Reference Guide

ObjectWindows

Reference Guide

* ObjectWindows Classes
* Event-handling Functions
* Dispatch Functions

®

* ObjectComponents Classes
* Linking and Embedding
* Automation

OhjectWindows

Reference Guide

Borland®
ObjectWindows®

Borland International, Inc., 100 Borland Way
y P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

CoPYRIGHT © 1991, 1994 Borland International. All rights reserved. All Borland products are trademarks or
registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.
1EOR1094

9495969798987 65432
H1

Contents

Introduction 1
What’s new in ObjectWindows 2.5. 1
Contentsof thismanual 2
Typefaces used in thismanual 3
Conventions used in thismanual 3
Part I
ObjectWindows reference 5
Chapter 1
Overview of ObjectWindows 7
Hierarchy diagram 7
Using ObjectWindows classes 10
Baseclasses 10
Window management classes 1
Framewindows 11
Decorated windows 1
Commondialogs. 11
Controls 12
Gadgets 12
Menus 13
Module management classes 13
Doc/Viewclasses. 13
Printerclasses. 14
Graphicsclasses. 14
DCclasses. 14
GDIclasses 14
Validatorclasses. 14
Exception handling classes 15
Command enabling classes 15
ObjectSupport library classes. 15
ObjectWindows Libraries 16
Compiler options for building and using
ObjectWindows libraries. 17
Building ObjectWindows libraries. 18
Using ObjectWindows libraries 18
The ObjectWindows header files. 19
The ObjectWindows resource files. 23
The ObjectWindows data types 24
Chapter 2
ObjectWindows library reference 25
TBird class [sample] 25
Typedefinitions. 25
Publicdatamembers. 26
Public constructor and destructor 26
Public member functions 26

Protected data members

Protected constructors.

Protected member functions.

Response tableentries.
BF_>xxxx button flag constants
BIN_xxxx button message constants
CBN_>xxx combo box message constants . . .
CM_xxxx edit constants
CM_xxxxeditfileconstants
CM_xxxx edit replace constants
CM_xxxx editview constants.
CM_xxxxMDIconstants.
DECLARE_RESPONSE_TABLE macro.
DEFINE_APP_DICTIONARY macro
DEFINE_DOC_TEMPLATE_CLASS macro . .
DEFINE_RESPONSE_TABLE macros.

DLGC_xxxx dialog control message
constants

dnooxx document manager mode
constants

dnxoxxx document message constants
dbooxx document template constants
END_RESPONSE_TABLE macro
EN_xxxx edit message constants
EV xxxxmacros.
Factory templateclasses
GetApplicationObject function
GetWindowPtr function
ID_xxxx file constants
ID_xxxxprinterconstants
IDA_xxxx accelerator ID constants.
IDA_xxxx OLE accelerator ID constants
IDM_xxxx menu ID constants
IDM_xxxx OLE menu ID constants
IDS xxxx editview ID constants
IDS_Mode constants
IDS_xxxx document string ID constants.
IDS_xxxx edit file ID constants
IDS_xxxx exception message constants
IDS_xxxx listview ID constants.
IDS_xxxx printer string ID constants.
IDS_xxxx validator ID constants
IDW_MDICLIENT constant.
IDW_MDIFIRSTCHILD constant
LangXooxxIDconstants. &

LBN_xxxx list box message constant
ImParentconstant.
LongMulDiv function
MAX_RSRC_ERROR_STRING constant
MB_Xxxx message constants:.
NBitsfunction.
NColorsfunction
oboxx document openenum.
pbooxx property attribute constants
_BUILDOWLDLL macro
_OWLCLASSmMacro
_OWLDATAmacro.o,
_OWLDLLmacro.o.....
_OWLFARmMacro.
_OWLFARVTABLE macro
_OWLFASTTHISmacro.
_OWLFUNC macro
OWLGetVersion function
SB_Xxxx scroll bar constants
shoooxx document sharingenum
TActionFunctypedef.
TActionMemFunc typedef
TAnyPMF typedef
TAnyDispatcher typedef.
TAppDictionary class
Typedefinitions.
Public constructor and destructor
Public member functions
TApplication class
Publicdatamembers.
Typedefinitions.
Public constructor and destructor
Public member functions
Protected datamembers.
Protected member functions
TApplication:: TXInvalidMainWindow class . .
Public constructor
Public member functions
TAutoFactory<> class
Public member functions
TBandInfo struct
TBitmap class
Publicconstructors
Public member functions
Protected constructor.
Protected member functions
Operators
TBitmapGadgetclass.
Public constructor and destructor

Public member functions. 69
Protected member functions. 69
TBitSetclass 69
Publicconstructors 69
Public member functions. 70
TBIVbxLibraryclass 71
Public constructor and destructor. 71
TBrushclass 71
Publicconstructors 71
Public member functions. 72
TButtonClass 72
Publicdatamembers 72
Publicconstructors 73
Protected datamember. 73
Protected member functions 73
Response tableentries. 74
TButtonGadgetclass 74
Typedefinitions 75
Public constructor and destructor. 75
Public member functions. 75
Protected datamembers 76
Protected member functions 77
TButtonGadgetEnablerclass 79
Publicconstructor 79
Protected datamember. 80
Public member functions. 80
TCelArrayclass 80
Public constructors and destructor 80
Public member functions. 81
Protected datamembers 82
TCharSetclass. 82
Public constructors 82
Public member function 83
TCheckBoxclass.8
Publicdatamember. 83
Publicconstructors 83
Public member functions. 84
Protected member functions. 85
Response tableentries. 86
TChooseColorDialog class. 86
Publicconstructors 86
Public member function 86
Publicdatamembers 86
Protected member functions 87
Response tableentries. 87
TChooseColorDialog::TDataclass 87
Publicdatamembers 87
TChooseFontDialogclass 88"
Publicconstructor 88
Protected datamembers 89
Protected member functions 89

Response tableentries 89
TChooseFontDialog:TDataclass. 89
Publicdatamembers. 920
TClientDCClass 91
Publicconstructors. 91
TClipboardclass 92
Publicdestructor 93
Publicdatamembers. 93
Public member functions 93
Protected datamembers. 96
Protected constructor. 97
TClipboardViewer Class. 97
Protected datamember 97
Protected constructors 97
Protected member functions 97
Response tableentries 98
TColorClass. 98
Publicconstructors 98
Publicdatamembers. 99
Public member functions 100
Protected datamember 101
TComboBoxclass. 102
Public constructors. 102
Publicdatamember 102
Public member functions 102
Protected member functions 106
TComboBoxDataclass. 106
Public constructor and destructor 106
Public member functions 107
Protected datamembers. 108
TCommandEnablerclass 108
Publicconstructor 111
Typedefinitions. m
Publicdatamembers. 111
Public member functions 111
Protected datamembers. 112
TCommonDialogclass. 112
Public constructor 113
Public member functions 113
Protected datamember 113
Protected member functions 113
Response tableentries 114
TCondFunctypedef 114
TCondMemFunc typedef 114
TControlBarclass. 115
Publicconstructor 115
Public member function. 115
Protected member function. 116
TControlGadgetclass 116
Public constructor and destructor 116
Protected datamember 116

ii

Protected member functions 116
Response tableentries. 17
TControlclass 117
Publicconstructors 117
Protected member functions 118
Response tableentries. 120
TCreatedDCclass. 120
Public constructors and destructor 120
Protected constructor 120
TCursorclass. 121
Public constructors and destructor 121
Public member function 121
Operators 122
TDCclass. i i i e 122
Public constructor and destructor. 122
Public member functions. 123
Protected constructors. 158
Protected datamembers 158
Protected member functions 159
TDecoratedFrameclass. 159
Type definitions 160
Publicconstructor 160
Public member functions. 160
Protected datamembers 161
Protected member functions. 161
Response tableentries. 162
TDecoratedMDIFrameclass. 162
Publicconstructor 162
Protected member function 162
Response tableentries. 162
TDesktopDCclass. 163
Publicconstructor 163
TDialogclass. 163
Publicdatamembers 164
Public constructor and destructor. 164
Public member functions. 164
Protected member functions. 167
Response tableentries. 168
TDialog class:TDialogAttr struct. 168
Publicdatamembers 168
TDibclass. 169
Typedefinitions 169
Public constructors and destructor 169
Public member functions. 170
Protected datamembers 174
Protected member functions. 175
TDibDCClass v v v i e e e e 176
Publicconstructors 176
TDocManagerclass. 176
Public constructor and destructor. 177
Publicdatamembers 177

Public member functions 177
Protected member functions 181
Response tableentries 182
TDocumentclass 182 -
Publicdatamembers. 183
Typedefinition 183
Public constructor and destructor 184
Public member functions 184
Protected datamembers. 189
Protected member functions 189
TDocument:Listclass 189
Public constructor and destructor 189
Public member functions 190
TEdgeConstraint struct 190
Public member functions 190
TEdgeOrSizeConstraint struct 191
Public member functions 192
TEditclass 192
Publicconstructors 193
Public member functions 193
Protected datamember 198
Protected member functions 198
Response tableentries 201
TEditFileclass. 201
Public constructors and destructor. 201
Public data members. e 202
Public member functions 202
Protected member functions 203
Response tableentries 204
TEditSearchclass 204
Publicconstructor 204
Publicdatamembers. 204
Public member functions 205
Response tableentries 206
TEditViewclass. 206
Public constructor and destructor 206
Public member functions 206
Protected datamember, 207
Protected member functions 207
Response tableentries 208
TEqualOperator typedef. 208
TEventHandlerclass. 209
Public member functions 209
Protected member function. 209
TEventHandler:: TEventInfoclass 209
Publicconstructor 209
Publicdatamembers. 210
TEventStatusenum. 210
TFileDocumentdclass. 210
Public constructor and destructor 211
Typedefinitions. 211

Public member functions. 211
Protected datamember. 213
Protected member functions. 213
TFileOpenDialogclass 213
Publicconstructor 214
Public member function 214
TFileSaveDialogclass. 214
Publicconstructor214
Public member function 214
TFilterValidatorclass 215
Publicconstructor 215
Public member functions. 215
Protected datamembers 215
TFindDialogclass. 216
Publicconstructor 216
Protected member functions. 216
TFindReplaceDialogclass 216
Publicconstructor 216
Public member functions. 217
Protected datamembers 217
Protected member functions. 217
Response tableentries. 218
TFindReplaceDialog:TData class. 218
Public constructor and destructor. 218
Publicdatamembers 218
TFloatingFrameclass. . .". 219
Publicconstructor 220
Public member functions. 220
Protected member functions. 220
Response tableentries. 221
TFontclass 221
Public constructors 221
Public member functions. 222
TFrameWindowclass. 222
Public constructors and destructor 222
Publicdatamembers 223
Public member functions. 223
Protected datamembers 225
Protected constructor 226
Protected member functions. 226
Response tableentries. 228
TGadgetclass 228
Public constructors and destructor 229
Publicdatamembers 229
Publicenumsand structs. 229
Public member functions. 230
Protected datamembers 232
Protected member functions. 233
TGadgetWindowFontclass 234
Publicconstructor 235
TGadgetWindowclass 236

iv

Public constructor and destructor 236

Type definitions. 236
Public member functions 236
Protected datamembers. 239
Protected member functions 241
Response tableentries 243
TGaugeclass. 243
Publicconstructor 243
Public member functions 243
Protected datamembers. 244
Protected member functions 245
Response tableentries 245
TGdiObjectclass 245
Publicdestructor 246
Type definitions. 246
Public member functions 246
Protected datamembers. 248
Protected member functions 248
Protected constructors 248
Macros e 248
TGdiObject:TXGdiclass. 250
Public constructor 250
Public member functions 250
TGroupBoxclass 250
Publicdatamembers. 251
Publicconstructors 251
Public member functions 251
THatch8x8Brushclass 252
Publicdatamembers. 252
Publicconstructors. 253
Public member functions 253
TICclass 253
Publicconstructor 254
TIconclass 254
Public constructors and destructor. 254
Public member functions 255
TInputDialogclass 255
Publicdatamembers. 255
Publicconstructor 255
Public member function. 256
Protected member function. 256
TInStreamclass 256
Publicconstructor 256
TLayoutConstraintstruct 256
Publicdatamembers. 257
TLayoutMetricsclass. 258
Publicdatamembers. 259
Publicconstructor 259
TLayoutWindowclass. 261
Examples. 261

Public constructor and destructor 263

Public member functions. 263
Protected datamember 264
Protected member functions 264
Response tableentries. 264
TListBoxclass 264
Public constructors 265
Public member functions. 265
Protected member function 270
TListBoxDatastruct. 270
Publicdatamembers 270
Public constructor and destructor. 271
Public member functions. 271
TListViewclass 272
Public constructor and destructor. 272
Public data member. e 272
Public member functions. 273
Protected datamembers 273
Protected member functions 274
Response tableentries. 276
TLocaleString struct. 276
Public member functions. 277
TLookupValidatorclass 278
Publicconstructor 278
Public member functions. 278
TMDIChildclass 279
Public constructors and destructor 279
Public member functions. 279
Protected member functions 280
Response tableentries. 281
TMDIClientclass 281
Public constructor and destructor. 281
Publicdatamember. 281
Public member functions. 281
Protected member functions. 283
Response tableentries. 284
TMDIFrameclass 284
Public constructors 285
Public member functions. 285
Protected member functions. 286
Response tableentries. 286
TMeasurementUnitsenum 286
TMemoryDCclass 287
Publicconstructors 287
Public member functions. 287
Protected datamember. 287
TMenuclass 288
Public constructors and destructor 288
Public member functions. 288
Protected datamembers 292
Protected member functions. 292
TMenuDescrclass. 293

Public constructors and destructor. 295 Response tableentries. 326

Typedefinitions. 296 TOleWindowclass 326
Public member functions 296 Public constructor and destructor. 327
Protected datamembers. 297 - Publicmember functions. 327
Protected member functions 298 Protected datamembers 329
TMenultemEnablerclass R 298 Protected member functions. 330
Publicconstructor 298 Response table entries. 341
Protected datamember 298 TOpenSaveDialog class 342
Public member functions. 299 Public constructor oo 342
TMessageBarclass 299 Public member functions. 342
Publicconstructor 299 Protected datamembers 343
Public member functions 299 Protected constructor 343
Protected datamembers.300 Protected member functions. 343
Protected member functions 300 Response tableentries. 344
TMetaFileDCclass 300 TOpenSaveDialog:TDatastruct 344
Public constructor and destructor 301 Public constructors and destructor 344
Public member function. 301 Datamembers 345
TMetaFilePictclass 301 - Public member functions. 346
Public constructors and destructor. 301 TOutStreamclass 346
Public member functions 302 Publicconstructor 346
Protected datamembers. 303 TPaintDCdass. v 347
TModuleclass. 303 Public constructor and destructor. 347
Public constructors and destructor. 303 Publicdatamember. 347
Publicdatamembers. 304 Protected datamember. 347
Public member functions 304 TPaletteclass.covv v ... 347
Protected data members. P 309 Public constructors oo ot 347
TModule: TXInvalidModuleclass 310 Public member functions. 348
Publicconstructor 310 Protected member functions. 350
Public member functions 310 TPaletteEntryclass 350
TOleClientDCclass. 310 Public constructors 351
Public constructor 311 TPenclass. . . . v v v v v 351
TOleDocumentclass 311 Publicconstructors 351
Public constructor and destructor 31 Public member functions. 352
Public member functions 312 TPicResultenumo u. ... 353
TOleFactoryBase<>class 314 TPlacementenum. o o oo 353
Public member functions 315 TPopupMenudclass. 353
Template arguments 315 Public constructors 353
TOleFrameclass. 316 Public member functions. 353
Public constructor and destructor 317 TPreviewPageclass. 354
Public member functions 317 Publicconstructor 354
Protected member functions 317 Public member functions 355
Protected datamembers. 320 Protected data members 355
Response table entries 321 Protected member functions 355
TOleMDIFrameclass. 321 Response table entries. 356
Public constructor and destructor 322 TPrntDC class. . . o v oo oo 356
Protected member functions 322 Public constructors v oo 356
Response table entries 323 Public member functions. 356
TOleViewclass e e 323 Protected datamember. 363
Public constructor and destructor 323 TPrintDialog:TData struct. 364
Public member functions 324 Public datamembers 364
Protected member functions 324 Public member functions 366

vi.

TPrintDialogclass. 367
Public constructor 368
Public member functions 368
Protected datamembers. 368
Protected member functions 369
Response tableentries 369

TPrinterclass 369
Public constructor and destructor 369
Public member functions 369
Protected datamembers. 370
Protected member functions 371

TPrinter:TXPrinterclass. 372
Publicconstructors 372

TPrinterAbortDlgclass. 372
Publicconstructor 372
Protected member functions 372

TPrintoutclass. 373
Public constructor and destructor 373
Public member functions 373
Type definitions. 374
Protected datamembers. 375

TPrintPreviewDCclass 375
Public constructor and destructor 376
Public member functions 376
Protected datamembers. 379
Protected member functions 379

TProfileclass. 379
Public constructor and destructor 379
Public member functions 380

TPXPictureValidatorclass. 380
Publicconstructor 380
Public member functions 380
Protected datamember 382

TRadioButtonclass. 382
Publicconstructors 382
Protected member functions 383
Response tableentries 383

TRangeValidatorclass 383
Publicconstructor 383
Public member functions 383
Protected datamembers. 384

TRegionclass 384
Type definitions. 384
Publicconstructors. 384
Public member functions 385

TRelationshipenum 387

TReplaceDialogclass. 387
Public constructor 388
Protected member function. 388

TResponseTableEntry class 388
Publicdatamembers. 388

vii

Type definitions 389
TRgbQuadclass. 389
Public constructors 389
TRgbTripleclass. 390
Publicconstructors 390
TScreenDCclass. 390
" Publicconstructor 390
TScrollBarclass 391
Publicdatamembers 391
Public constructors 391
Public member functions. 392
Protected member functions. 394
Response tableentries. 394
TScrollBarDatastruct. 394
Publicdatamembers 394
TScrollerclass 395
Publicdatamembers 395
Public constructor and destructor. 396
Public member functions. 396
TSeparatorGadgetclass 398
Public member function 399
TSliderclass 399
Public constructor and destructor. 400
Public member functions. 400
Protected member functions. 401
Protected datamembers 404
Response tableentries. 405
THSliderclass 405
Public constructors 406
Protected member functions. 406
TVSliderclass 407
Publicconstructor 407
Protected member functions. 407
TSortedStringArrayclass 408
Publicconstructor 408
Type definitions 408
Public member functions. 408
TStaticclass. 410
Publicdatamembers 410
Publicconstructors 411
Public member functions. 411
Protected member functions 412
Response tableentries. 412
TStatusclass 412
Publicconstructor 412
Publicdatamembers 412
TStatusBarclass 413
Type definitions 413
Publicconstructor 414
Public member functions. 414
Protected datamembers 415

Protected member functions 415
TStorageDocument class. 416
Typedefinitions. 416
Public constructor and destructor 417
Public member functions 417
Protected datamembers. 420
TStreamclass 420
Publicdestructor 420
Public member functions 420
Protected datamembers. 421
Protected constructor. 421
TStringLookupValidatorclass 421
Public constructor and destructor 421
Public member functions 421
Protected datamember 422
TSystemMenuclass. 422
Public constructor 422
TTextGadgetclass. 422
Public constructor and destructor 423
-Public member functions 423
Protected datamembers. 423
Protected member functions 423
Typedefinitions. 424
TTinyCaptionclass 424
Protected datamembers. 425
Protected constructor and destructor 426
Protected member functions 426
Response tableentries 430
TToolBoxclass. 430
Publicconstructor 431
Public member functions 431
Protected datamembers. 431
Protected member function. 432
TTransferDirectionenum 432
TUIHandleclass. 432
Type definitions. 433
Publicconstructor 435
Public member functions 435
TValidatorclass 436
Public constructor and destructor 437
Public member functions 437
Protected datamembers. 439
Typedefinitions. 439
TValidator::TXValidatorclass. 440
Publicconstructor 440
TVbxControlclass 440
Public constructors and destructor. 441
Public member functions 442
Protected member functions 446
Response tableentries 446
TVbxEventHandlerclass 447

viii

Protected member functions. 450
Response table entries. 451
TViewclass. 451
Publicdatamembers 452
Public constructor and destructor. 452
Public member functions. 452
Protected datamember 454
Protected member functions 454
TWidthHeightenum 454
TWindowdlass. 454
Publicdatamembers 455
Public constructors and destructor 456
Public member functions. 457
Protected datamembers 489
Protected constructor 490
Protected member functions 491
Response table entries. 494
TWindowAttrstruct 494
Publicdatamembers 495
" TWindowFlagenum 49
TWindowDC«class 497
Public constructor and destructor. 497
Protected constructor 497
Protected datamember 497
TWindowViewclass 498
Public constructor and destructor. 498
Public member functions. 498
Response table entries. 499
TWindow:TXWindowclass. 499
Public constructors 499
Publicdatamembers 499
Public member functions. 499
TXCompatibility class 500
Public constructors 500
Public member functions. 500
TMenu:TXMenuclass 501
Public constructors 501
Public member functions. 501
TXOutOfMemoryclass. 501
Public constructors 501
Public member functions. 501
TXOwldass 502.
Public constructors and destructor 503
Publicdatamember. 503
Public member functions. 504
vnxxxx view notification constants. 504
Chapter 3
ObjectWindows event handlers 505

Chapter 4
ObjectWindows dispatch functions 513
List of ObjectWindows dispatch functions . . 514

i LPARAM Dispatch 514
i UWUDispatch 514
i WPARAM Dispatch. 515
132 Dispatch. 515
132_LPARAM Dispatch. 515
132 WPARAM_LPARAM Dispatch. 515
132_MenuChar Dispatch 515
32 U Dispatch. 515
UDispatch 515
U_LPARAM Dispatch. 516
U_POINT Dispatch 516
U_POINTER Dispatch 516
U_UDispatch. 516
U UUUDispatch............... 516
U_WPARAM_LPARAM Dispatch 516
v_Activate_Dispatch. 516
v_Dispatch. 516
v_LPARAM Dispatch. 517
v_MdiActivate_Dispatch 517
v_ParentNotify_Dispatch 517
v_POINT Dispatch. - 517
v_POINTER Dispatch. 517
v_UDispatch. 517
v_U_POINT Dispatch. 518
v_U_UDispatch 518
v_U UUDispatch 518
v_UUWDispatch............... 518
v_WPARAM Dispatch 518
v_WPARAM LPARAM Dispatch. 518
Part I
ObjectComponents reference 519
Chapter 5
Overview of ObjectComponents 521
ObjectComponents libraries. 521
ObjectComponents header files 522
General OLE classes, macros, and type
definitions 522
Global utility functions. 523
ObjectComponents exception classes 523
Automationclasses. 523
Automation enumerated types and type
definitions typtyp524
Automationdatatypes. 524

Declarations and definitions of automation

Automation declaration macros 525
Automation definition macros 526
Automation hookmacros 527
Automation proxy macros. 528
Registrationkeys 529
Linking and embedding classes 530
Linking and embedding enums 532
Linking and embedding messages. 532
Linking and embedding structs. 532
ocrxxxxconstants, 533
Chapter 6
ObjectComponents library

reference 535
ICLASSmacro 535
JFUNCmacro.o vvivieen.. 535
_OCEXXXXmMAaCros. . .« v v v v v v e ve e 535
aspectall registrationkey. 536
aspectcontent registrationkey. 536
aspectdocprint registrationkey 537
aspecticon registrationkey. 537
aspectthumbnail registration key. 537
AUTOARGSmMacros 538
AUTOCALL xxxxmacros. 538
_AUTOCLASSmMacro 539
AUTODATAmacros 539
AutoDataTypeenum. 540
AUTODETACHmacro. 540
AUTOENUMmMmMacros 541
AUTOFLAGmacro. 541
AUTOFUNCMACIoS . . . « v v v vov e 542
AUTOINVOKEmacro. 543
AUTOITERATOR macros 543
AUTONAMESmacros. 544
AUTONOHOOK macro. 544
AUTOPROPmMAacCros 545
AUTORECORD MAacro.o .. 545
AUTOREPORTmacro 545
AutoSymFlagenum 546
AUTOSTAT macros. oo v v .. 546
AUTOTHISmacro 547
AUTOUNDOmMacro« v oo v v v 548
AUTOVALIDATE macro. 548
clsid registrationkey L. 548
cmdline registrationkey 549
debugclsid registrationkey 549

debugdesc registrationkey 549
debugger registrationkey. 550
debugprogid registrationkey. 550
DECLARE_AUTOCLASS macro. 551
DECLARE_COMBASESn macros 551
DEFINE_AUTOAGGREGATE macro. 552
DEFINE_AUTOCLASSmacro 552
DEFINE_COMBASESn macros 553
description registrationkey 553
directory registrationkey 554
docfilter registrationkey. 554
docflags registrationkey. 554
DynamicCast function. 555
END_AUTOAGGREGATE macro. 555
END_AUTOCLASSmacro 555
EXPOSE_APPLICATION macro. 556
EXPOSE, DELEGATEmacro 556
EXPOSE_INHERIT macro. 557
EXPOSE_ITERATORmacro 557
EXPOSE_METHOD macros 558
EXPOSE_PROPxxxxmacros 559
EXPOSE_QUITmacro 560
extension registrationkey 560
filefmt registrationkey. 561
formatn registrationkey. 561
handler registrationkey 561
helpdir registrationkey 562
HR_xxxxreturnconstants. 562
iconindex registrationkey. 563
insertable registrationkey. 563
language registrationkey 564
menuname registrationkey. 564
MostDerived function 564
ObjectPtrtypedef 564
OC_APPxxxxmessages 565
OC_VIEWxxxxmessages 565
ocrxxxx aspectconstants. 566
ocrooxx Clipboard constants 567
ocrxxxx direction constants 568
ocroxx limit constants. L. L. 568
ocrooxx medium constants 568
ocrxxxx object status constants 569
ocrxxxx usageconstants. 570
ocrxxxx verb attributes constants. 570
ocrooxx verb menu flags. 570
OPTIONAL_ARGmacro 571

pathregistrationkey, 571

permid registrationkey 572

permname registrationkey 572
progid registrationkey 572
REQUIRED_ARGmacro. 573
TAutoBaseclass 573
Publicdestructor. 573
TAutoBoolstruct 574
Publicdatamember. 574
TAutoCommandclass 574
Public constructor and destructor. 574
Type definitions 574
Public member functions. 575
Protected datamembers 577
TAutoCurrency struct 577
Publicdatamember. 577
TAutoDatestruct 578
Publicdatamembers 578
Public constructors -.578
Public member function 578
TAutoDoublestruct. 578
Publicdatamember. 578
TAutoEnumerator<>class. 579
Public constructors and destructor 579
Public member functions. 579
TAutoFloatstruct 580
Publicdatamember. 580
TAutolteratorclass 581
Public member functions. 581
Protected constructors. 583
Protected datamember. 583
TAutoLongstruct. 583
Publicdatamember. 583
TAutoObject<>class. 584
Publicconstructors 584
Public member functions. 584
Protected datamember. 585
TAutoObjectByVal<>class. 585
Publicdatamember. 585
Publicconstructors 586
TAutoObjectDelete <>class. 586
Publicconstructors 586
Public member functions. 586
TAutoProxyclass 587
Publicdestructor. 587
Public member functions. 587
Protected constructor 589
Protected member function 589
TAutoShortstruct. 590
Publicdatamember. 590
TAutoStackclass. 590

Public constructor and destructor
Public member function.
Publicdatamembers.
Constant
TAutoString struct
Public constructors and destructor.
Public member functions
Publicdatamember
TAutoTypestruct
Public member function.
TAutoValclass.
Public member functions
TAutoVoid struct
Publicdatamember
TComponentFactory type definition
TLocaleld type definition
TOcAppclass
Type definitions.
Public member functions
Protected constructor and destructor
Protected member functions
TOcAppModeenum.
TOcAspectenum
TOcDialogHelpenum
TOcDocumentclass
Public constructors and destructor.
Public member functions
TOcDragDropstruct
Publicdatamembers.
TOcDropActionenum.
TOcFormatListclass
Public constructor and destructor
Public member functions
TOcFormatListlterclass
Publicconstructor
Public member functions
TOcFormatNameclass.
Public constructors and destructor.
Public member functions
TOcInitHowenum
TOcInitInfoclass
Publicdatamembers.
Publicconstructors.
Public member functions
TOcInitWhereenum
TOcInvalidateenum
TOcMenuDescrstruct
Publicdatamembers.
TOcModuleclass
Public constructor and destructor

594
595

Public member functions. 623
Publicdatamembers 623
TOcNamelistclass 624
Public constructor and destructor. 624
Public member functions. 625
TOcPartclass. 626
Publicconstructors 626
Public member functions 626
Protected destructor. 631
TOcPartCollectionclass 631
Public constructor and destructor. 632
Public member functions. 632
TOcPartCollectionlterclass 633
Publicconstructor 633
Public member functions. 633
TOcPartNameenum 634
TOcRegistrarclass. 634
Public constructor and destructor. 635
Public member functions. 635
Protected member functions. 636
TOcRemViewclass 637
Publicconstructor 637
Public member functions. 638
TOcSaveloadstruct 639
Publicdatamembers 640
TOcScaleFactorclass 640
Publicconstructors 640
Publicdatamembers 641
Public member functions. 641
TOcScrollDirenum 642
TOcToolbarInfostruct 642
Publicdatamembers 643
TOcVerbclass 644
Publicconstructor 644
Publicdatamembers 644
TOcViewclass 645
Publicconstructor 645
Public member functions. 646
Protected destructor. 649
Protected member functions. 649
Protected datamembers 650
TOcViewPaintstruct 651
Publicdatamembers 651
TOleAllocatorclass 652
Public constructors and destructor 652
Public member functions. 653
Publicdatamember. 653
TRegistrarclass 653
Public constructor and destructor. 654
Public member functions. 654

