagonal hatch marks, offset 1 per row as the following pattern illustrates.

~~~ 
Hatch13F1 [8) 
const static uint8 Hatch13F1 [8]; 

252 Objec!Windows Reference Guide 



TIC class 

The static array, Hatch13F1[8] holds a hatched brush pattern of 1 pixel on and 3 pixels off 
in forward diagonal hatch marks, offset 1 per row as the following pattern illustrates. 

~$& 
Hatch22B1 [8) 
const static uint8 Hatch22B1 [8); 
The static array, Hatch22B1[8] holds a hatched brush pattern of 2 pixels on and 2 off in 
backward diagonal hatch marks, offset 1 per row as the following pattern illustrates. 

~ 
Hatch22F1 [8] 
const static uint8 Hatch22F1 [8]; 
The static array, Hatch22F1[8] holds a hatched brush pattern of 2 pixels on and 2 off in 
forward diagonal hatch marks, offset 1 per row as the following pattern illustrates. 

~ 
Public constructors 
Constructor 
THatch8x8Brush(const uint8 hatchD, TColor fgColor= TColor::White, TColor bgColor= TColor::Black); 
Constructs a THatchBrush object with the specified hatched pattern and colors. 
Although the hatched brush is, by default, white on a black background, you can control 
the displayed colors by passing different colors in the constructor where fgColor 
represents the foreground color and bgColor represents the background color of a TColor 
object type. Colors can be specified in either palette (a reference to a corresponding color 
palette entry in the currently realized palette) or RGB mode (an actual red, green, or blue 
color value). 

Public member functions 
Reconstruct 
void Reconstruct(const uint8 hatchD, TColor fgColor, TColor bgColor); 
Reconstructs the hatched brush with a new pattern or new set of colors. 

See also TBrush, TColor, TUIHandle 

TIC class dc.h 

Derived from TDC, TIC is a DC class that provides ~·constructor for creating a DC object 
from explicit driver, device, and port names. · 

Chapter 2, Objec!Windows library reference 253 



Tlcon class 

Public constructor 
Constructor 
TIC(const char far* driver, cons! char far* device, cons! char far* output, cons! DEVMODE far* ini!Dala=O); 
Creates a DC object with the given driver, device, and port names and initialization 
values. 

See also TDC::GetDeviceCaps, DEVMODE struct 

Tlcon class gdiobjec.h 

Ticon, derived from TGdiObject, represents the GDI object icon class. Ticon constructors 
can create icons from a resource or from explicit information. Because icons are not real 
GDI objects, the TI con destructor overloads the base destructor, ~ TGdiObject. 

Public constructors and destructor 
Constructors 

Form 1 Tlcon(HICON handle, TAutoDelete autoDelete = NoAutoDelete); 
Creates a Ticon object and sets the Handle data member to the given borrowed handle. 
The ShouldDelete data member defaults to false, ensuring that the borrowed handle will 
not be deleted when the C ++ object is destroyed. 

Form 2 Tlcon(HINSTANCE instance, cons! Tlcon& icon); 
Creates a copy of the given icon object. 

Form 3 Tlcon(HINSTANCE instance, TReslD reslD); 
Creates an icon object from the given resource. 

Form 4 Tlcon(HINSTANCE instance, cons! char far* filename, int index); 
Creates an icon object from the given resource file. 

Form 5 Tlcon(HINSTANCE instance, cons! TSize& size, int planes, int bitsPixel, cons! void far* andBits, 
cons! void far* xorBits); 

Creates an icon object with the given values. 

Form 6 Tlcon(const void* resBits, uint32 resSize); 
Creates an icon object of the given size from the bits found in the resBits buffer. 

Form 7 Tlcon(const ICONINFO* iconlnfo); 
Creates an icon object with the given ICONINFO information. 

Destructor 
~Tlcon(); 

Destroys the icon and frees any memory that the icon occupied. 

See also ~ TGdiObject, TGdiObject::Handle, TGdiObject::ShouldDelete,, TResID, TSize, 
ICONINFO structure 

254 ObjectWindows Reference Guide 



TlnputDialog class 

Public member functions 
Getlconlnfo 
bool Getlconlnfo(ICONINFO* iconlnfo) const; 
Retrieves information about this icon and copies it into the given ICONINFO structure. 
Returns true if the call is successful; otherwise returns false. 

See also ICONINFO structure 

operator HICON() 
operator HICON() const; 

Typecasting operator that converts this icon's Handle to type HICON (the data type 
representing the handle to an icon resource). 

TlnputDialog class inputdia.h 

TlnputDialog provides a generic dialog box to retrieve text input by a user. When the 
input dialog box is constructed, its title, prompt, and default input text are specified. 
TlnputDialog is a streamable class. 

Public data members 
buffer 
char far* buffer; 
Pointer to the buffer that returns the text retrieved from the user. When passed to the 
constructor of the input dialog box, contains the default text to be initially displayed in 
the edit control. 

BufferSize 
int BufferSize; 
Contains the size of the buffer that returns user input. 

prompt 
char far* prompt; 
Points to the prompt for the input dialog box. 

Public constructor 
Constructor 
TlnputDialog(TWindow* parent, const char far *title, const char far *prompt, char far* buffer, int buffersize, 

TModule* module = 0, TValidator* valid = 0) 
Invokes TDialog's constructor, passing it parent, the resource identifier and module. Sets 
the caption of the dialog box to title and the prompt static control to prompt. Sets the 
Buffer and BufferSize data members to buffer and bufferSize. 

See also TDialog::TDialog 

Chapter 2, ObjectWindows library reference 255 



TlnStream class 

Public member function 
TransferData 
void TransferData(TTransferDirection direction); 
Transfers the data of the input dialog box. If direction is tdSetData, sets the text of the 
static and edit controls of the dialog box to the text in prompt and buffer. If direction is 
tdGetData, fills the buffer with the ci.Jrrent text of the Editor. 

Protected member function 
SetupWindow 
virtual void SetupWindow(); 
In setting up the window, Setup Window calls TDialog::SetupWindow, then limits the 
number of characters the user can enter to bufferSize -1. 

TlnStream class docview.h 

Derived from TStream and istream, TlnStream is a base class used for defining input 
streams for documents. 

Public constructor 
Constructor 
TlnStream(TDocument& doc, canst char far* name, int mode); 
Constructs a TlnStream object. doc refers to the document object, name is the user-defined 
name of the stream, and mode is the mode of opening the stream. 

See also TOutStream, ofXXXX document open enum; shxxxx document sharing enum 

TLayoutConstraint struct layoutco.h 

TLayoutConstraint is a structure that defines a relationship (a layout constraint) between 
an edge or size of one window and an edge or size of one of the window's siblings or its 
parent. Ha parent-child relationship is established between windows, the dimensions of 
the child windows are dependent on the parent window. A window can have one of its 
sizes depend on the size of the opposite dimension. For example, the width can be twice 
the height. TLayoutMetrics lists the relationships you can have among size and edge 
constraints. 

256 ObjectWindows Reference Guide 



TLayoutConstraint struct 

The sample file LAYOUT.CPP shows you the following example of how to set up layout 
constraints. 

Window 
Red 
Green 
Blue 
Yellow 
Cyan 

Layout child windows 

Layout Tweaker 

OWidth 

0 !:!eight 

MyEdge l1mCenter Ill 
.Belationship l1mAsls II 

::::===== R.eJWin jlmParent II 
Set these metrics to control 

'------+-- the position and size of the 
layout child window. 

QtherEdge J1mTop JI 

'--;====-+--' 
'lalue ~ Jlnits J1mLayoutUnitll 

n 

Public data members 
My Edge 
uint MyEdge; 
MyEdge contains the name of the edge or size constraint (lmTop, lmBottom, lmLeft, 
lmRight, lmCenter, lm Width, or lmHeight) for your window. 

See also TWidthHeight enum 

OtherEdge 
uint OtherEdge; 
OtherEdge contains the name of the edge or size constraint (lmTop, lmBottom, lmLeft, 
lmRight, lmCenter, lmWidth, or lmHeight) for the other window. 

See also TWidthHeight enum 

Relationship 
TRelationship Relationship; 
Relationship specifies the type of relationship that exists between the two windows (that 
is, lmRightOf, lmLeftOf, lmAbove, lmBelow, lmSameAs, or lmPercentOf). A value of 
lmAbsolute actually indicates that no relationship exists. 

See also TRelationship enum 

RelWin 
TWindow *RelWin; 

C h apt e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e f e r e n c e 257 



TLayoutMetrics class 

RelWin is a pointer to the sibling windows or lmParent if the child is a proportion of the 
parent's dimensions. RelWin points to the window itself (this) if a child window's 
dimension is a proportion of one of its other dimensions (for example, its height is a 
proportion of its width). 

See also TRelationship enum 

Units 
TMeasurementUnits Units; 
Units enumerates the units of measurement (either pixels or layout units) used to 
measure the height and width of the windows. Unlike pixels, layout units are based on 
system font size and will be consistent in their perceived size even if the screen 
resolution changes. 

See also TMeasurementUnits enum 

union 
union { 

}; 

int Margin; 
int Value; 
int Percent; 

This union is included for the conveniertce of naming the layout constraints. Margin is 
used for the lmAbove, lmLeftOf, lmLeftOf, or lmRightOf enumerated values in 
TRelationship. Value is used for the lmSameAs or lmAbsolute enumerated values in 
TRelationship. Percent is used for the lmPercentOf enumerated value in TRelationship. 

See also TMeasurementUnits enum 

TLayoutMetrics class layoutwi.h 

TLayoutMetrics contains the four layout constraints used to define the layout metrics for 
a window. This table lists the constraints you can use for the X, Y, Height, and Width 
fields. 

x lmLeft, lmCenter, lmRight 
y 

Height 

Width 

Im Top, lmCenter, lmBottom 

lmCenter, lmRight, Im Width 

lmCenter, lmBottom, lmHeight 

If the metrics for the child window are relative to the parent window, the relation 
window pointer (lmParent) needs to be lmParent (not the actual parent window pointer). 
For example, 

TWindow* child= new TWindow(this, ""); 
TLayoutMetrics metrics; 
metrics.X.Set(lmCenter, lmSameAs, lm( )t, lmCenter); 
metrics.Y.Set(lmCenter, lmSameAs, lm( )t, lmCenter); 
SetChildLayoutMetrics(*child, metrics); 

258 Objec!Windows Reference Guide 



TLayoutMetrics class 

The parent window pointer (this) should not be used as the relation window pointer of 
the child window. 

Public data members 
Height 
TEdgeOrWidthConstraint Height; 
Contains the height size constraint, center edge, or bottom edge constraint of the 
window. 

Width 
TEdgeOrWidthConstraint Width; 
Contains the width size constraint, center edge, or right edge (lmRight) constraint of the 
window. 

X,Y 
TEdgeConstraint X, Y; 
X contains the X (left, center, right) edge constraint of the window. Y contains the Y (top, 
center, bottom) edge constraint of the window. 

Public constructor 
Constructor 
TLayoutMetrics(); 
Creates a TLayoutMetrics object and initializes the object by setting the units for the child 
and parent window to the specified layout units and the relationship between the two 
windows to what is defined in ImAsis (of TRelationship). Sets the following default 
values: 

X.RelWin = O; 
X.MyEdge = lmLeft; 
X.Relationship = lmAsis; 
X.Units = lmLayoutUnits; 
X.Value = O; 
Y.RelWin = O; 
Y.MyEdge = lrnTop; 
Y.Relationship = lmAsis; 
Y.Units = lmLayoutUnits; 
Y.Value = O; 
Width.RelWin = O; 
Width.MyEdge = lmWidth; 
Width.Relationship = lmAsis; 
Width.Units = lrnLayoutUnits; 
Width.Value = O; 
Height.RelWin = O; 
Height.MyEdge = lmHeight; 
Height.Relationship = lmAsis; 
Height.Units = lrnLayoutUnits; 
Height.Value = O; 

Chapter 2, ObjectWindows library reference 259 



TLayoutMetrics class 

The following program creates two child windows and a frame into which you can add 
layout constraints. 

#include <owl\owl.h> 
#include <owl\framewin.h> 
#include <owl\applicat.h> 
#include <owl\layoutwi.h> 
#include <owl\decorate.h> 
#include <owl\decmdifr.h> 
#include <owl\layoutco.h> 
#pragma hdrstop 

II Create a derived class. II 

class TMyDecoratedFrame : public TDecoratedFrame { 
public: 
TMyDecoratedFrame(TWindow* parent, canst char far* title, TWindow& clientWnd, TWindow* MyC 
hildWindow) ; 

}; 

void SetupWindow(); 
{ 

TDecoratedFrame::SetupWindow( ); 
MyChildWindow->ShowWindow(SW_NORMAL); 
MyChildWindow->BringWindowToTop(); 

II Setup a frame window II 

TMyDecoratedFrame::TMyDecoratedFrame(TWindow *parent, canst char far* 
title, TWindow& clientWnd) 

TDecoratedFrame(parent, title, clientWnd), 
TFrameWindow(parent, title, &clientWnd), 
TWindow(parent, title) 

{ 

II Create a new TMyChildWindow. II 

MyChildWindow =new TWindow(this, ""); 
MyChildWindow->Attr.Style I= WS_BORDER IWS_VISIBLE IWS_CHILD; 
MyChildwindow->SetBkgndColor(RGB(0,100,0)); 

II Establish metrics for the child window. II 

TLayoutMetrics layoutMetrics; 

layoutMetrics.X.Absolute(lmLeft, 10); 
layoutMetrics.Y.Absolute(lmTop, 10); 
layoutMetrics.Width.Absolute( 80 ) ; 
layoutMetrics .Height.Absolute ( 80 ) ; 

SetChildLayoutMetrics(*MyChildWindow, layoutMetrics); 
class TMyApp : public TApplication { 
public: 

260 ObjectWindows Reference Guide 



virtual void InitMainWindow( I 
{ 

TLayoutWindow class 

TWindow* client= new TWindow(O, "title"); 
MainWindow =new TMyDecoratedFrame(O, "Layout Window Ex", *client); 

}; 

int OwlMain(int, char**) 
return TMyApp.Run( I; 

TLayoutWindow class layoutwi.h 

Derived from TWindow, TLayoutWindow provides functionality for defining the layout 
metrics for a window. By using layout constraints, you can create windows whose 
position and size are proportional to another window's dimensions. In other words, the 
one window constrains the size of the other window. Toolbars and status bars are 
examples of constrained windows. See TLayoutConstraint for a definition of the layout 
constraints and TLayoutMetrics for a description of the metrics you can use to set up 
layout constraints. 

The following examples show how to set up various metrics using edge constraints. For 
purposes of illustration, these examples use a parent-child relationship, but you can also 
use a child-to-child (sibling) relationship. Keep in mind that, as usual, if you move the 
parent's origin (the left and top edges), the child will move with the parent window. 

Examples 
Example 1 
To create growable windows, set the top and left edges of the child window's 
boundaries in a fixed relationship to the top and left edges of the parent's window. In 
this example, if you expand the bottom and right edges of the parent, the child's bottom 
and right edges grow the same amount. Both the X and Y constraints are 10 units from 
the parent window's edges. Both the Width and Height constraints are 40 layout units 
from the parent window's edges. Specifically, Width (lm Width) is 40 units to the left of 
the parent's right edge (lmLeftOf = lmSameAs + offset or sameas - 40). 

y = 10 

x = 10 40Width -
40 Height 

Use the following layout constraints: 

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 261 



TLayoutWindow class 

layoutmetrics.X.Set(lmLeft, lmRightOf, lm()t, lmLeft, 10); 
layoutmetrics. Y. Set (lmTop, lmBelow, lm( )t, lmTop, 10); 
layoutmetrics.Width.Set(lmRight, lmLeftOf, lmParent, lmRight, 40); 
layoutmetrics.Height.Set(lmBottom, lmAbove, lmParent, lmBottom, 40); 
SetChildLayoutMetrics(*MyChildWindow, layoutMetrics); 

Example2 
To create fixed-size and fixed-position windows, set the child's right edge a fixed 
distance from parent's left edge and the child's bottom edge a fixed distance from the 
parent's top edge. In this example, both the X and Y edge constraints are set to 10 and 
both the Width and Height edge constraints are set to 100. 

vJ10 

X=10~t LJ right= 100 

~Width= 100 

Use the following layout constraints: 

layoutmetrics.X.Set(lmLeft, lmRightOf, lmParent, lmLeft, 10); 
layoutmetrics.Y.Set(lmTop, lmBelow, lmParent, lmTop, 10); 
layoutmetrics.Width.Absolute(lOO); 
layoutmetrics.Height.Absolute(lOO); 
SetChildLayoutMetrics(*MyChildWindow, layoutMetrics); 

Example3 
To create a fixed-size window that remains a constant distance from the parent's right 
comer, set the child's top and bottom edges a fixed distance (lmLayout unit or pixels) 
from the parent window's bottom. Also, set the child's left and right edges a fixed 
distance from the parent's right edge. In this example, both the Width and the Height 
edge constraints are set to 10 and the X and Y edge constraints are set to 100. In this case, 
the child window, which stays the same size, moves with the lower right corner of the 
parent. 

Width= 100 

t X= 10 
Height= 100 

i 
vT10 

l 
Use the following layout constraints: 

layoutmetrics.X.Set(lmRight, lmLeftOf, lmParent, lmRight, 10); 

262 ObjectWindows Reference Guide 



layoutmetrics.Y.Set(lmBottom, lmAbove, lmParent, lmBottom, 10); 
layoutmetrics.Width.Absolute(lOO); 
layoutmetrics.Height.Absolute(lOO); 
SetChildLayoutMetrics(*MyChildWindow, layoutMetrics); 

Example 4 

TLayoutWindow class 

To create a window in which the child's edges are a percentage of the parent's window, 
set the child's edges a percentage of the distance from the parent's edges. Specifically, 
the child's top and bottom edges are a percentage of the parent's bottom edge. The 
child's left and right edges are a percentage of the parent's right edge. 

If you resize the parent window, the child window will change size and origin (that is, 
the top and left edges will also change). 

l X= 33% 

Height= 66% 
Width= 66% 

j Y= 33% 

l 
Use the following layout constraints: 

layoutmetrics.X.Set(lmLeft, lmPercentOf, lmParent, lmRight, 33); 
layoutmetrics.Y.Set(lmTop, lmPercentOf, lmParent, lmBottom, 33); 
layoutmetrics. Width. Set I lmRight, lmPercentOf, lm I ) t, lmRight, 66) ; 
layoutmetrics.Height.Set (lmBottom, lmPercentOf, lm( )t, lmBottom, 66); 
SetChildLayoutMetrics(*MyChildWindow, layoutMetrics); 

Public constructor and destructor 
Constructor 
TLayoutWindow(TWindow* parent, cons! char far *title= O, TModule* module= O); 
Creates a TLayoutWindow object with specified parent, window caption, and library ID. 

Destructor 
N TLayoutWindow(); 
Deletes variables and frees the child metrics and constraints. 

Public member functions 
GetChildlayoutMetrics 
bool GetChildlayoutMetrics(TWindow &child, TLayoutMetrics &metrics); 
Gets the layout metrics of the child window. 

Layout 
void Layout(); 

Chapter 2, ObjectWindows library reference 263 



TListBox class 

Causes the window to resize and position its children according to the specified metrics. 
Call Layout to implement changes that occur in the layout metrics. 

· RemoveChildLayoutMetrics 
bool RemoveChildlayoutMetrics{TWindow &child); 
Removes the layout metrics for a child window. 

SetChildLayoutMetrics 
void SetChildLayoutMetrics(TWindow &child, TLayoutMetrics &metrics); 
Sets the metrics for the window and removes any existing ones. Set the metrics as 
shown: 

layoutMetrics->X.Absolute(lmLeft, 10); 
layoutMetrics->Y.Absolute(lmTop, 10); 
layoutMetrics->Width.Set(lmWidth, lmRightOf, GetClientWindow(), lmWidth, -40); 
layoutMetrics->Height.Set(lmHeight, lmRightOf, GetClientWindow(), lmHeight, -40); 

Then call SetChildLayoutMetrics to associate them with the position of the child window: 

SetChildLayoutMetrics(* MyChildWindow, * layoutMetrics); 

Protected data member 
ClientSize 
TSize ClientSize; 
Contains the size of the client area. 

Protected member functions 
EvSize 
void EvSize(uint sizeType, TSize& size); 
Responds to a change in window size by calling Layout to resize the window. 

Response table entries 

EV_WM_SIZE EvSize 

TListBox class listbox.h 

A TListBox is an interface object that represents a corresponding list box element. A 
TListBox must be used to create a list box control in a parent TWindow. A TListBox can be 
used to facilitate communication between your application and the list box controls of a 
TDialog. TListBox's member functions also serve instances of its derived class, 
TComboBox. From within MDI child windows, you can access a TListBox object by using 
TFrameWindow::GetClientWindow.TListBox is a streamable class. 

264 ObjectWindows Reference Guide 



TListBox class 

Public constructors 
Constructors 

Form 1 TListBox(TWindow* parent, int Id, int x, int y, int w, int h, TModule* module= O); 
Constructs a list box object with the supplied parent window (parent) library ID 
(module), position (x, y) relative to the origin of the parent window's client area, width 
(w), and height (h). Invokes a TControl constructor. Adds LBS_STANDARD to the 
default styles for the list box to provide it with 

• A border (WS_BORDER) 

• A vertical scroll bar (WS_ VSCROLL) 

• Automatic alphabetic sorting of list items (LBS_SORT) 

• Parent window notification upon selection (LBS_NOTIFY) 

The TListBox member functions that are described as being for single-selection list boxes 
are inherited by TComboBox and can also be used by combo boxes. Also, these member 
functions return -1 for multiple-selection list boxes. 

Form 2 TListBox(TWindow* parent, int resourceld, TModule* module = 0) 
Constructs a TListBox object to be associated with a list box control of a TDialog. Invokes 
the TControl constructor with similar parameters. The module parameter must 
correspond to a list box resource that you define. 

See also GetSellndex, GetSelString, SetSellndex, SetSelString, TControl::TControl 

Public member functions 
AddString 
virtual int AddString(const char far* sir); 
Adds string to the list box, returning its position in the list (0 is the first position). 
Returns a negative value if an error occurs. The list items are automatically sorted unless 
the style LBS_SORT is not used for list box creation. 

See also TListBox::DeleteString, TListBox::InsertString 

Clearlist 
virtual void Clear List(); 
Clears all items in the list. 

DeleteString 
virtual int DeleteString(int index); 
Deletes the item in the list at the position (starting at 0) supplied in index. DeleteString 
returns the number of remaining list items, or a negative value if an error occurs. 

See also TListBox::AddString, TListBox::InsertString 

Directorylist 
virtual int Directorylist(uint attrs, cons! char far* fileSpec) 
Adds a list of file names to a list box. 

Chapter 2, ObjectWindows library reference 265 



TListBox class 

FindExactString 
int FindExactString(const char far* sir, int search Index) cons!; 
Starting at the line number passed in search!ndex, searches the list box for an exact match 
with the string str. If a match is not found after the last string has been compared, the 
search continues from the beginning of the list until a match has been found or until the 
list has been completely traversed. Searches from the beginning of the list when -1 is 
supplied as search!ndex. Returns the index of the first string found if successful, a 
negative value if an error occurs. 

See also TListBox::AddString, TListBox::DeleteString 

FindString 
virtual int FindString(const char far* sir, int Index) cons!; 
Searches the list box as described under FindExactString, but looks for the first entry that 
begins with str. 

See also TListBox::AddString, TListBox::DeleteString, TListBox::lnsertString 

GetCaretlndex 
int Ge!Caretlndex() cons!; 
Returns the index of the currently focused list-box item. For single-selection list boxes, 
the return value is the index of the selected item, if one is selected. 

See also TListBox::SetCaretlndex 

GetCount 
virtual int GetCount() cons!; 
Returns the number of items in the list box, or a negative value if an error occurs. 

GetHorizontalExtent 
int GetHorizontalExtent() cons!; 
Returns the number of pixels by which the list box can be scrolled horizontally. 

See also TListBox::SetHorizontalExtent 

GetltemData 
virtual uint32 GelltemData(inl index) cons!; 
Returns the 32-bit value of the list box item set by SetitemData. 

See also TListBox::SetltemData 

GetltemHeight 
virtual int GelltemHeight(int index) cons!; 
Returns the height in pixels of the specified list box items. 

See also TListBox::SetltemHeight 

GetltemRect 
int GetltemRect(inl index, TRect& reel) cons!; 
Returns the dimensions of the rectangle that surrounds a list-box item currently 
displayed in the list-box window. 

GetSel 
bool GetSel(int index) cons!; 

266 ObjectWindows Reference Guide 



TlistBox class 

Returns the selection state of the list-box item at location index. Returns true if the list­
box item is selected, false if not selected. 

See also TListBox::SetSel 

GetSelCount 
int GetSelCount() cons!; 
Returns the number of selected items in the single- or multiple-selection list box or 
combo box. 

GetSellndex 
virtual int GetSellndex() cons!; 
For single-selection list boxes. Returns the nonnegative index (starting at 0) of the 
currently selected item, or a negative value if no item is selected. 

See also TListBox::SetSellndex 

GetSellndexes 
int GetSellndexes(int* indexes, int maxCount) cons!; 
For multiple-selection list boxes. Fills the indexes array with the indexes of up to 
maxCount selected strings. Returns the number of items put in indexes (-1 for single­
selection list boxes and combo boxes). 

See also TListBox::SetSellndexes 

GetSelString 
int GetSelString(char far* sir, int maxChars) cons!; 
Retrieves the currently selected items, putting up to maxChars of them in Strings. Each 
entry in the Strings array should have space for maxChars characters and a terminating 
null. For single-selection list boxes, returns the string length, a negative value if an error 
occurs, or 1 if no string is selected. For multiple-selection list boxes, returns -1. 

See also TListBox::SetSelString 

GetSelStrings 
int GetSelStrings(char far** sirs, int maxCount, int maxChars) cons!; 
Retrieves the total number of selected items for a multiselection list and copies them into 
the buffer. str is an array of pointers to chars. Each of the pointers to the buffers is of 
maxChars. maxCount is the size of the array. 

See also TListBox::SetSelStrings 

GetString 
virtual int GetString(char far* sir, int index) cons!; 
Retrieves the item at the position (starting at 0) supplied in index and returns it instr. 
GetString returns the string length, or a negative value if an error occurs. 

GetStringlen 
virtual int GetStringlen(int Index) cons!; 
Returns the string length (excluding the terminating NULL) of the item at the position 
index supplied in Index. Returns a negative value in the case of an error. 

C h a p I e r 2 , 0 b j e c I W i n d o w s I i b r a r y ref e r e n c e 267 



TListBox class 

GetToplndex 
int Ge!Toplndex() cons!; 
Returns the index of the first item displayed at the top of the list box. 

See also TListBox::SetToplndex 

lnsertString 
virtual int lnsertString(const char far* sir, int index); 
Inserts str in the list box at the position supplied in index, and returns the item's actual 
position (starting at 0) in the list. A negative value is returned if an error occurs. The list 
is not resorted. If index is -1, the string is appended to the end of the list 

See also TListBox::AddString, TListBox::DeleteString, TListBox::FindString 

SetCaretlndex 
int Se!Caretlndex(int index, bool partScrollOk); 
Sets the focus to the item specified at index. An item that is not visible is scrolled into 
view. 

See also TListBox::GetCaretindex 

SetColumnWidth 
void SetColumnWidth(int width); 
Sets the width in pixels of the items in the list box. 

SetHorizontalExtent 
void SetHorizontalExtent(int horzExtent); 
Sets the number of pixels by which the list box can be scrolled horizontally. 

See also TListBox::GetHorizontalExtent 

SetltemData 
virtual int SetltemData(int index, uint32 itemData); 
Sets the 32-bit value of the list box item at the specified index position. 

See also TListBox::GetltemData 

Setlte-mHeight 
virtual int SetltemHeight(int index, int height); 
Sets the height in pixels of the items in the list box. 

See also TListBox::GetltemHeight 

SetltemRect 
int SetltemRect(int index, TRect& reel) cons!; 
Sets the dimensions of the rectangle that surrounds a list-box item currently displayed 
in the list-box window. 

SetSel 
int Se!Sel(int index, bool select); 
Selects an item at the position specified in index. For multiple-selection list boxes. 

See also TListBox::GetSel 

268 ObjectWindows Reference Guide 



TListBox class 

SetSellndex 
virtual int SetSellndex(int index); 
For single-selection list boxes. Forces the selection of the item at the position (starting at 
0) supplied in index. If index is -1, the list box is cleared of any selection. SetSellndex 
returns a negative number if an error occurs. 

SetSellndexes 
int SetSellndexes(int* indexes, int numSelections, bool shouldSet); 
For multiple-selection list boxes. Selects/ deselects the strings in the associated list box at 
the indexes specified in the Indexes array. If ShouldSet is true, the indexed strings are 
selected and highlighted; if ShouldSet is false the highlight is removed and they are no 
longer selected. Returns the number of strings successfully selected or deselected (-1 for 
single-selection list boxes and combo boxes). If NumSelections is less than 0, all strings 
are selected or deselected, and a negative value is returned on failure. 

SetSelltemRange 
int SetSelltemRange(bool select, int first, int last); 
Selects the range of items specified from first to last. 

SetSelString 
int SetSelString(const char far* str, int searchlndex); 
For single-selection list boxes. Forces the selection of the first item beginning with the 
text supplied instr that appears beyond the position (starting at 0) supplied in 
Searchlndex. If Searchlndex is -1, the entire list is searched, beginning with the first item. 
SetSelString returns the position of the newly selected item, or a negative value in the 
case of an error. 

SetSelStrings 
int SetSelStrings(const char far** prefixes, int numSelections, bool shouldSet); 
For multiple-selection list boxes, selects the strings in the associated list box that begin 
with the prefixes specified in the prefixes array. For each string, the search begins at the 
beginning of the list and continues until a match is found or until the list has been 
completely traversed. If shouldSet is true, the matched strings are selected and 
highlighted; if shouldSet is false the highlight is removed from the matched strings and 
they are no longer selected. Returns the number of strings successfully selected or 
deselected (-1 for single-selection list boxes and combo boxes). If numSelections is less 
than 0, all strings are selected or deselected, and a negative value is returned on failure. 

SetTabStops 
bool SetTabStops(int numTabs, int far* tabs); 
Sets tab stops. numTabs is the number of tabstops. tabs is the array of integers 
representing the tab positions. 

SetToplndex 
int SetToplndex(int index); 
Sets index to the first item displayed at the top of the list box. 

See also TListBox::GetToplndex 

Transfer 
uint Transfer(void *buffer, TTransferDirection direction); 

C h a p t e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e f e r e n c e 269 



TListBoxData struct 

Transfers the items and selection(s) of the list box to or from a transfer buffer if tdSetData 
or tdGetData, respectively, is passed as the direction. buffer is expected to point to a 
pointer to a TListBoxData structure. 

Transfer, which overrides the TWindow virtual member function, returns the size of 
TListBoxData (the pointer, not the structure). To retrieve the size without transferring 
data, pass tdSizeData as the direction. 

You must use a pointer in your transfer buffer to these structures. You can't embed 
copies of the structures in your transfer buffer, and you can't use these structures as 
transfer buffers. 

See also TListBoxData, TWindow::Transfer 

Protected member function 

GetClassName 
char far* GetClassName(); 
Returns the name of TListBox's registration class, "LISTBOX". 

TListBoxData struct 
Used to transfer the contents of a list box. 

Public data members 

ltemDatas 
TDwordArray* ltemDatas; 
Contains all uint32 item data for each item in the list box. 

SelCount 
int SelCount; 
Holds the number of selected items. 

Sellndices 
TlntArray* Sellndices; 
Contains the indexes of all the selected strings in a multiple-selection list box. 

SelStrings 
TStringArray* SelStrings; 

listbox.h 

Pointer to an array of the strings to select when data is transferred into the list box. 
When data is transferred out of the list box, SelStrings returns the current selection(s). 

Strings 
TStringArray* Strings; 
Pointer to an array of strings to be transferred into a TListBox. 

270 0 b j e c I W i n d o w s R e f e r e n c e G u i d e 



Public constructor and destructor 
Constructor 
TListBoxData(); 
Constructs Strings and SelStrings. Initializes SelCount to 0. 

Destructor 
N TListBoxData(); 
Deletes the space allocated for Strings and SelStrings. 

Public member functions 
AddString 
void, AddString(const char *sir, bool isSelected = false); 

TListBoxData struct 

Adds the specified string to Strings. If IsSelected is true, adds the string to SelStrings and 
increments SelCount. 

AddStringltem 
void AddStringltem(const char* sir, uint32 nemData, bool isSelected = false)); 
Adds a string to the Strings array, optionally selects it, and adds item data to the 
ItemDatas array. 

Clear 
void Clear(); 
Resets the list box by flushing the ItemDatas and Strings arrays and calling 
Reset Selections. 

See also TListBoxData::Strings, TListBoxData::ItemDatas, 
TListBoxData::ResetSelections 

GetltemDatas 
TDwordArray& GelltemDatas(); 
Returns a pointer to the ItemDatas array. 

See also TListBoxData::ItemDatas 

GetSellndices 
TlntArray& Ge!Sellndices(); 
Returns a pointer to the Sellndices array. 

See also TListBoxData::Sellndices 

GetSelString 
void GetSelString(char far* buffer, int bufferSize, int index = 0) cons!; 
Locates the string at the specified index in SelStrings and copies it into buffer. bufferSize 
includes the terminating NULL. 

GetSelStringLength 
int GetSelStringlength(int index = 0) cons!; 
Returns the length (excluding the terminating NULL) of the string at the specified index 
in SelStrings. 

Chapter 2, ObjectWindows library reference 271 



TListView class 

GetStrings 
TStringArray& GetStrings(); 
Returns a pointer to the Strings array. 

See also TListBoxData::Strings 

ResetSelections 
void ResetSelections(); 
Removes all strings from SelStrings and sets SelCount to 0. 

Select 
void Select(int index); 
Selects the string at the given index. 

SelectString 
void SelectString (canst char far* str); 
Adds str to SelStrings and increments SelCount. 

TUstView class listview.h 

Derived from TListBox and TView, TListView provides views for list boxes. See TView for 
a description of view functions and TListBox for list box functions. 

Public constructor and destructor 
Constructor 
TlistView(TDocument& doc, TWindow* parent= O); 
Creates a TListView object associated with the specified document and parent window. 
Sets Attr.AccelTable to IDA_LISTVIEW to identify the edit view. Sets the view style to 
WS_BSCROLL I LBS_NOINTEGRALHEIGHT. . 

Sets TView::ViewMenu to the m:w TMenuDescr for this view. 

Destructor 
~ TlistView(); 
After checking to see if there is an open view, this destructor destroys the TListView 
object. 

Public data member 
DirtyFlag 
bool DirtyFlag; 
Is nonzero if the data in the list view has been changed; otherwise, is 0. 

272 ObjectWindows Reference Guide 



TListView class 

Public member functions 
CanClose 
bool CanClose(); 
Checks to see if all child views can be closed before closing the current view. If any child 
returns 0, CanClose returns 0 and aborts the process. If all children return nonzero, it 
calls TDocManager::FlushDoc. 

See also TDocManager::FlushDoc 

Create 
virtual bool Create(); 
Overrides TWindow::Create and creates the view's window. Determines if the file is new 
or already has data. If there is data, calls LoadData to add the data to the view. If the 
view's window can't be created, Create throws a TXInvalidWindow exception. 

GetViewName 
const char far*- GetViewName(); 
Overrides TView's virtual function and returns the descriptive name of the class 
(StaticName). 

See also TView::GetViewName 

GetWindow 
TWindow* GetWindow(); 
Overrides TView's virtual function and returns the list view object as a TWindow. 

See also TView::GetWindow 

SetDocTitle 
bool SetDocTitle(const char far* docname, int index); 
Overrides TView's virtual function and stores the document title. This name is 
forwarded up the parent chain until a TFrameWindow object accepts the data and 
displays it in its caption. 

See also TView::SetDocTitle 

StaticName 
static const char far* StaticName(); 
Overrides TView's function and returns a constant string, "ListView." This information is 
displayed in the user interface selection box. 

See also TView::GetViewName 

Protected data members 
MaxWidth 
int MaxWidth; 
Holds the maximum horizontal extent (the number of pixels by which the view can be 
scrolled horizontally). 

Chapter 2, ObjectWindows library reference 273 



TListView class 

Origin 
long Origin; 
Holds the file position at the beginning of the display. 

Protected member functions 

CmEditAdd 
void CmEditAdd(); 
Automatically responds to CM_LISTADD message by getting the length of the input 
string and calling InsertString to insert the text string into the list view. Sets the data 
member DirtyFlag to true. 

CmEditClear 
void CmEditClear(); 
Automatically responds to a menu selection with a menu ID of CM_EDITCLEAR by 
clearing the items in the list box using functions in TListBox. 

CmEditCopy 
void CmEditCopy(); 
Automatically responds to a menu selection with a menu ID of CM_EDITCOPY and 
copies the selected text to the Clipboard. 

CmEditCut 
void CmEditCut(); 
Automatically responds to a menu selection with a menu ID of CM_EDITCUT by 
calling CmEditCopy and CmEditDelete to delete a text string from the list view. Sets the 
data member DirtyFlag to true. 

CmEditDelete 
void CmEditDelete(); 
Automatically responds to a menu selection with a menu ID of CM_EDITDELETE and 
deletes the selected text. 

CmEditltem 
void CmEditltem(); 
Automatically responds to a CM_LISTEDIT message by getting the input text and 
inserting into the list view. Sets the Dirtyflag to nonzero to indicate that the view has 
been changed and not saved. 

CmEditPaste 
void CmEditPaste(); 
Automatically responds to a menu selection with a menu ID of CM_EDITPASTE by 
inserting text into the list box using functions in TListBox. 

CmEditUndo 
void CmEditUndo(); 
Automatically responds to a menu selection with a menu ID of CM_EDITUNDO by 
calling TListBox::Undo. 

27 4 0 b j e ct Windows Reference G u id e 



TListView class 

CmSelChange 
void CmSelChange(); 
Automatically responds to a LBN_SELCHANGE message (which indicates that the 
contents of the list view have changed) by calling DefaultProcessing. 

EvGetDlgCode 
uint EvGetDlgCode(MSG far* msg); 
Overrides TWindow's response to a WM_GETDLGCODE message (an input procedure 
associated with a control that isn't a check box) by calling DefaultProcessing. The msg 
parameter indicates the kind of message, for example a control or a command message, 
sent to the dialog box manager. 

EvGetDlgCode returns a code that indicates how the list box control message is to be 
treated. 

See also TButton::EvGetDlgCode, TWindow::DefaultProcessing, DLGC_xxxx dialog 
control message constants 

Load Data 
bool LoadData(int top, int sel); 
Reads the view from the stream and closes the file. Returns true if the view was 
successfully loaded. 

Throws an xmsg exception and displays the error message "TListView initial read error" 
if the file can't be read. Returns false if the view can't be loaded. 

Set Extent 
void SetExtent(LPSTR str); 
Sets the maximum horizontal extent for the list view window. 

VnCommit 
bool VnCommit(bool force); 
VnCommit commits changes made in the view to the document. If force is nonzero, all 
data, even if it's unchanged, is saved to the document. 

See also TListView::vnRevert, vnxxxx view notification constants 

VnDocClosed 
bool VnDocClosed(int omode); 
VnDocClosed indicates that the document has been closed. 

See also vnxxxx view notification constants 

VnlsDirty 
bool VnlsDirty(); 
VnisDirty returns nonzero if changes made to the data in the view have not been saved 
to the document; otherwise, returns 0. 

See also vnxxxx view notification constants 

VnlsWindow 
bool VnlsWindow(HWND hWnd); 
VnisWindow returns nonzero if the window's handle passed in hWnd is the same as that 
of the view's display window. 

Chapter 2, ObjectWindows library reference 275 



TlocaleString struct 

See also vnxxxx view notification constants 

VnRevert 
bool VnRevert(bool clear); 
VnRevert indicates if changes made to the view should be erased, and the data from the 
document should be restored to the view. If clear is nonzero, the data is cleared instead 
of restored to the view. 

See also TListView::vnCommit 

Response table entries 

EV _COMMAND(CM_LISTUNDO, CmEditUndo) 

EV _COMMAND(CM_LISTCUT, CmEditCut) 

EV_ COMMAND(CM_LISTCOPY, CmEditCopy) 

EV _COMMAND(CM_LISTP ASTE, CmEditPaste) 

EV _COMMAND(CM_LISTCLEAR, CmEditClear) 

EV _COMMAND(CM_LISTDELETE, CmEditDelete) 

EV _COMMAND(CM_LISTADD, CmEditAdd) 

EV _COMMAND(CM_LISTEDIT, CmEdititem) 

EV_WM_GETDLGCODE 

EV _NOTIFY_AT_ CHILD(LBN_DBLCLK, CmEdititem) 

EV _NOTIFY_AT_CHILD(LBN_SELCHANGE, CmSelChange) 

EV_ VN_DOCCLOSED 

EV_ VN_ISWINDOW 

EV_ VN_ISDIRTY 

EV_VN_COMMIT 

EV_ VN_REVERT 

TLocaleString struct 

CmEditUndo 

CmEditcut 

CmEditCopy 

CmEditPaste 

CmEditClear 

CmEditDelete 

CmEditAdd 

CmEditltem 

EvGetDlgCode 

CmEdititem 

CmSelchange 

VnDocClosed 

VnisWindow 

VnisDirty 

VnCommit 

VnRevert 

locale.h 

Designed to provide support for localized registration parameters, the TLocaleString 
struct defines a localizable substitute for char* strings.These strings, which describe 
both OLE and non-OLE enabled objects to the user, are available in whatever language 
the user needs. This struct supports ObjectWindows' Doc/View as well as 
ObjectComponents, OLE-enabled applications.The public member functions, which 
supply information about the user's language, the native language, and a description of 
the string marked for localization, simplify the process of translating and comparing 
strings in a given language. 

To localize the string resource, TLocaleString uses several user-entered prefixes to 
determine what kind of string to translate. Each prefix must be followed by a valid 

276 ObjectWindows Reference Guide 



TLocaleString struct 

resource identifier (a standard C identifier).The following table lists the the prefixes 
TLocaleString uses to localize strings. Each prefix is followed by a sample entry. 

@TXY The string is a series of characters interpreted as a resource ID and is accessed only from a 
resource file. It is never used directly. 

#1045 The string is a series of digits interpreted as a resource ID and is accessed from a resource 
file. It is never used directly. 

!MyWindow The string is translated if it is not in the native language; otherwise, this string is used 
directly. 

See the section on localizing symbol names in the Object Windows Programmer's Guide for 
more information about localizing strings. 

Public member functions 

Compare 
int Compare(const char far* str, Tlangld lang); 
Using the specified language (Zang), Compare compares TLocaleString with another 
string. It uses the standard string compare and the language-specific collation scheme. It 
returns one of the following values. 

0 There is no match between the two strings. 

1 This string is greater than the other string. 

-1 This string is less than the other string. 

GetSystemlangld 
static Tlangld GetSystemlangld(); 
Returns the system language ID, which can be the same as the UserLangid. 

See also TLocaleString::GetUserLangld 

GetUserlangld 
static Tlangld GetUserlangld(); 
Returns the user language ID. For single user systems, this is the same as 
LangSysDefault. The language ID is a predefined number that represents a base language 
and dialect. 

See also TLocaleString::GetSystemLangld 

lsNativelangld 
static int lsNativelangld(TLangld lang); 
Returns true if lang equals the native system language. 

operator const char* 
operator const char* (); 
Returns the current character string in the translation. 

Chapter 2, ObjectWindows library reference 277 



TLookupValidator class 

operator= 
void operator = (cons! char* sir); 
Assigns the string (str) to this locale string. 

Translate 
cons! char* Translate(Tlangld lang); 
Translates the string to the given language. Translate follows this order of preference in 
order to choose a language for translation: 

Base language and dialect. 

2 Base language and no dialect 

3 Base language and another dialect 

4 The native language of the resource itself. 

5 Returns 0 if unable to translate the string. (This can happen only if an@ or# prefix is 
used; otherwise, the ! prefix indicates that the string following is the native language 
itself.) 

See also TLangid typedef, LangXxxx_ID constants 

TLookupValidator class validate.h 

A streamable class, TLookup Validator compares the string typed by a user with a list of 
acceptable values. TLookupValidator is an abstract validator type from which you can 
derive useful lookup validators. You will never create an instance of TLookupValidator. 
When you create a lookup validator type, you need to specify a list of valid items and 
override the Lookup method to return true only if the user input matches an item in that 
list. One example of a working descendant of TLookupValidator is 
TStringLookup Validator. 

Public constructor 
Constructor 
TLookupValidator(); 
Constructs a TLookupValidator object. 

Public member functions 
ls Valid 
bool lsValid(const qhar far* sir); 
Is Valid overrides TValidator's virtual function and calls Lookup to find the string str in the 
list of valid input items. Is Valid returns true if Lookup returns true, meaning Lookup 
found str in its list; otherwise, it returns false. 

Lookup 
virtual bool Lookup(const char far* sir); 

278 0 b j e ct W i n d ow s R e f e re n c e G u i d e 



TMDIChild class 

Searches for the string str in the list of valid entries and returns true if it finds str; 
otherwise, returns false. TLookupValidator's Lookup is an abstract method that always 
returns false. Descendant lookup validator types must override Lookup to perform a 
search based on the actual list of acceptable items. 

TMDIChild class mdichild.h 

TMDIChild defines the basic behavior of all MDI child windows. Child windows can be 
created inside the client area of a parent window. Because child windows exist within, 
and are restricted to the parent window's borders, the parent window defined before 
the child is defined. For example, a dialog box is a window that contains child windows, 
often referred to as dialog box controls. 

To be used as MDI children, classes must be derived from TMDIChild. MDI children can 
inherit keyboard navigation, focus handling, and icon support from TFrameWindow. 
TMDIChild is a streamable class. 

Public constructors and destructor 
Constructors 

Form 1 TMDIChild(TMDIClient& parent, const char far* title= 0, TWindow* clientWnd = 0, bool shrinkToClient =false, 
TModule* module= O); 

Creates an MDI child window of the MDI client window specified by parent, using the 
specified title, client window (clientWnd) and instance (inst). Invokes the TFrameWindow 
base class constructor, supplying parent, title, clientWnd, inst, and indicating that the 
child window is not to be resized to fit. Invokes the TWindow base class constructor, 
specifying parent, title, and inst. The window attributes are then adjusted to include 
WS_ VISIBLE, WS_CHILD, WS_CLIPSIBLINGS, WS_CLIPCHILDREN, 
WS_SYSMENU, WS_CAPTION, WS_THICKFRAME, WS_MINIMIZEBOX, and 
WS_MAXIMIZEBOX. The dimensions of the window are set to the system default 
values. 

Form 2 TMDIChild(HWND hWnd, TModule* module= O); 
Creates an MDI child window object from a preexisting window, specified by hWnd. 
The base class TFrameWindow constructor is invoked, specifying this hWnd, as well as 
the specified inst. The base class TWindow constructor is invoked, supplying the hWnd 
and inst parameters. 

Destructor 
-TMDIChild(); 
Destructs the MDI child window object. 

Public member functions 
Destroy 
void Destroy(retVal = O); 

C h a p t e r 2 , 0 b j e ct W i n d o w s I i b r a r y ref e r e n c e 279 



TMDIChild class 

Destroys the interface element associated with the TMDIChild. Calls EnableAutoCreate 
for each window in the child list so that the children are also re-created when the parent 
window is re-created. 

See also TWindow::EnableAutoCreate 

Enable Window 
bool EnableWindow(bool enable); 
Overrides TWindow's virtual function. Enables a child window. 

PreProcessMsg 
bool PreProcessMsg (MSG& msg); 
Performs preprocessing of window messages for the MDI child window. If keyboard 
handling is enabled the parent client window's TMDIClient_PreProcessMsg member 
function is called to preprocess messages. In this case, the return value is true. 
Otherwise, TFrameWindow::PreProcessMsg is called and its return value becomes the 
return value of this member function. 

See also TMDIClient::PreProcessMsg, TFrameWindow::PreprocessMsg 

ShowWindow 
bool ShowWindow(int cmdShow); 
Overrides TWindow's virtual function. Displays a child window according to the value 
ofcmdShow. 

Protected member functions 
DefWindowProc 
LRESULT DefWindowProc (uint msg, WPARAM wParam, LPARAM IParam); 
Overrides TWindow::DefWindowProc to provide default processing for any incoming 
message the MDI child window does not process. In addition, DefWindow Proc handles 
the following messages: WM_CHILDACTN ATE, WM_GETMINMAXINFO, 
WM_MENUCHAR, WM_MOVE, WM_SETFOCUS, WM_SIZE, and 
WM_SYSCOMMAND. 

See also TWindow::DefWindowProc 

EvMDIActiyate 
void EvMDIActivate(HWND hWndActivated, HWND hWndDeactivated); 
Instructs a client window to activate or deactivate an MDI child window and then sends 
a message to the child window being activated and the child window being deactivated. 

EvNCActivate 
void EvNCActivate(bool activate); 
Responds to a request to change a title bar or icon. 

Perform Create 
void PerformCreate(int menuOrld); 
Creates the interface element associated with the MDI child window. The supplied 
menuOrld parameter is ignored because MDI child windows cannot have menus. 

280 ObjectWindows Reference Guide 



TMDIClient class 

Response table entries 

EV _WM_MDIACTIV AlE EvMDIActivate 
EV_ WM_NCACTIV AlE EvNCActivate 

TMDIClient class mdi.h 

Multiple Document Interface (MDI) client windows (represented by a TMDIClient 
object) manage the MDI child windows of a TMDIFrame parent. TMDIClient is a 
stream.able class. 

Public constructor and destructor 
Constructor 
TMDIClient(TModule* module = O); 
Creates an MDI client window object by invoking the base Class TWindow constructor, 
passing it a null parent window, a null title, and the specified library ID. Sets the default 
client window identifier (IDW _MDICLIENT) and sets the style to include 
MDIS_ALLCHILDSTYLES, WS_GROUP, WS_TABSTOP, WS_CLIPCHILDREN, 
WS_ VSCROLL, and WS_HSCROLL. Initializes the ClientAttr data member, setting its 
idFirstChild member to IDW _FIRSTMDICHILD. 

Destructor 
N TMDIClient(); 
Frees the ClientAttr structure. 

See also TWindow::TWindow, TWindow::-TWindow 

Public data member 
ClientAttr 
LPCLIENTCREATESTRUCT ClientAttr; 
ClientAttr holds a pointer to a structure of the MDI client window's attributes. 

Public member functions 
Arrange Icons 
virtual void Arrangelcons(); 
Arranges the MDI child window icons at the bottom of the MDI client window. 

Chapter 2, ObjectWindows library reference 281 



TMDIClient class 

CascadeChildren 
virtual void CascadeChildren(); 
Sizes and arranges all of the non-iconized MDI child windows within the MDI client 
window. The children are overlapped, although each title bar is visible. 

CloseChildren 
virtual bool CloseChildren(); 
First calls CanClose on each of the MDI child windows owned by this MDI client. 
Returns true if all MDI children are closed; otherwise returns false. 

See also TWindow::CanClose 

Create 
bool Create(); 
Creates the interface element associated with the MDI client window. Calls 
TWindow::Create after first setting the child window menu in ClientAttr to the parent 
frame window's child menu. 

See also TWindow _Create, 1FrameWindow _GetMenuDescr 

CreateChild 
virtual TWindow* CreateChild(); 
Overrides member function defined by TWindow. Constructs and creates a new MDI 
child window by calling InitChild and Create. Returns a pointer to the new MDI child 
window. 

See also TMDIClient::InitChild, TModule::MakeWindow, TWindow::Create 

GetActiveMDIChild 
TMDIChild *GetActiveMDIChild(); 
GetActiveMDIChild points to the TMDIClient's active MDI child window. 
GetActiveMDIChild is set by the child in its EvMDIActivate message response member 
function. TMDIClient's constructors initialize GetActiveChild. 

lnitChild 
virtual TMDIChild *lnitChild(); 
Constructs an instance of TWindow as an MDI child window and returns a pointer to it. 
Children must be created with MDI client as the parent window. Redefine this member 
function in your derived MDI window class to construct an instance of a derived MDI 
child class. For example, 

PTWindowsObject TMyMDIClient::InitChild() 
{ 

return new TMyMDIChild(this, 1111 ); 

See also TMDIClient::CreateChild 

PreProcessMsg 
bool PreProcessMsg(MSG &msg); 
If the specified msg is one of WM_KEYOOWN or WM_SYSKEYDOWN, then the 
keyboard accelerators are translated for the MDI client. 

See also TWindow::PreProcessMsg 

282 ObjectWindows Reference Guide 



TMDIClient class 

TileChildren 
virtual void TileChildren(int tile = MDITILE _VERTICAL); 
Sizes and arranges all of the non-iconized MDI child windows within the MDI client 
window. The children fill up the entire client area without overlapping. 

See also TMDIClient::TileChildren 

Protected member functions 

CmArrangelcons 
void CmArrangelcons(); 
Calls Arrangeicons in response to a menu selection with an ID of 
CM_ARRANGEICONS. 

See also TMDIClient::Arrangeicons 

CmCascadeChildren 
void CmCascadeChildren(); 
Calls CascadeChildren in response to a menu selection with an ID of 
CM_CASCADECHILDREN. 

See also TMDIClient::CascadeChildren 

CmChildActionEnable 
void CmChildActionEnable(TCommandEnabler& commandEnabler); 
If there are MDI child windows, CmChildActionEnable enables any one of the child 
window action menu items. 

CmCloseChildren 
void CmCloseChildren(); 
Calls CloseChildren in response to a menu selection with an ID of 
CM_CLOSECHILDREN. 

See also TMDIClient::CloseChildren 

CmCreateChild 
void CmCreateChild(); 
Calls CreateChild to produce a new child window in response to a menu selection with a 
menu ID of CM_CREATECHILD. 

See also TMDIClient::CreateChild 

CmTileChildren 
void CmTileChildren(); 
Calls TileChildren in response to a menu selection with an ID of CM_TILECHILDREN. 

See also TMDIClient::TileChildren 

CmTileChildrenHoriz 
void CmTileChildrenHoriz(); 
Calls TileChildren in response to a menu selection with an ID of CM_TILECHILDREN 
and passes MDI child tile flag as MDITILE_HORIZONTAL. 

Chapter 2, ObjectWindows library reference 283 



TMDIFrame class 

EvMDICreate 
LRESULT EvMDICreate(MDICREATESTRUCT far& createStruct); 
Intercepts the WM_MDICREA TE message sent when MDI child windows are created, 
and, if the client's style includes MDIS_ALLCHILDSTYLES, and the child window's 
specified style is 0, then changes the child window style attributes to WS_ VISIBLE, 
WS_CHILD, WS_CLIPSIBLINGS, WS_CLIPCHILDREN, WS_SYSMENU, 
WS_CAPTION, WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX. 

See also TWindow::DefaultProcessing, MDICREATE struct 

EvMDIDestroy 
void EvMDIDestroy(HWND hWnd); 
Intercepts the WM_MDIDESTROY message. 

GetClassName 
char far *GetClassName(); 
Returns TMDIClient's registration class name, "MDICLIENT." 

Response table entries 

EV_ COMMAND (CM_ARRANGEICONS, CmArrangelcons) 

EV_ COMMAND (CM_CASCADECHILDREN, CmCascadeChildren) 

EV_ COMMAND (CM_CLOSECHILDREN, CmCloseChildren) 

EV _COMMAND (CM_CREATECHILD, CmCreateChild) 

EV _COMMAND (CM_TILECHILDREN, CmTileChildren) 

EV_ COMMAND(CM_TILECHILDRENHORIZ,CmTileChildrenHoriz) 

EV_ COMMAND _ENABLE(CM_TILECHlLDREN, CmChildActionEnable) 

EV _COMMAND_ENABLE(CM_CASCADECHILDREN, 
CmChildActionEnable) 

EV_ COMMAND _ENABLE(CM_ARRANGEICONS, CmChildActionEnable) 

EV _COMMAND _ENABLE(CM_ CLOSECHILDREN, CmChildActionEnable) 

EV_WM_MDICREATE 

EV _WM_MDIDESTROY 

TMDIFrame class 

CmArrangelcons 

CmCascadeChildren 

CmCloseChildren 

CmCreateChild 

CmTileChildren 

CmTileChildrenHoriz 

CmChildActionEnable 

CmChildActionEnable 

CmChildActionEnable 

CmChildActionEnalbe 

EvMDICreate 

EvMDIDestroy 

mdi.h 

Multiple Document Interface (MDI) frame windows, represented by TMDIFrame, are 
overlapped windows that serve as main windows of MDI-compliant applications. 
TMDIFrame objects automatically handle the creation and initialization of an MDI client 
"window" (represented by a TMDIClient object) required by Windows. TMDIFrame sets 
window style WS _ CLIPCHILDREN by default so that minimal flicker occurs when the 
MDI frame erases its background and the backgrounds of its children. TMDIFrame is a 
streamable class. 

284 Objec!Windows Reference Guide 



TMDIFrame class 

Because TMDIFrame is derived from TFrameWindow, it inherits keyboard navigation. As 
a result, all children of the MDI frame acquire keyboard navigation. However, it's best to 
enable keyboard navigation only for those children who require it. 

To create an OLE-enabled MDI frame window, use TOleMDIFrame, which inherits 
functionality from both TMDIFrame and and TOleFrame. 

See also 
TOLEMDIFrame 

Public constructors 
Constructors 

Form 1 TMDIFrame(const char far *title, TResld menuResld, TMDIClient &clientWnd = *new TMDIClient, 
TModule* module= O); 

Constructs an MDI frame window object using the caption (title) and resource ID 
(menuResld). If no client window is specified (clientWnd), then an instance of TMDIClient 
is created automatically and used as the client window of the frame. The supplied 
library ID (module) is passed to the TFrameWindow constructor along with a null parent 
window pointer, caption, client window, and a flag indicating that the client window is 
not to be resized to fit. The TWindow constructor is also invoked; it passes the supplied 
caption and library ID, as well as a null parent window pointer. Then the child menu 
position is initialized to be the leftmost menu item, and the supplied menu resource ID 
is used in a call to AssignMenu. 

Form 2 TMDIFrame(HWND hWindow, HWND clientHWnd, TModule* module= O); 
Constructs an MDI frame window using an already created non-ObjectWindows 
window. Invokes the TFrameWindow TWindow constructors passing in the window 
handle (hWindow) library ID (module). Initializes the child menu position to the leftmost 
menu item and constructs a TMDIClient object that corresponds to the supplied 
clientHWnd. 

See also TFrameWindow::AssignMenu, TFrameWindow::TFrameWindow, 
TMDIClient::TMDIClient, TWindow::TWindow 

Public member functions 
FindChildMenu 
static HMENU FindChildMenu(HMENU newMenu); 
FindChildMenu searches, from right to left, the pop-up child menus contained in the 
newMenu menu resource for a child menu containing command items with one of the 
following identifiers: CM_CASCADECHILDREN, CM_TITLECHILDREN, or 
CM_ARRANGEICONS. The return value of FindChildMenu is the HMENU of the first 
child menu containing one of these identifiers. If one of these identifiers is not found, 
FindChildMenu returns 0. 

FindChildMenu is used to locate the menu to which the MDI child window list will be 
appended. This call to FindChildMenu is made from within the TMDIClient class. 

Chapter 2, ObjectWindows library reference 285 



TMeasurementUnits enum 

GetClientWindow 
TMDIClient *Ge!Clien!Window(); 
Returns a pointer to the MDI client window. 

See also TFrameWindow::GetClientWindow 

GetCommandTarget 
virtual HWND GetCommandTarget(); 
Locates and returns the child window that is the target of the command and command 
enable messages. If the current application does not have focus or if the focus is within a 
toolbar in the application, GetCommandTarget returns the most recently active child 
window. If an alternative form of command processing is desired, a user's main 
window class can override this function. 

Perform Create 
void PerformCreate(int menuOrld); 
Overrides TWindow's virtual function. Creates the interface element associated with the 
MDI frame window. 

SetMenu 
bool Se!Menu (HMENU); 
Looks for the MDI submenu in the new menu bar. Searches for the MDI child menu in 
the new menu bar and updates the child menu position with the specified menu index. 
Then sends the client window an WM_MDISETMENU message to set the new menu 
and invokes TWindow::DrawMenuBar to redraw the menu. Returns false if the MDI 
client indicates that there was no previous menu; otherwise, returns true. 

See also TWindow::DrawMenuBar 

Protected member functions 
DefWindowProc 
LRESULT DefWindowProc (uint message, WPARAM wParam, LPARAM IParam); 
Overrides TWindow::DefWindowProc and provides default processing for any incoming 
message the MDI frame window does not process. 

See also TWindow::DefWindowProc 

Response table entries 
The TMDIFrame response table has no entries. 

TMeasurementUnits enum layoutco.h 

enum TMeasurementUnits{lmPixels,lmlayoutUnits}; 
Used by the TLayoutConstraint struct, TMeasurementUnits enumerates the measurement 
units (lmPixels or lmLayoutUnits) that control the dimension of the window. These can be 
either pixels or layout units that are obtained by dividing the font height into eight 
vertical and eight horizontal segments. 

286 ObjectWindows Reference Guide 



TMemoryDC class 

See also TLayoutConstraint struct 

TMemoryDC class 
A DC class derived from TDC, TMemoryDC provides access to a memory DC. 

Public constructors 

Constructors 
Form 1 TMemoryDC(); 

Default constructor for a memory DC object. 

Form 2 TMemoryDC(const TDC& DC); 
Creates a memory DC object compatible with the given DC argument. 

Form 3 TMemoryDC(HDC handle, TAutoDelete AutoDelete); 
Creates a memory DC object from an existing DC handle. 

See also TDC::TDC 

Public member functions 
Restore Bitmap 
void RestoreBitmap(); 
Restores the originally selected bitmap object for this DC. 

See also TDC::RestoreObjects 

RestoreObjects 
void RestoreObjects(); 

dc.h 

Restores the originally selected brush, pen, font, palette, and bitmap objects for this DC. 

See also TDC::RestoreObjects, TMemoryDC::RestoreBitmap 

SelectObject 
void SelectObject(const TBrush& brush); 
void SelectObject(const TPen& pen); 
void SelectObject(const TFont& font); 
void SelectO~ject(const TPalette& palette, bool forceBackground=false); 
void SelectObject(const TBitmap& bitmap); 
Selects the given GDI object into this DC. 

See also TDC::SelectObject, TMemoryDC::RestoreBitmap, 
TMemoryDC::RestoreObjects 

Protected data member 
OrgBitmap 
HBITMAP OrgBitmap; 

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 287 



TMenu class 

The original bitmap selected into this DC. 

See also TMemoryDC::SelectObject, TMemoryDC::RestoreBitmap 

TMenu class menu.h 

The TMenu class encapsulates window menus. You can use TMenu member functions to 
construct, modify, query, and create menu objects. You can also use TMenu to add 
bitmaps to your menu or to specify if a menu item is checked or unchecked. TMenu 
includes two versions of a helper function, DeepCopy, designed to make copies of menus 
and insert them at a specified position on the menu bar. See the Object Windows 
Programmer's Guide for information about how to create menu objects. 

Public constructors and destructor 
Constructors 

Form 1 TMenu(TAutoDelete autoDelete = AutoDelete); 
Creates an empty menu and sets auto Delete, by default, so that the menu is automatically 
deleted when the object is destroyed. 

Form 2 TMenu(const TMenu& original, TAutoDelete autoDelete = NoAutoDelete); 
Creates a complete copy of an existing menu and sets autoDelete, by default, so that the 
menu is not automatically deleted when the object is destroyed. 

Form 3 TMenu(HWND wnd, TAutoDelete autoDelete = NoAutoDelete); 
Creates a menu object representing the window's current menu and sets autoDelete, by 
default, so that the menu is not automatically deleted when the object is destroyed. 

Form 4 TMenu(HMENU handle, TAutoDelete autoDelete = NoAutoDelete); 
Creates a menu object from an already loaded menu and sets autoDelete, by default, so 
the menu is not automatically deleted when the object is destroyed. 

Form 5 TMenu(const void far* menu Template); 
Creates a menu object from a menu template in memory. This constructor is not 
available under Presentation Manager. 

Form 6 TMenu(HINSTANCE instance, TResld resld); 
Creates a menu object from a specified resource ID. 

Destructor 
virtual -TMenu(); 
Destroys the menu. 

See also TResid class 

Public member functions 
AppendMenu 

Form 1 bool AppendMenu(uint flags, uint newltem, const TBitmap& newBmp); 

288 ObjectWindows Reference Guide 



TMenu class 

Adds a bitmap menu item at the end of the menu. See TMenu::GetMenuState for a 
description of the flag values that specify the attributes of the menu, for example, menu 
item is checked, menu item is disabled, and so on. 

Form 2 bool AppendMenu(uint flags, uint newltem = -1, const char far* newltem = O); 
Adds a text menu item to the end of the menu. See TMenu::GetMenuState for a 
description of the flag values that specify the attributes of the menu, for example, menu 
item is checked, menu item is a a bitmap, and so on. 

See also TBitmap class, TMenu::GetMenuState 

CheckMenultem 
bool CheckMenultem(uint item, uint check); 
Checks or unchecks the menu item. By combining flags with the bitwise OR operator 
(I ) check specifies both the position of item (MF _BYCOMMAND, MF _BYPOSITION) 
and whether item is to be checked (MF_ CHECKED) or unchecked (MF_ UNCHECKED). 

CheckValid 
void CheckValid(uint resld = IDS_MENUFAILURE); 
Throws a TXMenu exception if the menu object is invalid. 

See also TMenu::TXMenu 

DeleteMenu 
bool DeleteMenu(uint item, uint flags); 
Removes the menu item (item) from the menu or deletes the menu item if it's a pop-up 
menu. flags is used to identify the position of the menu item by its relative position in the 
menu (MF _BYPOSITION) or by referencing the handle to the top-level menu 
(MF _BYCOMMAND). 

See also TMenu::RemoveMenu 

Drawltem 
virtual void Drawltem(DRAWITEMSTRUCT far& drawltem); 
Draw Item responds to a message forwarded to a drawable control by TWindow when the 
control needs to be drawn. 

See also DRA WITEMSTRUCT struct 

EnableMenultem 
bool EnableMenultem(uint item, uint enable); 
Enables, disables, or grays the menu item specified in the item parameter. If a menu item 
is enabled (the default state), it can be selected and used as usual. If a menu item is 
grayed, it appears in grayed text and cannot be selected by the user. If a menu item is 
disabled, it is not displayed. Returns true if successful. 

GetHandle 
virtual HMENU GetHandle(); 
Returns the handle to the menu. 

See also TMenu::IsOK 

GetMenuCheckMarkDimensions 
static bool GetMenuCheckMarkDimensions(TSize& size); 

Chapter 2, ObjectWindows library reference 289 



TMenu class 

Gets the size of the bitmap used to display the default checkmark on checked menu 
items. 

See also TMenu::SetMenultemBitmaps, TSize class 

GetMenultemCount 
uint GetMenultemCount() const; 
Returns the number of items in a top-level or pop-up menu. 

GetMenultemlD 
uint GetMenultemlD(int posltem) const; 
Returns the ID of the menu item at the position specified by positem. If this is a pop-up 
menu, returns the ID of the menu's first item minus one. 

GetMenuState 
uint GetMenuState(uint item, uint flags) const; 
Returns the menu flags for the menu item specified by item. flags specifies how the item 
is interpreted, and is one of the following values: 

MF _BYCOMMAND Interpret item as a menu command ID. Default it neither MF _BYCOMMAND nor 
MF _BYPOSITTON is specified. 

MF _BYPOSITTON Interpret item as the zero-base relative postion of the menu item within the menu. 

If item is found, and is a pop-up menu, the low-order byte of the return value contains 
the flags associated with item, and the high-order byte contains the number of items in 
the pop-up menu. If item is not a pop-up menu, the return value specifies a combination 
of these flags: 

MF_BITMAP 

MF_CHECKED 

MF _DISABLED 

MF_ENABLED 

MF_GRAYED 

MF _MENUBARBREAK 

MF_MENUBREAK 

MF_SEPARATOR 

MF_UNCHECKED 

GetMenuString 

Menu item is a a bitmap. 

Menu item is checked (pop-up menus only). 

Menu item is disabled. 

Menu item is enabled. Note: this constant's value is 0. 

Menu item is disabled and grayed. 

Saine as MF _MENUBREAK except pop-up menu columns are separated by a 
vertical dividing line. 

Static menu items are placed on a new line, pop-up menu items are placed in a 
new column, without separating columns. 

A horizontal dividing line is drawn, which cannot be enabled, checked, grayed, 
or highlighted. Both item and flags are ignored. 

Menu item check mark is removed (default). Note: this constant value is 0. 
Returns -1 if item doesn't exist. 

uint GetMenuString(uint item, char* str, int count, uint flags) const; 
Returns the label (str) of the menu item (item). 

290 ObjectWindows Reference Guide 



TMenu class 

GetSubMenu 
HMENU GetSubMenu(int posltem) canst; 
Returns the handle of the menu specified by positem. 

lnsertMenu 
Form 1 bool lnsertMenu(uint item, uint flags, uint newltem, canst TBitmap& newBmp); 

Adds a bitmap menu item after the menu item specified in item. The flags parameter 
contains either the MF _BYCOMMAND or MF _BYPOSITION values that indicate how 
to interpret the item parameter. If MF _BY COMMAND, item is a command ID; if 
MF _BYPOSITION, item holds a relative position within the menu. 

Form 2 bool lnsertMenu(uint item, uint flags, uint newltem = -1, canst char far* newltem = O); 
Inserts a new text menu item or pop-up menu into the menu after the menu item 
specified in item. The flagsparameter contains either the MF _BYCOMMAND or 
MF _BYPOSITION values that indicate how to interpret the item parameter. If 
MF _BY COMMAND, item is a command ID; if MF _BYPOSITION, item holds a relative 
position within the menu. 

See also TMenu::GetMenuState 

lsOK 
bool lsOK() const; 
Returns true if the menu has a valid handle. 

See also TMenu::GetHandle 

Measureltem 
virtual void Measureltem(MEASUREITEMSTRUCT far& measureltem); 
measureitem is used by owner-drawn controls to store the dimensions of the specified 
item. 

See also MEASUREITEMSTRUCT struct 

ModifyMenu 
Form 1 bool ModifyMenu(uint item, uint flags, uint newltem, canst TBitmap& newBmp); 

Changes an existing menu item into a bitmap. The flags parameter contains either the 
MF _BYCOMMAND or MF _BYPOSITION values that indicate how to interpret the item 
parameter. If MF _BYCOMMAND, item is a command ID; if MF _BYPOSITION, item 
holds a relative position within the menu. 

Form 2 bool ModityMenu(uint item, uint flags, uint newltem = -1, canst char far* newltem = O); 
Changes an existing menu item from the item specified in item to new Item. The flags 
parameter contains either the MF _BYCOMMAND or MF _BYPOSITION values that 
indicate how to interpret the item parameter. If MF _BYCOMMAND, item is a 
command ID; if MF _BYPOSITION, item holds a relative position within the menu. 

See also TMenu::GetMenuState 

operator HMENUO 
operator HMENU(); 
Returns the menu's handle. 

See also TMenu::operator uint 

C h a p t e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e f e r e n c e 291 



TMenu class 

operator= 
TMenu& operator =(cons! TMenu& original); 
Returns the TMenu object. 

See also TMenu::operator uint 

operator uintO 
operator uint(); 
Returns the menu's handle. This function provides compatibility with functions that 
require a uint menu parameter. 

See also TMenu::operatdr HMenu 

RemoveMenu 
bool RemoveMenu(uint item, uint flags); 
Removes the menu item from the menu but does not delete it if it is a submenu. 

See also TMenu::DeleteMenu 

SetMenultemBitmaps 
bool SetMenultemBitmaps(uint item, uint flags, cons! TBitmap* bmpUnchecked=O, 

cons! TBitmap* bmpChecked=O); 
Specifies the bitmap to be displayed when the menu item is checked and unchecked. 
item indicates the menu item to be associated with the bitmap. flags indicates how the 
size parameter is interpreted (whether by MF _BYPOSITION or by 
MF _BYCOMMAND). GetMenuCheckMarkDimensions gets the size of the bitmap. 

See also TMenu::GetMenuCheckmarkDimensions, TBitmap 

Protected data members 
Handle 
HMENU Handle; 
Holds the handle to the menu. 

ShouldDelete 
bool ShouldDelete; 
ShouldDelete is set to true if the destructor needs to delete the handle to the menu. 

See also TMenu::DeleteMenu, TMenu::RemoveMenu 

Protected member functions 
DeepCopy 

Form 1 static void DeepCopy(TMenu& des!, cons! TMenu& source, int offset= 0, int count= -1); 
Makes a deep copy (that is, an actual copy of the menu, not just a copy of pointers or 
handles to a menu) of the menu. This form of DeepCopy copies count number of pop-up 
menus or menu items from src beginning at offset and appends the items or menus to the 
destination menu. If count is passed as -1, all source menu items are copied. 

Form 2 static void DeepCopy(TMenu& dst, int dstOff, cons! TMenu& src, int srcOff = 0, int count =-1); 

292 ObjectWindows Reference Guide 



TMenuDescr class 

Makes a deep copy (that is, an actual copy of the menu, not just a copy of pointers or 
handles to a menu) of the menu. This form of OeepCopy copies count number of pop-up 
menus or menu items from source beginning at offset and inserts the items or menus at 
the dstOffset position specified in the destination menu (dest). If count is passed as -1, all 
source menu items are copied. 

TMenuDescr class menu.h 

Derived from TMenu, TMenuDescr describes your menu bar and its functional groups. 
TMenuDescr provides an easy way for you to group menus on your menu bar and to 
add new groups to an existing menu bar. It uses a resource ID to identify the menu 
resource and an array of count values to indicate the number of pop-up menus in each 
group on the menu bar. 

The TGroup enum enumerates the six basic functional groups on a menu bar: File, Edit, 
Container, Object, Window, and Help. TMenuDescr's constructors simply initialize the 
members based on the arguments passed: TFrameWindow's MergeMenu function 
actually performs the real work of merging the menu groups. 

One method you can use to create a menu involves invoking the TMenuDescr 
constructor and passing the number of group counts for each menu selection. 

For example, if your original menu looked like this: 

File Edit Search View Page Paragraph Word Window Help 

you might use the following group counts: 

FileGroup 1 File 

EditGroup 2 Edit Search 

ContainerGroup 1 View 

ObjectGroup 3 Page Paragraph Word 

WindowGroup 1 Window 

HelpGroup 1 Help 

You would then invoke the constructor this way: 

TMenuDescr(IDM_MYMENU, 1,2, 1, 3, 1, 1) 

You can build the previous menu by merging two menus. Set your application's frame 
menu bar this way: 

File 11 View 11 Window I Help I 

TMenuDescr(IDM_FRAME, 1, 0, 1, 0, 1, 1) 

Chapter 2, ObjectWindows library reference 293 



TMenuDescr class 

and the word-processor child menu bar this way: 

11 Edit Search 11 Page Paragraph Word 11 Help I 

TMenuDescr(IDM_WPROC, 0, 2, 0, 3, 0, 1) 

ff no child is active, only the frame menu will be active. When the word processor's child 
window becomes active, the child menu bar is merged with the frame menu. Every 
group that is 0 in the child menu bar leaves the parent's group intact. The previous 
example interleaves every group except for the last group, the Help group, in which the 
child replaces the frame menu. 

, By convention, the even groups (File, Container, Window) usually belong to the outside 
frame or container, and the odd groups (Edit, Object, Help) belong to the child or 
contained group. 

ff a -1 is used in a group count, the merger eliminates the parent's group without 
replacing it. For example, another child menu bar, such as a calculator, could be added 
to your application in this way. 

11 Edit I Base I Help I 

TMenuDescr(IDM_WCALC, 0, 1, -1, 1, 0, 1) 

This produces a merged menu (with the View menu selection eliminated as a result of 
the-1) that looks like this: 

I File I Edit I Base I Window I Help I 

You could add a paint window in this way: 

11 Edit 11 Bitmap Pixel I Help j 

TMenuDescr(IDM_WPAINT, 0, 1, 0, 2,. 0, 1) 

This produces the following merged menu: 

Edit View Bitmap Pixel Window Help 

The simplest way to add groups to a menu bar involves defining the menu groups and 
adding separators in a resource file. Insert the term MENUITEM SEP ARA TOR between 
each menu group and an additional separator if one of the menu groups is not present. 
For example, the resource file for Step 14 of the ObjectWindows tutorial defines the 
following menu groups and separators: 

IDM_MDICMNDS MENU 
{ 

II Display a grayed File menu 
MENUITEM "File", 0,GRAYED ;placeholder for File menu from DocManager 
MENUITEM SEPARATOR 
MENUITEM "Edit", CM_NOEDIT ;placeholder for Edit menu from View 
MENUITEM SEPARATOR 

294 ObjectWindows Reference Guide 



MENUITEM SEPARATOR 
MENUITEM SEPARATOR 
POPUP "&Window" 

II Options within the Window menu group 

} 

) 

MENUITEM "&Cascade", CM_CASCADECHILDREN 
MENUITEM "&Tile", CM_TILECHILDREN 
MENUITEM "Arrange &Icons", CM_ARRANGEICONS 
MENUITEM "C&lose All"' 
MENUITEM "Add &View"' 

CM_CLOSECHILDREN 
CM_VIEWCREATE 

MENUITEM SEPARATOR 
POPUP "&Help" 
{ 

MENUITEM "&About", CM_ABOUT 
} 

TMenuDescr class 

(You can see the separators by loading Step 14.rc into Resource Workshop and disabling 
the View as Popup Option in the View menu. 

This resource file defines an Edit group, a File group, a Window group, and a Help 
group, but no entries for Container or Object groups. 

Then, step 14.cpp uses these commands from the resource file to set the main window 
and its menu, passing IDM_MDICMNDS as the parmeter to SetMenuDescr function, 
thus 

SetMainWindow(frame); 
GetMainWindow()->SetMenuDescr(TMenuDescr(IDM_MDICMNDS)); 

and produces the following menu groups: 

I File I Edit 111 Window I Help I 

TMenuDescr's functions let you perform OLE2-like menu merging. That is, you can 
merge menus from a container's document (the MDI frame window) with those of an 
embedded object (the MDI child window). When the embedded object is activated in­
place by double-clicking the mouse, the menu of the child window merges with that of 
the frame window. 

Public constructors and destructor 
Constructors 

Form 1 TMenuDescr(); 
Default constructor for a TMenuDescr object. No menu resources or groups are 
specified. Constructs an empty menu bar. 

Form 2 TMenuDescr(TResld id, int fg, int eg, int cg, int og, int wg, int hg, TModule* module = ::Mo~ule); 
Constructs a menu descriptor from the resource indicated by the id. and module 
parameters. Places the pop-up menus in groups according the values of the Jg, eg, cg, of, 
wg, and hg parameters. The Jg, eg, cg, of, wg, and hg parameters represent the functional 

Ch apter 2 , 0 b j e ct Windows Ii bra r y reference 295 



TMenuDescr class 

groups identified by the TGroup enum. Calls the function ExtractGroups to extract the 
group counts based on the separator items in the menu bar. 

Form 3 TMenuDescr(const TMenuDescr& original); 
Copies the menu descriptor object specified in the origi.nal parameter. 

Form 4 TMenuDescr(TResld id, TModule* module = ::Module); 
Creates a menu descriptor from the menu resource specified in the id parameter. Calls 
the function ExtractGroups to extract the group counts based on the separator items in 
the menu bar. 

Form 5 TMenuDescr(HMENU hMenu, int fg, int eg, int cg, int og, int wg, int hg, TModule* module = ::Module); 
Constructs a menu descriptor from the menu handle indicated in the hMenu parameter. 
The menu descriptor can have zero or more pop-up menus in more than one functional 
group. The Jg, eg, cg, of, wg, and hg parameters represent the functional groups identified 
by the TGroup enum. Calls the function ExtractGroups to extract the group counts based 
on the separator items in the menu bar or uses the group count parameters specified if 
there are no separators in the menubar. 

Destructor 
~ TMenuDescr(); 
Destroys the TMenuDescr object. 

Type definitions 
TGroupenum 
enum TGroup{FileGroup, EdltGroup, ContainerGroup, ObjectGroup, WindowGroup, HelpGroup, NumGroups}; 
Used by TMenuDescr, the TGroup enum describes the following constants that define the 
index of the entry in the GroupCount array. 

FileGroup 

EditGroup 

ContainerGroup 

ObjectGroup 

WindowGroup 

HelpGroup 

NumGroups 

Index of the File menu group count 

Index of the Edit menu group count 

Index of the Container menu group count 

Index of the Object group count 

Index of the Window menu group count 

Index of the Help menu group count 

Total number of groups 

See also TMenuDescr::GroupCount 

Public member functions 
GetHandle 
HMENU GetHandle() const; 
Gets the handle to the menu, possibly causing any deferred menu acquisition to occitr. 

296 ObjectWindows Reference Guide 



TMenuDescr class 

GetModule 
TModule* Ge!Module() cons!; 
Returns a pointer to the module object. 

SetModule 
void SetModule(TModule* module); 
Sets the default module object for this menu descriptor. 

Getld 
TResld Gelid() cons!; 
Gets the menu resource ID used to construct the menu descriptor. 

GetGroupCount 
int GetGroupCount(int group) cons!; 
Gets the number of menus in a specified group within the menu bar. There are a 
maximum of six functional groups as defined by the TGroup enum. These groups 
include FileGroup, EditGroup, ContainerGroup, ObjectGroup, WindowGroup, and 
HelpGroup. 

See also TGroup enum 

ClearServerGroupCount 
void ClearServerGroupCount();; 
Clears the odd groups (that is, 1, 3, 5 or Edit Group, Object Group, and Help Group) in 
the menu bar for a server application. 

See also TGroup enum, TOcMenuDescr 

ClearContainerGroupCount 
void ClearContainerGroupCount(); 
Clears the even groups (that is, 0, 2, 4 or File Group, Container Group, Window Group) 
in the menu bar for a container application. 

See also TGroup enum, TOcMenuDescr 

Merge 
Form 1 bool Merge(const TMenuDescr& sourceMenuDescr); 

Merges the functional groups of another menu descriptor into this menu descriptor. 

Form 2 bool Merge(const TMenuDescr& sourceMenuDescr, TMenu& destMenu); 
Merges the functional groups of this menu descriptor and another menu descriptor into 
an empty menu. 

See also TMenuDesc::TGroup enum 

Protected data members 
Id 
TResld Id; 
Resource ID for the menu. The resource ID is passed in the constructors to identify the 
menu resource. 

Chapter 2, ObjectWindows library reference 297 



TMenultemEnabler class 

GroupCount 
int GroupCount[NumGroups]; 
An array of values indicating the number of pop-up menus in each group on the mehu 
bar. 

See also TGroup enum 

Module 
TModule* Module 
Points to the TModule object that owns this TMenuDescr. 

Protected member functions 
ExtractGroups 
bool ExtractGroups(); 
Extracts the group counts from the loaded menu bar by counting the number of menus 
between separator items. After the group counts are extracted, the separators are 
removed. 

See also TMenu, TOcMenuDescr 

TMenultemEnabler class framewin.h 

Derived from TCommandEnabler, TMenultemEnabler is a command enabler for menu 
items. The functions in this class modify the text, check state, and appearance of a menu 
item. 

Public constructor 
Constructor 
TMenultemEnabler(HMENU hMenu, uint id, HWND hWndReceiver, int position); 
Constructs a TMenultemEnabler with the specified command ID, for the menu item, 
message responder (hWndReceiver), and position on the menu. 

Protected data member 
HMenu 
HMENU HMenu; 
The menu that holds the item being enabled or disabled. 

Position 
int Position; 
The position of the menu item. 

298 ObjectWindows Reference Guide 



TMessageBar class 

Public member functions 

Enable 
void Enable(bool enable); 
Overrides TCommandEnable::Enable. Enables or disables the menu options that control 
the appearance of the corresponding menu item. 

GetMenu 
HMENU GetMenu(); 
Returns the menu that holds the item being enabled or disabled. 

GetPosition 
int GetPosition(); 
Returns the position of the menu item. 

SetText 
void SetText(LPCSTR); 
Overrides TCommandEnable::SetTexJ, Changes the text ?f the corresponding menu item. 

SetCheck 
void SetCheck(int state); 
Overrides TCommandEnable::SetCheck. Checks or unchecks the corresponding menu 
item. The state parameter reflects the menu item's state, which can be checked, 
unchecked, or indeterminate. 

TMessageBar class messageb.h 

Derived from TGadgetWindow, TMessageBar implements a message bar with one text 
gadget as wide as the window and no border. Normally positioned at the bottom of the 
window, the message bar uses the default gadget window font and draws a highlighted 
line at the top. 

Public constructor 

Constructor 
TMessageBar(TWindow* parent = O, TFont* font = new TGadgetWindowFont, TModule* module = O); 
Constructs a TMessageBar object with the gadget window font. Sets IDW _STA TUSBAR, 
HighlightLine to true, and TTextGadget's member WideAsPossible to true, making the text 
gadget as wide as the window. 

See also TGadgetWindowFont::TGadgetWindowFont 

Public member functions 

SetHintText 
virtual void SetHintText(const char* text); 

C h a pt e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e I e r e n c e 299 



TMetaFileDC class 

Sets or clears the menu runt text for the message bar. Hint text is displayed over all other 
gadgets and is used for menu and control bar button help. 

Set Text 
void Se!Text(const char* text); 
Forwards the message in the message bar to the text gadget for formatting. 

See also TTextGadget::SetText 

Protected data members 
Highlightline 
bool Highlightline; 
Is true if a highlighted line is drawn. 

HintTexl 
char* Hin!T ext; 
Stores the command hint text, if any, thcq,'.s currently being displayed. 

Protected member functions 
GetDesiredSize 
void GetDesiredSize(TSize& reel); 
Calls TGadgetWindow's GetDesiredSize to get the size of the message bar. Then, if a 
highlighting line is drawn, adjusts the size of the message bar. 

See also TGadgetWindow::GetDesiredSize 

GetlnnerRect 
void GetlnnerRect(TRect& reel); 
GetlnnerRect computes the rectangle inside the borders and margins of the message bar. 

See also TGadgetWindow::GetlnnerRect 

PaintGadgets 
void PaintGadgets(TDC& de, bool erase, TRect& reel); 
Adjusts the message bar and paints a highlight line. Then, PaintGadgets either paints the 
runt text if any is set or calls TGadgetWindow::PaintGadgets to repaint each gadget. 

See also TGadgetWindow::PaintGadgets 

TMetaFileDC class dc.h 

Derived from TDC, TMetaFileDC provides access to a device context with a metafile 
selected for drawing. 

300 ObjectWindows Reference Guide 



TMetaFilePict class 

Public constructor and destructor 

Constructor 
TMetaFileDC(const char far* filename = O); 
Creates a TMetaFileDC object with the data written to the named file if one is provided. 

Destructor 
-TMetaFileDC(); 
Destroys this object. 

See also TDC::TDC 

Public member function 

Close 
HMETAFILE Close(); 
Closes this metafile DC object. Sets the Handle data member to 0 and returns a pointer to 
a new TMetaFilePict object. 

See also TMetaFilePict 

TMetaFilePict class metafile.h 

TMetaFilePict is a support class used with TMetaFileDC to simplify metafile operations, 
such as playing into a DC or storing data on the clipboard. TMetaFilePict automatically 
handles the conversion between a metafile and a metafilepict. 

Public constructors and destructor 

Constructors 
Form 1 TMetaFilePict(HMETAFILE handle, TAutoDelete autoDelete); 

Creates a TMetaFilePict object using the given handle argument. 

Form 2 TMetaFilePict(const TClipboard& clipboard); 
Creates a TMetaFilePict object from the contents of the specified clipboard. 

Form 3 TMetaFilePict(const char* filename); 
Creates a TMetaFilePict object for the metafile stored in the named file. 

Form 4 TMetaFilePict(uint size, void far* data); 
Creates a TMetaFilePict object for the memory-based metafile specified by data. The data 
buffer must hold a metafile of length size bytes. 

Form 5 TMetaFilePict(HGLOBAL data); 
Creates a TMetaFilePict object for the memory-based metafile specified by data.The data 
global memory block must hold a metafile. 

Form 6 TMetaFilePict(const TMetaFilePict& orig, const char far* fileName = O); 
Copies the metafile, orig, to the named file. If filename is 0 (the default), the metafile is 
copied to a memory-based metafile. 

Chapter 2, ObjectWindows library reference 301 



TMetaFilePict class 

Destructor 
N TMetaFilePict() 
Destroys this object. 

See also TClipboard 

Public member functions 
CalcPlaySize 
TSize CalcPlaySize(TDC& de, cons! TSize& defSize) cons!; 
Calculates the size of this metafile when played on a given DC. 

See also TDC, TSize 

GetMetaFileBits 
HANDLE GetMetaFileBits(); 
Returns a handle to a global memory block containing this metafile as a collection of 
bits. The memory block can be used to determine the size of the metafile or to save the 
metafile as a file. 

GetMetaFileBitsEx 
uint32 GetMetaFileBitsEx(uint size, void* data); 
32-bit only. Retrieves the contents of the metafile associated with this object and copies 
them (up to size bytes) to the data buffer. If data is nonzero and the call succeeds, the 
actual number of bytes copied is returned. If data is 0, a successful call returns the 
number of bytes required by the buffer. A return value of 0 always indicates a failure. 

Height 
int Height() const; 
Retrieves the height of this metafile. 

operator« 
TClipboard& operator «(TClipboard& clipboard, TMetaFilePict& mfp); 
Places the TMetaFilePict object onto the Clipboard. Returns a reference to the resulting 
Clipboard, allowing the usual chaining of<< operations. 

See also TClipboard 

Mapping Mode 
unsigned MappingMode()const; 
Retrieves the mapping mode of this metafile. 

operator HMETAFILE() 
operator HMETAFILE() cons!; 
Type-conversion operator. 

PlayOnto 
bool PlayOnto(TDC& de, cons! TSize& defSize) cons!; 
Plays the metafile into a DC. 

See also TDC, TSize 

302 ObjectWindows Reference Guide 



SetMappingMode 
void SetMappingMode(unsigned mm); 
Sets the mapping mode of this metafile. 

SetSize 
void SetSize(const TSize& size); 
Sets the size of this metafile. 

Size 
TSize Size() canst; 
Retrieves the size of this metafile. 

ToClipboard 

TModule class 

void ToClipboard(TClipboard& clipboard, unsigned mapMode = MM_ANISOTROPIC, canst TSize& 
extent= TSize(O,O)); 
Puts this metafile onto the Clipboard. 

See also TClipboard, TSize 

Width 
int Width() cons!; 
Retrieves the width of this metafile. 

Protected data members 
Extent 
TSize Extent; 
Holds the extent or size of the metafile. 

Mm 
int Mm; 
Stores the mapping mode for the metafile. 

TModule class module.h 

ObjectWindows dynamic-link libraries (DLLs) construct an instance of TModule, which 
acts as an object-oriented stand-in for the library (DLL) module. TModule defines 
behavior shared by both library and application modules. ObjectWindows applications 
construct an instance of T Application, derived from TModule. TModule's constructors 
manage loading and freeing of external DLLs, and the member functions provide 
support for default error handling. 

Public constructors and destructor 
Constructors 

Form 1 TModule(const char far* name, HINSTANCE hlnstance, canst char far* cmdline); 
Constructs a TModule object for an ObjectWindows DLL or program from within 
LibMain or WinMain. Calls InitModule to initialize hinstance and cmdLine. 

Chapter 2, ObjectWindows library reference 303 



TModule class 

Form 2 TModule(const char far* name, HINSTANCE hlnstance); 
Constructs a TModule object that is an alias for an already loaded DLL or program with 
an available Hinstance. When the TModule is destructed, the instance isn't automatically 
freed. name, which is optional, can be 0. 

Form 3 TModule(const char far* name, bool shouldload = true); 
Constructs a TModule object that is used as an alias for a DLL. If shouldLoad is true, 
TModule will automatically load and free the DLL. If shouldLoad is false, then the 
Hinstance needs to be set later using InitModule. 

Destructor 
virtual N TModule(); 
Destroys a TModule object and deletes lpCmdLine. 

Public data members 
lpCmdline 
char far* lpCmdline; 
A null-terminated string, lpCmdLine points to a copy of the command-line arguments 
passed when the module is loaded. Notice that lpCmdLine is different from the WIN32 
lpCmdLine in which the full path name of the module is appended to the command-line 
arguments. Whether running under WIN16 or WIN32, ObjectWindows 
TModule::lpCmdLine data member includes only the command-line arguments. Note 
that the run-time library global variables _argv*[] and _argc contain identical 
information for both WIN16 and WIN32 APis, and that _argv[O] points to the full path 
name of the module. 

See also TApplication 

Module 
extern TModule *Module; 
Holds a global pointer to the current module. 

See also TApplication 

Status 
TStatus Status; 
Status contains the module status and is included for backward compatibility with 
ObjectWindows 1.0 applications. ObjectWindows 2.0 instead uses exceptions to handle 
errors. Setting Status to any nonzero value will throw a TXCompatibility exception. 

See also TXCompatibility::MapStatusCodeToString 

Public member functions 
AccessResource 
int AccessResource(HRSRC hRsrc) const; 
Used for 16-bit applications, AccessResource finds the specified resource. The preferred 
method is to use FindResource. 

See also TModule::FindResource 

304 ObjectWindows Reference Guide 



TModule class 

AllocResource 
HGLOBAL AllocResource(HRSRC hRsrc, uint32 size) const; 
Used for 16-bit applications, AllocResource loads a resource into memory. The preferred 
method is to use LoadResource. 

See also TModule::LoadResource 

CopyCursor 
HCURSOR CopyCursor(HCURSOR hCursor) const; 
Used for 16-bit applications, CopyCursor copies the cursor specified in hCursor. The 
return value is a handle to the duplicate cursor. 

See also Tlcon 

Copylcon 
HICON Copylcon(HICON hlcon) const; 
Copies the icon specified in hicon. The return value is a handle to the icon or 0 if 
unsuccessful. When no longer required, the duplicate icon should be destroyed. 

Error 
Form 1 virtual void Error(int errorCode); 

Processes errors identified by the error value supplied in errorCode. Error displays the 
error code in a message box and asks the user if it is OK to continue. If the user does 
continue, the program might or might not be able to recover. If the user does not 
continue, the program terminates. Error can be overridden with another kind of 
exception handler. This function is included only for backward compatibility with 
ObjectWindows 1.0. If you are writing ObjectWindows 2.0 applications, use the 
following Error function instead. 

Form 2 virtual int Error(xmsg& x, unsigned captionResld, unsigned promptResld=O); 
Called when fatal exceptions occur, Error takes an xmsg exception object, a resource ID 
for a message box caption, and an optional resource ID for a user prompt. By default, 
Error calls HandleGlobalException with the xmsg object and the strings obtained from the 
resources. An application (derived from TApplication which is derived from TModule) 
can reimplement this function to provide alternative behavior. 

A nonzero status code is returned to indicate that an error condition is to be propagated; 
a zero status indicates that the condition has been handled and that it is OK to proceed. 
ObjectWindows uses this status code inside its message loop to allow the program to 
resume. The global error handler (defined in except.h), which displays the message text, 
is 

int _OWLFUNC HandleGlobalException(xmsg& x, char* caption, char* canResume); 

ExecDialog 
int ExecDialog(TDialog* dialog); 
Executes a dialog box. This function is included only for backward compatibility. Use 
TDialog::Execute instead. 

Find Resource 
HRSRC FindResource(TResld id, const char far* type) const; 
Finds the resource indicated by id and type and, if successful, returns a handle to the 
specified resource. If the resource cannot be found, the return value is zero. The id and 

Chapter 2, ObjectWindows library reference 305 



TModule class 

type parameters either point to zero-terminated strings or specify an integer value. type 
can be one of the standard resource types defined below. 

RT_ACCELERATOR Accelerator table 

RT_BITMAP Bianap 

RT_cURSOR Cursor 

RT_DIALOG Dialog box 

RT_FONT Font 

RT_FONTDIR Font directory 

RT_ICON Icon 

RT_MENU Menu 

RT_RCDATA User-defined resource 

RT_STRING String 

See also TResID 

GetClientHandle 
HWND GetClientHandle(HWND hWnd); 
Gets the handle to the client window. This function is included only for backward 
compatibility with ObjectWindows 1.0. 

GetClasslnfo 
bool GetClasslnfo(const char far* name, WNDCLASS far* wndclass) cons!; 
Used particularly for subclassing, GetClasslnfo gets information about the window class 
specified in wndclass. name points to a zero-terminated string that contains the name of 
the class. wndclass points to the WNDCLASS structure that receives information about 
the class. If successful, GetClassinfo returns nonzero. If a matching class cannot be found, 
GetClassinfo returns zero. 

See also WNDCLASS struct 

Getlnstance 
HINSTANCE Getlnstance() const; 
Returns the instance handle for this module. 

GetlnstanceData 
int GetlnstanceData(void* data, int len) canst; 
Used only for 16-bit applications, GetinstanceData gets data from an already running 
instance of an application. Zen is the size of the buffer. 

GetModuleFileName 
int GetModuleFileName(char far* buff, int maxChars); 
Returns the expanded file name (path and file name) of the file from which this module 
was loaded. buff points to a buffer that holds the path and file name. maxChars specifies 
the length of the buffer. The expanded file name is truncated if it exceeds this limit. 
GetModeFileName returns 0 if an error occurs. 

306 ObjectWindows Reference Guide 



TModule class 

GetModuleUsage 
int GetModuleUsage() cons!; 
Used only for 16-bit applications, GetModuleUsage returns the reference count of the 
module, if successful. The reference count is incremented by one each time a module is 
loaded, and decremented by one each time a module is freed. 

GetName 
cons! char far* GetName() cons!; 
Gets the name ofthe module. 

See also ::GetName (Windows API) 

GetParentObject 
TWindow* GetParentObject(HWND hWndParent); 
Gets a handle to the parent window. This function is included only for backward 
compatibility with ObjectWindows 1.0. 

See also ::GetParentObject (Windows API) 

GetProcAddress 
FARPROC GetProcAddress(const char far* fcnName) cons!; 
Returns the entry-point address of the exported function fcnName if the function is 
found. Returns NULL otherwise. 

lnitModule 
void lnitModule{HINSTANCE hlnstance, const char far* cmdLine); 
Performs any instance initialization necessary for the module. If the module cannot be 
created, a TXInvalidModule exception is thrown .. 

ls Loaded 
bool lsloaded() cons!; 
Returns a nonzero value if the instance handle is loaded. Use this function primarily to 
ensure that a given instance is loaded. 

LoadAccelerators 
HACCEL LoadAccelerators(TResld id) cons!; 
Loads the accelerator table resource specified by id. LoadAccelerators loads the table only 
if it has not been previously loaded. If the table has already been loaded, LoadAccelerators 
returns a handle to the loaded table. 

LoadBitmap · 
HBITMAP LoadBitmap(TResld id) cons!; 
Loads the bitmap resource specified by id. If the bitmap cannot be found, LoadBitmap 
retumsO. 

See also TBitMap, TResID, ::LoadBitmap (Windows API), OBM_XXXX values 
(Windows API) · 

LoadCursor 
HCURSOR LoadCursor(TResld id) cons! 

Chapter 2, ObjectWindows library reference 307 



TModule class 

Loads the cursor resource specified by id into memory and returns a handle to the 
cursor resource. If the cursor resource cannot be found or identifies a resource that is not 
a cursor, LoadCursor returns 0. 

See also TCursor, TResID, ::LoadCursor (Windows API) 

Load Icon 
HICON Loadlcon(const char far* name) cons!; 
Loads the icon resource indicated by the parameter, name, into memory. Loadicon loads 
the icon only if it has not been previously loaded. If the icon resource cannot be found, 
Loadicon returns 0. 

Loadicon can be used to load a predefined Windows icon if name points to one of the 
Windows IDI_XXXX values. 

See also Tlcon, ::Loadlcon (Windows API), IDI_XXXX values (Windows API) 

Load Menu 
HMENU LoadMenu(TResld id) cons!; 
Loads the menu resource indicated by id into memory. If the menu resource cannot be 
found, LoadMenu returns 0. 

See also TMenu, ::LoadMenu (Windows API) 

Load Resource 
HGLOBAL LoadResource(HRSRC hRsrc) cons!; 
Loads a resource indicated by hRsrc into memory and returns a handle to the memory 
block that contains the resource. If the resource cannot be found, the return value is 0. 
The hRsrc parameter must be a handle created by FindResource. 

LoadResource loads the resource into memory only if it has not been previously loaded. If 
the resource has already been loaded, LoadResource increments the reference count by 
one and returns a handle to the existing resource. The resource remains loaded until it is 
discarded. 

LoadString 
Form 1 int LoadString(uint id, char far* buff, int maxChars) cons!; 

Loads a string resource identified by id into the buffer pointed to by buff. maxChars 
indicates the size of the buffer to which the zero-terminated string is copied. A string 
longer than the length specified in maxChars is truncated. The return value is the 
number of characters copied into the buffer, or 0 if the string resource does not exist. 

Form 2 string LoadString(uint id) cons!; 
Loads a string resource identified by id 

LowMemory 
bool LowMemory(); 
This function, which is obsolete, always returns 0. 

Make Window 
TWindow* MakeWindow(TWindow* win); 
This function is obsolete. Use the TWindow::Create function instead. 

308 ObjectWindows Reference Guide 



operator HINSTANCEO 
operator HINSTANCE() const; 

TModule class 

Returns the handle of the application or DLL module represented by this TModule. The 
handle must be supplied as a parameter to Windows when loading resources. 

operator== 
bool operator ==(const TModule& other) const; 
Returns true if this instance is equal to the other instance; otherwise, returns false. 

RestoreMemory 
void RestoreMemory(); 
This function, which is obsolete, restores memory. 

Setlnstance 
void Setlnstance(HINSTANCE hlnstance); 
Sets the instance handle for this TModule. Setlnstance is used for special cases in which 
the hlnstance is not known when the module is constructed. 

SetName 
void SetName(const char far* name); 
Accessor function that sets the name of the module. 

SetResourceHandler 
const RSRCHDLRPROC SetResourceHandler(const char far* type, RSRCHDLRPROC loadProc) const; 
Used for 16-bit applications, SetResourceHandler installs a callback function that loads 
resources. type points to a resource type. loadProc is the address of the callback 
procedure. If successful, SetResourceHandler returns a pointer to a previously installed 
resource handler. If no resource handler has been installed, SetResourceHandler returns a 
pointer to the default handler. This function is useful for handling user-defined resource 
types. 

SizeofResource 
uint32 SizeofResource(HRSRC hRsrc) const; 
Returns the size, in bytes, of the resource indicated by hRscr. The resource must be a 
resource handle created by FindResource. If the resource cannot be found, the return 
value is 0. 

Because of alignment in the executable file, the returned size might be larger than the 
actual size of the resource. An application cannot rely on SizeojResource for the exact size 
of a resource. 

ValidWindow 
TWindow* ValidWindow(TWindow* win); 
This function, which is obsolete, returns a handle to the valid window. 

Protected data members 
Hlnstance 
HINSTANCE Hlnstance; 

Chapter 2, ObjectWindows library reference 309 



TModule::TXlnvalidModule class 

Contains the executing instance of either the application or DLL module. The instance 
must be supplied as a parameter to Windows when loading resources. 

Name 
int GetModuleFileName(char far* buff, int maxChars); 
Returns the expanded file name (path and file name) of the file from which this module 
was loaded. buff points to a buffer that holds the path and file name. maxChars specifies 
the length of the buffer. The expanded file name is truncated if it exceeds this limit. 
GetModeFileName returns 0 if an error occurs. 

TModule::TXlnvalidModule class module.h 

A nested class, TXInvalidModule describes an exception that results from an invalid 
module. A window throws this exception if it can't create a valid TModule object. 

Public constructor 

Constructor 
TXlnvalidModule(); 
Constructs a TXInvalidModule object. 

Public member functions 

Clone 
TXOwl* Clone(); 
Copies the TXInvalidModule exception object. 

Throw 
void Throw(); 
Throws the TXInvalidModule exception object. 

TOleClientDC class olewindo.h 

Derived from TClientDC, TOleClientDC is a helper class that translates between two 
different coordinate systems. For example, the window's logical points may be 
measured in HIMETRIC or twips whereas the actual ouput device's (the viewport) 
coordinates may be measured in pixels. Without the help of this class, you would need 
to create a client DC and then set up the window's logical coordinates (its origin) and its 
width and height (its extent) as well as the viewport's origin (measured in device 
coordinates) and extent. Instead, TOleClientDC performs these calculations for you by 
mapping logical points to device points and vice versa. 

TOleClientDC works with a TOleWindow object. By default, TOleClientDC takes care of 
both scaling (adjusting the extents of the window and the viewport) and scrolling 
(adjusting the origins of the window and the viewport). 

310 ObjectWindows Reference Guide 



TOleDocument class 

Public constructor 

Constructor 
TOleClientDC(TOleWindow& win, bool scale= true); 
Constructs a TOleClientDC object . The parameter win references the window that 
TOleClientDC uses to create a DC. If the scale parameter is true, TOleClientDC takes care 
of scaling. However, if your application handles scaling, you can pass scale as false. 

Scrolling is controlled by the presence of a scroller (TScroller). TOleClientDC, by default, 
takes care of both scaling and scrolling. 

See also TClientDC, TOleWindow 

TOleDocument class oledoc.h 

Derived from TStorageDocument, TOleDocument implements the Document half of the 
Doc/View pair. That is, TOleDocument manages the document's data while the 
corresponding TOleView object determines how the data is displayed on the screen. 
Basically, TOleDocument is a TStorageDocument with a knowledge of TOcDocument 
through its pointer to TOcDocument. 

TOleDocument is responsible for creating compound documents (documents that can 
hold a variety of embedded objects from various source applications), closing 
documents, reading documents from storage (an area within a file where data is stored), 
and writing documents to storage. In the case of a server, the document consists of a 
single object. In the case of a container, the document can consist of one or more 
embedded objects (also referred to as parts). 

To accomplish these tasks, TOleDocument talks to the underlying ObjectComponents 
classes through the use of functions such as GetOcApp, GetOcDoc, and SetOcDoc. 

See also 
TO le View, TStorageDocument, TOcDocument, TOcRem View 

Public constructor and destructor 

Constructor 
TOleDocument(TDocument* parent= O); 
Constructs a TOleDocument object associated with the given parent TDocument object. 

Destructor 
-TOleDocument(); 
Destroys the TOleDocument object. In the case of an OLE container, the compound file 
remains open until all of the views shut down. 

Chapter 2, ObjectWindows library reference 311 



TOleDocument class 

Public member functions 
CanClose 
virtual bool CanClose(); 
Prepares the document for closing. Before closing the current document, checks to see if 
all child documents can be closed. If any child returns false, CanClose returns false and 
aborts the process. If all children return true, CanClose checks to see if the document has 
been changed. If so, it asks the user to save the document, discard any changes, or cancel 
the operation. If the document has not been changed, and all child documents return 
true, this Can Close function returns true, thus indicating that the document can be 
closed. 

CanClose also calls ReleaseDoc on its associated ObjectComponents document to make 
sure that all the embedded objects are closed properly. 

See also TOleDocument::ReleaseDoc 

Close 
bool CloseO; 

Ensures that the /Storage is released properly and disconnects any active server in the 
document. A compound file must be closed before it is reopened. 

See also TTOleDocument::Open 

Commit 
bool Commit(bool force); 
Commits the current document's data to storage. If force is true and the data is not dirty, 
all data is written to storage and Commit returns true. If force is false, the data is written 
only if it is dirty. 

The data has been changed since the last save operation. 

See also TTOleDocument::Revert 

GetNewStorage 
virtual IStorage*GetNewStorage(); 
Typically used in a SaveAs menu selection, GetNewStorage gets a new storage for the 
document. 

If the document's path changes, for example, use this function to create a new storage. 

GetOcApp 
TOcApp* GetOcApp(}; 
Returns the ObjectComponents application associated with this TOleDocument object. 

See also TOcApp 

GetOcDoc 
TOcDocument*GetOcDoc(); 
Returns the ObjectComponents document associated with this TOleDocument object. 

See also TOleDocument::SetOcDoc 

312 0 bjectWi n d ows R efe re n ce Gui de 



TOleDocument class 

lnitDoc 
virtual bool lnitDoc(); 
Overrides TDocument's InitDoc function and creates or opens a compound file so that 
there is an !Storage associated with this document's embedded objects. Uses a 
TOcDocument object to perform the the actual interaction with the OLE !Storage and 
!Stream interfaces, which are ultimately responsible for establishing the relationship 
between a compound file and its storage. 

See also TOcDocument, TDocument::InitDoc 

Open 
bool Open(int mode, canst char far* path); 
Loads the embedded objects, if any, using the path specified in path. mode is a 
combination of bits that specify how the embedded objects are opened (for example, 
read only, read/write, and so on). 

See also TTOleDocument::Close 

Path Changed 
bool PathChanged(); 
Checks if the current document's path is the same as the TOcDocument's path. If the 
paths are not the same, PathChanged returns true. 

See also TOcDocument 

PreOpen 
virtual void PreOpen(); 
Before the document is actually opened, PreOpen gives the derived class a chance to 
perform a particular operation, for example, setting a different open mode for the 
compound document. 

See also dtxxxx document constants 

Read 
virtual bool Read(); 
Loads the embedded objects from the compound file. A container should call this 
function when it wants to loads any embedded objects. 

See also TOleDocument::Write 

Release Doc 
virtual bool ReleaseDoc(); 
Releases the ObjectComponents document when the server is finished using the 
document. 

See also TOleDocument::CanClose 

Revert 
boo I Revert (bool clear); 

Performs the reverse of Commit. Cancels any changes made to the document since the 
last time the document was saved to storage. 

See also TTOleDocument::Commit 

Chapter 2, Objec!Windows library reference 313 



TOleFactoryBase<> class 

SetOcDoc 
void SetOcDoc(TOcDocument* doc); 
Sets the ObjectComponents document associated with this TOleDocument object. 

See also TOleDocument::GetOcDoc 

SetStorage 
virtual bool SetStorage(IStorage* stg); 
Attaches the !Storage pointer (stg) to this document. If successful, SetStorage returns true. 

An OLE storage interface that ObjectComponents implements when it needs to assign 
storage to a document 

Write 
virtual bool Write(); 
Saves the embedded objects to the compound file. A container should call this function 
when it wants to save its embedded objects to storage. 

See also TOleDocument::Read 

TOleFactoryBase<> class olefacto.h 

A template class, TOleFactoryBase<> creates callback code for ObjectWindows classes. 
The main purpose of the factory code is to provide a callback function, Create, that 
ObjectCompoI).ents calls to create objects. 

Just as a recipe consists of a list of instructions about how to make a particular kind of 
food, a template, such as TOleFactoryBase<>, contains instructions about how to make 
an object, in this case, a factory object. TOleFactoryBase<> includes two public member 
functions. The three additional functions are passed as template arguments. Although 
these template arguments actually belong to the class that is instantiated when you fill 
in the arguments to TOleFactoryBase<>, they are described here for convenience. 

Use TOleFactoryBase<> to manufacture objects in general, whether or not they are 
embedded, OLE-enabled, or use the Doc/View model. These objects might or might not 
be connected to OLE. 

The callouts are supplied through the arguments passed to the template class. The 
factory base class takes three template parameters: the application type, a set of 
functions to create the object, and a set of functions to create an automation object. 
Depending on the arguments passed, you can make the following OLE-enabled 
components: · 

• Doc/View components that are automated 

• Doc/View components that are not automated 

• Non-Doc/View components that are automated 

• Non-Doc/View components that are not automated 

ObjectWindows provides a standard implementation for object creation and 
automation. Factory Template Classes gives an overview of these classes. 

314 ObjectWindows Reference Guide 



TOleFactoryBase<> class 

By using TOleFactoryBase<> to obtain an OLE interface for your application, you can 
make objects that are accessible to OLE. That is, TOleFactoryBase<> handles any 
relationships with !Unknown, a standard OLE interface. 

See also 
TComponentFactory typedef, TOcRegistrar class, TAutoFactory class 

Public member functions 
TComponentFactory 
operator TComponentFactory(); 
Converts the object into a pointer to the factory. ObjectComponents uses this pointer to 
create the object. 

Create 
static !Unknown* Create(IUnknown* outer, uint32 options, uint32 id); 
A TComponentFactory callback function that creates or destroys the application or creates 
objects. If an application object does not already exist, Create creates a new one. The outer 
argument points to the OLE2 !Unknown interface with which this object aggregates 
itself. If outer is 0, If outer is 0, the object will become an independent object. 

The options argument indicates the application's mode while it is running. The values for 
options are either set from the command line or set by ObjectComponents. They are 
passed in by the Registrar to this callback. The application looks at these flags in order to 
know how to operate, and the factory callback looks at them in order to know what to 
do. For example, a value of amExeMode indicates that the server is running as an .EXE 
either because it was built as an .EXE or because it is a .DLL that was launched by an 
.EXE stub and is now running as an executable program. The TOcAppMode enum 
description shows the possible values for the options argument. 

If the application already exists and the object ID (id) equals 0, Create returns the 
application's OLE interface. Otherwise, it calls OClnit to create a new TOcApp and 
register the options from TOcAppMode enum, which contains OLE-related flags used in 
the application's command line. (These flags tell the application whether it has been run 
as a server, whether it needs to register itself, and so on.) If a component ID was passed, 
that becomes the component; otherwise, Create runs the application itself based on the 
values of the TOcAppMode enum and returns the OLE interface. 

See also TOleFactoryBase::DestroyApp, TOcAppMode enum 

Template arguments 

CreateApp 
static T* CreateApp(options); 
Creates a new application. By default, it creates a new application of template type T 
with no arguments. This is a static function that you can override in your application. 

The options are those passed to the factory. They can be one of the TOcAppMode enum 
values (for example, amRun, amEmbedding, and so on) that indicate the application's 
mode when running and indicate the options to the factory. 

Chapter 2, ObjectWindows library reference 315 



TOleFrame class 

See also TOleFactoryBase::DestroyApp 

CreateObject 
static !Unknown* CreateObject(TAppttcation* app, TDocTemplate* tpl, !Unknown* outer); 
Creates an object using the document template referred to in tpl and the application 
specified in app. The outer parameter refers to the controlling !Unknown interface of the 
object with which this object is going to be aggregated. If outer is 0, the object is an 
independent object. 

You can override this static function to create your own object at run time. 

See also TOleFactoryBase::DestroyApp 

TOcView class 

Destroy App 
static void DestroyApp(T* app); 
Destroys the application (app) by unregistering the object and deleting it. 

See also TOleFactoryBase::CreateApp 

TOlef rame class oleframe.h 

Derived from TDecoratedFrame, TOleFrame provides user-interface support for the main 
window of a Single Document Interface (SDI) OLE application. Because it inherits 
TDecoratedFrame's functionality, TOleFrame is able to position decorations, such as 
toolbars, around the client window. Because of its OLE frame functionality, you will 
always want to create a TOleFrame as a main frame. For example, TOleFrame supports 
basic container operations, such as 

• Creating space in a container's frame window that the server has requested 

• Merging the container's menu and the server's menu 

• Processing accelerators and other messages from the server's message queue 

In addition to supporting the customary frame window operations and event-handling, 
TOleFrame provides functionality that supports OLE 2 menu merging for pop-up 
menus. 

Through the use of the EvOcXxxx event-handling member functions, TOleFrame 
responds to ObjectComponents messages sent to both the server and the container 
applications. Although most of the messages and functions provide container support, 
one message, EvOcAppShutDown, is server related, and one function, 
GetRem View Bucket, supplies server support. Whether TOleFrame functions as a 
container or a server, it always has a pointer to a corresponding TOcApp. 

See also 
TOcApp, TDecoratedFrame 

316 ObjectWindows Reference Guide 



TOleFrame class 

Public constructor and destructor 
Constructor 
TOleFrame(const char far* title, TWindow* clientWnd, bool trackMenuSelection = false, TModule* module = O); 
Constructs a TOleFrame object with the specified caption for the frame window (title), 
the client window (clientWnd), and module instance. The trackMenuSelection parameter 
indicates whether or not the frame window should track menu selections (that is, 
display hint text in the status bar of the window when a menu item is highlighted). 

Destructor 
~ TOleFrame(); 
Destroys a TOleFrame object. 

Public member functions 
AddUserFormatName 
void AddUserFormatName(char far* name, char far* resultName, char far* id); 
Adds user defined formats and the corresponding names to the list of Clipboard 
formats. Use this function if you want to associate a clipboard data format (name) with 
the description of the data format as it appears to users in the Help text of the Paste 
Special dialog box (resultName). To use a standard Clipboard format, set the id 
parameter to an appropriate constant (for example, CF_ TEXT). Otherwise, if the format 
is identified by a string, pass the string as the name and omit the ID. 

See also TOcApp::AddUserFormatName 

GetOcApp 
TOcApp* GetOcApp{); 
Gets the ObjectComponents application associated with this frame window. 

See also TOcApp, TOleFrame::SetOcApp 

GetRemViewBucket 
TWindow* GetRemViewBucket(); 
Returns a pointer to the OLE frame's hidden helper window that holds all inactive 
server windows. It can also hold in-place tool bars and TOleView windows. 

SetOcApp 
void SetOcApp(TOcApp* app); 
Sets the ObjectComponents application associated with this frame window to the 
applications specified in the app parameter. 

See also TOcApp, TOleFrame::GetOcApp 

Protected member functions 
CanClose 
bool CanClose(); 

Chapter 2, ObjectWindows library reference 317 



TOleFrame class 

Returns true if the frame window can be closed. Tests to see if both the TOcApp and all 
child windows can close. If the application and all child windows return true, CanClose 
closes the fram:e window. · 

See also TOcApp 

Cleanup Window 
void CleanupWindow(); 
Performs normal window cleanup of any HWND-related resources. For DLL servers, 
Cleanup Window destroys the idle timer. 

See also TWindow::CleanupWindow, TOleFrame::EvTimer 

Destroy 
void Destroy(int retVal); 
Checks with all the connected servers to ensure that they can close before destroying the 
frame window. If the user closes the application with objects still embedded, Destroy 
hides the frame window instead of destroying it. 

DestroyStashedPopups 
void DestroyStashedPopups(); 
Destroys the previously stored shared pop-up menus. Checks to see if StashCount is 0 
before destroying the menus. 

See also TOleFrame::StashContainerPopups, TOleFrame::StashCount 

EvActivateApp 
void EvActivateApp(bool active, HTASK hTask); 
Responds to a WM_ACTIV ATEAPP message sent when a window is activated or 
deactivated. If active is true, the window is being activated. 

This message is sent to the top-level window being deactivated before it is sent to the 
top-level window being activated. hTask is a handle to the current process . 

. This event is forwarded to the TOcApp object, which activates an in-place server if one 
exists. 

See also TOcApp 

EvOcAppBorderSpaceReq 
bool EvOcAppBorderSpaceReq(TRect far* rect); 
Responds to an OC_APPBORDERSPACEREQ message sent to a container. The 
response is to ask the container if it can give border space in its frame window to the 
server. 

See also TOcApp::Bord~rSpaceSet 

EvOcAppBorderSpaceSet 
bool EvOcAppBorderSpaceSet(TRect far* rect); 
Responds to an OC_APPBORDERSPACESET message by making room in the 
container's frame window for the border space that the server has requested. 

See also TOcApp::BorderSpaceReq 

318 ObjectWindows Reference Guide 



TOleFrame class 

EvOcAppDialogHelp 
void EvOcAppDialogHelp(TOcDialogHelp far& dh); 
Responds to an OC_APPDIALOGHELP message. The dh parameter refers to one of the 
TOcDialogHelp enum constants that indicate the kind of dialog box the user has open. 
For example, dhBrowseLinks indicates that the Links dialog box is open. The 
TOcDialogHelp enum lists the help constants and their dialog box equivalents. 

See also TOcDialogHelp enum 

EvOcAppFrameRect 
bool EvOcAppFrameRect(TRect far* rect); 
Responds to an OC_APPFRAMERECT message sent to a container. The response is to 
get the coordinates of the client area rectangle of the application's main window. 

EvOcApplnsMenus 
bool EvOcApplnsMenus(TOcMenuDescr far& sharedMenu); 
Responds to an OC_APPINSMENUS message by merging the container's menu into the 
shared menu. The sharedMenu parameter refers to this merged menu. 

EvOcAppMenus 
bool EvOcAppMenus(TOcMenuDescrfar& md); 
Responds to an OC_OCAPPMENUS sent to the container. The response is to install a 
merged menu bar. 

EvOcAppProcessMsg 
bool EvOcAppProcessMsg(MSG far* msg); 
Responds to an OC_APPROCESSMSG message sent to the container asking the server 
to process accelerators and other messages from the container's message queue. 

EvOcAppRestoreUI 
void EvOcAppRestoreUI(); 
Responds to an OC_APPRESTOREUI message by restoring the container's normal 
menu and borders because in-place editing has finished. 

EvOcAppShutdown 
bool EvOcAppShutdown(); 
Responds to an OC_APPSHUTOOWN message indicating that the last embedded 
object has been closed. The response is to shut down the server. 

EvOcAppStatusText 
void EvOcAppStatusText(const char far*); 
Responds to an OC_APPSTATUSTEXT message by displaying text from the server on 
this container's status bar. 

EvOcEvent 
LRESULT EvOcEvent(WPARAM wParam, LPARAM IParam); 
Responds to a WM_OCEVENT message and subdispatches it to one of the EvOcXxxx 
event-handling functions based on the value of wParam. WM_OCEVENT messages are 
sent by ObjectComponents when it needs to communicate with an OLE-generated 
event; for example, if a server wants to display toolbars. 

Chapter 2, ObjectWindows library reference 319 



TOleFrame class 

EvSize 
void EvSize(uint sizeType, TSize& size); 
Responds to an EV_ WM_SIZE message indicating a change in the frame window's size 
and forwards this information to the TOcApp, which then notifies any in-place server. 
The server uses this information to change the size of its tool bar, if necessary. 

See also TOcApp::Ev Activate 

EvTimer 
void EvTimer(uint timerld); 
If this is a .DLL server, EvTimer responds to a timer message by running an idle loop if 
the message queue is empty. 

See also TOleFrame::CleanupWindow 

SetupWindow 
void SetupWindow(); 
Associates the ObjectComponents application with the window's HWND so that the 
TOcApp and the window can communicate. Prepares a place to insert the server's 
toolbars when in-place editing of the embedded object occurs. 

See also TOcApp 

StashContainerPopups 
void StashContainerPopups(const TMenuDescr& shMenuDescr); 
Stores a local copy of the pop-up menus so they can be used for menu merging and then 
destroyed later by DestroyStashedPopups. shMenuDescr is the shared menu descriptor to 
be stored. Increments StashCount each time the pop-up menus are saved. 

See also TOleFrame::DestroyStashedPopups, TMenuDescr 

Protected data members 
HoldMenu 
HMENU HoldMenu; 
Holds the handle to the container's previously saved copy of the menu. 

OcApp 
TOcApp* OcApp; 
Points to the ObjectComponents application associated with this frame window. 

See also TOcApp 

Stash Count 
int StashCount; 
Holds the number of menu bars that have been stored. This number indicates how 
many active in-place editing sessions you have open. 

See also StashContainerPopups, TOleFrame::DestroyStashedPopups 

StashedContainerPopups 
TMenu StashedContainerPopups; 
Holds the stored, shared pop-up menus. 

320 Objec!Windows Reference Guide 



TOleMDIFrame class 

See also StashContainerPopups, TOleFrame::StashCount 

Response table entries 

EV_WM_SIZE 

EV _WM_ACTIV ATEAPP 

EV _MESSAGE(WM_OCEVENT, EvOcEvent) 
EV_ OC_APPINSMENUS 

EV _OC_APPMENUS 

EV _OC_APPROCESSMSG 
EV _OC_APPFRAMERECT 

EV _OC_APPBORDERSPACEREQ 
EV _OC_APPBORDERSPACESET 

EV _OC_APPSTATUSTEXT 

EV _OC_APPRESTOREUI 

EV _OC_APPSHUTDOWN 

TOleMDIFrame class 

EvSize 

Ev ActivateApp 

EvOcEvent 

EvOcAppinsMenus 

EvOcAppMenus 

EvOcAppProcessMsg 

EvOcAppFrameRect 

EvOcAppBorderspaceReq 

EvOcAppBorderSpaceSet 

EvOcAppStatusText 

EvOcAppRestoreUI 

EvOcAppShutDown 

olemdifr.h 

Derived from TMDIFrame and TOleFrame, TOleMDIFrame provides OLE user-interface 
support for the main window of a Multiple Document Interface (MDI) application. 
TOleMDIFrame also talks directly to the ObjectComponents classes through the use of a 
pointer to the OcApp object. 

TOleMDIFrame inherits from TMDIFrame functionality that supports the use of MDI 
frame windows designed to serve as the main windows of an MDI-compliant 
application. From TOleFrame, TOleMDIFrame inherits decorated frame window 
functionality that supports the addition of decorations (such as toolbars and status lines) 
to the frame window. TOleMDIFrame also inherits the ability to 

• Create space that the server has requested in a container's frame window 

• Merge the container's menu into the server's menu 

• Process accelerators and other messages from the server's message queue 

• Support OLE 2 menu merging for pop-up menus 

TOleMDIFrame also inherits from TOleFrame the ability to talk directly to the 
ObjectComponents classes through the use of a pointer to_ the OcApp object. 

See Step 14 of the ObjectWindows tutorial for an example of a program that uses 
TOleMDIFrame to create an OLE-enabled decorated MDI frame window. 

See also 
TMDIFrame, TDecoratedMDIFrame, TOleFrame, TOleFrame::SetOcApp 

Ch apter 2 , 0 b j e ct W i n do w s Ii bra r y reference 321 



TOleMDIFrame class 

Public constructor and destructor 
Constructor 
TOleMDIFrame(const char far* title, TResldmenuResld, TMDIClient& clientWnd = *new TMDIClient, 

bool trackMenuSelection = false, TModule*module = O); 
Constructs a TOleMDIFrame object with the indicated title, menu resource ID, client 
window, and module instance. By default, because trackMenuSelection is false, menu 
hint text is not displayed. (These parameters coincide with those of TMDIFrame's 
constructor.) 

Destructor 
~ TOleMDIFrame(); 
Destroys the OLE MDI frame window object. 

See also TDecoratedMDIFrame 

Protected member functions 
DefWindowProc 
LRESULT DefWindowProc(uint message, WPARAM wParam, LPARAM IParam); 
Allows default processing for all messages except for a resizing message concerning the 
frame window, in which case, DefWindowProc returns nothing. 

EvActivateApp 
void EvActivateApp(bool active, HTASK hTask); 
Responds to a message indicating that the frame window of this application (hTask) is 
going to be either activated (active is true) or deactivated (active is false), and forwards 
this information to the TOcApp object. 

See also TOcApp 

EvOcApplnsMenus 
bool EvOcApplnsMenus(TOcMenuDescr far*); 
Inserts menus into a provided menu bar, or merges them with a child window and 
servers. To do this, EvOcApplnsMenus creates a temporary composite menu for the 
frame and MDI child windows, then copies the shared menu widths to the 
ObjectComponents structure. It saves the container popups so they can be destroyed 
later. 

322 ObjectWindows Reference Guide 



TOleView class 

Response table entries 

EV_ WM_ACTIV A1EAPP EvActivateApp 
EV _OC_APPINSMENUS EvOcApplnsMenus 

TOleView class oleview.h 

Derived from TWindowView and TView, TOleView supports the View half of the Doc/ 
View pair and creates a window with a view that can display an associated document. 
Documents use views to display themselves to a user. Regardless of whether a view 
belongs to a server or a container, TOleView sets up a corresponding TOcDocument 
object (an entire compound document). 

In the case of an OLE-enabled container application, view refers to the window where 
the container application draws the compound document, which may consist of one or 
more linked and embedded objects. To display these objects in different formats, a 
container can be associated with more than one view. Similarly, to display the data 
properly, each embedded object can also have its own view. Each container view creates 
a corresponding ObjectComponents TOc View object. 

If the view belongs to an OLE-enabled server application, TOleView creates a remote 
view on the server's document (a TOcRemView object). TOleView takes care of 
transmitting messages from the server to the container, specifically in the case of 
merging menus and redrawing embedded objects. TOle View supports merging the 
server's and the container's pop-up menu items to form a composite menu. Because it 
knows the dimensions of the server's view, TOleView is responsible for telling the 
container how to redraw the embedded object. 

Similarly to TView, TO le View supports the creation of views and provides several event 
handling functions that allow the view to query, commit, and close views. TOleView 
also manages the writing to storage of documents that belong to a container or a server. 

See also 
TOcDocument, TOcView, TOcRem View, TOleWindow, TView 

Public constructor and destructor 
Constructor 
TOleView(TDocument& doc, TWindow* parent= O); 
Constructs a TOleView object associated with the given document object (doc) and 
parent window (parent). 

Destructor 
~ TOleView(); 
Destroys the TOleView object and detaches the view from the associated document. 

Chapter 2, ObjectWindows library reference 323 



TOleView class 

Public member functions 
GetViewname 
cons! char far* GetViewName(); 
Overrides TView's virtual GetViewName function and returns the name of the class 
(TOleView). 

See also TView::GetViewName 

GetWindow 
TWindow* GetWindow(); 
Overrides TView's virtual GetWindow function and returns the TWindow instance 
associated with this view. 

See also TView::GetWindow 

SetDocTitle 
bool SetDocTitle(const char far* docname, int index); 
Overrides TView's and TWindow's virtual SetDocTitle function and stores the title of the 
document associated with this view. 

See also TView::SetdocTitle 

StaticName 
static cons! char far* StaticName(); 
Returns the constant string "Ole View" that is displayed in the user interface selection 
box. 

See also TListView::StaticName 

Protected member functions 
CanClose 
bool CanClose(); 
A view uses this function to verify whether or not it can shut down. If this is a server's 
vievy window , CanClose checks to see if any open-editing. is occurring on any of the 
embedded objects in the frame window. If so, CanClose closes this open-editing session 
by disconnecting the embedded object from its server. Then, hides the server's frame 
window and returns true when appropriate. If this is a container, CanClose queries all 
documents and views and returns true when all documents and views can be closed. 

I 

Unlike in-place editing, which takes place in the container's window, open-editing 
occurs in the server's frame window. 

CreateOcView 
TOcView* CreateOCView(TDocTemplate* tpl, bool isEmbedded, !Unknown* outer); 
Creates an ObjectComponents view associated with the embedded object. Associates 
the view with the document template specified in tpl. The isEmbedded parameter is true 
if the view is an embedded object. The outer parameter refers to the !Unknown interface 
with which the view will aggregate itself. 

324 0 b j e ct Windows Reference G u id e 



TOleView class 

EvOcViewAttachWindow 
bool EvOcViewAttachWindow(bool attach); 
Attaches this view to its ObjectWindows parent window so the embedded object can be 
either opened and edited or deactivated. To attach a view to an embedded object, set the 
attach parameter to true. To detatch the embedded object, set the attach parameter to 
false. 

EvOcViewClose 
bool EvOcViewClose(); 
Asks the server to close the view associated with this document. Tests to see if the 
document has been changed since it was last saved. Returns true if the document and its 
associated view are closed. 

See also TOleView::EvOcViewSavePart 

EvOcViewlnsMenus 
bool EvOcViewlnsMenus(TOcMenuDescr far& sharedMenu); 
Inserts the server's menu into the composite menu. Determines the number of groups 
and the number of pop-up menu items to insert within each group. The shared menu 
(sharedMenu) is the container's menu merged with the server's menu groups. 

See also TMenuDescr has more information about menu merging, TOcMenuDescr 
struct 

EvOcViewLoadPart 
bool EvOcViewLoadPart(TOcSaveLoad far& ocload); 
Asks the server to load itself from storage. Loads the document and its associated view. 

EvOcViewOpenDoc 
bool EvOcViewOpenDoc(const char far* path); 
Asks the container application to open an existing document so the document can 
receive embedded and linked objects. (Actually, TOleView calls on the TOleDocument 
object to read the document from storage, using the standard OLE IStorage and IStream 
interfaces). Assigns a unique string identifier to the document and returns true if 
successful. 

See also TOleView::EvOcViewClose 

EvOcViewPartlnvalid 
bool EvOcViewPartlnvalid(TOcChangelnfo far& changelnfo); 
Notifies the active view of any changes made to the embedded object's data (changelnfo). 
Also, notifies any other views associated with this document that the bounding 
rectangle for the document is invalid and needs to be repainted. EvOc ViewPartinvalid 
always returns true. 

EvOcViewSavePart 
bool EvOcViewSavePart(TOcSaveLoad far& ocSave); 
Asks the server to save the embedded object's data to storage. To save the object, 
EvOcViewSavePart calls upon the TOleDocument object, which creates storage as 
necessary for each embedded object. Saves the dimensions of the server's view, which 
the server uses to tell the container how to redraw the embedded object in the 
container's window. 

Ch apter 2 , 0 b j e ct Windows Ii bra r y reference 325 



TOleWindow class 

See also TOleView::EvOcViewClose, TOleView::EvOcViewOpenDoc, TOleDocument 

VnDocOpened 
bool VnDocOpened (int omode); 

Ensures that TOleView's data members such as DragPart, Pos, and Scale are initialized 
properly after a revert operation, which cancels any changes made to the document 
since the last time the document was saved to storage. 

VnlnvalidateRect 
bool VnlnvalidateRect(LPARAM p); 
Invalidates the view region specified by p. Use this function to invalidate the bounding 
rectangle surrounding an embedded object if the object has been changed, usually as a 
result of in-place editing. If successful, returns true. 

Response table entries 

EV _OC_ VIEWOPENDOC 

EV _OC_ VIEWINSMENUS 

EV _OC_ VIEWCLOSE 

EV _OC_ VIEWSA VEP ART 

EV _OC_ VIEWLOADPART 

EV _OC_ VIEWATTACHWINDOW 

TOleWindow class 

EvOc ViewOpenDoc 

EVOcViewlnsMenus 

EvOc ViewClose 

EvOc ViewSavePart 

EvOcViewLoadPart 

EvOc View Attach Window 

olewindo.h 

Derived from TWindow, TOleWindow provides support for embedding objects in a 
compound document and serves as the client of a frame window. A compound 
document, such as the one TOleWindow supports, can contain many different types of 
embedded objects, from spreadsheets to bitmaps. In addition to providing support for a 
variety of basic window operations, TOleWindow also implements several OLE-related 
operations, among them, 

• Responding to drag and drop events 

• In-place editing (the process whereby an embedded object can be edited without 
having to switch to its associated server application) 

• Activating an embedded object's server application 

• Creating views for the container application. 

• Transmitting a document's scaling information between a container's and a server's 
view windows. 

TOleWindow has the ability to determine whether it's actiing as a server or a container. If 
it is a container, TOleWindow has a pointer to aTOcView or if it is a server, TOleWindow 
establishes a pointer to a TOcRem View. From the server's point of view, every remote 
view has a corresponding TOleWindow. 

326 0 b j e ct W i n d o w s R e f e re n c e G u i d e 



TOleWindow class 

Through its many event-handling member functions, TOleWindow communicates with 
ObjectComponents to implement container and server support for embedded objects, 
update views, and respond to a variety of menu commands associated with the typical 
command identifiers (for example, CM_FILEMENU). It also supports OLE-specific 
verbs such as those activated fromthe Edit menu (for example, Edit and Open). These 
commands and verbs can originate from various sources such as a menu selection, a 
radio button, or even an internal program message. 

Conversely, ObjectComponents talks to ObjectWindows by means of the various 
EV _OC_Xxxx messages. Some of these messages, such as 
EV_ OC_ VIEWP ARTTNV AUD, implement container support while others, such as 
EV _OC_ VIEWCLOSE, implement server support. 

For any user-defined classes derived from TOleWindow, you need to choose which 
functions are appropriate. If you want to provide additional server support, you need to 
define only those functions that implement server messages; if you want to provide 
container support, you need to define only those functions that provide additional 
container support. 

For example, the data embedded in the container application (a compound document 
having one or more embedded objects) and the data embedded in the server application 
(a single OLE object with or without other embedded objects) can be written to storage 
and loaded from storage. If you're using TOleWindow without TOleView, you have to 
manipulate the storage by talking directly to the ObjectComponents class, 
TOcDocument. 

In addition to communicating with ObjectComponents classes, TOleWindow supports 
many transactions as a result of its interaction with other ObjectWindows classes. By 
virtue of its derivation from TWindow, naturally it inherits much of TWindow's 
functionality. 

See also 
TOcView, TWindowView, TWindow 

Public constructor and destructor 

Constructor 
Constructor TOleWindow(TWindow* parent = 0, TModule* module = O); 
Constructs a TOleWindow object associated with the specified parent window and 
module instance. 

Destructor 
~ TOleWindow(); 
Checks to see if there are any open views, and, if no open views exist, destroys the 
TOleWindow object. 

Public member functions 

Deactivate 
virtual bool Deactivate(); 

C h a p I e r 2 , 0 b j e c I W i n d o w s I i b r a r y r e I e r e n c e 327 



TOleWindow class 

If an embedded object is no longer the active embedded object, either because the user 
has ended an in-place editing session or because the user has clicked outside the 
embedded object, call Deactivate to unselect the object. Returns true if successful. 

GetOcApp 
TOcApp* GetOcApp(); 
Returns the ObjectComponents application associated with this window. Every 
ObjectComponents application that supports linking and embedding has an associated 
TOcApp object. 

See also TOcApp 

GetOcDoc 
TOcDocument* GetOcDoc(); 
Returns the ObjectComponents document associated with this window. This document 
can be either a container's or a server's document. If this is a TOcDocument created by 
the container, the document is an entire compound document, which may consist of one 
or more embedded objects. If this is a TOcDocument created by the server, the document 
is a single OLE object's data. 

See also TOcDocument 

GetOcRemView 
TOcRemView* GetOcRemView(); 
Returns the server's view associated with this window. In order to draw the OLE object 
in the container's window, the server creates a remote view. 

See also TOcRem View 

GetOcView 
TOcView* Ge!OcView(); 
Points to the ObjectComponents container view associated with this window. The 
container view holds the compound document (that is a document containing one or 
more embedded objects). 

See also TOcView 

HasActivePart 
bool HasActivePart(); 
Returns true if the container's view holds an in-place active embedded object. 

See also TOcView::GetActivePart, InvalidatePart 

PaintMetafile 
virtual void Pain!Metafile(TDC& de, bool erase, TRect& rect); 
Repaints the area of the server where the embedded object resides. The de parameter 
points to the device context. erase is true if the background of the embedded object is to 
be repainted. rect refers to the area to be repainted. 

See also InvalidatePart 

328 0 b j e c I Windows Reference G u id e 



Protected data members 
ContainerName 
string ContainerName; 

TOleWindow class 

Holds the name of the container. The server displays the container's name when an 
embedded object is being edited in the server's window (referred to as out-ofplace 
editing). 

Drag DC 
TDC* DragDC; 
Points to the DC used while an object is being dragged. 

See also DragPt 

Drag Hit 
TUIHandle::TWhere DragHit; 
Indicates the position in the embedded object where the user points and clicks the 
mouse. This can be any one of the TUIHandle::TWhere enumerated values, for example, 
TopLeft, TopCenter, TopRight, MidLeft, MidCenter, MidRight, BottomLeft, 
BottomCenter, BottomRight, or Outside when no dragging is taking place. 

See also: TUIHandle::TWhere enum 

Drag Part 
TOcPart* DragPart; 
Points to the embedded object (the part) being dragged. 

Drag Pt 
TPoint DragPt; 
Indicates the point (in logical units) where the mouse is over the dragged object. 

See also DragOC 

DragRect 
TRect DragRect; 
Holds the rectangle being dragged. 

See also DragOC 

DragStart 
TPoint DragStart; 
Holds the point where the dragging of the embedded object began. 

See also DragPt 

Embedded 
bool Embedded; 
Is true if this TOleWindow is an embedded window. As a result, a TocRem View is created 
because the data is being displayed in a server's window. 

OcApp 
TOcApp* OcApp; 
Holds the ObjectComponents application associated with this TOleWindow. 

Chapter 2, ObjectWindows library reference 329 



TOleWindow class 

See also TOcView::OcApp, TOcApp 

OcDoc 
TOcDocument* OcDoc; 
Holds the ObjectComponents document associated with this TOleWindow. 

See also TOcDocument, TOcView::OcDocument 

OcView 
TOcView* OcView; 
Holds the ObjectComponents view or remote view (the server's) associated with the· 
TOleWindow view. 

See also TOcView 

Pos 
TRect Pos; 
Holds the current area in the window where the object is embedded. Pas reflects the 
area where the object is moved if you move the object. 

Scale 
TOcScaleFactor Scale; 
Holds the current scaling factor. The server uses this information to determine how to 
scale the document. 

See also TOcScaleFactor, EvOcViewGetScale, SetScale 

TOleWindow::ShowObjects 
bool ShowObjects; 
Is true if the embedded object's frame (the grey or shaded bru,shes around the object) is 
displayed. The frame can be turned on or off depending on how you want the object to 
appear. 

Protected member functions 
CanClose 
bool CanClose(); 
Returns true if the window can be closed. Checks all the server's child windows' 
CanClose functions, which must return true before the window can be closed. 
Terminates any open editing transactions before closing the window; otherwise, passes 
control to TWindow::CanClose. 

CeEditConvert 
void CeEditConvert(TCommandEnabler&); 
Enables a command with an ID of CM_EDITCONVERT, which lets the user convert the 
selected object from one format to another. This is an OLE-specific pop-up menu option. 

CeEditCopy 
void CeEditCopy(TCommaridEnabler&); 
Enables a command with an ID of CM_EDITCOPY, which lets the user copy selected 
object to the Clipboard. 

330 ObjectWindows Reference Guide 



TOleWindow class 

CeEditCut 
void CeEditCut(TCommandEnabler&); 
Enables a command with an ID of CM_EDITCUT, which lets a user copy and delete the 
selected object from the view. 

CeEditDelete 
void CeEditDelete(TCommandEnabler&); 
Enables a command with an ID of CM_EDITDELETE, which lets the user delete the 
selected object from the view. 

CeEditlnsertObject 
void CeEditlnsertObject(TCommandEnabler&); 
Enables a command with an ID of CM_EDITCUT, which lets the user cut a section of 
text from the view. 

CeEditlinks 
void CeEditlinks(TCommandEnabler&); 
Enables a command with an ID of CM_EDITLINKS, which lets the user manually 
update the list of linked items in the current view. 

CeEditObject 
void CeEditObject(TCommandEnabler&); 
Enables a command with an ID of CM_EDITOBJECT, which lets the user edit the 
embedded object. 

CeEditPaste 
void CeEditPaste(TCommandEnabler&); 
Enables a command with an ID of CM_EDITP ASTE, which lets the user paste the 
embedded object from the Clipboard. 

CeEditPasteLink 
void CeEditPasteLink(TCommandEnabler&); 
Enables a Paste Link command with an ID of CM_EDITP ASTELINK, which lets the user 
link to the embedded object on the Clipboard. See the ocrxxxx Clipboard constants for a 
description of the available Clipboard formats. 

See also TOleWindow::CeEditPasteSpecial, ocrxxxx Clipboard constants 

CeEditPasteSpecial 
void CeEditPasteSpecial(TCommandEnabler&); 
Enables the PasteSpecial command, which lets the user select a Clipboard format to be 
pasted or paste linked. See the ocrxxxx Clipboard constants for a description of the 
available Clipboard formats. 

See also TOleWindow::CeEditPasteLink, ocrxxxx Clipboard Constants 

CeEditVerbs 
void CeEditVerbs(TCommandEnabler& ce); 
Enables the Edit I Verbs command, which lets the user select one of the OLE-specific 
verbs from the Edit menu: for example, Edit, Open, or Play. 

Ch apter 2, 0 bjectWi n dows Ii b rary reference 331 



TOleWindow class 

CeFileClose 
void CeFileClose(TCommandEnabler& ce); 
Enables the FileClose command, which lets the user eXit from the window view. 

CleanupWindow 
void CleanupWindow(); 
Performs normal window cleanup and informs the TOcView object that the window is 
closed. 

See also TWindow::CleanupWindow, TOcView 

CmEditConvert 
void CmEditConvert(); 
Responds to a command with an ID of CM_EDITCONVERT by converting an object 
from one type to another. 

CmEditCopy 
void CmEditCopy(); 
Responds to a command with an ID of CM_EDITCOPY by copying the selected text to 
the Clipboard. 

CmEditCut 
void CmEditCut(); 
Responds to a command with an ID of CM_:_EDITCUT by copying the selected text to 
the Clipboard before cutting the text. 

CmEditDelete 
void CmEditDelete(); 
Responds to a command with an ID of CM_EDITDELETE by deleting the selected text. 

CmEditlnsertObject 
void CmEditlnsertObject(); 
Responds to a command with an ID of CM_EDITINSERTOBJECT by inserting an object 
that a user selects from a list of object types. 

CmEditlinks 
void CmEditlinks(); 
Responds to a command with an ID of CM_EDITLINKS by updating the user-selected 
list of linked items in the current view. 

CmEditPaste 
void CmEditPaste(); 
Responds to a command with an ID of CM_EDITP ASTE by pasting an object from the 
Clipboard into the document. 

· CmEditPastelink 
void CmEditPastelink(); 
Responds to a command with an ID of CM_EDITP ASTELINK by creating a link 
between the current document and the object on the Clipboard. 

See also TOleWindow::CmEditPasteSpecial, ocrxxxx Clipboard constants 

332 ObjectWindows Reference Guide 



CmEditPasteSpecial 
void CmEditPasteSpecial(); 

TOleWindow class 

Responds to a command with an ID of CM_EDITPASTESPECIAL by letting the user 
select an object from a list of available formats for pasting from the Clipboard onto the 
document. 

See also TOleWindow::CmEditPasteLink, ocrxxxx Clipboard constants 

CmFileClose 
void CmFileClose(); 
Responds to a command with an ID of CM_ FILECLOSE by posting a WM_ CLOSE 
message to the parent window to close the application. 

CreateOcView 
virtual TOcView* CreateOcView(TDocTemplate* !pl, bool isEmbedded, !Unknown* outer); 
Creates an ObjectComponents view associated with the embedded object. Associates 
the view with the document template specified in tpl. If isEmbedded is true, a remote 
view is created (that is, a TOcRemView instead of a TOcView). The outer parameter refers 
to the !Unknown interface with which the view will aggregate itself. 

See also TOcView, TOcRemView 

CreateVerbPopup 
TPopupMenu* CreateVerbPopup(const TOcVerb& ocVerb); 
Creates and enables a pop-up menu option (ocVerb) on the Edit menu. The verb 
describes an action (for example, Edit, Open, Play) that is appropriate for the embedded 
object. 

See also EvDoVerb 

EvCommand 
LRESULT EvCommand(uint id, HWND hWndCll, uint nolifyCode); 
Overrides the usual EvCommand message to handle the OLE verbs from 
CM_EDITFIRSTVERB to CM_EDITLASTVERB. These commands, which are defined in 
oleview.rh, correspond to the OLE-specific Edit menu selections such as Edit, Open, and 
Play. All of the other commands are passed to TWindow::EvCommand for normal 
processing. 

See also CM_xxxx edit view constants, TOleWindow::EvCommandEnable, 
TWindow::EvCommand 

EvCommandEnable 
void EvCommandEnable(TCommandEnabler& commandEnabler); 
Overrides the usual EvCommandEnable message in order to enable the OLE verbs from 
CM_EDITFIRSTVERB to CM_EDITLASTVERB. These commands enable the OLE­
specific Edit menu selections, such as Edit, Open, and Play. All of the other commands 
are passed to TWindow::EvCommand for normal processing. 

See also TOleWindow::EvCommand, TWindow::EvCommand 

EvDoVerb 
void EvDoVerb(uint whichVerb); 

Chapter 2, ObjectWindows library reference 333 



TOleWindow class 

Executes an OLE-related menu option from the Edit menu (for example, Edit, Copy, or 
Play) that is associated with the selected object. 

See also Create VerbPopup 

EvLButtonDblClk 
void EvLButtonDblClk(uint modKeys, TPoint& point); 
Responds to a mouse button double-dick message. EvLButtonDblClk performs hit 
testing to see which embedded object, if any, is being clicked on, then in-place activates 
the embedded object. 

EvLButtonDown 
void EvLButtonDown(uint modkeys, TPoint& point); 
Responds to a left button down message by beginning a mouse drag transaction at the 
given point. Performs additional hit testing to see which embedded object, if any, is 
being clicked on. The modKeys parameter holds the values for a key combination such as 
a shift and double click of the mouse button. 

See also EvRButtonDown 

EvLButtonUp 
void EvLButtonUp(uinl modKeys, TPoint& point); 
Responds to a left button up message by ending a mouse drag action. point refers to the 
place where the mouse is located. modKeys holds the values for a combined key and 
mouse transaction. 

EvMDIActivate 
void EvMDIActivate(HWND hWndActivated, HWND hWndDeactivated); 
Responds to a message forwarded from the MDI child window (if one exists) and lets 
the TOcView class know that the view window child window frame has been activated 
or deactivated. 

The h WndActivated parameter contains a handle to the MDI child window being 
activated. Both the child window being activated being activated and the child window 
(h WndDeactivated) being deactivated receive this message. 

See also TOcView 

EvMouseMove 
void EvMouseMove(uint, TPoint& point); 
Responds to a mouse move message with the appropriate transaction. If the mouse is 
being dragged, the embedded object is moved. If a resizing operation occurs, then the 
embedded object is resized. This message is handled only when a mouse dragging or 
resizing action involving the embedded object occurs. 

EvOcEvent 
LRESULT EvOcEvent(WPARAM wParam, LPARAM IParam); 
Responds to a WM_OCEVENT message and subdispatches the message based on 
wParam. ObjectComponents sends WM_ OCEVENT messages when it needs to 
communicate with an OLE-generated event; for example, if a server wants to display 
toolbars. 

334 ObjectWindows Reference Guide 



TOleWindow class 

EvOcPartlnvalid 
bool EvOcPartlnvalid(TOcPart far&); 
Handles a WM_OCEVENT message concerning the embedded or linked object in the 
document and invalidates the part. 

If the TOleWindow object is unable to handle the message, EvOcPartlnvalid returns false. 

EvOcViewAttachWindow 
bool EvOcViewAttachWindow(bool attach); 
Attaches the view to its ObjectWindows parent window so that the user can perform 
open editing on the embedded object, or if the embedded object has been deactivated 
while in-place editing was occurring. 

If the TOleWindow object is unable to handle the message, EvOcViewAttachWindow 
returns false. 

EvOcViewBorderSpaceReq 
bool EvOcViewBorderSpaceReq(TRect far*); 
Requests that the server create space for a tool bar in the view of an embedded object. 

If the TOleWindow object is unable to handle the message, EvOcViewBorderSpaceReq 
returns false, the default value. 

See also EvOcViewBorderSpaceSet 

EvOcViewBorderSpaceSet 
bool EvOcViewBorderSpaceSet(TRect far*); 
Requests that the server's tool bar be placed in the container's view of an embedded 
object. 

If the TOleWindow object is unable to handle the message, EvOcViewBorderSpaceSet 
reurns false, the default value. 

See also EvOcViewBorderSpaceReq 

EvOcViewClipData 
HANDLE EvOcViewClipData(TOcFormat far&); 
Requests Clipboard data in the format specified. 

If the TOleWindow object is unable to handle the message, EvOcViewClipData returns 
false. 

EvOcViewClose 
bool EvOcViewClose(); 
Asks the server to close a currently open document and its associated view. 

If the TOleWindow object is unable to handle the message, EvOcViewClose returns false. 

EvOcViewDrag 
bool EvOcViewDrag(TOcDragDrop far&); 
Handles an OC_ VIEWDRAG message asking the container to provide visual feedback 
while the user is dragging the embedded object. 

If the TOleWindow object is unable to handle the message, EvOcViewDrag returns false. 

Chapter 2, Objec!Windows library reference 335 



TOleWindow class 

EvOcViewDrop 
bool EvOcViewDrop(TOcDragDrop far&); 
Requests a given object be dropped at a specified place on the container's window. 

If the TOleWindow object is unable to handle the message, EvOcViewDrop returns false. 

EvOcViewGetPalette 
bool EvOcViewGetPalette(LOGPALETIE far* far* palette); 
Requests the color palette to draw the object. 

If the TOleWindow object is unable to handle the message, EvOcViewGetPalette returns 
false. 

EvOcViewGetScale 
bool EvOcViewGetScale(TOcScaleFactor& scaleFactor); 
Responds to an OC_ VIEWGETSCALE message and gets the scaling for the server 
objectj, causing the embedded object to be displayed using the correct scaling value (for 
example, 120%). scaleFactor indicates the scaling factor, the ratio between the size of the 
embedded object and the size of the site where the object is to be displayed. 

If the TOleWindow object is unable to handle the message, EvOcViewGetScale returns 
false. 

See also Scale, TOcScaleFactor 

· EvOcViewGetSiteRect 
bool EvOcViewGetSiteRect(TRect far* rect); 
Gets the size of the rectangle (the site) where the embedded object is to be placed. reef 
refers to the size of the bounding rectangle that encloses the embedded object. 

See also EvOcViewSetSiteRect 

EvOcViewlnsMenus 
bool EvOcViewlnsMenus(TOcMenuDescr far&); 
Requests that the menus in a composite menu (a menu composed of both the server's 
and the container's menus). 

If the TOleWindow object is unable to handle the message, EvOcViewinsMenus returns 
false. 

EvOcViewLoadPart 
bool EvOcViewLoadPart(TOcSaveLoad far* ocLoad); 
Requests that an embedded object load itself. 

If the TOleWindow object is unable to handle the message, EvOcViewLoadPart returns 
false. 

EvOcViewOpenDoc 
bool EvOcViewOpenDoc(const char far*); 
Asks the container to open an existing document, which will be used for linking from 
the embedding site. 

If the TOleWindow object is unable to handle the message, EvOcViewOpenDoc returns 
false. 

336 ObjectWindows Reference Guide 



TOleWindow class 

EvOcViewPaint 
bool EvOcViewPaint(TOcViewPaint far&); 
Asks the server to paint an object at a given position on a specified device context. 

If the TOleWindow object is unable to handle the message, EvOcViewPaint returns false. 

EvOcViewPartlnvalid 
bool EvOcViewPartlnvalid(TOcChangelnfo far& changelnfo); 
Informs an active container that one of its embedded objects needs to be redrawn. 
Changes in the container's part should be reflected in any other, non-active views. 
Returns true after all views have been notified of the necessary changes. 

If the TOleWindow object is unable to handle the message, EvOcViewPartlnvalid returns 
false. 

EvOcViewPartSize 
bool EvOcViewPartSize(TRect far*); 
The server asks itself the size of its current rectangle and lets the container know about 
the size of the server's view in pixels. 

If the TOleWindow object is unable to handle the message, EvOcViewPartSize returns 
false. 

EvOcViewSavePart 
bool EvOcViewSavePart(TOcSaveLoad far& ocSave); 
Asks the server to write an embedded object's data (the part as represented by the ocSave 
parameter) into storage. 

If the TOleWindow object is unable to handle the message, EvOcViewSavePart returns 
false. 

EvOcViewScroll 
bool EvOcViewScroll(TOcScrollDir); 
Asks the container to scroll the view window and updates any internal state as needed. 
EvOc View Scroll is called when the server is resizing or a drop interaction occurs near the 
edge of the window. 

If the TOleWindow object is unable to handle the message, EvOcViewScroll returns false. 

EvOcViewSetScale 
bool EvOcViewSetScale(TOcScaleFactor& scaleFactor); 
Responds to an OC_ VIEWSETSCALE message and handles the scaling for server 
application, ensuring that the embedded object is displayed using the correct scaling 
values (for example, 120% ). The server uses this value in its paint procedure when the 
embedded object needs to be redrawn. scaleFactor indicates the scaling factor, the ratio 
between the size of the embedded object and the size of the site where the object is to be 
displayed. 

If the TOleWindow object is unable to handle the message, EvOcViewSetScale returns 
false. 

See also EvOcViewGetScale, TOcScaleFactor 

Chapter 2, ObjectWindows library reference 337 



TOleWindow class 

EvOcViewSetSiteRect 
bool EvOcViewSetSiteRect(TRect far* rect); 
Converts the rect to logical units. This area, referred to as the site, is measured in logical 
units that take into account any scaling factor. rect refers to the size of the bounding 
rectangle that encloses the embedded object. 

See also EvOcViewGetSiteRect 

EvOcViewSetTitle 
void EvOcViewSetTitle(const char far* title); 

Sets the window's caption to title. The new caption is the name of the in-place active 
server merged with the caption of the container's window. 

In the case of an MDI child window, the new caption is the in-place server's name 
merged with the caption of the MDI child window. When the child window is 
maximized, the merged caption is appended to the end of the main frame window's 
caption. 

EvOcViewShowTools 
bool EvOcViewShowTools(TOcToolBarlnfo far& tbi); 
Asks the server to provide its tool bars for display in the container's window. Returns 
true if tool bars are supplied. 

If the TOleWindow object is unable to handle the message, EvOcViewShowTools returns 
false. 

EvOcViewTitle 
const char far* EvOcViewTitle(); 
Asks the container for the caption in its frame window. Returns the frame window's 
caption. 

EvRButtonDown 
void EvRButtonDown(uint modKeys, TPoint& point); 
Responds to a right button down message. Performs additional hit testing to see which 
embedded object, if any, is being clicked and displays a local menu with appropriate 
options for the embedded object. 

point refers to the place where the mouse is located. modKeys holds the values for a 
combined key and transaction, such as a Shift+double-click of the mouse button. 

See also EvLButtonDown 

EvSetCursor 
bool EvSetCursor(HWND, uint hitTest, uint); 
Performs hit testing to tell where the cursor is located within the window and what 
object the cursor is moving over. If the cursor is within an embedded object, 
EvSetCursor changes the shape of the cursor. 

When the cursor is over an inactive part and not on a handle, EvSetCursor uses an arrow 
cursor. If the cursor is on one of the handles of the embedded part, EvSetCursor changes 
the cursor to a resizing cursor. 

338 ObjectWindows Reference Guide 



TOleWindow class 

EvSetFocus 
void EvSetFoeus(HWND hWndlostFoeus); 
Responds to a change in focus of the window. h WndLostFocus contains a handle to the 
window losing the focus. EvSetFocus checks to see if an in-place server exists and, if so, 
passes the focus to the in-place server. 

EvSize 
void EvSize(uint sizeType, TSize& size); 
Passes the event to TWindow::EvSize for normal processing and forwards the event to 
TOcView::EvResize to let a possible in-place server adjust its size. 

See also TOcView::EvSize 

GetlnsertPosition 
virtual void GetlnsertPosition(TRect& rect); 
Gets the position (rect) where the embedded object is inserted. You need to override this 
function if you want to override any default position. 

GetLogPerUnit 
virtual void GetlogPerUnit(TSize& logPerUnit); 
Gets the logical units (typically pixels) per inch for a document so that the document's 
embedded objects can be painted correctly on the screen DC. 

I nit 
void lnit(); 
Initializes the TOleWindow object with the appropriate window style and initializes the 
necessary data members (for example, sets the accelerator ID to IDA_OLEVIEW). 

lnvalidatePart 
virtual void lnvalidatePart(TOelnvalidate invalid); 
Invalidates the area where the embedded object exists. The server uses this function to 
tell OLE that the part (the embedded object), has changed. OLE then asks the server to 
redraw the part into a new metafile so that OLE can redraw the object for the container 
application even when the server application is not active. 

See also PaintMetafile, TOcView _ GetActivePart 

Paint 
void Paint(TDC& de, bool erase, TRect& rect); 
Repaints the window's contents and tells each embedded object to repaint itself. 

de points to the paint DC. erase indicates whether the background should be erased. rect 
is a reference to the bounding rectangle of the area that needs repainting. 

PaintParts 
virtual bool PaintParts(TDC& de, bool erase, TRect& rect, bool metafile); 
Repaints the embedded objects on the given DC. The erase parameter is true if the 
background of the embedded object is to be repainted. rect indicates the area that needs 
repainting. metafile indicates whether or not the DC represents a metafile. 

Select 
virtual bool Select(uint modKeys, TPoint& point); 

Chapter 2, ObjectWindows library reference 339 



TOleWindow class 

Selects the embedded object at the specified point (measured in logical units). Returns 
true if the object is captured by the mouse drag; otherwise, returns false. 

SelectEmbedded 
bool SelectEmbedded(); 
Selects the embedded object and returns true to indicate that the object has been 
selected. 

SetScale 
virtual void SetScale(uint16 percent); 
Sets the ratio of the embedded object's size to the size of the site. 

See also SetupDC 

The area inside the container where the embedded object will be drawn 

SetSelection 
void SetSelection(TOcPart* part); 
Selects the embedded object indicated in the part parameter. When the embedded object 
is selected, a selection box is drawn around the area. After an embedded object is 
selected, the user can perform operations on the embedded object: for example, moving, 
sizing, or copying the embedded object to the Clipboard. 

Setup DC 
virtual void SetupDC(TDC& de, bool scale= true); 
Determines the. viewport's origin and extent (the logical coordinates and the size of the 
DC). Sets up the device context (DC) before painting the embedded object. de refers to 
the DC and scale indicates that the scaling factor to use when painting the embedded 
object is a ratio between the site and the embedded object. 

See also TOcScaleFactor, SetScale 

SetupWindow 
void SetupWindow(); 
Establishes a connection between the TOcView object and the view's HWND so the view 
can send notification messsages to the window. 

Vnlnvalidate Rect 
bool VnlnvalidateRect(LPARAM p); 
When the embedded object is modified, VnlnvalidateRect sends a message to the View 
portion of the Doc/View pair. When TOleWindow receives this message, the view region 
is marked for erasing. VnlnvalidateRect always returns true. 

340 ObjectWindows Reference Guide 



Response table entries 

EV_ WM_LBUTIONDOWN 

EV _WM_RBUTIONDOWN 

EV_ WM_LBUTIONDBLCLK 

EV_ WM_MOUSEMOVE 

EV _WM_LBUTIONUP 

EV_WM_SIZE 

EV_WM_MDIACTIVATE 

EV_ WM_SETFOCUS 

EV _WM_SETCURSOR 

EV _COMMAND(CM_EDITDELETE, CmEditDelete) 

EV _COMMAND _ENABLE(CM_EDITDELETE, CeEditDelete) 

EV _COMMAND(CM_EDITCUT, CmEditCut) 

EV _COMMAND_ENABLE(CM_EDITCUT, CeEditCut) 

EV _COMMAND(CM_EDITCOPY, CmEditCopy) 

EV _COMMAND_ENABLE(CM_EDITCOPY, CeEditCopy) 

EV _COMMAND(CM_EDITPASTE, CmEditPaste) 

EV _COMMAND _ENABLE(CM_EDITP ASTE, CeEditPaste) 

EV _COMMAND(CM_EDITP ASTESPECIAL, CmEditPasteSpecial) 

EV _COMMAND _ENABLE(CM_EDITP ASTESPECIAL, CeEditPasteSpecial) 

EV _COMMAND(CM_EDITPASTELINK, CmEditPasteLink) 

EV _COMMAND _ENABLE(CM_EDITP ASTELINK, CeEditPasteLink) 

EV_ COMMAND(CM_EDITINSERTOBJECT, CmEditinsertObject) 

EV_ COMMAND _ENABLE(CM_EDITINSERTOBJECT, CeEditlnsertObject) 

EV _COMMAND_ENABLE(CM_EDITLINKS, CeEditLinks) 

EV_ COMMAND(CM_EDITLINKS, CmEditLinks) 

EV_ COMMAND _ENABLE(CM_EDITOBJECT, CeEditObject) 

EV _COMMAND _ENABLE(CM_EDITCONVERT, CeEditConvert) 

EV _COMMAND(CM_EDITCONVERT, CmEditConvert) 

EV _COMMAND(CM_EXIT, CmFileClose) 

EV _COMMAND_ENABLE(CM_EXIT, CeFileClose) 

EV _MESSAGE(WM_OCEVENT, EvOcEvent) 

EV _OWLNOTIFY(vnlnvalidate) 

EV _OC_ VIEWP ARTINV ALID 

EV _OC_ VIEWSETTITLE 

EV _oc_ VIEWTITLE 

EV _OC_ VIEWBORDERSPACEREQ 

EV _OC_ VIEWBORDERSPACESET 

EV _OC_ VIEWDROP 

EV _OC_ VIEWDRAG 

EV _OC_ VIEWSCROLL 

EV _OC_ VIEWGETSCALE 

TOleWindow class 

EvLButtonDown 

EvRButtonDown 

EvLButtonDb!Clk 

EvMouseMove 

EvLButtonUp 

EvSize 

EvMDIActivate 

EvSetFocus 

EvSetCursor 

CmEditDelete 

CeEditDelete 

CmEditCut 

CeEditCut 

CmEditCopy 

CeEditCopy 

CmEditPaste 

CeEditPaste 

CmEditPasteSpecial 

CeEditPasteSpecial 

CmEditPasteLink 

CeEditPasteLink 

CmEditinsertObject 

CeEditinsertObject 

CeEditLinks 

CmEditLinks 

CeEditObject 

CeEditConvert 

CmEditConvert 

CrnFileC!ose 

CeFileClose 

EvOcEvent 

VnlnvalidateRect 

EvOcViewPartlnvalid 

EvOcViewSetTitle 

EvOcViewTitle 

EvOcViewBorderSpaceReq 

EvOcViewBorderSpaceSet 

EvOcViewDrop 

EvOcViewDrag 

EvOcViewScroll 

EvOcViewGetScale 

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 341 



TOpenSaveDialog class 

EV _OC_ VIEWGETSITERECT 

EV _OC_ VIEWSETSITERECT 
EV _OC_ VIEWP AINT 

EV_OC_VIEWSAVEPART 

EV _OC_ VIEWLOADPART 

EV _OC_ VIEWINSMENUS 

EV _OC_ VIEWSHOWTOOLS, 

EV _OC_ VIEWGETP ALETTE 
EV _OC_ VIEWCLIPDATA, 

EV _OC_ VIEWCLOSE 

EV _OC_ VIEWP ARTSIZE 

EV _OC_ VIEWOPENDOC 
EV _OC_ VIEWATTACHWINDOW 

EV _OC_ VIEWSETSCALE 

TOpenSaveDialog class 

EvOcViewGetSiteRect 

EvOcViewSetSiteRect 

EvOcViewPaint 

EvOcViewSavePart 

EvOcViewLoadPart 

EvOcViewlnsMenus 

EvOcViewshowTools 

EvOcViewGetPalette 

EvOcViewclipData 

EvOcViewClose 

EvOcViewPartSize 

EvOcViewOpenDoc 
EvOcViewAttachWindow 

EvOcViewSetScale 

opensave.h 

TOpenSaveDialog is the base class for modal dialogs that let you open and save a file 
under a specified name. TOpenSaveDialog constructs a TData structure and passes it the 
TOpenSaveDialog constructor. Then the dialog is executed (modal) or created (modeless). 
Upon return, the necessary fields are updated; W.cluding an error field that contains 0, or 
a common dialog extended error. · 

Public constructor 
Constructor 
TOpenSaveDialog(TWindow* parent, TData& data, TResld templateld = 0, const char far* title = 0, 

TModule* module = O); 
Constructs an open save dialog box object with the supplied parent window, data, 
resource ID, title, and current module object. 

See also TData struct 

Public member functions 
GetFileTitle 
static int GetFileTitle(const char far* fileName, char far* file Title, int fileTitlelen) 
Stores the name of the file to be saved or opened. 

GetFileTitlelen 
static int GetFileTitlelen(const char far* fileName); 
Stores the length of the file name to be saved or opened. 

342 ObjectWindows Reference Guide 



TOpenSaveDialog class 

Protected data members 
Data 
TData& Data; 
Stores the file name, its length, extension, filter, initial directory, default file name, 
extension, and any error messages. 

ofn 
OPENFILENAME ofn; 
Contains the attributes of the file name such as length, extension, and directory. ofn is 
initialized using the fields in the TOpenSaveDialog::TData class. This member is not 
available under Presentation Manager. 

See also TData struct 

ShareViMsgld 
static uint ShareViMsgld; 
Contains the message ID of the registered Share Violation message. This member is not 
available under Presentation Manager. 

See also TData struct, Share Violation 

Protected constructor 
Constructor 
TOpenSaveDialog(TWindow* parent, TData& data, TModule* module); 
Constructs a TOpenSaveDialog box object with the supplied parent, data, and current 
module object. 

See also TData struct 

Protected member functions 
CmlbSelChanged 
void CmlbSelChanged(); 
Indicates that the selection state of the file name list box in the GetOpenFileName or 
GetSaveFileName dialog boxes has changed. CmLbSelChanged is a default handler for 
command messages sent by lstl or lst2 (the file and directory list boxes, respectively). 

Cm Ok 
void CmOk(); 
Responds to a click on the dialog box's OK button (with the identifier IDOK). Calls 
Close Window (passing IDOK). 

See also TDialog::CloseWindow 

Dialog Function 
bool DialogFunction(uint message, WPARAM, LPARAM); 
Returns true if a message is handled, returns ShareViMsgid if a sharing violation occurs, 
otherwise returns false. 

Chapter 2, ObjectWindows library reference 343 



TOpenSaveDialog::TData struct 

DoExecute 
int DoExecute(); 
Creates and executes a modal dialog box. 

lnit 
void lnit(TResld templateld); 
Initializes a TOpenSaveDialog object with the current resource ID. 

Share Violation 
virtual int ShareViolalion(); 
If a sharing violation occurs when a file is opened or saved, Share Violation is called to 
obtain a response. The default return value is OFN_SHAREWARN. Other sharing 
violation responses are listed in the following table. This member is not available under 
Presentation Manager. 

OFN_SHAREFALLTHROUGH Specifies that the file name can be used and that the dialog box should 
return it to the application. 

OFN_ OFN_SHARENOW ARN Instructs the dialog box to perform no further action with the file name 
and not to warn the user of the situation. 

OFN_SHAREWARN This is the default response that is defined as 0. Instructs the dialog box 
to display a standard warning message. 

See also TData struct, ShareViMsgld 

Response table entries 

The TOpenSaveDialog response table has no entries. 

TOpenSaveDialog::TData struct opensave.h 

TOpenSaveDialog structure contains information about the user's file open or save 
selection. Specifically, this structure stores a user-specified file name filter, file extension, 
file name, the initial directory to use when displaying file names, any error codes, and 
various file attributes that determine, for example, if the file is a read-only file. The 
classes TFileOpenDialog and TFileSaveDialog use the information stored in this structure 
when a file is opened or saved. 

Public constructors and destructor 

Constructor 
TData(uint32 flags=O, cons! char* filter=O, char* customFilter=O, char* initialDir=O, char* defExt=O); 
Constructs a TOpenSaveDialog::TData structure. 

Destructor 
NTData(); 

344 Objec!Windows Reference Guide 



TOpenSaveDialog::TData struct 

Destructs a TOpenSaveDialog::TData structure. 

See also TEditFile::FileData 

Data members 

Custom Filter 
char* CustomFilter; 
CustomFilter stores the user-specified file filter; for example, *.CPP. 

Def Ext 
char* DefExt; 
DefExt stores the default extension. 

Error 
uint32 Error; 
Error contains one or more of the following error codes: 

CDERR_DIALOGFAILURE 

CDERR_LOCKRESOURCEFAILURE 

CDERR_LOADRESFAILURE 

CDERR_LOADSTRFAILURE 

failed to create a dialog box. 

Failed to lock a specified resource. 

Failed to load a specified resource. 

Failed to load a specified string. 

File Name 
char* FileName; 
Holds the name of the file to be saved or opened. 

Filter 
char* Filter; 
Filter holds the filter to use initially when displaying file names. 

Filterlndex 
int Filterlndex; 
Filterindex indicates which filter to use initially when displaying file names. 

Flags 
uint32 Flags; 
Flag contains one or more of the following constants: 

OFN_HIDEREAOONLY 

OFN_FILEMUSTEXIST 

OFN_PATHMUSTEXIST 

OFN_NOVALIDATE 

Hides the read-only check box. 

Lets the user enter only names of existing files in the File Name entry 
field. If an invalid file name is entered, a warning message is displayed. 

Lets the user enter only valid path names. If an invalid path name is 
entered, a warning message is displayed. 

Performs no check of the file name and requires the owner of a derived 
class to perform validation. 

Chapter 2, ObjectWindows library reference 345 



TOutStream class 

OFN_NOCHANGEDIR 

OFN_ALLOWMULTISELECT 

OFN_CREATEPROMPT 

OFN_EXTENSIONDIFFERENT 

OFN_NOREAOONLYRETURN 

OFN_NOTESTFILECREATE 

OFN_OVERWRITEPROMPT 

OFN_SHAREAWARE 

OFN_SHAREFALLTHROUGH 

OFN_SHAREWARN 

OFN_SHOWHELP 

Initial Dir 
char* lnitialDir; 

Sets the current directory back to what it was when the dialog was 
initiated. 

Allows multiple selections in the File Name list box. 

Asks if the user wants to create a file that does not currently exist. 

Idicates the user entered a file name different from the specified in 
DefExt. This message is returned to the caller. 

The returned file does not have the Read Only attribute set and is not in 
a write-protected directory. This message is returned to the caller. 

The file is created after the dialog box is closed. If the application sets 
this flag, there is no check against write protection, a full disk, an open 
drive door, or network protection. For certain network environments, 
this flag should be set. 

The Save As dialog box displays a message asking the user if it's OK to 
overwrite an existing file. 

If this flag is set and a call to open a file fails because of a sharing 
violation, the error is ignored and the dialog box returns the given file 
name. If this flag is not set, the virtual function Share Violation is called, 
which returns OFN_SHAREWARN (by default) or one of the 
following values: 

File name is returned from the dialog box. OFN_SHARENOWARN 
No further action is taken. 

User receives the standard warning message for this type of error. 

Shows the Help button in the dialog box. 

InitialDir holds the directory to use initially when displaying file names. 

Public member functions 
SetFilter 
void SetFilter(const char*filter = O); 
Makes a copy of the filter list used to display the file names. 

TOutStream class docview.h 

Derived from TStream and ostream, TOutStream is a base class used to create output 
storage streams for a document. 

Public constructor 
Constructor 
TOutStream(TDocument& doc, canst char far* name, int mode); 
Constructs a TOutStream object. doc refers to the document object, name is the user­
defined name of the stream, and mode is the mode of opening the stream. 

See also TinStream, of XXXX document open enum, shxxx document sharing enum 

346 ObjectWindows Reference Guide 



TPaintDC class 

TPaintDC class dc.h 

A DC class derived from TWindowDC that wraps begin and end paint calls for use in a 
WM _PAINT response function. 

Public constructor and destructor 

Constructor 
TPaintDC(HWND wnd); 
Creates a TPaintDC object with the given owned window. The data member Wnd is set 
townd. 

See also TWindowDC::Wnd, TDC::TDC 

Destructor 
N TPaintDC(); 
Destroys this object. 

Public data member 
Ps 
PAINTSTRUCT Ps; 
The paint structure associated with this TPaintDC object. 

See also P AINTSTRUCT struct 

Protected data member 

Wnd 
HWND Wnd 
The associated window handle. 

TPalette class gdiobjec.h 

TPalette is the GDI Palette class derived from TGdiObect. The TPalette constructors can 
create palettes from explicit information or indirectly from various color table types that 
are used by DIBs. 

Public constructors 

Constructors 
Form 1 TPalette(HPALETIE handle, TAutoDelete autoDelete = NoAutoDelete); 

Creates a TPalette object and sets the Handle data member to the given borrowed handle. 
The ShouldDelete data member defaults to false, ensuring that the borrowed handle will 
not be deleted when the C++ object is destroyed. 

C h a p t e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e I e r e n c e 347 



TPalette class 

Form 2 TPalette(const TClipboard&); 
Creates a TPalette object with values taken from the given clipboard. 

Form 3 TPalette(const TPalette& palette); 
This public copy constructor creates a complete copy of the given palette object as in 

TPalette myPalette = yourPalette; 

Form 4 TPalette(const LOGPALETTE far* logPalette); 
Creates a TPalette object from the given logPalette array. 

Form 5 TPalette(const PALETIEENTRY far* entries, int count); 
Creates a TPalette object with count entries from the given entries arrray. 

Form 6 TPalette(const BITMAPINFO far* info, uint flags= O); 
Creates a TPalette object from the color table following the given BITMAPINFO 
structure. This constructor works only for 2-, 16-, and 256-color bitmaps. A 0 handle is 
returned for other bitmaps including 24-bit DIBs. 

Form 7 TPalette(const BITMAPCOREINFO far* core, uint flags= O); 
Presentation Manager (PM) l.x DIBs only. Creates a TPalette object from the color table 
following the given BITMAPCOREINFO structure. This constructor works only for 2-, 
16-, and 256-color bitmaps. A 0 handle is returned for other bitmaps including 24-bit 
DIBs. Note that every color in a PM l.x table must be present because there is no ClrUsed 
field in the DIB header. 

Form 8 TPalette(const TDib& dib, uint flags= O); 
Creates a TPalette object from the given DIB object. The flags argument represents the 
values of the data structure used to create the palette. 

Form 9 TPalette(); 
(Presentation Manager only) Creates a TPalette object that uses the default system palette . 

See also TClipboard::GetClipboardData, TGdiObject::Handle, TGdiObject::ShouldDelete, 
TPalette::GetPaletteEntries, BITMAPCOREINFO struct, BITMAPINFO struct, 
LOGP ALETTE struct, P ALETTEENTRY struct 

Public member functions 
Animate Palette 
void AnimatePalette(uint start, uint count, const PALETTEENTRY far* entries); 
Replaces entries in this logical palette from the entries array of P ALETTEENTRY 
structures. start specifies the first entry to be animated, and count gives the number of 
entries to be animated. The new entries are mapped into the system palette 
immediately. 

See also P ALETTEENTRY struct 

GetNearestPalettelndex 
. uint GetNearestPalettelndex(TColor color) const; 

Returns the index of the color entry that represents the best color in this palette to the 
given color. 

See also TColor 

348 Objec!Windows Reference Guide 



TPalette class 

GetNumEntries 
uint GetNumEntries() const; 
Returns the number of entries in this palette or 0 if the call fails. 

See also TGdiObject::GetObject 

GetObject 
bool Get0bject(uint16 far& numEntries) const; 
Finds the number of entries in this logical palette and sets the value in the numEntries 
argument. To find the entire LOGP ALETTE structure, use GetPaletteEntries. Returns true 
if the call is successful; otherwise returns false. 

See also TGdiObject::GetObject, TPalette::GetPaletteEntries, LOGPALETTE struct 

GetPaletteEntries 
uint GetPaletteEntries(uint16 start, uint16 count, PALETTEENTRY far* entries) const; 
Retrieves a range of entries in this logical palette, and places them in the entries array. 
start specifies the first entry to be retrieved, and count gives the number of entries to be 
retrieved. Returns the number of entries actually retrieved, or 0 if the call fails. 

See also P ALETTEENTRY struct 

GetPaletteEntry 
uint GetPaletteEntry(uint16 index, PALETTEENTRY far& entry) const; 
Retrieves the entry in this logical palette at index, and places it in the entries array. 
Returns the number of entries actually retrieved: 1 if successful or 0 if the call fails. 

See also TPalette::SetPaletteEntry, P ALETTEENTRY struct 

operator« 
TClipboard& operator « (TClipboard& clipboard, TPalette& palette); 
Copies the given palette to the given clipboard argument. Returns a reference to the 
resulting clipboard, which allows normal chaining of<<. 

See also TClipboard 

operator HPALETTE() 
operator HPALETTE() const; 
Typecasting operator. Converts this palette's Handle to type HPALETTE, which is the 
data type representing the handle to a logical palette. 

Resize Palette 
bool ResizePalette(uint numEntries); 
Changes the size of this logical palette to the number given by numEntries. Returns true 
if the call is successful; otherwise returns false. 

See also TPalette::AnimatePalette 

SetPaletteEntries 
uint SetPaletteEntries(uint16 start, uint16 count, const PALETTEENTRY far* entries); 
Sets the RGB color values in this palette from the entries array of P ALETTEENTRY 
structures. start specifies the first entry to be animated, and count gives the number of 
entries to be animated. Returns the number of entries actually set, or 0 if the call fails. 

C h a p I e r 2 , 0 b j e ct W i n d ow s I i b r a r y r e I e r e n c e 349 



TPaletteEntry class 

See also P ALETTEENTRY struct 

SetPaletteEntry 
uint SetPaletteEntry(uint16 index, const PALETTEENTRY far& entry); 
Sets the RGB color value at index in this palette from the entry argument. start specifies 
the first entry to be animated, and count gives the number of entries to be animated. 
Returns 1 (the number of entries actually set if successful) or 0 if the call fails. 

See also P ALETTEENTRY struct 

ToClipboard 
void ToClipboard(TClipboard& clipboard); 
Moves this palette to the target clipboard argument. If a copy is to be put on the 
Clipboard, use TPalette(myPalette).ToClipboard; to make a copy first. The handle in the 
temporary copy of the object will be moved to the clipboard. ToClipboard sets 
ShouldDelete to false so that the object on the clipboard is not deleted. The handle will 
still be available for examination. 

See also TClipBoard::SetClipBoardData 

UnrealizeObject 
bool UnrealizeObject(); 
Directs the GDI to completely remap the logical palette to the system palette on the next 
RealizePalette(HDC) or TDC::RealizePalette call. Returns true if the call is successful; 
otherwise false. 

See also TDC::RealizePalette 

Protected member functions 
Create 
void Create(const BITMAPINFO far* info, uint flags); 
void Create(const BITMAPCOREINFO far* core, uint flags); 

Sets values in this palette from the given bitmap structure. These functions are usually 
called by the constructor rather than directly. 

See also TBITMAPCOREINFO struct, BITMAPINFO struct 

TPaletteEntry class color.h 

TPaletteEntry is a support class derived from the structure tagPALETTEENTRY. The 
latter is defined as follows: 

typedef struct tagPALETTEENTRY ( 
uint8 peRed; 
uint8 peGreen; 
uint8 peBlue; 
uint8 peFlags; 

} PALETTEENTRY; 

350 ObjectWindows Reference Guide 



TPen class 

where peRed, peGreen, and peBlue specify the red, green, and blue intensity-values for a 
palette entry. 

The peFlags member can be set to NULL or one of the following values: 

Value·· 

PC_EXPLICIT 

PC_NOCOLLAPSE 

PC_RESERVED 

Meajting 

Specifies that the low-order word of the logical palette entry designates a 
hardware palette index. This flag allows the application to show the contents of 
the display device palette. 

Specifies that the color be placed in an unused entry in the system palette instead 
of being matched to an existing color in the system palette. If there are no unused 
entries in the system palette, the color is matched normally. Once this color is in 
the system palette, colors in other logical palettes can be matched to this color. 

Specifies that the logical palette entry be used for palette animation; this prevents 
other windows from matching colors to tj:tls palette entry since the color 
frequently changes. If an unused system-palette entry is available, this color is 
placed in that entry. Otherwise, the color is available for animation. 

TPaletteEntry is used in conjunction with the classes TPalette and TColor to simplify 
logical color-palette operations. Constructors are provided to create TPaletteEntry 
objects from explicit COLORREF and RGB values, or from TColor objects. 

Public constructors 
Constructors 

Form 1 TPaletteEntry(int r, int g, int b, int f = O); 
Creates a palette entry object with peRed, peGreen, peBlue, and peFlags set tor, g, b, and f, 
respectively. 

Form 2 TPaletteEntry(TColor c); 
Creates a palette entry object with peRed, peGreen, peBlue, and peFlags set to r, g, b, and f, 
respectively. 

See also tagPALETTEENTRY struct, TPaletteEntry(TColorc), TColor::Red, 
TColor::Green, TColor::Blue 

TPen class gdiobjec.h 

TPen is derived from TGdiObject. It encapsulates the GDI pen tool. Pens can be 
constructed from explicit information or indirectly. TPen relies on the base class's 
destructor, ~ TGdiObject. 

Public constructors 

Constructors 
Form 1 TPen(HPEN handle, TAutoDelete autoDelete = NoAutoDelete); 

Creates a TPen object and sets the Handle data member to the given borrowed handle. 
The ShouldDelete data member defaults to false, ensuring that the borrowed handle will 
not be deleted when the C++ object is destroyed. 

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 351 



TPen class 

Form 2 TPen(TColor color, int width=1, int style=PS_SOLID); 
Creates a TPen object with the given values. The width argument is in device units, but if 
set to 0, a 1-pixel width is assumed. Sets Handle with the given default values. If color is 
black or white, width is one, style is solid, a stock pen handle is returned. The values for 
style are listed in the following table. 

PS_SOLID 

PS_DASH 

PS_OOT 
PS_DASHOOT 

PS_DASHOOTOOT 

PS_NULL 

PS_lNSIDEFRAME 

Creates a solid pen. 

Creates a dashed pen. Valid only when the pen width is one or less in device units. 

Creates a dotted pen. Valid only when the pen width is one or less in device units. 

Creates a pen with alternating dashes dots. Valid only when the pen width is one or 
less in device units. 

Creates a pen with alternating dashes double-dots. Valid only when the pen width 
is one or less in device units. 

Creates a null pen. 

Creates a solid pen. When this pen is used in any GDI drawing function that takes a 
bounding rectangle, the dimensions of the figure will be shrunk so that it fits 
entirely in the bounding rectangle, taking into account the width of the pen. 

Form 3 TPen(const LOGPEN far* logPen); 
Creates a TPen object from the given logPen values. 

Form 4 TPen(const Tpen& pen); 
The TPen copy constructor. 

Form 5 TPen(uint32 penStyle, uint32 width, cons! TBrush& brush, uint32 styleCount, uint32* style); 
(32-bit) Creates a TPen object with the given values. 

Form 6 TPen(uint32 penStyle, uint32 width, cons! LOGBRUSH& logBrush, uint32 styleCount, uint32* style); 
(32-bit) Creates a TPen object with the given values. 

See also TColor, TGdiObject::Handle, TGdiObject::ShouldDelete, LOGBRUSH struct, 
LOGPEN struct 

Public member functions 
GetObject 
bool GetObject(LOGPEN far& logPen) cons!; 
Retrieves information about this pen object and places it in the given LOG PEN structure. 
Returns true if the call is successful, otherwise false. 

See also TGdiObject::GetObject, LOGPEN struct 

operator HPEN() 
operator HPEN() cons!; 
Typecasting operator. Converts this pen's Handle to type HPEN (the data type 
representing the handle to a logical pen). 

352 0 b j e c I W i n d ow s R e f e re n c e G u i d e 



TPicResult enum 

TPicResult enum validate.h 

enum TPicResult {prComplete, prlncomplete, prEmpty, prError, prSyntax, prAmbiguous, prlncompNoFill}; 
TPicResult is the result type returned by the Picture member function of 
TPXPictureValidator. The result type indicates whether the data entered into the edit 
control matches a specified format. For example, prlncomplete indicates that the data 
entered is missing some information that was specified in the format picture of the data. 

See also 
TPXPicture Validator::Picture 

TPlacement enum gadgetwi.h 

enum TPlacement {Before, After}; 
Enumerates the placement of a gadget. The new gadget is inserted either before or after 
another gadget. 

You can control the placement of the new gadget by specifying a sibling gadget that the 
new gadget is inserted before or after. If the sibling argument in TGadgetWindow::Insert 
is 0 then the new gadget is inserted at the beginning or the end of the existing gadgets. 
By default, the new gadget is inserted at the end of the existing gadgets. 

See also TGadgetWindow::Insert 

TPopupMenu class menu.h 

TPopupMenu creates an empty pop-up menu to add to an existing window or pop-up 
menu. 

Public constructors 
Constructors 

Form 1 TPopupMenu(TAutoDelete autoDelete = AutoDelete); 
Constructs an empty pop-up menu. 

Form 2 TPopupMenu(HMENU handle, TAutoDelete autoDelete = NoAutoDelete); 
Alias constructor for a pop-up menu. 

Public member functions 
TrackPopupMenu 

Form 1 bool TrackPopupMenu(uint flags, int x, int y, int rsvd, HWND wnd, TRect* rect = O); 
Allows the application to create a pop-up menu at the specified location in the specified 
window. flags specifies a screen position and can be one of the TPM_xxxx 
values(TPM_CENTERALIGN, TPM_LEFTALIGN, TPM_RIGHTALIGN, 
TPM_LEFTBUITON, or TPM_RIGHTBUITON). wnd is the handle to the window that 

Chapter 2, ObjectWindows library reference 353 



TPreviewPage class 

receives messages about the menu. x specifies the horizontal position in screen 
coordinates of the left side of the menu. y species the vertical position in screen 
coordinates of the top of the menu (for example, 0,0 specifies that a menu's left comer is 
in the top left comer of the screen). rect defines the area that the user can click without 
dismissing the menu. 

Form 2 bool TrackPopupMenu(uint flags, TPoint& point, int rsvd, HWND wnd, TRect* reel= O); 
This function is the same as the previous TrackPopupMenu except that the x and y 
positions are specified in point. 

See also TPM_xxxx (Windows API) 

TPreviewPage class preview.h 

TPreviewPage displays a page of a document in a print preview window. To obtain the 
information needed to display the page, TPreviewPage interacts with TPrintPreviewDC 
and TPrintout. Specifically, it creates a TPrintPreviewDC from the window DC provided 
in Paint and passes that TPrintPreviewDC object to TPrintout's SetPrintParams member 
function. The sample program PRINT.CPP displays the following sample print preview 
window: 

Document window 

I est 
e 1: This text starts a DC origin"" 

,i.Line 5: Line 4 might 

Printer Test 

d.r:iv 

Select Print Preview to display 
the Print Preview window 

ne 4: This text should be on the b ttom of the a e.• 

Public constructor 
Constructor 

d 

TPreviewPage(TWindow* parent, TPrintout& printout, TPrintDC& prndc, TSize& printExtent, int pagenum = 1); 
Constructs a TPreviewPage object where parent is the parent window, printout is a 
reference to the corresponding TPrintout object, prndc is a reference to the 

354 Objec!Windows Reference Guide 



TPreviewPage class 

TPrintPreviewDC object, printExtent is the extent (width and height) in logical units of 
the printed page, and pagenum is the number of the preview page. TPreviewPage has the 
attributes of a visible child window with a thin border. Sets the background color of the 
preview page window to white. 

Public member functions 
Paint 
void Paint(TDC& de, bool, TRect& clip); 
Displays the page in the preview window. To determine the preview page's attributes 
(line width, and so on), Paint calls several of TPrintout's member functions. Then, to 
adjust the printer object for previewing, Paint determines if the page fits in the preview 
window or if clipping is necessary. Finally, Paint passes clipping and banding 
information to TPrintout's PrintPage function, which is called to display the page in the 
preview window. 

See also TPrintout::BeginPrinting, TPrintout::EndPrinting, TPrintout::PrintPage 

SetPageNumber 
void SetPageNumber(int newNum); 
Sets newNum to the number of the page currently displayed in the preview window. 

Protected data members 
PageNum 
void SetPageNumber(int newNum); 
Sets newNum to the number of the page currently displayed in the preview window. 

PrintDC 
TPrintDC& PrintDC; 
PrintDC& is a handle to the device context to use for printing. 

PrintExtent 
TSize PrintExtent; 
Contains the extent (width and height) in logical units of the page. 

Printout 
TPrintout& Printout; 
Holds a reference to the TPrintout object. 

Protected member functions 
EvSize 
void EvSize(uint sizeType, TSize& size); 
Invalidates the entire window when the size of the page displayed in the preview 
window changes. 

Chapter 2, ObjectWindows library reference 355 



TPrintDC class 

Response table entries 

EV_WM_SIZE EvSize 

TPrintDC class 
Derived from TDC, TPrintDC provides access to a printer. 

Public constructors 
Constructors 

Form 1 TPrintDC(HDC handle, TAutoDelete autoDelete = NoAutoDelete); 
Creates a TPrint object for the DC given by handle. 

dc.h 

Form 2 TPrintDC(const char far* driver, const char far* device, const char far* output, const DEVMODE far* initData); 
Creates a TPrint object given print driver, device, output, and data from the DEVMODE 
structure. 

See also TDC, DEVMODE struct 

Public member functions 
AbortDoc 
int AbortDoc(); 
Aborts the current print job on this printer and erases everything drawn since the last 
call to StartDoc. AbortDoc calls the user-defined function set with TPrintDC::SetAbortProc 
to abort a print job because of error or user intervention. TPrintDC::EndDoc should be 
used to terminate a successfully completed print job. 

If successful, AbortDoc returns a positive or zero value; otherwise a negative value is 
returned. 

See also TPrintDC::EndDoc, TPrintDC::SetAbortProc, TPrintDC::Escape 

Band Info 
int Bandlnfo(TBandlnfo& bandlnfo); 
Retrieves information about the banding capabilities of this device, and copies it to the 
given bandlnfo structure. Returns 1 if the call is successful; returns 0 if the call fails or if 
this device does not support banding. 

See also TBandinfo, TPrintDC::Escape 

DeviceCapabilities 
static uint32 DeviceCapabilities(const char far* driver, const char far* device, const char far* port, int capability, 

char far* output=O, LPDEVMODE devmode=O); 
Retrieves data about the specified capability of the named printer driver, device, and port, 
and places the results in the output char array. The driver, device, and port names must 
be zero-terminated strings. The devmode argument points to a DEVMODE struct. If 

356 ObjectWindows Reference Guide 



TPrintDC class 

devmode is 0 (the default), DeviceCapabilities retrieves the current default initialization 
values for the specified printer driver; otherwise, it retrieves the values contained in the 
DEVMODE structure. The format of the output array depends on the capability being 
queried. If output is 0 (the default), DeviceCapabilities returns the number of bytes 
required in the output array. Possible values for capability are as follows: 

Value 

DC_BINNAMES 

DC_BINS 

Meaning 

The function enumerates the paper bins on the given device. If a device 
driver supports this constant, the output array is a data structure that 
contains two members. The first member is an array identifying valid paper 
bins: 
If a device driver supports this constant, the output array is a data structure 
that contains two members. The first member is an array identifying valid 
paper bins: 

short BinList[cBinMax] 
The second member is an array of character strings specifying the bin 
names: 

char PaperNames[cBinMax] [cchBinName] 
If a device driver does not support this value, the output array is empty and 
the return value is NULL. 
If output is NULL, the return value specifies the number of bins supported. 

The function retrieves a list of constants that identify the available bins and 
copies the list to the output array. 
If this array is NULL, the function returns the number of supported bins. 
The following bin identifiers can be returned: 

DMBIN_AUTO 
DMBIN_ CASSETTE 
DMBIN_ENVELOPE 
DMBIN_ENVMANUAL 
DMBIN_FIRST 
DMBIN_LARGECAP ACITY 
DMBIN_LARGEFMT 
DMBIN_LAST 
DMBIN_LOWER 
DMBIN_MANUAL 
DMBIN_MIDDLE 
DMBIN_ONL YONE 
DMBIN_SMALLFMT 
DMBIN_TRACTOR 
DMBIN_UPPER 

DC_DRIVER The function returns the driver version number. 

DC_DUPLEX The function returns the level of duplex support. The return value is 1 if the 
function supports duplex output; otherwise it is 0. 

DC_ENUMRESOLUTIONS The function copies a list of available printer resolutions to the output array. 
The resolutions are copied as pairs of int32 integers; the first value of the 
pair specifies the horizontal resolution and the second value specifies the 
vertical resolution. If output is 0, the function returns the number of 
supported resolutions. 

DC _EXTRA The function returns the number of bytes required for the device-specific 
data that is appended to the DEVMODE structure. 

C h a p t e r 2 , 0 b j e ct W i n d ow s I i b r a r y r e f e r e n c e 357 



TPrintDC class 

DC_FIELDS The function returns a value indicating which members of the DEVMODE 
structure are set by the device driver. This value can be one or more of the 
following constants: 

DM_ORIENTATION 
DM_P APERSIZE 
DM_PAPERLENGTH 
DM_PAPERWIDTH 
DM_SCALE 
DM_COPIES 
DM_DEFAULTSOURCE 
DM_PRINTQUALITY 
DM_COLOR 
DM_DUPLEX 
DM_YRESOLUTION 
DM_TTOPTION 

DC_FILEDEPENDENCIES The function returns a list of files that must be loaded when the device 
driver is installed. If output is 0 and this value is specified, the function 
returns the number of file names that must be loaded. If output is nonzero, 
the function returns the specified number of 64-character file names. 

DC_MAXEXTENT The function returns the maximum supported paper-size. These 
dimensions are returned in a POINT structure; the x member gives the 
maximum paper width and the y member gives !lte maximum paper 
length. 

DC_MINEXTENT The function returns the minimum supported paper-size. These 
dimensions are returned in a POINT structure; the x member gives the 
minimum paper width and they member gives the n:linimum paper length. 

DC_ ORIENTATION This function returns the number of degrees that a portrait-oriented paper 
is rotated counterclockwise to produce landscape orientation. if the return 
value is 0, there is no landscape orientation. If the return value is 90, the 
portrait-oriented paper is rotated 90 degrees (as is the case when HP laser 
printers are used). if the return value is 270, the portrait-oriented paper is 
rotated 270 degrees (as is the case when dot-matrix printers are used). 

DC_P APERNAMES This function returns a list of supported paper names such as Letter size or 
Legal size. The output array points to an array containing the paper names. 
If the output array is 0, the function returns the number of available paper 
sizes. 

DC_P APERS The function retrieves a list of supported paper sizes and copies it to the 
output array. The function returns the number of sizes identified in the 
array. If output is 0, the function returns the number of supported paper 
sizes. 

DC_P APERSIZE The function retrieves the supported paper sizes (specified in .1 millimeter 
units) and copies them to the output array. 

DC_SIZE The function returns the size of the DEVMODE structure required by the 
given device driver. 

358 ObjectWindows Reference Guide 



Value 

DC_TRUETYPE 

DC_ VERSION 

TPrintDC class 

Meaning 
This function returns the printer driver's True Type font capabilities. The 
values returned can be one or more of the following constants: 

DCTT_BITMAP Device supports printing True Type fonts as 
graphics. 
(Dot-matrix and PCL printers) 

DCTT_OOWNLOAD Device supports downloading TryeType fonts. 
(PostScript and PCL printers) 

DCTT_SUBDEV Device supports substituting device fonts for 
True Type fonts. 
(PostScript printers) 

The function returns the device driver version number. 

If DeviceCapabilities succeeds, the return value depends on the value of capability, as 
noted above. Otherwise, the return value is GDI_ERROR. 

See also TDC::GetDeviceCaps, DEVMODE struct 

End Doc 
int EndDoc(); 
Ends the current print job on this printer. EndDoc should be called immediately after a 
successfully completed print job. TPrintDC::AbortDoc should be used to terminate a 
print job because of error or user intervention. 

If successful, EndDoc returns a positive or zero value; otherwise a negative value is 
returned. 

See also TPrintDC::StartDoc, TPrintDC::AbortDoc, TPrintDC::Escape 

End Page 
int EndPage(); 
Tells this printer's device driver that the application has finished writing to a page. If 
successful, EndPage returns a positive or zero value; otherwise a negative value is 
returned. Possible failure values are listed below: 

vaiu.~·· 

SP_ERROR 

SP _APP ABORT 

SP _USERABORT 

SP_ OUTOFDISK 

SP _OUTOFMEMORY 

General error. 

Job terminated because the application's print-canceling function returned 0. 

User terminated the job. 

Insufficient disk space for spooling. 

Insufficient memory for spooling. 

See also TPrintDC::StartPage, TPrintDC::Escape 

Escape 
int Escape(int escape, int count=O, canst void* inData=O, void* outData=O); 
Allows applications to access the capabilities of a particular device that are not directly 
available through the GDI of this DC. The Escape call is specified by setting a mnemonic 
value in the escape argument. In Win32 the use of Escape with certain escape values has 

Chapter 2, ObjectWindows library reference 359 



TPrintDC class 

been replaced by specific functions. The names of these new functions are based on the 
corresponding escape mnemonic, as shown in the following table: 

ABORTDOC 

BAND INFO 

BEGIN_I'ATII 

CLIP_TO_PATH 

DEVICEDATA 

DRAFTMODE 

DRAWPATTERNRECT 

ENABLEDUPLEX 

ENABLEPAIRKERNING 

ENABLERELATIVEWIDTIIS 

END DOC 

END_PATII 

ENUMPAPERBINS 

ENUMP APERMETRICS 

EPSPRINTING 

EXT_DEVICE_CAPS 

EXTTEXTOUT 

FLUSH OUTPUT 

GETCOLORTABLE 

GETEXTENDEDTEXTMETRICS 

GETEXTENTTABLE 

GETFACENAME 

GETPAIRKERNTABLE 

GETPHYSPAGESIZE 

GETPRINTINGOFFSET 

GETSCALINGFACTOR 

360 ObjectWindows Reference Guide 

Superseded by TPrintDC_AbortDoc in Win32. 

Obsolete in Win32. Because all printer drivers for Windows version 3.1 
and later set the text flag in every band, this escape is useful only for 
older printer drivers. 

No changes for Win32. This escape is specific to PostScript printers. 

No changes for Win32. This escape is specific to PostScript printers. 

Superseded in Win32. Applications should use the P ASSTIIROUGH 
escape to achieve the same fllllctionality. 

Superseded in Win32. Applications can achieve the same fllllctionality 
by setting the dmPrin1.Quality member of the DEVMODE structure to 
DMRES_DRAFT and passing this structure to the CreateDC fllllction. 

No changes for Win32. 

Superseded in Win32. Applications can achieve the same fllllctionality 
by setting the dmDuplex member of the DEVMODE structure and 
passing this structure to the CreateDC fllllction. 

No changes for Win32. 

No changes for Win32. 

Superseded by TPrintDC_EndDoc in Win32. 

No changes for Win32. This escape is specific to PostScript printers. 

Superseded in Win32. Applications can use 
TPrintDC::DeviceCapabilities to achieve the same functionality. 

Superseded in Win32. Applications can use 
TPrintDC::DeviceCapabilities to achieve the same functionality. 

No changes for Win32. This escape is specific to PostScript printers. 

Superseded in Win32. Applications can use TDC::GetDeviceCaps to 
achieve the same functionality. This escape is specific to PostScript 
printers. 

Superseded in Win32. Applications can use TDC::ExtTextOut to 
achieve the same functionality. This escape is not supported by the 
version 3.1 PCL driver. 

Removed for Win32. 

Removed for Win32. 

No changes for Win32. Support for this escape might change in future 
versions of Windows. 

Superseded in Win32. Applications can use ::GetCharWidth to achieve 
the same functionality. This escape is not supported by the version 3.1 
PCL or PostScript drivers. 

No changes for Win32. This escape is specific to PostScript printers. 

No changes for Win32. 

No changes for Win32. Support for this escape might change in future 
versions of Windows. 

No changes for Win32. Support for this escape might change in future 
versions of Windows. 

No changes for Win32. Support for this escape might change in future 
versions of Windows. 



Value 

GETSETP APERBINS 

GETSETP APERMETRICS 

GETSETPAPERORIENT 

GETSETSCREENP ARAMS 

GETTECHNOLOGY 

GETTRACKKERNTABLE 

GETVECTORBRUSHSIZE 

GETVECTORPENSIZE 

MFCOMMENT 

NEWFRAME 

NEXTBAND 

PASSTHROUGH 

QUERYESCAPESUPPORT 

RESTORE_CTM 

SAVE_CTM 

SELECTPAPERSOURCE 

SETABORTPROC 

SETALLJUSTV ALUES 

SET__ARC_DIRECTION 

SET_BACKGROUND_COLOR 

SET_BOUNDS 

SETCOLORTABLE 

SETCOPYCOUNT 

TPrintDC class 

Action 

Superseded in Win32. Applications can achieve the same functionality 
by calling TPrintDC::DeviceCapabilities to find the number of paper 
bins, calling ::ExtDeviceMode to find the current bin, and then setting 
the dmDefaultSource member of the DEVMODE structure and passing 
this structure to the CreateDC function. GETSETP APERBINS changes 
the paper bin only for the current device context. A new device context 
will use the system-default paper bin until the bin is explicitly changed 
for that device context. 

Obsolete in Win32. Applications can use TPrintDC::DeviceCapabilities 
and ::ExtDeviceMode to achieve the same functionality. 

Obsolete in Win32. Applications can achieve the same functionality by 
setting the dmOrientation member of the DEVMODE structure and 
passing this structure to the CreateDC function. This escape is not 
supported by the Windows 3.1 PCL driver. 

No changes for Win32. 

No changes for Win32. Support for this escape might change in future 
versions of Windows. This escape is not supported by the Windows 
3.1 PCL driver. 

No changes for Win32. 

No changes for Win32. Support for this escape might change in future 
versions of Windows. 

No changes for Win32. Support for this escape might change in future 
versions of Windows. 

No changes for Win32. 

No changes for Win32. Applications should use ::StartPage and 
::EndPage instead of this escape. Support for this escape might change 
in future versions of Windows. 

No changes for Win32. Support for this escape might change in future 
versions of Windows. 

No changes for Win32. 

No changes for Win32. 

No changes for Win32. This escape is specific to PostScript printers. 

No changes for Win32. This escape is specific to PostScript printers. 

Obsolete in Win32. Applications can achieve the same functionality by 
using TPrintDC::DeviceCapabilities. 

Superseded in Win32 by ::SetAbortProc. See TPrintDC::SetAbortProc. 

No changes for Win32. Support for this escape might change in future 
versions of Windows. This escape is not supported by the Windows 
3.1 PCL driver. 

No changes for Win32. This escape is specific to PostScript printers. 

No changes for Win32. Applications should use ::SetBkColor instead of 
this escape. Support for this escape might change in future versions of 
Windows. 

No changes for Win32. This escape is specific to PostScript printers. 

No changes for Win32. Support for this escape might change in future 
versions of Windows. 

Superseded in Win32. An application should call 
TPrintDC::DeviceCapabilities, specifying DC_ COPIES for the capability 
parameter, to find the maximum number of copies the device can 
make. Then the application can set the number of copies by passing to 
the CreateDC function a pointer to the DEVMODE structure. 

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 361 



TPrintDC class 

SETKERNTRACK 

SETLINECAP 

SETLINEJOIN 

SETMITERLIMIT 

SET_POLY_MODE 

SET_SCREEN_ANGLE 

SET_SPREAD 

STARTDOC 

TRANSFORM_CTM 

No changes for Win32. 

No changes for Win32. This escape is specific to PostScript printers. 

No changes for Win32. This escape is specific to PostScript printers. 

No changes for Win32. This escape is specific to PostScript printers. 

No changes for Win32. This escape is specific to PostScript printers. 

No changes for Win32. 

No changes for Win32. 

Superseded in Win32. Applications should call ::StartDoc instead of 
this escape. 

No changes for Win32. This escape is specific to PostScript printers. 

Escape calls are translated and sent to the printer device driver. The inData buffer lets 
you supply any data needed for the escape. You must set count to the size (in bytes) of 
the inData buffer. If no input data is required, inData and count should be set to the 
default value of 0. Similarly, you must supply an outData buffer for those Escape calls 
that retrieve data. If the escape does not supply output, set outData to the default value 
ofO. 

NextBand 
int NextBand(TRect& rect); 
Tells this printer's device driver that the application has finished writing to a band. The 
device driver sends the completed band to the Print Manager and copies the coordinates 
of the next band in the rectangle specified by reef. 

If successful, NextBand returns a positive or zero value; otherwise a negative value is 
returned. Possible failure values are listed below: 

SP _ERROR General error. 

SP _APP ABORT Job terminated because the application's print-canceling function returned 0. 

SP _USERABORT User terminated the job. 

SP _OUTOFDISK Insufficient disk space for spooling. 

SP_ OUTOFMEMORY Insufficient memory for spooling. 

See also TPrintDC::Escape, TPrintDC::Bandlnfo 

Query Abort 
bool QueryAbort(int rsvd=O); 
16-bit applications only. Tries to call the AbortProc callback function for this printer to 
determine if a print job should be aborted or not. Query Abort returns the value returned 
by AbortProc or true if no such callback function exists. true indicates that printing 
should continue; false indicates that the print job should be terminated. The rsvd 
argument is a reserved value that should be set to O. 

See also TPrintDC::SetAbortProc, TPrintDC::AbortDoc 

QueryEscSupport 
uint QueryEscSupport(int escapeNum); 

362 ObjectWindows Reference Guide 



TPrintDC class 

Returns true if the escape specified by escapeNum is implemented on this device; 
otherwise false. 

See also TPrintDC::Escape 

SetAbortProc 
int SetAbortProc(ABORTPROC proc); 
Establishes the user-defined proc as the printer-abort function for this printer. This 
function is called by TPrintDC::AbortDoc to cancel a print job during spooling. 

SetAbortProc returns a positive (nonzero) value if successful; otherwise it returns a 
negative (nonzero) value. 

See also TPrintDC::Escape 

SetCopyCount 
int SetCopyCount(int reqestCount, int& actualCount); 
Sets requestCount to the number of uncollated copies of each page that this printer 
should print. The actual number of copies to be printed is copied to actualCount. The 
actual count will be less than the requested count if the latter exceeds the maximum 
allowed for this device. SetCopyCount returns 1 if successful; otherwise, it returns 0. 

See also TPrintDC::DeviceCapabilities, TPrintDC::Escape 

StartDoc 
int StartDoc(const char far* docName, canst char far* output); 
Starts a print job for the named document on this printer DC. If successful, StartDoc 
returns a positive value, the job ID for the document. If the call fails, the value 
SP _ERROR is returned. Detailed error information can be obtained by calling 
Get Last Error. 

This function replaces the earlier ::Escape call with value STARTDOC. 

See also TPrintDC::EndDoc, TPrintDC::Escape 

StartPage 
int StartPage(); 
Prepares this device to accept data. The system disables ::ResetDC between calls to 
StartPage and EndPage, so that applications cannot change the device mode except at 
page boundaries. If successful, StartPage returns a positive value; otherwise, a negative 
or zero value is returned. 

See also TPrintDC::EndPage 

Protected data member 

Doclnfo 
DOCINFO Doclnfo; 
Holds the input and output file names used by TPrintDC::StartDoc. The DOCINFO 
structure is defined as follows: 

typedef struct 
int cbSize; II size of the structure, bytes 

Chapter 2, ObjectWindows library reference 363 



TPrintDialog::TData struct 

Docinfo lpszDocName; 
Docinfo lpszOutput; 

DOCINFO; 

II document name<= 32 chars inc. final 0 
II output file name 

The lpszOutput field allows a print job to be redirected to a file. If this field is NULL, the 
output will go to the device for the specified DC. 

See also TPrintDC::StartDoc 

TPrintDialog::TData struct printdia.h 

TPrintDialog::TData contains information required to initialize the printer dialog box 
with the user's print selections. This information consists of the number of copies to be 
printed, the first and last pages to print, the maximum and minimum number of pages 
that can be printed and various flag values that indicate whether the Pages radio button 
is displayed, the Print to File check box is enabled, and so on. TPrintDialog uses this 

. struct to initialize the print dialog box. Whenever the user changes the print 
requirements, this struct is updated. 

If an error occurs, TPrintDialog::TData returns one of the common dialog extended error 
codes. TPrintDialog::TData also takes care of locking and unlocking memory associated 
with the DEVMODE and DEVNAMES structures, which contain information about the 
printer driver, the printer, and the output printer port. 

TPrinter has access to this information through its data member, Data. 

See also TPrintDialog, TPrinter 

Public data members 

Copies 
int Copies; 
Copies indicates the actual number of pages to be printed. 

Error 
uint32 Error; 
If the dialog box is successfully executed, Error returns 0. Otherwise, it contains one of 
the following error codes. 

CDERR_DIALOGFAILURE 

CDERR_FINDRESFAILURE 

CDERR_INITIALIZATION 

CDERR_LOCKRESOURCEFAILURE 

CDERR_LOADRESFAILURE 

CDERR_LOADSTRFAILURE 

CDERR_MEMALLOCFAILURE 

364 ObjectWindows Reference Guide 

Failed to create a dialog box. 

Failed to find a specified resource. 

Failed to initialize the common dialog box function. 
A lack of sufficient memory can generate this error. 

Failed to lock a specified resource. 

Failed to load a specified resource. 

Failed to load a specified string. 

Unable to allocate memory for internal data 
structures. 



Clonshint 
CDERR_MEMLOCKF AIL URE 

CDERR_REGISTERMSGFAIL 

PDERR_CREATEICFAILURE 

PDERR_DEFAULTDIFFERENT 

PDERR_DNDMMISMATCH 

PDERR_ GETDEVMODEFAIL 

PDERR_INITF AIL URE 

PDERR_LOADDRVFAILURE 

PDERR_NODEFAULTPRN 

PDERR_NODEVICES 

PDERR_P ARSEFAILURE 

PDERR_PRINTERNOTFOUND 

PDERR_RETDEFFAILURE 

PDERR_SETUPFAILURE 

Flags 
uint32 Flags; 

TPrintDialog::TData struct 

Meaning 

Unable to lock the memory associated with a handle. 

A message, designed for the purpose of 
communicating between two applications, could not 
be registered. 

TPrintDialog failed to create an information context. 

The printer described by structure members doesn't 
match the default printer. This error message can 
occur if the user changes the printer specified in the 
control panel. 

The printer specified in DevMode and in DevNames is 
different. 

The printer device-driver failed to initialize the 
Dev Mode structure. 

The TPrintDialog structure could not be initialized. 

The specified printer's device driver could not be 
loaded. 

A default printer could not be identified. 

No printer drivers exist. 

The string in the [devices] section of the WIN.INI file 
could not be parsed. 

The [devices] section of the WIN.IN! file doesn't 
contain the specified printer. 

Either DevMode or DevNames contain zero. 

TPrintDialog failed to load the required resources. 

Flags, which are used to initialize the printer dialog box, can be one or more of the 
following values that control the appearance and functionality of the dialog box: 

PD _ALLP AGES 

PD_COLLATE 

PD _DISABLEPRINTTOFILE 

PD _HlDEPRINTTOFILE 

PD_NOPAGENUMS 

PD _NOSELECTION 

PD_NOWARNING 

PD_PAGENUMS 

PD _PRINTSETUP 

PD _PRINTTOFILE 

Indicates that the All radio button was selected when the user 
closed the dialog box. 

Causes the Collate checkbox to be checked when the dialog 
box is created. 

Disables the Print to File check box. 

Hides and disables the Print to File check box. 

Disables the Pages radio button and the associated edit 
control. 

Disables the Selection radio button. 

Prevents the warning message from being displayed when 
there is no default printer. 

Selects the Pages radio button when the 

dialog box is created. 

Displays the Print Setup dialog box rather than the Print dialog 
box. 

Checks the Print to File check box when the dialog box is 
created. 

Chapter 2, ObjectWindows library reference 365 



TPrintDialog::TData struct 

PD_RETURNDC 

PD_RETURNDEFAULT 

PD_RETURNIC 

PD_SELECTION 

PD_SHOWHELP 

PD_ USEDEVMODECOPIES 

From Page 
int FromPage; 

Returns a device context matching the selections that the user 
made in the dialog box. 

Returns DevNames structures that are initialized for the default 
printer without displaying a dialog box. 

Returns an information context matching the selections that 
the user made in the dialog box. 

Selects the Selection radio button when the dialog box is 
created. 

Shows the Help button in the dialog box. 

If a printer driver supports multiple copies, setting this flag 
causes the requested number of copies to be stored in the 
dmCopies member of the DevMode structure and 1 in Copies. If a 
printer driver does not support multiple copies, setting this 
flag disables the Copies edit control. If this flag is not set, the 
number 1 is stored in DevMode and the requested number of 
copies in Copies. 

FromPage indicates the beginning page to print. 

See also TPrintDialog::TData::ToPage 

MaxPage 
int MaxPage; 
MaxPage indicates the maximum number of pages that can be printed. 

MinPage 
int MinPage; 
MinPage indicates the minimum number of pages that can be printed. 

ToPage 
int ToPage; 
ToPage indicates the ending page to print. 

See also TPrintDialog::TData::FromPage 

Public member functions 
ClearDevMode 
void ClearDevMode(); 
Clears device mode information (information necessary to initialize the dialog controls). 

ClearDevNames 
void ClearDevNames(); 
Clears the device name information (information that contains three strings used to 
specify the driver name, the printer name, and the output port name). 

GetDeviceName 
cons! char far* GetDeviceName() cons!; 

366 ObjectWindows Reference Guide 



TPrintDialog class 

Gets the name of the output device. 

GetDevMode 
cons! DEVMODE far* GetDevMode() cons!; 
Gets a pointer to a DEVMODE structure (a structure containing information necessary 
to initialize the dialog controls). 

GetDevNames 
cons! DEVNAMES far* GetDevNames() cons!; 
Gets a pointer to a DEVNAMES structure (a structure containing three strings used to 
specify the driver name, the printer name, and the output port name). 

GetDriverName 
cons! char far* GetDriverName() cons!; 
Gets the name of the printer device driver. 

GetOutputName 
cons! char far* GetOutputName() cons!; 
Gets the name of the physical output medium. 

Lock 
void Lock(); 
Locks memory associated with the DEVMODE and DEVNAMES structures. 

SetDevMode 
void SetDevMode(const DEVMODE far* devMode); 
Sets the values for the DEVMODE structure. 

SetDevNames 
void SetDevNames(const char far* driver, cons! char far* device, cons! char far* output); 
Sets the values for the DEVNAMES structure. 

TransferDC 
TPrintDC* TransferDC(); 
Creates and returns a TPrintDC with the current settings. 

Unlock 
void Unlock(); 
Unlocks memory associated with the DEVMODE and DEVNAMES structures. 

TPrintDialog class printdia.h 

TPrintDialog displays either a modal print or a print setup dialog box. The print dialog 
box lets you specify the characteristics of a particular print job. The setup dialog box lets 
you configure the printer and specify additional print job characteristics. You can also 
use TPrinter and TPrintout to provide support for printer dialog boxes. TPrintDialog uses 
the TPrintDialog::TData struct to initialize the dialog box with the user's printu options, 
such as the number of pages to print, the output device, and so on. 

Chapter 2, ObjectWindows library reference 367 



TPrintDialog class 

See also 
TPrintDialog::TData struct, TPrinter, TPrintout 

Public constructor 

Constructor 
TPrintDialag(lWindaw* parent, TData& data, canst char far* printTemplateName=O, 

canst char far* setupTemplateName=O, canst char far* title=O, TMadule* madule=O); 
Constructs a print or print setup dialog box with specified data from the 
TPrintDialog::TData structure, parent window, window caption, print and setup 
templates, and module. 

See also TPrintDialog::TData struct 

Public member functions 

Do Execute 
int DaExecute(); 
If no error occurs, DoExecute copies flags and print specifications into the data argument 
in the constructor. If an error occurs, DoExecute sets the error number of data to an error 
code from TPrintDialog::TData::Error . 

See also TPrintDialog::TData::Error 

GetDefaultPrinter 
baal GetDefaultPrinter(); 
Without displaying a dialog box, GetDefaultPrinter gets the device mode and name that 
are initialized for the system default printer. 

Protected data members 

Data 
TData& Data; 
Data is a reference to the TData object passed in the constructor. The TData object 
contains print specifications such as the number of copies to be printed, the number of 
pages, the ouput device name, and so on. 

See also TPrintDialog::TData struct 

pd 
PRINTDLG pd; 
Specifies the dialog box print job characteristics such as page range, number of copies, 
device context, and so on necessary to initialize the print or print setup dialog box. 

See also TPrintDialog::TData struct 

368 ObjectWindows Reference Guide 



TPrinter class 

Protected member functions 

CmSetup 
void CmSetup(); 
Responds to the click of the setup button with an EV _COMMAND message. 

Dialog Function 
bool DialogFunction(uint message, WPARAM, LPARAM); 
Returns true if a message is handled. 

See also TDialog::DialogFunction 

Response table entries 

The TPrintDialog response table has no entries. 

TPrinter class printer.h 

TPrinter represents the physical printer device. To print or configure a printer, initialize 
an instance of TPrinter. 

Public constructor and destructor 
Constructor 
TPrinter(); 
Constructs an instance of TPrinter associated with the default printer. To change the 
printer, call SetDevice after the object has been initialized or call Setup to let the user 
select the new device through a dialog box. 

Destructor 
virtual ~ TPrinter(); 
Frees the resources allocated to TPrinter. 

Public member functions 

ClearDevice 
virtual void ClearDevice(); 
Called by SetPrinter and the Destructor, ClearDevice disassociates the device with the 
current printer. Clear Device changes the current status of the printer to 
PF _UNASSOCIATED, which causes the object to ignore all calls to Print until the object 
is reassociated with a printer. 

GetSetup 
TPrintDialog::TData& GetSetup(); 
Returns a reference to the TPrintDialog data structure. 

Chapter 2, Objec!Windows library reference 369 



TPrinter class 

GetUserAbort 
static bool GetUserAbort(); 
Returns true if the user has chosen to stop printing through the printing dialog. Returns 
false otherwise. 

Print 
virtual bool Print(TWindow* parent, TPrintout& printout, bool prompt); 
Print renders the given printout object on the associated printer device and displays an 
Abort dialog box while printing. It displays any errors encountered during printing. 
Prompt allows you to show the user a window. 

See also TPrinter::Error 

ReportError 
virtual void ReportError(TWindow* parent, TPrintout& printout); 
Print calls ReportError if it encounters an error. By default, it brings up the system 
message box with an error string created from the default string table. This function can 
be overridden to show a custom error dialog box. 

Setup 
virtual void Setup(TWindow* parent); 
Setup lets the user select and/ or configure the currently associated printer. Setup opens 
a dialog box as a child of the given window. The user then selects one of the buttons in 
the dialog box to select or configure the printer. The form of the dialog box is based on 
TPrintDialog, the common dialog printer class. 

SetUserAbort 
static void SetUserAbort(bool abort=true); 
Sets the printing abort flag. 

Protected data members 
BandRect 
TRect BandRect; 
BandRect specifies the size of the banding rectangle. 

Data 
TPrin!Dialog::TData* Data; 
Data is a pointer to the TPrintDialog data structure that contains information about the 
user's print selection. 

See also TPrintDialog::TData struct 

Error 
int Error; 
Error is the error code returned by GDI during printing. This value is initialized during a 
call to Print. 

FirstBand 
bool Firs!Band; 
FirstBand is set to true if the first band of the print job is being printed, otherwise false. 

370 ObjectWindows Reference Guide 



TPrinter class 

Flags 
unsigned Flags; 
The Flags data member specifies whether the printout bands contain graphics bands, 
text bands, or both. The valid flag values are enumerated by TPrintoutflags: 

enum TPrintoutFlags { 
pfGraphics //Current band accepts graphics 
pfText //Current band accepts text 
pfBoth //Current band accepts either graphics or text 

}; 

PageSize 
TSize PageSize; 
PageSize specifies the size of the printed page, as specifed in the device context. 

UseBandlnfo 
bool UseBandlnfo; 
UseBandlnfo is set to true if the printer supports banding, otherwise it's set to false. 

Protected member functions 
CalcBandingFlags 
void CalcBandingFlags(TPrintDC& prnDC); 
CalcBandingflags determines if there are either text and graphics bands, and sets data 
member Flags accordingly. 

CreateAbortWindow 
virtual TWindow* CreateAbortWindow(TWindow* parent, TPrintout& printout); 
Creates a printer abort dialog message box. 

ExecPrintDialog 
virtual bool ExecPrintDialog(TWindow* parent); 
Executes a TPrintDialog. 

GetDefaultPrinter 
virtual void GetDefaultPrinter(); 
Updates the printer structure with information about the user's default printer. 

SetPrinter 
virtual void SetPrinter(const char* driver, canst char* device, canst char* output); 
SetPrinter changes the printer device association. Setup calls SetPrinter to change the 
association interactively. The valid parameters to this method can be found in the 
[devices] section of the WIN.IN! file. 

Entries in the [devices] section have the following format: 

<device name>=<driver>, <port> {, <port>} 

Chapter 2, ObjectWindows library reference 371 



TPrinter::TXPrinter class 

TPrinter::TXPrinter class printer.h 

A nested class, TXPrinter describes an exception that results from an invalid printer 
object. This type of error can occur when printing to the physical printer. 

Public constructors 
Constructors 
TXPrinter(uint resld = IDS _PRINTERERROR); 
Constructs a TXPrinter object with a default IDS_FRINTERERROR message. 

TPrinterAbortDlg class printer.h 

TPrinterAbortDlg is the object type of the default printer-abort dialog box. This dialog 
box is initialized to display the title of the current printout, as well as the device and port 
currently used for printing. 

TPrinterAbortDlg expects to have three static text controls, with control IDs of 101 for the 
title, 102 for the device, and 103 for the port. These controls must have "%s" somewhere 
in the text strings so that they can be replaced by the title, device, and port. The dialog­
box controls can be in any position and tab order. 

Public constructor 
Constructor 
TPrinterAbortDlg(TWindow* parent, TResld resld, canst char far* title, 

canst char far* device, canst char far* port); 
Constructs an Abort dialog box that contains a Cancel button and displays the given 
title, device, and port. 

Protected member functions 
EvCommand 
virtual LRESULT EvCommand(uint id, HWND hWndCtl, uint notifyCode); 
Handles the Cancel button on the Printer-abort dialog box. 

Setup Window 
void SetupWindow(); 
Associates objects with the dialog resource template so that the title, device, and port 
can be determined for printing. See the description of TPrintoutFlags for information 
about printing flags and printer status information. 

See also TPrintoutFlags enum 

372 0 b j e ct W i n d ow s R e f e r e n c e G u i d e 



TPrintout class 

TPrintout class printer.h 

TPrintout represents the physical printed document that is to sent to a printer to be 
printed. TPrintout does the rendering of the document onto the printer. Because this 
object type is abstract, it cannot be used to print anything by itself. For every document, 
or document type, a class derived from TPrintout must be created and its PrintPage 
function must be overridden. 

Public constructor and destructor 
Constructor 
TPrintout(const char far* title); 
Constructs an instance of TPrintOut with the given title. 

Destructor 
virtual ~ TPrintout(); 
Destroys the resources allocated by the constructor. 

Public member functions 
Begin Document 
virtual void BeginDocument(int startPage, int endPage, unsigned flags); 
The printer object's Print function calls BeginDocument once before printing each copy of 
a document. The flags field indicates if the current print band accepts graphics, text, or 
both. 

The default BeginDocument does nothing. Derived objects can override BeginDocument to 
perform any initialization needed at the beginning of each copy of the document. 

See also TPrintoutFlags enum 

Begin Printing 
virtual void BeginPrinting(); 
The printer object's Print function calls BeginPrinting once at the beginning of a print job, 
regardless of how many copies of the document are to be printed. Derived objects can 
override BeginPrinting to perform any initialization needed before printing. 

EndDocument 
virtual void EndDocument(); 
The printer object's Print function calls EndDocument after each copy of the document 
finishes printing. Derived objects can override EndDocument to perform any needed 
actions at the end of each document. 

End Printing 
virtual void EndPrinting(); 
The printer object's Print function calls EndPrinting after all copies of the document 
finish printing. Derived objects can override EndPrinting to perform any needed actions 
at the end of each document. 

Chapter 2, ObjectWindows library reference 373 



T P r i n t o u t c I a.s s 

GetDialoglnfo 
virtual void GetDialoglnfo(int& minPage, int& maxPage, int& selFromPage, int& selToPage); 
Retrieves information needed to allow the printing of selected pages of the document 
and returns true if page selection is possible. Use of page ranges is optional, but if the 
page count is easy to determine, GetDialoglnfo sets the number of pages in the 
document. Otherwise, it sets the number of pages to 0 and printing will continl,le until 
HasPage returns false. · 

Get Title 
const char far* GetTitle() const; 
Returns the title of the current printout. 

Has Page 
virtual bool HasPage(int pageNumber); 
HasPage is called after every page is printed. By default, it returns false, indicating that 
only one page is to be printed. If the document contains more than one page, this 
function must be overridden to return true while there are more pages to print. 

PrintPage 
virtual void PrintPage(int page, TRect& rect, unsigned flags); 
PrintPage is called for every page (or band, if Banding is true) and must be overridden to 
print the contents of the given page. The rect and flags parameters are used during 
banding to indicate the extent and type of band currently requested from the driver 
(and should be ignored if Banding is false). page is the number of the current page. 

SetPrintParams 
virtual void SetPrintParams(TPrintDC* de, TSize pageSize); 
SetPrintParams sets DC to de and PageSize to pageSize. The printer object's Print function 
calls SetPrintParams to obtain the information it needs to determine pagination and page 
count. Derived objects that override SetPrintParams must call the inherited function. 

See also TPreviewPage::Paint 

WantBanding 
bool WantBanding() const; 
Returns the value of data member Banding. 

WantForceAllBands 
bool WantForceAllBands() const; 
Returns the value of data member ForceAllBands. 

Type definitions 
TPrintoutFlags enum 
enum{pfGraphics, pfText, pfBoth}; 

i 

374 ObjectWindows Reference Guide 

printer.h 



TPrintPreviewDC class 

ObjectWindows defines the following banding constants used to set flags for printout 
objects. 

pfGraphics 

pIText 

pfBoth 

Current band accepts only graphics. 

Current band accepts only text. 

Current band accepts both text and graphics. 

See also TPrinter, TPrintOut 

Protected data members 

Banding 
baal Banding; 
If Banding is true, the printout is banded and the PrintPage function is called once for 
every band. Otherwise, PrintPage is called only once for every page. Banding a printout 
is more memory- and time-efficient than not banding. By default, Banding is set to false. 

DC 
TPrintDC* DC; 
DC is the handle to the device context to use for printing. 

ForceAllBands 
baal FarceAllBands; 
Many device drivers do not provide all printer bands if both text and graphics are not 
performed on the first band (which is typically a text-only band). Leaving ForceAllBands 
true forces the printer driver to provide all bands regardless of what calls are made in 
the PrintPage function. If PrintPage does nothing but display text, it is more efficient for 
ForceAllBands to be false. By default, it is true. ForceAllBands takes effect only if Banding 
is true. 

PageSize 
TSize PageSize; 
PageSize is the size of the print area on the printout page. 

Title 
canst char far* GetTitle() canst; 
Returns the title of the current printout. 

TPrintPreviewDC class preview.h 

Derived from TPrintDC, TPrintPreviewDC maps printer device coordinates to logical 
screen coordinates. It sets the extent of the view window and determines the screen and 
printer font attributes. Many of TPrintPreviewDC's functions override TDC's virtual 
functions. 

Chapter 2, ObjectWindows library reference 375 



TPrintPreviewDC class 

Public constructor and destructor 

Constructor 
TPrintPreviewDC(TDC& screen, TPrintDC& printdc, const TRect& client, const TRect& clip); 
TPrintPreviewDC's constructor takes a screen DC as well as a printerDC. The screen DC 
is passed to the inherited constructor while the printer DC is copied to the member, 
PrnDC. 

Destructor 
N TPrintPreviewDC(); 
Destroys a TPrintPreviewDC object. 

Public member functions 

GetDeviceCaps 
int GetDeviceCaps(int index) const; 
GetDeviceCaps returns capability information, such as font and pitch attributes, about the 
printer DC. The index argument specifies the type of information required. 

See also TDC::GetDeviceCaps 

LPtoSDP 
Form 1 bool LPtoSDP(TPoint* points, int count = 1) const; 

Converts each of the count points in the points array from logical points of the printer DC 
to screen points. Returns a nonzero value if the call is successful; otherwise, returns 0. 

Form 2 bool LPtoSDP(TRect& rect) const; 
Converts each of the points in the rect from logical points of the printer DC to screen 
device points. Returns a nonzero value if the call is successful; otherwise, returns 0. 

See also TPrintPreviewDC::SDPtoLP, TDC::LPtoDP 

OffsetViewportOrg 
bool OffsetViewportOrg(const TPoint& delta, TPoint far* oldOrg = O); 
Modifies this DC's viewport origin relative to the current values. The delta x- and y­
components are added to the previous origin and the resulting point becomes the new 
viewporforigin. The previous origin is saved in oldOrg. Returns nonzero if the call is 
successful; otherwise, returns 0. 

See also TPrintPreviewDC::SetViewportOrg, TDC::OffsetViewportOrg 

ReOrg 
virtual void ReOrg(); 
Gets the x- and y- extents of the viewport, equalizes the logical and screen points, and 
resets the x- and y- extents of the viewport. 

Rescale 
virtual void Rescale(); 
Maps the points of the printer DC to the screen DC. Sets the screen window extent equal 
to the maximum logical pointer of the printer DC. 

376 ObjectWindows Reference Guide 



TPrintPreviewDC class 

RestoreFont 
void RestoreFont(); 
Restores the original GDI font object to this DC. 

See also TPrintPreviewDC::SelectObject, TDC::OrgFont 

ScaleViewportExt 
bool ScaleViewportExt(int xNum, int xDenom, int yNum, int yDenom, TSize far* oldExtent = O); 
Modifies this DC's viewport extents relative to the current values. The new extents are 
derived as follows: 

xNewVE = (xOldVE * xNum)/ xDenom 
yNewVE = (yOldVE * yNum)/ yDenom 

The previous extents are saved in oldExtent. Returns nonzero if the call is successful; 
otherwise returns 0. 

See also TDC::ScaleViewportExt, TPrintPreviewDC::SetViewportExt 

ScaleWindowExt 
bool ScaleWindowExt(int xNum, int xDenom, int yNum, int yDenom, TSize far* oldExtent = O); 
Modifies this DC's window extents relative to the current values. The new extents are 
derived as follows: 

xNewWE = (xOldWE * xNum)/ xDenom 
yNewWE = (yOldWE * yNum)/ yDenom 

The previous extents are saved in oldExtent. Returns nonzero if the call is successful; 
otherwise returns 0. 

See also TDC::SetWindowExt, TPrintPreviewDC::ScaleWindowExt 

SDPtoLP 
Form 1 bool SDPtoLP(TPoint* points, int count= 1) canst; 

Converts each of the count points in the points array from screen device points to logical 
points of the printer DC. Returns a nonzero value if the call is successful; otherwise, 
returns 0. 

Form 2 bool SDPtoLP(TRect& rect) const; 
Converts each of the points in the rect from screen device points to logical points of the 
printer DC. Returns a nonzero value if the call is successful; otherwise, returns 0. 

See also TPrintPreviewDC::LPtoSDP, TDC::DPtoLP 

SelectObject 
void SelectObject(const TFont& newFont); 
Selects the given font object into this DC. 

See also TPrintPreviewDC::SelectStockObject, TDC::SelectObject 

SelectStockObject 
void SelectStockObject(int index); 
Retrieves a handle to a predefined stock font. 

See also TDC::SelectStockObject 

Ch a p I er 2, 0 b j e c I Windows Ii bra r y reference 377 



TPrintPreviewDC class 

SetBkColcn 
TColor SetBkColor(rColor color); 
Sets the current background color of this DC to the given color value or the nearest 
available. Returns Ox80000000 if the call fails. 

See also TDC::SetBkColor 

SetMapMode 
int SetMapMode(int mode); 
Sets the current window mapping mode of this DC to mode. Returns the previous 
mapping mode value. The mapping mode defines how logical coordinates are mapped 
to device coordinates. It also controls the orientation of the device's x- and y-axes. 

See also TDC::GetMapMode, TDC::SetMapMode 

SetTextColor 
TColor Se!TextColor(rColor color); 
Sets the current text color of this DC to the given color value. The text color determines 
the color displayed by TDC::TextOut and TDC::ExtTextOut. 

See also TDC::GetTextColor, TDC::SetTextColor 

SetViewportExt 
bool SetViewportExt(const TSize& extent, TSize far* oldExtent = O}; 
Sets the screen's viewport x- and y-extents to the given extent values. The previous 
extents are saved in oldExtent. Returns nonzero if the call is successful; otherwise, 
returns 0. The extent value determines the amount of stretching or compression needed 
in the logical coordinate system to fit the device coordinate system. extent also 
determines the relative orientation of the two coordinate systems. 

See also TDC::GetViewportExt, TDC::SetViewportExt 

SetViewportOrg 
bool OffsetViewportOrg(const TPoint& delta, TPoint far* oldOrg = O); 
Modifies this DC's viewport origin relative to the current values. The delta x- and y­
components are added to the previous origin and the resulting point becomes the new 
viewport origin. The previous origin is saved in oldOrg. Returns nonzero if the call is 
successful; otherwise, returns 0. 

See also TPrintPreviewDC::SetViewportOrg, TDC::OffsetViewportOrg 

SetWindowExt 
bool SetWindowExt(const TSize& extent, TSize far* oldExtent=O); 
Sets the DC's window x- and y-extents to the given extent values. The previous extents 
are saved in oldExtent. Returns nonzero if the call is successful; otherwise, returns 0. The 
extent value determines the amount of stretching or compression needed in the logical 
coordinate system to fit the device coordinate system. extent also determines the relative 
orientation of the two coordinate systems. 

See also TDC::GetWindowExt, TDC::SetWindowExt, 
TPrintPreviewDC::ScaleWindowExt 

378 ObjectWindows Reference Guide 



Sync Font 
virtual void SyncFont(); 
Sets the screen font equal to the current printer font. 

Protected data members 

CurrentPreviewFont 
TFont* CurrentPreviewFont; 
The current view font. 

PrnDC 
TPrintDC& PrnDC; 
Holds a reference to the printer DC. 

Pm Font 
HFONT PrnFont; 
The current printer font. 

Protected member functions 

GetAttributeHDC 
HDC GelAttributeHDC() cons!; 
Returns the attributes of the printer DC (PrnDC). 

See also TDC::GetAttributeHDC 

TProfile class 

TProfile class 

profile.h 

An instance of TProfile encapsulates a setting within a system file, often referred to as a 
profile or initialization file. Examples of this type of file include the Windows initialization 
files SYSTEM.IN! and WIN.IN!. Within the system file itself, the individual settings are 
grouped within sections. For example, 

[Diagnostics] ; section name 
Enabled=O ; setting 

For a setting, the value to the left of the equal sign is called the key. The value to the right 
of the equal sign, the value, can be either an integer or a string data type. 

Public constructor and destructor 

Constructor 
TProfile(const char* section, cons! char* filename=O); 
Constructs a TProfile object for the indicated section within the profile file specified by 
filename. If the file name is not provided, the file defaults to the system profile file; for 
example, WIN.IN! under Windows. 

C h a p t e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e f e r e n c e 379 



TPXPictureValidator class 

Destructor 
NTProfile(); 
Destroys the TProfile object. 

Public member functions 
Getlnt 
int Getlnt(const char* key, int defaultlnt = O); 
Looks up and returns the integer value associated with the given string, key. If key is not 
found, the default value, defaultlnt, is returned. 

GetString . 
bool GetString(const char* key,.char butta, unsigned buffSize, cons! char* defaultString = ""); 
Looks up and returns the string value associated with the given key string. The string 
value is copied into buff, up to buffSize bytes. If the key is not found, defaultString 
provides the default value. If a 0 key is passed, all section values are returned in buff 

Writelnt 
bool Writelnt(const char* key, const char* int value); 
Looks up the key and replaces its value with the integer value passed (int). If the key is 
not found; Writelnt makes a new entry. Returns true if successful. 

WriteString 
bool WriteString(const char* key, const char* str); 
Looks up the key and replaces its value with the string value passed (str). If the key is 
not found, WriteString makes a new entry. Returns true if successful. 

TPXPictureValidator class validate.h 

TPXPictureValidator objects compare user input with a picture of a data format to 
determine the validity of entered data. The pictures are compatible with the pictures 
Borland's Paradox relational database uses to control data entry. For a complete 
description of picture specifiers, see the Picture member function. 

Public constructor 
Constructor 
TPXPictureValidator(const char far* pie, bool autoFill=false); 
Constructs a picture validator object by first calling the constructor inherited from 
TValidator and setting pie to point to it. Then sets the voFill bit in Options if Auto Fill is true 
and sets Options to voOnAppend. Throws a TXValidator exception if the picture is invalid. 

Public member functions 
Error 
void Error(); 

380 Objec!Windows Reference Guide 



TPXPictureValidator class 

Overrides TValidator's virtual function and displays a message box that indicates an 
error in the picture format and displays the string pointed to by Pie. 

See also TValidator::Error 

ls Valid 
bool lsValid(const char far* str); 
Is Valid overrides TValidator's virtual function and compares the string passed instr with 
the format picture specified in Pie. Is Valid returns true if Pie is NULL or if Picture returns 
Complete for str, indicating that str needs no further input to meet the specified format; 
otherwise, it returns false. 

See also TPXPictureValidator::Picture 

lsValidlnput 
bool lsValidlnput(char far* str, bool suppressFill); 
IsValidinput overrides TValidator's virtual function and checks the string passed instr 
against the format picture specified in Pie. Is Valid returns true if Pie is NULL or Picture 
does not return Error for str; otherwise, it returns false. The suppressFill parameter 
overrides the value in voFill for the duration of the call to Is Validinput. 

If suppressFill is false and voFill is set, the call to Picture returns a filled string based on 
str, so the image in the edit control automatically reflects the format specified in Pie. 

See also TPXPictureValidator::Picture 

Picture 
virtual TPicResult Picture(char far* input, bool autoFill=false); 

Formats the string passed in input according to the format specified by the picture string 
pointed to by Pie. Picture returns pr Error if there is an error in the picture string or if input 
contains data that cannot fit the specified picture. Returns prComplete if input can fully 
satisfy the specified picture. Returns pr Incomplete if input contains data that incompletely 
fits the specified picture. 

The following characters are used in creating format pictures: 

Special # Accept only a digit 

? Accept only a letter 
(case_insensitive) 

& Accept only a letter, 
force to uppercase 

@ Accept any character 

Accept any character, 
force to uppercase 

Match Take next character 
literally 

Repetition count 

[] Option 

{} Grouping operators 

Chapter 2, 0 bj ectWi n d ows Ii b rary reference 381 



TRadioButton class 

All others 

See also TPicResultenum 

Protected data member 
Pie 
string Pie; 

Set of alternatives 

Taken literally 

Points to a string containing the picture that specifies the format for data in the 
associated edit control. The constructor sets Pie to a string that is passed as one of the 
parameters. 

TRadioButton class radiobut.h 

A TRadioButton is an interface object that represents a corresponding radio button 
element in Windows. Use TRadioButton to create a radio button control in a parent 
TWindow. A TRadioButton can also be used to facilitate communication between your 
application and the radio button controls of a TDialog. 

Radio buttons have two states: checked and unchecked. TRadioButton inherits its state 
management member functions from its base class, TCheckBox. Optionally, a radio 
button can be part of a group (TGroupBox) that visually and logically groups its controls. 
TRadioButton is a streamable class. 

Public constructors 
Constructors 

Form 1 TRadioButton(TWindow* parent, int id, cons! char far* title, int x, int y, int w, int h, TGroupBox *group= 
0, TModule* module = O); 

Constructs a radio button object with the supplied parent window (parent), control ID 
(id), associated text (title), position (x, y) relative to the origin of the parent window's 
client area, width (w), height (h), and associated group box (group). Invokes the 
TCheckBox constructor with similar parameters. The style is set to WS_ CHILD I 
WS_ VISIBLE I BS_AUTORADIOBUTTON. 

Form 2 TRadioButton(TWindow* parent,inl resourceld,TGroupBox *group, TModule* module= O); 
Constructs a TRadioButton object to be associated with a radio button control of a 
TDialog. Invokes the TCheckBox constructor with identical parameters.The resourceld 
parameter must correspond to a radio button resource that you define. 

c, 

See also TControl::TControl 

382 Objec!Windows Reference Guide 



TRangeValidator class 

Protected member functions 
BNClicked 
void BNClicked(); 
Responds to an incoming BN_CLICKED message. 

See also BN_xxxx Button Message Constants 

GetClassName 
char far* GetClassName(); 
Returns "BUTTON," the name of the predefined radio button class. 

Response table entries 

EV _MESSAGE (BM_SETSTYLE, BMSetStyle) 

EV_ WM_GETDLGCODE 

TRangeValidator class 

BMSetStyle 

EvGetDlgCode 

validate.h 

A TRangeValidator object determines whether the data typed by a user falls within a 
designated range of integers. TRangeValidator is a streamable class. 

Public constructor 
Constructor 
TRangeValidator(long min, long max); 
Constructs a range validator object by first calling the constructor inherited from 
TFilterValidator, passing a set of characters containing the digits '0' . .'9' and the characters 
'+'and'-'. Sets Min to min and Max to max, establishing the range of acceptable long 
integer values. 

See also TFilterValidator::TFilterValidator 

Public member functions 
Error 
void Error(); 
Error overrides TValidator's virtual function and displays a message box indicating that 
the entered value does not fall within the specified range. 

ls Valid 
bool lsValid(const char far* str); 
Converts the string str into an integer number and returns true if the result meets all 
three of these conditions: 

• It is a valid integer number. 

Chapter 2, ObjectWindows library reference 383 



TRegion class 

• Its value is greater than or equal to min. 

• Its value is less than or equal to max. 

If any of those tests fails, Is Valid returns false. 

Transfer 
uint Transfer(char far* sir, void* buffer, TTransferDirection direction); 
Incorporates the three types, tdSizeData, tdGetData, and tdSetData, that a range validator 
can handle for its associated edit control. str is the edit control's string value, and buffer is 
the data passed to the edit control. Depending on the value of direction, Transfer either 
sets str from the number in buffer or sets the number at buffer to the value of the string str. 
If direction is tdSetData, Transfer sets str from buffer. If direction is tdGetData, Transfer sets 
buffer from str. If direction is tdSizeData, Transfer neither sets nor reads data. 

Transfer always returns the size of the data transferred. 

See also TWindow::Transfer 

Protected data members 

Max 
long Max; 
Max is the highest valid long integer value for the edit control. 

Min 
long Min; 
Min is the lowest valid long integer value for the edit control. 

TRegion class gdiobjec.h 

TRegion, derived from TGdiobject, represents GDI abstract shapes or regions. TRegion can 
construct region objects with various shapes. Several operators are provided for 
combining and comparing regions. 

Type definitions 

TEllipse 
enum TEllipse{Ellipse}; 
Defines the class-specific constant, Ellipse, used to distinguish the ellipse constructor 
from the rectangle copy constructor. 

See also TRegion::TRegion (constTRect&rect), TRegion::TRegion 
( constTRect&ETEllipse) 

Public constructors 

Constructors 
Form 1 TRegion(); 

384 ObjectWindows Reference Guide 



TRegion class 

The default constructor creates an empty TRegion object. Handle is set to 0 and 
ShouldDelete is set to true. 

Form 2 TRegion(HRGN handle,TAutoDelete autoDelete = NoAutoDelete); 
Creates a TRegion object sets the Handle data member to the given borrowed handle. The 
ShouldDelete data member defaults to false ensuring that the borrowed handle is not 
deleted when the C++ object is destroyed. HRGN is the data type representing the 
handle to an abstract shape. 

Form 3 TRegion(const TRegion& region); 
This public copy constructor creates a copy of the given TRegion object as in 

TRegion myRegion = yourRegion; 

Form 4 TRegion(const TRect& rect); 
Creates a region object from the given TRectangle object as in 

TRegion myRegion(rectl); 
TRegion* pRegion; 
pRegion = new TRegion(rect2); 

Form 5 TRegion(const TRect& E, TEllipse); 
Creates the elliptical TRegion object that inscribes the given rectangle E. The TEllipse 
argument distinguishes this constructor from the TRegion(const TRect& rect) constructor. 

Form 6 TRegion(const TRect& rect, const TSize& corner); 
Creates a TRegion object from the given rect comer. 

Form 7 TRegion(const TPoint* points,int count,int fillMode); 
Creates a filled TRegion object from the polygons given by points and fillMode. 

Form 8 TRegion(const TPoint* points, const int* polyCounts, int count,int fillMode); 
Creates a filled TRegion object from the polygons given by points and fillMode. 

See also TGdiObject::Handle, TGdiObject::ShouldDelete, TPoint class, TRect class, 
TSize class 

Public member functions 
Contains 
bool Contains(const TPoint& point) const; 
Returns true if this region contains the given point. 

See also TPoint 

GetRgnBox 
int GetRgnBox(TRect& box) const; 
TRect GetRgnBox() const; 
Finds the bounding rectangle (the minimum rectangle containing this region). In Form 
1, the resulting rectangle is placed in box and the returned values are as follows: 

COMPLEXREGION Region has overlapping borders. 

Chapter 2, ObjectWindows library reference 385 



TRegion class 

NULLREGION 

SIMPLEREGION 

Region is empty. 

Region has no overlapping borders. 

In Form 2, the resulting rectangle is returned. 

See also TRect 

operator== 
bool operator ==(const TRegion& other) const; 
Returns true if this region is equal to the other region. 

See also TRegion::operator!== 

operator!= 
bool operator l=(const TRegion& other) cons!; 
Returns true if this region is not equal to the other region. 

See also TRegion::operator ==== 

operator= 
TRegion& operator =(Const TRegion& source); 
Assigns the source region to this region. A reference to the result is returned, allowing 
chained assignments. 

operator+= 
TRegion& operator +=(const TSize& delta); 
Adds the given delta to each point of this region to displace (translate) it by delta.x and 
delta.y. Returns a reference to the resulting region. 

See also TSize, TRegion::operator -== 

operator-= 
TRegion& operator -=(const TSize& delta); 
TRegion& operator -=(const TRegion& source); 
The first form subtracts the given delta from each point of this region to displace 
(translate) it by-delta.x and -delta.y. The second form creates a "difference" region 
consisting of all parts of this region that are not parts of the source region. Both forms 
return a reference to the resulting region. 

See also TSize class, TRegion::operator +== 

operator&= 
TRegion& operator &=(const TRegion& source); 
TRegion& operator &=(const TRect& source); 
Creates the intersection of this region with the given source region or rectangle, and 
returns a reference to the result. 

See also TRect class 

operator I= 
TRegion& operator l=(const TRegion& source); 
TRegion& operator l=(const TRect& source); 

386 Objec!Windows Reference Guide 



TRelationship enum 

Creates the union of this region and the given source region or rectangle, and returns a 
reference to the result. 

See also TRect 

operator "= 
TRegion& operator '=(cons! TRegion& source); 
TRegion& operator '=(cons! TRect& source); 
Creates the union of this region and the given source region or rectangle, but excludes 
any overlapping areas. Returns a reference to the resulting region object. 

See also TRect class 

operator HRGN() 
operator HRGN() cons!; 
Typecast operator. HRGN is the data type representing the handle to a physical region. 

SetRectRgn 
void SetRectRgn(const TRect& reel); 
Creates a rectangle of the size given by rect. 

See also TRect class 

Touches 
bool Touches(const TRect& reel) cons!; 
Returns true if this region touches the given rectangle. 

See also TRect class 

TRelationship enum layoutco.h 

enum TRelationship {lmAsls, lmPercentOf, lmAbove, lmleftOf = lmAbove, lmBelow, lmRightOf = lmBelow, 
lmSameAs, lmAbsolute}; 

Used by the TLayoutConstraint struct, TRelationship specifies the relationship between 
the edges and sizes of one window and the edges and sizes of another window (which 
can be a parent or sibling). These relationships can be specified as either the same value 
as the sibling or parent window (lmAsls), an absolute value (lmAbsolute), a percent of 
one of the windows (lmPercentOj), a value that is either added above (lmAbove) or left 
(lmLeftOj) of one of the windows, or a value that is subtracted from below (lmBelow) or 
right (lmRightOj) of one of the windows. 

See also TLayoutConstraint struct 

TReplaceDialog class findrepl.h 

TReplaceDialog creates a modeless dialog box that lets the user enter a selection of text to 
replace. Because these are model dialog boxes, you can search for text, edit the text in the 
window, and return to the dialog box to enter another selection. TReplaceDialog uses the 

Chapter 2, ObjectWindows library reference 387 



TResponseTableEntry class 

TFindReplaceDialog::TData class to set the user-defined values for the dialog box, such as 
the text strings to search for and replace. 

Public constructor 
Constructor 
TReplaceDialog(TWindow* parent, TData& data, TReslD templateName=O, cons! char far* tille=O, 

TModule* module=O); 
Constructs a TReplaceDialog object with a parent window, resource ID, template name, 
caption, and module instance. The data parameter is a reference to the 
TFindReplaceDialog::TData class that contains information about the appearance and 
functionality of the dialog box, such as the user-entered text strings to search for and 
replace. 

See also TFindReplaceDialog::TData class 

Protected member function 
DoCreate 
HWND DoCreate(); 
Creates a modeless find and replace dialog box. 

See also TDialog::DoCreate 

TResponseTableEntry class eventhan.h 

A template class, TResponseTableEntry lets you define a pattern for entries into a 
response table. Entries consist of a message, a notification code, a resource ID, a 
dispatcher type, and a pointer to a member function. 

See DECLARE_ RESPONSE_ TABLE and DEFINE_RESPONSE_TABLE for additional 
information about the macros in the response tables. 

Public data members 
Dispatcher 
TAnyDispatcher Dispatcher; 
An abstract dispatcher type that points to one of the dispatcher functions. 

Id 
uint Id; 
Contains the menu or accelerator resource ID (CM_xxxx) for the message response 
member function. 

Msg 
uint Msg; 

388 Objec!Windows Reference Guide 



TRgbQuad class 

Contains the ID of the message sent. These can be command messages, child id 
messages, notify-based messages such as LBN_SELCHANGE, or messages such as 
LBUTTONDOWN. 

NotifyCode 
uint NotifyCode; 
Stores the control notification code (for example, ID_LISTBOX) for the response table 
entry. These can be button, combo box, edit control, or list box notification codes. 

Pmf 
PMF Pmf; 
Points to the actual handler or member function. 

Type definitions 
T 
typedef void(T _*PMF)(); 
Type for a generic member function that responds to notification messages. Tis the 
template for the response table. 

TRgbQuad class color.h 

TRgbQuad is a support class derived from the structure tagRGBQUAD, which is defined 
as follows: 

typedef struct tagRGBQUAD { 
uintS rgbBlue; 
uintB rgbGreen; 
uintB rgbRed; 
uintB rgbReserved; 

} RGBQUAD; 

where rgbBlue, rgbGreen, and rgbRed specify the relative blue, green, and red intensities 
of a color. rgbReserved is not used and must be set to 0. 

TRgbQuad is used in conjunction with the classes TPalette and TColor to simplify 
RGBQUAD-based color operations. Constructors are provided to create TRgbQuad 
objects from explicit RGB values, from TColor objects, or from other TRgbQuad objects. 

Public constructors 
Constructors 

Form 1 TRgbQuad(int r, int g, int b); 
Creates a TRgbQuad object with rgbRed, rgbGreen, and rgbBlue set to r, g, and b 
respectively. rgbReserved is set to 0. 

Form 2 TRgbQuad(TColor c); 
Creates a TRgbQuad object with rgbRed, rgbGreen, rgbBlue set to c.Red, c.Green, c.Blue 
respectively. rgbReserved is set to 0. 

Chapter 2, ObjectWindows library reference 389 



TRgbTriple class 

Form 3 TRgbQuad(const RGBQUAD far& q); 
Creates a TRgbQuad object with the same values as the referenced RGBQUAD object. 

See also TColor::Red, TColor::Green, TColor::Blue 

TRgbTriple class color.h 

TRgbTriple is a support class derived from the structure tagRgbTriple, which is defined as 
follows: 

typedef struct tagRGBTRIPLE { 
uint8 rgbBlue; 
uint8 rgbGreen; 
uint8 rgbRed; 

} RGBTRIPLE; 

rgbBlue, rgbGreen, and rgbRed specify the relative blue, green, and red intensities for a 
color. 

TRgbTriple is used in conjunction with the classes TPalette and TColor to simplify bmci­
color-based operations. Constructors are provided to create TRgbTriple objects from 
explicit RGB values, from TColor objects, or from other TRgbTriple objects. 

Public constructors 
Constructors 

Form 1 TRgbTriple(int r, int g, int b); 
Creates a TRgbTriple object with rgbRed, rgbGreen, and rgbBlue set tor, g, and b 
respectively. 

Form 2 TRgbTriple(TColor c); 
Creates a TRgbTriple object with rgbRed, rgbGreen, rgbBlue set to c.Red, c.Green, and c.Blue 
respectivelyrgbReserved is set to 0. 

Form 3 TRgbTriple(const RGBTRIPLE far& t); 
Creates a TRgbTriple object with the same values as the referenced RGBTRIPLE object. 

See also tag RGBTRIPLE struct, TColor::Red, TColor::Green, TColor::Blue 

TScreenDC class dc.h 

Derived from TWindowDC, TScreenDC is a DC class that provides direct access to the 
screen bitmap. TScreenDC gets a DC for handle 0, which is for the whole screen with no 
clipping. Handle 0 paints on top of other windows. 

Public constructor 
Constructor 
TScreenDC(); 

390 ObjectWindows Reference Guide 



TScrollBar class 

Default constructor for TScreenDC objects. 

TScrollBar class scrollba.h 

TScrollBar objects represent standalone vertical and horizontal scroll bar controls. Most 
of TScrollBar's member functions manage the scroll bar's sliding box (thumb) position 
and range. 

One special feature of the type TScrollBar is the notify-based set of member functions 
that automatically adjust the scroll bar's thumb position in response to scroll bar 
messages. 

Never place TScrollBar objects in windows that have either the WS_HSCROLL or 
WS_ VSCROLL styles in their attributes. 

TScrollBar is a streamable class. 

Public data members 
LineMagnitude 
int LineMagnitude; 
LineMagnitude is the number of range units to scroll the scroll bar when the user requests 
a small movement by clicking on the scroll bar's arrows. TScrollBar's constructor sets 
LineMagnitude to 1 by default. (The scroll range is 0-100 by default.) 

See also TScrollBar::SetupWindow 

Page Magnitude 
int PageMagnitude; 
PageMagnitude is the number of range units to scroll the scroll bar when the user 
requests a large movement by clicking in the scroll bar's scrolling area. TScrollBar's 
constructor sets PageMagnitude to 10 by default. (The scroll range is 0-100 by default.) 

Public constructors 
Constructors 

Form 1 TScrollBar(TWindow* parent, int id, int x, int y, int w, int h, bool isHScrollBar, TModule* module= O); 
Constructs and initializes a TScrollBar object with the given parent window (parent), a 
control ID (id), a position (x, y), and a size of (w, h). Invokes the TControl constructor with 
similar parameters. If isHScrollBar is true, adds SBS_HORZ to the window style. If not 
true, adds SBS_ VERT. If the supplied height for a horizontal scroll bar or the supplied 
width for a vertical scroll bar is 0, a standard value is used. LineMagnitude is initialized to 
1 and PageMagnitude is set to 10. 

Form 2 TScrollBar(TWindow* parent,int resourceld,TModule* module= O); 
Constructs a TScrollBar object to be associated with a scroll bar control of a TDialog. 
Invokes the TControl constructor with identical parameters. 

The resourceld parameter must correspond to a scroll bar resource that you define. 

C h a p t e r 2 , 0 b j e c I W i n d ow s I i b r a r y r e I e r e n c e 391 



TScrollBar class 

See also TControl::TControl 

Public member functions 
DeltaPos 
virtual int DeltaPos(int delta); 
Calls SetPosition to change the scroll bar's thumb position by the value supplied in delta. 
A positive delta moves the thumb down or right. A negative delta value moves the 
thumb up or left. The new thumb position is returned. 

See also TScrollBar::SetPosition 

EvHScroll 
void EvHScroll(uint scrollCode, uint thumbPos, HWND hWndCll); 
Response table handler that calls the virtual function (SB Bottom, SBLineDown and so on) 
in response to messages sent by TWindow::DispatchScroll. 

EvVScroll 
void E:vVScroll(uint scrollCode, uint thumbPos, HWND hWndCtl); 
Response table handler that calls the virtual function (SBBottom, SBLineDown and so on) 
in response to messages sent by TWindow::DispatchScroll. 

GetPosition 
virtual int GetPosition() cons!; 
Returns the scroll bar's current thumb position. 

See also TScrollBar::SetPosition, TScrollBarData struct 

GetRange 
virtual void GetRange(int& min, int& max) cons!; 
Returns the end values of the present range of scroll bar thumb positions in min and 
max. 

See also TScrollBar::SetPosition, TScrollBar::SetRange, TScrollBarData struct 

SB Bottom 
virtual void SBBottom(); 
Calls SetPosition to move the thumb to the bottom or right of the scroll bar. SB_BOTTOM 
is called to respond to the thumb being dragged to the bottom or rightmost position of 
the scroll bar. 

See also TScrollBar::SetPosition 

SBLineDown 
virtual void SBLineDown(); 
Calls SetPosition to move the thumb down or right (by LineMagnitude units). 
SBLineDown is called to respond to a click on the bottom or right arrow of the scroll bar. 

See also TScrollBar::SetPosition 

SBLineUp 
virtual void SBLineUp(); 

392 ObjectWindows Reference Guide 



TScrollBar class 

Calls SetPosition to move the thumb up or left (by LineMagnitude units). SBLineUp is 
called to respond to a click on the top or left arrow of the scroll bar. 

See also TScrollBar::SetPosition 

SBPageDown 
virtual void SBPageDown(); 
Calls SetPosition to move the thumb down or right (by PageMagnitud.J units). 
SBPageDown is called to respond to a click in the bottom or right scrolling area of the 
scroll bar. 

See also TScrollBar::SetPosition 

SBPageUp 
virtual void SBPageUp(); 
Calls SetPosition to move the thumb up or left (by PageMagnitude units). SBPageUp is 
called to respond to a click in the top or left scrolling area 1.Jf the scroll bar. 

See also TScrollBar::SetPosition 

SBThumbPosition 
virtual void SBThumbPosition(int thumbPos); 
Calls SetPosition to move the thumb. SBThumbPosition is called to respond when the 
thumb is set to a new position. 

See also TScrollBar::SetPosition 

SBThumbTrack 
virtual void SBThumbTrack(int thumbPos); 
Calls SetPosition to move the thumb as it is being dragged to a new position. 

See also TScrollBar::SetPosition 

SBTop 
virtual void SBTop(); 
Calls SetPosition to move the thumb to the top or right of the scroll bar. SBTop is called to 
respond to the thumb being dragged to the top or rightmost position on the scroll bar. 

See also TScrollBar::SetPosition 

SetPosition 
virtual void SetPosition(int thumbPos); 
Moves the thumb to the position specified in ThumbPos. If ThumbPos is outside the 
present range of the scroll bar, the thumb is moved to the closest position within range. 

See also TScrollBar::GetPosition 

SetRange 
virtual void SetRange(int min, int max); 
Sets the scroll bar to the range between min and max. 

See also TScrollBar::GetRange 

Transfer 
uint Transfer(void* buffer, TTransferDirection direction); 

Chapter 2, Objec!Windows library reference 393 



TScrollBarData struct 

Transfers scroll bar data to or from the transfer buffer pointed to by buffer. buffer is 
expected to point to a TScrollBarData structure. 

Data is transferred to or from the transfer buffer if tdGetData or tdSetData is supplied as 
the direction. 

Transfer always returns the size of the transfer data (the size of the. TScrollBarData 
structure). To retrieve the size of this data without transferring data, pass tdSizeData as 
the direction. 

See also TScrollBarData struct 

Protected member functions 
GetClassName 
char fa(k GetClassName(); 
Returns the name of TScrollBar's registration class, "SCROLLBAR". 

SetupWindow 
void SetupWindow(); 
Sets the scroll bar's range to 0, 100. To redefine this range, call SetRange. 

See also TScrollBar::SetRange 

Response table entries 

EV _WM_HSCROLL EvHScroll 

EV _WM_ VSCROLL EvVScroll 

TScrollBarData struct scrollba.h 

The TScrollBarData structure contains integer values that represent a range of thumb 
positions on the scroll bar. TScrollBar's function GetRange calls TScrollBarData to obtain 
the highest and lowest thumb positions on the scroll bar. GetPosition calls TScrollBarData 
to obtain the current thumb position on the scroll bar. 

See also 
TScrollBar::Transfer 

Public data members 
High Value 
int HighValue; 
Contains the highest value of the thumb position in the scroll bar's range. 

See also TScrollBar::GetRange 

394 ObjectWindows Reference Guide 



LowValue 
int LowValue; 
Contains the lowest value of thumb position in the scroll bar's range. 

See also TScrollBar::GetRange 

Position 
int Position; 
Contains the scroll bar's thumb position. 

See also TScrollBar::GetPosition 

TScroller class 

TScroller class 

scroller.h 

TScroller supports an automatic window-scrolling mechanism (referred to as 
autoscrolling) that works in conjunction with horizontal or vertical window scroll bars 
(it also works if there are no scroll bars). When autoscrolling is activated, the window 
automatically scrolls when the mouse is dragged from inside the client area of the 
window to outside that area. If the AutoMode data member is true, TScroller performs 
autoscrolling. 

To use TScroller, set the Scroller member of your TWindow descendant to a TScroller 
object instantiated in the constructor of your TWindow descendant. TScroller is a 
streamable class. 

Public data members 

Auto Mode 
bool AutoMode; 
Is true if automatic scrolling is activated. 

AutoOrg 
bool AutoOrg; 
Is true if scroller offsets original. 

HasHScrollBar, HasVScrollBar 
bool HasHScrollBar, HasVScrollBar; 
Is true if scroller has horizontal or vertical scroll. 

TrackMode 
bool TrackMode; 
Is true if track scrolling is activated. 

Window 
TWindow* Window; 
Points to the window whose client area scroller is to be managed. 

Xline, Yline 
int Xline, Yline; 

Ch apt e r 2 , 0 b j e ct Windows Ii bra r y reference 395 



TScroller class 

Specifies the number of logical device units per line to scroll the rectangle in the 
horizontal (X) and vertical (Y) directions. 

XPage,YPage 
int XPage, YPage; 
Specifies the number of logical device units per page to scroll the rectangle in the 
horizontal (X) and vertical (Y) directions. 

XPos, YPos 
long XPos, YPos; 
Specifies the current position of the rectangle in horizontal (XPos) and vertical (YPos) 
scroll units. 

XRange, YRange 
long XRange, YRange; 
Specifies the number of horizontal and vertical scroll units. 

XUnit, YUnit 
int XUnit, YUnit; 
Specifies the amount (in logical device units) to scroll the rectangle in the horizontal (X) 
and vertical (Y) directions. The rectangle is scrolled right if XUnit is positive and left if 
XUnit is negative. The rectangle is scrolled down if YUnit is positive and up if YUnit is 
negative. 

Public constructor and destructor 
Constructor 
TSeroller(TWindow* window, int xUnit, int yUnit, long xRange, Jong yRange); 
Constructs a TScroller object with window as the owner window, and xUnit, yUnit, 
xRange, and yRange as xUnit, yUnit, xRange and yRange, respectively. Initializes data 
members to default values. HasHScrollBar and Has VScrollBar are set according to the 
scroll bar attributes of the owner window. 

Destructor 
virtual~ TSeroller(); 
Destructs a TScroller object. Sets owning window's Scroller number variable to 0. 

Public member functions 
Auto Scroll 
virtual void AutoSerqll(); 
Scrolls the owner window's display in response to the mouse being dragged from inside 
to outside the window. The direction and the amount by which the display is scrolled 
depend on the current position of the mouse. 

Begin View 
virtual void BeginView(TDC& de, TReet& reel); 
If TScroller _AutoOrg is true (default condition), Begin View automatically offsets the 
origin of the logical coordinates of the client area by XPos, YPos during a paint 

396 0 b j e c I W i n d o w s R e f e r e n c e G u i d e 



TScroller class 

operation. If AutoOrg is false (for example, when the scroller is larger than 32,767 units), 
you must set the offset manually. 

EndView 
virtual void EndView(); 
Updates the position of the owner window's scroll bars to be coordinated with the 
position of the TScroller. 

HScroll 
virtual void HScroll(uint scrollEvent, int thumbPos); 
Responds to the specified horizontal scrollEvent by calling ScrollBy or ScrollTo. The type 
of scroll event is identified by the corresponding SB_ constants. thumbPos contains the 
current thumb position when the scroller is notified of SB_1HUMBTRACK and 
SB_THUMBPOSIDON scroll events. 

lsAutoMode 
virtual bool lsAutoMode(); 
IsAutoMode is true if automatic scrolling is activated. 

See also TScroller::AutoMode 

lsVisibleRect 
bool lsVisibleRect(long x, long y, int xExt, int yExt); 
Is true if the rectangle (x, y, xExt, and yExt) is visible. 

SetPageSize 
virtual void SetPageSize(); 
Sets the XPage and YPage data members to the width and height (in XUnits and YUnits) 
of the owner window's client area. 

See also TScroller::XPage, YPage, TScroller::XUnit, YUnit 

SetRange 
virtual void SetRange(long xRange, long yRange); 
Sets the xRange and yRange of the TScroller to the parameters specified. Then calls 
SetSBarRange to synchronize the range of the owner window's scroll bars. 

See also TScroller::SetSBarRange 

SetSBarRange 
virtual void SetSBarRange(); 
Sets the range of the owner window's scroll bars to match the range of the TScroller. 

SetUnits 
virtual void SetUnits(int xUnit, int yUnit); 
Sets the XUnit and YUnit data members to TheXUnit and TheYUnit, respectively. 
Updates XPage and YPage by calling SetPageSize. 

See also TScroller::XPage, YPage, TScroller::XUnit, YUnit 

Scroll By 
void ScrollBy(long dx, long dy); 

Chapter 2, ObjectWindows library reference 397 



TSeparatorGadget class 

Scrolls to a position calculated using the passed delta values (dx and dy). A positive delta 
position moves the thumb position down or right. A negative delta position moves the 
thumb up or left. 

ScrollTo 
virtual void ScrollTo(long x, long y); 
Scrolls the rectangle to the position specified in x and y. 

SetWindow 
void SetWindow(lWindow* win); 
Sets the owning window to win. 

VScroll 
virtual void VScroll(uint scrollEvent, int thumbPos); 

Responds to the specified vertical scrollEvent by calling ScrollBy or ScrollTo. The type of 
scroll event is identified by the corresponding SB_ constants. thumbPos contains the 
current thumb position when the scroller is notified of SB_THUMBTRACK and 
SB_THUMBPOSIDON scroll events. 

See also TScroller::ScrollTo 

XScrollValue 
int XScrollValue(long rangeUnit); 
XScrollValue converts a horizontal range value from the scroll bar to a horizontal scroll 
value. 

See also TScroller::YScrollValue 

XRangeValue 
int XRangeValue(int scrollUnit); 
XRangeValue converts a horizontal scroll value from the scroll bar to a horizontal range 
value. 

See also TScroller::YRangeValue 

YScrollValue 
int YScrollValueQong rangeUnit); 
YScrollValue converts a vertical range value from the scroll bar to a vertical scroll value. 

See also TScroller::XScrollValue 

YRangeValue 
int YRangeValue(int scrollUnit); 
YRangeValue converts a vertical scroll value from the scroll bar to a vertical range value. 

See also TScroller::XRange Value 

TSeparatorGadget class gadget.h 

TSeparatorGadget is a simple class you can use to create a separator between gadgets. To 
do so, you must specify the size of the separator in units of SM_CXBORDER (width of 

398 ObjectWindows Reference Guide 



TSlider class 

the window frame) and SM_CYBORDER (height of the window frame). The right and 
bottom boundaries of the separator are set after calling GetsystemMetrics. By default, the 
separator disables itself and turns off shrink-wrapping. Note that the default border 
style is none. 

See also 
TGadget::TBorderStyle enum 

Public member function 

TSeparatorGadget 
TSeparatorGadget(int size= 6); 
Used for both the width and the height of the separator, size is initialized at 6 border 
units (the width or height of a thin window border). 

TSlider class slider.h 

An abstract base class derived from TScrollBar, TSlider defines the basic behavior of 
sliders (controls that are used for providing nonscrolling, position information). Like 
scroll bars, sliders have minimum and maximum positions as well as line and page 
magnitude. Sliders can be moved using either the mouse or the keyboard. If you use a 
mouse to move the slider, you can drag the thumb position, click on the slot on either 
side of the thumb position to move the thumb by a specified amount (PageMagnitude), or 
click on the ruler to position the thumb at a specific spot on the slider. The keyboard's 
Home and End keys move the thumb position to the minimum (Min) and maximum 
(Max) positions on the slider. 

You can use TSlider' s member functions to cause the thumb positions to automatically 
align with the nearest tick positions. (This is referred to as snapping.) You can also 
specify the tick gaps (the space between the lines that separate the major divisions of the 
X- or Y-axis). 

The sample program SLIDER.CPP on your distribution disk displays the following 
thermostat that uses sliders. 

Horizontal slider 

Maximum position 

Thumb position 

Vertical slider 

Minimum position 

See the two derived classes, THSlider and TVSlider, for specific details about horizontal 
and vertical sliders. 

C h a pt e r 2 , 0 b j e ct W i n d a w s I i b r a r y r e f e r e n c e 399 



TSlider class 

Public constructor and destructor 
Constructor 
TSlider(TWindow* parent, int id, int X, int Y, int W, int H, TResld thumbResld, TModule* module= O); 
Constructs a slider object setting Pas and ThumbRgn to 0, TicGap to Range divided by 10, 
SlotThick to 17, Snap to true, and Sliding to false. Sets Attr. Wand Attr.H to the values in X 
and Y. ThumbResld is set to thumbResld. 

Destructor 
-TSlidur(); 
Destructs a TSlider object and deletes ThumbRgn. 

Publi~ member functions 
GetPosition 
int GetPosition() const; 
Returns the slider's current thumb position. Overloads TScrollBar's virtual function. 

See also TSlider::SetPosition 

GetRange 
void GetRange(int &min, int &max) const; 
Returns the end values of the present range of slider thumb positions in min and max. 
Overloads TScrollBar' s virtual function. 

See also 1 Slider::SetRange 

SetPosition 
void SetPosition(int thumbPos); 
Moves the thumb to the position specified in thumbPos. If thumbPos is outside the 
present range of the slider, the thumb is moved to the closest position within the 
specified range. Overloads TScrollBar' s virtual function. 

See also TSlider::GetPosition 

SetRange 
void SetRange(int min, int max); 
Sets the slider to the range between min and max. Overloads TScrollBar' s virtual 
function. ' 

See also TSlider::GetRange 

SetRuler 
void SetRuler(int ticGap, bool snap = false); 
Sets the slider's ruler. Each slider has a built-in ruler that is drawn with the slider. The 
ruler, which can be blank or have tick marks on it, can be created so that it forces the 
thumb to snap to the tick positions automatically. 

400 ObjectWindo'.iS Reference Guide 



TSlider class 

Protected member functions 
EvEraseBkgnd 
bool EvEraseBkgnd(HDC hDC); 
Responds to a WM_ERASEBKGND message and erases the background of the slider 
when the slider is changed. Calls the virtual functions PaintRuler, PaintSlot, and 
PaintThumb to paint the components of the slider. To avoid flickering, EvEraseBkgnd is 
called to erase the background as the painting occurs. 

See also TSlider::EvPaint 

EvGetDlgCode 
uint EvGetDlgCode(MSG far* msg); 
Responds to a WM_GETDLGCODE message and let the dialog manater control the 
response to a DIRECTION key or TAB key input. Captures cursor-movement keys to 
move the thumb by returning a DLGC_ WANT ARROWS message, which indicates that 
direction keys are desired. The msg parameter indicates the kind of message, for example 
a a control or a command message, sent to the dialog box manager. 

EvGetDlgCode returns a code that indicates how the control message is to be treated. 

See also TButton::EvGetDlgCode, TWindow::DefaultProcessing, DLGC_xxxx dialog 
control message constants 

EvKeyDown 
void EvKeyDown(uint key, uint repeatCount, uint flags); 
Ev Key Down translates the virtual key code into a movement and then moves the thumb. 
key indicates the virtual key code of the pressed key, repeatCount holds the number of 
times the same key is pressed, and flags contains one of the following messages, which 
translate to virtual key (VK) codes: 

SB_pAGEUP 

SB_pAGEOOWN 

SB_BOITOM 

SB_TOP 

SB_LINEUP 

SB_LINEUP 

SB_LINEOOWN 

SB_LINEOOWN 

EvKillFocus 

VK:_pRIOR 

VK_NEXT 

VK_END 

VK_HOME 
VK_LEFI(same as SB_LINELEFT) 

VK_UP 

VK_RIGHT(same as SB_LINERIGHT) 

VK_OOWN 

void EvKillFocus(HWND hWndGetFocus); 
In response to a WM_KILLFOCUS message sent to a window that is losing the 
keyboard, EvKillfocus hides and then destroys the caret. 

EvLButtonDblClk 
void EvLButtonDblClk(uint modKeys, TPoint& point); 

Chapter 2, ObjectWindows library reference 401 



TSlider class 

Responds tb a WM_LBUITONDBLCLK message (which indicates the user double­
clicked the left mouse button), then throws away the messages so the base class doesn't 
receive them. · 

EvLButtonDown 
void EvLButtonDowh(uint modKeys, TPoint& point); 
Responds to a mouse press by positioning the thumb or beginning a mouse drag. If the 
mouse is pressed down while it is over the thumb, EvLButtonDown enters sliding state. 
If the mouse is in the slot, EvLButtonDown pages up or down. If the mouse is on the 
ruler, EvLButtonDown jumps to that position. EvLButtonDown generates a scroll code of 
SB_THUMBPOSITION, SB_LINEUP, SB_LINEDOWN, SB_PAGEUP, 
SB_PAGEOOWN, SB_THUMBTRACK. 

See also TSlider::EvLButtonUp 

EvLButtonUp 
void EvLButtonUp(uint modKeys, TPoint& point); 
If the mouse button is released, EvLButtonUp ends sliding, paging, or jumping to a 
position on the ruler. 

See also TSlider::EvLButtonDown 

EvMouseMove 
void EvMouseMove(uint modKeys, TPoint& point); 
Moves the mouse to the indicated position. If the mouse is being dragged, EvMouseMove 
positions the thumb and sends the appropriate message to the parent window. 

EvPaint 
void EvPaint(); 
Paints the entire slider-ruler, slot, and thumb. Calls the virtual functions PaintRuler, 
PaintSlot, and PaintThumb to paint the components of the slider. 

See also TSlider::EvEraseBkgnd 

EvSetFocus 
void EvSetFocus(HWND hWndlostFocus); 
Creates a blinking caret to show the focus in the current window. 

EvSize 
void EvSize(uint sizeType, TSize& size); 
Recalculates the size of the slider when the window size is changed. 

GetBkColor 
void GetBkColor(TDC& de); 
Sends a WM_CTLCOLOR message to the parent and calls dc::GetBkColor to extract the 
background color for the slider. 

HitTest 
virtual int HitTest(TPoint& point)= O; 
Gets information about where. a given X, Y location falls on the slider. The return value 
is in scrollCodes. Each of the derived classes performs comparisons to return a scroll 
code. 

402 ObjectWindows Reference Guide 



See also TSlider::NotifyParent 

NotifyParent 
virtual void NolifyParent(int serollCode, int pos=O) = O; 

TSlider class 

Sends a WS_HSCROLL or WS_ VSCROLL message to the parent window. 

See also TVSlider::HitTest 

PaintRuler 
virtual void PaintRuler(TDC& de) = O; 
Paints the ruler. It is assumed that the slot or thumb do not overlap the ruler. 

PaintSlot 
virtual void PaintSlot(TDC& de) = O; 
Paints the slot in which the thumb slides. 

PaintThumb 
virtual void PaintThumb(TDC& de); 
Paints the thumb itself using a resource DIB translated to the current system button 
colors and which overlaps the slot. 

PointToPos 
virtual int PointToPos(TPoint& point) = O; 
Translates an X, Y point to a position in slider units. 

See also TSlider::PosToPoint 

PosToPoint 
virtual TPoint PosToPoint(int pos) = O; 
Translates a position in slider units to an X, Y point. 

See also TSlider::PointToPos 

SetupThumbRgn 
virtual void SetupThumbRgn(); 
Creates the region that defines the thumb shape for this slider class. Although the 
default region is a simple bounding rectangle, it can be any shape. While the slider 
thumb is being moved, this region is used for testing the mouse position and updating 
the thumb position. 

See also TSlider::ThumbRgn 

Setup Window 
void SetupWindow(); 
Calls TScrollBar::SetupWindow and SetupThumbRgn to set up the window. 

See also TScrollBar::SetupWindow 

Slide Thumb 
virtual void SlideThumb(TDC& de, int thumbPos); 
Slides the thumb to a given position and performs the necessary blitting and painting. 

SnapPos 
int SnapPos(int pos); 

Chapter 2, ObjectWindows library reference 403 



TSlider class 

Constrains pas so it is in the range from Min to Max and (if snapping is enabled) 
performs snapping by rounding pas to the nearest TicGap. 

See also TSlider::TicGap 

Protected data members 

BkColor 
TColor BkColor; 
Stores the background color of the slider. 

CaretRect 
TRect CaretRect; 
Refers to the position of the caret's rectangle. 

Max 
int Max; 
Contains the maximum value of the slider position. 

Min 
int Min; 
Contains the minimum value of the slider position. 

MouseOffset 
static TSize MouseOffset; 
MauseOffset shows the offset from the rectangle's original top left position to the position 
where the mouse is clicked. Thus, when the rectangle is moved, it can maintain the same 
relationship to the position of the mouse click 

Pos 
int Pos; 
Indicates where the thumb is positioned on the slider. 

See also TSlider::GetPosition 

Range 
uint Range; 
Contains the difference between the maximum and minimum range of the slider. 

Slide DC 
static TDC* SlideDC; 
SlideDC is used while the mouse is down and the thumb is sliding. It reflects the 
movement of the mouse on the DC. 

Sliding 
bool Sliding; 
Sliding is true if the thumb is sliding. Otherwise, false. 

SlotThick 
int SlotThick; 
Indicates the thickness of the slot. Set to 17 by default. 

404 ObjectWindows Reference Guide 



THSlider class 

Snap 
bool Snap; 
Snap is true if snapping is activated; otherwise false. 

ThumbRect 
TRect ThumbRect; 
Holds the thumb's bounding rectangle. 

ThumbResld 
TResld ThumbResld; 
ThumbResid is the bitmap resource ID for the thumb knob. 

ThumbRgn 
virtual void SetupThumbRgn(); 
Creates the region that defines the thumb shape for this slider class. Although the 
default region is a simple bounding rectangle, it can be any shape. While the slider 
thumb is being moved, this region is used for testing the mouse position and updating 
the thumb position. 

See also TSlider::ThumbRgn 

TicGap 
int TicGap; 
Specifies the amount of space in pixels between ticks. 

Response table entries 

EV _WM_ERASEBKGND 

EV_WM_GETDLGCODE 

EV _WM_KEYDOWN 

EV _WM_KILLFOCUS 

EV _WM_LBUTIONDBLCLK 

EV _WM_LBUTIONDOWN 

EV _WM_LBUTIONUP 

EV _WM_MOUSEMOVE 

EV_WM_PAINT 

EV _WM_SETFOCUS 

EV_WM_SIZE 

THSlider class 

EvEraseBkgnd 

EvGetDlgCode 

EvKeyDown 

EvKil!Focus 

EvLButtonDblClk 

EvLButtonDown 

EvLButtonUp 

EvMouseMove 

Ev Paint 

EvSetFocus 

EvSize 

slider.h 

Derived from TSlider, THSlider provides implementation details for horizontal sliders. 
See TSlider for an illustration of a horizontal slider. 

Chapter 2, ObjectWindows library reference 405 



THSlider class 

Public constructors 
Constructors 
THSlider(TWindow* parent, int id, int X, int Y, int W, int H, TResld thumbResld = IDB_ HSLIDERTHUMB, 

TModule* module= O); 
Constructs a slider object with a default bitmap resource ID of IDB _HSLIDERTHUMB 
for the thumb knob. 

Protected member functions 
HitTest 
int HitTest(TPoint& point); 
Overrides TSlider's virtual function and gets information about where a given X, Y 
location falls on the slider. The return value is in scrollCodes. 

See also TSlider::HitTest 

NotifyParent 
void NotifyParent(int scrollCode, int pos=O); 
Overrides TSlider's virtual function and sends a WS_HSCROLL message to the parent 
window. 

See also TSlider::NotifyParent 

PaintRuler 
void PaintRuler(TDC&); 
Overrides TSlider's virtual function and paints the horizontal ruler. 

See also TSlider::PaintRuler 

PaintSlot 
void PaintSlot(TDC&); 
Overrides TSlider's virtual function and paints the slot in which the thumb slides. 

See also TSlider::PaintSlot 

PointToPos 
int PointToPos(TPoint& point); 
Overrides TSlider's virtual function and translates an X,Ypoint to a position in slider 
units. 

See also TSlider::PointToPos 

PosToPoint 
TPoint PosToPoint(int pos); 
Overrides TSlider's virtual function and translates a position in slider units to an X, Y 
point. 

See also TSlider::PosToPoint 

406 ObjectWindows Reference Guide 



TVSlider class 

TVSlider class slider.h 

Derived from TSlider, TVSlider provides implementation details for vertical sliders. See 
TSlider for an illustration of a vertical slider. 

Public constructor 
Constructor 
TVSlider(TWindow* parent, int id, int X, int Y, int W, int H, TResld thumbResld = IDB VSLIDERTHUMB, 

TModule* module= O); -
Constructs a vertical slider object with a default bitmap resource ID of 
IDB_ VSLIDERTHUMB for the thumb knob. 

Protected member functions 
HitTest 
int HitTest(TPoint& point); 
Overrides TSlider's virtual function and gets information about where a given X, Y 
location falls on the slider. The return value is in scrollCodes. 

See also TSlider::HitTest 

NotifyParent 
void NotifyParent(int serollCode, int pos=O); 
Overrides TSlider's virtual function and sends a WS_ VSCROLL message to the parent 
window. 

See also TSlider::NotifyParent 

PaintRuler 
void PaintRuler(TDC& de); 
Overrides TSlider's virtual function and paints the vertical ruler. 

See also TSlider::PaintRuler 

PaintSlot 
void PaintSlot(TDC& de); 
Overrides TSlider's virtual function and paints the slot in which the thumb slides. 

See also TSlider::PaintSlot 

PointToPos 
int PointToPos(TPoint& point); 
Overrides TSlider's virtual function and translates an X, Y point to a position in slider 
units. 

See also TSlider::PointToPos 

PosToPoint 
TPoint PosToPoint(int pos); 

Chapter 2, ObjectWindows library reference 407 



TSortedStringArray class 

. . ' 
Overrides TSlider's virtual function arid translates a position in slider units to an X, Y 
point. 

See also TSlider::PosToPoint 

TSortedStringArray class validate.h 

Implements a list of ASCII characters stored as a sorted array of elements that are string 
objects. TSortedStringArray can perform many of the string manipulation functions, such 
as adding and removing elements ~om the array, and provides many of the common 
C++ functions implemented by container classes. 

See also 
TV alidator class, TLookup Validator class 

Public constructor 
Constructor 
TSortedStringArray(int upper, int lower, int delta); 
Constructs a TSortedStringArray object with an upper boundary of upper, a lower 
boundary of lower, and a growth delta of delta. 

Type definitions 
void 
typedef void (*lterFunc)(string&, void*); 
Function type used as a parameter to the ForEach member function. 

int 
typedef int (*CondFunc)(const string&, void*); 
Function type used as a parameter to the FirstThat and LastThat member functions. 

Public member functions 
Add 
int Add(const string& t); 
Adds an element to the array at tht:j next available index position. Adding an element 
beyond the upper boundary leads to an overflow condition. If this condition occurs and 
the growth delta, delta, (from the constructor) is nonzero, the array is expanded (by 
sufficient multiples of delta bytes) to accommodate the addition. If delta is zero, Add fails. 
Add returns 0 if the object could not be added. 

ArraySize 
unsigned ArraySize() const; 
Returns the size of the array. 

408 ObjectWindows Reference Guide 



TSortedStringArray class 

Destroy 
Form 1 int Destroy(const string& t); 

Removes the element specified by t and deletes it. 

Form 2 int Destroy(int Joe); 
Removes an element from the array at the specified index location, lac, and deletes it. 

Detach 
Form 1 int Detach(const string& t); 

Removes the specified element from the array. Returns 1 if successful; otherwise, 
returns 0. 

Form 2 int Detach(int Joe); 
Removes an element from the array at the specified index location, lac. Returns 1 if 
successful; otherwise, returns 0. 

Find 
int Find(const string& t) cons!; 
Finds the first element represented by t and returns the index where the element is 
located. 

FirstThat 
string* Firs!That(CondFunc cond, void* args) const; 
Returns a pointer to the first element in the array that satisfies a specified condition. cond 
is the test function pointer that returns true for a specified condition. args contains the 
various arguments passed. Returns 0 if no element in the array satisfies the given 
condition. Because FirstThat creates its own internal iterator, you can use it as a search 
function also. 

Flush 
void Flush(); 
Removes all elements from the array without destroying the array itself. 

ForEach 
void ForEach(lterFunc iter, void* args); 
Creates an internal iterator to execute the specified function, iter, for each element in the 
array. Use the args argument to pass various kinds of data to this function. 

GetltemslnContainer 
unsigned GetltemslnContainer() const; 
Returns the number of elements in the array. 

Has Member 
int HasMember(const string& I) const; 
Returns 1 if the element specified by t exists in the array; otherwise returns 0. 

lsEmpty 
int lsEmpty() const; 
Returns 1 if the array is empty; otherwise, returns 0. 

lsFull 
int lsFull() cons! 

Chapter 2, ObjectWindows library reference 409 



TStatic class 

Returns 1 if the array is full; otherwise, returns 0. 

LastThat 
string* LastThat(CondFunc cond, void* args) cons!; 
Returns a pointer to the last element in the array that satisfies a specified condition. eond 
is the test function pointer that returns true for a specified condition. args contains the 
various arguments passed. Returns 0 if no element in the array satisfies the given 
condition. Because LastThat creates its own internal iterator, you can use it as a search 
function also. 

LowerBound 
int LowerBound() cons!; 
Returns the array's lower boundary. 

operator[] 
Form 1 string& operator a (int loc); 

Returns a reference to the element at the location specified by Zoe. This Version resizes 
the array if it is necessary to make Zoe a valid index. 

Form 2 string& operator a (int loc) cons!; 
Returns a reference to the element at the location specified by Zoe. This version throws an 
exception in the debugging version on an attempt to index out of bounds. 

UpperBound 
int UpperBound() cons!; 
Returns the array's upper boundary. 

TStatic class static.h 

A TStatie is an interface object that represents a static text interface element. Static 
elements consist of text or graphics that the user does not change. An application, 
however, can modify the static control. You must use a TStatie object, for example, to 
create a static control that's used to display a text label such as a copyright notice in a 
parent TWindow. TStatie can also be used to make it easier to modify the text of static 
controls in TDialogs. See the sample program in the EXAMPLES\ OWL \OWLAPI\ 
STA TIC directory for an example of a static control. 

Public data members 
Text Len 
uint Textlen; 
TextLen holds the size of the text buffer for static controls. The number of characters that 
can actually be stored in the static control is one less than TextLen because of the null 
terminator on the string. TextLen is also the number of bytes transferred by the Transfer 
member function. 

410 0 bj ectWi n d ows Ref er en ce Guide 



TStatic class 

Public constructors 

Constructors 
Form 1 TStatic(TWindow* parent, int id, const char far* title, int x, int y, int w, int h, uint textlen = 0, 

TModule* module= O); 
Constructs a static control object with the supplied parent window (parent), control ID 
(Id), text (title), position (x, y) relative to the origin of the parent window's client area, 
width (w), height (h), and default text length (textLen) of zero. By default, the static 
c6ntrol is visible upon creation and has left-justified text. (set to WS_CHILD I 
WS_ VISIBLE I WS_GROUP I SS_LEFT.) Invokes a TControl constructor.You can 
change the default style of the static control by via the control object's constructor. 

Form 2 TStatic(TWindow* parent, int resourceld, uint textlen = 0, TModule* module= O); 
Constructs a TStatic object to be associated with a static control interface control of a 
TDialog. Invokes the TControl constructor with similar parameters then sets TextLen to 
textLen. Disables the data transfer mechanism by calling DisableTransfer. The resourceid 
parameter must correspond to a static control resource that you define. 

See also TControl::TControl 

Public member functions 

Clear 
virtual void Clear(); 
Clears the text of the associated static control. 

GetText 
int GetText(char far* str, int maxChars); 
Retrieves the static control's text, stores it in the str argument of maxChars size, and 
returns the number of characters copied. 

GetTextlen 
int GetTextlen(); 
Returns the length of the static control's text. 

SetText 
void SetText(const char far* str); 
Sets the static control's text to the string supplied instr. 

Transfer 
uint Transfer(void* buffer, nransferDirection direction); 
Transfers TextLen characters of text to or from a transfer buffer pointed to by buffer. If 
direction is tdGetData, the text is transferred to the buffer from the static control. If 
direction is tdSetData, the static control's text is set to the text contained in the transfer 
buffer. Transfer returns TextLen, the number of bytes stored in or retrieved from the 
buffer. If direction is tdSizeData, Transfer returns TextLen without transferring data. 

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 411 



TS!atus class 

Protected member functions 

EvSize 
void EvSize (uint sizeType, TSize& size); 
Overrides TWindow's virtual function. When the static control is resized, EvSize ensures 
it's also repainted. 

GetClassName 
virtual char far* GetClassName(); 
Returns the name of TStatic's registration class (STATIC), or returns STATIC_ CLASS if 
BWCC is enabled. 

Response table entries 

EV_WM_SIZE EvSize 

TStatus class except.h 

Used primarily for backward compatibility with previous versions of ObjectWindows, 
TStatus is used by TModule and TWindow to indicate an error in the initialization of an 
interface object. If Status is set to a nonzero value, a TXCompatibility exception is thrown. 

See also 
TModule::Status, TWindow::Status 

Public constructor 

Constructor 
TStatus(); 
Constructs a TStatus object and initializes the status code to 0. 

Public data members 

operator= 
TStatus& operator =(int statusCode); 
Sets the status code and throws a TXCompatibility exception. 

operator intO 
operator int() const; 
Returns the status code. 

412 0 b j e ct W i n d ow s R e f e re n c e G u i d e 



TStatusBar class 

TStatusBar class statusba.h 

TStatusBar provides support for status bars, inserted gadgets, hint text, and keyboard 
modes. In contrast to plain message bars, status bars provide several display options. 
ObjectWindows status bars let you include multiple text gadgets (the text on the left of 
the status bar) and different border styles. You can also reserve space for mode 
indicators (the text that displays the program's current state, such as extended selection 
(of keys and other modes), Capslock, Numlock, Scrol/Lock, Overtype, and macro recording). 
By default, ObjectWindows uses these virtual key codes and displays the following 
strings for the indicated enabled modes: 

Mode 
Extended 

Caps Lock 

NumLock 

ScrollLock 

Overtype 

Macro recording 

VK_CAPITAL 

VK_NUMLOCK 

VK_SCROLL 

VK_INSERT 

Textdis,p~it:J!i~cl: 

EXT 

CAPS 

NUM 

SCRL 

OVR 

REC 

TStatusBar creates text gadgets for the mode indicators you request and adjusts the 
spacing between mode indicators. The TSpacing struct stores spacing and layout unit 
constraints. 

Like other control bars, the status bar is constructed and destroyed at the same time as 
its parent's window, but this is not a required procedure. 

The following program statements show how to construct a status bar and insert it at 
the bottom of the window. 

TStatusBar* sb =new TStatusBar(O, TGadget_Recessed, 
TStatusBar_CapsLock I TStatusBar_NumLock I TStatusBar_Overtype); 

frame->Insert(*sb, TDecoratedFrame: :Bottom); 
MainWindow = frame; 

See the MDIFILE.CPP sample program on your distribution disk for an example of how 
to create a window with a status bar. 

Type definitions 
TModelndicator 
enum TModelndicator {ExtendSelection = 1, Capslock = 1 « 1, Numlock = 1 « 2, Scrolllock = 1 « 3, 

Overtype = 1 « 4, RecordingMacro = 1 « 5}; 
Enumerates the keyboard modes. By default, these are arranged horizontally on the 
status bar from left to right. Sets the extended selection, Capslock, Numlock, Scrol/Lock, 
Overtype, and recording macro indicators. 

Ch apter 2, 0 b j e c I Windows Ii bra r y reference 413 



TStatusBar class 

Public constructor 

Constructor 
TStatusBar(TWindow* parent = 0, TGadget_ TBorderStyle borderStyle = TGadget_ Recessed, 

uint modelndicators = 0, TFont* font = new TGadgetWindowFont, TModule* module = O); 
Constructs a TStatusBar object in the parent window and creates any new gadgets and 
mode indicator gadgets. Sets BorderStyle to borderStyle, Modelndicators to modelndicators, 
and NumModelndicators to 0. borderStyle can be any one of the value of theBorderStyle 
enum (for example, plain, raised, recessed, or embossed). The parameter mode 
indicators can be one of the values of the TModelndicator enum, such as CapsLock, 
NumLock, ScrollLock, or Overtype. The parameter font points to a font object that 
contains the type of fonts used for the gadget window. The parameter, module, which 
defaults to 0, is passed to the base TWindow's constructor in the module parameter. Sets 
the values of the margins and borders depending on whether the gadget is raised, 
recessed, or plain. 

Public member functions 

GetModelndicator 
bool GetModelndicator(TModelndicator i) const; 
Returns the current status bar mode indicator. 

Insert 
void lnsert(TGadget& gadget, TPlacement =After, TGadget* sibling = O); 
Inserts the gadget (objects derived from class TGadget) in the status bar. By default, the 
new gadget is placed just after any existing gadgets and to the left of the status mode 
indicators. For example, you can insert a painting tool or a happy face that activates a 
recorded macro. 

operator[] 
TGadget* operatora(uint index); 
Returns a gadget at a given index, but cannot access mode indicator gadgets. 

SetModelndicator 
void SetModelndicator(TModelndicator, bool state); 
Sets TModelndicator to a given text gadget and set the status (on, by default) of the mode 
indicator. For the mode indicator to appear on the status bar, you must specify the mode 
when the window is constructed. · 

See also TStatusBar::TModelndicator 

SetSpacing 
void SetSpacing(TSpacing& spacing); 
Uses the TSpacing values to set the spacing to be used between mode indicator gadgets. 
TSpacing sets the status-bar margins in layout units. Typically, the message indicator 
(the leftmost text gadget) is left-aligned on the status bar and the other indicators are 
right-aligned. See TLayoutMetrics for an detailed explanation of layout units and 
constraintS. 

struct TSpacing { 

414 ObjectWindows Reference Guide 



}; 

TMargins::TUnits Units; 
int Value; 
TSpacing( I {Units= TMargins::LayoutUnits; Value= 0;} 

See also TStatusBar::TModelndicator 

ToggleModelndicator 
void ToggleModelndicator(TModelndicator); 
Toggles the Modelndicator. 

Protected data members 
BorderStyle 
TGadget:: TBorderStyle BorderStyle; 

TStatusBar class 

One of the enumerated border styles-none, plain, raised, recessed, or embossed-used 
by the mode indicators on the status bar. 

Modelndicators 
uint Modelndicators; 
The Modelndicators bit field indicates which mode indicators have been created for the 
status bar. 

ModelndicatorState 
uint ModelndicatorState; 
Specifies the mode of the status bar. This can be any one of the values of TModelndicator 
enum such as CapsLock, NumLock, ScrollLock, Overtype, RecordingMacro, or 
ExtendSelection. 

NumModelndicators 
uint NumModelndicators; 
Specifies the number of mode indicators, which can range from 1 to 5. 

Spacing 
TSpacing Spacing; 
Specifies the spacing between mode indicators on the status bar. 

Protected member functions 
ldleAction 
bool ldleAction(long); 
If more than one application is running, TStatusBar calls IdleAction instead of 
PreProcessMsg to check the state of the NumLock, CapsLock, or ScrollLock keys and to 
update the mode indicators if they do not reflect the current status of these keys. 

See also TStatusBar::PreProcessMsg 

PositionGadget 
void PositionGadget(TGadget* previous, TGadget* next, TPoint& point); 

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 415 



TStorageDocument class 

Determines the position of the new gadget in relation to any previously existing gadgets 
and uses the Pixels, LayoutUnits, and BorderUnits fields of TMargins to determine the 
amount of spacing to leave between the mode indicators. 

PreProcessMsg 
bool PreProcessMsg(MSG& msg); 
Overrides TWindow::PreProcessMsg to process keyboard messages and update the mode 
indicators when the NumLock, CapsLock, or ScrollLock keys are pressed. 

See also TStatusBar::IdleAction 

TStorageDocument class stgdoc.h 
----

Derived from TDocument, TStorageDocument supplies functionality that supports OLE's 
compound file structure. A compound file structure is a file-management system that 
stores files in a hierarchical structure within a root file. This storage structure is 
analagous to the directory or folder and file scheme used on a disk, except that a 
directory is called a storage and a file is called a stream. 

In addition, TStorageDocument provides support for OLE's compound document 
mechanism. A compound document can store many different kinds of embedded 
objects, for example, spreadsheets as well as bitmaps. 

Basically, TStorageDocument supports having a document read and write its own 
storage. In order to provide this functionality, TStorageDocument overrides several 
virtual methods from TDocument and, following TDocument's strategy, also applies 
property lists both to documents and to their views. In this way, documents can use 
these attributes to read files in from storage and write files out to storage 

Messages are sent to the application, which queries the properties in order to determine 
how to process the document or view. Each derived class must implement its own 
property attribute types-either string 01: binary data. 

See also 
TDocument, TOleDocument 

Type definitions 

TStgDocProp 
enum TStgDocProp {PrevProperty, CreateTime, ModifyTime, AccessTime, StorageSize, IStoragelnstance, 

NextProperty}; 
Enumerates the following constants that define the document's properties: 

PrevProperty 

Create Time 

Modify Time 

Should always have a value of TDocument::NextPraperty- 1. This is the initial value in 
any document's property list. 
The time the file is created. 

The time the file is modified. 

416 ObjectWindows Reference Guide 



Access Time 

StorageSize 

IStoragelnstance 

NextProperty 

The last time the file was accessed. 

The size of the storage buffer. 

The storage instance for the document. 

The final value for any document's list of properties. 

Public constructor and destructor 
Constructor 

TStorageDocument class 

Constructor TStorageDocument(TDocument* parent= O): TDocument(parent), Storagel(O), OpenCount(O), 
CanRelease(false); 

Constructs a TStorageDocument object with the specified TDocument parent window. 
Sets the data members Storage! and OpenCount to 0. Sets CanRelease to false. Later, the 
member function ReleaseDoc sets this flag to true so that the document can be closed. 

Destructor 
N TStorageDocument(); 
Destroys a TStorageDocument object. 

Public member functions 
Close 
bool Close(); 
Releases the !Storage if CanRelease is true. (CanRelease is set to true when ReleaseDoc is 
called.) Before closing the document, Close checks any child documents and tries to close 
them. 

See also TStorageDocument::Open, TStorageDocument::ReleaseDoc, TOutStream, 
ofxxxx document open enum 

Commit 
bool Commit(bool force = false); 
Saves the current data to storage. When a file is closed, the document manager calls 
either Commit or Revert. If force is true, all data is written to storage. TDocument's Commit 
checks any child documents and commits their changes to storage also. Before the 
current data is saved, all child documents must return true. If all child documents return 
true, Commit flushes the views for any operations that occurred since the last time the 
view was checked. Once all data for the document object is updated and saved, Commit 
returns true. 

CommitTransactedStorage 
bool CommitTransactedStorageQ; 

If a file is opened or created in transacted mode, call CommitTransactedStorage to commit 
a document to permanent storage. By default, a document uses transacted instead of 
direct storage. With transacted storage, a document written to !Storage is only temporary 
until it is committed permanently. If a compound file is opened or created in direct 
mode, then CommitTransactedStorage does not need to be called. 

C h apter 2 , 0 b j e ct W i n d ow s I i b r a r y r e f e r e n c e 417 



TStorageDocument class 

Find Property . . 
int FindProperty(const char far* name); 

· Gets the property index, given the property name. Retu~ the integer index number 
that corresponds to the name. If the name isn't found in the list of properties, returns 0. 

See also pfxxxx property attribute constants 

GetProperty 
int GetProperty(int index, void far* dest, int textlen=O); 
Returns the total numb!'lr of properties for this storage document, where index is the 
property index, dest contains the property data, and textlen is the size of the property 
array. If textlen is 0, the property data is returned as binary data; otherwise, the property 
data is returned as text data. 

See also pfxxxx property attribute constants, TStorageDocument::SetProperty 

GetStorage 
!Storage* GetStorage(); 
Returns the document's root /Storage. 

See also TStorageDocument::SetStorage 

In Stream 
TlnStre&m* lnStreamOnt omode, const char far* strmld=O); 
Provides an input stream for the TStorageDocument object. Returns a pointer to a 
TlnStream object. The parameter omode contains a combination of the document open 
and sharing modes (for example, ofReadWrite) defined in docview.h. The strmld 
parameter is used for documents that support named streams. 

See also TStorageDocument::OutStream, TinStream, ofxxxx document open enum 

lsOpen 
bool lsOpen(); 
Checks to see if the storage document has any /Storage created. If there is no storage, 
IsOpen returns false; otherwise, it returns true. 

Open 
bool Open(int omode, const char far* name); 
Opens or creates a document based on !Storage. The name parameter specifies the name 
of the document, if any, to open. The omode parameter contains a combination of the 
document open and sharing modes (for example, ofReadWrite) defined in docview.h. 

See also TStorageDocument::Close, TOutStream, ofxxxx document open enum 

OpenHandle 
virtual bool OpenHandle(int omode, HANDLE hGlobal); 
OpenHandle writes data to a memory block. OpenHandle first creates an ILockBytes (an 
OLE2 interface that implements reading, writing, and locking a series of bytes in a file) 
interface on the global handle and then creates an /Storage based on the ILockBytes 
interface. The parameter omode contains a combination of the document open and 
sharing modes (for example, ofReadWrite) defined in docview.h. 

See also ofxxxx do~ent open enum 

418 ObjectWindows Reference Guide 



TStorageDocument class 

OutStream 
TOutStream* OutStream(int omode, const char far* strmld=O); 
Provides an output stream for a particular storage medium. Returns a pointer to a 
TOutStream. The parameter omode contains a combination of the document open and 
sharing modes (for example, ofReadWrite) defined in docview.h. The strmld parameter is 
used for documents that support named streams. 

See also TStorageDocument::InStream, TOutStream, ofxxxx document open enum 

PropertyCount 
int PropertyCount(); 
Gets the total number of properties for the TStorageDocument object. Returns 
NextProperty -1. 

See also pfxxxx property attribute constants 

Propertyflags 
int PropertyFlags(int index); 
Returns the attributes of a specified property given the index of the property whose 
attributes you want to retrieve. 

See also pfxxxx property attribute constants 

PropertyName 
const char* PropertyName(int index); 
Returns the name of the property given the index value. 

See also pfxxxx property attribute constants 

ReleaseDoc 
virtual bool ReleaseDoc(); 
Releases the storage for the document and doses the document. 

Revert 
bool Revert(bool clear= false); 
Performs the reverse of Commit and cancels any changes made to the storage document 
since the last commit. If clear is true, data is not reloaded for views. Revert also checks all 
child documents and cancels any changes if all children return true. When a file is 
dosed, the document manager calls either Commit or Revert. Revert returns true if the 
revert operation is successful. 

Set Doc Path 
bool SetDocPath(const char far* path); 
Sets the document path for the Open and Save file operations. 

SetProperty 
bool SetProperty(int index, const void far* src); 
Sets the value of the property, given the index of the property, and src, the data type 
(either binary or text) to which the property must be set. 

See also pfxxxx property attribute constants, TStorageDocument::GetProperty 

Chapter 2, ObjectWindows library reference 419 



TStream class 

SetStorage 
I Storage* SetStorage(IStorage* stg); 
Attaches an !Storage pointer (stg) to this document. 

See also TStorageDocument::GetStorage, TStorageDocument::StorageI 

Protected data members 
ThisOpen 
int ThisOpen; 
Holds the actual mode bits used for opening the storage. The mode bits determine how 
the file is opened: for example, read only, read and write, and so on. 

See also ofxxxx document open enum 

Storage! 
!Storage* Storage!; 
Holds the current !Storage instance. (If no storage is open, Storage! is 0.) 

See also TStorageDocument::GetStorage, TStorageDocument::SetStorage 

TStream class docview.h 

An abstract base class, TStream provides links between streams and documents, views, 
and document files. 

Public destructor 
Destructor 
NTStream(); 
Closes the stream. Derived classes generally close the document if it was opened 
especially for this stream. 

Public member functions 
GetDocument 
TDocument& GetDocument(); 
Returns the current document open for streaming. 

GetOpenMode 
int GetOpenMode(); 
Gets mode flags used when opening document streams. For example, the stream can be 
opened in ofRead mode to allow reading, but not changing (writing to) the file. 

See also ofxxxx document open enum 

GetStreamName 
canst char far* GetStreamName(); 

420 0 b j e ct W i n d ow s R e f e r e n c e G u i d e 



TStringlookupValidator class 

Gets the name of the stream used for opening the document. 

Protected data members 
Doc 
TDocument& Doc; 
Stores the document that owns this stream. 

NextStream 
TStream* NextStream; 
Points to the next stream in the list of active streams. 

Protected constructor 
Constructor 
TStream(TDocument& doc, canst char far* name,int mode); 
Constructs a TStream object. doc refers to the document object, name is the user-defined 
name of the stream, and mode is the mode used for opening the stream. 

See also TlnStream, TOutStream, ofXXXX document open enum, shXXXX document 
sharing enum 

TStringlookupValidator class validate.h 

Derived from TLookupValidator, TStringLookupValidator is a streamable class. A 
TStringLookup Validator object verifies the data in its associated edit control by searching 
through a collection of valid strings. You can use string-lookup validators when your 
edit control needs to accept only members of a certain set of strings. 

Public constructor and destructor 
Constructor 
TStringlookupValidator(TSortedStringArray* strings); 
Constructs a string-lookup object by first calling the constructor inherited from 
TLookupValidator and then setting Strings to strings. 

Destructor 
~ TStringlookupValidator(); 
This destructor disposes of a list of valid strings by calling NewStringList and then 
disposes of the string-lookup validator object by calling the Destructor inherited from 
TLookup Validator. 

Public member functions 
Error 
void Error(); 

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 421 



TSystemMenu class 

Overrides TValidator's virtual function and displays a message box indicating that the 
· typed string does not match an entry in the string list. 

See also TValidator::Error 

Lookup 
bool Lookup(const char far* str); 
Overrides TLookupValidator's virtual function. Returns true if the string passed instr 
matches any of the strings. Uses the search method of the string collection to determine if 
str is present. 

See also TLookupValidator::Lookup 

NewStringList 
void NewStringlist(TSortedStringArray* strings); 
Sets the list of valid input string for the string-lookup validator. Disposes of any existing 
string list and then sets Strings to strings. 

Protected data member 
Strings 
TSortedStringArray* Strings; 
Points to a string collection containing all the valid strings the user can type. If Strings is 
NULL, all input is validated. 

TSystemMenu class menu.h 

TSystemMenu creates a system menu object that then becomes the existing system menu. 

Public constructor 
Constructor 
TSystemMenu(HWND wnd, bool revert= false); 
Constructs a system menu object. If revert is true, then the menu created is a default 
system menu. Otherwise, it is the menu currently in the window. 

See also TPopupMenu::TPopupMenu 

TTextGadget class textgadg.h 

Derived from TGadget, TTextGadget is a text gadget object. When you construct a text 
gadget, you must specify how many characters you want to reserve space for and how 
the text should be aligned horizontally. The inner boundaries of the text gadget are 
computed by multiplying the number of characters by the maximum character width. 

422 Objec!Windows Reference Guide 



TTextGadget class 

Public constructor and destructor 
Constructor 
TTextGadget(int id= 0, TBorderStyle =Recessed, TAlign =Left, uint numChars = 10, const char* text= O); 
Constructs a TTextGadget object with the specified ID, border style, and alignment. Sets 
Margins.Left and Margins.Right to 2. Sets Text and TextLen to 0. 

Destructor 
N TT extGadget(); 
Destroys a TTextGadget object. 

Public member functions 
GetText 
char* GetText(); 
Returns the text for the gadget. 

SetText 
void SetText(const char* text); 
If the text stored in Text is not the same as the new text, SetText deletes the text stored in 
Text. Then, it sets TextLen to the length of the new string. If no text exists, it sets both Text 
and TextLen to 0 and then calls Invalidate to invalidate the rectangle. 

Protected data members 
Align 
TAlign Align; 
Text alignment attribute-left-, center-, or right-aligned. 

NumChars 
uint NumChars; 
Holds the number of text characters. 

Text 
char* Text; 
Points to the text for the gadget. 

Text Len 
uint Textlen; 
Stores the length of the text. 

Protected member functions 
GetDesiredSize 
void GetDesiredSize(TSize &size); 
If shrink-wrapping is requested, GetDesiredSize returns the size needed to accommodate 
the borders, margins, and text; otherwise, if shrink-wrapping is not requested, it returns 
the gadget's current width and height. 

Chapter 2, ObjectWindows library reference 423 



Type definitions 

See also TGadget::GetDesiredSize 

Invalidate 
void Invalidate(); 
Calls TGadget::GetinnerRect to compute the area of the text for the gadget and then 
TGadget::InvalidateRect to invalidate the rectangle in the parent window. 

See also TGadget::GetlnnerRect, TGadget::Invalidate 

Paint 
void Paint(TDC& de); 
Calls TGadget::PaintBorder to paint the border. Calls TGadget::GetinnerRect to calculate 
the area of the text gadget's rectangle. If the text is left-aligned, Paint calls 
dc.GetTextExtent to compute the width and height of a line of the text. To set the 
background color, Paint calls dc.GetSysColor and sets the default background color to 
face shading (COLOR_BTNFACE). To set the button text color, Paint calls 
dc.SetTextColor and sets the default button text color to COLOR_BTNTEXT. To draw the 
text, Paint calls dc.ExtTextOut and passes the parameters ETO_CLIPPED (so the text is 
clipped to fit the rectangle) and ETO_OPAQUE (so the rectangle is filled with the 
current background color). 

See also TGadget::Paint 

Type definitions gadgetwi.h 

TTileDirection 
enum TiileDirection{Horizontal, Vertical}; 
Enumerates the two directions the gadget can be tiled. TGadgetWindow::TileGadgets 
actually tiles the gadgets in the direction requested. 

See also TGadgetWindow::Direction, TGadgetWindow::TileGadgets 

TAlign 
enum TA!ign {Left, Center, Right}; 
Enumerates the text-alignment attributes. Left aligns the text at the left edge of the 
bounding rectangle. Right aligns the text at the right edge of the bounding rectangle. 
Center aligns the text horizontally at the center of the bounding rectangle. 

TTinyCaption class tinycapt.h 

Derived from TWindow, TTinyCaption is a mix-in class that handles a set of non-client 
events to produce a smaller caption bar for a window. Whenever it displays the caption 
bar, TTinyCaption checks the window style and handles the WS_SYSMENU, 
WS_MINIMIZEBOX, WS_MAXIMIZEBOX display attributes. Thus, you can use 
TTinyCaption to set the attributes of the tiny caption bar before enabling the caption. For 
example, 

Attr.St:yle = TJIB_KRJP I W3_B:HER I W3_SYEMENU I W3_MINIMIZEBJX I W3_M\XIMIZEBJX; 

424 0 b j e ct Windows Re I ere n c e Guide 



TTinyCaption class 

TTinyCaption provides functions that let you manipulate frame types, border styles, and 
menus. You can adjust the height of the caption bar or accept the default height, which 
is about one-half the height of a standard caption bar. If you set CloseBox to true, then the 
window will close when you click the close box instead of displaying the system menu. 

The sample program OWLCMD.CPP on your distribution disk displays the following 
tiny caption bar: 

Close Box List Box Minimize Box 

~··\·~··i•••m,::OOEi!m@am11WM~DIM~WBSm1:an1 111 
If you are using TTinyCaption as a mix-in class that does partial event handling, call the 
DoXxxx function in the mix-in class (instead of the EvXxxx function) to avoid 
duplicating default processing. The following example from OWLCMD.CPP (a sample 
program on your distribution disk) illustrates this process: 

void TMyFrame::EvSysCommand(uint cmdType,TPoint& p) 
{ 

if (TTinyCaption: :DoSysCommand(cmdType, p) == esPartial) 
FrameWindow::EvSysCommand(cmdType, p); 

The TFLoatingFrame class can be used with TTinyCaption to produce a close box. See the 
sample programs OWLCMD.CPP and MDIFILE.CPP on your distribution disk for 
examples of how to use TTinyCaption. 

Protected data members 

Border 
TSize Border; 
Thin frame border size for dividers. 

Caption Font 
TFont* CaptionFont; 
Font used for the text in the tiny caption bar. 

CaptionHeight 
int CaptionHeight; 
Height of the caption bar. 

CloseBox 
bool CloseBox; 
If true, the window will close when the close box is clicked. 

Down Hit 
uint DownHit; 
Location of mouse-button press or cursor move. 

Frame 
TSize Frame; 

Chapter 2, ObjectWindows library reference 425 



TTinyCaption class 

Actual left and right, top and bottom dimensions of the caption bar. 

lsPressed 
bool lsPressed; 
Is true if a mouse button is pressed. 

TCEnabled 
bool TCEnabled; 
Is true if the tiny caption bar is displayed. 

Waiting ForSysCmd 
bool WaitingForSysCmd; 
Is true if TTinyCaption is ready to receive system messages. 

Protected constructor and destructor 
Constructor 
TTinyCaption(); 
Constructs a TTinyCaption object attached to the given parent window. Initializes the 
caption font to 0 and TCEnabled to false so that the tiny caption bar is not displayed 
automatically. 

Destructor 
~ TTinyCaption(); 
Destroys a TTinyCaption object and deletes the caption font. 

Protected member functions 
DoCommand 
TEventStatus DoCommand(uint id, HWND hWndCtl, uint notifyCode, LRESULT& evRes); 
Displays the system menu using ::TrackPopup so that TTinyCaption sends 
WM_ COMMAND instead of WM_SYSCOMMAND messages. If a system menu 
command is received, it's then transformed into a WM_SYSCOMMAND message. If the 
tiny caption bar is false, DoCommand returns esPartial. 

See also TTinyCaption::EvCommand, TEventStatus enum 

DoLButtonUp 
TEventStatus DoLButtonUp(uint hitTest, TPoint& screenPt); 
Releases the mouse capture if the caption bar is enabled and a mouse button is pressed. 
Sets hitTest, indicating the mouse button has been pressed. Captures the mouse message 
and repaints the smaller buttons before returning esComplete. 

See also TTinyCaption::EvLButtonUp 

DoMouseMove 
TEventStatus DoMouseMove(uint hitTest, TPoint& screenPt); 
Returns TEventStatus. 

426 ObjectWindows Reference Guide 



TTinyCaption class 

DoNCActivate 
TEventStatus DoNCActivate(bool active, bool& evRes); 
If the tiny caption is not enabled or is iconic, returns esPartial. Otherwise, repaints the 
caption as an active caption and returns esComplete. 

See also TTinyCaption::EvNCActivate 

DoNCCalcSize 
TEventStatus DoNCCalcSize(bool calcValidRects, NCCALCSIZE_PARAMS far&calcSize, uint& evRes); 
If the caption bar is not enabled or is iconic, returns esPartial. Otherwise, calculates the 
dimensions of the caption and returns esComplete. 

See also TTinyCaption::EvNCCalcSize 

DoNCHitTest 
TEventStatus DoNCHi!Test(TPoint& screenPt, uint& evRes); 
If the caption bar is not enabled, returns esPartial. Otherwise, sends a message to the 
caption bar that the mouse or the cursor has moved, and returns esComplete. 

See also TTinyCaption::EvNCHitTest 

DoNCLButtonDown 
TEven!Status DoNCLButtonDown(uint hi!Test, TPoint& screenPt); 
If the caption bar isn't enabled, returns esPartial. Otherwise, determines if the user 
released the button outside or inside a menu, and returns esComplete. 

See also TTinyCaption::EvNCLButtonDown 

DoNCPaint 
TEventStatus DoNCPaint(); 
If the caption bar isn't enabled or is iconized, returns esPartial. Otherwise, gets the focus, 
paints the caption, and returns esPartial, thus indicating that a separate paint function 
must be called to paint the borders of the caption. 

See also TTinyCaption::EvNCPaint 

DoSysCommand 
TEventStatus DoSysCommand(uint cmdType, TPoint& p); 
If the caption bar isn't enabled, returns esPartial. If the caption bar is iconized and the 
user clicks the icon, calls DoSysMenu to display the menu in its normal mode and 
returns esComplete. 

See also TTinyCaption::EvSysCommand 

DoSysMenu 
void DoSysMenu; 
Gets the system menu and sets up menu items. DoSysMenu is also responsible for 
displaying and tracking the status of the menu. 

EnableTinyCaption 
void EnableTinyCaption(int ch=58, bool closeBox=false); 
Activates the tiny caption bar. By default, EnableTinyCaption replaces the system 
window with a tiny caption window that doesn't close when the system window is 
clicked. If the closeBox argument is true, clicking on the system menu will close the 

Chapter 2, Objec!Windows library reference 427 



TTinyCaption class 

window instead of bringing up the menu. You can use EnableTinyCaption to hide the 
window if you are using a tiny caption in a derived class. To diminish the tiny caption 
bar, try the following values: 

EnableTinyCaption(30, true); 

Or, to maximize the tiny caption bar, use these values: 

EnableTinyCaption(48, true); 

EvCommand 
LRESULT EvCommand(uint id, HWND hWndCtl, uint notifyCode); 
EvCommand provides extra processing for commands, but lets the focus window and its 
parent windows handle the command first. 

See also TTinyCaption::DoCommand 

EvLButtonUp 
void EvLButtonUp(uint hitTest, TPoint& screenPt); 
Responds to a mouse button-up message by calling DoLButtonUp. If DoLButtonUp 
doesn't return IsComplete, EvLButtonUp calls TWindow::EvLButtonUp. 

See also TTinyCaption::DoLButtonUp 

EvMouseMove 
void EvMouseMove(uint hitTest, TPoint& screenPt); 
Responds to a mouse-move message by calling DoMouseMove. If DoMouseMove doesn't 
return IsComplete, EvMouseMove calls TWindow::EvMouseMove. 

See also TTinyCaption::DoMouseMove 

EvNCActivate 
bool EvNCActivate(bool active); 
Responds to a request to change a title bar or icon by calling DoNCActivate. If 
DoNCActivate doesn't return esComplete, EvNCActivate calls TWindow::EvNCActivate. 

See also TTinyCaption::DoNCActivate 

EvNCCalcSize 
uint EvNCCalcSize(bool calcValidRects, NCCALCSIZE_PARAMS far& calcSize); 
Responds to a request to change a title bar or icon by calling DoNCActivate. If 
DoNCActivate doesn't return esComplete, EvNCActivate calls TWindow::EvNCActivate. 

Calculates the size of the command window including the caption and border so that it 
can fit within the window. 

See also TTinyCaption::DoNCActivate 

EvNCHitTest 
uint EvNCHitTest(TPoint& screenPt); 
Responds to a cursor move or press of a mouse button by calling DoNCHitTest. If 
DoNCHitTest doesn't return esComplete, EvNCHitTest calls TWindow::EvNCHitTest. 

See also TTinyCaption::DoNCHitTest 

428 Objec!Windows Reference Guide 



TTinyCaption class 

EvNCLButtonDown 
void EvNCLButtonDown(uint hi!Test, TPoint& screenPt); 
Responds to a press of the left mouse button while the cursor is within the nonclient 
area of the caption bar by calling DoNCLButtonDown. If DoNCLButtonDown doesn't 
return esComplete, EvNCLButtonDown calls TWindow::EvNCLButtonDown. 

See also TTinyCaption::DoNCLButtonDown 

EvNCPaint 
void EvNCPaint(); 
Responds to a request to change a title bar or icon. Paints the indicated device context or 
display screen and does any special painting required for the caption. 

See also TTinyCaption::DoNCActivate 

EvSysCommand 
void EvSysCommand(uint cmdType, TPoint& p); 
Responds to a WM_SYSCOMMAND message by calling DoSysCommand. If 
DoSysCommand returns esPartial, EvSysCommand calls TWindow::EvSysCommand. 

See also TTinyCaption::DoSysCommand 

GetCaptionRect 
TRect GetCaptionRect(); 
Gets the area of the caption for changing or repainting. 

See also TTinyCaption::PaintCaption 

GetMaxBoxRect 
TRect GetMaxBoxRect(); 
Returns the size of the maximize box rectangle. 

See also TTinyCaption::PaintMaxBoxRect 

GetMinBoxRect 
TRect GetMinBoxRect(); 
Returns the size of the minimize box rectangle. 

See also TTinyCaption::PaintMinBoxRect 

GetSysBoxRect 
TRect GetSysBoxRect(); 
Returns the size of the system box rectangle. 

See also TTinyCaption::PaintSysBoxRect 

PaintButton 
void Pain!Button(TDC& de, TRect& boxRect, bool pressed); 
Paints a blank button. 

PaintCaption 
void Pain!Caption(bool active); 
Calls dc.SelectObject to select the given rectangle and dc.PatBlt to paint the tiny caption 
bar using the currently selected brush for this device context. 

Chapter 2, ObjectWindows library reference 429 



TToolBox class 

See also TDC::SelectObject, TDC::PatBlt 

PaintCloseBox 
void PaintCloseBox(TDC& de, TReet& boxReet, bool pressed); 
Paints a close box on the tiny caption bar. You can override the default box if you want 
to design your own close box. 

See also TTinyCaption::GetSysBoxRect 

PaintMaxBox 
void PaintMaxBox(TDC& de, TReet& boxReet, bool pressed); 
Paints a maximize box on the tiny caption bar. 

See also TTinyCaption::GetMaxBoxRect 

PaintMinBox 
void PaintMinBox(TDC& de, TReet& boxReet, bool pressed); 
Paints a minimize box on the tiny caption bar. 

See also TTinyCaption::GetMinBoxRect 

PaintSysBox 
void PaintSysBox(TDC& de, TReet& boxReet, bool pressed); 
Paints the system box. 

See also TTinyCaption::GetSysBoxRect 

Response table entries 

EV_WM_NCACTIVATE 

EV_ WM_NCCALCSIZE 

EV_WM_NCHITTEST 

EV_WM_NCPAINT 

EV_WM_NCLBUTTONDOVVN 

EV _WM_LBUTTONUP 

EV_ WM_MOUSEMOVE 

EV_WM_SYSCOMMAND 

TToolBox class 

EvNCActivate 

EvNcCalcSize 

EvNcHitTest 

EvNcPaint 

EvNclButtonDown 

EvLButtonUp 

EvMouseMove 

EvSysCommand 

toolbox.h 

Derived from TGadgetWindow, TToolBox arranges gadgets in a matrix in which all 
columns are the same width (as wide as the widest gadget) and all rows are the same 
height (as high as the highest gadget). 

You can specify exactly how many rows and columns you want for your toolbox, or you 
can let TToolbox calculate the number of columns and rows you need. If you specify 
AS_MANY_AS_NEEDED, the TToolBox calculates how many rows or columns are 

430 ObjectWindows Reference Guide 



TToolBox class 

needed based on the opposite dimension. For example, if there are twenty gadgets, and 
you requested four columns, your matrix would have five rows. 

Public constructor 
Constructor 
TToolBox(TWindow* parent, int numColumns = 2, int numRows =AS MANY AS NEEDED, 
TTileDirection direction = Horizontal, TModule* module= O); - - -

Constructs a TToolBox object with the specified number of columns and rows and tiling 
direction. Overlaps the borders of the toolbox with those of the gadget and sets 
ShrinkWrapWidth to true. 

Public member functions 
GetDesiredSize 
void GetDesiredSize(TSize& size); 
Overrides TGadget's GetDesiredSize function and computes the size of the cell by calling 
GetMargins to get the margins. 

See also TGadgetWindow::GetDesiredSize 

Insert 
void lnsert(TGadget& gadget, TPlacement = After, TGadget* sibling = O); 
Overrides TGadget's Insert function and tells the button not to notch its corners. 

See also TGadgetWindow::Insert 

LayoutSession 
void LayoutSession(); 
Called when a change occurs in the size of the margins of the toolbox or size of the 
gadgets, LayoutSession gets the desired size and moves the window to adjust to the 
desired change in size. 

SetDirection 
virtual void SetDirection(TTileDirection direction); 
Sets the direction of the tiling-either horizontal or vertical. 

Protected data members 
NumColumns 
int NumColumns; 
Contains the number of columns for the toolbox. 

NumRows 
int NumRows; 
Contains the number of rows for the toolbox. 

Ch a pier 2, 0 bj ec!Wi n d ows I ib rary reference 431 



TTransferDirection enum 

Protected member function 

TileGadgets 
TRect TileGadgets; 
Tiles the gadgets in the direction requested (horizontal or vertical). Derived classes can 
adjust the spacing between gadgets. 

See also TGadgetWindow::TileGadget 

TTransferDirection enum window.h 

enum TTransferDirection {tdGe!Data, tdSe!Data, tdSizeData}; 
TTransferDirection enum describes the following constants, which the transfer function 
uses to determine how to transfer data to and from the transfer buffer. 

tdGetData 

tdSetData 

tdSizeData 

Retrieve data from the class. 

Send data to the class. 

Return the size of data transferred by the class. 

See also TWindow::Transfer, TWindow::TransferData 

TUIHandle class uihandle .h 

TUIHandle manages and draws various kinds of UI handles, including hatched border 
handles, and resizing grapples (small squares that appear along the edges) on a 
rectangle. You can use this class to create a hatched border that encloses various kinds of 
drawing objects you want to manipulate. 

With the help of this class, you can create an application that lets you: 

• Resize the shape of the rectangle by pointing to and grabbing one of the grapples on 
the border. 

• Move the entire rectangle by clicking in the middle of the rectangle. 

Although, by default, a hatched border with eight grapples is created, you can vary the 
existence of the grapples as well as the pattern of the border. You can also draw a 
dashed frame enclosing a rectangle or draw a rectangle filled with hatch marks. 
THatch8x8Brush contains brushes you can use to draw the hatched border. 

TUIHandle uses the enum TWhere to return the area where the user points and clicks the 
mouse (referred to as a hit area). 

432 0 b j e c I W i n d o w s R e f e re n c e G u i d e 



TUIHandle class 

The following diagram displays a UI handle and identifies several small square 
grapples where hit testing occurs. 

Top Left Top Center 

Mid Left ---11---

Bottom Left Bottom Center 

Top Right 

Bottom Right 

Midcenter, or, Inside if 
lnsideSpecial is set 

Mid Right 

Mid Center (move area) 

The following code from SAMPCONT.CPP sets up a hatched border and UI grapples 
for an OLE2 container application. 

II Do the default rectangle painting. 
TRect r II Insert your rectangle drawing code here. 

II Draw 8 grapples with a border on top of the object. 
TUIHandle handle(r, TUIHandle::HandlesinlTUIHandle::Grapples 
ITUIHandle::HatchBorder, 5); 

handle.Paint(dc); 
II Insert your code here .... 
II Draw a hatched border. 

TUIHandle handle(r, TUIHandle::HatchBorder, 5); 
handle.Paint(dc); 

See also 
THatch8x8Brush 

Type definitions 
TStyle 
enum TStyle{Handlesln, HandlesOut, Framed, DashFramed, Grapples, HatchBorder, HatchRect, lnsideSpecial}; 
Enumerates the style of the border around the rectangle with combinations of the 
following styles: 

Select one of the following styles: 
Handlesin 

HandlesOut 

Select zero or one of the following styles: 

Framed 

DashFramed 

Grapples 

Draw handles inside the rectangle 

Draw handles outside the rectangle 

Draw a solid frame around the rectangle 

Draw a dashed frame around the rectangle 

Draw eight grapples for resizing 

Chapter 2, ObjectWindows library reference 433 



.TUIHandle class 

Select zero or one of the following styles: 
HatchBorder Draw a hatched handle for moving the border 

HatchRect Draw the entire rectangle filled in with hatch marks 

InsideSpecial Treat the inside hit area in a special way 

If a hatched border with grapples is drawn inside a rectangle, it sits within the borders 
of the outer frame of the rectangle. If a hatched border with grapples is drawn outside 
the rectangle, it is drawn outside the boundary of the rectangle's frame. In the latter case, 
the function GetBoundingRect returns a larger rectangle. 

TWhere 
enum TWhere {Toplefl, TopCenter, TopRight, Midlefl, MidCenter, MidRight, Bottomlefl, BottomCenter, 

BottomRight, Outside, Inside}; 
TWhere indicates which one of the grapples or handle was hit. TWherecan contain one of 
the following values: 

Top Left 

TopCenter 

Top Right 

MidLeft 

Mid Center 

MidRight 

BottomLeft 

Bottom Center 

BottomRight 

Outside 

Inside 

The grapple in the top left comer of the border was hit. 

The grapple in the top center of the border was hit. 

The grapple in the top left right comer of the border was hit. 

The grapple in the middle of the left border was hit. 

The area in the middle of the rectangle was hit. This indicates that either the 
hatched frame was hit dr inside, non-special area was hit. 

The grapple in the middle of the right border was hit. 

The grapple in the left comer of the bottom border was hit. 

The grapple in the center of the bottom border was hit. 

The grapple in the right comer of the bottom border was hit. 

The hit area is completely outside the object. 

The hit area for the grapple is inside the object and InsideSpecial is set. 

The InsideSpecial designation refers to the area inside the rectangle when the hit area 
needs to be treated specially because it might contain text or graphics, for example. 
Normally, if the area inside the rectangle is hit, it means that user wants to move the 
rectangle. However, if there is text inside the rectangle, the user might click on this area 
in order to enter text. This latter situation is referred to as an inside special case. 

The hit area (Where) can be converted to a row and a column by using the following 
equations: 

Row =Where I 3 

Column= Where m9d 3 

434 ObjectWindows Reference Guide 



TUIHandle class 

The value of Where ranges from 0 (TopLeft) to 8 (BottomRight) and corresponds to the 
following areas of a rectangle: 

Column 

TopL Tope TopR 

Row 1 MidL MidC MidR 

BottomL BottomC BottomR 

You can then use these values to calculate the movement of the object and to resize the 
object. 

Public constructor 

Constructor 
TUIHandle(const TRect& frame, uint style = HandleslnlGrappleslHatchBorder, int thickness = 5); 
Constructs a TUIHandle object for the specified frame, with eight grapples drawn in a 
hatched border and a default thickness of 5 pixels drawn to the inside. 

Public member functions 

GetBoundingRect 
GetBoundingRect()const; 
GetBoundingRect returns a rectangle with the size adjusted according to the thickness. 
For example, if the handles are outside the rectangle, GetboundingRect returns a larger 
rectangle. The enum . TStyle defines the positions of the handles, that is, whether the 
handles are defined as Handlesin or HandlesOut. 

GetCursorld 
static uint16 GetCursorld(TWhere where); 
Returns the 10 of a standard cursor that's appropriate for use over the location specified 
in the where parameter. 

HitTest 
TWhere Hi!Test(const TPoint& point)const; 
Compares a given point (point) to various parts of the rectangle. If the hit was outside 
the rectangle, HitTest returns Outside. If the hatched border handle of the rectangle was 
hit, returns MidCenter (inside). For any other hits, HitTest returns the location of the 
grapple that was hit. The enum TWhere defines the possible hit areas. 

Move 
void Move(int dx, int dy); 
Moves the rectangle relative to the values specified in dx and dy. 

Chapter 2, Objec!Windows library reference 435 



TValidator class 

See also TUlliandle::MoveTo 

Move To 
void MoveTo(int x, int y); 
Moves the rectangle to the given x and y coordinates. 

See also TUlliandle::Move 

Paint 
void Paint(TDC& de) const; 
Paints the TllIHandle object onto the specified device context, de. 

Size 
void Size(int w, int h); 
Sets the size of the rectangle according to the measurements specified in w, the width, 
and h, the height. 

TValidator class validate.h 

A streamable class, TValidator defines an abstract data validation object. Although you 
will never actually create an instance of TValidator, it provides the abstract functions for 
the other data validation objects. 

The VALIDATE.CPP sample program on your distribution disk derives TValidateApp 
from T Application in the following manner: 

class TValidateApp : public TApplication { 
public: 

TValidateApp () : TApplication ( "ValidateApp") {} 
void InitMainWindow() { 

MainWindow = new TTestWindow ( 0, "Validate Dialog Input") ; 

436 ObjectWindows Reference Guide 



TValidator class 

and displays the following message box if the user enters an invalid employee ID: 

Main application window 

Jn put 
After you 
choose lnputJ 
Employee from 

--------------+- the menu, the 
Employee Data 
Entry dialog box 
appears. 

-------------+- If an invalid 

Public constructor and destructor 
Constructor 
TValidator(); 
Constructs an abstract validator object and sets Options fields to 0. 

Destructor 
virtual N TValidator(); 
Destroys an abstract validator object. 

Public member functions 
Error 
virtual void Error(); 

employee ID is 
entered, the 
ValidateApp 
message box 
appears. 

Error is an abstract function called by Valid when it detects that the user has entered 
invalid information. By default, TValidator::Error does nothing, but derived classes can 
override Error to provide feedback to the user. 

HasOption 
bool HasOption(int option); 
Gets the Options bits. Returns true if a specified option is set. 

See also TValidator::Options, TValidatorOptions enum 

ls Valid 
virtual bool lsValid(const char far* str); 

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 437 



TValidator class 

By default, TValidator::Is Valid returns true. Derived validator types can override Is Valid 
to validate data for a completed edit control. If an edit control has an associated 
validator object, its Valid method calls the validator object's Valid method, which in turn 
calls Is Valid to determine whether the contents of the edit control are valid. 

See also TValidator::Valid 

lsValidlnput 
virtual bool lsValidlnput(char far* str, bool suppressFill); 
If an edit control has an associated validator object, it calls Is Validinput after processing 
each keyboard event. This gives validators such as filter validators an opportunity to 
catch errors before the user fills the entire item or screen. 

By default, IsValidinput returns true. Derived data validators can override IsValidinput 
to validate data as the user types it, returning true if str holds valid data and false 
otherwise. 

str is the current input string. suppressFill determines whether the validator should 
automatically format the string before validating it. If suppressFill is true, validation 
takes place on the unmodified string str. If suppressFill is false, the validator should 
apply any filling or padding before validating data. Of the standard validator objects, 
only TPXPictureValidator checks suppressFill. 

Is Validinput can modify the contents of the input string; for example, it can force 
characters to uppercase or insert literal characters from a format picture. Is Validinput 
should not, however, delete invalid characters from the string. By returning false, 
Is Validinput indicates that the edit control should erase the incorrect characters. 

SetOption 
void SetOption(int option); 
Sets the bits for the Options data member. 

See also TValidator::Options, TValidatorOptions enum 

Transfer 
virtual uint Transfer(char far* str, void* buffer, TTransferDirection direction); 
Allows a validator to set and read the values of its associated edit control. This is 
primarily useful for validators that check non-string data, such as numeric values. For 
example, TRangeValidator uses Transfer to read and write values instead of transferring 
an entire string. 

By default, edit controls with validators give the validator the first chance to respond to 
DataSize, GetData, and SetData by calling the validator's Transfer method. If Transfer 
returns anything other than 0, it indicates to the edit control that it has handled the 
appropriate transfer. The default action of TValidator::Transfer is to always return 0. If 
you want the validator to transfer data, you must override its Transfer method. 

Transfer's first two parameters are the associated edit control's text string and the 
tdGetData or tdSetData data record. Depending on the value of direction, Transfer can set 
str from buffer or read the data from str into buffer. The return value is always the 
number of bytes transferred. 

If direction is tdSizeData, Transfer doesn't change either str or buffer; it just returns the 
data size. If direction is tdSetData, Transfer reads the appropriate number of bytes from 

438 ObjectWindows Reference Guide 



TValidator class 

buffer, converts them into the proper string form, and sets them into str, returning the 
number of bytes read. If direction is tdGetData, Transfer converts str into the appropriate 
data type and writes the value into buffer, returning the number of bytes written. 

See also TTransferDirection enum 

UnsetOption 
void UnsetOption(int option); 
Unsets the bits specified in the Options data member. 

See also TValidator::Options, TValidatorOptions enum 

Valid 
bool Valid(const char far* str); 
Returns true if Is Valid returns true. Otherwise, calls Error and returns false. A validator's 
Valid method is called by the Valid method of its associated edit control. 

Edit controls with associated validator objects call the validator's Valid method under 
two conditions. The first condition is when the edit control's ofValidate option is set and 
the edit control calls Valid when it loses focus. The second condition is when the dialog 
box that contains the edit control calls Valid for all its controls, usually because the user 
requested to close the dialog box or to accept an entry screen. 

Protected data members 

Options 
uint16 Options; 
A bitmap member used to control options for various descendants of TValidator. By 
default, the TValidator constructor clears all the bits in Options. 

See also TV AlidatorOptions enum, TValidator::SetOption, TValidator::UnsetOption 

Type definitions validate.h 

enum TValidatorOptions {voFill, voTransfer, voOnAppend, voReserved }; 
The TValidatorOptions enum constants represent bits in the bitrnapped Options word in 
validator objects. 

voFill Used by picture validators to indicate whether to fill in literal characters as the user 
types. 

voTransfer The validator handles data transfer for the input line. Currently only used by range 
validators. 

voOnAppend Used by picture validators to determine how to interact with edit controls. 

voReserved The bits in this mask are reserved. 

C h a pt e r 2 , 0 b j e c t W i n d o w s I i b r a r y r e f e r e n c e 439 



TValidator::TXValidator class 

TValidate>r::TXValid@tor class validate.h 

A nested class, TXValidator describes an exception that results from an invalid validator 
. object. That is, if a validator expression is not valid, this exception is thrown. 

Public constructor 
Constructor 
TXValidator(uint resld = IDS_VAUDATORSYNTAX); 
Constructs a TXValidator object, Setting the resource ID to IDS_ VALIDATORSYNTAX 
string resource. 

TVbxControl class vbxctl.h 

Derived from TControl, TVbxControl provides the interface for Visual Basic (VBX) 
controls. You can use this class to get or set the properties of VBX controls. Under certain 
conditions, you can also use additional methods for processing controls. 

You can manipulate the control's properties using either an index value or a name. 
Several overloaded GetProp functions are provided so that you can access different types 
of properties. Similarly, several overloaded SetProp functions let you set the properties 
of controls using either the name of the VBX control or the index value. Consult the 
documentation for your VBX controls to find the name that corresponds to the property 
you want to manipulate. 

440 ObjectWindows Reference Guide 



TVbxControl class 

The VBXCTLX.CPP sample program on your distribution disks displays several VBX 
controls. 

Click Test to display 
the VBX controls 

I est 

Pictures 

and drop here! 

D 

Gauges 

Dialog Tester 

VBX Controls 

Switches 

TVbxControl provides event-handling functions that process requests to compare, 
delete, draw, or measure VBX controls. If you want the TVbx control object to process 
additional VBX events, you can derive a class from TVbxControl and add a response 
table that has entries for the events you want processed. For information about creating 
response tables and handling VBX messages, see TVbxEventHandler. 

Public constructors and destructor 
Constructors 

Form 1 TVbxControl(TWindow* parent, int id, const char far* vbxName, const char far* vbxClass, const char far* title, 
int x, int y, int w, int h, long initlen = 0, void far* initData = 0, TModule* module= O); 

Constructs a VBX control where parent points to the parent window, id is the control's 
ID, vbxName is the name of the file containing the VBX control, vbxClass is the VBX class 
name, title is the control's caption, x and y are the coordinates in the parent window 
where the controls are to be placed, wand hare the width and height of the control, and 
module is the library resource ID for the control. 

Form 2 TVbxControl(TWindow* parent, int resourceld, TModule* module= O); 
If a VBX control is part of a dialog resource, its ID can be used to construct a 
corresponding (or alias) ObjectWindows object. You can use this constructor if a VBX 

Chapter 2, ObjectWindows library reference 441 



TVbxControl class 

control has already been defined in the application's resource file. resourceld is the 
resource ID of the VBX control in the resource file. 

Destructor 
N TVbxControl(); 
Destroys the TVbxControl object. 

Public member functions 
Add Item 
bool Addltem(int index, cons! char far* item); 
Adds an item (item) to the list of VBX control items at the specified index (index). Returns 
nonzero if successful. 

Drag 
bool Drag(int action); 
Controls the drag and drop state of the VBX control according to the value of action, 
which can be 0 (cancel a drag operation), 1 (begin dragging a control), or 2 (end 
dragging a control). 

GetEventlndex 
int GetEventlndex(const char far* name); 
Returns the index of the event associated with the name of the event passed in name. 
Returns -1 if an error occurs. 

GetEventName 
cons! char far* GetEventName(int eventindex); 
Returns a string containing the name of an event associated with the integer event index 
number (eventindex). Returns 0 if an error occurs. 

GetHCTL 
HCTL GetHCTL(); 
Returns a handle to a VBX control associated with this TVbxControl object. 

GetNumEvents 
int GetNumEvents(); 
Returns the total number of events associated with the VBX control. 

GetNumProps 
int GetNumProps(); 
Returns the total number of properties associated with the VBX control. 

· GetProp 
Form 1 bool GetProp(int prop Index, int& value, int arraylndex = -1 ); 

Gets an integer property value. An overloaded function, GetProp gets a VBX control 
property using an index value. proplndex is the index value of the property whose value 
you want to get. value is a reference to the variable that will receive the property values. 
arraylndex, an optional argument, specifies the position of the value in an array property 
if the property is an array type. If the property isn't an array type, arraylndex defaults to 
-1. See the third-party reference guide for your VBX controls to determine a property's 

442 Objec!Windows Reference Guide 



TVbxControl class 

data type. GetProp returns nonzero if successful. To get the property by specifying the 
property index, use one of the following six GetProp functions. 

Form 2 bool GetProp(int proplndex, long& value, int arraylndex = -1); 
Gets a long property value. 

Form 3 bool GetProp(int proplndex, ENUM& value, int arraylndex=-1); 
Gets an enumerated property value. For example, a list of options associated with a font 
style might be defined as an enumerated type. 

Form 4 bool GetProp(int proplndex, HPIC& value, int arraylndex=-1); 
Gets a picture (value). HPIC is a handle to the picture. 

Form 5 boo! GetProp(int proplndex, float& value, int arraylndex = -1 ); 
Gets a floating-point property value. 

Form 6 bool GetProp(int proplndex, string& value, int arraylndex = -1 ); 
Gets a string property value. 

Form 7 bool GetProp(int proplndex, COLOR REF value, int arraylndex = -1 ); 
Gets a color property value. 

Form 8 boo! GetProp(const char far* name, int& value, int arraylndex = -1 ); 
Returns an integer data value. An overloaded function, GetProp gets a VBX control 
property. prop Index is the index value of the property whose value you want to get. value 
is a reference to the variable that will receive the property value. arrayindex, an optional 