Protected datamember. 657

Protected constructor. 657
TUnknowncdlass 658
Public member functions 658
Protected constructor and destructor 659
Protected member functions 660
Protected datamember 660
TXAutoclass. 660
Public constructor 660
Publicdatamember 661
Typedefinition 661
TXObjCompclass. 661
Public constructor 661
Public member function. 662
Typedefinition 662
TXOledlass. 662
Public constructors and destructor. 663
Public member functions 663
Publicdatamember 664
TXRegistryclass. 664
Public constructors 664
Public member functions 664
typehelp registrationkey 665
usage registrationkey 665
verbn registrationkeys. 665
- verbnopt registrationkeys. 666
version registrationkey 666
WM_OCEVENT message. 667
Part IIT
ObjectSupport reference 669
Chapter 7
Overview of ObjectSupport 671
Chapter 8
ObjectSupport library reference 673
Registrationmacros. 673
BEGIN_REGISTRATION macro. 674
END_REGISTRATION macro 675
REGDATAmacro.« .vvun... 675
REGITEMmacro 676
REGFORMAT macro. 676
REGSTATUSmacro. 677
REGVERBOPTmacro 677
REGICONmMacro. 678
REGDOCFLAGSmacro. 678
REGISTRATION_FORMAT_BUFFER
MACTO .« « v v v o e e e et e e et e 679

TDocTemplateclass. 679
Public member functions. 679
Protected constructor and destructor. 683

TDocTemplateT<D,V>class. 683
Publicconstructors 684
Public member functions. 684

TDropInfoclass 685
Publicconstructor 685
Public member functions. 685

TLangld typedef. 686

TPointclass. 686
Publicconstructors -. 687
Public member functions. 687

TPointer<>class. 689
Publicconstructors 689
Public member functions. 689

TProcInstanceclass 690
Public constructor and destructor. 690
Public member function 690

TRectclass 690
Publicconstructors 691
Public member functions. 691

TResldclass 696
Public constructors 697
Public member functions. 697
Friendfunctions 697

TSizeclass 697
Publicconstructors 698
Public member functions. 698

TXBaseclass 699
Public constructors and destructor 700
Publicdatamember. 700
Public member functions. 700

Appendix A

Windows API encapsulated

functions 701

Appendix B

Windows API structs 707

ABCstruct 707

BITMAPstruct. 707

BITMAPCOREHEADER struct. 708

BITMAPCOREINFOstruct 709

BITMAPINFOstruct 710

BITMAPINFOHEADER struct 711

COLORREF typedef 713

COMPAREITEMSTRUCT struct 713

DELETEITEMSTRUCT struct. 714

DEVMODEstruct. 714
DRAWITEMSTRUCT struct 718
FINDREPLACEstruct. 720
GLYPHMETRICSstruct 722
HANDLETABLEstruct 722
ICONINFOstruct. 722
KERNINGPAIRstruct 723
LOGBRUSHSstruct 723
LOGFONTstruct. 724
LOGPALETTEstruct. 727
LOGPENstruct. 727
MDICREATESTRUCT struct 728

xiii

METARECORDstruct v v v v v vn . 729
MEASUREITEMSTRUCT struct 729
MSGstruct. 730
OUTLINETEXTMETRIC struct. 730
RGBQUADstruct. 733
RGBTIRIPLEstruct 733
TEXTMETRICstruct 733
WNDCLASSstruct oo oo oo oo 736
PAINTSTRUCT struct 737
PALETTEENTRY struct 738
XFORMstruct. v v v v o v oo e 738
Index Iz}

4
Tables

1.1 = Summary of the ObjectSupport library

files. 16
12 Summary of static libraries 16
13 Summary of dynamic link libraries 17
14 Target applications and compiler options. . .17
1.5 Summary of options for building an

ObjectWindows static or dynamic library. . .18
1.6 Summary of options for using an

ObjectWindows static or dynamic library. . .19
1.7 Compile options for _(OWLCLASS macro . .19
18 Summary of headerfiles. 19
19 Summary of resourcefiles. 23
1.10 New ObjectWindows data types. 24
21 Buttonflagconstants 28
22 Buttonmessageconstants 28
23 Combo box message constants 28
24 Command-based constants 29
25 Command-based constants 29
2.6 Command-based constants 30
2.7 Command-based constants 30
28 Command message constants. 31
29 Dialog control message constants 33
2.10 Editmessageconstants. 35
211 TWindow attributemasks. 496
3.1 Button notification messages 505
3.2 Child ID notification messages 505
3.3 Combo box notification messages 506

Figures

1.1 Base class with several derived classes 7
12 ObjectWindows hierarchy. 8
1.3 ObjectWindows hierarchy. 9

Xiv

34 Command messages. 506
3.5 Document manager messages. 506
3.6 Document view messages 506
3.7 Edit control notification messages. 507
3.8 List box notification messages 507
39 ObjectComponents messages 507
3.10 Scroll bar notification messages 508
3.11 Standard Windows messages 509
312 VBXmessages 512
3.13 User-defined messages 512
7.1 Summary of the ObjectSupport library

files. oL 672
A1 Encapsulated inline HWND functions702
A2 Encapsulated Window messages 702
A3 Window coordinates and dimensions702
A4 Window properties 703
A5 Window placement 703
A.6 Window relationships. 703
A7 Window painting functions 704
A8 Window scrolling functions 704
A9 Child window ID functions 705
A.10 Menu and menu bar functions. 705
A.11 Clipboard functions 705
A12 Timer functions. 705
A.13 Caret and cursor functions 706
A4 Hotkey functions 706
A.15 Help and task functions. 706

5.1 Hierarchy of ObjectComponents connector
classes. oL 531

Introduction

This Reference Guide can be used to help you perform the following tasks in
ObjectWindows:

* Look up the overall purpose for each class.

¢ Learn the details about how to use a particular ObjectWindows class and its members
and functions.

® View the virtual and nonvirtual multiple inheritance relationships among
ObjectWindows classes.

¢ Learn which classes introduce or redefine functions.

* Determine which ancestor of a class introduced a data member or member function.
* Learn how data members and member functions are declared.

* Create OLE2 applications easily by using ObjectComponents classes.

¢ Use the ObjectSupport Library (OSL) to support mathematical and file operations.

¢ Use event-handling functions to respond to messages.

¢ Use dispatch functions to crack Windows messages.

What’s new in ObjectWindows 2.5

ObjectWindows 2.5 provides several new features that make it easier for you to design
applications that run faster, write code that’s easier to debug, and create programs that
implement linking and embedding technology. ObjectWindows 2.5 provides the
following enhancements over version 2.0:

¢ Complete encapsulation of OLE2 using ObjectComponents including
¢ Linking and embedding containers
¢ Linking and embedding servers
¢ Automation servers
¢ Automation controllers

OLE clipboard operations

Introduction 1

e OLE drag and drop operations
® In-place editing

* OLE user interface, including menu merging, pop-up menus for activated object
verbs on the container’s Edit menu

¢ Compound file storage
® Registration
® Localized strings for international support
* Type libraries
* New data type definitions. See Chapter 1 of this manual for a list of the new data type
definitions.
¢ Internal diagnostic classes for increased debuggihg capabilities

¢ ObjectSupport classes that include new classes as well as utility classes previously
included in the ObjectWindows library. See Chapter 1 of this manual for a
description of the new support classes.

Contents of this manual

This manual is divided into three parts and includes two appendixes.
Part I, “ObjectWindows reference,” includes the following four reference chapters:

Chapter 1, “Overview of ObjectWindows,” provides an overview of the
ObjectWindows classes, libraries, and header files. It organizes the classes according
to functional groups and explains the purpose of each class within that group.

Chapter 2, “ObjectWindows library reference,” is an alphabetical listing of all the
standard ObjectWindows classes, including explanations of their purpose, usage,
and members. It also describes the nonobject elements such as structures, constants,
variables, and macros that classes use.

Chapter 3, “ObjectWindows event handlers,” lists the ObjectWindows functions
and notification codes that crack Windows messages.

Chapter 4, “ObjectWindows dispatch functions,” lists all of the ObjectWindows
functions that dispatch Windows messages.

Part IT, “ObjectComponents reference.” The second second part of this manual
describes all of the ObjectComponents classes, structures, constants, types, and macros.
It includes the following chapters:

Chapter 5, “Overview of ObjectComponents,” provides an overview of the
ObjectComponents classes, libraries, and header files. It describes the classes
according to their functional groups and explains their purpose within that group.

Chapter 6, “ObjectComponents library reference,” is an alphabetical listing of all
the standard ObjectComponents classes, including explanations of their purpose,
usage, and members. It also describes the nonobject elements such as structures,
constants, variables, and macros that classes use.

2 ObjectWindows Reference Guide

Part III, “ObjectSupport reference.” The third part of this manual describes all of the
ObjectSupport classes, structures, constants, types, and macros. It includes the following
chapters:

Chapter 7, “Overview of ObjectSupport,” provides an overview of the
ObjectWindows classes, libraries, and header files. It organizes the classes into
functional groups and explains the purpose of each class within that group.

Chapter 8, “ObjectSupport library reference,” is an alphabetical listing of all the
standard ObjectSupport classes, including explanations of their purpose, usage, and
members. It also describes the nonobject elements such as structures, constants,
variables, and macros that classes use.

Appendix A, “Windows API encapsulated functions,” lists the ObjectWindows
functions that encapsulate Windows API functions.

Appendix B, “Windows API structs,” lists the Windows structures that
ObjectWindows uses.

Typefaces used in this manual

Boldface
Italics
Monospace
Key1
Key1+

Key2

Menu|
Command

Note

Boldface type indicates language keywords (such as char, switch, and begin) and
command-line options (such as -rn).

Italic type indicates program variables and constants that appear in text. This typeface is
also used to emphasize certain words, such as new terms.

Monospace type represents text as it appears onscreen or in a program. It is also used for
anything you must type literally (such as TD32 to start up the 32-bit Turbo Debugger).

This typeface indicates a key on your keyboard. For example, "Press Esc to exit a menu.'

Key combinations produced by holding down one or more keys simultaneously are
represented as Key1+Key2. For example, you can execute the Program Reset command by
holding down the Ctrl key and pressing F2 (which is represented as Ctrl+F2).

This command sequence represents a choice from the menu bar followed by a menu
choice. For example, the command "File | Open" represents the Open command on the
File menu.

This icon indicates material you should take special notice of.

Conventions used in this manual

Cross-referenced entries to ObjectWindows functions include the class name, the scope
resolution operator, and the function name. For example,

See also: TApplication::PumpWaitingMessages

C++ data types that are keywords (such as int and long) are in lowercase bold.
Predefined Windows types (such as HWND) are in capital letters; for example,

bool TrackPopupMenu(uint flags, int x, int y, int rsvd, HWND wnd, TRect* rect=0);

Introduction 3

4 ObjectWindows Reference Guide

ObjectWindows reference

Part I, ObjectWindows reference 5

6 ObjectWindows Reference Guide

Chapter

Overview of ObjectWindows

This chapter provides an overview of the ObjectWindows classes, libraries, and header
files. It describes the classes according to the functional groups represented on the
ObjectWindows hierarchy diagram.

Hierarchy diagram

The ObjectWindows hierarchy diagram shows the classes that are described in this
manual. The classes are grouped according to functional categories, and all related
classes are in one shaded unit. A rectangle surrounds the name of the class. A class is
enclosed in dashed lines if it is a parent class for a multiply-inherited class. For example,
TListBox is the parent class for TListView, which is derived from both TView and
TListBox. Base classes are placed above inherited classes and are connected to inherited
classes by straight lines. The triangle on the connecting lines indicates the type of
inheritance association that exists between the classes. A filled-in triangle indicates
virtual inheritance between the parent and its derived classes; an open triangle
illustrates nonvirtual inheritance.

Figure 1.1 Base class with several derived classes

Base Class
Derived Class Derived Class Derived Class

Chapter 1, Overview of OﬁjectWindows 7

Figure 1.2 ObjectWindows hierarchy

_ TEventHandler TStreamableBase

4—?? Zy

TVbxEventHandler
F TWindow

TOleWindow
A

o

&

R i

TLayoutMetrics

[
TMessagel

[Toeane

i

TStatusBar

“»%‘xe‘g;w

Bar |
'?“.e

ST
TScroll o
T

;

e

TCheckBox

0

.

B

b

i
TFileSaveDialog |
- . |

g

% Nonvirtual inheritance % Virtual inheritance

8 ObjectWindows Reference Guide

Figure 1.3 ObjectWindows hierarchy

TStreamableBase

C.

{ TValidator

TPrinter H TPrintout I
J

Printer Classes

T T A VR Support’ Clagses By ' Pr———
| TFitervaidator | | TPXPicureVaidator | [TLookupValidator W | ESmssisamen | TOutStream Toialoghtir_|
) S 3 | TSortedStrirgArray I TinStream | | TDroplnfo I
= : . ? f . s o ? ‘fTRespnnseTablsEntry 5 { TStatus |' { - ?Pmﬁte'_i
M tTRangeVaIidatov : el TStringLookupVali ' | TProcinstance TWindowAttr | TStreani;_;I
Scroller Class B Validator Classes | Tiocalesting | [TResld
& ion hendiny l Mathomatical Classes 18
I TPoint i
: ‘ TXAuto I TXOle [TXOwI ' [TXRegistry
TATTTA ; A
ibil TValicator:: | | TWindow:: | | TGdiBase:: | | TMenu:: TApplication:: _ TModule:: TPrinter::
TXCompatiity | | Txvafdator | | TXWindow | | TXGdi | | TXMen FTXInvaIidMain\Mndow | TXOuONemon || rximalichiodule | TxPriner
Menu Classes Command Enabler Classes

TCommandEnabler

TMenuDescr

TPalette

zg TCelArray I TMetaFilePict | TRgbTriple
TColor TPaletteEntry T 7 TRgbQuad

THatch8x8Brush

TWindowDC TPaintDC TMetafileDC
TCharSet 5 i 7

- ¢ i TDibDC TPntDC | TMemoryDC
TBitSet

Nonvirtual inheritance Virtual inheritance

Chapter 1, Overview of ObjectWindows 9

Using ObjectWindows classes

The ObjectWindows hierarchy includes a forest of classes that you can use, modify, or
derive from in order to create your own application. This section describes these groups
of classes and how you can use them to build your application. These classes, which are
displayed on the ObjectWindows hierarchy chart, can be divided into the following
groups.

* Base classes

¢ Window management classes
¢ Frame windows
® Decorated windows
¢ Common dialogs
* Controls
* Gadgets
¢ Menus

* Module and application management classes
¢ Command enabling
® Doc/view
e Print and print/preview

* Graphics classes
® GDI objects
e Device contexts

e Validators
¢ Exception handling classes
® Support classes

Base classes

TEventHandler, TStreamableBase, and TGdiBase are important base classes. All
ObjectWindows classes are derived from one or more of these classes. Classes that
inherit from TEventHandler are able to respond to window messages. Classes that inherit
from TStreamableBase support streaming, that is their objects can write to and read from
streams. Almost all of the ObjectWindows classes are derived from TStreamableBase. You
can use multiple inheritance to derive a class from both TEventHandler and
TStreamableBase. Classes that inherit from TGDIBase, a private base class, support GDI
drawing objects such as pens, brushes, fonts, and bitmaps.

¢ TEventHandler sends messages to the appropriate message handler.
® TStreamableBase provides support for C++ streaming and persistence.

¢ TGdiBase is the root class for all derived GDI classes that support Windows’ GDI
library.

10 ObjectWindows Reference Guide

Window management classes

Derived from TEventHandler and TStreamableBase, TWindow is the parent class for all
window classes. It represents the functionality common to all windows, whether they
are dialog boxes, controls, multiple document interface (MDI) windows, or layout
windows. One of the fundamental ObjectWindows classes that implements OLE
functionality, TOleWindow provides support for embedding objects in a compound
document application.

Frame windows

A frame window, which is actually an application’s main window, has the ability to
contain other client windows and also support Ul elements such as menus and icons.
Serving as main windows of MDI-compliant applications, MDI frame windows manage
multiple documents or windows in a single document (SDI) application.
ObjectWindows also provides OLE support for both SDI and MDI applications. A
floating frame window provides the same functionality but lets you position the
window anywhere within the parent window.

¢ TFrameWindow adds special functionality designed to simplify the managment of
main windows.

* TFloatingFrame, derived from TFloatingFrame and TTinyCaption, provides the
functionality of a frame window enhanced with a tiny caption bar.

e TMDICHhild defines the behavior of MDI child windows.

¢ TMDIFrame provides support for frame windows designed to be used as MDI
windows. :

¢ TOleFrame provides OLE support for the main window of an SDI application.
e TOleMDIFrame provides OLE support for the main window of an MDI application.

Mix-in window classes such as TLayoutWindow and TClipboardViewer add the special
functionality of layout capabilities and clipboards to the main window classes. Use
TLayoutWindow to design the placement of a window on the screen and
TClipboardViewer to view the data shared between applications.

Decorated windows

Multiply inherited from TFramewindow and TLayoutWindow, decorated window classes
let you add decorated control bars, and status bars to the frame of a window and adjust
the child window to accommodate the placement of these decorations.

® TDecoratedFrame is basically a frame window with added decorations.
* TDecoratedMDIFrame is an MDI frame window that supports decorations.

Common dialogs

TDialog lets you create specialized windows referred to as dialog boxes. Dialog boxes
typically ask users for information about fonts, colors, files, printing options, or
searching and replacing text. Depending on their purpose, dialog boxes can be either

Chapter 1, Overview of ObjectWindows 11

modal, those which prevent a user from selecting other windows, or modeless, those
which permit a user to select other windows.

You can create your own customized dialog boxes or use one of the ObjectWindows
classes that encapsulates Windows’ common dialog boxes. The following common
dialog classes are derived from TCommonDialog which is itself derived from TDialog, the
base dialog box class.

® TChooseFontDialog objects represent modal dialog boxes allow font selection, style,
point, size, and color.

® TChooseColorDialog objects represent modal diaiog boxes that allow color selection
and custom color adjustment.

* TOpenSaveDialog is the base class for modal dialog boxes that let you open and save a
file under a specified name.

¢ TPrintDialog displays a modal print or a printer setup dialog box.

* TFindReplaceDialog is the base class for modeless dialog boxes that let you search for
and replace text.

Controls

The control classes support standard Windows controls such as list boxes, combo boxes,
group boxes, check boxes, scroll bars, buttons, radio buttons, edit controls, and static
controls.

Although most windows come with scroll bars already installed, you can use TScrollBar
to create a standalone vertical or horizontal scroll bar, for example, as a dialog box
control.

‘Unlike standard Windows controls, ObjectWindows supports widgets, specialized
controls written entirely in C++. The widget classes ObjectWindows provides include
support for sliders, controls that are used for providing nonscrolling position
information, and gauges, controls that provide duration or analog information about a
particular process.

TSlider defines the basic behavior of sliders.
THSlider implements horizontal sliders.

TVSlider implements vertical sliders.

TGauge defines the basic behavior of gauge controls.

Gadgets

TGadget is the base class for several derived classes that support gadget objects that
belong to a gadget window, have borders and margins, and their own style attributes.
Derived from TWindow, TGadgetWindow maintains a list of gadgets, controls the display
of the gadgets, and sends the necessary messages to the gadgets.

Additional gadget classes derived from TGadgetWindow such as TToolBox, TMessageBar,
TStatusBar, and TControlBar manipulate gadgets in different ways so that you can
enhance a bar or tool box attached to a frame window.

¢ TToolBox lets you place a set of gadgets in a matrix of columns and rows.

12 ObjectWindows Reference Guide

e TMessageBar implements a message bar with one text gadget.

¢ TStatusBar lets you include multiple text gadgets and different border styles in a
status bar.

o TControlBar implements a control bar that provides a set of buttons on a bar in a
frame window.

Menus

TMenu and its derived classes let you construct, modify, and create menu objects. The
classes derived from TMenu include

e TPopupMenu lets you add a popup menu to an existing window or popup menu.
* TSystemMenu creates a system menu object.

Module management classes

Derived from TModule, TApplication supplies functionality common to all
ObjectWindows applications. Classes derived from TApplication have the ability to
create instances of a class, create main windows, and process messages. TModule defines
behavior shared by both library (DLL) and application modules. Virtually derived from
TModule, TBiVbxLibrary lets you add Visual Basic (VBX) controls to your application.

Doc/View classes

Doc/View class support the Doc/View model, a system in which data is contained in
and accessed through a document object, and displayed and manipulated through a
view object. Any number of views can be associated with a particular document type.
Various classes control the flow of information within this system. Several classes also
provide support for OLE’s compound document and compound file structure within
the Doc/View model.

TDocManager is the base class designed to handle documents, templates, messages and
SO on.

e TDocument is an abstract base class that serves as an interface between the document,
its views and its document manager.

* TStorageDocument supports OLE’s compound file structure and lets you create
compound documents with embedded objects.

* TOleDocument implements the document half of an OLE-enabled Doc/View
application.

* TView is the base class that displays the document’s data and gets user input.
¢ TListView supports views for list boxes.

® TOleView supports the view half of an OLE-enabled Doc/View application.

Chapter 1, Overview of ObjectWindows 13

Printer classes

TPrinter, TPrintout, and TPreviewPage provide various functions that make it easy for
you to set up a printer dialog box, view a document in a print preview window, and
print a document.

e TPrinter represents the physical printer device.
¢ TPrintout represents the physical printed document sent to the printer
* TPreviewPage displays a page of a document in a print preview window.

Graphics classes

ObjectWindows GDI classes encapsulate Windows’ Graphics Device Interface (GDI) to
make it easier to use device context (DC) classes and GDI objects. The GDI library
supports device independent drawing operations using DIBS (device independent
bitmaps).

DC classes ;

Instead of drawing directly on a device (like the screen or a printer), you can use GDI
classes to draw on a bitmap using a device context (DC). A device context is a structure
that contains information about the drawing attributes (pens, brushes, text color, and so
on) of a particular device. DC classes support a variety of device context operations.

* TDC is the root class for GDI DC wrapper classes.

o TWindowDC and its derived classes such as TClientDC and TScreenDC provide access
to the area owned by a window.

® TCreatedDC and its derived classes provide access to various DCs that are created
and deleted such as memory and print DCs.

GDI classes

ObjectWindows graphics library contains several classes that you can use to create
DIBS, brushes, palettes, pens, and other drawing tools.

* TGdiBase is the private base class from which TGDIObject, TIcon, TCursor, and TDib
are derived.

o TGDIObject is a base class for several other GDI classes that support drawing tools.

¢ TDib encapsulates the creation of structures containing format and palette
information.

* TCursor encapsulates GDI cursor objects.

Validator classes

TValidator forms the base class for several ObjectWindows classes that encapsulate
validation objects. The following derived classes make it easy for you to add data
validation to your applications.

14 ObjectWindows Reference Guide

o TFilterValidator and its derived class, TRangeValidator, check an input field as the user
types data into the field in order to determine the validity of the entered data.

* TPXPictureValidator compares user input with a picture of a data format.

* TLookupValidator compares a string typed by a user with a list of acceptable values.

Exception handling classes

Exception handling classes provide various functions that help you write error-free
ObjectWindows applications. TXBase is the base class for all ObjectWindows and
ObjectComponents classes. Derived from the TXBase class, TXOwl is the base class for
the following ObjectWindows exception classes:

* TXCompatibility is included for backward compatibility with ObjectWindows 1.0
code.

¢ TXOutOfMemory describes exceptions that arise from out of memory conditions.

¢ Nested exception classes such as TXInvalidMainWindow, TXInvalidModule,
TXWindow, TXMenu, TXValidator, TXGdi, and TXPrinter describe specific error
conditions such as those that occur when a main window, a module, a menu object, a
validator object, a GDI object, or a printer device context is invalid.

Command enabling classes

Although several ObjectWindows classes process commands, there are three classes
specifically devoted to enabling and disabling the commands available to an
application.

» TCommandEnabler is the base class from which TButtonGadgetEnabler and
TMenultemEnabler are derived.

* TButtonGadgetEnabler enables and disables button gadgets.

® TMenultemEnabler enables and disables menu options and places check marks by
menu options.

ObjectSupport library clésses

ObjectSupport classes provide various services that help you design your
ObjectWindows application. For example, the class TLocaleString localizes OLE
registration information required for containers and servers. These classes include the
following groups:

¢ Mathematical classes such as TPoint, TSize, and TRect that define screen coordinates
and properties of rectangles.

¢ Registration and localization classes such as TRegList and TLocaleString simplify the
process of registering OLE containers and servers.

¢ Document template classes that make it easier to design Doc/View applications.

Chapter 1, Overview of ObjectWindows 15

The following table lists the files included i in the Object Support Library (.\OSL
directory).

Table 1.1 Summiary of the ObjectSupport library files

defs.h Contains common definitions, includin,

windows.h definitions, and deals with %OOL data
types.
doctplh TDocTemplate Creates the Doc/View classes.
TDocTemplateT<D,V> Registers the associated document and view
classes.
excepth TXBase Base exception-handling class for ObjectWindows
and ObjectComponents classes.
geometryh TDropInfo Supports file name drag and drop operations.
TPoint, TSize, TRect Mathematical classes.
TPointer Provides exception-safe pointer manipulation.
TProcInstance A Win16 support class.
TResId ‘ A resource ID.
localeh TLocaleString Localizable substitute for char*.
TRegltem An item for the system registry.
TRegList List of registration items.

ObjectWindows Libraries

The following tables list the ObjectWindows static and dynamic libraries, their uses, and
the operating system under which the library is available. These files are in your library
directory.

The name of the OWLWx.LIB file varies, depending on several factors—whether you
are building a small, medium, or large memory model application or a WIN16 or
WINB32 application. For example, if the application is built for a 16-bit, small memory
model, the name of the library file is OWLWS.LIB. If you're building a flat model
WINB32 application, the name of the library file is OWLWEF.LIB where "F" indicates a flat
model application. If runtime diagnostics are enabled, ObjectWindows adds "D" to the
name of the libary.

Different versions of these files are included on your installation disk. If the diagnostic
files are not shipped, you can build these files by adding the switch “-DDIAGS to the
ObjectWindows makefile located in your . \EXAMPLES subdirectory.

Table1.2 Summary of static libraries

OWLWS.LIB Winl6 16-bit small model

OWLWM.LIB Winlé 16-bit medium model

OWLWL.LIB Winl6 16-bit large model

OWLWILIB Win16 16-bit import library for OWL250.DLL
OWLDWS.LIB Winl6 16-bit diagnostic small model

16 ObjectWindows Reference Guide

Table 1.2 Summary of static libraries (continued)

name . Application bise fums s
OWLDWMLIB Winl6 ~ 16-bit diagnostic medium model
OWLDWL.LIB Winl16 16-bit diagnostic large model
OWLDWILIB Winl6 16-bit diagnostic import library
OWLWIU.LIB Winl6 16-bit large static for user .DLL
OWLWLU.LIB Winlé 16-bit import static for user .DLL
OWLWE.LIB Win32, Win32s 32-bit library

OWLWEFILLIB Win32, Win32s 32-bit import library for OWL250F.DLL
OWLDWE.LIB Win32, Win32s 32-bit diagnostic library
OWLDWEFLLIB Win32, Win32s 32-bit diagnostic import library

The dynamic-link library (DLL) versions of ObjectWindows are contained in the \BIN
subdirectory of the installation. The following table lists the DLL names and uses, and
the operating system under which each library is available.

Table1.3 Summary of dynamic link libraries

OWL250.DLL

OWL250F.DLL Win 32 32-bit dynamic library

OWL250D.DLL Win 16 Diagnostic version of 16-bit dynamic library
OWL250DF.DLL ~ Win 32 Diagnostic version of 32-bit dynamic library

Compiler options for building and using ObjectWindows libraries

You need to use different compiler options depending on whether you are building or

- using ObjectWindows DLLs or static libraries. Unless you specify otherwise,
ObjectWindows makes several assumptions about the default values for system
platforms and memory models. That is, ObjectWindows assumes that the platform is
winl16 unless MODEL is explicitly set to "f," in which case ObjectWindows assumes that
the platform is Win32. The default MODEL setting is "d," where "d" indicates that you
are building the DLL version of an library.

The following table lists the combinations of SYSTEM and MODEL settings you can use
to build the specified target applications.

Table 1.4 Target applications and compiler options

odel static version

dow:

16-bit Windows medium model static version =~ WIN16 m
16-bit Windows compact model static version WIN16 c
16-bit Windows large model static version WIN16 1
16-bit Windows large model DLL WIN16 d
32-bit Windows static version WIN32 f
32-bit Windows DLL WIN32 d

Chapter 1, Overview of ObjectWindows 17

Table 1.5

WBbjém ov;s DLL

Building ObjectWindows libraries

If you are building ObjectWindows DLLs and libraries, you need to use several pre-
defined macros. For example, defining the make macro USERDLL builds :
ObjectWindows for use in a user DLL and adds the suffix, "U" to the name of the library.
The preprocessor macro _BUILDOWLDLL, which must be defined to build the
ObjectWindows DLL, sets the values for the _OWLCLASS, _OWLDATA, _OWLFUNC
macros.

The following table lists the make options you need to use if you are building either 16-
or 32-bit ObjectWindows. You can specify the system model as either s (small), m
(medium), 1 (large), £ (flat), or d (DLL). The make options you set are then responsible
for generating the specified preprocessor macro, which, in turn, generates the indicated
values for the OWLCLASS, OWLDATA, and _OWLFUNC macros and builds the
appropriate library. For an example of how these settings are used, see the makefile in
the \SOURCE\OWL directory or owldefs.h in the INCLUDE\OWL directory.

Summary of options for building an ObjectWindows static or dynamic library

16-bit EXE MODEL =d _BUILDOWLDLL All are defined OWLWLLIB
as __export.
32-bit EXE or DLL MODEL =d _BUILDOWLDLL All are defined OWLWELLIB
~DWIN32 as _export
MODEL =d _BUILDOWLDLL All are defined OWLWIU.LIB
-D USERDLL as __export.
16-bit DLL
ObjectWindows static library ,
16-bit EXE MODEL =sormorl Nothing Nothing OWLWS.LIB
OWLWM.LIB
‘) ‘ OWLWL.LIB
32-bit EXE or DLL MODEL = f Nothing Nothing OWLWE.LIB
-DWIN32
16-bit DLL MODEL =1 Nothing Nothing OWLWLU.LIB
-DUSERDLL

Using ObjectWindows libraries

This table lists the make options you need to specify if you are using either 16- or 32-bit
ObjectWindows applications. You can specify the memory model as either s (small), m
(medium), 1 (large), f (flat), or d(DLL). (Keep in mind that the make options
SYSTEM=WIN32 and -DWINB32 are the same.) The make options you set are then

- responsible for generating the specified preprocessor macro, which, in turn, generates

the indicated values for the OWLCLASS, OWLDATA, and _OWLFUNC macros and

18 ObjectWindows Reference Guide

builds the appropriate library. For an example of how these settings are used, see
MAKEFILE.GEN in the \OWL\EXAMPLES directory.

Table1.6 Summary of options for using an ObjectWindows static or dynamic library
_OWLCLASS
_OWLDATA
If youare usingan: Use these Make options: Preprocessormacro _OWLFUNC Libraries
ObjectWindows DLL
16-bit EXE MODEL =d _OWLDLL All are defined OWLWILIB
as __import
32-bit DLL MODEL =d _OWLDLL All are defined OWLWELLIB
-DWIN32 as __import
16-bit DLL MODEL =d _OWLDLL All are defined OWLWIU.LIB
as __import
ObjectWindows static library
16-bit EXE MODEL =sormorl Nothing Nothing OWLWS.LIB
OWLWM.LIB
OWLWL.LIB
32-bit EXE or DLL MODEL = f Nothing Nothing OWLWE.LIB
-DWIN32
16-bit DLL MODEL =1 Nothing Nothing OWLWLU.LIB

The following table lists the makefile and compiler options for the _ OWLFARVTABLE
macro, which moves ObjectWindows virtual function tables (vtables) out of the
DGROUP of the data segment and stores them in the code segment.

Table 1.7 Compile options for _OWLCLASS macro
Use this compile option: Define in your makefile: With this result:
_OWLFARVTABLE OWLFARVTABLE Adds _huge to the_ OWLCLASS class ’
BIDSFARVTABLE modifier when static models are used.
_RTLFARVTABLE
_FASTTHIS Doesn't apply Adds _fastthis to the _OWLCLASS macro.

The ObjectWindows header files

Header files contain prototype declarations for class functions, and definitions for data

types and symbolic constants.

Table 1.8
Filename Class definition
Directory of \INCLUDE\OWL

TAppDictionary

Summary of header files

appdicth

applicath TApplication

Use

Contains a set of assoications between an application and
a process ID.

Controls the basic behavior of all ObjectWindows
applications.

Chapter 1, Overview of ObjectWindows 19

Table 1.8

Fil

bitmapga.h TBitmapGadget

bitset.h TBitSet
TCharSet

button.h TButton

buttonga.h TButtonGadget

celarray.h TCelArray

checkbox.h TCheckBox

chooseco.h TChooseColor

choosefo.h TChooseFont

clipboar.h TClipboard

clipview.h TClipboardViewer

color.h TColor

comboboxh TCombobox

commdialh TCommonDialog

compath

control.h TControl

controlb.h TControlBar

controlg.h TControlGadget

dch TBandInfo, TClientDC,
TCreatedDC, TDC,
TDesktopDC, TDibDC TIC,
TMemoryDC, TMetaFileDC,
TPaintDC TPrintDC,
TScreenDC, TWindowDC

decframe.h TDecoratedFrame

decmdifr.h TDecoratedMDIFrame

dialog.h TDialog
TDialogAttr

dispatch.h

docmanagh TDocManager

doctplh TDocTemplate
TDocTemplateT

docview.h TDocument, TView,
TWindowView, TStream,
TInStream, TOutStream

20 ObjectWindows Reference Guide

Summary of header files (continued)

A set including but no more than 256 items managed by
bits.

Sets or clears one or more bits.

A set of characters

Creates different types of button controls.

Creates button gadgets that can be clicked on or off.
Creates an array of bitmap cels.

Represents a check box control.

Represents modal dialog boxes that allow color selection.
Represents modal dialog boxes that allow font selection.

Contains functions that control how Clipboard data is
handled.

Registers a TClipboardViewer as a Clipboard viewer.

Contains functions used to simplify standard Windows
color operations.

Creates combo boxes or combo box controls in a window,
and class TComboBoxData, which is used to transfer data
between combo boxes.

Abstract base class for TCommonDialog objects.

Defines functions and constants used internally by
ObjectWindows.

Used to create control objects in derived classes.

Implements a control bar that provides mnemonic access
for its button gadgets.

Allows controls to be placed in a gadget window.
GDI DC wrapper classes that create DC objects.

Creates a client window into which decorations can be
placed.

Creates a frame object that supports decorated child
windows.

Creates modal and modeless dialog box interface
elements.

Holds the dialog box element’s attributes.

Defines dispatch functions designed to crack Windows
messages.

Creates a document manager object that manages the
documents and templates.

Creates the templates.
Registers the associated document and view classes

Create, destroy, and send messages about document
views.

Define streams for documents.

Table 1.8

editfile.h
editsear.h

editview.h
eventhanh
except.h

filedoc.h
findreplLh

floatfra.h
framewin.h
gadget.h

gadgetwih

gauge.h
gdibase.h
gdiobjech

geometry.h

groupbox.h

inputdia.h
layoutco.h
layoutwih

listbox.h

Summary of header files (continued)

definition
TEditFile
TEditSearch

TEditView
TEventHandler
TXBase

TXOwl
TXCompatibility
TXOutOfMemory
TStatus

TFileDocument
TFindDialog,
TFindReplaceDialog::

TFloatingFrame
TFrameWindow

TGadget

TGadgetWindow
TGadgetWindowFont
TSeparatorGadget
TGauge

TGdiBase
TGdiObject

TPen, TBrush, TFont
TPalette, TBitmap,
Tlcon, TCursor, TDib,
TRegion

TPoint, TSize, TRect
TDropInfo
TProcInstance
TPointer

TResId

TGroupBox

TInputDialog
TLayoutConstraint

TLayoutMetrics
TLayoutWindow

TListBox
TListBoxData

reates an edit control interface element.
Creates a file editing window.

Creates an edit control that responds to search and
replace commands.

View wrapper for TEdit.
Used to derive class capable of handling messages.

Base exception-handling class for ObjectWindows and
ObjectComponents classes.

Base exception-handling class for ObjectWindows
classes.

Included for backward compatibility.

Describes an out-of-memory exception.

Describes a status exception.

Opens and closes document views.

These classes create and define the attributes of modeless
dialog boxes that respond to search and replace
commands.

Implements a floating frame within a parent window.

Controls window-specific behavior such as keyboard
navigation and command processing.

Creates gadget objects that belong to a gadget window
and have specified attributes.

Maintains a list of tiled gadgets for a window.
Defines the font used in gadget windows.
Creates a separator between gadgets.
Establishes the behavior of gauge controls.
Abstract base class for all GDI classes.

Base GDI class.

These classes create specified GDI objects.

Mathematical classes.

Supports file name drag and drop operations.
A Winl16 support class.

Provides exception-safe pointer manipulation.
Creates a resource ID.

Creates a group box object that represents a group box
element in Windows.

Creates a generic dialog box that accepts text.
Creates layout constraints.

Contains the layout constraints used to define the layout
metrics for a window.

Provides layout options for a window.
Creates a list box object.
Used to transfer the contents of a list box.

Chapter 1, Overview of ObjectWindows 21

Table 1.8

Summary of header files (continued)

listview.h
locale.h
mdih

mdichild.h
menu.h

messageb.h
metafileh
module.h

oledoch
olefacto.h

olefacto.h

oleframe.h
olemdifr.h

oleview.h
olewindo.h
opensave.h
owlallh
owlcore.h
owldefs.h

owlpch.h

preview.h
printdia.h

printerh

radiobut.h
scrollba.h

scroller.h
signatur.h

TListView
TLocaleString
TMDIClient
TMDIFrame
TMDIChild

TMenu, TPopupMenu,

TSystemMenu
TMenuDescr

TMessageBar
TMetaFilePict
TModule

TOleDocument
TAutoFactory<>

TOleFactory<>

TOleFrame
TOleMDIFrame

TOleView
TOleClientDC
TOpenSave

TPreviewPage
TPrintPreviewDC
TPrintDialog
TPrinter
TPrintout
TPrinterAbortDlg
TRadioButton
TScrollBar
TScrollBarData

TScroller

22 ObjectWindows Reference Guide

Provides views for list boxes.

Localizable substitute for char®.

Manages MDI child windows.

The main window of MDI-compliant applications.
Defines the behavior of MDI child windows.
Create menu objects.

Base menu class.

A menu bar with groups.

Implements a message bar.

A wrapper class used with TMetaFileDC.

Defines the basic behavior for ObjectWindows libraries
and applications.

Implements the Document half of the Doc/View pair.

Template class that supports component create callbacks
for automated OLE-enabled applications.

Template class that supports component create callbacks
for Doc/View and non-Doc/View OLE-enabled
applications.

Supports OLE-enabled main windows for SDI
applications.

Supports OLE-enabled main windows for MDI
applications.

Supports the View half of the Doc/View pair.
Translates between two different coordinate systems.
Base class for modal open and save dialog boxes.
Include file for all of the ObjectWindows classes.
Include file for the core ObjectWindows classes.

Includes definitions of macros used by all
ObjectWindows programs.

Contains definitions of macros, data, and functions used
by ObjectWindows.

Displays a document page in a print preview window.
Maps printer device coordinates to screen coordinates.
Displays a modal print or print setup dialog box.
Represents the printer device.

Represents the printed document.

Represents the printer-abort dialog box.

Create a radio button control.

Represents a vertical or horizontal scroll bar control.

Contains the values of the thumb position on the scroll
bar.

Implements automatic window scrolling.

Defines the message cracking signature templates used
by ObjectWindows event-handling functions.

Table 1.8

File name
slider.h

statich
statusba.h
stgdoc.h
textgadg.h
tinycapt.h
toolbox.h

uihandle.h
validate.h

vbxctlh

version.h

window.h

windowev.h

Class definition
TSlider

THSlider

TVSlider

TStatic

TStatusBar
TStorageDocument
TTextGadget
TTinyCaption
TToolBox

TUIHandle

TValidator,
TPXPictureValidator
TFilterValidator,
TRangeValidator,
TLookupValidator,
TStringLookupValidator
TVbxControl
TVbxEventHandler
TBIVbxLibrary.

TWindow

Summary of header files (continued)

Use

Defines the basic behavior of sliders.
A horizontal slider.
A vertical slider.

Create a static control in a window.

Constructs a status bar.

Supports compound file structure mechanisms.
Construct a text gadget object.

Produces a smaller caption bar for a window.

Creates a toolbox object with a specified number of rows

and columns.

Defines and draws Ul handles.

Base validator class.

Picture validator.

Filter validator.

Range validatator.

Lookup validation.

String validation.

Interface for VBX controls.

Handles events from VBX controls.

Loads and initializes BIVBXxx.DLL.
Defines the internal version number of the
ObjectWindows library.

Provides window-specific behavior and encapsulates
many of the Windows API functions.

Defines event handlers and response table macros for
Windows messages.

The ObjectWindows resource files

The ObjectWindows resource files define resource and command IDs.

Table 1.9

File name

Summary of resource files

Use

Directory of \INCLUDE\OWL
Defines resource and command IDs to use with docview.h and

docview.rh

edit.rh
editfile.rh

editsear.rh

editview.rh
except.rh
inputdia.rh

docview.rc.

Defines command IDs to use with edit.h.
Defines resource and command IDs to use in editfile.rc and

editfile.h.

Defines resource and command IDs to use in editsear.rc and

editsear.h.

Defines accelerator and menu IDs to use with TEditView.

Defines string resource IDs to use with except.h and except.rc.

Defines resource IDs to use with inputdia.rc and inputdia.h.

Chapter 1, Overview of ObjectWindows

23

Table 1.9

Summary of resource files (continued)

listview.rh
locale.rh
mdirh
oleview.rh

printer.rh
slider.rh
statusba.rh
validate.rh
window.rh

Defines resource and command IDs to use with listview.h.

Defines localization resource IDs.

Defines resource and command IDs to use with mdi.h.
Defines resource IDs to use with OLE-enabled views.
Defines resource IDs to use with printer.rc and printer.h.
Defines resource IDs to use with slider.h.

Defines resource IDs to use with statusba.h

Defines resources to use with TValidator and derived classes.

Defines command IDs to use with window.h.

The ObjectWindows data types

ObjectWindows data types have been updated to use more portable type names. The
following table lists the Windows API type names, the underlying C type definitions,
and the new ObjectWindows type names. To ensure that these new types are used
correctly, be sure to include the ObjectWindows header files before any Windows files,
such as windows.h, in your application files. The new C++ type, which maps a nonzero
value to TRUE, lets you assign an integer to a bool type. You can then compare this
Boolean value to TRUE .

BYTE
WORD
int

LONG
ULONG

DWORD
BOOL

TRUE
FALSE

char
unsigned char
unsigned short

int

unsigned int
long
unsigned long
long

unsigned long
int

Table 1.10 New ObjectWindows data types

sy

int8

uint8
uintl6

int

uint

long, int32

ulong, int32’

int32
uint32
bool

true
false

Used when 8 bit signed value is needed
Always 8 bits

Always 16 bits

16 or 32 bits depending on the platform

16 or 32 bits depending on the platform
Long (Could be 64 bits on some platforms)
Long (Could be 64 bits on some platforms)
Always 32 bits

Always 32 bits

New C++ type if available; otherwise,
emulated using an enum.

24 ObjectWindows Reference Guide

Chapter

ObjectWindowslibrary reference

This chapter alphabetically lists the ObjectWindows classes, data members, member
functions, macros, constants, and data types. The header file that defines each entry is
listed opposite the entry name. Class members are grouped according to their access
specifiers, either public or protected. Within these categories, data members, then
constructors (and the destructor, if one exists), and member functions are listed
alphabetically.

Because many of the properties of the classes in the hierarchy are inherited from base
classes, only data members and member functions that are new or redefined for a
particular class are listed. Private members are not listed. If any response table entries
exist, they are also listed. The cross-referenced entries provide additional information
about how to use the specified entry. The first sample entry illustrates this format.

To find information about a particular inherited member function, use the inheritance
diagram included at the beginning of each class. The inheritance diagram shows the
virtual overridden functions that form the interface of the class, excluding
TEventHandler and TStreamableBase, from which all classes are inherited. For a list of all
the inherited as well as overridden virtual functions, see the online Help.

TBird class [sample] bird.h

Type definitions

This section alphabetically lists all typedefs and enums defined within a class.

typedef unsigned short TOwlld
typedef unsigned short TOwlld;
This text explains what this typdef contains, and how you use it.

Seealso Related data members, member functions, classes, constants, and types

Chapter 2, ObjectWindows library reference 25

TBird class [sample]

Public data members

This section alphabetically lists all public data members and their declarations, and
explains how they are used.

anOwlIBeak

anOwiType anOwIBeak;

anOwlBeak is a data member that holds information about this sample class. This text
explains what anOwlBeak contains, and how you use it.

Seealso Related data members, member functions, classes, constants, and types

anOwlWing
anOwlIType anOwIWing;
anOwlWing is another public data member.

Public constructor and destructor

This section lists any public constructors and destructor for this class. Classes can have
more than one constructor; they never have more than one destructor.

Constructor
TBird(anOwIType aParameter);
Constructor for a new sample class; sets the anOwlBeak data member to aParameter.

Destructor
~TBird;
Destructor for a new sample class; destroys the TBird object.

Public member functions

This section alphabetically lists all public member functions that are either newly
defined for this class or that are redefined inherited member functions. The description
includes the purpose of each parameter and the return value of the function. If a
function overrides a virtual base class function, the text specifies this:

The inline keyword isn’t provided because it doesn’t affect usage.

EvGetDigCode
UINT OwlHoot();
Responds to WM_GETDLGCODE messages.

OwlHoot

void OwlHoot(); »

The OwlHoot member function causes the sample class to perform some action. This
function overrides the function OwlHoot in its base class, TParent.

See also TParent::OwlHoot

OwiSleep
virtual int OwlSleep(int index);

26 ObjectWindows Reference Guide

TBird class [sample]

The OwlSleep function performs another action and overrides the function OwliSleep in
its base class, TParent.

Seealso TParent:OwlSleep

Prbtected data members

This section alphabetically lists all protected data members and their declarations, and
explains how they are used.

anOwlFeather
anOwIType anOwliFeather,
anOuwlFeather is a protected data member that holds information about this sample class.

Seealso Related data members, member functions, classes, constants, and types

Protected constructors

Constructor
TBird(anOwiType bParameter);
If the class has a protected constructor, it is listed here.

Protected member functions

This section lists all protected member functions.

OwICry
BOOLEAN Ow(Cry;
The OwlCry member function causes the sample class to perform some action.

Seealso TSomethingFElse:OwlCry

Zatslt
virtual int Zatslt(int index);
The Zatslt function performs a particular function in class TBird.

Response table entries

The TBird response table contains this predefined macro for the EV_xxxx messages and
calls this member function:

Res sle er
EV_WM_GETDLGCODE ~ EVGetDlgCode

Chapter 2, ObjectWindows library reference 27

BF _xxxx button flag constants

BF_xxxx button flag constants checkbox.h

Check box and radio button objects use the button flag constants to indicate the state of a
~ selection box.

Table21 Button flag constants

BF_CHECKED Item is checked.
BF_GRAYED Item is grayed.
BF_UNCHECKED Item is unchecked.

Seealso TCheckbox::GetCheck, TCheckbox::SetCheck

BN xxxx button message constants windows.h

Mouse and radio button objects use the button message constants to indicate the state of
a button.

Table2.2 Button message constants

|

'BN_CLICKED Message sent

BN_DISABLE Message sent when a button is disabled

BN_DOUBLECLICKED Message sent when the user double-clicks a button -

BN_HILITE Message sent when the user highlights a button

BN_PAINT Message sent when a button needs to be repainted

BN_UNHILITE Message sent when the highlighting needs to be removed from a button .

Seealso TRadioButton::BNClicked

CBN_xxxx combo box message constants windows.h

Combo box objects use these message constants to indicate the state of the combo box.

Table2.3 Combo box message constants

CBN_DBLCLK Message sent when the user double-clicks a text string in the combo box

CBN_DROPDOWN Message sent when the list box of a combo box drops down

CBN_EDITCHANGE Message sent when the user changes text in the edit control portion of a
: combo box

CBN_EDITUPDATE Message sent when edited text is going to be displayed

CBN_ERRSPACE Message sent when the combo box is out of memory

CBN_KILLFOCUS Message sent when the combo box loses the input focus

28 ObjectWindows Reference Guide

CM_xxxx edit constants
Table2.3 Combo box message constants (continued)
CBN_SELENDCANCEL Message sent when the user's initial selection needs to be cancelled because
the user has selected another control or closed the dialog box.
CBN_SELENDOK Message sent if the user's selection is valid
CBN_SETFOCUS Message sent when the combo box receives the input focus

Seealso TComboBox

CM _xxxx edit constants window.rh

These command-based member functions are invoked in response to a particular edit
menu selection or command.

Table 2.4 Command-based constants

S

M_E AR TEdit:CMEditClear Edit| Clear
CM_EDITCOPY TEdit:CMEditCopy Edit | Copy

CM_EDITCUT TEdit:CMEditCut Edit | Cut
CM_EDITDELETE TEdit:CMEditDelete Edit | Delete
CM_EDITPASTE TEdit:CMEditPaste Edit | Paste
CM_EDITUNDO TEdit:CMEditUndo Edit| Undo
CM_EXIT TWindow::CmExit File | Exit

Seealso TEdit:CMEditClear, TEdit:CMEditCopy, TEdit::CMEditCut,
TEdit::CMEditDelete, TEdit::CMEditPaste, TEdit::CMEditUndo, TWindow::CmExit

CM _xxxx edit file constants docview.rh

These command-based member functions are invoked in response to open, close, print,
and save commands.

Table 2.5 Command-based constants

CM_FILECLOSE File | Close
CM_FILENEW TEditFile:CmFileNew File | New
CM_FILEOPEN TEditFile:CmFileOpen File | Open
CM_FILEPRINT File | Print
CM_FILEPRINTERSETUP File | PrinterSetup
CM_FILEREVERT TDocManager:CmPFileRevert File | Revert
CM_FILESAVE TEditFile:CmFileSave File | Save
CM_FILESAVEAS TEditFile:CmFileSaveAs File|Save As
CM_VIEWCREATE TDocManager::CmViewCreate File | View Create

Chapter 2, ObjectWindows library reference 29

CM_xxxx edit replace constants

Seealso TEditFile:CmFileNew, TEditFile::CmFileOpen, TDocManager :CmFileRevert,
TEditFile: CmFlleSave, TEditFile::CmFileSaveAs

CM xxx edit replace constants o editsear.rh

These command-based member functions are invoked when the corresponding find
and replace command is received.

Table 2.6 Command-based constants

CM_EDITFIND TEditSearch:CMEditFind Edit| F
CM_EDITFINDNEXT TEditSearch::CMEditFindNext Edit| Find | Next
CM_EDITREPLACE TEditSearch::CMEditReplace Edit | Replace

Seealso TEditSearch::CMEditFind, TEditSearch::CMEditFindNext,
TEditSearch::CMEditReplace

CM_xxx edit view constants | oleview.rh

These command-based view functions are invoked in response to menu and accelerator
key commands. The Edit | Verbs selection refers to one of the OLE-specific menu
commands, such as Edit or Open.

‘Table 2.7 Command-based constants

CM_EDITPASTESPECIAL T1eWmdow::CMEd1tPasteSpec1al Paste | Special

CM_EDITPASTELINK TOleWindow::CMEditPasteLink Paste | Link
CM_EDITINSERTOBJECT TOleWindow::CMEditInsertObject Insert | Object
CM_EDITLINKS TOleWindow::CMEditLinks Edit| Links
CM_EDITOBJECT TOleWindow::CMEditObject Edit | Object
CM_EDITFIRSTVERB TOleWindow::EvCommandEnable Edit| Verbs
CM_EDITLASTVERB TOleWindow::EvCommandEnable Edit| Verbs
CM_EDITCONVERT TOleWindow::CMEdit Edit | Convert

30 ObjectWindows Reference Guide

CM_xxxx MDI constants

CM_ooxx MDI constants mdi.rh

These MDI functions are invoked when the corresponding MDI command message is
received.

Table2.8 Command message constants

Constant Member function Menu equivalent
CM_ARRANGEICONS TMDIClient:CmArrangelcons Window | Arrange Icons
CM_CASCADECHILDREN TMDIClient::CmCascadeChildren Window | Cascade
CM_CLOSECHILDREN TMDIClient::CmCloseChildren Window | Close All
CM_CREATECHILD TMDIClient::CmCreateChild

CM_TILECHILDREN TMDIClient::CmTileChildren Window | Tile
CM_TILECHILDRENHORIZ TMDIClient::CmTileChildren Window | Tile

Seealso TMDIClient::CmArrangelcons, TMDIClient::CmCascadeChildren,
TMDIClient::CmCloseChildren, TMDIClient::CmCreateChild,
TMDIClient::CmTileChildren

DECLARE_RESPONSE_TABLE macro eventhan.h

Declares a response table in the class definition. To handle events for a class, you need to
both declare a response table with this macro and define the response table using one of
the DEFINE_RESPONSE_TABLE macros. For example, to declare a response table, use
the following declaration, where the single parameter, Class, represents the name of the
current class:

DECLARE_RESPONSE_TABLE (Class) ;

ObjectWindows' response tables define the relationship between a window message
and a corresponding event-handling function. The description of TEventHandler has
more information about how ObjectWindows associates a response table entry with the
appropriate function.

Seealso DEFINE_RESPONSE_TABLE macros, END_RESPONSE_TABLE macro,
TEventHandler class

DEFINE_APP_DICTIONARY macro | appdict.h

This macro defines an AppDictionary reference and object as needed for use in
component DLLs and EXEs. Unless a user dictionary is specified, the macro defines the
dictionary as OwlAppDictionary, which is a globally exported TAppDictionary. The macro
is defined as follows:

define DEFINE_APP_DICTIONARY (AppDictionary)
Seealso TAppDictionary

Chapter 2, ObjectWindows library reference 31

DEFINE_DOC_TEMPLATE_CLASS macro

DEFINE_DOC_TEMPLATE_CLASS macro , doctplh

Creates a document template. Takes three arguments: the name of the document class
that holds the data, the name of the view class that displays the data, and the name of
the template class, and then associates the document with one or more views. The
following example illustrates how you can associate document and view classes with
new template classes.

DEFINE_DOC_TEMPLATE_CLASS (TFileDocument, TListView, ListTemplate);
DEFINE_DOC_TEMPLATE_CLASS(TFileDocument, TEditView, EditTemplate);

Seealso TDocTemplate

DEFINE_RESPONSE_TABLE macros eventhan.h

Defines a response table. Takes one plus x number of arguments: one is the name of the
class that is defining the response table, and x is the immediate base class as well as any
virtual base classes. Use the END_RESPONSE_TABLE macro to end the definition for
the response table. Between the DEFINE_RESPONSE_TABLE macro and the
END_RESPONSE_TABLE macro, insert the message response entries for the messages
you want the class to handle. For example,

DEFINE_RESPONSE_TABLEL (TMyClass, TWindow)
EV_WM_PAINT,
EV_WM_LBUTTONDOWN,

END_RESPONSE_TABLE;

In this example, EV_WM_PAINT and EV_WM_LBUTTONDOWN illustrate the
message response entries for the class TMyClass derived from TWindow. These macros
call the corresponding event-handling functions, EvPaint and EvLButtonDown,
respectively. Note that response tables are sometimes defined, but have no entries. In
such cases, the base class's response table entries are searched for the appropriate event-

handling function. You can also associate more than one message with an event-
handling function.

The following table shows the form the DEFINE_RESPONSE_TABLE macro takes
depending on the number of base classes.

0 DEFINE_RESPONSE, TABLE(Class)

1 DEFINE_RESPONSE_TABLE(Class, Base)

2 DEFINE_RESPONSE_TABLE2(Class, Basel, Base2)

3 DEFINE_RESPONSE_TABLE3(Class, Basel, Base2, Base3)

Seealso DECLARE_RESPONSE_TABLE macros, END_RESPONSE_TABLE macro,
TEventHandler class

32 ObjectWindows Reference Guide

DLGC _xxxx dialog control message constants

DLGC_xxxx dialog control message constants windows.h
Indicate the kind of input that the dialog manager needs to process. Returned by
EvGetDIgCode.

Table2.9 Dialog control message constants
Constant Meaning
DLGC_BUTTON Indicates a button
DLGC_DEFPUSHBUTTON Indicates a default button
DLGC_HASSETSEL Indicates a range of characters in an edit control
DLGC_RADIOBUTTON Indicates a radio button control message
DLGC_STATIC Indicates a static control
DLGC_UNDEFPUSHBUTTON Indicates a non-default push button control
DLGC_WANTALLKEYS Indicates all keyboard input
DLGC_WANTARROWS Indicates the direction keys
DLGC_WANTCHARS Indicates all key code messages
DLGC_WANTMESSAGE Indicates all keyboard input can be passed on to the control.
DLGC_WANTTAB Indicates the TAB key

Seealso TButton::EvGetDlgCode, TCheckBox::EvGetDlgCode, TEdit::EVGetDlgCode,
TListView::EvGetDlgCode, TSlider::EvGetDlgCode

dmxxxx document manager mode constants docmanag.h

Used by TDocManager to indicate if a document supports single or multiple open
documents, and to indicate if it has file menu IDs.

Constant -

dmMenu ~ Sets IDs for file menu.

dmMDI Supports multiple open documents.
dmNoRevert Disables the File | Revert menu command.
dmSaveEnable Enables File | Save menu command.

dmSDI Does not support multiple open documents.

Seealso TDocManager:-TDocManager

Chapter 2, ObjectWindows library reference 33

dnxxxx document message constants

dnxxxx document message constants docmanag.h

Used by TDocManager to indicate that a document or view has been created or closed.
You can set up response table entries for these messages using the EV_OWLVIEW or
EV_OWLDOCUMENT macros.

dnCreate A new document or view has been created.

dnClose A document or view has been closed.

Seealso TDocManager: TDocManager

dboooe document template constants locale.h

Used by TDocument and TDocTemplate to create templates. Several constants are
equivalent to the OFN_xxxx constants defined by Windows in commdlg.h.

Deletes the document when the last view

is deleted.
dtAutoOpen Opens a document upon creation.
dtCreatePrompt (OFN_CREATEPROMPT) Prompts the user before creating a
document that does not currently exist.
dtDynReglInfo Used to register a container or server for

OLE 2 support. Indicates that the
registration information table is dynamic
. not static.
dtFileMustExist (OFN_FILEMUSTEXIST) Lets the user enter only existing file
names in the File Name entry field. If an
invalid file name is entered, causes a
warning message to be displayed.

dtHidden Hides the template from the user's
selection.

dtHideReadOnly (OFN_HIDEREADONLY) Hides the read-only check box.

dtNewDoc Creates a new document with no path
specified.

dtNoAutoView Does not automatically create the default
view type.

dtNoReadOnly (OFN_NOREADONLYRETURN) Returns the specified file as writeable.

dtNoTestCreate (OFN_NOTESTFILECREATE) Does not perform document-creation

tests. The file is created after the dialog
box is closed. If the application sets this
flag, there is no check against write
protection, a full disk, an open drive
door, or network protection. For certain
network environments, this flag should
be set.