argument, specifies the position of the value in an array property if the property is an 
array type. If the property isn't an array type, arrayindex defaults to -1. GetProp returns 
nonzero if successful. To get the property by specifying the name of the property, use 
one of the following five GetProp functions. 

Form 9 bool GetProp(const char far* name, long& value, int arraylndex = -1); 
Gets a long property value. 

Form 10 boo! GetProp(const char far* name, float& value, int arraylndex = -1 ); 
Gets a floating-point property value. 

Form 11 bool GetProp(const char far* name, ENUM& value, int arraylndex=-1 ); 
Gets an enumerated property value. 

Form 12 bool Getprop(const char far* name, HPIC& value, int arraylndex=-1 ); 
Gets a picture (value) property value. HPIC is a handle to the picture. 

Form 13 bool GetProp(const char far* name, string& value, int arraylndex = -1); 
Gets a string property value. 

Form 14 boo! GetProp(const char far* name, COLORREF value, int arraylndex = -1); 
Gets a string color property value. 

See also TVbxControl::SetProp 

GetProplndex 
int GetProplndex(const char far* name); 
Gets the integer index value for the property name passed in name. Returns -1 if an error 
occurs. This usually indicates that the property name passed in name couldn't be located. 

Chapter 2, ObjectWindows library reference 443 



TVbxControl class 

GetPropName 
const char far* GetPropName(int proplndex); 
Gets the name for the property index passed in index. Returns 0 if an error occurs. 

GetPropType 
Form 1 int GetPropTy'pe(int proplndex); 

Form 2 int GetPropType(char far* name); 
Form 1 gets the type for the property specified by index. Form 2 gets the property string 
type specified by name. Returns 0 if an error occurs. The following table lists the names 
of the property types and their corresponding C ++data types. 

PIYPE_CS1RING HSZ 

PIYPE_SHORT short 

PIYPE_WNG int32 

PIYPE_BOOL bool 

PIYPE_COLOR uint32 or COLORREF 

PIYPE_ENUM uint8 or ENUM 

PIYPE_REAL float 

PIYPE_XPOS int32 (Twips) 

PIYPE_XSIZE int32(Twips) 

PIYPE_YPOS int32 (Twips) 

PIYPE_YSIZE int32 (Twips) 

PIYPE_PICTURE HPIC 

PIYPE_BS1RING HLSTR 

lsArrayProp 
Form 1 bool lsArrayProp(int proplndex); 

Form 2 bool lsArrayProp(char far* name); 
Returns true if the property specified by index (Form 1) or name (Form 2) is an array 
property. 

Method 
bool Method(int method, long far* args); 
Used for invoking customized methods, Method returns true if a VBX control can 
respond to the specified method (method). 

Move 
bool Move(long x, long y, long w, long h}; 
Moves a VBX control to the coordinates specified in x and y, which designate the upper 
left comer screen coordinates. Resizes the VBX control to w twips wide by h twips high. 
Returns nonzero if successful. 

Refresh 
bool Refresh(); , 
Repaints the control's display area. 

444 ObjectWindows,Reference Guide 



TVbxControl class 

Removeltem 
bool Removeltem(int index); 
Removes an item (specified by index). The item could be removed from a list box, a 
combo box, or a database, for example. 

SetProp 
Form 1 bool SetProp(int proplndex, int value, int arraylndex = -1); 

Sets the property to an integer value. An overloaded function, SetProp sets a VBX control 
property. propindex is the index number of the property whose value you want to set. 
value specifies the new value for the property. arrayindex specifies the position of the 
value in an array property if the property is an array type. If the property isn't an array 
type, array Index defaults to -1. To set the property by passing the property's index value, 
use one of the following six SetProp functions. 

Form 2 bool SetProp(int proplndex, long value, int arraylndex = -1); 
Sets the property to a long value. 

Form 3 bool SetProp(int proplndex, ENUM value, int arraylndex=-1); 
Sets the property to an enumerated value. 

Form 4 bool SetProp(int proplndex, HPIC value, int arraylndex=-1); 
Sets a picture to an HPIC, or picture, value. 

Form 5 bool SetProp(int proplndex, float value, int arraylndex = -1); 
Sets the property to a floating-point value. 

Form 6 bool SetProp(int proplndex, canst string& value, int arraylndex = -1 ); 
Sets the property to a string value. 

Form 7 bool SetProp(int proplndex, canst char far* value, int arraylndex = -1); 
Sets the property to a character string value. 

Form 8 bool SetProp(int proplndex, COLORREF value, int arraylndex = -1 ); 
Sets the property to a color value. 

Form 9 bool SetProp(const char far* name, int value, int arraylndex =-1); 
Sets the property to an integer value. An overloaded function, SetProp sets a VBX control 
property. arrayindex specifies the position of the value in an array property if the 
property is an array type. If the property isn't an array type, arrayindex defaults to -1. To 
set the property by using the property's name, use one of the following six SetProp 
functions. 

Form 10 bool SetProp(const char far* name, long value, int arraylndex = -1); 
Sets the property to a long value. 

Form 11 bool SetProp(const char far* name, ENUM value, int arraylndex=-1); 
Sets the property to an enumerated value. 

Form 12 bool SetProp(const char far* name, HPIC value, int arraylndex = -1); 
Sets the picture property to an HPIC, or picture, value. 

Form 13 bool SetProp(const char far* name, float value, int arraylndex = -1); 
Sets the property to a floating-point value. 

Form 14 bool SetProp(const char far* name, canst string& value, int arraylndex = -1); 

Chapter 2, ObjectWindows library reference 445 



TVbxControl class 

Sets the property to a string value. 

Form 15 bool SetProp(const char far* name, const char far* value, int arraylndex = -1 ); 
Sets the property to a character string value. 

Form 16 bool SetProp(const char far* name, COLORREF value •. int arraylndex = -1); 
Sets the property to a color string value. 

See also TVbxControl::GetProp 

SetUpWindow 
void SetupWindow(); 
A VBX control has an HWND plus a VBX handle. Usually, the VBX control handle is 
created first. However, if the window has already been created, you can use this 
function to extract the VBX control handle. 

Protected member functions 
GetClassName 
char far* GetClassName(); 
Gets the name of the VBX window class. 

GetVBXProperty 
bool GetVBXProperty(int proplndex, void far* value, int arraylndex = -1); 
Returns nonzero if the specified property exists. proplndex specifies the index value of 
the integer property whose value you want to get. value points to the variable where the 
value will be stored. 

Perform Create 
void PerformCreateOnt menuOrld); 
Creates a new control window and associates the VBX control with the window. 
Establishes the control ID, the VBX control name and class, and the window caption. 
Sets Attr.style to the window style of the control, Attr.X and Attr. Y to the upper left 
screen coordinates of the control, and Attr. Wand Attr.H to the width and height of the 
control. 

SetVBXProperty 
bool SetVBXProperty(int proplndex, int32 value, int arraylndex=-1); 
Returns nonzero if the specified property value is set, or 0 if unsuccessful. propindex is 
the index number of the property whose value you want to set. value is the value to be 
stored. An optional argument, arraylndex, which is -1 by default, specifies the index 
value in an array of values of the property to be set. 

Response table entries 

The TVbxControl class has no response table entries. 

446 ObjectWindows Reference Guide 



TVbxEventHandler class 

TVbxEventHandler class vbxctl.h 

Derived from TEventHandler, TVbxEventHandler handles events from VBX controls. 
Although you will never need to modify this class, TVbxEventHandler needs to be mixed 
in with your window class so that it can receive events from VBX controls. For example, 

class TMyWindow:public TWindow, public TVbxEventHandler 
( 

II Include class definition here. 
} 

The following diagram illustrates the flow of information between VBX controls, parent 
windows, and response tables. 

TMyWindow 

When a VBX control fires an event (sends an event message), the following sequence of 
events occurs: 

The VBX Control sends a WM_ VBXFIREEVENT message to TMyWindow. 

2 TMyWindow's TVbxEventHandler finds a WM_ VBXFIREEVENT message in its 
response table and calls Ev VbxDispatch. 

3 If a child window is present, Ev VbxDispatch dispatches the event to the child. 

4 If there is an event-handling function in the child window's response table, the child 
window handles the event. 

5 If there is no child window, or the child window doesn't handle the event, 
EvVbxDispatch dispatches the event to TMyWindow's response table. 

Ch a p I er 2 , 0 b j e c I W i n do w s Ii b r a r y reference 447 



TVbxEventHandler class 

In other words, when a VBX control sends a WM_ VBXFIREEVENT message, the parent 
Window's TVbxEventHandler catches this message first, converts it into a form ' 
understood by a window's response table, and attempts to send the c.onverted message 
to the child window. If there is no child window or if the child window doesn't handle 
the message, TVbxEventHandler sends the converted message to the parent window. 
When the parent window receives the message, it calls the handler function that 
corresponds to the message. 

Two response table macros, EV~ VBXEVENTNAME and EV_ VBXEVENTINDEX, map 
VBX events to handler functions. Of the two macros, EV_ VBXEVENTNAME is more 
commonly used. EV_ VBXEVENTINDEX is intended for use with code generators, 
which can determine the event index values for a VBX control. Both macros call an event 
handler function and point to the VBXEVENT structure. A typical 
EV_ VBXEVENTNAME response table entry might be 

EV_VBXEVENTNAME(IDC_BUTTONl, "MouseMove", EvMouseMove); 

where IDC_BUITONl is the event ID, "EvMouseMove" is the event name, and 
EvMouseMove is the handler function. 

The lparam of a WM_ VBX FIREEVENT message points to a VBXEVENT structure, 
which holds information about the event and the control that generated the event. The 
VBXEVENT structure contains the following members: 

typedef struct VBXEVENT { 
HCTL Control; 
HWND Window; 
int ID; 
int Event Index; 
LPCSTR EventName; 
int NwnParams; 
LPVOID ParamList; 

} VBXEVENT; 

where 

• Control is a handle to the VBX control sending the message. 

• Window is the handle of the VBX control window. 

• ID is the ID of the VBX control. 

• Eventlndex is the event index. 

• EventName is the name of the event. 

• NumParams holds the number of event arguments. 

• ParamList is a pointer to a list of pointers to the. event's arguments. The ParamList data 
member provides access to the actual arguments of the event. 

To handle VBX events, your program uses an event-handling function. In the following 
example, EvMouseMove is the name of the handler function, which passes a pointer to 
the VBXEVENT event structure. VBX_EVENTARGNUM is the macro that takes event, 
type, and an index number as its parameters. event references the VBXEVENT structure, 
short is the event argument type, and 0 and 1 are the index numbers of the argument. 

448 ObjectWindows Reference Guide 



TVbxEventHandler class 

The argument types and indexes can be found in the documentation for the VBX 
control. 

void EvMouseMove(VBXEVENT FAR* event) 
{ 

short X = VBX_EVENTARGNUM(event, short, 0); 
short Y = VBX_EVENTARGNUM(event, short, 1); 

Because VBX controls were originally designed to be used with Visual Basic, their event 
arguments are documented in terms of Basic data types. The following table lists the 
Basic types, their C++ equivalents, and macros. 

Boolean short VBX_EVENTARGNUM(event, short, index) 

Control HCTL VBX_EVENTARGNUM(event, HCTL, index) 

Double double VBX_EVENTARGNUM(event, double, index) 

En um short VBX_EVENTARGNUM(event, short, index) 

Integer short VBX_EVENTARGNUM(event, short, index) 

Long long VBX_EVENTARGNUM(event, long, index) 

Single float VBX_EVENTARGNUM(event,jloat, index) 

String HLSTR VBX_EVENTARGSTR(event, index) 

The following table lists the standard VBX events and corresponding arguments that the 
Borland C++ VBX emulation library supports. 

Click 

Dbl Click 

Drag Drop 

DragOver 

GotFocus 

Key Down 

Key Press 

Key Up 

LostFocus 

MouseDown 

MouseMove 

Mouse Up 

None 

None 

Source as Control, X as Integer, Y as Integer 

Source as Control, X as Integer, Y as Integer, State as Integer 

None 

Key as Integer, Shift as Integer 

Key as Integer, Shift as Integer 

Key as Integer, Shift as Integer 

None 

X as Integer, Y as Integer 

X as Integer, Y as Integer, Shift as Integer, Button as Integer 

X as Integer, Y as Integer, Shift as Integer, Button as Integer 

For the DragOver event, the state argument can be one of the following values: 

• 0, where the source control is being dragged within a target's range. 

• 1, where the source control is being dragged out of a target's range. 

• 2, where the source control is being moved from one position in the target to another. 

C h a pt e r 2 , 0 b j e c I W i n d ow s I i b r a r y r e I e re n c e 449 



TVbxEventHandler class 

For both the DragOver and DragDrop events, the Control argument type should be 
translated to HCTL (a handle to the VBX control) for C ++. The X and Y values are in 
pixels, not twips. 

If a standard VBX event has a Shift key argument, the argument has these bit values: 

Shift Oxl 

Ctrl Ox2 

Alt Ox4 (Used in connection with a Menu selection) 

If a standard VBX event has a Button key argument, the argument has these bit values: 

Left Oxl 

Right Ox2 

Middle Ox4 

The following example shows how you might use these Shift key arguments. For 
example, if you want the VBX control to perform some action when the mouse is moved 
and the Shift key is pressed, you could write a function such as 

void EvMouseMove(VBXEVENT FAR* event) 
( 

short X = VBX_EVENTARGNUM(event, short, 0); 
short y = VBX_EVENTARGNUM(event, short, 1); 
short Shift = VBX_EVENTARGNUM(event, short, 2); 
short Button = VBX_EVENTARGNUM(event, short, 3); 
if (shift & Ox2) 

MessageBox ("The control key is pressed."); 

Borland C++ uses pixels to express the X and Y coordinate arguments of standard VBX 
events. This differs from Visual Basic, which expresses coordinates in twips {l/20th of a 
point or 1/1440 of an inch). Custom events are usually expressed in terms of twips. You 
can use these functions to convert between pi~els and twips. 

VBXPix2TwpX 

VBXPix2Twp Y 

VBXTwp2PixX 

VBXTwp2PixY 

Converts an X argument from pixels to twips 

Converts a Y argument from pixels to twips 

Converts an X argument from twips to pixels 

Converts a Y argument from twips to pixels 

Protected member functions 
EvVbxDispatch 
LRESULT EvVbxDispatch(WPARAM wp, LPARAM Ip); 

450 ObjectWindows Reference Guide 



TView class 

After TVbxEventHandler receives a WM_ VBXFIREEVENT message from the parent 
window, it calls EvVbxDispatch, which sends the message to the correct event-handling 
function and passes a pointer to the VBXEVENT structure. 

EvVbxlnitForm 
LRESULT EvVbxlnitForm(WPARAM wp, LPARAM Ip); 

Response table entries 

Response table entry 
EV _MESSAGE(WM_ VBXFIREEVENT, EvVbxDispatch) 

EV _MESSAGE(WM_ VBXINITFORM, EvVbxinitForm) 

TView class 

Member function 

EvVbxDispatch 

EvVbxinitForm 

docview.h 

Derived virtually from both TEventHandler and TStreamableBase, TView is the interface 
presented to a document so it can access its client views. Views then call the document 
functions to request input and output streams. Views own the streams and are 
responsible for attaching and deleting them. 

Instead of creating an instance of TView, you create a derived class that can implement 
TView 's virtual functions. The derived class must have a way of knowing the associated 
window (provided by Get Window) and of describing the view (provided by 
GetViewName). The view must also be able to display the document title in its window 
(SetDocTitle). 

TView uses several event handler functions to query views, commit, and close views. 
For example, if a view is associated with a window that can gain focus, then it should 
handle the vnisWindow notification message. 

View classes can take various forms. For example, a view class can be a window 
(through inheritance), can contain a window (an embedded object), can reference a 
window, or can be contained within a window object. A view class might not even have 
a window, as in the case of a voice mail or a format converter. Some remote views (for 
example, those displayed by DOE servers) might not have local windows. 

Other viewer classes derived from TView include TEditView, TListView, and 
TWindowView. These classes display different types of data: TEditView displays 
unformatted text files, TListView displays text information in a list box, and 
TWindow View is a basic viewer from which you can derive other types of viewers such 
as hex file viewers. 

For OLE-enabled applications, use TOleView, which supports views for embedded 
objects and compound documents. 

See also 
TOleView class 

Ch a p I er 2, 0 b j e c I Windows Ii bra r y reference 451 



TView class 

Public data members 

en um 
enum {PrevProperty = 0, ViewClass, ViewName, NextProperty,}; 
These property values, defined for TView, are available in classes derived from TView. 
PrevProperty and NextProperty are delimiters for every document's property list. 

Tag 
void far* Tag; 
Tag holds a pointer to the application defined data. Typically, you can use Tag to install 
a pointer to your own application's associated data structure. TView zeros Tag during 
construction and doesn't access it again. 

Public constructor and destructor 
Constructor 
TView(TDocument& doc); 
Constructs a TView object of the document associated with the view. Sets Viewld to 
NextViewid. Calls TDocument::AttachView to attach the view to the associated document. 

Destructor 
virtual -TView(); 
Frees a TView object and calls Detach View to detach the view from the associated 
document. 

Public member functions 
FindProperty 
virtual int FindProperty(const char far* name); 
FindProperty gets the property index, given the property name (name). Returns 0 if the 
name isn't found. 

See also pfxxxx property access constants 

GetDocument 
TDocument& Ge!Document(); 
Returns a reference to the view's document. 

GetNextViewld 
static unsigned GetNextViewld{}; 
Returns the next view ID to be assigned. 

GetProperty 
virtual int GetProperty(int index, void far* dest, int textlen=O); 
Returns the total number of properties where index is the property index, dest contains 
the property data, and textlen is the size of the property array. If textlen is 0, property 
data is returned as binary data; otherwise, property data is returned as text data. 

See also pfxxxx property access constants, TView::SetProperty 

452 0 b j e ct W i n d o w s R e I e r e n c e G u i d e 



TView class 

GetViewld 
unsigned GetViewld(); 
Returns the unique ID for this view. 

GetViewMenu 
TMenuDescr* GetViewMenu(); 
Returns the menu descriptor for this view. This can be any existing TMenuDescr object. 
If no descriptor exists, View Menu is 0. 

GetViewName 
virtual cons! char far* GetViewName()=O; 
Pure virtual function that returns 0. Override this function in your derived class to 
return the name of the class. 

See also TEditView::StaticName, TEditView::GetViewName 

GetWindow 
virtual TWindow* GetWindow() 
Get Window returns the TWindow instance associated with the view or 0 if no view exists. 

See also TeditView::GetWindow 

lsOK 
bool lsOK(); 
Returns nonzero if the view is successfully constructed. 

See also TView::NotOK 

PropertyCount 
virtual int PropertyCount(); 
Gets the total number of properties for the TDocument object. Returns NextProperty-1. 

See also pfxxxx property access constants 

PropertyFlags 
virtual int PropertyFlags(inl index); 
Returns the attributes of a specified property given the index (index) of the property 
whose attributes you want to retrieve. 

See also pfxxxx property access constants, TView::FindProperty, 
TView::PropertyName 

PropertyName 
virtual cons! char* PropertyName(int index); 
Returns the text name of the property given the index value. 

See also pfxxxx property access constants, TView::FindProperty 

SetDocTitle 
virtual bool SetDocTitle(const char far* docname, int index) 
Stores the document title. 

See also TWindow::SetDocTitle 

Chapter 2, ObjectWindows library reference 453 



TWidthHeight enum 

SetProperty 
virtual bool SetProperty(int index, const void far* src); 
Sets the value of the property, given the index of the property, and src, the data type 
(either binary or text) to which,the property must be set. 

See also pfxxxx property access constants, TView::GetProperty 

SetViewMenu 
void SetViewMenu(TMenuDescr* menu); 
Sets the menu descriptor for this view. This can be any existing TMenuDescr object. If no 
descriptor exists, ViewMenu is 0. 

See also TView::GetViewMenu 

Protected data member 
Doc 
TDocument* Doc; 
Holds the current document. 

Protected member functions 
NotOK 
void NotOK(); 
Sets the view to an invalid state, thus causing IsOK to return 0. 

See also TView::IsOK 

TWidthHeight enum 
enum TWidthHeigh {lmWidth = lmCenter + 1, lmHeight}; 

layoutco.h 

Used by the TLayoutConstraint struct, TWidthHeight enumerates the values that control 
the width (lm Width) and height (lmHeight) of the window. 

See also TLayoutConstraint struct 

TWindow class window.h 

TWindow, derived from TEventHandler and TStreamableBase, provides window-specific 
behavior and encapsulates many functions that control window behavior and specify 
window creation and registration attributes. 

TWindow is a generic window that can be resized and moved. You can constnict an 
instance of TWindow, though normally you'll use TWindow as a base for your specialized 
window classes. In general, to associate and disassociate a TWindow object with a 
window element, you need to follow these steps: 

1 Construct an instance of a TWindow. 

454 ObjectWindows Reference Guide 



TWindow class 

2 Call Create or Execute, which creates the interface element (HWND) and then calls 
Setup Window, which calls the base Setup Window for normal processing, which in turn 
involves 

• Creating the HWindow and any child HWindows. 

• Calling TransferData to setup the transfer of data between the parent and child 
windows. 

3 To destroy the interface element, choose one of the following actions, depending on 
your application: 

• Call Destroy to destroy the interface element unconditionally. 

• Call Close Window, which calls CanClose to test whether it's OK to destroy the 
interface element. 

4 There are two ways to destroy the interface object: 

• If the object has been new'd, use delete. 

• If the object hasn't been new'd, the compiler automatically destructs the object. 

The ObjectWindows destroy process consists of two parts: (1) call Destroy to destroy the 
interface element and (2) then delete the C ++ object. However, it is perfectly valid to call 
Destroy on the interface element without deleting the C++ object and then to call Create 
at a later time to re-create the window. Because it is also valid to construct a C++ 
window object on the stack or as an aggregated member, the Destroy function can't 
assume it should delete the C ++ object. 

The user-generated WM_ CLOSE event handler, EvClose, also causes a C++ object to be 
deleted by passing the "this" pointer to the application. The C++ object is deleted 
automatically because the EvClose event frequently occurs in response to a user action, 
and this is the most convenient place for the deletion to take place. Later, when it's safe 
to do so, the application then deletes the window pointer. Because the st\'l.ck often 
contains selectors that refer to the addresses of objects that may become invalid during 
the delete process, it's not safe to delete the "this" pointer while events are still being 
processed. If the addresses become invalid, they could cause trouble when they are 
reloaded from the stack. 

TWindow is the base class for all window classes, including TFrameWindow, TControl, 
TDialog, and TMDIChild. The ObjectWindows hierarchy diagram shows the many 
classes that are derived from TWindow. 

Public data members 
Attr 
TWindowAttr Attr; 
Holds a TWindowAttr structure, which contains the window's creation attributes. These 
attributes, which include the window's style, extended style, position, size, menu ID, 
child window ID, and menu accelerator table ID, are passed to the function that creates 
the window. 

See also TWindow::TWindow, TWindow::Create, TWindow Attr struct 

Chapter 2, ObjectWindows library reference 455 



TWindow class 

DefaultProc 
WNDPROC DefaultProc; 
Holds the address of the default window procedure. DejWindowProc calls DefaultProc to 
process Windows messages that are not handled by the window. 

See also TWindow::DefWindowProc 

HWindow 
HWND HWindow; 
Holds the handle to the associated MS-Windows window, which you'll need to access if 
you make calls directly to Windows API functions. 

Parent 
TWiridow* Parent; 
Points to the interface object that serves as the parent window for this interface object. 

Scroll er 
TScroller* Scroller; 
Points to the scroller object that supports either the horizontal or vertical scrolling for 
this window. 

Status 
TStatus Status; 
Status is used to signal an error in the initialization of an interface object. Setting Status to 
a nonzero value causes a TXIncompatibility exception to be thrown. Classes derived from 
TWindow do not attempt to associate an interface element with an object whose previous 
initialization has failed. Status is included only to provide backward compatibility with 
previous versions of ObjectWindows. 

Title 
char far* Title; 
Title points to the window's caption. When there is a valid HWindow, Title will yield the 
same information as ::GetWindowText if you use TWindow::SetCaption to set it. 

See also TDialog::SetCaption, TDialog::SetupWindow, 
TWindow::GetWindowTextTitle, TWindow::SetCaption 

Public constructors and destructor 
Constructors 

Form 1 TWindow(HWND hWnd, TModule* module= O); 
Constructs a TWindow that is used as an alias for a non-ObjectWindows window, and 
sets wfAlias. Because the HWND is already available, this constructor, unlike the other 
TWindow constructor, performs the "thunking" and extraction of HWND information 
instead of waiting until the function Create creates the interface element. 

Both forms: The following paragraphs describe procedures common to both 
constructors. module specifies the application or DLL that owns the TWindow instance. 
ObjectWindows needs the correct value of module to find needed resources. If module 
is 0, TWindow sets its module according to the following rules: 

456 ObjectWindows Reference Guide 



TWindow class 

• If the window has a parent, the parent's module is used. 

• If the TWindow constructor is invoked from an application, the module is set to the 
application. 

• If the TWindow constructor is invoked from a DLL that is dynamically linked with the 
ObjectWindows DLL and the currently running application is linked the same way, 
the module is set to the currently running application. 

• If the TWindow constructor is invoked from a DLL that is statically linked with the 
ObjectWindows library or the invoking DLL is dynamically linked with 
ObjectWindows DLL but the currently running application is not, no default is used 
for setting the module. Instead, a TXInvalidModule exception is thrown and the object 
is not created. 

Form 2 TWindow(TWindow* parent, cons! char far* title= O, TModule* module = O); 
Adds this to the child list of parent if nonzero, and calls EnableAutoCreate so that this will 
be created displayed along with parent. Also sets the title of the window initializes the 
window's creation attributes. 

See the previous constructor for a description of the procedures common to both 
constructors. 

Destructor 
virtual N TWindow(); 
Destroys a still-associated interface element by calling Destroy. Deletes the window 
objects in the child list, then removes this from the parent window's child list. Deletes 
the Scroller if it is nonzero. Frees the cursor, if any exists, and the object instance (thunk). 

See also TWindowFlag enum, TWindow::EnableAutoCreate 

Public member functions 

AdjustWindowRect 
static void AdjustWindowRect(TRect& reel, uint32 style, bool menu); 
Adjust Window Reef calculates the size of the window rectangle according to the indicated 
client-rectangle size. rect refers to the structure that contains the client rectangle's 
coordinates. style specifies the style of the window. menu is true if the window has a 
menu. 

AdjustWindowRectEx 
static void AdjustWindowRectEx(TRect& reel, uint32 style, bool menu, uint32 exStyle); 
AdjustWindowRectEx calculates the size of a window rectangle that has an extended 
style. TRect refers to the structure that contains the client rectangle's coordinates. style 
specifies the window styles of the window to be adjusted, and menu returns true if the 

C h a pt e r 2 , 0 b j e ct W i n d o w s I i b r a r y ref e r e n c e 457 



TWindow class 

window has a menu. exStyle indicates the extended styles to be used for the window. 
Extended styles include the following styles: 

WS_EX_ACCEPTFILES 

WS_EX_DLGMODALFRAME 

WS_EX_NOPAREN1NOTIFY 

WS_EX_TOPMOST 

WS_EX_TRANSPARENT 

See also TWindow Attr struct 

BringWindowToTop 
void BringWindowToTop(); 

The window can make use of drag and drop files. 

The window has a double border that can be created with a title bar if 
the WS_CAPTION style flag is specified. 

The child window created from this style does not send parent notify 
messages to the parent window when the child is created or 
destroyed. 

A window having this style is placed above windows that aren't 
topmost and remains above the non-topmost windows even when it's 
deactivated. 

A window having this style is transparent, that is, any windows 
beneath this window are not concealed by this window. 

BringWindowToTop brings a pop-up or child window to the top of the stack of 
overlapping windows and activates it. 

CanClose 
virtual bool CanClose(); 
Use this function to determine if it's okay to close a window. Returns true if the 
associated interface element can be closed. Calls the CanClose member function of each 
of its child windows. Returns false if any of the CanClose calls returns false. 

In your application's main window, you can override TWindow's CanClose and call 
TWindow::MessageBox to display a YESNOCANCEL message prompting the user to 

YES--Save the data, or 

NO-Don't save the data, but close the window, or 

CANCEL-Cancel the close operation and return to the edit window. 

The following example shows how to write a CanClose function that displays a message 
box asking if the user wants to save a drawing that has changed. To save time, CanClose 
uses the IsDirty flag to see if the drawing has changed. If so, CanClose queries the user 
before closing the window. 

bool TMyWindow::CanClose() 
{ 

if (IsDirty) 
switch (MessageBox ("Do you want to save?", "Drawing has changed.", 

MB_YESNOCANCEL I MB_ICONQUESTION)) { 
case IDCANCEL: 

II Choosing Cancel means to abort the close - return false. 
return false; 

case IDYES: 

458 ObjectWindows Reference Guide 



II Choosing Yes means to save the drawing. 
CmFileSave I I; 

return true; 

CheckDlgButton 
void CheckDlgButton(int buttonld, uint check); 

TWindow class 

Places a checkmark in (or removes a checkmark from) the button specified in buttonid. If 
check is nonzero, the checkmark is placed next to the button; if 0, the checkmark is 
removed. For buttons having three states, check can be 0 (clear), 1 (checked), or 2 (gray). 

CheckRadioButton 
void CheckRadioButton(int firs!Buttonld, int lastButtonld, int checkButtonld); 
Checks the radio button specified by checkButtonid and removes the checkmark from the 
other radio buttons in the group. firstButtonid and lastButtonid specify the first and last 
buttons, respectively, in the group. 

ChildBroadcastMessage 
void ChildBroadcastMessage(uint msg, WPARAM wParam, LPARAM IParam); 
Sends the specified message to all immediate children using SendMessage. 

See also TWindow::SendMessage 

ChildWindowFromPoint 
HWND ChildWindowFromPoint(const TPoint&) cons!; 
Determines which of the child windows contains the point specified in TPoint. Returns a 
handle to the window that contains the point, or 0 if the point lies outside the parent 
window. 

See also TWindow::WindowFromPoint 

ChildWithld 
TWindow* ChildWithld(int id) cons!; 
Returns a pointer to the window in the child window list that has the supplied ID. 
Returns 0 if no child window has the indicated id. 

ClearFlag 
void ClearFlag(TWindowFlag mask); 
Clears the specified TWindow wfXxxx constant flags (for example wfAlias, wffransfer, 
and so on) in the Flags member. 

See also TWindowFlag enum 

ClientToScreen 
void ClientToScreen(TPoint& point) cons!; 
Converts the client coordinates specified in TPoint to screen coordinates for the new 
window. 

Close Window 
virtual void CloseWindow(int retval = O); 
Determines if it's okay to close a window before actually closing the window. If this is 
the main window of the application, calls GetApplication->CanClose. Otherwise, calls 

Chapter 2, ObjectWindows library reference 459 



TWindow class 

this->CanClose to determine whether the window can be closed. After determining that 
it is okay to close the window, Close Window calls Destroy to destroy the HWND. 

See also TApplication::CanClose, TWindow::CanClose 

Cm Exit 
void CmExit(); 
CmExit is called in response to the selection of a menu item that has an ID of CM_EXIT. 
If this is the main window, CmExit calls CloseWindow. 

Create 
virtual bool Create(); 
Creates the windows interface element to be associated with this ObjectWindows 
interface element. 

Create Caret 
Form 1 void CreateCaret(HBITMAP hBitmap); 

Creates a new caret for the system. HBITMAP specifies the bitmapped caret shape. 

Form 2 void CreateCaret(bool isGray, int width, int height); 
Create a new caret for the system with the specified shape, bitmap shade, width, and 
height. If width or height is 0, the corresponding system-defined border size is used. 

CreateChildren 
bool CreateChildren(); 
Creates the child windows in the child list whose auto-create flags (with wfAutoCreate 
mask) are set. 

See also TWindow::EnableAutoCreate, TWindow::DisableAutoCreate, TWindowFlag 
en um 

DefaultProcessing 
LRESULT DefaultProcessing(); 
DefaultProcessing serves as a general-purpose default processing function that handles a 
variety of messages. After being created and before calling DefaultProcessing, however, a 
window completes this sequence of events: 

• If the window is already created, Subclass Window is used to install StdWndProc in 
place of the window's current procedure. The previous window procedure is saved 
in DefaultProc. 

• If the window hasn't been created, InitWndProc is set up as the window proc in the 
class. Then, when the window first receives a message, InitWndProc calls GetThunk to 
get the window's instance thunk (created by the constructor by calling 
CreatelnstanceThunk). InitWndProc then switches the message-receiving capability 
from the window's procedure to StdWndProc. 

After this point, StdWndProc responds to incoming messages by calling the window's 
virtual WindowProc to process the messages. ObjectWindows uses the special registered 
message ::GetWindowPtrMsgid to get the this pointer of an HWND. StdWndProc 
responds to this message by returning the this pointer obtained from the thunk. 

If the incoming message is not a command or command enable message, WindowProc 
immediately searches the window's response table for a matching entry. If the incoming 

460 ObjectWindows Reference Guide 



TWindow class 

message is a command or command enable message, WindowProc calls EvCommand or 
EvCommandEnable. EvCommand and EvCommandEnable begin searching for a matching 
entry in the focus window's response table. If an entry is found, the corresponding 
function is dispatched; otherwise ObjectWindows calls DefaultProcessing to finish the 
recursive walk back up the parent chain, searching for a match until the receiving 
window (the window that initially received the message) is reached. At this point, one 
of the following actions occurs: 

• If there is still no match and this is the Main Window of the application, the window 
searches the application's response table. 

• lf there are no matches and this is a command, DefWindowProc is called. 

• If this is a CommandEnable message, no further action is taken. 

• If this is not a command, and if a response table entry exists for the window, 
WindowProc dispatches the corresponding EvXxxx function to handle the message. 

• If this is the application's Main Window, and the message is designed for the 
application, the message is forwarded to the application. 

• For any other cases, the window calls DefWindowProc. 

Chapter 2, ObjectWindows library reference 461 



TWindow class 

The following diagram illustrates this sequence of message-processing events: 

WM COMMAND? 

Response Table 
entry 

N 

y 

y 

? 

Start at Focus Window 

Response Table 
entry N 

? 

Try Parent window 

Is this Receiver N 
window 

? 
y 

DefaultProcessing 

y lsthisMainWindow N 
---------< and Application 

command? 

START 

MS Windows 

thunk 

Get this pointer 

StdWndProc 

WM COMMAND 
-ENABLE -

? 

EvCommandEnable 

Response Table 
entry 

? 
y 

N 

Start at Focus Window 

Response Table 
entry N 

? 

CmEnableXxxx Try Parent window 

Is this Receiver 
window 

? 
y 

CmXxxx DetwindowProc 

462 0 b j e ct W i n d o w s R e I e r e n c e G u i d e 

N 

Non-commands? 

Response Table 
entry 

? 

EvXxxx 

Call default 
processing 

? 

N 

y 

DefaultProcessing 

DetwindowProc 



TWindow class 

See also TWindow::DefWindowProc 

DefWindowProc 
virtual LRESULT DetwindowProc(uint msg, WPARAM wParam, LPARAM IParam); 
Performs default Windows processing and passes the incoming Windows message. You 
usually don't need to call this function directly. Classes such as TMDIFrame and 
TMDIChild's DefWindowProc override this function to perform specialized default 
processing. 

See also TWindow::DefaultProc, TWindow::WindowProc, 
TMDIFrame::DefWindowProc 

Destroy 
virtual void Destroy(int retVal = O); 
First, Destroy calls EnableAutoCreate for each window in the child list to ensure that 
windows in the child list will be re-created if this is re-created. Then, it destroys the 
associated interface element. 

If a derived window class expects to be destructed directly, it should call Destroy as the 
first step in its destruction so that any virtual functions and event handlers can be called 
during the destroy sequence. 

See also TWindow::EnableAutoCreate 

DestroyCaret 
static void DestroyCaret(); 
DestroyCaret first checks the ownership of the caret. If a window in the current task owns 
the caret, DestroyCaret destroys the caret and removes it from the screen. 

See also TWindow::CreateCaret 

DisableAutoCreate 
void DisableAutoCreate(); 
Disables the feature that allows an associated child window interface element to be 
created and displayed along with its parent window. Call DisableAutoCreate for pop-up 
windows and controls if you want to create and display them at a time later than their 
parent windows. 

See also TWindow::EnableAutoCreate 

Disable Transfer 
void DisableTransfer(); 
Disables (for the interface object) the transfer mechanism, which allows state data to be 
transferred to and from a transfer buffer. 

See also TWindowFlag enum 

Dispatch 
virtual LRESULT Dispatch(TEventlnfo& info, WPARAM wp, LPARAM Ip= O); 
Cracks and dispatches a TWindow message. The info parameter is the event-handling 
function. The wp and lp parameters are the message parameters the dispatcher cracks. 

DragAcceptFiles 
void DragAcceptFiles(bool accept); 

Chapter 2, Objec!Windows library reference 463 



TWindow class 

If a window can process dropped files, DragAcceptFiles sets accept to TRUE. 

DrawMenuBar 
void DrawMenuBar(); 
DrawMenuBar redraws the menu bar. Tiris function should be called to redraw the 
menu if the menu is changed after the window is created. 

EnableAutoCreate 
void EnableAutoCreate(); 
Ensures that an associated child-window interface element is created and displayed 
along with its parent window. By default, this feature is enabled for windows and 
controls, but disabled for dialog boxes. 

See also TWindow::DisableAutoCreate 

EnableScrollBar 
void EnableScrollBar(uint sbFlags = SB_BOTH, uint arrowFlags = ESB_ENABLE_BOTH); 
Disables or enables one or both of the scroll bar arrows on the scroll bars associated with 
this window. sbFlags, which specifies the type of scroll bar, can be one of the Scroll 13ar 
constants (SB_CTL, SB_HORZ, SB_ VERT, or SB_BOTH). By default, the arrows on both 
the horizontal and vertical scroll bars are either enabled or disabled. arrowFlags, which 
indicates whether the scroll bar arrows are enabled or disabled, can be one of the Enable 
Scroll Bar constants (ESB_ENABLE_BOTH, ESB_DISABLE_LTUP, 
ESB_DISABLE_RTDN, ESB_DISABLE_BOTH). By default, the arrows on both the 
horizontal and vertical scroll bars are enabled. 

See also SB_Xxxx ScrollBar Constants 

Enable Transfer 
void EnableTransfer(); 
Enables the transfer mechanism, which allows state data to be transferred between the 
window and a transfer buffer. · 

Enable Window 
virtual boot EnableWindow(bool enable); 
Allows the given window to receive input from the keyboard of mouse. If enable is 
TRUE, the window can receive input. Use the function Is Window Enabled to determine if 
the window has been enabled. 

See also TWindow::IsWindowEnabled 

EnumProps 
int EnumProps(PROPENUMPROC proc); 
Enumerates all the items in the property list of the current window and passes them one 
by one to the callback function indicated in proc. The process continues until every item 
has been enumerated or until proc reh1ms zero. proc holds the address of the callback 
function. 

EvChildlnvalid 
void EvChildlnvalid(HWND hWnd); 
Responds to a WM_CHILDINV AUD message posted by a child edit control. Indicates 
that the contents of the child window are invalid. 

464 ObjectWindows Reference Guide 



TWindow class 

EvCommand 
virtual LRESULT EvCommand(uint id, HWND hWndCtl, uint notifyCode); 
WindowProc calls EvCommand to handle WM_ COMMAND messages. id is the identifier 
of the menu item or control. h WndCtl holds a value that represents the control sending 
the message. If the message is not from a control, it is 0. notifyCode holds a value that 
represents the control's notification message. If the message is from an accelerator, 
notifyCode is l; if the message is from a menu, notifyCode is 0. 

See also TWindow::DefaultProcessing 

EvCommandEnable 
virtual void EvCommandEnable(TCommandEnabler& ce); 
Called by WindowProc to handle WM_ COMMAND _ENABLE messages, EvCommand 
calls the CmXxxx command-handling function or calls DefaultProcessing to handle the 
incoming message. 

See also TWindow::DefaultProcessing, TCommandEnabler 

EvSysCommand 
void EvSysCommand(uint cmdType, TPoint& point); 
Responds to a user-selected command from the System menu or when the user selects 
the maximize or minimize box. Applications that modify the system menu must process 
EvSysCommand messages. Any EvSysCommand messages not handled by the application 
must be passed to DejWindowProc. The parameter cmdType can be one of the following 
system commands: 

SC_CLOSE 

SC_HOTKEY 

SC_HSCROLL 

SC_KEYMENU 

SC_MAXIMIZE (or SC_ZOOM) 

SC_MINIMIZE (orSC_ICON) 

SC_MOUSEMENU 
SC_NEXTWINOOW 

SC_PREVWINOOW 
SC_SCREENSA VE 

SC_SIZE 

SC_TASKLIST 

SC_VSCROLL 

Close the window. 

Activate the specified window. 

Scroll horizontally. 

Retrieve a menu through a keystroke. 

Maximize the window. 

Minimize the window. 

Retrieve a menu through a mouse click. 

Move to the next window. 

Move to the previous window. 

Execute the specified screen saver. 

Size the window 

Activate the Windows Task Manager. 

Scroll vertically. 

In the following example, EvSysCommand either processes system messages or calls 
DefaultProcessing: 

void MyWindow::EvSysCommand(uint cmdType, TPoint&) 
{ 

switch (cmdType& OxFFFO) 
case SC_MOUSEMENU: 
case SC_KEYMENU: 

Chapter 2, ObjectWindows library reference 465 



TWindow class 

break; 
default: 

DefaultProcessing(); 

See also TWindow::DefaultProcessing 

FirstThat 
TWindow* FirstThat(TCondFunc test, void* paramlist = 0); 
TWindow* FirstThat(TCondMemFunc test, void* paramlist = O); 
There are two First That functions, both of which pass a pointer to an iterator function. 
The first FirstThat points to a nonmember function as its first parameter; the second 
FirstThat points to a member function instead. 

Both FirstThat functions iterate over the child list, calling a Boolean test function and 
passing each child window in turn as an argument (along with paramList). If a test call 
returns TRUE, the iteration is stopped and First That returns the child window object that 
was supplied to test. Otherwise, FirstThat returns 0. 

In the following example, GetFirstChecked calls FirstThat to obtain a pointer (p) to the first 
check box in the child list that is checked: 

bool IsThisBoxChecked(TWindow* p, void*) { 
return ((TCheckBox*)p)->GetCheck() == BF_CHECKED; 

TCheckBox* TMyWindow::GetFirstChecked() 
return FirstThat(IsThisBoxChecked); 

See also TCondFunc type 

Flash Window 
bool FlashWindow(bool invert); 
Flash Window changes the window from active to inactive or vice versa. If invert is 
nonzero, the window is flashed. If invert is 0, the window is returned to its original 
state-either active or inactive. 

For Each 
Form 1 void ForEach(TActionFunc action, void* paramlist = O); 

There are two ForEach functions. This ForEach takes a nonmember function as its first 
parameter; the other For Each (see the following entry) takes a member function instead. 
This version of ForEach iterates over the child list, calling a nonmember function 
supplied as the action to be performed and passing each child window in turn as the 
argument (along with paramList). 

In the following example, CheckAllBoxes calls For Each, checking all the check boxes in the 
child list: 

void CheckTheBox(TWindow* p, void*) 
( (TCheckBox* )p) ->Check (); 

466 ObjectWindows Reference Guide 



void CheckAllBoxes() { 
ForEach(CheckTheBox); 

Form 2 void ForEach(TActionMemFunc action, void* paramlist = O); 

TWindow class 

Refer to the previous For Each description. The difference between the two For Each 
members is that the first ForEach takes a nonmember function as a parameter and this 
ForEach takes a member function as a parameter. 

See also T ActionFunc typedef, T ActionMemFunc typedef 

Forward Message 
Form 1 LRESUL T ForwardMessage(bool send =true) 

Forwards the window's current message. Calls SendMessage if send is TRUE; otherwise 
calls PostMessage. 

Form 2 LRESUL T ForwardMessage(HWND hWnd, bool send= true); 
Forwards the window's current message to another HWND. Calls SendMessage if send is 
true; otherwise calls PostMessage. 

See also TWindow::PostMessage 

GetActiveWindow 
static HWND GetActiveWindow(); 
GetActiveWindow retrieves the handle of the active window. Returns 0 if no window is 
associated with the calling thread. 

GetApplication 
TApplication* GetApplication()const; 
Gets a pointer to the T Application object associated with this. Use GetApplication to obtain 
access to data and functions in the T Application object. 

GetCapture 
static HWND GetCapture(); 
Returns the handle of the window that has captured the mouse. 

GetCaretBlinkTime 
static uint GetCaretBlinkTime(); 
GetCaretBlinkTime retrieve the caret blink rate in milliseconds. 

See also TWindow::SetCaretBlinkTime 

GetCaretPos 
static void GetCaretPos(TPoint& point); 
GetCaretPos gets the position of the caret in the coordinates of the client window. point 
refers to the structure that receives the client coordinates of the caret. 

See also TWindow::SetCaretPos 

GetClasslong 
long Ge!Classlong(int index) cons!; 

. C h a pt e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e f e re n c e 467 



TWindow class 

GetClassLong retrieves the 32-bit value about the window class. If unsuccessful, returns 
0. Depending on the value of index, GetClassLong can retrieve the following information: 

GCL_CBCLSEXTRA Size in bytes of memory associated with this class 

GCL_CBWINDEXTRA Size of extra window memory associated with each window 

GCL_HBRBACKGROUND Handle of the background brush associated with the class 

GCL_HCURSOR Handle of the cursor 

GCL_HlCON Handle of the icon 

GCL_HMODULE , Handle of the module that registered the class 

GCL_MENUNAME Address of the menu name string 

GCL_STYLE The style bits associated with a window class 

GCL_ WNDPROC Address of the window procedure associated with this class 

See also Twindow::SetClassLong 

GetClassWord 
uint16 GetClassWord(int index) cons!; 
GetClass Word gets a 16-bit value containing information about the class or style of the 
window. If unsuccessful; returns 0. Depending on the value of index, GetClass Word can 
retrieve the following information: 

GCW _CBCLSEXTRA 

GCW _CBWlNDEXTRA 

GCW _HBRBACKGROUND 

GCW _HCURSOR 

GCW_HlCON 

GCW _HMODULE 

GCW_STYLE 

Number of additional class information 

Number of bytes of additional window information 

Handle of the background brush 

Handle of the cursor 

Handle of the icon 

Handle of the module 

The style bits associated with a window class 

See also TWindow::SetClassWord 

GetClientRect 
Form 1 TRect GetClientRect() canst; 

GetClientRect gets the coordinates of the window's client area (the area in a window you 
can use for drawing). 

Form 2 void GetClientRect(TRect& rect) cons!; 
Gets the coordinates of the window's client area and then copies them into the object 
referred to by TRect. 

GetCursorPos 
static void GetCursorPos(TPoint& pos); 
GetCursorPos retrieves the cursor's current position (in window screen coordinates) and 
copies the values into the structure pointed to by TPoint. 

468 ObjectWindows Reference Guide 



TWindow class 

GetDesktopWindow 
static HWND GetDesktopWindow(); 
GetDesktopWindow returns a handle to the desktop window. 

GetDlgCtrllD 
int GetDlgCtrllD() const; 
GetDlgCtrlID returns the ID of the control. 

GetDlgltem 
HWND GetDlgltem(int childld) const; 
GetDlgitem retrieves the handle of a control specified by childid. 

See also 1Window::GetDlgitemint 

GetDlgltemlnt 
uint GetDlgltemlnt(int childld, bool *translated = O,bool isSigned = true) const; 
GetDlgitemint retrieves the text of a control specified by childld. translated points to the 
variable that receives the translated value. isSigned indicates that the retrieved value is 
signed (the default). 

See also 1Window::GetDlgitem 

GetDlgltemText 
uint GetDlgltemText(int childld, char far* text, int max) const; 
GetDlgitemText retrieves the text of a control specified by childid. text points to the text 
buffer to receive the text. max specifies the maximum length of the caption, which is 
truncated if it exceeds this length. 

See also 1Window::SetDlgltemText 

GetFirstChild 
TWindow* GetFirstChild() 
Returns a pointer to the first child window, which is the first window created, in the 
interface object's child list. 

See also 1Window Attr struc 

GetFocus 
static HWND GetFocus(); 
Gets a handle to the window that has the focus. Use the function SetFocus to set the 
keyboard focus to this window. 

See also 1Window::SetFocus 

GetHWndState 
void GetHWndState(); 
Copies the style, coordinate, and the resource id (but not the title) from the existing 
HWnd into the ObjectWindows' TWindow members. 

Getld 
int Getld(); 
Returns Attr.Id, the ID used to find the window in a specified parent's child list. 

See also 1Window Attr struct 

Chapter 2, ObjectWindows library reference 469 



TWindow class 

GetModule 
TModule* GetModule() const; 
Returns a pointer to the module object. 

GetLastActivePopup 
HWND GetlastActivePopup() const; 
Returns the last active pop-up window in the list. 

GetLastChild 
TWindow* GetlastChild(); 
Returns a pointer to the last child window in the interface object's child list. 

GetMenu 
HMENU GetMenu() const; 
GetMenu returns the handle to the menu of the indicated window. If the window has no 
menu, the return value is 0. 

See also TWindow::SetMenu 

GetNextDlgGroupltem 
HWND GetNextDlgGroupltem(HWND hWndCtrl, boor previous = false) const; 
GetNextDlgGroupltem returns either the next or the previous control in the dialog box. 
h WndCtrl identifies the control in the dialog box where the search begins. If previous is 
0, GetNextDlgGroupltem searches for the next control; if nonzero, it searches for the 
previous control. 

GetNextDlgTabltem 
HWND GetNextDlgTabltem(HWND HWndCtrl, bool previous= false) canst; 
GetNextDlgTabltem returns the handle of the first control that lets the user press the TAB 
key to move to the next control (that is, the first control with the WS_!ABSTOP style 
associated with it). hWndCtrl identifies the control in the dialog box where the search 
begins. If previous is 0, GetNextDlgGroupltem searches for the next control; if nonzero, it 
searches for the previous control. 

GetNextWindow 
HWND GetNextWindow(uint dirFlag) const; 
GetNextWindow finds the handle associated with either the next or previous window in 
the window manager's list. dirFlag specifies the direction of the search. Under the Win 
32 API, GetNextWindow returns either the next or the previous window's handle. If the 
application is not running under Win32, GetNextWindow returns the next window's 
handle. 

GetWindowPtr 
TWindow* GetWindowPtr(HWND hWnd); 
This version of GetWindowPtr actually calls TApplication's GetWindowPtr on the 
application associated with this window. Then, given the handle to this window 
(hWnd), GetWindowPtr returns the TWindow pointer associated with ths window. 

See also TApplication:GetWindowPtr 

GetParent 
HWND GetParent() const; 

470 ObjectWindows Reference Guide 



TWindow class 

GetParent retrieves the handle of the parent window. If none exists, returns 0. 

See also TWindow::SetParent 

GetProp 
Form 1 HANDLE GetProp(uint16 atom) canst; 

GetProp returns a handle to the property list of the specified window. atom contains a 
value that identifies the character string whose handle is to be retrieved. If the specified 
string is not found in the property list for this window, returns NULL. 

Form 2 HANDLE GetProp(const char far* string) canst; 
GetProp returns a handle to the property list of the specified window. Unlike the 
previous GetProp function, string points to the string whose handle is to be retrieved. If 
the specified string is not found in the property list for this window, returns NULL. 

See also TWindow::SetProp 

GetScrollPos 
int GetScrollPos(int bar) canst; 
GetScrollPos returns the thumb position in the scroll bar. The position returned is relative 
to the scrolling range. If bar is SB_CTL, it returns the position of a control in the scroll 
bar; if bar is SB_HORZ, it returns the position of a horizontal scroll bar; if bar is 
SB_ VERT, it returns the position of a vertical scroll bar. 

See also TWindow::SetScrollPos, SB_Xxxx Scroll Bar Constants 

GetScrollRange 
void GetScrollRange(int bar, int& minPos, int& maxPos) canst; 
GetScrollRange returns the minimum and maximum positions in the scroll bar. If bar is 
SB_ CTL, it returns the position of a control in the scroll bar; if bar is SB _HORZ, it returns 
the position of a horizontal scroll bar; if bar is SB_ VERT, it returns the position of a 
vertical scroll bar. minPos and maxPos hold the lower and upper range, respectively, of 
the scroll bar positions. If there are no scroll bar controls or if the scrolls are non­
standard, minPos and maxPos are zero. 

See also TWindow::SetScrollRange, SB_Xxxx Scroll Bar Constants 

GetSysModalWindow 
static HWND GetSysModalWindow(); 
Retrieves the handle of the system-modal window. 

See also TWindow::SetSysModalWindow 

GetSystemMenu 
HMENU GetSystemMenu(bool revert = false) canst; 
GetSystemMenu returns a handle to the system menu so that an application can access 
the system menu. 

GetThunk 
WNDPROC GetThunk()const; 
Gets the instance thunk, a small piece of code created for use with exported callback 
functions. (A callback function is a function that exists within a program but is called 

Chapter 2, ObjectWindows library reference 471 



TWindow class 

from outside the program by a Windows library routine, for example, a dialog box 
function.) 

· GetTopWindow 
HWND GetTopWindow()const; 
GetTopWindow returns a handle to the top window currently owned by this parent 
window. If no children exist, GetTopWindow returns 0. 

GetUpdateRect 
bool GetUpdateRect(TRect& rect, bool erase = true) const; 
GetUpdateRect retrieves the screen coordinates of the rectangle that encloses the updated 
region of the specified window. erase specifies whether GetUpdateRect should erase the 
background of the updated region. · 

See also TWindow::RedrawWindow 

GetUpdateRgn 
bool GetUpdateRgn(TRegion& rgn, bool erase = true) const; 
GetUpdateRgn copies a window's update region into a region specified by region. If erase 
is true, GetUpdateRgn erases the background of the updated region and redraws 
nonclient regions of any child windows. If erase is false, no redrawing occurs. 

If the .call is successful, GetUpdateRgn returns a value indicating the kind of region that 
was updated. If the region has no overlapping borders, it returns SIMPLEREGION; if 
the region has overlapping borders, it returns COMPLEXREGION; if the region is 
empty, it returns NULLREGION; if an error occurs, it returns ERROR. 

See also TWindow::RedrawWindow 

GetWindow 
HWND GetWindow (uint cmd) const; 
Returns the handle of the window that has the indicated relationship to this window. 
cmd, which indicates the type of relationship to be obtained, can be one of the following 
values: 

See also TApplication:GetWindowPtr 

GetWindowFont 
HFONT GetWindowFont(); 
Gets the font the control uses to draw text. The return value is a handle of the font the 
control uses. If a system default font is being used, GetWindowFont returns NULL. 

GetWindowlong 
long GetWindowlong(int index) const; 
GetWindowLong retrieves information about the window depending on the value stored 
in index. The values returned, which provide information about the window, include the 
following GWL_Xxxx window style constants: 

. GWL_EXSTYLE 

GWL_STYLE 

GWL_WNDPROC-

The ex~ded window style 

The window style (position, device context creation, size, and so on) 

. The address of the window procedure being processed 

472 ObjectWindows Reference Guide 



TWindow class 

In the case of the dialog box, additional information can be retrieved, such as: 

DWL_DLGPROC The address of the procedure processed by the dialog box 

DWL _MSGRESUL T The value that a message processed by the dialog box returns 

DWL_USER Additional information that pertains to the application, such as pointers or 
handles the application uses. 

See also TWindow::GetClassLong 

GetWindowPlacement 
bool GetWindowPlacement(WINDOWPLACEMENT* place) const; 
GetWindowPlacement retrieves display and placement information (normal, minimized, 
and maximized positions) about the window and stores that information in the 
argument, place . 

See also TWindow::SetWindowPlacement, TWindow::Show 

GetWindowRect 
Form 1 void GetWindowRect(Trect& rect) const; 

Gets the screen coordinates of the window's rectangle and copies them into rect. 

Form 2 TRect GetWindowRect() const; 
Gets the screen coordinates of the window's rectangle. 

See also TWindow::GetClientRect 

GetWindowTask 
HTASK GetWindowTask() const; 
Returns a handle to the task that created the specified window. 

GetWindowText 
int GetWindowText(char far* string, int maxCount) cons!; 
GetWindowText copies the window's title into a buffer pointed to by string. maxCount 
indicates the maximum number of characters to copy into the buffer. A string of 
characters longer than maxCount is truncated. GetWindowText returns the length of the 
string or 0 if no title exists. 

See also TWindow::SetWindowText, TWindow::GetWindowTextTitle, 
TWindow::SetCaption 

GetWindowTextlength 
int Ge!WindowTextlength() const; 
GetWindowTextLength returns the length, in characters, of the specified window's title. If 
the window is a control, returns the length of the text withln the control. If the window 
does not contain any text, GetWindowTextLength returns 0. 

See also TWindow::SetWindowText 

GetWindowTextTitle 
void GetWindowTex!Title(); 

C h a p I e r 2 , 0 b j e c I W i n d ow s I i b r a r y r e f e r e n c e 473 



TWindow class 

Updates the TWindow Title data member from the current window's caption. 
GetWindowTextTitle is used to keep Title synchronized with the actual window state 
when there is a possibility that the state might have changed. 

See also TWindow::SetCaption, TWindow::Title 

GetWindowWord 
uint16 GetWindowWord(int index) canst; 
Get Window Word retrieves information about this window depending on the value of 
index. Get Window Word returns one of the following values that indicate information 
about the window: 

GWW _HINSTANCE 

GWW_HWNDPARENT 

GWW_ID 

The instance handle of the module owning the window 

The handle of the parent window 

The ID number of the child window 

See also TWindow::GetWindowLong, TWindow::SetWindowWord, 
TWindow::SetParent 

HandleMessage 
LRESULT HandleMessage(uint msg, WPARAM wParam = 0, LPARAM IParam = O); 
Handles message sent to a window. HandleMessage can be called directly to handle 
Windows messages without going through SendMessage. 

See also TWindow::SendMessage 

HideCaret 
void HideCaret(); 
HideCaret removes the caret from the specified display screen. The caret is hidden only if 
the current task's window owns the caret. Although the caret is not visible, it can be 
displayed again using ShowCaret 

See also TWindow::CreateCaret, TWindow::ShowCaret 

HiliteMenultem 
bool HiliteMenultem(HMENU hMenu, uint idltem, uint hilite); 
HiliteMenultem either highlights or removes highlighting from a top-level item in the 
menu. idltem indicates the menu item to be processed. hilite (which contains a value that 
indicates if the idltem is to be highlighted or is to have the highlight removed) can be one 
or more of the following constants: 

MF _BYCOMMAND 

MF _BYPOSffiON 

MF_HILITE 

MF_UNHILITE 

The idltem parameter contains the menu item's identifier. 

The idltem parameter contains the zero-based relative position of the menu item. 

Highlights the menu item. If this value is not specified, highlighting is removed 
from the item. 

Removes the menu item's highlighting. 

474 ObjectWindows Reference Guide 



TWindow class 

If the menu is set to the specified condition, HiliteMenuitem returns true; otherwise, 
returns false. 

See also TWindow: :GetMenu 

HoldFocusHWnd 
virtual bool HoldFocusHWnd(HWND hWndlose, HWND hWndGain); 
Responds to a request by a child window to hold its HWND when it is losing focus. 
Stores the child's HWND in HwndRestoreFocus. 

See also TFrameWindow::HoldFocusHwnd 

HWNDQ 
operator HWND()const; 
Allows a TWindow& to be used as an HWND in Windows API calls by providing an 
implicit conversion from TWindow to HWND. 

ldleAction 
virtual bool ldleAction(long idleCount); 
Called when no messages are waiting to be processed, IdleAction performs idle 
processing as long as true is returned. idleCount specifies the number of times idleAction 
has been called between messages. 

Invalidate 
void lnvalidate(bool erase = true); 
Invalidates (mark for painting) the entire client area of a window. The window then 
receives a message to redraw the window. By default, the background of the client area 
is marked for erasing. 

See also TWindow::Validate, TWindow::InvalidateRect 

lnvalidateRect 
void lnvalidateRect(const TRect&, bool erase = true);; 
Invalidates a specified client area. By default, the background of the client area to be 
invalidated is marked for erasing. 

See also TWindow::ValidateRect, TWindow::Invalidate 

lnvalidateRgn 
void lnvalidateRgn(HRGN hRgn, bool erase= true); 
InvalidateRgn invalidates a client area within a region specified by the hRgn parameter 
when the application receives a WM_PAINT message. The region to be invalidated is 
assumed to have client coordinates. If hRgn is 0, the entire client area is included in the 
region to be updated. The parameter erase specifies whether the background with the 
update region needs to be erased when the region to be updated is determined. If erase is 
true, the background is erased; if erase is false, the background is not erased when the 
Paint function is called. By default, the background within the region is marked for 
erasing. 

See also TWindow::ValidateRgn, TWindow::Paint 

lsChild 
bool lsChild(HWND hWnd) canst; 

C h a pt e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e f e r e n c e 475 



TWindow class 

IsChild is TRUE if the window is a child window or a descendant window of this 
window. A window is considered a child window if it is the direct descendant of a given 
parent window and the parent window is in a chain of windows leading from the 
original overlapped or pop-up window down to the child window. hWnd identifes the 
window to be tested. 

lsDlgButtonChecked 
uint lsDlgButtonChecked(int buttonld) const; 
IsDlgButtonChecked indicates if the child button specified in the integer parameter, 
buttonld, is checked or if a button is grayed, checked or neither. If the return value is 0, 
the button is unchecked. If the return value is 1, the button is checked. If the return value 
is 3, the button state is undetermined. This function sends a BM_GETCHECK message 
to the specified button control. 

lsFlagSet 
baal lsFlagSet(TWindawFlag mask); 
Returns the state of the bit flag in Attr.Flags whose mask is supplied. Returns true if the 
bit flag is set, and false if not set. 

See also TWindow Attr struc 

lslconic 
baal lslconic() const; 
Is TRUE if window is iconic or minimized. 

ls Window 
baal lsWindaw() canst; 
Is TRUE if an HWND is being used. 

lsWindowEnabled 
baol lsWindawEnabled(); 
Is true if the window is enabled. Use the function Enable Window to enable or disable a 
window. 

See also TWindow::EnableWindow 

lsWindowVisible 
baal lsWindawVisible() canst; 
Is true if the window is visible. By default, TWindow's constructor sets the window style 
attribute (WS_ VISIBLE) so that the window is visible. 

lsZoomed 
baal lsZaamed() canst; 
Is true if window is zoomed or maximized. 

KillTimer 
baal KillTimer(uint timerld); 
KillTimer gets rid of the timer and removes any WM_ TIMER messages from the 
message queue. timerld contains the ID number of the timer event to be killed. 

See also TWindow::SetTimer 

476 0 bjectWi n d ows Rel ere n ce Guide 



LockWindowUpdate 
bool LockWindowUpdate(); 

TWindow class 

LockWindowUpdate prevents or enables window drawing for one window at a time. If 
the window is locked, returns true; otherwise, returns false, which indicates an error 
occurred or some other window is already locked. 

If there is any attempted drawing attempted within a locked window or locked child 
windows, the extent of the attempted operation is saved within a bounding rectangle. 
When the window is then unlocked, the area withing the rectangle is invalidated. This 
causes a paint message to be sent to this window. If any drawing occurred while the 
window was locked for updates, the area is invalidated. 

MapWindowPoints 
void MapWindowPoints(HWND hWndTo, TPoint* points, int count) cons!; 
Map Window Points maps a set of points in one window to a relative set of points in 
another window. hWndTo specifies the window to which the points are converted. 
points points to the array containing the points. If hWndTo is 0, the points are converted 
to screen coordinates. count specifies the number of points structures in the array. 

MessageBox 
int MessageBox(const char far* text,const char far* caption = O, uint type = MB_ OK); 
Creates and displays a message box that contains a message (text), a title (caption), and 
icons or push buttons (type). If caption is 0, the default title is displayed. Although type is 
set to one push button by default, it can contain a combination of the MB _Xxxx message 
constants. This function returns one of the following constants: 

ID ABORT 

IDCANCEL 

IDIGNORE 

IDNO 

IDOK 

ID RETRY 

ID YES 

User selected the abort button. 

User selected the cancel button. 

User selected the ignore button. 

User selected the no button. 

User selected the OK button 

User selected the retry button. 

User selected the yes button. 

If BWCC is already enabled, then the message box will be a BWCC enabled. If CTRL 3D 
is already enabled, then the message box will be CTRL 3D enabled. If neither BWCC nor 
CTRL 3D is enabled, the message box will be displayed as a standard windows message 
box. 

See also TWindow::PostMessage, MB_Xxxx message constants 

Move Window 
Form 1 void MoveWindow(int x, int y, int w, int h, bool repaint= false); 

Move Window repositions the specified window. x and y specify the new upper left 
coordinates of the window; w and h specify the new width and height, respectively. If 
repaint is false, the window is not repainted after it is moved. 

Form 2 void MoveWindow(const TRect& reel, bool repaint= false); 

Chapter 2, Objec!Windows library reference 477 



TWindow class 

MoveWindow repositions the window. rect references the left and top coordinates and 
the width and height of the new screen rectangle. If repaint is FALSE, the window is not 
repainted after it is moved. 

See also TWindow::RedrawWindow 

Next 
TWindow* Next(); 
Returns a pointer to the next sibling window in the window's sibling list. 

See also TWindow::Previous 

NumChildren 
unsigned NumChildren(); 
Returns the number of child windows of the window. 

OpenClipboard 
TClipboard& OpenClipboard(); 
Opens the clipboard ai1d prevents other application from changing the contents of the 
clipboard. This function fails if another window has already opened the clipboard. 

Paint 
virtual void Paint(TDC& de, bool erase, TRect& rect); 
Repaints the client area (the area you can use for drawing) of a window. Called by base 
classes when responding to a WM_PAINT message, Paint serves as a placeholder for 
derived types that define Paint member functions. Paint is called by EvPaint and 
requested automatically by Windows to redisplay the window's contents. de is the paint 
display context supplied to text and graphics output functions. The supplied reference 
to the rect structure is the bounding rectangle of the area that requires painting. erase 
indicates whether the background needs erasing. 

PostMessage 
bool PostMessage(uint msg, WPARAM wParam = 0, LPARAM IParam=O) canst; 
PostMessage posts a message (msg) to the window in the application's message queue. It 
returns without waiting for the corresponding window to process the message. 

See also TWindow::ForwardMessage, TWindow::MessageBox 

Perform Create 
virtual void PerformCreate(int menuOrld); 
PerformCreate is called from within Create to perform the final step in creating an 
MS_ Windows interface element to be associated with an ObjectWindows window. 
PerformCreate can be overridden to provide alternate HWND create implementation. 

See also TWindow::Create 

PreProcessMsg 
virtual bool PreProcessMsg(MSG& msg); 
PreProcessMsg allows preprocessing of queued messages prior to dispatching. If you 
override this method in a derived class, be sure to call the base class's PreProcessMsg 
because it handles the translation of accelerator keys. When nonzero is returned, 
message processing stops. 

478 ObjectWindows Reference Guide 



TWindow class 

See also TApplication::ProcessAppMsg 

Previous 
TWindow* Previous(); 
Returns a pointer to the previous window in the window's sibling list. 

See also TWindow::Next 

Receive Message 
LRESULT ReceiveMessage(uint msg, WPARAM wParam = 0, LPARAM IParam = O); 
Called from StdWndProc, ReceiveMessage is the first member function called when a 
message is received. It calls HandleMcssagc from within the try block of the exception­
handling code. In this way, exceptions can be caught and suspended before control is 
returned to exception-unsafe Windows code. 

See also TWindow::HandleMessage 

RedrawWindow 
bool RedrawWindow(TRect* update, HRGN hUpdateRgn, uint redrawFlags = RDW_INVALIDATE I 
RDW_UPDATENOW I RDW_ERASE); 
Redraw Window redraws the rectangle specified by update, and the region specified by 
hUpdateRgn. redrawFlags can be a combination of one or more of the following 
RDW _Xxxx Redraw Window constants used to invalidate or validate a window. 

These values invalidate a window: 
RDW_ERASE 

RDW_FRAME 

RDW _INTERNALP AINT 

RDW_INVALIDATE 

When the window is repainted, it receives a WM_ERASEBKGND 
message. If RDW _INV ALIDA TE is not also specified, this flag has no 
effect. 

Any part of the non-client area of the window receives a 
WM_NCP AINT message if it intersects the region to be updated. 

A WM_P AINT message is posted to the window whether or not it 
contains an invalid region. 

Invalidates either hUpdateRgn or update. In cases where both are 0, the 
entire window becomes invalid. 

These values validate a window: 
RDW _NOERASE The window is prevented from receiving any WM_ERASEBKGND 

messages. 

RDW _NOFRAME The window is prevented from receiving any WM_NCPAINT 
messages. The flag RDW _VALIDATE must also be used with this flag. 

RDW _NOINTERNALP AINT 

RDW_VALIDATE 

The window is prevented from receiving internal WM_P AINT 
messages, but does not prevent the window from receiving 
WM_P AINT messages from invalid regions. 

Validates update and hUpdateRgn. However, if both are 0, the entire 
window area is validated. The flag does not have any effect on internal 
WM_P AINT messages. 

C h a pt e r 2 , 0 b j e ct W i n d ow s I i b r a r y r e f e r e n c e 479 



TWindow class 

These flags control when the window is repainted: 
RDW _ERASENOW Before the function returns, the specified windows will receive 

WM_NCPAINT and WM_ERASEBKGNDmessages. 
RDW _UPDATENOW Before the function returns, the specified windows will receive 

WM_NCPAINT, WM_ERASEBKGND, as well as WM_P AINT 
messages. 

See also TWindow::GetUpdateRect 

Register 
virtual bool Register(); 
Registers the Windows registration class of this window, if this window is not already 
registered. Calls GetCiassName and GetWindowClass to retrieve the Windows registration 
class name and attributes of this window. Register returns true if this window is 
registered. 

See also TWindow::GetClassName, TWindow::GetWindowClass, WNDCLASS struct 

RegisterHotKey 
bool RegisterHotKey(int idHotKey, uint modifiers, uint virtKey); 
RegisterHotKey registers a hotkey ID with the current application. modifiers can be a 
combination of keys that must be pressed to activate the specified hotkey, for example, 
HOTKEYF _SHIFT, HOTKEYF _CONTROL, and HOTKEYF _ALT. 

See also TWindow::UnRegisterHotKey 

ReleaseCapture 
static void ReleaseCa.pture(); 
Releases the mouse capture from this window. 

RemoveProp 
Form 1 HANDLE RemoveProp(uint16 atom) canst; 

RemoveProp removes the property specified by atom from the application's property list. 
atom indicates the string to be removed. Returns the handle of the given string or NULL 
if no string exists in the window's property list. 

Form 2 HANDLE RemoveProp(const char far* str) canst; 
RemoveProp removes the property specified by str, a null-terminated string, from the 
application's property list. Returns the handle of the given string or NULL if no string 
exists in the window's property list. 

See also TWindow::GetProp . 

ScreenToClient 
void ScreenToClient(TPoint& point) canst; 
ScreenToClient uses the screen coordinates specified in point to calculate client window's 
coordinates and then place the new coordinates into point. 

ScrollWindow 
void ScrollWindow(int dx, int dy, canst TRect* scroll= 0, canst TRect far* clip= O); 

480 ObjectWindows Reference Guide 



TWindow class 

ScrollWindow scrolls a window in the vertical (dx) and horizontal (dy) directions. TRect 
indicates the area to be scrolled. If 0, the entire client area is scrolled. clip specifies the 
clipping rectangle to be scrolled. Only the area within clip is scrolled. If clip is 0, the 
entire window is scrolled. 

See also 1Window::ScrollWindowEx 

ScrollWindowEx 
void ScrollWindowEx(int dx, int dy, canst TRect far* scroll = 0, canst TRect far* clip = 0, HRGN hUpdateRgn = 
0, TRect far* update = 0, uint flags = O); 
ScrollWindowEx scrolls a window in the vertical (dx) and horizontal (dy) directions. scroll 
indicates the area to be scrolled. If 0, the entire client area is scrolled. clip specifies the 
clipping rectangle to be scrolled. Only the area within clip is scrolled. If clip is 0, the 
entire window is scrolled. update indicates the region that will receive the boundaries of 
the area that becomes invalidated as a result of scrolling. flags, which determines how 
the window's children are scrolled, can be one of the following SW _Xxxx Scroll 
Window constants: 

SW _ERASE Erases the invalidated region after sending an erase background message to 
the window indicated by the SW _INVALIDATE flag value. 

SW _INVALIDATE Invalidates the region indicated by the hUpdate parameter. 

SW _SCROLLCHILDREN Scrolls all the child window intersecting the rectangle pointed to by the scroll 
parameter. 

See also 1Window::ScrollWindow, TWindow::Show 

Send Dig Item Message 
LRESULT SendDlgltemMessage(int childld, uint msg, WPARAM wParam = 0, LPARAM IParam = O); 
SendDlgltemMessage sends a message (msg) to the control specified in childld. 

See also 1Window::SendMessage 

Send Message 
LRESULT SendMessage(uint msg, WPARAM wParam = 0, LPARAM IParam = O); 
SendMessage sends a message (msg) to a specified window or windows. After it calls the 
window procedure, it waits until the window procedure has processed the message 
before returning. 

See also 1Window::ChildBroadcastMessage, 1Window::HandleMessage, 
1Window::SendDlgltemMessage 

Send Notification 
void SendNotification(int id, int notifyCode, HWND hCtl, uint msg = WM_COMMAND); 
Repacks a command message (msg) so that a child window (hCtl) can send a message to 
its parent regardless of whether this is a WIN16 or WIN32 application. 

SetActiveWindow 
HWND SetActiveWindow(); 
SetActiveWindow activates a top-level window. Returns a handle to the previously active 
window. 

Ch apter 2, 0 b j e ct Windows Ii bra r y reference 481 



TWindow class 

See also TWindow::GetActiveWindow 

SetBkgndColor 
void SetBkgndColor(uint32 color); 
Sets the background color (color) for the window. You can also get the current color of an 
element displayed on the screen. For example, 

layout-> SetBkgndColor(GetSysColor(COLOR_APPWORKSPACE)); 

uses one of the Windows COLOR values (in this case, the color of multiple document 
interface applications (MDI). 

See also TWindow::BkgndColor 

SetCaption 
void SetCaption(const char far* title); 
Copies title to an allocated string pointed to by title. Sets the caption of the interface 
element to title. Deletes any previous title. 

See also TWindow::GetWindowTextTitle, TWindow::Title 

SetCapture 
HWND SetCapture(); 
Sets the mouse capture to the current window. All mouse input is directed to this 
window. 

SetCaretBlinkTime 
static void SetCaretBlinkTime(uint16 milliSecs); 
SetCaretBlinkTime sets the caret blink rate in milliseconds. 

See also TWindow::GetCaretBlinkTime 

SetCaretPos 
Form 1 static void SetCaretPos(int x, int y); 

SetCaretPos sets the position of the caret in the coordinates of the client window. x and y 
indicate the client coordinates of the caret. 

Form 2 static void SetCaretPos(const TPoint& pos); 
SetCaretPos sets the position of the caret in the coordinates of the client window. pas· 
indicates the client coordinates of the caret. 

See also TWindow::GetCaretPos, TWindow::ShowCaret 

SetClasslong 
long SetClasslong(int index) cons!; 
SetClassLong sets the long value at the specified offset (index). Depending on the value of 
index, SetClassLong sets a handle to a background brush, cursor, icon, module, menu, 
window function, or extra class bytes. 

See also TWindow::GetClassLong 

SetClassWord 
uint16 SetClassWord(int index, uint16 newWord); 
SetClassWord sets the word value at the specified offset (index). Depending on the value 
of index , SetClassLong sets the number of bytes of class information, of additional 

482 0 b j e ct W i n d o w s R e f e r e n c e G u i d e 



TWindow class 

window information, or the style bits. Unlike SetClassLong, SetClassWord uses one of the 
following GCW_xxxx Class Word constants: 

GCW _HBRBACKGROUND Sets a handle for a background brush. 

GCW _HCURSOR Sets a handle of a cursor. 

GCW _HICON Sets a handle of an icon. 

GCW _STYLE Sets a style bit for a window class. 

See also TWindow::GetClassWord 

SetCursor 
bool SetCursor(TModule* module, TResld resld); 
Sets the cursor position for the window using the given module and Resid. If the module 
parameter is 0, CursorResid can be one of the IDC_xxxx constants that represent 
different kinds of cursors. See the data member for a list of these cursor values. If the 
mouse is over the client area, SetCursor changes the cursor that is displayed. 

See also TWindow::GetCursorPos, TWindow::CursorResid 

SetDlgltemlnt 
void SetDlgltemlnt(int childld, uint value, bool isSigned = true) canst; 
SetDlgitem sets the child window with the Id (childid) in the window to the integer value 
specified in value. If isSigned is true, the value is signed. 

See also TWindow: :GetDlgltem 

SetDlgltemText 
void SetDlgltemText(int childld, canst char far* text) canst; 
SetDlgitemText sets the text of a child with Id. text points to the text buffer containing the 
window caption or text that is to be copied into the child window caption or text. 

See also TWindow::GetDlgltemText 

SetDocTitle 
virtual bool SetDocTitle(const char far* docname, int index); 
Stores the title of the document (docname). index is the number of the view displayed in 
the document's caption bar. In order to determine what the view number should be, 
SetDocTitle makes two passes: the first pass checks to see if there's more than one view, 
and the second pass, if there is more than one view, assigns the next number to the view. 
If there is only one view, index is 0, and therefore, the document doesn't display a view 
number. When TDocument's checking to see if more than one view exists, index is-1. In 
such cases, only the document's title is displayed in the caption bar. 

SetDocTitle returns true if there is more than one view, and if TDocument displays the 
number of the view passed in index. 

Setflag 
void SetFlag(TWindowFlag mask); 
If TRUE is supplied, the bits in Attr.Flags in Mask are set. Otherwise, the bit is cleared. 
Mask can be any one, or a combination, of the wfXxxx constants. 

Chapter 2, ObjectWindows library reference 483 



TWindow class 

See also TWindow::IsFlagSet, TWindow: Flag enum 

SetFocus 
HWND SetFocus(); 
Sets the keyboard focus to current window and activates the window that receives the 
focus by sending a WM_SETFOCUS message to the window. All future keyboard input 
is directed to this window, and any previous window that had the input focus loses it. If 
successful, returns a handle to the window that has the focus; otherwise, returns NULL. 

See also TWindow::GetFocus 

SetMenu 
bool Se!Menu(HMENU hMenu); 
Sets the specified window's menu to the menu indicated by hMenu. If hMenu is 0, the 
window's current menu is removed. SetMenu returns 0 if the menu remains unchanged; 
otherwise, it returns a nonzero value. 

See also TWindow::GetMenu, TMDIFrame::SetMenu 

SetModule 
void SetModule(TModule* module); 
Sets the default module for this window. 

See also TWindow::GetModule 

SetNext 
void SetNext(TWindow* next); 
Sets the next window in the sibling list. 

SetParent 
virtual void SetParent(TWindow* newParent); 
Sets the parent for the specified window by setting Parent to the specified new Parent 
window object. Removes this window from the child list of the previous parent 
window, if any, and adds this window to the new parent's child list. 

See also TWindow::GetParent 

SetProp 
Form 1 bool Se!Prop(uint16 atom, HANDLE data) cons!; 

Adds an item to the property list of the specified window. atom contains a value that 
identifies the data entry to be added to the property list. 

Form 2 bool SetProp(const char far* str, HANDLE data) cons!; 
Adds an item to the property list of the specified window. str points to the string used to 
identify the entry data to be added to the property list. 

See also TWindow::GetProp 

SetRedraw 
void SetRedraw(bool redraw); 
Sends a WM_SETREDRA W message to a window so that changes can be redrawn 
(redraw= true) or to prevent changes from being redrawn (redraw= false). 

484 ObjectWindows Reference Guide 



TWindow class 

SetScrollPos 
int SetScrollPos(int bar, int pos, bool redraw = true); 
SetScrollPos sets the thumb position in the scroll bar. bar identifies the position 
(horizontal, vertical, or scroll bar control) to return and can be one of the SB_xxxx scroll 
bar constants. 

See also TWindow::GetScrollPos, SB_Xxxx Scroll Bar Constants 

SetScrollRange 
void SetScrollRange(int bar, int minPos, int maxPos, bool redraw = true); 
SetScrollRange sets the thumb position in the scroll bar. bar identifies the position 
(horizontal, vertical, or scroll bar control) to set and can be one of the SB_xxxx scroll bar 
constants. minPos and maxPos specify the lower and upper range, respectively, of the 
scroll bar positions. 

See also TWindow::GetScrollRange, TWindow::SetScrollRange, SB_Xxxx Scroll Bar 
Constants 

SetSysModalWindow 
HWND SetSysModalWindow(); 
Makes the indicated window a system-modal window. 

See also TWindow::GetSysModalWindow 

SetTimer 
uint SetTimer(uint timerld, uint timeout, TIMERPROC proc = O); 
SetTimer creates a timer object associated with this window. timerID contains the ID 
number of the timer to be created, timeout specifies the length of time in milliseconds, 
and proc identifies the address of the function that's to be notified when the timed event 
occurs. If proc is 0, WM_ TIMER messages are placed in the queue of the application that 
called SetTimer for this window. 

See also TWindow::KillTimer 

SetTransferBuffer 
void SetTransferBuffer(void* transferBuffer); 
Sets Transfer Buffer to transferBuffer. 

See also TWindow::Transfer, TWindow::TransferData 

SetWindowFont 
void SetWindowFont(HFONT font, bool redraw); 
Sets the font that a control uses to draw text. font, which specifies the font being used, is 
NULL if the default system font is used. If redraw is true, the control redraws itself after 
the font is set; if false, the control doesn't redraw itself. See the sample program, 
FILEBROW.CPP, for an example of how to set the font for a file browser list box. 

SetWindowlong 
long SetWindowlong(int index, long newlong); 
SetWindowLong changes information about the window. Depending on the value of 
index, SetWindowLong sets a handle to a background brush, cursor, icon, module, menu, 
or window function. The window style can be one of the GWL_xxxx values that 
represent styles. See GetWindowLong for a description of these values. 

Chapter 2, ObjectWindows library reference 485 



TWindow class 

See also TWindow::GetWindowLong, TWindow::SetWindowWord 

SetWindowPlacement 
bool SetWindowPlacement(const WINDOWPLACEMENT* place); 
Set Window Placement sets the window to a display mode and screen position. place points 
to a window placement structure that specifies whether the window is to be hidden, 
minimized or displayed as an icon, maximized, restored to a previous position, 
activated in its current form, or activated and displayed in its normal position; 

See also TWindow::GetWindowPlacement, TWindow::Show 

SetWindowPos 
Form 1 void SetWindowPos(HWND hWndlnsertAfter, const TRect& reel, uinl flags); 

Changes the size of the window pointed to by rect. flags contains one of the 
SWP _XxxxSet Window Position constants that specify the size and position of the 
window. Ii flags is set to SWP _NOZORDER, SetWindowPos ignores the hWndlnsertAfter 
parameter and retains the current ordering of the child, pop-up, or top-level windows. 

Form 2 void SetWindowPos(HWND hWndlnsertAfter, int x, int y, int w, int h, uint flags); 
Changes the size of the window pointed to by x, y, w, and h. flags contains one of the 
SWP _Xxxx Set Window Position constants that specify the size and position of the 
window. Ii flags is setto SWP _NOZORDER, SetWindowPos ignores the hWndlnsertAfter 
parameter and retains the current ordering of the child, pop-up, or top-level windows. 

SWP _DRAWFRAME 

SWP _FRAMECHANGED 

SWP_HIDEWINOOW 

SWP _NOACTIV ATE 

SWP _NOCOPYBITS 

SWP_NOMOVE 

SWP_NOSIZE 
SWP _NOREDRAW 

SWP _NOZORDER 

SWP _SHOWWINOOW 

Draws a frame around the window. 

Sends a message to the window to recalculate the window's size. If this flag 
is not set, a recalculate size message is sent only at the time the window's 
size is being changed. 

Hides the window. 

Does not activate the window. If this flag is not set, the window is activated 
and moved to the top of the stack of windows. 

Discards the entire content area of the client area of the window. If this flag 
is not set, the valid contents are saved and copied into the window after the 
window is resized or positioned. 

Remembers the window's current position. 

Remembers the window's current size. 

Does not redraw any changes to the window. If this flag is set, no 
repainting of any window area (including client, nonclient, and any 
window part uncovered as a result of a move) occurs. When this flag is set, 
the application must explicitly indicate if any area of the window is invalid 
and needs to be redrawn. 

Remembers the =rent Z-order (window stacking order). 

Displays the window. 

See also TWindow::GetWindowPlacement 

SetWindowText 
void SetWindowText(const char far* sir); 
SetWindowText sets the window's title to a buffer pointed to by str. maxCount indicates· 
the number of characters to copy into the buffer. Note that this does not update this 

486 ObjectWindows Reference Guide 



TWindow class 

window's Title member. Use SetCaption if the window's Title member needs to be 
synchronized with the window's title. 

See also TWindow::GetWindowText 

SetWindowWord 
uint16 SetWindowWord (int index, uint16 newWord); 
SetWindowWord changes information about the window. index specifies a byte offset of 
the word to be changed to the new value (new Word). 

See also TWindow::GetWindowW ord, TWindow::SetWindowLong 

Show 
void Show(int cmdShow); 
After ensuring that the TWindow interface element has a valid handle, Show displays the 
TWindow on the screen in a manner specified by cmdShow, which can be one of the 
following SW _Xxxx show window constants: 

ShowCaret 
void ShowCaret(); 
ShowCaret displays the caret in the specified shape in the active window at the current 
position. 

See also TWindow::CreateCaret, TWindow::HideCaret 

ShowOwnedPopups 
void ShowOwnedPopups(bool show); 
Shows or hides all owned popup windows according to the value of show. 

See also TWindow::Show 

ShowScrollBar 
void ShowScrollBar(int bar, bool show= true); 
ShowScrollBar displays or hides the scroll bar. bar specifies whether the bar is a control 
itself or part of the window's nonclient area. If bar is part of the nonclient area, it can be 
one of the SB_xxxx scroll bar constants (specifically, SB_BOTH, SB_HORZ, or 
SB_ VERT). If it is a control, it should be SB_CTRL. If show is true, the scroll bar is 
displayed; if false, it is hidden. 

See also TWindow::GetScrollRange, SB_xxxx Scroll Bar Constants 

ShowWindow 
virtual bool ShowWindow(int cmdShow); 
Displays the window according to the value of cmdShow. See the function Show for a 
description of the SW _xxxx constants passed in cmdShow. Show is the preferred method 
of showing the window. 

See also TWindow::Show 

ShutDownWindow 
Form 1 void ShutDownWindow(int retVal = O); 

This inline version of ShutDownWindow calls the static version of ShutDownWindow. 

Form 2 static void ShutDownWindow(TWindow* win, int retVal = O); 

C h a pt e r 2 , 0 b j e c I W i n d o w s I i b r a r y r e f e r e n c e 487 



TWindow class 

This version of ShutDown Window unconditionally shuts down a given window, calls 
Destroy on the interface element, and then deletes the interface object. Instead of using 
ShutDownWindow, you can call Destroy directly and then delete the interface object. 

SubclassWindowFunction 
void SubclassWindowFunction(); 
Installs the instance thunk as the WindowProc and saves the old window function in 
DefaultProc. 

See also TWindow::DefaultProc, TWindow::DefaultProcessing 

Transfer 
virtual uint Transfer(void* buffer, TTransferDirection direction); 
Transfers data to or from any window with or without children and returns the total 
size of the data transferred. Transfer is a general mechanism for data transfer that can be 
used with or without using Transfer Data. The direction supplied specifies whether data is 
to be read from or written to the supplied buffer, or whether the size of the transfer data 
is simply to be returned. Data is not transferred to or from any child windows whose 
wfiransfer flag is not set. The return value is the size (in bTransferData). 

virtual void TransferData(TTransferDirection direction); 
A window usually calls on Transfer Data during setup and closing of windows and relies 
on the constructor to set TransferBuffer to something meaningful. TransferData calls the 
Transfer member function of each participating child window, passing a pointer to 
TransferBuffer as well as the direction specified in direction (tdSetData, tdGetData, or 
tdSizeData). 

See also TWindow::EnableTransfer, TWindow::DisableTransfer, 
TWindow::Setup Window, TWindow::TransferBuffer 

UnregisterHotKey 
bool UnregisterHotKey(int idHotKey); 
UnregisterHotKey unregisters a hotkey ID with the current application. 

See also TWindow::RegisterHotKey 

Update Window 
void UpdateWindow(); 
UpdateWindow updates the client area of the specified window by immediately sending 
a WM_PAINT message. 

Validate 
void Validate(); 
Calls the function ValidateRect to validate (that is, remove from the area to be updated) 
the entire client area (the area you can use for drawing). 

See also TWindow::In Validate 

ValidateRect 
void ValidateRect(const TRect& reel); 
ValidateRect validates a portion of the client area indicated by rect. 

488 ObjectWindows Reference Guide 



TWindow class 

ValidateRgn 
void ValidateRgn(HRGN hRgn); 
ValidateRgn validates the client area within a region of the current window. hRgn is a 
handle to the client area that's to be removed from the region to be updated. If hRgn is 
NULL, the entire client area is removed from the region to be updated. 

See also TWindow::InvalidateRgn 

WindowFromPoint 
static HWND WindowFromPoint(const TPoint& point) canst; 
Returns the handle of the window in which the specified point (point) lies. 

See also TWindow::ChildWindowFromPoint 

WindowProc 
virtual LRESULT WindowProc(uint msg, WPARAM wParam, LPARAM IParam); 
WindowProc processes incoming messages by calling EvCommand to handle 
WM_ COMMAND messages, EvCommandEnable to handle WM_ COMMAND _ENABLE 
messages, and dispatching for all other messages. 

See also TWindow::DefWindowProc 

WinHelp 
bool WinHelp(const char far* helpFile, uint command, uint32 data); 
WinHelp invokes a specified help system. help File points to a string containing the 
directory path and name of the help file. command, which indicates the type of help 
requested, can be one of the Windows Help_xxxx constants such as HELP _CONTEXT, 
HELP _HELPONHELP, HELP _INDEX, HELP _MULTIKEY, H;'LP _QUIT, or 
HELP _SETINDEX. data contains keywords that indicate the help topic items. For 
example, in the sample ObjectWindows file, HELP.CPP, WinHelp is called with the 
arguments HELP _CONTEXT and HELP _MENUITEMA if the F1 key is pressed. 

void TOwlHelpWnd: :CmMenuiternA() 
{ 

if (FlPressed) { 
WinHelp(HelpFile, HELP_CONTEXT, HELP_MENUITEMA); 
FlPressed = false; 

else { 
MessageBox ("In Menu Item A command", Title, MB_ICONINFORMATION); 

} 

} 

You can also include bitmaps in your Help file by referencing their file names or by 
copying them from the Clipboard. For more information about how to create Help files, 
see the online Help documentation. 

Protected data members 
BkgndColor 
uint32 BkgndColor; 
Stores the current background color set by the TWindow::SetBkgndColor function. 

See also TWindow::SetBkgndColor 

Chapter 2, ObjectWindows library reference 489 



TWindow class 

CursorModule 
TModule* CursorModule; 
Holds the module ID for the specified cursor. A value of 0 indicates a standard system 
cursor. 

See also TWindow::CursorResid 

CursorResld 
TResld CursorResld; 
Holds the cursor resource ID for the window's cursor. If the data member, Cursor Module 
is 0, CursorResld could be one of the following IDC_Xxxx constants that represent 
different kinds of cursors: 

IDC_ARROW 

IDC_CROSS 

IDC_IBEAM 

IDC_ICON 

IDC_SIZE 

IDC_SIZENESW 

IDC_SIZENS 

IDC_SIZENWSE 

IDC_SIZEWE 

IDC_UPARROW 

IDC_WAIT 

Customary arrow cursor 

Crosshair cursor 

I-beam=sor 

Unfilled icon cursor 

A smaller square in the right inside comer of a larger square 

Dual-pointing cursor with arrows pointing southwest and northeast 

Dual-pointing cursor with arrows pointing south and north 

Dual-pointing cursor with arrows pointing southeast and northwest 

Dual-pointing cursor with arrows pointing east and west 

Vertical arrow cursor 

Hourglass cursor 

See also TWindow::SetCursor 

hAccel 
HACCEL hAccel; 
Holds the handle to the current Windows accelerator table associated with this window. 

HCursor 
HCURSOR HCursor; 
Holds a handle to the window's cursor. The cursor is retrieved using CursorModule and 
CursorResld and set using SetCursor. 

TransferBuffer 
void* T ransferBuffer; 
Transfer Buffer points to a buffer to be used in transferring data in and out of the 
TWindow. A TWindow assumes that the buffer contains data used by the windows in its 
child list. If 0, no data is to be transferred. 

See also tdxxxx constants 

Protected constructor 

Constructor 
TWindow(); 

490 ObjectWindows Reference Guide 



TWindow class 

Constructor used with virtually derived classes. Immediate derived classes must call 
Init before the construction of the object is finished. 

Protected member functions 
CleanupWindow 
virtual void CleanupWindow(); 
Always called immediately before the HWindow becomes invalid, Cleanup Window 
gives derived classes an opportunity to clean up HWND related resources. This 
function is the complement to Setup Window. 

Override this function in your derived class to handle window cleanup. Cleanup Window 
gives derived classes a chance to clean up hwnd-related resources. Derived classes 
should call the base class's version of Cleanup Window as the last step before returning. 
The following example from the sample program, appwin.cpp, illustrates this process: 

//Tell windows that we are not accepting drag and drop transactions any more and perform 
other window cleanup. 

void 
TAppWindow::CleanupWindow() 
{ 

AppLauncherCleanup( I; 
DragAcceptFiles(false); 
TWindow: :CleanupWindow( I; 

See also TWindow::SetupWindow 

Dispatch Scroll 
void DispatchScroll(uint scrollCode, uint thumbPos, HWND hWndCtrl); 
Called by EvHScroll and EvVScroll to dispatch messages from scroll bars. 

GetClassName 
virtual char far* GetClassName(); 
Returns the Windows registration class name. The default class name is generated using 
the module name plus "Window." If you are registering a new class or changing the 
name of an existing window class, override this function in your derived class. 

See also TWindow::GetWindowClass, WNDCLASS struct 

GetWindowClass 
virtual void GetWindowClass(WNDCLASS& wndClass); 
Redefined by derived classes, GetWindowClass fills the supplied MS-Windows 
registration class structure with registration attributes, thus, allowing instances of 
TWindow to be registered. This function, along with GetClassName, allows Windows 
classes to be used for the specified ObjectWindows class and its derivatives. It sets the 

C h a p I e r 2 , 0 b j e c I W i n d ow s I i b r a r y ref e re n c e 491 



TWindow class 

fields of the passed WNDCLASS parameter to the default attributes appropriate for a 
TWindow. The fields and their default attributes for the class are the following: 

cbClsExtra 

cbWndExtra 

hlnstance 

hlcon 

hCursor 

hbrBackground 

lpszMenuName 

lpszClassName 

lpfnWndProc 

style 

0 (the number of extra bytes to reserve after the Window class structure). This value is 
not used by ObjectWindows. 

0 (the number of extra bytes to reserve after the Window instance). This value is not 
used by ObjectWindows. 

The instance of the class in which the window procedure exists 

0 (Provides a handle to the class resource.) By default, the application must create an 
icon if the application's window is minimized. 

IDC_ARROW (provides a handle to a cursor resource) 

COLOR_ WINDOW+ 1 (the system background color) 

0 (Points to a string that contains the name of the class's menu.) By default, the 
windows in this class have no assigned menus. 

Points to a string that contains the name of the window class. 

The address of the window procedure. This value is not used by ObjectWindows. 

CS_DBLCLKS 

The style field can contain one or more of the following values: 

CS_BYTEALIGNCLIENT 

CS_BYTEALIGNWINDOW 

CS_CLASSDC 

CS_DBLCLKS 

CS_ GLOBALCLASS 

CS_HREDRAW 

CS_NOCLOSE 

CS_OWNDC 

CS_PARENTDC 

CS_SA VEBITS 

CS_VREDRAW 

Aligns the window's client on a byte boundary in the x direction. This 
alignment, designed to improve performance, determines the width and 
horizontal position of the window. 

Aligns a window on a byte boundary in the x direction. This alignment, 
designed to improve performance, determines the width and horizontal 
position of the window. 

Allocates a single device context (DC) that's going to be shared by all of the 
window in the class. This style controls how multi-threaded applications 
that have windows belonging to the same class share the same DC. 

Sends a double-click mouse message to the window procedure when the 
mouse is double-clicked on a window belonging to this class. 

Allows an application to create a window class regardless of the instance 
parameter. You can also create a global class by writing a DLL that 
contains the window class. 

If the size of the window changes as a result of some movement or 
resizing, redraws the entire window. 

Disables the Close option on this window's system menu. 

Enables each window in the class to have a different DC. 

Passes the parent window's DC to the child windows. 

Saves the section of the screen as a bitmap if the screen is covered by 
another window. This bitmap is later used to recreate the window when it 
is no longer obscured by another window. 

If the height of the client area is changed, redraws the entire window. 

492 0 b j e c I W i n d ow s R e f e re n c e G u i d e 



TWindow class 

After the Windows class structure has been filled with default values by the base class, 
you can override this function to change the values of the Windows class structure. For 
example, you might want to change the window's colors or the cursor displayed. 

See also TWindow::GetClassName, WNDCLASS struct 

I nit 
void lnit(TWindow* parent, canst char far* title, TModule* module); 
Allows for further initialization after default construction of a window in virtually 
derived classes. 

LoadAcceleratorTable 
void LoadAcceleratorTable(); 
Loads a handle to the window's accelerator table specified in TWindowsAttr structure 
(Attr.AccelTable). If the accelerator does not exist, LoadAcceleratorTable produces an 
"Unable to load accelerator table" diagnostic message. 

See also TWindow Attr structure 

RemoveChild 
void RemoveChild(TWindow* child); 
Removes a child window. This family of ObjectWindows TWindow functions uses the 
ObjectWindows list of objects rather the Window's HWND list. 

See also TWindow::GetFirstChild, TWindow::GetLastChild, TWindow::Next, 
TWindow::Previous 

Setup Window 
virtual void SetupWindow(); 
Setup Window is the first virtual function called when the HWindow becomes valid. 
TWindow's implementation performs window setup by iterating through the child list, 
attempting to create an associated interface element for each child window object for 
whom autocreation is enabled. (By default, autocreation is enabled for windows and 
controls, and disabled for dialog boxes.) Setup Window then calls TransferData. 

Setup Window can be redefined in derived classes to perform additional special 
initialization. Note that the HWindow is valid when the overridden Setup Window is 
called and that the children's HWindows are valid after calling the base classes' 
Setup Window function. 

The following example from the sample program, appwin.cpp, illustrates the use of an 
overridden Setup Window to setup a window, initialize .INI entries, and tell Windows 
that we want to accept drag and drop transactions. 

void TAppWindow::SetupWindow() 
{ 

TFloatingFrame::SetupWindow(); 
InitEntries( ); II Initialize .INI entries. 
RestoreFromINIFile(); II from Applaunc.ini in the startup directory 
UpdateAppButtons(); 
DragAcceptFiles(true); 

C h a pt e r 2 , 0 b j e ct W i n d o w s I i b r a r y r e I e r e n c e 493 



TWindowAttr struct 

See also TFrameWindow::SetupWindow, TComboBox::SetupWindow, 
TWindow::Cleanup Window 

Response table entries 

EV_WM_CREATE 

EV _WM_CLOSE 

EV _WM_DESTROY 

EV_WM_SIZE 

EV_WM_MOVE 

EV_WM_NCDESTROY 

EV_ WM_QUERYENDSESSION 

EV _WM_COMPAREITEM 

EV_ WM_DELETEITEM 

EV_WM_DRAWITEM 

EV _WM_MEASUREITEM 

EV _WM_CI-IILDINV ALID 

EV _WM_ VSCROLL 

EV_WM_HSCROLL 

EV_WM_PAINT 

EV _WM_SETCURSOR 

EV _WM_LBUTIONDOWN 

EV _COMMAND(CM_EXIT, CmExit) 

EV _WM_SYSCOLORCHANGE 

EV_ WM_KILLFOCUS 

EV _WM_ERASEBKGND 

EV _MESSAGE(WM_CTLCOLORMSGBOX, EvWin32CtlColor) 

EV _MESSAGE(WM_CTLCOLOREDIT, EvWin32CtlColor) 

EV _MESSAGE(WM_ CTLCOLORLISTBOX, EvWin32CtlColor) 

EV _MESSAGE(WM_CTLCOLORBTN, EvWin32CtlColor) 

EV _MESSAGE(WM_CTLCOLORDLG, EvWin32CtlColor) 

EV _MESSAGE(WM_ CTLCOLORSCROLLBAR, EvWin32CtlColor) 

EV _MESSAGE(WM_ CTLCOLORSTA TIC, EvWin32CtlColor) 

EvCreate 

EvClose 

Ev Destroy 

EvSize 

Ev Move 

EvNcDestroy 

EvQueryEndSession 

EvCompareitem 

EvDeleteltem 

EvDrawitem 

EvMeasureltem 

EvChildinvalid 

EvVScroll 

EvHScroll 

Ev Paint 

EvSetCursor 

EvLButtonDown 

CmExit 

EvSysColorChange 

EvKillFocus 

EvEraseBkgnd 

EvWin32CtlColor1 

EvWin32CtlColor1 

EvWin32CtlColor1 

EvWin32CtlColor1 

EvWin32CtlColor1 

EvWin32CtlColor1 

EvWin32CtlColor1 

1. These response table entries are used only under the Win32 APL 

TWindowAttr struct window.h 

Holds TWindow attributes set during construction of a window. Your program controls 
a window's creation by passing these values to one of TWindow's creation routines. If the 
window is streamed, these attributes are also used for re-creation. 

494 ObjectWindows Reference Guide 



Public data members 

AccelTable 
TReslD AccelTable; 

TWindowAttr struct 

Holds the resource ID for the window's accelerator table. 

See also TApplication::HAccTable, TWindow::LoadAcceleratorTable 

Ex Style 
uint32 ExStyle; 
Contains the extended style values of your window. These can be any one of the 
extended style constants (WS_EX_DLGMODALFRAME, 
WS_EX_NOPARENTNOTIFY, WS_EX_TOPMOST, WS_EX_SHADOW). See 
TWindow::AdjustWindowRectEx for a description of these constants. 

See also TWindow::AdjustWindowRectEx 

Id 
int Id; 
Contains the identifier of the child window. For a dialog box control, Id is its resource 
identifier. If Win32 is defined, Id is set to GetWindowLong; otherwise Id is set to 
Get Window Word. 

Menu 
TResld Menu; 
Contains the resource ID for the menu associated with this window. If no menu exists, 
MenuisO. 

Param 
char far* Param; 
Contains a value that is passed to Windows when the window is created. This value 
identifies a data block that is then available in the message response functions associated 
with WM_ CREATE. Param is used by TMDIClient and can be useful when converting 
non-ObjectWindows code. 

Style 
uint32 Style; 
Contains the values that define the style, shape, and size of your window. Although 
TWindow sets Attr.Style to WS_CHILD and WS_ VISIBLE,you can also use other 
combinations of the following style constants: 

WS_BORDER 

WS_CAPTION 

WS_CHILD 

WS_CHILDWINDOW 

WS_ CLIPCHILDREN 

WS_CLIPSIBLINGS 

Creates a window with a thin lined border 

Creates a window with a title bar. 

Creates a child windows. Cannot be used with popup styles. 

Creates a child window. 

Used when creating a parent window. Excludes the area occupied by 
child windows when drawing takes place within the parent window. 

Clips child windows relative to the child window that receives a paint 
message. 

C h a pt e r 2 , 0 b j e ct W i n d o w s I i b r a r y re I e re n c e 495 



TWindowAttr struct 

WS_DISABLED Creates a window that cannot receive user input. 

WS_DLGFRAME Creates a window having a typical dialog box style (without a title bar). 

WS_GROUP Indicates the first control in a group of controls, which the user can 
change by pressing the direction keys. 

WS_HSCROLL Window has a horizontal scroll bar. 

WS_MAXIMIZE Window is initially maximized. 

WS_MAXIMIZEBOX Window has a maximize button. 

WS_MINIMIZE Window is initially minimized. 

WS_MINIMIZEBOX Window has a minimize button. 

WS_OVERLAPPED Creates an overlapped window with a title bar and a border. 

WS_ OVERLAPPEDWINDOW Overlapped window has the WS_OVERLAPPED, WS_ CAPTION, 
WS_SYSMENU, WS_THICKFRAME, WS_MINIMIZEBOX, and 
WS_MAXIMIZEBOX styles. 

WS_POPUP Creates a popup window. Cannot be used with child window styles. 

WS_POPUPWINDOW Creates a popup window with WS_BORDER, WS_POPUP, and 
WS_SYSMENU styles. The WS_CAPTION and WS_POPUPWINDOW 
styles combine to create a system menu. 

WS_SYSMENU Window has a system menu box in its title bar. Must also indicate the 
WS_CAPTION style. 

WS_TABSTOP Control can receive the keyboard focus when TAB key is pressed. 

WS_THICKFRAME Window has a border that lets you change the window size. 

WS _VISIBLE Window is initially visible. 

WS_ VSCROLL Window has a vertical scroll bar. 

See also TWindow::IsWindowVisible 

X,Y,W,H 
int X, Y, W, H; 
Xand Y contain the screen coordinates of the top left comer of the window. Wand H 
contain the width and height values of the window. 

TWindowFlag enum 
TWindowFlag enum 
enum TWindowFlag { 

window.h 

wfAlias, wfAutoCreate, wfFromResource, wfShrinkToClient, wfMainWindow, wfFullyCreated, wfStreamTop, 
wfPredefinedClass, wfTransfer, wfUnHidden, wfUnDisabled, 
}; 
Define bit masks for the internally used flag attributes of TWindow. A wfXxxx mask is 
defined for each of these attributes: 

Table 2.11 TWindow attribute masks 

wfAlias The window object is an alias for an existing HWND. 

wfAutoCreate Create the HWindow when the parent window is created. 

496 0 b j e ct W i n d o w s R e f e r e n c e G u i d e 



·constant 

wfFullyCreated 

wfFromResource 

wfMainWindow 

wfPredefinedClass 

wfShrinkToC!ient 

wfStreamTop 

wfTransfer 

wfUnDisabled 

wfUnHidden 

TWindowDC class 

Meaning if set 
Window is fully created and not being destroyed. 

HWindow comes from an HWND created from a resource definition. 

Window is a main window. 

The window belongs to a predefined Window's not an ObjectWindows' class. 

Tells a frame window to shrink itself to fit around the client window. 

Indicates the topmost window of the collection of windows to be streamed. 

Participates in the Transfer mechanism. 

Temporarily used when an MDI child window is destroyed. 

Temporarily used when an MDI child window is destroyed. 

See also TWindow::CreateChildren, TWindow::EnableAutoCreate 

TWindowDC class dc.h 

Derived from TDC, TWindowDC is a DC class that provides access to the entire area 
owned by a window. This is the base class for any DC class that releases its handle when 
it is finished. 

See also 
TWindowDC::Wnd 

Public constructor and destructor 
Constructor 
TWindowDC(HWND wnd); 
Creates a TWindow object with the given owned window. The data member Wnd is set 
townd. 

Destructor 
-TWindowDC(); 
Destroys this object. 

Protected constructor 
Constructor 
TWindowDC(); 
Used for derived classes only. 

Protected data member 
Wnd 
HWND Wnd; 
Holds a handle to the window owned by this DC. 

C h a p I e r 2 , 0 b j e c I W i n d o w s I i b r a r y r e f e r e n c e 497 



TWindowView class 

See also TWindowDC::TWindowDC 

TWindowView class docview.h 

Derived from both TWindow and TView, TWindowView is a streamable base class that 
can be used for deriving window-based views. TWindowView's functions override 
TView's virtual function to provide their own implementation. By deriving a window­
view class from TWindow and TView, you add window functionality to the view of your 
document. 

Public constructor and destructor 

Constructor 
TWindowView (TDocument& doc, TWindow* parent= O); 
Constructs a TWindowView interface object associated with the window view. Sets 
Viewld to NextViewid. Calls the associated document's Attach View to attach the view to 
the document. 

Destructor 
N TWindowView(); 
Destroys a TWindow View object and calls the associated document's Detach View function 
to detach the view from the associated document. 

Public member functions 

CanClose 
bool CanClose(); 
Overrides TView::CanClose and returns nonzero if the window can be closed. Checks all 
of the associated document's CanClose functions. These must return nonzero before the 
window view can be closed. 

See also TWindow::CanClose 

GetViewName 
const char far* GetViewName(); 
Overrides TView::GetViewName and returns StaticName, the name of the view. 

See also TView::GetViewName 

GetWindow 
TWindow* GetWindow() 
Overrides TView::GetWindow and returns the TWindowView object as a TWindow. 

See also TEditView::GetWindow, TView::GetWindow 

SetDocTitle 
bool SetDocTitle(cqnst char far* docname, int index) 

498 0 b j e c I W i n d o w s R e f e r e n c e G u i d e 



TWindow::TXWindow class 

Overrides TView::SetDocTitle and stores the document title. This name is forwarded up 
the parent chain until a TFrameWindow object accepts the data and displays it in its 
caption. 

See also TView::SetDocTitle, TWindow::SetDocTitle 

StaticName 
static const char far* StaticName(); 
Returns "Window View," the descriptive name of the view. This title is displayed in the 
user-interface box. 

Response table entries 

EV_ VN_ISWINOOW VnlsWindow 

TWindow::TXWindow class window.h 

A nested class, TXWindow describes an exception that results from trying to create an 
invalid window. 

Public constructors 
Constructors 

Form 1 TXWindow(lWindow* win= 0, uint resourceld = IDS_INVALIDWINDOW); 
Constructs a TXWindow object with a default resource ID of IDS_INV ALIDWlNOOW. 

Form 2 TXWindow(const TXWindow& src); 
Constructs a TXWindow object with the window that failed. 

Public data members 
Window 
TWindow* Window; 
Points to the window object that is associated with the exception. 

Public member functions 
Clone 
TXOwl* Clone(); 
Makes a copy of the exception object. Clone() must be implemented in any class derived 
fromTXOwl. 

See also TXOwl 

Chapter 2, Objec!Windows library reference 499 



TXCompatibility class 

Msg 
static string Msg(TWindow*, uint resourceid); 
Converts the resource ID to a string and returns the string message. 

Throw 
void Throw(); 
Throws the exception object. Throw() must be implemented in any class derived from 
TX Owl. 

See also TXOwl 

Un handled 
int Unhandled(TModule* app, unsigned promptResld); 
Called if an exception caught in the window's message loop has not been handled. 
Unhandled() deletes the window. This type of exception can occur if a window cannot be 
created. 

TXCompatibility class except.h 

Describes an exception that results from setting TModule::Status to nonzero. This 
exception is included for backward compatibility with ObjectWindows 1.0. 

Public constructors 
Constructors 

Form 1 TXCompatibility(int statusCode); 
Constructs a TXCompatibility object. 

Form 2 TXCompatibility(const TXCompatibility& src); 
Constructs a TXCompatibility object with the window that failed. 

Public member functions 
Clone 
TXOwl* Clone(); 
Makes a copy of the exception object. Clone must be implemented in any class derived 
from TXOwl. 

MapStatusCodeToString 
static string MapStatusCodeToString(int statusCode); 
Retrieves Tmodule's status code and coverts it to a string. 

Throw 
void Throw(); 
Throws the exception object. Throw must be implemented in any class derived from 
TX Owl. 

500 ObjectWindows Reference Guide 



TMenu::TXMenu class 

Un handled 
int Unhandled(TModule* app, unsigned promptResld); 
If an exception caught in the message loop has not been handled, Unhandled is called. 
Unhandled deletes the window. This type of exception could occur if a window can't be 
created. 

TMenu::TXMenu class menu.h 

A nested class, TXMenu describes an exception that occurs when a menu item cannot be 
constructed. 

Public constructors 

Constructors 
TXMenu(unsigned resld = IDS_GDIFAILURE); 
Constructs a TXMenu exception object with a default IDS_GDIFAILURE message. 

Public member functions 

Clone 
TXOwl* Clone(); 
Makes a copy of the exception object. 

Throw 
void Throw(); 
Throws a TXMenu exception. 

TXOutOfMemory class 
Describes an exception that results from running out of memory. 

Public constructors 

Constructors 
TXOutOfMemory(); 
Constructs a TXOutOJMemory object. 

Public member functions 

Clone 
TXOwl* Clone(); 

except.h 

Makes a copy of the exception object. Clone must be implemented in any class derived 
from TXOwl. 

Chapter 2, 0 bj ectWi n d ows Ii b rary reference 501 



TXOwl class 

Throw 
void Throw(); 
Throws the exception object. Throw must qe implemented in any class derived from 
TX Owl. 

TXOwlclass except.h 

TXOwl is a parent class for several classes designed to describe exceptions, that is, 
abnormal conditions outside the program's control. In most cases, you will derive a new 
class from TX Owl instead of using this one directly. The Object Windows classes derived 
from TXOwl include 

TXCompatibility-Describes an exception that occurs if TModule::Status is not zero. 

TV alidator::TXV alidator-Describes an exception that occurs if there is an invalid 
validator expression. 

TWindow::XWindow-Describes an exception that results from trying to create an 
invalid window. 

TGdiObject::TXGdi-Describes an exception that results from creating an invalid GDI 
object. 

TApplication::TXInvalidMain Window-Describes an exception that results from 
creating an invalid main window. 

1Menu::XMenu-Describes an exception that occurs when a menu object is invalid. 

1Module::XInvalidModule-Describes an exception that occurs if a TModule object is 
invalid. 

TPrinter::TXPrinter-Describes an exception that occurs if a printer DC is invalid. 

TXOutOfiWemory-Describes an exception that occurs if an out of memory error 
occurs. 

Each of the exception classes describes a particular type of exception. When your 
program encounters a given situation that's likely to produce this exception, it passes 
control to the specified exception-handling object. If you use exceptions in your code, 
you can avoid having to scatter error-handling procedures throughout your program. 

To create an exception handler, place the keyword try before the block of code that 
might produce the abnormal condition (the code that might generate an exception 
object) and the keyword catch before the block of code that follows the try block. If an 
exception is thrown within the try block, the classes within each of the subsequent catch 
clauses are checked in sequence. The first one that matches the class of the exception 
object is executed. 

The following example from MDIFILE.CPP, a sample program on your distribution 
disk, shows how to set up a try/catch block around the code that might throw an 
exception. 

void TMDIFileApp::CmRestoreState() 
{ 

502 ObjectWindows Reference Guide 



char* errorMsg = O; 
ifpstream is(DskFile); 
if (is.bad()) 

errorMsg = "Unable to open desktop file."; 
II try block of code II 

else { 
if (Client->CloseChildrenParen) 

try { 
is »* this; 
if (is.bad()) 

errorMsq = "Error reading desktop file. "; 
else 

Client->CreateChildren(); 

II catch block of code II 
catch (xalloc) { 

Client->CloseChildren(); 
errorMsg = "Not enough memory to open file."; 
} 

if (errorMsg) 
MainWindow->MessageBox(errorMsg, "Error", 

MB_OK I MB_ICONEXCLAMATION) ; 

See also 
TXBase 

Public constructors and destructor 
Constructors 

Form 1 TXOwl(const string& msg, unsigned resld = O); 
Constructs a TXOwl object with a string message (msg). 

Form 2 TXOwl(unsigned resld, TModule* module= ::module); 

TXOwl class 

Loads the string resource identified by the resld parameter and uses this resource to 
initialize the TXBase object. 

Destructor 
~TXOwl(); 

Destroys a TXOwl object. 

Public data member 

Resld 
unsigned Resld; 
Resource ID for a TXOwl object. 

Chapter 2, Objec!Windows library reference 503 



vnxxxx view notification constants 

Public member functions 
Clone 
TXOwl* Clone(); 
Makes a copy of the exception object. Clone must be overridden in any class derived 
from TXOwl. 

GetErrorCode 
unsigned GetErrorCode () cons!; 
Returns the resource ID. 

ResourceldToString 
static string ResourceldToString(bool* found, unsigned resld, TModule* module = ::module); 
Converts the resource ID to a string and returns a string that identifies the exception. If 
the string message cannot be loaded, returns a "not found" message. Sets the found 
parameter to TRUE if the resource is located; otherwise, sets found to FALSE. 

Throw 
void Throw(); 
Throws the exception object. Throw must be implemented in any class derived from 
TX Owl. 

Un handled 
virtual int Unhandled(TModule* app, unsigned promptResld); 
Unhandled is called when an unhandled exception is caught at the main message loop 
level. 

vnxxxx view notification constants 
The view notification constants are used to notify the view of a given event. 

Changes are committed to the document. 

Base event for document notifications. 

Document has been opened. 

Document has been closed. 

Is true if uncommitted changes are present. 

Is true if uncommitted changes are present. 

Is true if the HWND passed belongs to this view. 

docview.h 

vnCommit 

vnCustomBase 

vnDocOpened 

vnDocClosed 

vnlsDirty 

vnlnvalidate 

vnlsWindow 

vnRevert 

vn ViewOpened 

vn ViewClosed 

Document's previous data is reloaded and overwrites the view's current data. 

A new view has been constructed. 

A view is about to be destroyed. 

See also TListView, TEditView 

504 ObjectWindows Reference Guide 



ObjectWindows event handlers 
These topics include several tables that list predefined ObjectWindows response-table 
macros and event-handling functions. Each table lists the name of the ObjectWindows 
macro, any required macro arguments, and the associated event-handling function. 

These button macros handle BN_xxxx notification codes. To determine the name of the 
notification code that corresponds to the EV _X:XXX macro, remove the EV_ prefix. 

Table 3.1 Button notification messages 

EV_BN_CLICKED 

EV _BN_DISABLE 

EV _BN_DOUBLECLICKED 

EV _BN_HILITE 

EV _BN_P AINT 

EV _BN_UNHIUTE 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

void UserName ! I 

void UserName ! I 

void UserName I I 

void UserName I I 

void UserName ! I 

void UserName I I 

The following macros handle messages that a child window sends to its parent: 

Table 3.2 Child ID notification messages 

EV_CHILD_NOTIFY_AND_CODE ID, Code, UserName 

EV_CHILD_NOTIFY_ALL_CODES ID, UserName 

EV_NOTIFY_AT_CHILD Code, UserName 

EV_CHILD_NOTIFY ID, Code, UserNam 

void UserName (WPARAM) 

void UserName (UINT I 

void UserName 

void UserName 

Chapter 3, ObjectWindows event handlers 505 



These combo box macros handle CBN_xxxx notification codes. To determine the name 
of the notification code that corresponds to the EV _XXXX macro, remove the EV_ prefix. 

Table 3.3 Combo box notification messages 

EV _CBN_CLOSEUP 

EV_CBN_DBLCLK 

EV_CBN_DROPDOWN 

EV _CBN_EDITCHANGE 

EV_CBN_EDITUPDATE 

EV_CBN_ERRSPACE 

EV_CBN_KILLFOCUS 

EV_CBN_SELCHANGE 

EV _CBN_SELENDCANCEL 

EV_CBN_SELENDOK 

EV _CBN_SETFOCUS 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

void UserName I I 

void UserName( I 

void UserName (I 

void UserName ( I 
void UserName( I 

void UserName (I 

void UserName (I 

void UserName I I 
void UserName I I 
void UserName( I 

void UserName I I 

These macros handle WM_ COMMAND messages: 

Table3.4 Command messages 

EV_COMMAND 

EV _COMMAND_AND_ID 

EV_COMMAND_ENABLE 

CMD ID, User Name 

CMD ID, UserName 

CMD ID, UserName 

void UserName I I 
void UserName (WPARAM) 

void UserName (TCommandEnabler&) 

These macros handle messages generated by the document manager: 

Table 3.5 Document manager messages 

EV _OWLDOCUMENT 

EV _OWLNOTIFY 

EV_OWLVIEW 

ID, UserName 

ID, UserName 

ID, UserName 

void UserName(TDocument& document) 

bool UserName I LPARAM& I 

void UserName (TView& view) 

These macros handle view-related messages generated by the document manager. 
VnHandler is a generic term for the view notification handler function. 

Table 3.6 Document view messages 

EV_ VN_ VIEWOPENED 

EV_ VN_ VIEWCLOSED 

EV_ VN_DOCOPENED 

EV_ VN_DOCCLOSED 

EV_ VN_COMMIT 

EV_ VN_REVERT 

506 Objec!Windows Reference Guide 

bool VnViewOpened (TView* view) 

bool VnViewClosed (TView* view) 

bool VnDocOpened I int openMode I 

bool VnDocClosed I int openMode I 

bool VnCommi t (bool force I 
bdol VnRevert (bool clear) 



Table3.6 Document view messages (continued) 

Macro: .· Respons' ~~~~on declaration, 
EV_ VN_ISDIRTY 

EV_ VN_ISWINOOW 

bool VnisDirty I I 

bool VnisWindow(HWND hWnd) 

These edit control macros handle EN_xxxx notification codes. To determine the name of 
the notification code that corresponds to the EV _XXXX macro, remove the EV_ prefix. 

Table 3.7 Edit control notification messages 

Macro Macro arguments Response function declaration 

EV_EN_CHANGE ID, UserName void UserName I I 

EV_EN_ERRSPACE ID, UserName void UserName I I 

EV _EN_HSCROLL ID, UserName void UserName I I 

EV _EN_KILLFOCUS ID, UserName void UserName I I 
EV _EN_MAXTEXT ID, UserName void UserName I I 

EV _EN_SETFOCUS ID, UserName void UserName I I 

EV_EN_UPDATE ID, UserName void UserName I I 

EV _EN_ VSCROLL ID, UserName void UserName I I 

These list box macros handle LBN_xxxx notification codes. To determine the name of 
the notification code that corresponds to the EV _XXXX macro, remove the EV_ prefix. 

Table 3.8 List box notification messages 

EV _LBN_DBLCLK 

EV _LBN_ERRSP ACE 

EV _LBN_KILLFOCUS 

EV _LBN_SELCANCEL 

EV_LBN_SELCHANGE 

EV _LBN_SETFOCUS 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

ID, UserName 

void UserName I I 

void UserName I I 

void UserName I I 

void UserName I I 

void UserName I I 

void UserName I I 

These macros handle ObjectComponents messages. 

Table3.9 ObjectComponents messages 

EV_ oc_ VIEWP ARTINV ALID 

EV _OC_ VIEWTITLE 

EV _OC_ VIEWBORDERSPACEREQ 

EV_ OC_ VIEWBORDERSP ACESET 

EV_ OC_ VIEWDROP 

EV _OC_ VIEWDRAG 

EV _OC_ VIEWSCROLL 

EV _OC_ VIEWGETSCALE 

EV_ oc_ VIEWGETSITERECT 

bool EvOcViewPartinvalid(TOcPart far&) 

const char far* EvOcViewTitle I I 

bool EvOcViewBorderSpaceReq(TRect far* rect) 

bool EvOcViewBorderSpaceSet(TRect far&) 

bool EvOcViewDrop (TOcDragDrop far&) 

bool EvOcViewDrag(TOcDragDrop far&) 

bool EvOcViewScroll (TOcScrollDir) 

bool EvOcViewGetScale (TOcScaleFactor&) 

bool EvOcViewGetSiteRect (TRect far* I 

Chapter 3, ObjectWindows event handlers 507 



Table 3.9 ObjectComponents messages (continued) 

EV_ OC_ VIEWSETSITERECT 

EV _OC_ VIEWP AINT 

EV_ OC_ VIEWSA VEPART 

EV _OC_ VIEWLOADPART 

EV _OC_ VIEWINSMENUS 

EV _OC_ VIEWSHOWTOOLS, 

EV _OC_ VIEWGETP ALETTE 

EV _OC_ VIEWCLIPDATA, 

EV _OC_ VIEWCLOSE 

EV _OC_ VIEWP ARTSIZE 

EV _OC_ VIEWOPENDOC 

EV _OC_ VIEWATTACHWINDOW 

EV _OC_ VIEWSETSCALE 

EV_ OC_APPINSMENUS 

EV_ OC_APPMENUS 

EV _OC_APPPROCESSMSG 

EV_OC_APPFRAMERECT 

EV_OC_APPBORDERSPACEREQ 

EV _OC_APPBORDERSPACESET 

EV_OC_APPSTATUSTEXT 

EV_OC_APPRESTOREUI 

EV _OC_APPDIALOGHELP 

EV_OC_APPSHUTDOWN 

bool EvOcViewSetSiteRect(TRect far*) 

bool EvOcViewPaint (TOcViewPaint far&) 

bool EvOcViewSavePart(TOcSaveLoad far& ocSave) 

bool EvOcViewLoadPart(TOcSaveLoad far& ocLoad) 

bool EvOcViewinsMenus (TOcMenuDescr far&) 

bool EvOcViewShowTools(TOcToolBarinfo far& tbi) 

bool EvOcViewGetPalette (LOG PALETTE far* far*) 

HANDLE EvOcViewClipData (TOcFormat far&) 

bool EvOcViewClose ( ) 

bool EvOcViewPartSize(TRect far&) 

bool EvOcViewOpenDoc(const char far&) 

bool EvOcViewAttachWindow() 

bool EvOcViewSetScale(TOcScaleFactor&) 

bool EvOcApplnsMenus(TOcMenuDescr far&) 

bool EvOcAppMenus (TOcMenuDescr far&) 

bool EvOcAppProcessMsg (MSG far*) 

bool EvOcAppFrameRect(TRect far*) 

bool EvOcAppBorderSpaceReq(TRect far*) 

bool EvOcAppBorderSpaceSet(TRect far*) 

void EvOcAppStatusText (canst char far*) 

void EvOcAppRestoreUI() 

void EvOcAppDialogHelp(TOcDialogHelp far& dh) 

void EvOcAppShutDown ( ) 

The following scrollbar control macros handle SB_xxxx notification codes. To determine 
the name of the notification code that corresponds to the EV _XXXX macro, remove the 
EV_prefix. 

Table 3.10 Scroll bar notification messages 

EV_SB_LINEDOWN ID, UserName 

EV _SB_LINEUP ID, UserName 

EV _SB_PAGEDOWN IDUserName 

EV_SB_PAGEUP ID, UserName 

EV_SB_TOP ID, UserName 

EV_SB_BOTTOM ID, UserName 

EV _SB_THUMBPOSITION ID, UserName 

EV _SB_ENDSCROLL ID, UserName 

EV _SB_BEGINTRACK ID, UserName 

void UserName () 

void UserName () 

void UserName () 

void UserName () 

void UserName() 

void UserName ( ) 

void UserName() 

void UserName ( ) 

void userName () 

These macros handle Windows messages. These macros are defined in windowev.h. To 
determine the name of the Windows message that corresponds to the EV _XXXX macro, 

508 Objec!Windows Reference Guide 



remove the EV_ prefix. For example, WM_ACTIV ATE is the name of the Windows 
message that the EV_ WM_ACTIV ATE macro handles. These macros, which crack the 
standard Windows messages (break the LP ARAM and WP ARAM parameters into 
separate parts), take no arguments. They pass the cracked parameters directly to the 
predefined EVxxxx message function. The standard Windows messages are described 
in your Windows documentation. 

Table 3.11 Standard Windows messages 

EV_WM_ACTIVATE 

EV_ WM_ACTIV ATEAPP 

EV_WM_ACTIVATEAPP 

EV_ WM_ASKCBFORMAlNAME 

EV_ WM_CANCELMODE 

EV _WM_CHANGECBCHAIN 

EV_WM_CHAR 

EV_ WM_CHARTOITEM 

EV_ WM_ CHILDACTIV ATE 

EV_ WM_CHILDINV AUD 

EV _WM_CLOSE 

EV_WM_COMPACTING 

EV_ WM_COMP AREITEM 

EV_WM_CREATE 

EV_WM_CTLCOLOR 

EV_WM_DEADCHAR 

EV_WM_DELETEITEM 

EV _WM_DESTROY 

EV _WM_DESTROYCLIPBOARD 

EV_WM_DEVMODECHANGE 

EV _WM_DRAWCLIPBOARD 

EV_WM_DRAWITEM 

EV_WM_DROPFILES 

EV_WM_ENABLE 

EV_ WM_ENDSESSION 

EV_ WM_ENTERIDLE 

EV _WM_ERASEBKGND 

EV_ WM_FONTCHANGE 

EV_ WM_GETDLGCODE 

EV_WM_GETFONT 

EV_ WM_GETMINMAXINFO 

EV_WM_GETTEXT 

EV_ WM_GETTEXTLENGTH 

Response function declaration. 

void EvActivate (uint active, bool minimized, HWND hWndOther) 

void EvActivateApp(bool active, HANDLE threadid) (WIN32 
only) 

void Ev Ac ti vateApp (bool active, HTASK hTask) (WIN16 only) 

void EvAskCBFormatName (uint bufLen, char far* buffer) 

void EvCancelMode I I 

void EvChangeCBChain(uint bufLen, char far* buffer) 

void EvChar(uint key, uint repeatCount, uint flags) 

int EvCharToitem(uint key, HWND hWndListBox, uint caretPos) 

void EvChildActivate I I 

void EvChildinvalid(HWND) 

void EvClose I I 

void EvCompacting (uint compactRatio) 

LRESULT EvCompareitem(uint ctrlid, COMPAREITEMSTRUCT far& 
compareinfo I 
int EvCreate (CREATESTRUCT far &) 

HBRUSH EvCtlColor (HDC, HWND hWndChild, uint ctlType) 

void EvDeadChar(uint deadKey, uint repeatCount, uint flags) 

void EvDeleteitem (uint ctr lid, DELETEITEMSTRUCT far& 
deleteinfo) 

void EvDestroy I I 

void EvDestroyClipboard I I 

void EvDevModeChange I char far* devMode I 

void EvDrawClipboard I I 

void EvDrawitem(uint ctrlid, DRAWITE!1STRUCT far& drawinfo) 

void EvDropFiles (TDropinfo dropinfo) 

void EvEnable (bool enabled) 

void EvEndSession (bool endSession) 

void EvEnteridle(uint source, HWND hWndDlg) 

bool EvEraseBkgnd (HDC) 

void EvFontChange I I 

uint EvGetDlgCode (MSG far* I 

HFONT EvGetFont I I ; 

void EvGetMinMaxinfo (MINMAXINFO far &) 

void EvGetText (uint bufLen, char far* buffer) 

uint EvGetTextLength I I (WIN32 only) 

Chapter 3, ObjectWindows event handlers 509 



Table 3.11 Standard Windows messages (continued) 

EV_WM_HOTKEY 

EV _WM_HSCROLL 

EV _WM_HSCROLLCLIPBOARD 

EV _WM_ICONERASEBKGND 

EV _WM_INITMENU 

EV _WM_INITMENUPOPUP 

EV _WM_INPUTFOCUS 

EV_WM_KEYDOVVN 

EV _WM_KEYUP 

EV_ WM_KILLFOCUS 

EV_WM_LBUTTONDBLCLK 

EV _WM_LBUTTONDOVVN 

EV _WM_LBUTTONUP 

EV _WM_MBUTTONDBLCLK 

EV _WM_MBUTIONDOVVN 

EV _WM_MBUTTONUP 

EV _WM_MDIACTIV ATE 

EV_WM_MDICREATE 

EV _WM_MDIDESTROY 

EV _WM_MENUCHAR 

EV_ WM_MENUSELECT 

EV_ WM_MEASUREITEM 

EV _WM_MOUSEACTIV ATE 

EV _WM_MOUSEMOVE 

EV_WM_MOVE 

EV_WM_NCACTNATE 

EV_ WM_NCCALCSIZE 

EV_WM_NCCREATE 

EV _WM_NCDESTROY 

EV_ WM_NCHITTEST 

EV_ WM_NCLBUTTONDBLCLK 

EV_WM_NCLBUTTONDOVVN 

EV _WM_NCLBUTTONUP 

EV _WM_NCMBUTTONDBLCLK 

EV _WM_NCMBUTTONDOVVN 

EV _WM_NCMBUTTONUP 

EV _WM_NCMOUSEMOVE 

EV _WM_NCPAINT 

510 0 b j e c I Windows .Reference Guide 

void EvHotKey I int idHotKey I 

void EvHScroll (uint scrollCode, uint thumbPos, HWND hWndCtl) 

void EvHScrollClipboard(HWND hWndCBViewer, uint scrollCode, 
uint pos) 

void EviconEraseBkgnd(HDC) 

void EvinitMenu(HMENU) 

void EvinitMenuPopup(HMENU hPopupMenu, uint index, bool 
sysMenu) 

void EvinputFocus (bool gainingFocus I (WIN32 only) 

void EvKeyDown(uint key, uint repeatCount, uint flags) 

void EvKeyUp(uint key, uint repeatCount, uint flags) 

void EvKillFocus (HWND hWndGetFocus) 

void EvLButtonDblClk (uint modKeys, TPoint& point I 

void EvLButtonDown (uint modKeys, TPoint& point I 

void EvLBut tonUp I uint modKeys, TPoint& point I 
void EvMButtonDblClk(uint modKeys, TPoint& point) 

void EvMButtonDown(uint modKeys, TPoint& point) 

void EvMButtonUp(uint modKeys, TPoint& point) 

void EvMDIActi vate (HWND hWndActi vated, HWND hWndDeacti vated) 

LRESULT EvMDICreate (MDICREATESTRUCT far& createStruct) 

void EvMDIDestroy (HWND hWnd) 

uint EvMenuChar (uint nChar, uint menuType, HMENU hMenu) 

void EvMenuSelect (uint menuitemid, uint flags, HMENU hMenu) 

void EvMeasureitem(uint ctrlid, MEASUREITEMSTRUCT far& 
measure Info I 

uint EvMouseActivate (HWND hWndTopLevel, uint hitTestCode, 
uint msg) 

void EvMouseMove(uint modKeys, TPoint& point) 

void EvMove (TPoint &clientOrigin) 

bool EvNCActivate(bool active) 

uint EvNCCalcSize (bool calcValidRects, NCCALCSIZE_PARAMS far 
&) 

bool EvNCCreate (CREATESTRUCT far &) 

void EvNCDestroy I I 

uint EvNCHitTest (TPoint& point) 

void EvNCLButtonDblClk(uint hitTest, TPoint& point) 

void EvNCLButtonDown(uint hitTest, TPoint& point) 

void EvNCLButtonUp(uint hitTest, TPoint& point) 

void EvNCMButtonDblClk(uint hitTest, TPoint& point) 

void EvNCMButtonDown(uint hitTest, TPoint& point) 

void EvNCMButtonUp(uint hitTest, TPoint& point) 

void EvNCMouseMove (uint hitTest, TPoint& point) 

void EvNCPaint I I 



Table 3.11 Standard Windows messages (continued) 

EV_ WM_NCRBUTIONDBLCLK 

EV _WM_NCRBUTIONDOWN 

EV _WM_NCRBUTIONUP 

EV _WM_OTHERWINDOWCREATED 

EV _WM_OTHERWINOOWDESTROYED 

EV_WM_PAINT 

EV_ WM_P AINTCLIPBOARD 

EV_WM_PAINTICON 

EV _WM_PALETTECHANGED 

EV_ WM_P ALETTEISCHANGING 

EV _WM_P ARENTNOTIFY 

EV_WM_FOWER 

EV_WM_QUERYDRAGICON 

EV_ WM_QUERYENDSESSION 

EV_WM_QUERYNEWPALETTE 

EV_WM_QUERYOPEN 

EV _WM_RBUTIONDBLCLK 

EV_ WM_RBUTIONDOWN 

EV_ WM_RBUTIONUP 

EV _WM_RENDERALLFORMATS 

EV_ WM_RENDERFORMAT 

EV _WM_SETCURSOR 

EV_ WM_SETFOCUS 

EV_ WM_SETFONT 

EV_ WM_SETTEXT 

EV_ WM_SHOWWINDOW 

EV_WM_SIZE 

EV_ WM_SIZECLIPBOARD 

EV_ WM_SPOOLERSTATUS 

EV_ WM_SYSCHAR 

EV_ WM_SYSCOLORCHANGE 

EV_ WM_SYSCOMMAND 

EV_ WM_SYSDEADCHAR 

EV_ WM_SYSKEYOOWN 

EV_ WM_SYSKEYUP 

EV _WM_SYSTEMERROR 

EV_WM_TIMECHANGE 

EV_ WM_TIMER 

EV_ WM_ VKEYTOITEM 

EV _WM_ VSCROLL 

void EvNCRButtonDblClk(uint hitTest, TPoint& point) 

void void EvNCRButtonDown(uint hitTest, TPoint& point) 

void EvNCRButtonUp(uint hitTest, TPoint& point) 

void EvOtherWindowCreated(HWND hWndOther) (WIN32 only) 

void EvOtherWindowDestroyed(HWND hWndOther) (WIN32 only) 

void EvPaint I I 

void EvPaintClipboard (HWND, HANDLE hPaintStruct) (WIN32 
only) 

void EvPainticon I I 

void EvPaletteChanged (HWND hWndPalChg) 

void EvPaletteisChanging (HWND hWndPalChg) 

void EvParentNotify(uint event, uint childHandleOrX, uint 
childIDOrY) 

int EvPower (uint power Event) 

HANDLE EvQueryDragicon I I 

bool EvQueryEndSession I I 

bool EvQueryNewPalette I I 

bool EvQueryOpen I I 
void EvRButtonDblClk(uint modKeys, TPoint& point) 

void EvRButtonDown(uint modKeys, TPoint& point) 

void EvRButtonUp(uint modKeys, TPoint& point) 

void EvRenderAllFormats I I 

void EvRenderFormat (uint dataFormat) 

bool EvSetCursor (HWND hWndCursor, uint hit Test, uint 
mouseMsg) 

void EvSetFocus (HWND hWndLostFocus) 

void EvSetFont (HFONT hFont, bool redraw) 

void EvSetText I char far* text I 

void EvShowWindow (bool show, uint status I 
void EvSize (uint sizeType, TSize& size) 

void EvSizeClipboard (HWND hWndViewer, HANDLE hRect I 

void EvSpoolerStatus (uint jobStatus, uint jobsLeft) 

void EvSysChar(uint key, uint repeatCount, uint flags) 

void EvSysColorChange I I 

void EvSysCommand(uint cmdType, TPoint& point) 

void EvSysDeadChar(uint key, uint repeatCount, uint flags) 

void EvSysKeyDown(uint key, uint repeatCount, uint flags) 

void EvSysKeyUp (uint key, uint repeatCount, uint flags I 

void EvSystemError (uint error) 

void EvTimeChange I I 

void EvTimer (uint timer Id) 

int EvVKeyToitem(uint key, HWND hWndListBox, uint caretPos) 

void EvVScroll (uint scrollCode, uint thumbPos, HWND hWndCtl) 

Ch apter 3, 0 b j e ct Windows event hand I er s 511 



Table 3.11 Standard Windows messages (continued) 

EV_ WM_ VSCROLLCLIPBOARD 

EV _WM_WINDOWPOSCHANGEI) 

EV_ WM_WINDOWPOSCHANGING 

EV _WM_WININICHANGE 

void EvVScrollClipboard(HWND hWndCBViewer, uint scrollCode, 
uint pos) 

void EvWindowPosChanged (WINDOWPOS far &windowPos I 

void EvWindowPosChanging (WINDOWPOS far &windowPos I 

void EvWininiChange I char far* section) 

These macros handle WM_ VBXFIREEVENT messages generated by VBX controls. 
EvHandler is a generic term for a specific VBX control message (such as EvClick). 

Table 3.12 VBX messages 

EV_VBXEVENTNA~ 

EV_VBXEVENTINDEX 

ID, event, EvHandler 

ID, event, EvHandler 

void EvHandler(VBXEVENT FAR *event) 

void FAR *event) 

These macros handle user-defined messages: 

Table 3.13 User-defined messages 

EV_MESSAGE 

EV _REGISTERED 

UserMessage, UserName LRESULT UserName(WPARAM,LPARAM) 

Registered name, User Name LRESULT UserName (WPARAM, LPARAM) 

Some event-handling functions or messages have no predefined names. In these cases, 
the generic term User Name is used to indicate that you can use any function name you 
want to as long as the function's signature matches the signature required by the 
response table macro. Similarly, the term User Message indicates that you can define your 
own message ID. 

The descriptions of these macros and functions use the following conventions when 
listing the arguments of the message macros: 

• ID refers to the child window's ID (for example, ID_GROUPBOX) 

• CMD ID refers to the command ID (for example, CM_FILENEW) 

• Code refers to the notification code (for example, BN_CLICKED) that is being sent. 

512 ObjectWindows Reference Guide 



ObjectWindows dispatch functions 
Dispatch functions separate the lParam and wParam parameters of Windows messages 
into their respective data types and pass control to an ObjectWindows member function. 

For example, when Windows sends an application a WM_CTLCOLOR message, the 
wParam is really an HOC, and the lParam has a HWND and a uint hidden inside. After 
the dispatch function cracks the wParam and lParam parameters into their constituent 
parts, it dispatches the Windows WM_CTLCOLOR message to the following 
ObjectWindows member function: 

HBRUSH EvCtlColor(HDC, HWND, uint); 

Although dispatch functions are written for specific Windows API messages, they have 
no knowledge of the actual Windows messages they are cracking. Instead, at run time, 
TEventHandler::Dispatch calls the appropriate dispatch function which then cracks the 
message and calls the appropriate member function, using the response table's pmf 
(pointer to a member function). These dispatch functions are never called directly. 

The following four parameters are common to all dispatch functions: 

• GENERIC& generic is the pointer to the object (for example, TEdit). 

• GENERIC::*pmfis the pointer to the member function (for example, EvActivate). 

• WP ARAM is one of the message parameters the dispatch function cracks. 

• LP ARAM is one of the message parameters the dispatch function cracks. 

The name of the dispatch function used in the response table entry or macro depends on 
the type of message cracking the function performs. The first letter of the name indicates 
the return type (for example, U indicates an unsigned integer). The second group of 
letters signifies the arguments of the function (for example, POINT of type TPOINT, or 

Ch apter 4, 0 b j e ct Windows dispatch I u n ct ions 513 



i_LPARAM_Dispatch 

U of type uint). The following table lists the abbreviations of the member functions' 
signatures and their corresponding data types. 

v 

H 
!32 

POINT 

POINTER 

u 

int 

void 

HANDLE (same as uint in size) 

int32 

TPoint& (TPoint object constructed) 

void* (model's ambient size) 

uint 

Message crackers that serve customized messages have names based on the specific 
message they crack. For example, the message cracker for WM_MDIACTIV ATE 
messages has the following prototype: 

int32_v_MdiActivate_Dispatch(GENERIC& generic, HBRUSH (GENERIC: :*pmf) (uint, uint), 
uint wParam, int32 lParam) ; 

ObjectWindows uses the same dispatch functions for messages that require the same 
type of cracking. For example, both the WM_HSCROLL and WM_ VSCROLL event 
handlershavevoid (*) ( uint, uint, HWND) as their signature. The Windows message 
also has the wParam and lParam parameters in the same place. Therefore, 
Object Windows uses the same dispatch functions for both of these messages. 

The following aliases have been defined for purposes of backward compatibility: 

#define HBRUSH_HDC_W_U_Dispatch 
#define LRESULT_U_U_W_Dispatch 
#define LRESULT_WPARAM_LPARAM_Dispatch 
#define v_U_B_W_Dispatch 
#define v_W_W_Dispatch 

See also 
TEventHandler 

U_U_U_U_Dispatch 
I32_MenuChar_Dispatch 
I32_WPARAM_LPARAM_Dispatch 
v_Activate_Dispatch 
v_MdiActivate_Dispatch 

List of ObjectWindows dispatch functions 

i_ LPARAM _Dispatch Dispatch.h 

int32 i_LPARAM_Dispatch(GENERIC& generic, int (GENERIC::*pmij(int32), uint wParam, int321Param); 
Passes lParam as an int32 and returns an int. 

i_U_W_U_Dispatch Dispatch.h 

int32 i_U_W_U_Dispatch(GENERIC& generic, int (GENERIC::*pmij(uint, uint, uint), uint wParam, int321Param); 

514 ObjectWindows Reference Guide 



i_WPARAM_Dispatch 

For Win32, passes wParam.lo (the LOWORD of wParam) as a uint, lParam as a uint and 
wParam.hi (the HIWORD of wParam) as a uint and returns an int. For Winl6, passes 
wParam as a uint, lParam.lo as a uint and lParam.hi as a uint and returns an int. This is a 
semi-customized dispatch function used for WM_CHARTOITEM and 
WM_KEYTOITEM messages. 

i_ WPARAM _Dispatch Dispatch.h 

int32 i_WPARAM_Dispatch(GENERIC& generic, int (GENERIC::*pmij(uint), uint wParam, int321Param); 
Passes wParam as a uint and returns an int. 

132 _Dispatch 
int32 132_Dispatch{GENERIC& generic, int32 (GENERIC::*pmij(), uint, int32); 
Ibis dispatcher passes nothing and returns an int32. 

132 _ LPARAM _Dispatch 

Dispatch.h 

Dispatch.h 

int32132_LPARAM_Dispatch(GENERIC& generic, int32 (GENERIC::*pmij(int32), uint, int321Param); 
Ibis dispatcher passes lParam as an int32 and returns an int32. 

132 _ WPARAM _LPARAM..;. Dispatch Dispatch.h 

int32 132_WPARAM_LPARAM_Dispatch(GENERIC& generic, int32 (GENERIC::*pmij(uint, int32), 
uint wParam, int32 IParam); 

Ibis dispatcher passes wParam as a uint and lParam as an int32, and returns an int32. 

132 _ MenuChar _Dispatch Dispatch.h 

int32 132_MenuChar_Dispatch(GENERIC& generic, uint (GENERIC::*pmij (uint, uint, uint), uint wParam, 
int32 IParam); 

Cracker for WM_PARENTNOTIFY messages. Passes three uints and returns an int32. 
Under Win32, the first uint is wParam.lo, the second uint is wParam.hi, and the uint is 
lParam. Under Win 16, the first uint is wParam, the second uint is lParam.lo, and the third 
uint is lParam.hi. 

132 _LI_ Dispatch 
int32132_U_Dispatch(GENERIC& generic, int32 (GENERIC::*pmij(uint), int321Param); 
This dispatcher passes lParam and uint and returns an int32. 

U_Dispatch 
int32 U_Dispatch(GENERIC& generic, uint (GENERIC::*pmij (), uinl wParam, int321Param); 
Passes no arguments and returns a uint. 

Dispatch.h 

Dispatch.h 

Chapter 4, ObjectWindows dispatch functions 515 



U_LPARAM_Dispatch 

U _ LPARAM_ Dispatch Dispatch.h 

int32 U_LPARAM_Dispatch{GENERIC& generic, uint {GENERIC::*pmij {int32), uint wParam, int321Param); 
Passes lParam as an int32 and returns a uint. 

LI _POINT_ Dispatch Dispatch.h 

int32 U _POINT_ Dispatch{GENERIC& generic, uint {GENERIC::*pmij {TPoint&), uint wParam, int32 IParam); 
Passes lParam as a TPoint& and returns a uint. 

LI _POINTER_ Dispatch Dispatch.h 

int32 U_POINTER_Dispatch{GENERIC& generic, uint {GENERIC::*pmij {void*), uint, int321Param); 
PasseslParam as a void*' and returns a uint. · 

U _ U _Dispatch 
int32 U_U_Dispatch{GENERIC& generic, uint {GENERIC::*pmij {uint), uint, int321Param); 
Passes lParam as a uint and returns a uint. 

u _ u _ u _ u _Dispatch 

Dispatch.h 

Dispatch.h 

int32 U_U_U_U_Dispatch{GENERIC& generic, uint {GENERIC::*pmij {uint, uint, uint), uint wParam, 
int32 IParam); 

Passes three uints and returns a uint. The first uint is wParam, the second uint is the 
LOWORD of lParam, and the third uint is the HIWORD of lParam. 

U _ WPARAM .._ LPARAM _Dispatch 
int32 U_WPARAM_LPARAM_Dispatch{GENERIC& generic, uint {GENERIC::*pmij {uinl, int32), 

uint wParam; int32 IParam); 
Passes wParam as a uint and lParam as an int32 and returns a uint. 

v _Activate_ Dispatch 

Dispatch.h 

Dispatch.h 

int32 v_Activate_Dispatch{GENERIC& generic, void {GENERIC::*pmij {uint, uint, uint), uint wParam, 
int32 IParam); 

Cracker for WM_ACTIV ATE messages. Passes three uints and always returns 0. Under 
Win32, the first uint is wParam.lo, the second uint is wParam.hi, and the third uint is 
lParam. Under Win16, the first uint is wParam, the second uint is lParam.hi, and the third 
uint is lParam.lo. 

v_Dispatch Dispatch.h 

int32 v_Dispatch {GENERIC& generic, void {GENERIC::*pmij {), uint uint, int32); 

516 Objec!Windows Reference Guide 



v_LPARAM_Dispatch 

Passes nothing and always returns 0. 

v _ LPARAM _Dispatch Dispatch.h 

int32 v_LPARAM_Dispatch (GENERIC& generic, void (GENERIC::*pmf) (int32), uint wParam, int321Param); 
Passes lParam as an int32 and always returns 0. 

v _ MdiActivate _Dispatch Dispatch.h 

int32 v _MdiActivate_Dispatch(GENERIC& generic, void (GENERIC::*pmf)(uinl, uint), uint wParam, int321Param); 
Specifically designed to handle EvMDIActivate messages, v_MdiActivate_Dispatch passes 
two uints and always returns 0. Under Win32, the first uint is lParam and the second 
uint is wParam. Under Winl6, the first uint is lParam.lo. If lParam is nonzero, the second 
uint is lParam.hi; otherwise, the second uint is wParam. 

v _ParentNotify _Dispatch Dispatch.h 

int32 v_ParentNotify_Dispatch(GENERIC& generic, int(GENERIC::*pmf) (uint, uint, uint), uint wParam, 
int32 IParam); 

Performs message cracking for WM_P ARENINOTIFY messages, which notify a parent 
window that a given event has occurred in the child window. Passes three uints and 
always returns 0. For Winl6, the first uint is wParam, the second uint is lParam.lo, and 
the third uint is lParam.hi. For Win32, if wparam.lo is a mouse message, then the first uint 
is wparam, the second uint is lparam.lo, and the third uint is lParam.hi. Otherwise, the first 
uint is wparam.lo, the second uint is lParam, and the third uint is wParam.hi. 

v _POINT_ Dispatch Dispatch.h 

int32 v_POINT_Dispatch (GENERIC& generic, void (GENERIC::*pmf) (TPoint&), uint wParam, int321Param); 
Passes a reference to a POINT (TPoint&) and always returns 0. Under Win32, passes 
lParam; under Winl6, passes a reference to lParam. 

v _POINTER_ Dispatch Dispatch.h 

int32 v_POINTER_Dispatch(GENERIC& generic, void (GENERIC::*pmf)(void*), uint wParam, int321Param); 
Passes an lParam as a void*pointer and always returns 0. 

v _ U _Dispatch 
int32 v_U_Dispatch(GENERIC& generic, void (GENERIC::*pmf) (uint, int32 IParam); 
Passes lParam as a uint and always returns 0. 

Dispatch.h 

Chapter 4, ObjectWindows dispatch functions 517 



v_U_POINT_Dispatch 

v _LI _POINT_ Dispatch Dispatch.h 

int32 v _ U _POINT_ Dispatch(GENERIC& generic, void (GENERIC::*pmij (uint, TPoint&), uint wParam, 
int32 IParam); 

Passes wparam as a uint and lParam as a reference to a POINT and always returns 0. 

v_U_U_Dispatch Dispatch.h 

int32 v_U_U_Dispatch(GENERIC& generic, void (GENERIC::*pmij (uint, uint), uint wParam, int32 IParam); 
Passes two uint and always returns 0. The first uint is wParam and the second uint is 
lParam. 

v _ U _ U _ U _Dispatch Dispatch.h 

int32 v _ U _ U _ U _ Dispatch(GENERIC& generic, void (GENERIC::*pmij (uint, uint, uint), uint wParam, 
int32 IParam); 

Passes three uints and always returns 0. The first uint is wParam, the second uint is 
lParam.lo and the third uint is lParam.hi. 

v _ U _ U _ W _Dispatch Dispatch.h 

int32 v _ U _ U _ W _ Dispatch(GENERIC& generic, void (GENERIC::*pmij (uint, uint, uint), uint wParam, 
int32 IParam); 

Passes three uints and always returns 0. Under Win32, the first uint is wParam.lo., the 
second uint is wParam.hi, and the third uint is lParam Under Win16, the first uint is 
wParam, the second uint is lParam.lo, and the third uint is lParam.hi. This is a semi­
customized message cracker for WM_HSCROLL, WM_ VSCROLL, and 
WM_MENUSELECT messages. 

v _ WPARAM _Dispatch Dispatch.h 

int32 v_WPARAM_Dispatch(GENERIC& generic, void (GENERIC::*pmij (uint), uint wParam, int32 IParam); 
Passes wParam as a uint and always returns 0. 

v _ WPARAM _ LPARAM _Dispatch Dispatch.h 

int32 v_WPARAM_LPARAM_Dispatch(GENERIC& generic, void (GENERIC::*pmij (uint, int32), uint wParam, 
int32 IParam); 

Passes wParam as a uint and lParam as an int32 and always returns 0. 

518 0 b j e ct W i n d o w s R e f e re n c e G u i d e 



ObjectComponents reference 

Part II, ObjectComponents reference 519 



520 0 b j e ct W i n d o w s R e f e r e n c e G u i d e 



Overview of ObjectComponents 

This chapter lists alphabetically the ObjectComponents classes, macros, constants, data 
types, and registration keys. The header file that defines each entry is listed opposite the 
entry name. Class members are grouped according to their access specifiers-public or 
protected. Within these categories, data members, then constructors and destructors, 
and member functions are grouped separately and listed alphabetically. 

The members listed for each class include only those that are new or redefined in the 
class itself. Members inherited from a base class are not listed again in the d,:rived class. 
No private members are listed. In some cases members that are public or protected are 
omitted as well because they are meant only for the use of other ObjectComponents 
classes. 

Some entries related to ObjectComponents programs appear in other sections of this 
book. OLE-enabled ObjectWindows classes, such as TOleWindow and TOleFactory, are 
listed with the other ObjectWindows classes. Registration macros and some locale items 
are listed later in the Object Support Library (OSL) reference. 

ObjectComponents libraries 
These are the libraries an ObjectComponents application uses for linking. 

· M~4il.n~,DjQ\.'let ... ..~·~~0~ ....... ·".'.~~~f 
OCFWM.LIB 

OWL WM.LIB 

BIDSM.LIB 

OLE2Wl6.LIB 

IMPORT.LIB 

OCFWL.LIB 

OWLWL.LIB 

BIDSL.LIB 

OLE2Wl6.LIB 

IMPORT.LIB 

OCFWI.LIB 

OWL WI.LIB 

BIDS!. LIB 

OLE2Wl6.LIB 

IMPORT.LIB 

ObjectComponents 

Object Windows 

Class libraries 

OLE system DLLs 

Windows system DLLs 

Chapter 5, Overview of ObjectComponents 521 



ObjectComponents header files 

MATHWM.UB 

CWM.LlB 

MATIIWL.LlB 

CWL.UB 

Math support 

CRTLDLL.LIB C run-time libraries 

ObjectComponents header files 
Header files, located in your INCLUDE/OCF subdirectory, contain declarations for 
class functions and definitions for data types and constants. · 

appdesc.h 

autodefs.h 

automacr.h 

ocapp.h 

ocapp.rh 

ocdefs.h 

ocdoc.h 

ocfevx.h 

ocfpch.h 

ocobject.h 

ocpart.h 

ocreg.h 

ocremvie.h 

ocstorag.h 

ocview.h 

oleutil.h 

TAppDescriptor, TComponentFactory 

Classes and structs used for automation 

Macros for automation declarations and definitions 

OC_APPxxxx messages, TOcApp, TOcFormatName, TOcHelp, TOcMenuDescr, TOcModule, 
TOcNameList, TOcRegistrar, WM_OCEVENTmessage 

IDS_CFxxxx resource IDs for strings describing standard Windows clipboard formats 

TXObjComp, HR_xxxx result codes, declaration specifiers 

TOcDocument 

Message cracker macros for WM_OCEVENT messages 

#include statements for all ObjectComponents headers, used with pre-compiled headers 

TOcAspect, TOcDialogHelp, TOcDropAction, TOclnitHow, TOclnitlnfo, TOclnitWhere, 
TOclnvalidate, TOcPartName, TOcScrollDir 
TOcPart, TOcPartCollection, TOcPartCollectioniter, TOcVerb 

OCxxxx global functions, ocrxxxx registration constants, T AppMode enum, TRegistrar, 
TXRegistry 

TOcRemView 

TOcStream, TOcStorage 
OC_ VIEWxxxx messages, TOcDragDrop, TOcFormat, TOcFormatList, TOcFormatListiter, 
TOcSaveLoad, TOcScaleFactor, TOcToolBarinfo, TOcView, TOcViewPaint 

DECLARE_COMBASES#macros, TOleAllocator, TUnknown, TXOle 

General OLE classes, macros, and type definitions 
ObjectComponents provides the following utility items for use in building OLE 
applications, whether they support linking and embedding or automation. 

HR_xxxx macros Return values from OLE functions 

_!CLASS macro Specifier for declaring a class that implements an OLE interface 

_IFUNC macro Specifier for declaring OLE functions 

_ OCFxxxx macros Specifiers for declaring ObjectComponents classes 

TComponentFactory typedef Callback function where an application creates objects that OLE requests 

TLocaleld typedef Data type for language setting identifiers 

522 0 b j e c I W i n d ow s R e I e r en c e G u i d e 



.l\em 
TOleAllocator class 

TUnknown class 

Global utility functions 

Meaning 

Establishes a memory allocator for OLE to use 

Implements the fundamental !Unknown interface required of all OLE 
objects 

Global utility functions 
The items in this table are utility functions that ObjectComponents declares globally. 

Item Purpose 
DynamicCast Converts a pointer from one type to another if both types are related through inheritance 

MostDerived Returns a pointer to the most derived class type that fits a given object 

ObjectComponents exception classes 
ObjectComponents throws the types of exceptions shown in this list. All the exception 
classes derive from TXBase. 

TXAuto Exceptions that occur during automation 

TX Obj Comp 

TX Ole 

TXRegistry 

Exceptions that occur during ObjectComponents linking and embedding operations 

Exceptions that occur while processing OLE API commands 

Exceptions that occur while using the system registration database 

Automation classes 
ObjectComponents provides the following classes that support automation. 

TAutoBase 

TAutoCommand 

T AutoEnumerator<> 

T Autolterator 

TAutoObject<> 

TAutoObjectByVak> 

TAutoObjectDelete 

TAutoProxy 

TAutoStack 

Base class for deriving automated objects 

Holds all the data for one command received by an automation server 

Lets an automation controller enumerate items in a server's collection 

Lets an automation server iterate items in an automated collection 

Creates a smart pointer to an automated object 

Lets an automation server automate a method that returns an object by value 
(not by reference) 

Lets an automation server automate a method that returns an object 

Base class for deriving the C ++ objects an automation controller creates to 
represent the OLE objects it wants to control 

Holds a set of T AutoCommand objects each representing a command received by 
an automation server 

C h a p t e r 5 , 0 v e r v i e w o I 0 b j e ct C o m p o n e n ts 523 



Automation enumerated types and type definitions 

TAutoVal 

TRegistrar 

Holds the data from a VARIANT union, the data format OLE uses for sending 
automation commands 

Manages system registration tasks for an automation application 

Automation enumerated types and type definitions 
ObjectComponents provides the following items that support automation. 

AutoDataType enum Identifiers for automation data types 

ObjectPtr typedef void pointer to a C++ object 

Automation data types 
ObjectComponents provides the following data types that support automation. To use 
these data types, see Declarations and Definitions. 

TAutoBool struct 

TAutoCurrency struct 

TAutoDate struct 

TAutoDouble struct 

TAutoFloat struct 

TAutolnt 

TAutoLong struct 

TAutoShort struct 

TAutoString struct 

TAutoStruct struct 

TAutoVoid struct 

Declarations and definitions of automation data types ocf/autodefs.h 

An automation data type is a structure that exists solely to describe a single type of data. 
Automation definitions use these structures to assist in converting parameters and 
return values between the VARIANT unions that OLE uses and the C ++ data types that 
your programs use. 

For the most part, although they are structures, you cannot create instances of them 
because they lack constructors and contain only a single static member. They all derive 
from TAutoType and inherit its GetType method. The only thing most of these structures 
do is respond to GetType calls by returning the static ID for a data type. 

524 0 b je ctWi n d ows Reference Guide 



Automation declaration macros 

The following table lists C ++ data types that might appear in your programs and the 
corresponding data types that you should use in automation declarations 
(DECLARE_AUTOCLASS) and definitions. (DEFINE_AUTOCLASS.) 

';'[> ' ,,, ' , .. .. :.» 

,:~cl~1:i01\.~' 
short short TAutoShort 

unsigned short short or unsigned T AutoShort or TAutoLong 

long long TAutoShort 

unsigned long unsigned long TAutoLong (treated as signed long) 

int int TAutoint 

unsigned int int or long TAutolnt or TAutoLong 

float float TAutoF1oat 

double double TAutoDouble 

boo! (or int) TBool TAutoBool 

TAutoDate TAutoDate TAutoDate 

TAutoDate far* TAutoDate far* TAutoDateRef 

TAutoCurrency 
far* 

T AutoCurrency far* TAutoCurrencyRef 

char* TAutoString TAutoString 

constchar* TAutoString TAutoString 

char far* TAutoString TAutoString 

const char far* TAutoString TAutoString 

string string TAutoString 

en um short or int TAutoShort or user-defined AUTOENUM 

T* TAutoObject<T> T (class T must be automated) 

T& T AutoObject<T> T (class T must be automated) 

constT* TAutoObject<const T> T (class T must be automated) 

constT& TAutoObject<const T> T (class T must be automated) 

T* (returned) TAutoObjectDelete<T> (C ++object deleted if no refs) 

T & (returned) TAutoObjectDelete<T> (C ++object deleted if no refs) 

T (returned) TAutoObjectByVal<T> T (T copied, deleted when refs==O) 

void (no return) (use AUTOFUNCxV macros) TAutoVoid 

short far* short far* T AutoShortRef 

long far* long far* TAutoLongRef 

float far* float far* TAutoF1oatRef 

double far* double far* TAutoDouble Ref 

Automation declaration macros ocf/automacr.h 

To make parts of an automated class accessible to OLE, an automation server adds 
declaration macros to the declaration of the C++ class and definition macros to the 
implementation of the C++ class. The declaration macros create command objects for 
executing commands sent by the controller. 

Ch apter 5, 0 v er view a f 0 b j e ct Cam pane n ts 525 



Automation definition macros 

The block of automation declaration macros always begins with 
DECLARE_AUTOCLASS. There is no need for a matching END macro to close the 
declaration. 

DECLARE_AUTOCLASS(cls) The macros that follow declare autornatable members of the user­
defined class els. 

Declaration macros 
After DECLARE_AUTOCLASS comes a series of macros, one for each class member 
that you choose to expose. Which particular macros you .choose depends on what the 
members are. 

Data 

A bit flag 

Function 

Iterator object 

Property 

AUTODATA 

AUTO FLAG 

AUTOFUNC 

AUTOITERATOR 

AUTO PROP 

AUTOSTAT 

AUTOTHIS 

Static member or global function 

~this 

AUTODETACH macro 
In addition, an automation declaration can also include the AUTODETACH macro. This 
macro does not expose a class member. It invalidates external references when the object 
is destroyed. 

Automation definition macros ocf/automacr.h 

To make parts of an automated class accessible to OLE, an automation server adds 
declaration macros to the declaration of the C++ class and definition macros to the 
implementation of the C++ class. 

The block of automation definition macros begins with DEFINE_AUTOCLASS and 
ends with END_AUTOCLASS, unless the object is, inherits from, or delegates to a 
Component Object Model (COM) object. In that case, the block of automation definition 
macros begins with DEFINE_AUTOAGGREGATE and ends with 
END_AUTOAGGREGATE. 

DEFINE_AUTOCLASS(cls) 

END:._AUTOCLASS(cls, name, doc, help) 

526 ObjectWindows Reference Guide 

The macros that follow define automatable members of 
the user-defined class els. 

The C++ class els is exposed to OLE controllers under 
the name name. If the user asks OLE about the object 
name, the system returns the string in doc. If a .HLP file 
is registered for the object, then the context ID in help 
points to a screen that describes the object. 



Automation hook macros 

Macro 
DEFINE_AUTOAGGREGATE(cls, aggregator) The macros that follow define automatable members of 

the user-defined class els, which is, inherits from, or 
delegates to a COM object. 

END_AUTOAGGREGATE(cls, name, doc, help) Same as END_AUTOCLASS. 

Between the DEFINE and END macros comes a series of other macros describing each 
exposed data member or function. The macros implement methods for a class nested 
within your automated class. When ObjectComponents receives commands from a 
controller, it passes them to the nested class. The macros build wrapper functions in the 
nested class that enable it to call your own class directly. 

Which particular macros you choose depends on what the members are. 

Member 
Automated application 

Auxiliary class 

Base class 

Collection iterator 

Method 

Read-only property 

Read-write property 

Write-only property 

Shutdown method 

EXPOSE_APPLICATION Macro 

EXPOSE_DELEGATE Macro 

EXPOSE_INHERIT Macro 

EXPOSE_ITERA TOR Macro 

EXPOSE_METHOD Macros 

EXPOSE_PROPRO 

EXPOSE_PROPRW 

EXPOSE_PROPWO 

EXPOSE_QUIT 

Automation hook macros ocf/automacr.h 

These macros establish hooks to be invoked every time a particular automation 
command is executed. They are never used by themselves but always as the last 
parameter of some other automation declaration macro. If you add one of these hooks to 
the declaration of some exposed class member, then every time an automation 
controller attempts to execute that command, ObjectComponents first executes the code 
in the hook. The code can be a simple expression or it can contain calls to other 
functions. 

Most of the macros expect to receive some expression or code as a parameter. Often the 
code or expression in the macro needs to refer to the arguments passed in or to the value 
of an automated data member. Within the ni.acro expression, write Argl, Arg2, Arg3 ... to 
refer to the received arguments. Write Val to refer to an automated data member. 

AUTONOHOOK 

AUTOINVOKE(code) 

Use this macro, without arguments, to prevent anyone from hooking 
the command. Not even ObjectComponents can monitor the call. (For 
advanced uses only.) 

The code here is executed each time the automation command is 
executed. Create an AUTOINVOKE hook if you want to override the 
normal execution sequence. 

C h a p t e r 5 , 0 v e r v i e w o I 0 b j e ct C o m p o n e n t s 527 



Automation proxy macros 

AUTORECORD(code) 

AUTOREPORT(code) 

AUTOUNDO(code) 

AUTOVALIDATE(condition) 

Example 

The code inserted here creates a record of the commands executed so 
that the sequence can be stored and replayed. 

The code inserted here returns an error code from the automated 
member. If code evaluates to 0, OLE assumes the command succeeded. If 
code evaluates to a nonzero value, then OLE throws an exception that 
returns an error code to the controller. 
Within the code expression, use Val to refer to the actual value returned. 

The code inserted here creates a T AutoCommand object that will undo 
the action of the current command. 

The code here should evaluate to true if the arguments received are 
valid for the command and false otherwise. If the expression returns 
false, OLE throws an exception that returns an error code to the 
controller application. 

This declaration ensures that an automated data member is never assigned a value 
outside a given range. 

AUTODATA(Number, Number, short, 
AUTOVALIDATE(Val>=NUM_MIN && NotTooBig(Val))); 

Automation proxy macros ocf/automacr.h 

An automation controller creates a proxy object (derived from TAutoProxy) to represent 
an automated OLE object. For every command the controller wants to send the object, it 
adds a method to the proxy object. The proxy methods mimic the commands the object 
supports. When the controller calls proxy methods, ObjectComponents sends 
automation commands through OLE. · 

The implementation of a proxy method always contains three macros: an 
AUTONAMES macro, an AUTOARGS macro, and an AUTOCALL macro. 
AUTONAMES associates names with arguments. AUTOARGS describes any 
arguments that do not have names. The use of names makes it possible to send partial 
sets of arguments and let the server assign default values to the remaining arguments. 

The third macro, AUTOCALL, tells whether the command represents a method or a 
property of the automated object and whether the command returns a value. 

To generate proxy object declarations and definitions directly, use the TYPEREAD.EXE 
tool (located in the OCTOOLS subdirectory.) TYPEREAD scans the type library of an 
automation server and generates complete proxy code for controlling the server. 

You are free to subsititute your own code for the standard macros in order to handle 
special situations. 

AUTONAMES Associates names with arguments so the caller can choose to pass only selected 
arguments 

528 0 b j e c I W i n d o w s R e f e r e n c e G u i d e 



Macro 

AUTOARGS 

AUTOCALL 

Registration keys 

Registration keys 

Description 

Describes arguments that do not have names 

Tells whether the command is a method or a property and whether it returns a value 

Most ObjectComponents programs build registration tables describing their OLE 
capabilities. (Only automation controllers can omit this step.) The registration tables 
contain keys paired with values. The keys are standard. You decide which ones to 
register and you supply values for them. 

Which keys you choose depends on whether your application is a server, a container, or 
an automation program. Some keys must be registered and some are optional. 
Furthermore, some apply only to the application's primary registration table, and others 
apply to the tables for each of the application's document types. 

A registration table starts with the BEGIN_REGISTRATION macro and ends with 
END _REGISTRATION. In between is one macro for each key you want to register. The 
macro depends on the key. Most keys use the REGDATA macro, but there are others 
such as REGFORMAT and REGSTATUS. 

If your application is a server, most of the information in its registration tables is 
recorded in the system's registration database. Putting the information there makes it 
possible for OLE to learn much about the server without actually loading the 
application into memory. For example, if an automation controller asks for information 
about the commands an automation server supports, OLE can locate the server's type 
library from an entry in the database. 

aspectall 

aspectcontent 

aspectdocprint 

aspecticon 

aspectthumbnail 

clsid 

cmdline 

debugclsid 

debugdesc 

debugger 

debugprogid 

description 

directory 

docfilter 

docflags 

extension 

Option flags that apply to all presentation aspects. 

Option flags for the content view of an object. 

Option flags for the printed document view of an object. 

Option flags for the iconic view of an object. 

Option flags for the thumbnail view of an object. 

A GUID identifying the application. 

Arguments OLE should place on the command line when it launches the server. 

A GUID identifying the debugging version of a server. This is always generated 
internally. You should never specify it directly. 

A long string describing the debugging version of a program. 

The file name and command line switches for loading your debugger. 

A string naming the debugging version of a program. Defining this forces 
ObjectComponents to register debugging and non-debugging versions. 

A string describing the application. 

The default directory for browsing document files. 

File specification for listing files created by the application. 

Option flags for the application's documents. 

A three-letter file-name extension for files created by the server. 

C h a p t e r 5 , 0 v e r v i e w of 0 b j e ct C o m p o n e n I s 529 



Linking and embedding classes 

filefrnt 

formatn 

handler 

helpdir 

iconindex 

insertable 

language 

menuname 

path 

permid 

permname 

progid 

typehelp 

usage 

verbn 

verbnopt 

version 

Name of default file format. 

A Clipboard format the application supports. (Use REGFORMA T to register Clipboard 
formats.) 

A full path pointing to a library that can draw objects created by the server. Defaults to 
OLE2.DLL. 

Full directory where online Help for the type library resides. 

An index telling which of the icons in the server's resources represents the type of 
objects the server produces. (Use REGICON to register an icon.) 

Indicates that the application serves its document for linking and embedding in 
container documents. 

Locale ID currently in effect. (Set internally during automation.) 

A short name for the server, used in a container's menu. 

The path where OLE looks to find the server. This key is set internally during 
registration. 

A string that names the application without indicating any version. 

A string that describes the application without indicating any version. 

A string uniquely naming the application. 

Name of the file where online Help for the type library resides. 

Indicates the whether the server can support concurrent clients with a single 
application instance. 

A string naming an action the server can perform with its objects. 

Option flags describing the server's verbs. (Use REGVERBOPT to register verb 
options.) 

Version string for the application and type library. 

Linking and embedding classes 
ObjectComponents provides the following classes for use by applications that support 
linking and embedding. 

TOcApp 

TOcDocument 

TOcFormatList 

TOcFormatListiter 

TOcFormatName 

TOcModule 

TOcNameList 

TOcPart 

TOcPartCollection 

TOcPartCollectionlter 

TOcRegistrar 

Connector object that implements BOCOLE interfaces for the application 

Manages the parts in a container's compound document 

List of Clipboard data formats a document supports 

Iterator for the list of Clipboard data formats a document supports 

Holds strings describing a single data format that an application might 
encounter on the Clipboard (see TOcNameList) 

Base class for deriving OLE-enabled application objects 

Contains a collection of strings describing all the data formats that an application 
might find on the Clipboard 

Connector object that a container uses to represent an object linked or embedded 
in one of its documents 

Manages a collection of linked or embedded parts 

Iterator for the collection of parts linked or embedded in a single document 

Manages OLE registration tasks for a linking and embedding application 

530 Objec!Windows Reference Guide 



TOcRemView 

TOcScaleFactor 

TOcVerb 

TOcView 

Linking and embedding classes 

Connector object that a server uses to draw an object linked or embedded in a 
container's document 

Carries information from a container to a server requesting that linked or 
embedded objects be drawn to a certain scale 

Holds information about an action that a server is able to perform with its own 
objects when they are linked or embedded in a container 

A connector object that an application uses to draw its own documents in its 
own frame window 

A few of the ObjectComponents classes used for linking and embedding implement 
COM interfaces. (COM stands for Component Object Model. COM is the standard that 
defines what an OLE object is.) Most of the supported interfaces are not standard OLE 
interfaces; they are custom interfaces that communicate with OLE through the BOCOLE 
support library. But like any COM object they do implement !Unknown (by deriving 
from TUnknown). 

The classes that define COM objects for linking and embedding are TOcApp, TOcView, 
TOcRem View, and TOcPart. These classes connect your application to OLE. They are 
called connector objects. An ObjectComponents application must create connector objects 
in order to interact with other OLE applications. 

Figure 5.1 shows how the connector objects are related. 

Figure 5.1 Hierarchy of ObjectComponents connector classes 

TUnknown 

Nonvirtual inheritance Virtual inheritance 

Chapter 5, Overview of ObjectComponents 531 



Linking and embedding enums 

Linking and embedding.enums 
ObjectComponents provides the following enumerated types for use by applications 
that support linking and embedding. 

TOcAppl\1odeenUin 

TOcAspectenUin 

TOcDialogHelp enUin 

TOcDropAction enUin 

TOclnitHow enUin 

TOclnitWhere enUin 

TOcinvalidate enUin 

TOcPartName enUin 

TOcScrollDir enUin 

Flags identifying the application's running .conditions 

Flags identifying object presentation aspects 

Constants identifying standard OLE dialog boxes where a user can ask for help 

Constants identifying actions that can result from dropping an object on a 
window · · 

Constants identifying the action a container is to take on receiving a new object­
either link or embed 

Constants identifying places the data for an object can reside 

Flags indicating whether an object is invalid because of a change in its data or just 
in its appearance 

Constants identifying different strings a container might request when asking for 
the name of an object linked or embedded in it 

Constants identifying directions a container might be asked to scroll its window 

Linking and embedding messages 
ObjectComponents provides the following messages for use by applications that 
support linking and embedding. 

OC_APPxxxx 

OC_ VIEWxxxx 

Wl\1_0CEVENT 

l\1essages sent to an application object 

l\1essages sent to a view object 

Carries event signals from ObjectComponents to an application 

Linking and embedding structs 
ObjectComponents provides the following structs for use by applications that support 
linking and embedding. 

TOcDragDrop struct 

TOclnitinfo struct 

TOcl\1enuDescr struct 

TOcSaveLoad struct 

Holds information a container needs in order to receive an object dropped on its 
window 

Holds information a container needs in order to place a new object in its 
doCUinent 

Holds information about a shared menu where the container and server merge 
their commands for in-place editing 

Carries information an application needs to save or load a linked or embedded 
object 

532 ObjectWindows Reference Guide 



ocrxxxx constants 

TOcToolbarlnfo struct Carries handles to a server's tool bars to be displayed in the container's window 
during in-place editing 

TOcViewPaint struct Carries information that tells a server how to repaint a linked or embedded object 
when the container invalidates part of the object's surface 

ocrxxxx constants ocf/ocreg.h 

The ocreg.h header defines a number of constants used in constructing an application's 
registration tables. These constants all begin with ocr. They fall into several groups. Most 
of them are used with the REGFORMAT macro to describe the kinds of data transfers a 
document supports. 

Aspect constants 

Clipboard constants 

Direction constants 

Limit constants 

Medium constants 

Object status constants 

Usage constants 

Verb attributes constants 

Verb menu flags 

Data presentation modes (such as icon, content, or thumbnail) 

Clipboard data formats (such as text, bitmap, or link source) 

Data transfer directions (getting or setting) 

Maximum number of items that can be registered 

Data transfer mediums (such as disk file or Clipboard) 

Aspect options (such as showing icon only or redrawing on resize) 

Support for multiple clients (single use or multiple use) 

Verb option flags (never dirties and show on menu) 

Verb display options (such as grayed, disabled, or menu bar break) 

Chapter 5, Overview of ObjectComponents 533 



534 ObjectWindows Reference Guide 



ObjectComponents library reference 

ICLASS macro ocf /oleutil.h 

Modifies the declaration of an interface class, one that defines or implements an 
interface for OLE or for the BOCOLE support library. 

IFUNC macro ocf/oleutil.h 

Modifies the declaration of an OLE function. 

The _IFUNC macro controls function calling conventions and export declarations. 
Placing these macros in a keyword allows the compiler to choose the right combination 
of modifiers for a particular platform. 

ObjectComponents uses the macro to declare OLE and BOCOLE functions as well as 
member functions that wrap direct OLE and BOCOLE calls. 

_IFUNC serves the same purpose in Borland headers that the 
STDMETHODCALL TYPE serves in OLE system headers. 

OCFxxxx macros ocf/ocfdefs.h 

These macros are used internally to declare classes, functions, and data members in 
ObjectComponents classes. Their definitions vary depending on whether you build a 
16- or 32-bit EXE or DLL. Some of them also force the declaration to _huge. 

Chapter 6, ObjectComponents library reference 535 



aspectall registration key 

These macros closely match the corresponding_ OWLxxxx macros. 

_OCFCLASS 

_OCFDATA 

_OCFFUNC 

Exports or imports classes for DLLs. 

Exports or imports data members for DLLs. 

Exports or imports member functions for DLLs. 

aspectall registration key 
~~~~~~~~~~~~~~~~~~~~~~~~~~· 