34 ObjectWindows Reference Guide

Constant
dtOverwritePrompt

dtPathMustExist

dtProhibited

dtReadOnly

dtRegisterExt

dtSelected
dtSingleUse
diSingleView

dtUpdateDir

END_RESPONSE_TABLE macro

Windows equivalent
(OFN_OVERWRITEPROMPT)

(OFN_PATHMUSTEXIST)

(OFN_ALLOWMULTISELECT)
(OFN_ENABLEHOOK)
(OFN_ENABLETEMPLATE)
(OFN_ENABLETEMPLATEHANDLE)
(OFN_READONLY)

Meaning

When the Save As diélog box is
displayed, asks the user if it's OK to
overwrite the file.

Allows only valid document paths to be
entered. If an invalid path name is
entered, causes a warning message to be
displayed.

Doesn't support these specified
Windows options

Checks the read-only check box when the
dialog box is created.

Used to register a container or server for
OLE 2 support. Registers an extension
with this application.

Indicates the last selected template.

Indicates that the document is to be
registered as a singl use document.

Provides only a single view for each
document.

Updates the directory with the directory
specified in the dialog box.

Seealso TDocTemplate::GetFlags, TLocaleString, TDocument class

END_RESPONSE_TABLE macro

eventhan.h

END_RESPONSE_TABLE;
Indicates the end of a response table. For each class that contains a response table, add
this macro to the class definition.

Seealso DEFINE_RESPONSE_TABLE macro

EN_xx edit message constants

windows.h

Indicate the state of an edit control in various situations: after a user has changed text,

Table 2.10 Edit message constants

when the edit control receives the input focus, and so on.

EN_CHANGE

EN_ERRSPACE
EN_HSCROLL
EN_KILLFOCUS

Message sent when the display is updated after changes have been made to the
edit control

Message sent when the edit control is out of memory

Message sent when the user clicks the horizontal scroll bar

Message sent when the edit control is losing the input focus

Chapter 2, ObjectWindows library reference 35

EV_xxxx macros

i i

Table 2.10 Edit message constants (continued)

e .
EN_MAXTEXT Message sent when the text insertion is truncated
EN_SETFOCUS Message sent when the edit control receives input focus
EN_UPDATE Message sent when the edit control is going to display revised text
EN_VSCHOLL Message sent when the user clicks the vertical scroll bar
windowev.h

EV_xxxx macros

Create response table entries that match events to member functions.

s
EV_CHILD_NOTIFY (id notifyCode,method)

EV_CHILD_NOTIFY_ALL_CODES

EV_CHILD_NOTIFY_AND_CODE(id, hoﬂfyCode,

method)
EV_COMMAND(id, method)

EV_COMMAND_AND_ID(id, method)

EV_COMMAND_ENABLE(id, method)
EV_MESSAGE(message, method)
EV_NOT[FY_AT'_CI—HLD(notifyCode, method)

EV_OWLDOCUMENT(id, method)
EV_OWLNOTIFY(id, method)
EV_OWLVIEW(id, method)
EV_REGISTERED(str, method)
EV_VIEWNOTIFY

f@%

S L A
Handles child ID notifications (for example,
button, edit control, list box, combo box, and
scroll bar notification messages) at the child's
parent window. Passes no arguments.

Passes all notifications to the response function
and passes the nofification code in as an
argument.

Handles child ID notifications at the child's
parent window and passes the notification code
as an argument.

Handler for menu selections, accelerator keys,
and push buttons.

Handler for multiple commands using a single
response function. Passes the menu ID in as an

argument.

Enables and disables commands such as buttons
and menu items.

General purpose macro for Windows WM_xxoxx
messages.

Handles all child ID notifications at the child
window.

Handles new document notifications.
Generic document handler.

Handles view notifications.

Handles registered MSG messages.

Sends a notification message from the document
to the views.

Factory template classes olefacto.h

The factory template classes create callback code for both automated and non
automated Doc/View and non-Doc/view ObjectWindows applications. Use these
factory template classes to make objects for embedding and linking. (That is, when an
application object needs to be embedded within another container, the callback function
is responsible for creating the embedded object.) Depending on the template arguments

36 ObjectWindows Reference Guide

Factory template classes

passed to the factory class, you obtain different kinds of factories designed to create the
object you need. All the templetized classes, however, assume that the application is
using a global AppDictionary (the application's dictionary), and a global Registrar (the
TOcRegistrar pointer that manages registering the application in the database).

ObjectWindows includes several factory template classes, divided into two main
categories: those designed for Doc/View applications and those designed for non-Doc/
View applications. Although all these classes contain the same functions, they are
designed to create different types of objects.

The hierarchy chart illustrates the inheritance relationship among these classes.

Factory Classes
TOleFactoryBase TAutoFactory

TOleFactory TOleAutoFactory TOleDocViewAutoFactory
L i L P

i e

Each class takes three arguments: the application class, the automation class, and the
Doc/View class. The arguments indicate whether or not the application is a Doc/View
application and whether or not the application is automated. The factory classes and
their definitions include the following four classes.

Factory class for Doc/View, non-automated, OLE components

template <class T> class TOleDocViewFactory
: public TOleFactoryBase<T, TOleFactoryDocView<T,
TOleFactoryNoAuto<T>>>{};
Factory class for Doc/View, automated OLE components

template <class T> class TOleDocViewAutoFactory
: public TOleFactoryBase<T, TOleFactoryDocView<T,
TOleFactoryAuto<T>>>{}; .

Factory class for non-Doc/View, non-automated, OLE components

template <class T> class TOleFactory
: public TOleFactoryBase<T, TOleFactoryNoDocView<T,
TOleFactoryNoAuto<T>>>{};

Factory class for non-Doc/View, automated OLE components

template <class T> class TOleAutoFactory

Chapter 2, ObjectWindows library reference 37

. Factory template classes

: public TOleFactoryBase<T TOIeFactoryNoDocV1ew<T
TOleFactoryAuto<T>>>{};

For either a Doc/View or a non-Doc/ View application, you need to register your
application in your OwlMain function. The argument to TOcRegistrar (in this case,
TOleFactory<TDrawApp>) constructs an object and converts it to a TComponentFactory
type, using the operator TComponentFactory to create a function pointer. In reality, the
object is never created because all the factory class's functions are static.

Pass your application object derived from TApplication as the parameter to TOleFactory,
as the following code from STEP15.CPP illustrates:

~int
OwlMain(int /*argc*/, char* /*argv*/ [])
{
try {
Registrar = new TOcReglstrar(AppReg, TOleFactory<TDrawApp> (),
TApplication::GetCmdLine());
if (Registrar->IsOptionSet (TOcCmdLine: ;AnyRegOption))
return 0;)

//If this is a normal exe server, run the application now; otherwise,
// wait until the factory is called.

return Registrar->Run();

}
In general, these are the steps each factory class follows in the default callback code:

1 The factory gets the application. This is the application object derived from
TApplication. For a DLL server, there can be several instances of the object. Using
TAppDictionary::Get Application, the factory verifies whether or not there is an entry in
the application dictionary for an application object for the current process.

2 If the application does not exist, the factory creates the application object and tests to
see if the application was created successfully before creating its corresponding
TOcApp object. If the shutdown option flag is set, it then exits. (If the application has
already been destroyed, the shutdown flag is set.)

3 If the factory is passed a shutdown option flag (one of the TOcAppMode enum
values), it then shuts down the application and calls the factory's DestroyApp function
to destroy the application.

4 If the application is automated, the factory creates a corresponding automation
object.

5 If the object ID is not zero, the factory creates the object and gets the OLE interface.
Otherwise, it gets the application's OLE interface. At this point, the Doc/View and
non-Doc/View processes differ because they need to create different types of objects.
If the application is automated, the factory creates an automated helper object.

6 The factory checks to see if the option flag amRun (one of the TOcAppMode enum
values) is set, and, if so, it runs the application. This occurs if the application either
was built as an .EXE or is a DLL running as an .EXE. If the amRun flag is not set and
the application is an in-proc DLL server and.should not be running, the factory just
starts the application.

38 ObjectWindows Reference Guide

7 The factory returns either the OLE interface for the object or 0 if no interface was

requested or if an error occurred.

The following diagram illustrates this process.

] Get Application J

Does the
Application
exist?

Shutdown
Application
?

|

N

[Destroy Application

Shutdown ~ \
Application Y
i ?

NY
Call Create
Application

Was the

Application
created?

Create OC

Application

Automate
the
Application?

Create automated
Application

OLE interface

Get the Application’s |_

)
A

Create Object and
Get OLE interface

Y

Return

0

N

Run the

Return the
OLE interface

Application

The factory can be called back to walk through this. process several times:

Factory template classes

1 On the first callback, the factory creates the application, and if the amRun flag is set, it
enters a message loop. '

Chapter 2, ObjectWindows library reference

39

GetApplicationObject function

2 On the second callback, OLE calls the factory to automate or embed or link an object.
In the case of an embedded and/ or linked object, this pass can occur one or more
times. (In the case of an automation object, however, this second pass occurs only
once because any subsequent requiests pass through the automated application itself.)

3 On the final callback, the factory shuts down the application.

See also

TAutoFactory class, TAutoFactory::DestroyApp, TComponentFactory typedef
TOcAppMode enum, TOcRegistrar class, TOleFactoryBase class,
TOleFactoryBase::Destroy App, TOleFactoryBase: TComponentFactory

GetApplicationObject function | appdicth

TApplication* GetApplicationObject(unsigned pid = 0);

This global function is included mainly for backward compatibility with previous
ObjectWindows applications. To find the application object associated with a process
ID, GetApplicationObject calls TAppDictionary::GetApplication on an application
dictionary. Used by EXEs or DLLs statically linking ObjectWindows,
GetApplicationObject can return 0.

Seealso GetWindowPtr function, TAppDictionary: GetApp11cat10n

GetWindowPtr function | * window.h

TWindow* GetWindowPtr(HWND hWnd);

This global function is included mainly for backward compatibility with previous
ObjectWindows applications. First, GetWindowPtr calls the global function
GetApplicationObject to find the application. Then, calls TApplication's GetWindowPtr to
get the TWindow pointer associated with the window.

Seealso GetApplicationObject function, TApplication::GetWindowPtr

ID_xxxx file constants inputdia.rh

Resource and control IDs for the input dialog box.

IDD_INPUTDIALOG Resource ID number for the input dialog box
ID_INPUT Control ID for the user input
ID_PROMPT Control ID for the static text

Seealso TInputDialog::SetUpWindow

40 ObjectWindows Reference Guide

ID_xxxx printer constants

ID xxxx printer constants printer.rh

Resource and control IDs for the printer abort dialog box.

Constant Meani@g?lif el b il
IDD_ABORTDIALOG Resource ID number for the abort dialog box.
ID_TITLE Control ID for the selected printer driver.
ID_DEVICE Control ID for the selected printer.
ID_PAGE ID number for the page number text control.
ID_PORT Control ID for the selected printer port.
IDA_xxxx accelerator ID constants editfile.rh

Resource ID for accelerator keys.

I'DA_EDITFILE o Resource ID for accelerator keys.
IDA xxxx OLE accelerator ID constants oleview.rh

Resource ID for accelerator keys.

IDA_OLEVIEW Resource ID for accelerator keys for OLE enabled applications.

IDM_xoxx menu ID constants editfile.rh

Resource ID for menu selections.

IDM_EDITFILE Resource ID for menu selections.

IDM_xxxx OLE menu ID constants oleview.rh

Menu IDs for OLE-enabled applications.

IDM_OLEPOPUP OLE enabled application pop-up menu
IDM_OLEVIEW OLE enable application view menu selection

Chapter 2, ObjectWindows library reference 41

IDS_xxxx edit view ID constants

IDS_xxxx edit view ID constants oleview.rh
String constants used to respond to edit view commands.
"Constant . Meamng
DS EDITOB]ECT * Edit the ob]ect
IDS_EDITCONVERT Convert the object
IDS_EXITSERVER Exit the server application
IDS_Mode constants statusba.rh
Resource and command IDs to use with TStatusBar.
Constant Meaning !
DS MODES String resource e to deﬁne mode On indicators
IDS_MODESOFF String resource to define mode Off indicators
IDS_xxxx document string ID constants docview.rh

String IDs that define resource IDs used to determine the status of the document.

Constant
1IDS] DOCCHANGED

IDS_DOCLIST
IDS_DOCMANAGERFILE
IDS_DUPLICATEDOC
IDS_NODOCMANAGER
IDS_NOMEMORYFORVIEW
IDS_NOTCHANGED
IDS_READERROR
IDS_UNTITLED
IDS_UNABLECLOSE
IDS_UNABLEOPEN
IDS_UNTITLED
IDS_VIEWLIST

i "Dlsplays these messages !

If the document has been changed dlsplays the message, "Do you

want to save the changes?"

Document is a document type.

This is a document manager file.

This is a duplicate document.

There is no document manager.

Not enough memory to view the document
The document has not been changed.

Error while reading the file

The file is untitled.

Document manager is unable to close the document.
Document manager is unable to open the document.

Document is untitled.
Document is a view type.

42 ObjectWindows Reférence Guide

IDS_xxxx edit file ID constants

IDS_xxxx edit file ID constants

editfile.rh

String constants used by edit and file classes to display information about files.

Constant
IDS_FILECHANGED

IDS_FILEFILTER
IDS_UNABLEREAD
IDS_UNABLEWRITE
IDS_UNTITLEDFILE

The text in the file has changed Do YOu want to save
the changes?

Use this filter to display text files.

Unable to read the file from the disk.

Unable to write the file to the disk.

The default window title unless the file is being
edited.

IDS_xxxx exception message constants

except.rh

General and application exception message constants. The following list groups the
constants according to message type:

IDS_INVALIDMAINWINDOW
IDS_INVALIDMODULE
IDS_NOAPP
IDS_OKTORESUME
IDS_OWLEXCEPTION
IDS_OUTOFMEMORY
IDS_UNHANDLEDXMSG
IDS_UNKNOWNERROR
IDS_UNKNOWNEXCEPTION
Owl 1 compatibility messages:
IDS_INVALIDCHILDWINDOW
IDS_INVALIDCLIENTWINDOW
IDS_INVALIDWINDOW
TXWindow messages:
IDS_CHILDCREATEFAIL
IDS_CHILDREGISTERFAIL
IDS_CLASSREGISTERFAIL
IDS_LAYOUTCOMPLETE
IDS_LAYOUTBADRELWIN
IDS_MENUFAILURE
IDS_PRINTERERROR
IDS_VALIDATORSYNTAX
IDS_WINDOWCREATEFAIL
IDS_WINDOWEXECUTEFAIL

valid MainWindow

Invalid module specified for window
No application object

Resume in spite of error

Unknown exception

Out of memory
Unhandled xmsg error
Unknown error
Unknown exception error

Invalid child window
Invalid client window
Invalid window

Child create fail for window

Child class registration fails for window
Class registration fails for window
Layout window failure

Layout window failure

Menu creation failure

Printer error

Validator syntax error

Create fail for window

Execute fail for window

Chapter 2, ObjectWindows library reference

43

IDS_xxxx listview ID constants

Constant .\ | || Meaning |
GDI me‘ssages:
IDS_GDIALLOCFAIL GDI allocate failure
IDS_GDICREATEFAIL GDI creation failure
IDS_GDIDELETEFAIL GDI object delete failure
IDS_GDIDESTROYFAIL k GDI object destroy failure
IDS_GDIFAILURE GDI failure
IDS_GDIFILEREADFAIL GDI file read failure
IDS_INVALIDDIBHANDLE Invalid DIB handle
IDS_GDIRESLOADFAIL GDI resource load failure
IDS xxxx listview ID constants listview.rh

Define operations performed on views. These include clearing the document, inserting a
new line, copying text to the Clipboard, and so on.

Constant Meaning ’
IDS_LISTVIEW Resource ID for listview constants.
IDS_xxxx printer string ID constants printer.rh
Constants used by printer classes to determine the printer status.
Constant o String displayed '
. IDS_PRNCANCEL Printing is canceled.
IDS_PRNERRORCAPTION Printer error occurred.
IDS_PRNERRORTEMPLATE Document was not printed.
IDS_PRNGENERROR Error encountered during printing.
IDS_PRNMGRABORT Printing aborted in Print Manager.
IDS_PRNON Printer is on.
IDS_PRNOUTOFDISK Out of disk space.
IDS_PRNOUTOFMEMORY Out of memory.
IDS_xxxx validator ID constants validate.rh

Defines several constants used by validator classes to determine the validator status.

ot = M
'IDS_VALPXPCONFORM Item doesn't conform to correct picture format.
IDS_VALINVALIDCHAR Character isn't one of the valid entries.

44 ObjectWindows Reference Guide

IDW_MDICLIENT constant

Constant Meaning ~

IDS_VALNOTINRANGE Entry isn't within the specified range.

IDS_VALNOTINLIS String isn't found in the list of valid entries.
IDW_MDICLIENT constant framewin.h

IDW_MDICLIENT

Child ID constant used to identify MDI client windows.

IDW_MDIFIRSTCHILD constant framewin.h

IDW_FIRSTMDICHILD
Child ID constant used to identify the first MDI client window.

LangXxxx ID constants locale.h

A language ID is 16-bit number representing a language. In ObjectComponents, a
language ID is a value of type TLangld.

A language ID is composed of two parts. The ten low-order bits identify a language and
the six high-order bits identify a dialect or sub-language. For example, a language ID
can specify simply French, or make use of the upper bits to designate Belgian French,
Swiss French, or Canadian French.

ObjectComponents defines constants to represent three common IDs:

LéngSYéDefault

The default anguége set fof the ‘system.

LangUserDefault The default language set for a particular user (which can differ from the system
setting on multi-user systems.)

LangNeutral A neutral setting signifying no particular locale. An application that receives this

value uses its own default setting.

Seealso TLangld typedef, TLocaleString

LBN_xxxx list box message constant windows.h

Indicate changes in the status of the list box.

LBN_DBLCLK Message sent when the user double-clicks a string in a list box
LBN_ERRSPACE Message sent when the list box is out of memory
LBN_KILLFOCUS Message sent when the list box is losing the input focus

Chapter 2, ObjectWindows library reference 45

ImParent constant

N_SELCANCEL Mess. ge sent when the user cancels the selection in a list box
LBN_SELCHANGE Message sent when the user changes the selection in a list box
LBN_SETFOCUS Message sent when the list box receives the input focus.

ImParent constant | layoutco.h

#define ImParent 0
LmParent is used to construct layout metrics (for example, edge and size constraints).

Seealso TLayoutConstraint struct

LongMulDiv function scrollerh

long LongMulDiv(long mul1, long mul2, long div1);

TScroller uses this function to convert horizontal range values (XRange) from the scroll
bar to horizontal scroll values (XScrollValue) and vice versa, or to convert vertical range
values (YRange) from the scroll bar to vertical scroll values (Y ScrollValue) and vice versa.

Seealso TScroller

MAX_RSRC_ERROR_STRING constant except.h

const int MAX_RSRC_ERROR_STRING = 255;
Maximum number of characters possible for an error message.

MB_Xxxx message constants windows.h

Contain information about the style and behavior of a message dialog box. You can use
these constants to determine the kinds of information displayed in a message dialog
box.

s o s
‘ e -

MB_OK The message dialog box contains an OK push button.
MB_OKCANCEL The message dialog box contains Cancel and OK push buttons.
MB_ABORTRETRYIGNORE The message dialog box contains Abort, Retry, and Ignore push buttons.
MB_YESNOCANCEL The message dialog box contains Yes, No and Cancel push buttons.
MB_YESNO The message dialog box contains Yes and No push buttons.
MB_RETRYCANCEL The message dialog box contains Retry and Cancel push buttons.
MB_ICONHAND The message dialog box contains a stop sign icon.
MB_ICONQUESTION The message dialog box contains a question mark.

MB_ICONEXCLAMATION The message dialog box contains an exclamation mark.

46 ObjectWindows Reference Guide

Constant
MB_ICONASTERISK
MB_ICONINFORMATION
MB_ICONSTOP
MB_ICONHAND
MB_DEFBUTTON1

MB_DEFBUTTON2
MB_DEFBUTTON3
MB_APPLMODAL

MB_SYSTEMMODAL

MB_TASKMODAL

NBits function

Meaning

The message dialog box contains an icon consisting of a lowercase letter i.
The message dialog box contains an icon consisting of a lowercase letter i.
The message dialog box contains a stop sign icon.

The message dialog box contains a stop-sign icon.

The first button is the default button in the message dialog box. This is
always the case unless MB_DEFBUTTON?2 or MB_DEFBUTTONZ is
specified.

The second button is the default button in the message dialog box.
The third button is the default button in the message dialog box.

Before continuing to work in this window, the user must answer the
message dialog box. However, the user can work in other windows.
MB_APPLMODAL is the default unless MB_SYSTEMMODAL,
MB_TASKMODAL, or MB_NOFOCUS is specified.

Before continuing to work in this window, the user must answer the
message dialog box. Unless the application indicates MB_ICONHAND,
the message box does not become modal until after it is created. The
owning window and other windows can continue to receive messages.
You can use MB_SYSTEMMODAL to notify the user of serious errors,
such as lack of sufficient memory to run an application, that must be
taken care of immediately.

Before continuing to work in this window, the user must answer the
message dialog box. However, the user can work in other windows.
Unlike MB_APPLMODAL, all top-level windows in the current task are
disabled. Use this constant when the calling application does not have a
window handle available, and you want to prevent input to other
windows in the current application without actually preventing the other
applications from executing.

Seealso TDocument::PostError, TDocManager::PostDocError, TWindow::MessageBox

NBits function color.h
uint16 NBits(long colors);
Returns the bit count corresponding to the given color count.
Seealso NColors, TColor class

NColors function color.h

int NColors(uint16 bitCount);

Returns the color count corresponding to the given bit count, or —1 if the bit count is not
supported by Windows. Bit counts currently supported are 1, 4, 8, and 24.

Seealso NBits, TColor class

Chapter 2, ObjectWindows library reference 47

ofxxxx document open enum

ofooxx document open enum L docview.h

Defines the document and open sharing modes used for constructing streams and
storing data. Any constants that have the same functionality as those used by OLE 2.0
docfiles are indicated in the following table; for example, STGM_TRANSACTED,
STGM_CONVERT, STGM_PRIORITY, and STGM_DELETEONRELEASE.

Although files are typically used for data storage, databéses or spreadsheets can also be
used. I/O streams rather than DOS use these bit values. Documents open the object
used for storage in one of the following modes:

o r L . i ;

o‘EParent A storage object is 6pened using the parent's ode.)

ofRead A storage object is opened for reading.

ofWrite A storage object is opened for writing.

ofReadWrite A storage object is opened for reading and writing.

of AtEnd Seek to end-of-file when opened originally.

of Append Data is appended to the end of the storage object.

ofTruncate An already existing file is truncated.

ofNoCreate Open fails if file doesn't exist.

ofNoReplace Open fails if file already exists.

ofBinary Data is stored in a binary, not text, format. Carriage returns are not stripped.

oflosMask All of the above bits are used by the ios class.

ofTransacted Changes to the storage object are preserved until the data is either committed to
permanent storage or discarded. (STGM_TRANSACTED)

ofPreserve Backs up previous storage data using before creating a new storage object with
the same name. (STGM_CONVERT)

ofPriority Supports temporary, efficient reading before opening the storage.
(STGM_PRIORITY)

ofTemporary The storage or stream is automatically destroyed when it is destructed.

(STGM_DELETEONRELEASE)

Seealso TStream, TInStream, TOutStream

phoox property attribute constants | | docview.h

Define document and view property attributes. Documents, views, and applications use
these attributes to determine how to process a document or view.

P etText . ?op;;y accessible in a text format.
pretBinary . Property is accessible as a native nontext format.
pfConstant ~ Property can't be changed for the object instance.
‘pfSettable Property can be set as a native format.

pfUnknown Property is defined but unavailable for the object.

48 ObjectWindows Reference Guide

_BUILDOWLDLL macro

Constant Meaning
pfHidden Property should be hidden from the user during normal browsing.
pfUserDef Property has been user-defined at run time.

Seealso TDocument, TView

_BUILDOWLDLL macro owldefs.h

_BUILDOWLDLL

Used internally to control values for the _OWLCLASS, _OWLDATA, and _OWLFUNC
macros. This macro is defined when the user's module is built as a DLL. It must be
defined and included in ObjectWindows makefiles to build the ObjectWindows DLL.

Seealso _OWLDLL macro

_OWLCLASS macro owldefs.h

_OWLCLASS
Used internally by ObjectWindows to modify an entire class for use in a DLL. It is the
ObjectWindows version of _RTLCLASS adjusted to export and import WIN32 DLLs.

For static WIN16 and WIN32, the default models are used. When ObjectWindows is
being built, this macro evaluates to _export for WIN16 and WIN32 DLLs. For WIN32
DLLs, this macro evaluates to _import and performs necessary operations for WIN32
DLLs. For WIN16 DLL use, this macro evaluates to _import, which is essentially the
same as _huge.

'OWLDATA macro owldefs.h

_OWLDATA
The ObjectWindows version of _RTLDATA adjusted to export and import WIN32 DLLs
for ObjectWindows. _OWLDATA modifies a specific data declaration.

For static WIN16 and WIN32, the default models are used. When ObjectWindows is
being built, this macro evaluates to _export for WIN16 and WIN32 DLLs. For WIN32
DLLs, this macro evaluates to _import and performs necessary operations for WIN32
DLLs. For WIN16 DLLs, this macro evaluates to nothing.

_OWLDLL macro owldefs.h

_OWLDLL _
_OWLDLL, which is automatically defined if RTLDLL is turned on, controls values for
the _OWLCLASS, _OWLDATA, and _ OWLFUNC macros. It is also automatically
defined if the user OWLDLL module is used as a DLL from another user module. It

‘Chapter 2, ObjectWindows library reference 49

_OWLFAR macro

must be defined if you are writing ObjectWindows applications or DLLs that use DLLs.
This macro can also be turned on by a makefile.

_OWLFAR macro | ' owldefs.h

_OWLFAR
The macro _OWLFAR is the ObjectWindows version of _RTLFAR adapted to promote
far data pointers in DLLs for ObjectWindows.

_OWLFARVTABLE macro | owldefs.h

_OWLFARVTABLE

Moves the ObjectWindows virtual function tables (vtables) out of the DGROUP of the
data segment and stores them in the code segment. Use this macro in conjunction with
the _OWLCLASS macro to add the _huge option when static models are compiled.

_OWLFASTTHIS macro owldefs.h

_OWLFASTTHIS

The macro _OWLFASTTHIS causes _fastthis to be added to the_ OWLCLASS macro so
that all ObjectWindows classes use the fastthis calling convention for passing the this
parameter in the registers. This macro, which has the same effect as using the —-po
compiler option, applies to 16-bit code only.

_OWLFUNC macro owldefs.h

_OWLFUNC

The ObjectWindows function version of _RTLFUNC adapted to export and import
functions for building WIN32 DLLs for ObjectWindows. _OWLFUNC modifies a
specific member or global function for use in a DLL.

For static WIN16 and WIN32 DLLs, the default models are used. When ObjectWindows
is being built, this macro evaluates to _export for WIN16 and WIN32 DLLs. For WIN32
DLLs, this macro evaluates to _import and performs necessary operations for WIN32
DLLs. For WIN16 DLL use, this macro evaluates to nothing.

OWLGetVersion function owldefs.h

unsigned short far _OWLFUNC OWLGetVersion();
Returns the version number of the ObjectWindows library. The version number is
represented as an unsigned short.

50 ObjectWindows Reference Guide

SB_Xxxx scroll bar constants

SB_Xxxx scroll bar constants windows.h
The following constants define scroll bar modes:
~ Meaning - , ; S
Displays or hides the horizontal and vertical scroll bars for a window.
SB_CTL Displays or hides a scroll bar's control button.
SB_HORIZ Displays or hides the horizontal scroll bars for a window.
SB_VERT Displays or hides the vertical scroll bar for a window.
shxooxx document sharing enum docview.h

The following file-sharing modes are available when opening document streams.

 Meaning . g
shCompat Used for noncbmpliant applications, but should be avoided if possible.
shNone DENY_ALL functionality.
shRead DENY_WRITE functionality.
shWrite DENY_READ functionality.
shReadWrite DENY_NONE functionality
shDefault Use stream implementation default value.
shMask Mask for file-sharing bits.

“TActionFunc typedef

window.h

typedef void(*TActionFunc)(TWindow* win, void* param);
Passes a function pointer to TWindow::ForEach.

Seealso TWindow::ForEach

TActionMemFunc typedef

window.h

typedef void(TWindow::*TActionMemFunc) (TWindow* win, void* param);
Passes a member function pointer to TWindow::ForEach.

Seealso TWindow::ForEach

TAnyPMF typedef

dispatch.h

typedef void(GENERIC::*TAnyPMF)();
A generic pointer to a member function.

Chapter 2, ObjectWindows library reference 51

TAnyDispatcher typedef

TAnyDispatcher typedef dispatch.h

typedef LRESULT (*TAnyDispatcher)(GENERIC&, TAnyPMF, WPARAM, LPARAM);
A message dispatcher type. All message dispatcher functions conform to this type and
take four parameters:

¢ A reference to an object

* A pointer to the member function in which the signature varies according to the
cracking that the function performs

¢ WPARAM
e LPARAM

TAppDictionary class appdict.h

A TAppDictionary is a dictionary of associations between a process ID and an
application. A process ID identifies a process, that is, a program (including all of its
affiliated code, data, and system resources) that is loaded into memory and ready to
execute. A TAppDictionary supports global application lookups using the global
GetApplicationObject function or TAppDictionary's GetApplication function. If you do not
define an application dictionary, ObjectWindows provides a default, global application
dictionary that is exported. In fact, for EXEs, this global application dictionary is
automatically used.