Registers option flags that affect all views of an object. The flags control how all views of
the object are presented.

Linking and embedding servers can optionally register aspect status in their document
registration tables. Aspect status does not apply to application registration tables,
containers, or automation servers.

To register flags for all aspects, use the REGSTATUS macro, passing "all" as the first
parameter and an ocrxxxx object status enum value as the second parameter.

REGSTATUS(all, ocrNoSpecialRendering)

See also
aspectcontent registration key, aspectdocprint registration key, aspecticon registration
key, aspectthumbnail registration key, ocrxxxx Object Status enum, REGSTATUS macro

aspectcontent registration key
Registers option flags for the content view of an object. The content view usually shows
all the data in an object (or as much of the data as fits in the available space.) The option
flags control how the content view is used.

Linking and embedding servers can optionally register aspect status in their document
registration tables. Aspect status does not apply to application registration tables,
containers, or automation servers.

To register flags for the content aspect, use the REGSTATUS macro, passing "content" as
the first parameter and an ocrxxxx object status enum value as the second parameter.

REGSTATUS(content, ocrRecomposeOnResize)

See also
aspectall registration key, aspectdocprint registration key, aspecticon registration key,
aspectthumbnail registration key, ocrxxxx object status enum, REGSTATUS macro

536 ObjectWindows Reference Guide

aspectdocprint registration key

aspectdocprint registration key
Registers option flags that affect the printed document view of an object. The printed
document view usually approximates how the object will appear if sent to the current
printer. The option flags control how the docprint view is presented.

Linking and embedding servers can optionally register aspect status in their document
registration tables. Aspect status does not apply to application registration tables,
containers, or automation servers.

To register flags for the printed document aspect, use the REGSTATUS macro, passing
"docprint" as the first parameter and an ocrxxxx object status enum value as the second
parameter.

See also
aspectall registration key, aspectcontent registration key, aspecticon registration key,
aspectthumbnail registration key, ocrxxxx object status enum, REGSTATUS macro

aspecticon registration key
Registers option flags that affect the iconic view of an object. The icon view, rather than
showing the object's contents, displays an icon that represents a particular kind of object.
The option flags control how the icon view is presented.

Linking and embedding servers can optionally register aspect status in their document
registration tables. Aspect status does not apply to application registration tables,
containers, or automation servers.

To register flags for the icon aspect, use the REGSTATUS macro, passing "icon" as the
first parameter and an ocrxxxx object status enum value as the second parameter.

REGSTA1'US I icon, ocrOnlyiconic)

See also
aspectall registration key, aspectcontent registration key, aspectdocprint registration
key, aspectthumbnail registration key, ocrxxxx object status enum, REGSTATUS macro

aspectthumbnail registration key
Registers option flags that affect the thumbnail view of an object. The thumbnail view
usually shows a miniature representation of the object's contents. The flags control how
the thumbnail view is presented.

Linking and embedding servers can optionally register aspect status in their document
registration tables. Aspect status does not apply to application registration tables,
containers, or automation servers.

Chapter 6, ObjectComponents library reference 537

AUTOARGS macros

To register flags for the thumbnail aspect, use the REGSTATUS macro, passing
"thumbnail" as the first parameter and an ocrxxxx object status en um value as the second
parameter.

See also
aspectall registration key, aspectcontent registration key, aspectdocprint registration
key, aspecticon registration key, ocrxxxx object status en um, REGST ATUS macro

AUTOARGS macros ocf/automacr.h

An automation controller uses AUTOARGS to implement methods in its proxy objects.
AUTOARGS macros list all the arguments that the controller passes to an automation
command, identifying them by the dummy parameter names used in the function
definition.

AUTOARGS macros are the second in three sets of macros used to implement methods
in proxy objects. The first, AUTONAMES assigns names to any arguments that the
controller wants to reference by name. The third set, AUTOCALL, tells whether the
command is a method or a property and whether it returns a value.

The automacr.h header defines AUTOARG macros that accept up to six arguments. To
generate versions that accept more arguments, use the MACROGEN.EXE utility.

AUTOARGSO() The aµtomation command has no required arguments.

AUTOARGSl(al) The automation command requires argument al.

AUTOARGS2(al, a2) The automation command requires arguments al and a2.

AUTOARGS3(al, a2, a3) The automation command requires arguments al, a2, and a3.

AUTOARGS4(al, a2, a3, a4) 1he automation command requires arguments al, a2, a3, and a4.

AUTOCALL xxxx macros ocf/automacr.h

AUTOCALL is the third of three sets of macros that an automation controller uses to
implement automation commands in proxy objects. The first two sets, AUTONAMES
and AUTOARGS, describe the command's arguments. AUTOCALL macros tell
whether the command represents a method or a property of the automated object and
whether the command returns a value. Commands whose return value is itself an
automated object must also be specially marked~

AUTOCALL_METHOD _REF(prx) 1he command is a method that returns a reference to an object. prx is
an object derived from T AutoProxy and receives the return value.

AUTOCALL_METHOD_RET The command is a method that returns a value.

AUTOCALL_METHOD_ VOID The command is a method that returns no value.

AUTOCALL_PROP _GET The command returns the value of a property of the automated
object.

538 ObjectWindows Reference Guide

AUTOCALL_PROP _REF(prx)

AUTOCALL_PROP _SET(val)

AUTOCLASS macro

AUTOCLASS macro

Nle~~l\g
The command returns the value of a property and the value is itself
an object. prx is an object derived from T AutoProxy and receives the
return value.

The command assigns val to a property of the automated object.

ocf/autodefs.h

_AUTOCLASS is the class modifier that ObjectComponents uses to declare the base
classes and member objects it creates inside your classes for automation. As long as your
own classes use the application's ambient memory model, you do not have to worry
about _AUTOCLASS, which by default is defined as nothing. If, however, you declare
your automation classes with a modifier that differs from the ambient class model, then
the classes (such as T Auto Base) that ObjectComponents defines must be modified to
match. To accomplish the modification, define _AUTOCLASS yourself. For example:

#define _AUTOCLASS far

AUTODATA macros ocf/automacr.h

An automation server uses AUTODATA macros in an automation declaration (after
DECLARE_AUTOCLASS) to make data members of an automated class accessible
through OLE.

Both forms take the same four parameters. name is the internal name that you assign to
the data member. ObjectComponents uses the internal names to keep track of all the
automated members. The only other place you use this name is in the subsequent
automation definition (after DEFINE_AUTOCLASS).

member is the C ++name of the data member, the name you normally use in your source
code.

In most cases, type should be a normal C ++ data type, but if the data member is a string
or an object then specify T AutoString or one of the T AutoObject classes instead. See
Automation Data Types for more details.

options is a place to insert a hook, code to be called each time the automation command
is executed. Hooks can record, undo, or validate commands. See Automation Hook
Macros for more details. options can be omitted, but a comma must follow the preceding
argument anyway.

AUTODATA(name, member, type, options) The command permits read and write access to a data
member.

AUTODATARO(name, member, type, options) The command permits read-only access to a data
member.

C h a p I e r 6 , 0 b j e ct C o m p o n e n ts I i b r a r y r e f e r e n c e 539

AutoDataType enum

AutoDataType enum ocf/autodefs.h

enum AutoDataType
These flags identify automation data types. The types correspond to standard OLE 2
data types. The TAutoVal class uses the flags to guide its conversions to and from the
VARIANT unions that OLE passes between programs.

at Void void

atNull SQL-style null

atShort 2-byte signed int

atLong 4-byte signed int

atF!oat 4-byte real

atDouble 8-byte real

atCurrency currency

atDatetime datetime as double

atString BSTR, string preceded by length

atObject !Dispatch*

atError SCODE

atBool True= -1, false= 0

at Variant VARIANT FAR*

at Unknown !Unknown*

atTypeMask Base type code without bit flags.

atOLE2Mask Type code with bit flags.

The preceding flags are mutually exclusive. A value can belong to only one type. Any of
the type flags can, however, be combined with the following bit flags.

atByRef

atEnum

See also

The value is a reference to an object.

The value is an enumeration of some type.

TAutoVal class, TAutoEnumTpublic constructor

AUTODETACH macro
AUTODETACH

ocf/automacr.h

An automation server uses this macro in its automation declaration (after
DECLARE_AUTOCLASS) to ensure that whenever the automated object is destroyed
OLE receives notification. Sending the object's obituary to OLE prevents crashes should
a controller attempt to manipulate the nonexistent object. The obituary is necessary only
if the logic of your program makes it possible for the automated object to be destroyed
by non-automated means while still connected to the controller.

540 ObjectWindows Reference Guide

AUTOENUM macros

Deriving a class from T Auto Base serves exactly the same purpose. The advantage of
AUTODETACH is that you can use it to automate classes you did not create and whose
derivation you cannot control.

AUTOENUM macros ocf/automacr.h

An automation server uses the AUTOENUM macros to expose enumerated values to
automation controllers. For example, if the server wants the controller to pass actions
into a Do This command, the server might create an enumerated type containing values
such as Play, Stop, and Rewind. To make these values available to the controller, the
server must create an AUTOENUM table. In this example, the table consists of three
AUTOENUM macros, one for each enumerated value.

DEFINE_AUTOENUM(TAction, TAutoShort);

AUTOENUM("Play", Play)

AUTOENUM("Stop", Stop)

AUTOENUM("Rewind", Rewind);

END_AUTOENUM(TAction, TAutoShort)

DEFINE_AUTOENUM(cls, type) Begins an AUTOENUM table. els is the name of the automated
enumeration type (not the name of the C++ enumerated type). You
invent this name. The only other place it appears is in the application's
automation definition.

AUTOENUM(name, val)

END_AUTOENUM(cls, type)

AUTOFLAG macro

type is the automation data type that describes what kind of values are
being enumerated. For more information, see Automation Data
Types.

name is the public string that a controller uses to refer to one in a series
of enumerated values. val is the internal value the server associates
with name.

Ends an AUTOENUM table. els and type are the same as for
DEFINE_AUTOENUM.

ocf/automacr.h

AUTOFlAG(name, data, mask, options)
An automation server uses AUTOFLAG in an automation declaration (after
DECLARE_AUTOCLASS) to expose for automation a single bit from a set of bit flags.

name is an internal name that you assign to the bit. ObjectComponents uses the internal
names to keep track of all the automated members. The only other place you use this
name is in the subsequent automation definition (after DEFINE_AUTOCLASS.)

data is the C++ name of a data member that holds a set of bit flags.

mask is a value with one bit set marking the position of the exposed flag in data.

options is a place to insert a hook, code to be called each time the automation command
is executed. Hooks can record, undo, or validate commands. See Automation Hook

Ch a p I er 6, 0 b j e c IC om pone n ts Ii bra r y re I ere n c e 541

AUTOFUNC macros

Macros for more details. options can be omitted, but a comma must follow the preceding
argument anyway.

AUTOFUNC macros ocf/automacr.h

An automation server uses AUTOFUNC macros in an automation declaration (after
DECLARE_AUTOCLASS) to make member functions of an automated class accessible
through OLE.

In every version of the macro the first parameter, name, is an internal name that you
assign to the function. ObjectComponents uses the internal names to keep track of all the
automated members. The only other place you use this name is in the subsequent
automation definition (after DEFINE_AUTOCLASS).

June is the C ++ name of the member function, the name you normally use in your source
code.

ret is the type of data the function returns. typel, tl, t2, t3, and t4 represent the data types
of the parameters. In most cases, all these data types should be normal C++ data types,
but if the data member is a string or an object then specify T AutoString or one of the
T AutoObject classes instead. See Automation Data Types for more details. Also,
automated functions cannot return const values. Do not use canst in a ret type.

options is a place to insert a hook, code to be called each time the automation command
is executed. Hooks can record, undo, or validate commands. See Automation Hook
Macros for more details. options can be omitted, but a comma must follow the preceding
argument anyway.

The automacr.h header defines versions of this macro that accept up to three arguments.
To generate versions that accept more arguments, use the MACROGEN.EXE utility.

AUTOFUNCO(name, func, ret, options)

AUTOFUNCOV(name, func, options)

AUTOFUNCl(name, func, ret, typel, options)

AUTOFUNClV(name, func, typel, options)

AUTOFUNC2(name, func, ret, tl, t2, options)

AUTOFUNC2V(name, func, tl, t2, options)

AUTOFUNC3(name, func, ret, tl, t2, t3, options)

AUTOFUNC3V(name, func, t1 ,t2, t3, options)

AUTOFUNC4(name, func, ret, tl, t2, t3, t4, options)

AUTOFUNC4V(name, func, tl, t2, t3, t4, options)

542 ObjectWindows Reference Guide

The function takes no parameters and returns a
value of type ret.
The function takes no parameters and returns void.

The function takes one parameter of type typel and
returns a value of type ret.
The function takes one parameter of type typel and
returns void.

The function takes two parameters of types t1 and
t2. It returns a value of type ret.
The function takes two parameters and returns
void.

The function takes three parameters and returns a
value.

The function takes three parameters and returns
void.

The function takes four parameters and returns a
value.

The function takes four parameters and returns
void.

AUTOINVOKE macro

AUTOINVOKE macro ocf/automacr.h

AUTOINVOKE(code)
An automation server uses AUTOINVOKE in an automation declaration macro to hook
in user-defined code for ObjectComponents to execute every time the application
receives a particular automation command. code is the expression or function call to
execute on each command.

Create an AUTOINVOKE hook if you want to override the normal execution sequence.

AUTOITERATOR macros ocf/automacr.h

An iterator is an object used to enumerate a collection of objects. An iterator's methods
let the caller step through a list of objects and examine each one in tum.

An automation server needs to create an iterator in any automated object that represents
a collection of other objects. To create an iterator, the serv~r adds one of the
AUTOITERATORmacros to the class's automation definition (after
DEFINE_AUTOCLASS). The iterator must also be exposed in the automation definition
with the EXPOSE_ITERA TOR macro.

AUTOITERATOR(state, lllit, test, step, extract) Implements a collection iterator within the automated
class.

AUTOITERATOR_DECLARE(state) Declares but does not implement a collection iterator
within the automated class. Use this if your iterator's
implementation is too complex for AUTOITERATOR.

The five arguments of AUTOITERATOR define the iteration algorithm for the collection
class. Only one auto-iterator can exist within a class, so there is no need for a special
internal name. The five arguments each represent a code fragment, and they follow the
sequence of code in a for loop. As the examples show, because the iterator object is
nested within the automated collection class, it can refer to members of the class.

state

lllit

test

step

extract

int Index Declaration of state variables. This must be the same declaration
previously given in AUTOITERATOR_DECLARE.

Index= 0 Statements (usually assignments) executed to lllitialize the loop.

Index< This-> Total Boolean expression tested each time through the loop.

Index++ Statements executed each time through the loop.

(This->Array)[Index] Expression that returns the successive objects in the collection.

Within the parameters, This (note the capital T) points to the enclosing collection object,
not to the nested iterator object.

Commas cannot be used except inside parentheses. Semicolons can be used to separate
multiple statements, but not to end a macro argument.

Chapter 6, ObjectComponents library reference 543

AUTONAMES macros

If you use AUTOITERA TOR_DECLARE instead of AUTOITERA TOR, then you must
implement the state variables and these methods, corresponding to the steps described
for AUTOITERATOR.

void Init I I;
bool Test I I ;
void Step I I ;
void Return(TAutoVal& v);

AUTONAMES macros ocf/automacr.h

The AUTONAMES macros are the first in three sets of macros that an automation
controller uses to implement methods in its proxy objects. AUTONAMES macros assign
names to any arguments that the controller wants to reference by name. Named
parameters have default values and are not required in a command. If a command has
fifteen parameters and ten of them have names and default values, then the controller
must always pass the five unnamed parameters and can choose to pass any subset of the
remaining ten, identifying them by their names.

The second set of macros, AUTOARGS, describe the data types of unnamed arguments
that must always be passed in the command. The third set, AUTOCALL, tells whether
the command is a method or a property and what it returns.

In the macros that follow, id is a numeric ID for a method,faame is a string naming a
method, and nl, n2, n3, and n4 are strings assigned as argument names.Most of the
macros need the function name to identify the function, but if a function has no named
arguments, then you can pass its identifying number instead.

The automacr.h header defines AUTONAMES macros that accept up to ten arguments.
To generate versions that accept more arguments, use the MACROGEN.EXE utility.

AUTONAMESO(id) Function id has no named arguments.

AUTONAMESO(fname) Function fname has no named arguments.

AUTONAMESl(fname, nl) Function fname has one named argument, nl.

AUTONAMES2(fname, nl, n2) Function fname has two named arguments, nl and n2.

AUTONAMES3(fname, nl, n2, n3) Function fname has three named arguments, nl, n2, and n3.

AUTONAMES4(fname, nl, n2, n3, n4) Function fname has four named arguments, nl, n2, n3, and n4.

AUTONOHOOK macro ocf/automacr.h

AUTONOHOOK
An automation server uses AUTONOHOOK in an automation declaration macro to
prevent anyone from hooking the command. Not even ObjectComponents can monitor
the call.

AUTONOHOOK is for advanced uses only.

544 ObjectWindows Reference Guide

AUTOPROP macros

AUTOPROP macros ocf/automacr.h

An automation server uses AUTOPROP macros in its automation declaration (after
DECLARE_AUTOCLASS) to make properties of an automated class accessible to OLE.
A property is data that cannot be read or written directly, only through a set of access
functions (for example, GetPosition and SetPosition).

A server can implement the access functions any way it likes. Because only the access
functions are exposed, the property does not have to be a data member. In other words,
GetPosition and SetPosition would not have to refer to a data member of type TPoint.
They might query the system for the cursor position and return the answer.

The three AUTOPROP macros have similar parameters. name is an internal name you
assign to the property. ObjectComponents uses the name to keep track of all the
automated members. The only other place you use this internal name is in the
corresponding automation definition.

get and set are the access functions. A read-only property has just a get function. A write­
only property has just a set function.

type is the property's data type. This is usually a C++ data type, but string and object
properties require special treatment. See Automation Data Types for more information.

' options is a place to insert a hook, code to be called each time the automation command
is executed. Hooks can record, undo, or validate commands. See Automation Hook
Macros for more details. options can be omitted, but a comma must follow the preceding
argument anyway.

AUTOPROP(name, get, set, type, options)

AUTOPROPRO(name, get, type, options)

AUTOPROPWO(name, set, type, options)

AUTORECORD macro
AUTORECORD(code)

The property can be read and written.

The property can only be read, not changed.

The property can be changed but not read (rare).

ocf/automacr.h

An automation server uses AUTO RECORD in an automation declaration macro to hook
in user-defined code that creates a record of each call made to a particular automation
command. code is the expression or function call to execute on each command. It should
store whatever information the application would need to play back the same command
later.

Recording is not supported in the current version of ObjectComponents.

AUTOREPORT macro ocf/automacr.h

AUTOREPORT(code)

Chapter 6, ObjectComponents library reference 545

AutoSymFlag enum

An automation server uses AUTOREPORT in an automation declaration macro to hook
in user-defined code that checks the error code from an automated member function. If
code evaluates to 0, OLE assumes the command succeeded. If code evaluates to a nonzero
value, then OLE throws an exception in the controller. Within the code expression, use
Val to refer to the actual value returned.

AutoSymFlag enum ocf/autodefs.h

enum AutoSymFlag
These flags are used in the T AutoCommand class to describe attributes of an automation
command. The flags tell whether the command is a method or a property, whether
arguments are passed by value or by reference, and whether it should be visible in type
information browsers.

asAnyCommand

asOleType

as Method

asGet

asiterator

asSet

asGetSet

as Build

asArgument

asArgByVal

asArgByRef

asFactory

as Class

asBindable

asRequestEdit

asDisplayBind

asDefaultBind

asHidden

asPersistent

See also

Any command: method, property access, object builder.

Method or property exposed for OLE.

Method.

Returns the value of a property.

Iterator property; used to enumerate items in a collection.

Set property value.

Get or set a property value.

Constructor command (not supported by OLE 2.01).

Property that returns an object.

The value of the argument is passed.

The argument is a pointer to a value.

For creating objects or determining class.

Extension to another class symbol table.

Sends OnChanged notification.

Sends OnRequest edit before change.

User-display ofbindable.

This property only is the default (redundant).

Not visible to normal browsing.

Property is persistent.

TAutoCommand public constructor

AUTOSTAT macros ocf/automacr.h

Use the AUTOSTAT in an automation declaration (after DECLARE_AUTOCLASS) to
make static member functions and global functions accessible to OLE.

546 Objec!Windows Reference Guide

AUTOTHIS macro

All versions of the AUTOSTAT macro have similar parameters. name is an internal
name you assign to the function. ObjectComponents uses the name to keep track of all
the automated members. The only other place you use this internal name is in the
corresponding automation definition.

June is the name of the static or global function.

ret is the type of value the function returns.

typel, tl, t2, t3, and t4 are the types of the function's arguments.

options is a place to insert a hook, code to be called each time the automation command
is executed. Hooks can record, undo, or validate commands. See Automation Hook
Macros for more details. options can be omitted, but a comma must follow the preceding
argument anyway.

The return types and argument types are usually normal C++ data types, but string and
object values require special treatment. See Automation Data Types for more
information.

AUTOSTATO(name, func, ret, options)

AUTOSTATOV(name, func, options)

AUTOSTATl(name, func, ret, typel, options)

AUTOSTATlV(name, func, typel, options)

AUTOSTAT2(name, furic, ret, tl, t2, options)

AUTOSTAT2V(name, func, tl,t2, options)

AUTOSTAT3(name, func, ret, tl,t2, t3, options)

AUTOSTAT3V(name, func, tl, t2, t3, options)

AUTOSTAT4(name, func, ret, tl, t2, t3, t4, options)

AUTOSTAT4V(name, func, tl, t2, t3, t4, options)

AUTOTHIS macro
AUTOTHIS(name, type, options)

Nte.a.l'litlg
The static function June is assigned the symbol name.
It takes no arguments and returns a value of type ret.

The static function June takes no arguments and
returns no value.

June takes one argument of type typel and returns a
value of type ret.
June takes one argument of type typel and returns no
value.

June takes two arguments of types tl and t2 and
returns a value of type ret.

June takes two arguments and returns no value.

June takes three arguments and returns a value.

June takes three arguments and returns no value.

June takes four arguments and returns a value.

June takes four arguments and returns no value.

ocf/automacr.h

An automation server uses the AUTOTHIS macro in its automation declaration (after
DECLARE_AUTOCLASS) if it wants to expose the C++ object itself as a member of the
automated OLE object.

name is an internal name you assign to the property. ObjectComponents uses the name
to keep track of all the automated members. The only other place you use this internal
name is in the corresponding automation definition.

type must be T AutoObject<T>, where Tis the type of the automated class.

C h a pt e r 6 , 0 b j e c I C o m p o n e n I s I i b r a r y r e I e r e n c e 547

AUTOUNDO macro

options is a place to insert a hook, code to be called each time a controller asks for this
property. Hooks can record, undo, or validate commands. See Automation Hook
Macros for more details. options can be omitted, but a comma must follow the preceding
argument anyway.

AUTOUNDO macro ocf/automacr.h

AUTOUNDO(code)
An automation server uses AUTOUNDO in an automation declaration macro to hook
in user-defined code that records whatever information the application needs to reverse
the command later. Usually it adds information to a user-maintained undo stack. The
information might include the parameters that execute the inverse of the original
command, for example. To undo a series of actions, the program can pop commands off
the undo stack and execute them. code is the expression or function that records
information.

Undoing commands is not supported in the current version of ObjectComponents.

AUTOVALIDATE macro ocf/automacr.h

AUTOVALIDATE(condilion)
An automation server uses AUTOVALIDATE in an automation declaration macro to
hook in user-defined code that confirms the validity of received arguments before
passing them on to be processed in a command. condition is an expression or function
that evaluates to true if the arguments received are valid for the command and false if
not. If the expression returns false, OLE throws an exception in the controller
application.

clsid registration key
Registers a globally unique identifier (GUID) for the application's class ID. A GUID is a
16-byte value and can be represented as a string.

A clsid GUID is required in every application registration table. You never need to
specify any others. If others are needed for your documents, type library, automated
classes, or debugging invocation, ObjectComponents automatically increments the low­
order field of the first GUID to produce them. Be sure to allow for the full range of
numbers your application actually uses when determining the next available GUID for
another program.

There are several ways to acquire a clsid. One is to run the GUIDGEN tool in the
OCTOOLS directory. Also, AppExpert automatically generates a GUID for any
applications it creates that support OLE. Another way to get a GUID is to call the OLE
API CoCreateGuid, as documented in the Help file OLE2HELP.HLP. Finally, you can
contact Microsoft to have a block of GUIDs assigned to you permanently.

548 ObjectWindows Reference Guide

cmdline registration key

Every application must have its own absolutely unique clsid string, so never use values
pasted in from example programs.

To register a clsid, use the REGDATA macro with clsid as the first parameter and a GUID
string as the second parameter.

REGDATA (clsid, "{CDE7F941-544B-101B-A9Cl-04021C007002}" I

cmdline registration key
Registers arguments OLE should place on the command line when it launches the
server's executable file.

The cmdline key is valid in application registration tables but is ignored for DLL servers.
Any application can register it, but normally only automation servers have a use for it.

Automation servers can use the cmdline key to set up the -Automation switch. When the
registrar object sees this switch, it overrides the application's registered usage setting and
forces the program to run in single-use mode. This is useful in a server that supports
linking and embedding as well as automation. As a linking and embedding server, it
might support concurrent client applications with a single instance. When running as an
automation server, however, most applications don't want concurrent client programs
to control exactly the same instance of an object.

To register command-line options, use the REGDATA macro with cmdline as the first
parameter and a string containing command-line arguments as the second parameter.

REGDATA(cmdline, "/automation" I

debugclsid registration key
A GUID identifying the debugging version of a server. You should never register this
key directly. It is always generated for you automatically if you register debugprogid.

This key is ignored in DLL servers.

See also
debugprogid registration key

debugdesc registration key
A string describing the debugging version of your program. When used in registering a
document, this string appears in the Insert Object menu. When used in registering an
application, it appears in object browsers. The string can contain up to 40 characters and
can be localized.

The debugdesc key is required in application and document registration tables for any
program that registers the debugprogid key. Otherwise it is irrelevant.

Chapter 6, ObjectComponents library reference 549

debugger registration key

To register the debugdesc key, use the REGDATA macro, passing debugdesc as the first
parameter and the descriptive strmg as the second parameter.

REGDATA(debugdesc, "My Application (debugging)")

This key is ignored in DLL servers.

See Also
debugclsid registration key, debugger registration key, debugprogid registration key,
REGDATA macro

debugger registration key
Registers the path and file name for loading your debugger.

The debugger key is valid in any registration table. It is required if you also register
debugprogid. Otherwise it is irrelevant.

To register the debugger key, use the REGDATA macro, passing debugger as the first
parameter and the command line string for the debugger application as the second
parameter. When OLE invokes the debugger, it places the second parameter string on
the command line ahead of the server's .EXE path. The debugger string can optionally
contain a full path and debugger command line switches.

REGDATA(debugger, "TDW") II assumes TDW is somewhere on the path

This key is ignored in DLL servers.

See also
debugclsid registration key, debugdesc registration key, debugprogid registration key,
REGDATA macro

debugprogid registration key
A string identifying the debugging version of a program. Just as a progid string does, this
string has two parts divided by a period. The first part is your program's name, and the
second part is .debug.

Assigning a value to the debugprogid key causes ObjectComponents to create two sets of
entries for the server in the registration database. When you choose Insert Object from
the Edit menu, both entries appear in the list. Choosing the debugging entry causes
ObjectComponents to invoke your debugger together with the server. Without the
ability to register a duplicate debugging entry, it is difficult to debug the server when
OLE invokes it.

ObjectComponents generates a clsid for the debugger entry automatically.

The debugprogid key is optional for application registration tables and irrelevant for
document registration tables. If you register debugprogid, you also need to register
debugdesc and debugger.

550 ObjectWindows Reference Guide

DECLARE AUTOCLASS macro

To register a debugprogid, use the REGDATA macro, passing debugprogid as the first
parameter and the ID string as the second parameter.

REGDATA (debugprogid, "MyApp .Debug")

This key is ignored in DLL servers.

See also
debugclsid registration key, debugdesc registration key, debugger registration key,
progid registration key, REGDATA macro

DECLARE AUTOCLASS macro ocf/automacr.h

DECLARE_ AUTOCLASS(cls)
DECLARE_AUTOCLASS(cls) introduces a block of macros that declare automatable
members of the user-defined class els.

An automation server uses DECLARE_AUTOCLASS to begin a block of macros that
make automatable members of a user-defined C++ class accessible to OLE. els is the
name of the user's C++ class.

The block of declaration macros usually appears in the definition of the automatable
C++ class. A corresponding block of automation definition macros must appear in the
implementation of the automatable C++ class.

DECLARE COMBASESn macros ocf/oleutil.h

Use the COMBASES macros to create C++ objects that conform to the OLE Component
Object Model (COM). COM objects support OLE interfaces and let you derive classes
that interact with OLE directly, not through ObjectComponents. These macros are
meant for advanced users.

COM objects are used as base classes for other objects. The derived class must inherit
from both your COM class and from the ObjectComponents TUnknown class. TUnknown
implements the controlling !Unknown interface for your object.

To create a COM class:

1 Precede the declaration of the class with one of the DECLARE_COMBASES macros.
Which you choose depends on how many interfaces (besides !Unknown) the COM
class supports.

2 Precede the implementation of your COM class with the corresponding
DEFINE_ COMBASES macro.

3 Derive your final class multiply from TUnknown and your new COM class (in that
order).

Ch a p I er 6, 0 b j e c IC om pone n Is Ii bra r y reference 551

DEFINE_AUTOAGGREGATE macro

The first macro argument is name. It is the name of the COM class you are creating. il, i2,
i3, and i4 are the names of the interfaces your COM class supports.

DECLARE_COMBASESl(name, il) Declare a COM class name that inherits from the il interface
class.

DECLARE_COMBASES2(name, il, i2) Declare a COM class name that inherits from the il and i2
interface classes.

DECLARE_COMBASES3(name, il, i2, i3) Declare a COM class name that inherits from the il. i2, and
i3 interface classes.

DECLARE_COMBASES4(name, il, i2, i3, i4) Declare a COM class name that inherits from the il. i2, i3,
and i4 interface classes.

DEFINE AUTOAGGREGATE macro ocf/automacr.h

DEFINE_ AUTOAGGREGATE(cls, AggregatorFunction)
An automation server uses DEFINE_AUTOAGGREGATE to begin a block of macros
that define automatable members of els, a user-defined C ++class. The block ends with
the END_AUTOAGGREGATE macro.

DEFINE_AUTOCLASS does the same thing but without the extra AggregatorFunction
parameter. Use DEFINE_AUTOAGGREGATE when the C++ class you are automating
is, inherits from, or delegates to a Component Object Model (COM) object. The
AggregatorFunction parameter points to the aggregating function for reaching the COM
object. For example, if Aggregate is the name of the COM object, the aggregater function
might be any of these expressions:

Aggregate //automated C++ object is the COM object
OcApp->Aggregate //automated C++ object delegates to COM object
MyBase::Aggregate //automated C++ object inherits from COM object

See also
DEFINE_AUTOCLASS, END _AUTOAGGREGATE

DEFINE AUTOCLASS macro ocf/automacr.h

DEFINE_ AUTOCLASS(cls)
Introduces a block of macros in an automation server. Each macro in the block defines
an automatable member of els, a user-defined C++ class. The block ends with the
END_AUTOCLASS macro.

The block of definition macros appears in the implementation of the automatable C ++
class. A corresponding block of automation declaration macros must appear in the
definition of the same class.

See also
END _AUTOCLASS macro

552 0 b j e c I W i n d o w s R e f e r e n c e G u i d e

DEFINE_COMBASESn macros

DEFINE COMBASESn macros ocf /oleutil.h

Implements the /Unknown interface for each of the OLE interfaces that your COM object
supports.

Use the COMBASE macros to create C++ objects that conform to the OLE Component
Object Model (COM). COM objects support OLE interfaces and let you derive classes
that interact with OLE directly, not through ObjectComponents. These macros are
meant for advanced users.

Automated objects can delegate to COM objects using the
DEFINE_AUTOAGGREGATE and DECLARE_AUTOAGGREGATE macros.

To create a COM class,

1 Precede the declaration of the class with one of the DECLARE_ COMBASES macros.
Which you choose depends on how many interfaces (besides /Unknown) the COM
class supports.

2 Precede the implementation of your COM class with the corresponding
DEFINE_ COMBASES macro.

3 Derive your final class multiply from your new COM class and from TUnknown.

COM objects can delegate to other COM objects using another set of related macros also
defined in oleutil.h. For more information, look in the header file for the
DEFINE_QI_xxxx macros.

DEFINE_COMBASESl(name, il)

DEFINE_COMBASES2(name, il, i2)

Define !Unknown for the il interface in the COM class 1Ulme.

Define !Unknown for the i1 and i2 interfaces in the COM class
1Ulme.

DEFINE_COMBASES3(name, il, i2, i3) Define !Unknown for the il, i2, and i3 interfaces in the COM
class name.

DEFINE_COMBASES4(name, il, i2, i3, i4) Define !Unknown for the il, i2, i3, and i4 interfaces in the COM
class 111lme.