TAppDictionary includes a TEntry struct, which stores the process ID and the
corresponding application associated with the ID. The public member functions add,
find, and remove the entries in the appplication dictionary.

If you are statically linking ObjectWindows, you do not have to explicitly create an
application dictionary because the default global ObjectWindows application dictionary
is used. However, when writing a DLL component that is using ObjectWindows in a
DLL, you do need to create your own dictionary. To make it easier to define an
application dictionary, ObjectWindows includes a macro
DEFINE_APP_DICTIONARY, which automatically creates or references the correct
dictionary for your application.

Although this class is transparent to most users building EXEs, component DLLs need
to create an instance of a TApplication class for each task that they service. This kind of
application differs from an EXE application in that it never runs a message loop. (All the
other application services are available, however.)

Although a component may consist of several DLLs, each with its own TModule, the
component has only one TApplication for each task. A TAppDictionary, which is used for
all servers (including DLL servers) and components, lets users produce a complete, self-
contained application or component. By using a TAppDictionary, these components can
share application objects.

When 16-bit ObjectWindows is statically linked with an EXE or under Win32, with per-
instance data, the TAppDictionary class is implemented as a wrapper to a single

52 ObjectWindows Reference Guide

TAppDictionary class

application pointer. In this case, there is only one TApplication that the component ever
sees.

To build a component DLL using the ObjectWindows DLL, a new TAppDictionary object
must be constructed for that DLL. These are the steps an application must follow in
order to associate the component DLL with the TAppDictionary, the application, and the
window class hierarchy:

1 Use the DEFINE_APP_DICTIONARY macro to construct an instance of
TAppDictionary. Typically, this will be a static global in one of the application's
modules (referred to as "AppDictionary"). The DEFINE_DICTIONARY macro allows
the same code to be used for EXEs and DLLs.

TAppDictionary AppDictionary;

2 Construct a generic TModule and assign it to the global ::Module. This is the default
provided in the ObjectWindows' LibMain function.

LibMain(...)
::Module = new TModule(0, hInstance);

3 When each TApplication instance is constructed, pass a pointer to the TAppDictionary
as the last argument. This ensures that the application will insert itself into this
dictionary. In addition, for 16 bit DLLs, the gModule argument needs to be supplied
with a placeholder value because the Module construction has already been
completed at this point, as a result of the process performed in step 2.

TApplication* app = new TMyApp(..., app, AppDictionary);

4 If the Doc/View model is used, supply the application pointer when constructing the
TDocManager object.

SetDocManager (new TDocManager (mode, this));

5 When a non-parented window (for example, the main window) is being constructed,
pass the application as the module.

SetMainWindow (new TFrameWindow(0, "", false, this));
See also

TApplication:GetWindowPtr, TWindow::GetWindowPtr,
DEFINE_APP_DICTIONARY macro

Type definitions

TEntry

struct TEntry {
unsigned Pid;
TApplication* App;
t
An application dictionary entry that associates a process ID (Pid) with an application
(App). The dictionary is indexed by (Pid) and can have only 1 entry per process ID.

Seealso TAppDictionary:TEntry struct, TAppDictionary::Iterate

Chapter 2, ObjectWindows library reference 53

TAppDictionary class

TEntrylterator

typedef void(*TEntrylterator) (TEntry&);

A dictionary iterator function pointer type that receives a reference to an entry. You can
supply a function of this type to the Iferate function to iterate through the entries in the
dictionary.

Seealso TAppDictionary:: TEntrylterator typedef

Public constructor and destructor

Constructor
TAppDictionary();
Constructs a TAppDictionary object.

Destructor

~TAppDictionary();

Destroys the TAppDictionary object and calls DeleteCondemned to clean up the
condemned applications.

Public member functions

Add

void Add(TApplication* app, unsigned pid = 0);

Adds an application object (app) and corresponding process ID to this dictionary. The
default ID is the current process's ID.

Seealso TAppDictionary::Remove

Condemn

void Condemn(TApplication* app);

Marks an application in this dictionary as condemned by zeroing its process ID so that
the application can be deleted later when DeleteCondemned is called.

Seealso TAppDictionary::DeleteCondemned

DeleteCondemned

bool DeleteCondemned();

Deletes all condemned applications and their associated process IDs from the
dictionary. If no applications remain in the dictionary, DeleteCondemned returns true.

Seealso TAppDictionary:Condemn

GetApplication

TApplication* GetApplication(unsigned pid = 0);

Looks up and returns the application associated with a given process ID. The default ID
is the ID of the current process. If no application is associated with the process ID,
GetApplication returns 0.

lterate
void lterate(TEntrylterator iter);

54 ObjectWindows Reference Guide

TApplication class

Iterates through a list of entries in the application dictionary, calling the iter callback
function for each entry.

Seealso TAppDictionary:: TEntrylterator

Remove

Form1 void Remove(TApplication* app);
Searches for the dictionary entry using the specified application (app). Then, removes a
given application and process ID entry from this dictionary, but does not delete the
application.

Form2 void Remove(unsigned pid);
Searches for the dictionary entry using the specified process ID (pid). Then, removes a
given application and its associated process ID entry from this dictionary, but does not
delete the application.

Seealso TAppDictionary:Add

TApplication class applicath

Derived from TModule, TApplication acts as an object-oriented stand-in for an
application module. TApplication and TModule supply the basic behavior required of an
application. TApplication member functions create instances of a class, create main
windows, and process messages.

Public data members

HAccTable

HACCEL HAccTable;

Included to provide backward compatibility, HAccTable holds a handle to the current
accelerator table being used by the application. New applications should instead use the
accelerator table handle TWindowAttr::AccelTable for each window object in the
application.

Seealso TWindow::LoadAcceleratorTable, TWindowAttr struct

hPrevinstance

HINSTANCE hPrevinstance;

Contains the handle of the previously executing instance of the Windows application. If
hPrevInstance is 0, there was no previously executing instance when this instance began
execution. Under Win32, this value is always 0.

nCmdShow
int n"CmdShow;

Chapter 2, ObjectWindows library reference 55

TApplication class

Form 1

Indicates how the main window is to be displayed (either maximized or as anicon).
These correspond to the WinMain parameter nCmdShow. nCmdShow can contain one of
the following constants:

_SHO
SW_HIDE Hides the window.
SW_MINIMIZE Minimizes the specified window.
SW_SHOW Activates a window using current size and position.

SW_SHOWMAXIMIZED Displays a maximized window.
SW_SHOWMINIMIZED Displays a minimized window.

SW_SHOWNA Displays window in its current state.
SW_SHOWNOACTIVATE Displays the window as an icon.
SW_SHOWNORMAL Displays a window in its original size and position.
SW_SHOWSMOOTH Shows a window by updating it in a bitmap and then copying the bits to
the screen.
Type definitions
Xs

enum {xsUnknown, xsBadCast, xsBadTypeid, xsMsg, xsAlloc, xsOwl};

These bit flags define the types of exceptions that are caught and suspended.
TApplication::SuspendThrow and TApplication::QueryThrow return the values of these bit
flags.

The following table shows the xs exception enum constants:

xsUnknown Unknown exception

xsBadCast Bad_cast exception

xsBadTypeid Bad_typeid exception

xsMsg Any exception derived from xmsg
xsAlloc xalloc exception

xsOwl TXOwl exception

Seealso TXOwl, TApplication::QueryThrow, TApplication::SuspendThrow

Public constructor and destructor

Constructor

TApplication(const char far* name = 0, TModule*& gModule = ::Module, TAppDictionary* appDict = 0);

This TApplication constructor creates a new TApplication object named narme. You can use
gModule to specify the global module pointer that points to this application. The appDict
parameter specifies which dictionary this application will insert itself into. To override
the default ObjectWindows TAppDictionary object, pass a pointer to a user-supplied
appDict object.

56 ObjectWindows Reference Guide

TApplication class

Form?2 TApplication(const char far* name, HINSTANCE hinstance, HINSTANCE hPrevinstance,
const char far* cmdLine, int cmdShow, TModule*& gModule = ::Module, TAppDictionary* appDict = 0);

This TApplication constructor creates a TApplication object with the application name
(name), the application instance handle (instance), the previous application instance
handle (prevInstance), the command line invoked (cmdLine), and the main window show
flag (cmdShow). The appDict parameter specifies which dictionary this application will
insert itself into. To override the default ObjectWindows TAppDictionary object, pass a
pointer to a user-supplied appDict object.

If you want to create your own WinMain, use this constructor because it provides access
to the various arguments provided by WinMain. You can use gModule to specify the
global module pointer that points to this application.

Destructor
~TApplication();
~TApplication destroys the TApplication object.

Seealso TApplication:nCmdShow, TModule, TAppDictionary

Public member functions

BeginModal

int BeginModal(TWindow* window, int flags = MB_APPLMODAL);

BeginModal is called to begin a modal window's modal message loop. After determining
which window to disable, saves the current status of the window, disables the window,
calls MessageLoop, and then reenables the window when the message loop is finished.
The flags determine how BeginModal treats the window. flags can be one of the following
values:

MB_APPLMODAL The window to be disabled (which is usually an ancestor of the modal window)
is identified by window. If window is 0, no window is disabled.

MB_SYSTEMMODAL The window to become system modal is identified by window.

MB_TASKMODAL All top-level windows are disabled, and window is ignored. BeginModal returns
-1if an error occurs.

Seealso TWindow

BWCCEnabled

bool BWCCEnabled();

Indicates if the Borland Custom Controls library (BWCC) is enabled. Returns true if
BWCC is enabled and false if BWCC is disabled.

CanClose

virtual bool CanClose();

Returns true if it's OK for the application to close. By default, CanClose calls the CanClose
member function of its main window and returns true if both the main window and the
document manager (TDocManager) can be closed. If any of the CanClose functions return
false, the application doesn't close.

Chapter 2, ObjectWindows library reference 57

TApplication class

This member function is seldom redefined; closing behavior is usually redefined in the
main window's CanClose member function, if needed.

Seealso TWindow::CanClose, TDocManager

Condemn
void Condemn(TWindow* win);
Performs window cleanup.

Cti3dEnabled

bool Cti3dEnabled() const;

Returns true if the Microsoft 3-D Controls Library DLL is enabled. This DLL gives
controls a three-dimensional look and feel.

Seealso TApplication::EnableCtl3d, TApplication::EnableCtl3d Autosubclass

EnableBWCC

void EnableBWCC(bool enable = true, uint Language = 0);

Loads and registers BWCC.DLL if you are running 16-bit applications or BWCC32.DLL
if you are running 32-bit applications. By default, BWCC is enabled. To disable BWCC,
set enable to false.

Seealso TDialog

EnableCti3d

void EnableCtl3d(bool enable = true);

Enables or disables the use of the CTL3D DLL. If enable is true, EnableCt13d loads and
registers the CTL3D.DLL if it's not already enabled.

Seealso TApplication::Ctl3dEnabled, TApplication::EnableCtl3d Autosubclass

EnableCti3dAutosubclass

void EnableCtl3dAutosubclass(bool enable);

Enables or disables CTL3D's use of autosubclassing if CTL3D is already enabled using
Ctl3dEnabled. If autosubclassing is enabled, any non-ObjectWindows dialog boxes have
a 3-D effect. The common dialog classes and TDocManager use this function to turn on
autosubclassing before creating a non-ObjectWindows dialog box to make it three-
dimensional and to turn off autosubclassing immediately after the dialog box is
destroyed.

Seealso TDialog::EvCtlColor, TApplication::EnableCtl3d, TApplication::CtI3dEnabled

EndModal

void EndModal(int result);

EndModal is called to end a modal window's modal message loop. Sets result to -1 if an
error occurs.

Find

bool Find(TEventinfo &, TEqualOperator = 0);

Because TApplication has no event table itself, it defers event handling to the
DocManager. If a DocManager has been installed, Find calls TDocManager to handle
events.

Seealso TEventHandler:TEventInfo

58 ObjectWindows Reference Guide

TApplication class

GetBWCCModule
TModule* GetBWCCModule() const,;
Returns a pointer to the enabled BWCC module.

GetCti3dModule
TModule* GetCti3dModule() const;
Returns a pointer to the enabled Ctl3d module.

GetDocManager
TDocManager* GetDocManager(); ‘
Returns a pointer to the document manager object that invoked the application.

Seealso TApplication::SetDocManager, TDocManager

GetMainWindow
TFrameWindow* GetMainWindow();
Returns a pointer to the application's main window.

Seealso TApplication::SetMainWindow, TFrameWindow

GetWindowPtr

TWindow* GetWindowPtr(HWND hWnd) const;

Retrieves a TWindow pointer associated with the handle to a window (hWnd). Allows
more than one application to share the same HWND.

Seealso TWindow::GetWindowPtr

GetWinMainParams

void GetWinMainParams();

Initializes a static instance of an application. ObjectWindows OwIMain uses this function
to support static application instances.

Seealso TApplication::SetWinMainParams

MessageLoop

virtual int MessageLoop();

Operates the application's message loop, which runs during the lifetime of the
application. Queries for messages; if one is received, MessageLoop processes it by calling
ProcessAppMsg. If the query returns without a message, MessageLoop calls IdleAction to
perform some processing during the idle time. MessageLoop calls PumpWaitingMessages
to get and dispatch waiting messages. MessageLoop can be broken if BreakMessageLoop is
set by EndModal.

Seealso TApplication::BreakMessageLoop, TApplication::IdleAction,
TApplication::ProcessAppMsg, TApplication:PumpWaitingMessages

PostDispatchAction

void PostDispatchAction();

If TApplication’s message loop is not used, this function should be called after each
message is dispatched '

PreProcessMenu
virtual void PreProcessMenu(HMENU hmenu);

Chapter 2, ObjectWindows library reference 59

TApplication class

Your application can call PreProcessMenu to process the main window's menu before it
is displayed.

Seealso TDocmanager::EvPreProcessMenu, TMenu:TMenu

ProcessAppMsg

virtual bool ProcessAppMsg(MSG& msg);

Checks for any special processing that is required for modeless dialog box, accelerator,
and MDI accelerator messages. Calls the virtual TWindow::PreProcessMsg function of the
window receiving the message. If your application does not create modeless dialog
boxes, does not respond to accelerators, and is not an MDI application, you can improve
performance by overriding this member function to return false.

Seealso TWindow::PreProcessMsg, MSG struct

PumpWaitingMessages

bool PumpWaitingMessages();

Called by MessageLoop, PumpWaitingMessages processes and dispatches all waiting
messages until the queue is empty. It also sets BreakMessageLoop when a WM_QUIT
message is received.

Seealso TApplication:MessageLoop, TApplication::BreakMessageLoop

QueryThrow

int QueryThrow();

QueryThrow tests to see if an exception is suspended and returns one or more of the bit
flags in the xs exception status enum.

Seealso xs exception status enum

ResumeThrow

void ResumeThrow();

ResumeThrow checks and rethrows suspended exceptions. Call this function any time
you reenter ObjectWindows code from exception-unsafe code where an exception could
have been thrown.

Run

virtual int Run();

Initializes the instance, calling InitApplication for the first executing instance and
InitInstance for all instances. If the initialization is successful, Run calls MessageLoop and
runs the application. If exceptions are thrown outside the message loop, Run catches
these exceptions.

If an error occurs in the creation of a window, Run throws a TXWindow exception. If
Status is assigned a nonzero value (Which ObjectWindows uses to identify an error), a
TXCompatibility exception is thrown.

Seealso TApplication::InitApplication, TApplication::InitInstance,
- TApplication:MessageLoop, TXWindow, TXCompatibility

SetWinMainParams
static void SetWinMainParams(HINSTANCE hinstance, HINSTANCE hPrevinstance, const char far* cmdLine,
int cmdShow);

60 ObjectWindows Reference Guide

Form 1

Form 2

Form 3

Form 4

TApplication class

ObjectWindows default WinMain function calls SetMainWinParams so that TApplication
can store the parameters for future use. To construct an application instance, WinMain
calls the OwlMain function that's in the user's code. As it's being constructed, the
application instance can fill in the parameters using those set earlier by
SetMainWinParams.

Seealso TApplication::GetWinMainParams

SuspendThrow
void SuspendThrow(xalloc& x);
This version of SuspendThrow saves xalloc exception information.

void SuspendThrow(xmsgé& x);
This version of SuspendThrow saves xmsg exception information.

void SuspendThrow(TXOwl& x);
This version of SuspendThrow saves a copy of a TXOwl exception.

void SuspendThrow(int);
This version of SuspendThrow sets the xs exception status bit flags to the specified
exception, for example Bad_cast or Bad_typeid.

Seealso xs exception status enum, TXOwl

Uncondemn
void Uncondemn (TWindow* win);
Removes condemned children from the list of condemned windows.

Seealso TWindow

Protected data members

BreakMessageLoop

bool BreakMessageLoop;

Causes the current modal message loop to break and terminate. If the current modal
message loop is the main application, and your program sets BreakMessageLoop, your
main application terminates.

Seealso TApplication:EndModal, TApplication::MessageLoop,
TApplication::PumpWaitingMessages

MessageL.oopResult

int MessageLoopResult;

MessageLoopResult is set by a call to EndModal. It contains the value that is returned by
MessageLoop and BeginModal.

Seealso TApplication::BeginModal, TApplication::EndModal,
TApplication::MessageLoop

Chapter 2, ObjectWindows library reference 61

TApplication class

Protected member functions

IdleAction

virtual bool IdleAction(long idleCount);

ObjectWindows calls IdleAction when no messages are waiting in the queue to be
processed. You can override IdleAction to do background processing. However, the
default action is to give the main window a chance to do idle processing as long as
IdleAction returns true. idleCount specifies the number of times IdleAction has been called
between messages.

Seealso TFrameWindow::IdleAction

InitApplication

virtual void InitApplication();

'ObjectWindows calls InitApplication to initialize the first instance of the application. For
subsequent instances, this member function is not called.

The following sample program calls InitApplication the first time an instance of the
program begins.

class TTestApp : public TApplication {

public:

TTestApp(): TApplication("Instance Tester")
{strcpy (WindowTitle, "Additional Instance");}

protected:
‘ char WindowTitle[20];

void InitApplication() {strcpy(WindowTitle, "First Instance");}

void InitMainWindow() {MainWindow = new TFrameWindow(0, WindowTitle);}
1
static TTestApp App;

Initinstance

virtual void Initinstance();

Performs each instance initialization necessary for the application. Unlike
InitApplication, which is called for the first instance of an application, InitInstance is
called whether or not there are other executing instances of the application. InitInstance
calls InitMainWindow, and then creates and shows the main window element by
TWindow::Create and TWindow::Show. If the main window can't be created, a
TXInvalidMainWindow exception is thrown.

If you redefine this member function, be sure to explicitly call TApplication::InitInstance.

Seealso TApplication::InitApplication, TApplication::InitMainWindow,
TApplication::Run, TModule::MakeWindow, TWindow::Show

InitMainWindow

virtual void InitMainWindow();

By default, InitMainWindow constructs a generic TFrameWindow object with the name of
the application as its caption. You can redefine InitMainWindow to construct a useful
main window object of TFrameWindow (or a class derived from TFrameWindow) and
store it in MainWindow. The main window must be a top-level wmdow, that is, it must
be derived from TFrameWindow. A typical use is

62 ObjectWindows Reference Guide

TApplication::TXInvalidMainWindow class

virtual void TMyApp_InitMainWindow () {
SetMainWindow (TMyWindow (NULL, Caption));
}

InitMainWindow can be overridden to create your own custom window.

SetDocManager
TFrameWindow* SetDocManager(TDocManager* docManager);
Sets a pointer to the document manager object that invoked the application.

Seealso TApplication::GetDocManager, TDocManager, TFrameWindow

SetMainWindow
TFrameWindow* SetMainWindow(TFrameWindow* window);
Sets up a new main window and sets the window's WM_MAINWINDOW flag.

Seealso TApplication::GetMainWindow, TFrameWindow

Terminstance
virtual int TermInstance(int status);
Handles the termination of each executing instance of an ObjectWindows application.

TApplication::TXInvalidMainWindow class applicat.h

A nested class, TXInvalidMainWindow describes an exception that results from an
invalid Window. This exception is thrown if there is not enough memory to create a
window or a dialog object. InitInstance throws this exception if it can't initialize an
instance of an application object.

Public constructor

Constructor

TXInvalidMainWindow();

Constructs a TXInvalidMainWindow object with a default
IDS_INVALIDMAINWINDOW message.

Public member fu‘nctions

Clone

virtual TXOwlI* Clone();

Makes a copy of the exception object. Clone must be implemented in any class derived
from TXOwl.

Throw

virtual void Throw();

Throws the exception object. Throw must be implemented in any class derived from
TXOwl.

Chapter 2, ObjectWindows library reference 63

TAutoFactory<> class

TAutoFactory<> class | | olefacto.h

A template class, TAutoFactory<> creates callback code for ObjectWindows classes. The
application class is passed as the argument to the template. By itself, TAutoFactory<>
does not provide linking or embedding support for ObjectWindows automated
applications.

Although TAutoFactory<> simplifies the process of creating the callback function, you
can write your own callback function or provide alternate implementation for any or all
of TAutoFactory<>'s functions.

See also
TComponentFactory typedef, TOcRegistrar class, TOleFactoryBase class

Public member funbtions

Create :

static lUnknown* Create(IUnknown* outer, uint32 options, uint32 id);

Create is a TComponentFactory callback function that creates or destroys the application
or creates objects. If an application object does not already exist, Create creates a new
one. The outer argument points to the OLE2 1 Unknown interface with which this object
aggregates itself. If outer is 0, the new object is not aggregated, or it will become the
main object.

The options argument indicates the application's mode while it is running. The values for
options are either set from the command line or set by ObjectComponents. They are
passed in by the "Registrar" to this callback. The application looks at these flags to know
how to operate, and the factory callback looks at them to know what to do. For example,
a value of amExeMode indicates that the server is running as an .EXE either because it
was built as an .EXE or because it is a .DLL that was launched by an .EXE stub and is
now running as an executable program. See TOcAppMode enum for a description of the
possible values for the options argument.

If the application already exists, Create returns the application's OLE interface and
registers the options from TOcAppMode enum which contains OLE-related flags used in
the application's command line. For example, the amAutomation flag tells the server to
register itself as a single-user application. (In general, these flags tell the application
whether it has been run as a server, whether it needs to register itself, and so on.)

The id argument, which is not used for TAutoFactory, is always 0.
Seealso TAutoFactory: DestroyApp, TOcAppMode enum

CreateApp

static T* CreateApp(uint32 options);

CreateApp creates a new automated application. By default, it creates a new application
of template type T with no arguments. The options argument is one of the TOcAppMode
enum values, for example, amRun, amAutomation, and so on that indicate the
application's mode when running.

Seealso TAutoFactory::DestroyApp, TOcAppMode enum

64 ObjectWindows Reference Guide

TBandInfo struct

DestroyApp
static void DestroyApp(T* app);
Destroys the previously created application referred to in app.

operator TComponentFactory

operator TComponentFactory();

Converts the object into a pointer to the factory. ObjectComponents uses this pointer to
create the automated object.

Seealso TAutoFactory:CreateApp

TBandinfo struct dc.h

An ObjectWindows struct, TBandlInfo is used to pass information to a printer driver that
supports banding. TBandInfo is declared as follows:

struct TBandInfo {
bool HasGraphics;
bool HasText;

TRect GraphicsRect;
i

HasGraphics is true if graphics are (or are expected to be) on the page or in the band;
otherwise, it is false.

HasText is true if text is (or is expected to be) on the page or in the band; otherwise, it is
false.

GraphicsRect defines the bounding region for all graphics on the page.
Seealso TPrintDC::BandInfo, TPrintDC::NextBand

TBitmap class gdiobjec.h

Form 1

Form 2

TBitmap is the GDI bitmap class derived from TGdiObject. TBitMap can construct a
bitmap from many sources. TBitmap objects are DDBs (device-dependent bitmaps),
which are different from the DIBs (device-independent bitmaps) represented by TDib
objects.

Public constructors

Constructors

TBitmap(HBITMAP handle, TAutoDelete autoDelete = NoAutoDelete);

Creates a TBitmap object and sets the Handle data member to the given borrowed nandle.
The ShouldDelete data member defaults to false, ensuring that the borrowed handle will
not be deleted when the C++ object is destroyed.

TBitmap(const TClipboard& clipboard);
Creates a TBitmap object with values from the given Clipboard.

Chapter 2, ObjectWindows library reference 65

Form 3

Form 4

Form 5

Form 6

Form 7

Form 8-

Form9

Form 10

- TBitmap class

TBitmap(const TBitmap& bitmap);
Creates a copy of the given bitmap object.

TBitmap(int width, int height, uint8 planes=1, uint8 bitCount=1, void far* bits= 0)
Creates a bitmap object from bitCount bits in the bits buffer with the given width, height,
and planes argument values.

TBitmap(const BITMAP far* bitmap); .
Creates a bitmap object with the values found in the given bitmap structure.

TBitmap(const TDC& D, int width, int height, bool discardable = false);
Creates a bitmap object for the given device context with the given argument values.

TBitmap(const TDC& Dc, const TDib& dib, uint32 usage=CBM_INIT);

Creates a bitmap object for the given device context with the given dib and usage
argument values.

TBitmap(const TMetaFilePict& metaFile, TPalette& palette, const TSize& size);
Creates a bitmap object from the given metaFile using the given palette and size
arguments.

TBitmap(const TDib& dib, const TPalette* palette = 0);

Creates a bitmap object from the given dib and palette arguments. A working palette
constructed from the DIB's color table is used if no palette is supplied. The default
system palette can also be passed using &TPalette::GetStock(TPalette::Default);

TBitmap(HINSTANCE instance, TResID resID);
Creates a bitmap object for the given application instance from the given resource.

Seealso TClipBoard::GetClipboardData, TDC, TDib, TGdiObject::Handle,
TGdiObject::ShouldDelete, TPalette, BITMAP struct

Public member functions

BitsPixel
uint8 BitsPixel() const;
Returns the number of bits per pixel in this bitmap.

Seealso TBitmap::GetObject

GetBitmapBits
uint32 GetBitmapBits(uint32 count, void far* bits) const;
Copies up to count bits of this bitmap to the buffer bits.

GetBitmapDimension

bool GetBitmapDimension(TSize& size) const;

Retrieves the size of this bitmap (width and height, measured in tenths of mllhmeters)
and sets it in the size argument. Returns true if the call is successful; otherwise returns
false.

Seealso TSize

" GetObject

bool GetObject(BITMAP far& bitmap) const

66 ObjectWindows Reference Guide

TBitmap class

Retrieves data (width, height, and color format) for this bitmap and sets it in the given
BITMAP structure. To retrieve the bit pattern, use GetBitmapBits.

Seealso TBitMap::GetBitmapBits, BITMAP struct

Height
int Height() const;
Returns the height of this bitmap.

Seealso TBitmap::GetObject

operator <<

TClipboard& operator <<(TClipboard& clipboard, TBitmap& bitmap);

Copies the given bitmap to the given clipboard argument. Returns a reference to the
resulting Clipboard, which allows normal chaining of <<.

Seealso TClipboard

operator HBITMAP()

operator HBITMAP() const;

Typecasting operator. Converts this bitmap's Handle to type HBITMAP (the data type
representing the handle to a physical bitmap).

Planes
uint8 Planes() const;
Returns the number of planes in this bitmap.

Seealso TBitmap::GetObject

SetBitmapBits
uint32 SetBitmapBits(uint32 count, const void far* bits);
Copies up to count bits from the bits buffer to this bitmap.

SetBitmapDimension

bool SetBitmapDimension(const TSize& size, TSize far* oldSize=0);

Sets the size of this bitmap from the given size argument (width and height, measured in
tenths of millimeters). The previous size is set in the 0ldSize argument. Returns true if the
call is successful; otherwise returns false.

Seealso TSize

ToClipboard
void ToClipboard(TClipboard& clipboard);
Copies this bitmap to the given Clipboard.

Seealso TClipboard::SetClipboardData

Width
int Width() const;
Returns the width of this bitmap.

Seealso TBitmap::GetObject

Chapter 2, ObjectWindows library reference 67

TBitmapGadget class

Protected constructor

Constructor
TBitMap();
Protected constructor for a TBitmap object.

Protected member functions

Create

void Create(const TDib& dib, const TPalette &palette);

void Create(const TBitmap &src);

Creates a bitmap handle from the given argument objects.

Seealso TDib, TPalette

Operators

operator <<

TClipboard& operator <<(TClipboard& clipboard, TBitmap& bitmap);

Copies the given bitmap to the given clipboard argument. Returns a reference to the
resulting Clipboard, which allows normal chaining of <<.

Seealso TClipboard
operator HBITMAP()
operator HBITMAP() const;

Typecasting operator. Converts this bitmap's Handle to type HBITMAP (the data type
representing the handle to a physical bitmap).

TBitmapGadget class bitmapga.h

Derived from TGadget, TBitmapGadget is a simple gadget that can display an array of
bitmap images one at a time.

Public constructor and destructor

Constructor

TBitmapGadget(TResld bmpResld, int id, TBorderStyle borderStyle, TResld bitmapName, int numimages,
int startimage);

Constructs a TBitmapGadget and sets the current image to the beginning image

(startImage) in the array of images. Then, sets the border style to the current TGadget

border style and numlImages to the number of images in the array.

Destructor
~TBitmapGadget();
Deletes the array of images.