See also
DECLARE_ COMBASESn macros

description registration key
~~~~~~~~~~~~~~~~~~~~~-

Registers a long descriptive name, up to 40 characters, meant for the user to see. The 
string describes the application or its document types and appears in the Insert Object 
dialog box. This value should be localized. 

A description string is required in every registration table. To register a description 
string, use the REGDATA macro, passing description as the first parameter and the 
descriptive string as the second parameter. 

REGDATA(description, "OWL Drawing Pad 2.0") 

Chapter 6, ObjectComponents library reference 553 



directory registration key 

See also 
REGDATA macro 

directory registration key 
Registers the default directory for document files. The document template class refers to 
this path when it invokes a File Open common dialog box. The directory path is not 
usedbyOLE. 

The directory key is valid in any document registration table. It is always optional. 

To register a directory, use the REGDATA macro, passing directory as the first parameter 
and a path name as the second parameter. 

REGDATA(directory, "C:\ \temp") 

docfilter registration key 
Registers a file specification for listing files created by the application. This information 
is used by the document template class when it creates a File Open common dialog box. 
It is not used by OLE. 

docfilter is valid in any document registration table. It is required unless the 
corresponding docflags key includes the dtHidden flag. If you register a document filter, 
you might also want to register the extension key. 

To register a document filter, use the REGDATA macro, passing docflags as the first 
parameter and a filter string as the second parameter. 

REGDATA(docfilter, "*. txt") 

See also 
docflags registration key, dt document view constants, extension registration key, 
REGDATA macro 

docflags registration key 
Registers document view option flags for the application's documents. This information 
is used by the document template class, not by OLE. The document template uses the 
flags to control its display of the File Open common dialog box. For a list of all the flags, 
see the description of dtxxxx Document View Constants. 

The docflags key is valid in any document registration table. It is always optional. 

To register document flags, use the REGOOCFLAGS macro. 

REGDOCFLAGS(dtAutoOpen I dtAutoDelete I dtUpdateDir I dtCreatePrompt) 

554 ObjectWindows Reference Guide 



DynamicCast function 

See also 
docfilter registration key, dt document view constants, REGDOCFLAGS macro 

DynamicCast function ocf/autodefs.h 

const void far* DynamicCast(const void far* obj, const typeinfo& src, const typeinfo& dst); 
Attempts to convert a pointer from one type to another. The attempt succeeds only if the 
old type and the new type are related through inheritance. 

obj is the pointer you want to cast to a new type. src is type information about the source 
object. dst is information about the destination type. 
If the conversion succeeds, DynamicCast returns a pointer to the new type. If it fails, the 
return is zero. 

You can generate the src and dst parameters with the typeid parameter. 
(ObjectComponents requires the use of RTTI.) 

See also 
MostDerived function, typeid, typeinfo class 

END AUTOAGGREGATE macro 
END_AUTOAGGREGATE(cls, name, doc, help) 

ocf/automacr.h 

Terminates a block of macros that an automation server uses to define automatable 
methods in els, a user-defined C++ class. The definition block begins with 
DEFINE_AUTOAGGREGATE. 

The related DEFINE_AUTOCLASS and END_AUTOCLASS macros also mark an 
automation definition block. Use the aggregation macros when els is, inherits from, or 
delegates to a Component Object Model (COM) object. 

name is the string that automation controllers use to identify objects of type els. If the 
user asks OLE about the object name, the system returns the string in doc. If an .HLP file 
is registered for the object, then the context ID in help points to a screen that describes the 
object. 

See also 
DEFINE_AUTOAGGREGATE macro, END_AUTOCLASS macro 

END AUTOCLASS macro ocf/automacr.h 

END_AUTOCLASS(cls, name, doc, help) 
Terminates the block of macros an automation server uses to define automatable 
methods in els, a user-defined C++ class. The definition block begins with 
DEFINE_AUTOCLASS. 

Chapter 6, ObjectComponents library reference 555 



EXPOSE_APPLICATION macro 

name is the string that automation controllers use to identify objects of type els. If the 
user asks OLE about the object name, the system returns the string in doc. If an .HLP file 
is registered for the object, then the context ID in help points to a screen that describes the 
object. 

See also 
DEFINE_AUTOCLASS macro 

EXPOSE APPLICATION macro 
EXPOSE_APPLICATION(cls, extName, doc, help} 

ocf/automacr.h 

An automation server uses EXPOSE_APPLICATION in its automation definition (after 
DEFINE_AUTOCLASS) if it chooses to expose the application itself as a member of its 
automated object. OLE conventions suggest that each automation object should have 
this member. 

els is the class name of the application. 

extName is the external, public name you assign to this member. Automation controllers 
use this string to refer to the application member. The string can be localized. 

doc is a string that describes this member to the user. An automation controller can ask 
OLE for this string if the user requests help. 

help is a.context ID for an .HLP file. This parameter, which can be omitted, is useful only 
if you register an .HLP file to document your server. If you do, then when the user asks 
the controller for help, the controller passes this context ID to the Help system to display 
a screen describing the object member. · 

EXPOSE DELEGATE macro ocf/automacr.h 

EXPOSE_DELEGATE(cls, extName, locator) 
An automation server uses EXPOSE_DELEGA TE in its automation definition·(after 
DEFINE_AUTOCLASS) in order to combine two unrelated C++ classes into a single 
OLE automation object. In effect, the application's primary automated class delegates 
some tasks to another automated class. This macro tells ObjectComponents to search 
both classes to determine what commands the automated OLE object can perform. 

els is the name of the auxiliary class, which must also be automated. In other words, it 
must contain its own automation declaration and definition. 

extName is an external, public name that an OLE controller uses to refer to this member 
of the object. 

locator is a function that returns a pointer to an auxiliary object. In order to call members 
of that class, ObjectComponents needs a pointer to an object of that type. The conversion 
function should follow this prototype: 

auxclass *locator( autoclass *this); 

556 ObjectWindows Reference Guide 



EXPOSE_INHERIT macro 

where auxclass is the name of the auxiliary class and autoclass is the name of the primary 
automated class. locator in effect converts a this pointer to a that pointer. 

See also 
EXPOSE_INHERIT macro 

EXPOSE INHERIT macro 
EXPOSE _INHERIT(cls, extName); 

ocf/automacr.h 

An automation server uses EXPOSE_INHERIT in its automation definition (after 
DEFINE_AUTOCLASS) in order to combine two related C++ classes into a single OLE 
automation object. In effect, the application's primary automated class delegates some 
tasks to its base class. This macro tells ObjectComponents to search both classes to 
determine what commands the automated OLE object can perform. 

els is the name of the base class, which must also be automated. In other words, it must 
contain its own automation declaration and definition. 

extName is an external, public name that an OLE controller uses to refer to this member 
of the object. It can be localized. 

See also 
EXPOSE_DELEGATE macro 

EXPOSE ITERATOR macro 
EXPOSE_ITERATOR(re!Type, doc, help); 

ocf/automacr.h 

An automation server uses EXPOSE_ITERATOR in its automation definition (after 
DEFINE_AUTOCLASS) in order to expose an iterator object to enumerate objects in a 
collection. An iterator is useful only when the automated object itself represents a 
collection of other objects. The controller uses methods of the nested iterator object to 
retrieve and examine successive objects in a list. 

retType is an automated data type that describes the type of the objects in the collection. 
For example, if the collection is an array of short integers, then retType should be 
TAutoShort. For more information, see Automation Data Types. 

doc is a string that describes the iterator to the user. An automation controller can ask 
OLE for this string if the user requests help. 

help is a context ID for an .HLP file. This parameter, which can be omitted, is useful only 
if you register an .HLP file to document your server. If you do, then when the user asks 
the controller for help, the controller passes this context ID to the Help system to display 
a screen describing the iterator. 

See also 
AUTOITERATOR macros 

C h a pt e r 6 , 0 b j e ct C o m p o n e n ts I i b r a r y r e f e r e n c e 557 



EXPOSE METHOD macros 

EXPOSE METHOD macros 
EXPOSE_METHOD(intName, retType, extName, doc, help); 
EXPOSE_ METHOD _ID(id, intName, retType, extName, doc, help); 

ocf/automacr.h 

An automation server uses EXPOSE_METHOD macros in its automation definition 
(after DEFINE_AUTOCLASS) to expose a member function of an object to OLE for 
automation. 

intName is an internal name that you assign to identify the method. ObjectComponents 
uses the internal name to keep track of all the automated members. This name must 
match the name assigned to the method with the AUTOFUNC macro in the automation 
declaration. 

retType is a data type that describes the type of value the method returns. For example, if 
the method returns a long integer, then retType should be T Auto Long. For more 
information, see Automation Data Types. 

extName is the external, public name that a controller uses to specify this method. The 
string can be localized. 

doc is a string that describes this method to the user. An automation controller can ask 
OLE for this string if the user requests help. This string can also be localized. 

help is a context ID for an .HLP file. This parameter, which can be omitted, is useful only 
if you register an .HLP file to document your server. If you do, then when the user asks 
the controller for help, the controller passes this context ID to the Help system to display 
a screen describing the method. 

id is a dispatch identifier that you can choose to assign explicitly by using one of the 
EXPOSE_METHOD_ID macros. The dispatch ID is what OLE passes to identify 
commands requested by a controller. The OLE systemheader files define several 
standard dispatch ID values. For example, -5 is the default evaluation method. Standard 
dispatch IDs are always negative numbers. By default, dispatch IDs are assigned low 
positive numbers incremented from 1. If you want to specify explicit dispatch IDs for 
your applications, choose high positive values in order not to collide with the low 
positive numbers ObjectComponents assigns to exposed members without explicit IDs. 

0 is the ID of the default method or property. ObjectComponents never automatically 
assigns 0 as a dispatch ID. To have a default method, you need to assign 0 yourself. 

An EXPOSE_METHOD or EXPOSE_METHOD_ID macro must always be followed 
immediately by one macro for each of the method's arguments. 

Required REQUIRED_ARG 

Optional OPTIONAL_ARG 

Object passed by reference REQBYREF _ARG 

See also 
AUTOFUNC macros, OPTIONAL_ARG macro, REQBYREF _ARG macro1 
REQUIRED _ARG macro 

558 0 bj ectWi n d ows R efe ren ce Guide 



EXPOSE_PROPxxxx macros 

EXPOSE PROPxxxx macros ocf/automacr.h 

An automation server uses EXPOSE_PROPxxxx macros in its automation definition 
(after DEFINE_AUTOCLASS) to expose properties of an object to OLE for automation. 
A property is data that can be read or written only through a set of access functions (for 
example, GetPosition and SetPosition). 

intName is an internal name that you assign to identify the property. ObjectComponents 
uses the internal name to keep track of all the automated members. This name must 
match the name assigned to the method with the AUTOPROP macro in the automation 
declaration. 

type is a data type that describes the type of value the property holds. For example, if the 
property is a string, then type should be T AutoString. For more information, see 
Automation Data Types. 

extName is the public name that a controller uses to refer to this property. The string can 
be localized. 

doc is a string that describes this property to the user. An automation controller can ask 
OLE for this string if the user requests help. This string can also be localized. 

help is a context ID for an .HLP file. This parameter, which can be omitted, is useful only 
if you register an .HLP file to document your server. If you do, then when the user asks 
the controller for help, the controller passes this context ID to the Help system to display 
a screen describing the property. 

id is a dispatch identifier that you can choose to assign explicitly by using one of the 
EXPOSE_xxxx_ID macros. The dispatch ID is what OLE passes to identify commands 
requested by a controller. The OLE system header files define several standard dispatch 
ID values. For example, -5 is the default evaluation method. Standard dispatch IDs are 
always negative numbers. By default, dispatch IDs are assigned low positive numbers 
incremented from 1. If you want to specify explicit dispatch IDs for your applications, 
choose high positive values in order not to collide with the low positive numbers 
ObjectComponents assigns to exposed members without explicit IDs. 

0 is the ID of the default method or property. ObjectComponents never automatically 
assigns 0 as a dispatch ID. To have a default property, you need to assign 0 yourself. 

EXPOSE_PROPRW(intName, type, extName, doc, help) 

EXPOSE_PROPRW _ID(id, intName, type, extName, doc, help) 

EXPOSE_PROPRO(intName, type, extName, doc, help) 

EXPOSE_PROPRO_ID(id, intName, type, extName, doc, help) 

EXPOSE_PROPWO(intName, type, extName, doc, help) 

The property can be read and written. 

The property can be read and written. 
Its dispatch ID is id. 

The property is read-only. 

The property is read-only. Its dispatch 
ID is id. 

The property is write-only and cannot 
be read (rarely used). 

Chapter 6, ObjectComponents library reference 559 



EXPOSE_QUIT macro 

EXPOSE QUIT macro ocf/automacr.h 

EXPOSE_ QUIT(extName, docString, helpContext) 
An automation server that exposes the application itself as an automated object uses the 
EXPOSE_QUIT macro to make a safe shutdown method available to the controller. The 
shutdown method implemented by this macro checks whether the application was 
originally invoked by OLE for automation. If so, it unregisters the active object and 
shuts down the server. If the user invoked the server before the controller connected to 
it, however, then the shutdown method does nothing because the application should 
continue to run. 

Every automated application should include EXPOSE_ QUIT in the application object's 
automation definition (after DEFINE_AUTOCLASS). EXPOSE_ QUIT is not needed in 
the automation defjnition of other automated objects the server might create. 

extName is the external, public name that a controller uses to call this method. The string 
can be localized. 

doc is a string that describes the shutdown method to the user. An automation controller 
can ask OLE for this string if the user requests help. This string can also be localized. 

help is a context ID for an .HLP file. This parameter, which can be omitted, is useful only 
if you register an .HLP file to document your server. If you do, then when the user asks 
the controller for help, the controller passes this context ID to the Help system to display 
a screen describing the shutdown method. 

extension registration key 
A file-name extension. This extension becomes the default extension assigned to file 
names in the File Open common dialog box. It is also recorded in the system registration 
database so that OLE can find the right server for a file based on the file's extension. 

extension is valid in document registration tables of servers that support linking and 
embedding. It is always optional. If you register an extension, you might also want to 
register a docfilter. 

To register a file extension, use the REGDATA macro, passing extension as the first 
parameter and the extension string as the second parameter. In 16-bit Windows, the 
extension is limited to three characters. 

REGDATA(extension, "TXT") 

See also 
docfilter registration key, REGDATA macro 

560 ObjectWindows Reference Guide 



filefmt registration key 

filefmt registration key 
Registers a name for a server's default file format. This string appears in dialog boxes 
where the user selects file types. 

filefmt is valid in document registration tables for servers that support linking and 
embedding. It is always optional. 

To register a file format, use the REGDATA macro, passingfilefmt as the first parameter 
and the name string as the second parameter. 

See also 
REGDATA macro 

formatn registration key 
Registers a Clipboard format the application supports. An application registers the 
formats that it can put on or take from the Clipboard. A server can register different sets 
of formats for different document types. 

Clipboard format keys are valid in any document registration table. Any application 
that supports linking and embedding should register at least some Clipboard formats. 
ObjectComponents supports up to eight formats using the keys formatO through format?. 
The ocrFormatLimit constant, defined in ocf I ocreg.h, represents the maximum number 
of formats allowed (8). 

To register a Clipboard format, use the REGFORMAT macro. The first parameter 
assigns a priority to the format. Give your preferred format highest priority. Programs 
that support OLE usually prefer to export their data as OLE objects, and so they make 
ocrEmbedSource priority 0. The second parameter identifies a particular data format. For 
explanations of the other parameters, see the description of the REGFORMA T macro. 

REGFORMAT(O, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet) 
REGFORMAT(l, ocrMetafilePict, ocrContent, ocrMfPict, ocrGet) 

See also 
ocrxxxx aspect constants, ocrxxxx Clipboard constants, ocrxxxx direction constants, 
ocrxxxx medium constants, REGFORMAT macro 

handler registration key 
A full path pointing to a library that can draw objects created by the server. 

A path for the library that OLE can call to draw objects without having to launch the 
server as a separate process. By default this value is "OLE2.DLL." OLE itself can render 
cached formats such as metafiles and bitmaps. 

Chapter 6, ObjectComponents library reference 561 



helpdir registration key 

The handler key is valid in document registration tables for servers that support linking 
and embedding. It is always optional, but if you omit it OLE cannot use your handler 
library. 

To register a handler, use the REGDATA macro passing handler as the first parameter 
and the path of the handler DLL in the second parameter. If the path does not begin 
with a drive or root directory, ObjectComponents determines the full path by starting at 
the place where the server itself is installed. For e"ample, if the server is at C: \MYDIR 
and the handler path is HELPERS\MYHANDLR, then the full path is assumed to be 
C:\MYDIR\HELPERS\MYHANDLRDLL. 

See also 
REGDATA macro 

helpdir registration key 
Directory where online Help for the type library resides. (The name of the Help file is 
registered separately with the typehelp key.) 

This key matters only in the application registration table of an automation controller. It 
is always optional. If you register a type library Help file without registering a Help 
directory, ObjectComponents automatically assumes the same directory registered for 
path. 

To register a Help directory, use the REGDATA macro passing helpdir as the first 
parameter and the path string as the second parameter. 

If the path does not begin with a drive or root directory, ObjectComponents determines 
the full path by starting at the place where the server itself is installed. For example, if 
the server is at C: \MYDIR and the Help path is HELP, then the Help file is assumed to 
be at C:\MYDIR\HELP. 

See also 
path registration key, typehelp registration key 

HR xxxx return constants ocf/ocfdefs.h 

OLE system calls return HRESULT values that sometimes encode detailed information 
about the result of the call. ObjectComponents sometimes passes HRESULT values back 
to you. These macros simplify the task of testing for some common results. Each 
represents a possible return value. For a complete listing of HRESULT return values, see 
the scode.h header file. 

HR_ABORT 

HR_FAIL 
The operation was aborted. 

An unspecified error occurred. 

562 ObjectWindows Reference Guide 



HR_FALSE 

HR_HANDLE 

HR_INV ALIDARG 

HR_NOERROR 

HR_NOINTERFACE 

HR_NOTIMPL 

HR_OK 

HR_OUTOFMEMORY 

HR_POINTER 

iconindex registration key 

Meaning 
An action did not complete in the usual way but no error occurred. For example, 
an enumeration reached the end of its list. 

A handle is invalid. 

One or more arguments are invalid. 

No error occurred. 

The requested interface is not supported. 

The requested service is not implemented. 

Same as HR_NOERROR. 

Not enough memory is available to complete the operation. 

A pointer is invalid. 

iconindex registration key 
A zero-based index telling which of the icons in the server's resources represents the 
type of objects the server produces. 

Use iconindex in the document registration tables of a linking and embedding server. It is 
always optional. 

To register an icon index, use the REGICON macro, passing the index value as the 
parameter. 

REGICON(l) 

See also 
REGICON macro 

insertable registration key 
Indicates the application is a server and allows its document to be linked or embedded 
in other applications. Registering this key makes the document type show up in dialog 
boxes listing objects that can be inserted. The value assigned to this key is ignored. 

insertable is valid in the document registration tables of a linking and embedding server. 
An application must register insertable for at least one document type in order to be a 
linking and embedding server. A server need not make all its document types 
insertable, however. 

To register the insertable key, use the REGDATA macro, passing insertable as the first 
parameter and 0 as the second parameter. 

REGDATA(insertable, 0) 

See also 
REGDATA macro 

Chapter 6, ObjectComponents library reference 563 



language registration key 

language registration key 
Overrides the locale ID currently in effect. By default, the language key takes its value 
from the system's default language setting for the current user. Registering a language 
setting directs ObjectComponents to choose a particular language for registration 
strings you have localized. 

During automation this value is reset internally at the request of the automation 
controller. 

menuname registration key 
A short name for the server. The name appears as a menu item in container programs. 
For consistency in the user interface, the suggested maximum length is 15 characters. 

menuname is required in the document registration tables of a linking and embedding 
server. In other places it is irrelevant. The menuname string can be localized. 

To register the menuname key, use the REGDATA macro, passing menuname as the first 
parameter and a name string as the second parameter. 

REGDATA(menuname, "OWL Drawing Pad") 

See also 
REGDATA macro 

MostDerived function 
canst void far* MostDerived(const void far* obj, canst typeinfo& src); 

ocf/autodefs.h 

Returns a pointer to the most derived class type that fits the given object. This is useful 
when dealing with polymorphic objects. Use it to obtain a consistent pointer to an 
object, regardless of the type of pointer used to reach the object. 

obj is the pointer whose most derived type you want to determine. src holds type 
information about the obj object. The return value points to the most derived class that 
can be made out of obj. If obj is already the object's most derived type, then the return 
value is obj. 

Use typeid to generate the src parameter. 

See also 
DynamicCast function, typeid, typeinfo class 

ObjectPtr typedef ocf/autodefs.h 

typedef void* ObjectPtr; 
ObjectPtr is a void* that points to a C++ object. 

564 ObjectWindows Reference Guide 



OC_APPxxxx messages 

OC _ APPxxxx messages ocf/ocapp.h 

These messages are sent from ObjectComponents to the application's main window. 
They notify the application of signals and events that come from the OLE system. The 
actual message sent is WM_OCEVENT. The constants in the table below are carried in 
the message's wParam and identify particular events. To find out what each message 
carries in its lParam, look up the corresponding event handlers (such as 
EvOcAppBorderSpaceSet and EvOcAppMenus.) 

Applications that use the ObjectWindows Library can set up event handlers in their 
response tables using the EV _OC_xxxx macros defined in ocfevent.h. For more 
information about the data each message carries, see the descriptions of the 
corresponding event handlers. 

The constants beginning OC_APP indicate events typically handled in the main frame 
window. Another set of constants beginning OC_ VIEW indicate events typically 
handled in the view object. 

OC_APPDIALOGHELP The user pressed the Help button in one of the standard OLE dialog 
boxes. 

OC_APPBORDERSP ACEREQ Asks the container whether it can give the server border space in its 
frame window. 

OC_APPBORDERSPACESET Asks the container to give the server border space in its frame window. 

OC_APPFRAMERECT Requests coordinates for the inner rectangle of the container's main 
window. 

OC_APPINSMENUS Asks the container to merge its menu into the shared menu bar. 

OC_APPMENUS Asks the container to install the merged menu bar. 

OC_APPPROCESSMSG Asks the container to process accelerators and other messages from the 
server's message queue. 

OC_APPRESTOREUI Tells the container to restore its normal menu and borders because in­
place editing has ended. 

OC_APPSHUTDOWN Tells the server when its last linked or embedded object closes down. If 
the user did not launch the server directly, the server can terminate. 

OC_APPSTATUSTEXT Passes text for the status bar from the server to the container during in­
place editing. 

See also 
OC_ VIEWxxxx messages, WM_OCEVENT message 

OC _ VIEWxxxx messages ocf/ocview.h 

These messages are sent from ObjectComponents to the application's window 
procedure. They notify the application of signals and events that come from the OLE 
system. The actual message sent is WM_OCEVENT. The constants in the table below 
are carried in the message's wParam and identify particular events. To find out what 
each message carries in its lParam, look up the corresponding event handlers (such as 
EvOcViewBorderSpaceSet and EvOcViewDrag.) 

Chapter 6, ObjectComponents library reference 565 



ocrxxxx aspect constants 

Applications that use the ObjectWindows Library can set up event handlers in their 
response tables using the EV_ OC_xxxx macros defined in ocfevent.h. For more 
information about the data each message carries, see the descriptions of the 
corresponding event handlers. 

The constants beginning OC_ VIEW indicate events typically handled in the view object. 
Another set of constants beginning OC_APP indicate events that typically concern the 
application object. 

OC_ VIEWATTACHWINDOW 

OC_ VIEWBORDERSPACEREQ 

oc_ VIEWBORDERSP ACESET 

OC_VIEWCLIPDATA 

OC_ VIEWCLOSE 

OC_ VIEWDRAG 

OC_ VIEWDROP 

oc_ VIEWGETP ALETTE 

oc_ VIEWGETSCALE 

OC_ VIEWGETSITERECT 

OC_VIEWINSMENUS 

OC_ VIEWLOADP ART 

OC_ VIEWOPENDOC 

OC_VIEWPAINT 

oc_ VIEWP ARTINV ALID 

OC_ VIEWP ARTSIZE 

oc_ VIEWSA VEP ART 

OC_ VIEWSCROLL 

OC_ VIEWSETSCALE 

oc_ VIEWSETSITERECT 

OC_ VIEWSHOWTOOLS 

oc_ VIEWTITLE 

See also 
OC _APPxxxx constants 

ocrxxxx aspect constants 

Asks the server window to attach to its own frame window or the 
container's window. 

Requests border space for in-place editing tools in the container's view. 

Requests border space for in-place editing tools in the container's view. 

Asks the server for Clipboard data in a particular format. 

Tells server to close this remote view. 

Requests visual feedback during a drag operation. 

Accepts a dropped object. 

Asks the server for the palette it uses to paint its object. 

Asks the container to give scaling information. 

Asks container for the site rectangle. 

Asks the server to insert its menus in the menu bar for in-place editing. 

Asks the server to load its document. (The server's document contains 
one part.) 

Asks the server for the extents of its open document. 

Asks the server to paint a remote view of its document. 

Indicates that a part needs repainting. 

Asks the server for the extents of its object. 

Asks the server to save its document. (The server's document contains 
one part.) 

Asks the client to scroll its view because the user is trying to drag 
something off the edge. 

Asks the server to handle scaling. 

Asks the container to set the site rectangle. 

Asks the server to display its tool bars in the container's window for in­
place editing. 

Gets the title displayed in the view's window. 

ocf/ocreg.h 

These constants identify modes of presenting data. A server might be able to draw the 
same object several different ways, such as displaying its full content, creating a 
miniature representation of the content, or representing the type of object with an icon. 

566 ObjectWindows Reference Guide 



ocrxxxx Clipboard constants 

When a server registers a data format, it also registers the aspects it supports for each 
format. The values of these constants are flags and can be combined with the bitwise OR 
operator ( I ). 

ocrContent 

ocrThumbnail 

ocrlcon 

ocrDocPrint 

See also 

DVASPECT_CONlENT 

DVASPECT_THUMBNAIL 

DVASPECT_ICON 

DV ASPECT_DOCPRINT 

~~Ens 
Show the full content of the object at its normal size. 

Show the content of the object shrunk to fit in a 
smaller space. 

Show an icon representing the type of object. 

Show the object as it would look if sent to the printer. 

ocrxxxx constants, REGFORMAT macro, TOcAspect enum 

ocrxxxx Clipboard constants ocf/ocreg.h 

These constants identify standard data formats for data that applications might share 
with each other. Use them in the REGFORMAT macro to describe the formats that your 
documents can import and export. ' 

ocrText 

ocrBitmap 

ocrMetafilePict 

ocrSylk 

ocrDif 

ocrTiff 

ocrOemText 

ocrDib 

ocrPalette 

ocrPenData 

ocrRiff 

ocrWave 

ocrUnicodeText 

ocrEnhMetafile 

ocrRichText 

ocrEmbedSource 

ocrEmbeddedObject 

ocrLinkSource 

CF_TEXT 

CF_BITMAP 

CF _METAFILEPICT 

CF_SYLK 

CF_DIF 

CF_TIFF 

CF_OEMTEXT 

CF_DIB 

CF_PALETTE 

CF_PENDATA 

CF_RIFF 

CF_WAVE 

CF _UNlCODETEXT 

CF _ENHMETAFILE 

"Rich Text Format" 

"Embed Source" 

"Embedded Object" 

"Link Source" 

Array of text characters 

Device-dependent bitmap 

A Windows metafile wrapped in a 
METAFILEPICT structure 

Symbolic Link Format 

Data Interchange Format 

Tag Image File Format 

Text containing characters in the original 
equipment manufacturer's character set (usually 
ASCII) 

Device-independent bitmap 

GDI palette object 

Data for pen extensions to the operating system 

Resource Interchange File Format (often used for 
multimedia) 

A sound wave file (uses a subset of the RIFF 
format) 

Wide-character Unicode text (32-bit only) 

Enhanced metafile (32-bit only) 

RTF tagged text format 

OLE object that can be embedded 

OLE object that is already embedded 

OLE object that can be linked 

C h a pt e r 6 , 0 b j e ct C o m p o n e n ts I i b r a r y ref e re n c e 567 



ocrxxxx direction constants 

ocrObjectDescriptor "Object Descriptor" 

ocrLlnkSrcDescrlptor "Link Source Descriptor" 

See also 
ocrxxxx constants, REGFORMAT macro 

ocrxxxx direction constants 

Descriptive information about an OLE object that 
can be embedded 

Descriptive information about an OLE object that 
can be linked 

ocf/ocreg.h 

These constants identify directions for passing data. For example, a server might be able 
to export and import bitmaps but only import metafiles. In that case, it uses ocrGetSet for 
the bitmap format and ocrGet for metafiles. 

When a server registers a data format, it also specifies whether it can get or set each 
format. 

ocrGet 

ocrSet 

ocrGetSet 

See also 

hnports data in the given format 

Exports data in the given format 

Both exports and imports data in the given format 

ocrxxxx constants, REGFORMAT macro 

ocrxxxx limit constants ocf/ocreg.h 

These constants set the maximum number of verbs and data formats that an application 
is allowed to register for any one document type. Currently these limits are both set to 8. 

Maximum number of verbs a server can register for a document ocrVerbLimit 

ocrFormatLimit Maximum number of data forma.ts an application can register for a document 

See also 
ocrxxxx constants 

ocrxxxx medium constants ocf/ocreg.h 

These constants identify channels for passing data. A server might be able to pass a 
particular kind of object as a global memory handle, as a disk file handle, or through a 
data stream, for example. 

568 ObjectWindows Reference Guide 



ocrxxxx object status constants 

When a server registers a data format, it also registers the transfer channels it supports 
for each format. The values of these constants are flags and can be combined with the 
bitwise OR operator ( I ). 

C:.onsta,nt OLE equivalent Meaning 
ocrHGlobal TYMED_HGLOBAL Handle to global memory object 

ocrFile TYMED_FILE Handle to disk file 

ocrIStream TYMED _ISTREAM Stream object in a compound file 

ocrIStorage TYMED _ISTORAGE Storage object in a compound file 

ocrGDI TYMED_GDI GDI object (such as a bitmap) 

ocrMfPict TYMED_MFPICT METAFILEPICT structure 

See also 
ocrxxxx constants, REGFORMAT macro 

ocrxxxx object status constants ocf/ocreg.h 

These constants describe how an object behaves wl;:ten presented in particular aspects. 
Register these options for documents using the REGST ATUS macro. 

The values of these constants are flags and can be combined with the bitwise OR 
operator ( I ). 

Meani~g 

ocrActivateWhen Visible Applies only if ocrinsideOut is set. Indicates that the object prefers to 
be active whenever it is visible. The container is not obliged to 
comply. 

ocrCanLinkByOlel Used only in OBJECTDESCRIPTOR. Indicates that an OLE 1 
container can link to the object. 

ocrCantLinklnside This object, when embedded, should not be made the source of a 
link. 

ocrinsertNotReplace This object, when placed in a document, should not replace the 
current selection but be inserted next to it. 

ocrinsideOut The object can be activated and edited without having to install 
menus or toolbars. Objects of this type can be active concurrently. 

ocrlsLinkObject Set by an OLE 2 link for OLE 1 compatibility. The system sets this 
bit automatically. 

ocrNoSpecialRendering Same as ocrRenderingisDeviceindependent. 

ocrOnlyiconic The only useful way the server can draw this object is as an icon. 
The content view looks like the icon. 

ocrRecomposeOnResize When container site changes size, the server would like to redraw 
its object. (Presumably the server wants to do something other than 
scale.) 

ocrRenderinglsDevicelndependent The object makes no presentation decisions based on the target 
device. Its presentation data is always the same. 

ocrStatic The object is an OLE static object and cannot be edited. 

Chapter 6, ObjectComponents library reference 569 



ocrxxxx usage constants 

See also 
ocrxxxx constants, REGSTATUS macro 

ocrxxxx usage constants ocf/ocreg.h 

These constants tell how a server supports concurrent clients. Use them to register the 
usage key for a server. 

ocrSingleUse One client per application instance 

ocrMultipleUse Multiple clients per application instance 

ocrMultipleLocal Multiple clients supported by separate in-proc server 

See also 
ocrxxxx constants, usage registration key 

ocrxxxx verb attributes constants ocf/ocreg.h 

enum ocrVerbAttributes 
These constants give the container hints about how a verb is used. Register these options 
for documents using the REGVERBOPT macro. 

The values of these constants are flags and can be combined with the bitwise OR 
operator (I). 

ocrNeverDirties 

ocrOnContainerMenu 

See also 

The verb never modifies the object in such a way that it needs to be saved again. 

The verb should be displayed on the container's menu of object verbs when the 
object is active. The standard verbs Hide, Show, and Open should not have this 
flag set. 

ocrxxxx constants, REGVERBOPT macro 

ocrxxxx verb menu flags ocf/ocreg.h 

These constants describe how a server's verbs should appear on the container's menu. 
Register these options for documents using the REGVERBOPT macro. 

570 0 b j e ct W i n d ow s R e I e r e n c e G u i d e 



OPTIONAL_ARG macro 

The values of these constants are flags and can be combined with the bitwise OR 
operator ( I ). 

ocrGrayed MF _GRAYED 

ocrDisabled MF _DISABLED 

ocrChecked MF _CHECKED 

ocrMenuBarBreak MF _MENUBARBREAK 

ocrMenuBreak MF _MENUBREAK 

See also 
ocrxxxx constants, REGVERBOPT macro 

OPTIONAL ARG macro 
OPTIONAL_ARG(cls, extName, default) 

Make the verb appear gray on the menu. 1his also 
disables the verb. 

Disable the verb so the user cannot choose it. 

Place a check by the verb. 

Places the verb in a new column and adds a vertical line 
to separate the columns. 

Places the verb in a new column without separating the 
columns. 

ocf/automacr.h 

An automation server uses this macro in its automation definition (after 
DEFINE_AUTOCLASS) in order to describe one argument in an exposed method. 

After an EXPOSE_METHOD or EXPOSE_METHOD _ID macro, you need to add a list of 
argument macros, one for each parameter in the method. If the argument has a default 
value, then use the OPTIONAL_ARG macro. 

type is an automation class that describes the argument's data type. For example, if the 
argument is Boolean value, then type should be T Auto Boal. For more information, see 
Automation Data Types. 

extName is the public name that a controller uses to refer to this argument. The string can 
be localized. 

default is the default value assigned if the caller chooses to omit the argument. 

path registration key 
The path where OLE looks to find and load the server. 

The path is optional for any server's application registration table. Usually you can omit 
the path because by default ObjectComponents records the actual path and file name of 
the server when it registers itself. 

To register a path, use the REGDATA macro, passing path as the first parameter and the 
full path string, including .EXE name, as the second parameter. 

See also 
REGDATA macro 

Ch apter 6; ObjectCom pone nls I ibrary reference 571 



permid registration key 

permid registration key 
A string that names the application without indicating any version. The pennid is just 
like the progid but without a version number. It always represents the latest installed 
version of a class. 

The permid key is valid in any registration table. It is always optional. If you register 
permid, you should also register permname. Like the progid, the pennid cannot be 
localized. 

To register permid, use the REGDATA macro, passing pennid as the first parameter and 
the ID string as the second parameter. 

See also 
permname registration key, progid registration key, REGDATA macro, version 
registration key 

permname registration key 
A string that describes the application without indicating any version. The permname is 
just like the description but without a version number. It always represents the latest 
installed version of a class: A pennname value can contain up to 40 characters. 

The pennname key is valid in any registration table. It is always optional. If you register 
pennname, you should also register permid. The pennname string should be localized. 

To register permname, use the REGDATA macro, passing permname as the first 
parameter and the descriptive string as the second parameter. 

See also 
description registration key, permid registration key, REGDATA macro, version 
registration key 

progid registration key 
Registers a string which uniquely identifies the class. 

The string can contain up to 39 characters. The first character must be a letter. 
Subsequent characters can be letters, digits, or periods (no spaces or other delimiters). 
Conventionally, the progid value has three parts separated by periods. They are the 
program name, an object name, and a version number. The value of the progid cannot be 
localized. 

A progid string is required in every application registration table. To register a progid, use 
the REGDATA macro, passing progid as the first parameter and the identifier string as 
the second parameter. 

REGDATA(progid, "DrawingPad.Application.2") 

572 ObjectWindows Reference Guide 



See also 
REGDATA macro 

REQUIRED ARG macro 
REQUIRED_ ARG(type, extName); 

REQUIRED_ARG macro 

ocf/automacr.h 

An automation server uses this macro in its automation definition (after 
DEFINE_AUTOCLASS) in order to describe one argument in an exposed method. 

After an EXPOSE_METHOD or EXPOSE_METHOD _ID macro, you need to add a list of 
argument macros, one for each parameter in the method. If the argument does not have 
a default value and is not an object, then use the REQUIRED _ARG macro. 

type is an automation class that describes the argument's data type. For example, if the 
argument is Boolean value, then type should be TAutoBool. For more information, see 
Automation Data Types. 

extName is the external, public name that a controller uses to refer to this argument. The 
string can be localized. 

TAutoBase class ocf/autodefs.h 

T Auto Base is a base class for deriving automatable objects. The class does only one thing: 
whenever an object of T Auto Base is destroyed, the destructor notifies OLE that the object 
is no longer available. 

Automated objects are not required to derive from T Auto Base. Doing so is simply a 
safeguard and matters only if the logic of the program makes it possible for the 
automated object to be destroyed by non-automated means while still connected to an 
OLE controller. 

If you are using T Auto Base to derive classes with explicit class specifiers that do not 
match the default specifiers for the application's model, then be sure to define the 
_AUTOCLASS macro. 

See also 
_AUTOCLASS macro 

Public destructor 
Destructor 
virtual N TAutoBase(); 
The virtual destructor-the only member of class T Auto Base-sends OLE an obituary 
when the object is destroyed. The notification matters in cases where the object might be 
destroyed by non-automated means, without the knowledge of OLE, while still 
connected to an automation controller. Sending the obituary prevents a crash if OLE 
subsequently sends a command to the nonexistent object. 

C h a p t e r 6 , 0 b j e ct C o m p o n e n t s I i b r a r y ref e r e n c e 573 



TAutoBool struct 

TAutoBool struct ocf/autodefs.h 

Use T AutoBool in an automation definition to describe the parameters and return values 
of automated methods. 

Public data member 
Classlnfo 
static TAutoType Classlnfo; 
The Classinfo member of T AutoBool holds information that identifies the Boolean data 
type. 

TAutoCommand class ocf/autodefs.h 

T AutoCommand is an abstract base class for automation command objects. An 
automation server constructs a command object whenever it receives a command from 
an automation controller. The command object receives all parameters as VARIANT 
unions from OLE. The compiler generates calls to command object conversion functions 
in order to extract the proper C ++ data type from the union. 

All this happens internally. Normally you should not have to construct or manipulate 
T AutoCommand objects directly. 

Public constructor and destructor 
Constructor 
TAutoCommand(int attr); 
Creates a command having the attributes set in the attr flag mask. The flags are defined 
in the AutoSymFlag enum. 

Destructor 
virtual N TAutoCommand(); 
Destroys the T AutoCommand object. 

See also AutoSymFlag enum 

Type definitions 
TCommandHook 
typedef bool (*TCommandHook)(TAutoCommand& cmdObj); 
Describes the prototype for a user-defined callback function called during Invoke, before 
executing the automation command object. cmdObj is the object about to be executed. If 
the callback returns false, Invoke does not execute the command. 

See also TAutoCommand::Invoke, TAutoCommand::SetCommandHook 

57 4 0 b j e ct Windows Re I ere n c e G u id e 



TAutoCommand class 

TErrorMsgHook 
typedef canst char* (*TErrorMsgHook)(long errCode); 
Describes the prototype for a user-defined callback function called after Invoke to 
process any error code the command might return. errCode is the status result. The 
callback is expected to return a string describing the error for the user. 

See also TAutoCommand::LookupError, TAutoCommand::SetErrorMsgHook 

Public member functions 
ClearFlag 
void ClearFlag(int mask); 
Clears all the flags in mask. The flags are defined in the AutoSymFlag enum. 

See also AutoSymFlag enum 

Execute 
virtual void Execute(); 
Executes the automation command by invoking the internal C++ member of the 
automated class to which the command belongs. 

Fail 
void Fail(TXAuto::TError); 
Throws whatever exception is indicated by the parameter. 

See also TXAuto::TError enum 

GetSymbol 
TAutoSymbol* GetSymbol(); 
Retrieves the symbol that generates this command. 

Invoke 
virtual TAutoCommand& Invoke(); 
Initiates the process of executing a command. The user can override the usual process 
by supplying a hook with the AUTOINVOKE macro. 

See also AUTOINVOKE macro, TAutoCommand::SetCommandHook 

lsPropSet 
bool lsPropSet(); 
Returns true if the asSet property flag is set. This flag indicates that the command 
assigns a value to some property of the automated class and does not return a value. 

Lookup Error 
static canst char* LookupError(long errCode); 
Translates an error code from a function into a message string for the user. errCode is a 
function status value sent by Report. Lookup Error works by calling a function you have 
installed with SetErrorMsgHook. You do not have to call Lookup Error directly. If you have 
installed an error message hook, Lookup Error is called for you at the right time. 

See also TAutoCommand::Report 

Chapter 6, ObjectComponents library reference 575 



TAutoCommand class 

Record 
virtual int Record(TAutoStack& q); 
Records the command and its arguments by calling any hook the programmer might 
have supplied in the automation declaration with the AUTORECORD macro. 

Recording is not supported in the current version of ObjectComponents. 

See also AUTORECORD macro 

Report 
virtual long Report(); 
The AUTOREPORT macro invokes this function to translate the status code a command 
returns into an error code. 

See also AUTOREPORT Macro 

TAutoCommand::SetErrorMsgHook 

Return 
virtual void Return(TAutoVal& v); 
Converts whatever value the internal C++ command returned into a V ARlANT union. 
The converted value is passed to OLE. This is what the automation controller receives as 
its return value. 

SetCommandHook 
static TCommandHook SetCommandHook(TCommandHook callback); 
Installs a user-defined callback function of type TCommandHook to be called whenever 
the command is executed. The command hook is useful for monitoring automation 
calls. 

See also TAutoCommand::Invoke, TAutoCommand::SetErrorMsgHook, 
TAutoCommand::TCommandHook typedef 

SetErrorMsgHook 
static TErrorMsgHook SetErrorMsgHook(TErrorMsgHook callback); 
Installs a user-defined callback function of type TErrorMsgHook to be called if the 
command returns an error code. 

See also TAutoCommand::LookupError, TAutoCommand::Report, 
TAutoCommand::SetCommandHook, TAutoCommand::TErrorMsgHook typedef 

Setflag 
void SetFlag(int mask); 
Sets all the flags in mask. The flags are defined in the T AutoSymFlag enum. 

See also AutoSymFlag enum 

SetSymbol 
void SetSymbol(TAutoSymbol* sym); 
Assigns a symbol to the command object. The symbol is set internally. It is taken from 
the tables built by the automation definition and declaration of the automated class. 

Testflag 
bool TestFlag(int mask); 

576 0 b jectWi n d ow s Reference Guide 



TAutoCurrency struct 

Returns true if any of the flags in mask are set for this command. The flags are defined in 
the AutoSymFlag enum. 

See also AutoSymFlag enum 

Undo 
virtual TAutoCommand* Undo(); 
Generates a command for the undo stack by calling any hook the programmer might 
have supplied in the automation declaration with the AUTOUNDO macro. 
Undoing commands is not supported in the current version of ObjectComponents. 

See also AUTOUNDO macro 

Validate 
virtual bool Validate(); 
Tests the validity of the command's parameters by executing whatever validation 
function or expression the programmer supplied in the automation declaration with the 
AUTOV ALIDATE macro. 

See also AUTOVALIDATE macro 

Protected data members 

Attr 
int Attr; 
Attribute and state flags. The flags are defined in the AutoSymFlag enum. 

See also AutoSymFlag enum 

Symbol 
TAutoSymbol* Symbol; 
The symbol entry that generates this command. OLE passes this symbol to make this 
command execute. 

TAutoCurrency struct ocf/autodefs.h 

T AutoCurrency is an automation data type that helps ObjectComponents provide type 
checking for members of an automated class exposed to OLE. Use TAutoCurrency in an 
automation definition to identify currency values. 

Public data member 

Classlnfo 
static TAutoType Classlnfo; 
The Classlnfo member of T AutoCurrency holds information that identifies data as a 
currency value. 

C h a pt e r 6 , 0 b j e ct C o m p o n e n t s I i b r a r y r e f e r e n c e 577 



TAutoDate struct 

TAutoDate struct ocf/autodefs.h 

TAutoDate is an automation data type that helps ObjectComponents provide type 
checking for members ofan automated class exposed to OLE. Use TAutoDate in an 
automation definition to identify date values stored as type double. 

Public data members 
Classlnfo 
static TAutoType Classlnfo; 
The Classlnfo member of T Auto Date holds information that identifies the date data type. 

Date 
double Date; 
Stores a date as a 32-bit value. 

Public constructors 
Constructors 

Form 1 TAutoDate(); 
Creates an empty T Auto Date. 

Form 2 TAutoDate(double d); 
Creates a T Auto Date that initially holds the value in d, assumed to be a date. 

Public member function 
operator double 
operator double(); 
Returns the value stored in the Date field of TAutoDate. 

TAutoDouble struct ocf/autodefs.h 

T Auto Double is an automation data type that helps ObjectComponents provide type 
checking for members of an automated class exposed to OLE. Use T Auto Double in an 
automation definition to identify double values. 

Public data member 
Classlnfo 
static TAutoType Classlnfo; 
The Classlnfo member of TAutoDouble holds information that identifies the double data 
type. 

578 0 bj ectW ind ows Rel ere n ce Guide 



TAutoEnumerator<> class 

TAutoEnumerator<> class ocf/autodefs.h 

An automation controller creates a T Auto Enumerator object to enumerate items in a 
collection held by an automation server. A collection can contain any set of similar 
values or objects that the server chooses to expose as a group. The items in the collection 
might be numbers in an array, for example, or each one might be an automated object. 

The type you pass to the template is the type of value the collection holds. If the 
collection is a set of integer values, pass int. If the collection holds automated objects, 
pass the controller's proxy class (derived from TAutoProxy). 

At first, a newly created enumerator is empty. After you call Step, the enumerator holds 
the first value in the collection. To see the value, call Value if the collection contains 
values of intrinsic data types, such as int or float, or call Object if the collection contains 
automated objects. Step, Value, and Object are the most important methods of 
T Auto Enumerator. The others are generally called for you at the right time. 

Public constructors and destructor 

Constructors 
Form 1 T AutoEnumerator(); 

Constructs an enumerator object but does not attach it to any automated collection. 

Form 2 TAutoEnumerator(const TAutoEnumerator& copy); 
Constructs a new enumerator object by copying an existing one. Both enumerators are 
attached to the same collection of objects. 
However it is constructed, a newly created TAutoEnumerator object does not yet hold 
any value. Always call Step to get the first item before calling Value or Object to see the 
item. 

Destructor 
-TAutoEnumerator(); 
Detaches the enumerator from its collection before allowing the enumerator to be 
destroyed. 

See also TAutoEnumerator::StepTAutoEnumerator_Step 

Public member functions 

Bind 
void Bind(TAutoVal& val); 
Connects the enumerator to the collection object, val. Bind is called internally when the 
controller passes the enumerator object to a method that returns a collection. 

See also TAutoEnumerator::Unbind 

Clear 
void Clear(); 
Empties the enumerator so that it no longer points to any item in the collection. This 
method is called internally during Step. 

C h a pt e r 6 , 0 b j e ct C o m p o n e n ts I i b r a r y r e I e re n c e 579 



TAutoFloat struct 

See also T AutoEnumerator::Step 

Object 
void Object(TAutoProxy& prx); 
Returns in prx the current object from the collection. Use Object if the items in the 
collection are automated objects. If the collection contains data values, then call Value 
instead. 

To advance the enumerator so that Object returns the next object, call Step. 

See also TAutoEnumerator::Step, TAutoEnumerator::Value 

Step 
bool Step(); 
Advances the enumerator object one step so that Value returns the next item in the 
collection. Step returns false when called after the enumerator has reached the last item 
in the collection. 

See also TAutoEnumerator::Object, TAutoEnumerator::Value 

Unbind 
void Unbind(); 
Disconnects the enumerator object from the collection it currently enumerates. 

See also TAutoEnumerator::Bind 

Value 
void Value(T& v); 
Returns in v the current item from the collection. Use Value if the items in the collection 
are data values. If the collection contains objects, then call Object instead. 

To advance the enumerator so that Value returns the next item, call Step. 

See also TAutoEnumerator::Object, TAutoEnumerator::Step 

TAutoFloat struct ocf/autodefs.h 

T AutoFloat is an automation data type that helps ObjectComponents provide type 
checking for members of an automated class exposed to OLE. Use T AutoFloat in an 
automation definition to identify float values. 

Public data member 
Classlnfo 
static TAutoType Classlnfo; 
The Classlnfo member of TAutoFloat holds information that identifies the float data type. 

580 ObjectWindows Reference Guide 



TAutolterator class 

TAutolterator class ocf/autodefs.h 

T Auto Iterator is a pure virtual base class for iterator objects. An iterator is used to 
enumerate a collection of other objects. The iterator's methods let the caller step through 
a list of objects and examine each one in tum. 

An automation server needs to create an iterator in any automated object that represents 
a collection of other objects. To create an iterator, the server usually inserts an 
AUTOITERATOR macro in the automation definition of the collection class (after 
DEFINE_AUTOCLASS). 

In most cases, you do not need to work with the iterator class directly because the 
AUTOITERATOR macro implements the object for you. In cases where the iterator 
requires a more complex implementation, however, you might need to define the class 
directly yourself. 

You can still declare the class using AUTOITERATOR_DECLARE instead of 
AUTOITERA TOR. This is just a shortcut for writing out all the standard members of an 
iterator object by hand. 

T Autolterator has five pure virtual members that any derived class must implement. 
These five functions compose a standard interface for iterators in automated collection 
objects. They are Init, Test, Step, Return, and Copy. The first four correspond to steps in a 
for loop that steps through the collection. (See AUTOITERATOR for a description of the 
correspondence.) Copy creates a duplicate iterator. 

The constructors are protected because TAutoiterator should be constructed only by a 
derived class. 

Besides implementing the inherited virtual functions, a class derived from T Autolterator 
also typically declares one or more data members that record the iterator's current state. 
Usually the state variable remembers a position in the sequence of enumerated objects. 

T Autolterator is a COM object and implements the !Unknown interface. 

Public member functions 

Copy 
virtual TAutolterator* Copy()=O; 
Returns a copy of the iterator object. Your implementation should copy the iterator's 
state variables. 

See also TAutolterator::Init, TAutolterator::Return, TAutolterator::Step, 
TAutolterator::Test 

GetSymbol 
TAutoSymbol* GetSymbol(); 
Retrieves the automation symbol associated with the iterator. Usually you do not need 
to call this function. 

See also TAutolterator::SetSymbol 

Ch a p I er 6, 0 b j e c IC om pone n ts Ii bra r y reference 581 



TAutolterator class 

I nit 
virtual void lnit()=O; 
Initializes any state variables in the iterator. The primary task of an iterator is to loop 
through a list of objects enumerating them one by one. Init tells the it~rator to .prepare 
for beginning a new pass through the loop. For example, if the iterator's state variable is 
called index, Init might say '~ 

index = O; 

See also TAutolterator::Copy, TAutolterator::Return, TAutolterator::Step, 
TAutolterator::Test 

IUnknownO 
operator !Unknown*(); 
Returns a pointer to the iterator's /Unknown OLE interface and calls AddRef on the 
interface pointer. This operator is called internally to return the iterator to OLE. Usually 
you do not need to call it directly yourself. 

Return 
virtual void Return(TAutoVal& value)=O; 
Extracts one item from a collection and returns a reference to it in the value parameter. 
The primary task of an iterator is to loop through a list of objects enumerating them one 
by one. Return is the command that retrieves a different item from the collection on each 
pass through the loop. For example, Return might look like this: 

value = (Collection->Array) [Index] 

where value is the function's parameter, Collection points to the enclosing collection 
object, Array is a member of Collection, and Index is the iterator's state variable. 

value is type TAutoVal and represents a VARIANT union, which is the format in which 
OLE passes values. T Auto Val defines conversion operators to handle standard C ++ data 
types as well as C++ strings, TAutoCurrency, TAutoData, and automated C++ objects. 
The items in a collection can be any of these types. 

See also TAutolterator::Copy, TAutolterator::Init, TAutolterator::Step, 
TAutolterator::Test 

SetSymbol 
void SetSymbol{TAutoSymbol* sym); 
Associates an automation symbol with the iterator. SetSymbol is called internally during 
the construction of the iterator. Usually you do not need to call it directly yourself. 

See also TAutolterator::GetSymbol 

Step 
virtual void Step()=O; 
Advances the iterator to point to the next item in a collection. The primary task of an 
iterator is to loop through a list of objects enumerating them one by one. Step is like the 
i++ statement in a for loop. It changes the state of the iterator to focus on the next item. 
For example, if the iterator's state variable is called index, Step might simply say 

index++; 

582 ObjectWindows Reference Guide 



TAutoLong struct 

See also 
TAutolterator::Copy, TAutolterator::Init, TAutolterator::Return, TAutolterator::Test 

Test 
virtual bool Test()=O; 
Tests whether all items have been enumerated. The primary task of an iterator is to loop 
through a list of objects, enumerating them one by one. Test returns true if more objects 
remain to be enumerated and false when it reaches the end of the list. For example, if 
the iterator's state variable is called index, Test might say 

return (index>= NUM_ITEMS); 

See also TAutolterator::Copy, TAutolterator::Init, TAutolterator::Return, 
TAutolterator::Step 

Protected constructors 

Constructors 
Form 1 TAutolterator (TServedObject& owner); 

Constructs an iterator to enumerate items held in the owner class. owner can be any 
automated class. 

Form 2 TAutolterator (TAutolterator& copy); 
Constructs an iterator by creating a copy of another iterator. Both iterators enumerate 
the same collection of objects. 

The constructors are protected because only a derived class should construct a 
T Autoiterator. 

Protected data member 

Owner 
TServedObject& Owner; 
Holds a reference to the collection object that encloses the iterator. Owner is initialized 
by the constructor. The undocumented TServedObject class implements the interfaces 
that a client expects to find on an OLE object. ObjectComponents uses this class 
internally. Owner can be any automated object. 

TAutolong struct ocf/autodefs.h 

T AutoLong is an automation data type that helps ObjectComponents provide type 
information for members of an automated class exposed to OLE. Use T Auto Long in an 
automation definition to identify long values. 

Public data member 

Classlnfo 
static TAutoType Classlnfo; 

Chapter 6, ObjectComponents library reference 583 



TAutoObject <> class 

The Classlnfo member of T Auto Long holds information that identifies the long data type. 

TAutoObject <>class ocf/autodefs.h 

T AutoObject holds a pointer to a C ++ object. T AutoObject casts the pointer to different 
data types appropriately when an automation operation requires conversion. It also 
retrieves type information about the object when needed during automation. Think of 
T AutoObject as a smart pointer. 

ObjectComponents often creates smart pointers for you. Usually you do not need to 
manipulate TAutoObject objects directly. 

Public constructors 
Constructors 

Form 1 T AutoObject(); 
Constructs an empty T AutoObject that contains no pointer. 

Form 2 TAutoObject(T* point); 
Constructs a T AutoObject that holds the pointer point. 

Form 3 TAutoObject(T& reij; 
Constructs a T AutoObject that holds a pointer to the object ref 

Form 4 TAutoObject(IDispatch* dispatch); 
Attempts to read type information from the object that owns the !Dispatch interface. If it 
succeeds, the constructor builds a T AutoObject around a pointer to the C ++ object. If it 
fails, the constructor throws a TXAuto::xTypeMismatch exception. 

Public member functions 
operator*() 
T& operator*(); 
The dereference operator returns a reference to the object whose pointer T AutoObject 
holds. 

operator= 
Form 1 void operator =(T* point); 

Places the point pointer in the T AutoObject. 

Form 2 void operator =(T& reij; 
Places a pointer to the object ref in the T AutoObject. 

Form 3 void operator =(!Dispatch* dispatch); 
Attempts to read type information from the object that owns the !Dispatch interface. If it 
succeeds, the operator places in the T AutoObject a pointer to the C ++ object. If it fails, the 
constructor throws a TXAuto::xTypeMismatch exception. 

The assignment operators place a pointer to a C++ object in the TAutoObject. They are 
usually used to initialize the T AutoObject after creating it with the default constructor. 

584 ObjectWindows Reference Guide 



operator T& () 
T& operator*(); 

TAutoObjectByVal<> class 

The dereference operator returns a reference to the object whose pointer T AutoObject 
holds. 

operator T* () 
operator T*(); 
Returns a pointer to the object T AutoObject holds. 

TObjectDescriptor() 
operator TObjectDescriptor(); 
Constructs and returns a new object descriptor object based on the pointer that 
T AutoObject holds. This operator is called internally to obtain type information for 
constructing an automation object. 

Protected data member 

operator P 
T* P; 
Returns the pointer that T AutoObject holds. 

TAutoObjectByVal<> class ocf/autodefs.h 

Base class 
T AutoObjectDelete 
An automation server uses this class when an automated method needs to return a copy 
of an object. Usually you do not have use the class directly because the automation 
macros make the proper declarations for you. 

To return an object, TAutoObjectByVal clones the object by calling its copy constructor. 
The clone is passed to the automation controller as the return value from some 
automation command. T AutoObjectBy Val holds on to the cloned object until the 
controller releases it. Then it destroys the object by calling its destructor. 

In other respects, T AutoObjectBy Val closely resembles its parent class, T AutoObjectDelete. 

See also 
TAutoObjectDelete 

Public data member 

operator= 
void operator =(T obj); 
This operator creates a new object of type T by copying the original object, obj. The copy 
is passed to an automation controller as the return value from an automated method. T 
is the data type passed into the template. 

Chapter 6, ObjectComponents library reference 585 



TAutoObjectDelete <> class 

Public constructors 
Constructors 

Form 1 TAutoObjectByVal(); 
Creates an empty TAutoObjectByVal. 

Form 2 TAutoObjectByVal(T obj); 
Creates a TAutoObjectByVal that holds a copy of the object obj.Tis the data type passed 
into the template. 

TAutoObjectDelete <> class 

Base class 
T AutoObject 

ocf/autodefs.h 

An automation server uses this class when an automated method needs to return an 
object to an automation controller. Usually you do not have use the class directly 
because the automation macros make the proper declarations for you. 

Like its parent class TAutoObject, TAutoObjectDelete exists in order to hold a pointer to an 
object and convert it as necessary when the object is passed from server to client through 
automation calls. The difference between the two classes is that when the automation 
controller is through with the automated object, T AutoObjectDelete informs the 
connector object that it can let the automated C++ object call its destructor. 

See also 
TAutoObject class 

Public constructors 
Constructors 

Form 1 TAutoObjec!Delete(); 
Creates an empty T AutoObjectDelete object. 

Form 2 TAutoObjec!Delete(T* p); 
Creates a T AutoObjectDelete object from a pointer to another object. 

Form 3 TAutoObjec!Delete(T& r); 
Creates a T AutoObjectDelete object from a reference to another object. 

The T AutoObjectDelete constructors do nothing but pass their parameters back to the 
parent class, T AutoObject. 

Public member functions 
operator= 

Form 1 void operator =(T& r); 
Tells T AutoObjectDelete to hold a pointer to the object referred to by r. 

586 ObjectWindows Reference Guide 



TAutoProxy class 

Form 2 void operator =(T* p); 
Tells TAutoObjectDelete to hold the pointer p. 

TObjectDescriptor() 
operator TObjectDescriptor(); 
Returns type information describing the object. 

TAutoProxy class ocf/autodefs.h 

An automation controller derives classes from T AutoProxy to represent automated OLE 
objects that it wants to command. To send commands to an automated object, the 
controller invokes methods on the proxy that represents the object. ObjectComponents 
connects the proxy to the original so that invoking members of the proxy also invokes 
members of the automated object. 

A proxy object must inherit from T Auto Proxy. In the derived class, the controller 
declares one method for each command it wants to send. The declared methods must 
match the prototypes of the desired commands. To implement these proxy methods, the 
controller uses three macros: AUTONAMES, AUTOARGS, and AUTOCALL. The 
macros insert code that calls down to the base class. T Auto Proxy passes the commands 
to OLE. 

Usually you do not have to call anything in TAutoProxy directly. All you have to do is 
derive your proxy class from T Auto Proxy and implement the methods with the proxy 
macros. 

To generate proxy classes quickly and easily, use the AUTOGEN.EXE tool in the 
OCTOOLS directory. AUTOGEN reads the automation server's type library and writes 
all the necessary headers and source files for your proxy objects. 

Public destructor 

Destructor 
~ TAutoProxy(); 
Destroys the T Auto Proxy object. 

The constructors are protected because only derived proxy classes should call them. 

Public member functions 

Bind 
Form 1 void Bind(IUnknown* obj); 

Binds the proxy object to a server identified by a pointer to its !Unknown interface. 
Throws a TXOle exception for failure. 

Form 2 void Bind(IUnknown& obj); 
Binds the proxy object to a server identified by a reference to its !Unknown interface. 
Throws a TXOle exception for failure. 

C h a pt e r 6 , 0 b j e c I C o m p o n e n ts I i b r a r y r e I e r e n c e 587 



TAutoProxy class 

Form 3 void Bind(const GUID& guid); 
Binds the proxy object to a server identified by its globally unique ID (GUID). This is the 
clsid that the server registered for objects of the type you want to control. Throws a 
TXOle exception for failure. 

Form 4 void Bind(char far* progid); 
Binds the proxy object to a server identified by its progid. (This is the GUID that the 
server registered to identify the application itself.) Throws a TXOle exception for failure. 

Form 5 void Bind(TAutoVal& val); 
Attempts to intrepret the value in the T Auto Val union as a reference to an !Dispatch 
object and bind to the !Dispatch directly. Throws a TXAuto exception if the object does 
not support !Dispatch. 

Form 6 void Bind(IDispatch* obj); 
Accepts obj as the proxy object's server. 

Form 7 void Bind(IDispatch& obj); 
Accepts obj as the proxy object's server. 

The Bind function attempts to open a channel of communication to the automation 
server in order to send commands. More specifically, Bind requests a pointer to the 
server's !Dispatch interface. 

Bind is called internally when the object is passed as the return object for another proxy 
method. Which form of Bind is used depends on what information available to identify 
the server. 

See also TAutoProxy::Bind 

!Dispatch&() 
operator !Dispatch&(); 
Returns a reference to the !Dispatch interface of the proxy object's server. 

!Dispatch*() 
operator !Dispatch*(); 
Returns a pointer to the !Dispatch interface of the proxy object's server and calls AddRef 
on the interface pointer. 

ls Bound 
bool lsBound(); 
Returns true if the server already has a pointer to the !Dispatch interface of its server and 
false if it does not. 

Lookup 
Form 1 long Lookup( char far* name); 

Calls the server to get the ID that matches the name. 

Form 2 long Lookup(const long id); 
Returns the value passed in as id. 

Form 3 void Lookup(const char* names, long* ids, unsigned count); 

588 ObjectWindows Reference Guide 



TAutoProxy class 

Looks up a series of names and returns all their IDs at once. names and ids point to two 
parallel arrays. count gives the number of elements in both arrays. With a single call to 
OLE, Lookup fills the ids array with numbers to identify all the names. 

Given the name of a command or an argument, Lookup calls the server to ask for the 
corresponding ID values. Although commands and arguments have names for the 
convenience of programmers, OLE actually identifies them by numbers. A server must 
find out the ID number in order to execute the command. 

MustBeBound 
void MustBeBound(); 
Throws a TXAuto exception if the T Auto Proxy object does not have an /Dispatch interface 
for its server. TAutoProxy calls this method internally before performing actions that 
assume the object is already bound to the server. 

Setlang 
void SetLang(TLangld lang); 
Sets the locale ID that the controller will pass to the server with each command. The 
locale ID tells the server what language the controller is using. 

See also Locale IDs, TAutoStack 

Unbind 
void Unbind(); 
Decrements the reference count of the proxy object's server and erases internal 
references to the server. 

See also: TAutoProxy::Bind 

Protected constructor 
Constructor 
TAutoProxy(TLangld lang); 
Constructs a T AutoProxy object and sets the object to use the language identified by the 
Zang locale ID. 

See also Locale IDs 

Protected member function 
Invoke 
TAutoVal& lnvoke(int attr, TAutoProxyArgs& args, long* ids, unsigned named=O); 
Sends a command to the automation server. Invoke is called by the AUTOCALL macros. 

attr describes the type of command being issued and can be a combination of the 
AutoCallFlag enum values. 

The args object contains all the values passed as arguments to the command. 

ids points to an array of ID values identifying the command and the arguments. There 
should be one ID value for each element in the args array. 

Chapter 6, ObjectComponents library reference 589 



TAutoShort struct 

names tells how many arguments in args are identified by name. 

See also AutoCallFlag enum, AUTOCALL_xxxx macros 

TAutoShort struct ocf/autodefs.h 

T Auto Short is an automation data type that helps ObjectComponents provide type 
checking for members of an automated class exposed to OLE. Use T AutoShort in an 
automation definition to identify short values. 

Public data member 

Classlnfo 
static TAutoType Classlnfo; 
The Classinfo member of T AutoShort holds information that identifies the short data 
type. 

TAutoStack class ocf/autodefs.h 

TAutoStack processes the command stack that an automation controller sends to an 
automation server through OLE. The command stack contains a dispatch ID identifying 
a particular command and a set of VARIANT unions containing all the arguments 
needed to execute the command. 

ObjectComponents interprets the dispatch ID and extracts the proper C ++ value from 
each union. It builds a command object (T AutoCommand) and calls the command's 
Execute method. T AutoCommand in tum invokes the methods you have exposed by 
declaring them and defining them in your automated classes. 

The stack also carries a locale ID identifying the language used in the command. 
ObjectComponents takes the locale into account when interpreting strings it extracts 
from the stack. If you have provided localization resources, then ObjectComponents 
translates to the requested language for you. 

Usually you do not have to work with T AutoStack directly. ObjectComponents 
automatically passes a stack in to the proper command object for you. The command 
objects are created by the automation declaration macros. 

See also 
TAutoCommand class 

Public constructor and destructor 

Constructor 
TAutoStack(TServedObject& owner, VARIANT far* stack, Tlocaleld locale,int argcount, int namedcount, 

long far* map); 

590 ObjectWindows Reference Guide 



TAutoStack class 

The constructor is called only internally. You should not need to construct your own 
stack. 

owner is the automated object to which the command is directed. 

stack points to a series of contiguous unions of type VARIANT. The unions contain 
values or object references passed in automation commands. 

locale is a locale ID describing the language the controller is using. 

argcount tells how many arguments follow the dispatch ID in the stack. 

namedcount tells how many of the arguments were passed with their names. A controller 
can pass arguments in any order, and even omit optional arguments, if it identifies the 
arguments it does pass explicitly by the name the server gives them. 

if namedcount is greater than zero, then map points to an array of ID values 
corresponding to the argument names passed by the constructor. 

map is a table for translating named argument IDs to argument positions. 

Destructor 
-TAutoStack(); 
Destroys the T Auto Stack object. 

Public member function 

operator[) 
TAutoVal& operatorU(int index); 
Extracts individual arguments from the command stack for use as C++ function 
arguments. index is a zero-based index into the command's argument list, which follows 
the order established in the corresponding EXPOSE macro of the automation definition. 
This operator is called by the command objects generated in the automation declaration. 

If index is out of range, the operator throws a TXAuto::xNoArgSymbol exception. 

Public data members 

ArgCount 
cons! int ArgCount; 
Holds the number of arguments passed on the command stack (named or unnamed). 

ArgSymbolCount 
int ArgSymbolCount; 
Holds the number of command arguments exposed to automation. 

CurrentArg 
int CurrentArg; 
As ObjectComponents processes the arguments on the stack one by one, this member 
indexes the current argument. When CurrentArg reaches ArgCount, all the arguments 
have been processed. 

C h a p t e r 6 , 0 b j e ct C o rn p o n e n ts I i b r a r y r e f e r e n c e 591 



TAutoString struct 

Lang Id 
Tlangld Langld; 
Holds a number that identifies the language the controller is using to send commands. 

Owner 
TServedObject& Owner; 
Refers to the automated object that is processing the command on the stack. 

Symbol 
int ArgSymbolCount; 
Holds the number of command arguments exposed to automation. 

Constant 
SetValue 
T AutoStack::SetValue 
SetValue is a predefined standard dispatch ID. The dispatch ID is a number that 
identifies a particular command that an automated object can execute. The only two 
standard dispatch IDs used in ObjectComponents are 0 for an object's default action and 
-3 for a command that sets the value of a property. Set Value is -3. 

See also T Auto Val class, TLocaleld 

TAutoString struct ocf/autodefs.h 

An automation server uses TAutoString to describe C string types in an automation 
definition. The member functions of the TAutoString structure facilitate copying and 
assigning string values with minimal memory reallocations when strings are passed 
back and forth between servers and controllers. 

You do not need to use TAutoString with C++ string objects. For more information, see 
Automation Data Types. 

T AutoString works best with const string values. When passed a non-constant string, 
TAutoString must make an internal copy. When the string is const, T AutoString knows 
the value will not change and can skip the copying step. The performance improvement 
is significant. 

Public constructors and destructor 
Constructors 

Form 1 TAutoString(const string& s); 
Creates a TAutoString and assigns it the string held in a C++ string object. 

Form 2 TAutoString(const TAutoString& copy); 
Creates a new T AutoString that holds the same string value as the copy object. 

Form 3 TAutoString(TAutoVal& val); 

592 ObjectWindows Reference Guide 



TAutoString struct 

Initializes the new object with the value in a T Auto Val union. T Auto Val represents the 
VARIANT data type OLE uses to pass values between two applications. It is a union of 
many types. This constructor extracts the value from the union as a string. 

Form 4 TAutoString(const char far* sir); 
Initializes the new object with the value in a const C string. 

Form 5 TAutoString(BSTR s, bool loan) 
Initializes the new object with the value in a BASIC-style string, one preceded by its 
length and not terminated by null. That is the format OLE uses for passing strings. Set 
loan to true if the TAutoString object owns the BSTR and false if it only references the 
BSTR. 

Destructor 
-TAutoString(); 
TAutoString maintains a reference count on the string object it contains. The destructor 
decrements the reference count. 

Public member functions 

int() 
operator int() 
Returns the length of the string value (as strlen would calculate the length). 

operator= 
Form 1 TAutoString& operator =(cons! char far* sir); 

Accepts a C-style const string as the new value of the TAutoString. 

Form 2 TAutoString& operator =(char* s); 
Accepts a C-style non-const string as the new value of T AutoString. Because the string is 
not constant, T AutoString must create a new copy of the string for itself. This makes 
Form 3 significantly slower than Form 1. Try to pass const strings where possible. 

Form 3 TAutoString& operator =(cons! TAutoString& copy) 
Sets the value of the TAutoString object to be a string copied from another T AutoString 
object. 

char*() 
operator char*(); 
Returns the object's string value in the form of a non-const C-style string. To do this, 
T AutoString must create a new copy of the string. It is faster to assign to a const char* 
where possible. 

const char far*() 
operator cons! char far*(); 
Returns the object's string value in the form of a const C-style string. 

Public data member 

Classlnfo 
static TAutoType Classlnfo; 

C h a p I e r 6 , 0 b j e c I C o m p o n e n I s I i b r a r y re I e re n c e 593 



TAutoType struct 

This static structure holds a number that identifies the data type as a string. All the 
automation data types hold a similar static identifier so that ObjectComponents can 
query any of them to determine what they are. 

TAutoType struct ocf/autodefs.h 

The TAutoType structure is a static data member of all the automation data type classes, 
such as T AutoBool and TAutoString. T AutoType makes all these data types self­
describing. This is an essential quality for dealing with the VARIANT unions that OLE 
uses to pass values during automation. Because all the automation types derive from 
T Auto Type, ObjectComponents can process values of any type with the same code. 
Because T AutoType is self-describing, ObjectComponents can always determine the 
actual type of any particular item. 

Usually you do not have to work with T AutoType directly, just with the automation 
types that derive from it. 

Public member function 
GetType 
short GetType(); 
Returns an integer that identifies a particular data type. The identifiers are defined in the 
AutoDataType enum. 

See also AutoDataType enum 

TAutoVal class ocf/autodefs.h 

TAutoVal duplicates the VARIANT type that OLE uses to pass values between an 
automation server and controller. It also adds access methods to retrieve the value in the 
VARIANT. A VARIANT can be cast to type T Auto Val, and T Auto Val can be cast to a 
VARIANT. 

A VARIANT is a large union with fields of many different data types. A large set of 
overloaded assignment operators allow many different kinds of values to be stored in a 
TAutoVal object. Each assignment operator also records internally a number that 
identifies the type of value just received. A similar set of conversion operators allows the 
value in the object to be cast to different types of values. Whether a particular conversion 
succeeds depends on the type of value in the object. A string cannot be cast to some 
other object, for example. If the conversion fails, T Auto Val throws an exception of type 
TXAuto::xConversionFailure. 

ObjectComponents treats the data passed between an automation server and controller 
as a stack of unions. The stack is TAutoStack, and the items on the stack are TAutoVal. 
Because the server and controller are built separately and can use different 
programming languages, data passed between them cannot retain an intrinsic type. 
Command identifiers and argument values are passed as V ARIANTs. The recipient of a 
VARIANT value must rely on the item's context in order to determine what type the 

594 ObjectWindows Reference Guide 



TAutoVal class 

value is supposed to be. For example, when it sees a dispatch ID for a command that 
expects two integer arguments, the application extracts integers from the next two 
VARIANTs. 

Public member functions 

operator= 
void operator=(int i); 
void operator=(int far* p); 
void operator=(long i); 
void operator= (long far* p); 
void operator=(unsigned long i); 
void operator=(unsigned long far* p); 
void operator=(short i); 
void operator=(short far* p); 
void operator= (float i); 
void operator=(float far* p); 
void operator=(double i); 
void operator=(double far* p); 
void operator=(TBool i); 
void operator=(TBool far* p); 
void operator=(const char far* s); 
void operator=(string s); 
void operator=(TAutoString s); 
void operator=(TAutoCurrency i); 
void far* operator= (T AutoCurrency far* p); 
void operator=(TAutoDate i); 
void far* operator= (T Auto Date far* i); 
void operator=(TAutoVoid); 
void operator=(IDispatch* ifc); 
void operator=(IUnknown* ifc); 
void operator=(TObjec!Descriptor od); 
Assignment operators initialize TAutoVal by placing in the object both the assigned 
value and an ID to show the type of the assigned value. 

This table describes those data types that are not standard C types. 

!Dispatch 

!Unknown 

string 

TAutoCurrency 

T AutoString 

TAutoVoid 

TObjectDescriptor 

A class ObjectComponents uses internally to implement the standard OLE 
interface called !Dispatch, supported by automatable objects 

A class that ObjectComponents uses internally to implement the standard 
!Unknown OLE interface, supported by all OLE objects 

C ++ string object 

· An automation data type that holds a currency value 

An automation data type that holds a C-style string value 

An automation data type that represents a void return 

A class that ObjectComponents uses internally to hold information about an OLE 
object 

Ch apter 6, 0 b j e ct Components Ii bra r y reference 595 



TAutoVal class 

See also Automation data types, String class 

Clear 
void Clear(); 
Clears the value stored in the object, leaving it empty. This method cannot be called on 
the objects managed by T AutoStack. 

See also TAutoStack class 

Copy 
void Copy(const TAutoVal& copy); 
Copies the TAutoVal object into copy. Intelligently allocates space for a string, if needed, 
and calls AddRef if the value in the union is an OLE object. 

double far*{) 
operator double far*(); 
Returns a pointer to a double value. 

double{) 
operator double(); 
Returns the value in the object as a double value. 

int far*{) 
operator int far*(); 
Returns a pointer to an int. 

float far*() 
operator float far*(); 
Returns a pointer to a floating-point value. 

float{) 
operator float(); 
Returns the value in the object as a floating-point value. 

GetDataType 
int GetDataTyp1'1(); 
Returns an integer identifying the type of value that was assigned to the union. 

I Dispatch&() 
operator !Dispatch&(); 
Extracts an !Dispatch interface from the value in the T Auto Val object. !Dispatch is the 
standard OLE interface supported by automatable objects. This method does not call 
AddRef on the !Dispatch interface. 

See also TAutoVal::IDispatch*() 

I Dispatch*() 
operator !Dispatch*(); 
Extracts an !Dispatch interface from the value in the T Auto Val object. !Dispatch is the 
standard OLE interface supported by automatable objects. This function also calls the 
interface's AddRef method. 

See also TAutoVal::IDispatch&() 

596 ObjectWindows Reference Guide 



int() 
operator int(); 
Returns the value in the object as an integer. 

int far*() 
operator int far*(); 
Returns a pointer to an int. 

ls Ref 
bool lsRef(); 

TAutoVal class 

Returns true if the value assigned to the union is a reference to a value. 

I Unknown&() 
operator !Unknown&(); 
Extracts an !Unknown interface from the value in the T Auto Val object. !Unknown is the 
standard OLE interface supported by all objects. This method does not call AddRef on 
the !Unknown interface. 

See also TAutoVal::IUnknown*() 

!Unknown*() 
operator !Unknown*(); 
Extracts an !Unknown interface from the value in the T Auto Val object. !Unknown is the 
standard OLE interface supported by all objects. This method calls AddRef on the 
!Unknown interface. 

See also TAutoVal::IUnknown&() 

long() 
operator long(); 
Returns the value in the object as a long integer. 

long far*() 
operator long far*(); 
Returns a pointer to a long integer. 

short() 
operator short(); 
Returns the value in the object as a short integer. 

short far*() 
operator short far*(); 
Returns a pointer to a short integer. 

string() 
operator string(); 
Returns the value in the object as a C++ string object. 

TAutoCurrency() 
operator T AutoCurrency(); 
Returns the value in the object as a currency value. 

See also T AutoCurrency class 

Chapter 6, ObjectComponents library reference 597 



TAutoVoid struct 

TAutoCurrency far*() 
operator TAutoCurrency far*(); . 
Returns a pointer to a currency value. 

See also TAutoCurrency 

TAutoDate() 
operator TAutoDate(); 
Returns the value in the object as a date value. 

See also TAutoDate class 

TAutoDate far*() 
operator TAutoDate far*(); 
Returns a pointer to a date value. 

See also TAutoDate class 

TBool() 
operator TBool(); 
Returns the value in the object as a Boolean value. 

TBool far*() 
operator TBool far*(); 
Returns a pointer to a Boolean value. 

TUString*() 
operator TUString*(); 
Returns the value in the object as a TUString object. TUString is a reference-counted 
union of various string representations. It is used internally by ObjectComponents for 
implementing TAutoString. 

unsigned long() 
operator unsigned long(); 
Returns the value in the object as an unsigned long integer. 

unsigned long far*() 
operator unsigned long far*(); 
Returns a pointer to a long integer. (T Auto Val does not distinguish long from unsigned 
long.) 

See also TAutoStack class 

TAutoVoid struct ocf/autodefs.h 

TAutoVoid is an automation data type like TAutoShort and TAutoBool. Use it in an 
automation definition to describe functions that return no value. 

The purpose of the structure is to implement the assignment of void to a TAuto Val. 

598 ObjectWindows Reference. Guide 



TComponentFactory type definition 

See also 
TAutoVal struct 

Public data member 

Classlnfo 
static TAutoType Classlnfo; 
As with any automation data type, the Classlnfo member holds a value that identifies a 
data type, in this case void. 

See also TAutoType struct 

TComponentFactory type definition 
typedef !Unknown* (*TComponentFactory)(IUnknown* outer, uint32 options, uint32 id= O); 
TComponentFactory is a type definition for a callback function. 

ocf/ocreg.h 

outer points to the !Unknown interface of an external OLE object under which the 
application is asked to aggregate. If outer is 0, then either the new object is independent 
or it will become the outer object in an aggregation. 

options contains bit flags indicating the application's running state. To test the flags, use 
the TOcAppMode enum constants. 

id is a number ObjectComponents assigns to identify a particular type of object the 
application can create. If id is 0, the application is asked to create itself. To request 
particular document types, ObjectComponents passes the document template ID. 

The return value is a pointer to the !Unknown interface of whatever object the callback 
function creates, either the application itself or one of its objects. During aggregation, the 
return value becomes the inner !Unknown pointer in some other object. (!Unknown is a 
standard OLE type declared in compobj.h.) 

A callback of type TComponentFactory is passed to the constructor of an application's 
registrar object (either TOcRegistrar for a linking and embedding application or 
TRegistrar for an application that supports automation only). 

See also TOcAppMode enum, TOcRegistrar class, TRegistrar class 

Tlocaleld type definition ocf/autodefs.h 

typedef unsigned long Tlocaleld; 
A locale ID is a 32-bit value that identifies a language. The low half of the value is a 16-
bit language ID. In the current OLE definition, the upper word is reserved, so in effect a 
locale ID is a 32-bit language ID. 

Windows uses locale IDs to set the system's default language. ObjectComponents uses 
locale IDs in automation. An automation controller passes a locale ID to the server with 

Chapter 6, ObjectComponents library reference 599 



TOcApp class 

every command. The server is expected to interpret the commands it receives as strings 
in the given language. 

There are two predefined system locale settings in the olenls.h header. 

LOCALE_SYSTEM_DEFAULT The default locale set for the system. 

LOCALE_USER_DEFAULT The default locale set for a particular user (which can differ from the 
system setting on multiuser systems). 

See also Langxxxx language ID constants, TLangld typedef 

TOcApp class 
Base class 
TUnknown 

ocf/ocapp.h 

TOcApp is an ObjectComponents connector object for a linking and embedding 
application. It implements the interfaces an application needs for communicating with 
OLE. Any ObjectComponents application that supports linking and embedding needs 
to have a TOcApp object. Usually it is created for you by your TOcRegistrar object. 

Applications that support automation but do not support linking and embedding do 
not need a TOcApp object. They create a TRegistrar instead of a TOcRegistrar. 

TOcApp is a COM object and implements the !Unknown interface. 

See also 
TOcModule::Onlnit, TOcRegistrar class, TOleFactory<> class, TRegistrar class, 
TUnknown class 

Type definitions 

TOcMenuEnable 
enum TOcMenuEnable 
These enumeration values are flags that can be combined with the bitwise OR operator 
( I ). A container passes them to the EnableEditMenu function in order to determine which 
OLE commands on the Edit menu should be enabled. The answer depends on whether 
the container supports any of the data formats currently present on the Clipboard. 

EnablePaste 

EnablePasteLink 

The Paste command places an object from the Clipboard in the open 
document. The format of the new data object depends on what the server 
prefers and the container supports. 

The Paste Link command adds to the open document a link to the object on 
the Clipboard. 

600 ObjectWindows Reference Guide 



TOcApp class 

~!mu command enabled Constant 

EnableBrowseClipboard The Paste Special command invokes a standard dialog box that shows all 
the data formats available for the object currently on the Clipboard and lets 
the user choose among them. 

EnableBrowseLinks The Links command displays a list of all the linked objects in the open 
document, allowing the user to update or delete them. 

See also REGFORMAT macro, TOcApp::EnableEditMenu 

Public member functions 

AddUserFormatName 
void AddUserFormatName(char far* name, char far* resultName, char far* id = O); 
Call this function to associate a result name with a Clipboard format. The resultName 
parameter describes the data format to users and appears in Help text of the Paste 
Special dialog box. Use one of the other two parameters to identify the associated 
Clipboard format. This method is used only if you have a non-standard, private 
Clipboard format that you want to associate with names used in the Paste Special dialog 
box. 

A custom format must first be entered in the application's registration tables using the 
REGFORMAT macro. For example, 

REGFORMAT(O, "DrawingClip", ocrContent, ocrIStorage, ocrGet); 

"DrawingClip" becomes the ID string that Windows uses internally to identify the 
custom format. To associate more descriptive strings with the custom format, call 
AddUserFormatName: 

AddUserFormatName I "DrawingPad", "a freehand drawing", "DrawingClip"); 

The name of the "DrawingClip" format is now "DrawingPad". If the user chooses Paste 
Special when data of this type is on the Clipboard, the name in the dialog box is 
"DrawingPad". It is perfectly legal for the ID and the name to be the same string. 

The result string, "a freehand drawing", typically appears in the Help text during a Paste 
Special operation. 

See also REGFORMA T macro 

Browse 
bool Browse(TOclnitlnfo& initlnfo); 
Displays the Insert Object dialog box allowing the user to choose from available servers 
to create a new object in the open document. Returns true if the user inserts an object 
and false if the user cancels. 

Create initinfo first by passing to its constructor the view object where the new object 
will be inserted. Browse fills initinfo with information about the object. Then use initinfo 
to create a new TOcPart. 

See also TOcinitinfo, TOcPart, TOcView 

Chapter 6, ObjectComponents library reference 601 



TOcApp class 

BrowseClipboard 
bool BrowseClipboard(TOclnitlnfo& initlnfo); 
Displays the Paste Special dialog box showing the available formats for the data 
currently on the Clipboard, allowing the user to choose what format to paste. Returns 
true if the user pastes data and false if the user cancels. 

Create initlnfo first by passing to its constructor the view object where the new object 
will be inserted. Browse fills initlnfo with information about the object. Then use initlnfo 
to create a new TOcPart. 

This function is called by TOcView::BrowseClipboard. 

See also TOclnitinfo, TOcPart, TOcView 

Can Close 
bool CanClose(); 
A container calls this function to determine whether it can shut down. CanClose polls all 
the connected servers and attempts to close them. It returns true if it is safe to close the 
application. 

Clip 
bool Clip(IBPart far* part, bool link, bool embed, bool delay = false); 

Copies the currently selected object to the Clipboard. Usually you do not have to call 
Clip directly because TOc View::Copy does it for you. 

part points to the linked or embedded object. You can pass an object of type TOcPart for 
this parameter. (TOcPart supports the IBPart interface, which is defined in the BOCOLE 
library.) If link and embed are both true, then other applications can either link or embed 
the object when they paste it from the Clipboard. Make delay true to have 
ObjectComponents provide delayed rendering of alternate data formats. (Delayed 
rendering saves memory. For more information, refer to the Clipboard Overview in the 
API Help file. Look for the topic "Clipboard Operations.") 

See also TOcPart, TOcView::Copy 

Convert 
bool Convert(TOcPart* ocPart, bool activate); 
Displays the Convert dialog box where the user can alter the aspect or format of a linked 
or embedded object. ocPart points to the object the user wants to modify. 

Make activate true if you want ObjectComponents to activate the object after converting 
it. Generally activate should be false if the user has chosen Links from the Edit menu. If 
the user tries to activate ~object whose server is not present, you can offer the option of 
converting the object to another server, and in that case activate should be true. 

See also TOcPart 

Drag 
bool Drag(IBPart far* part, TOcDropAction inAction, TOcDropAction& outAction); 
A container calls this function when the user wants to drag one of the container's objects. 
The first parameter, part, is the object the user is trying to drag. Usually this is an object 
of type TOcPart. (TOcPart supports the IBPart interface, which is defined in the 
BOCOLE library.) 

602 ObjectWindows Reference Guide 



TOcApp class 

inAction combines bit flags indicating possible drag actions the application supports. 
The flags indicate whether the user can move, copy, or link the object. The value 
returned in outAction contains just one of the action flags indicating what actually did 
happen. 

See also TOcDropAction enum, TOcPart 

EnableEditMenu 
uinl EnableEditMenu(TOcMenuEnable enable, IBDataConsumer far* ocview); 
An application calls EnableEditMenu to find out which of the OLE-related commands on 
its Edit menu should currently be enabled. The flags combined in enable indicate the 
commands to be tested, and the return value uses the same bit flags to indicate which 
commands to enable. ocview is usually an object of type TOc View. (TOc View supports the 
IBDataConsumer interface, which is defined in the BOCOLE library.) 

TOleContainer and TOleView call TOcApp::EnableEditMenu in the command enabler 
functions for the Edit menu. 

See also TOcApp::TOcMenuEnable enum, TOcView 

Ev Activate 
void EvActivate(bool active); 
A container calls this function to tell OLE when its frame window becomes active or 
inactive. Make active true if the window was activated or false if it was deactivated. 

See also TOcApp::EvResize, TOcApp::EvSetFocus 

EvResize 
void EvResize(); 
A container calls this function to tell OLE when the size of its frame window (the main 
window) has changed. OLE might need this information to let a server modify its tool 
bar during in-place editing. 

See also TOcApp::EvActivate, TOcApp::EvSetFocus 

EvSetFocus 
bool EvSetFocus(bool set); 
A container calls this function to tell OLE that its frame window has either received or 
yielded the input focus. Make set true if the window gained the focus or false if it lost 
the focus. 

See also TOcApp::EvActivate, TOcApp::EvResize 

GetName 
string GetName() cons!; 
Returns a string object containing the application's name. 

GetNamelist 
TOcNamelist& Ge!Namelist(); 
Returns an array of TOcNameList objects containing the names of all the Clipboard 
formats the application supports. The TOcView class uses this list when executing the 
Paste Special command. The list provides the names and Help strings associated with 
the formats. 

Chapter 6, ObjectComponents library reference 603 



TOcApp class 

See also TOcNameList 

GetRegistrar() 
TOcRegistrar& Ge!Registrar(); 
Returns the application's registrar object. This is the same object passed into the TOcApp 
constructor. 

See also TOcApp public constructor and destructor, TOcRegistrar class 

lsOptionSet 
bool ls0ptionSet(uint32 option) cons!; 
Tests the application mode flags and returns true if those set in option are set for the 
application. The application mode flags are defined in the TOcAppMode enum. 

See also TOcApp::SetOption, TOcAppMode enum 

Paste 
bool Paste(TOclnitlnfo& initlnfo); 
Fills initinfo with information about the object on the Clipboard. Returns true if it 
succeeds in gathering information and false if it fails. 

Create initlnfo first. The TOclnitinfo constructor receives the view object where the new 
part will be inserted. Then call Paste to put information in initinfo. Finally, call 
TOcView::Drop to put the object in the view. 

This function is called by TOcView::Paste. 

See also TOclnitlnfo, TOcView, TOcView::Drop, TOcView::Paste 

RegisterClass 
bool RegisterClass(const string& progid, BCID classld, bool multiUse); 
Tells OLE that the application is capable of producing objects of a certain type. What 
objects a server can produce depend on the types of documents it registers. 

progid is the registered string that identifies a type of object. 

RegisterClasses loops through the application's document templates and calls 
RegisterClass once for each type. The call is made internally and usually you do not need 
to invoke either function directly. 

See also TOcApp::RegisterClasses, TOcApp::UnregisterClass, 
TOcApp::UnregisterClasses 

RegisterClasses 
void RegisterClasses(const TDocTemplate* tplHead = ::DocTemplateStaticHead); 
Announces to OLE that the application is running and tells OLE about each type of 
document the application has registered. The document types are exposed to OLE as 
kinds of objects the application can produce. RegisterClasses tells OLE who you are and 
what you can make. 

tplHead points to the beginning of the application's list of document templates. 
ObjectWindows stores this list in the global variable DocTemplateStaticHead. 
UnregisterClasses loops through the list of document types and calls UnregisterClass for 
each one that has a registered progid. 

604 ObjectWindows Reference Guide 



TOcApp class 

RegisterClasses loops through the document structures in tplHead and calls RegisterClass 
once for each type that has a progid. The call is made internally, and usually you do not 
need to invoke either function directly. 

See also progid registration key, TOcApp::RegisterClass, TOcApp::UnregisterClass, 
TOcApp::UnregisterClasses 

ReleaseObject 
virtual void ReleaseObject(); 
ReleaseObject notifies the object that the application's main window is gone. If the 
application is not serving a client, ReleaseObject also decrements the TOcApp object's 
internal reference count. The object will destroy itself when the count reaches zero. The 
destructor of TOcModule calls this function. 

See also TOcModule 

SetOption 
void Set0plion(uint32 bit, bool state); 
Modifies the application's running mode flags. bit contains bit flags from the 
TOcAppMode enum. If state is true, SetOption turns the flags on. If state is false, it turns 
the flags off. You should never have to call this function because ObjectComponents 
always maintains the mode flags. 

See also TOcApp::lsOptionSet, TOcAppMode enum 

Setup Window 
void SetupWindow(HWND frameWnd); 
Tells the TOcApp object what window to associate with the application. Usually 
frameWnd is the application's main window. Usually this function is called from the 
Setup Window function associated with the application's main window. 

TranslateAccel 
bool TranslateAccel(MSG far* msg); 
A container application adds TranslateAccel to its Windows message loop if it wants to 
make a DLL server's accelerator keystrokes available to the user during in-place editing. 
DLL servers require this cooperation because they do not have message loops of their 
own, as an .EXE server does. 

If you call TranslateAccel after the usual call to the Windows API TranslateAccelerator, 
then your own accelerators will have priority if they happen to conflict with the server's. 

msg holds a Windows message structure. The return value is true if the server translates 
the accelerator and false if it does not. 

UnregisterClass 
boo.I UnregisterClass(const string& progid); 
Notifies OLE when the application is no longer available to produce objects of a certain 
type. progid is the registered string that identifies a type of object. 

UnregisterClasses loops through all the documents the application registered and calls 
UnregisterClass for each one. The destructor of TOcApp calls UnregisterClasses. 

See also TOcApp::RegisterClass, TOcApp::RegisterClasses, TOcApp::DnregisterClasses 

Chapter 6, ObjectComponents library reference 605 



TOcApp class 

UnregisterClasses 
void UnregisterClasses(const TDocTemplate* tplHead = ::DocTemplateStaticHead); 
Announces to the system that the application is no longer available for OLE interactions. 
tplHead points to the beginning of the application's list of document templates. 
ObjectWindows stores this list in the global variable DocTemplateStaticHead. 

UnregisterClasses loops through the list of document types and calls UnregisterClass for 
each one that has a registered progid. UnregisterClasses is called from the TOcApp 
destructor. 

See also progid registration key, TOcApp::RegisterClass, TOcApp::RegisterClasses, 
TOcApp:: UnregisterClass 

Protected constructor and destructor 
Constructor 
TOcApp(TOcRegistrar& registrar, uint32 options= ULONG_MAX, !Unknown* outer= 0, 

const TDocTemplate* tplHead = ::DocTemplateStaticHead); 
The constructor for a TOcApp object expands the application's message queue if 
necessary to accommodate OLE message traffic and builds the application's list of 
supported Clipboard formats. 

registrar is a registration object that processes the command line. Create the registrar 
first. 

options is a set of application mode bit flags. The TOcApp object is usually created in the 
TComponentFactory callback function. The constructor's options parameter is the same as 
the callback's options parameter. 

outer points to the !Unknown interface of the outer object inside which the new 
application is asked to aggregate itself. 

tplHead points to the head of an application's list of document templates. The 
ObjectWindows Library stores an application's document template list in the global 
variable DocTemplateStaticHead. 

Destructor 
NTOcApp(); 
The TOcApp destructor notifies OLE that the application is no longer available. 

Usually the creation and destruction of an application's TOcApp object are managed by 
the TOcRegistrar object. 

See also TComponentFactory typedef, TOcRegistrar class, TOcApp::ReleaseObject 

Protected member functions 
Forward Event 
uint32 ForwardEvent(int eventld, const void far* param); 
uint32 ForwardEvent(int eventld, uint32 param = O); 
Both forms send a WM_OCEVENT message to the application's main window. The 
eventld parameter becomes the message's wParam and should be one of the 

606 ObjectWindows Reference Guide 



TOcAppMode enum 

OC_APPxxxx or OC_ VIEWxxxx constants. The second parameter becomes the 
message's lParam and can be either a pointer (Form 1) or an integer (Form 2). Which 
form you use depends on the information a particular event needs to send in its lParam. 

See also WM_OCEVENT message, OC_APPxxxx messages, OC_ VIEWxxxx messages, 
TOcRegistrar class 

Forward Event 
uint32 ForwardEvent(int eventld, canst void far* param); 
uint32 ForwardEvent(int eventld, uint32 param = O); 
Both forms send a WM_OCEVENT message to the application's main window. The 
eventld parameter becomes the message's wParam and should be one of the 
OC_APPxxxx or OC_ VIEWxxxx constants. The second parameter becomes the 
message's lParam and can be either a pointer (Form 1) or an integer (Form 2). Which 
form you use depends on the information a particular event needs to send in its lParam. 

See also WM_OCEVENT message, OC_APPxxxx messages, OC_ VIEWxxxx messages, 
TOcRegistrar class 

TOcAppMode enum ocf/ocreg.h 

enum TOcAppMode 
The enumerated values of TOcAppMode represent flags that ObjectComponents sets to 
indicate an application's running modes. Some flags are set in response to command­
line switches that OLE places on a server's command line. Others are set as the 
application registers itself. 

To determine whether a particular mode flag is set, call TOcApp::IsOptionSet or 
TOcModule::IsOptionSet. The TOcApp object holds the mode flags for each instance of the 
application. TOcModule simply queries the TOcApp. 

The enumerated values are bit flags and can be combined with the bitwise OR operator 
( I ). Flags marked with an asterisk can differ for each instance of an application. 

Constant' 
amAnyRegOption 

amAutomation 

amDebug 

amExeMode 

amExeModule 

amEmbedding 

amLangld 

amNoRegV alidate 

amRegServer 

amRun 

Combine the RegServer, UnregServer, and TypeLib bits. 

Register itself as single-use (one client only). Always accompanied by-Embedding. 

Enter a debugging session. 

*Nothing. This flag is set to indicate that the server is running as an .EXE. Either the 
server was built as an .EXE, or it is a DLL that was launched by an .EXE stub and is 
running as an executable program. 

Nothing. This flag is set to indicate that the server was built as a .EXE program. 

*Consider remaining hidden because it is running for a client, not for itself. 

Use the locale ID that follows this switch when creating registration and type 
libraries. (Useless without the -RegServer or -TypeLib switch.) 

Omit the usual validation check comparing the server's progid, clsid, and path to 
those registered with the system. The registrar object responds to this flag. 

Register itself in the system registration database and quit. 

Run its message loop. This is used by the factory callback function. 

Chapter 6, ObjectComponents library reference 607 



TOcAspect enum 

am5ervedApp 

am5hutdown 

*Avoid deleting itself (a client is using the application and holds a reference to it). 

*When the TComponentFactory callback sees this flag, it should terminate the 
application. 

*Register itself as a single-use (one client only) application. 

Create and register a type library. 

am5ingleUse 

amTypeLib 

amUnregServer Remove all its entries from the system registration database and quit. 

See also TOcModule::IsOptionSet, TOcApp::IsOptionSet 

TOcAspect enum ocf/ocobject.h 

enum TOcAspect 
A container uses these values to request that objects in its documents be presented in 
particular ways. An object might be asked to show all its content, to show a miniature 
representation of its content, or an icon that represents the type of object it is. A server is 
not obliged to support all the possible aspects. 

The values are flags and can be combined with the bitwise OR operator ( I ). 

asContent Show the full content of the object at its normal size. 

Show the content of the object shrunk to fit in a smaller space. 

Show an icon representing the type of object. 

Show the object as it would look if sent to the printer. 

Continue to use the last aspect specified. 

as Thumbnail 

as Icon 

asDocPrint 

as Default 

asMaintain Preserve the object's original aspect ratio. Do not alter the aspect ratio to fit the rectangle 
where the client chooses to show the object. 

See also 
TOcPart::Draw, ocrxxxx aspect constants 

TOcDialogHelp enum ocf/ocobject.h 

enum TOcDialogHelp 
The OC_APPDIALOGHELP event tells the container when the user clicks the Help 
button in a standard OLE dialog box. The lParam of the WM_OCEVENI message 
carries one of these values to indicate which dialog box the user has open. 

dhBrowse 

dhBrowseClipboard 

dhConvert 

dhBrowseLinks 

Insert Object dialog box 

Paste Special dialog box 

Convert dialog box 

Links dialog box 

608 ObjectWindows Reference Guide 

Choose an object to insert. 

Choose the data format for pasting an object. 

Convert an object to work with a different server. 

Update links to objects. 



dhChangelcon 

dhFileOpen 

dhSourceSet 

dhlconFileOpen 

See also 

Change Icon dialog box 

File Open dialog box 

TOcDocument class 

Used internally by Insert Object and Paste Special 
dialog boxes. 

Choose a file to open. 

Change Source dialog box Assign a new link source to a linked object. 

File Open dialog box Confirm that the chosen file contains an icon resource. 

EvOcAppDialogHelp event handler, OC_APPxxxx messages, 
TOleFrame::EvOcAppDialogHelp, WM_OCEVENT message 

TOcDocument class ocf/ocdoc.h 

The primary responsibility of a TOcDocument is to save and load data in a compound 
file using hierarchically ordered storages. (A storage is a compartment within a file, just 
as a directory is a compartment on a disk.) By default the application's native data 
always goes in the document's root storage, but the application is free to create its own 
storages in the same file. TOcDocument creates new storages below the root as necessary 
for OLE objects that the user inserts into the compound document. The new storages 
take their names from the names of the objects they store. TOc View automatically 
assigns a unique string identifier to each new object. 

Both servers and containers can create objects of type TOcDocument. In the container, 
this object represents an entire compound document. In the server, it represents the data 
for a single OLE object. (The server's single OLE object can have other OLE objects 
linked or embedded in it.) 

A TOcDocument object manages the collection of TOcPart objects that are deposited in 
one of the container's documents. It does not draw the data on the screen. To do that, 
every TOcDocument needs a corresponding TOc View or TOcRem View object. An 
application can possess multiple pairs of associated document and view objects, one for 
each open document. 

A container creates a TOcView object to draw its compound document in the container's 
own window. Because the window where the server draws belongs to the container (it 
is a child of the container's window), the server must create a remote view object 
(TOcRemView) for each document. 

In spite of the similar names, TOcDocument and TOcView are not part of the 
ObjectWindows Doc/View model. The nature of OLE makes it useful to separate data 
from its graphical representation, and the terms document and view express that 
separation even outside of ObjectWindows. 

To execute its tasks, a TOcDocument must use the standard OLE interfaces /Storage and 
IStream. Usually it is not necessary to use these interfaces directly because 
ObjectComponents implements them for you in its undocumented TOcStorage and 
TOcStream classes. These classes are thin wrappers around standard OLE interfaces. The 
implementation of TOcDocument makes use of both objects. 

Chapter 6, ObjectComponents library reference 609 



TOcDocument class 

See also 
TOcRem View class, TOcView class 

Public constructors and destructor 
Constructors 

Form 1 TOcDocument(TOcApp& app, cons! char far* fileName = O); 
Creates a new document object for the application and optionally assigns a file name for 
storing the document. A container uses this constructor for each document the user 
opens. 

Form 2 TOcDocument(TOcApp& app, cons! char far* fileName, !Storage far* storage!); 
Creates a new document object for the application and assigns a particular file and 
storage object to hold the document. The container calls this constructor when opening 
an existing file. The server and the container each create their own TOcDocument object 
for the object they share, but both their objects point to the same file for storing the 
object. 

IStorage is the standard OLE storage interface. ObjectComponents implements this 
interface in its internal, undocumented TOcStorage class. It is usually not necessary to 
manipulate the IStorage interface or the TOcStorage class directly in an 
ObjectComponents application. 

Destructor 
~ TOcDocument(); 
Destroys the TDocument object. 

Public member functions 
Close 
void Close(); 
A container calls TOcPart::Close for each object in the compound document to release its 
servers. TOleDocument calls this function automatically when asked to close down. 

See also TOcPart::Close, TOleDocument class 

GetActiveView 
TOcView* GetActiveView(); 
Returns a pointer to the active view. TOcPart calls this method to coordinate changing 
focus among active parts. 

See also TOcDocument::SetActiveView 

GetName 
string GetName() cons!; 
Returns the name of the file where the document will be stored. ObjectComponents 
keeps track of the name in order to create links correctly. 

See also TOcDocument::SetName 

610 0 bj ectWi n d ows Reference Guide 



TOcDocument class 

GetParts 
TOcPartCollection& GetParts(); 
Returns an object with information about all the parts in the document. Each part 
corresponds to a linked or embedded object. Create an iterator of type 
TOcPartCollectionlter to loop through the collection and extract information about 
individual parts. 

See also TOcPart class, TOcPartCollection class, TOcPartCollectionlter class 

GetStorage 
TOcStorage* GetStorage(); 
Returns the document file's root storage. 

See also TOcDocument: :SetStorage 

Load Parts 
bool LoadParts(); 
Reads all the linked and embedded parts saved in a compound file. LoadParts does not 
necessarily load all the data from all the parts into memory immediately. The data is 
needed only if the object is visible. 

LoadParts returns true if all the parts are read successfully. If no file has yet been 
assigned to the document, then there is nothing to load and the function still returns 
true. (A document can acquire a file from its constructor, from SaveToFile, or from 
SetStorage.) 

See also TOcDocument public constructors and destructors, TOcDocument::SaveParts, 
TOcDocument::SaveToFile, TOcDocument::SetStorage 

Rename Parts 
void RenameParts(IBRootlinkable far* BLDocumentl); 
Call this whenever the name of the document file changes. RenameParts updates the 
internal name stored with each part so that other applications can still link to them 
correctly. 

IBRootLinkable is a custom OLE interface defined in the BOCOLE support library. 
Objects of type TOc View implement this interface, so it is usually not necessary to 
implement it yourself. Simply pass the document's view object to RenameParts. 

TOc View calls this function automatically if the view is renamed. 

See also TOcDocument::SetName, TOcView::Rename 

Save Parts 
bool SaveParts(IStorage* storage= 0, bool sameAsloaded =true); 
Writes all the document's linked and embedded objects to the document's file. storage is 
the root storage in the file. A container's TOcDocument creates the storage object when 
the document is created or the first time it is saved. Find the object by calling GetStorage. 
A server gets the storage object from the container. It is usually not necessary to 
manipulate the storage object directly. 

sameAsLoaded should be true unless the name of the document file has changed since the 
last time the document was loaded or saved. 

Chapter 6, ObjectComponents library reference 611 



TOcDocument class 

SaveParts returns true if all the objects are successfully written to the file. 

LoadParts and SaveParts are called by the Open.and Commit methods in TOleDocument. 

See also TOcDocument::GetStorage, TOcDocument::LoadParts, 
TOcDocument::SaveToFile 

Save To File 
bool SaveToFile(const char far* newName); 
Saves the document in the file named by newName. Usually a container calls this 
function when the user chooses File I Save for an unnamed document or File I Save As 
for any document. SaveToFile creates a new storage object and then calls SaveParts. It 
returns true if all the linked and embedded parts are successfully saved. 

See also TOcDocument::SaveParts 

SetActiveView 
void SetActiveView(TOcView* view); 
A TOc View object calls this method when it is activated so that the document can locate 
the active view. TOcDocument communicates only with the active view. The active view 
sends messages to the corresponding window, perhaps a TOleView window. This 
window is responsible for telling other windows about changes. 

See also TOcDocument::GetActiveView 

SetName 
void SetName(const string& newName); 
Tells the document the name of the file where it will be stored. ObjectComponents 
needs to know the name in order to create links correctly. More specifically, SetName 
causes ObjectComponents to update the OLE moniker that a link server must provide. 

See also TOcDocument::GetName 

SetStorage 
Form 1 void SetStorage(const char far* path); 

Creates a compound file using the name in path and assigns the root storage of the new 
file to be the root storage of the document. Usually a container calls this function when 
the user chooses File I Save for an unnamed document or File I Save As for any 
document. 

Form 2 void SetStorage(IStorage* storage); 
Assigns storage to be the document's root storage. Usually a server calls this function 
when the container passes it an !Storage object. (An !Storage object implements the 
standard OLE interface !Storage. Usually it is not necessary to manipulate this object 
directly.) 

Assigns the document a storage for writing its data. storage becomes the document's root 
storage. Each linked or embedded object gets its own substorage under the root storage. 

See also TOcDocument::GetStorage 

612 Objec!Windows Reference Guide 



TOcDragDrop struct 

TOcDragDrop struct ocf/ocview.h 

Holds information that a view or a window needs in order to accept a drag and drop 
object. The OC_ VIEWDRAG and OC_ VIEWDROP messages carry a reference to this 
structure in their lParams. TOleView and TOleWindow process these messages for you, so 
you should not need to use TOcDragDrop directly unless you are programming without 
ObjectWindows. For examples of how to process OC_ VIEWDRAG and 
OC_ VIEWDROP messages, look at the source code for the EvOcViewDrag and 
EvOcViewDrop methods in TOleView and TOleWindow. 

See also 
OC_ VIEWxxxx messages, TOleView::EvOcViewDrag, TOleView::EvOcViewDrop, 
TOleWindow::EvOcViewDrag, TOleWindow::EvOcViewDrop 

Public data members 
lnitlnfo 
TOclnitlnfo far* lnitlnfo; 
When carried in an OC_ VIEWDROP message, this field describes an object about to be 
dropped on the view. When carried in an OC_ VIEWDRAG message, this field is zero. 

See also OC_ VIEWxxxx messages, TOclnitlnfo class 

Pos 
TRect Pos; 
The coordinates in Pos indicate the area of the view where the user has dropped an 
object. The position is given in device coordinates relative to the client area. 

See also TRect class 

Where 
TPoint Where; 
The coordinates in Where indicate the point on the view where the mouse released the 
object. The position is given in client area coordinates. 

See also TPoint class 

TOcDropAction enum ocf/ocobject.h 

enum TOcDropAction 
TOcApp::Drag uses these values to describe what actions are allowed and what actions 
actually occur during a drag and drop operation. The values are flags and can be 
combined with the bitwise OR operator ( I ). 

daDropCopy Copy the object to the drop site. 

daDropMove Move the object to the drop site. 

Chapter 6, ObjectComponents library reference 613 



TOcFormatlist class 

daDropLink Create a link to the object at the drop site. 

daDropNone No action occurred. 

See also 
TOcApp::Drag 

TOcFormatlist class 
Manages a list of Clipboard formats that a particular view supports. 

ocf/ocview.h 

TOcFormat, TOcFormatList, and TOcFormatListiter all work together to maintain the list 
of formats. TOcFormatList adds and deletes TOcFormat objects from the list. 
TOcFormatListiter enumerates the items in the list whenever the view needs to examine 
them one by one. Because TOcView creates and maintains this list internally, it is usually 
not necessary for you to use any of these classes directly. 

When ObjectComponents receives your document registration table, it sees entries for 
each Clipboard format that the document receives or produces. From these entries, 
TOcView creates a list of objects of type TOcFormat, each object representing one format. 
The view needs this list to know when a Clipboard command or drag and drop 
operation can succeed. For example, if the user drags a bitmap over a view that accepts 
only text, TOc View knows the object cannot be dropped and adjusts the cursor 
accordingly. 

See also 
TOcFormat class, TOcFormatListlter class, TOcView class 

Public constructor and destructor 

Constructor 
TOcFormatlist(); 
Creates an empty list object. To insert items in the list, call the Add method. 

Destructor 
N TOcFormatlist(); 
Deletes all the items in the list. 

See also TOcFormatList::Add 

Public member functions 

Add 
int Add(TOcFormat* format); 
Inserts a new Clipboard format item in the list. Returns 0 for failure and 1 for success. 

See also TOcFormatList::Clear 

614 ObjectWindows Reference Guide 



TOcFormatlistlter class 

Clear 
void Clear(int del = 1); 
Removes all the items from the list. If del is 1, Clear also deletes all the TOcFormat objects. 

See also TOcFormatList::Add, TOcFormatList::Detach 

Count 
virtual uint Count() canst; 
Returns the number of items in the list. 

See also TOcFormatList::IsEmpty 

Detach 
int Detach(const TOcFormat* format, int del = O); 
Removes one format item from the list. If delis 1, then Detach also deletes the TOcFormat 
object. 

See also TOcFormatList::Add, TOcFormatList::Clear 

Find 
unsigned Find(const TOcFormat* format) canst; 
Searches the list for the object passed as format. If the object is found, then Find returns 
the object's position in the list. (The first position is 0.) If format is not in the list, Find 
returns UINT_MAX. 

ls Empty 
int lsEmpty() canst; 
Returns 1 if the list object currently contains no TOcFormat items and 0 if the list is not 
empty. 

See also TOcFormatList::Count 

operator[] 
TOcFormat*& operator [(unsigned index)]; 
Retrieves a Clipboard format by its position in the list. If index is 1, for example, the [] 
returns the second item in the list. The order of items depends on the priority assigned 
to them when they are registered. 

TOcFormatlistlter class ocf/ocview.h 

Enumerates all the Clipboard formats that a particular view supports. 

TOcFormat, TOcFormatList, and TOcFormatListlter all work together to manage the list of 
formats. TOcFormatList adds and deletes TOcFormat objects from the list. 
TOcFormatListlter enumerates the items in the list whenever the view needs to examine 
them one by one. Because TOcView creates and maintains this list internally, it is usually 
not necessary for you to use any of these classes directly. 

When ObjectComponents receives your document registration table, it sees entries for 
each Clipboard format that the document receives or produces. From these entries, 
TOc View creates a list of objects of type TOcFormat, each object representing one format. 
The view needs this list to know when a Clipboard command or drag and drop 

Chapter 6, ObjectComponents library reference 615 



TOcFormatName class 

operation can succeed. For example, if the user drags a bitmap object over a view that 
accepts only text, TOcView knows the object cannot be dropped and adjusts the cursor 
accordingly. 

See also 
TOcFormat class, TOcFormatList class, TOcView class 

Public constructor 

Constructor 
TOcFormatListlter(const TOcFormatList& collection) 
Constructs an iterator to enumerate the Clipboard formats contained in collection. 

Public member functions 
Current 
TOcFormat* Current() const; 
Returns the format that the iterator currently points to. 

operator++ 
Form 1 TOcFormat* operator++(); 

Returns the current format and then advances the iterator to point to the next format 
(postincrement). 

Form 2 TOcFormat* operator++(int); 
Advances the iterator to point to the next format in the list and then returns that format 
(preincrement). 

operator intO 
operator int() const; 
Converts the iterator to an integer value in order to test whether the iterator has finished 
enumerating the collection. If parts remain unenumerated, the operator returns the 
iterator's current position in the list of parts. If the iterator has reached the end of the list, 
the operator returns zero. 

Restart 
Form 1 void Restart(); 

Resets the iterator to begin again with the first format in the list. 

Form 2 void Restart(unsigned start, unsigned stop); 
Resets the iterator to enumerate a subset of the format list, beginning with the object at 
position start and ending with the object at position stop. 

TOcFormatName class ocf/ocapp.h 

TOcApp uses this class internally to hold the strings that describe a Clipboard data 
format such as text or bitmap. TOcApp displays these strings in standard OLE dialog 
boxes such as Paste Link. 

616 0 bjectWi n d ows Reference Guide 



TOcFormatName class 

Every Clipboard format has three associated pieces of information: an ID value, a name 
string, and a result name. For standard formats, the ID is a constant such as CF _SYLK. 
The name string is a short name such as "Sylk." The result name is a longer string that 
tells the user what pasting this data produces-for example, "a spreadsheet." A 
TOcFormatName object holds all three values for one format. 

TOcApp makes a TOcNameList object to hold all the format names it needs. It loads 
descriptive strings into TOcFormatName objects and adds the objects one by one to its 
name list. Both objects are created and managed inside TOcApp. Usually you do not 
have to manipulate either of them directly. 

See also 
TOcApp class, TOcNameList class 

Public constructors and destructor 
Constructors 

Form 1 TOcFormatName(); 
Constructs an empty format name object. 

Form 2 TOcFormatName(char far* fmtName, char far* fmtResultName, char far* id = O); 
Constructs a format name object and initializes it with three values that describe a 
Clipboard format.fmtName is the name of the format ("metafile").fmtResultName 
describes what the user gets by pasting this format ("a Windows metafile picture"). id is 
the value that Windows assigns to identify the format (CF _METAFILEPICT) but 
expressed as a string of decimal digits ("3"). 

Destructor 
~ TOcFormatName(); 
Releases the object. 

Public member functions 
Getld 
const char far* Getld(); 
Returns a pointer to the string that the system uses to designate the format. 

GetName 
const char far* GetName(); 
Returns a pointer to the name of the format. 

GetResultName 
const char far* GetResultName(); 
Returns the descriptive string that tells the user what pasting data of this format 
produces. 

operator== 
bool operator ==(const TOcFormatName& other); 
Returns true if other is the same object as this. 

Chapter 6, Objec!Components library reference 617 



TOclnitHow enum 

TOclnitHow enum ocf/ocobject.h 

enum TOclnitHow 
These values tell whether a container is to link or embed a new object it is receiving. The 
container passes this information to a TOclnitlnfo object when it receives a new OLE 
object. 

ihLink Link to the object. Create a reference in the container's document that points to the place in 
the server's document where the data actually resides. 

ihEmbed 

ihMetafile 

ihBitmap 

Embed the object. Copy the object's data directly into the container's document. 

Embed a static object that draws itself as a metafile. 

Embed a static object that draws itself as a bitmap. 

See also TOclnitlnfo public constructors, TOclnitWhere enum 

TOclnitlnfo class ocf/ocobject.h 

TOclnitlnfo holds information that tells ObjectComponents how to create a new part. 
When the user pastes, inserts, or drops an object into a container, ObjectComponents 
creates a TOclnitlnfo object, initializes it with information about the incoming OLE 
object, and passes the info object to the TOcPart constructor. The info object tells the part 
where to find its data and how to create itself. 

If you are using ObjectWindows, TOleView manages these details for you. If you are 
programming without ObjectWindows, you can find sample code for using TOclnitlnfo 
objects in the TOleView methods that insert objects: look at the code for 
CmEditlnsertObject and CmEditPasteSpecial. Look also at the code for TOcView::Drop. 

See also 
TOcPart Class, TOcView::Drop, TOleView::CmEditlnsertObject, 
TOleView::CmEditPasteSpecial 

Public data members 
Container 
IBContainer far* Container; 
Container is the view object that is about to receive the object. IBContainer is an 
undocumented custom OLE interface defined in the BOCOLE support library and 
implemented in TOcView. The Container data member can hold an object of type 
TOcView. 

See also TOcView class 

Hlcon 
HICON Hlcon; 

618 ObjectWindows Refeqince Guide 



TOclnitlnfo class 

Hlcon holds the icon to draw if the user chooses the Display As Icon option from the 
Insert Object dialog box. The Hicon handle is actually a global memory handle to a 
metafile containing the icon. The Browse and BrowseClipboard functions in TOcApp 
handle the Insert Object dialog box for you, so usually you do not need to display the 
icon directly yourself. 

How 
TOclnitHow How; 
Tells whether the object should be linked or embedded when it is added to the 
document. 

See also TOcinitHow enum 

Storage 
!Storage far* Storage; 
Storage is the storage object in a compound file. The container provides the storage to 
hold data transferred from the server. !Storage is a standard OLE interface. 
ObjectComponents implements the !Storage interface in TOcStorage, so Storage usually 
holds a TOcStorage object. 

Where 
TOclnitWhere Where; 
Tells where the server will place the object's data. For example, the server can choose to 
transfer data by placing it in a file, in a storage, or in a memory handle. 

See also TOcinitWhere enum 

Data 
IDataObject* Data; 
One of four data fields in an anonymous union, this field is used when Where is 
iwDataObject indicating that the server has created an OLE data object to transfer the 
data for the incoming object. Data points to the IDataObject interface on the server's data 
transfer object. (IDataObject is a standard OLE interface.) This is the normal transfer 
method for objects received from the Clipboard or through a drag-and-drop operation. 

Path 
LPCOLESTR Path; 
One of four data fields in an anonymous union, this field is used when Where is iwFile 
indicating that the server has placed the data for the incoming object in a file. Path points 
to the name of the file where the data is stored. 

Cid 
BCID Cid; 
One of four data fields in an anonymous union, this field is used when Where is iwNew 
indicating that the incoming object is brand new, being freshly created. Cid is the class 
ID that the server registered for one of its document factories. It tells the server what 
kind of object to create. 

See also TOcApp::RegisterClasses, TOcinitinfo::Where 

Handle 
struct{ 

Chapter 6, ObjectComponents library reference 619 



TOclnitWhere enum 

HANDLE Data; 
uint DataFormat; 

} Handle; 
One of four data fields in an anonymous union, this structure is used when Where is 
iwHandle indicating that the server has placed the data for the incoming object in a 
memory handle. Data is the handle itself and DataFormat identifies a Clipboard format 
for the data in the handle. 

Public constructors 

TOclnitlnfo 
IBContainer far* Container; 
Container is the view object that is about to receive the object. IBContainer is an 
undocumented custom OLE interface defined in the BOCOLE support library and 
implemented in TOc View. The Container data member can hold an object of type 
TOcView. 

See also TOcView class 

TOclnitlnfo 
Form 1 TOclnitlnfo(IBContainer far* container); 

Use Form 1 when invoking the server to create a new object from scratch-for example, 
when processing the Insert Object command. The new part will be embedded, not 
linked. 

Form 2 TOclnitlnfo(TOclnitHow how, TOclnitWhere where, IBContainer far* container); 
Use Form 2 when creating a part to hold an object that already exists-for example, 
when loading a part from a storage in a compound document. how tells whether the 
object will be linked or embedded.where tells what medium the server will use to 
transfer data from the existing object. 

Both forms of the constructor create a TOcinitinfo object for placing a new part in 
container. container is the view that will hold the new part. IBContainer is a custom OLE 
interface defined in the BOCOLE support library and implemented in TOcView. 
container can be an object of type TOcView. 

Public member functions 

ReleaseDataObject 
uint32 ReleaseDataObject(); 
If the TOcinitinfo object holds a pointer to the data object from which the new part is 
about to be created, then ReleaseDataObject decrements the data object's reference count. 
Call this when you are through with the data object. 

See also TOclnitlnfo::Data 

TOclnitWhere enum ocf/ocobject.h 

enum TOclnitWhere 

620 0 b j e ct W i n d ow s R e f e r e n c e G u i d e 



TOclnvalidate enum 

These values tell where the data for an object resides. A container passes this 
information to a TOcinitlnfo object when it receives a new OLE object for linking or 
embedding. The server can choose any of several available channels for transferring the 
data in the object. 

iwFile 

iwStorage 

iwDataObject 

iwNew 

iwHandle 

The server passes the data in a disk file. 

The server passes the data in a storage object (part of a compound file). 

The server passes the data in a data transfer object, one that supports the standard 
IDataObjed OLE interface. (Objects transferred through the Clipboard or by dragging 
support this interface. TOcinitinfo holds a pointer to the interface.) 

The server will be asked to create a new object. 

The server passes a memory handle for the data. 

See also TOclnitinfo public constructors, TOclnitHow enum 

TOclnvalidate enum ocf/ocobject.h 

enum TOclnvalidate 
Functions that invalidate an object use these enumeration values to indicate whether the 
data in the object has changed or the appearance of the object has changed. It is possible 
for the data in an object to change without invalidating the view of the object. For 
example, if the object is drawn as an icon, then editing the data probably does not call 
for an update to the view. If both the data and the view change, then combine both flags 
with the bitwise OR operator ( I ). 

If the view is invalid, the object needs to be redrawn. If the data is invalid, then the object 
needs saving. (It is not necessary to save the object right away. invData simply indicates 
that the object is dirty and needs to be saved before the document is closed.) 

The data in an object has changed and should be updated in the container. invData 

invView The appearance of an object needs to change and should be updated in the container. 

See also TOcRem View::InvalidateTOc, TOle View::InvalidatePart, 
TOleWindow::InvalidatePart 

TOcMenuDescr struct ocf/ocapp.h 

The menu descriptor structure is used when merging the menus of a container and 
server for in-place editing. The structure holds a handle to a shared Windows menu 
object and a count of the number of drop-down menus in each group. 

If you are using ObjectWindows, use the information in the structure to construct a 
TMenuDescr object for the other application. To merge two menus, call 

Chapter 6, ObjectComponents library. reference 621 



TOcModule class 

TMenuDescr::Merge. If you are not using ObjectWindows, call the Windows API 
routines such as InsertMenu to place your own commands in the shared menu. 

The following messages carry a TOcMenuDescr struct in their lParams: 
OC_APPINSMENUS, OC_APPMENUS, and OC_ VIEWINSMENUS. The 
ObjectWindows OLE-enabled window and view classes process these messages for 
you. Unless you are programming without ObjectWindows, you usually will not have 
to use TOcMenuDescr directly. For examples of how to process the messages, see the 
source code for the relevant event handlers in TOleView, TOleWindow, TOleFrame, and 
TOleMD IFrame. 

See also 
OC_APPxxxx messages, OC_ VIEWxxxx messages, TMenuDescr class 

Public data members 
HMenu 
HMENU HMenu; 
Holds a handle to the shared menu. The handle is valid only while the menu is 
constructed. Do not store it for later use. 

Width 
int Width[6]; 
The Width array contains the number of pop-up menus in each menu group. The 
groups, in order, are File, Edit, Container, Object, Windows, and Help. 

The array is meant to help you construct a TMenuDescr object. The numbers it holds 
control how the menu is merged. 

See also TMenuDescr public constructors and destructors 

TOcModule class ocf/ocapp.h 

TOcModule is a mix-in class for deriving OLE-enabled application classes. Any 
ObjectComponents application that supports linking and embedding should derive its 
application class from both T Application and TOcModule. The ObjectComponents 
module class coordinates some basic housekeeping chores related to registration and 
memory management. It also holds a pointer to the TOcApp object that connects your 
application object to OLE through ObjectComponents. Allowing TOcModule to do this 
work also makes it easy to use the same code for both .EXE and .DLL versions of the 
same server. 

See also 
T Application class, TOcApp class 

622 0 b j e ct Windows Reference G u id e 



Public constructor and destructor 
Constructor 
TOcModule(); 

TOcModule class 

Builds a TOcModule. After creating a TOcModule object, you need to call Oclnit. 

Destructor 
N TOcModule(); 
Releases the TOcApp object. An application that derives from TOcModule does not need 
to call the TOcApp::ReleaseObject method when it closes down. (Never call delete to 
destroy a TOcApp object, either.) 

See Also TOcModule::OclnitTOcModuleOclnit 

Public member functions 
GetRegistrar 
TRegistrar& GetRegistrar(); 
Returns the application's registrar object. Be sure to call Oclnit first. 

See also TOcModule::Ocinit, TRegistrar class 

lsOptionSet 
bool ls0ptionSet{uint32 option) canst; 
Returns true if the command-line flag indicated by option is set and false if it is not. The 
registrar sets the flags for you when it interprets OLE-related switches on the 
application's command line. The possible values for option are enumerated in 
TOcAppMode. 

See also TOcAppMode class, TOcRegistrar class 

Oclnit 
void Oclnit{TOcRegistrar& registrar, uint32 options); 
Initializes ObjectComponents support for the code module. This call causes 
ObjectComponents to create the TOcApp connector object that attaches the application 
to the OLE system. Always call Ocinit right after constructing the module object. 

registrar is the application registrar object. It must be created before you call Oclnit. 

options is a set of bit flags describing command-line options set for this instance of the 
program. To test for particular options, call IsOptionSet. The possible option flags are 
defined in TOcAppMode. 

See also TOcApp class, TOcAppMode enum, TOcModule::IsOptionSet, 
TOcModule::IsOptionSet,, TOcRegistrar class 

Public data members 
OcApp 