68 ObjectWindows Reference Guide

TBitSet class

Public member functions

Selectimage

int Selectimage(int imageNum, bool immediate);

Determines the current image and repaints the client area if the image has changed.
Updates the client area if the image has changed.

SysColorChange

void SysColorChange();

When the system colors have been changed, SysColorChange is called by the gadget
window's EvSysColorChange so that bitmap gadgets can be rebuilt and repainted.

Protected member functions

GetDesiredSize

void GetDesiredSize(TSize& size);

Calls TGadget::GetDesiredSize, which determines how big the bitmap gadget can be. The
gadget window sends this message to query the gadget's size. If shrink-wrapping is
requested, GetDesiredSize returns the size needed to accommodate the borders and
margins. If shrink-wrapping is not requested, it returns the gadget's current width and
height. TGadgetWindow needs this information to determine how big the gadget needs
to be, but it can adjust these dimensions if necessary. If WideAsPossible is true, then the
width parameter (size.cx) is ignored.

Paint
void Paint(TDC& dc);
Paints the gadget's border and the contents of the bitmap.

Seealso TGadget::Paint
SetBounds
void SetBounds(TRect& r);

Calls TGadget::SetBounds and passes the dimensions of the bitmap gadget. SetBounds
informs the control gadget of a change in its bounding rectangle.

Seealso TGadget::SetBounds

TBitSet class bitset.h

Form 1

TBitSet sets or clears a single bit or a group of bits. You can use this class to set and clear
option flags and to retrieve information about a set of bits. The class TCharSet performs
similar operations for a string of characters.

Public constructors

Constructors
TBitSet();
Constructs a TBitSet object.

Chapter 2, ObjectWindows library reference 69

TBitSet class

Form 2

Form 1

Form 2

Form 1

Form 2

Form 1

Form 2

Form 1

Form 2

TBitSet(const TBitSet& bs);
Constructs a TBitSet object as a copy of another TBitSet.

Public member functions

Disableltem
void Disableltem(int item);
Clears a single bit at item.

void Disableltem(const TBitSet& bs);
Clears the set of bits enabled in bs.

Enableltem
void Enableltem(int item);
Sets a single bit at item.

void Enableltem(const TBitSet& bs);
Sets the set of bits enabled in bs.

Has
int Has(int item);
Is nonzero if item is in the set of bits.

IsEmpty
int TBitSet::IsEmpty();
Is nonzero if the set is empty; otherwise, is 0.

operator +=

TBitSet& operator +=(int item);

Calls Enableltem to set a bit in the copied set. Returns a reference to the copied TBitSet
object.

TBitSet& operator +=(const TBitSet& bs);
Calls Enableltem to set the bits enabled in bs. Returns a reference to the copied TBitSet
object.

operator —=
TBitSet& operator —=(int item);
Calls Disableltem to clear a bit in the set. Returns a reference to the copied TBitSet object.

TBitSet& operator —=(const TBitSet& bs);
Calls Disableltem to clear the bits enabled in bs. Returns a reference to the copied TBitSet
object.

operator &=
TBitSet& operator &=(const TBitSet&);
AND:s all the bits in the copied set and returns a reference to the copied TBitSet object.

operator |=
TBitSet& operator |=(const TBitSet&);
ORs all of the bits in the copied set and returns a reference to the copied TBitSet object.

70 ObjectWindows Reference Guide

TBIVbxLibrary class

operator ~

TBitSet operator ~(const TBitSet&);

Returns the set of bits that is the opposite of a specified set of bits. For example, if the set
of bits is 01010101, the returned set is 10101010. Returns a reference to the copied TBitSet
object.

TBIVbxLibrary class vxbetl.h

Defined in vbxctl.h and virtually derived from TModule, TBIVbxLibrary handles loading
and initializing of BIVBX10.DLL. If you want to use VBX controls, construct a
TBIVbxLibrary object with the same scope as your application. For example,

int OwlMain(int, char**)
{
TBIVbxLibrary vbxLib;
return TTestApp().Run();
}

Public constructor and destructor

Constructor
TBIVbxLibrary();
Constructs a TBIVbxLibrary object.

Destructor
~TBIVbxLibrary();
Destroys a TBIVbxLibrary object.

TBrush class gdiobjec.h

Form 1

Form 2

Form 3

The GDI Brush class is derived from TGdiObject. TBrush provides constructors for
creating solid, styled, or patterned brushes from explicit information. It can also create a
brush indirectly from a borrowed handle.

Public constructors

Constructors

TBrush(HBRUSH handle, TAutoDelete autoDelete = NoAutoDelete);

Creates a TBrush object and sets the Handle data member to the given borrowed handle.
The ShouldDelete data member defaults to false, ensuring that the borrowed handle will
not be deleted when the C++ object is destroyed.

TBrush(TColor color);
Creates a solid TBrush object with the given color. To save a brush creation this
constructor uses a cache that can detect any color that matches a stock color.

TBrush(TColor color, int style);

Chapter 2, ObjectWindows library reference 71

TButton Class

Form 4

Form5

Form 6

TButton Class

Creates a hatched TBrush object with the given style and color.

TBrush(const TBitmap& pattern);
Creates a patterned TBrush object with the given pattern.

TBrush(const TDib& pattern);
Creates a patterned TBrush object with the given DIB pattern.

TBrush(const LOGBRUSH far* logBrush);
Creates a TBrush object with values from the given logBrush.

Seealso TBitmap, TColor, TDib, TGdiObject::Handle, TGdiObject::ShouldDelete,
LOGBRUSH struct

Public member functions

GetObject
bool GetObject(LOGBRUSH far& logBrush) const;

* Retrieves information about this brush object and places it in the given LOGBRUSH

structure. Returns true if the call is successful; otherwise returns false.
Seealso TGdiObject::GetObject, LOGBRUSH struct

operator HBRUSH()

operator HBRUSH() const;

Typecasting operator. Converts this brush's Handle to type HBRUSH (the data type
representing the handle to a physical brush).

UnrealizeObject

bool UnrealizeObject();
Directs the GDI to reset the origin of this brush the next time it is selected. Returns true if
call is successful; otherwise returns false.

TButton is an interface class that represents a pushbutton interface element. You must
use a TButton to create a button control in a parent TWindow. You can also use a TButton
to facilitate communication between your application and the button controls of a
TDialog. This class is streamable.

There are two types of pushbuttons: regular and default. Regular buttons have a thin
border. Default buttons (which represent the default action of the window) have a thick
border.

Public data members

button.h

IsDefPB
bool IsDefPB;

72 ObjectWindows Reference Guide

Form 1

Form 2

TButton Class
Indicates whether the button is to be considered the default pushbutton. Used for

owner-draw buttons, IsDefPB is set by a TButton constructor based on
BS_DEFPUSHBUTTON style setting.

Public constructors

Constructors
TButton(Window *parent, int Id, const char far* text, int X, int Y, int W, int H, bool isDefault = false,

TModule* module = 0);
Constructs a button object with the supplied parent window (parent), control ID (Id),
associated text (text), position (X, Y) relative to the origin of the parent window's client
area, width (W), and height (H). If IsDefault is true, the constructor adds
BS_DEFPUSHBUTTON to the default styles set for the TButton (in Attr.Style).
Otherwise, it adds BS_ PUSHBUTTON.

TButton(TWindow* parent, int resourcelD, TModule* module = 0);

Constructs a TButton object to be associated with a button control of a TDialog. Calls
DisableTransfer to exclude the button from the transfer mechanism because there is no
data to be transferred.

The resld parameter must correspond to a button resource that you define.
Seealso TControl::TControl

Protected data member
IsCurrentDefPB

bool IsCurrentDefPB;
Indicates whether the current button is the default pushbutton.

Protected member functions

BMSetStyle

LRESULT BMSetStyle(WPARAM, LPARAM);

Because a button can't have both owner-drawn and pushbutton styles, BMSetStyle keeps
track of the style if the button is owner-drawn and the system tries to set the style to
BS_DEFPUSHBUTTON. BMSetStyle sets IsCurrentDefPB to true if the button style is
BS_DEFPUSHBUTTON.

EvGetDigCode

uint EvGetDIgCode(MSG far*);

Responds to WM_GETDLGCODE messages that are sent to a dialog box associated
with a control. EvGetDIgCode allows the dialog manager to intercept a message that
would normally go to a control and then ask the control if it wants to process this
message. If not, the dialog manager processes the message. The msg parameter indicates
the kind of message, for example a control, command, or button message, sent to the
dialog box manager.

Chapter 2, ObjectWindows library reference 73

TButtonGadget class

EvGetDIgCode returns a code that indicates how the button is to be treated. If this is the
currently used pushbutton, EvGetDIgCode returns either DLGC_DEFPUSHBUTTON or
DLGC_UNDEFPUSHBUTTON.

Seealso DLGC_xxxx dialog control message constants

GetClassName

char far* GetClassName();

Overrides TWindow's GetClassName function. If BWCC is enabled, returns the name of
TButton's registration class, "BUTTON_CLASS"; if BWCC isn't enabled, returns the
name "BUTTON."

SetupWindow

void SetupWindow();

Overrides TWindow's SetupWindow function. If the button is the default pushbutton and
an owner-drawn button, SetupWindow sends a DM_SETDEFID message to the parent
window.

Response table entries

EV_MESSAGE (BM_SETSTYLE, BMSetStyle) ~ BMSetStyle

TButtonGadget class buttonga.h

Derived from TGadget, TButtonGadgets represent buttons that you can click on or off.
You can also apply attributes such as color, style, and shape (notched or unnotched) to
your button gadgets.

In general, button gadgets are classified as either command or attribute buttons.
Attribute buttons include radio buttons (which are considered exclusive), or check
boxes (which arée nonexclusive). The public data member, TType, enumerates these
button types.

TButtonGadget contains several functions that let you change the style of a button. Use
SetAntialiasEdges to turn antialiasing on and off, SetNotchCorners to control corner
notching, and SetShadowStyle to change the style of the button shadow.

TButtonGadget objects respond to mouse events in the following manner: when a mouse
button is pressed, the button is pressed; when the mouse button is released, the button is
released. Commands can be entered only when the mouse button is in the "up" state.
When the mouse is pressed, TButtonGadget objects capture the mouse and reserve all
mouse messages for the current window. When the mouse button is up, button gadgets
release the capture for the current window. The public data member, TState, enumerates
the three button states.

74 ObjectWindows Reference Guide

TButtonGadget class

Type definitions

TShadowStyle
enum TShadowStyle;
Enumerates button shadow styles—either single (1) or double (2) shadow borders.

TState

enum TState;

TState enumerates the three button positions during which the button can be pressed:
up (0), down (1), and an indeterminate state (2). A nonzero value indicates a highlighted
button.

TType
enum TType;
Enumerates the types of buttons: command, exclusive, or nonexclusive.

Public constructor and destructor

Constructor

TButtonGadget(TResld bmpResld, int id, TType type = Command, bool enabled = false, TState state = Up, bool
repeat = false);

Constructs a TButtonGadget object using the specified bitmap ID, button gadget ID, and
type, with enabled set to false and in a button-up state. The button isn't enabled—its
initial state before command enabling occurs.

Destructor
~TButtonGadget();
Deconstructs a TButtonGadget object.

Seealso TButtonGadget: TState

Public member functions

CommandEnable

void CommandEnable();

Enables the button gadget to capture messages. Calls SendMessage to send a
WM_COMMAND_ENABLE message to the gadget window's parent, passing a
TCommandEnable: EvCommandEnable message for this button.

GetButtonState

TState GetButtonState();

Returns the state of the button. If 0, the button is up, if 1, the button is down, if 2, the
state is indeterminate.

Seealso TButtonGadget:TState

GetButtonType

TType GetButtonType();

Returns the button type as 1 if the button is a command, 2 if exclusive, or 3 if
nonexclusive.

Chapter 2, ObjectWindows library reference 75

TButtonGadget class

SetAntialiasEdges
SetAntialiasEdges(bool anti = true);
Turns the antialiasing of the button bevels on or off. By default, antialiasing is on.

SetButtonState

void SetButtonState(TState);

Sets the state of the button. If the state has changed, the button is exclusive, and is in the
down state, checks that the button is exclusive, sets State, and calls Invalidate to mark the
changed area of the gadget for repainting.

Seealso TButtonGadget::TState

SetNotchCorners

void SetNotchCorners(bool NotchCorners = true);

By default, SetNotchCorners implements notched corners for buttons. To repaint the
frame of the button if the window has already been created, call InvalidateRect with the
Bounds rectangle.

Seealso TButtonGadget::Invalidate, TGadget: InvalidateRect, TGadget::Paint

SetShadowStyle

void SetShadowStyle(TShadowStyle);

Sets the button style to a shadow style which, by default, is DoubleShadow. Sets the left
and top borders to 2 and the right and bottom borders to ShadowStyle + 1.

SysColorChange

void SysColorChange();

SysColorChange responds to an EvSysColorChange message forwarded by the owning
TGadgetWindow by setting the dither brush to zero. If a user-interface bitmap exists,
SysColorchange deletes and rebuilds it to get the new button colors.

Protected data members

AntialiasEdges
bool AntialiasEdges;
Is true if antialiasing is turned on.

BitmapOrigin
TPoint BitmapOrigin;
Points to the x and y coordinates of the bitmap used for this button gadget.

CelArray
TCelArray* CelArray;
The array of cels used by this button gadget.

NotchCorners

bool NotchCorners;

Initialized to 1, NotchCorners is 1 if the button gadget has notched corners or 0 if it
doesn't have notched corners.

76 ObjectWindows Reference Guide

TButtonGadget class

Pressed
bool Pressed; .
Initialized to 1, Pressed is 1 if the button is released or 0 if it isn't released.

Seealso TButtonGadget::Activate, TButtonGadget::BeginPressed,
TButtonGadget::CancelPressed

Repeat
bool Repeat;
Initialized to 1, Repeat stores the repeat count for keyboard events.

Resld
TResld Resld;
Holds the resource ID for this button gadget's bitmap.

ShadowStyle
TShadowStyle ShadowStyle;
Holds the shadow style for the button—T1 for single and 2 for double.

State
TState State;
Holds the state of the button—either up, down, or indeterminate.

Type
TType Type;
Holds the type of the button—either command, exclusive, or nonexclusive.

Protected member functions

Activate

virtual void Activate(TPoint& p);

Invoked when the mouse is in the "up" state, Activate sets Pressed to false, changes the
state for attribute buttons, and paints the button in its current state. To do this, it calls
CancelPressed, posts a WM_COMMAND message to the gadget window's parent, and
sends menu messages to the gadget window's parent.

Seealso TButtonGadget::Pressed

BeginPressed ;

virtual void BeginPressed(TPoint& p);

When the mouse button is pressed, Beginpressed sets Pressed to true, paints the pressed
button, and sends menu messages to the gadget window's parent.

Seealso TButtonGadget::Pressed

BuildCelArray

virtual void BuildCelArray();

Builds a cel array using the resource bitmap as the base glyph. Any existing cel array
should be deleted if a replacement is built.

Seealso TCelArray

Chapter 2, ObjectWindows library reference 77

TButtonGadget class

CancelPressed

virtual void CancelPressed(TPoint& p);

When the mouse button is released, CancelPressed sets Pressed to false, paints the button,
and sends menu messages to the gadget window's parent.

Seealso TButtonGadget::Pressed

GetDesiredSize

void GetDesiredSize(TSize& size);

Stores the width and height (measured in pixels) of the button gadget in size. Calls
TGadget's GetDesiredSize to calculate the relationship between one rectangle and
another.

GetGlyphDib

virtual TDib* GetGlyphDib();

Supplies the glyphdib. You can override this function to get a different dib, or to change
the attributes of the dib, such as the colors, and so on.

Invalidate

void Invalidate(); ‘

If a button is pressed or the state of the button is changed, Invalidate invalidates (marks
for repainting) the changed area of the gadget. Invalidate only invalidates the area that
changes. To repaint the entire gadget, call TGadget::InvalidateRect and pass the
rectangle's boundaries.

Seealso TButtonGadget: TState, TGadget::InvalidateRect

LButtonDown

void LButtonDown(uint modKeys, TPoint& p);

Overrides TGadget member function and responds to a left mouse button click by calling
BeginPressed.

Seealso TButtonGadget::BeginPressed

LButtonUp

void LButtonUp(uint modKeys, TPoint& p);

Overrides TGadget member functions and responds to a release of the left mouse button
by calling Activate.

Seealso TButtonGadget::Activate

MouseEnter

void MouseEnter(uint modKeys, TPoint& p);

Called when the mouse enters the boundary of the button gadget. modKeys indicates the
virtual key information and can be any combination of the following values:
MK_CONTROL, MK_LBUTTON, MK_MBUTTON, MK_RBUTTON, or MK_SHIFT.

p indicates where the mouse entered the button gadget.

MouseLeave

void MouseLeave(uint modKeys, TPoint& p);

Called when the mouse leaves the boundary of the button gadget. modKeys indicates the
virtual key information and can be any combination of the following values:

78 ObjectWindows Reference Guide

TButtonGadgetEnabler class

MK_CONTROL, MK_LBUTTON, MK_MBUTTON, MK_RBUTTON, or MK_SHIFT.
p indicates the place where the mouse left the button gadget.

MouseMove

void MouseMove(uint modKeys, TPoint& p);

Calls TGadget::MouseMove in response to the mouse being dragged. If the mouse moves
off the button, MouseMouve calls CancelPressed. If the mouse moves back onto the button,
MouseMove calls BeginPressed.

Seealso TButtonGadget::BeginPressed, TButtonGadget::CancelPressed

Paint

void Paint(TDC& dc);

Gets the width and height of the window frame (in pixels), calls GetImageSize to retrieve
the size of the bitmap, and sets the inner rectangle to the specified dimensions. Calls
TGadget::PaintBorder to perform the actual painting of the border of the control. Before
painting the control, Paint determines whether the corners of the control are notched,
and then calls GetSysColor to see if highlighting or shadow colors are used. Paint
assumes the border style is plain. Then, Paint draws the top, left, right, and bottom of the
control, adjusts the position of the bitmap, and finishes drawing the control using the
specified embossing, fading, and dithering.

ReleaseGlyphDib
virtual void ReleaseGlyphDib(TDib* glyph);
Releases the glyph dib depending on how it was obtained by GetGlyphDib.

SetBounds

void SetBounds(TRect& r);

Gets the size of the bitmap, calls TGadget::SetBounds to set the boundary of the rectangle,
and centers the bitmap within the button's rectangle.

Seealso TGadget::SetBounds

TButtonGadgetEnabler class buttonga.cpp

Derived from TCommandEnabler, TButtonGadgetEnabler serves as a command enabler for
button gadgets. The functions in this class modify the text, check state, and appearance
of a button gadget.

Public constructor

Constructor

TButtonGadgetEnabler(HWND hWndReceiver, TButtonGadget* g)

Constructs a TButtonGadgetEnabler for the specified gadget. hWndReceiver is the window
receiving the message.

Chapter 2, ObjectWindows library reference 79

TCelArray class

Protected data member

gadget
TButtonGadget* gadget;
The button gadget being enabled or disabled.

Public member functions

Enable

void Enable(bool enable);

Overrides TCommandEnable::Enable. Enables or disables the keyboard, mouse input and
appearance of the corresponding button gadget.

SetCheck

void SetCheck(int state)

Overrides TCommandEnable::SetCheck. Changes the check state of the corresponding
button gadget.

SetText

void SetText(const char far*)

Overrides TCommandEnable::SetText. Changes the text of the corresponding button
gadget.

TCelArray class celarray.h

Form 1

TCelArray is a horizontal array of cels (a unit of animation) created by slicing a portion of
or an entire bitmap into evenly sized shapes. Gadgets such as buttons can use a
TCelArray to save resource space. TCelArray’s functions let you control the dimensions
of each cel and determine if the cel can delete the bitmap.

Offset from the top left corner of the bitmap

Bitmap

Public constructors and destructor

Constructors

TCelArray(TBitmap* bmp, int numCels, TSize celSize = 0, TPoint Offset = 0, TAutoDelete = AutoDelete);
Constructs a TCelArray from a bitmap by slicing the bitmap into a horizontal array of
cels of a specified size. If autoDelete is true, TCel Array can automatically delete the
bitmap. The ShouldDelete data member defaults to true, ensuring that the handle will be
deleted when the bitmap is destroyed.

Form2 TCelArray(TDib& dib, int numCels);

80 ObjectWindows Reference Guide

Form 3

TCelArray class

Constructs a TCelArray from a DIB (Device Independent Bitmap) by slicing the DIB into
a horizontal array of evenly sized cels.

TCelArray(const TCelArray& src);
Constructs a TCelArray as a copy of an existing one. If the original TCelArray owned its
bitmap, the constructor copies this bitmap; otherwise, it keeps a reference to the bitmap.

Destructor

virtual ~TCelArray();

If ShouldDelete is true (the default value), the bitmap is deleted. If ShouldDelete is false,
no action is taken.

Public member functions

CelSize
TSize CelSize() const;
Returns the size in pixels of each cell.

CelOffset

TPoint CelOffset(int cels);

Returns the position of the upper left corner of a given cel relative to the upper left
corner of the bitmap.

CelRect

TRect CelRect(int cel) const;

Returns the upper left and lower right corner of a given cell relative to the upper left
corner of the bitmap.

NumCels
int NumCels() const;
Returns the number of cels in the array.

Offset
TPoint Offset() const;
Returns the offset of the entire CelArray.

operator []
TRect operator [J(int cel) const;
Returns CelRect.

operator =
TCelArray& operator =(const TCelArray&);
Returns TCelArray.

operator TBitmapé&()
operator TBitmap&();
Returns a reference to the bitmap.

SetCelSize
void SetCelSize(TSize size);
Sets the size of each cel in the array.

Chapter 2, ObjectWindows library reference 81

TCharSet class

SetOffset
void-SetOffset(TPoint offs);
Sets the offset for the cels in the array.

SetNumCels
void SetNumCels(int numCels);
Sets the number of cels in the array.

Protected data members

Bitmap
TBitmap* Bitmap;
Points to the bitmap.

CSize
TSize CSize;
The size of a cell in the array.

Offs

TPoint Offs;

Holds the offset of the upper left corner of the cel array from the upper left corner of the
bitmap.

NCels
int NCels;
The number of cells in the cel array.

ShouldDelete
bool ShouldDelete;
Is true if the destructor needs to delete the bitmap associated with the cel array.

TCharSet class bitset.h

Form 1

Form 2

Form 3

Derived from TBitSet, TCharSet sets and clears bytes for a group of characters. You can
use this class to set or clear bits in a group of characters, such as the capital letters from
"A" through "Z" or the lowercase letters from "a" through "z." The class TBitSet performs
similar operations for a group of bits.

Public constructors

Constructors
TCharSet();
Constructs a TCharSet object.

TCharSet(const TCharSet&);
Copy constructor for a TCharSet object.

TCharSet(const char far* str);

82 ObjectWindows Reference Guide

TCheckBox class

Constructs a string of characters.

Public member function

operator !=

int operator !=(const TBitSet& bs1, const TBitSet& bs2);

ORs all of the bits in the copied string and returns a reference to the copied TCharSet
object. ’

TCheckBox class checkbox.h

Form 1

Form 2

TCheckBox is a streamable interface class that represents a check box control. Use
TCheckBox to create a check box control in a parent window. You can also use TCheckBox
objects to more easily manipulate check boxes you created in a dialog box resource.

Two-state check boxes can be checked or unchecked; three-state check boxes have an
additional grayed state. TCheckBox member functions let you easily control the check
box's state. A check box can be in a group box (a TGroupBox object) that groups related
controls.

Public data member

Group

TGroupBox* Group;

If the check box belongs to a group box (a TGroupBox object), Group points to that object.
If the check box is not part of a group, Group is zero.

Seealso TGroupBox:TGroupBox

Public constructors

Constructors

TCheckBox(TWindow* parent, int Id, const char far* title, int x, int y, int w, int h, TGroupBox* group = 0,
TModule* module = 0);

Constructs a check box object with the specified parent window (parent), control ID (Id),

associated text (title), position relative to the origin of the parent window's client area (x,

y), width (w), height (h), associated group box (group), and owning module (module).

Invokes the TButton constructor with similar parameters. Sets the check box's style to

WS_CHILD | WS_VISIBLE | WS_TABSTOP | BS_AUTOCHECKBOX.

TCheckBox(TWindow* parent, int resourceld, TGroupBox* group = 0, TModule* module = 0);

Constructs an associated TCheckBox object for the check box control with a resource ID
of resourceld in the parent dialog boxSets Group to group then enables the data transfer
mechanism by calling EnableTransfer.

Seealso TButton:: TButton, TWindow::EnableTransfer

Chapter 2, ObjectWindows library reference 83

TCheckBox class

- Public member functions

Check

void Check();

Forces the check box to be checked by calling SetCheck with the value of BE_CHECKED.
Notifies the associated group box, if there is one, that the state was changed.

Seealso TCheckBox:GetCheckTCheckBox_GetCheck,
TCheckBox::ToggleTCheckBox_Toggle, TCheckBox: ‘UncheckTCheckBox Uncheck
TGroupBox: SelectlonChangedTGroupBox SelectionChanged

GetCheck
uint GetCheck() const;
Returns the state of the check box.

TCheckBox check states

Checked BE_CHECKED
Unchecked BF_UNCHECKED
Grayed BF_GRAYED

Seealso TCheckBox::SetCheck

GetState
uint GetState() const;
Returns the check, focus, and highlight state of the check box.

Seealso TCheckBox::SetState

SetCheck

void SetCheck(uint check);

Forces the check box into the state specified by check. See the table in GetCheck for
possible values of check.

Seealso TCheckBox::GetCheck

SetState
void SetState(uint state);
Sets the check, focus, and highlight state of the check box.

See also TCheckBox::GetState

SetStyle
void SetStyle(uint style, bool redraw);
Changes the style of the check box.

Toggle

void Toggle();

Toggles the check box between checked and unchecked if it is a two-state check box;
toggles it between checked, unchecked, and gray if it is a three-state check box.

84 ObjectWindows Reference Guide

TCheckBox class

Seealso TCheckBox:SetCheck

Transfer

uint Transfer(void* buffer, TTransferDirection direction);

Overrides TWindow::Transfer. Transfers the check state of the check box to or from buffer,
using the values specified in the table in GetCheck. If direction is tdGetDate, the check box
state is transferred into the buffer. If direction is tdSetData the check box state is changed
to the settings in the transfer buffer.

Transfer returns the size of the transfer data in bytes. To get the size without actually
transferring the check box, use tdSizeData as the direction argument.

Uncheck

void Uncheck();

Forces the check box to be unchecked by calling SetCheck with a value of
BF_UNCHECKED. Notifies the associated group box, if there is one, that the state has
changed.

Seealso TCheckBox::Check, TCheckBox::SetCheck, TCheckBox::Toggle

Protected member functions

BNClicked

void BNClicked();

Responds to notification message BN_CLICKED, indicating that the user clicked the
check box. If Group isn't 0, BNClicked calls the group box's SelectionChanged member
function to notify the group box that the state has changed.

Seealso TGroupBox::SelectionChanged

EvGetDIgCode

uint EvGetDIgCode(MSG far* msg);

Overrides TButton’s response to the WM_GETDLGCODE message, an input procedure
associated with a control that is not a check box, by calling DefaultProcessing. The msg
parameter indicates the kind of message, for example a control, command, or check box
message, sent to the dialog box manager.

EvGetDIgCode returns a code that indicates how the check box is to be treated.
Seealso TButton:EvGetDlgCode, TWindow::DefaultProcessing, DLGC_xxxx dialog
control message constants

GetClassName

char far* GetClassName();

If BWCC is enabled, TCheckBox returns CHECK_CLASS. If BWCC is not enabled,
returns "BUTTON.."

Chapter 2, ObjectWindows library reference 85

TChooseColorDialog class

Response table entries

EV_NO_AT_CH[LD (BN_CLICKED, BNClicked) BNClicked
EV_WM_GETDLGCODE EVGetDIgCode
TChooseColorDialog class | | chooseco.h

TChooseColorDialog objects represent modal dialog box interface elements that allow
color selection and custom color adjustment. TChooseColorDialog can be made to appear
modeless to the user by creating the dialog's parent as an invisible pop-up window and
making the pop-up window a child of the main application window.
TChooseColorDialog uses the TChooseColor::TData struct to initialize the dialog box with
the user's color selection.

Public constructors

Constructor

TChooseColorDialog(TWindow* parent, TData& data, TResld templatelD = 0, const char far* title = 0,
TModule* module = 0);

Constructs a dialog box with specified parent window, data, resource identifier,

window caption, and module ID. Sets the attributes of the dialog box based on info in

the TChooseColor::TData structure.

Seealso TChooseColorDialog::TData

Public member function

SetRGBColor

void SetRGBColor(TColor color);

Sets the current RGB color for the open dialog box by sending a SetRGBMsgld. You can
use SetRGBColor to send a message to change the current color selection.

Public data members

cC

CHOOSECOLOR cc;

Stores the length of the TChooseColorDialog structure, the window that owns the dialog
box, and the data block that contains the dialog template. It also points to an array of 16
RGB values for the custom color boxes in the dialog box, and specifies the dialog-box
initialization flags.

Seealso TChooseColorDialog::TData

Data
TData& Data;

86 ObjectWindows Reference Guide

TChooseColorDialog::TData class
Data is a reference to the TData object passed in the constructor.
Seealso TChooseColorDialog:TData

SetRGBMsgld
static uint SetRGBMsgld;
Contains the ID of the registered message sent by SetRGBColor.

Protected member functions

DialogFunction
bool DialogFunction(uint message, WPARAM, LPARAM);
Returns true if a message is handled.