TOcApp* OcApp; 

Chapter 6, ObjectComponents library reference 623 



TOcNamelist class 

Holds the TOcApp object that is the ObjectComponents partner object for your 
TApplication-derived class. This member is initialized when you call Oclnit. 

See also TOcApp class, TOcModule::Oclnit 

OleMalloc 
TOleAllocator OleMalloc; 
Sets up an allocator object that initializes the OLE system and sets up the memory 
allocator. OLE allows each program to set up a memory manager for OLE to use when 
allocating and de-allocating memory on behalf of that application. 

TOcModule simply chooses the default allocator. If you have unusual memory 
management needs and want to supply your own custom memory allocator, set its 
IMalloc interface in OleMalloc::Mem. 

See also TOleAllocator class, TOleAllocator::Mem 

TOcNamelist class ocf/ocapp.h 

TOcApp uses this class internally to manage a collection of TOcformatName objects. Each 
format name object holds three strings that describe a Clipboard data format such as text 
or bitmap. TOcApp displays these strings in standard OLE dialog boxes such as Paste 
Link. 

The list of format names is created and managed inside TOcApp. Usually you do not 
have to manipulate the list directly. To put your own custom formats in the list, 
however, you do have to register them. See TOcApp::AddUserformatName for more 
information about setting up custom formats. 

Standard Windows Clipboard formats are always added to the list for you. The name 
and result strings for standard formats are defined in OLEVIEW.RC. To localize the 
strings, edit this file. (Standard formats do not have an identifier string. Instead they 
have a registration number, such as CF _TEXT.) 

See also 
TOcApp class, TOcApp::AddUserFormatName, TOcFormatName class 

Public constructor and destructor 
Constructor 
TOcNameList(); 
Constructs a name list containing no items. To insert names in the list, call Add. 

Destructor 
~ TOcNameList(); 
Destroys the list and the objects in the list. 

See also TOcNameList::Add 

624 ObjectWindows Reference Guide 



TOcNameList class 

Public member functions 

operator[) 
Form 1 TOcFormatName*& operatorO(unsigned index); 

Returns the item at position index in the list of format name objects. The first object is at 
index 0. If index points past the end of the list, the function throws a precondition 
exception. 

Form 2 TOcFormatName* operatorO(char far* id); 
Returns the format name object whose format ID string matches id. The return value is 0 
if no match is found. 

See also TOcFormatName 

Add 
int Add(TOcFormatName* name); 
Inserts the object name into the list. Returns 1 for success and 0 for failure. 

See also TOcNameList::Clear, TOcNameList::Detach 

Clear 
void Clear(int de! = 1); 
Empties the list. If delis 1, Clear also deletes each object in the list. 

See also TOcNameList::Add, TOcNameList::Detach 

Count 
virtual uint Count() cons!; 
Returns the number of items in the list. 

See also TOcNameList::IsEmpty 

Detach 
int Detach(const TOcFormatName* name, int del = O); 
Removes the single object name from the list. If del is 1, Detach also deletes the object 
name. 

See also TOcNameList::Clear, TOcNameList::Add 

Find 
unsigned Find(const TOcFormatName* name) cons!; 
Searches the list and returns the position of name. If the name object is not in the list, Find 
returns UINT_MAX. 

ls Empty 
int lsEmpty() cons!; 
Returns 1 if the list currently contains no items and 0 if it contains at least one item. 

See also TOcNameList::Count 

C h a p I e r 6 , 0 b j e c I C o m p o n e n t s I i b r a r y r e f e re n c e 625 



TOcPart class 

TOcPart class 
Base class 
TUnknown 

ocf/ocpart.h 

A TOcPart object represents a linked or embedded object in a document. It represents 
the linked or embedded object as the container sees it. From the server's side, the same 
linked or embedded OLE object has two parts: data (TOcDocument) and a graphical 
representation of the data (TOcRemView). TOcPart manages a site in the container's 
document where a server places an OLE object. 

TOcPart is a COM object and implements the !Unknown interface. 

See also 
TOcDocument class, TOcPartCollection class, TOcRem View class, TUnknown class 

Public constructors 
Constructors 

Form 1 TOcPart(TOcDocument& document, TOclnitlnfo far& initlnfo, TRect pos, int id= O); 
document is the container's TOcDocument object representing the compound document 
that will hold the newly created part. initlnfo contains information about the object being 
inserted. It is usually obtained during a paste, drop, or insertion operation. The 
coordinates in pas designate the area where the new object will be drawn. id is any 
arbitrary unique integer used to distinguish this object from others in the same 
document. If id is 0, TOcPart generates a new ID automatically. 

Form 2 TOcPart(TOcDocument& document, canst char far* name); 
document is the same as for Form 1. The name string is the name of a linked or embedded 
part. The second form is used when loading a part from a compound document. The 
name of the part is also the name of the storage where the part was written. 

Both constructors expect to receive the container's own TOcDocument object. This 
represents the compound document where the new object will be placed. 

See also TQcDocument class, TOclnitlnfo class, TOcPart::Delete, TRect class 

Public member functions 

operator== 
bool operator==(const TOcPart& other); 
Returns true if other is the same TOcPart as this. This operator is defined for the use of 
the TOcPartCollection class. 

Activate 
bool Activate(bool activate); 
If activate is true, this function activates the part by asking the server to execute its 
primary (or default) verb for the object. If the default verb is Edit, for example, Activate 
initiates an in-place editing session. If activate is false, then this function deactivates an 
in-place editing session. 

626 0 b j e c I W i n d o w s R e f e re n c e G u i d e 



Activate returns true if the server is able to execute the command. 

See also TOcPart::IsActive, TOcPart::Open 

Close 
bool Close(); 

TOcPart class 

Disconnects the embedded object from its server. Returns true if the server closes 
successfully. 

Delete 
void Delete(); 
Delete is used when the user selects an embedded object and presses the Delete key (or 
does a cut operation). It first calls Close to disconnect the container from the embedded 
object. Then it releases the reference to the embedded part. 

See also TOcPart::Close 

Detach 
int Detach(); 
Separates a part from its document. Call Detach before cutting a part to the Clipboard, 
for example. 

Do Verb 
bool DoVerb(uint whichVerb); 
Tells the server to execute one of its commands on the part. A verb is usually an action 
such as Edit or Play. One server can support several verbs, and which Verb identifies a 
particular verb by its ordinal value. (The first verb, the primary or default verb, is zero.) 
Do Verb returns true if the server is able to complete the requested action. Executing a 
verb can cause the part to become activated. 

Seealso TOcPart::EnumVerbs , 

Draw 
bool Draw(HDC de, const TRect& pos, const TRect& clip, TOcAspect aspect = asDefault); 
Draws the part on the screen. If the part has not yet been loaded, Draw loads it first. 

de is a Windows device context where the part is to be drawn. The coordinates in pas tell 
where in the window to place the part. The clip rectangle designates an area outside of 
which the server cannot draw. clip and pas can be the same. If clip describes an empty 
rectangle, then the server can draw anywhere. aspect controls how the data were 
presented-as an icon, for example. 

See also TOcAspect enum, TRect class 

EnumVerbs 
bool EnumVerbs(const TOcVerb& verb); 
Call Enum Verbs to find out what verbs the server supports for a particular part. Each call 
to Enum Verbs places another verb in the verb parameter. When all the server's verbs 
have been enumerated, EnumVerbs returns false. 

TOleWindow calls EnumVerbs in order to place verbs for the active object on the 
container's Edit menu. 

C h a pt e r 6 , 0 b j e ct C o m po n e n ts I i bra r y re I e re n c e 627 



TOcPart class 

GetName. 
LPCOLESTR GetName(); 
Returns the string that identifies the part. Every part in a document has a different 
name. ObjectComponents creates the names for you automatically by incrementing an 
internal ID number for each new part. 

See also TOcPart::GetNameLen, TOcPart::Rename 

GetNameLen 
int GetNameLen(); 
Returns the number of characters in the name string that identifies the part. The count 
does not include the terminating null character. 

See also TOcPart::GetName, TOcPart::Rename 

GetPos 
TPoint GetPos() const; 
Returns the part's position within its container document. The position specifies the 
part's upper left comer in client area coordinates. The coordinates take into account any 
scaling set for the TOcView object that holds the part. 

See also TOcPart::GetRect, TOcPart::GetSize, TOcPart::SetPos, TPoint class 

GetRect 
TRect GetRect() const; 
Returns the rectangle that bounds the image of the part in the container's client area. The 
position of the rectangle is given in client area coordinates. 

See also TOcPart::GetPos, TOcPart::GetSize, TOcPart::UpdateRect, TRect class 

GetServerName 
LPCOLESTR GetServerName(TOcPartName partName); 
Asks OLE for the name of the object or of the object's server, depending on the value of 
partName. A container might want to display this information in its title bar. 

In the current implementation of ObjectComponents, this function is not used. The 
TOcView object automatically updates the container window title. 

See also TOcPartName enum 

GetSize 
TSize GetSize() canst; 
Returns the size of the part's image in the container document. The fields of the return 
value give the width and height of the part in client area coordinates. If there is scaling, 
the coordinates take that into account. 

See also TOcPart::GetPos, TOcPart::GetRect, TOcPart::SetSize, TSize class 

ls Active 
bool lsActive() const; 
Returns true if the part is currently active and false if it is not. 

See also TOcPart::SetActive 

628 ObjectWindows Reference Guide 



TOcPart class 

ls link 
bool lslink() const; 
Returns true if the part represents a linked OLE object and false if it represents an 
embedded OLE object. A container might use this method to distinguish visually 
between linked and embedded objects. For an example, look at the source code for 
TOleWindow::PaintParts. 

ls Selected 
bool lsSelected() const; 
Returns true if the part is currently selected and false if it is not. This function is 
frequently called in loops that process all the selected objects in a document. For 
example, when TOleView paints the parts in a document, it calls IsSelected for each one to 
determine where to paint selection boxes. 

Selection state information is maintained entirely in TOcPart and does not affect the 
OLE object itself. 

See also TOcPart::Select 

ls Visible 
Form 1 bool lsVisible() const; 

Returns true if the part is currently visible and false if it is hidden. 

Form 2 bool lsVisible(const TRect& logicalRect) const; 
Returns true if the part is currently visible within the given logicalRect area of the 
container's window. Returns false if the part is not visible, perhaps because the user has 
scrolled to another part of the document. 

See also TOcPart::SetVisible 

Load 
bool Load(); 
Initializes a TOcPart object with information read from a storage. 

See also TOcPart::Save 

Open 
bool Open(bool open); 
If Open is true, the Open command invokes the server to initiate an out-of-place editing 
session. More specifically, it asks the server to execute its Open verb. If Open is false, the 
command tells the server to hide its open editing window but does not end the session. 
Open returns true for success. If the server does not support editing, Open returns false. 

Note TOcPart::Close is not the opposite of TOcPart::Open. To terminate editing, pass false to 
Open. 

See also TOcPart::Activate 

Rename 
void Rename(); 
Causes the part to update the internal name that ObjectComponents generates to 
distinguish the parts in a document. Call Rename whenever you rename the document's 
file. OLE uses the object's name when creating links, so the object name must accurately 
reflect the file name in order for links to work. 

Chapter 6, ObjectComponents library reference 629 



TOcPart class 

See also TOcPart::GetName, TOcPart::GetNameLen 

Save 
Form 1 bool Save(bool sameAsloaded =true); 

Causes the part to write itself into the document's file stream. If sameAsLoaded is true, 
then the part saves itself in the same storage where it was last written. Setting 
sameAsLoaded to false causes the part to create a new storage for itself under the 
document's new root storage. Usually sameAsLoaded should be true in response to a 
File I Save command and false in response to File I Save As. 

(A storage is a compartment within a compound file. ObjectComponents manages the 
storages for you. Usually you do not have to give explicit instructions about where to 
store parts.) 

Form 2 bool Save(IStorage* storage, bool sameAsloaded, bool remember); 
The second form accepts a pointer to an I Storage interface, allowing you to control where 
the object is written. sameAsLoaded is the same as in Form 1. remember tells the part 
whether or not to remember the object in storage. When saving a part to its usual file, 
you typically want it to remember its own storage. When copying a part, on the other 
hand, you typically want the part to keep its original storage object, not the one where 
you are saving the copy. When saving a copy to a file for the Clipboard, for example, 
remember should be false. 

See also TOcPart::Load 

Select 
void Select(bool select); 
Tells the part whether or not it is currently selected. Make select true to select the part 
and false to deselect it. The user selects objects in order to perform operations on them. 
For example, the user selects an object before copying it to the Clipboard. When 
TOleView paints its parts, it queries each one and draws a selection box around any that 
the user has selected. 

See also TOcPart::IsSelected 

SetActive 
void SetActive(); 
Synchronizes an internal flag with the object's actual state, active or inactive. Usually 
you should not have to call this function. To make a part active, call TOcPart::Activate 
instead. 

See also TOcPart::Activate, TOcPart::IsActive 

Set Host 
bool SetHost(IBContainer far* container); 
Moves the part from one container to another. container can be an object of type TOc View 
(or one derived from TOcView). It designates the view that receives the part. SetHost is 
not usually called from within the application. 

IBContainer is a custom interface defined within the BOCOLE support library. TOc View 
implements this interface. 

630 ObjectWindows Reference Guide 



TOcPartCollection class 

SetPos 
void SetPos(const TPoint& pos); 
Sets the part's position within its container document. The position specifies the part's 
upper left comer in pixels measured from the upper left comer of the container's client 
window. If there is scaling, the coordinates take that into account. 

See also TOcPart::GetPos, TOcPart::SetSize, TOcPart::UpdateRect, TPoint class 

SetSize 
void SetSize(const TSize& size); 
Sets the size of the part's image in the container document. size sets the width and height 
of the part in client area coordinates. The coordinates take into account any scaling set 
for the TOc View object that holds the part. 

See also TOcPart::GetPos, TOcPart::SetSize, TOcPart::UpdateRect, TSize class 

SetVisible 
void SetVisible(bool visible); 
Shows or hides the part, according to the value of visible. 

See also TOcPart::IsVisible 

Show 
bool Show(bool show); 
Makes the part visible. Show is used to ask the Link Source to show itself in the container 
window. If show is false, the part hides itself. The return value is true for success. 

See also TOcPart::IsVisible 

UpdateRect 
void UpdateRect(); 
Sets the part to a new rectangle when its size or position changes. Called by SetPos and 
SetRect. 

See also TOcPart::GetRect, TOcPart::SetPos, TOcPart::SetSize 

Protected destructor 

Destructor 
NTOcPart(); 
Destroys the TOcPart object. 

TOcPartCollection class ocf/ocpart.h 

Manages a set of TOcPart objects. Every TOcDocument creates a part collection object to 
maintain the set of OLE objects linked or embedded in the document. The part collection 
object adds parts, deletes parts, finds them, counts them, and generally helps the 
document keep track of what it has. 

Because TOcDocument contains a part collection object, usually you do not have to create 
or manipulate the collection directly yourself. 

Chapter 6, Objec!Components library reference 631 



TOcPartCollection class 

See also 
TOcPart class, TOcPartCollectionlter class 

Public constructor and destructor 
Constructor 
TOcPartCollection (); 
Creates an empty collection. Call Add to insert parts in the collection. 

Destructor 
N TOcPartCollection(); 
Releases all the servers that supply the linked or embedded objects. 

Public member functions 
Add 
int Add(TOcPart* cons!& part); 
Adds a new part to the collection. Returns 1 for success and 0 for failure. 

See also TOcPart class 

Clear 
void Clear(); 
Disconnects all the parts in the collection from their servers, removes them from the 
collection, and releases them. Tells OLE that this collection has no further need for the 
servers. 

Count 
virtual unsigned Count() cons!; 
Returns the number of parts currently in the collection. 

Detach 
int Detach(TOcPart* cons!& part, int del = O); 
Removes part from the collection. If delis nonzero, then Detach also releases TOcPart 
object. If the part's internal reference count reaches zero as a result, the part deletes itself. 
Returns 1 for success and 0 for failure. 

See also TOcPart class 

Find 
unsigned Find(TOcPart* cons!& part) cons!; 
Searches for part and returns its position in the collection. If part is not in the collection, 
Find returns UINT_MAX. 

See also TOcPart class 

ls Empty 
int lsEmpty() cons!; 
Returns true if the collection currently contains no objects and false if it does contain at 
least one object. 

632 0 b j e c I W i n d o w s R e I e re n c e G u i d e 



TOcPartCollectionlter class 

Locate 
TOcPart* Locate(TPoint& point); 
Returns the part object visible at a particular point on the screen. The numbers in point 
are interpreted as logical coordinates. If no part in the collection occupies the given 
point, Locate returns 0. 

See also TPoint class 

SelectAll 
bool SelectAll(bool select= false); 
Sets the selection state of all the parts in the collection. If select is true, SelectAll selects 
them all. If select is false, it deselects all the parts. The user can perform actions (such as 
dragging, deleting, and copying) that affect all the selected objects. 

The container conventionally marks selected objects by drawing a rectangle with 
grapples (handles for moving the rectangle) around each of them. The TOleWindow class 
does this automatically in ObjectWindows programs. 

TOcPartCollectionlter class ocf/ocpart.h 

A part collection iterator enumerates the objects embedded in a compound document. 

A compound document can contain many linked and embedded objects. Within the 
container, each object is represented by an object of type TOcPart. To manage all the 
parts it contains, TOcDocument creates a collection object of type TOcPartCollection. The 
collection object takes care of adding and deleting members of the collection. In order to 
walk through the current list of its parts, TOcDocument also creates a part collection 
iterator. An iterator basically points to an element in the collection. You can increment 
the iterator to walk through the list of objects. The iterator signals when it reaches the 
end (the ++ operator returns 0). 

Together the collection and its iterator give the document much flexibility in managing 
its objects. 

See also 
TOcPart class, TOcPartCollection class 

Public constructor 

Constructor 
TOcPartCollectionlter(const TOcPartCollection& coll); 
Constructs an iterator to enumerate the objects contained in the collection coll. 

See also TOcPartCollection class 

Public member functions 

operator++ 
Form 1 TOcPart* operator++(int); 

Chapter 6, ObjectComponents library reference 633 



TOcPartName enum 

Returns the current part and then advances the iterator to point to the next part 
(postincrement). 

Form 2 TOcPart* operator++(); 
Advances the iterator to point to the next part in the list and then returns that part 
(preincrement). 

Current 
TOcPart* Current() const; 
Returns the part that the iterator currently points to. 

operator intO 
operator int() const; 
Converts the iterator to an integer value in order to test whether the iterator has finished 
enumerating the collection. Returns zero if the iterator has reached the end of the list 
and a nonzero value if it has not. 

Restart 
Form 1 void Restart(); 

Resets the iterator to begin again with the first part in the document. 

Form 2 void Restart(unsigned start, unsigned stop); 
Resets the iterator to enumerate a partial range of objects in the document, beginning 
with the object at position start in the list and ending with the object at position stop. 

TOcPartName enum ocf/ocobject.h 

enum TOcPartName 
When a container asks the server for the name of a part, it might want any of several 
possible 'answers. These values indicate which name the container wants to see. 

The string the server registered as the descriptwn for this type of object. 

The string the server registered as the progid for this type of object. 

pnLong 

pnShort 

pnApp The string the server registered as the descriptwn for the server application as a whole. 

See also 
description registration key, progid registration key, TOcPart::GetServerName 

TOcRegistrar class 

Base class 
TRegistrar 

ocf/ocapp.h 

TOcRegistrar manages all the registration tasks for an application. It processes OLE­
related switches on the command line and records any necessary information about the 
application in the system registration database. If the application is already registered in 

.634' ObjectWi n d ows Reference Guide 



TOcRegistrar class 

the database, the registrar confirms that the registered path, progid, and clsid are still 
accurate. If not, it reregisters the application. 

Every ObjectComponents application needs to create a registrar object. If your 
application supports linking and embedding, then create a TOcRegistrar object. If your 
application supports automation but not linking and embedding, then you should 
create a TRegistrar object instead. TOcRegistrar extends TRegistrar by connecting the 
application to the BOCOLE support library interfaces that support linking and 
embedding. 

An application's main procedure usually performs these actions with its registrar 

• Construct the registrar, passing it a pointer to the application's factory callback. 

• Call IsOptionSet to check for options that might affect how the application chooses to 
start (for example, remaining invisible if invoked for embedding. 

• Call Run to enter the program's message loop. 

TOcRegistrar inherits both IsOptionSet and Run from its base class, TRegistrar. 

See also 
clsid registration key, path registration key, progid registration key, TRegistrar class 

Public constructor and destructor 

Constructor 
TOcRegistrar(TReglist& reglnfo, TComponentFactory callback, string& cmdline, 

HINSTANCE hlnst = _hlnstance); 
reglnfo is the application registration structure (conventionally named appReg). 

callback is the factory callback function that ObjectComponents invokes when it is time 
for the application to create an object. An ObjectWindows program can use the 
TOleFactory class to implement this callback. 

cmdLine holds the command line string that invoked the application. 

hlnst is the application's instance. 

Destructor 
-TOcRegistrar(); 
Destroys objects the registrar uses internally. 

See also TComponentFactory typedef, TOleFactory<> class 

Public member functions 

BOleComponentCreate 
HRESULT BOleComponentCreate(IUnknown far* far* retlface, !Unknown far* outer, BCID idClass); 
Calls the BOCOLE support library to create one of the helper objects that 
ObjectComponents uses internally. Usually you do not need to call 
BOleComponentCreate yourself. 

Chapter 6, ObjectComponents library reference 635 



TOcRegistrar class 

retlface receives an interface to the requested component. 

outer is the IUnknown interface of the outer object that you want the new component to 
become a part of. 

idClass identifies the particular component you want to create. The possible values are 
defined as cidBolexxxx constants in ocf /boledefs.h. 

The return value is an OLE result, either HR_OK for success or HR_FAIL for failure. 

See also HR_xxxx result macros 

CreateOcApp 
void CreateOcApp(uint32 options, TOcApp*& ret); 
Creates the connector object that attaches an application to OLE. options is a set of bit 
flags indicating the application's running mode. The possible option flags are defined in 
TOcAppMode. ret is where CreateOcApp places a pointer to the newly created TOcApp 
connector object. 

CreateOcApp is called during TOcModule::Oclnit. You shouldn't have to call it directly 
yourself. 

The purpose of CreateOcApp is to shield you from the details of the TOcApp connector 
object. TOcApp is closely tied to the implementation of ObjectComponents, and the 
details of initializing an OLE session are subject to change. 

See also TOcApp class, TOcAppMode enum, TOcModule::Oclnit 

GetAppDescriptor 
TAppDescriptor& GetAppDescriptor(); 
Returns the application descriptor. ObjectComponents uses an application descriptor 
internally to hold information about a module. (A DLL gets an application descriptor of 
its own.) TAppDescriptor is undocumented because it is used only internally and is 
subject to change. The registrar classes, TOcRegistrar and TRegistrar, are the supported 
interfaces to the application descriptor. The registrar constructs the descriptor and most 
of its member functions call descriptor functions to perform the work. 

Usually you will not need to call this method yourself. 

Protected member functions 

Can Unload 
bool CanUnload(); 
Returns true if the application is not currently serving any OLE clients and false 
otherwise. 

GetFactory 
void far* GetFactory(const GUID& clsid, const GUID far& iid); 
Returns a pointer to the factory interface for creating the type of object indicated by clsid. 
iid names the particular interface you want to receive. If the registrar is unable to find an 
iid interface for clsid objects, it returns zero. 

636 ObjectWindows Reference Guide 



TOcRemView class 

ObjectComponents calls a DLL's GetFactory member every time a new client loads the 
DLL. Usually you do not need to call GetFactory yourself. 

Load BOie 
void LoadBOle(); 
Loads and initializes the ObjectComponents support library (BOCOLE.DLL). LoadBOle 
throws a TXObjComp exception if it cannot find BOCOLE.DLL, or if the installed version 
is not compatible with the application's version of the library. 

TOcRemView class 

Base class 
TOcView 

ocf/ocremvie.h 

A linking and embedding server creates a remote view object in order to draw its OLE 
object in the container's window. TOcRemView only draws the object. To load and save 
the data in the object, the server also needs to create a TOcDocument object. The 
document and the remote view together represent an OLE object as the server sees it. 

The container creates a TOcPart object for every OLE object it receives. The container's 
part object communicates with the server's document and view objects through OLE. 
The part tells the server's view when and where to draw the object. It tells the server's 
document when and where to load or save the object. 

Do not confuse the two kinds of views, TOc View with TOcRem View. A container creates 
a single view (TOcView) for its compound document. This view can contain parts 
received from other applications. Each part draws itself by invoking a remote view from 
its server. Containers create TOc View objects and servers create TOcRem View objects. (A 
TOcRem View object can become a container also, however, if the user embeds objects 
within objects.) 

In spite of the similar names, TOcDocument, TOcView, and TOcRemView are not part of 
the ObjectWindows Doc/View model. The nature of OLE makes it beneficial to separate 
data from its graphical representation, and the terms document and view express that 
separation even outside of ObjectWindows. 

TOcRem View is a COM object and implements the !Unknown interface. 

See also 
TOcDocument class, TOcView class 

Public constructor 

Constructor 
TOcRemView(TOcDocument& doc, TReglist* reglist = 0, !Unknown* outer= O); 
A remote view is always associated with a TOcDocument object. The document loads 
and saves data in an OLE object and the remote view draws the data in the container's 
window. In both forms of the constructor, doc is the document to associate with the 
view. That means the document must always be created first. 

Ch apter 6, 0 b j e ct Components Ii bra r y reference 637 



TOcRemView class 

Also, in both forms regList is a document registration table. A server that creates 
different kinds of objects needs several document registration tables, one for each type. 
The reg List parameter determines the type of object that the view represents. outer points 
to the !Unknown interface of a master object under which the new object is asked to 
aggregate itself. 

Registration tables are built with the BEGIN_REGISTRATION and 
END _REGISTRATION macros. 

The destructor for TOcRem View is private. ObjectComponents releases the object when 
it is no longer needed. 

See also BEGIN_REGISTRATION macro, TAutoObject class, TOcDocument class 

Public member functions 
Copy 
virtual bool Copy(); 
Copies the object to the Clipboard. Returns true for success. 

EvClose 
virtual void EvClose(); 
The application's remote view window calls this function when it closes. EvClose 
disconnects the view from any parts displayed in it. 

GetContainerTitle 
virtual LPCOLESTR GetContainerTitle(); 
Asks the container for its name. The server usually includes this string in its own title 
bar during out-of-place editing (when the user edits a linked or embedded object in the 
server's own window, not in the container's). 

GetlnitialRect 
void GetlnitialRect(); 
Requests the initial size and position of the area where the server can draw its object. 
The function initializes Extent, a protected data member that TOcRem View inherits from 
TOcView. 

See also TOcView::Extent 

Invalidate 
void lnvalidate(TOclnvalidate invalid); 
Notifies the container's active view that the server has changed either the contents or the 
appearance of the object. The invalid parameter indicates what needs changing. It can be 
invData, inv View, or both combined with the OR operator ( I). If the container is an 
ObjectComponents application, its active view generates an OC_ VIEWPARTINV AUD 
message. 

See also OC_ VIEWxxxx messages, TOclnvalidate enum 

lsOpenEditing 
bool lsOpenEditing() const; 

638 ObjectWindows Reference Guide 



TOcSaveload struct 

Returns true if the view is currently engaged in an open editing session. Open editing 
occurs when the user chooses an object's Open verb. Open editing takes place in the 
server's own frame window, unlike in-place editing, which takes place in the container's 
window. Remote view objects are used in both kinds of editing. 

Load 
bool Load(IStorage* storage!); 
Reads from storage! information specific to the remote view. This information is part of 
the data the server stores in the container's file when asked to save an object. Load 
returns true for success. 

!Storage is a pointer to an OLE interface. storage! can be a pointer to a TOcStorage object, 
the ObjectComponents implementation of that interface. · 

See also TOcRem View::Save 

Rename 
virtual void Rename(); 
Updates the name string ObjectComponents generates to distinguish the parts in a 
compound document. TOcRem View calls Rename during construction to find out what 
the container wants to call the object. It is usually not necessary for you to call Rename 
directly. 

Save 
bool Save(IStorage* storage!); 
Writes to storage! information specific to the remote view. This information becomes 
part of the object data stored in the container's compound document file. Returns true 
for success. 

!Storage is a pointer to an OLE interface. storage! can be a pointer to a TOcStorage object, 
the ObjectComponents implementation of that interface. 

See also TOcRem View:: Load 

TOcSaveload struct ocf/ocview.h 

Holds information that a view uses when loading and saving its OLE object parts. The 
OC_ VIEWLOADPART and OC_ VlEWSA VEPART messages carry a pointer to this 
structure in their lParams. 

The TOleView processes the load and save messages for you. If you are programming 
with the ObjectWindows Doc/View :model, then you do not need to use the 
TOcSaveLoad structure directly. For examples that show how to process the load and 
save messages, look at the source code for the EvViewSavePart and EvViewLoadPart 
methods in TOleView. · 

See also 
OC_ VlEWxxxx messages, TOleView::EvViewSavePart, TOleView::EvViewLoadPart 

Chapter 6, ObjectComponents library reference 639 



TOcScaleFactor class 

Public data members 
Release 
bool Release; 
Is true if the view should keep the storage object for future file operations and false if it 
should forget the storage object after using it once. 

Storage! 
!Storage far* Storage!; 
Points to the storage object assigned to hold the part. ObjectComponents implements 
the standard OLE [Storage interface in TOcStorage, so TOcStorage can be used to 
construct an IStorage. 

TOcScalefactor class ocf/ocview.h 

The TOcScaleFactor class carries information from a container to a server about how the 
container wants to scale its document. For example, if the container has a Zoom 
command and the user chooses to magnify the document to 120%, the server should 
match the scaling factor when it draws objects embedded in the container. 

ObjectComponents passes a reference to an TOcScaleFactor object in the lParam of 
OC_ VIEWGETSCALE and OC_ VIEWSETSCALE messages. When a container receives 
OC_ VIEWGETSCALE, it fills in the object with scaling information. When a server 
receives the OC_ VIEWSETSCALE information, it reads the scaling values and can use 
them in its paint procedure. 

TOcScaleFactor stores scaling information in its two TSize members, SiteSize and PartSize. 
The names refer to the area where the container wants to draw an object (the site) and 
the object itself (the part.) The values in the members need not be the actual size of the 
site or the part, however. What matters is the ratio of the two sizes. If the SiteSize values 
are twice as large as the PartSize values, then the server is being asked to draw the object 
at twice its default size. 

If you are programming with ObjectWindows, then the TOleWindow class takes care of 
scaling for you. For examples showing how to handle scaling without the benefit of 
ObjectWindows, look at the source code for the following TOleWindow methods: 
EvViewGetScale, EvViewSetScale, and SetupDC. 

See also 
OC_ VIEWxxxx messages, TOleWindow::EvViewGetScale, 
TOleWindow::EvViewSetScale, TOleWindow::SetupOC, TSize class 

Public constructors 
Constructors 

Form 1 TOcScaleFactor(); 
Initializes the site and part extents to 1 so the scaling factor is 100%. 

Form 2 TOcScaleFactor(const RECT& siteRect, const TSize& partSize); 

640 ObjectWindows Reference Guide 



TOcScaleFactor class 

Bases the initial scaling factor on the values in the given rectangle structure and size 
object. Calculates the extents of the rectangle siteRect and sets them in SiteSize. Copies 
partSize to PartSize. 

Form 3 TOcScaleFactor(const BOleScaleFactor far& scaleFactor); 
Bases the initial scaling factor on the values in scaleFactor. BOleScaleFactor is a structure 
that the BOCOLE support library uses internally to carry scaling information. You 
should not have to use the structure directly. 

Usually you do not have to construct a TOcScaleFactor object directly. 
ObjectComponents creates it for you and passes it in the OC_ VIEWGETSCALE or 
OC_ VIEWSETSCALE message. 

Destructor 
N TOcScaleFactor(); 

See also TOcScaleFactor::PartSize, TOcScaleFactor::SiteSize, TSize class 

Public data members 

PartSize 
TSize PartSize; 
Holds two values describing the default horizontal and vertical extent of a server's 
object. The values in PartSize do not need to be actual measurements. What matters is 
the ratio of the values here to the values in SiteSize. That ratio determines how an image 
should be scaled. 

See also TOcScaleFactor::SiteSize, TSize class 

SiteSize 
TSize SiteSize; 
Holds two values describing the horizontal and vertical extent of the area a container 
has allotted for displaying a linked or embedded object. The values in SiteSize do not 
need to be actual measurements. What matters is the ratio of the values here to the 
values in PartSize. That ratio determines how an image should be scaled. 

See also TOcScaleFactor::PartSize, TSize class 

Public member functions 

operator= 
Form 1 TOcScaleFactor& operator =(Const BOleScaleFactor far& scaleFactor); 

Copies the values in a BOleScaleFactor structure. The BOCOLE support library uses this 
structure internally to carry scaling information. 

Form 2 TOcScaleFactor& operator =(Const TOcScaleFact~r& scaleFactor); 
Copies one TOcScaleFactor into another. 

Both forms of the assignment operator copy the values from one scaling object into 
another. 

See also OC_ VIEWxxxx messages 

C h a pt e r 6 , 0 b j e c I C o m p o n e n Is I i b r a r y r e f e r e n c e 641 



TOcScrollDir enum 

GetScale 
uint16 Ge!Scale(); 
Retrieves a percentage value expressing the ratio of the part's size to the site's size. For 
example, if the part size is 20 x 20 and the site size is 40 x 40, then GetScale returns 200. 

See also TOcScaleFactor::SetScale 

GetScaleFactor 
void Ge!ScaleFactor(BOleScaleFactor far& scaleFactor) cons!; 
Fills in scaleFactor with values from the TOcScaleFactor object. BOleScaleFactor is a 
structure that the BOCOLE library uses to hold the same scaling information. Usually 
you do not have to call this function directly. 

lsZoomed 
bool lsZoomed(); 
Returns true if the sizes stored for the part and the site do not match. 

SetScale 
void SetScale(uint16 percent); 
Sets the ratio of the part's size to the site's size. More specifically, SetScale sets the size of 
the part to 100 and the size of the site to percent. 

See also TOcScaleFactor::GetScale 

TOcScrollDir enum ocf/ocobject.h 

enum TOcScrollDir 
The OC_ VIEWSCROLL event tells the container when the user performs a drag 
movement that should scroll the window. The lParam of the WM_OCEVENT message 
carries one of these values to indicate which direction the window has been asked to 
scroll. 

sdScrollUp 

sdScrollDown 

sdScrollLeft 

sdScrol!Right 

See also 

Scroll toward the top of the document. 

Scroll toward the bottom of the document. 

Scroll toward the left edge of the document. 

Scroll toward the right edge of the document. 

EvOcViewScroll event handler, OC_ VIEWxxxx messages, TOleView::EvOcViewScroll, 
TOleWindow::EvOcViewScroll, WM_OCEVENT message 

TOcToolbarlnfo struct ocf/ocview.h 

The OC_ VIEWSHOWTOOLS message carries a pointer to this structure in its lParam. 
The message asks a server for handles to its tool bars so the container can display them 

642 ObjectWindows Reference Guide 



TOcToolbarlnfo struct 

in its own window. This happens during in-place editing when the user opens an object 
in the container in order to modify it. 

The structure has four fields, allowing the server to return handles for up to four tool 
bars. Each tool bar occupies a different edge of the container's client area. 

For examples, look at the source code for TOleWindow::EvOcViewShowTools and 
TOleView::EvOcViewShowTools. The default implementations of these methods allow a 
single tool bar at the top of the client area. To give the container more tool bars, handle 
the OC_ VIEWSHOWTOOLS message directly yourself. 

See also 
TOleView::EvOcViewShowTools, TOleWindow::EvOcViewShowTools 

Public data members 
HBottomTB 
HWND HBottomTB; 
Holds a handle to the tool bar that the server wants to place at the bottom of the 
container's client area. 

HFrame 
HWND HFrame; 
If Show is true and the server is being asked to display its tool bar, then HFrame holds a 
handle to the frame window where the tool bar is to appear. If Show is false, then 
HFrame holds a handle to the server's own frame window. 

See also TOcToolbarlnfo::Show 

HLeftTB 
HWND HLeftTB; 
Holds a handle to the tool bar that the server wants to place at the left edge of the 
container's client area. 

HRightTB 
HWND HRightTB; 
Holds a handle to the tool bar that the server wants to place at the right edge of the 
container's client area. 

HTopTB 
HWND HTopTB; 
Holds a handle to the tool bar that the server wants to place at the top of the container's 
client area. 

Show 
bool Show; 
Is true to ask that the server display its tool bar or false to request that the server hide 
the tool bar. 

Chapter 6, ObjectComponents library reference 643 



TOcVerb class 

TOcVerb class ocf/ocpart.h 

Holds information about a single verb that a server supports for its objects. 

A verb is an action the server can perform with one of its objects. A server that creates 
text objects, for example, might support an Edit verb. A server for sound objects might 
support Edit, Play, and Rewind. 

When the user selects an object in a compound document, the container asks the 
TOcPart object for a list of the verbs it can execute. The container displays the verbs on 
its Edit menu. The command for enumerating verbs is TOcPart::Enum Verbs. 

Whenever the user selects a part, the container modifies its Edit menu by adding an item 
for manipulating the object. If the object is part of a Quattro Pro spreadsheet, for 
example, the container adds the command Notebook Object to its Edit menu. If the user 
selects this command, then the container shows a pop-up menu with the notebook's 
verbs, Edit and Open. 

For an example of how to implement these items on the edit menu, look at the source 
code for TOleWindow::CeEditObject in OLEWINDO.CPP. 

See also 
TOcPart::EnumVerbs 

Public constructor 

Constructor 
TOcVerb(); 
Creates an empty verb object. 

Public data members 

Can Dirty 
bool CanDirty; 
Is true if executing the verb can modify the object so that it might need to be saved or 
redrawn afterwards. For example, the CanDirty field of an Edit verb is always true, and 
the CanDirty field of a Play verb is usually false. 

Type Name 
LPCOLESTR TypeName; 
Points to the name of the type of object to which this verb belongs. The container usually 
shows this name in the Object item of its Edit menu. For example, if the user has selected 
an object inserted from the server in Step 15 of the ObjectWindows tutorial, TypeName is 
"Drawing Pad," and the container's Edit menu should have an item saying "Drawing 
Pad." Choosing this item leads to a pop-up menu with all the picture's verbs on it. 

The TypeName string comes from the value the server registered for the menuname key in 
its document registration table. 

See also TOcPart::Enum Verbs, menuname registration key 

644 ObjectWindows Reference Guide 



Verb Index 
uint Verblndex; 

TOcView class 

Holds the index number that identifies this verb in the server's list of possible verbs. The 
first verb is always 0 and is considered the default verb. If the user double-clicks the 
object, the container should ask the server to execute its default verb. 

Verb Name 
LPCOLESTR VerbName; 
Points to the name of the verb. This is the string that the container adds to its Edit menu. 

TOcView class 
Base class 
TUnknown 

ocf/ocview.h 

TOcView manages the presentation of a container's compound document containing 
linked and embedded objects. Each object in the document is represented by an object of 
type TOcPart. The document view knows which parts are selected or activated. It scrolls 
the window and remembers which parts are visible. It transfers parts to and from the 
document through the Clipboard or through drag-and-drop operations. 

Every TOc View has a corresponding TOcDocument. The ObjectComponents document 
object implements the OLE interfaces that manipulate the data in a compound 
document. TOcView implements the interfaces the manipulate the appearance of a 
compound document. 

TOcView is a COM object and implements the !Unknown interface. 

See also 
TOcApp class, TOcDocument class, TOcPart class, TUnknown class 

Public constructor 
Constructor 
TOcView(TOcDocument& doc, TRegList* reglist = 0, !Unknown* outer=O); 
doc refers to the TOcDocument object that corresponds to the view. TOcDocument 
manages the data in a compound document, and TOcView manages the appearance of 
the document on the screen. 

regList is the registration structure for a particular document. Use the 
BEGIN_REGISTRATION and END _REGISTRATION macros to create an object of type 
TRegList. 

outer is the root interface of an outer object inside which the new view is asked to 
aggregate itself. 

See also BEGIN_REGISTRATION macro, TAutoObject class, TOcDocument class 

Chapter 6, ObjectComponents library reference 645 



TOcView class 

Public member functions 

ActivatePart 
bool ActivatePart(TOcPart* part); 
Attempts to activate the given part (by calling TOcPart::Activate). Returns true if the 
designated part becomes active and false otherwise. If any other part was already 
active, it is deactivated first. 

See also TOcPart::Activate, TOcView::ActivePart, TOcView::GetActivePart 

BrowseClipboard 
bool. BrowseClipboard(TOclnitlnfo& initlnfo); 
Displays the Paste Special dialog box showing the available formats for the data 
currently on the Clipboard, allowing the user to choose what format to paste. Returns 
true if the user paste:;; data and false if the user cancels or the dialog box fails. 

Create initlnfo first by passing the view to the TOcinitlnfo constructor. BrowseClipboard 
fills initlnfo with information about the object. Then use initlnfo to create a new TOcPart. 

This function calls TOcApp::BrowseClipboard. 

See also TOcApp::BrowseClipboard, TOcApp::BrowseLinks, TOclnitlnfo class, 
TOcPart class 

Browselinks 
bool Browselinks(); 
Displays the Links dialog box showing all the linked objects in the compound document 
and what they are linked to. The user can modify the displayed links, perhaps to 
reconnect with a file that was moved. Returns false if an error prevents the dialog box 
from being displayed or if the user cancels the dialog box. 

See also TOcApp::BrowseClipboard 

Copy 
bool Copy(TOcPart* part); 
Creates a copy of a linked or embedded object and places it on the Clipboard. Returns 
true if the operation succeeds. Call Copy in response to Cut or Copy commands from the 
Edit menu. 

Ev Activate 
void EvActivate(bool activate); 
A container calls this function if any of its windows gains focus while any of its linked or 
embedded objects is being edited in place. EvActivate restores focus to the in-place 
activated view. If the user clicks in the client window of an MDI frame, for example, the 
client window needs to shift the focus back to the view, which in tum restores focus to 
the activated part. A part engaged in in-place editing should always retain the focus. 

activate should be true if the window is gaining focus and false if it is losing it. 

See also TOcView::EvClose, TOcView::EvResize, TOcView::EvSetFocus 

EvClose 
virtual void EvClose(); 

646 ObjectWindows Reference Guide 



TOcView class 

A container calls this function to tell ObjectComponents that the window associated 
with the view has closed. 

See also TOcView::Ev Activate, TOcView::EvResize, TOcView::EvSetFocus 

EvResize 
void EvResize(); 
A container calls this function to tell OLE when the window associated with the view 
changes size. OLE might need this information to let a server modify its tool bar during 
in-place editing. 

See also TOcView::Ev Activate, TOcView::EvClose, TOcView::EvSetFocus 

EvSetFocus 
bool EvSetFocus(bool set); 
A container calls this function to tell OLE that the window associated with the view has 
either received or lost the input focus. Make set true if the window gained the focus or 
false if it lost the focus. 

The function returns false if the view is unable to receive the focus. That happens if an 
object in the view is engaged in in-place editing. Such objects retain the focus until the 
editing session ends. 

See also TOcView::EvActivate, TOcView::EvResize, TOcView::EvSetFocus 

GetActivePart 
TOcPart* GetActivePart(); . 
Returns the currently active part. If the view does not contain an active part, the return 
value is 0. 

See also TOcView::ActivePart, TOcView::ActivatePart 

GetOcDocument 
TOcDocument& GetOcDocument(); 
Returns the ObjectCom:ponents document associated with the view. Views and 
documents work in pairs. TOcView manages the appearance of a compound document 
and TOcDocument manages the data in it. 

See also TOcDocument class, TOcView::OcDocument 

GetOrigin 
TPoint GetOrigin() cons!; 
Returns the physical coordinates currently mapped to the upper left comer of the 
container wiridow's client area. ObjectWindows programmers can ignore this method 
because TOleWindow performs scrolling for you. 

See also TOcView::Origin, TOcView::ScrollWindow, TPoint class 

GetWindowRect 
TRect GetWindowRect() cons!; 
Returns the client rectangle for the view window. 

See also TOcView::GetOrigin, TRect class 

Chapter 6, Objec!Components library reference 647 



TOcView class 

lnvalidatePart 
void lnvalidatePart(const TOcPart* part); 
Sends an OC_ VIEWP ARTINV AUD message to the container window. If the container 
window responds with false to indicate it has not processed the message, InvalidatePart 
tells the system that the area inside the part's bounding rectangle is invalid and needs 
repainting. 

Paste 
bool Paste(bool linking =false); 
Inserts an object from the Clipboard into the compound document. If linking is true, 
Paste will try to create a link rather than embedding the new object. Make linking true 
when processing the Paste Link command. 

RegisterClipFormats 
bool RegisterClipFormats(TReg List& reg List); 
Tells OLE what Clipboard formats the document understands. The list of formats comes 
from regList, the document's registration structure. Use the BEGIN_REGISTRATION 
and END_REGISTRATION macros to create regList. Also, the REGFORMAT macro 
places Clipboard format entries in the structure. To register custom Clipboard formats, 
be sure to call TOcApp::AddUserFormatName as well. 

RegisterClipFormats is called automatically when the view is constructed. 

See also BEGIN_REGISTRATION macro, REGFORMAT macro, 
TOcApp::AddUserFormatName, TOcView::FormatList 

ReleaseObject 
virtual void ReleaseObject(); 
Call this instead of delete to destroy a TOc View object when you are through with it. 
ReleaseObject decrements the view's internal reference count and dissociates the view 
from its window. 

See also TOcView::SetupWindow 

Rename 
virtual void Rename(); 
Tells OLE when the name assigned to a compound document has changed. OLE 
updates its internal records. Also, the associated TOcDocument object passes the new 
name to any linked or embedded objects it contains. 

ScrollWindow 
void ScrollWindow(int dx, int dy); 
Brings new areas of a document into view by adjusting the origin of the container 
window. dx and dy are horizontal and vertical offsets added to the origin. This function 
is usually called in response to messages from the window scroll bars or from the arrow 
keys. 

See also TOcView::GetOrigin, TOcView::Origin 

Setlink 
void Setlink(bool pastelink); 

648 ObjectWindows Reference Guide 



TOcView class 

Sets an internal flag that determines whether Paste operations create linked or 
embedded objects. More specifically, SetLink alters the priority of the document's 
registered Clipboard formats. You set the original priorities with the first parameter of 
the REGFORMAT macro. If pasteLink is true, then SetLink moves the Link Source format 
to the top of the list. If pasteLink is false, it restores the Link Source format to its original 
position behind Embed Source. 

It is usually not necessary to call SetLink directly because the Paste method calls it for 
you. 

See also REGFORMAT macro, TOcView::Paste 

SetupWindow 
void SetupWindow(HWND hWin); 
Tells the view what window is associated with it. The view sometimes sends 
notification messages to its window. Usually this function should be called from the 
Setup Window member of the container's window class. TOleWindow performs this task 
automatically. 

See also OC_ VIEWxxxx messages, TOleWindow::SetupWindow, TOcView::Win 

Protected destructor 

Protected Destructor 
~TOcView(); 

Destroys the view object. 

Protected member functions 

Forward Event 
Form 1 uint32 ForwardEvent(int eventld, cons! void far* param); 

Form 2 uint32 ForwardEvent(int eventld, uint32 param = O); 

Both forms send a WM_OCEVENT message to the container's window. The eventld 
parameter becomes the message's wParam and should be one of the OC_APPxxxx or 
OC_ VIEWxxxx constants. The second parameter becomes the message's lParam and 
may be either a pointer (Form 1) or an integer (Form 2). Which form you use depends on 
the information a particular event needs to send in its lParam. 

See also OC_APPxxxx messages, OC_ VIEWxxxx messages, TOcView::Win, 
WM_OCEVENT message 

I nit 
void lnit(TReglisr reglist); 
Initializes a newly created view object. I nit is called by both of the TOc View constructors. 
Usually you don't need to call it directly yourself. TRegList is the data type that holds all 
the registry keys and associated values for a single registration table. regList must be a 
document registration table (the structure created by the registration macros and 
conventionally named DocReg). 

C h a p I e r 6 , 0 b j e ct C o m p o n e n t s I i b r a r y r e f e r e n c e 649 



TOcView class 

Init makes this view the document's active view, connects with the BOCOLE support 
library, and registers supported Clipboard formats. 

Shutdown 
void Shutdown(); 
Called by the destructor of derived classes to release helper objects that the view holds 
internally. 

See also TOcView public constructors and destructor 

Protected data members 

ActivePart 
TOcPart* GetActivePart(); 
Returns the currently active part. If the view does not contain an active part, the return 
value is 0. · 

See also TOcView::ActivePart, TOcView::ActivatePart 

Extent 
TSize Extent; 
Holds the current width and height of the container window's client area. Both are 
measured in device units. 

See also TOcView::GetWindowRect 

Formatlist 
TOcFormatlist Formatlist; 
Holds information about all the Clipboard formats the compound document supports. 
The list is generated from information the application registers for the types of 
documents it supports. 

See also TOcFormatList class, TOcView::RegisterClipFormats 

Link 
int Link; 
Used internally by the Paste method to adjust the priority of link source format. 

OcApp 
TOcApp& OcApp; 
A view stores the application that owns it in this protected data member. 

OcDocument 
TOcDocument& OcDocument; 
A view stores the document object that owns the view in this protected data member. 
The view object manages the appearance of a compound document, and the document 
object manages the data. 

See Also TOcView::GetOcDocument 

Origin 
TPoint Origin; 

650 ObjectWindows Reference Guide 



TOcViewPaint struct 

Holds the coordinates of the point currently mapped to the upper left comer of the 
container window's client area. 

See Also TOcView::GetOrigin 

Win 
HWNDWin; 
Holds a handle to the window where the view draws itself. The ForwardEvent method 
sends messages to this window. 

See Also TOcView::ForwardEvent, TOcView::SetupWindow 

Win Title 
string WinTitle; 
Holds the original caption string of the container's window. The caption is usually 
modified as the user moves from part to part within the document. When no part is 
active, the view restores the window's title to this original string. 

TOcViewPaint struct ocf/ocview.h 

The OC _ VIEWP AINT message carries a pointer to this structure in its lParam. The 
message notifies a server that it should update its painting of an object. The structure 
carries information about the area that needs repainting. Generally a program should 
respond by calling paint methods on the window or view that receives the message. For 
examples, look at the source code for TOleWindow::EvOcViewPaint and 
TOleView::EvOcViewPaint. 

See also 
OC_ VIEWxxxx messages, TOleView::EvOcViewPaint, TOleWindow::EvOcViewPaint 

Public data members 
Aspect 
TOcAspect Aspect; 
Holds an enumerated value that tells how the part is to be drawn. A single object can 
often be drawn in more than one way. For example, the server might show the object's 
full contents, a miniature representation of the contents, or an icon that represents the 
type of object without indicating its specific contents. 

See also TOcAspect enum 

Clip 
TRect* Clip; 
Designates the area where the part should be allowed to draw. The server can clip the 
output to this area to avoid drawing outside its allotted space. 

See also TRect class 

DC 
HDC DC; 

Ch apter 6, 0 b j e ct Components Ii bra r y reference 651 



TOleAllocator class 

Contains a handle to the device context where the repainting,should occur. 

Part 
TOcPart* Part; 
Points to the part that needs to be redrawn. This member can be used to ask the part to 
repaint itself. In the current implementation of ObjectComponents, this member is not 
used. 

See also TOcPart class 

Pos 
TRect* Pos; 
Specifies the upper left corner of the server object that has become invalid and needs 
repainting. 

See also TRect class 

TOleAllocator class ocf/oleutil.h 

A linking and embedding .EXE application creates a memory allocator object in order to 
tell OLE what memory manager the system should use when allocating and 
deallocating memory on behalf of the server. Unless you have particular memory 
management needs, it's easiest to let OLE use its default allocator. 

When writing a linking and embedding application, you usually do not need to create a 
memory allocator object directly because your registrar object takes care of it for you. 
The only applications that create memory allocators directly are automation servers that 
do not support linking and embedding. Because automation servers don't create 
TOcApp objects, they do need to create TOleAllocators. 

DLL servers do not need a memory allocator because the system uses whatever 
allocator the .EXE client designates. 

See also 
TOcRegistrar class, TRegistrar class 

Public constructors and destructor 
Constructor 

Form 1 TOleAllocator(IMalloc* mem = O); 
Initializes the OLE system library and, if mem is nonzero, registers a custom memory 
allocator. Unless you have particular memory management needs, it is easiest to let OLE 
use its default allocator. To implement your own allocator, refer to the OLE 
documentation on the IMalloc interface. 

Form 2 TOleAllocator(); 
Tells OLE to use the custom memory allocator. Does not initialize the OLE system 
library. In .EXE applications, the registrar object initializes the OLE library. In DLL 
servers, the .EXE client provides the allocator. 

652 0 b j e ctWi n d ow s Reference Guide 



TRegistrar class 

Destructor 
N TOleAllocator(); 
Releases the memory allocator (either the default allocator or a custom allocator) and 
uninitializes the OLE system. 

See also TOcRegistrar Class, TRegistrar Class 

Public member functions 
Alloc 
void far* Alloc(unsigned long size); 
Calls the Alloc method on the active memory allocator to request a block of memory. size 
gives the size of the block. Unless you have registered a custom memory allocator, Alloc 
calls OLE's default allocator. If the request fails, Alloc returns 0. 

See Also TOleAllocator::Free_ 

Free 
void Free(void far* block); 
Calls the Free method on the active memory allocator to release a block of memory 
previously allocated with Alloc. block points to the base of the area to be released. Unless 
you have registered a custom memory allocator, Free calls OLE's default allocator. 

See also TOleAllocator::Alloc_ 

Public data member 
Mem 
IMalloc* Mem; 
Points to the active memory allocator object. Unless you have registered a custom 
memory allocator, Mem points to OLE's default allocator. 

TRegistrar class ocf/ocreg.h 

TRegistrar manages all the registration tasks for an application. It processes OLE-related 
switches on the command line and records any necessary information about the 
application in the system registration database. If the application is already registered in 
the database, the registrar confirms that the registered path, progid, and clsid are still 
accurate. If not, it reregisters the application. 

Every ObjectComponents application needs to create a registrar object. If your 
application supports automation but not linking and embedding, then create a 
TRegistrar object. To support linking and embedding-alone or along with 
automation-then create a TOcRegistrar instead. TOcRegistrar extends TRegistrar by 
connecting the application to the BOCOLE support library interfaces that support 
linking and embedding. 

An application's main procedure usually performs these actions with its registrar: 

Chapter 6, ObjectComponents library reference 653 



TRegistrar class 

• Construct the registrar, passing it a pointer to the application's factory callback. 

• Call IsOptionSet to check for options that might affect how the application chooses to 
start (for example, remaining invisible if invoked for embedding. 

• Call Run to enter the program's message loop. 

See also 
TOcRegistrar class 

Public constructor and destructor 

Constructor 
TRegistrar(TReglist& reglnfo, TComponentFactory callback, string& cmdline, HINSTANCE hlnst); 
reglnfo is the application registration structure (conventionally named appReg). callback is 
the factory callback function that ObjectComponents invokes when it is time for the 
application to create a document. An ObjectWindows program can use the TOleFactory 
class to create this callback. cmdLine points to the command line received when the 
application was invoked. hlnst is the application instance. 

Destructor 
virtual N TRegistrar(); 
Deletes objects the registrar maintains internally. 

The constructor processes OLE-related switches and removes them from the command 
line. (Call IsOptionSet to determine what switches were found.) It also initializes some 
settings from the application registration table. If the application is a DLL, the 
constructor initializes the global DllRegistrar variable. 

See also string class, TComponentFactory typedef, TOleFactory class, 
TRegistrar::lsOptionSet 

Public member functions 

Can Unload 
virtual bool CanUnload(); 
Returns true if the application is not currently serving any OLE clients and false 
otherwise. 

CreateAutoApp 
TUnknown* CreateAutoApp(TObjectDescriptor app, uint32 options, !Unknown* outer = O); 
Creates an instance of an automated application. This method is usually called from the 
application's TComponentFactory callback function. 

app is the automation server's primary automated class created from the 
T AutoObjectDelete<> template. 

options contains the application's mode.flags. This is usually the same value passed in to 
the factory callback function. The possible values are enumerated in TOcAppMode. 

654 ObjectWindows Reference Guide 



TRegistrar class 

outer points to the !Unknown interface of an outer component under which the 
application is asked to aggregate. 

The return value points to the new OLE application object. 

See also TAutoObjectDelete<> class, TComponentFactory typedef, 
TRegistrar::CreateAutoObject 

CreateAutoObject 
Form 1 TUnknown* CreateAutoObject(TObjectDescriptor obj, TServedObject& app); 

app is the automated OLE application object. 

obj is the automated C ++ object. 

Form 2 TUnknown* CreateAutoObject(const void* obj, const typeinfo& objlnfo, canst void* app, canst typeinfo& applnfo); 
app and obj are the same as in Form 1. 

objlnfo identifies the type of object in obj. applnfo identifies the type of object in app. Both 
values can be obtained using typeid. 

CreateAutoObject asks an automated application to instantiate one of its automated 
objects. It is usually called from the application's TComponentFactory callback function. 
Which form you call depends on what information you have to identify the kind of 
object you want to create. 

See also TComponentFactory typedef, TRegistrar::CreateAutoApp, typeid, typeinfo 
class 

GetFactory 
virtual void far* GetFactory(const GUID& clsid, const GUID far& iid); 
Returns a pointer to the factory interface for creating type object indicated by clsid. iid 
names the particular interface you want to receive. If the registrar is unable to find an iid 
interface for clsid objects, it returns zero. 

ObjectComponents calls a DLL's GetFactory member every time a new client loads the 
DLL. Usually you do not need to call GetFactory yourself. 

GetOptions 
uint32 GetOptions() canst; 
Returns a 32-bit integer containing bit flags that reflect the application's running mode. 
Some of the flags are set in response to command-line switches. Others are set directly 
by ObjectComponents. For a list of the mode flags, see the TOcAppMode enum. 

See also TOcAppMode enum, TRegistrar::IsOptionSet, TRegistrar::ProcessCmdLine, 
TRegistrar::SetOption 

lsOptionSet 
bool lsOptionSet(uint32 option) canst; 
Returns true if a particular option was set as a flag on the application's command line, 
and false if the option was not set. The flags are set by the ProcessCmdLine method. 

For a list of possible values option can assume, see the TOcAppMode enum. 

See also TOcApp::IsOptionSet, TOcAppMode enum, TRegistrar::GetOptions, 
TRegistrar::ProcessCmdLine, TRegistrar::SetOption 

Chapter 6, Objec!Components library reference 655 



TRegistrar class 

ProcessCmdLine 
void ProcessCmdLine(string& cmdLine); 
Locates any OLE-related switches on the application's command line (or passed in to a 
DLL server from ObjectComponents ). The switches tell the program whether it has been 
launched independently or as a server, whether it should register or unregister itself, 
whether to create a type library, and signal other running conditions as well. 
ProcessCmdLine records the presence of each flag it finds. You can call IsOptionSet to 
determine the reswts. 

The command line is always processed for you when the registrar object is constructed. 
Usually you do not need to call this function directly. 

cmdLine contains the string of arguments passed to the program on its command line. 
ProcessCmdLine removes OLE-related switches from the command line, That lets you 
process cmdLine afterwards for any of your own arguments without worrying about 
OLE arguments. 

See also string class, TRegistrar::IsOptionSet 

ReleaseAutoApp 
void ReleaseAutoApp(TObjectDescriptor app); 
This method is used by an application's factory callback function if the application must 
detach itself from OLE before it can shut driwn. Detaching the application is necessary 
when an automated application has registered its application object for its class, 
allowing the controller to manipulate it. 

RegisterAppClass 
void RegisterAppClass(); 
Tells OLE that an automated application is up and ready to create an application 
instance. Has no effect if called from an application that does not support automation. 

For convenience, it is recommended that every ObjectComponents application, even 
those that do not support automation, call RegisterAppClass on starting up and 
Unregister AppClass when closing down. This habit is harmless even if sometimes 
unnecessary and ensures that you will not forget to include registration functions if you 
later add automation. 

See also TRegistrar::UnregisterAppClass 

Run 
virtual int Run(); 
Call this function to execute your program. If the application was built as an .EXE file, 
then Run lets the application enter its message loop. If the application was built as a 
DLL, then Run returns without entering the message loop. DLL servers must wait for 
OLE to call their factory before they run. The purpose of the Run function is to let you 
build your applications as either an .EXE or a DLL without having to modify your code. 

In .EXE programs, Run performs the following steps: 

• If the application is automated, call RegisterAppClass. 

• Call the factory function to run the application. The application enters its message 
loop. 

656 ObjectWindows Reference Guide 



TRegistrar class 

• Call the factory function to shut down the application. 

• Ensure that the application's TOcApp connector object is properly released. 

See also TOcApp, TRegistrar::RegisterApp, TRegistrar::Shutdown 

SetOption 
void Set0ption(uint32 bit, bool state); 
Modifies the application's running mode flags. bit contains bit flags from the 
TOcAppMode enum. If state is true, SetOption turns the flags on. If state is false, it turns 
the flags off. You should never have to call this function because ObjectComponents 
always maintains the mode flags. 

See also TOcAppMode enum, TRegistrar::GetOptions, TRegistrar::IsOptionSet, 
TRegistrar::ProcessCmdLine 

Shutdown 
virtual void Shutdown(IUnknown* releasedObj, uint32 options); 
Calls the application's factory function and asks it to make the application stop. Ensures 
that the application's TOcApp connector object is properly released. In the normal path 
of execution, the Run command performs the same tasks. Call Shutdown to terminate the 
application directly. 

See also TOcApp, TRegistrar::Run 

UnregisterAppClass 
void UnregisterAppClass(); 
Announces that the application is no longer available for OLE interactions. 

See also TRegistrar::RegisterAppClass 

Protected data member 
AppDesc 
TAppDescriptor& AppDesc; 
Holds the application descriptor. ObjectComponents uses an application descriptor 
internally to manage information about a component. (Like EXEs, each DLL gets an 
application descriptor of its own.) TAppDescriptor is undocumented because it is used 
only internally and is subject to change. The registrar classes, TOcRegistrar and 
TRegistrar, are the supported interfaces to the application descriptor. The registrar 
constructs the descriptor, and most of its member functions call descriptor functions to 
perform the work. 

Usually you will not need to manipulate this data member directly. 

Protected constructor 
Constructor 
TRegistrar(T AppDescriptor& appDesc); 

Chapter 6, ObjectComponents library reference 657 



TUnknown class 

The protected constructor is used only by the derived class TOcRegistrar. T App Descriptor 
is a: class that both registrar objects (TRegistrar and TOcRegistrar) use internally to hold 
information about an application. 

TUnknown class ocf/oleutil.h 

Implements the standard OLE !Unknown interface. ObjedComponents derives some of 
its own classes from TUnknown, so usually you do not need to use it directly yourself. 
Advanced users, however, might find TUnknown helpful in creating their own custom 
Component Object Model (COM) objects. 

The TUnknown class is the basis for the ObjectComponents implementation of object 
aggregation. With aggregation, you can make distinct components work together as a 
single OLE object. A single primary object becomes the outer object, and secondary 
objects behave as though they are parts of the primary object. For this to work, 
whenever any inner object is asked for its !Unknown interface, it must return the 
!Unknown that belongs to the outer object. If the outer object is asked for an interface it 
does not support, it forwards the request to the chain of attached inner objects. All the 
interfaces supported by any object in the aggregation are available through the 
Querylnterface method of the outer object. 

Aggregation is established in the TComponentFactory callback function. Each component 
receives the !Unknown pointer to its outer object and returns its own !Unknown pointer 
to be placed in the chain of secondary objects. 

See also 
TComponentFactory typedef 

Public member functions 
Aggregate 
!Unknown& Aggregate(TUnknown& inner); 
Aggregates a new object under the current object. inner points to the !Unknown interface 
of the new object. The current object stores inner for use in responding to future 
Querylnterface calls. It also calls AddRef on the inner pointer. 

If this is already part of an aggregation, inner is passed down to the last inner object in 
the chain. 

Aggregate returns a reference to the object's own outer !Unknown interface. The newly 
added object should use the return value as its Outer pointer, too. To aggregate this 
under an object ,that is not a TUnknown, call SetOuter instead. 

See also TUnknown::SetOuter, TUnknown::Outer 

GetOuter 
!Unknown* GetOuter(); 
Returns a pointer to the object's outer !Unknown interface, the one that belongs to the 
primary object in a group of aggregated objects. 

658 ObjectWindows Reference Guide 



See also TUnknown::SetOuter, TUnknown::Outer 

GetRefCount 
unsigned long GetRefCount(); 

TUnknown class 

Returns the reference count of the outer object. If this is not aggregated, then 
GetRefC,aunt returns the object's own reference count. 

The reference count tells how many clients hold pointers to the object. The destructor 
prevents the object from being destroyed if the reference count is not 0. 

operator !Unknown&() 
operator !Unknown&(); 
Returns a reference to the object's outer !Unknown interface. Does not increment the 
object's reference count. 

operator !Unknown*() 
operator !Unknown*(); 
Returns a pointer to the object's outer !Unknown interface. Increments the object's 
reference count first. 

See also TUnknown::operator !Unknown&() 

SetOuter 
!Unknown* SetOuter(IUnknown* outer); 
Tells the object to aggregate itself under the object outer. When asked for its !Unknown 
interface, this always returns outer. SetOuter returns the object's own !Unknown interface 
to the outer object. It does not call AddRefbefore returning the pointer. 

If outer is 0, SetOuter ignores outer but still returns its own !Unknown interface. 

SetOuter is called to make the object aggregate under an unknown outer object. If the 
outer object is also a TUnknown, call Aggregate instead. Aggregate sets the object's 
inner pointer as well as its outer pointer. 

See also TUnknown::Aggregate, TUnknown::GetOuter, TUnknown::Outer, 
TUnknown::operator !Unknown*() 

Protected constructor and destructor 
Constructor 
TUnknown(); 
Creates a TUnknown object with an initial reference count of 0. Initially the object is not 
aggregated with any other object. 

These members are protected because only a derived class should be able to construct a 
TUnknown object. TUnknown is meant to be a base for other objects, not an independent 
object. 

Destructor 
virtual -TUnknown(); 
Deletes the object. 

See also TUnknown::Aggregate 

Chapter 6, ObjectComponents library reference 659 



TXAuto class 

Protected member functions 

QueryObject 
virtual HRESULT QueryObject(const GUID far& iid, void far* far* pin; 
Asks whether the object supports the interface identified by iid. If the object supports the 
interface, the function returns HR_NOERROR and places a pointer to the interface in pif. 

The implementation of QueryObject in TUnknown always fails. It always returns 
HR_NOINTERF ACE. Classes derived from TUnknown should override this function. 

For examples of override functions, look at the source code for classes such as TOcApp 
and TOcView. 

ThisUnknown 
!Unknown& ThisUnknown(); 
Returns a reference to the /Unknown interface for this, not to the outer or inner 
aggregated objects. 

Protected data member 

Outer 
!Unknown* Outer; 
Holds a pointer to the /Unknown interface of the outer object in a group of aggregated 
objects. 

See also TUnknown::GetOuter, TUnknown::SetOuter 

TXAuto class 

Base class 
TX Base 

ocf/autodefs.h 

TXAuto is the exception object that ObjectComponents throws when it encounters an 
unexpected error while processing automation calls. The possible errors are indicated 
by the TError nested enum values. 

See also 
TXBase class (OWL.HLP), TXObjComp class, TXOle class, TXRegistry class 

Public constructor 

Constructor 
TXAuto(TXAuto::TError err); 
Constructs an exception object to describe the problem indicated by err. 

See also TXAuto::TError enum 

660 ObjectWindows Reference Guide 



TXObjCornp class 

Public data member 

ErrorCode 
TError ErrorCode; 
Holds the code that identifies the problem this object was constructed to describe. 

See also TXAuto::TError enum 

Type definition 
TError 
enum TError 
The values of the enumeration identify possible errors that can occur during 
automation. 

xNoError 

xConversionFailure 

xNotIDispatch 

xForeignIDispatch 

xTypeMismatch 

xNoArgSymbol 

xParameterMissing 

xNoDefaultV alue 

xValidateFailure 

TXObjComp class 

Base class 
TXBase 

No error occurred. 

Problem converting a value from a VARIANT union to the expected data type. 

Attempted to send an automation command to an object that does not execute 
commands. 

Attempted to send an automation command to an automated object that does not 
derive from T AutoProxy. 
A supplied argument cannot be converted to the required type. 

A command attempted to use more arguments than the server recognizes. 

An automation call failed to provide a required argument when setting a property 
value. 

A parameter is missing and no default value was supplied. 

The code in a user-defined validation hook indicated that the argument values it 
received are unacceptable. 

ocf/ocdefs.h 

TXObjComp is the exception object that ObjectComponents throws when it encounters 
an unexpected error while processing its own internal code. The possible errors are 
indicated by the TError nested enum values. 

See also 
TXAuto class, TXBase class, TXOle class, TXRegistry class 

Public constructor 
Constructor 
TXObjComp(TXObjComp::TError err, cons! char* msg = O); 

Ch apter 6, 0 b j e ct Corn pone n ts Ii bra r y reference 661 



TXOle class 

Constructs an exception object to describe the problem indicated by err. Associates the 
optional msg string with the error. 

See also TXObjComp::TError 

Public member function 

ErrorCode 
TError ErrorCode; 
Holds the error code that identifies the problem this objectwas constructed to describe. 

See also TXObjComp::TError enum 

Type definition 

TError 
enum TError 
The values of the enumeration identify possible errors that can occur inside 
ObjectComponents. 

Application Errors 

xNoError 

xBOleLoadFail 

xBOleBindFail 

xDocFactoryFail 

xRegWriteFail 

Document and Part Errors 

xMissingRootIStorage 

xlnternalPartError 

xPartlnitError 

xDocSaveError 

Storage Errors 

xStorageOpenError 

xStreamOpenError 

xStream WriteError 

TXOle class 

Base class 
TXBase 

No error occurred. 

The BOCOLE support library could not be loaded. 

ObjectComponents could not get a necessary interface from the BOCOLE 
support library. 

TOcApp was unable to register or unregister the application with OLE. 

The registrar could not write to the system registration database. 

The document where a part was asked to construct itself does not possess a 
root storage object. (Without a storage, the document has nowhere to store 
its parts.) 

ObjectComponents was unable to create a part object. 

ObjectComponents was unable to initialize a newly created part. 

A TOcDocument could not write itself to a file. 

A document was unable to open its storage object. 

A document was unable to open the stream object it needs for file I/0. 

A document was unable to write to the stream object it needs for file I/O. 

ocf/oleutil.h 

TXOle is the exception object that ObjectComponents throws when it encounters an 
unexpected error while executing an OLE API call. 

662 ObjectWindows Reference Guide 



TXOle class 

The object's Check method is static so that you can call it without actually creating a 
TXOle object. If the parameters you pass indicate an error has occurred, Check creates a 
TXOle object and throws the exception for you. 

See also 
TXAuto class, TXObjComp class, TXRegistry class 

Public constructors and destructor 
Constructors 

Form 1 TXOle(const char far* msg, HRESULT stat); 
Creates an OLE exception object. msg points to an error message and stat holds the 
return value from an OLE API call. 

Form 2 TXOle(const TXOle& copy); 
Constructs a new OLE exception object by copying the one passed as copy. 

Usually you do not need to construct an OLE exception object directly. Call Check 
instead. 

Destructor 
-TXOle(); 
Destroys the TXOle object. 

See also TXOle::Check 

Public member functions 

Check 
Form 1 static void Check(HRESULT stat, cons! char far* msg); 

If stat indicates an error, Form 1 throws a TXOle exception containing the msg error 
string. 

Form 2 static void Check(HRESULT stat); 
If stat indicates an error, Form 2 throws a TXOle exception containing the error string 
"OLE call FAILED, ErrorCode =stat" where stat is shown as an eight-digit hexadecimal 
value. 

If you see this error message when running programs, you can look it up in the 
OLE_ERRS.TXT file, which for convenience matches the error codes to corresponding 
comments from the OLE system header files. 

Checks whether an error has occurred and if so throws an exception. stat is the value 
returned by an OLE API call. Check is static so that you can call it without actually 
creating a TXOle object first. If stat indicates an error, then Check creates a TXOle object 
and throws an exception. 

Chapter 6, ObjectComponents library reference 663 



TXRegistry class 

Public data member 
Stat 
long Stat; 
Stat ("status") holds the result code returned from an OLE APL 

TXRegistry class 
Base class 
TXBase 

ocf/ocdefs.h 

TXRegistry is the exception object that ObjectComponents throws when it encounters an 
unexpected error while reading from or writing to the system registration database. 

The object's Check method is static so that you can call it without actually creating a 
TXRegistry object. If the parameters you pass indicate an error has occurred, Check 
creates a TXRegistry object and throws the exception for you. 

See also 
TXAuto class, TXObjComp class, TXOle class 

Public constructors 
Constructors 

Form 1 TXRegistry(const char* msg, const char* key); 
Creates a registry exception object. msg points to an error message and key points to the 
name of the registry key that ObjectComponents was processing when the exception 
occurred. 

Form 2 TXRegistry(const TXRegistry& copy); 
The copy constructor constructs a new registry exception object by copying the one 
passed as copy. 

Usually you do not need to construct a registry exception directly. Call Check instead. 

See also TXRegistry::Check 

Public member functions 
Check 
static void Check(long stat, const char* key); 
Tests the value of stat to determine if an error has occurred and if so throws an 
exception. stat is the return value from a registration command. key is the name of the 
key that the registration command was processing. 

Check is static so that you can call it without actually creating a TXRegistry object first. If 
stat is nonzero, then Check creates a TXRegistry object and throws an exception. The 
exception carries the message string "Registry failure on key: key, ErrorCode =stat." 

664 ObjectWindows Reference Guide 



typehelp registration key 

Key 
canst char* Key; 
Points to the name of the registration key that ObjectComponents was processing when 
the exception occurred. 

typehelp registration key 
Registers the name of a Help file (.HLP) containing information about the methods and 
properties your program exposes for automation. If the file is not in the same directory 
as the executable, be sure to register helpdir as well. 

typehelp is valid in the application registration table of an automation server. It is 
optional. Also, the file name can be localized, making it easy to have different Help files 
for different languages. 

To register typehelp, use the REGDATA macro, passing typehelp as the first parameter 
and file name as the second parameter. 

See also 
helpdir registration key, REGDATA macro, typelib registration key 

usage registration key 
Determines whether a single instance of your application is allowed to support multiple 
users or whether a new instance should be launched for each new OLE client. The 
-Automation command-line switch overrides this setting and forces single use when an 
automation server is invoked. 

The usage key is valid in any server registration table. It is always optional. If you omit it, 
ObjectComponents by default registers the application to support only one client per 
instance. 

To register the usage key, use the REGDATA macro, passing usage as the first parameter 
and one of the ocrxxxx Usage constants as the second parameter. 

REGDATA(usage, ocrSingleUse) //one client per instance (default) 

See also 
ocrxxxx usage constants, REGDATA macro 

verbn registration keys 
A string naming an action the server can perform with its objects. Containers add the 
active object's verbs to their Edit menus. 

verbO is the name of the primary (default) verb for the class. The primary verb is 
executed if the user double-clicks the object. Use verbl through verb7 to register 

Chapter 6, ObjectComponents library reference 665 



verbnopt registration keys 

additional verbs. The ocrVerbLimit constant, defined in ocf/ocreg.h, represents the 
maximum number of verbs allowed (8). 

The verbn keys are valid in the document registration tables of a server that supports 
linking and embedding. Every server should register a default verb. Other verbs are 
optional. 

To register a verb, use the REGDATA macro, passing verbn as the first parameter and a 
menu item string as the second parameter. 

REGDATA(verbO, "&Edit") II default action 
REGDATA(verbl, "&Open") 11 another possible action (optional) 

See also 
REGDATA macro, verbnopt registration keys 

verbnopt registration keys 
Registers option flags describing the server's verbs. The flags determine how the verbs 
appear on the container's menu. They can be grayed or disabled, for example. 

Verb options are valid in the document registration table of any server that supports 
linking and embedding. They are always optional. Verb options are meaningless unless 
you also register verbs. 

To register verb options, use the REGVERBOPT macro, passing a verb key (such as 
verbO or verbl) as the first parameter. For the second parameter, use ocrxxxx verb menu 
constants. For the third parameter, use ocrxxxx verb attribute constants. 

REGVERBOPT(verb2, ocrGrayed, ocrOnContainerMenu I ocrNeverDirties) 

See also 
ocrxxxx verb menu constants, ocrxxxx verb attribute constants, REGVERBOPT macro, 
verbn registration keys 

version registration key 
Registers a version string for the application and type library. The string can include 
minor version numbers delimited by periods. OLE ignores version numbers after the 
first two (the major and minor version numbers). 

The version key is valid in any registration table. It is always optional. 

To register version, use the REGDATA macro, passing version as the first parameter and 
a version number string as the second parameter. 

REGDATA (version, "1. 0. 5") 

See also 
description registration key, permid registration key, permname registration key 

666 ObjectWindows Reference Guide 



WM_OCEVENT message 

WM_ OCEVENT message ocf/ocapp.h 

ObjectComponents defines the WM_OCEVENT message in order to notify an 
application's window when significant OLE-related events occur. 

Meaning 
WM_OCEVENT Notification of an OLE event from ObjectComponents. The wParam value identifies 

the particular event. 

See also 
OC_APPxxxx messages, OC_ VIEWxxxx messages 

C h a pt e r 6 , 0 b j e ct C o m p o n e n ts I i b r a r y r e f e r e n c e 667 



668 ObjectWindows Reference Guide 



ObjectSupport reference 

Part Ill, ObjectSupport reference 669 



670 0 b j e c I W i n d ow s R e f e re n c e G u i d e 



Overview of ObjectSupport 
This chapter provides an overview of the ObjectSupport classes, libraries, and header 
files, which provide various services that help you design your ObjectWindows 
application. These classes include the following groups: 

• Mathematical classes such as TPoint, TSize, and TRect that define screen coordinates 
and properties of rectangles. 

• Document template classes that make it easier to design Doc/View applications. 

• TLocaleString, which localizes OLE registration information required for containers 
and servers. 

The geometric classes support various operations that you might want to perform on 
points and rectangles. TPoint encapsulates a two-dimensional point that represents a 
screen position. You can use TPoint to compare, assign, and manipulate points. TSize 
encapsulates a two-dimensional quantity that represents the displacement of an area or 
the height and width of a rectangle. You can use TSize to compare, assign, and 
manipulate sizes. TRect encapsulates the properties of rectangles with sides parallel to 
the x- and y-axes. You can use TRect to perform a variety of rectangle tests and 
manipulations, such as inflating, normalizing, and changing the offset dimensions of a 
rectangle. A parameterized class, TPointer holds a pointer to its parameterized type. You 
can assign a pointer to a TPointer object and easily remove the object by assigning 0 to 
the pointer. 

Other ObjectSupport classes such as TDroplnfo and TDocTemplate provide functions that 
let you manipulate files and documents. TDropinfo, which supports file drag and drop 
operations, makes it easy to determine the number of files dropped, the names of the 
files, and where they were dropped. The templetized classes, TDocTemplate and 
TDocTemplateT, support creating documents and views. You can use these classes to 
create a document template with a specified file description, file filter pattern, and 
default file extension. 

The ObjectSupport library also includes classes and macros designed to simplify the 
process of localizing strings and building registration tables. The localization class, 

C h a p I e r 7 , 0 v e r v i e w of 0 b j e c I S u p p o r I 671 



TLocaleString, provides support for ObjectWindows' Doc/View as well as 
ObjectComponents' OLE-enabled applications. A struct defining a localizable substitute 
for char* strings, TLocaleString contains functions that translate and compare strings in a 
given language. Object Windows' registration macros simplify the process of building a 
registration table for either an automation server or a non-automated application or 
document. 

The ObjectSupport library contains one exception class, TXBase, which is the base class 
for both ObjectWindows' and ObjectComponents' exception-handling classes. 
Exception classes derived from TXBase are designed to handle specific error conditions, 
such as an out-of-memory error or an attempt to create an invalid window. To handle 
an exception, you will want to derive a class from any one of the ObjectWindows' 
classes that describe this particular exception. 

The following table lists the files included in the ObjectSupport Library( .. \OSL 
directory). 

Table 7.1 Summary of the ObjectSupport library files 

geometry.h Contains descriptions of mathematical classes such as TPoint, 
TRect, TSize, TResld, TDroplnfo, TProclnstance, and TPointer. 

doctpl.h Contains definitions of files TDocTemplate, and 
TDocTemplateT <D,V>. 

defs.h Contains common definitions, includes windows.h definitions, 
and deals with BOOL data types. 

except.h Defines class TXBase, the base exception-handling class for 
ObjectWindows and ObjectComponents classes. 

locale.h Defines TLocaleString class as well as registration macros. 

672 Objec!Windows Reference Guide 



ObjectSupport library reference 

Registration macros 
The following macros, defined in locale.h, take care of performing various OLE-related 
registration procedures. These macros simplify the process of building a registration 
table (a specific kind of lookup table) for an automation server and for a non-automated 
application or document associated with either a container or a server. A collection of 
vital statistics about an object, the registration table provides an external description 
associated with an object. Some of the information goes into the system registry and is 
used by OLE. Some of the information is displayed in the File I Open dialog box when 
the user selects the Insert Object selection. 

The registration macros build a TRegList structure containing entries of type TRegitem, a 
struct which is defined as follows: 

struct TRegitem { 
char* Key; 
TLocaleString Value; 

}; 

//Item name 
//String value for the item 

Using these macros saves you the trouble of having to build the TRegitem and TRegList 
structures directly. 

Although both servers and containers use the same macros, they pass different kinds of 
information to the registration structures. Depending on the amount of information you 
want associated with your application and whether you want to set up a structure with 
document or application information, use one or more of these registration macros. 

Ch a p I er 8, 0 b j e c IS up po r I Ii bra r y reference 673 



BEGIN_REGISTRATION macro 

Registration macros 

Begins a registration macro table. 

Ends a registration macro table. 

BEGIN_REGISTRA TION 

END_REGISTRATION 

REGDATA Registers information about the application, for example, class 
ID, description, document filter, and debugger. 

REGDOCFLAG Registers a series of document flags. Required for a document 
registration table. 

REGFORMAT 

REGICON 

REG ITEM 

REGSTATUS 

REGVERBOPT 

REGISTRATION_FORMAT_BUFFER 

Registers a data format. 

Registers an icon. 

Registers a customized format. 

Registers an aspect status. 

Registers an option for a verb. 

Sets the size of the buffer space needed for expansion. 

REGDATA, which is the main macro used in the registration table, passes string data in 
its arguments. The REGFORMAT, REGDOCFLAG, REGICON, REGSTATUS, and 
REGVERBOPT macros format numeric values as string values. 

See the Object Windows Programmer's Guide for a list of which item names (referred to as 
keys) are required in the application and document registration tables. For information 
about how to use these macros in your OLE-enabled applications, see the sections on 
"Registering a linking and embedding server" and "Registering the container" in the 
ObjectWindows Programmer's Guide. The sample applications, REGTEST.CPP and 
STEP15DV.CPP, on your distribution disk, provide examples of registration tables 
designed for different kinds of applications and documents. 

See also END_REGISTRATION Macro, BEGIN_REGISTRATION Macro, 
TLocaleString 

BEGIN REGISTRATION macro 
BEGIN_ REGISTRATION(regname) 

locale.h 

Indicates the beginning of a registration macro table. The macro takes one argument 
(regname), which is the name of the structure to be built. Within the registration table 
macro, there are several macros that build the registration structure. Depending on the 
type of application or document, different macros are used. The following example 
from STEP15.CPP, registers the drawing pad as a server application and builds an 
AppReg structure: 

BEGIN_REGISTRATION(AppReg) 
REGDATA (els id, " { 5E4BD320-8ABC-101B-A23B-CE4E85D07ED2}") 
REGDATA(description,"OWL Drawing Pad Server") 

END_REGISTRATION 

See also END_REGISTRATION macro, REGDATA macro 

674 Objec!Windows Reference Guide 



END REGISTRATION macro 

END REGISTRATION macro locale.h 

END REGISTRATION 
END_REGISTRATION Indicates the end of a registration macro table. You can insert 
the registration macros within the BEGIN_REGISTRATION and 
END_REGISTRATION macros to build a registration structure. 

See also BEGIN_REGISTRA TION macro 

REGDATA macro locale.h 

REGDATA(var,val) 
The main registration macro, REGDATA registers information about an application or a 
document. The macro always takes an item name (for example, clsid) and a 
corresponding string value (for example, 5E4BD320-8ABC-101B-A23B­
CE4E85D07ED2). The following example from STEP15.CPP on your distribution disk, 
passes the class ID and description to build an App Reg application registration structure: 

BEGIN_REGISTRATION(AppReg) 
REGDATA (els id, " { 5E4BD32 0-8ABC-101B-A23B-CE4E85D07ED2}") 
REGDATA(description,"OWL Draw~ng Pad Server") 

END_REGISTRATION 

For an automation server, the registration structure includes the following REGDATA 
macros: 

BEGIN_REGISTRATION(myappreg) 
REGDATA(clsid, "{01234567-1234-5678-1122-334455667788}") 
REGDATA(progid, "MySample") 
REGDATA(description, "My Sample 1. 0 Application") 
REGDATA(cmdline, "/automation" I 
REGDATA(version, "1.2") 

END_REGISTRATION 

Each automatable object requires a program ID, a description, and a command-line 
argument, which is placed on the server's command line. As usual, only one class ID is 
defined for the application. See the Object Windows Programmer's Guide for detailed 
information about how to register an automation server. 

For each application registration structure, you may have one or more document 
registration structures. The following example uses the data from several REGDATA 
macros to build a DocReg registration structure. 

BEGIN_REGISTRATION(mydocreg) 
REG DATA I description, "My Sample 1. 0 Document" I 
REGDATA(extension, "myd") //Do not use a period before the extension. 
REGDATA(directory, "C:\temp") 
REGDATA ( docfil ter, "*. drw; *. drx") 
... //Insert additional macros here. 
REGDATA I debugger, "tdw -t" I I I Sets debugger option 
REGDATA(progid, "MyDocument") //For servers only 
REGDATA(menuname, "My Document") //For servers only 

Chapter 8, ObjectSupport library reference 675 



REGITEM macro 

REGDATA(insertable,O) // For servers only 
REGDATA(usage, ocrMultipleUse) //For servers only 
REGDATA (verbO, "&Edit" I I /For servers only 
REGDATA (verbl, "&Open") I /For servers only 
REGDATA(verb2, "&Play") //For servers only 
... //Insert additional macros here. 

END_REGISTRATION 

See also BEGIN_REGISTRATION macro, END_REGISTRATION macro 

REGITEM macro locale.h 

REGITEM(key,val) 
The REGITEM macro lets you write customized entries for the system registry. The 
following example, from REGTEST.CPP, registers conversion formats. 

REGITEM("CLSID\\<clsid>\\Conversion\\Readable\\Main", "FormatX,Formaty") 

The first string is the registry key which has one parameter ( <clsid>) When the registry 
information is generated, an actual value is substituted for the template parameters. 

See also BEGIN_REGISTRATION macro, END_REGISTRATION macro 

REGFORMAT macro locale.h 

REGFORMAT(i,f,a,t,d) 
The REGFORMAT macro indicates the data formats the server or container can support 
and has the following parameters: 

Order of priority for the designated data format with 0 being the highest fidelity rendered. 

f The data format, for example, ocrText, ocrTiff, ocrDib, and so on. 

a The format used to present the data. 

Medium to use to transfer the data, for example, ocrMfPict (METAFILEPlCT structure), ocrGDI (GDI 
object such as a bitmap), ocrIStream (Stream object in a compound file) and so on. 

d Whether or not data is provided as well as received in the designated format. The accepted values are 
ocrGet (imports data in the specified format), ocrSet (exports data in the specified format), or ocrGetSet 
(both exports and imports data in the specified format). 

For example, STEP15DV.CPP registers the following clipboard formats: 

REGFORMAT(l, ocrMetafilePict, ocrcontent, ocrMfPict, ocfSet) 

and generates the string, "formatl, 3, 1, 1056,1." Although you could enter the string of 
numbers, it is much easier to use the enumerated values. See the ocrxxxx Clipboard 
constants for a description of the accepted data formats. 

To build a registration structure, use REGFORMAT within the 
BEGIN_ REGISTRATION and END_REGISTRATION macros in a registration macro 
table. Any formats registered using REGFORMAT are also registered automatically on 

676 ObjectWindows Reference Guide 



REGSTATUS macro 

the Windows Clipboard. You can register your own formats by inserting a string 
indicating your own format. For example, 

REGFORMAT(2, "ANewFormat", ocrContent, ocrIStorage, ocrGetSet) 

To provide names for your own formats, call TOleFrame::AddUserFormatName. This 
function associates a clipboard data format with the description of the data format as it 
appears to users in the Help text of the Paste Special dialog box. 

See also BEGIN_REGISTRATION macro, ocrxxxx Clipboard constants, ocrxxxx 
medium constants, TOleFrame::AddUserFormatName 

REGSTATUS macro locale.h 

REGSTATUS(a,ij 
The REGSTATUS macro indicates the way in which the view (referred to as the 
"aspect") of an object behaves and has the following arguments: 

a The content of the object. 

f One of the ocrxxxx Object Status enum values indicating the status of the object, for example, 
ocrOnlyiconic, ocr Activate When Visible, and so on. 

The object can be defined as having many different aspects of behavior. For example, an 
object registered as ocr Activate When Visible is active whenever it is visible. 

Servers that support linked and embedded objects use this macro to register the 
behavior an object exhibits when it is viewed. This behavior is referred to as the aspect 
status or simply aspect of the object. 

The sample program, REGTEST.CPP, on your distribution disk includes the following 
REGSTA TUS macros: 

REGSTATUS(all, ocrNoSpecialRendering) 
REGSTATUS(icon, ocrOnlyiconic) 

The first macro registers flags for all aspects of the object while the second macro 
registers flags for the iconic aspect of the object. (The icon used in the REGSTA TUS 
macro must have been defined and registered.) 

See also BEGIN_REGISTRATION macro, REGICON macro, ocrxxxx object status 
constants 

REGVERBOPT macro locale.h 

REGVERBOPT(v,mf,sij 

C h a p I e r 8 , 0 b j e c I S u p p o r I I i b r a r y r e I e r e n c e 677 



REGICON macro 

Registers the actions a server can perform on its objects. The arguments control how the 
verbs appear on the container's menu. The macro has the following arguments: 

v The verb key, for example, verbl or verb2. 

mf A value that describes how a server's verbs appear on the container's menu. This value must be one of 
the ocrxxxx Verb Menu constants, for example, ocrGrayed, which makes the verb appear gray on the 
menu and disables the verb. 

sf A value that tells the container how to use the verb. This value must be one of the ocrxxxx Verb Attribute 
constants, for example, ocrNeverDirties, which indicates that the verb never modifies the object. These 
options can be ORed together. 

The sample program, REGTEST.CPP, on your distribution disk includes the following 
REGVERBOPT macro: 

REGVERBOPT(verbl, ocrGrayed, ocrOnContainerMenu I ocrNeverDirties) 

These verb options are optional and are only valid if the verb is registered in the 
document registration table for the server application. To register the verb, use 

REGDATA (verbl, "&Open" I 

See also BEGIN_REGISTRATION macro, ocrxxxx verb attribute constants, ocrxxxx 
verb menu constants 

REGICON macro locale.h 

REGICON(i) 
Registers an icon so that the object is displayed as an icon. The sample program, 
REGTEST.CPP, on your distribution disk, includes the following REGICON macro: 

· REG ICON ( 1 I 

The macro takes one argument, the index of the default icon to use. This argument 
indicates which icon is to be retrieved from the resource file when the document is 
displayed as an icon. 

See also BEGIN_REGISTRA TION macro 

REGDOCFLAGS macro locale.h 

REGDOCFLAGS(i) 
Indicates options for the document and defines the characteristics of document 
templates. The REGDOCFLAGS arguments tell the document manager how to display 
and manage the documents and views. Although, for backward compatibility, you can 
still pass this information to the document template using the separate parameters in the 
constructor, newer programs should use the REGFORMAT, REGDOCFLAGS, and 
REGDATA macros to create a document template object. 

The sample program, REGTEST.CPP, on your distribution disk, includes the following 
REGDOCFLAGS macro declaration within the document registration structure: 

678 0 b j e c I W i n d o w s R e f e r e n c e G u i d e 



REGISTRATION_FORMAT _BUFFER macro 

BEGIN_REGISTRATION(mytplreg) 
REGDATA(description, "My Sample Draw View") 
REGDATA( filter, "* .drw; *. drx") 
REGDATA(defaultext, "dvw") 
REGDATA(directory, 0) 
REGDOCFLAGS(dtAutoDelete I dtUpdateDir I dtCreatePrompt) 

END_REGISTRATION 

The arguments to REGDOCFLAGS define the document's characteristics. In the case of 
dtAutoDelete, for example, the document is deleted when the last view is deleted. 

Certain documents must be registered with different options. For example, to register a 
Doc/View application used with a TOleDocument object, you must specify the 
dtRegisterExt and dtAutoOpen flags. If this is a Doc/View application, and if the 
document template is not hidden, you must register the description, filter, and 
extension. 

See also BEGIN_REGISTRATION macro, REGFORMAT macro, REGDATA macro, 
dt document template constants 

REGISTRATION FORMAT BUFFER macro locale.h 

REGISTRATION _FORMAT_ BUFFER(n); 
Allocates space in memory (n) for the expansion of the values passed in the registration 
macros that control the formatting of a document or application. Generally, allow 10 
bytes for each value passed in the REGFORMAT macro in addition to the space 
required for strings passed in the REGSTATUS, REGVERBOPT, REGICON, or 
REGFORMAT macros. For example, the sample program, STEPlS.CPP uses this macro 
to declare 100 bytes of space: 

REGISTRATION_FORMAT_BUFFER(lOO); 

See also REGFORMAT macro, REGSTATUS macro 

TDocTemplate class doctpl.h 

TDocTemplate is an abstract base class that contains document template functionality. 
This document template class defines several functions that make it easier for you to use 
documents and their corresponding views. TDocTemplate classes create documents and 
views from resources and handle document naming and browsing. The document 
manager maintains a list of the current template objects. Each document type requires a 
separate document template. 

Public member functions 
Clear Flag 
void ClearFlag(long flag); 
Clears a document template constant. 

Ch apter B, 0 b j e ct Support Ii b r a r y reference 679 



TDocTemplate class 

See also dt document template constants 

Clone 
virtual TDocTemplate* Clone(TModule* module, TDocTemplate*& phead=DocTemplateStaticHead)=O; 
Makes a copy of a document template. 

ConstructDoc 
virtual TDocument* ConstructDoc(TDocument* parent = 0) = O; 
A pure virtual function that must be defined in a derived class, ConstructDoc creates a 
document specified by the document template class. Use this function in place of 
Create Doc. 

See also TDocManager::CreateDoc 

ConstructView 
virtual TView* ConstructView(TDocument& doc = 0) = O; 
A pure virtual function that must be defined in a derived class, ConstructView creates the 
view specified by the document template class. ' 

See also TDocManager::CreateView 

Create Doc 
virtual TDocument* CreateDoc(const char far* path, long flags = 0)= O; 
An obsolete pure virtual function that must be defined in a derived class, CreateDoc 
creates a document based on the directory path (path) and the specified template and 
flags value. If the path is 0 and the new flag (dtNewDoc) is not set, the dialog box is 
displayed. This function is obsolete: use ConstructDoc instead. 

See also TDocManager::CreateAnyDoc, TDocTemplate::ConstructDoc 

Create View 
virtual TView* CreateView(TDocument& doc, long flags) = O; 
A pure virtual function that must be defined in a derived class, Create View creates the 
view specified by the document template class. This function is obsolete: use 
ConstructView instead. 

See also TDocManager::CreateAnyView, TDocTemplate::ConstructView 

GetDefaultExt 
const char far* GetDefaultExt() const; 
Gets the default extension to use if the user has entered the name of a file without any 
extension. If there is no default extension, GetDefaultExt contains 0. 

GetDescription 
const char far* GetDescription() const; 
Gets the template description to put in the file-selection list box or the File I New menu­
selection list box. 

GetDirectory 
const char far* GetDirectory() const; 
Gets the directory path to use when searching for matching files. This will get updated if 
a file is selected and the dtUpdateDir flag is set. 

680 ObjectWindows Reference Guide 



See also 

GetDocManager 
TDocManager* GetDocManager() const; 
Points to the document manager. 

GetFileFilter 
const char far* GetFileFilter() const; 

TDocTemplate class 

Gets any valid document matching pattern to use when searching for files. 

GetFlags 
long GetFlags() const; 
Gets the document template constants, which indicate how the document is created and 
opened. 

See also dt xxxx document template constants 

GetModule 
TModule*& GetModule(); 
Returns a module pointer. 

GetNextTemplate 
TDocTemplate* GetNextTemplate() const; 
Gets the next template in the list of templates. 

GetRegList 
TRegList& GetRegList() const; 
Gets the program's registration table, which contains the program's current program ID, 
class ID, executable path, as well as other attributes used to construct a TDocTemplate 
object. See the entry for Registration macros in this manual for information about how 
the registration macros generate registration information. 

GetViewName 
virtual const char far* GetViewName() = O; 
A pure virtual function that must be defined in a derived class, GetViewName gets the 
name of the view associated with the template. 

lnitDoc 
TDocument* lnitDoc(TDocument* doc, const char far* path, long flags); 
InitDoc is called only from the subclass so that CreateDoc can continue its document 
processing. 

See also TDocTemplate::CreateDoc 

lnitView 
TView* lnitView(TView* view); 
Called only from the subclass to continue Create View processing. 

See also TDocTemplate::CreateView 

lsFlagSet 
bool lsFlagSet(long flag); 
Returns nonzero if the document template flag is set. 

Chapter 8, ObjectSupport library reference 681 



TDocTemplate class 

See also dt xxxx document template constants 

lsMyKindOfDoc 
virtual TDocument* lsMyKindOfDoc(TDocument& doc)=O; 
A pure virtual function that must be defined in a derived class, IsMyKindO.fDoc tests if 
the template belongs to the same class as the document or to a derived class. 

See also TDocTemplateT::IsMyKindOfDoc 

lsMyKindOfView 
virtual TView* lsMyKindONiew(lView& view) = O; 
A pure virtual function that must be defined in a derived class, IsMyKindofView tests if 
the template belongs to the same class as the view or to a derived class. 

lsStatic 
bool lsStatic(); 
Returns true if the template is statically constructed. 

ls Visible 
bool lsVisible(); 
Indicates whether the document can be displayed in the file selection dialog box. A 
document is visible if dtHidden isn't set and Description isn't 0. 

SelectSave 
bool SelectSave(TDocument& doc); 
Prompts the user to select a file name for the document. Filters out read-only files. 

SetDefaultExt 
void SetDefaultExt(const char far*); 
Sets the default extension to use if the user has entered the name of a file without any 
extension. If there is no default extension, SetDejaultExt contains 0. 

SetDirectory 
void SetDirectory(const char far*); 
void SetDirectory(const char far*, int len); 
Sets the directory path to use when searching for matching files. This will get updated if 
a file is selected and the dtUpdateDir flag is set. 

See also TDocTemplate::GetDirectory 

SetDocManager 
void SetDocManager(TDocManager* dm); 
Sets the current document manager to the argument dm. 

SetFileFilter 
void SetFileFilter(const char far*); 
Sets the valid document matching pattern to use when searching for files. 

SetFlag 
void SetFlag(long flag); 
Sets the document template constants, which indicate how the document is created and 
opened. 

682 ObjectWindows Reference Guide 



TDocTemplateT<D,V> class 

See also dtxxxx document template constants 

SetModule 
TModule*& SetModule(); 
Sets a module pointer. 

Protected constructor and destructor 
Constructor 
TDocTemplate(TReglist& reglist, TModule*& module, TDocTemplate*& phead): 
Uses the information in the registration table (regList) to construct a TDocTemplate with 
the specified file description, file filter pattern, search path for viewing the directory, 
default file extension, and flags representing the view and creation options from the 
registration list. Then, adds this template to the document manager's template list. H the 
document manager is not yet constructed, adds the template to a static list, which the 
document manager will later add to its template list. 

The argument, module, specifies the TModule of the caller. phead specifies the template 
head for the caller's module. See the Registration macros entry in this manual for 
information about the registration macros that generate a TRegList, which contains the 
attributes used to create a TDocTemplate object. 

Destructor 
N TDocTemplate(); 
Destroys a TDocTemplate object and frees the data members (FileFilter, Description, 
Directory, and DefaultExt). The Destructor is called only when no views or documents are 
associated with the template. Instead of calling this Destructor directly, use the Delete 
member function. 

See also dtxxxx document template constants 

TDocTemplateT <D,V> class doctpl.h 

To register the associated document and view classes, a parameterized subclass, 
TDocTemplateT<D,V>, is used to construct a particular document and view, where D 
represents the document class and V represents the view class. The parameterized 
template classes are created using a macro, which also generates the associated 
streamable support. The document and view classes are provided through the use of a 
parameterized subclass. The template class name is used as a typedef for the 
parameterized class. For example, 

DEFINE_DOC_TEMPLATE_CLASS(TFileDocurnent, TEditView, MyEditFile) 

You can instantiate a document template using either a static member or an explicit 
construction. For example, 

MyEditFile etl ("Edit text files", 
"* .txt", "D:\ \doc"," .TXT"" ,dtNoAutoView); 

new MyEditFile( ..... ) 

Chapter 8, ObjectSupport library reference 683 



TDocTemplateT<D,V> class 

When a document template is created, the document manager (TDocManager) registers 
the template. When the document template's delete function is called to delete the 
template, it is no longer visible to the user. However, it remains in memory as long as 
any documents still use it. 

Public constructors 
Constructors 

Form 1 TDocTemplateT(const char far* filt, const char far* desc, const char far* dir, const char far* ext, 
long flags= 0, TModule*& module= ::Module, TDocTemplate*& phead = DocTemplateStaticHead); 

Constructs a TDocTemplateT with the specified file description (desc), file filter pattern 
<Jilt), search path for viewing the directory (dir), default file extension (ext), and flags 
representing the view and creation options (flags). module, which is instantiated and 
exported directly from every executable module, can be used to access the current 
instance. 

Form 2 TDocTemplateT(TReglist& reglist, TModule*& module= ::Module, 
TDocTemplate*& phead = DocTemplateStaticHead); 

Constructs a TDocTemplateT using the registration table to determine the file filter 
pattern, search path for viewing the directory, default file extension, and flag values. See 
the entry in this manual for registration macros for more information about how the 
registration tables are created. module, which is instantiated and exported directly from 
every executable module, can be used to access the current instance. 

Public member functions 
Clone 
TDocTemplateT* Clone{TModule* module, TDocTemplate*& phead = DocTemplateStaticHead; 
Makes a copy of the TDocTemplateT object. 

Create Doc 
D* CreateDoc(const char far* path, long flags = O); 
CreateDoc creates a document of type D based on the directory path (path) and flags 
value. 

See also TDocTemplate::CreateDoc 

Create View 
TView* CreateView{TDocument& doc, long flags = O); 
Create View creates the view specified by the document template class. 

See also TDocManager::CreateAnyView 

lsMyKindOfDoc 
D* lsMyKindOfDoc{TDocument& doc); 
IsMyKindOfDoc tests to see if the document (doc) is the same class as the template's 
document class or if the document is a derived class. If the template can't use the 
document, IsMyKindOfDoc returns 0. 

See also TDocTemplate::IsMyKindOfDoc 

684 ObjectWindows Reference Guide 



TDroplnfo class 

lsMyKindOfView 
V* lsMyKindONiew(TView& view); 
IsMyKindOJView tests to see if the view (view) is the same class as the template's view 
class or if the view is a derived class. If the template can't use the view, IsMyKindOJView 
returnsO. 

GetViewName 
virtual cons! char far* GetViewName(); 
GetViewName gets the name of the view associated with the template. 

TDroplnfo class geometry.h 

TDropinfo is a simple class that supports file-name drag and drop operations using the 
WM_DROPFILES message. Each TDropinfo object has a private handle to the HDROP 
structure returned by the WM_DOPFILES message. 

Public constructor 
Constructor 
TDroplnfo(HDROP handle); 
Creates a TDropinfo object with Handle set to the given handle. 

Public member functions 
Drag Finish 
void DragFinish(); 
Releases any memory allocated for the transferring of this TDropinfo object's files during 
drag operations. 

DragQueryFile 
uint DragQueryFile( uint index, char far* name, uint namelen) 
Retrieves the name of the file and related information for this i object. If index is set to -1 
(OxFFFF), DragQueryFile returns the number of dropped files. This is equivalent to 
calling DragQueryFileCount. 

If index lies between 0 and the total number of dropped files for this object, 
DragQueryFile copies to the name buffer (of length nameLen bytes) the name of the 
dropped file that corresponds to index, and returns the number of bytes actually copied. 

If name is 0, DragQueryFile returns the required buffer size (in bytes) for the given index. 
This is equivalent to calling DragQueryFileNameLen. 

See also TDroplnfo::DragQueryPoint, TDroplnfo::DragQueryFileCount 

DragQueryFileCount 
uint DragQueryFileCount(); 
Returns the number of dropped files in this TDropinfo object. This call is equivalent to 
calling DragQueryFile (-1, 0, 0). 

Chapter 8, ObjectSupport libra,ry reference 685 



Tlangld typedef 

See also 1Droplnfo::DragQueryFile 

DragQueryFileNameLen 
uint DragQueryFileNamelen(uint index) 
Returns the length of the name of the file in this TDroplnfo object corresponding to the 
given index. This call is equivalent to calling DragQueryFile (index, 0, 0). 

'see also TDroplnfo::DragQueryFile 

DragQueryPoint 
bool DragQueryPoint(TPoint& point) 
Retrieves the mouse pointer position when this object's files are dropped and copies the 
coordinates to the given point object. point refers to the window that received the 
WM_DROPFILES message. DragQueryPoint returns true if the drop occurs inside the 
window's client area, otherwise false. 

See also TPoint class 

HDROP() 
operator HDROP(); 
Typecasting operator that returns Handle. 

Tlangld typedef 
typedef unsigned short Tlangld; 

locale.h 

Holds a language ID, a predefined number that represents a base language and dialect. 
For example, the number 409 represents American English. TLocaleString uses the 
language ID to find the correct translation for strings. 

See also TLocaleString 

TPoint class geometry.h 

TPoint is a support class, derived from tagPOINT. Under Win32, the latter is defined as 

typedef struct tagPOINT { 
int x; 
int y; 

}; 

TPoint encapsulates the notion of a two-dimensional point that usually represents a 
screen position. TPoint inherits two data members, the coordinates x and y, from 
tagPOINT. Member functions and operators are provided for comparing, assigning, and 
manipulating points. Overloaded<< and>> operators are declared as friends of TPoint, 
allowing chained insertion and extraction of TPoint objects with streams. 

· 686 ObjectWindow.s Reference Guide 



TPoint class 

Public constructors 
Constructors 

Form 1 TPoint(); 
The default TPoint constructor. 

Form 2 TPoint(int _ x, int _y); 
Creates a TPoint object with the given coordinates. 

Form 3 TPoint(const POINT& point); 
Creates a TPoint object with x = point. x y = point.y. 

Form 4 TPoint(const SIZE& size); 
Creates a TPoint object with x = size.ex and y = size.cy. 

Form 5 TPoint(uint32 dw); 
Creates a TPoint object with x = LOWORD(dw) y = HIWORD(dw)). 

See also TPOINT, TSIZE 

Public member functions 
Offset 
TPoint& Offset(int dx, int dy); 
Offsets this point by the given delta arguments. This point is changed to (x + dx, y + dy). 
Returns a reference to this point. 

See also TPoint::OffsetBy, TPoint::operator += 

Offset By 
TPoint OffsetBy(int dx, int dy) canst; 
Calculates an offset to this point using the given displacement arguments. Returns the 
point (x + dx, y + dy). This point is not changed. 

See also TPoint::operator +, TPoint::Offset 

operator+ 
TPoint operator +(canst TSize& size) cons!; 
Calculates an offset to this point using the given size argument as the displacement. 
Returns the point (x + size.ex, y + size.cy). This point is not changed. 

See also TPoint::OffsetBy, TSize class 

operator-
TPoint operator -(canst TSize& size) canst; 
TSize operator -(canst TPoint& point) canst; 
TPoint operator -() canst; 
The first version calculates a negative offset to this point using the given size argument 
as the displacement. Returns the point (x -size.ex, y- size.cy). This point is not changed. 

The second version calculates a distance from this point to the point argument. Returns 
the TSize object (x -point.x, y-point.y). This point is not changed. 

The third version returns the point (-x, -y). This point is not changed. 

Ch apter 8, 0 b j e ct Support Ii bra r y reference 687 



TPoint class 

See also TPoint::operator +, TSize class 

operator== 
bool operator ==(Const TPoint& other) const; 
Returns true if this point is equal to the other point; otherwise returns false. 

See also TPoint::operator != 

operator+= 
TPoint& operator +=(const TSize& size); 
Offsets this point by the given size argument. This point is changed to(x + size.ex, y + 
size.cy). Returns a reference to this point. 

See also TPoint::Offset, TPoint::operator -=, TSize class 

operator-= 
TPoint& operator-=(const TSize& size); 
Negatively offsets this point by the given size argument. This point is changed to (x -
size.ex, y- size.ey). Returns a reference to this point. 

See also TPoint::Offset, TPoint::operator +=, TSize class 

operator!= 
bool operator !=(const TPoint& other) const; 
Returns false if this point is equal to the other point; otherwise returns true. 

See also TPoint::operator == 

operator» 
Form 1 ipstream& operator »(ipstream& is, TPoint& p); 

Extracts a TPoint object from persistent stream is, and copies it top. Returns a reference 
to the resulting stream, allowing the usual chaining of<< operations. 

Form 2 istream& operator »(istream& is, TPoint& p); 
Extracts a TPoint object from stream is, and copies it top. Returns a reference to the 
resulting stream, allowing the usual chaining of>> operations. 

See also TPoint operator < <, class ipstream 

operator« 
Form 1 opstream& operator «(opstream& os, const TPoint& p); 

Inserts the given TPoint object p into persistent stream os. Returns a reference to the 
resulting stream, allowing the usual chaining of>> operations. 

Form 2 ostre1:1m& operator «(ostream& os, const TPoint& p); 
Formats and inserts the given TPoint object pinto the ostream os. The foµnat is "(x,y)". 
Returns a reference to the resulting stream, allowing the usual chaining of<< 
operations. 

See also TPoint operator > >, ostream 

688 ObjectWjndows Reference Guide 



TPointer<> class 

TPointer<> class geometry.h 

A small utility class that provides automatic destruction for objects constructed using 
new. TPointer is a parameterized class that holds a pointer to its parameterized type and 
overloads operators to behave like an object pointer. Assigning a pointer to a TPointer 
object eventually causes the object to be deleted when the function exits or when a 
TPointer goes out of scope or when another pointer is assigned to the same object. A 
TPointer object can be instantiated using one of the following equivalent methods: 

TPointer<SomeClass> p = new SomeClass; 
T~ointer<SomeClass> p1new 8omeclass); 
TPointer<SomeClass> p; p = new SomeClass; 

To remove the object, assign 0 to the pointer. 

Public constructors 

Constructors 
Form 1 TPointer(): TPointerBase<T>(); 

Default constructor in which p is initialized to 0. 

Form 2 TPointer(T* pointer) : TPointerBase<T>(pointer); 
Initialized constructor where pis initialized to pointer. 

Public member functions 

operator* 
T& operator*(); 
Overloaded type conversion operator that casts its argument to a pointer to the type 
passed in. 

operator T* 
operator T*(); 
Overloaded type conversion operator that allows the TPointer object to be passed as a 
function argument or assigned to a variable as if it were a pointer. 

operator= 
Form 1 T* operator =(T* src); 

Assignment operator T* is assigned top. 

Form 2 T* operator =(const TPointer<T>& src); 
Assignment operator used when r is a const reference to TPointer of T. This operator 
saves converting if another pointer object is used. 

operator-> 
T* operator->(); 
Provides access to the pointer. 

Chapter 8, ObjectSupport library reference 689 



TProclnstance class 

TProclnstance class geometry.h 

Designed for Win16 applications, TProcinstance handles creating and freeing an instance 
thunk, a piece of code created for use with exported callback functions. (A callback 
function is a function that exists within a program but is called from outside the 
program by a Windows library routine, for example, a dialog box function.) 

For Win32 applications, TProcinstance is non-functional. The address returned from 
TProcinstance can be passed as a parameter to callback functions, window subclassing 
functions, or Windows dialog box functions. 

See the Windows API online Help for more information about MakeProcinstance, which 
creates an instance thunk for the function and FreeProcinstance, which frees an instance 
thunk. For more information about exporting callback functions, see the Borland C++ 
Programmer's Guide. 

Public constructor and destructor 

Constructor 
TProclnstance(FARPROC p); 
Makes a TProcinstance, passing pas the address of the procedure. Under Winl6, calls 
::MakeProcinstance to make an instance thunk for p. Under Win32, the constructor just 
savesp. 

Destructor 
~ TProclnstance() 
Under WIN16 frees the instance thunk. 

See also ::MakeProclnstance (Windows API), ::FreeProclnstance (Windows API) 

Public member function 

FAR PROCO 
operator FARPROC(); 
Under WIN16, returns the instance thunk. Under Win32, returns p from the constructor. 

TRect class geometry.h 

TRect is a mathematical class derived from tagRect. The tagRect struct is defined as 

struct tagRECT ( 
int left; 

}; 

int top; 
int right; 
int bottom; 

TRect encapsulates the properties of rectangles with sides parallel to the x- and y-axes. In 
ObjectWindows, these rectangles define the boundaries of windows, boxes, and 

690 ObjectWindows Reference Guide 



TRect class 

clipping regions. TRect inherits four data members from tagRect left, top, right, and 
bottom. These represent the top left and bottom right (x, y) coordinates of the rectangle. 
Note that x increases from left to right, and y increases from top to bottom. 

TRect places no restrictions on the relative positions of top left and bottom right, so it is 
legal to have left > right and top > bottom. However, many manipulations-such as 
determining width and height, and forming unions and intersections-are simplified by 
normalizing the TRect objects involved. Normalizing a rectangle means interchanging 
the comer point coordinate values so that left < right and top < bottom. Normalization 
does not alter the physical properties of a rectangle. myRect.Normalized creates 
normalized copy of myRect without changing myRect, while myRect.Normalize changes 
myRect to a normalized format. Both members return the normalized rectangle. 

TRect constructors are provided to create rectangles from either four ints, two TPoint 
objects, or one TPoint and one TSize object. In the latter case, the TPoint object specifies 
the top left point (also known as the rectangle's origin) and the TSize object supplies the 
width and height of the rectangle. Member functions perform a variety of rectangle tests 
and manipulations. Overloaded << and>> operators allow chained insertion and 
extraction of TRect objects with streams. 

Public constructors 

Constructors 
Form 1 TRect(); 

The default constructor. 

Form 2 TRect(const RECT far& rect); 
Copies the given rect to this object. 

Form 3 TRect(int _left, int _top, int _right, int_ bottom); 
Creates a rectangle with the given values. 

Form 4 TRect(const TPoint& upLeft, const TPoint& loRight); 
Creates a rectangle with the given top left and bottom right points. 

Form 5 TRect(const TPoint& origin, const TSize& extent); 
Creates a rectangle with its origin (top left) at origin, width at extent.ex, height at 
extent.cy. 

See also TPoint class, TSize class 

Public member functions 
Area 
long Area() const; 
Returns the area of this rectangle. 

See also TRect::Size 

Bottom Left 
TPoint BottomLeft() const; 
Returns the TPoint object representing the bottom left comer of this rectangle. 

Chapter B, ObjectSupport library reference 691 



TRect class 

See also TRect::TopLeft, TRect::TopRight, TRect::BottomRight, TPoint 

Bottom Right 
. canst TPoint& BottomRight() canst; 
TPoint& BottomRight(); 
Returns the TPoint object representing the bottom right comer of this rectangle. 

See also TRect::TopRight, TRect::BottomLeft, TRect::TopLeft, TPoint class 

Bottom Right 
canst TPoint& Bottom Right() canst; 
TPoint& BottomRight(); 
Returns the TPoint object representing the bottom right comer of this rectangle. 

See also TRect::TopRight, TRect::BottomLeft, TRect::TopLeft, TPoint class 

Contains 
Form 1 bool Contains(const TPoint& point) canst; 

Returns true if the given point lies within this rectangle; otherwise, it returns false. If 
point is on the left vertical or on the top horizontal borders of the rectangle, Contains also 
returns true, but if point is on the right vertical or bottom horizontal borders, Contains 
returns false. 

Form 2 bool Contains(const TRect& other) canst; 
Returns true if the other rectangle lies on or within this rectangle; otherwise, it returns 
false. 

See also TRect::Touches, TPoint class, TRect class 

Height 
int Height() canst; 
Returns the height of this rectangle (bottom - top). 

See also TRect::Width 

Inflate 
TRect& lnflate(int dx, int dy); 
TRect& lnflate(const TSize& delta); 
Inflates a rectangle inflated by the given delta arguments. In the first version, the top left 
comer of the returned rectangle is (left - dx, top - dy), while its bottom right comer is 
(right + dx, bottom + dy). In the second version the new comers are (left- size.ex, top­
size.ey) and (right +size.ex, bottom + size.ey). 

See also TRect class, TSize class 

Inflated By 
TRect lnflatedBy(int dx, int dy) canst; 
TRect lnflatedBy(const TSize& size) canst; 
Returns a rectangle inflated by the given delta arguments. In the first version, the top left 
comer of the returned rectangle is (left - dx, top - dy), while its bottom right comer is 
(right + dx, bottom + dy). In the second version the new comers are (left - size.ex, top -
size.ey) and (right +size.ex, bottom + size.cy). The calling rectangle object is unchanged. 

See also TRect::OffsetBy, TRect class, TSize class 

692 ObjectWindows Reference Guide 



TRect class 

lsEmpty 
bool lsEmpty() const; 
Returns true if left>= right or top>= bottom; otherwise, returns false. 

See also TRect::SetEmpty, TRect::IsNull 

lsNull 
bool lsNull() const; 
Returns true if left, right, top, and bottom are all O; otherwise, returns false. 

See also TRect::IsEmpty, TRect::SetEmpty 

Normalize 
TRect& Normalize(); 
Normalizes this rectangle by switching the left and right data member values if left > 
right, and switching the top and bottom data member values if top > bottom. Normalize 
returns the normalized rectangle. A valid but nonnormal rectangle might have left > 
right and/ or top > bottom. In such cases, many manipulations (such as determining 
width and height) become unnecessarily complicated. Normalizing a rectangle means 
interchanging the comer point values so that left < right and top < bottom. The physical 
properties of a rectangle are unchanged by this process. 

See also TRect::Normalized, TRect class 

Normalized 
TRect Normalized() const; 
Returns a normalized rectangle with the top left comer at (Min(left, right), Min(top, 
bottom)) and the bottom right comer at (Max(left, right), Max(top, bottom)). The calling 
rectangle object is unchanged. A valid but nonnormal rectangle might have left > right 
and/ or top > bottom. In such cases, many manipulations (such as determining width and 
height) become unnecessarily complicated. Normalizing a rectangle means 
interchanging the comer point values so that left < right and top < bottom. The physical 
properties of a rectangle are unchanged by this process. 

Note that many calculations assume a normalized rectangle. Some Windows API 
functions behave erratically if an inside-out Rect is passed. 

See also TRect::Normalize, TRect 

Offset 
TRect& Offset(int dx, int dy); 
Changes this rectangle so its comers are offset by the given delta values. The revised 
rectangle has a top left comer at (left + dx, top + dy) and a right bottom comer at (right + 
dx, bottom+ dy). The revised rectangle is returned. 

See also TRect::operator +, TRect::operator +=, TRect::OffsetBy 

Offset By 
TRect OffsetBy(int dx, int dy) const; 
Returns a rectangle with the comers offset by the given delta values. The returned 
rectangle has a top left comer at (left + dx, top + dy) and a right bottom comer at (right + 
dx, bottom + dy). 

See also TRect::operator + 

Chapter 8, ObjectSupport library reference 693 



TRect class 

operator+ 
TRect operator +(canst TSize& size) canst; 
Returns a rectangle offset positively by the delta values given size. The returned 
rectangle has a top left comer at (left+ size.x, top+ size.y) and a right bottom comer at 
(right + size.x, bottom + size.y). The calling rectangle object is unchanged. 

See also TRect::OffsetBy, TSize class 

operator-
. TRect operator -(canst TSize& size)· cons!; 
Returns a rectangle offset negatively by the delta values given size. The returned 
rectangle has a top left comer at (left - size.ex, top - size.cy) and a right bottom corner at 
(right - size.ex, bottom - size.cy). The calling rectangle object is unchanged. 

See also TRect::OffsetBy, TSize class 

operator & 
TRect operator &(canst TRect& other) canst; 
Returns the intersection of this rectangle and the other rectangle. The calling rectangle 
object is unchanged. Returns a NULL rectangle if the two don't intersect. 

See also TRect::operator I , TRect::operator &= 

operator I 
TRect operator l(const TRect& other) canst; 
Returns the union of this rectangle and the other rectangle. The calling rectangle object is 
unchanged. 

See also TRect::operator &, TRect::operator I = 

operator== 
bool operator ==(canst TRect& other) canst; 
Returns true if this rectangle has identical corner coordinates to the other rectangle; 
otherwise, returns false. 

See also TRect::operator != 

operator!= 
bool operator !=(canst TRect& other) cons!; 
Returns false if this rectangle has identical corner coordinates to the other rectangle; 
otherwise, returns true. 

See also TRect::operator == 

operator+= 
TRect& operator +=(canst TSize& delta); 
Changes this rectangle so its corners are offset by the given delta values, delta.x and 
delta.y. The revised rectangle has a top left corner at (left+ delta.x, top+ delta.y) and a right 
bottom corner at (right + delta.x, bottom + delta.y). The revised rectangle is returned. 

See also TRect::operator +, TRect::OffsetBy, TRect::Offset 

operator-= 
TRect& operator -=(canst TSize& delta); 

694 ObjectWindows Reference Guide 



TRect class 

Changes this rectangle so its corners are offset negatively by the given delta values, 
delta.x and delta.y. The revised rectangle has a top left corner at (left- delta.x, top- delta.y) 
and a right bottom corner at (right - delta.x, bottom - delta.y). The revised rectangle is 
returned. 

See also TRect::operator -, TRect::operator +=, TRect::OffsetBy, TRect::Offset 

operator&= 
TRect& operator &=(canst TRect& other); 
Changes this rectangle to its intersection with the other rectangle. This rectangle object is 
returned. Returns a NULL rectangle if there is no intersection. 

See also TRect::operator &, TRect::operator I= 

operator I= 
TRect& operator l=(const TRect& other); 
Changes this rectangle to its union with the other rectangle. This rectangle object is 
returned. 

See also TRect::operator I , TRect::operator &= 

operator» 
ipstream& _BIDSFUNC operator »(ipstream& is, TRect& r); 
Extracts a TRect object from is, the given input stream, and copies it tor. Returns a 
reference to the resulting stream, allowing the usual chaining of>> operations. 

See also TRect operator<< 

operator« 
Form 1 opstream& _BIDSFUNC operator «(opstream& os, cons! TRect& r); 

Inserts the given TRect object, r, into the opstream, os. Returns a reference to the resulting 
stream, allowing the usual chaining of<< operations. 

Form 2 ostream& _BIDSFUNC operator «(ostream& os, canst TRect& r); 
Formats and inserts the given TRect object, r, into the ostream, os. The format is (r.left, 
r.top)(r.right, r.bottom). Returns a reference to the resulting stream and allows the usual 
chaining of<< operations. 

See also TRect operator>> 

operator TPoint*() 
operator canst TPoint*() canst; 
operator TPoint*() 

Type conversion operators converting the pointer to this rectangle to type pointer to 
TPoint. 

See also TPoint class 

Set 
void Set(int _left, int _top, int _right, int _bottom); 
Repositions and resizes this rectangle to the given values. 

SetEmpty 
void SetEmpty(); 

C h a p t e r 8 , 0 b j e c t S u p p o rt I i b r a r y r e I e r e n c e 695 



TResld class 

Empties this rectangle by setting left, top, right, and bottom to 0. 

SetNull 
void SetNull(); 
Sets the left, top, right, and bottom of the rectangle to 0. 

Size 
TSize Size() cons!; 
Returns a TSize object representing the width and height of this rectangle. 

See also TSize class 

Top left 
cons! TPoint& Topleft() cons!; 
TPoint& Topleft(); 

Returns the TPoint object representing the top left comer of this rectangle. 

See also TRect::TopRight, TRect::BottomLeft, TRect::BottomRight, TPoint class 

Top Right 
TPoint TopRight() cons!; 
Returns the TPoint object representing the top right comer of this rectangle. 

See also TRect::TopLeft, TRect::BottomLeft, TRect::BottomRight 

Touches 
bool Touches(const TRect& other) cons!; 
Returns true if the other rectangle shares any interior points with this rectangle; 
otherwise, returns false. 

See also TRect::Contains 

Width 
int Width() cons!; 
Returns the width of this rectangle (right - left). 

See also TRect::Height 

TResld class geometry.h 

A simple support class, TResld creates a resource ID object from either an integer or an 
actual string identifier. For example, TResld encapsulates the use of LPSTR ( char_far*) as 
a resource identifier. This resource identifier can be passed to various ObjectWindows 
classes. To handle these two different types of resource identifiers, TResld defines a 
conversion operator and provides two constructors that convert and use these native 
data types. One constructor accepts a 16-bit integer and the other accepts a character 
string. 

696 0 b j e c I W i n d ow s R e f e r e n c e G u i d e 



TSize class 

Public constructors 
Constructors 

Form 1 TResld(); 
The default TResid constructor. 

Form 2 TResld(int resNum); 
Creates a TResid object with the given resNum. 

Form 3 TResld(const char far* resString); 
Creates a TResid object with the given resString. 

Public member functions 

char far* 
operator char far*(); 
Typecasting operator that converts Id (a TResid private data member) to type char far* 
so that instances of TResid can be used in places where char far* data types are expected. 

lsString 
bool lsString() cons!; 
Returns true if this resource ID was created from a string; otherwise, returns false. 

Friend functions 

operator» 
friend ipstream& operator »(ipstream& is, TResld& id); 
Extracts a TResid object from is (the given input stream), and copies it to id. Returns a 
reference to the resulting stream, allowing the usual chaining of>> operations. 

See also TResld friend operator<<, ipstream 

operator« 
Form 1 friend opstream& operator «(opstream& os, cons! TResld& id); 

Inserts the given TResid object (id) into the opstream (os). Returns a reference to the 
resulting stream, allowing the usual chaining of<< operations. 

Form 2 friend ostream& operator «(ostream& os, cons! TResld& id); 
Formats and inserts the given TResid object (id) into the ostream (os). Returns a reference 
to the resulting stream, allowing the usual chaining of<< operations. 

See also TResld friend operator>>, ostream, opstream 

TSize class 
TSize is a mathematical class derived from the structure tagSIZE. 

The tagSIZE struct is defined as 

struct tagSIZE { 

geometry.h 

C h a pt e r 8 , 0 b j e ct S u p p o rt I i b r a r y r e f e r e n c e 697 



TSize class 

}; 

int ex; 
int cy; 

TSize encapsulates the notion of a two-dimensional quantity that usually represents a 
displacement or the height and width of a rectangle. TSize inherits the two data 
members ex and cy from tagSIZE. Member functions and operators are provided for 
comparing, assigning, and manipulating sizes. Overloaded<< and>> operators allow 
chained insertion and extraction of TSize objects with streams. 

Public constructors 
Constructors 

Form 1 TSize(); 
The default TSize constructor. 

Form 2 TSize(int dx, int dy); 
Creates a TSize object with ex = dx and ey = dy. 

Form 3 TSize(const POINT& point); 
Creates a TSize object with ex = point.x and cy = point.y. 

Form 4 TSize(const SIZE& size); 
Creates a TSize object with ex = size.ex and ey = size.ey. 

Form 5 TSize(uint32 dw); 
Creates a TSize object with ex= LOWORD(dw) and ey = HIWORD(dw)). 

See also TPoint class, Size struct 

Public member functions 
Magnitude 
int Magnitude() canst; 
Returns the length of the diagonal of the rectangle represented by this object. The value 
returned is an int approximation to the square root of (ex + cy). 

operator+ 
TSize operator +(canst TSize& size) canst; 
Calculates an offset to this TSize object using the given size argument as the 
displacement. Returns the object (ex+ size.ex, ey + size.ey). This TSize object is not 
changed. 

See also TSize::operator -

operator-
Form 1 TSize operator -(canst TSize& size) canst; 

The first version calculates a negative offset to this TSize object using the given size 
argument as the displacement. Returns the point (ex -size.ex, ey-size.ey). This object is 
not changed. 

Form 2 TSize operator -() canst; 

698 0 b j e ct W i n d o w s R e I e r e n c e G u i d e 



TXBase class 

The second version returns the TSize object (-ex, -cy). This object is not changed. 

See also TSize::operator + 

operator== 
bool operator ==(const TSize& other) const; 
Returns true if this size object is equal to the other TSize object; otherwise returns false. 

See also TSize::operator != 

operator!= 
bool operator !=(const TSize& other) const; 
Returns false if this size object is equal to the other TSize object; otherwise returns true. 

See also TSize::operator == 

operator+= 
TSize& operator +=(const TSize& size); 
Offsets this TSize object by the given size argument. This TSize object is changed to (ex+ 
size.ex, ey + size.ey). Returns a reference to this object. 

See also TSize::operator -= 

operator-= 
TSize& operator -=(const TSize& size); 
Negatively offsets this TSize object by the given size argument. This object is changed to 
(ex-size.ex, ey-size.ey). Returns a reference to this object. 

See also TSize::operator += 

operator» 
ipstream& operator »(ipstream& is, TSize& s); 
Extracts a TSize object from is, the given input stream, and copies it to s. Returns a 
reference to the resulting stream, allowing the usual chaining of>> operations. 

See also TSize operator<<, ipstream 

operator« 
Form 1 opstream& operator «(opstream& os, const TSize& s); 

Inserts the given TSize object (s) into the opstream (as). Returns a reference to the resulting 
stream, allowing the usual chaining of<< operations. 

Form 2 ostream& operator «(ostream& os, const TSize& s); 
Formats and inserts the given TSize object (s) into the ostream (as). The format is "(ex x 
ey)". Returns a reference to the resulting stream, allowing the usual chaining of<< 
operations. 

See also TSize operator>>, opstream, ostream 

TXBase class except.h 

Derived from xmsg, TXBase is the base class for ObjectWindows and ObjectComponents 
exception-handling classes. The ObjectWindows classes that handle specific kinds of 

Chapter 8, ObjectSupport library reference 699 



TXBase class 

exceptions, for example out-of-memory or invalid window exceptions are derived from 
TXOwl, which is in turn derived from TXBase. The ObjectComponents classes, TXOle 
and TXAuto, are derived directly from TXBase. 

TXBase contains the functions, Clone and Throw, which are overridden in all derived 
classes, as well as two constructors. The constructors increment, InstanceCount, TXBase's 
public data member, and the destructor decrements InstanceCount. 

See the Borland C++ Library Reference for a description of xmsg, TXBase' s parent class. See 
the Object Windows Programmer's Guide for information about how to use TXBase in your 
applications. 

See also 
TXOwl 

Public constructors and destructor 
Constructors 

Form 1 TXBase(const string& msg); 
Calls the xmsg class's constructor that takes a string parameter and initializes xmsg with 
the value of the string parameter. 

Form 2 TXBase(const TXBase& src); 
Creates a copy of the TXBase object passed in the TXBase parameter. 

Destructor 
virtual ~ TXBase; 
Destroys the TXBase object and decrements the InstanceCount data member 

See also TXOwl public constructors and destructor 

Public data member 
lnstanceCount 
static int lnstanceCount; 
Counts the number of TXBase and TXBase-derived objects existing in a single 
application. 

Public member functions 
Clone 
virtual TXBase* Clone(); 
Makes a copy of the exception object. 

Throw 
virtual void Throw(); 
Throws the exception object. 

700 ObjectWindows Reference Guide 



Windows API encapsulated 
functions 

This appendix includes several tables listing encapsulated Windows API functions that 
take an HWND as the first argument. The tables are organized in the following manner: 

Al Inline HWND functions 702 
A.2 Windows messages 702 
A.3 Window dimensions 702 
A.4 Window properties 703 
A.5 Wmdow placement 703 
A.6 Child window placement 703 
A.7 Wmdow painting 704 
A.8 Using scrolling and scroll bars 704 
A.9 Parent and child windows with IDs 705 
A.10 Menus and menu bars 705 
A.11 Clipboard placement 705 
A.12 Timer operations 705 
A.13 Caret and cursor functions 706 
A.14 Registering hot keys 706 
A.15 Miscellaneous functions 706 

Most of the encapsulated functions are implemented as inline functions that pass the 
HWindow member variable as the HWND argument. The remaining arguments are 
passed without changing their prototype. 

The other functions are static functions that return information regarding windows. 
These functions don't actually use HWindow as the argument because the HWND is 

Appendix A, Windows API encapsulated functions 701 



either implied or the function returns the HWND. An HWND that serves as a handle to 
an window can be converted to a TWindow* by using GetWindowPtr( ). 

Note that in the scope of TWindow or derived class, all direct calls to the corresponding 
Windows versions of these functions must be globally scoped, as in ::SendMessage( ). 

The functions in Table A.1 allow a TWindow to be used as a HWND in Windows API 
calls. 

Table A.1 Encapsulated inline HWND functions 

HWND operator HWND () const 

IsWindow BOOL Is Window() const 

The functions in Table A.2 handle Window messages. 

Table A.2 Encapsulated Window messages 

Enable Window 

GetCapture 

GetFocus 

Is Window Enabled 

PostMessage 

ReleaseCapture 

SendDlgitemMessage 

SendMessage 

SetCapture 

SetFocus 

BOOL Enable Window (BOOL enable) 

static HWND GetCapture () 

static HWND GetFocus () 

BOOL IsWindowEnabled () const 

BOOL PostMessage (UINT msg, WP ARAM wParam = 0, LP ARAM lParam = 0) 
const 

static void ReleaseCapture () 

LRESULT SendDlgitemMessage (int childld, UINT msg, WP ARAM wParam = 0, 
LP ARAM lParam = 0) const 

LRESULT SendMessage (DINT msg, WP ARAM wParam = 0, LP ARAM lParam 
= 0) const 

HWND SetCapture () 

HWND SetFocus () 

Table A.3 lists functions that adjust window coordinates and sizes. 

Table A.3 Window coordinates and dimensions 

AdjustWindowRect 

AdjustWindowRectEx 

ChildWindowFromPoint 

ClientToScreen 

GetClientRect 

GetClientRect 

GetWindowRect 

MapWindowPoints 

ScreenToClient 

WindowFromPoint 

static void AdjustWindowRect (TRect& rect, DWORD style, BOOL menu) 

static void AdjustWindowRectEx (TRect& rect, DWORD style, BOOL menu, 
DWORD exStyle) 

HWND ChildWindowFromPoint (const TPoint& point) 

void ClientToScreen (TPoint& point) const 

TRect GetClientRect () 

void GetClientRect (TRect& rect) 

void GetWindowRect (TRect& rect) 

void Map Window Points (HWND h WndTo, TPoint *points, int count) const 

void ScreenToClient (TPoint& point) const 

static HWND WindowFromPoint (const TPoint& point) 

702 ObjectWindows Reference Guide 



Table A.4 lists functions that encapsulate window properties and style attributes. 

Table A.4 Window properties 

int EnumProps (PROPENUMPROC proc) 

long GetClassLong (int index) const 

EnumProps 

GetClassLong 

GetClassName 

GetClass Word 

GetProp 

long GetClassName (char far* className, int maxCount) const 

WORD GetClassWord (int index) const 

HANDLE GetProp (const char far* str) const 

HANDLE GetProp (WORD atom) const 

long GetWindowLong (int index) const 

GetProp 

GetWindowLong 

GetWindowWord 

RemoveProp 

RemoveProp 

SetClassLong 

SetClass Word 

SetProp 

WORD GetWindowWord (int index) const 

HANDLE RemoveProp (const char far* str) const 

HANDLE RemoveProp (WORD atom) const 

long SetClassLong (int index, long newLong) 

WORD SetClassWord (int index, WORD newWord) 

BOOL SetProp (const char far* str, HANDLE data) const 

BOOL SetProp (WORD atom, HANDLE data) const 

long SetWindowLong (int index, long new Long) 

SetProp 

SetWindowLong 

SetWindowWord WORD SetWindowWord (int index, WORD new Word) 

Table A.5 lists functions that encapsulate window placement and display properties. 

TableA.5 Window placement 

GetWindowPlacement 

GetWindowText 

GetWindowTextLength 

Islconic 

Is Window Visible 

IsZoomed 

Move Window 

Move Window 

SetWindowPlacement 

SetWindowText 

ShowOwnedPopups 

Show Window 

BOOL GetWindowPlacement (WINDOWPLACEMENT *place) const 

int GetWindowText (char far* str, int maxCount) const 

int GetWindowTextLength () const 

BOOL Islconic () const 

BOOL IsWindowVisible () const 

BOOL IsZoomed () const 

void MoveWindow (const TRect& rect, BOOL repaint= FALSE) 

void Move Window (int x, int y, int w, int h, BOOL repaint= FALSE) 

BOOL SetWindowPlacement (const WINDOWPLACEMENT *place) 

void SetWindowText (const char far* str) 

void ShowOwnedPopups (BOOL show) 

BOOL ShowWindow (int cmdShow) 

The functions in Table A.6 control window positions and.sibling relationships. 

TableA.6 Window relationships 

BringWindowToTop 

GetActiveWindow 

void BringWindowToTop () 

static HWND GetActiveWindow () 

A p p e n d i x A , W i n d o w s A P I e n ca p s u I at e d f u n c ti o n s 703 



TableA.6 Window relationships (continued) 

GetDesktopWindow 

GetLastActivePopup 

GetNextWindow 

GetSysModalWindow 

GetTopWindow 

SetActiveWindow 

SetSysModalWindow 

SetWindowPos 

SetWindowPos 

static HWND GetDesktopWindow () 

HWND GetLastActivePopup () canst 

HWND GetNextWindow (UINT dirFlag) canst 

static HWND GetSysModalWindow () 

HWND GetTopWindow ()canst 

HWND SetActiveWindow () 

HWND SetSysModalWindow () 

void SetWindowPos (HWND hWndinsertAfter, canst TRect& rect, UINT flags) 

void SetWindowPos (HWND hWndinsertAfter, int x, int y, int w, int h, VINT 
flags) 

The encapsulated functions in Table A.7 control window painting, invalidating, 
validating, and updating. 

TableA.7 Window painting functions 

Flash Window 

GetUpdateRect 

Invalidate 

InvalidateRect 

InvalidateRgn 

LockWindowUpdate 

Redraw Window 

Update Window 

Validate 

ValidateRect 

ValidateRgn 

BOOL Flash Window (BOOL invert) 

BOOL GetUpdateRect (TRect& rect, BOOL erase = TRUE) canst 

void Invalidate (BOOL erase = TRUE) 

void InvalidateRect (canst TRect& rect, BOOL erase= TRUE) 

void InvalidateRgn (HRGN hRgn, BOOL erase = TRUE) 

BOOL LockWindowUpdate () 

BOOL RedrawWindow (TRect *update, HRGN hUpdateRgnh, UINT 
redrawFlags=RDW_INVALIDATEIRDW_UPDATENOWIRDW_ERASE) 

void UpdateWindow () 

void Validate () 

void ValidateRect (canst TRect& rect) 

void ValidateRgn (HRGN hRgn) 

The functions in Table A.8 control window scrolling and scroll bars. 

TableA.8 Window scrolling functions 

GetScrollPos int GetScrollPos (int bar) 

GetScrollRange void GetScrollRange (int bar, int &minPos, int &maxPos) canst 

ScrollWindow void ScrollWindow (int dx, int dy, canst TRect *scroll= 0, canst TRect *clip = 0) 

ScrollWindowEx void ScrollWindowEx (int dx, int dy, canst TRect *scroll= 0, canst TRect *clip = 0, 
HRGN hUpdateRgn = 0, TRect *update= 0, VINT flags = 0) 

SetScrollPos int SetScrollPos (int bar, int pos, BOOL redraw =TRUE) 

SetScrollRange void SetScrollRange (int bar, in minPos, int maxPos, BOOL redraw = TRUE) 

ShowScrollBar void ShowScrollBar (int bar, BOOL show = TRUE) 

704 ObjectWindows Reference Guide 



The functions in Table A.9 control parent and child windows using command IDs. 

Table A.9 Child window ID functions 

CheckDlgButton 

CheckRadioButton 

GetDlgCtrlD 

GetDlgltem 

GetDlgltemint 

GetDlgltemText 

GetNextDlgGroupltem 

GetNextDlgTabltem 

GetParent 

IsChild 

IsDlgButtonChecked 

SetDlgltemint 

SetDlgltemText 

void CheckDlgButton (int buttonld, UINT check) 

void CheckRadioButton (int firstButtonld, int lastButtonld, int checkButtonid) 

int GetDlgCtrllD () const 

HWNb GetDlgltem (int childld) canst 

UINT GetDlgitemint (int childld, BOOL * translated, BOOL isSigned) const 

int GetDlgitemText (int childld, char far* text, int max) const 

HWND GetNextDlgGroupltem (HWND hWndCtrl, BOOL previous= FALSE) 
const 

HWND GetNextDlgTabltem (HWND hWndCtrl, BOOL previous= FALSE) 
const 

HWND GetParent () const 

BOOL IsChild (HWND) const 

UINT IsDlgButtonChecked (int buttonld) canst 

void SetDlgitemint (int childld, UINT value, BOOL is Signed = TRUE) const 

void SetDlgitemText (int childld, const char far* text) canst 

The functions in Table A.10 control menus and menu bar operations. 

Table A.10 Menu and menu bar functions 

DrawMenuBar 

GetMenu 

GetSystemMenu 

HiliteMenultem 

SetMenu 

void DrawMenuBar () 

HMENU GetMenu () 

HMENU GetSystemMenu (BOOL revert= FALSE) 

BOOL HiliteMenultem (HMENU, UINT idltem, UINT hilite) 

BOOL SetMenu (HMENU) 

The functions in Table A.11 controls Clipboard operations. 

Table A.11 Clipboard functions 

&OpenClipboard TClipBoard &OpenClipboard () 

The functions in Table A.12 control timer operations. 

Table A.12 Timer functions 

KillTimer BOOL KillTimer (UINT timerld) 

SetTimer BOOL SetTimer (UINT timerld, UINT timeout, TIMERPROC proc = 0) 

Appendix A, Windows API encapsulated functions 705 



The functions in Table A.13 control caret and cursor operations. 

Table A.13 Caret and cursor functions 

CreateCaret void CreateCaret (HBTIMAP) 

CreateCaret 

DestroyCaret 

GetCaretBlinkTime 

GetCaretPos 

GetCursorPos 

HideCaret 

SetCaretBlinkTime 

SetCaretPos 

SetCaretPos 

void CreateCaret (int shade, int width, int height) 

static void DestroyCaret () 

static UINT GetCaretBlinkTime () 

static void GetCaretPos (TPoint& pos) 

static void GetCursorPos (TPoint& pos) 

void HideCaret () 

static void SetCaretBlinkTime (WORD milliSecs) 

static void SetCaretPos (const TPoint& pos) 

static void SetCaretPos (int x, int y) 

The functions in Table A.14 control the operations of hot keys. 

Table A.14 Hot key functions 

RegisterHotKey 

UnregisterHotKey 

1. WIN32APionly 

BOOL RegisterHotKey (int idHotKey, UINT modifiers, UINT 
virtKey)1 

BOOL UnregisterHotKey (int idHotKey)1 

The functions in Table A.15 control miscellaneous operations such as accessing 
WinHelp. 

Table A.15 Help and task functions 

DragAcceptFiles 

GetWindowTask 

GetWindowTask 

Message Box 

WinHelp 

1. WIN32 API only 

2. WIN16 API only 

void DragAcceptFiles (BOOL accept) 

HANDLE GetWindowTask () const1 

HTASK GetWindowTask () const2 

int MessageBox (const char far* text, const char far* caption= 0, UINT type = MB_ OK) 

BOOL WinHelp (const char far* helpFile, UINT command, DWORD data) 

706 ObjectWindows Reference Guide 



Windows API structs 
This appendix lists several Windows API structs that ObjectWindows uses. 

ABC struct 
typedef struct _ABC { 

int abcA; 
UINT abcB; 
int abcC; 

}ABC; 

windows.h 

The ABC structure contains the width of a character in a TrueType® font. 

abcA "A" character spacing. "A" spacing is the distance to add to the current position before 
drawing the character glyph. 

abcB "B" character spacing. "B'' spacing is the width of the drawn portion of the character glyph. 

abcC "C" character spacing. "C" spacing is the distance to add to the current position to provide 
white space to the right of the character glyph. 

The total width of a character is the sum of abcA, abcB, and abcC. Either the abcA or abcC 
can be negative to indicate underhangs or overhangs. 

BITMAP struct 
16-bit version: 
typedef struct tagBITMAP { 

int bmType; 
int bmWidth; 
int bmHeight; 

windows.h 

App e n di x B , Windows AP I st r u ct s 707 



BITMAPCOREHEADER struct 

int bmWidthBytes; 
BYTE bmPlanes; 
BYTE bmBitsPixel; 
void FAR* bmBits; 

}BITMAP; 

32-bit version: 
typedef struct tag BITMAP { 

LONG bmType; 
LONG bmWidth; 
LONG bmHeight; 
LONG bmWidthBytes; 
WORD bmPlanes; 
WORD bmBitsPixel; 
LPVOID bmBits; 

} BITMAP; 
BITMAP defines the height, width, color format, and bit values of a logical bitmap. 

bmType 

bmWidth 

bmHeight 

bm WidthBytes 

bmPlanes 

bmBitsPixel 

bmBits 

Bitmap type. For logical bitmaps, this member must be zero. 

Bitmap width in pixels. Must be greater than zero. 

Bitmap height in raster lines. Must be greater than zero. 

Number of bytes per raster line. Must be an even number because the graphics device 
interface (GDI) assumes that the bit values of a bitmap form an array of integer (two­
byte) values. 

Number of bitmap color planes. 

Number of adjacent color bits on each plane needed to define a pixel. 

Points to the location of the bitmap bit values. Must be a long pointer to an array of one­
byte values. 

Currently used bitmap formats are monochrome and color. Monochrome bitmaps use a 
one-bit, one-plane format. Each scan is a multiple of 16 bits or 32 bits. A monochrome 
bitmap of height n is organized as follows: 

Scan 0 
Scan 1 

Scan n-2 
Scan n-1 

Monochrome device pixels are black or white. If a bitmap bit is 1, the corresponding 
pixel is turned on (white). If a bitmap is 0, the corresponding pixel is turned off (black). 

BITMAPCOREHEADER struct 
typedef struct tagBITMAPCOREHEADER { 
DWORD bcSize; 
WORD bcWidth; 
WORD bcHeight; 

708 ObjectWindows Reference Guide 

windows.h 



WORD bcPlanes; 
WORD bcBitCount; 
} BITMAPCOREHEADER; 

BITMAPCOREINFO struct 

Contains device-independent bitmap (DIB) dimension and color-format information. 

"'"''. ;,,, ·· ···•·••·· •• o .. esm.·.;··;·;·;···'·' ..... ;· .. n. 'o.; .. n·.: ; ..•. ·.• ... •· .. ' :;~~1llQe.r .~ 

bcSize 

bcWidth 

bcHeight 

Number of bytes required by the structure. 

Width of the bitmap, in pixels. 

Height of the bitmap, in pixels. 

bcPlanes Number of planes for the target device. Must be 1. 

bcBitCount Number of bits per pixel. Must be 1, 4, 8, or 24. 

This structure is combined with a color table in the BITMAPCOREINFO structure to 
provide a complete definition of the dimensions and colors of a DIB. 

See also BITMAPCOREINFO struct, RGBTRIPLE struct 

BITMAPCOREINFO struct 
typedef struct _ BITMAPCOREINFO { 
BITMAPCOREHEADER bmciHeader; 
RGBTRIPLE bmciColors[1]; 

} BITMAPCOREINFO; 

windows.h 

Defines the dimensions and color information for a device-independent bitmap (DIB). 

bmciHeader Structure containing DIB color and dimension information. 

bmciColors Structure defining bitmap colors. 

ADIB consists of two parts: a BITMAPCOREINFO structure describing the dimensions 
and colors of the bitmap, and an array of bytes defining the pixels of the bitmap. The bits 
in the array are packed together, but each scan line must be padded with zeroes to end 
on a LONG boundary. The origin of the bitmap is the lower left corner. 

The bcBitCount member of the BITMAPCOREHEADER structure determines the 
number of bits that define each pixel and the maximum number of colors in the bitmap. 
This member can be one of the following values: 

1 The bitmap is monochrome, and the bmciColors member contains two entries. Each bit in the 
bitmap array represents a pixel. If the bit is clear, the pixel is displayed with the color of the first 
entry in the bmciColors table; if the bit is set, the pixel has the color of the second entry in the 
table. 

4 The bitmap has a maximum of 16 colors, and the bmciColors member contains up to 16 entries. 
Each pixel in the bitmap is represented by a 4-bit index into the color table. For example, if the 
first byte in the bitmap is OxlF, the byte represents two pixels. The first pixel contains the color in 
the second table entry, and the second pixel contains the color in the sixteenth table entry. 

A p p e n d i x B , W i n do w s A P I s I r u ct s 709 



BITMAPINFO struct 

8 The bitmap has a maximum of 256 colors, and the bmciColars member contains up to 256 entries. 
In this case, each byte in the array represents a single pixel. 

24 The bitmap has a maximum of 2 colors, and the bmciColors member is NULL. Each 3-byte triplet 
in the bitmap array represents the relative intensities of red, green, and blue, respectively, for a 
pixel. 

The colors in the bmciColors table should appear in order of importance. 

Alternatively, for functions that use DIBs, the bmciColors member can be an array of 16-
bit unsigned integers that specify indexes into the currently realized logical palette, 
instead of explicit RGB values. In this case, an application using the bitmap must call the 
DIB functions (CreateDIBitmap, CreateDIBPatternBrush, and CreateDIBSection) with the 
iUsage parameter set to DIB_PAL_COLORS. 

Note The bmciColors member should not contain palette indexes if the bitmap is to be stored 
in a file or transferred to another application. Unless the application has exclusive use 
and control of the bitmap, the bitmap color table should contain explicit RGB values. 

BITMAPINFO struct 
16-bit version: 
typedef struct tagBITMAPINFO { 
BITMAPINFOHEADER bmiHeader; 
RGBQUAD bmiColors[1]; 
} BITMAPINFO; 

windows.h 

Defines the dimensions and color information for a device-independent bitmap (DIB). 

brniHeader Structure containing DIB dimension and color-format information. 

brniColors Structures that defines bitmap colors. 

A DIB consists of a BITMAPINFO structure, which describes the dimensions and colors 
of the bitmap, and an array of bytes defining the bitmap pixels. The array bits are 
packed together, but each scan line must be zero-padded to end on a LONG boundary. 
Segment boundaries can appear anywhere in the bitmap. The bitmap origin is the 
lower-left comer. 

710 0 bje ctWi n d ows Reference Guide 



BITMAPINFOHEADER struct 

The biBitCount member of the BITMAPINFOHEADER structure determines the number 
of bits which define each pixel and the maximum number of colors in the bitmap. This 
member may be set to any of the following values: 

Value ··. Pescription 

1 The bitmap is monochrome, and the bmciColors member must contain two entries. Each bit in the 
bitmap array represents a pixel. If the bit is clear, the pixel is displayed with the color of the first 
entry in the bmciColors table. If the bit is set, the pixel has the color of the second entry in the table. 

4 The bitmap has a maximum of 16 colors, and the bmciColors member contains 16 entries. Each 
pixel in the bitmap is represented by a four-bit index into the color table. For example, if the first 
byte in the bitmap is OxlF, the byte represents two pixels. The first pixel contains the color in the 
second table entry, and the second pixel contains the color in the sixteenth table entry. 

8 The bitmap has a maximum of 256 colors, and the bmciColors member contains 256 entries. In this 
case, each byte in the array represents a single pixel. 

16 The bitmap has a maximum of 2" 16 colors. The biCompression member of the 
BITMAPINFOHEADER must be BI BITFIELDS. The bmiColors member contains 3 DWORD 
color masks which specify the red, green, and blue components, respectively, of each pixel. Bits 
set in the DWORD mask must be contiguous and should not overlap the bits of another mask. 
All the bits in the pixel do not have to be used. Each WORD in the array represents a single pixel. 

24 The bitmap has a maximum of 2 colors. The bmciColors member is NULL, and each 3-byte 
sequence in the bitmap array represents the relative intensities of red, green, and blue, 
respectively, of a pixel. 

32 The bitmap has a maximum of 2 colors. The biCompression member of the 
BITMAPINFOHEADER must be BI BITFIELDS. The brniColors member contains 3 DWORD 
color masks which specify the red, green, and blue components, respectively, of each pixel. Bits 
set in the DWORD mask must be contiguous and should not overlap the bits of another mask. 
All the bits in the pixel do not have to be used. Each DWORD in the array represents a single 
pixel. 

The biClrUsed member of the BITMAPINFOHEADER structure specifies the number of 
color indexes in the color table actually used by the bitmap. If the biClrUsed member is 
set to zero, the bitmap uses the maximum number of colors corresponding to the value 
of the biBitCount member. The colors in the bmiColors table should appear in order of 
importance. 

Alternatively, for functions that use DIBs, the bmiColors member can be an array of 16-
bit unsigned integers that specify an index into the currently realized logical palette 
instead of explicit RGB values. In this case, an application using the bitmap must call 
DIB functions (CreateDIBitmap, CreateDIBPatternBrush, and CreateDIBSection) with the 
wUsage parameter set to DIB_PAL_COLORS. 

Note The bmiColors member should not contain palette indexes if the bitmap is to be stored in 
a file or transferred to another application. Unless the application uses the bitmap 
exclusively and under its complete control, the bitmap color table should contain 
explicit RGB values. 

BITMAPINFOHEADER struct 
typedef struct tagBITMAPINFOHEADER { 
DWORD biSize; 
LONG biWidth; 
LONG biHeight; 

windows.h 

Appendix B, Windows API structs 711 



BITMAPINFOHEADER struct 

WORD biPlanes; 
WORD biBitCount; 
DWORD biCompression; 
DWORD biSizelmage; 
LONG biXPelsPerMeter; 
LONG biYPelsPerMeter; 
DWORD biClrUsed; 
DWORD biClrlmportant; 

} BITMAPINFOHEADER; 
Contains dimension and color-format information for device-independent bitmaps 
(DIB). 

biSize 

bi Width 

biHeight 

biPlanes 

biBitCount 

bi Compression 

biSizelmage 

biXPelsPerMeter 

biYPelsPerMeter 

Number of bytes required by this structure. 

Width of the bitmap, in pixels. 

Height of the bitmap, in pixels. If biHeight is negative, the bitmap origin is the upper­
left comer and the height is the absolute value of biHeight. 

Specifies the number of planes for the target device. This member must be set to 1. 

Specifies the number of bits per pixel. This value must be 1, 4, 8, 16 (16-bit only), 24, or 
32 (32-bit only). 

Specifies the type of compression for a compressed bitmap. It can be one of the 
following values: 

Value 
BI_RGB 

BI_RLES 

Meaning 
Uncompressed. 

Specifies a run-length encoded format for bitmaps with 8 bits per 
pixel. 

BI_RLE4 Specifies a run-length encoded format for bitmaps with 4 bits per 
pixel. 

BI_BITFIELDS Specifies the bitmap is not compressed and the color table consists 
of 3 DWORD color masks which specify the red, green, and blue 
components, respectively, of each pixel. This is valid when used 
with 16 and 32 bits per pixel bitmaps. 

Size of the image, in bytes. Can be 0 if the bitmap is in the BI_RGB format. 

Specifies the horizontal resolution, in pixels per meter, of the target device for the 
bitmap. Use this value to select a bitmap from a resource group that best matches the 
characteristics of the current device. 

Specifies the vertical resolution, in pixels per meter, of the target device. 

712 0 b j e ct W i n d o w s R e f e re n c e G u i d e 



Member 

biClrUsed 

biClrlmportant 

COLORREF typedef 

Description 

Size of the image, in bytes. Can be 0 if the bitmap is in the BI_RGB format. 
Specifies the horizontal resolution, in pixels per meter, of the target device for the 
bitmap. Use this value to select a bitmap from a resource group that best matches the 
characteristics of the current device. 
Specifies the vertical resolution, in pixels per meter, of the target device. 
Specifies the number of color indexes in the color table actually used by the bitmap. If 
this value is 0, the bitmap uses the maximum number of colors corresponding to the 
value of the biBitCount member. 
For 16-bit applications, if biClrUsed is nozero, it specifies the actual number of colors 
that the graphics engine or device driver will access if the biBitCount member is less 
than 24. If biBitCount is set to 24, biClrUsed specifies the size of the reference color table 
used to optimize performance of color palettes. 
For 32-bit applications, if biClrUsed is nonzero and the biBitCount member is less than 
16, the biClrUsed member specifies the actual number of colors the graphics engine or 
device driver accesses. If biBitCount is 16 or greater, then biClrUsed member specifies 
the size of the color table used to optimize performance of Windows color palettes. 
For biBitCount equal to 16 or 32 the optimal color palette starts inunediately following 
the 3 DWORD masks. 
If the bitmap is a packed bitmap (that is, .a bitmap in which the bitmap array 
immediately follows the BITMAP INFO header and which is referenced by a single 
pointer), the biClrUsed member must be set to zero or to the actual size of the color 
table. 

Specifies the number of color indexes that are considered important for displaying the 
bitmap. If this value is zero, all colors are important. 

COLORREF typedef windows.h 

typedef DWORD COLORREF; 
A 32-bit value used to specify an RGB color. The COLORREF value has the following 
hexadecimal form: 

OxOObbggrr 

The low-order byte (rrcontains a value for the relative intensity of red; the second byte 
(ggcontains a value for green; and the third byte (bbcontains a value for blue. The fourth 
byte byte must be zero. The RGB macro can be used to set these values: 

RGB(red, green, blue) 

Each color parameter can range from OxO to OxFF. 

COMPAREITEMSTRUCT struct 
typedef struct tagCOMPAREITEMSTRUCT { 
UINT CtlType; 
UINT CtllD; 
HWND hwndltem; 
UINT itemlD1; 
DWORD itemData1; 
UINT itemlD2; 

windows.h 

A p p e n d i x B , W i n d o w s A P I s I r u c I s 713 



DELETEITEMSTRUCT struct 

DWORD itemData2; 
} COMPAREITEMSTRUCT; 
Supplies the identifiers and application-supplied data for two items in a sorted owner­
drawn list box or combo box. The table below describes the members. 

CtlType Either ODT_LISTBOX for an owner-drawn list box, or ODT_ COMBOBOX for an owner­
drawn combo box. 

CtllD 

hwndltem 

itemlDl 

itemDatal 

item1D2 

itemData2 

List box or combo box identifier. 

Control identifier. 

Index of the first item in the list box or combo box being compared. 

Application-supplied data for the first item being compared. 

Index of the second item in the list box or combo box being compared. 

Application-supplied data for the second item being compared. 

DELETEITEMSTRUCT struct 
typedef struct tagDELETEITEMSTRUCT { 
UINT CtlType; 
UINTClllD; 
UINT itemlD; 
HWND hwndltem; 
UINT itemData; 

} DELETEITEMSTRUCT; 

windows.h 

Describes a deleted owner-drawn list-box or combo-box item. The table below describes 
the members. 

CtlType Either ODT_LISTBOX for an owner-drawn list box, or ODT_COMBOBOX for an owner-
drawn combo box. 

CtlID List box or combo box identifier. 

itemlD Index of the item in the list box or combo box being removed. 

hwndltem Control indentifier. 

itemData Application-defined item data. 

DEVMODE struct 
16-bit version: 
typedef struct tagDEVMODE { 
char dmDeviceName[CCHDEVICENAME]; 
UINT dmSpecVersion; 
UINT dmDriverVersion; 
UINT dmSize; 
UINT dmDriverExtra; 
DWORD dmFields; 

714 ObjectWindows Reference Guide 

windows.h 



int dmOrientation; 
int dmPaperSize; 
int dmPaperlength; 
int dmPaperWidth; 
int dmScale; 
int dmCopies; 
int dmDefaultSource; 
int dmPrintQuality; 
int dmColor; 
int dmDuplex; 
int dmYResolution; 
int dmTTOption; 
}DEVMODE; 

32-bit version: 
typedef struct _ devicemode { 
TCHAR dmDeviceName[32]; 
WORD dmSpecVersion; 
WORD dmDriverVersion; 
WORD dmSize; 
WORD dmDriverExtra; 
DWORD dmFields; 
short dmOrientation; 
short dmPaperSize; 
short dmPaperlength; 
short dmPaperWidth; 
short dmScale; 
short dmCopies; 
short dmDefaultSource; 
short dmPrintQuality; 
short dmColor; 
short dmDuplex; 
short dmYResolution; 
short dmTTOption; 
short dmCollate; 
TCHAR dmFormName[32]; 
WORD dmUnusedPadding; 
USHORT dmBitsPerPel; 
DWORD dmPelsWidth; 
DWORD dmPelsHeight; 
DWORD dmDisplayFlags; 
DWORD dmDisplayFrequency; 

}DEVMODE; 

DEVMODE struct 

A p p e n d ix B , W i n d ow s A P I s I r u c Is 715 



DEVMODE struct 

Contains printer-driver initialization and environment data. The following table 
describes each member. 

dmDeviceName 

dmSpecVersion 

dmDriverVersion 

dmSize 

dmDriverExtra 

dmFields 

dmOrientation 

dmPaperSize 

Name of the device the driver supports--for example, PCL/Lasetjet: in the case 
of the Hewlett-Packard Lasetjet. 

Version number of this structure. 

Printer driver version number. 

Size of this structure, in bytes,excludiiig drnDriverData. Use to find the length of 
the structure without having to account for different versions. 

Size of the optional drnDriverData member, in bytes. If an application d0es not use 
device-specific information, it should set this member to zero. 

Contains flags that indicate which of the remaining members in this structure 
have been initialized. It can be any combination of the following values: 

DM_ORIENTATION DM_DEFAULTSOURCE 

DM_PAPERSIZE 

DM_PAPERLENG1H 

DM_PAPERWID1H 

DM_SCALE 

DM_COPIES 

DM_PRINTQUAUTY 

DM_COLOR 

DM_DUPLEX 

DM_YRESOLUTION 

DM_TIOPTION 

Paper orientation. Can be DMORIENT_PORTRAIT or 
DMORIENT_LANDSCAPE. 

Paper size. Can be set to zero if the length and width of the paper are specified by 
drnPaperLength and drnPaperWidth. Otherwise, set to one of the following values: 

Value Meaning 
DMPAPER_FlRST DMPAPER_LETIER 

DMP APER_LETIER 

DMPAPER_LETTERSMALL 

DMPAPER_TABWID 

DMPAPER_LEDGER 

DMPAPER_LEGAL 

DMPAPER_STATEMENT 

DMP APER_EXECUTIVE 

DMPAPER_A3 

DMPAPER_A4 

DMPAPER_A4SMALL 

DMPAPER_A5 

DMPAPER_B4 

DMPAPER_B5 

DMPAPER_FOUO 

DMPAPER_QUARTO 

DMPAPER_10X14 

DMP APER_11X17 

DMPAPER_NOTE 

DMPAPER_ENV _9 

DMPAPER_ENV _10 

Letter, 8 1/2 x 11 in. 

Letter Small, 8 1/2 x 11 in. 

Tabloid, 11 x 17 in. 

Ledger, 17x11 in. 

Legal, 81/2x14 in. 

Statement, 51/2 x 81/2 in. 

Executive, 71/2x101/2 in. 

A3, 297 x 420 mm 

A4, 210 x 297 mm 

A4 Small, 210 x 297 mm 

A5,148x210mm 

B4, 250 x 354 mm 

BS, 182 x 257 mm 

Folio, 81/2 x 13 in. 

Quarto, 215 x 275 mm 

10x14in. 

llxl7in. 

Note, 8 1/2 x 11 in. 

Envelope #9, 3 7 /8 x 8 7 /8 in. 

Envelope #10, 4 1/8 x 91/2 in. 

716 Objec!Windows Reference Guide 



dmPaperLength 

dmPaperWidth 

dmScale 

dmCopies 

dmDefaultSource 

mPrintQuality 

pesctj.pti~n 

DMP APER_ENV _11 

DMP APER_ENV _12 

DMPAPER_ENV _14 

DMPAPER_CSHEET 

DMP APER.:_DsHEET 

DMPAPER_ESHEET 

DMPAPER_ENV_DL 

DMPAPER_ENV _C3 

DMPAPER_ENV_C4 

DMPAPER_ENV_CS 

DMPAPER_ENV_C6 

DMPAPER_ENV_C6S 

DMP APER_ENV _B4 

DMP APER_ENV _BS 

DMPAPER_ENV_B6 

DMPAPER_ENV_ITALY 

DMPAPER_ENV _MONARCH 

DMPAPER_ENV _PERSONAL 

DMPAPER_FANFOLD_US 

DMPAPER FANFOLD STD 
GERMAN- - -

DMPAPER FANFOLD LGL 
GERMAN- - -

DMP APER_LAST 

DMPAPER_USER 

DEVMODE struct 

Envelope #11, 41/2x10 3/8 in. 

Envelope #12, 4 1/2 x 11 in. 

Envelope#l4,Sxll l/2in. 

C size sheet 

D size sheet 

E size sheet 

Envelope DL, 110 x 220 mm 

Envelope C3, 324 x 458 mm 

Envelope C4, 229 x 324 mm 

Envelope CS, 162 x 229 mm 

Envelope C6, 114 x 162 mm 

Envelope C65, 114 x 229 mm 

Envelope B4, 250 x 353 mm 

Envelope BS, 176 x 2SO mm 

Envelope B6, 176 x 125 mm 

Envelope, 110 x 230 mm 

Envelope Monarch, 3 7 /8 x 71/2 in. 

Envelope, 3 5/8 x 61/2 in. 

U.S. Standard Fanfold, 14 7 /8 x 11 in. 

German Standard Fanfold, 8 1/2 x 12 in. 

German Legal Fanfold, 81/2 x 13 in. 

German Legal Fanfold, 8 1/2 x 13 in. 

User-defined 

Paper length, in tenths of a millimeter. Overrides dmPaperSize. 

Paper width, in tenths of a millimeter. Overrides dmPaperSize. 

Print output scale factor. Apparent page size is scaled from the physical page size 
by dmScale/100. 

Specifies the number of copies printed if the device supports multiple-page 
copies. 

Default paper feed bin. This member can be one of the following values: 

DMBIN_AUTO DMBIN_LOWER 

DMBIN_CASSETTE DMBIN_MANUAL 

DMBIN_ENVELOPE 

DMBIN_ENVMANUAL 

DMBIN_FIRST 

DMBIN_LARGECAPACITY 

DMBIN_LARGEFMT 

DMBIN_LAST 

DMBIN_MIDDLE 

DMBIN_ONLYONE 

DMBIN_SMALLFMT 

DMBIN_TRACTOR 

DMBIN_UPPER 

Printer resolution. Can be one of the following values: 

DMRES_HIGH 

DMRES_MEDIUM 

DMRES_LOW 

Appendix B, Windows API structs 717 



DRAWITEMSTRUCT struct 

dmColor 

dmDuplex 

dm YResolution 

dmTTOption 

dmUnusedPadding 

dmCollate 

dmFormName 

dmBitsPerPel 

dmPelsWidth 

dmPelsHeight 

dmDisplayFlags 

DMRES_DRAFT 

If another (positive) value is given, it specifies dots per inch (DPI) and is device­
dependent. If the printer initializes dm ¥Resolution, then dmPrintQuality specifies 
the x-resolution of the printer in DPI. 

Color or monochrome output. Can be DMCOLOR_COLOR, or 
DMCOLOR_MONOCHROME. 

Duplex (double-sided) printing for printers capable of duplex printing. This 
member can be one of the following values: 

DMDUP _SIMPLEX 

DMDUP _HORIZONTAL 

DMDUP _VERTICAL 

Y-resolution of the printer in DPI. If the printer initializes dmYResolution, 
dmPrintQuality specifies the x-resolution of the printer, in DPI. 

True Type-font printing. Can be one of the following values: 

Value Meaning 
DMTT_BTIMAP 

DMTT_DOWNLOAD 

Print True Type fonts as graphics. The default 
for dot-matrix printers. 

Download True Type fonts as soft fonts. 
Default for Hewlett-Packard printers that use 
Printer Control Language (PCL). 

DMTT_SUBDEV Substitute device fonts for TrueType fonts. 
Default for PostScript printers. 

(32-bit only) Used to align the structure on a DWORD boundary. 

Collation when printing multiple copies. Can be be one of the following values: 

DMCOLLATE_TRUE Collate when printing multiple copies. 

DMCOLLATE_FALSE Do NOT collate when printing multiple 
copies. 

(32-bit only) Specifies the name of the form to use; for example, "Letter" or "Legal". 

(32-bit only) Color resolution of the display device, in bits per pixel. 

(32-bit only) Width of the visible device surface, in pixels. 

(32-bit only) Height of the visible device surface, in pixels. 

(32-bit only) Device display mode. Can be one of the following values: 

Value Meaning 
DM_GRA YSCALE Non-color display. If this flag is not set, color is 

assumed. 

DM_INTERLACED Interlaced display mode. If the flag is not set, 
non-interlaced is assumed. 

dmDisplayFrequency (32-bit only) Specifies the display device frequency, in hertz. 

DRAWITEMSTRUCT struct 
typedef struct tagDRAWITEMSTRUCT { 
UINT CllType; 
UINT ClllD; 
UINT itemlD; 
UINT itemAction; 

718 0 b j e ct W i n d o w s R e f e r e n c e G u i d e 

windows.h 



DRAWITEMSTRUCT struct 

UINT itemState; 
HWND hwndltem; 
HDC hDC; 
RECT rcltem; 
DWORD itemData; 

} DRAWITEMSTRUCT; 
Provides information the owner window must have to determine how to paint an 
owner-drawn control or menu item. The owner window of the owner-drawn control or 
menu item receives a pointer to this structure as the lParam parameter of the 
WM_DRAWITEM message. 

Member DescritJtion: 
CtlType Specifies the control type. This member can be one of the following values: 

ODT_BUITON Owner-drawn button 

ODT_COMBOBOX 

ODT_LISTBOX 

Owner-drawn combo box 

Owner-drawn list box 

ODT_l\.1ENU Owner-drawn menu item 

CtllD Specifies the identifier of the combo box, list box, or button. This member is not used for a 
menu item. 

itemlD Specifies the menu item identifier for a menu item or the index of the item in a list box or 
combo box. For an empty list box or combo box, this member can be -1. This allows the 
application to draw only the focus rectangle at the coordinates specified by the rcltem 
member even though there are no items in the control. This indicates to the user whether the 
list box or combo box has the focus. How the bits are set in the itemAction member 
determines whether the rectangle is to be drawn as though the list box or combo box has the 
focus. 

itemAction Specifies the drawing action required. This member can be one or more of the following 
values: 

itemState 

Value Meaning 
ODA_DRAWENTIRE The entire control needs to be drawn. 

ODA_ FOCUS The control has lost or gained the keyboard focus. The itemState 
member should be checked to determine whether the control 
has the focus. 

ODA_SELECT The selection status has changed. The itemState member should 
be checked to determine the new selection state. 

Specifies the visual state of the item after the current drawing action takes place. This 
member can be a combination of the following values: 

Value Meaning 
ODS_CHECKED The menu item is to be checked. This bit is used only in a menu. 

ODS_DISABLED 

ODS_FOCUS 

ODS_ GRAYED 

ODS_SELECTED 

The item is to be drawn as disabled. 

The item has the keyboard focus. 

The item is to be grayed. This bit is used only in a menu. 

The menu item's status is selected. 

hwndltem Identifies the control for combo boxes, list boxes, and buttons. For menus, this member 
identifies the menu containing the item. 

hDC Identifies a device context (DC); this DC must be used when performing drawing operations 
on the control. 

Appendix B, Windows API structs 719 



FINDREPLACE struct 

rel tern 

item.Data 

Specifies a rectangle that defines the boundaries of the control to be drawn. This rectangle is 
in the DC specified by the hDC member. Anything the owner window draws in the DC for 
combo boxes, list boxes, and buttons is automatically clipped, except for menu items. When 
drawing menu items, the owner window must not draw outside tfie boundaries of the 
recqmgle defined by the rcltem member. 

Specifies the application-defined 32~bit value associated with the menu item. For a control, 
tfiis parameter specifies the value last assigned to the list box or combo box by the 
LB_SETifEMDATA or CB_SETifEMDATA message. H the list box or combo box has the 
LBS_HASSTRINGS or CBS_HASSTRINGS style, this value is initially zero. Otherwise, this 
value is initially the value that was passed to the list box or combo box in the IParam 
parameter of one of these messages: CB_ADDSTRING, CB_INSERTSTRING, 
LB_ADDSTRING, LB_INSERTSTRING. 

FINDREPLACE struct windows.h 

typedef struct { 
DWORD IStructSize; 
HWND hwndOwner; 
HINSTANCE hlnstance; 
DWORD Flags; 
LPSTR lpstrFindWhat; 
LPSTR lpstrReplaceWith; 
WORD wFindWhatlen; 
WORD wReplaceWithlen; 
DWORD ICustData; 
LPFRHOOKPROC lpfnHook; 
LPCSTR lpTemplateName; 

} FINDREPLACE; 
Contains initialization information to initialize the system-defined find-and-replace 
dialog boxes. The table below describes the members. 

lStructSize 

hwndOwner 

hlnstance 

Flags 

Length, in bytes, of the structure. 

Window that owns the dialog box. Can be any valid window handle, but must not 
be NULL. 

Data block that contains a dialog box template specified by lpstrTemplateName. 
Used only if the Flags member is set to FR_ENABLETEMPLATE; otherwise 
ignored. ' 

Dialog box initialization flags. Can be a combination of the following values: 

Value Meaning 
FR_DIALOGTERM Indicates that the dialog box is closing. 

FR_OOWN 

FR_ENABLEHOOK 

H this flag is set, the search direction is 
down; if the flag is clear, the search direction 
is up. 

Enables the hook function specified in the 
lpfnHook member of this structure. Used to 
initialize the dialog box only. 

720 ObjectWindows Reference Guide 



lpstrFindWhat 

lpstrReplaceWith 

wFindWhatLen 

wReplaceWithLen 

lCustData 

lpfnHltt>k 

lpstrTemplateName 

FR_ENABLETEMPLATE 

FR_ENABLETEMPLATEHANDLE 

FR_FINDNEXT 

FR_HlDEUPOOWN 

FR_HlDEMATCHCASE 

FR_HlDEWHOLEWORD 

FR_MATCHCASE 

FR_NOMATCHCASE 

FR_NOUPOOWN 

FR_NOWHOLEWORD 

FR_REPLACE 

FR_REPLACEALL 

FINDREPLACE struct 

Create the dialog box by using the dialog 
box template identified by the hlnstance and 
lpTemplateName members. This flag is used 
to initialize the dialog box only. 

Indicates that the hlnstance member 
identifies a data block that contains a 
preloaded dialog box template. The 
lpTemplateName member is ignored if this 
flag is specified. 

The application should search for the next 
occurrence of the string specified by the 
lpstrFindWhat member. 

Hides the Direction check box and the Up 
and Down controls. 

Hides the Match Case check box. 

Hides the Match Whole Word Only check 
box. 

Case-sensitive searches. 

Disables the Match Case check box. 

Disables the direction radio buttons. 

Disables the Whole Word check box. 

Replace the current occurrence of the string 
specified by lpstrFindWhat with the string 
specified by lpstrReplaceWith. 

Replace all occurrences of the string 
specified by lpstrFindWhat member with the 
string specified by lpstrReplaceWith. 

FR_SHOWHELP Show the Help button. The hwndOwner 
member must not be NULL if this option is 
specified. 

FR_ WHOLEWORD Checks the Whole Word check box. Only 
whole words matching the search string 
will be considered. 

String to search for. If there is a string specified when the dIBlog box starts, the 
dialog box initializes the Find What: text control with this string. If the 
FR_FINDNEXT flag is set when the dialog box is opened, the application should 
search for an occurrence of this string by using the FR_OOWN, 
FR_ WHOLEWORD, and FR_MATCHCASE flags to further define the direction 
and type of search. The application must allocate a buffer for the string, which 
should be at least 80 characters long. 

Replacement string for replace operations. 

Length, in bytes, of the buffer pointed to by lpstrFindWhat. 

Length, in bytes, of the buffer pointed to by lpstrReplaceWith. 

Application-defined data the passed to the hook function identified lpfnHook. 

Points to a hook function that processes messages intended for the dialog box. An 
application must specify the FR_ENABLEHOOK flag in the Flags member to enable 
the function; otherwise, the system ignores this structure member. Should return 
FALSE to pass a message on to the standard dialog procedure, or TRUE to discard 
the message. 

Points to a null-terminated string that names the dialog box template resource to be 
substituted for the standard dialog box template. 

A p p e n d i x B , W i n d ow s A P I st r u ct s 721 



GLYPHMETRICS struct 

GLYPHMETRICS sttuct 
typedef struct _ GLYPHMETRICS { 
UINT gmBlackBoxX; 
UINT gmBlackBoxY; 
POINT gmptGlyphOrigin; 
short gmCelllncX; 
short gmCelllncY; 

} GLYPHMETRICS; 

·windows.h 

Contains information about the placement and orientation of a glyph in a character cell, 
specified in logical units. 

Width of the smallest rectangle that completely encloses the glyph. 

Height of the smallest rectangle that completely encloses the glyph. 

gmBlackBoxX 

gmBlackBoxY 

gmptGlyphOrigin The x- and y-coordinates of the upper left comer of the smallest rectangle that 
completely encloses the glyph. 

gmCelllncX The horizontal distance from the origin of the current character cell to the origin of 
the next character cell. 

gmCelllncY The vertical distance from the origin of the current character cell to the origin of the 
next character cell. 

HANDLETABLE struct 
typed!lf struct tagHANDLETABLE { 
HGDIOBJ objectHandle[1]; 

} HANDLETABLE; 
An array of handles that identify a graphics device interface (GDI) object. 

ICONINFO struct 
typedef struct _ICONINFO { 

BOOL flcon; 
DWORD xHotspot; 
DWORD yHotspot; 
HBITMAP hbmMask; 
HBITMAP hbmColor; 

} ICONINFO; 

windows.h 

windows.h 

The ICONINFO structure contains information about an icon or a cursor. The following 
table describes the members. · 

flcon 

xHotspot 

Set to 1RUE if this specifies an icon; FALSE if it specifies a cursor. 

Specifies the x-coordinate of a cursor's hot spot. For icons the hot spot is always in the center, 
so this member is ignored. 

722 ObjectWindows Reference Guide 



KERNINGPAIR struct 

be~ Desi:::ri,pl;iQp 
yHotspot Specifies they-coordinate of the cursor's hot spot. For icons the hot spot is always in the 

center, so this member is ignored. 

hbmMask Specifies the icon bitmask bitmap. For black and white icons the upper half of hbmMask is the 
icon AND bitmask, the lower half is the icon XOR bitmask, and the height should be an even 
multiple of two. For color icons this mask defines the AND bitmask of the icon only. 

hbmColor Identifies the icon color bitmap. This member can be optional if this struc):ure defines a black 
and white icon. After the AND bitmask of hbmMask is applied to the destination, the color 
bitmap is applied (using XOR) to the destination. 

KERNINGPAIR struct 
typedef struct tagKERNINGPAIR { 

WORD wFirst; 
WORD wSecond; 
int iKernAmount; 

} KERNINGPAIR; 

windows.h 

Defines a kerning pair. The following table describes the members. 

wFirst 

wSecond 

iKernAmount 

Character code for the first character in the kerning pair. 

Character code for the second character in the kerning pair. 

Amount this pair will be kerned if they appear side by side in the same font and size. This 
value is usually negative, and is given in logical units (depending on mapping mode). 

LOGBRUSH struct 
typedef struct tagLOGBRUSH { 
UINT lbStyle; 
COLORREF lbColor; 
int lbHatch; 

} LOGBRUSH; 

windows.h 

Defines the style, color, and pattern of a physical brush. The following table describes 
the members: 

lbStyle Specifies the brush style. This member can be one of the following values: 

Value 

BS_DIBPATTERN 

BS_DIBPATTERNPT 

BS_HATCHED 

BS_HOLLOW 

BS_PATTERN 

Meaning 

Pattern brush defined by a device-independent bitmap (DIB) 
specification. 

A pattern brush defined by a device-independent bitmap (DIB) 
specification (32-bit only). 

Hatched brush. 

Hollow brush. 

Pattern brush defined by a memory bitmap. 

Appendix B, Windows API structs 723 



LOGFONT struct 

lbColor 

lb Hatch 

BS_NULL 

BS_SOLID 

Equivalent to BS_HOLLOW. 

Solid brush. 

Specifies the color to draw the brush. If the lbStyle member is the BS_HOLLOW or 
BS _PATTERN value, lbColor is ignored. 

If Ip Style is the BS _DIBP A TTERN or BS _DIBP A TTERNPT value, the low-order word of 
lbColor specifies whether the bmiColors members of the BITMAP INFO structure contain 
explicit RGB values or indexes into the currently realized logical palette. The lbColor member 
must be one of the following values: 

Value Meaning 
DIB~P AL_ COLORS Color table consists of an array of 16-bit indexes into the currently 

realized logical palette. 

DIB_RGB_COLORS Color table contains literal RGB values. 

Specifies a hatch style. The meaning depends on the brush style. If the lbStyle member is the 
BS_DIBPATTERN style, the lbHatch member contains a handle to a packed DIB. If the lbStyle 
member is the BS_ DIBP A TTERNPT style, the lbHatch member contains a pointer to a packed 
DIB. 

If the lbStyle member is the BS _HATCHED style, the lbHatch member specifies the orientation 
of the lines used to create the hatch. This member can be one of the following values: 

Value Meaning 
HS_BDIAGONAL 45-degree upward hatch (left to right) 

HS_ CROSS Horizontal and vertical cross-hatch 

HS_DIAGCROSS 45-degree cross-hatch 

HS_FDIAGONAL 45-degree downward hatch (left to right) 

HS_HORIZONTAL Horizontal hatch 

HS_ VERTICAL Vertical hatch 

If the lbStylemember is the BS Y ATTERN style, lb Hatch must be a handle to the bitmap that 
defines the pattern. If the lbStyle member is the BS_SOLID or the BS_HOLLOW style, lbHatch 
is ignored. 

See also BITMAPINFO struct 

LOGFONT struct 
typedef struct tagLOGFONT { 
int lfHeight; 
int lfWidth; 
int lfEscapement; 
int lfOrientation; 
int lfWeight; 
BYTE lfltalic; 
BYTE lfUnderline; 
BYTE lfStrikeOut; 
BYTE lfCharSet; 
BYTE lfOutPrecision; 
BYTE lfClipPrecision; 
BYTE lfQuality; 
BYTE If PitchAndFamily; 

724 0 bjectW ind ows Reference Guide 

windows.h 



LOGFONT struct 

BYTE lfFaceName[LF _FACESIZE]; 
} LOGFONT; 

32 bit version: 
typedef struct tag LOG FONT { r If*/ 
LONG lfHeight; 
LONG lfWidth; 
LONG lfEscapement; 
LONG lfOrientation; 
LONG lfWeight; 
BYTE lfllalic; 
BYTE lfUnderline; 
BYTE lfStrikeOut; 
BYTE lfCharSet; 
BYTE lfOutPrecision; 
BYTE lfClipPrecision; 
BYTE lfQuality; 
BYTE If PitchAndFamily; 
CHAR lfFaceName[LF _FACESIZE]; 
} LOGFONT; 
Defines font attributes. When creating a logical font, applications can use the default 
settings for most of the members. Unless lfHeight and lfFaceName are given specific 
values, the created logical font will be device dependent. The following table describes 
the members. 

lfHeight 

lfWidth 

lfEscapement 

lfOrientation 

lfWeight 

(16-bit applications) Font height, in logical units. If greater than zero, it specifies the 
font cell height. If less than zero, it specifies the character height of the font 
(applications that specify font height in points typically use a negative number for this 
member). If 0, the font mapper uses a default height. The font mapper chooses the 
largest physical font not exceeding the requested size,or the smallest font if the fonts 
exceed the requested size. The absolute value of the lfl-Ieight member must not exceed 
16,384 after it is converted to device units. 

(32-bit applictions) Font height, in logical units. The font height can be specified in one 
of three ways. If ifHeight is greater than zero, it is transformed into device units and 
matched against the cell height of the available fonts. If it is zero, a reasonable default 
size is used. If it is less than zero, it is transformed into device units and the absolute 
value is matched against the character height of the available fonts. For all height 
comparisons, the font mapper looks for the largest font that does not exceed the 
requested size; if there is no such font, it looks for the smallest font available. This 
mapping occurs when the font is used for the first time. 

Average font character width, in logical units, of font characters in logical units. If 0, 
the font mapper chooses a default width. 

Angle between the base line of a character and the x-axis, in tenths of degrees. 

Angle of character base line, tenths of degrees and relative to the bottom of the page. 

Font weight. Can be one of the following values: 

FW _DONTCARE FW _SEMIBOLD 

FW_THIN 

FW _EXTRALIGHT 

PW _ULTRALIGHT 

FW_LIGHT 

FW _DEMIBOLD 

FW_BOLD 

FW_BOLD 

FW_ULTRABOLD 

Appendix B, Windows API structs 725 



LOGFONT struct 

!£Italic 

lfUnder!ine 

lfStrikeOut 

lfCharSet 

lfOutPrecision 

lfClipPrecision 

!£Quality 

FW_NORMAL 

FW_REGULAR 

FW_MEDIUM 

FW_BLACK 

FW_HEAVY 

If the value is 0, a defaUit weight is used. 

Italic font if TRUE. 

Underlined font if TRUE. 

Strikeout font if TRUE. 

Font character set. Can be one of the following values: 

ANSI_CHARSET 

DEFAULT_CHARSET (16 bit) 

SYMBOL_CHARSET 

SHIFTJIS_CHARSET (16 bit) 

OEM_CHARSET 

UNICODE_CHARSET (32 bit) 

Desired output precision. Specifies how closely the output must match the height, 
width, character orientation, escapement, and pitch of the requested font. Can be one 
of the following values: 

OUT_CHARACTER_PRECIS OUT_STRING_PRECIS 

OUT_DEFAULT_PRECIS 

OUT_DEVICE_PRECIS 

OUT_RASTER_FRECIS 

OUT_STROKE_PRECIS 

OUT_TT_PRECIS 

OUT_TT_ONLY_FRECIS 

Desired clipping precision. Specifies how to clip characters partially outside the 
clipping region. Can be any one of the following values: 

CLIP_ CHARACTER_PRECIS CLIP _MASK 

CLIP _DEFAULT_FRECIS 

CLIP _EMBEDDED 

CLIP _LH_ANGLES 

CLIP _STROKE_PRECIS 

CLIP_TT_ALWAYS 

To use an embedded read-only font, applications must specify the CLIP _EMBEDDED 
value. 

To achieve consistent rotation of device, True Type, and vector fonts, an application 
can use the OR operator to combine the CLIP _LH_ANGLES value with any of the 
other lfClipPrecision values. If the CLIP _LH_ANGLES bit is set, the rotation for all 
fonts is dependent on whether the orientation of the coordinate system is left-handed 
or right-handed. If CLIP _LH_ANGLES is not set, device fonts always rotate counter­
clockwise, but the rotation of other fonts is dependent on the orientation of the 
coordinate system. (For more information about the orientation of coordinate systems, 
see the description of the lfEscapement member.) 

Output font quality. Can be one of the following values: 

Value Meaning 
DEFAULT_QUALITY 

DRAFT_QUALITY 

PROOF_QUALITY 

Font appearance does not matter. 

Font appearance is less important than when the 
PROOF _QUALITY value is used. 

Font character quality is more important than 
matching logical-font attributes. 

lfPitchAndFamily Font family and pitch. The two low-order bits specify the font pitch and can be one of 
the following values: 

DEFAULT_PITCH 

726 ObjectWindows Reference Guide 



lfFaceName 

LOGPALETTE struct 

.:DescrlptioJ:1.;iiill:t:: 
FIXED_PITCH 

V ARlABLE_PITCH 

The four high-order bits of the member specify the font family and can be one of the 
following values: 

Value Meaning 

FF _DECORATIVE 

FF _DONTCARE 

FF_MODERN 

FF_ROMAN 

FF_SCRIPT 

FF_SWISS 

Novelty fonts. 

Don't care or don't know. 

Fonts with constant stroke width, with or without 
serifs (e.g. Pica and Courier). 

Fonts with variable stroke width and with serifs 
(e.g. Times New Roman). 

Fonts designed to look like handwriting (e.g. Script 
and Cursive). 

Fonts with variable stroke width and without serifs 
(e.g. Sans Serif). 

Use the Boolean OR operator to match a pitch constant with a family constant. 

Specifies the typeface name of the font. The length of this string must not exceed 
LF_FACESIZE-1. 

LOGPALETTE struct windows.h 

typedef struct tagLOGPALETTE { 
WORD palVersion; 
WORD palNumEntries; 
PALETTEENTRY pa1Pa1Entry[1]; 

} LOGPALETTE; 
Defines a logical color palette. Colors in the palette-entry table should appear in order of 
importance because entries earlier in the logical palette are more likely to be placed in 
the system palette. The following table describes the members: 

Specifies the Windows version number for the structure (currently Ox300). 

Specifies the number of entries in the logical color palette. 

palVersion 

palNurnEntries 

palPalEntry Specifies an array of P ALEITEENTRY structures that define the color and usage of each 
entry in the logical palette. 

LOGPEN struct 
typedef struct tagLOGPEN { 
UINT lopnStyle; 
POINT lopnWidth; 
COLORREF lopnColor; 

} LOGPEN; 

windows.h 

Appendix B, Windows API structs 727 



MDICREATESTRUCT struct 

Defines the style, width, and color of a pen. 

lopnStyle 

lopnWidth 

lopnColor 

Specifies the pen type. This member can be one of the following values: 

Value Meaning 

PS_SOLID Solid pen 

PS_DASH Dashed pen (pen width= 1) 

PS_DOT Dotted pen (pen width= 1) 

PS_DASHDOT Alternating dashes and dots (pen width= 1) 

PS_DASHDOTDOT Alternating dashes and double dots (pen width= 1) 

PS_NULL Invisible pen 

PS_INSIDEFRAME Creates a pen that draws a line inside the frame of closed shapes 
produced by graphics device interface (GDI) output functions that 
specify a bounding rectangle. When this style is used with GDI 
output functions. 

Specifies the pen width, in logical units. If the lapn Width member is zero, the pen is one pixel 
wide on raster devices regardless of the current mapping mode. 

Specifies the pen color. 

MDICREATESTRUCT struct 
typedef struct tagMDICREATESTRUCT { 
LPCSTR szClass; 
LPCSTR szTitle; 
HANDLE hOwner; 
int x; 
int y; 
int ex; 
int cy; 
DWORD style; 
LPARAM IParam; 

} MDICREATESTRUCT; 
Contains class, title, location, owner, and size of a Multiple Document Interface (MDI) 
child window. The table below describes the members. 

szClass 

szTitle 

hOwner 

x 

y 

ex 

cy 

Points to a null-terminated string specifying the registered MDI child window name. 

Points to a null-terminated string specifying the registered MDI child window title. 

Instance handle for the application creating the MDI child window. 

Initial position of the left side of the MDI child window. If set to CW _USEDEFAULT, the 
MDI child window is assigned a horizontal position. 

Initial position of the MDI child window top edge. If set to CW_ USEDEFA ULT, the MDI 
child window is assigned a default vertical position. 

Initial width of the MDI child window. If set to CW _USEDEFAULT, the MDI child window 
is assigned a default width. 

Initial height of the MDI child window. If set to CW _USEDEFAULT, the MDI child window 
is assigned a default height. 

728 ObjectWindows Reference Guide 



METARECORD struct 

Member 

style Specifies additional styles for the MDI child window. If the MDI client window was created 
with the MDIS_ALLCHILDSTYLES window style, this member can be any combination of 
the window styles and creation attributes, including those listed in the following table: 

Value Meaning 
WS_MINIMIZE Created in a minimized state. 

WS_MAXIMIZE Created in a maximized state. 

WS_HSCROLL Created with a horizontal scroll bar. 

WS_ VSCROLL Created with a vertical scroll bar. 

lParam An application-defined 32-bit value. 

METARECORD struct 
typedef struct tagMETARECORD { 
DWORD rdSize; 
WORD rdFunction; 
WORD rdParm[1]; 

} METARECORD; 
Contains a metafile record. The table below describes the members. 

rdSize Size of the record, in words. 

rdFunction Function number. 

rdParm Function parameters in reverse of the order they are passed to the function. 

MEASUREITEMSTRUCT struct 
typedef struct tagMEASUREITEMSTRUCT { 
UINT CtlType; 
UINT CtllD; 
UINT itemlD; 
UINT itemWidth; 
UINT itemHeight; 
DWORD itemData; 

} MEASUREITEMSTRUCT; 

windows.h 

windows.h 

Contains dimensions of an owner-drawn control. The table below describes the 
members. 

CtlType Specifies the control type and can be one of the following values: 

ODT_BUTION Owner-drawn button 

ODT_ COMBOBOX Owner-drawn combo box 

ODT_LISTBOX Owner-drawn list box 

ODT_MENU Owner-drawn menu 

Appendix B, Windows API structs 729 



MSG struct 

CtlID Identifier of the combo box, list box, or button (not used for menus). 

itemID Menu item identifier for a menu item, or the list box item identifier for a variable-height list 
or combo box (not used for a fixed-height list box, combo box, or for a button). 

item Width Width of a menu item, in pixels. 

itemHeight Height of an individual item in a list box or a menu, in pixels. 

itemData Application-defined 32-bit value associated with a menu item. For a control, this parameter 
specifies the value last assigned to the list box or combo box by the LB_SETITEMDATA or 
CB_SETITEMDATA message. If the list box or combo box has the LB_HASSTRINGS or 
CB_HASSTRINGS style, this value is initially zero. Otherwise, this value is initially the 
value passed to the list box or combo box in the lParam parameter of one of the following 
messages: 

MSG struct 

CB_ADDSTRING 

CB_INSERTSTRING 

LB_ADDSTRING 

LB_INSERTSTRING 

typedef struct tagMSG { 
HWND hwnd; 
UINT message; 
WPARAM wParam; 
LPARAM IParam; 
DWORDtime; 
POINT pt; 

} MSG; 

windows.h 

The MSG structure contains the following message information from a message queue: 

hwnd Handle for the window whose window procedure receives the message. 

Message number. message 

wParam 

lParam 

time 

Additional message information. The meaning depends on the value of message. 

Additional message information. The meaning depends on the value of message. 

The time the message was posted. 

pt The cursor position when the message was posted, in screen coordinates. 

OUTLINETEXTMETRIC struct 
typedef struct _OUTLINETEXTMETRIC { 
UINT otmSize; 
TEXTM ETRIC otm TextMetrics; 
BYTE otmFiller; 
PANOSE otmPanoseNumber; 
UINT otmfsSelection; 

730 Objec!Windows Reference Guide 

windows.h 



UINT otmfsType; 
int otmsCharSlopeRise; 
int otmsCharSlopeRun; 
int otmltalicAngle; 
UINT otmEMSquare; 
int otmAscent; 
int otmDescent; 
UINT otmlineGap; 
UINT otmsCapEmHeight; 
UINT otmsXHeight; 
RECT otmrcFontBox; 
int otmMacAscent; 
int otmMacDescent; 
UINT otmMaclineGap; 
UINT otmusMinimumPPEM; 
POINT otmptSubscriptSize; 
POINT otmptSubscriptOtfset; 
POINT otmptSuperscriptSize; 
POINT otmptSuperscriptOffset; 
UINT otmsStrikeoutSize; 
int otmsStrikeoutPosition; 
int otmsUnderscoreSize; 
int otmsUnderscorePosition; 
PSTR otmpFamilyName; 
PSTR otmpFaceName; 
PSTR otmpStyleName; 
PSTR otmpFullName; 

} OUTLINETEXTMETRIC; 

OUTLINETEXTMETRIC struct 

Contains metrics describing a TrueType font. The sizes returned in are given in logical 
units (depending on the specified display context's current mapping mode). The 
following table describes the members. 

otmSize 

otm TextMetrics 

otmFiller 

otrnPanosel'Jumber 

otrnfsSelection 

otrnfsType 

Size of this structure, in bytes 

TEXTMETRIC structure containing additional font information 

Value that causes this structure to be byte aligned 

The PANOSE number for this font 

l'Jature of the font pattern. Can be a combination of the following bits: 

Bit Meaning 

0 Italic 

1 Underscore 

2 l'Jegative 

3 Outline 

4 Strikeout 

5 Bold 

Specifies whether the font is licensed. Licensed fonts must not be modified or 
exchanged. If bit 1 is set, the font may not be embedded in a document. If bit 1 
is clear, the font can be embedded. If bit 2 is set, the embedding is read-only. 

Appendix B, Windows API structs 731 



OUTLINETEXTMETRIC struct 

otmsCharSlopeRise 

otmsCharSlopeRun 

otmltalicAngle 

otmEMSquare 

otmAscent 

otmDescent 

otmLineGap 

otmsCapEmHeight 

otmsXHeight 

otmrcFontBox 

otmMacAscent 

otmMacDescent 

otmMacLineGap 

otmusMinimumPPEM 

otmptSubscriptSize 

otmptSubscriptOffset 

otmptSuperscriptSize 

otmptSuperscriptOffset 

otmsStrikeoutSize 

otmsStrikeoutPosition 

otmsUnderscoreSize 

otmsUnderscorePosition 

otmpFamilyName 

otmpFaceName 

Slope of the cursor. This value is 1 if the slope is vertical. Applications can use 
this value and the value of the otmsCharSlapeRun member to create an italic 
cursor that has the same slope as the main italic angle (specified by the 
otmitalicAngle member). 

Slope of the cursor. This value is zero if the slope is vertical. Applications can 
use this value and the value of the otmsCharSlapeRise member to create an italic 
cursor that has the same slope as the main italic angle (specified by the 
otmitalicAngle member). 

Main italic angle of the font, in counterclockwise degrees from vertical. 
Regular (roman) fonts have a value of zero. Italic fonts typically have a 
negative italic angle (that is, they lean to the right). 

Number of logical units defining the x- or y-dimension of the em square for 
this font. (The number of units in the x~ and y-directions are always the same 
for an em square). 

Maximum distance characters in this font extend above the base line. This is 
the typographic ascent for the font. 

Maximum distance characters in this font extend below the base line. This is 
the typographic descent for the font. 

Typographic line spacing. 

Not supported. 

Not supported. 

Bounding box for the font. 

Maximum distance characters in this font extend above the base line for the 
Macintosh® computer. 

Maximum distance characters in this font extend below the base line for the 
Macintosh computer. 

Line-spacing information for the Macintosh computer. 

Specifies the smallest recommended size for this font in pixels per em-square. 

Recommended horizontal and vertical size for subscripts in this font. 

Recommended horizontal and vertical offset for subscripts in this font. The 
subscript offset is measured from the character origin to the origin of the 
subscript character. 

Recommended horizontal and vertical size for superscripts in this font. 

Recommended horizontal and vertical offset for superscripts in this font. The 
superscript offset is measured from the character base line to the base line of 
the superscript character. 

Width of the strikeout stroke for this font. Typically, this is the width of the 
em-dash for the font. 

Position of the strikeout stroke relative to the base line for this font. Positive 
values are above the base line and negative values are below. 

Thickness of the underscore character for this font. 

Position of the underscore character for this font. 

Offset from the beginning of the structure to a string specifying the family 
name for the font. 

Offset from the beginning of the structure to a string specifying the typeface 
name for the font. (This typeface name corresponds to the name specified in 
the LOGFONT structure.) 

732 ObjectWindows Reference Guide 



RGBQUAD struct 

.Des~~.~(}n Mein.her 
otmpStyleName Offset from the beginning of the structure to a string specifying the style name 

for the font. 

otmpFul!Name Offset from the beginning of the structure to a string specifying the full name 
for the font. This name is unique for the font and often contains a version 
number or other identifying information. 

RGBQUAD struct 
typedef struct tagRGBQUAD { 
BYTE rgbBlue; 
BYTE rgbGreen; 
BYTE rgbRed; 
BYTE rgbReserved; 

} RGBQUAD; 

windows.h 

Describes a color consisting of relative intensities of red, green, and blue. The following 
table describes the members. 

rgbBlue Intensity of blue 

rgbGreen Intensity of green 

rgbRed Intensity of red 

rgbReserved Must be zero 

RGBTRIPLE struct 
typedef struct tagRGBTRIPLE { 
BYTE rgbtBlue; 
BYTE rgbtGreen; 
BYTE rgbtRed; 

} RGBTRIPLE; 
Describes a color consisting of relative intensities of red, green, and blue. 

rgbtBlue Blue intensity 

rgbtGreen Green intensity 

rgbtRed Red intensity 

TEXTMETRIC struct 
The 16-bit version formatted and packed differently than the 32-bit version: 
typedef struct tagTEXTMETRIC { 
int tmHeight; 
int tmAscent; 

windows.h 

windows.h 

Appendix B, Windows API structs 733 



TEXTMETRIC struct 

int tmDescent; 
int tmlnternalLeading; 
int tmExternalLeading; 
int tmAveCharWidth; 
int tmMaxCharWidth; 
int tmWeight; 
BYTE tmltalic; 
BYTE tmUnderlined; 
BYTE tmStruckOut; 
BYTE tmFirstChar; 
BYTE tmlastChar; 
BYTE tmDefaultChar; 
BYTE tmBreakChar; 
BYTE tmPitchAndFamily; 
BYTE tmCharSet; 
int tmOverhang; 
int tmDigitizedAspectX; 
int tmDigitizedAspectY; 
} TEXTMETRIC; 

32-bit version: 
typedef struct tagTEXTMETRIC { 
LONG tmHeight; 
LONG tmAscent; 
LONG tmDescent; 
LONG tmlnternalLeading; 
LONG tmExternalLeading; 
LONG tmAveCharWidth; 
LONG tmMaxCharWidth; 
LONG tmWeight; 
LONG tmOverhang; 
LONG tmDigilizedAspectX; 
LONG tmDigilizedAspectY; 
BYTE tmFirstChar; 
BYTE tmlastChar; 
BYTE tmDefaultChar; 
BYTE tmBreakChar; 
BYTE tmltalic; 
BYTE tmUnderlined; 
BYTE tmStruckOut; 
BYTE tmPitchAndFamily; 
BYTE tmCharSet; 
} TEXTMETRIC; 
Contains basic information about a physical font. All sizes are in logical units (mapping 
mode dependent). The table below describes the members. 

tmHeight 

hnAscent 

Height of character cells (tmAscent + tmDescent). 

Ascent of character cells (in units above base line). 

734 ObjectWindows Reference Guide 



Memh~f 
tmDescent 

tmlnternalLeading 

tmExtemalLeading 

tmAveCharWidth 

tmMaxCharWidth 

tmWeight 

tmltalic 

tmUnderlined 

tmStruckOut 

tmFirstChar 

tmLastChar 

tmDefaultChar 

tmBreakChar 

tmPitchAndFamily 

tmCharSet 

TEXTMETRIC struct 

Descent of character cells (in units below base line). 

Amount of leading (space) inside the bounds set by tmHeight. Diacritical 
characters occur in this area. 

Amount of extra leading (space) added between rows. Sometimes set to zero. 

Average width of characters in the font. Does not include overhang. 

Width of the widest character in the font. 

Font weight. Can be one of the following values: 

FW _OONTCARE FW _SEMIBOLD 

FW_THIN 

FW _EXTRALIGHT 

PW _ULTRALIGHT 

FW_LIGHT 

FW_NORMAL 

FW_REGULAR 

FW_MEDIUM 

Italic font if not 0 

Underlined font if not 0 

Struckout font if not 0 

FW _DEMIBOLD 

FW_BOLD 

FW _EXTRABOLD 

FW_ULTRABOLD 

FW_BLACK 

FW_HEAVY 

Value of first character defined in font 

Value of last character defined in font 

Value of non-font substitution character 

Word-break character value for text justification 

Pitch and family of the selected font. The four low-order bits identify the type of 
font, as follows: 

Value Meaning 
TMPF _FIXED _PITCH Fixed-pitch font. 

TMPF_VECTOR 

TMPF _TRUETYPE 

TMPF _DEVICE 

Vector or TrueType font. 

True Type font. 

Device font. 

The four high-order bits of this member designate the font family. The 
tmPitchAndFamily member can be combined with the hexadecimal value OxFO by 
using the bitwise AND operator and can then be compared with the font family 
names for an identical match. The following font families are defined: 

Value Meaning 
FF_DECORATIVE 

FF _DONTCARE 

FF_MODERN 

FF_ROMAN 

FF_SCRIPT 

FF_SWISS 

Novelty fonts 

Don't care or don't know 

Fonts with constant stroke width, with or without serifs 

Fonts with variable stroke width and with serifs 

Fonts designed to look like handwriting 

Fonts with variable stroke width and without serifs 

Specifies the character set of the font. The following values are defined: 

ANSI_CHARSET 

DEFAULT_CHARSET 

SYMBOL_CHARSET 

Appendix B, Windows API structs 735 



WNDCLASS struct 

SHIFI]IS_CHARSET 

OEM_CHARSET 

tmOverhang 

tmDigitizedAspectX 

Extra width that is added to some synthesized fonts 

Horizontal aspect of the device for which the font was designed. The ratio of 
tmDigitizedAspectX and tmDigitizedAspectY is the aspect ratio of the device for 
which the font was designed. 

tmDigitized.AspectY Specifies the vertical aspect of the device for which the font was designed. The 
ratio of tmDigitizedAspectX and tmDigitizedAspectY is the aspect ratio of the device 
for which the font was designed. 

WNDCLASS struct 
typedef struct tagWNDCLASS { 
UINT style; 
WNDPROC lpfnWndProc; 
int cbClsExtra; 
int cbWndExtra; 
HANDLE hlnstance; 
HICON hlcon; 
HCURSOR. hCursor; 
HBRUSH hbrBackground; 
LPCTSTR lpszMenuName; 
LPCTSTR lpszClassName; 

}WNDCLASS; 

windows.h 

Contains TWindow class registration attributes, described in the following table: 

style 

lpfnWndProc 

cbClsExtra 

cbWndExtra 

Class style. Can be any combination of the following values: 

Value Meaning 
CS_BYTEALIGNCUENT Aligns the window's client area on the byte boundary 

(in the x direction). 

CS_BYTEALIGNWINOOW 

CS_CLASSDC 

CS_DBLCLKS 

Aligns a window on a byte boundary (in the x 
direction) to enhance performance during operations 
that involve moving or sizing the window. This style 
affects the width of the window and its horizontal 
position on the display. 

Allocates a device context (DC) to be shared by all 
windows in the class. 

Sends double-click messages to the window 
procedure while the cursor is within a window 
belonging to the class. 

CS_GLOBALCLASS Allows an application to create a window of the class 
regardless of the value of the hinstance parameter 
used at window creation. 

Points to the window procedure. 

Number of extra bytes to allocate following the window-class structure. The operating 
system initializes the bytes to zero. 

Number of extra bytes to allocate following the window instance. Initializedt to 0. 

736 ObjectWindows Reference Guide 



PAINTSTRUCT struct 

Member Description 

hlnstance Identifies the instance that the window procedure of this class is within. 

hlcon Identifies the class icon. Must be a handle of an icon resource. If NULL, an application 
must draw an icon whenever the user minimizes the application's window. 

hCursor Identifies the class cursor. Must be a handle of a cursor resource. If NULL, an 
application must set the cursor shape whenever the mouse moves into the application's 
window. 

hbrBackground Identifies the class background brush. Can be a handle to the physical brush to be used 
for painting the background, or it can be a color value. A color value must be one of the 
standard system colors listed below, plus 1. If a color value is given, you must convert it 
to one of the following HBRUSH types: 

COLOR_ACTIVEBORDER COLOR_HIGHLIGHTIEXT 

COLOR_ACTIVECAPTION 

COLOR_APPWORKSPACE 

COLOR_BACKGROUND 

COLOR_BTNFACE 

COLOR_BTNSHADOW 

COLOR_BTNTEXT 

COLOR_ CAPTIONTEXT 

COLOR_ GRA YTEXT 

COLOR_HIGHLIGHT 

COLOR_INACTIVEBORDER 

COLOR_INACTIVECAPTION 

COLOR_MENU 

COLOR_MENUTEXT 

COLOR_SCROLLBAR 

COLOR_ WINDOW 

COLOR_WINDOWFRAME 

COLOR_WINDOWTEXT 

An application should not delete these brushes, because a class may be used by 
multiple instances of an application. 

When this member is NULL, an application must paint its own background whenever 
it is requested to paint in its client area. 

lpszMenuName Points to a null-terminated character string that specifies the resource name of the class 
menu, as the name appears in the resource file. If NULL, windows belonging to this 
class have no default menu. 

lpszClassName Points to a null-terminated string or is an atom that specifies the window class name. 

PAINTSTRUCT struct 
16-bit version: 
typedef struct tagPAINTSTRUCT { 
HOC hdc; 
BOOL fErase; 
RECT rcPaint; 
BOOL fRestore; 
BOOL flncUpdate; 
BYTE rgbReserved[16]; 

} PAINTSTRUCT; 

32-bit version: 
typedef struct tagPAINTSTRUCT { 
HOC hdc; 
BOOL fErase; 
RECT rcPaint; 
BOOL fRestore; 

windows.h 

Append ix B, Windows AP I st r u ct s 737 



PALETTEENTRY struct. 

BOOL flncUpdate; 
BYTE rgbReserved[32]; 
} PAINTSTRUCT; 
Contains information needed by an application to paint the client area of a window. 

hdc 

£Erase 

rcPaint 

£Restore 

fincUpdate 

rgbReserved 

The display device context used for painting. 

If non-zero erase the background. 

Specifies the upper-left and lower-right comers of the rectangle to be painted. 

Reserved. 

Reserved. 

Reserved. 

PALETTEENTRY struct windows.h 

typedef struct tagPALETTEENTRY { 
BYTE peRed; 
BYTE peGreen; 
BYTE peBlue; 
BYTE peFlags; 

} PALETTEENTRY; 
Specifies the color and usage of an entry in a logical color palette (see LOGP ALEITE 
struct). The following table describes the settings: 

peRed 

peGreen 

peBlue 

peFlags 

XFORM struct 

Specifies a red intensity value for the palette entry. 

Specifies a green intensity value for the palette entry. 

Specifies a blue intensity value for the palette entry. 

Specifies how the palette entry is to be used. The peFlags member may be set to NULL or one 
of these values: 

Value 

PC_EXPLICIT 

PC_NOCOLLAPSE 

PC_RESERVED 

Meaning 

The low-order word of the logical palette entry designates a 
hardware palette index. This flag allows the application to show 
the contents of the display device palette. 

The color is placed in an unused system palette entry instead of 
being matched to an existing system palette color. 

Specifies that the logical palette entry be used for palette 
animation, preventing other windows from matching colors to the 
palette entry since the color frequently changes. If an unused 
system-palette entry is available, this color is placed in that entry. 
Otherwise, the color is available for animation. 

windows.h 

typedef struct tagXFORM { 
FLOATeM11; 

738 ObjectWindows Reference Guide 



FLOATeM12; 
FLOAT eM21; 
FLOATeM22; 
FLOATeDx; 
FLOATeDy; 

} XFORM; 

XFORM struct 

Specifies a world-space to page-space transformation. The following table describes the 
members. 

Member Description 
eMl 1 Specifies the following: 

Value Meaning 
Scaling Horizontal scaling component 

Rotation Cosine of rotation angle 

Reflection Horizontal component 

eM12 Specifies the following: 

Value Meaning 
Shear Horizontal proportionality constant 

Rotation Sine of the rotation angle 

eM21 Specifies the following: 

Value Meaning 

Shear Vertical proportionality constant 

Rotation Negative sine of the rotation angle 

eM22 Specifies the following: 

Value Meaning 
Scaling Vertical scaling component 

Rotation Cosine of rotation angle 

Reflection Vertical reflection component 

eDx Specifies the horizontal translation component. 

eDy Specifies the vertical translation component. 

Appendix B, Windows API structs 739 



740 ObjectWindows Reference Guide 



Symbols 
!=operator 

TCharSet 83 
TPoint 688 
TRect 694 
TRegion 386 
TSize 699 

&operator 
TRect 694 

&=operator 
TBitSet 70 
TRect 695 
TRegion 386 

*operator 
TAutoObject 584 
TPointer<> 689 

+operator 
TPoint 687 
TRect 694 
TSize 698 

++operator 
TOcFormatListlter 616 
TOcPartCollectionlter 634 

+=operator 
TBitSet 70 
TPoint 688 
TRect 694 
TRegion 386 
TSize 699 

<<operator 
TBitmap 67, 68 
TDib 173 
TMetaFilePict 302 
TPalette 349 
TPoint 688 
TRect 695 
TResld 697 
TSize 699 

-=operator 
TBitSet 70 
TPoint 688 
TRect 695 
TRegion 386 
TSize 699 

=operator 
TAutoObject 584 
TAutoObjectByVal 585 
TAutoObjectDelete 586 
TAutoString 593 
TAutoVal 595 
TCelArray 81 
TLocaleString 278 

Index 
TMenu 292 
TOcScaleFactor 641 
TPointer<> 689 
TRegion 386 
TStatus 412 

==operator 
TColor 100 
TCursor 122 
TDib 173 
TModule 309 
TOcFormatName 617 
TOcPart 626 
TPoint 688 
TRect 694 
TRegion 386 
TSize 699 

->operator 
TPointer<> 689 

>>operator 
TPoint 688 
TRect 695 
TResld 697 
TSize 699 

[]operator 
TAutoStack 591 
TCelArray 81 
TOcFormatList 615 
TOcNameList 625 
TSortedStringArray 410 
TStatusBar 414 

A= operator 
TRegion 387 

I operator 
TRect 694 

I= operator 
TBitSet 70 
TRect 695 
TRegion 387 

~operator 

TBitSet 71 
-operator 

TPoint 687 
TRect 694 
TSize 698 

Numerics 
3-D support 163, 166 

A 
ABC struct 707 

abort dialog box 372 
canceling 372 
controls 372 
creating 370 

AbortDoc member function 
TPrintDC 356 

Above member function 
TEdgeConstraint 190 

Absolute member function 
TEdgeConstraint 190 
TEdgeOrSizeConstraint 192 

abstract data validation 436 
accelerator tables 495 

handles, returning 307 
loading into memory 307 

accelerators 605 
resource IDs 41 

AccelTable data member 
TWindow Attr 495 

AccessResource member 
function 

TModule 304 
Activate member function 

TButtonGadget 77 
TOcPart 626 

ActivatePart member function 
TOcView 646 

activating objects 626, 630, 646 
Add member function 

TAppDictionary class 54 
TOcFormatList 614 
TOcNameList 625 
TOcPartCollection 632 
TSortedStringArray 408 

Addltem member function 
TVbxControl 442 

AddString member function 
TComboBox 103 
TComboBoxData 107 
TListBox 265 
TListBoxData 271 

AddStringitem member function 
TComboBoxData 107 
TListBoxData 271 

AddUserFormatName member 
function 

TOcApp 601 
TOleFrame 317 

AdjustWindowRect member 
function 

TWindow 457 

Index 741 



. AdjustWindowRectEx member 
function 

TWindow 457 
Aggregate member function 

TUnknown 658 
aggregating objects 658 
aggregation 

COM objects 552, 555 
Align data member 

TiextGadget 423 
Alloc member function 

TOleAllocator 653 
allocation 

edit control error 
message 200 

allocator, specifying 652 
AllocResource member function 

TModule 305 
AngleArc member function 

TDC 123 
AnimatePalette member function 

TPalette 348 
animation 80 . 
AntialiasEdges data member 

TButtonGadget 76 
AppDesc data member 

TRegistrar 657 
AppDesc member function 

TRegistrar 655 
appdict.h 19 
AppendMemi member function 

TMenu 289 
applicat.h 19 
application classes 13 
application dictionary macro 31 
applications 

eventmessages 565 
facilitating 117 

Arc member function 
TDC 123 

Area member function 
TRect 691 

ArgCount data member 
TAutoStack 591 

ArgSymbolCount data member 
TAutoStack 591, 592 

arguments 
automation servers 548, 571 

registering 549 
Arrangekons member function 

TMDIClient 281 
arrays 

bitmap images 68 
eels 80 

ArraySize member function 
TSortedStringArray 408 

ASCIIstrings,sorting 408 
Aspect data member 

TOcViewPaint structure 651 
aspectall registration key 536 
aspectcontent registration 

key 536 
aspectdocprint registration 

key 537 
aspecticon registration key 537 
aspects, presentation 566, 569, 

608 
aspectthumbnail registration 

key 537 
assignment 

automated objects 594, 595 
AssignMenu member function 

1FrameWindow 223 
asxxxx constants 546 
AtMouse data member 

TGadgetWindow 239 
attaching streams to 

documents 189 
AttachStream member function 

TDocument 189 
Attach Template member 

function 
TDocManager 178 

Attr data member 
TAutoCommand 577 
TDialog 164 
TWindow 455 

attributes 
caption bars 424 
client windows 281 
document properties 48 
edit controls 197 

setting 193 
file 343 
find-and-replace 216, 217 

atxxxx constants 540 
AUTOARGS macros 538 
AUTOCALL_xxxx macros 538 
_AUTOCLASS macro 539 
autocreation 

interface elements 
enabling 464 

interface objects 
disabling 463 

AUTODATA macros 539 
AutoDataType enum 540 
AUTODETACH macro 540 
AUTOENUM macros 541 
AUTOFLAG macros 541 
AUTOFUNC macros 542 
AUTOINVOKE macro .543 
AUTOITERATOR macros 543 

742 ObjectWindows Reference Guide 

automacr.h 538 
automated methods 

return values 574 
automating collections 631, 633 
automating objects 525, 526 

collections 543,557,581 
enumerating 579 

verbs, registering 568, 569, 
570, 665, 666 

automation 
class modifier 539 
data types 525, 541 

flags 540 
definition blocks 555 
ObjectComponents 

classes 523, 524 
automation controllers 538, 544 

accessing members 556 
derived classes 587 
proxy macros 528 
stack, processing 590 

automation servers 
accessing members 539, 542, 

546 
accessing properties 545, 

559,560 
arguments 571 

registering 549 
verifying 548 

bit flags 541 
combining unrelated 

classes 556, 557 
copying objects 585 
declaration macros 525, 526 
defining automatable 

members 551,552,555 
destroying objects 540 
enumerated types 541 
exposing applications 556 
exposing members 558 
exposing objects 547 
hooks 543, 548 

creating record of 545 
defined 539 
error handling 546 
executing 527 
preventing 544 
reversing commands 548 

iteration 543, 557 
stack 594 

AutoMode data member 
TScroller 395 

AUTONAMES macros 544 
AUTONOHOOK macro 544 
AutoOrg data member 

TScroller 395 
AUTOPROP macros 545 



AUTORECORD macro 545 
AUTOREPORT macro 546 
AutoScroll member function 

TScroller 396 
AUTOSTAT macros 546 
AutoSymFlag enum 546 
AUT01HIS macros 547 
AUTOUNDO macro 548 
AUTOVALIDATEmacro 548 

B 
Bandlnfo member function 

TPrintDC 356 
Banding data member 

TPrintout 375 
banding flags 375 
banding printouts 374, 375 
BandRect data member 

TPrinter 370 
BarColor data member 

TGauge 244 
beeps 200 
BEGIN_REGISTRATION_macro 

674 
BeginDocument member 

function 
TPrintout 373 

BeginModal member function 
TApplication 57 

BeginPath member function 
TDC 123 

BeginPressed member function 
TButtonGadget 77 

BeginPrinting member function 
TPrintout 373 

Begin View member function 
TScroller 396 

Below member function 
TEdgeConstraint 191 

BF_ CHECKED constant 28 
BF_ GRAYED constant 28 
BF_ UNCHECKED constant 28 
Bind member function 

TAutoEnumerator 579 
TAutoProxy 588 

bit counts 47 
bit flags 

automation servers 541 
bit masks 496 
BitBlt member function 

TDC 123 
Bitmap data member 

TCelArray 82 
bitmap images, displaying 68 
BITMAP struct 708 

BITMAPCOREHEADER 
struct 709 

BITMAPCOREINFO struct 709 
bitmapga.h 20 
BITMAPINFO struct 710 
BITMAPINFO() operator 

TDib 170 
BITMAPINFOHEADER 

struct 712 
BITMAPINFOHEADER() 

operator 
TDib 170 

BitmapOrigin data member 
TButtonGadget 76 

bitmaps 65 
deleting 80 
loading into memory 307 
referencing 81 
user interface 80 

bits, setting and clearing 69 
Bits data member 

TDib 174 
bitset.h 20 
BitsPixel member function 

TBitmap 66 
Bkcolor data member 

TSlider 404 
BkgndBrush data member 

TGadgetWindow 239 
BkgndColor data member 

TWindow 489 
Black data member 

TColor 99 
blocks 

automation definition 555 
Blue member function 

TColor 100 
BMSetStyle member function 

TButton 73 
BN_ CLICKED constant 28 
BN_DISABLE constant 28 
BN_DOUBLECLICKED 

constant 28 
BN_HILITE constant 28 
BN_P AINI constant 28 
BN_UNHILITE constant 28 
BNClicked member function 

TCheckBox 85 
TRadioButton 383 

BOleComponentCreate member 
function 

TOcRegistrar 635 
bool types 24 
bool() operator 

TClipboard 95 
Boolean types 574 

Border data member 
TTinyCaption 425 

borders 432 
hatched 432 
patterns 432 
status bars, setting 415 

Borders data member 
TGadget 232 

BorderStyle data member 
TStatusBar 415 

BottomLeft member function 
TRect 691 

BottomRight member function 
TRect 692 

Bounds data member 
TGadget 232 

BreakMessageLoop data 
member 

TApplication 61 
BringWindowToTop member 

function 
TWindow 458 

broadcasting messages 459 
Browse member function 

TOcApp 601 
BrowseClipboard member 

function 
TOcApp 602 
TOcView 646 

BrowseLinks member function 
TOcView 646 

brushes, handles, converting 72 
BS_DEFPUSHBUTTON 

constant 73 
BS_GROUPBOX style 251 
BS_PUSHBUTTON constant 73 
BS_RADIOBUTTON 

constant 382 
buffer data member 

TlnputDialog 255 
buffers 

retrieving handles 194, 197 
text 193, 194 
transfer data 256, 270, 394, 

410, 411, 485, 488 
constants 432 
enabling 464 
pointer to 490 
size, returning 463 

transfer, combo boxes 106 
transferring data to 432 
writing to 271 

BufferSize data member 
TlnputDialog 255 

BuffSize data member 
TFindReplaceDialog::TData 

218 

Index 743 



BuildCelArray member function 
TButtonGadget 77 

BUILOOWLDLL macro 49 
building ObjectWindows 

libraries 18 
BUILDOWLDLL macro 18 

button flag constants 28 
button message constants 28 
button.h 20 
buttonga.h 20 
buttons, settings 74 
BWCC templates 163 
BWCCEnabled member function 

T Application 57 
bytes, transfer data 410, 411, 463 

c 
CalcBandingFlags member 

function 
TPrinter 371 

CalcPlaySize member function 
TMetaFilePict 302 

callback factory code 38 
callback functions 309, 599 
CancelPressed member function 

TButtonGadget 78 
CanClear member function 

TEditFile 202 
CanClose member function 

TApplication 57 
TDocument 184 
TEdit 198 
TEditFile 202 
TEditView 206 
TListView 273 
TOcApp 602 
TOleDocument 312 
TOleFrame 318 
TOleView class 324 
TOleWindow 330 
TWindow 458 
TWindowView 498 

CanDirty data member 
TOcVerb 644 

CanUndo member function 
TEdit 193 

CanUnload member function 
TOcRegistrar 636 
TRegistrar 654 

caption bars 
activating 427 
close boxes 425, 430 

creating 425 
closing 425 
creating 424 
default 424 

dimensions 
returning 427,428,429 
setting 426 

minimizing 427,430 
painting 427,429,430 

CaptionFont data member 
TTinyCaption 425 

CaptionHeight data member 
TTinyCaption 425 

captions 62,118,285 
dialog box 255 
document 453 
setting 167, 482 
window 456, 474 

Capture data member 
TGadgetWindow 239 

CaretRect data member 
TSlider 404 

carets 
creating system · 460 
position, returning 195, 197 

carriage returns 194 
CascadeChildren member 

function 
TMDIClient 282 

cascading windows 282 
case-insensitive searches 197 
case-sensitive searches 197 
catch keyword 502 
CBN_CLOSEUP constant 28 
CBN DBLCLK constant 28 
CBN - DROPOOWN constant 28 
CBN=EDITCHANGE 

constant 28 
CBN_EDITUPDATE 

constant 28 
CBN ERRSP ACE constant 28 
CBN - KILLFOCUS constant 28 
CBN=SELENDCANCEL 

constant 29 
CBN_SELENOOK constant 29 
CBN SETFOCUS constant 29 
CBS_AUTOHSCROLL 

constant 102 
CBS DROPOOWN constant 102 
CBS=DROPDOWNLIST 

constant 102 
CBS_OWNERDRA WFIXED 

constant 102 
CBS SIMPLE constant 102 
CBS=SORT constant 102 
cc data member 

TChooseColorDialog 86 
CC FULLOPEN constant 88 
CC=PREVENTFULLOPEN 

constant 88 

744 ObjectWindows Reference Guide 

CC_RGBINIT constant 88 
CC SHOWHELP constant 88 
CDERR_DIALOGFAILURE 

constant 88, 90, 345 
CDERR_FINDRESFAILURE 

constant 88, 90 
CDERR_LOADRESFAILURE 

constant 88,90,218,345 
CDERR_LOADSTRFAILURE 

345 
CDERR_LOADSTRFAILURE 

constant 88, 90, 219 
CDERR LOCKRESOURCE­

FAILURE constant 88, 90, 218, 
345 

CDERR_REGISTERMSGFAIL 
constant 219 

CDTitle data member 
TCommonDialog 113 

CeEditConvert member function 
TOleWindow 330 

CeEditCopy member function 
TOleWindow 330 

CeEditCut member function 
TOleWindow 331 

CeEditDelete member function 
TOleWindow 331 

CeEditlnsertObject member 
function 

TOleWindow 331 
CeEditLinks member function 

TOleWindow 331 
CeEditObject member function 

TOleWindow 331 
CeEditPaste member function 

TOleWindow 331 
CeEditPasteLink member 

function 
TOleWindow 331 

CeEditPasteSpecial member 
function 

TOleWindow 331 
CeEditVerbs member function 

TOleWindow 331 
CeFileClose member function 

TOleWindow 332 
CelArray data member 

TButtonGadget 76 
celarray.h 20 
CelOffset member function 

TCe1Array 81 
CelRect member function 

TCelArray 81 
CelSize member function 

TCelArray 81 



cf data member 
TChooseFontDialog 89 

CF _ANSIONL Y constant 90 
CF_APPLY constant 90 
CF _BOTH constant 90 
CF _EFFECTS constant 90 
CF _FIXEDPITCHONL Y 

constant 90 
CF _FORCEFONTEXIST 

constant 90 
CF _INITTOLOGFONTSTRUCT 

constant 90 
CF _LIMITSIZE constant 90 
CF _NOSIMULATIONS 

constant 90 
CF _PRINTERFONTS 

constant 90 
CF _SCALABLEONLY 

constant 90 
CF _SCREENFONTS constant 90 
CF _SHOWHELP constant 90 
CF _TTONL Y constant 91 
CF_ USESTYLE constant 91 
CF_ WYSIWYG constant 91 
CFERR_JMAXLESSTHAN1\1IN 

constant 90 
CFERR_NOFONTS constant 90 
chains (documents) 189 
ChangeModeToPal member 

function 
TDib 170 

ChangeModeToRGB member 
function 

TDib 171 
char far*() operator 

TResld 697 
char*() operator 

TAutoString 593 
character sets 567 
characters 

edit control and 192, 195, 201 
end-of-line 194 
formatting into buffer 193, 

194 
invalid 

checking for 215, 422, 437 
numeric values 383 
picture formats 381 

number scrolled 196 
user-input 256 
valid 

input fields 215 
picture formats 381 

check boxes 
selection box state 28 
status 84 

Check member function 
TCheckBox 84 
TXOle 663 
TXRegistry 664 

checkbox.h 20 
CheckDlgButton member 

function 
TWindow 459 

checking user input 215, 278 
data entry 436 
input fields 421 
numeric values 383 
picture strings 380 

checkmarks 28, 251 
radio buttons 382 

CheckMenultem member 
function 

TMenus 289 
CheckRadioButton member 

function 
TWindow 459 

CheckState enum 111 
CheckValid member function 

TDC 159 
TGdiObject 248 
TMenu 289 

child ID constant 45 
child lists 

child windows and 460 
deleting objects 457, 463 
interface element and 161, 

227,493 
interface object IDs and 469 
removing objects 484 
test iteration and 466 
transfer buffer and 490 

child windows 459 
cascading 282 
closing 282 
creating 165, 256, 258, 279, 

281,282 
decorating 162 
first 469 
iterator member 

functions 466 
last 470 
next 478 
number of 478 
previous 479 
tiling 283 

ChildBroadcastMessage 
member function 

TWindow 459 
ChildDoc data member 

TDocument 183 

ChildWindowFromPoint 
member function 

TWindow 459 
ChildWithld member function 

TWindow 459 
chooseco.h 20 
choosefo.h 20 
Chord member function 

TDC 124 
Cid data member 

TOclnitinfo 619 
classes 

event handling 31 
names 

client window 
registration 284 

edit controls 
registration 200 

interface objects 
registration 491 

list boxes registration 270 
modal and modeless 

dialog box 167 
static control 

registration 412 
scope resolution operator 3 
windows 

input dialog windows 256 
Windows registration 480 

Classlnfo data member 
TAutoBool 574 
TAutoCurrency 577 
TAutoDate 578 
TAutoDouble 578 
TAutoFloat 580 
TAutoLong 584 
TAutoShort 590 
TAutoString 594 
TAutoVoid 599 

_ CLASSTYPE macro 494 
Cleanup Window member 

function 
TOleFrame 318 
TOleWindow 332 
TWindow 491 

Clear member function 
TAutoEnumerator 579 
TAutoVal 596 
TComboBox 103 
TComboBoxData 107 
TEdit 193 
TListBoxData 271 
TOcFormatList 615 
TOcNameList 625 
TOcPartCollection 632 
TStatic 411 

Index 745 



Cleal'ContainerGroupCount 
member function 

TMenuDescr 297 
ClearDevice member function 

1Printer 369 
ClearDevMode member function 

TPrintDialog::TData 366 
ClearDevNames member 

function 
TPrintDialog::TData 366 

ClearFlag member function 
TAutoCommand 575 
TDocTemplate 679 
1Window 459 

clearing bits 69 
clearing flags 69 
Clear List member function 

TComboBox 103 
TListBox 265 

ClearModify member function 
TEdit 193 

ClearServerGroupCount 
member function 

TMenuDescr 297 
client windows 159, 225 

arranging icons 281 
attributes 281 
cascading children 282 
closing children 282 
handles,returning 306 
moving through 222 
registration class name 284 
tiling children 283 

ClientAttr data member 
TMDIClient 281 

ClientSize data member 
TLayoutWindow 264 

ClientToScreen member function 
1Window 459 

ClientWnd data member 
TFrameWindow 225 

Clip data member 
TGadget 229 
TOcViewPaint structure 651 

Clip member function 
TOcApp 602 

clipboar.h 20 
Clipboard 

constants 600 
text and 193, 194, 196 
viewer chain 97 
windows 

addffi.g_96,98 
identitying 94 

owner 94,95 
removing 98 

WindowsAPI 
encapsulation 92 

Clipboard formats 
name strings 624 
registering 561, 567, 601, 603, 

648 
supported by application 614 

clipview.h 20 
Clone member function 

TDocTemplate 680 
TDocTemplateTD,V 684 
TGdiObject::TXGdi 250 
TXBase 700 
TXCompatibility 500, 501 
TXInvalidMain Window 63 
TXInvalidModule 310 
TXOutOfMemory 501 
TXOwl 504 
TXWindow 499 

close boxes, creating 425, 430 
Close member function 

TDocument 184 
TFileDocument 211 
TMetaFileDC 301 
TOcDocument 610 
TOcPart 627 
TStorageDocument 417 

CloseBox data member 
TTinyCaption 425 

CloseChildren member function 
TMDIClient 282 

CloseClipboard member 
function 

TClipboard 93 
CloseFigure member function 

TDC 124 
CloseThisFile member function 

TFileDocument 213 
CloseWindow member function 

TDialog 164 
1Window 459 

clsid registration key 548 
CM_ARRANGEICONS 

constant 31, 283 
CM_CASCADECHILDREN 

constant 31, 283 . 
CM_CLOSECHILDREN 

constant 31, 283 
CM_CREATECHILD 

constant 31, 283 
CM_EDITCLEAR constant 29 
CM_EDITCONVERT 

constant 30 
CM_EDITCOPY constant 29 
CM_EDITCUT constant 29 
CM_EDITDELETE constant 29 

746 ObjectWindows Reference Guide 

CM_EDITFIND constant 30 
CM_EDITFINDNEXT 

constant 30 
CM_EDITFIRSTVERB 

constant 30 
CM_EDITINSERTOBJECT 

constant 30 
CM_EDITLASTVERB 

constant 30 
CM_EDITLINKS constant 30 
CM_EDITOBJECT constant 30 
CM_EDITP ASTE constant 29 
CM_EDITP ASTELINK 

constant 30 
CM_EDITP ASTESPECIAL 

constant 30 
CM_EDITREPLACE constant 30 
CM_EDITUNDO constant 29 
CM_EXIT constant 29, 460 
CM_FILECLOSE constant 29 
CM_FILENEW constant 29 
CM_FILEOPEN constant 29 
CM_FILEPRINT constant 29 
CM_FILEPRINTERSETUP 

constant 29 
CM_FILEREVERT constant 29 
CM_FILESA VE constant 29 
CM_FILESA VEAS constant 29, 

202 . 
CM_TILECHILDREN 

constant 31 
CM_TILECHILDREN 

message 283 
CM_TILECHILDRENHORIZ 

constant 31 
CM_VIEWCREATEconstant 29 
CMArrangelcons member 

function 
TMDIClient 283 

CmCancel member function 
TDialog 164 
TFindReplaceDialog 217 

CmCascadeChildren member 
function 

TMDIClient 283 
CmCharsEnable member 

function 
TEdit 199 

CmChildActionEnable member 
·function 

TMDIClient 283 
CmCloseChildren member 

function 
TMDIClient 283 



CmCreateChild member 
function 

TMDIClient 283 
cmdline registration key 549 
CmEditAdd member function 

TLlstView 274 
CMEditClear member function 

TEdit 199 
CmEditClear member function 

TListView 274 
CmEditConvert member 

function 
TOleWindow 332 

CmEditCopy member function 
TEdit 199 
TListView 274 
TOleWindow 332 

CmEditCutmemberfunction 
TEdit 199 
TListView 274 
TOleWindow 332 

CmEditDelete member function 
TEdit 199 
TListView 274 
TOleWindow 332 

CmEditFind member function 
TEditSearch 205 

CmEditFindNext member 
function 

TEditSearch 205 
CmEditlnsertObject member 

function 
TOleWindow 332 

CmEditltem member function 
TListView 274 

CmEditLinks member function 
TOleWindow 332 

CmEditPaste member function 
TEdit 199 
TListView 274 
TOleWindow 332 

CmEditPasteLink member 
function· 

TOleWindow 332 
CmEditPasteSpecial member 

function 
TOleWindow 333 

CmEditReplace member 
function 

TEditSearch 205 
CmEditUndo member fur}ction 

TEdit 199 
TListView 274 

CmExit member function 
TWindow 460 

CmFileClose member function 
TDocManager 178 
TOleWindow 333 

CmFileNew member function 
IDocManager 178 
TEditFile 202 

CmFileOpen member function 
IDocManager 178 
TEditFile 202 

CmFileRevert member function 
IDocManager 178 

CmFileSave member function 
IDocManager 178 
TEditFile 202 

CmFileSaveAs member function 
IDocManager 178 
TEditFile 202 

CmFindNext member function 
TFindReplaceDialog 217 

CmFontApply member function 
TChooseFontDialog 89 

Cm.Help member function 
TCommonDialog 113 

CmLbSelChanged member 
function 

TOpenSaveDialog 343 
CmModEnable member function 

TEdit 199 
CmOk member function 

TDialog 165 
TOpenSaveDialog 343 

CmOkCancel member function 
TCommonDialog 113 

CmPasteEnable member 
function 

TEdit 199 
CmReplace member function 

TFindReplaceDialog 217 
CmReplaceAll member function 

TFindReplaceDialog 217 
CmSelChange member function 

TListView 275 
CmSelectEnal?le member 

function 
TEdit 200 

CmSetup member function 
TPrintDialog 369 

CmTileChildren member 
function 

TMDIClient 283 
CmTileChildrenHoriz member 

function 
TMDIClient 283 

Cm ViewCreate member function 
TDocManager 178 

color counts 47 

Color data member 
TChooseColorDialog::TData 

87 
TChooseFontDialog::IData 

90 
color.h 20 
color-matching functions 378 
COLORREF typedef 713 
COLORREF() operator 

TColor 100 
colors, selecting 86 
COM objects 

aggregating with 552, 555 
creating 551, 553, 658 
implementing IUnknown 658 

combo boxes 
creating 102 
entries, transferring 106 
interface element 102 
lists, showing 105 
messages 28 
owner-draw 118 
position, relative to origin 102 
styles 102 

combobox.h 20 
command line processing 656 
command objects 590 
command-based message 

constants 29, 30, 31 
CommandEnable member 

function 
TButtonGadget 75 
TGadget 230 

commdial.h 20 
CommDlgExtendedError 

codes 218 
Commit member function 

IDocument 184 
TFileDocument 211 
TOleDocument 312 
TStorageDocument 417 

Compare member function 
TLocaleString 277 

Compareltem member function 
TControl 118 

COMP AREITEMSTRUCT 
struct 714 

compat.h 20 
compiler options for building 

libraries 17 
complement operator 

TBitSet 71 
Component Object Model See 

COM objects 
compound documents 

loading and saving 609 

Index 747 



concatenating strings 271 
Conderrm member function 

TAppDictionary class 54 
TApplication 58 

configuring printers 367, 370 
connector objects 600 

parts 626 
remote views 637 
views 645 

const char far*() operator 
TAutoString 593 

const char* operator 
TLocaleString 277 

constants 
attribute masks 496 
buffer, transfer data 432 
button flags 28 
button messages 28 
childID 45 
Clipboard 600 
combo box messages 28 
dialog control messages 33 
dispatch IDs 592 
document manager mode 33 
documentmessage 34 
document string IDs 42 
document template 34 
edit file 29 
edit file ID 43 
edit messages 35 
edit replace 30 
edit view 30, 42 
edit view ID 42 
editing 29 
exception messages 43 
file 40 
list view ID 44 
MDifunctions 31 
printer 41 
printer string ID 44 
registration tables 533 
resource IDs 

accelerator keys 41 
menu commands 41 
mode indicators 42 
OLE accelerator keys 41 
ole menu commands 41 

transfer functions 432 
validator ID 44 

constraints 
defined 258 
edge 190,258,261 
layout 256, 258 

ConstructDoc member function 
TDocTemplate 680 

constructors (predefined classes) 
TAutoCommand 574 
TAutoDate 578 
TAutoEnumerator 579 
TAutolterator 583 
TAutoObject 584 
TAutoObjectByVal 586 
TAutoObjectDelete 586 
TAutoProxy 589 
TAutoStack 591 
TAutoString 592 
TDocument::List 189 
TOcApp 606 
TOcDocument 610 
TOcFormatList 614 
TOcFormatListlter 616 
TOcFormatName 617 
TOcinitlnfo 620 
TOcModule 623 
TOcNameList 624 
TOcPart 626 
TOcPartCollection 632 
TOcPartCollectionlter 633 
TOcRem View 637 
TOcVerb 644 
TOcView 645 
TOleAllocator 652 
TUnknown 659 
TWindow 491 
TXAuto 660 
TXObjComp 662 
TXOle 663 
TXRegistry 664 

ConstructView member function 
TDocTemplate 680 

container classes 
compound documents 

and 609 
embedded object classes 626, 

645 
Container data member 

TOcinitlnfo 618, 620 
container view 323 
ContainerName data member 

TOleWindow 329 
Contains member function 

TRect 692 
TRegion 385 

content aspect 608 
control bars 115 
control classes 12 
Control data member 

TControlGadget 116 
control interface elements 117 
control.h 20 
controlb.h 20 
controlg.h 20 

748 ObjectWindows Reference Guide 

controls 117, 119 
drawing 118, 119 
IDs 40 

retrieval 166 
managing 251 
VBX 440,447 

conversions 
objects 602 
scroll bar values 46 

Convert member function 
TOcApp 602 

coordinate systems, 
translating 310 

coordinates 
device points 310 
logical points 310 
viewport 310 

Copies data member 
TPrintDialog::TData 364 

Copy member function 
TAutolterator 581 
TAutoVal 596 
TEdit 193 
TOcRem View 638 
TOcView 646 

CopyCursor member function 
TModule 305 

Copylcon member function 
TModule 305 

copying exception objects 
TXBase class 700 
TXCompatibility class 500 
TXGdi class 250 
TXInvalidMain Window 

class 63 
TXInvalidModule class 310 
TXMenu class 501 
TXOutOfMemory class 501 
TXOwl class 504 
TXWindow class 499 

copying objects 585, 602, 638 
embedded 646 

Count member function 
TOcFormatList 615 
TOcNameList 625 
TOcPartCollection 632 

CountClipboardFormats 
member function 

TClipboard 93 
cracking Windows 

messages 513 
Create member function 

TAutoFactory 64 
TBitmap 68 
TDialog 165 
TEditView 206 
TGadgetWindow 241 



TListView 273 
TMDIClient 282 
TOleFactoryBase 315 
TPalette 350 
TWindow 460 

CreateAbortWindow member 
function 

TPrinter 371 
CreateAnyDoc member function 

TDocManager 178 
CreateAnyView member 

function 
TDocManager 179 

CreateApp member function 
TAutoFactory 64 
TOleFactoryBase 315 

CreateCaret member function 
TWindow 460 

CreateChild member function 
TMDIClient 282 

CreateChildren member function 
TWindow 460 

CreateDoc member function 
TDocManager 179 
TDocTemplate 680 
TDocTemplateTD,V 684 

CreateObject member function 
TOleFactoryBase 316 

CreateOcApp member function 
TOcRegistrar 636 

CreateOcView member function 
TOleView class 324 
TOleWindow 333 

CreateVerbPopup member 
function 

TOleWindow 333 
Create View member function 

TDocManager 179 
TDocTemplate 680 
TDocTemplateTD,V 684 

creating 
DC wrappers 122 
dialog boxes 

abort 370, 372 
print setup 368 

status bars 413, 414 
CSize data member 

TCelArray 82 
CTL3D DLL support 58, 163 
Ctl3dEnabled member function 

TApplication 58 
currency 577 
Current member function 

TOcFormatListlter 616 
TOcPartCollectioniter 634 

CurrentArg data member 
TAutoStack 591 

CurrentPreviewFont data 
member 

TPrintPreviewDC 379 
CursorModule data member 

TWindow 490 
CursorResld data member 

TWindow 490 
cursors 121 

loading into memory 308 
position, inserting text at 

current 196 
CustColors data member 

TChooseColorDialog::TData 
87 

CustomFilter data member 
TOpenSaveDialog::TData 345 

Cut member function 
TEdit 194 

D 
data 536, 566 

Clipboard, retrieving 94 
far pointers 50 
manipulating 92 
retrieving 306, 568 
storing, document modes 48 
transfer 384, 438 
transfer mechanism 118 
transferring, list boxes 270 
validating entries 436 

input fields 421, 438, 439 
numeric values only 383 
picture strings 380 

Data data member 
TChooseColorDialog 87 
TChooseFontDialog 89 
TFindReplaceDialog 217 
TOclnitlnfo 619 
TOpenSaveDialog 343 
TPrintDialog 368 
TPrinter 370 

data formats 567 
registering 568, 569 

data types 
automation 525,541,594 

flags 540 
new types 24 

database tables 
documents as 183 

databases 
registration 529 
validity checking 380 
viewing data 536 

Date data member 
TAutoDate 578 

dates 578 

DC data member 
TChooseFontDialog::TData 

90 
TOcViewPaint structure 652 
TPrintout 375 

dc.h 20 
Deactivate member function 

TOleWindow 328 
debugclsid registration key 549 
debugdesc registration key 549 
debugger registration key 550 
debugging 

ObjectComponents 
applications 550 

servers 549 
debugprogid registration 

key 550 
decframe.h 20 
declaration specifiers 

_ICLASS macro 535 
_IFUNC macro 535 
_ OCFxxxx macros 535 

DECLARE_AUTOCLASS 
macro 551 

DECLARE_ COMBASESn 
macros 551 

DECLARE_RESPONSE_TABLE 
macro 31 

decmdifr.h 20 
decorated windows 11 
DeepCopy data member 

TMenu 293 
default aspect 608 
default error handling 303 
default message processing 

windows 456 
default printers 368, 369 

updating 371 
DefaultProc data member 

TWindow 456 
DefaultProcessing member 

function 
TWindow 460 

DefaultProtocol data member 
TClipboard 93 

DefExt data member 
TOpenSaveDialog::TData 345 

DEFINE_APP _DICTIONARY 
macro 31 

DEFINE_AUTOAGGREGATE 
macro 552 

DEFINE_AUTOCLASS 
macro 552 

DEFINE_AUTOENUM 
macro 541 

Index 749 



DEFINE_COMBASESn 
macros 553 

DEFINE_DOC_TEMPLATE 
CLASS macro 32 

DEFINE_RESPONSE_TABLE 
macros 32 

DefWindowProc member 
function 

TDecoratedMDIFrame 162 
TMDIChild 280 
TMDIFrame 286 
TOleMDIFrame 322 
TWindow 463 

delegating to base classes 557 
delegating to other objects 556 
Delete member function 

TOcPart 627 
DeleteCondemned member 

function 
TAppDictionary class 54 

Deleteltem member function 
TControl 118 

DELETEITEMSTRUCT 
struct 714 

DeleteLine member function 
TEdit 194 

DeleteMenu member function 
TMenu 289 

DeleteSelection member function 
TEdit 194 

DeleteString member function 
TComboBox 103 
TListBox 265 

DeleteSubText member function 
TEdit 194 

DeleteTemplate member 
function 

TDocManager 179 
deleting objects 627 
DeltaPos member function 

TScrollBar 392 
dereference operator 584, 585 
description registration key 553 
Destroy member function 

TDialog 165 
TDocument::List 190 
TMDIChild 280 
TOleFrame 318 
TSortedStringArray 409 
TWindow 463 

Destroy App member function 
TAutoFactory 65 
TOleFactoryBase 316 

DestroyCaret member function 
TWindow 463 

DestroyStashedPopups member 
function 

TOleFrame 318 
destructors (predefined classes) 

TAutoBase 573 
TAutoCommand 574 
TAutoEnumerator 579 
TAutoProxy 587 
TAutoStack 591 
T AutoString 593 
TDocument::List 189 
TOcApp 606 
TOcFormatList 614 
TOcFormatName 617 
TOcModule 623 
TOcNameList 624 
TOcPart 631 
TOcPartCollection 632 
TOleAllocator 653 
TTextGadget class 423 
TUnknown 659 
TXOle 663 

Detach member function 
TOcFormatList 615 
TOcNameList 625 
TOcPart 627 
TOcPartCollection 632 
TSortedStringArray 409 

detaching streams 
documents 189 

DetachStream member function 
TDocument 189 

device contexts 
classes 14 
ole client 310 
TDC class 122 
TPrintDC class 356 

device points 310 
DeviceCapabilities member 

function 
TPrintDC class 356 

device-independent bitmap See 
DIB 

DEVMODE struct 716 
dialog boxes 

closing 164, 165 
creating 86, 165 

abort 370, 372 
modeless 388 
print setup 368 

CTL3D DLL 163 
executing 165, 166 

precautions 305 
file management 201, 213, 

214 
files, opening, saving 342 
finding text 216 

750 ObjectWindows Reference Guide 

initializing 89, 164, 166, 216 
input 255 
interface elements 165 
items 

changing 204 
handles 166 
sending messages to 167 

message constants 46 
messages, processing 165, 

167 
modal 163, 164 
modeless 86, 163, 164, 216 
naming 255 

dialog control message 
constants 33 

dialog windows 256 
dialog.h 20 
DialogFunction member 

function 
TChooseColorDialog 87 
TChooseFontDialog 89 
TDialog 165 
TFindReplaceDialog 217 
TOpenSaveDialog 343 
TPrintDialog 369 

DIB, array of eels 81 
direction for tiling 424 
directories 

default, registering 554 
documents as disk 183 
paths, registering 561, 571 

directory registration key 5?4 
Directory List member function 

TComboBox 103 
TListBox 265 

DirtyFlag data member 
TDocument 189 
TListView 272 

DirtyLayout data member 
TGadgetWindow 240 

DisableAutoCreate member 
function 

TWindow 463 
Disableltem member function 

TBitSet 70 
DisableTransfer member 

function 
TWindow 463 

disabling CTL3D DLL 58 
dispatch functions 513-518 
dispatch IDs 592 
Dispatch member function 

TEventHandler 209 
TWindow 463 

dispatch.h 20 
Dispatcher data member 

TResponseTableEntry 388 



dispatching Window 
messages 513 

DispatchScroll member function 
TWindow 491 

displacement 698 
display contexts 

window, painting 478 
displaying current state, 

program 413,415 
DLGC_BUTTON constant 33 
DLGC_DEFPUSHBUTTON 

constant 33 
DLGC_HASSETSEL constant 33 
DLGC_RADIOBUTTON 

constant 33 
DLGC_STATIC constant 33 
DLGC_UNDEFPUSHBUTTON 

constant 33 
DLGC_WANTALLKEYS 

constant 33 
DLGC_ WANTARROWS 

constant 33 
DLGC_W ANTCHARS 

constant 33 
DLGC_ WAN1MESSAGE 

constant 33 
DLGC_WANTTAB constant 33 
DLLs 303 

building 49 
error handling 303 
exporting 49 
far pointers 50 
importing 49 
modules 

handles, returning 309 
object-oriented stand-

in 303 
_OWLDLL 49 
wfAlias and 496 
WlN32, building 50 

dmMDI constant 33 
dmMenu constant 33 
dmNoRevert constant 33 
dmSaveEnable constant 33 
dmSDI constant 33 
dnClose constant 34 
dnCreate constant 34 
Doc data member 

TStream 421 
TView 454 

Doc/View model 13 
document lists 189 
registering documents 683 

docfilter registration key 554 
docflags registration key 554 

DoChangeCBChain member 
function 

TClipboardViewer 97 
DOCINFO struct 

TPrintDC 363 
DocList data member 

TDocManager 177 
docmanag.h 20 
DoCommand member function 

TTinyCaption 426 
docprint aspect 608 
DoCreate member function 

TCommonDialog 113 
TDialog 165 
TFindDialog 216 
TFindReplaceDialog 217 
TReplaceDialog 388 

DocTitleindex data member 
TFrameWindow 225 

doctpl.h 20 
document manager 176 
documents 182 

closing 34 
creating 34, 679 
files as 183 
interfaces 451 
lists 189 
manager mode constants 33 
message constants 34 
naming 453 
open modes 48 
paths, specifying 212 
property attributes 48 
sharing modes 51 
string ID constants 42 
template constants 34 
templates, creating 32 
viewing 451, 498 

docview.h 20 
DoDestroy m'l=mber function 

TClipboardViewer 97 
DoDrawClipboard member 

function 
TClipboardViewer 97 

DoExecute member function 
TChooseColorDialog 87 
TChooseFontDialog 89 
TCommonDialog 113 
TDialog 165 
TFileOpenDialog 214 
TFileSaveDialog 214 
TOpenSaveDialog 344 
TPrintDialog 368 

DoLButtonUp member function 
TTinyCaption 426 

DoMouseMove member 
function 

TTinyCaption 426 
DoNCActivate member function 

TTinyCaption 427 
DoNCCalcSize member function 

TTinyCaption 427 
DoNCHitTest member function 

TFloatingFrame 220 
TTinyCaption 427 

DoNCLButtonDown member 
function 

TTinyCaption 427 
DoNCPaint member function 

TTinyCaption 427 
DoSearch member function 

TEditSearch 205 
DoSysCommand member 

function 
TTinyCaption 427 

DoSysMenu member function 
TTinyCaption 427 

double far*() operator 
TAutoVal 596 

double types 578 
double() operator 

TAutoDate 578 
TAutoVal 596 

Do Verb member function 
TOcPart 627 

DownHit data member 
TTinyCaption 425 

DPtoLP member function 
TDC 124 

drag and drop 613, 618 
events 566 
file names 685 

Drag member function 
TOcApp 602 
TVbxControl 442 

DragAcceptFiles member 
function 

TWindow 464 
DragDC data member 

TOleWindow 329 
DragFinish member function 

TDropinfo 685 
dragging objects 602 
DragHit data member 

TOleWindow 329 
DragPart data member 

TOleWindow 329 
DragPt data member 

TOleWindow 329 
DragQueryFile member function 

TDropinfo 685 

Ind ex 751 



DragQueryFileCount member 
function 

TDropinfo 685 
DragQueryFileNameLen 

member function 
TDropinfo 686 

DragQueryPoint member 
function 

TDropinfo 686 
DragRect data member 

TOleWindow 329 
DragStart data member 

TOle Window 329 
Draw member function 

TOcPart 627 
DrawFocusRect member 

function 
TDC 124 

Drawlcon member function 
TDC 125 

drawing controls 118, 119 
drawing gauges 245 
drawing objects 432, 566 
Draw Item member function 

TControl 118 
TMenu 289 

DRA WITEM message 118 
DRAWITEMSTRUCT struct 719 
DrawMenuBar member function 

TWindow 464 
DrawText member function 

TDC 125 
dtAutoDelete constant 34 
dtAutoOpen constant 34 
dtCreatePrompt constant 34 
dtDynReginfo constant 34 
dtFileMustExist constant 34 
dtHidden constant 34 
dtHideReadOnly constant 34 
dtNewDoc constant 34 
dtNoAutoView constant 34 
dtNoReadOnly constant 34 
dtNoTestCreate constant 34 
dtOverwritePrompt constant 35 
dtPathMustExist constant 35 
dtProhibited constant 35 
dtReadOnly constant 35 
dtRegisterExt constant 35 
dtSelected constant 35 
dtSingleUse constant 35 
dtSingleView constant 35 
dual DC synchronizing 

functions 376, 379 
DynamicCast function 555 
dynamic-link libraries See DLLs 

E 
edge constraints 190, 258, 261 
edit constants 29 
edit controls 192, 204 

attributes, setting 193, 197 
closing 198 
first visible line 194 
formatting rectangle 195, 197 
handles 197 

data 194 
interface elements 192 
notification codes 200 
passwords 195, 197 
registration class name 200 
tab stop positions 197 
text 

clearing 199 
copying 193, 199 
cutting 194, 199 
deleting 194, 199 

lines 194 
getting 194, 196 
inserting 196 
limitin 201 
line in~ex 195 
line length 195 
modified 196 
number of lines 195 
pasting 196, 199 
position 192, 195 
scrolling 196 
selected, getting 195 
selecting 197 
undoing 199 

undoing 193, 194, 198 
word break 198 
wordwrapped lines 194, 196 

edit file constants 29 
edit file ID constants 43 
Edit menu, automated objects 

and 600, 603 
edit message constants 35 
edit replace constants 30 
edit view constants 30 
edit view ID constants 42 
edit.h 21 
editfile.h 21 
editing objects 639 
editing windows 

control attributes 193 
editsear.h 21 
editview.h 21 
Ellipse member function 

TDC 126 

752 0 b j e ct W i n d ow s R e f e r e n c e G u i d e 

Embedded data member 
TDocument 189 
TOleWindow 329 

embedded objects 
activating 626,630,646 
container classes 626, 645 
copying 638,646 
deleting 627 
editing 639 
executing verbs 627 
loading 566,611,629,639 
painting 566, 627, 638, 648, 

651 
pasting 646, 648 
presentation aspects 566, 

569,608 
saving 566,611,612,630,639 
server classes 637 

embedding ObjectComponents 
classes 530 

embedding ObjectComponents 
enums 532 

embedding ObjectComponents 
messages 532 

embedding ObjectComponents 
structs 532 

EmptyClipboard member 
function 

TClipboard 93 
EmptyUndoBuffer member 

function 
TEdit 194 

EN_ CHANGE constant 35 
EN_ERRSP ACE constant 35, 200 
EN_HSCROLL constant 35 
EN_KILLFOCUS constant 35 
EN_MAXTEXT constant 36 
EN_SETFOCUS constant 36 
EN_ UPDATE constant 36 
EN_ VSCHOLL constant 36 
enable 3-D support 166 
Enable member function 

TButtonGadgetEnabler 80 
TCommandEnabler 111 
TMenultemEnabler 299 

EnableAutoCreate member 
function 

TWindow 464 
EnableBWCC member function 

TApplication 58 
EnableCtl3d member function 

TApplication 58 
EnableCtl3dAutosubclass 

member function 
TApplication 58 



EnableEditMenu member 
function 

TOcApp 603 
Enableltem member function 

TBitSet 70 
EnableKBHandler member 

function 
TFrameWindow 223 

EnableMenultem member 
function 

TMenu 289 
EnableScrollBar member 

function 
TWindow 155, 464 

EnableTinyCaption member 
function 

TTinyCaption 427 
EnableTransfer member function 

TWindow 464 
EnableWindow member 

function 
TMDIChild 280 
TWindow 464 

encapsulated functions 
WIN API 701, 707 
Windows API Clipboard 92 

END_AUTOAGGREGATE 
macro 555 

END AUTOCLASS macro 555 
END -AUTOENUM macro 541 
END=REGISTRATION_macro 6 

75 
END_RESPONSE_TABLE 

macro 35 
EndDoc member function 

TPrintDC 359 
EndDocument member function 

TPrintout 373 
EndModal member function 

TApplication 58 
end-of-line characters 194 
EndPage member function 

TPrintDC 359 
EndPath member function 

TDC 126 
EndPrinting member function 

TPrintout 373 
EndView member function 

TScroller 397 
ENErrSpace member function 

TEdit 200 
Entry data member 

TEventHandler::TEventlnfo 
210 

enumerations 
automated objects 579, 581 

exception status 56 
EnumFontFamilies member 

function 
TDC 126 

EnumFonts member function 
TDC 126 

EnumMetaFile member function 
TDC 127 

EnumObjects member function 
TDC 127 

EnumProps member function 
TWindow 464 

enums 
TOcDropAction 613 
TOclnitHow 618 
TOclnitWhere 621 
TOclnvalidate 621 
TOcPartName 634 
TOcScrollDir 642 

Enum Verbs member function 
TOcPart 627 

error codes 90 
automation servers 546 
dialog boxes 88, 218, 364 
files 345 
OLE 562,663 
printing 370 

Error data member 
TChooseColorDialog::TData 

87 
TChooseFontDialog::TData 90 
TFindReplaceDialog::TData 

218 
TOpenSaveDialog::TData 345 
TPrintDialog::TData 364 
TPrinter 370 

Error member function 
TFilterValidator 215 
TModule 305 
TPXPictureValidator 381 
TRangeValidator 383 
TStringLookup Validator 422 
TValidator 437 

error messages 
displaying 305 
maximum number of 

characters 46 
error strings 46 
ErrorCode data member 

TXAuto 661 
TXObjComp 662 

errors, default handing 303 
Escape member function 

TPrintDC 359 
EV CHILD NOTIFY macro 36 
EV =CHILD=NOTIFY_ALL 

_CODES macro 36 

EV _CHILD_NOTIFY_AND 
CODE macro 36 

EV COMMAND macro 36 
EV=COMMAND_AND_ID 

macro 36 
EV _COMMAND_ENABLE 

macro 36 
EV MESSAGE macro 36, 321 
EV =NOTIFY_AT_CHILD 

macro 36 
EV _OC_APPBORDERSPACE­

REQ macro 321 
EV _OC_APPBORDERSPACE­

SET macro 321 
EV_OC_APPFRAMERECT 

macro 321 
EV _OC_APPINSMENUS 

macro 321, 323 
EV OC APPMENUS macro 321 
EV=OC~PRESTOREUI 

macro 321 
EV _OC_APPROCESSMSG 

macro 321 
EV _OC_APPSHUTDOWN 

macro 321 
EV _OC_APPSTATUSTEXT 

macro 321 
EV OC VIEWATTACH­

WINOOW macro 326 
EV _OC_ VIEWCLOSE 

macro 326 
EV _OC_ VIEWINSMENUS 

macro 326 
EV _OC_ VIEWLOADP ART 

macro 326 
EV _OC_ VIEWOPENDOC 

macro 326 
EV _OC_ VIEWSA VEP ART 

macro 326 
EV _OWLDOCUMENT 

macro 36 
EV OWLNOTIFY macro 36 
EV-OWL VIEW macro 36 
EV - REGISTERED macro 36 
EV-WM ACTIVATEAPP 

m""iicro 321, 323 
EV WM SIZE macro 321 
Ev Activcrle member function 

TOcApp 603 
TOcView 646 

Ev ActivateApp member 
function 

TOleFrame 318 
TOleMDIFrame 322 

EvCanClose member function 
TDocManager 179 

Index 753 



EvChangeCBChain member 
function 

TClipboardViewer 98 
EvChar member function 

TEdit 200 
EvChildlnvalid member function 

TWindow 464 
EvClose member function 

TCommonDialog 114 
TDialog 165 
TOcRem View 638 
TOcView 647 

EvClose message 165 
EvCommand member function 

TDecoratedFrame 161 
TFrameWindow 226 
TOleWindow 333 
1PrinterAbortDlg 372 
TTinyCaption 428 
TWindow 465 

EvCommandEnable member 
function 

TDecoratedFrame 161 
TFrameWindow 226 
TOleWindow 333 
TWindow 465 

EvCompareltem member 
function 

TControl 118 
EvCtlColor member function 

TDialog 165 
EvCtlColor message 166 
EvDeleteltem member function 

TControl 118 
EvDestroy member function 

TClipboardViewer 98 
EvDoVerb member function 

TOleWindow 334 
EvDrawClipboard member 

function 
TClipboardViewer 98 

EvDrawltem member function 
TControl 119 

event handlers 447, 565 
event handling 31, 36 

finding events 209 
response table entries 208 

event IDs 504 
event messages 

ObjectComponents 565 
EvEnterldle member function 

TDecoratedFrame 161 
eventhan.h 21 
events 

non-client 424 
views 183 

EvEraseBkgnd data member 
TGauge 245 

EvEraseBkgnd member function 
TFrameWindow 226 ' 
TSlider 401 ~ 

EvFindMsg member function 
TEditSearch 205 

EvGetDlgCode member function 
TButton 73 
TCheckBox 85 
TEdit 200 
TListView 275 
TSlider 401 

EvHScroll member function 
TScrollBar 392 

EvlnitDialog member function 
TDialog 166 

EvlnitMenuPopup member 
function 

TFrameWindow 226 
Ev Key Down member function 

TEdit 200 
TSlider 401 

EvKillFocus member function 
TEdit 200 
TSlider 401 

EvLButtonDblClk member 
function 

TOleWindow 334 
TSlider 402 

EvLButtonDown member 
function 

TGadgetWindow 241 
TOleWindow 334 
TSlider 402 

EvLButtonUp member function 
TGadgetWindow 241 
TSlider 402 
TTinyCaption 428 

EvMDIActivate member 
function 

TMDIChild 280 
TOleWindow 334 

EvMDICreate member function 
TMDIClient 284 

EvMDIDestroy member function 
TMDIClient 284 

EvMeasureltem member 
function 

TControl 119 
EvMenuSelect member function 

TDecoratedFrame 161 
EvMouseMove member function 

TGadgetWindow 241 
TOleWindow 334 
TSlider 402 
TTinyCaption 428 

754 ObjectWindows Reference Guide 

EvNCActivate member function 
TMDIChild 280 
TTiny(:aption 428 

EvNCCalcSize member function 
TTinyCaption 428 

EvNCDestroy member function 
TEditView 207 
TFmdReplaceDialog 217 

EvNCHitTest member function 
TTinyCaption 428 · 

EvNCLButtonDown member 
function 

TTinyCaption 429 
EvOcApp member function 

TOleFrame 320 
EvOcAppBorderSpaceReq 

member function 
TOleFrame 318 

EvOcAppBorderSpaceSet 
member function 

TOleFrame 318 
EvOcAppDialogHelp member 

function 
TOleFrame 319 

EvOcAppFrameRect member 
function 

TOleFrame 319 
EvOcApplnsMenus member 

function 
TOleFrame 319 
TOleMDIFrame 322 

EvOcAppProcessMsg member 
function 

TOleFrame 319 
EvOcAppRestoreUI member 

function 
TOleFrame 319 

EvOcAppShutdown member 
function 

TOleFrame 319 
EvOcAppStatusText member 

function 
TOleFrame 319 

EvOcEvent member function 
TOleFrame 319 
TOleWindow 334 

EvOcPartlnvalid member 
function 

TOleWindow 335 
EvOcView Attach Window 

member function 
TOleViewclass 325 
TOleWindow 335 

EvOcViewBorderSpaceReq 
member function 

TOleWindow 335 



EvOcViewBorderSpaceSet 
member function 

TOleWindow 335 
EvOcViewClipData member 

function 
TOleWindow 335 

EvOcViewClose member 
function 

TOleView class 325 
TOleWindow 335 

EvOcViewDrag member 
function 

TOleWindow 335 
EvOcViewDrop member 

function 
TOleWindow 336 

EvOcViewGetPalette member 
function 

TOleWindow 336 
EvOcViewGetScale member 

function 
TOleWindow 336 

EvOcViewGetSiteRect member 
function 

TOleWindow 336 
EvOcViewlnsMenus member 

function 
TOleView class 325 
TOleWindow 336 

EvOcViewLoadPart member 
function 

TOleView class 325 
TOleWindow 336 

EvOcViewOpenDoc member 
function 

TOleView class 325 
TOleWindow 336 

EvOcViewPaint member 
function 

TOleWindow 337 
EvOcViewPartlnvalid member 

function 
TOle View class 325 
TOleWindow 337 

EvOcViewPartSize member 
function 

TOleWindow 337 
EvOcViewSavePart member 

function 
TOle View class 325 
TOleWindow 337 

EvOcViewScroll member 
function 

TOleWindow 337 

EvOcViewSetScale member 
function 

TOleWindow 337 
EvOcViewSetSiteRect member 

function 
TOleWindow 338 

EvOcViewShowTools member 
function 

TOleWindow 338 
EvOcViewTitle member function 

TOleWindow 338 
Ev Paint member function 

TControl 119 
TDialog 166 
TFrameWindow 226 
TSlider 402 
TTinyCaption 429 

EvParentNotify member 
function 

TFrameWindow 227 
EvPreProcessMenu member 

function 
TDocManager 179 

EvQueryDraglcon member 
function 

TFrameWindow 227 
EvRButtonDown member 

function 
TOleWindow 338 

EvRButtonUp member function 
TOleWindow 334 

EvResize member function 
TOcApp 603 
TOcView 647 

EvSetCursormemberfunction 
TOleWindow 338 

EvSetFocus member function 
TFrameWindow 227 
TOcApp 603 
TOcView 647 
TOleWindow 339 
TSlider 402 

EvSetFont member function 
TDialog 166 . 

EvSetRGBColor member 
function 

TChooseColorDialog 87 
EvSize member function 

TDecoratedFrame 161 
TFrameWindow 227 
TGadgetWindow 241 
TLayoutWindow 264 
TOleFrame 320 
TOleWindow 339 
TPreviewPage 355 
TSlider 402 
TStatic 412 

EvSyscolorChange member 
function 

TGadgetWindow 241 
EvSysCommand member 

function 
TTinyCaption 429 
TWindow 465 

EvTimer member function 
TOleFrame 320 

EvVbxDispatch member 
function 

TVbxEventHandler 451 
EvVScroll member function 

TScrollBar 392 
EvWakeUp member function 

TDocManager 179 
except.h 21 
exception bit flags 56 
exception classes 

ObjectComponents 523 
TXAuto 660 
TXObjComp 661 
TXOle 662 
TXRegistry 664 

exception handler 
precautions 305 

exception handling 
TStatus 412 
TWindow 456 

exception objects 
copying 

TXBase class 700 
TXCompatibility class 500 
TXGdi class 250 
TXInvalidMain Window 

class 63 
TXInvalidModule 

class 310 
TXMenu class 501 
TXOutOfMemory 

class 501 
TXOwl class 504 
TXWindow class 499 

throwing 
TXBase class 700 
TXCompatibility class 500 
TXGdi class 250 
TXInvalidMain Window 

class 63 
TXInvalidModule 

class 310 
TXMenu class 501 
TXOutOfMemory 

class 502 
TXOwl class 504 
TXWindow class 500 

exception status enum 56 

Index 755 



exceptions 250 
error strings 46 
message constants 43 
TXBase class 699 
TXCOMP A TIBILITY 304 
TXCompatibility class 500 
TXInvalidMain Window 62 
TXInvalidModule 307 
TXInvalidModule class 310 
TXInvalidWindow class 63 
TXOutOfMemory class 501 
TXOwl class 502 
TXPrinter class 372 
TXV alidator class 440 
TXWindow class 499 
using catch keyword 502 
using try keyword 502 

exception-unsafe c9de 479 
ExcludeClipRect member 

function 
TDC 127 

ExcludeUpdateRgn member 
function 

TDC 128 
ExecDialog member function 

TModule 305 
ExecPrintDialog member 

function 
TPrinter 371 

Execute member function 
TAutoCommand 575 
TDialog 166 

executing object verbs 627 
_export keyword 49, 50 
EXPOSE_APPLICATION 

macro 556 
EXPOSE_DELEGATE 

macros 556 
EXPOSE_INHERIT macros 557 
EXPOSE_ITERATOR 

macros 557 
EXPOSE_ME1HOD macros 558 
EXPOSE_PROPxxxx macros 559 
EXPOSE_QUITmacro 560 
ExStyle data member 

TWindow Attr 495 
extension registration key 560 
Extent data member 

TMetaFilePict 303 
TOcView 650 

ExtFloodFill member function 
TDC 128 

ExtractGroups member function 
TMenuDesc 298 

ExtTextOut member function 
TDC 128 

F 
factory object creation 39 
factory template classes 36 
factory template hierarchy 37 
Fail member function 

TAutoCommand 575 
F ARPROC() operator 

TProclnstance 690 
_fastthis keyword 50 
FHdl data member 

TFileDocument 213 
file buffers 210 
file constants 40 
file errors 213 
file formats, registering 561 
file handles 213 
file matching patterns 180 
filenames 

drag and drop 685 
filter, copying 346 
returning expanded 306, 310 

File Open common dialog box 
default directories 554 
default file-name 

extensions 560 
listing files 554 

FileData data member 
TEditFile 202 

filedoc.h 21 
filefmt registration key 561 
FileName data member 

TEditFile 202 
TOpenSaveDialog::TData 345 

file-name extensions 
registering 560 

files 
attributes 343 
compound 

loading and saving 609 
control IDs 40 
ID constants 43 
.INI 379 
initialization 379 
listing 554 
managing 201,213,214 
opening 213,342 

document modes 48 
profile 379 
returning information on 43 
saving 214,342 
sharing modes 51 
viewing 210 

FillPath member function 
TDC 129 

FillRect member function 
TDC 129 

756 ObjectWindows Reference Guide 

FillRgn member function 
TDC 129 

Filter data member 
TOpenSaveDialog::TData 345 

filter validators 215 
-Filterlndex data member 

TOpenSaveDialog::TData 345 
Find member function 

TApplication 58 
TEventHandler 209 
TOcFormatList 615 
TOcNameList 625 
TOcPartCollection 632 
TSortedStringArray 409 

find-and-replace attributes 216, 
217 

FindChildMenu member 
function 

TMDIFrame 285 
FindColor member function 

TDib 171 
FindDocument member function 

TDocManager 180 · 
FindExactString member 

function 
TListBox 266 

Findlndex member function 
TDib 171 

FindProperty member function 
TDocument 185 
TFileDocument 212 
TStorageDocument 418 
TView 452 

findrepl.h 21 
FindResource member function 

TModule 305 
FindString member function 

TComboBox 103 
TListBox 266 

FindWhat data member 
TFindReplaceDialog::TData 

219 
FirstBand data member 

TPrinter 370 
FirstGadget member function 

TGadgetWindow 237 
FirstThat member function 

TSortedStringArray 409 
TWindow 466 

FirstThat typedef 114 
flags 496 

automation data types 540 
automation servers 541 
automation symbol flags 546 
changing 605,655,657 
dialog boxes 88 
document view option 554 



files 345 
interface objects setting 483 
objects 

aspect 536 
verbs 570 

OLE running modes 607 
setting and clearing 69 
testing 577, 604 

Flags data member 
TChooseColorDialog::TData 

88 
TChooseFontDialog::TData 

90 
TFindReplaceDialog::TData 

219 
TOpenSaveDialog::TData 345 
TPrintDialog::TData 365 
TPrinter 371 

Flags member function 
TColor 100 

Flash Window member function 
TWindow 466 

FlattenPath member function 
TDC 129 

float far*() operator 
TAutoVal 596 

float types 580 
float() operator 

TAutoVal 596 
floatfra.h 21 
FloodFill member function 

TDC 129 
Flush member function 

TSortedStringArray 409 
FlushDoc member function 

TDocManager 180 
focus, shifting 118, 119 
Font data member 

TGadgetWindow 240 
FONTENUMPROC 126 
fonts 

caption bars 425 
changing 166 
creating point size 234 
for gadget windows 234 
system 258 

FontType data member 
TChooseFontDialog::TData 

91 
ForceAllBands data member 

TPrintout 375 
ForEach member function 

TSortedStringArray 409 
TWindow 466 

FormatLines member function 
TEdit 194 

FormatList data member 
TOcView 650 

formatn registration key 561 
formats 567 

file, registering 561 
registering 568, 569 

ForwardEvent member function 
TOcApp 606, 607 
TOcView 649 

ForwardMessage member 
function 

TWindow 467 
fr data member 

TFindReplaceDialog 217 
Frame data member 

TTinyCaption 426 
FrameRect member function 

TDC 130 
FrameRgn member function 

TDC 130 
framewin.h 21 
Free member function 

TOleAllocator 653 
friend functions 

TResld class 697 
FromPage data member 

TPrintDialog::TData 366 
functions 

G 

dispatch 513-518 
message dispatcher 52 
transfer 432 

gadget data member 
TButtonGadgetEnabler 80 

gadget placement 353 
gadget settings 

hint mode 236 
tiling 424 

gadget.h 21 
GadgetChangedSize member 

function 
TGadgetWindow 237 

GadgetFromPoint member 
function 

TGadgetWindow 237 
GadgetReleaseCapture member 

function 
TGadgetWindow 237 

gadgets 12, 228 
border locations 229 
border styles 229 
creating separators 398 
margins 230 
setting attributes 236 
TGadgetWindow objects 236 

Gadgets data member 
TGadgetWindow 240 

GadgetSetCapture member 
function 

TGadgetWindow 237 
gadgetwi.h 21 
gauge controls 243 
gauge.h 21 
GDI classes 245 
GDI message constants 44 
GDI objects 14 
gdibase.h 21 
gdiobjec.h 21 
geometry.h 21 
GetActiveMDIChild member 

function 
TMDIClient 282 

GetActivePart member function 
TOcView 647, 650 

GetActiveView member function 
TOcDocument 610 

GetActiveWindow member 
function 

TWindow 467 
GetAppDescriptor member 

function 
TOcRegistrar 636 

GetApplication member function 
TAppDictionary class 54 
TDocManager 180 
TWindow 467 

GetApplicationObject member 
function 

TApplication 40 
GetAspectRatioFilter member 

function 
TDC 130 

GetAttributeHDC data member 
TPrintPreviewDC 379 

GetAttributeHDC member 
function 

TDC 159 
GetBitmapBits member function 

TBitmap 66 
GetBitmapDimension member 

function 
TBitmap 66 

GetBits member function 
TDib 171 

GetBkColor member function 
TDC 130 
TSlider 402 

GetBkMode member function 
TDC 130 

GetBorders member function 
TGadget 230 

Ind ex 757 



GetBorderStyle member function 
TGadget 230 

GetBoundingRect member 
function 

TUIHandle 435 
GetBounds member function 

TGadget 230 
GetBoundsRect member 

function 
TDC 130 

GetBrushOrg member function 
TDC 131 

GetBWCCModule member 
function 

TApplication 59 
GetCaptionRect member 

function 
TTinyCaption 429 

GetCapture member function 
TWindow 467 

GetCaretBlinkTime member 
function 

TWindow 467 
GetCaretlndex member function 

TListBox 266 
GetCaretPos member function 

TWindow 467 
GetCharABCWidths member 

function 
TDC 131 

GetCharWidth member function 
TDC 131 

GetCheck member function 
TCheckBox 84 

GetChildLayoutMetrics member 
function 

TLayoutWindow 263 
GetClasslnfo member function 

TModule 306 
GetClassLong member function 

TWindow 468 
GetClassName member function 

TButton 74 
TCheckBox 85 
TComboBox 106 
TDialog 167 
TEdit 200 
TGroupBox 251 
TListBox 270 
TMDIClient 284 
TRadioButton 383 
TScrollBar 394 
TStatic 412 
TVbxControl 446 
TWindow 491 

GetClassW ord member function 
TWindow 468 

GetClientHandle member 
function 

TModule 306 
GetClientRect member function 

TWindow 468 
GetClientWindow member 

function 
TFrameWindow 223 
TMDIFrame 286 

GetClipboard member function 
TClipboard 94 

GetClipboardData member 
function 

TClipboard 94 
GetClipboardFormatName 

member function 
TClipboard 94 

GetClipboardOwner member 
function 

TClipboard 94 
GetClipboardViewer member 

function 
TClipboard 94 

GetClipBox member function 
TDC 131 

GetClipRgn member function 
TDC 131 

GetColor member function 
TDib 171 

GetColors member function 
TDib 171 

GetCommandTarget member 
function 

TFrameWindow 223 
TMDIFrame 286 

GetContainerTitle member 
function 

TOcRem View 638 
GetCount member function 

TComboBox 103 
TListBox 266 

GetCtl3dModule member 
function 

TApplication 59 
GetCurrentDoc member function 

TDocManager 180 
GetCurrentObject member 

function 
TDC 132 

GetCurrentPosition member . 
function 

TDC 132 
GetCursorid member function 

TUIHandle 435 
GetCursorPos member function 

TWindow 468 

758 ObjectWindows Reference Guide 

GetDataType member function 
TAutoVal 596 

GetDCOrg member function 
TDC 132 

GetDefaultExt member function 
TDocTemplate 680 

GetDefaultid member function 
TDialog 166 

GetDefaultPrinter member 
function 

TPrintDialog 368 
TPrinter 371 

GetDescription member function 
TDocTemplate 680 

GetDesiredSize member function 
TBitmapGadget 69 
TButtonGadget 78 
TControlGadget 116 
TGadget 230 
TGadgetWindow 241 
TMessageBar 300 
TTextGadget 423 
TToolBox 431 

GetDesktop Window member 
function 

TWindow 469 
GetDeviceCaps member 

function 
TDC 132 
TPrintPreviewDC 376 

GetDeviceName member 
function 

TPrintDialog::TData 367 
GetDevMode member function 

TPrintDialog::TData 367 
GetDevNames member function 

TPrintDialog::TData 367 
GetDialoglnfo member function 

TPrintout 374 
GetDIBits member function 

TDC 132 
GetDirection member function 

TGadgetWindow 237, 239 
GetDirectory member function 

TDocTemplate 680 
GetDlgCtrlID member function 

TWindow 469 
GetDlgitem member function 

TWindow 469 
GetDlgitemlnt member function 

TWindow 469 
GetDlgltemText member 

function 
TWindow 469 

GetDocManager member 
function 

TApplication 59 



TDocTemplate 681 
TDocument 185 

GetDocPath member function 
TDocument 185 

GetDocument member function 
TStream 420 
TView 452 

GetDriverName member 
function 

TPrintDialog::TData 367 
GetDroppedControlRect 

member function 
TComboBox 103 

GetDroppedState member 
function 

TComboBox 103 
GetEditSel member function 

TComboBox 103 
GetEnabled member function 

TGadget 231 
GetErrorCode member function 

TXOwl 504 
GetEventindex member function 

TVbxControl 442 
GetEventName member 

function 
TVbxControl 442 

GetExtendedUI member 
function 

TComboBox 103 
GetFactory member function 

TOcRegistrar 636 
GetFileFilter member function 

TDocTemplate 681 
GetFileTitle member function 

TOpenSaveDialog 342 
GetFileTitleLen member function 

TOpenSaveDialog 342 
GetFirstChild member function 

TWindow 469 
GetFirstVisibleLine member 

function 
TEdit 194 

GetFlags member function 
TDocTemplate 681 

GetFocus member function 
TWindow 469 

GetFont member function 
TGadgetWindow 237 

GetFontData member function 
TDC 133 

GetFontHeight member function 
TGadgetWindow 237, 240 

GetGlyphDib member function 
TButtonGadget 78 

GetGlyphOutline member 
function 

TDC 133 
GetGroupCount member 

function 
TMenuDescr 297 

GetHandle member function 
TEdit 194 
TMenu 289 
TMenuDescr 296 

GetHandled member function 
TCommandEnabler 112 

GetHCTL member function 
TVbxControl 442 

GetHDC member function 
TDC 159 

GetHintMode member function 
TGadgetWindow 237 

GetHorizontalExtent member 
function 

TListBox 266 
GetHWndState member function 

TWindow 469 
Getlconlnfo member function 

TCursor 121 
Treon 255 

Getld member function 
TGadget 231 
TMenuDescr 297 
TOcFormatName 617 
TWindow 469 

Getlndex member function 
TDib 171 

Getlndices member function 
TDib 171 

Getlnfo member function 
TDib 172 

GetinfoHeader member function 
TDib 172 

GetinitialRect member function 
TOcRem View 638 

GetinnerRect member function 
TControlGadget 116 
TGadget 233 
TGadgetWindow 241 
TMessageBar 300 

GetinsertPosition member 
function 

TOleWindow 339 
Getlnstance member function 

TModule 306 
GetinstanceData member 

function 
TModule 306 

Getlnt member function 
Profile class 380 

GetitemData member function 
TComboBox 104 
TListBox 266 

GetitemDatas member function 
TComboBoxData 107 
TListBoxData 271 

GetitemHandle member 
function 

TDialog, obsolete 166 
GetitemHeight member function 

TComboBox 104 
TListBox 266 

GetitemRect member function 
TListBox 266 

GetitemsinContainer member 
function 

TSortedStringArray 409 
GetKerningPairs member 

function 
TDC 133 

GetLastActivePopup member 
function 

TWindow 470 
GetLastChild member function 

TWindow 470 
GetLine member function 

TEdit 194 
GetLineFromPos member 

function 
TEdit 195 

GetLinelndex member function 
TEdit 195 

GetLineLength member function 
TEdit 195 

GetLogPerUnit member function 
TOleWindow 339 

GetMain Window member 
function 

TApplication 59 
GetMapMode member function 

TDC 133 
GetMargins member function 

TGadget 231 
TGadgetWindow 242 

GetMaxBoxRect member 
function 

TTinyCaption 429 
GetMenu member function 

TMenultemEnabler 299 
TWindow 470 

GetMenuCheckMark-
Dimensions member function 

TMenu 290 
GetMenuDescr member function 

TFrameWindow 224 

Index 759 



GetMenuitemCount member 
function 

TMenu 290 
GetMenuitemlD member 

function 
TMenu 290 

GetMenuState member function 
TMenu 290 

GetMenuString member 
function 

TMenu 290 
GetMetaFileBits member 

function 
TMetaFilePict 302 

GetMetaFileBitsEx member 
function 

TMetaFilePict 302 
GetMinBoxRect member 

function 
TTinyCaption 429 

GetModeindicator member 
function 

TStatusBar 414 
GetModule member function 

TDocTemplate 681 
TMenuDescr 297 
TWindow 470 

GetModuleFileName member 
function 

TModule 306, 310 
GetModuleUsage member 

function 
TModule 307 

GetName member function 
TModule 307 
TOcApp 603 
TOcDocument 610 
TOcFormatName 617 
TOcPart 628 

GetNameLen member function 
TOcPart 628 

GetNameList member function 
TOcApp 603 

GetNearestColor member 
function 

TDC 134 
GetNearestPaletteindex member 

function 
TPalette 348 

GetNewStorage member 
function 

TOleDocument 312 
GetNextDlgGroupitem member 

function 
TWindow 470 

GetNextDlgTabltem member 
function 

TWindow 470 
GetNextTemplate member 

function 
TDocManager 180 
TDocTemplate 681 

GetNextViewid member 
function 

1View 452 
GetNextWindow member 

function 
TWindow 470 

GetNumEntries member 
function 

TPalette 349 
GetNumEvents member 

function 
1VbxControl 442 

GetNumLines member function 
TEdit 195 

GetNumProps member function 
1VbxControl 442 

GetObject member function 
TBitmap 67 
TBrush 72 
TFont 222 
TGdiObject 246 
TPalette 349 
TPen 352 

GetOcApp member function 
TOleDocument 312 
TOleFrame 317 
TOleWindow 328 

GetOcDoc member function 
TOleDocument 312 
TOleWindow 328 

GetOcDocument member 
function 

TOcView 647 
GetOcRem View member 

function 
TOleWindow 328 

GetOcView member function 
TOleWindow 328 

GetOpenClipboardWindow 
member function 

TClipboard 95 
GetOpenModemember function 

TDocument 185 
TStream 420 

GetOptions member function 
TRegistrar 655 

GetOrigin member function 
TOcView 647 

GetOuter member function 
TUnknown 658 

760 0 bj e ctWi n d ows Reference Guide 

GetOuterSizes member function 
TGadget 231 

GetOutlineTextMetrics member 
function 

TDC 134 
GetOutputName member 

function 
TPrintDialog::TData 367 

GetPaletteEntries member 
function 

TPalette 349 
GetPaletteEntry member 

function 
TPalette 349 

GetParent member function 
TWindow 471 

GetParentDoc member function 
TDocument 185 

GetParentObject member 
function 

TModule 307 
GetParts member function 

TOcDocument 611 
GetPasswordChar member 

function 
TEdit 195 

GetPixel member function 
TDC 135 

GetPolyFillMode member 
function 

TDC 135 
GetPos member function 

TOcPart 628 
GetPosition member function 

TMenultemEnabler 299 
TScrollBarData 392 
TSlider 400 

GetPriorityClipboardFormat 
member function 

TClipboard 95 
GetProcAddress member 

function 
TModule 307 

GetProp member function 
1VbxControl 442 
TWindow 471 

GetProperty member function 
TDocument 185 
TFileDocument 212 
TStorageDocument 418 
1View 452 

GetPropindex member function 
1VbxControl 443 

GetPropName member function 
1VbxControl 444 



GetPropType member function 
TVbxControl 444 

GetRange member function 
TGauge 243 
TScrollBar 392 
TSlider 400 

GetRect member function 
TEdit 195 
TOcPart 628 

GetRefCount member function 
TUnknown 659 

GetRegistrar member function 
TOcApp 604 
TOcModule 623 

GetRegList member function 
TDocTemplate 681 

GetRem View Bucket member 
function 

TOleFrame 317 
GetResultName member 

function 
TOcFormatName 617 

GetRgnBox member function 
TRegion 385 

GetROP2 member function 
TDC 135 

GetScale member function 
TOcScaleFactor 642 

GetScaleFactor member function 
TOcScaleFactor 642 

GetScrollPos member function 
TWindow 471 

GetScrollRange member function 
TWindow 471 

GetSel member function 
TListBox 267 

GetSelCount member function 
TComboBoxData 107 
TListBox 267 

GetSelection member function 
TComboBoxData 107 
TEdit 195 

GetSelindex member function 
TComboBox 104 
TComboBoxData 107 
TListBox 267 

GetSelindexes member function 
TListBox 267 

GetSelindices member function 
TListBoxData 271 

GetSelString member function 
TComboBoxData 107 
TListBox 267 
TListBoxData 271 

GetSelStringLength member 
function 

TComboBoxData 107 
TListBoxData 271 

GetSelStrings member function 
TListBox 267 

GetServerName member 
function 

TOcPart 628 
GetSetup member function 

TPrinter 369 
GetSize member function 

TOcPart 628 
GetState member function 

TCheckBox 84 
GetStorage member function 

TOcDocument 611 
TStorageDocument 418 

GetStreamName member 
function 

TStream 421 
GetStretchBltMode member 

function 
TDC 135 

GetString member function 
TComboBox 104 
TListBox 267 
TListBoxData 272 
TProfile class 380 

GetStringLen member function 
TComboBox 104 
TListBox 267 

GetStrings member function 
TComboBoxData 107 

GetSubMenu member function 
TMenu 291 

GetSubText member function 
TEdit 196 

GetSymbol member function 
TAutoCommand 575 
TAutolterator 581 

GetSysBoxRect member function 
TTinyCaption 429 

GetSysModalWindow member 
function 

TWindow 471 
GetSystemLangid member 

function 
TLocaleString 277 

GetSystemMenu member 
function 

TWindow 471 
GetSystemPaletteEntries 

member function 
TDC 135 

GetSystemPaletteUse member 
function 

TDC 135 
GetTabbedTextExtent member 

function 
TDC 135 

GetTemplate member function 
TDocument 185 

GetText member function 
TComboBox 104 
TStatic 411 