Seealso TDialog::DialogFunction

DoExecute

int DoExecute();

If no error occurs, DoExecute copies flags and colors into Data and returns zero. If an
error occurs, DoExecute returns the IDCANCEL with Data.Error set to the value returned
from CommDIgExtendedError.

EvSetRGBColor

LPARAM EvSetRGBColor(WPARAM, LPARAM);

Responds to the message sent by SetRGBColor by forwarding the to the original class.
This event handler is not in the response table.

Response table entries

The TChooseColorDialog response table has no entries.

TChooseColorDialog::TData class chooseco.h
Defines information necessary to initialize the dialog box with the user's color selection.
Public data members
Color
TColor Color;

Specifies the color that is initially selected when the dialog box is created. Contains the
user's color selection when the dialog box is closed.

CustColors
TColor* CustColors;
Points to an array of 16 colors.

Error
uint32 Error;

Chapter 2, ObjectWindows library reference 87

TChooseFontDialog class

If the dialog box is successfully executed, Error is 0. Otherwise, it contains one of the
following codes:

CDERR_DIALOGFAILURE " Failed to create a dialog box.

CDERR_FINDRESFAILURE Failed to find a specified resource.
CDERR_LOADRESFAILURE Failed to load a specified resource.
CDERR_LOCKRESOURCEFAILURE Failed to lock a specified resource.
CDERR_LOADSTRFAILURE Failed to load a specified string.

Flags

uint32 Flags;

Flags can be a combination of the following values that control the appearance and
functionality of the dialog box:

ialog box is

ppe
CC_PREVENTFULLOPEN Disables the "Define Custom Colors" push button.

CC_RGBINIT Causes the dialog box to use the color specified in rgbResult as the initial
color selection.

CC_SHOWHELP Causes the dialog box to show the Help push butto;'l.

Seealso TChooseColorDialog::Data

TChooseFontDialog class choosefo.h

A TChooseFontDialog represents modal dialog-box interface elements that create a
system-defined dialog box from which the user can select a font, a font style (such as
bold or italic), a point size, an effect (such as strikeout or underline), and a color.
TChooseFontDialog can be made to appear modeless by creating the dialog's parent as an
invisible pop-up window and making the pop-up window a child of the main
application window. TChooseFontDialog uses the TChooseFontDialog::TData structure to
initialize the dialog box with the user-selected font styles.

Public constructor

Constructor _
TChooseFontDialog(TWindow* parent, TData& data, TResID templatelD = 0, const char far* title = 0,

TModule* module = 0);
Constructs a dialog box with specified data, parent window, resource identifier,
window caption, and module ID. Sets the attributes of the dialog box based on the font
information in the TChooseFontDialog::TData structure.

Seealso TChooseFontDialog::TData

88 ObjectWindows Reference Guide

TChooseFontDialog::TData class

Protected data members

cf

CHOOSEFONT cf;

Contains font attributes. cf is initialized using fields in the TChooseFontDialog::TData
structure. It stores the length of the structure, the window that owns the dialog box and
the data block that contains the dialog template. It also specifies the dialog-box
initialization flags.

Seealso TChooseFontDialog::TData

Data
TData& Data;
Data is a reference to the TData object passed in the constructor.

Seealso TChooseFontDialog::TData

Protected member functions

CmFontApply
void CmFontApply();
Default handler for the third pushbutton (the Apply button) in the dialog box.

DialogFunction
bool DialogFunction(uint message, WPARAM, LPARAM);
Returns true if a dialog box message is handled.

Seealso TDialog::DialogFunction

DoExecute

int DoExecute();

If no error occurs, DoExecute copies the flag values and font information into Ddata, and
returns IDOK or IDCANCEL. If an error occurs, DoExecute returns an error code from
TChooseFontDialog::TData structure's Error data member.

Seealso TChooseFontDialog::TData

Response table entries

The TChooseFontDialog response table contains no entries.

TChooseFontDialog::TData class choosefo.h

Defines information necessary to initialize the dialog box with the user's font selection.

Chapter 2, ObjectWindows library reference 89

TChooseFontDialog::TData class

Public data members

Color

TColor Color;

Indicates the font color that is initially selected when the dialog box is created; contains
the user's font color selection when the dialog box is closed.

DC
HDC DC;
Handle to the device context from which fonts are obtained.

Error

uint32 Error;

If the dialog box is successfully executed, Error returns 0. Otherwise, it contains one of
the following codes:

-

CDERR_DIALOGFAIiﬁkE . Failed to create a dialog box.

CDERR_FINDRESFAILURE Failed to find a specified resource.
CDERR_LOCKRESOURCEFAILURE Failed to lock a specified resource.
CDERR_LOADRESFAILURE Failed to load a specified resource.
CDERR_LOADSTRFAILURE Failed to load a specified string.
CFERR_MAXLESSTHANMIN The size specified in SizeMax is less than the size in SizeMin.
CFERR_NOFONTS No fonts exist.

Flags

uint32 Flags;

Flags can be a combination of the following constants that control the appearance and
functionality of the dialog box:

_— - E— —
CF_APPLY Enables the display and use of the Apply button.
CF_ANSIONLY Specifies that the ChooseFontDialog structure allows only the selection of
fonts that use the ANSI character set.
CF_BOTH Causes the dialog box to list both the available printer and screen fonts.
CF_EFFECTS Enables strikeout, underline, and color effects.
CF_FIXEDPITCHONLY Enables fixed-pitch fonts only.
CF_FORCEFONTEXIST Indicates an error if the user selects a nonexistent font or style.
CF_INITTOLOGFONTSTRUCT Uses the LOGFONT structure at which LogFont points to initialize the
~ dialog controls.
CF_LIMITSIZE Limits font selection to those between SizeMin and SizeMax.
CF_NOSIMULATIONS Does not allow GDI font simulations.
CF_PRINTERFONTS Causes the dialog box to list only the fonts supported by the printer
that is associated with the device context.
CF_SCALABLEONLY Allows only the selection of scalable fonts.
CF_SCREENFONTS Causes the dialog box to list only the system-supported screen fonts.
CF_SHOWHELP Causes the dialog box to show the Help button.

90 ObjectWindows Reference Guide

TClientDC Class

Constant Meaning ;
CF_TTONLY Enumerates and allows the selection of TrueType® fonts only.

CF_USESTYLE Specifies that Style points to a buffer containing the style attributes used
to initialize the selection of font styles.

CF_WYSIWYG Allows only the selection of fonts available on both the printer and the
screen.

FontType
uint16 FontType;
Font type or name.

LogFont
LOGFONT LogFont;
Attributes of the font.

PointSize

int PointSize;

Point size of the font.
SizeMax

int SizeMax;

Maximum size of the font.
SizeMin

int SizeMin;

Minimum size of the font.

Seealso TChooseFontDialog::Data

Style
char far* Style;
Style of the font such as bold, italic, underline, or strikeout.

TClientDC Class dc.h

A DC class derived from TWindowDC, TClientDC provides access to the client area
owned by a window.

See also
TOleClientDC

Public constructors

Constructor

TClientDG(HWND wnd);

Creates a TClientDC object with the given owned window. The data member Wrd is set
to wnd.

Chapter 2, ObjectWindows library reference 91

TCIipboa}d class

Seealso TWindowDC::Wnd, TDC::TDC

~ TClipboard class | " clipboath

TClipboard encapsulates and manipulates clipboard data. You can open, close, empty,
and paste data in a variety of data formats between the Clipboard and the open
window. An object on the clipboard can exist in a variety of clipboard formats, which
range from bitmaps to text.

Usually, the window is in charge of manipulating clipboard interactions between the
window and the clipboard. It does this by responding to messages sent between the
clipboard owner and the application. The following ObjectWindows event-handling
functions encapsulate these clipboard messages: ‘

EvRenderFormat—Responds to a WM_RENDERFORMAT message sent to the clipboard
owner if a specific clipboard format that an application has requested hasn't been
rendered. After the clipboard owner renders the data in the requested format, it calls
SetClipboardData to place the data on the clipboard.

EvRenderAllFormats—Responds to a message sent to the clipboard owner if the
clipboard owner has delayed rendering a clipboard format. After the clipboard owner
renders data in all of possible formats, it calls SetClipboardData.

The following example tests to see if there is a palette on the clipboard. If one exists,
TClipboard retrieves the palette, realizes it, and then closes the clipboard.

if (clipboard.IsClipboardFormatAvailable(CF_PALETTE)) {
newPal = new TPalette(TPalette(clipboard)); // make a copy
UpdatePalette(true);

}

// TryDIB format first.

if (clipboard.IsClipboardFormatAvailable (CF_DIB)) {
newDib = new TDib(TDib (clipboard)); // make a copy
newBitmap = new TBitmap (*newDib, newPal); // newPal==0 is OK

// try metafile 2nd

//

} else if (clipboard.IsClipboardFormatAvailable (CF_METAFILEPICT)) {
if (!InewPal)

newPal = new TPalette((HPALETTE)GetStockObject (DEFAULT_PALETTE)) ;
newBitmap = new TBitmap(TMetaFilePict (clipboard), *newPal,
GetClientRect().Size());

// Gets a bitmap , keeps it, and sets up data on the clipboard.

//
delete Bitmap;
Bitmap = newBitmap;

if (!newDib)

newDib = new TDib(*newBitmap, newPal);
#endif

92 ObjectWindows Reference Guide

TClipboard class

delete Dib;
Dib = newDib;

delete Palette;
Palette = newPal ? newPal : new TPalette(*newDib);
Palette->GetObject (Colors);

PixelWidth = Dib->Width();
PixelHeight = Dib->Height();
AdjustScroller();

SetCaption(" (Clipboard)");

clipboard.CloseClipboard() ;

Public destructor

Destructor
~TClipboard();
Destroys the TClipboard object.

Public data members

DefaultProtocol

static const char* DefaultProtocol;

Points to a string that specifies the name of the protocol the client needs. The default
protocol is "StdFileEditing," which is the name of the object linking and embedding
protocol.

Seealso TClipboard::QueryCreate

Public member functions

CloseClipboard

void CloseClipboard()

If the Clipboard is closed (IsOpen is false), closes the Clipboard. Closing the Clipboard
allows other applications to access the Clipboard.

Seealso TClipboard::OpenClipboard
CountClipboardFormats

int CountClipboardFormats() const;
Returns a count of the number of types of data formats the Clipboard can use.

Seealso TClipboard::RegisterClipboardFormat
EmptyClipboard
bool EmptyClipboard();

Clears the Clipboard and frees any handles to the Clipboard's data. Returns true if the
Clipboard is empty, or false if an error occurs.

Chapter 2, ObjectWindows library reference 93

TClipboard class

GetClipboard
static TClipboard& GetClipboard()
Returns a reference to the TClipboard object.

GetClipboardData

HANDLE GetClipboardData(uint format) const;

Retrieves data from the Clipboard in the format specified by format. The following
formats are supported:

CF_BITMAP Data is in a bitmap format.

CE_DIB Data is memory.

CF_DIF Data is in a Data Interchange Format (DIF).
CF_DSPMETAFILEPICT = Data is in a metafile format.

CF_DSPTEXT Data is in a text format.

CF_METAFILEPICT Data is in a metafile structure.

CF_OEMTEXT Data is an array of text characters in OEM character set.
CF_OWNERDISPLAT Data is in a special format that the application must display.
CF_PALETTE Data is in a color palette format.

CF_PENDATA Data is used for pen format.

CF_RIFF Data is in Resource Interchange File Format (RIFF).
CE_SYLK Data is in symbolic Link format (SYLK).

CF_TEXT Data is stored as an array of text characters.

CF_TIFF Data is in Tag Image File Format (TIFF).

CF_WAVE Data is in a sound wave format.

Seealso TClipboard::SetClipboardData

GetClipboardFormatName

int GetClipboardFormatName(uint format, char far* formatName, int maxCount) const;

Retrieves the name of the registered format specified by format and copies the format to
the buffer pointed to by formatName. maxCount specifies the maximum length of the
name of the format. If the name is longer than maxCount, it is truncated.

Seealso TClipboard::CountClipboardFormats

GetClipboardOwner
HWND GetClipboardOwner() const;

Retrieves the handle of the window that currently owns the Clipboard, otherwise
returns NULL.

GetClipboardViewer

HWND GetClipboardViewer() const;

Retrieves the handle of the first window in the Clipboard-view chain. Returns NULL if
there is no viewer.

Seealso TClipboard::SetClipboard Viewer

94 ObjectWindows Reference Guide

TClipboard class

GetOpenClipboardWindow

HWND GetOpenClipboardWindow() const;

Retrieves the handle of the window that currently has the Clipboard open. If the
Clipboard is not open, the return value is false. Once the Clipboard is opened,
applications cannot modify the data.

GetPriorityClipboardFormat

int GetPriorityClipboardFormat(uint FAR * priorityList, int count) const;

Returns the first Clipboard format in a list. priorityList points to an array that contains a
list of the Clipboard formats arranged in order of priority. See GetClipboardData for the
clipboard formats.

Seealso TClipboard::GetClipboardData

IsClipboardFormatAvailable

bool IsClipboardFormatAvailable(uint format) const;

Indicates if the format specified in format exists for use in the Clipboard. See
GetClipBoardData for a description of clipboard data formats.

The following code tests if the clipboard can support the specified formats:

void
TBupViewWindow: : CePaste (TCommandEnablers ce)
{
TClipboard& clipboard = OpenClipboard();
ce.Enable(
clipboard && (
clipboard.IsClipboardFormatAvailable (CF_METAFILEPICT) ||
clipboard.IsCliphoardFormatAvailable(CF_DIB) ||
clipboard.IsClipboardFormatAvailable (CF_BITMAP)
)
)
clipboard.CloseClipboard();

Seealso TClipboard::GetClipboardData

OpenClipboard

HWND GetOpenClipboardWindow() const;

Retrieves the handle of the window that currently has the Clipboard open. If the
Clipboard is not open, the return value is false. Once the Clipboard is opened,
applications cannot modify the data.

Seealso TClipboard::CloseClipboard

bool
operator bool() const;
Checks handle. Should use IsOk instead.

QueryCreate
bool QueryCreate(const char far* protocol = DefaultProtocol, OLEOPT_RENDER renderopt = olerender_draw,
OLECLIPFORMAT format = 0);

QueryCreate determines if the object on the Clipboard supports the specified protocol
and rendering options. DefaultProtocol points to a string specifying the name of the

Chapter 2, ObjectWindows library reference 95

TClipboard class

protocol the client application needs to use. renderopt specifies the client application's
display and printing preference for the Clipboard object. renderopt is set to
olerender_draw, which tells the client library to obtain and manage the data presentation.
format specifies the Clipboard format the client application requests. The macros
_OLE_H or _INC_OLE must be defined before this function can be used.

Seealso TClipboard::QueryLink

QueryLink

bool QueryLink(const char far* protocol = DefauItProtocoI OLEOPT_RENDER renderopt = olerender_draw,
OLECLIPFORMAT format = 0);

QueryLink determines if a client application can use the Clipboard data to produce a

linked object that uses the specified protocol and rendering options. See

TClipboard::QueryCreate for a description of the parameters. The macros _OLE_H or

_INC_OLE must be defined before this function can be used.

Seealso TClipboard::QueryCreate

RegisterClipboardFormat

uint RegisterClipboardFormat(const char far* formatName) const;

Registers a new Clipboard format. formatName points to a character string that identifies
the new format. If the format can be registered, the return value indicates the registered
format. If the format can't be registered, the return value is 0. Once the format is
registered, it can be used as a valid format in which to render the data.

Seealso TClipboard::CountClipboardFormats, TClipboard::GetClipboardFormatName

SetClipboardData

HANDLE SetClipboardData(uint format, HANDLE handle);

Sets a handle to the block of data at the location indicated by handle. format spec1f1es the
format of the data block. The clipboard must have been opened before the data handle is
set. format can be any one of the valid clipboard formats (for example, CF_BITMAP or
CF_DIB). See GetClipboardData for a list of these formats. handle is a handle to the
memory location where the data data is stored. If successful, the return value is a handle
to the data; if an error occurs, the return value is 0. Before the window is updated with
the clipboard data, the clipboard must be closed.

Seealso TClipboard::GetClipboardData

SetClipboardViewer

HWND SetClipboardViewer(HWND Wnd) const;

Adds the window specified by Wnd to the chain of windows that
WM_DRAWCLIPBOARD notifies whenever the contents of the Clipboard change.

Seealso TClipboard::GetClipboardViewer

Protected data members

IsOpen
bool IsOpen;
Returns true if the Clipboard is open.

96 ObjectWindows Reference Guide

TClipboardViewer Class

TheClipboard
static TClipboard TheClipboard;
Holds the current clipboard.

Protected constructor

Protected constructor
TClipboard();
Constructs a TClipboard object.

TClipboardViewer Class clipview.h

Form 1

Form 2

TClipboardViewer is a mix-in class that registers a TClipboardViewer as a Clipboard viewer
when the user interface element is created, and removes itself from the Clipboard-
viewer chain when it is destroyed.

Protected data member

HWndNext
HWND HWndNext;
Specifies the next window in the Clipboard-viewer chain.

Protected constructors

Constructors
TClipboardViewer();
Constructs a TClipboardViewer object.

TClipboardViewer(HWND hWnd, TModule* module - 0);
Constructs a TClipboardViewer object with a handle (hWnd) to the windows that will
receive notification when the Clipboard's contents are changed.

Protected member functions

DoChangeCBChain

TEventStatus DoChangeCBChain(HWND hWndRemoved, HWND hWndNext);

Tests to see if the Clipboard has changed and, if so, DoChangeCBChain forwards this
message.

DoDestroy
TEventStatus DoDestroy();
Removes the window from the Clipboard-viewer chain.

DoDrawClipboard
TEventStatus DoDrawClipboard();
Handles EvDrawClipboard messages.

Chapter 2, ObjectWindows library reference 97

TColor Class

EvChangeCBChain

void EvChangeCBChain(HWND hWndRemoved, HWND hWndNext);

Responds to a WM_CHANGECBCHAIN message. hWndRemoved is a handle to the
window that's being removed. hWndNext is the window following the removed
window.

EvDestroy

void EvDestroy();

Responds to a WM_DESTROY message when a window is removed from the
Clipboard-viewer chain.

EvDrawClipboard

void EvDrawClipboard();

Responds to a WM_DRAWCLIPBOARD message sent to the window in the Clipboard-
viewer chain when the contents of the Clipboard change.

SetupWindow

~ void SetupWindow();

Adds a window to the Clipboard-viewer chain.
Seealso TWindow::SetupWindow

Response table entries

EV_WM_CHANGECBCHAIN EvChangeCbChain
EV_WM_DESTROY EvDestroy
EV_WM_DRAWCLIPBOARD EvDrawClipBoard

TColor Class color.h

Form 1

Form 2

TColor is a support class used in conjunction with the classes TPalette, TPaletteEntry,
TRgbQuad, and TRgbTriple to simplify all color operations. TColor has ten static data
members representing the standard RGB COLORREEF values, from Black to White.
Constructors are provided to create TColor objects from COLORREF and RGB values,
palette indexes, palette entries, and RGBQUAD and RGBTRIPLE values.

See the entries for NBits and NColors for a description of TColor-related functions.

Public constructors

Constructors
TColor();
The default constructor sets Value to 0.

TColor(COLORREF value);
Creates a TColor object with Value set to the given value.

98 ObjectWindows Reference Guide

Form 3

Form 4

Form 5

Form 6

Form 7

Form 8

Form 9

TColor Class

TColor(long value);

Creates a TColor object with Value set to the value defined in COLORREF.

TColor(int r, int g, int b);

Creates a TColor object with Value set to RGB(r,g,b).

TColor(int r, int g, int b, int f);

Creates a TColor object with Value set to RGB(r,g,b) with the flag byte formed from f.

TColor(int index);
Creates a TColor object with Value set to PALETTEINDEX (index).

TColor(const PALETTEENTRY far& pe);
Creates a TColor object with Value set to
RGB(pe.peRed, pe.peGreen, pe.peBlue)

TColor(const RGBQUAD far& q);
Creates a TColor object with Value set to
RGB(q.rgbRed, q.rgbGreen, q.rgbBlue)

TColor(const RGBTRIPLE far& t);
Creates a TColor object with Value set to
RGB(t.rgbtRed, t.rgbtGreen, t.rgbtBlue)

Seealso COLORREF typedef, PALETTEENTRY struct, RGBQUAD struct, RGBTRIPLE
struct, TColor::Value

Public data members

Black
static const TColor Black;
The static TColor object with fixed Value set by RGB(0, 0, 0).

Gray
static const TColor Gray;
Contains the static TColor object with fixed Value set by RGB(128, 128, 128).

LtBlue
static const TColor LiBlue;
Contains the static TColor object with the fixed Value set by RGB(0, 0, 255).

LtCyan
static const TColor LtCyan;
Contains the static TColor object with the fixed Value set by RGB(0, 255, 255).

LtGray
static const TColor LtGray;
Contains the static TColor object with the fixed Value set by RGB(192, 192, 192).

LtGreen
static const TColor LtGreen; ‘
Contains the static TColor object with the fixed Value set by RGB(0, 255, 0).

Chapter 2, ObjectWindows library reference 99

TColor Class

LtMagenta
static const TColor LtMagenta;
Contains the static TColor object with the fixed Value set by RGB(255, 0, 255).

LtRed
static const TColor LtRed; ,
Contains the static TColor object with the fixed Value set by RGB(255, 0, 0).

LtYellow
static const TColor LtYellow;
Contains the static TColor object with the fixed Value set by RGB(255, 255, 0).

' White
static const TColor White;
Contains the static TColor object with the fixed Value set by RGB(255, 255, 255).

Public member functions

Blue
uint8 Blue() const;
Returns the blue component of this color's Value.

Seealso TColor::Red, TColor::Green, COLORREF typedef

Flags
uint8 Flags() const;
Returns the peFlags value of this object's Value.

Seealso TPaletteEntry

GetSysColor
static TColor GetSysColor(int uiElement);
(Presentation Manager only) Returns the color of the given uiElement.

Green ,
uint8 Green() const,
Returns the green component of this color's Value.

Seealso TColor::Red, TColor::Blue, COLORREF typedef
operator ==

bool operator ==(const TColor& cirVal);
Returns true if this color's Value equals clrValue; otherwise returns false.

Seealso TColor:Value

operator COLORREF()
operator COLORREF() const;
Type-conversion operator that returns Value.

Seealso TColor:Value

100 ObjectWindows Reference Guide

TColor Class

Index

int Index() const;

Returns the index value corresponding to this color's Value by masking out the two
upper bytes. Used when color is a palette index value.

Seealso TColor::Value, COLORREF typedef

Palindex

TColor Palindex() const;

Returns the palette index corresponding to this color's Value. The returned color has the
high-order byte set to 1.

Seealso TColor::Value, TColor::Index, COLORREF typedef

PalRelative

TColor PalRelative() const;

Returns the palette-relative RGB corresponding to this color's Value. The returned color
has the high-order byte set to 2.

Seealso TColor::Value, TColor::Rgb, COLORREF typedef

Red
uint8 Red() const;
Returns the red component of this color's Value.

See also
TColor::Blue, TColor::Green

Rgb

TColor Rgb() const;

Returns the explicit RGB color corresponding to this color's Value by masking out the
high-order byte.

Seealso TColor::Value, COLORREEF typedef

SetSysColors

static bool SetSysColors(unsigned nelems, const int uiElementindices]], const TColor colors][]);
(Presentation Manager only) Sets groups of UI element colors. nelems indicates the
number of element colors to change (and the size of the array parameters,
uiElementIndices indicates which elements to change, and colors indicates what color to
change the corresponding element to. Returns true if successful.

Protected data member

Value
COLORREF Value;

The color value of this TColor object. Value can have three different forms, depending on
the application:

¢ Explicit values for RGB (red, green, blue)

¢ Anindex into a logical color palette

Chapter 2, ObjectWindows library reference 101

TComboBox class

¢ A palette-relative RGB value
Seealso COLORREF typedef

TComboBox class combobox.h

Form 1

Form 2

You can use TComboBox to create a combo box or a combo box control in a parent
TWindow, or to facilitate communication between your application and the combo box
controls of TDialog. TComboBox ob]ects inherit most of their behavior from TListBox. This
class is streamable.

There are three types of combo boxes: simple, drop down, and drop down list. These
types are governed by the style constants CBS_SIMPLE, CBS_DROPDOWN, and
CBS_DROPDOWNLIST. These constants, supplied to the constructor of a TComboBox,
indicate the type of combo box element to create.

Public constructors

Constructors

TComboBox(TWindow* parent, int id, int x, int y, int w, int h, uint32 style, uint textLen, TModule* module = 0);
Constructs a combo box object with the specified parent window (parent), control ID
(Id), position (x, y) relative to the origin of the parent window's client area, width (w),
height (1), style (style), and text length (textLen).

Invokes the TListBox constructor with similar parameters. Then sets Attr.Style as
follows:

Attr.Style = WS_CHILD | WS_VISIBLE | WS_GROUP | WS_TABSTOP | CBS_SORT | CBS_AUTOHSCROLL |
WS_VSCROLL | style;

One of the following combo box style constants must be among the styles set in style:
CBS_SIMPLE, CBS_DROPDOWN, CBS_DROPDOWNLIST,
CBS_OWNERDRAWEFIXED, or CBS_OWNERDRAWVARIABLE.

TComboBox(TWindow* parent, int Resourceld, uint textLen = 0, TModule* module = 0);
Constructs a default combo box with the given parent window control ID text length.

Seealso TComboBox::GetTextLen, TListBox::TListBox

Public data member

TextLen
uint TextLen;
Contains the length of the text in the combo box's associated edit control.

Public member functions

AddString
virtual int AddString(const char far* string);

102 ObjectWindows Reference Guide

TComboBox class

Adds a string to an associated list part of a combo box. Returns the index of the string in
the list. The first entry is at index zero. Returns a negative value if an error occurs.

Clear
void Clear();
Clears the text of the associated edit control.

ClearList
virtual void ClearList();
Clears out all associated entries in the associated list.

DeleteString

virtual int DeleteString(int index);

Deletes the string at the passed index in the associated list part of a combo box. Returns
a count of the entries remaining in the list or a negative value if an error occurs.

DirectoryList
virtual int DirectoryList(uint attrs, const char far* fileSpec);
Fills the combo box with file names from a specified directory.

FindString

virtual int FindString(const char far* find, int indexStart) const;

Searches for a match beginning at the passed Index. If a match is not found after the last
string has been compared, the search continues from the beginning of the list until a
match is found or until the list has been completely traversed. Returns the index of the
first string in the associated list part of a combo box or a negative value if an error
occurs.

GetCount

virtual int GetCount() const;

Returns the number of entries in the associated list part of the combo box or a negative
value if an error occurs.

GetDroppedControlRect
void GetDroppedControlRect(TRect& Rect) const;
For combo boxes, gets the screen coordinates of the dropped down list box.

GetDroppedState
bool GetDroppedState() const;
For drop down combo boxes, determines if a list box is visible.

GetEditSel

int GetEditSel(int &startPos, int &endPos);

Returns the starting and ending positions of the text selected in the associated edit
control. Returns CB_ERR if the combo box has no edit control.

GetExtendedUl

boo! GetExtendedUl() const;

Determines if the combo box has the extended user interface, which differs from the
default user interface in the following ways:

* Displays the list box if the user clicks the static text field.

Chapter 2, ObjectWindows library reference 103

TComboBox class

¢ Displays the list box if the user presses the Down key.

¢ Disables scrolling in the static text field if the item list is not visible.

Returns true if the combo box has the extended user interface; otherwise returns false.
Seealso TComboBox::SetExtendedUI

GetltemData
virtual uint32 GetltemData(int index) const;
Returns the 32-bit value associated with the combo box's item.

Seealso TListBox:GetltemData

GetltemHeight

int GetltemHeight(int index) const;

Returns the height in pixels of the combo box's list items. If an error occurs, returns a
negative value.

Seealso TComboBox::GetltemData, TListBox::GetltemData

GetSellndex
virtual int GetSellndex() const;
Returns the index of the list selection or a negative value if none exists.

GetString

virtual int GetString(char far* str, int index) const;

Retrieves the contents of the string at the position supplied in index and returns it in
string. GetString returns the string length or a negative value if an error occurs. The
buffer must be large enough for the string and the terminating zero.

Seealso TListBox::GetString

GetStringLen

virtual int GetStringLen(int index) const;

Returns the string length (excluding the terminating zero) of the item at the position
index supplied in index. Returns a negative value if an error occurs.

Seealso TListBox:GetStringLen

GetText
int GetText(char far* str, int maxChars) const;
Retrieves the number of characters in the edit or static portion of the combo box.

GetTextLen

int GetTextLen() const;

Returns the text length (excluding the terminating zero) of the edit control or static
portion of the combo box.

HideList
void HideList();
Hides the drop down list of a drop down or drop down list combo box.

InsertString
virtual int InsertString(const char far* str, int index);

104 ObjectWindows Reference Guide

Form 1

Form 2

TComboBox class

Inserts a string in the associated list part of a combo box at the position supplied in
Index. Returns the index of the string in the list or a negative value if an error occurs.

Seealso TListBox:InsertString

SetEditSel

int SetEditSel(int startPos, int endPos);

Selects characters that are between startPos and endPos in the edit control of the combo
box. Returns CB_ERR if the combo box does not have an edit control.

SetExtendedUl
int SetExtendedUl(bool extended);
If the combo box has the extended user interface, sets the extended user interface.

Seealso TComboBox::GetExtendedUI

SetlitemData

virtual int SetltemData(int index, uint32 data);

Sets the 32-bit value associated with the TComboBox's item. If an error occurs, returns a
negative value.

SetitemHeight

int SetltemHeight(int index, int height);

Sets the height of the list items or the edit control portion in a combo box. If the index or
height is invalid, returns a negative value.