TTextGadget 423 

GetTextAlign member function 
TDC 136 

GetTextCharacterExtra member 
function 

TDC 137 
GetTextColor member function 

TDC 137 
GetTextExtent member function 

TDC 137 
GetTextFace member function 

TDC 137 
GetTextLen member function 

TComboBox 104 
TStatic 411 

GetTextMetrics member function 
TDC 138 

GetThunk member function 
TWindow 471 

GetTitle member function 
TDocument 185 
TPrintout 374, 375 

GetTopindex member function 
TListBox 268 

GetTopWindow member 
function 

TWindow 472 
GetType member function 

TAutoType 594 
GetUpdateRect member function 

TWindow 472 
GetUpdateRgn member function 

TWindow 472 
GetUserAbort member function 

TPrinter 370 
GetUserLangid member 

function 
TLocaleString 277 

GetValue member function 
TGauge 243 

GetVBXProperty member 
function 

TVbxControl 446 
GetViewld member function 

TView 453 

Ind ex 761 



GetViewMenu member function 
TView 453 

GetViewName member function 
TDocTemplate 681 
TDocTemplateTD,V 685 
TEditView 206 
TListView 273 
TOleView class 324 
TView 453 
TWindowView 498 

GetViewportExt member 
function 

TDC 138 
GetViewportOrg member 

function 
TDC 138 

GetWindow member function 
TEditView 207 
TListView 273 
TOleView class 324 
TView 453 
TWindow 472 
TWindowView 498 

GetWindowClass member 
function 

TDialog 167 
TWindow 491 

GetWindowExt member 
function 

TDC 138 
GetWindowFont member 

function 
TWindow 472 

GetWindowLong member 
function 

TWindow 472 
GetWindowOrg member 

function 
TDC 138 

GetWindowPlacement member 
function 

TWindow 473 
GetWindowPtr member function 

TApplication 59 
TWindow 40, 470 

GetWindowRect member 
function 

TOcView 647 
TWindow 473 

GetWindowTask member 
function 

TWindow 473 
GetWindowText member 

function 
TWindow 473 

GetWindowTextLength 
member function 

TWindow 473 
Ge.tWindowTextTitle member 

function 
TWindow 474 

GetWindowWord member 
function 

TWindow 474 
GetWinMainParams member 

function 
TApplication 59 

GetWordBreakProc member 
function 

TEdit 196 
global enumerations 

TWindowFlag 496 
global functions 40 

accessing 546 
ObjectComponents 523 
pointers, returning 564 
typecasting 555 

globally unique IDs 
acquiring 548 
debugging version, 

servers 549 
GL YPHMETRlCS struct 722 
GOBJENUMPROC constant 127 
Graphics Device Interface 

classes 245 
graphics objects 14 
grapples, resizing 432 
Gray data member 

TColor 99 
GrayString member function 

TDC 138 
GRA YSTRlNGPROC 

constant 139 
Green member function 

TColor 100 
group boxes 

creating 250 
notification 252 
radio buttons and 382 
selection, changing 252 

Group data member 
TCheckBox 83 

groupbox.h 21 
GroupCount data member 

TMenuDescr 298 
GUIDGEN utility 548 
GUIDs 

acquiring 548 
debugging version, 

servers 549 

762 0 bj ectWi n d ows R efe re nee Guide 

H 
H data member 

TDib 174 
TWindow Attr 496 

hAccel data member 
TWindow 490 

HAccTable data member 
TApplication 55 

Handle data member 
TDC 158 
TGdiObject 248 
TMenu 292 
TOcinitinfo 620 

HANDLE() operator 
TDib 172 

Handled data member 
TCommandEnabler 112 

HandleGlobalException 305 
HandleMessage member 

function 
TWindow 474 

handler registration key 561 
handles 

brushes 72 
dialog boxes 166 
retrieving 194, 197,471 

Clipboard-viewer 94 
returning 

accelerator tables 307 
client windows 306 
DLLs 309 
parent windows 307 
resources 308 
Windows applications 309 

HANDLETABLE struct 722 
handling exceptions 479 
handling input focus 222 
Has member function 

TBitSet 70 
HasActivePart member function 

TOleWindow 328 
HasFocus member function 

TDocument 186 
HasHScrollBar data member 

TScroller 395 
HasMember member function 

TSortedStringArray 409 
HasOption member function 

TValidator 437 
HasPage member function 

TPrintout 374 
HasVScrollBar data member 

TScroller 395 
Hatch11F1[8] data member 

THatch8x8Brush 252 



Hatch13B1[8] data member 
THatch8x8Brush 252 

Hatch13F1[8] data member 
THatch8x8Brush 253 

Hatch22B1[8] data member 
THatch8x8Brush 253 

Hatch22F1[8] data member 
THatch8x8Brush 253 

hatched borders 432 
HBITMAP() operator 

TBitmap 67, 68 
HBottomTB data member 

TOcToolBarinfo 
structure 643 

HBRUSH() operator 
TBrush 72 

HCursor data member 
TWindow 490 

HCURSOR() operator 
TCursor 122 

HDC() operator 
TDC 139 

HDROP() operator 
TDropinfo 686 

header files 
ObjectComponents 522 
ObjectWindows 19 

height, rectangles 698 
Height data member 

TLayoutMetrics 259 
Height member function 

TBitmap 67 
TDib 172 
TMetaFilePict 302 
TRect 692 

Help buttons 
events, responding to 565, 

608 
Help files, registering 562, 665 
helpdir registration key 562 
HFILE_ERROR 211 
HFONT() operator 

TFont 222 
HFrame data member 

TOcToolBarinfo 
structure 643 

HGDIOBJ() operator 
TGdiObject 248 

Hlcon data member 
TOcinitinfo 619 

HICON() operator 
Tlcon 255 

HideCaret member function 
TWindow 474 

HideList member function 
TComboBox 104 

hierarchy diagrams 7 
Highlightline data member 

TMessageBar 300 
High Value data member 

TScrollBarData struct 394 
HiliteMenuitem member 

function 
TWindow 474 

Hinstance data member 
TModule 310 

HINSTANCE() operator 
TModule 309 

hint modes 236 
hinttext 300 
HintMode data member 

TGadgetWindow 240 
HintText data member 

TMessageBar 300 
HitTest member function 

THSlider 406 
TSlider 402 
TUIHandle 435 
TVSlider 407 

HLeftTB data member 
TOcToolBarinfo 

structure 643 
HMenu data member 

TMenultemEnablers 298 
TOcMenuDescr structure 622 

HMENU() operator 
TMenu 291 

HMET AFILE() operator 
TMetaFilePict 302 

HoldFocusHwnd member 
function 

TFrameWindow 224 
TWindow 475 

HoldMenu data member 
TOleFrame 320 

hooks for automation 543 
creating record of 545 
defined 539 
error handling 546 
executing 527 
preventing 544 
reversing commands 548 
verifying arguments 548 

horizontal scroll bars 391 
horizontal sliders 405 
How data member 

TOcinitinfo 619 
HP ALETTE() operator 

TPalette 349 
HPEN() operator 

TPen 352 
HPrevinstance data member 

TApplication 55 

HR_ABORT constant 562 
HR_FAIL constant 562 
HR_FALSE constant 563 
HR_HANDLE constant 563 
HR_INV ALIDARG constant 563 
HR_NOERROR constant 563 
HR_NOINTERFACE 

constant 563 
HR_NOTIMPL constant 563 
HR_OK constant 563 
HR_OUTOFMEMORY 

constant 563 
HR_POINTER constant 563 
HRESUL T result codes 562 
HRGN() operator 

TRegion 387 
HRightTB data member 

TOcToolBarinfo 
structure 643 

HScroll member function 
TScroller 397 

HTopTB data member 
TOcToolBarinfo 

structure 643 
_huge keyword 49, 50 
HWindow data member 

TWindow 456 
HWND() operator 

TWindow 475 
HWndNext data member 

TClipboardViewer 97 
HWndReceiver data member 

TCommandEnabler 112 
HWndRestoreFocus data 

member 
TFrameWindow 225 

i_LP ARAM_Dispatch 
function 514 

i_U_W_U_Dispatch 
function 515 

i_ WP ARAM_Dispatch 
function 515 

I32_Dispatch function 515 
132_LP ARAM_Dispatch 

function 515 
I32_MenuChar_Dispatch 

function 515 
132_U_Dispatch function 515 
132 WPARAM LPARAM 

_Dispatch fun~tion 515 
_!CLASS macro 535 
icon aspect 608 
icon index registration key 563 

Ind ex 763 



ICONINFO struct 722 IDS_ CLASSREGISTERF AIL IDS_NOMEMORYFORVIEW 
icons 537 constant 43 constant 42 

arranging 281 IDS_DOCCHANGED IDS: _ _NOTCHANGED 
described 3 constant 42 constant 42 
loading into memory 308 IDS_DOCLISTconstant 42 IDS_OKTORESUME 
registering 563 IDS_DOCMANAGERFILE constant 43 

Id data member constant 42 IDS_OUTOFMEMORY 
TCommandEnabler 111 IDS_DUPLICATEDOC constant 43 
TEventHandler::TEventlnfo constant 42 IDS_OWLEXCEPTION 

210 IDS_EDITCONVERT constant 43 
TGadget 232 constant 42 IDS_PRINTERERROR 
TMenuDescr 297 IDS_EDITOBJECT constant 42 constant 43 
TResponseTableEntry 388 IDS_EXITSERVER constant 42 IDS_PRNCANCEL constant 44 
TWindow Attr 495 IDS_FILECHANGED IDS_PRNERRORCAPTION 

ID _DEVICE constant 41 constant 43 constant 44 
ID_INPUT constant 40 IDS_FILEFILTER constant 43 IDS_PRNERRORTEMPLATE 
ID _PAGE constant 41 IDS_GDIALLOCFAIL constant 44 
ID_PORT constant 41 constant 44 IDS_PRNGENERROR 
ID_PROMPT constant 40 IDS_GDICREATEFAIL constant 44 
ID_TITLE constant 41 constant 44 IDS_PRNMGRABORT 
IDA_EDITFILE constant 41 IDS_ GDIDELETEFAIL constant 44 
IDA_OLEVIEW constant 41 constant 44 IDS_PRNON constant 44 
IDCANCEL constant 164 IDS_GDIDESTROYFAIL IDS_PRNOUTOFDISK 
IDD _ABORTDIALOG constant 44 constant 44 

constant 41 IDS_GDIFAILURE constant 44, IDS_PRNOUTOFMEMORY 
IDD _INPUTDIALOG 250 constant 44 

constant 40 IDS_GDIFILEREADFAIL IDS_READERROR constant 42 
IDI_APPLICATION 225 constant 44 IDS_UNABLECLOSE 
IDl_ASTERISK 225 IDS_GDIRESLOADFAIL constant 42 
IDI_EXCLAMATION 225 constant 44 IDS_UNABLEOPEN 
IDI_HAND 225 IDS_INV ALIDCHILDWINDOW constant 42 
IDI_QUESTION 225 constant 43 IDS_UNABLEREAD 
!Dispatch&() operator IDS_INV ALIDCLIENT- constant 43 

TAutoProxy 588 WINDOW constant 43 IDS_UNABLEWRITE TAutoVal 596 
!Dispatch*() operator IDS_INV ALIDDIBHANDLE constant 43 

TAutoProxy 588 constant 44 IDS_UNHANDLEDXMSG 

TAutoVal 596 IDS_INV ALIDMAINWINDOW constant 43 

IdleAction member function constant 43 IDS_UNKNOWNERROR 

TApplication 62 IDS_INV ALIDMODULE constant 43 

TFrameWindow 224 constant 43 IDS_UNKNOWNEXCEPTION 

TGadgetWindow 238 IDS_INV ALIDWINDOW constant 43 
TStatusBar 415 constant 43 IDS_ UNTITLED constant 42 
TWindow 475 IDS_LAYOUTBADRELWIN IDS_ UNTITLEDFILE 

IDM_EDITFILE constant 41 constant 43 constant 43 
IDM_OLEPOPUP constant 41 IDS_LA YOUTCOMPLETE IDS_ VALIDATORSYNTAX 
IDM_OLEVIEW constant 41 constant 43 constant 43 
IDOK constant 165 IDS_LISTVIEW constant 44 IDS_ V ALINV ALIDCHAR 
IDs IDS_MENUFAILURE constant 44 

interface objects 469 constant 43 IDS_ V ALNOTINLIS constant 45 
retrieving default 166 IDS_MODES constant 42 IDS_ V ALNOTINRANGE 

IDS_CHILDCREATEFAIL IDS_MODESOFF constant 42 constant 45 
constant 43 IDS_NOAPP constant 43 IDS_ V ALPXPCONFORM 

IDS_CHILDREGISTERFAIL IDS_NODOCMANAGER constant 44 
constant 43 constant 42 IDS_ VIEWLIST constant 42 

764 0 bj e ctWi nd ows R efe re n ce Guide 



IDS_ WINDOWCREATEFAIL 
constant 43 

IDS_ WINDOWEXECUTEFAIL 
constant 43 

IDW _FIRSTMDICHILD 
constant 281 

IDW _MDICLIENT constant 45, 
281 

IDW _MDIFIRSTCHILD 
constant 45 

_IFUNC macro 535 
ILockBytes interface 418 
_import keyword 49, 50 
Index member function 

TColor 101 
indexes, list position 265, 266, 

267,268,269 
indicators, status bar 413, 415 

borders 415 
spacing 414,415,416 

Inflate member function 
TRect 692 

InflatedBy member function 
TRect 692 

Info data member 
TDib 174 

InfoFromHandle member 
function 

TDib 175 
inheritance diagrams 25 
.INI files 379 
Init member function 

TAutoiterator 582 
TDC 159 
TFindReplaceDialog 218 
TFrameWindow 227 
TOleWindow 339 
TOpenSaveDialog 344 
TWindow 493 

InitApplication member function 
TApplication 62 

InitChild member function 
TMDIClient 282 

InitDoc member function 
TDocManager 180 
TDocTemplate 681 
TDocument 186 
TOleDocument 313 

InitialDir data member 
TOpenSaveDialog::TData 346 

initialization 
animated objects 582 
dialog boxes 164, 166 
instance 55 

initialization files 379 

Initlnfo data member 
TOcDragDrop structure 613 

Initlnstance member function 
TApplication 62 

InitMain Window member 
function 

TApplication 62 
InitModule member function 

TModule 307 
InitView member function 

TDocTemplate 681 
in-place editing 

merging menus 621 
showing tool bars 642 

input dialog windows 255 
input fields 215 

defining character sets 215 
invalid entries 215, 278, 421, 

438,439 
input focus 222 
inputdia.h 21 
Insert member function 

TDecoratedFrame 160 
TDocument::List 190 
TEdit 196 
TGadgetWindow 238 
TStatusBar 414 
TToolBox 431 

insertable registration key 563 
Inserted member function 

TControlGadget 117 
TGadget 233 

inserting an object 618 
inserting OLE objects 601 
InsertMenu member function 

TMenu 291 
InsertString member function 

TComboBox 105 
TListBox 268 

instance initialization 55 
InstanceCount data member 

TXBase 700 
InStream member function 

TDocument 186 
TFileDocument 212 
TStorageDocument 418 

int far*() operator 
TAutoVal 596, 597 

int member function 
TOcPartCollectioniter 634 

int typedef 408 
int() operator 

TAutoString 593 
TAutoVal 597 
TOcFormatListiter 616 
TOcPartCollectioniter 634 
TStatus 412 

integers, testing for range 383 
interface elements 

autocreation 
disabling 463 
enabling 464 

controls 117 
destroying 463 
dialog boxes 165 

interface objects 
child windows 459 
closing, conditional 458 
data, transferring 463, 488 
flags, setting 483 
group boxes 250 
IDs 469 
list boxes 264 
registration class name 491 
scrolling 491 
setting up 161, 227, 493 
showing 487 
static text 410 
status 412, 456 
transfer mechanism 

disabling 463 
enabling 464 

window objects 491 
international 

language, setting 599 
registration strings, 

localizing 564 
IntersectClipRect member 

function 
TDC 139 

invalid characters 
checking for 215, 422, 437 

numeric values 383 
picture formats 381 

Invalidate member function 
TButtonGadget 78 
TControlGadget 117 
TGadget 233 
TOcRem View 638 
TTextGadget 424 
TWindow 475 

InvalidatePart member function 
TOcView 648 
TOleWindow 339 

InvalidateRect member function 
TControlGadget 117 
TGadget 233 
TWindow 475 

InvalidateRgn member function 
TWindow 475 

invalidating buttons 78 
InvertRect member function 

TDC 139 

Index 765 



lnvertRgn member function 
TDC 140 

Invoke member function 
TAutoCommand 575 
TAutoProxy 589 

IsActive member function 
TOcPart 628 

IsArrayProp member function 
TVbxControl 444 

IsAutoMode member function 
TScroller 397 

IsBound member function 
TAutoProxy 588 

IsChild member function 
TWindow 476 

IsClipboardFormatAvailable 
member function 

TClipboard 95 
IsCore data member 

TDib 175 
IsCurrentDefPB data member 

TButton 73 
IsDefPB data member 

TButton 73 
IsDirty member function 

TDocument 186 
IsDlgButtonChecked member 

function 
TWindow 476 

IsEmbedded member function 
TDocument 186 

IsEmpty member function 
TBitSet 70 
TOcFormatList 615 
TOcNameList 625 
TOcPartCollection 632 
TRect 693 
TSortedStringArray 409 

IsFlagSet member function 
TDocManager 180 
TDocTemplate 681 
TWindow 476 

IsFull member function 
TSortedStringArray 410 

IsHorizontal data member 
TGauge 244 

Islconic member function 
TWindow 476 

IsLoaded member function 
TModule 307 

IsModal data member 
TDialog 164 

IsModified member function 
TEdit 196 

IsMyKindOfDoc member 
function 

TDocTemplate 682 
TDocTemplateTD,V 684 

IsMyKindONiew member 
function 

TDocTemplateTD,V 685 
IsMyKindoNiew member 

function 
TDocTemplate 682 

IsNativelangld member function 
TLocaleString 277 

IsNull member function 
TRect 693 

IsOK member function 
TDib 172 
TMenu 291 
TView 453 

IsOpen data member 
TClipboard 96 

IsOpen member function 
TDocument 186 
TFileDocument 212 
TStorageDocument 418 

IsOpenEditing member function 
TOcRem View 639 

IsOptionSet member function 
TOcApp 604 
TOcModule 623 
TRegistrar 655 

IsPM member function 
TDib 172 

IsPressed data member 
TTinyCaption 426 

IsPropSet member function 
TAutoCommand 575 

IsReceiver member function 
TCommandEnabler 112 

IsRef member function 
TAutoVal 597 

IsResHandle data member 
TDib 175 

IsSelected member function 
TOcPart 629 

IsStatic member function 
TDocTemplate 682 

IsString member function 
TResid 697 

Is Valid member function 
TEdit 196 
TFilterValidator 215 
TLookup Validator 278 
TPXPictureValidator 381 
TRange Validator 383 
TV alidator 438 

IsValidlnput member function 
TFilterValidator 215 

766 0 bj ectW ind ows Relere n ce Guide 

TPXPictureValidator 381 
TV alidator 438 

Is Visible member function 
TDocTemplate 682 
TOcPart 629 

Is VisibleRect member function 
TScroller 397 

IsWindow member function 
TWindow 476 

IsWindowEnabled member 
function 

TWindow 476 
Is Window Visible member 

function 
TWindow 476 

IsZoomed member function 
TOcScaleFactor 642 
TWindow 476 

ItemDatas data member 
TComboBoxData 108 
TListBoxData 270 

Iterate member function 
TAppDictionary class 55 

iteration 
automation servers 543, 557 
objects 581 

iterator member functions 
child windows 466 

!Unknown&() operator 
TAutoVal 597 
TUnknown 659 

!Unknown() operator 
TAutoiterator 582 

!Unknown*() operator 
TAutoVal 597 
TUnknown 659 

K 
KERNINGP AIR struct 723 
Key data member 

TXRegistry 665 
keyboard navigation 

TMDI frame 285 
KeyboardHandling data 

member 
TFrameWindow 223 

KillTimer member function 
TWindow 476 

L 
Langid data member 

TAutoStack 592 
language registration key 564 
LastThat member function 

TSortedStringArray 410 



layout constraints, creating 
windows 256, 258 

Layout member function 
TLayoutWindow 264 

layout metrics 46 
layout units 258 
layoutco.h 21 . 
LayoutSession member function 

TGadgetWindow 238 
TToolBox 431 

LayoutUnitsToPixels member 
function 

TGadgetWindow 242 
layoutwi.h 21 
LBN DBLCLK constant 45 
LBN - ERRSP ACE constant 45 
LBN - KlLLFOCUS constant 45 
LBN - SELCANCEL constant 46 
LBN - SELCHANGE constant 46 
LBN - SETFOCUS constant 46 
LBS NOTIFY constant 265 
LBS - SORT constant 265 
LButtonDown member function 

TButtonGadget 78 
TGadget 233 

LButtonUp member function 
TButtonGadget 78 
TGadget 233 

LedSpacing data member 
TGauge 244 

LedThick data member 
TGauge 244 

LeftOf member function 
TEdgeConstraint 191 

libraries 
dynamic link 17 
ObjectComponents 521 
OLE applications 561 
registering Help files 562, 665 
summary 16 . 
version number, returrung 50 
version, registering 666 

linefeeds 194 
LineMagnitude data member 

TScrollBar 391 
LineTo member function 

TDC 140 
Link data member 

TOcView 650 
linking ObjectComponents 

classes 530 
linking ObjectComponents 

enums 532 
linking ObjectComponents 

messages 532 

linking ObjectComponents 
structs 532 

links, modifying 646 
list boxes 119, 270 

clearing 265 
creating 264 
entries 

adding 265 
deleting 265 
getting 267 
initializing 271 
inserting 268 
length of 267 
number of 266, 267 
selecting 267, 269 
transferring 270 

message constants 45 
registration class name 270 
strings, adding to 270 
strings, transferring 270 
transfer structures 270 

List nested class 
TDocument 189-190 

list view ID constants 44 
listbox.h 21 
lists, documents 189 
listview.h 22 
LmParent constant 46 
Load member function 

TOcPart 629 
TOcRem View 639 

LoadAccelerators member 
function 

TModule 307 
LoadAcceleratorTable member 

function 
TWindow 493 

LoadBitmap member function 
TModule 307 

LoadBOle member function 
TOcRegistrar 637 

LoadCursor member function 
TModule 308 

LoadData member function 
TEditView 207 
TListView 275 

LoadFile member function 
TDib 175 

Loadlcon member function 
TModule 308 

loading objects 566, 629, 639 
compound documents 611 

LoadMenu member function 
TModule 308 

LoadParts member function 
TOcDocument 611 

LoadResource member function 
TDib 175 
TModule 308 

LoadString member function 
TModule 308 

locale.h 22 
locales 

IDs 599 
overriding 564 

registration strings 564 
localizing string resources 276 
Locate member function 

TOcPartCollection 633 
Lock member function 

TPrintDialog::TData 367 
LockBuffer member function 

TEdit 196 
LockWindowUpdate member 

function 
TWindow 477 

LOGBRUSH struct 723 
LogFont data me~ber 

TChooseFontD1alog::TData 
91 

LOGFONT struct 725 
logical points 310 
LOGP ALETTE struct 727 
LOGPEN struct 728 
long far*() operator 

TAutoVal 597 
long types 583 
long() operator 

TAutoVal 597 
Lookup member function 

TAutoProxy 588 
TLookupValidator 279 
TStringLookup Validator 422 

lookup validators 278 
string 421 

LookupError member function 
TAutoCommand 575 

LowerBound member function 
TSortedStringArray 410 

Low Memory member function 
TModule 308 

LowValue data member 
TScrollBarData struct 395 

LParam parameter 
control messages 167 

lpCmdLine data member 
TModule 304 

LPtoDP member function 
TDC 140 

LPtoSDP member function 
TPrintPreviewDC 376 

Index 767 



LtBlue data member 
TColor 99 

LtCyan data member 
TColor 99 

LtGray data member 
TColor 99 

LtGreen data member 
TColor 99 

LtMagenta data member 
TColor 100 

LtRed data member 
TColor 100 

LtYellow data member 
TColor 100 

M 
MACROGEN utility 538 
macros 

automation controllers 528, 
538,544 

automation servers 525, 526, 
547, 556, 571 

accessing data 
members 539 

accessing member 
functions 542,546 

accessing properties 545, 
559,560 

bit flags 541 
combining unrelated 

classes 556, 557 
defining automatable 

members 551,552,555, 
573 

destroying objects 540 
enumerated types 541 
exposing members 558 
hooks 543,545,548 

defined 539 
error handling 546 
executing 527 
preventing 544 

iteration 543, 557 
class modifier 539 
creating COM objects 551 
declaration specifiers 535 
event handling 31, 36 
GDI objects 248-249 
response tables 32, 35 

Magnitude member function 
TSize 698 

main window 284 
closing 57, 459, 460 
creating 55, 62 
naming 62 
nCmdShow display 56 
status 304 

Main Window variable 62 
Make Window member function 

TModule 308 
Mapenum 169 
MapColor member function 

TDib 172 
Map Index member function 

TDib 172 
MappingMode member function 

TMetaFilePict 302 
MapStatusCodeToString 

member function 
TXCompatibility 500 

MapUIColors member function 
TDib 173 

MapWindowPoints member 
function 

TWindow 477 
Margin constant 258 
Margin data member 

TGauge 244 
margins for gadgets 239 
Margins data member 

TGadget 232 
TGadgetWindow 240 

MaskBlt member function 
TDC 140 

MatchTemplate member 
function 

TDocManager 180 
mathematical classes 

overview 15, 671 
matrix 

toolbox arrangement 430 
Max data member 

TGauge 244 
TRange Validator 384 
TSlider 404 

MAX_RSRC_ERROR_STRlNG 
constant 46 

maximum values 
checking for 384 

MaxPage data member 
TPrintDialog::TData 366 

MaxWidth data member 
TListView 273 

MB_ABORTRETRYlGNORE 
constant 46 

MB_APPLMODAL constant 47, 
57 

MB_DEFBUTTONl constant 47 
MB_DEFBUTTON2 constant 47 
MB_DEFBUTTON3 constant 47 
MB_ICONASTERlSK 

constant 47 

768 0 bj e ctWi n d ows Reference Guide 

MB_ICONEXCLAMATION 
constant 46 

MB_ICONHAND constant 46, 
47 

MB_ICONINFORMATION 
constant 47 

MB_ICONQUESTION 
constant 46 

MB_ICONSTOP constant 47 
MB_OK constant 46 
MB_OKCANCEL constant 46 
MB_RETRYCANCEL 

constant 46 
MB_SYSTEMMODAL 

constant 47, 57 
MB_TASKMODAL constant 47, 

57 
MB_YESNOconstant 46 
MB_YESNOCANCEL 

constant 46 
MDI child ID constant 45 
MDI client constant 45 
MDI functions, invoking 31 
mdi.h 22 
mdichild.h 22 
MDICREATESTRUCT 

struct 728 
MDIFILE.CPP 502 
Measureltem member function 

TControl 119 
TMenu 291 

MEASUREITEMSTRUCT 
struct 729 

measurement units, 
windows 286 

mediums of transfer, 
registering 568 

Mem data member 
TOleAllocator 653 

member function types 
TActionFunc 51, 466 
TActionMernFunc 51, 466 
TAnyAnyDispatcher 52 
TAnyPMF 51 
TCondFunc 114, 466 
TCondMernFunc 114, 466 

member functions 
defining 114 
event handlihg 36 
obsolete 166, 167 
pointers, generic 51 

memory 
freeing 201 
managing 303 

memory allocator, 
specifying 652 



Menu data member 
TWindow Attr 495 

menu descriptors 
deleting 223 

menu objects 288 
menu resource ID 495 
menu.h 22 
Menultemld data member 

TDecoratedFrame 161 
menuname registration key 564 
menus 13 

automated objects and 570, 
665,666 

creating 353, 422 
ID constants 41 
loading into memory 308 
merging 621 
system 422 

Merge member function 
TMenuDescr 297 

MergeMenu member function 
TFrameWindow 224 

MergeModule data member 
TFrameWindow 226 

merging menus 621 
message bars 

hint text 300 
implementation 299 

message boxes 
errors 305 

message constants 
backward compatible 43 
dialog boxes 46 
document 34 
GDI 44 
listbox 45 
TXWindow class 43 

message dispatcher 52 
message queues 606 
messageb.h 22 
MessageBox member function 

TWindow 477 
MessageLoop member function 

. TApplication 59 
MessageLoopResult data 

member 
TApplication 61 

messages 413 
See also message bars 
error See error messages 
exception constants 43 
preprocessing 160, 167 
processing 165,456,460,565 

incoming 463 
response 226 
sending to dialog boxes 167 
WM_OCEVENT 667 

metafile.h 22 
metafiles 300,301 
METARECORD struct 729 
Method member function 

TVbxControl 444 
MF _BITMAP constant 290 
MF _BYCOMMAND 

constant 289, 290 
MF _BYPOSITION constant 289, 

290 
MF_ CHECKED constant 289, 

290 
MF _DISABLED constant 290 
MF _ENABLED constant 290 
MF_ GRAYED constant 290 
MF_MENUBARBREAK 

constant 290 
MF _MENUBREAK constant 290 
MF _SEP ARA TOR constant 290 
MF _UNCHECKED 

constant 289, 290 
MFENUMPROC parameter 127 
Min data member 

TGauge 244 
TRange Validator 384 
TSlider 404 

minimum values 
checking for 384 

MinPage data member 
TPrintDialog::TData 366 

Mm data member 
TMetaFilePict 303 

modal dialog boxes 163, 164 
mode constants 42 
Mode data member 

TDib 175 
mode flags, setting 188 
mode indicators 413, 415 

borders 415 
spacing 414,415,416 

Modelndicators data member 
TStatusBar 415 

ModelndicatorState data 
member 

TStatusBar 415 
modeless dialog boxes 

creating 388 
ModifyMenu member function 

TMenu 291 
ModifyWorldTransform 

member function 
TDC 141 

module classes 13 
Module data member 

TMenuDescr 298 
TModule 304 

module.h 22 
modules 55 

DLL stand-in 303 
instance handles 309 

MostDerived function 564 
mouse objects 

button state 28 
MouseEnter member function 

TButtonGadget 78 
TGadget 233 

MouseLeave member function 
TButtonGadget 78 
TGadget 234 

MouseMove member function 
TButtonGadget 79 
TGadget 234 

MouseOffset data member 
TSlider 404 

Move member function 
TUIHandle 435 
TVbxControl 444 

MoveTo member function 
TDC 142 
TUIHandle 436 

Move Window member function 
TWindow 477 

Msg data member 
TEventHandler::TEventlnfo 

210 
TResponseTableEntry 389 

Msg member function 
TGdiObject::TXGdi 250 
TXWindow 500 

MSG struct 730 
multiple document interface 

child windows 279 
cascading 283 
closing 283 
creating 282, 283 
tiling 283 

client windows 281 
freeing 281 

icons, arranging 283 
main window 284 

multiuse servers 570, 665 
MustBeBound member function 

TAutoProxy 589 
MyEdge data member 

TLayoutConstraint 257 

N 
Name data member 

TDialog::TDialogAttr 168 
named streams 212 
names, servers, registering 564 
NBits function 47 

Index 769 



NCels data member 
TCelArray 82 

nCmdShow data member 
TApplication 56 

NColors function 47 
nested classes 

TXJnvalidModule class 310 
TXJnvalidWindow class 63 
TXMenu class 501 
TXPrinter class 372 
TXV alidator class 440 
TXWindow class 499 

New File member function 
TEditFile 203 

NewStringList member function 
TStringLookup Validator 422 

Next member function 
TDocument::List 190 
TWindow 478 

NextBand member function 
TPrintDC 362 

NextGadget member function 
TGadget 231 
TGadgetWindow 238 

NextStream data member 
TStream 421 

NextStream member function 
TDocument 186 

NextView member function 
TDocument 186 

non-client events 424 
Normalize member function 

TRect 693 
Normalized member function 

TRect 693 
NotchComers data member 

TButtonGadget 76 
notification codes 200 
NotifyCode data member 

TResponseTableEntry 389 
NotifyParent data member 

TGroupBox 251 
NotifyParent member function 

THSlider 406 
TSlider 403 
TVSlider 407 

NotifyViews member function 
TDocument 186 

NotOK member function 
TView 454 

NumCels member function 
TCelArray 81 

NumChars data member 
TTextGadget 423 

NumChildren member function 
TWindow 478 

NumClrs data member 
TDib 175 

numColors member function 
TDib 173 

NumColumns data member 
TToolBox 431 

numeric values 
checking 383,438 

· ranges, testing for 383 
setting maximum/ 

minimum 384 
NumGadgets data member 

TGadgetWindow 240 
NumModeJndicators data 

member 
TStatusBar 415 

NumRows data member 
TToolBox 431 

numScans member function 
TDib 173 

0 
OBJ_ REF _ADD macro 248 
OBJ_REF _COUNT macro 249 
OBJ_REF _DEC macro 249 
OBJ_REF _INC macro 249 
OBJ_ REF _REMOVE macro 249 
Object data member 

TEventHandler::TEventJnfo 
210 

Object member function 
TAutoEnumerator 580 

Object Support Library 16 
ObjectComponents 

applications, debugging 550 
automation classes 523, 524 

registering 572 
class modifier 539 
event messages 565 
exception classes 523 
global functions 523 
header files 522 
libraries 521 
linking and embedding 530, 

532 
registration strings, 

localizing 564 
ObjectPtr typedef 564 
objects 

collections 543, 557 
enumerating 579, 581 

connector 600 
copying 585,602 
delegating 556, 557 
dragging 602 
drawing 566 

770 0 b j e ct W i n d o w s R e f e r e n c e G u i d e 

embedded See embedded 
objects 

exposing 547 
formats, converting 602 
initializing 582 
iteration 581 
painting 566 
pasting 604 
pointers 564 
polymorphic 564 
printing 537,567 
registering 665, 666 
viewing 536 
windows 491 

OC_APPBORDERSPACEREQ 
event message 565 

OC_APPBORDERSP ACESET 
eventmessage 565 

OC_APPDIALOGHELP event 
message 565 

OC_APPFRAMERECT event 
message 565 

OC_APPINSMENUS event 
message 565 

OC_APPMENUS event 
message 565 

OC_APPPROCESSMSG event 
message 565 

OC_APPRESTOREUI event 
message 565 

OC_APPSHUTDOWN event 
message 565 

OC_APPSTATUSTEXT event 
message 565 

oc_ VIEWATTACHWINDOW 
event message 566 

OC:_ VIEWBORDERSP ACEREQ 
eventmessage 566 

oc_ VIEWBORDERSP ACESET 
eventmessage 566 

OC_ VIEWCLIPDATA event 
message 566 

OC_ VIEWCLOSE event 
message 566 

OC_ VIEWDRAG event 
message 566 

OC_ VIEWDROP event 
message 566 

OC_ VIEWGETP ALETTE event 
message 566 

OC_ VIEWGETSCALE event 
message 566 

OC_ VIEWGETSITERECT event 
message 566 

OC_ VIEWINSMENUS event 
message 566 



OC_ VIEWLOADP ART event 
message 566 

OC_ VIEWOPENDOC event 
message 566 

OC_ VIEWP AINT event 
message 566 

OC_ VIEWP ARTINV ALID 
event message 566 

OC_ VIEWP ARTSIZE event 
message 566 

OC_ VIEWSA VEP ART event 
message 566 

OC_ VIEWSCROLL event 
message 566 

OC_ VIEWSETSCALE event 
message 566 

OC_ VIEWSETSITERECT event 
message 566 

OC_ VIEWSHOWTOOLS event 
message 566 

OC_ VIEWTITLE event 
message 566 

OcApp data member 
TOcModule 624 
TOcView 650 
TOleWindow 329 

OcDoc data member 
TOleWindow 330 

OcDocument data member 
TOcView 650 

_OCFCLASSmacro 536 
_OCFDATAmacro 536 
_OCFFUNCmacro 536 
Oclnit data member 

TOcModule 623 
ocrActivateWhen Visible 

constant 569 
ocrBitmap constant 567 
ocrCanLinkByOlel constant 569 
ocrCantLinklnside constant 569 
ocrChecked constant 571 
ocrContent constant 567 
ocrDib constant 567 
ocrDif constant 567 
ocrDisabled constant 571 
ocrDocPrint constant 567 
ocreg.h 533 
ocrEmbeddedObject 

constant 567 
ocrEmbedSource constant 567 
ocrEnhMetafile constant 567 
ocrFile constant 569 
ocrFormatLimit constant 568 
ocrGOI constant 569 
ocrGet constant 568 
ocrGetSet constant 568 

ocrGrayed constant 571 
ocrHGlobal constant 569 
ocrlcon constant 567 
ocrlnsertNotReplace 

constant 569 
ocrlnsideOut constant 569 
ocrlsLinkObject constant 569 
ocrIStorage constant 569 
ocrIStream constant 569 
ocrLinkSource constant 567 
ocrLinkSrcDescriptor 

constant 568 
ocrMenuBarBreak constant 571 
ocrMenuBreak constant 571 
ocrMetafilePict constant 567 
ocrMfPict constant 569 
ocrMultipleLocal constant 570 
ocrMultipleUse constant 570 
ocrNeverDirties constant 570 
ocrNoSpecialRendering 

constant 569 
ocrObjectDescriptor 

constant 568 
ocrOemText constant 567 
ocrOnContainerMenu 

constant 570 
ocrOnlylconic constant 569 
ocrPalette constant 567 
ocrPenData constant 567 
ocrRecomposeOnResize 

constant 569 
ocrRenderinglsDevice-

Independent constant 569 
ocrRichText constant 567 
ocrRiff constant 567 
ocrSet constant 568 
ocrSingleUse constant 570 
ocrStatic constant 569 
ocrSylk constant 567 
ocrText constant 567 
ocrThumbnail constant 567 
ocrTiff constant 567 
ocrUnicodeText constant 567 
ocrVerbLimit constant 568 
ocrWave constant 567 
ocrxxxx constants 533 
OcView data member 

TOleWindow 330 
ODADrawEntire member 

function 
TControl 119 

ODAFocus member function 
TControl 119 

ODASelect member function 
TControl 119 

ofAppend constant 48 
ofAtEnd constant 48 
ofBinary constant 48 
Offs data member 

TCelArray 82 
Offset member function 

TCelArray 81 
TPoint 687 
TRect 693 

OffsetBy member function 
TPoint 687 
TRect 693 

OffsetClipRgn member function 
TDC 142 

OffsetViewportOrg member 
function 

TDC 142 
TPrintPreviewDC 376, 378 

OffsetWindowOrg member 
function 

TDC 142 
oflosMask constant 48 
ofn data member 

TOpenSaveDialog 343 
OFN_ALLOWMULTISELECT 

constant 346 
OFN_CREATEPROMPT 

constant 346 
OFN_EXTENSIONDIFFERENT 

constant 346 
OFN_FILEMUSTEXIST 

constant 345 
OFN_HIDEREADONL Y 

constant 345 
OFN_NOCHANGEDIR 

constant 346 
OFN_NOREADONL YRETURN 

constant 346 
OFN_NOTESTFILECREATE 

constant 346 
OFN_NOVALIDATE 

constant 345 
OFN_OVERWRITEPROMPT 

constant 346 
OFN_PATHMUSTEXIST 

constant 345 
OFN_SHAREAWARE 

constant 346 
OFN_SHAREFALLTHROUGH 

constant 346 
OFN_SHAREWARN 

constant 346 
OFN_SHOWHELP constant 346 
ofNoCreate constant 48 
ofNoReplace constant 48 
oiParent constant 48 

Index 771 



ofpreserve constant 48 
ofpriority constant 48 
ofRead constant 48 
ofReadWrite constant 48 
off emporary constant 48 
offransacted constant 48 
offruncate constant 48 
ofWrite constant 48 
OLE applications 522 

accessing automated 
classes 525, 526 

automation commands 528 
Clipboard formats 561 
drawing objects 561 
events 565 
exposing 556 
interface, implementing 535, 

600 
menuIDs 41 
messages, processing 565 
registering arguments 549 
running 604,606,607 
string resources 276 
version, registering 666 

OLE clients 310 
OLE functions 

modifying 535 
return codes 562 

OLE programs 
compatible constants 48 

oledoc.h 22 
olefacto.h 22 
oleframe.h 22 
OleMalloc data member 

TOcModule 624 
olemdifr.h 22 
oleview.h 22 
olewindo.h 22 
Open member function 

TDocument 187 
TEditFile 203 
1FileDocument 212 
TOcPart 629 
TOleDocument 313 
TStorageDocument 418 

OpenClipboard member 
function 

TWindow 478 
OpenHandle member function 

TStorageDocument 418 
opening documents 

path 188 
opening files 

file error 213 
opensave.h 22 
OpenThisFile member function 

1FileDocument 213 

operators, dereference 584, 585. 
operators (predefined classes) 

TAutolterator 582 
TAutoObject 584, 585 
TAutoObjectByVal 585 
TAutoObjectDelete 586 
TAutoProxy 588 
TAutoString 593 
TAutoVal 595, 597 
TBitmap 67, 68 
TBitSet 70, 71 
TBrush 72 
TCelArray 81 
TCharSet 83 
TClipboard 95 
TColor 100 
TCursor 122 
TDC 139 
TDib 170,172, 173,174 
TFont 222 
TGdiObject 248 
Tlcon 255 
TLocaleString 277 
TMenu 291,292 
TMetaFilePict 302 
TModule 309 
TOcFormatListlter 616 
TOcNameList 625 
TOcPart 626 
TOcPartCollectionlter 634 
TOcScaleFactor 641 
TPalette 349 
TPen 352 
TProclnstance 690 
TRect 694 
TRegion 386, 387 
TSortepStringArray 410 
TStatus 412 
TStatusBar 414 
TWindow 475 

OPTIONAL_ARG macro 571 
Options data member 

TV alidator 439 
OrgBitmap data member 

TMemoryDC 288 
OrgBrush data member 

TDC 158 
OrgFont data member 

TDC 158 
OrgPalette data member 

TDC 158 
OrgPen data member 

TDC 159 
OrgTextBrush data member 

TDC 159 
origin 310 

brush object 72 

772 ObjectWindows Reference Guide 

Origin data member 
TEditView 207 
TListView 274 
TOcView 651 

OtherEdge data member 
TLayoutConstraint 257 

Outer data member 
TUnknown 660 

OUTLINETEXTMETRIC 
struct 731 

OutStream member function 
TDocument 187 
1FileDocument 212 
TStorageDocument 419 

owlall.h 22 
_ OWLCLASS macro 18, 49 
OWLCMD.CPP 424 
owlcore.h 22 
_OWLDATA macro 18, 49 
owldefs.h 22 
_OWLDLL macro 49 
_OWLFAR macro 50 
_OWLFARVTABLE macro 19, 

50 
_OWLFASTTHIS macro 50 
OWLFastWindowFrame 

member function · 
TDC 143 

_OWLFUNC macro 50 
OWLGetVersion member 

function 50 
owlpch.h 22 
Owner data member 

TAutolterator 583 
TAutoStack 592 

p 
P data member 

TAutoObject 585 
PageMagnitude data member 

TScrollBar 391 
PageSize data member 

TPrinter 371 
TPrintout 375 

pagination 374 
page ranges 374 

Paint data member 
TOcViewPaint structure 652 

Paint member function 
TBitmapGadget 69 
TButtonGadget 79 
TGadget 234 
TGadgetWindow 242 
T<'.;auge 245 
TOleWindow 339 
TPreviewPage 355 



TTextGadget 424 
TUIHandle 436 
TWindow 478 

PAINT.CPP 220 
PaintBorder member function 

TGadget 234 
TGauge 245 

PaintButton member function 
TTinyCaption 429 

PaintCaption member function 
TTinyCaption 429 

PaintCloseBox member function 
TTinyCaption 430 

PaintGadgets member function 
TGadgetWindow 242 
TMessageBar 300 

painting 
controls 79 
horizontal rulers 406 
objects 627, 638, 648, 651 

eventmessages 566 
slots 406 
windows 226 

PaintMaxBox member function 
TTinyCaption 430 

PaintMetafile member function 
TOleWindow 328 

PaintMinBox member function 
TTinyCaption 430 

PaintParts member function 
TOleWindow 339 

PaintRgn member function 
TDC 143 

PaintRuler member function 
THSlider 406 
TSlider 403 
TVSlider 407 

PaintSlot member function 
THSlider 406 
TSlider 403 
TVSlider 407 

P AINTSTRUCT struct 738 
PaintSysBox member function 

TTinyCaption 430 
PaintThumb member function 

TSlider 403 
PaintToPos member function 

THSlider 406 
P ALETTEENTRY struct 738 
Pa!Index member function 

TColor 101 
PalRelative member function 

TColor 101 
Param data member 

TDialog::TDialogAttr 168 
TWindowAttr 495 

parameters 
automated methods 574 

Parent data member 
TWindow 456 

parent windows 456 
handles, returning 307 

PartSize member function 
TOcScaleFactor 641 

passwords 195, 197 
Paste member function 

TEdit 196 
TOcApp 604 
TOcView 648 

pasting objects 604, 618, 646, 648 
PatBlt member function 

TDC 143 
Path data member 

TOclnitinfo 619 
path registration key 571 
PathChanged member function 

TOleDocument 313 
paths, document 188 
PathToRegion member function 

TDC 143 
patterns, border 432 
pd data member 

TPrintDialog 368 
pens 351 
Percent constant 258 
PercentOf member function 

TEdgeConstraint 191 
TEdgeOrSizeConstraint 192 

PerformCreate member function 
TEditView 207 
TMDIChild 280 
TMDIFrame 286 
TVbxControl 446 
TWindow 478 

PerformDlglnit member function 
TDialog 167 

permid registration key 572 
pfConstant constant 48 
pfGetBinary constant 48 
pfGetText constant 48 
pfHidden constant 49 
pfSettable constant 48 
pfUnknown constant 48 
pfUserDef constant 49 
Pie data member 

TPXPictureValidator 382 
Picture member function 

TPXPictureValidator 381 
picture strings 

checking 380 
valid characters 381 

picture validators 380 

Pie member function 
TDC 143 

placing gadgets 353 
Planes member function 

TBitmap 67 
PlayMetaFile member function 

TDC 144 
PlayMetaFileRecord member 

function 
TDC 144 

PlayOnto member function 
TMetaFilePict 302 

PlgBlt member function 
TDC 144 

Pmf data member 
TResponseTableEntry 389 

-po compiler option 50 
pointers 

far data 50 
member functions 51, 389 

message dispatchers 513 
returning 564 
transfer buffers 106 
typecasting 555,584 
void 564 

PointSize data member 
TChooseFontDialog::TData 

91 
PointToPos member function 

TSlider 403 
TVSlider 407 

PolyBezier member function 
TDC 145 

PolyBezierTo member function 
TDC 145 

PolyDraw member function 
TDC 145 

Polygon member function 
TDC 146 

Polyline member function 
TDC 146 

Polyline To member function 
TDC 146 

polymorphic objects 564 
Poly Polygon member function 

TDC 146 
PolyPolyline member function 

TDC 147 
pop-up menus 353 
Pos data member 

TOcDragDrop 613 
TOcViewPaint 652 
TOleWindow 330 
TSlider 404 

position 
carets, returning 195, 197 

Index 773 



character, edit control 192, 
195 

combo boxes 
relative to origin 102 

current 197, 487 
coordinates 391 
list box 265, 266 
moving 393 
text selection 195, 267, 268, 

269 
edit controls 

tab stops in 197 
relative to origin 118, 193, 

251,265,382 
scroll bar, thumb 391 

range 392 
setting 392,393 
tracking 393 

specified by variables 194, 
197 

Position data member 
TMenuitemEnablers 298 
TScrollBarData struct 395 

PositionGadget member function 
TControlBar 116 
TGadgetWindow 242 
TStatusBar 416 

PostDispatchAction member 
function 

TApplication 59 
PostDocError member function 

TDocManager 181 
PostError member function 

TDocument 187 
PostEvent member function 

TDocManager 181 
PostMessage member function 

TWindow 478 
PosToPoint member function 

THSlider 406 
TSlider 403 
TVSlider 408 

prComplete constant 381 
PreOpen member function 

TOleDocument 313 
PreProcessMenu member 

function 
TApplication 60 

PreProcessMsg member function 
TControlBar 116 
TDecoratedFrame 160 
TDialog 167 
TFrameWindow 224 
TMDIChild 280 
TMDIClient 282 
TStatusBar 416 
TWindow 478 

prError constant 381 
Pressed data member 

TButtonGadget 77 
preview.h 22 
previewing data 375 
previewing pages 354 
Previous member function 

TWindow 479 
prlncomplete constant 353, 381 
Print member function 

TPrinter 370 
print preview classes 354, 375 
print setup dialog boxes 

controls, initializing 368 
creating 368 

PrintDC data member 
TPreviewPage 355 

printdia.h 22 
printer banding flags 375 
printer constants 41 
printer string ID constants 44 
printer.h 22 
printers 356, 369 

changing 369 
configuring 367, 370 
default 

returning 368,369 
updating 371 

device 
changing 371 
clearing 369 

errors, reporting 370 
IDs 41 
settings, initializing 368 
status, determining 44 

PrintExtent data member 
TPreviewPage 355 

printing 367, 373 
device handle 375 
discontinuing 370, 372 
errors, reporting 370 
events, responding to 369 
jobs, labeling 372 
multiple pages 374 
objects 537, 567 
selected pages 374 
specifications 

copying 368 
initializing 368 
page size 375 

Printout data member 
TPreviewPage 355 

printouts, banding 374, 375 
PrintPage member function 

TPrintout 374 
PmDC data member 

TPrintPreviewDC 379 

774 ObjectWindows Reference Guide 

PrnFont data member 
TPrintPreviewDC 379 

ProcessAppMsg member 
function 

TApplication 60 
ProcessCmdLine member 

function 
TRegistrar 656 

procinstance 690 
profile files 379 
progid registration key 572 
programs, current state 413, 415 
prompt data member 

TlnputDialog 255 
properties 

automation servers and 545, 
559,560 

documents 183, 188 
views 183 

property attributes, constants 48 
Property enum 184, 452 
property indexes 212 
property lists, retrieving 

handles 471 
PropertyCount member function 

TDocument 187 
TStorageDocument 419 
TView 453 

PropertyFlags member function 
TDocument 187 
TFileDocument 212 
TStorageDocument 419 
TView 453 

PropertyName member function 
TDocument 187 
TFileDocument 213 
TStorageDocument 419 
TView 453 

protected constructors 
TCreatedDC 120 

protected data members 
TApplication class 61 
TButton class 73 
TButtonGadget 76 
TButtonGadgetEnabler 

class 80 
TCelArray class 82 
TChooseFontDialog class 89 
TClipboard class 96 
TClipboardViewer class 97 
TColor class 101 
TComboBoxData class 108 
TCommandEnabler class 112 
TCommonDialog class 113 
TControlGadget class 116 
TDC class 158 
TDecoratedFrame class 161 



TDib class 17 4 
TDocument class 189 
TEdit class 198 
TEditViewdass 207 
TFileDocument class 213 
TFilterValidator class 215 
TFindReplaceDialog 

class 217 
TFrameWindow class 225 
TGadget class 232 
TGadgetWindow class 239 
TGauge class 244 
TGdiObject class 248 
TLayoutWindow class 264 
TListView class 273 
TMemoryDC class 287 
TMenu class 292 
TMenuDescr class 297 
TMenuitemEnabler class 298 
TMessageBar class 300 
TMetaFilePict class 303 
TModule class 309 
TOpenSaveDialog class 343 
TPreviewPage class 355 
TPrintDC class 363 
TPrintDialog class 368 
TPrinter class 370 
TPrintout class 375 
TPrintPreviewDC class 379 
TPXPicture Validator 

class 382 
TRangeValidator class 384 
TSlider class 404 
TStatusBar class 415 
TStream class 421 
TStringLookup Validator 

class 422 
TTextGadget class 423 
TTinyCaption class 425 
TToolBox class 431 
TValidator class 439 
TView class 454 
TWindowDC class 497 

protected member functions 
TApplication class 62 
TBitmap class 68 
TBitmapGadget class 69 
TButtonGadget 77 
TCheckBox class 85 
TChooseColorDialog class 87 
TChooseFontDialog class 89, 

324 
TClipboardViewer class 97 
TComboBox class 106 
TCommonDialog class 113 
TControl class 118 
TControlBar class 116 
TControlGadget class 116 

TDC class 159 
TDecoratedFrame class 161 
TDecoratedMDIFrame 

class 162 
TDialog class 167 
TDib class 175 
TDocManager class 181 
TDocument class 189 
TEdit class 198 
TEditFile class 203 
TEditView class 207 
TEventHandler class 209 
TFileDocument class 213 
TFindDialog class 216 
TFindReplaceDialog · 

class 217 
TFloatingFrame class 220 
TFrameWindow class 226 
TGadget class 233 
TGadgetWindow class 241 
TGauge class 245 
TGdiObject class 248 
THSlider class 406 
TlnputDialog class 256 
TLayoutWindow class 264 
TListBox class 270 
TListView class 27 4 
TMDIChild class 280 
TMDIClient class 283 
TMDIFrame class 286 
TMenu class 292 
TMenuDescr class 298 
TMessageBar class 300 
TOleWindow class 330 
TOpenSaveDialog class 343 
TPalette class 350 
TPreviewPage class 355 
TPrintDialog class 369 
TPrinter class 371 
TPrinterAbortDlg class 372 
TPrintPreviewDC class 379 
TRadioButton class 383 
TReplaceDialog class 388 
TScrollBar class 394 
TSlider class 401 
TStatic class 412 
TStatusBar class 415 
TTextGadget class 423 
TTinyCaption class 426 
TToolBox class 432 
TVbxControl class 446 
TView class 454 
TVSlider class 407 

protection flags 188 
Ps data member 

TPaintDC 347 
Ptln member function 

TGadget 234 

PtVisible member function 
TDC 147 

public data members 
TApplication class 55 
TButton class 72 
TCheckBox class 83 
TChooseColorDialog class 86 
TChooseColorDialog 

class::TData 87 
TClipboard class 93 
TColor class 99 
TComboBox class 102 
TComrnandEnabler class 111 
TDialog class 164 
TDocManager class 177 
TDocument class 183 
TEditFile class 202 
TEditSearch class 204 
TEventHandler class 209 
TEventHandler::TEventlnfo 

class 210 
TFindReplaceDialog::TData 

class 218 
TFrameWindow class 223 
TGadget class 229 
TGroupBox class 251 
TlnputDialog class 255 
TLayoutConstraint struct 257 
TLayoutMetrics class 259 
TListBoxData struct 270 
TListView class 272 
TMDIClient class 281 
TModule class 304 
TOleWindow class 329 
TPrintDialog::TData 364 
TResponseTableEntry 

class 388 
TScrollBar class 391 
TScrollBarData struct 394 
TScroller class 395 
TStatic class 410 
TStatus class 412 
TView class 452 
TWindow Attr struct 495 

public member functions 
TApplication class 57 
TBitmap class 66 
TBitmapGadget class 69 
TBitSet class 69, 70 
TButtonGadget 75 
TButtonGadgetEnabler 

class 80 
TCelArray class 81 
TCheckBox class 84 
TChooseColorDialog class 86 
TChooseFontDialog class 324 
TClipboard class 93 
TColor class 100 

Index 775 



TComboBox class 102 
TComboBoxData class 107 
TCommandEnabler class 111 
TCommonDialog class 113 
TControlBar class 115 
TCursor class 121 
TDC class 123 
TDecoratedFrame class 160 
TDialog class 164 
TDib class 170 
TDocManager class 177 
TDocTemplate class 679 
TDocTemplateTD,V class 684 
TDocument class 184 
TDocument::List class 190 
TDropinfo class 685 
TEdgeConstraint struct 190 
TEdit class 193 
TEditFile class 202 
TEditSearch class 205 
TEditView class 206 
TFileDocument class 211 
TFileOpenDialog class 214 
TFileSaveDialog class 214 
TFilterValidator class 215 
TFindReplaceDialog 

class 217 
TFloatingFrame class 220 
TFont class 222 
TFrameWindow class 223 
TGadget class 230 
TGadgetWindow class 236 
TGauge class 243 
TGdiObject class 246 
TGroupBox class 251 
Treon class 255 
TinputDialog class 256 
TLayoutWindow class 263 
TListBox class 265 
TListBoxData struct 271 
TListView class 273 
TLocaleString 277 
TLookupValidator class 278 
TMDIChlld class 279 
TMDIClient class 281 
TMDIFrame class 285 
TMemoryDC class 287 
TMenu class 288 
TMenuDescr class 296 
TMenultemEnabler class 299 
TMessageBar class 299 
TMetaFilePict class 302 
TModule class 304 
TOleWindow class 327 
TOpenSaveDialog class 342 
TPalette class 348 
TPen class 352 
TPoint class 687 

TPointer<> class 689 
TPopupMenu class 353 
TPreviewPage class 355 
TPrintDC class 356 
TPrintDialog class 368 
TPrintDialog::TData 

struct 366 
TPrinter class 369 
TPrintout class 373 
TPrintPreviewDC class 376 
TPXPicture Validator 

class 380 
TRangeValidator class 383 
TRectclass 

691 
TRegion class 385 
TResid class 697 
TScrollBar class 392 
TScroller class 396 
TSeparatorGadget class 399 
TSize class 698 
TSlider class 400 
TStatic class 411 
TStatusBar class 414 
TStream class 420 
TStringLookup Validator 

class 421 
TTextGadget class 423 
TToolBox class 431 
TUIHandle class 435 
TV alidator class 437 
TVbxControl class 442 
TView class 452 
TWindowView class 498 

public structures 
TGadget class 229 

PumpWaitingMessages member 
function 

TApplication 60 
pushbuttons 72, 73 

default 73 

Q 

Query Abort member function 
TPrintDC 362 

QueryCreate member function 
TClipboard 95 

QueryEscSupport member 
function 

TPrintDC 363 
Query Link member function 

TClipboard 96 
QueryObject member function 

TUnknown 660 
QueryThrow member function 

TApplication 60 

776 0 bj ectWi n d ows Reference Guide 

QueryViews member function 
TDocument 188 

R 
radio buttons 382 

button state 28 
selection box state 28 

radiobut.h 22 
Range data member 

TSlider 404 
range validators 383 
ranges 

converting to scroll values 46 
numeric, testing for 383 

Read member function 
TDib 176 
TEditFile 203 
TOleDocument 313 

reading See loading 
RealizePalette member function 

TDC 147 
ReceiveMessage member 

function 
TWindow 479 

Reconstruct member function 
TTHatch8x8Brush 253 

Record member function 
TAutoCommand 576 

Rectangle member function 
TDC 147 

rectangles 690 
height and width 698 

RectVisible member function 
TDC 147 

Red member function 
TColor 101 

RedrawWindow member 
function 

TWindow 479 
RefAdd member function 

TGdiObject 247 
RefCount member function 

TGdiObject 247 
RefDec member function 

TGdiObject 247 
RefFind member function 

TGdiObject 247 
Reflnc member function 

TGdiObject 247 
RefRemove member function 

TGdiObject 247 
Refresh member function 

TVbxControl 444 
RefTemplate member function 

TDocManager 181 
REGDATA_macro 675 



REGDOCFLAGS macro 678 
REGFORMAT rrW.cro 676 
REGICON_ma"Cro 678 
regions 384 
Register member function 

TWindow 480 
RegisterAppClass member 

function 
TRegistrar 656 

RegisterClass member function 
TOcApp 604 

RegisterClasses member 
function 

TOcApp 604 
RegisterClipboardFormat 

member function 
TClipboard 96 

RegisterClipFormats member 
function 

TOcView 648 
RegisterHotKey member 

function 
TWindow 480 

registering Clipboard 
formats 567, 601, 603 

registering ObjectComponents 
applications 529 

registers, this parameter 50 
registrar objects 634, 653 
registration 

verifying 634 
Windows 480 

registration class names 74, 200, 
270,284 

registration classes overview 16, 
672 

registration databases 529 
registration keys 529 

automated objects 665, 666 
automation classes, 

identifying 572 
Clipboard 561 
debugging servers 549-551 
default file formats 561 
description 553 
directory 554 
directory paths 561, 571 
document filters 554 
file-name extensions 560 
globally unique 

identifiers 548 
Help files 562, 665 
icons 563 
locale IDs 564 
OLE applications 549 
server names 564 

servers 563 
concurrent usage 570, 665 

version 666 
viewing objects 536-538 

registration macros 673, 67 4, 
675,676,677,678,679 

registration tables 548 
constructing 533 
description strings 553 

REGISTRATION FORMAT 
_BUFFER_macr~ 679 

REGITEM_macro 676 
REGSTATUS_macro 677 
REGVERBOPT_macro 678 
relational databases 

validity checking 380 
Relationship data member 

TLayoutConstraint 257 
Release data member 

TOcSaveLoad structure 640 
ReleaseCapture member 

function 
TWindow 480 

ReleaseDataObject member 
function 

TOcinitinfo 620 
ReleaseDoc member function 

TOleDocument 313 
TStorageDocument 419 

ReleaseGlyphDib member 
function 

TButtonGadget 79 
ReleaseObject member function 

TOcApp 605 
TOcView 648 

RelWin data member 
TLayoutConstraint 258 

Remove member function 
TAppDictionary class 55 
TDocument::List 190 
TGadgetWindow 238 

RemoveChild member function 
TWindow 493 

RemoveChildLayoutMetrics 
member function 

TLayoutWindow 264 
Removed member function 

TControlGadget 117 
TGadget 234 

Removeltem member function 
TVbxControl 445 

RemoveMenu member function 
TMenu 292 

RemoveProp member function 
TWindow 480 

removing a property 480 

Rename member function 
TOcPart 629 
TOcRem View 639 
TOcView 648 

RenameParts member function 
TOcDocument 611 

ReOrg member function 
TPrintPreviewDC 376 

Repeat data member 
TButtonGadget 77 

ReplaceWith data member 
TFindReplaceDialog::TData 

219 
ReplaceWith member function 

TEditFile 203 
Report member function 

TAutoCommand 576 
ReportError member function 

TPrinter 370 
REQUIRED_ARG macro 573 
ReScale member function 

TPrintPreviewDC 376 
ResetDC member function 

TDC 147 
ResetSelections member function 

TComboBoxData 107 
TListBoxData 272 

Resld data member 
TButtonGadget 77 
TXOwl 503 

ResizePalette member function 
TPalette 349 

resource files 23 
resource IDs 

accelerator keys 41 
input dialog box 40 
mode constants 42 
printer 41 
retrieving default 166 
string ID constants 42 
string,convertingto 250 

ResourceidToString member 
function 

TXOwl 504 
resources 276 

callback functions and 309 
finding 304, 305 
handles, returning 308 
loading 309 

into memory 305, 308, 309 
size,returning 309 

response table entries 388 
finding entries 208 

response tables 87 
declaring 31 
defining 32,35 _ 
documentmanagerand 176 

Index 777 



Restart member function 
TOcFormatListlter 616 
TOcPartCollectioniter 634 

RestoreBitmap member function 
TMemoryDC 287 

RestoreBrush member function 
TDC 148 

RestoreDC member function 
TDC 148 

RestoreFont member function 
TDC 148 
TPrintPreviewDC 377 

RestoreMemory member 
function 

TModule 309 
RestoreMenu member function 

TFrameWindow 224 
RestoreObjects member function 

TDC 148 
TMemoryDC 287 

RestorePalette member function 
TDC 148 

RestorePen member function 
TDC 148 

RestoreTextBrush member 
function 

TDC 148 
ResumeThrow member function 

TApplication 60 
retrieving data 568 
return codes, OLE 562 
Return member function 

TAutoCommand 576 
TAutolterator 582 

returning pointers 40, 470 
Revert member function 

TDocument 188 
TFileDocument 213 
TStorageDocument 419 

Rgb member function 
TColor 101 

RGBQUAD struct 733 
RGBTRlPLE struct 733 
RightOf member function 

TEdgeConstraint 191 
root documents 188 
RootDocument member function 

TDocument 188 
RoundRect member function 

TDC 148 
RT_ACCELERATOR 

constant 306 
RT_BITMAP constant 306 
RT_ CURSOR constant 306 
RT_DIALOG constant 306 
RT_FONT constant 306 

RT_FONTDIR constant 306 
RT_ICON constant 306 
RT_MENU constant 306 
RT_RCDATA constant 306 
RT_STRING constant 306 
Run member function 

s 
TApplication 60 
TRegistrar 656 

SameAs member function 
TEdgeConstraint 191 
TEdgeOrSizeConstraint 192 

sample class entry 25 
sample programs 

caption bars 425 
data validation objects 436 
sliders 399 

Save member function 
TEditFile 202, 203 
TOcPart 630 
TOcRem View 639 

SaveAs member function 
TEditFile 202, 203 

SaveDC member function 
TDC 149 

SaveParts member function 
TOcDocument 611 

SaveToFile member function 
TOcDocument 612 

saving documents 189 
saving compound 

documents 609 
path 188 

saving objects 566, 630, 639 
compound documents 611, 

612 
SB_BOTH constant 51 
SB_BOTTOM constant 392 
SB_CTL constant 51, 471 
SB_HORIZ constant 51 
SB_HORZ constant 471 
SB_LINEUP constant 393 
SB_ VERT constant 51, 471 
SBBottom member function 

TScrollBar 392 
SBLineDown member function 

TScrollBar 392 
SBLineUp member function 

TScrollBar 393 
SBPageDown member function 

TScrollBar 393 
SBPageUp member function 

TScrollBar 393 
SBS_HORZ constant 391 

778 Objec!Windows Re1erence Guide 

SBS_ VERT constant 391 
SBThumbPosition member 

function 
TScrollBar 393 

SBThumbTrack member 
function 

TScrollBar 393 
SBTop member function 

TScrollBar 393 
Scale data member 

TOleWindow 330 
Scale ViewportExt member 

function 
TDC 149 
TPrintPreviewDC 377 

ScaleWindowExt member 
function 

TDC 149 
TPrintPreviewDC 377 

scaling windows 311, 640 
scope resolution operator 

Windows API calls 3 
screen devices 

logical point 
conversions 376, 377 

screen resolution 258 
ScreenToClient member function 

TWindow 480 
scroll bars 391, 394 

constants 51 
modes 51 
line down position 392 
range,getting 392 
sliders vs. 399 
thumb positions 391, 392, 

393,394 
transferring 394 
values, converting 46 
warning 391 

Scroll member function 
TEdit 196 

scrollba.h 22 
ScrollBy member function 

TScroller 398 
ScrollDC member function 

TDC 149 
scroller 456 
Scroller data member 

TWindow 456 
scroller.h 22 
scrolling windows 311, 642 
ScrollTo member function 

TScroller 398 
ScrollWindow member function 

TOcView 648 
TWindow 481 



ScrollWindowEx member 
function 

TWindow 481 
SDPtoLP member function 

TPrintPreviewDC 377 
Search member function 

TEdit 197 
SearchCmd data member 

TEditSearch 204 
SearchData data member 

TEditSearch 204 
SearchDialog data member 

TEditSearch 204 
SearchEntries member function 

TEventHandler 209 
searches 204 

case and 197 
list box 266 
specific strings 279, 422 

SelCount data member 
TListBoxData 270 

select and restore functions 376, 
377 

Select member function 
TComboBoxData 108 
TListBoxData 272 
TOcPart 630 
TOleWindow 340 

SelectAll member function 
TOcPartCollection 633 

SelectAnySave member function 
TDocManager 181 

SelectClipPath member function 
TDC 150 

SelectClipRgn member function 
TDC 150 

SelectDocPath member function 
TDocManager 181 

SelectDocType member function 
TDocManager 182 

SelectEmbedded member 
function 

TOleWindow 340 
Selectlmage member function 

TBitmapGadget 69 
selection 

colors 86 
data transfer 271 
number of items 270 
text 195, 197 

Selection data member 
TComboBoxData 108 

SelectionChanged member 
function 

TGroupBox 252 
SelectObject member function 

TDC 150 

TMemoryDC 287 
TPrintPreviewDC 377 

SelectSave member function 
TDocManager 181 
TDocTemplate 682 

SelectStockObject member 
function 

TDC 150 
TPrintPreviewDC 377 

SelectString member function 
TComboBoxData 108 
TListBoxData 272 

SelectViewType member 
function 

TDocManager 182 
Sellndex data member 

TComboBoxData 108 
Sellndices data member 

TListBoxData 270 
SelStrings data member 

TListBoxData 270 
SendDlgitemMessage member 

function 
TWindow 481 

SendDlgitemMsg member 
function 

TDialog, obsolete 167 
sending messages 459 
SendMessage member function 

TWindow 481 
SendNotification member 

function 
TWindow 481 

separators 399 
servers 

compound documents 
and 609 

debugging 549 
embedded object classes 637 
names, registering 564 
passing data 568 
registering 563 
single-use and multiuse 570, 

665 
Set member function 

TEdgeConstraint 191 
TRect 695 

SetAbortProc member function 
TPrintDC 363 

SetActive member function 
TOcPart 630 

SetActive View member function 
TOcDocument 612 

SetActiveWindow member 
function 

TWindow 481 

SetAntialiasEdges member 
function 

TButtonGadget 76 
SetBitmapBits member function 

TBitmap 67 
SetBitmapDimension member 

function 
TBitmap 67 

SetBkColor member function 
TDC 151 
TPrintPreviewDC 378 

SetBkgndColor member function 
TWindow 482 

SetBkMode member function 
TDC 151 

SetBorders member function 
TGadget 231 

SetBorderStyle member function 
TGadget 231 

SetBounds member function 
TBitmapGadget 69 
TButtonGadget 79 
TControlGadget 117 
TGadget 231 

SetBoundsRect member function 
TDC 151 

SetBrushOrg member function 
TDC 151 

SetButtonState member function 
TButtonGadget 76 

SetButtonType member function 
TButtonGadget 75 

SetCaption member function 
TDialog 167 
TWindow 482 

SetCapture member function 
TWindow 482 

SetCaretBlinkTime member 
function 

TWindow 482 
SetCaretindex member function 

TListBox 268 
SetCaretPos member function 

TWindow 482 
SetCelSize member function 

TCelArray 81 
SetCheck member function 

TButtonGadgetEnabler 80 
TCheckBox 84 
TCommandEnabler 112 
TMenuitemEnabler 299 

SetChildLayoutMetrics member 
function 

TLayoutWindow 264 
SetClassLong member function 

TWindow 482 

Index 779 



SetClassWord member function 
TWindow 482 

SetClientWindow member 
function 

TDecoratedFrame 161 
TFrameWindow 224 

SetClipboardData member 
function 

TClipboard 96 
SetClipboardViewer member 

function 
TClipboard 96 

SetColor member function 
TDib 173 
TGauge 243 

SetColumn Width member 
function 

TListBox 268 
SetCommandHook member 

function 
TAutoCommand 576 

SetCopyCount member function 
1PrintDC 363 

SetCursor member function 
TWindow 483 

SetDefaultExt member function 
TDocTemplate 682 

SetDefaultid member function 
TDialog 167 

SetDevMode member function 
1PrintDialog::TData 367 

SetDevNames member function 
1PrintDialog::TData 367 

SetDIBits member function 
TDC 151 

SetDIBitsToDevice member 
function 

TDC 152 
SetDirection member function 

TGadgetWindow 238 
TToolBox 431 

SetDirectory member function 
TDocTemplate 682 

SetDlgltem member function 
TWindow 483 

SetDlgltemText member 
function 

TWindow 483 
SetDocManager member 

function 
TApplication 63 
TDocTemplate 682 

SetDocmanager member 
function 

TDocument 188 

SetDocPath member function 
TDocument 188 
TStorageDocument 419 

SetDocTitle member function 
TEditView 207 
TFrameWindow 225 
TListView 273 
TOleView class 324 
TView 453 
TWindow 483 
TWindowView 499 

SetEditSel member function 
TComboBox 105 

SetEmbedded member function 
TDocument 188 

SetEmpty member function 
TRect 696 

SetEnabled member function 
TGadget 231 

SetErrorMsgHook member 
function 
· TAutoCommand 576 

SetExtendedUI member function 
TComboBox 105 

SetExtent member function 
TListView 275 

SetFileFilter member function 
TDocTemplate 682 

SetFileName member function 
TEditFile 203 

SetFilter member function 
TOpenSaveDialog::TData 346 

SetFlag member function 
TAutoCommand 576 
TDocTemplate 682 
TWindow 483 

SetFocus member function · 
TWindow 484 

SetHandle member function 
TEdit 197 

SetHintCommand member 
function 

TGadgetWindow 239 
SetHintMode member function 

TGadgetWindow 239 
SetHintTextmemberfunction 

TMessageBar 300 
SetHorizontalExtent member 

function 
TListBox 268 · 

SetHost member function 
TOcPart 630 

Setlcon member function 
TFrameWindow 225 

Setlndex member function 
TDib 173 

780 ObjectWindows Reference Guide 

Setlnstance member function 
TModule 309 

SetltemData member function 
TComboBox 105 
TListBox 268 

SetltemHeight member function 
TComboBox 105 
TListBox 268 

SetitemRect member function 
· TListBox 268 

SetLang member function 
TAutoProxy 589 

SetLed member function 
TGauge 243 

SetLink member function 
TOcView 649 

SetMain Window member 
function 

TApplication 63 
SetMapMode member function 

TDC 152 
1PrintPreviewDC 378 

SetMapperFlags member 
function 

TDC 152 
SetMappingMode member 

function 
TMetaFilePict 303 

SetMargins member function 
TFloatingFrame 220 
TGadget 231 
TGadgetWindow 239 

SetMenu member function 
TFrameWindow 225 
TMDIFrame 286 
TWindow 484 

SetMenuDescr member function 
TFrameWindow 225 

SetMenuitemBitmaps member 
function 

TMenu 292 
SetMiterLimit member function 

TDC 152 
SetModelndicator member 

function 
TStatusBar 414 

SetModule member function 
TDocTemplate 683 
TMenuDescr 297 
TWindow 484 

SetName member function 
TModule 309 
TOcDocument 612 

SetNext member function 
TWindow 484 



SetNotchComers member 
function 

TButtonGadget 76 
SetNull member function 

TRect 696 
SetNumCels member function 

TCelArray 82 
SetOcApp member function 

TOleFrame 317 
SetOcDoc member function 

TOleDocument 314 
SetOffset member function 

TCelArray 82 
SetOpenMode member function 

TDocument 188 
SetOption member function 

TOcApp 605 
TRegistrar 657 
TValidator 438 

SetOuter member function 
TUnknown 659 

SetPageNumbermember 
function 

TPreviewPage 355 
SetPageSize member function 

TScroller 397 
SetPaletteEntries member 

function 
TPalette 349 

SetPaletteEntry member function 
TPalette 350 

SetParent member function 
TWindow 484 

SetPasswordChar member 
function, TEdit 197 

SetPixel member function 
TDC 153 

SetPolyFillMode member 
function, TDC 153 

SetPos member function 
TOcPart 631 

SetPosition member function 
TScrollBar 393 
TSlider 400 

SetPrinter member function 
TPrinter 371 

SetPrintParams member function 
TPrintout 374 

SetProp member function 
TVbxControl 445 
TWindow 484 

SetProperty member function 
TDocument 188 
TFileDocument 213 
TStorageDocument 419 
TView 454 

Setp Window member function 
TVbxControl 446 

SetRange member function 
TGauge 244 
TScrollBar 393 
TScroller 397 
TSlider 400 

SetReadOnly member function 
TEdit 197 

SetRect member function 
TEdit 197 

SetRectNP member function 
TEdit 197 

SetRectRgn member function 
TRegion 387 

SetRedraw member function 
TWindow 484 

SetResourceHandler member 
function 

TModule 309 
SetRGBColor member function 

TChooseColorDialog 86 
SetRGBMsgld data member 

TChooseColorDialog 87 
SetROP2 member function 

TDC 153 
SetRuler member function 

TSlider 400 
SetSBarRange member function 

TScroller 397 
SetScale member function 

TOcScaleFactor 642 
TOleWindow 340 

SetScrollPos member function 
TWindow 485 

SetScrollRange member function 
TWindow 485 

SetSel member function 
TListBox 268 

SetSelection member function 
TEdit 197 
TOleWindow 340 

SetSellndex member function 
TComboBox 105 
TListBox 269 

SetSellndexes member function 
TListBox 269 

SetSelltemRange member 
function, TListBox 269 

SetSelString member function 
TComboBox 105 
TListBox 269 

SetSelStrings member function 
TListBox 269 

SetShadowStyle member 
function 

TButtonGadget 76 

SetShrinkWrap member function 
TGadget 232 
TGadgetWindow 239 

SetSize member function 
TGadget 232 
TMetaFilePict 303 
TOcPart 631 

SetSpacing member function 
TStatusBar 414 

SetState member function 
TCheckBox 84 

SetStoragc member function 
TOcDocument 612 
TOleDocument 314 
TStorageDocument 420 

SetStretchBltMode member 
function 

TDC 153 
SetStyle member function 

TCheckBox 84 
SetSymbol member function 

TAutoCommand 576 
TAutolterator 582 

SetSysColors member function 
TColor 101 

SetSysModalWindow member 
function 

TWindow 485 
SetSystemPaletteUse member 

function 
TDC 154 

SetTabStops member function 
TEdit 197 
TListBox 269 

SetTemplate member function 
TDocument 189 

SetText member function 
TButtonGadgetEnabler 80 
TComboBox 105 
TCommandEnabler 112 
TMenultemEnabler 299 
TMessageBar 300 
TStatic 411 
TTextGadget 423 

SetTextAlign member function 
TDC 154 

SetTextCharacterExtra member 
function 

TDC 154 
SetTextColor member function 

TDC 154 
TPrintPreviewDC 378 

SetTextJustification member 
function 

TDC 154 
SetTimer member function 

TWindow 485 

Index 781 



setting bits 69 
SetTitle member function 

TDocument 189 
SetToplndex member function 

TListBox 269 
SetTransferBuffer member 

function, TWindow 485 
SetUnits member function 

TScroller 397 
Setup member function 

TPrinter 370 
SetupDC member function 

TOleWindow 340 
SetupThumbRgn member 

function 
TSlider 403, 405 

Setup Window member function 
TButton 74 
TClipboardViewer 98 
TComboBox 106 
TCommonDialog 114 
TDecoratedFrame 161 
TDialog 168 
TEdit 201 
TEditFile 204 
TEditSearch 205 
TFrameWindow 227 
TinputDialog 256 
TOcApp 605 
TOcView 649 
TOleFrame 320 
TOleWindow 340 
TPrinterAbortDlg 372 
TScrollBar 394 
TSlider 403 
TWindow 493 

SetUserAbort member function 
TPrinter 370 

SetV alidator member function 
TEdit 197 

SetValue member function 
TGauge 244 

SetVBXProperty member 
function 

TVbxControl 446 
SetViewMenu member function 

TView 454 
SetViewportExt member 

function 
TDC 154 
TPrintPreviewDC 378 

SetViewportOrg member 
function, TDC 155 

SetVisible member function 
TOcPart 631 

SetWindow member function 
TScroller 398 

SetWindowExt member function 
TDC 155 
TPrintPreviewDC 378 

SetWindowFont member 
function, TWindow 485 

SetWindowLong member 
function, TWindow 485 

SetWindowOrg member 
function, TDC 155 

SetWindowPlacement member 
function, TWindow 486 

SetWindowPos member function 
TWindow 486 

SetWindowText member 
function, TWindow 486 

SetWindowWord member 
function, TWindow 487 

SetWinMainParamsmember 
function, TApplication 61 

SetWordBreakProc member 
function, TEdit 198 

SetWorldTransform member 
function, TDC 155 

ShadowStyle data member 
TButtonGadget 77 

Share ViMsgld data member 
TOpenSaveDialog 343 

Share Violation member function 
TOpenSaveDialog 344 

shCompat constant 51 
shDefault constant 51 
shMask constant 51 
shNone constant 51 
short far*() operator 

TAutoVal 597 
short types 590 
short() operator 

TAutoVal 597 
ShouldDelete data member 

TCelArray 82 
TDC 159 
TGdiObject 248 
TMenu 292 

Show data member 
TOcTooiBarinfo 

structure 643 
Show member function 

TOcPart 631 
TWindow 487 

ShowCaret member function 
TWindow 487 

showCmd constants 487 
ShowList member function 

TComboBox 105 
ShowObjects data member 

TOleWindow 330 

782 Objec!Windows Reference Guide 

ShowOwnedPopups member 
function, TWindow 487 

ShowScrollBar member function 
TWindow 487 

ShowWindow member function 
TMDIChild · 280 
TWindow 487 

shRead constant 51 
shReadWrite constant 51 
shrinkToClient parameter 222, 

227 
ShrinkWrapHeight data member 

TGadget 232 
TGadgetWindow 240 

shrink-wrapping gadgets 236 
ShrinkWrapWidth data member 

TGadget 233 
TGadgetWindow 240 

Shutdown member function 
TRegistrar 657 

ShutDown Window member 
function 

TWindow 487 
sh Write constant 51 
signatur.h 22 
single-use servers 570, 665 
SiteSize member function 

TOcScaleFactor 641 
size constraints, creating 

windows 258 
Size member function 

TDib 173 
TMetaFilePict 303 
TRect 696 
TUIHandle 436 

SizeMax data member 
TChooseFontDialog::TData 91 

SizeMin data member 
TChooseFontDialog::TData 91 

SizeOfResource member 
function 

TModule 309 
slicing bitmaps 80 
SlideDC data member 

TSlider 404 
slider.h 23 
sliders 399 

background colors 402 
storing 404 

background, erasing 401 
horizontal 405 
objects 

constructing 400 
destructing 400 

painting 401, 403 
entire 402 
rulers in 403 



thumbs 403 
recalculating sizes 402 
resource ID 

thumb knob 405 
thumb positions 

aligning with tick 
positions 399, 400 

current 400 
moving 400,401,403 
presentrange 400 
returning 404 
setting 402 
snapping 404, 405 
translating 403 

thumb shape, defining 403, 
405 

tick positions and 399 
setting gaps 405 

vertical 407 
SlideThumb member function 

TSlider 403 
Sliding data member 

TSlider 404 
SlotThick data member 

TSlider 404 
Snap data member 

TSlider 405 
snapping 404,405 
SnapPos member function 

TSlider 404 
sounds, beep 200 
Spacing data member 

TStatusBar 415 
SS_LEFT constant 411 
stack, automation 

commands 590, 594 
StartDoc member function 

TPrintDC 363 
StartPage member function 

TPrintDC 363 
StartScan member function 

TDib 174 
StashContainerPopups member 

function 
TOleFrame 320 

StashCount data member 
TOleFrame 320 

StashedContainerPopups data 
member, TOleFrame 320 

Stat data member, TXOle 664 
State data member 

TButtonGadget 77 
static controls 

registration class name 412 
resources and associating 

with objects 411 
text length 410 

static text interface element 410 
static.h 23 
StaticName member function 

TEditView 207 
TListView 273 
TOleView class 324 
TWindowView 499 

status, main window 304 
status bars 413 

borders 415 
creating 413, 414 
inserting text in 414 
spacing items in 414, 415, 416 

Status data member 
TModule 304 
TWindow 456 

status lines 159 
statusba.h 23 
Step member function 

TAutoEnumerator 580 
TAutolterator 582 

stgdoc.h 23 
Storage data member 

TOcinitlnfo 619 
Storage! data member 

TOcSaveLoad structure 640 
TStorageDocument 420 

storages 609 
streaming 

TFileDocument 212 
TinStream 256 
TOutStream class 346 

streams 212 
documents 48, 189 

StretchDIBits member function 
TDC 155, 156 

string resources, localizing 276 
string() operator 

TAutoVal 597 
string-lookup validators 421 
strings 

automated objects 592 
checking validity of 421 
comparing 215,266,278 

picture 380 
concatenating 271 
deleting 265 
finding 271 
getting 267 
ID constants 42 

listview 44 
inserting 268 
length 410 

getting 267 
list boxes 265, 270, 271 
loading into memory 308 
resource IDs 250 

retrieving 271, 272 
searching for 279, 422 

Strings data member 
TComboBoxData 108 
TListBoxData 270 
TStringLookup Validator 422 

StrokeAndFillPath member 
function 

TDC 156 
StrokePath member function 

TDC 156 
structs 

DOCINFO 363 
TBandlnfo 65 

Style data member 
TChooseFontDialog::TData 91 
TWindow Attr 495 

styles 
combo boxes 102 
edit controls 192 
listbox 265 
scroll bars 391 

Subclass Window Function 
member function 

TWindow 488 
support classes 15, 671 
SuspendThrow member function 

TApplication 61 
SW _HIDE constant 56 
SW _MINIMIZE constant 56 
SW _SHOW constant 56 
SW_SHOWDEFAULT 

constant 56 
SW _SHOWMAXIMIZED 

constant 56 
SW _SHOWMINIMIZED 

constant 56 
SW _SHOWNA constant 56 
SW _SHOWNOACTIV A TE 

constant 56 
SW _SHOWNORMAL 

constant 56 
SW _SHOWSMOOTH 

constant 56 
Symbol data member 

TAutoCommand 577 
SyncFontmemberfunction 

TPrintPreviewDC 379 
synchronizing functions 376, 379 
SysColorChange member 

function 
TBitmapGadget 69 
TButtonGadget 76 

SyscolorChange member 
function 

TGadget 232 

Index 783 



system and model settings for 
compiling 17 

System menu, creating 422 

T 
T typedef 389 
T& ()operator 

TAutoObject 585 
T*() operator 

TAutoObject 585 
TPointer<> 689 

tab stops 
creating 251 
edit controls, setting 197 

TabbedTextOut member 
function 

TDC 156 
TActionFunc typedef 51 
TActionMemFunc typedef 51 
Tag data member 

TDocument 183 
TView 452 

tagSize structure 697 
TAlign member function 

TTextGadget 424 
TAnyDispatcher typedef 52 
TAnyPMF typedef 51 
TAppDictionary class 52 

member functions 
Add 54 
Condemn 54 
DeleteCondemned 54 
GetApplication 54 
Iterate 55 
Remove 55 

typedefs 53 
TApplication class 55 

constructors 56 
data members 

BreakMessageLoop 61 
cmdShow 56 
HAccTable 55 
HPrevlnstance 55 
MessageLoopResult 61 

destructor 57 
member functions 

BeginModal 57 
BWCCEnabled 57 
CanClose 57 
Condemn 58 
Ctl3dEnabled 58 
EnableBWCC 58 
EnableCtl3d 58 
EnableCtl3dAutosubclass 

58 
EndModal 58 
Find 58 

GetBWCCModule 59 
GetCtl3dModule 59 
GetDocManager. 59 
GetMain Window 59 
GetWindowPtr 59 
GetWinMainParams 59 
IdleAction 62 
InitApplication 62 
Initlnstance 62 
InitMain Window 62 
MessageLoop 59 
PostDispatchAction 59 
PreProcessMenu 60 
ProcessAppMsg 60 
PumpWaitingMessages 60 
QueryThrow 60 
ResumeThrow 60 
Run 60 
SetDocManager 63 
SetMainWindow 63 
SetWinMainParams 61 
SuspendThrow 61 
Termlnstance 63 
Uncondemn 61 

TApplication::TXInvalid­
Window class 63 

constructor 63 
member functions 

Clone 63 
Throw 63 

TAutoBase class 573 
destructors 573 

TAutoBool struct 574 
data member 57 4 

TAutoCommand class 574 
constructor 57 4 
data members 

Attr 577 
Symbol 577 

destructor 57 4 
member functions 

ClearFlag 575 
Execute 575 
Fail 575 
GetSymbol 575 
Invoke 575 
IsPropSet 575 
LookupError 575 
Record 576 
Report 576 
Return 576 
SetCommandHook 576 
SetErrorMsg 576 
SetFlag 576 
SetSymbol 576 
TestFlag 577 
Undo 577 
Validate 577 

784 ObjectWindows Reference Guide 

typedefs 
TCommandHook 574 
TErrorMsgHook 575 

TAutoCurrency far*() operator 
TAutoVal 598 

TAutoCurrency struct 577 
data member 577 

TAutoCurrency() operator 
TAutoVal 597 

TAutoDate far*() operator 
TAutoVal 598 

TAutoDate struct 578 
constructors 578 
data members 

Classlnfo 578 
Date 578 

member function 578 
TAutoDate() operator 

TAutoVal 598 
TAutoDelete enum 246 
TAutoDouble struct 578 

data member 578 
TAutoEnumerator<> class 579 

constructors 579 
destructor 579 
member functions 

Bind 579 
Clear 579 
Object 580 
Step 580 
Unbind 580 
Value 580 

TAutoFactory class 64 
member functions 

Create 64 
CreateApp 64 
Destroy App 65 
TComponentFactory 65 

TAutoFloat struct 580 
data member 580 

TAutolterator class 581 
constructors 583 
data member 583 
member functions 

Copy 581 
GetSymbol 581 
Init 582 
Return 582 
SetSymbol 582 
Step 582 
Test 583 

operator 582 
TAutoLong struct 583 

data member 584 
TAutoObject<> class 584 

constructors 584 



data member 585 
operators 584, 585 

TAutoObjectByVak> class 585 
constructors 586 
operators 585 

TAutoObjectDelete<> class 586 
constructors 586 
member functions 

TObjectDescriptor 587 
operators 586 

TAutoProxy class 587 
constructor 589 
destructor 587 
member functions 

Bind 588 
!Dispatch 588 
Invoke 589 
IsBound 588 
Lookup 588 
MustBeBound 589 
SetLang 589 
Unbind 589 

operators 588 
TAutoShort struct 590 

data member 590 
TAutoStack class 590 

constructor 591 
data members 

ArgCount 591 
ArgSymbolCount 591, 592 
CurrentArg 591 
Langld 592 
Owner 592 

destructor 591 
dispatch ID 592 
member function 591 
operator 591 
SetValue constant 592 

TAutoString struct 592 
constructors 592 
data member 594 
destructor 593 
operators 593 

TAutoType struct 594 
member function 594 

TAutoVal class 594 
member functions 

Clear 596 
Copy 596 
GetDataType 596 
IsRef 597 

operators 595, 597 
I Auto Void struct 598 

data member 599 
TBandlnfo struct 65 
TBitmap class 65 

constructors 65, 68 

member functions 
BitsPixel 66 
Create 68 
GetBitmapBits 66 
GetBitmapDimension 66 
GetObject 67 
Height 67 
Planes 67 
SetBitmapBits 67 
SetBitmapDimension 67 
ToClipboard 67 
Width 67 

operators 67, 68 
TBitmap&() operator 

TCelArray 81 
TBitmapGadget class 68 

constructor 68 
destructor 68 
member functions 

GetDesiredSize 69 
Paint 69 
Selectlmage 69 
SetBounds 69 
SysColorChange 69 

TBitSet class 69 
constructors 69 
member functions 

Disableltem 70 
Enableltem 70 
Has 70 
IsEmpty 70 

operators 70, 71 
TBIVbxLibrary class 71 

constructor 71 
destructor 71 

TBool far*() operator 
TAutoVal 598 

TBool() operator 
TAutoVal 598 

TBorders struct 
TGadget class 229 

TBorderStyle enum 229 
TBrush class 71 

constructors 71 
member functions 

GetObject 72 
UnrealizeObject 72 

operator 72 
TButton class 72 

constructors 73 
data members 

IsCurrentDefPB 73 
IsDefPB 73 

member functions 
BMSetStyle 73 
EvGetDlgCode 73 
GetClassName 74 
Setup Window 7 4 

TButtonGadget class 7 4 
constructor 75 
data members 

AntialiasEdges 76 
BitmapOrigin 76 
CelArray 76 
NotchComers 76 
Pressed 77 
Repeat 77 
Resld 77 
ShadowStyle 77 
State 77 
Type 77 

destructor 75 
member functions 

Activate 77 
BeginPressed 77 
BuildCelArray 77 
CancelPressed 78 
CommandEnable 75 
GetDesiredSize 78 
GetGlyphDib 78 
Invalidate 78 
LButtonDown 78 
LButtonUp 78 
MouseEnter 78 
MouseLeave 78 
MouseMove 79 
Paint 79 
ReleaseGlyphDib 79 
SetAntialiasEdges 76 
SetBounds 79 
SetButtonState 76 
SetButtonType 75 
SetNotchComers 76 
SetShadowStyle 76 
SysColorChange 76 
TState 75 

typedefs 75 
TButtonGadgetEnabler class 79 

constructor 79 
data members 

gadget 80 
member functions 

Enable 80 
SetCheck 80 
SetText 80 

TCelArray class 80 
constructors 80 
data members 

Bitmap 82 
CSize 82 
NCels 82 
Offs 82 
ShouldDelete 82 

destructor 81 
member functions 

CelOffset 81 
CelRect 81 

Index 785 



CelSize 81 
NumCels 81 
Offset 81 
SelCelSize 81 
SetNumCels 82 
SetOffset 82 

operators 81 
TCEnabled data member 

TTinyCaption 426 
TCharSet class 82 

constructors 82 
operator 83 

TCheckBox class 83 
constructors 83 
data members 

Group 83 
member functions 

BNClicked 85 
Check 84 
EvGetDlgCode 85 
GetCheck 84 
GetClassName 85 
GetState 84 
SetCheck 84 
SetState 84 
SetStyle 84 
Toggle 84 
Transfer 85 
Uncheck 85 

TChooseColorDialog class 86 
constructor 86 
data members 

cc 86 
Data 87 
SetRGBMsgld 87 

member functions 
DialogFunction 87 
DoExecute 87 
EvSetRGBColor 87 
SetRGBColor 86 

response table 87 
TChooseColorDialog::TData 

class 87 
data members 

Color 87 
CustColors 87 
Error 87 
Flags 88 

TChooseFontDialog class 88 
constructor 88 
data members 

cf 89 
data 89 

member functions 
CmFontApply 89 
DialogFunction 89 
DoExecute 89 

TChooseFontDialog::TData 
class 89 

data members 
Color 90 
DC 90 
Error 90 
Flags 90 
FontType 91 
LogFont 91 
PointSize 91 
SizeMax 91 
SizeMin 91 
Style 91 

TClientDC class 91 
constructor 91 

TClipboard class 92 
data members 

DefaultProtocol 93 
IsOpen 96 
TheClipboard 97 

destructor 93 
member functions 

CloseClipboard 93 
CountClipboardFormats 

93 
EmptyClipboard 93 
GetCfipboardData 94 
GetClipboardFormat-

Name 94 
GetClipboardOwner 94 
GetClipboardViewer 94 
GetOpenClipboard-

Window 95 
GetPriorityClipboard­

Format 95 
IsClipboardFormat-

Available 95 
QueryCreate 95 
QueryLink 96 
RegisterClipboardFormat 

96 
SetClipboardData 96 
SetClipboardViewer 96 

operators 95 
related 173 

TClipboardViewer class 97 
constructors 97 
data members 

HWndNext 97 
member functions 

DoChangeCBChain 97 
DoDestroy 97 
DoDrawClipboard 97 
EvChangeCBChain 98 
EvDestroy 98 
EvDrawClipboard 98 
SetupWindow 98 

786 ObjectWindows Reference Guide 

TColor class 98 
constructors 98 
data members 

Black 99 
Gray 99 
LtBlue 99 
LtCyan 99 
LtGray 99 
LtGreen 99 
LtMagenta 100 
LtRed 100 
LtYellow 100 
Value 101 
White 100 

member functions 
Blue 100 
Flags 100 
GetSysColor 100 
Green 100 
Index 101 
Pallndex 101 
PalRelative 101 
Red 101 
Rgb 101 
SetSysColors 101 

operators 100 
TComboBox class 102 

constructors 102 
data members 

TextLen 102 
member functions 

AddString 103 
Clear 103 
ClearList 103 
DeleteString 103 
DirectoryList 103 
FindString 103 
GetClassName 106 
GetCount 103 
GetDroppedControl-

Rect 103 
GetDroppedState 103 
GetEditSel 103 
GetExtendedUI 103 
GetitemData 104 
GetitemHeight 104 
GetSellndex 104 
GetString 104 
GetStringLen 104 
GetText 104 
GetTextLen 104 
HideList 104 
InsertString 105 
SetEditSel 105 
SetExtendedUI 105 
SetitemData 105 
SetitemHeight 105 
SetSellndex 105 
SetSelString 105 



SetText 105 
SetupWindow 106 
ShowList 105 
Transfer 106 

TComboBoxData class 106 
constructor 106 
data members 

Selection 108 
Sellndex 108 
Strings 108 

destructor 106 
member functions 

AddString 107 
AddStringltem 107 
Clear 107 
GetltemDatas 107 
GetSelCount 107 
GetSelection 107 
GetSellndex 107 
GetSelString 107 
GetSelStringLength 107 
GetStrings 107 
ResetSelections 107 
Select 108 
SelectString 108 

TComboBoxData struct 
data members 

ItemDatas 108 
TCommandEnabler class 108 

constructor 111 
data members 

Handled 112 
HWndReceiver 112 
Id 111 

member functions 
Enable 111 
GetHandled 112 
IsReceiver 112 
SetCheck 112 
SetText 112 

typedefs 111 
TCommandHook typedef 

TAutoCommand 574 
TCommonDialog class 112 

constructor 113 
data members 

CDTitle 113 
member functions 

CmHelp 113 
CmOkCancel 113 
DoCreate 113 
DoExecute 113 
EvClose 114 
SetupWindow 114 

TComponentFactory member 
function 

TOleFactoryBase 315 

TComponentFactory operator 
TAutoFactory 65 

TComponentFactory 
typedef 599 

TCondFunc type 114 
TCondMemFunc typedef 114 
TControl class 117 

constructors 118 
member functions 

Compareltem 118 
Deleteltem 118 
Drawltem 118 
EvCompareltem 118 
EvDeleteltem 118 
EvDrawltem 119 
EvMeasureltem 119 
EvPaint 119 
Measureltem 119 
ODADrawEntire 119 
ODAFocus 119 
ODASelect 119 

TControlBar class 115 
constructor 115 
member functions 

PositionGadget 116 
PreProcessMsg 116 

TControlGadget class 116 
constructor 116 
data members 

Control 116 
destructor 116 
member functions 

GetDesiredSize 116 
GetlnnerRect 116 
Inserted 117 
Invalidate 117 
InvalidateRect 117 
Removed 117 
SetBounds 117 
Update 117 

TCreatedDC class 120 
constructors 120 
destructor 120 

TCursor class 121 
constructors 121 
destructor 121 
member functions 

Getlconlnfo 121 
operators 122 

td transfer function 
constants 106 

TDataclass 
TChooseFontDialog class 89 

TData nested class 
TChooseColorDialog 87 
TFindReplaceDialog 218 
TOpenSaveDialog 344 
TPrintDialog 364 

TDC class 122 
constructors 122, 158 
data members 

Handle 158 
OrgBrush 158 
OrgFont 158 
OrgPalette 158 
OrgPen 159 
OrgTextBrush 159 
ShouldDelete 159 

destructor 122 
member functions 

AngleArc 123 
Arc 123 
BeginPath 123 
BitBlt 123 
CheckValid 159 
Chord 124 
CloseFigure 124 
DPtoLP 124 
DrawFocusRect 124 
Drawlcon 125 
DrawText 125 
Ellipse 126 
EndPath 126 
EnumFontFamilies 126 
EnumFonts 126 
EnumMetaFile 127 
EnumObjects 127 
ExcludeClipRect 127 
ExcludeUpaateRgn 128 
ExtFloodFill 128 
ExtTextOut 128 
FillPath 129 
FillRect 129 
FillRgn 129 
FlattenPath 129 
FloodFill 129 
FrameRect 130 
FrameRgn 130 
GetAspectRatioFilter 130 
GetAttributeHDC 159 
GetBkColor 130 
GetBkMode 130 
GetBoundsRect 130 
GetBmshOrg 131 1 

GetCharABCWidths 131 
GetCharWidth 131 
GetClipBox 131 
GetClipRgn 131 
GetCurrentObject 132 
GetCurrentPosition 132 
GetDCOrg 132 
GetDeviceCaps 132 
GetDIBits 132 
GetFontData 133 
GetGlyphOutline 133 
GetHDC 159 
GetKerningPairs 133 

Index 787 



GetMapMode 133 
GetNearestColor 134 
GetOutlineTextMetrics 134 
GetPixel 135 
GetPolyFillMode 135 
GetROP2 135 
GetStretchBltMode 135 
GetSystemPaletteEntries 

135 
GetSystemPaletteUse 135 
GetTabbedTextExtent 135 
GetTextAlign 136 
GetTextCharacterExtra 137 
GetTextColor 137 
GetTextExtent 137 
GetTextFace 137 
GetTextMetrics 138 
GetViewportExt 138 
GetViewportOrg 138 
GetWindowExt 138 
GetWindowOrg 138 
GrayString 138 
Init 159 
IntersectClipRect 139 
InvertRect 139 
InvertRgn 140 
LineTo 140 
LPtoDP 140 
MaskBlt 140 
ModifyWorldTransform 

141 
MoveTo 142 
OffsetClipRgn 142 
OffsetViewportOrg 142 
OffsetWindowOrg 142 
OWLFastWindowFrame 

143 
PaintRgn 143 
PatBlt 143 
PathToRegion 143 
Pie 143 
PlayMetaFile 144 
PlayMetaFileRecord 144 
PlgBlt 144 
PolyBezier 145 
PolyBezierTo 145 
PolyDraw 145 
Polygon 146 
Polyline 146 
PolylineTo 146 
PolyPolygon 146 
PolyPolyline 147 
PtVisible 147 
RealizePalette 147 
Rectangle 147 
RectVisible 147 
ResetDC 147 
RestoreBrush 148 
RestoreDC 148 
RestoreFont 148 

RestoreObjects 148 
RestorePalette 148 
RestorePen 148 
RestoreTextBrush 148 
RoundRect 148 
SaveDC 149 
Scale ViewportExt 149 
ScaleWindowExt 149 
ScrollDC 149 
SelectClipPath 150 
SelectClipRgn 150 
SelectObject 150 
SelectStockObject 150 
SetBkColor 151 
SetBkMode 151 
SetBoundsRect 151 
SetBrushOrg 151 
SetDIBits 151 
SetDIBitsToDevice 152 
SetMapMode 152 
SetMapperFlags 152 
SetMiterLimit 152 
SetPixel 153 
SetPolyFillMode 153 
SetROP2 153 
SetStretchBltMode 153 
SetSystemPaletteUse 154 
SetTextAlign 154 
SetTextCharacterExtra 154 
SetTextColor 154 
SetTextJustification 154 
SetViewportExt 154 
SetViewportOrg 155 
SetWindowExt 155 
SetWindowOrg 155 
SetWorldTransform 155 
StretchDIBits 155, 156 
StrokeAndFillPath 156 
StrokePath 156 
TabbedTextOut 156 
TextOut 157 
TextRect 157 
UpdateColors 157 
WidenPath 157 

operators 139 
TCreateDC vs. 122 

TDecoratedFrame class 159 
constructor 160 
data members 

Menultemld 161 
TrackMenuSelection 161 

member functions 
EvCommand 161 
EvCommandEnable 161 
EvEnterldle 161 
EvMenuSelect 161 
EvSize 161 
Insert 160 
PreProcessMsg 160 

788 ObjectWindows Reference Guide 

SetClientWindow 161 
SetupWindow 161 

typedefs 160 
TDecoratedMDIFrame class 162 

constructor 162 
member functions 

DefWindowProc 162 
TDesktopDC class 163 

constructor 163 
tdGetData constant 106, 256, 

270, 394, 411 
tdGetData enum 384, 438 
TDialog class 163 

constructor 164 
data members 

Attr 164 
IsModal 164 

destructor 164 
member functions 

CloseWindow 164 
CmCancel 164 
CmOk 165 
Create 165 
Destroy 165 
DialogFunction 165 
DoCreate 165 
DoExecute 165 
EvClose 165 
EvCtlColor 165 
EvlnitDialog 166 
EvPaint 166 
EvSetFont 166 
Execute 166 
GetClassName 167 
GetDefaultld 166 
GetWindowClass 167 
GPerformDlglnit 167 
PreProcessMsg 167 
SetCaption 167 
SetDefaultld 167 
SetupWindow 168 

member functions, obsolete 
GetltemHandle 166 
SendDlgltemMsg 167 

TDialog::TDialogAttr struct 168 
data members 

Name 168 
Param 168 

TDib class 169 
constructors 169 
data members 

Bits 174 
H 174 
Info 174 
IsCore 175 
IsResHandle 175 
Mode 175 



NumClrs 175 
w 175 

destructor 170 
member functions 

ChangeModeToPal 170 
ChangeModeToRGB 171 
FindColor 171 
Findlndex 171 
GetBits 171 
GetColor 171 
GetColors 171 
Getlndex 171 
Getlndices 171 
Getlnfo 172 
GetlnfoHeader 172 
Height 172 
InfoFromHandle 175 
IsOk 172 
IsPM 172 
LoadFile 175 
LoadResource 175 
MapColor 172 
Maplndex 172 
MapUIColors 173 
numColors 173 
numScans 173 
Read 176 
SetColor 173 
Setlndex 173 
Size 173 
StartScan 17 4 
ToClipboard 174 
Usage 174 
Width 174 
WriteFile 174 

operators 170, 172, 173, 174 
typedefs 169 

TDibDC class 176 
constructor 176 

TDocManager class 176 
constructor 177 
data members 

DocList 177 
destructor 177 
member functions 

AttachTemplate 178 
CmFileClose 178 
CmFileNew 178 
CmFileOpen 178 
CmFileRevert 178 
CmFileSave 178 
CmFileSaveAs 178 
Cm ViewCreate 178 
CreateAnyDoc 178 
CreateAnyView 179 
CreateDoc 179 
CreateView 179 
DeleteTemplate 179 
EvCanClose 179 

EvPreProcessMenu 179 
EvWakeUp 179 
FindDocument 180 
FlushDoc 180 
GetApplication 180 
GetCurrentDoc 180 
GetNextTemplate 180 
InitDoc 180 
IsFlagSet 180 
MatchTemplate 180 
PostDocError 181 
PostEvent 181 
RefTemplate 181 
SelectAnySave 181 
SelectDocPath 181 
SelectDocType 182 
SelectSave 181 
SelectViewType 182 
UnRefTemplate 181 

TDocTemplate class 679 
constructor 683 
destructor 683 
member functions 

ClearFlag 679 
Clone 680 
ConstructDoc 680 
ConstructView 680 
CreateDoc 680 
CreateView 680 
GetDefaultExt 680 
GetDescription 680 
GetDirectory 680 
GetDocManager 681 
GetFileFilter 681 
GetFlags 681 
GetModule 681 
GetNextTemplate 681 
GetRegList 681 
InitDoc 681 
InitView 681 
IsFlagSet 681 
IsMyKindOfDoc 682 
IsMyKindONiew 682 
IsStatic 682 
IsVisible 682 
SelectSave 682 
SetDefaultExt 682 
SetDirectory 682 
SetDocManager 682 
SetFileFilter 682 
SetFlag 682 
SetModule 683 

templates, creating 34 
TDocTemplateTD,V class 683 

constructor 684 
member functions 

Clone 684 
CreateDoc 684 
Create View 684 

GetViewName 685 
IsMyKindOfDoc 684 
IsMyKindONiew 685 

TDocument class 182 
constructor 184 
data members 

ChildDoc 183 
DirtyFlag 189 
Embedded 189 
Tag 183 

destructor 184 
member functions 

AttachStream 189 
CanClose 184 
Close 184 
Commit 184 
DetachStream 189 
FindProperty 185 
GetDocPath 185 
GetOpenMode 185 
GetParentDoc 185 
GetProperty 185 
GetTemplate 185 
GetTitle 185 
HasFocus 186 
InitDoc 186 
InStream 186 
IsDirty 186, 188 
IsOpen 186 
NextStream 186 
NextView 186 
NotifyViews 186 
Open 187 
OutStream 187 
PostError 187 
PropertyCount 187 
PropertyFlags 187 
PropertyName 187 
QueryViews 188 
Revert 188 
RootDocument 188 
SetDocmanager 188 
SetDocPath 188 
SetOpenMode 188 
SetProperty 188 
SetTemplate 189 
SetTitle 189 

templates, creating 34 
typedefs 184 

TDocument::List class 189 
constructor 189 
destructor 189 
member functions 

Destroy 190 
Insert 190 
Next 190 
Remove 190 

TDroplnfo class 685 
constructor 685 

Index 789 



member functions 
DragFinish 685 
DragQueryFile 685 . 
DragQueryFileCount 685 
DragQueryFileNameLen 

686 
DragQueryPoint 686 

operator 686 
tdSetData constant 106, 256, 

270, 394, 411 
tdSetData enum 384, 438 
tdSizeData constant 106, 256, 

270,394,411 
tdSizeData enum 384, 438 
TEdgeConstraint struct 190 

member functions 
Above 190 
Absolute 190 
Below 191 
LeftOf 191 
PercentOf 191 
RightOf 191 
SameAs 191 
Set 191 

TEdgeOrSizeConstraint 
struct 191 

member functions 
Absolute 192 
PercentOf 192 
SameAs 192 

TEdit class 192 
constructors 193 
data members 

Validator 198 
member functions 

CanClose 198 
CanUndo 193 
Clear 193 
ClearModify 193 
CmCharsEnable 199 
CmEditClear 199 
CmEditCopy 199 
CmEditCut 199 
CmEditDelete 199 
CmEditPaste 199 
CmEditUndo 199 
CmModEnable 199 
CmPasteEnable 199 
CmSelectEnable 200 
Copy 193 
Cut 194 
DeleteLine 194 
DeleteSelection 194 
DeleteSubText 194 
EmptyUndoBuffer 194 
ENErrSpace 200 
EvChar 200 
EvGetDlgCode 200 

EvKeyDown 200 
EvKillFocus 200 
FormatLines 194 
GetClassName 200 
GetFirstVisibleLine 194 
GetHandle 194 
GetLine 194 
GetLineFromPos 195 
GetLinelndex 195 
GetLineLength 195 
GetNumLines 195 
GetPasswordChar 195 
GetRect 195 
GetSelection 195 
GetSubText 196 
GetWordBreakProc 196 
Insert 196 
IsModified 196 
IsValid 196 
LockBuffer 196 
Paste 196 
Scroll 196 
Search 197 
SetHandle 197 
SetPasswordChar 197 
SetReadOnly 197 
SetRect 197 
SetRectNP 197 
SetSelection 197 
SetTabStops 197 
SetupWindow 201 
SetValidator 197 
SetWordBreakProc 198 
Transfer 198 
Undo 198 
UnlockBuffer 198 
ValidatorError 198 

TEditFile class 201 
constructor 201 
data members 

FileData 202 
FileName 202 

destructor 201 
member functions 

CanClear 202 
CanClose 202 
CmFileNew 202 
CmFileOpen 202 
CmFileSave 202 
CmFileSaveAs 202 
NewFile 203 
Open 203 
Read 203 
ReplaceWith 203 
Save 203 
SaveAs 203 
SetFileName 203 
Setup Window 204 
Write 203 

790 ObjectWindows Reference Guide 

TEditSearch class 204 
constructor 204 
data members 

SearchCmd 204 
SearchData 204 
SearchDialog 204 

member functions 
CmEditFind 205 
CmEditFindNext 205 
CmEditReplace 205 
DoSearch 205 
EvFindMsg 205 
SetupWindow 205 

TEditView class 206 
constructor 206 
data members 

Origin 207 
destructor 206 
member functions 

CanClose 206 
Create 206 
EvNCDestroy 207 
GetViewName 206 
GetWindow 207 
LoadData 207 
PerformCreate 207 
SetDocTitle 207 
StaticName 207 
VnCommit 207 
VnDocClosed 208 
VnlsDirty 208 
VnlsWindow 208 
VnRevert 208 

TEllipse enum 384 
template factory classes 36 
templates 

creating 32, 34 
documents 189 

TEqualOperator typedef 208 
Termlnstance member function 

TApplication 63 
TError typedef 

TXAuto 661 
TXObjComp 662 

TErrorMsgHook typedef 
TAutoCommand 575 

test function 466 
Test member function 

TAutolterator 583 
TestFlag member function 

TAutoCommand 577 
TEventHandler class 209 

member functions 
Dispatch 209 
Find 209 
SearchEntries 209 



TEventHandler::TEventlnfo 
class 209 

constructor 209 
data members 

Entry 210 
Id 210 
Msg 210 
Object 210 

enums 210 
TEventlnfo nested class 209-210 
TEventStatus enum 210 
text 

buffers 256 
changing 410 
Clipboard and 193 
copying 199 
deleting 194 
editing 192 
finding 216 
inserting 

current position 196 
length 410 
modifying 196 
pasting 196 
replacing 216, 387 
retrieving user input 255 
searching for 197, 204 
selecting 195, 197 
static controls 411 

interface element 410 
status bar 414 

Text data member 
TTextGadget 423 

text gadgets 422 
textgadg.h 23 
TextLen data member 

TComboBox 102 
TStatic 410 
TTextGadget 423 

TEXTMETRIC struct 734 
TextOut member function 

TDC 157 
TextRect member function 

TDC 157 
TFileDocProp enum 211 
TFileDocument class 210 

closing files 211 
constructor 211 
data members 

FHdl 213 
destructor 211 
member functions 

Close 211 
CloseThisFile 213 
Commit 211 
FindProperty 212 
GetProperty 212 

InStream 212 
IsOpen 212 
Open 212 
OpenThisFile 213 
OutStream 212 
PropertyFlags 212 
PropertyName 213 
Revert 213 
SetProperty 213 

typedefs 211 
TFileOpenDialog class 213 

constructor 214 
member functions 

DoExecute 214 
TFileSaveDialog class 214 

constructor 214 
member functions 

DoExecute 214 
TFilterValidator class 215 

constructor 215 
data members 

ValidChars 215 
member functions 

Error 215 
IsValid 215 
IsValidinput 215 

TFindDialog class 216 
constructor 216 
member functions 

DoCreate 216 
TFindReplaceDialog class 216 

constructor 216 
data members 

Data 217 
fr 217 

member functions 
CmCancel 217 
CmFindNext 217 
CmReplace 217 
CmReplaceAll 217 
DialogFunction 217 
DoCreate 217 
EvNCDestroy 217 
Init 218 

TFindReplaceDialog::TData 
class 218 

constructor 218 
data members 

BuffSize 218 
Error 218 
FindWhat 219 
Flags 219 
ReplaceWith 219 

destructor 218 
errors 218 

TFloatingFrame class 219, 425 
constructor 220 
member functions 

DoNCHitTest 220 
SetMargins 220 

TFont class 221 
constructors 221 
member functions 

GetObject 222 
operators 222 

TFrameWindow class 222 
constructors 222, 226 
data members 

ClientWnd 225 
DocTitleindex 225 
HWndRestoreFocus 225 
KeyboardHandling 223 
MergeModule 226 

destructor 223 
member functions 

AssignMenu 223 
EnableKBHandler 223 
EvCommand 226 
EvCommandEnable 226 
EvEraseBkgnd 226 
EvinitMenuPopup 226 
EvPaint 226 
EvParentNotify 227 
EvQueryDragicon 227 
EvSetFocus 227 
EvSize 227 
GetClientWindow 223 
GetCommandTarget 223 
GetMenuDescr 224 
HoldFocusHwnd 224 
IdleAction 224 
Init 227 
MergeMenu 224 
PreProcessMsg 224 
RestoreMenu 224 
SetClientWindow 224 
SetDocTitle 225 
Setlcon 225 
SetMenu 225 
SetMenuDescr 225 
SetupWindow 227 

TGadget class 228 
constructor 229 
data members 

Borders 232 
BorderStyle 232 
Bounds 232 
Clip 229 
Id 232 
Margins 232 
ShrinkWrapHeight 232 
ShrinkWrapWidth 233 
TrackMouse 233 
WideAsPossible 229 
Window 233 

destructor 229 
enums 229 

Ind ex 791 



member functions 
CommandEnable 230 
GetBorders 230 
GetBorderStyle 230 
GetBounds 230 
GetDesiredSize 230 
GetEnabled 231 
Getld 231 
GetinnerRect 233 
GetMargins 231 
GetOuterSizes 231 
Inserted 233 
Invalidate 233 
InvalidateRect 233 
LButtonDown 233 
LButtonUp 233 
MouseEnter 233 
MouseLeave 234 
MouseMove 234 
NextGadget 231 
Paint 234 
PaintBorder 234 
Ptln 234 
Removed 234 
SetBorders 231 
SetBorderStyle 231 
SetBounds 231 
SetEnabled 231 
SetMargins 231 
SetShrinkWrap 232 
SetSize 232 
SyscolorChange 232 
Update 234 

structures 229 
TBorders 229 
TMargins 230 

TGadgetWindow class 236 
constructor 236 
data members 

AtMouse 239 
BkgndBrush 239 
Capture 239 
DirtyLayout 240 
Font 240 
Gadgets 240 
HintMode 240 
Margins 240 
NumGadgets 240 
ShrinkWrapHeight 240 
ShrinkWrapWidth 240 
WideAsPossible 240 

destructor 236 
member functions 

Create 241 
EvLButtonDown 241 
EvLButtonUp 241 
EvMouseMove 241 
EvSize 241 
EvSyscolorChange 241 

FirstGadget 237 
GadgetChangedSize 237 
GadgetFromPoint 237 
GadgetReleaseCapture 237 
GadgetSetCapture 237 
GetDesiredSize 241 
GetDirection 237, 239 
GetFont 237 
GetFontHeight 237, 240 
GetHintMode 237 
GetinnerRect 241 
GetMargins 242 
IdleAction 238 
Insert 238 
LayoutSession 238 
LayoutUnitsToPixels 242 
NextGadget 238 
Paint 242 
PaintGadgets 242 
PositionGadget 242 
Remove 238 
SetDirection 238 
SetHintCommand 239 
SetHintMode 239 
SetMargins 239 
SetShrinkWrap 239 
TGadgetWithld 237 
TileGadgets 242 

typedefs 236 
TGadgetWindowFont class 234 

constructor 235 
TGadgetWithld member 

function 
TGadgetWindow 237 

TGauge class 243 
constructor 243 
data members 

BarColor 244 
lsHorizontal 244 
LedSpacing 244 
LedThick 244 
Margin 244 
Max 244 
Min 244 
Value 244 

member functions 
EvEraseBkgnd 245 
GetRange 243 
GetValue 243 
Paint 245 
PaintBorder 245 
SetColor 243 
SetLed 243 
SetRange 244 
SetValue 244 

TGdiObject class 245 
constructors 248 

792 Objec!Windows Reference Guide 

data members 
Handle 248 
ShouldDelete 248 

destructor 246 
macros 248-249 
member functions 

CheckValid 248 
GetObject 246 
RefAdd 247 
RefCount 247 
RefDec 247 
RefFind 247 
Refine 247 
RefRemove 247 

operators 248 
typedefs 246 

TGdiObject::TXGdi class 250 
constructor 250 
member functions 

Clone 250 
Msg 250 
Throw 250 

TGroup enum 296 
TGroupBox class 250 

constructors 251 
data members 

NotifyParent 251 
member functions 

GetClassName 251 
SelectionChanged 252 

THatch8x8Brush class 252, 432 
constructor 253 
data members 

Hatch11F1[8] 252 
Hatch13B1[8] 252 
Hatch13F1[8] 253 
Hatch22B1[8] 253 
Hatch22F1[8] 253 

member functions 
Reconstruct 253 

TheClipboard data member 
TClipboard 97 

THintMode enum 236 
this parameter 50 
ThisOpen data member 

TStorageDocument 420 
This Unknown member function 

TUnknown 660 
Throw member function 

TGdiObject::TXGdi 250 
TXBase 700 
TXCompatibility 500, 501 
TXlnvalidMain Window 63 
TXInvalidModule 310 
TXOutOfMemory 502 
TXOwl 504 
TXWindow 500 



throwing exception objects 
TXBase class 700 
TXCompatibility class 500 
TXGdi class 250 
TXInvalid.l\1ainVVindow 

class 63 
TXInvalid.l\1odule class 310 
TXMenu class 501 
TXOutOfMemory class 502 
TXOwl class 504 
TXV\Tindow class 500 

1HSlider class 405 
constructor 406 
member functions 

HitTest 406 
NotifyParent 406 
PaintRuler 406 
PaintSlot 406 
PaintToPos 406 
PosToPoint 406 

thumb, scroll bars 391, 392 
moving 392,393 
returning position 392, 394 

thumbnail aspect 537, 608 
ThumbRect data member 

TSlider 405 
ThumbResld data member 

TSlider 405 
TIC class 253 

constructor 254 
TicGap data member 

TSlider 405 
tick positions . 

sliders and 399, 400 
Tlcon class 254 

constructors 254 
destructor 254 
member functions 

Getlconlnfo 255 
operator 255 

TileChildren member function 
TMDIClient 283 

TileGadgets data member 
TToolBox 432 

TileGadgets member function 
TGadgetVVindow 242 

tiling 283 
direction 431 

timer event 476, 485 
TlnputDialog class 255 

constructor 255 
control IDs 40 
data members 

buffer 255 
BufferSize 255 
prompt 255 

member functions 
SetupVVindow 256 
TransferData 256 

TlnStream class 256 
constructor 256 

tinycapt.h 23 
Title data member 

TV\Tindow 456 
titles 

documents 189 
updating 474 

TLangld typedef 686 
TLayoutConstraint struct 256 

data members 
MyEdge 257 
OfherEdge 257 
Relationsbip 257 
RelV\Tin 258 
Units 258 

TV\TidthHeight enum and 454 
unions 258 

TLayoutMetrics class 258 
constructor 259 
data members 

Height 259 
V\Tidth 259 
x 259 
y 259 

TLayoutVVindow class 261 
constructor 263 
data members 

ClientSize 264 
destructor 263 
member functions 

EvSize 264 
GetChildLayot1tMetrics 

263 
Layout 264 
RemoveChildLayout­

Metrics 264 
SetChildLayoutMetrics 

264 
TListBox class 264 

constructors 265 
member functions 

AddS.tring 265 
ClearList 265 
DeleteString 265 
DirectoryList 265 
FindExactString 266 
FindString 266 
GetCaretlndex 266 
GetClassName 270 
GetCount 266 
GetHorizontalExtent 266 
GetltemData 266 
GetltemHeight 266 
GetltemRect 266 

GetSel 267 
GetSelCount 267 
GetSellndex 267 
GetSellndexes 267 
GetSelString 267 
GetSelStrings 267 
GetString 267 
GetStringLen 267 
GetToplndex 268 
lnsertString 268 
SetCaretlndex 268 
SetColumn V\Tidth 268 
SetHorizontalExtent 268 
SetltemData 268 
SetltemHeight 268 
SetltemRect 268 
SetSel 268 
SetSellndex 269 
SetSellndexes 269 
SetSelltemRange 269 
SetSelString 269 
SetSelStrings 269 
SetTabStops 269 
SetToplndex 269 
Transfer 270 

TListBoxData struct 270 
constructor 271 
data members 

ItemDatas 270 
SelCount 270 
Sellndices 270 
SelStrings 270 
Strings 270 

destructor 271 
member functions 

AddString 271 
AddStringltem 271 
Clear 271 
GetltemDatas 271 
GetSellndices 271 
GetSelString 271 
GetSelStringLength 271 
GetString 272 
ResetSelections 272 
Select 272 
SelectString 272 

TListView class 272 
constructor 272 
data members 

DirtyFlag 272 
MaxVVidth 273 
Origin 274 

destructor 272 
member functions 

CanClose 273 
CmEditAdd 274 
CmEditClear 274 
CmEditCopy 274 
CmEditCut 274 

Index 793 



tmEditDelete 274 
CrnEditltem 274 
CmEditPaste 274 
CrnEditUndo 274 
CmSelChange 275 
Create 273 
EvGetDlgCode 275 
GetViewName 273 
GetWindow 273 
LoadData 275 
SetDocTitle 273 
SetExtent 275 
StaticName 273 
VnCommit 275 
VnDocClosed 275 
VnisDirty 275 
VnisWindow 275 
VnRevert 276 

TLocaleld typedef 599 
TLocaleString struct 276 

member functions 
Compare 277 
GetSystemLangld 277 
GetUserLangld 277 
IsNativelangld 277 . 
Translate 278 

operators 277, 478 
TLocation enum 160 
TLookup Validator class 278 

constructor 278 
member 'functions 

IsValid 278 
Lookup 279 

1Margins struct 
TGadget class 230 

1MD1frame 
keyboard navigation 285 

1MDIChild class 279 
constructors 279 
destructor 279 
member functions 

DefWindowProc 280 
Destroy 280 
EnableWindow 280 
EvMDIActivate 280 
EvNCActivate 280 
PerformCreate 280 
PreProcessMsg 280 
ShowWindow 280 

1MDIClient class 281 
constructor 281 
data members 

ClientAttr 281 
destructor 281 
member functions 

Arrangelcons 281 
CascadeChildren 282 
CloseChildren 282 

CMArrangelcons 283 
CmCascadeChildren 283 
CmChildActionEnable 283 
CmCloseChildren 283 
CmCreateChild 283 
CmTileChildren 283 
CmTileChildrenHoriz 283 
Create 282 
CreateChild 282 
EvMDICreate 284 
EvMDIDestroy 284 
GetActiveMDIChild 282 
GetClassName 284 
InitChild 282 
PreProcessMsg 282 
TileChildren 283 

1MDIFrame class 284 
constructors 285 
member functions 

DefWindowProc 286 
FindChildMenu 285 
GetClientWindow 286 
GetCo:qunandTarget 286 
PerformCreate 286 
SetMenu 286 

1MeasurementUnits enum 286 
1MemoryDC class 287 

constructors 287 
datamember 

OrgBitmap 288 
member functions 

RestoreBitmap 287 
RestoreObjects 287 
SelectObject 287 

1Menu class 288 
constructors 288 
data members 

DeepCopy 293 
Handle 292 
ShouldDelete 292 

destructor 288 
member functions 

AppendMenu 289 
CheckMenultem 289 
CheckValid 289 
DeleteMenu 289 
Drawltem 289 
EnableMenultem 289 
GetHandle 289 
GetMenuCheckMark-

Dimensions 290 
GetMenultemCount 290 
GetMenultemID 290 
GetMenuState 290 
GetMenuString 290 
GetSubMenu 291 
InsertMenu 291 
IsOK 291 

794 ObjectWindows Reference Guide 

Measureltem 291 
ModifyMenu 291 
RemoveMenu 292 
SetMenultemBitmaps 292 

operators 291, 292 
resource IDs 495 
TXMenu class 501 

1MenuDesc class 
member functions 

ClearContainerGroup­
Count 297 

ClearServetGroup-
Count 297 

ExtractGroups 298 
GetGroupCount 297 
GetHandle 296 
Getld 297 
GetModule 297 
Merge 297 
SetModule 297 

typedefs 296 
1MenuDescr class 293 

constructors 295 
data members 

GroupCount 298 
Id 297 
Module 298 

typedefs 296 
1MenultemEnabler class 298 

constructor 298 
data members 

HMenu 298 
Position 298 

member functions 
Enable 299 
GetMenu 299 
GetPosition 299 
SetCheck 299 
SetText 299 

TMessageBar class 299 
constructor 299 
data members 

Highlightline 300 
HintText 300 

member functions 
GetDesiredSize 300 
GetlnnerRect 300 
PaintGadgets 300 
SetHintT ext 300 
SetText 300 

1MetaFileDC 
constructor 301 
destructor 301 

1MetaFileDC class 300 
member functions 

Close 30.1 
1MetaFilePict class 301 

constructors 301 



data members 
Extent 303 
Mm 303 

destructor 302 
member functions 

CalcPlaySize 302 
GetMetaFileBits 302 
GetMetaFileBitsEx 302 
Height 302 
MappingMode 302 
PlayOnto 302 
SetMappingMode 303 
SetSize 303 
Size 303 
ToClipboard 303 
Width 303 

operators 302 
TModule class 303 

constructors 303 
data members 

Hlnstance 310 
lpCmdLine 304 
Module 304 
Status 304 

destructor 304 
member functions 

AccessResource 304 
AllocResource 305 
CopyCursor 305 
Copykon 305 
Error 305 
ExecDialog 305 
FindResource 305 
GetClasslnfo 306 
GetClientHandle 306 
Getlnstance 306 
GetinstanceData 306 
GetModuleFileName 306, 

310 
GetModuleUsage 307 
GetName 307 
GetParentObject 307 
GetProcAddress 307 
InitModule 307 
IsLoaded 307 
LoadAccelerators 307 
LoadBitrnap 307 
LoadCursor 308 
Loadlcon 308 
LoadMenu 308 
LoadResource 308 
LoadString 308 
LowMemory 308 
MakeWindow 308 
RestoreMemory 309 
Setlnstance 309 
SetName 309 
SetResourceHandler 309 

SizeOfResource 309 
ValidWindow 309 

operators 309 
TModule 

class::TXInvalidModule 310 
TObjectDescriptor member 

function 
TAutoObjectDelete 587 

TObjectDescriptor() operator 
TAutoObject 585 

TOcApp class 600 
constructor 606 
destructor 606 
member functions 

AddUserFormatName 601 
Browse 601 
BrowseClipboard 602 
CanClose 602 
Clip 602 
Convert 602 
Drag 602 
EnableEditMenu 603 
Ev Activate 603 
EvResize 603 
EvSetFocus 603 
ForwardEvent 606, 607 
GetName 603 
GetNameList 603 
GetRegistrar 604 
IsOptionSet 604 
Paste 604 
RegisterClass 604 
RegisterClasses 604 
ReieaseObject 605 
SetOption 605 
SetupWindow 605 
TranslateAccel 605 
UnregisterClass 605 
UnregisterClasses 606 

typedefs 600 
TOcAppMode enum 607 
TOcAspect enum 608 
TOcDialogHelp enum 608 
TOcDocument class 609 

constructors 610 
member functions 

Close 610 
GetActiveView 610 
GetName 610 
GetParts 611 
GetStorage 611 
LoadParts 611 
RenameParts 611 
SaveParts 611 
SaveToFile 612 
SetActiveView 612 
SetName 612 
SetStorage 612 

TOcDragDrop structure 613 
data members 

Initlnfo 613 
Pas 613 
Where 613 

TOcDropAction enum 613 
TOcFormatList class 614 

constructor 614 
destructor 614 
member functions 

Add 614 
Clear 615 
Count 615 
Detach 615 
Find 615 
IsEmpty 615 

TOcFormatListiter class 615 
constructor 616 
member functions 

Current 616 
Restart 616 

operator 616 
TOcFormatName class 616 

constructors 617 
destructors 617 
member functions 

Getld 617 
GetName 617 
GetResultName 617 

operator 617 
TOclnitHow enum 618 
TOcinitlnfo class 618 

constructors 620 
data members 

Cid 619 
Container 618, 620 
Data 619 
Handle 620 
Hlcon 619 
How 619 
Path 619 
Storage 619 
Where 619 

member functions 
ReleaseDataObject 620 

TOcinitWhere enum 621 
TOclnvalidate enum 621 
ToClipboard member function 

TBitrnap 67 
TDib 174 
TMetaFilePict 303 
TPalette 350 

TOcMenuDescr structure 621 
data members 

HMenu 622 
Width 622 

TOcMenuEnable enum 
TOcApp 600 

Ind ex 795 



TOcModule class 622 
constructor 623 
data members 

OcApp 624 
Oclnit 623 
OleMalloc 624 

destructor 623 
member functions 

GetRegistrar 623 
IsOptionSet 623 

TOcNameList class 624 
constructors 624 
destructors 624 
member functions 

Add 625 
Clear 625 
Count 625 
Detach 625 
Find 625 
IsEmpty 625 

operators 625 
TOcPart class 626 

constructors 626 
destructors 631 
member functions 

Activate 626 
Close 627 
Delete 627 
Detach 627 
DoVerb 627 
Draw 627 
Enum Verbs 627 
GetName 628 
GetNameLen 628 
GetPos 628 
GetRect 628 
GetServerName 628 
GetSize 628 
IsActive 628 
IsSelected 629 
IsVisible 629 
Load 629 
Open 629 
Rename 629 
Save 630 
Select 630 
SetActive 630 
SetHost 630 
SetPos 631 
SetSize 631 
SetVisible 631 
Show 631 
UpdateRect 631 

operators 626 
TOcPartCollection class 631 

constructor 632 
destructor 632 

member functions 
Add 632 
Clear 632 
Count 632 
Detach 632 
Find 632 
IsEmpty 632 
Locate 633 
SelectAll 633 

TOcPartCollectionlter class 633 
constructor 633 
member functions 

Current 634 
Restart 634 

operators 634 
TOcPartName enum 634 
TOcRegistrar class 634 

member functions 
BOleComponentCreate 

635 
CanUnload 636 
CreateOcApp 636 
GetAppDescriptor 636 
GetFactory 636 
LoadBOle 637 

TOcRem View class 637 
constructors 637 
member functions 

Copy 638 
EvClose 638 
GetContainerTitle 638 
GetlnitialRect 638 
Invalidate 638 
IsOpenEditing 639 
Load 639 
Rename 639 
Save 639 

TOcSaveLoad structure 639 
data members 

Release 640 
Storage! 640 

TOcScaleFactor class 640 
member functions 

GetScale 642 
GetScaleFactor 642 
IsZoomed 642 
PartSize 641 
SetScale 642 
SiteSize 641 

operators 641 
TOcScrollDir enum 642 
TOcToolBarlnfo structure 642 

data members 
HBottom TB 643 
HFrame 643 
HLeftTB 643 
HRightTB 643 

796 ObjectWindows Reference Guide 

HTopTB 643 
Show 643 

TOcVerb class 644 
constructors 644 
data members 

CanDirty 644 
TypeName 644 
Verblndex 645 
VerbName 645 

TOcView class 645 
constructors 645 
data members 

Extent 650 
FormatList 650 
Link 650 
OcApp 650 
OcDocument 650 
Origin 651 
Win 651 
WinTitle 651 

member functions 
ActivatePart 646 
BrowseClipboard 646 
BrowseLinks 646 
Copy 646 
Ev Activate 646 
EvClose 647 
EvResize 647 
EvSetFocus 647 
ForwardEvent 649 
GetActivePart 647, 650 
GetOcDocument 647 
GetOrigin 647 
GetWindowRect 647 
InvalidatePart 648 
Paste 648 
RegisterClipFormats 648 
ReieaseObject 648 
Rename 648 
ScrollWindow 648 
SetLink 649 
SetupWindow 649 

TOcViewPaint structure 651 
data members 

Aspect 651 
Clip 651 
DC 652 
Paint 652 
Pos 652 

Toggle member function 
TCheckBox 84 

ToggleModelndicator member 
function 

TStatusBar 415 
TOleAllocator class 652 

constructor 652 
data members 

Mem 653 



destructor 653 
member functions 

Alloc 653 
Free 653 

TOleClientDC class 310 
constructor 311 

TOleDocument class 311 
constructor 311 
destructor 311 
member functions 

CanClose 312 
Commit 312 
GetNewStorage 312 
GetOcApp 312 
GetOcDoc 312 
JnitDoc 313 
Open 313 
Path.Changed 313 
PreOpen 313 
Read 313 
ReleaseDoc 313 
SetOcDoc 314 
SetStorage 314 
Write 314 

TOleFactoryBase<> class 314 
member functions 

Create 315 
CreateApp 315 
CreateObject 316 
DestroyApp 316 
TComponentFactory 315 

TOleFrame class 316 
constructor 317 
data members 

DestroyStashedPopups 
320 

HoldMenu 320 
StashCount 320 

destructor 317 
member functions 

AddUserFormatName 317 
CanClose 318 
CleanupWindow 318 
Destroy 318 
DestroyStashedPopups 

318 
Ev ActivateApp 318 
EvOcApp 320 
EvOcAppBorderSpaceReq 

318 
EvOcAppBorderSpaceSet 

318 
EvOcAppDialogHelp 319 
EvOcAppFrameRect 319 
EvOcApplnsMenus 319 
EvOcAppProcessMsg 319 
EvOcAppRestoreUI 319 
EvOcAppShutdown 319 
EvOcAppStatusText 319 

EvOcEvent 319 
EvSize 320 
EvTimer 320 
GetOcApp 317 
GetRem ViewBucket 317 
SetOcApp 317 
SetupWindow 320 
StashContainerPopups 320 

TOleMDIFrame class 321 
constructor 322 
destructor 322 
member functions 

DefWindowProc 322 
EvActivateApp 322 
EvOcApplnsMenus 322 

TOleView class 323 
constructor 323 
destructor 323 
member functions 

CanClose 324 
CreateOcView 324 
EvOcView Attach Window 

325 
EvOcViewClose 325 
EvOcViewlnsMenus 325 
EvOcViewLoadPart 325 
EvOcViewOpenDoc 325 
EvOcViewPartlnvalid 325 
EvOcViewSavePart 325 
GetViewName 324 
GetWindow 324 
SetDocTitle 324 
StaticName 324 
VnlnvalidateRect 326 

TOleWindow class 326 
constructor 327 · 
data members 

ContainerName 329 
DragDC 329 
DragHit 329 
DragPart 329 
DragPt 329 
DragRect 329 
DragStart 329 
Emoedded 329 
OcApp 329 
OcDoc 330 
OcView 330 
Pos 330 
Scale 330 
ShowObjects 330 

destructor 327 
member functions 

CanClose 330 
CeEditConvert 330 
CeEditCopy 330 
CeEditCut 331 
CeEditDelete 331 
CeEditlnsertObject 331 

CeEditLinks 331 
CeEditObject 331 
CeEditPaste 331 
CeEditPasteLink 331 
CeEditPasteSpecial 331 
CeEditVerbs 331 
CeFileClose 332 
CleanupWindow 332 
CmEditConvert 332 
CmEditCopy 332 
CmEditCut 332 
CmEditDelete 332 
CmEditlnsertObject 332 
CmEditLinks 332 
CmEditPaste 332 
CmEditPasteLink 332 
CmEditPasteSpecial 333 
CmFileClose 333 
CreateOcView 333 
CreateVerbPopup 333 
Deactivate 328 
EvCommand 333 
EvCommandEnable 333 
EvDoVerb 334 
EvLButtonDblClk 334 
EvLButtonDown 334 
EvMDIActivate 334 
EvMouseMove 334 
EvOcEvent 334 
EvOcGetPalette 336 
EvOclnsMenus 336 
EvOcPartlnvalid 335 
EvOcView Attach Window 

335 
EvOcViewBorderSpace­

Req 335 
EvOc-ViewBorderSpaceSet 

335 
EvOcViewClipData 335 
EvOcViewClose 335 
EvOcViewDrag 335 
EvOcViewDrop 336 
EvOcViewGetScale 336 
EvOcViewGetSiteRect 336 
EvOcViewLoadPart 336 
EvOcViewOpenDoc 336 
EvOcViewPaint 337 
EvOcViewPartlnvalid 337 
EvOcViewPartSize 337 
EvOcViewSavePart 337 
EvOcViewScroll 337 
EvOcViewSetScale 337 
EvOcViewSetSiteRect 338 
EvOcViewShowTools 338 
EvOcViewTitle 338 
EvRButtonDown 338 
EvRButtonUp 334 
EvSetCursor 338 
EvSetFocus 339 
EvSize 339 

Index 797 



GetinsertPosition 339 
GetLogPerUnit 339 
GetOcApp 328 
GetOcDoc 328 
GetOcRem View 328 
GetOcView 328 
HasActivePart 328 
Init 339 
InvalidatePart 339 
Paint 339 
PaintMetafile 328 
PaintParts 339 
Select 340 
SelectEmbedded 340 
SetScale 340 
SetSelection 340 
SetupDC 340 
SetupWindow 340 
VnlnvalidateRect 340 

toolbars 159 
toolbox gadgets 430 
toolbox.h 23 
top window 472 
ToPage data member 

TPrintDialog::TData 366 
TOpenSaveDialog class 342 

constructors 342, 343 
data members 

Data 343 
ofn 343 
ShareViMsgld 343 

member functions 
CmLbSelChanged 343 
CmOk 343 
DialogFunction 343 
DoExecute 344 
GetFileTitle 342 
GetFileTitleLen 342 
Init 344 
ShareViolation 344 

TOpenSaveDialog::TData 
struct 344 

constructor 344 
data members 

CustomFilter 345 
DefExt 345 
Error 345 
FileName 345 
Filter 345 
Filterlndex 345 
Flags 345 
InitialDir 346 

destructor 345 
member functions 

SetFilter 346 
Top Left member function 

TRect 696 

TopRight member function 
TRect 696 

Touches member function 
TR.ect 696 
TRegion 387 

TOutStream class 346 
. constructor 346 

TPaintDC class· 347 
constructor 347 
data members 

Ps 347 
Wnd 347 

destructor 347 
TPalette class 347 

constructors 347 
member functions 

AnimatePalette 348 
Create 350 
GetNearestPalettelndex 

348 
GetNumEntries 349 
GetObiect 349 
GetPafetteEntries 349 
GetPaletteEntry 349 
ResizePalette 349 
SetPaletteEntries 349 
SetPaletteEntry 350 
ToClipboard 350 
UnrealizeObject 350 

operators 349 
TPaletteEntry class 350 

constructors 351 
TPen class 351 

constructors 351 
member functions 

GetObject 352 
operator 352 

TPicResult enum 353 
TPlacement enum 353 
TPoint class 686 

constructors 687 
member functions 

Offset 687 
OffsetBy 687 

operators 687, 688 
TPoint*() operator 

TRect 695 
TPointer<> class 689 

constructors 689 
operators 689 

TPopupMenu class 353 
constructor 353 
member functions 

TrackPopupMenu 353 
TPreviewPage class 354 

constructor 354 

798 ObjectWindows Reference Guide 

data: members 
PrintDC 355 
PrintExtent 355 
Printout 355 

member functions 
EvSize 355 
Paint 355 
SetPageNumber 355 

TPrintDC class 356 
constructors 356 
member functions 

AbortDoc 356 
Bandlnfo 356 
DeviceCapabilities 356 
EndDoc 359 
EndPage 359 
Escape 359 
NexfBand 362 
Query Abort 362 
QueryEscSupport 363 
SetAbortProc 363 
SetCopyCount 363 
StartDoc 363 
StartPage 363 

structs 
DOCINFO 363 

TPrintDialog class 367 
constructor 368 
data members 

Data 368 
pd 368 

member functions 
CmSetup 369 
DialogFunction 369 
DoExecute 368 
GetDefaultPrinter 368 

TPrintDialog::TData struct 364 
data members 

Copies 364 
Error 364 
Flags 365 
FromPage 366 

. MaxPage 366 
MinPage 366 
ToPage 366 

member functions 
OearDevMode 366 
OearDevNames 366 
GetDeviceName 367 
GetDevMode 367 
GetDevNames 367 
GetDriverName 367 
GetOutputName 367 
Lock 367 
SetDevMode 367 
SetDevNames 367 
TransferDC 367 
Unlock 367 



TPrinter class 369 
constructor 369 
data members 

BandRect 370 
Data 370 
Error 370 
FirstBand 370 
Flags 371 
PageSize 371 
UseBandinfo 371 

destructor 369 
error codes, returning 370 
member functions 

CalcBandingFlags 371 
Clear Device 369 
CreateAbortWindow 371 
ExecPrintDialog 371 
GetDefaultPrinter 371 
GetSetup 369 
GetUserAbort 370 
Print 370 
ReportError 370 
SetPrinter 371 
Setup 370 
SetUserAbort 370 

TPrinter::TXPrinter class 372 
constructor 372 

TPrinterAbortDlg class 372 
constructor 372 
member functions 

EvCommand 372 
SetupWindow 372 

TPrintout class 373 
constructor 373 
data members 

Banding 375 
DC 375 
ForceAllBands 375 
PageSize 375 

destructor 373 
member functions 

BeginDocument 373 
BeginPrinting 373 
EndDocument 373 
EndPrinting 373 
GetDialoginfo 374 
GetTitle 374, 375 
HasPage 374 
PrintPage 374 
SetPrintParams 374 
WantBanding 374 
WantForceAilBands 374 

typedefs 375 
TPrintoutFlags enum 375 
TPrintPreviewDC class 375 

constructor 376 
data members 

CurrentPreviewFont 379 

GetAttributeHDC 379 
PmDC 379 
PrnFont 379 

destructor 376 
member functions 

GetDeviceCaps 376 
LPtoSDP 376 
OffsetViewportOrg 376, 

378 
ReOrg 376 
ReScale 376 
RestoreFont 377 
ScaleViewportExt 377 
ScaleWindowExt 377 
SDPtoLP 377 
SelectObject 377 
SelectStockObject 377 
SetBkColor 378 
SetMapMode 378 
SetTextColor 378 
SetViewportExt 378 
SetWindowExt 378 
SyncFont 379 

TProcinstance class 690 
constructor 690 
destructor 690 
operator 690 

TProfile class 379 
constructor 379 
destructor 380 
member functions 

Getlnt 380 
GetString 380 
Writelnt 380 
WriteString 380 

TPXPictureValidator class 380 
constants 381 
constructor 380 
data members 

Pie 382 
member functions 

Error 381 
IsValid 381 
IsValidlnput 381 
Picture 381 

TrackMenuSelection data 
member 

TDecoratedFrame 161 
TrackMode data member 

TScroller 395 
TrackMouse data member 

TGadget 233 
TrackPopupMenu member 

function 
TPopupMenu 353 

TRadioButton class 382 
constructors 382 

member functions 
BNClicked 383 
GetClassName 383 

TRangeValidator class 383 
constructor 383 
data members 

Max 384 
Min 384 

member functions 
Error 383 
IsValid 383 
Transfer 384 

transfer buffers 485, 490 
transfer functions 432 
transfer mechanism 

buffers 490 
interface objects 

disabling 463 
enabling 464 

transfer mediums, 
registering 568 

Transfer member function 
TCheckBox 85 
TComboBox 106 
TEdit 198 
TListBox 270 
TRangeValidator 384 
TScrollBar 394 
TStatic 411 
TValidator 438 
TWindow 488 

TransferBuffer data member 
TWindow 490 

TransferData member function 
TlnputDialog 256 
TWindow 488 

TransferDC member function 
TPrintDialog::TData 367 

Translate member function 
TLocaleString 278 

TranslateAccel member function 
TOcApp 605 

translating coordinate 
systems 310 

translating string resources 276 
TRect class 690 

constructors 691 
member functions 

Area 691 
BottomLeft 691 
BottomRight 692 
Contains 692 
Height 692 
Inflate 692 
InflatedBy 692 
IsEmpty 693 
IsNull 693 

Index 799 



Normalize 693 
Normalized 693 
Offset 693 
OffsetBy 693 
Set 695 
SetEmpty 696 
SetNull 696 
Size 696 
TopLeft 696 
TopRight 696 
Touches 696 
Width 696 

operators 694 
TRegiondass 384 

constructors 385 
member functions 

Contains 385 
GetRgnBox 385 
SetRectRgn 387 
Touches 387 

operators 386, 387 
typedefs 384 

TRegistrar class 653 
data members 

AppDesc 657 
member functions 

CanUnload 654 
GetFactory 655 
GetOptions 655 
IsOptionSet 655 
ProcessCmdLine 656 
RegisterAppClass 656 
Run 656 
SetOption 657 
Shutdown 657 
UmegisterAppClass 657 

TRegList structure 683 
TRelationshipUnits enum 387 
TReplaceDialog class 387 

constructor 388 
member functions 

DoCreate 388 
TResld class 696 

constructors 697 
member functions 

IsString 697 
operators 697 

TResponseTableEntry class 388 
data members 

Dispatcher 388 
Id 388 
Msg 389 
NotifyCode 389 
Pmf 389 

typedefs 389 
TRgbQuad class 389 

constructors 389 

TRgbQuad() operator 
TDib 174 

TRgbTriple class 390 
constructors 390 

try keyword 502 
TScreenDC class 390 

constructors 391 
TScrollBar class 391 

constructors 391 
data members 

LineMagnitude 391 
PageMagnitude 391 
SetupWindow 394 

member·functions 
DeltaPos 392 
EvHScroll 392 
EvVScroll 392 
GetClassName 394 
GetPosition 392 
GetRange 392 
SBBottom 392 
SBLineDown 392 
SBLineUp 393 
SBPageDown 393 
SBPageUp 393 
SBThumbPosition 393 
SBThuU1J)Track 393 
SBTop 393 
SetPosition 393 
SetRange 393 
Transfer 394 

warning 391 
TScrollBarData struct 394 

data members 
High Value 394 
LowValue 395 
Position 395 

TScroller class 395 
constructor 396 
conversions 46 
data members 

AutoMode 395 
AutoOrg 395 
HasHScrollBar 395 
HasVScrollBar 395 
TrackMode 395 
Window 395 
XLine 396 
XPage 396 
XPos 396 
XRange 396 
XUnit 396 
YLine 396 
YPage 396 
YPos 396 
YRange 396 
YUnit 396 

destructor 396 

800 ObjectWindows Reference Guide 

member functions 
AutoScroll 396 
Begin View 396 
EndView 397 
HScroll 397 
IsAutoMode 397 
IsVisibleRect 397 
ScrollBy 398 
ScrollTo 398 
SetPageSize 397 
SetRange 397 
SetSBarRange 397 
SetUnits 397 
SetWindow 398 
VScroll 398 
XRange Value 398 
XScrollValue 398 
YRangeValue 398 
YScrollValue 398 

TSeparatorGadget class 398 
member functions 

TSeparatorGadget 399 
TSeparatorGadget member 

function 
TSeparatorGadget 399 

TShadowStyle enum 75 
TSize class 697 : 

constructors 698 
member functions 

Magnitude 698 
operators 698, 699 

TSlider class 399 
constructors 400 
data members 

Bkcolor 404 
CaretRect 404 
Max 404 
Min 404 
MouseOffset 404 
Pos 404 
Range 404 
SlideDC 404 
Sliding 404 
SlotThick 404 
Snap 405 
ThumbRect 405 
ThumbResld 405 
TicGap 405 

destructor 400 
member functions 

EvEraseBkgnd 401 
EvGetDlgCode 401 
EvKeyDown 401 
EvKillFocus 401 
EvLButtonDblClk 402 
EvLButtonDown 402 
EvLButtonUp 402 
EvMouseMove 402 



EvPaint 402 
EvSetFocus 402 
EvSize 402 
GetBkColor 402 
GetPosition 400 
GetRange 400 
HitTest 402 
NotifyParent 403 
PaintRuler 403 
PaintSlot 403 
PaintThumb 403 
PointToPos 403 
PosToPoint 403 
SetPosition 400 
SetRange 400 
SetRuler 400 
SetupThumbRgn 403, 405 
SetupWindow 403 
SlideThumb 403 
SnapPos 404 

TSortedStringArray class 408 
constructor 408 
member functions 

Add 408 
ArraySize 408 
Destroy 409 
Detach 409 
Find 409 
FirstThat 409 
Flush 409 
ForEach 409 
GetltemsinContainer 409 
HasMember 409 
IsEmfty 409 
IsFul 410 
LastThat 410 
LowerBound 410 
UpperBound 410 

operator 410 
typedefs 408 

TState enum 75 
TState member function 

TButtonGadget 75 
TStatic class 410 

constructors 411 
member functions 

Clear 411 
EvSize 412 
GetClassName 412 
GetText 411 
GetT extLen 411 
SetText 411 
TextLen 410 
Transfer 411 

TStatus class 412 
constructor 412 
operators 412 

TStatusBar class 413 
constructor 414 

data members 
BorderStyle 415 
Modeindicators 415 
ModeindicatorState 415 
NumModeindicators 415 
Spacing 415 

member functions 
GetModeindicator 414 
IdleAction 415 
Insert 414 
PositionGadget 416 
PreProcessMsg 416 
SetModelndicator 414 
SetSpacing 414 
ToggleModeindicator 415 

operators 414 
typedefs 413 

TStatusBar enum 413 
TStgDocProp enum 416 
TStorageDocument class 416 

constructor 417 
data members 

Storage! 420 
ThisOpen 420 

destructor 417 
member functions 

Close 417 
Commit 417 
FindProperty 418 
GetProperty 418 
GetStorage 418 
InStream 418 
IsOpen 418 
Open 418 
OpenHandle 418 
OutStream 419 
PropertyCount 419 
PropertyFlags 419 
PropertyName 419 
ReleaseDoc 419 
Revert 419 
SetDocPath 419 
SetProperty 419 
SetStorage 420 

typedefs 416 
TStream class 420 

constructor 421 
data members 

Doc 421 
NextStream 421 

destructor 420 
member functions 

GetDocument 420 
GetOpenMode 420 
GetStreamName 421 

TStringLookup Validator 
class 421 

constructor 421 

data members 
Strings 422 

destructor 421 
member functions 

Error 422 
Lookup 422 
NewStringList 422 

TStyle enum 433 
TSystemMenu class 422 

constructor 422 
TTextGadget class 422 

constructor 423 
data members 

Align 423 
NumChars 423 
Text 423 
TextLen 423 

destructor 423 
member functions 

GetDesiredSize 423 
GetText 423 
Invalidate 424 
Paint 424 
SetText 423 
TAlign 424 

typedefs 424 
TTileDirection enum 424 
TTinyCaption class 424 

constructor 426 
data members 

Border 425 
CaptionFont 425 
CaptionHeight 425 
CloseBox 425 
DownHit 425 
Frame 426 
IsPressed 426 
TCEnabled 426 
WaitingForSysCmd 426 

destructor 426 
member functions 

DoCommand 426 
DoLButtonUp 426 
DoMouseMove 426 
DoNCActivate 427 
DoNCCalcSize 427 
DoNCHitTest 427 
DoNCLButtonDown 427 
DoNCPaint 427 
DoSysCommand 427 
DoSysMenu 427 
EnableTinyCaption 427 
EvCommand 428 
EvLButtonUp 428 
EvLMouseMove 428 
EvNCActivate 428 
EvNCCalcSize 428 
EvNCHitTest 428 

Index 801 



EvNCLButtonDown 429 
EvPaint 429 
EvSysCommand 429 
GetCaptionRect 429 
GetMaxBoxRect 429 
GetMinBoxRect 429 
GetSysBoxRect 429 
PaintButton 429 
PaintCaption 429 
PaintCloseBox 430 
PaintMaxBox 430 
PaintMinBox 430 
PaintSysBox 430 

TToolBox class 430 
constructor 431 
data members 

NumColumns 431 
NumRows 431 
TileGadgets 432 

member functions 
GetDesiredSize 431 
Insert 431 
LayoutSession 431 
SetDirection 431 

TTransferDirection enum 432 
TType enum 75, 246 
TUIHandle class 432 

constructor 435 
member functions 

GetBoundingRect 435 
GetCursorld- 435 
HitTest 435 
Move 435 
MoveTo 436 
Paint 436 
Size 436 

typedefs 433, 434 
TUnknown class 658 

constructor 659 
data members 

Outer 660 
destructor 659 
member functions 

Aggregate 658 
GetOuter 658 
GetRefCount 659 
QueryObject 660 
SetOuter 659 
ThisUnknown 660 

operators 659 
TUString*() operator 

TAutoVal 598 
TV aiidator class 436 

constructor 437 
data members 

Options 439 
destructor 437 

member functions 
Error 437 
HasOption 437 
IsValia 438 
IsValidlnput 438 
SetOption 438 
Transfer 438 
UnsetOption 439 
Valid 439 

TXV alidator class 440 
typedefs 439 

TValidatorOptions class 
typedefs 439 

TVbxControl class 440 
constructors 441 
destructor 442 
member functions 

Addltem 442 
Drag 442 
GetClassName 446 
GetEventlndex 442 
GetEventName 442 
GetHCTL 442 
GetNumEvents 442 
GetNumProps 442 
GetProp 442 
GetProplndex 443 
GetPropName 444 
GetPropType 444 
GetVBXProperty 446 
lsArrayProp 444 
Method 444 
Move 444 
PerformCreate 446 
Refresh 444 
Removeltem 445 
SetProp 445 
SetpWindow 446 
SetVBXProperty 446 

TVbxEventHandler class 447 
member functions 

EvVbxDispatch 451 
TView class 451 

constructor 452 
data members 

Doc 454 
Tag 452 

destructor 452 
enums 452 
member functions 

FindProperty 452 
GetDocument 452 
GetNextViewld 452 
GetProperty 452 
GetViewld 453 
GetViewMenu 453 
GetViewName 453 
GetWindow 453 
IsOK 453 

802 Objec!Windows Reference Guide 

NotOK 454 
PropertyCount 453 
PropertyFlags 453 
PropertyName 453 
SetDocTitle 453 
SetProperty 454 
SetViewMenu 454 

, TVSlider class 407 
· constructor 407 

member functions 
HitTest 407 
NotifvParent 407 
PaintRuler 407 
PaintSlot 407 
PointToPos 407 
PosToPoint 408 

TWhere enum 434 
TWidthHeight enum 454 
TWindow class 454 

attribute masks 496-497 
constants 496 
constructors 491 
data members 

Attr 455 
BkgndColor 489 
CursorModule 490 
CursorResld 490 
DefaultProc 456 
hAccel 490 
HCursor 490 
HWindow 456 
Parent 456 
Scroller 456 
Status 456 
Title 456 
TransferBuffer 490 

destructor 457 
flag constants 459 
For Each member function 

TActionFunc typedef 51 
TMemFunc typedef 51 · 

member functions 114 
AdjustWindowRect 457 
AdjustWindowRectEx 457 
BringWindowToTop 458 
CanClose 458 
CheckDlgButton 459 
CheckRailioButton 459 
ChildBroadcastMessage 

459 
ChildWindowFromPoint 

459 
ChildWithld 459 
CleanupWindow 491 
ClearFfag 459 
ClientToScreen 459 
CloseWindow 459 
CmExit 460 
Create 460 



CreateCaret 460 
CreateChildren 460 
DefaultProcessing 460 
defining 114 
DefWindowProc 463 
Destroy 463 
DestroyCaret 463 
DisableAutoCreate 463 
DisableTransfer 463 
Dispatch 463 
DispatchScroll 491 
DragAcceptFiles 464 
DrawMenuBar 464 
EnableAutoCreate 464 
EnableScrollBar 155, 464 
EnableTransfer 464 
EnableWindow 464 
EnumProps 464 
EvChildlnvalid 464 
EvCommand 465 
EvCommandEnable 465 
EvSysCommand 465 
FirstThat 466 
Flash Window 466 
ForEach 466 
ForwardMessage 467 
GetActiveWindow 467 
GetApplication 467 
GetCapture 467 
GetCaretBlinkTime 467 
GetCaretPos 467 
GetClassLong 468 
GetClassName 491 
GetClassWord 468 
GetClientRect 468 
GetCursorPos 468 
GetDesktopWindow 469 · 
GetDlgCtrlID 469 
GetDlgltem 469 
GetDlgltemlnt 469 
GetDlgltemText 469 
GetFirstChild 469 
GetFocus 469 
GetHWndState 469 
Getld 469 
GetLastActivePopup 470 
GetLastChild 470 
GetMenu 470 
GetModule 470 
GetNextDlgGroupltem 

470 
GetNextDlgTabltem 470 
GetNextWindow 470 
GetParent 471 
GetProp 471 
GetScrollPos 471 
GetScrollRange 471 
GetSysModalWindow 471 
GetSystemMenu 471 
GetThunk 471 

GetTopWindow 472 
GetUpdateRect 472 
GetUpdateRgn 472 
GetWindow 472 
GetWindowClass 491 
GetWindowFont 472 
GetWindowLong 472 
GetWindowPlacement 473 
GetWindowPtr 470 
GetWindowRect 473 
GetWindowTask 473 
GetWindowText 473 
GetWindowTextLength 

473 
GetWindowTextTitle 474 
GetWindowWord 474 
HandleMessage 474 
HideCaret 474 
HiliteMenultem 474 
HoldFocusHwnd 475 
IdleAction 475 
Init 493 
Invalidate 475 
InvalidateRect 475 
InvalidateRgn 475 
IsChild 476 
IsDlgButtonChecked 476 
IsFlagSet 476 
Islconic 476 
IsWindow 476 
IsWindowEnabled 476 
IsWindowVisible 476 
IsWindowZoomed 476 
KillTimer 476 
LoadAcceleratorTable 493 
LockWindowUpdate 477 
MapWindowPoints 477 
MessageBox 477 
MoveWindow 477 
Next 478 
NumChildren 478 
OpenClipboard 478 
Paint 478 
PerformCreate 478 
PostMessage 478 
PreProcessMsg 478 
Previous 479 
ReceiveMessage 479 
RedrawWindow 479 
Register 480 
RegisterHotKey 480 
ReleaseCapture 480 
RemoveClilld 493 
RemoveProp 480 
ScreenToClient 480 
ScrollWfudow 481 
ScrollWindowEx 481 
SendDlgltemMessage 481 
SendMessage 481 
SendNotification 481 

SetActiveWindow 481 
SetBkgndColor 482 
SetCaption 482 
SetCapture 482 
SetCaretBlinkTime 482 
SetCaretPos 482 
SetClassLong 482 
SetClassWord 482 
SetCursor 483 
SetDlgltem 483 
SetDlgltemText 483 
SetDocTitle 483 
SetFlag 483 
SetFocus 484 
SetMenu 484 
SetModule 484 
SetNext 484 
SetParent 484 
SetProp 484 
SetRedraw 484 
SetScrollPos 485 
SetScrollRange 485 
SetSysModalWindow 485 
SetTimer 485 
SetTransferBuffer 485 
·SetupWindow 493 
SetWindowFont 485 
SetWindowLong 485 
SetWindowPlacement 486 
SetWindowPos 486 
SetWindowText 486 
SetWindowWord 487 
Show 487 
ShowCaret 487 
ShowOwnedPopups 487 
ShowScrollBar 487 
ShowWindow 487 
ShutDownWindow 487 
Subclass Window Function 

488 
Transfer 488 
TransferData 488 
UnregisterHotKey 488 
UpdateWindow 488 
Validate 488 
ValidateRect 488 
V alidateRgn 489 
WindowFromPoint 489 
WindowProc 489 
WinHelp 489 

operators 475 
TWindowAttr struct 455, 494 

data members 
AccelTable 495 
ExStyle 495 
H 496 
Id 495 
Menu 495 
Param 495 

Index 803 



Style 495 
w 496 
x 496 
y 496 

style constants 495 
1Menu resource ID 495 

TWindowOC class 497 
constructors 497 
data members 

Wnd 497 
destructors 497 

TWindowFlag enum 496 
TWindowView class 498 

constructor 498 
destructor 498 
:member functions 

CanClose 498 
GetViewName 498 
GetWindow 498 
SetDocTitle 499 
StaticName 499 

TWindow::TXWindow class 499 
TXAuto class 660 

constructor 660 
data members 

ErrorCode 661 
type definitions 

TError enum 661 
TXAuto exception 588, 589 
TXAuto::xTypeMis:rnatch 

exception 584 
TXBase class 699 

constructor: 700 
data members 

InstanceCount 700 
destructor 700 
member functions 

Clone 700 
Throw 700 

TXCompatibility class 500 
member functions 

Clone 500 
MapStatusCodeToString 

500 
Throw 500 
Unhandled 501 

TXCompatibility exception 304, 
412 

TXGdi nested class 250 
constructor 500 

TXInvalidMain Window class 63 
TXlnvalidMain Window 

exception 62 
TXInvalidModule exception 307 
TXInvalidModule nested 

class 310 
constructor 310 

member functions 
Clone 310 
Throw 310 

TXlnvalidWindow 
exception 273 

TXMenu class 501 
constructor 501 
member functions 

Clone 501 
Throw 501 

TXObjComp class 661 
constructor 662 
data members 

ErrorCode 662 
type definitions 

TError enum 662 
TXObjComp exception 637 
TXOle class 662 

constructors 663 
data members 

Stat 664 
destructors 663 
member functions 

Check 663 
TXOle exception 587 
TXOutOfMemory class 501 

constructor 501 
member functions 

Clone 501 
Throw 502 

TXOwl class 502 
constructors 503 
data members 

Resld 503 
destructor 503 
member functions 

Clone 504 
GetErrorCode 504 
ResourceldToString 504 
Throw 504 
Unhandled 504 

TXPrinter nested class 372 
TXRegistry class 664 

constructors 664 
data members 

Key 665 
member functions 

Check 664 
TXV alidator class 440 

constructor 440 
TXWindow class 499 

constructors 499 
data members 

Window 499 
member functions 

Clone 499· 
Msg 500 

804 · ObjectWindows Reference Guide 

Throw 500 
Unhandled 500 

message constants 43 
type checking 577, 578, 580, 590 
Type data member 

TButtonGadget 77 
type definitions 

TAppDictionary class 53 
TApplication class 56 
TButtonGadget 75 
TCommandEnabler class 111 
TDecoratedFrame class 160 
TDib class 169 
TDocument class 183 
TFileDocument class 211 
TGadgetWindow class 236 
TLangld 686 
1MenuDescr class 296 
TRegion class 384 
TResponseTableEntry 

class 389 
TSortedStringArray class 408 
TStatusBar class 413 
TTextGadget class 424 
TUJHandle class 433 
TValidator class 439 

typecasting pointers 555, 584 
typehelp registration key 665 
TypeName data member / 

TOcVerb 644 
TYPEREAD utility 528 
typographical conventions 3 

u 
U_Dispatch function 515 
U_LP ARAM_Dispatch 

function 516 
U_POINT_Dispatch 

function 516 
U_U_Dispatchfunction 516 
U_U_U_U_Dispatch 

function 516 
U WPARAM LPARAM 

.:::Dispatch n.i;ction 516 
VI grapples 432 
VI handles 432 
uihandle.h 23 
uint() operator 

1Menu 292 
Unbind member function 

TAutoEnumerator 580 
TAutoProxy 589 

Uncheck member function 
TCheckBox 85 

Uncondemn member function 
TApplication 61 



Undo member function 
TAutoCornmand 577 
1Edit 198 

undo stack 577 
automation 548 

Unhandled member function 
TXCompatibility 501 
TXOwl 504 
TXWindow 500 

Units data member 
TLayoutConstraint 258 

Unlock member function 
TPrintDialog::TData 367 

UnlockBuffer member function 
1Edit 198 

UnrealizeObject member 
function 

TBrush 72 
TPalette 350 

UnReffemplate member 
function 

TDocManager 181 
UnregisterAppClass member 

function 
TRegistrar 657 

UnregisterClass member 
function 

TOcApp 605 
UnregisterClasses member 

function 
TOcApp 606 

UnregisterHotKey member 
function 

TWindow 488 
UnsetOption me1Ilber function 

TValldator 439 
unsigned long far*() operator 

TAutoVal 598 
unsigned long() operator 

TAutoVal 598 
Update member function 

TControlGadget 117 
TGadget 234 

update rectangle, windows 472 
update region, windows 472 
UpdateColors member function 

TDC 157 
UpdateRect member function 

TOcPart 631 
UpdateWindow member 

function 
TWindow 488 

UpperBound member function 
TSortedStringArray 410 

Usage member function 
TDib 174 

usage registration key 570, 665 
UseBandlnfo data member 

TPrinter 371 
user input 

checking 215,278 
data entry 436 
input fields 421 
numeric values 383 
picture strings 380 

retrieving 255 
user interface 

v 
See also interface objects 
bitmaps 80 

v _Activate_Dispatch 
function 516 

v _Dispatch function 517 
v _LP ARAM_Dispatch 

function 517 
v _MdiActivate_Dispatch 

function 517 
v _ParentNotify _Dispatch 

function 517 
v _POINT_Dispatch function 517 
v _POINTER_Dispatch 

function 517 
v _U_Dispatch function 517 
v _U_POINT_Dispatch 

function 518 
v_U_U_Dispatchfunction 518 
v_U_U_U_Dispatch 

function 518 
v _U_U_W _Dispatch 

function 518 
v _WP ARAM_Dispatch 

function 518 
v _WPARAM_LPARAM 

_Dispatch function 518 
valid characters 

input fields 215 
picture fprmats 381 

Valid member function 
TValidator 439 

Validate member function 
TAutoCornmand 577 
TWindow 488 

VALIDAIB.CPP 436 
validate.h 23 
ValidateRect member function 

TWindow 488 
ValidateRgn member function 

TWindow 489 
validating edits 197 
validating pictures 353 

validating user input 215, 278 
data entry 436 
input fields 421 
numeric values 383 
picture strings 380 

Validator data member 
1Edit 198 

ValidatorError member function 
1Edit 198 

validators 
data transfer 384, 438 
filter 215 
IDs 44 
lookup 278 

string 421 
picture 380 
range 383 
validity testing 215, 422 

picture formats 381 
V alidChars data member 

TFilterValidator 215 
validity testing 438, 439 
ValidWindow member function 

TModule 309 
Value constant 258 
Value data member 

TColor 101 
TGauge 244 

Value member function 
TAutoEnumerator 580 

values 
checking 438 

rangeof 383 
setting 215 

maximum/minimum 384 
V ARlANT data type 594 
VBX controls 440 
VBX events 447 
vbxctl.h 23 
Verblndex data member 

TOcVerb 645 
verbn registration keys 665 
VerbName data member 

TOcVerb 645 
verbnopt registration keys 666 
verbs 644 

enumerating 627 
executing 627 

verifying registration 634 
version numbers, returning 50 
version registration key 666 
version.h 23 
vertical scroll bars 391 
vertical sliders 407 
view event messages 565 
view notification constants 504 

Index 805 



viewing 
cqrrent state, program 413, 

415 . 
data 536 
objects 536 

viewport 376, 377, 378 
viewport coordinates 310 
views 

closing 34 
creating 34, 182 
destroying 182 
event tables 183 
ID constants 43 
with no window 451 

virtual function tables 50 
vnCornmit constant 504 
VnCornmit member function 

IBditView 207 
TListView 275 

vnCustomBase constant 504 
vnDocClosed constant 504 
VnDocClosed member function 

IBditView 208 
TListView 275 

vnDocOpened constant 504 
vnlnvalidate constant 504 
Vn.InvalidateRect member 

function 
TOleView class 326 
TOleWindow 340 

vnlsDirty constant 504 
VnisDirty member function 

IBditView 208 
TListView 275 

vnlsWindow constant 504 
VnlsWindow member function 

IBditView 208 
TListView 275 

vnRevert constant 504 
VnRevert member function 

IBditView 208 
TListView 276 

vn ViewClosed constant 504 
vn ViewOpened constant 504 
voFill constant 439 
void pointers 564 
void typedef 408 
voOnAppend constant 439 
voReserved constant 439 
voTransfer constant 439 
VScroll member function 

TScroller 398 

w 
W data member 

TDib 175 
TWindow Attr 496 

W aitingForSysCmd data 
member 

TTinyCaption 426 
WantBanding member function 

1Printout 374 
WantForceAllBands member 

function , 
1Printout 374 

warning beeps 200 
wfAlias constant 496 
wfAutoCreate constant 460, 496 
wfFromResource constant ,497 
wfFullyCreated constant 497 
wfMain Window constant 497 
wfPredefinedClass constant 497 
wfShiink:ToClient constant 497 
wfStreamTop constartt 497 
wfTransfer constant 497 
wfUnDisabled constant 497 
wfUnHidden constant 497 
Where data member 

TOcDragDrop structure 613 
TOclnitlnfo 619 

White data member 
TColor 100 

WideAsPossible data member 
TGadget 229 
TGadgetWindow 240 

WidenPath member function 
TIX 157 

widgets 12 
width, rectangles 698 
Width data member 

TLayoutMetrics 259 
TOcMenuDescr structure 622 

Width member function 
TBitmap 67 
TDib 174 
TMetaFilePict 303 
TRect 696 

Win data member 
TOcView 651 

Win32, icons 3 
WIN32DLLs 

building 50 
exporting 49 
importing 49 

window classes 11 
returning information on 306 

Window data member 
TGadget 233 

806 ObjectWindows Reference Guide 
I 

TScroller 395 
TXWindow 499 

window mapping 
functions 376,377,378 

window.h 23 
windowev.h 23 
WindowFromPoint member 

function 
TWindow 489 

WindowProc member function 
TWindow 489 

windows 432 
bit mask constants 496 
caption bars, creating 424 
cascading 282 
child 162, 256, 258, 279, 281, 

282 
client 159, 222 
Clipboard-viewer chain 

adding 96, 98 
removing 98 

closing 57, 282, 459, 460 
dialog box 164, 165 

constraints 
defined 258 
edge 190,258,261 
layout 256, 258 

coordinate systems, 
translating 310 

creating 165, 256, 454 
main 55,62 

decorating 159, 162 
default procedure 456 
defaultprocessing 162 
handles, retrieving 94, 95 
layout 387 

constraints 256, 258 
metrics, defining 258,261 

main See main window 
moving through 222 
naming 62,456,474 
painting 226 
placing 190 
property list, retrieving 

handle for 471 
scaling 311 
scrolling 311, 642 
sizing 286, 387, 454 
tiling 283 

Windows applications 
bitmaps, predefined 307 
control message 167 
CTL3D DLL support 163 
cursors, predefined 308 
default message 

processing 456 
handles, returning 309 



icons, predefined 308 
interface element 460 
radio button interface 

element 382 
redisplay 478 
registration class 

attributes 491 
registration class name 85, 

251, 412, 491, 480 
resources, loading into 

memory 309 
VVindovvsfunctions 701,707 
VVinHelp member function 

TVVindovv 489 
VVinTitle data member 

TOcVievv 651 
VVM_CREATE message 495 
VVM_INITDIALOG 

message 169 
VVM_ OCEVENT message 667 
VVMY AINI message 226, 478 
VVM_TilvIER messages 476, 485 
VVnd data member 

TPaintDC 347 
TVVindovvDC 497 

VVNDCLASS struct 736 
vvord-break functions 198 
vvordvvrapping 194, 196 
VVParam parameter 167 
VVrite member function 

TEditFile 203 
TOleDocument 314 

VVriteFile member function 
TDib 174 

VVriteint member function 
TProfile class 380 

VVriteString member function 
TProfile class 380 

vvs_ vvindovv style 
constants 102, 118, 382, 411 

VVS_BORDER constant 265, 495 
VVS_CAPTION constant 495 
VVS_CHILD constant 495 
VVS_ CHILDVVINDOVV 

constant 495 
VVS _ CLIPCHILDREN 

constant 495 
VVS_CLIPSIBLINGS 

constant 495 
\.VS _DISABLED constant 496 
VVS_DLGFRAME constant 496 
VVS_GROUP constant 496 
VVS_HSCROLL constant 391, 

496 
VVS_MAXIlvIIZE constant 496 

VVS_MAXIlvIIZEBOX 
constant 496 

VVS_MINilvIIZE constant 496 
VVS_OVERLAPPED 

constant 496 
VVS_OVERLAPPEDVVINDOVV 

constant 496 
VVS_POPUP constant 496 
VVS_FOPUPVVINDOVV 

constant 496 
VVS SYSMENU constant 496 
VVS TABSTOP constant 496 
VVS=TABSTOP style 251 
VVS_THICKFRAME 

constant 496 
VVS_ VISIBLE constant 496 
VVS_ VSCROLL constant 265, 

391,496 

x 
X data member 

TLayoutMetrics 259 
TVVindovv Attr 496 

xConversionFailure 
exception 594 

XFORM struct 739 
XLine data member 

TScroller 396 
xmsg exception 305 
xNoArgSymbol exception 591 
XPage data member 

TScroller 396 
XPos data member 

TScroller 396 
XRange data member 

TScroller 396 
XRange Value member function 

TScroller 398 
xs exception status bit flags 61 
xs exception status enum 56 
xsAlloc constant 56 
xsBadCast constant 56 
xsBadTypeid constant 56 
XScrollValue member function 

TScroller 398 
xsMsg constant 56 
xsOvvl constant 56 
xsUnknovvn constant 56 
XUnit data member 

TScroller 396 

y 
Y data member 

TLayoutMetrics 259 
TVVindovv Attr 496 

YLine data member 
TScroller 396 

YPage data member 
TScroller 396 

YPos data member 
TScroller 396 

YRange data member 
TScroller 396 

YRange Value member function 
TScroller 398 

YScrollValue member function 
TScroller 398 

YUnit data member 
TScroller 396 

Ind ex 807 



808 ObjectWindows Reference Guide 



Borland 
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Brazil, 
Canada, Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, Singapore, Spain, 
Sweden, Taiwan, and United Kingdom • Part#BCP1245WW21775 • BOR 7773 