Seealso TComboBox:GetltemHeight

SetSellndex

virtual int SetSellndex(int index);

Selects a string of characters in a combo box. index specifies the index of the string of
characters in the list box to select. If the index is 0, the first line in the list box is selected.
If the index is -1, the current selection is removed. If an error occurs, a negative value is
returned. '

Seealso TComboBox::GetSellndex

SetSelString

virtual int SetSelString(const char far* findStr, int indexStart);

Selects a string of characters in the associated list box and sets the contents of the
associated edit control to the supplied string.

SetText

void SetText(const char far* string);

Selects the first string in the associated list box that begins with the supplied string. If
there is no match, SetText sets the contents of the associated edit control to the supplied
string and selects it.

ShowlList
void ShowList();
Shows the list of a drop down or drop down list combo box.

void ShowList(bool show);

Chapter 2, ObjectWindows library reference 105

TComboBoxData class

Shows or hides the drop down or drop down list combo box depending on the value of
show. If show is true, shows the list; if show is false, hides the list.

Seealso TComboBox::HideList

Transfer

uint Transfer(void* buffer, TTransferDirection direction);

Transfers the items and selection of the combo box to or from a transfer buffer if
tdSetData or tdGetData, respectively, is passed as the direction. buffer is expected to point
to a TComboBoxData structure.

Transfer returns the size of a pointer to a TComboBoxData. To retrieve the size without
transferring data, your application must pass tdSizeData as the direction.

You must use a pointer in your transfer buffer to these structures. You cannot embed
copies of the structures in your transfer buffer, and you cannot use these structures as
transfer buffers.

Seealso TComboBoxData, TWindow::Transfer, Window::SetupWindow

Protected member functions

GetClassName
virtual char far* GetClassName();
Returns the name of TComboBox s registration class, "ComboBox."

SetupWindow

void SetupWindow();

Sets up the window and limits the amount of text the user can enter in the combo box's
edit control to the value of TextLen minus 1.

TComboBoxData class combobox.h

An interface object that represents a transfer buffer for a TComboBox.

Public constructor and destructor

Constructor

TComboBoxData();

Constructs a TComboBoxData object, initializes Strings and ItemDatas to empty arrays,
and initializes Selection and Sellndex to 0.

Destructor
~TComboBoxData();
Deletes Strings, ItemDatas, and Selection.

106 ObjectWindows Reference Guide

TComboBoxData class

Public member functions

AddString

void AddString(const char *str, bool isSelected = false);

Adds the specified string to the array of Strings. If IsSelected is true, AddString deletes
Selection and copies string into Selection.

AddStringltem

void AddStringltem(const char* str, uint32 itemData, bool isSelected = false);

Calls AddItemData to add the item data to the ItemDatas array, and calls AddString to add
a string to the array of Strings.

Clear
void Clear();
Flushes the Strings and ItemDatas members. Resets the index and selected string values.

GetltemDatas
TDwordArray& GetltemDatas();
Returns the array of DWORD:s to transfer to or from a combo box's associated list box.

GetSelCount
int GetSelCount() const;
Returns the number of items selected, either 0 or 1.

GetSelection

string& GetSelection();

Returns the currently selected string (the Selection data member) to transfer to or from a
combo box.

GetSelindex
int GetSellndex();
Returns the index (the Sellndex data member) of the selected item in the strings array.

GetSelString

void GetSelString(char far* buffer, int bufferSize) const;

Copies the selected string into a buffer of the specified size. bufferSize includes the
terminating 0.

GetSelStringLength
int GetSelStringLength() const;
Returns length of the currently selected string excluding the terminating 0.

GetStrings

TStringArray& GetStrings();

Returns the array of strings (the Strings data member) to transfer to or from a combo
box's associated list box.

ResetSelections
void ResetSelections();
Resets the index of the selected item and the currently selected string.

Chapter 2, ObjectWindows library reference 107

TCommandEnabler class

Select -
void Select(int index);
Selects the item at the given index.

SelectString

void SelectString(const char far* str);

Selects the selection string (str) and makes the matching String entry (if one exists) as
selected.

Protected data members

ltemDatas
TDwordArray ltemDatas;
Array of DWORD:s to transfer to or from a combo box's associated list box.

Selection
string Selection;
The currently selected string to transfer to or from a combo box.

Sellndex
int Sellndex;
Index of the selected item in the strings array.

Strings
TStringArray Strings; -
Array of class string to transfer to or from a combo box's associated list box.

TCommandEnabler class window.h

An abstract base class used for automatic enabling and disabling of commands,
TCommandEnabler is a class from which you can derive other classes, each one having its
own command enabler. For example, TButtonGadgetEnabler is a derived class that's a
command enabler for button gadgets, and TMenultemEnabler is a derived class that's a
command enabler for menu items. Although your derived classes are likely to use only
the functions Enable, SetCheck, and GetHandled, all of TCommandEnabler’s functions are
described so that you can better understand how ObjectWindows uses command
processing. The following paragraphs explain the dynamics of command processing.

Handling command messages

Commands are messages of the windows WM_COMMAND type that have associated
command identifiers (for example, CM_FILEMENU). When the user selects an item
from a menu or a toolbar, when a control sends a notification message to its parent
window, or when an accelerator keystroke is translated, a WM_COMMAND message is
sent to a window.

108 . ObjectWindows Reference Guide

TCommandEnabler class

Responding to command messages

A command is handled differently depending on which type of command a window
receives. Menu items and accelerator commands are handled by adding a command
entry to a message response table using the EV_COMMAND macro. The entry requires
two arguments:

* A command identifier (for example, CM_LISTUNDO)
* A member function (for example, CMEditUndo)

Child ID notifications, messages that a child window sends to its parent window, are
handling by using one of the notification macros defined in the header file windowev.h.

It is also possible to handle a child ID notification at the child window by adding an
entry to the child's message response table using the EV_NOTIFY_AT_CHILD macro.
This entry requires the following arguments:

* A notification message (for example, LBN_DBLCLK)
¢ A member function (for example, CmEditIten)

TWindow command processing
One of the classes designed to handle command processing, TWindow performs basic
command processing according to these steps:

1 The member function WindowProc calls the virtual member function EvCommand.

2 EvCommand checks to see if the window has requested handling the command by
looking up the command in the message response table.

3 If the window has requested handling the command identifier by using the
EV_COMMAND macro, the command is dispatched.

TWindow also handles Child ID notifications at the child window level.

TFrameWindow command processing

TFrameWindow provides specialized command processing by overriding its member
function EvCommand and sending the command down the command chain (that is, the
chain of windows from the focus window back up to the frame itself, the original
receiver of the command message).

If no window in the command chain handles the command, TFrameWindow delegates
the command to the application object . Although this last step is theoretically
performed by the frame window, it is actually done by TWindow’s member function,
DefaultProcessing.

Invoking EvCommand

When TFrameWindow sends a command down the command chain, it doesn't directly
dispatch the command; instead, it invokes the window's EvCommand member
function.This procedure gives the windows in the command chain the flexibility to
handle a command by overriding the member function EvCommand instead of being
limited to handling only the commands requested by the EV_COMMAND macro.

Chapter 2, ObjectWindows library reference 109

TCommandEnabler class

Handling command enable messages

Most applications expend considerable energy updating menu items and tool bar
buttons to provide the necessary feedback indicating that a command has been enabled.
In order to simplify this procedure, ObjectWindows lets the event handler that's going
to handle the command make the decision about whether or not to enable or disable a
command.

Although the WM_COMMAND_ENABLE message is sent down the same command
chain as the WM_COMMAND event; exactly when the WM_COMMAND_ENABLE
message is sent depends on the type of command enabling that needs to be processed.

Command enabling for meénu items

TFrameWindow performs this type of command enabling when it receives a
WM_INITMENUPOPUP message. It sends this message before a menu list appears.
ObjectWindows then identifies the menu commands using the command IDs and sends
requests for the commands to be enabled.

Note that because Object Windows actively maintains toolbars and menu items, any
changes made to the variables involved in the command enabling functions are
implemented dynamically and not just when a window is activated.

Command enabling for toolbar buttons
The type of command enabling is performed during idle processing (in the IdleAction

- function). See the diagram following the description of TWindow::DefaultProcessing for a
graphical illustration of this process.

Creating specialized command enablers

Associated with the WM_COMMAND_ENABLE message is an object of the
TCommandEnabler type. This family of command enablers includes specialized
command enablers for menu items and toolbar buttons.

As you can see from TCommandEnable’s class declaration, you can do considerably more
than simply enable or disable a command using the command enabler. For example,
you have the ability to change the text associated with the command as well as the state
of the command.

Using the EV_COMMAND_ENABLE macro

You can use the EV_COMMAND_ENABLE macro to handle
WM_COMMAND_ENABLE messages. Just as you do with the EV_COMMAND
macro, you specify the command identifier that you want to handle and the member
function you want to invoke to handle the message.

Automatically enabling and disabling commands

ObjectWindows simplifies enabling and disabling of commands by automatically
disabling commands for which there are no associated handlers. TFrameWindow's
member function EvCommandEnable performs this operation, which involves
completing a two pass algorithm.

110 ObjectWindows Reference Guide

TCommandEnabler class

1 The first pass sends a WM_COMMAND_ENABLE message down the command
chain giving each window an explicit opportunity to do the command enabling.

2 If no window handles the command enabling request, then ObjectWindows checks
to see whether any windows in the command chain are going to handle the
command through any associated EV_COMMAND entries in their response tables. If
there is a command handler in one of the response tables, then the command is
enabled; otherwise it is disabled.

Because of this implicit command enabling or disabling, you do not need to (and
actually should not) do explicit command enabling unless you want to change the
command text, change the command state, or conditionally enable or disable the
command.

If you handle commands indirectly by overriding the member function EvCommand
instead of using the EV_COMMAND macro to add a response table entry, then
ObjectWindows will not be aware that you are handling the command. Consequently,
the command may be automatically disabled. Should this occur, the appropriate action
to take is to also override the member function EvCommandEnable and explicitly enable
the command.

Public constructor

Constructor

TCommandEnabler(uint id, HWND hWndReceiver = 0);

Constructs the TCommandEnable object with the specified command ID. Sets the
message responder (hWndReceiver) to zero.

Type definitions

CheckState

enum CheckState{Unchecked, Checked, Indeterminate};

Enumerates the values for the check state of the command sender. This state applies to
buttons, such as those used for tool bars or to control bar gadgets.

Public data members

Id
const uint Id;
Command ID for the enabled command.

Public member functions

Enable
virtual void Enable(bool enable = true);
Enables or disables the command sender. When Enable is called, it sets the Handled flag.

Chapter 2, ObjectWindows library reference 111

TCommonDialog class

GetHandled

bool GetHandled();

Returns Handled, a flag value that shows if this command enabler has been handled, in
which case Handled is true.

IsReceiver

bool IsReceiver(HWND hReceiver);

Returns true if receiver is the same as the message responder originally set up in the
constructor. :

SetCheck -

virtual void SetCheck(int check) = 0;

Changes the check state of the command sender to either unchecked, checked, or
indeterminate. This state applies to buttons, such as those used for toolbars or to control
bar gadgets.

SetText

virtual void SefText(const char far* text) = 0;

Changes the text associated with a command sender. This applies, for example, to text
associated with a menu item or text on a button.

Protected data members

Handled
bool Handled;
Is true if the command enabler has been handled.

HWndReceiver
const HWND HWndReceiver,
The message responder (the window) that receives the command.

TCommonDialog class commdiaLh

Derived from TDialog, TCommonDialog is the abstract base class for TCommonDialog
objects. It provides the basic functionality for creating dialog boxes using the common
dialog DLL. The ObjectWindows classes that inherit this common dialog functionality
include

TChooseColorDialog—a modal dialog box that lets a user select colors for an application
TChooseFontDialog—a modal dialog box that lets a user select fonts for an application
TReplaceDialog—a modeless dialog box that lets a user specify a text selection to replace
TFindDialog—a modeless dialog box that lets a user specify a text selection to find

| TFileOpenDialog—a modal dialog box that lets a user specify a file to open
TFileSaveDialog—a modal dialog box that lets a user specify a file to save
TPrintDialog—a modal dialog box that lets a user specify printer options

112 ObjectWindows Reference Guide

TCommonDialog class

Each common dialog class uses a nested class, TData, that stores the attributes and user-
specified data. For example, the TChooseColorDialog::TData class stores the color
attributes the user selects in response to a prompt in a common dialog box. In fact, to
create a common dialog box, you construct a TData object first, then fill in the data
members of the TData object before you even construct the common dialog box object.
Finally, you either execute a modal dialog box or create a modeless dialog box.

Public constructor

Constructor

TCommonDialog(TWindow* parent, const char far* title = 0, TModule* module = 0);

Invokes a TWindow constructor, passing the parent window parent and constructs a
common dialog box which you can modify to suit your specifications. You can indicate
the module ID (title) and window caption (title), which otherwise default to 0.

Public member functions

DoCreate
HWND DoCreate();
Called by Create, DoCreate creates a modeless dialog box. It returns 0 if unsuccessful.

Seealso TDialog::Create

DoExecute

int DoExecute();

Called by Execute, DoExecute executes a modal dialog box. If the dialog box execution is
canceled or unsuccessful, DoExecute returns IDCANCEL.

Seealso TDialog::Execute

Protected data member

CDTitle
const char far* CDTitle;
CDTitle stores the optional caption displayed in the common dialog box.

Seealso TDialog::SetCaption

Protected member functions

CmHelp
void CmHelp();
Default handler for the pshHelp push button (the Help button in the dialog box).

CmOkCancel

void CmOkCancel();

Responds to a click on the dialog box's OK or Cancel button by calling DefaultProcessing
to let the common dialog DLL process the command.

Chapter 2, ObjectWindows library reference 113

TCondFunc typedef "

Seealso TDialog::CmCancel, TDialog::CmOk

EvClose
void EvClose();

Responds to a WM_CLOSE message by calling DefaultProcessing to let the common
dialog DLL process the command.

Seealso TDialog::EvClose

SetupWindow
void SetupWindow();
Assigns the caption of the dialog box to CDTitle if CDTitle is nonzero.

Seealso TDialog::SetupWindow

Response table entries

CmOkCancel
EV_WM_CLOSE EvClose
EV_WM_CTLCOLOR EvCtliColor

TCondFunc typedef , window.h

typedef bool (*TCondFunc) (TWindow *win, void *param);
Defines a member function type used by TWindow'’s function FirstThat.

Seealso TWindow::FirstThat

TCondMemFunc typedef window.h

typedef bool (TWindow_TCondMemFunc) ("Win, void *param);
Defines a member function type used by TWindow'’s function FirstThat.

Seealso TWindow::FirstThat

114 ObjectWindows Reference Guide

TControlBar class

TControlBar class controlb.h

Derived from TGadgetWindow, TControlBar implements a control bar that provides
mnemonic access for its button gadgets. The sample MDIFILE.CPP ObjectWindows
program on your distribution disk displays the following example of a control bar.

File Editor

I
Button gadgets Control bar

To construct, build, and insert a control bar into a frame window, you can first define
the following response table:

DEFINE_RESPONSE_TABLEL (TMDIFileApp, TApplication
EV_COMMAND (CM_FILENEW, CmFileNew),
EV_COMMAND (CM_FILEOPEN, CmFileOpen),
EV_COMMAND (CM_SAVESTATE, CmSaveState),
EV_COMMAND (CM_RESTORESTATE, CmRestoreState),
END_RESPONSE_TABLE;

Next, add statements that will construct a main window and load its menu, accelerator
table, and icon. Then, to construct, build and insert a control bar into the frame window,
insert these statements:

TControlBar* cb = new TControlBar (frame);

cb->Insert (*new TButtonGadget (CM_FILENEW, CM_FILENEW));
cb->Insert (*new TButtonGadget (CM_FILEOPEN, CM_FILEOPEN));
cb->Insert (*new TButtonGadget (CM_FILESAVE, CM_FILESAVE));
cb->Insert (*new TSeparatorGadget (6));

cb->Insert (*new TButtonGadget (CM_EDITCUT, CM_EDITCUT));
cb->Insert (*new TButtonGadget (CM_EDITCOPY, CM_EDITCOPY));
cb->Insert (*new TButtonGadget (CM_EDITPASTE, CM_EDITPASTE));
cb->Insert (*new TSeparatorGadget (6));

cb->Insert (*new TButtonGadget (CM_EDITUNDO, CM_EDITUNDO));
frame->Insert (*cb, TDecoratedFrame::Top);

Public constructor

Constructor

TControlBar(TWindow* parent = 0, TTileDirection direction = Horizontal, TFont* font = new TGadgetWindowFont,
TModule* module = 0);

Constructs a TControlBar interface object with the specified direction (either horizontal

or vertical) and window font.

Public member function

PreProcessMsg
bool PreProcessMsg(MSG& msg);

Chapter 2, ObjectWindows library reference 115

TControlGadget class

Preprocesses messages. Because PreProcessMsg does not translate any accelerator keys
for TControlBar, it returns false.

Protected member function

PositionGadget

void PositionGadget(TGadget* previous, TGadget* next, TPoint& p);

Gets the border style, determines the direction of the gadget, and positions the button
gadget on either a horizontal or vertical border if any overlapping is required.

TControlGadget class | controlg.h

TControlGadget serves as a surrogate for TControl so that you can place TControl objects
such as edit controls, buttons, sliders, gauges, or third-party controls, into a gadget
window. If necessary, TControlGadget sets a parent window and creates the control
gadget. See TGadget for more information about gadget objects.

Public constructor and destructor

Constructor
TControlGadget(TWindow& control, TBorderStyle = None);
Creates a TControlGadget object associated with the specified TControl window.

Destructor
~TControlGadget();
Destroys a TControlGadget object and removes it from the associated window.

Protected data member

Control
TWindow* Control;
Points to the control window that is managed by this TControlGadget.

Protected member functions

GetDesiredSize

void GetDesiredSize(TSize& size);

Calls TGadget::GetDesiredSize and passes the size of the control gadget. Use
GetDesiredSize to find the size the control gadget needs to be in order to accommodate
the borders and margins as well as the highest and widest control gadget.

Seealso TGadget::GetDesiredSize

GetinnerRect
void GetinnerRect(TRect&);
Computes the area of the control gadget's rectangle excluding the borders and margins.

116 ObjectWindows Reference Guide

TControl class

Inserted

void Inserted();

Called when the control gadget is inserted in the parent window. Displays the window
in its current size and position.

Invalidate

void Invalidate(bool erase = true);

Used to invalidate the active (usually nonborder) portion of the control gadget,
Invalidate calls InvalidateRect and passes the boundary width and height of the area to
erase.

InvalidateRect
void InvalidateRect(const TRect&, bool erase = true);
Invalidates the control gadget rectangle in the parent window.

Removed
void Removed();
Called when the control gadget is removed from the parent window.

SetBounds

void SetBounds(TRect& rect);

Calls TGadget::SetBounds and passes the dimensions of the control gadget's rectangle.
SetBounds informs the control gadget of a change in its bounding rectangle.

Seealso TGadget::SetBounds
Update
void Update();

Updates the client area of the specified window by immediately sending a WM_PAINT
message.

Response table entries

The TControlGadget class has no response table entries.

TControl class control.h

Form 1

TControl unifies its derived control classes, such as TScrollBar, TControlGadget, and
TButton. Control objects of derived classes are used to represent control interface
elements. A control object must be used to create a control in a parent TWindow or a
derived window. A control object can be used to facilitate communication between your
application and the controls of a TDialog. TControl is a streamable class.

Public constructors

Constructors
TControl(TWindow* parent, int id, const char far* title, int x, int y, int w, int h, TModule* module = 0);

Chapter 2, ObjectWindows library reference 117

TControl class

Form 2

Invokes TWindow'’s constructor, passing it parent (parent window), title (caption text),
and module. Sets the control attributes using the supplied library ID (Id), position (x, y)
relative to the origin of the parent window's client area, width (w), and height (k)
parameters. It sets the control style to WS_CHILD | WS_VISIBLE | WS_GROUP |
WS_TABSTOP.

TControl(TWindow* parent, int resourceld, TModule* module = 0);

Constructs an object to be associated with an interface control of a TDialog. Invokes the
TWindow constructor then enables the data transfer mechanism by calling
EnableTransfer.

The resourceld parameter must correspond to a control interface resource that you
define.

Seealso TWindow:: TWindow, TWindow::EnableTransfer

Protected member functions

Compareltem

virtual int Compareltem (COMPAREITEMSTRUCT far& comparelnfo);

Also used with owner-draw buttons and list boxes, Compareltem Compares two items.
The derived class supplies the compare logic.

See also
COMPAREITEMSTRUCT struct

Deleteltem

virtual void Deleteltem (DELETEITEMSTRUCT far& deletelnfo);

Deleteltem is used with owner-draw buttons and list boxes. In such cases, the derived
class supplies the delete logic.

Seealso DELETEITEMSTRUCT struct

Drawltem

virtual void Drawltem(DRAWITEMSTRUCT far& drawinfo};

Drawltem responds to a message forwarded to a drawable control by TWindow when the
control needs to be drawn. TControl::Drawltem calls ODADrawEntire if the entire control
needs to be drawn, calls ODASelect if the selection state of the control has changed, or
calls ODAFocus if the focus has been shifted to or from the control.

Seealso TControl::ODADrawEntire, TControl::ODASelect, TControl::ODAFocus,
DRAWITEMSTRUCT struct

EvCompareltem
LRESULT EvCompareltem(uint ctrlid, COMPAREITEMSTRUCT far& comp);
Handles a WM_COMPAREITEM message for owner-draw controls.

Seealso COMPAREITEMSTRUCT struct

EvDeleteltem
void EvDeleteltem(uint ctrlld, DELETEITEMSTRUCT far& del)
Handles a WM_DELETEITEM message for owner-draw controls.

118 ObjectWindows Reference Guide

TControl class

Seealso DELETEITEMSTRUCT struct

EvDrawlitem
void EvDrawltem(uint ctrlld, DRAWITEMSTRUCT far& draw);
Handles a WM_DRAWITEM message.

Seealso DRAWITEMSTRUCT struct

EvMeasureltem’
void EvMeasureltem(uint ctrlid, MEASUREITEMSTRUCT far& meas);
Handles a WM_MEASUREITEM message.

Seealso MEASUREITEMSTRUCT struct

EvPaint

void EvPaint();

If the control has a predefined class, EvPaint calls TWindow::DefaultProcesing for
painting. Otherwise, it calls TWindow::EvPaint.

Seealso TWindow::DefaultProcessing

Measureltem

virtual void Measureltem (MEASUREITEMSTRUCT far& measurelnfo);

Used by owner-drawn controls to set the dimensions of the specified item. For list boxes
and control boxes, this function applies to specific items; for other owner-drawn
controls, this function is used to set the total size of the control.

Seealso MEASUREITEMSTRUCT struct

ODADrawEntire

virtual void ODADrawEntire(DRAWITEMSTRUCT far& drawlnfo);

Responds to a notification message sent to a drawable control when the control needs to
be drawn. ODADrawEntire can be redefined by a drawable control to specify the
manner in which it is to be drawn.

Seealso TControl::Drawltem, DRAWITEMSTRUCT struct

ODAFocus

virtual void ODAFocus(DRAWITEMSTRUCT far& drawlinfo);

Responds to a notification sent to a drawable control when the focus has shifted to or
from the control. ODAFocus can be redefined by a drawable control to specify the
manner in which it is to be drawn when losing or gaining the focus.

Seealso TControl::Drawltem, DRAWITEMSTRUCT struct

ODASelect

virtual void ODASelect(DRAWITEMSTRUCT far& drawlnfo);

Responds to a notification sent to a drawable control when the selection state of the
control changes. ODASelect can be redefined by a drawable control to specify the
manner in which it is drawn when its selection state changes.

Seealso TControl::Drawltem, DRAWITEMSTRUCT struct

Chapter 2, ObjectWindows library reference 119

-TCreatedDC class

Response table entries

EV_WM_PAINT

EV_WM_COMPAREITEM EvCompareltem
EV_WM_DELETEITEM EvDeleteltem
EV_WM_DRAWITEM EvDrawltem

EV_WM_MEASUREITEM EvMeasureltem

TCreatedDC class | dch

Form 1

Form 2

An abstract TDC class, TCreatedDC serves as the base for DCs that are created and
deleted.

See TDC for more information about DC objects.

Public constructors and destructor

Constructors

TCreatedDC(const char far* driver, const char far* device, const char far* output,

const DEVMODE far* initData=0};

Creates a DC object for the device specified by driver (driver name), device (device name),
and output (the name of the file or device [port] for the physical output medium). The
optional initData argument provides a DEVMODE structure containing device-specific
initialization data for this DC. initData must be 0 (the default) if the device is to use any
default initializations specified by the user.

TCreatedDC(HDC handle TAutoDelete autoDelete);
Creates a DC object using an existing DC.

Destructor

~TCreatedDC();

Calls RestoreObjects clears any nonzero OrgXXX data members. If ShouldDelete is true
the destructor deletes this DC.

Seealso enum TDC:TAutoDelete, TDC::RestoreObjects, TDC::ShouldDelete,
DEVMODE struct

Protected constructor

Constructor

TCreatedDC();

Creates a device context for the given device. DC objects can be constructed either by
borrowing an existing HDC handle or by supplying device and driver information.

120 ObjectWindows Reference Guide

TCursor class

TCursor class gdiobjec.h

Form 1

Form 2

Form 3

Form 4

Form5

Form 6

TCursor, derived from TGdiBase, represents the GDI cursor object class. TCursor
constructors can create cursors from a resource or from explicit information. Because
cursors are not real GDI objects, the TCursor destructor overrides the base destructor,
~TGdiBase.

Public constructors and destructor

Constructors

TCursor(HCURSOR handle, TAutoDelete autoDelete = NoAutoDelete);

Creates a TCursor object and sets the Handle data member to the given borrowed handle.
The ShouldDelete data member defaults to false, ensuring that the borrowed handle will
not be deleted when the C++ object is destroyed.

TCursor(HINSTANCE instance, const TCursor& cursor);
Creates a copy of the given cursor object. The 32-bit version (for compiling a Win32
application) uses Copylcon() and does a cast to get to HICON.

TCursor(HINSTANCE instance, Resld resld);
Constructs a cursor object from the specified resource ID.

TCursor(HINSTANCE instance, const TPoint& hotSpot, const TSize& size, void far* andBits, void far* xorBits);
Constructs a TCursor object of the specified size at the specified point.

TCursor(const void* resBits, uint32 resSize);
32 bit only. Constructs a TCursor object from the specified resource.

TCursor(const ICONINFO* iconlnfo);
32 bit only. Creates a TCursor object from the specified ICONINFO structure
information.

Destructor
~TCursor();
Destroys a TCursor object.

Seealso ~TGdiObject, TGdiObject::Handle, TGdiObject::ShouldDelete, TPoint, TSize,
ICONINFO struct

Public member function

Getlconinfo

bool Getlconinfo(ICONINFO* iconinfo) const;

32-bit only. Retrieves information about this icon and copies it in the given ICONINFO
structure. Returns true if the call is successful; otherwise returns false.

Seealso ICONINFO struct

Chapter 2, ObjectWindows library reference 121

TDC class

Operators

operator HCURSOR()

operator HCURSOR() const;

An inline typecasting operator. Converts this cursor's Handle to type HCURSOR (the
data type representing the handle to a cursor resource).

operator =
bool operator =(const TCursor& other) const;
Returns true if this cursor equals other; otherwise returns false.

TDC class dc.h

122 Objec

TDC is the root class for GDI DC wrappers. Each TDC object inherits a Handle from
TGdiBase and casts that handle to an HDC using the HDC operator. Win API functions
that take an HDC argument can therefore be called by a corresponding TDC member
function without this explicit handle argument.

DC objects can be created directly with TDC constructors, or via the constructors of
specialized subclasses (such as TWindowDC, TMemoryDC, TMetaFileDC, TDibDC, and
TPrintDC) to get specific behavior. DC objects can be constructed with an already
existing and borrowed HDC handle or from scratch by supplying device driver
information, as with ::CreateDC. The class TCreateDC takes over much of the creation
and deletion work from TDC.

TDC has four handles as protected data members: OrgBrush, OrgPen, OrgFont, and
OrgPalette. These handles keep track of the stock GDI objects selected into each DC. As
new GDI objects are selected with SelectObject or SelectPalette, these data members store
the previous objects. The latter can be restored individually with RestoreBrush,
RestorePen, and so on, or they can all be restored with RestoreObjects. When a TDC object
is destroyed (via ~TDC::TDC), all the originally selected objects are restored. The data
member TDC::ShouldDelete controls the deletion of the TDC object.

Public constructor and destructor

Constructor

TDC(HDC handle);

Creates a DC object "borrowing” the handle of an existing DC. The Handle data member
is set to the given handle argument.

Destructor
virtual ~TDC();
Calls RestoreObjects.

Seealso TCreatedDC, TDC::RestoreObjects, TDC::ShouldDelete

tWindows Reference Guide

TDC class

Public member functions

AngleArc

bool AngleArc(int x, int y, uint32 radius, float startAngle, float sweepAngle);

bool AngleArc(const TPoint& center, uint32 radius, float startAngle, float sweepAngle);

32-bit only. Draws a line segment and an arc on this DC using the currently selected pen
object. The line is drawn from the current position to the beginning of the arc. The arc is
that part of the circle (with the center at logical coordinates (x, y) and positive radius,
radius) starting at startAngle and ending at (startAngle + sweepAngle). Both angles are
measured in degrees, counterclockwise from the x-axis (the default arc direction). The
arc might appear to be elliptical, depending on the current transformation and mapping
mode. AngleArc returns true if the figure is drawn successfully; otherwise, it returns
false. If successful, the current position is moved to the end point of the arc.

Seealso TDC:Arc, TPoint class

Arc

bool Arc(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4);

bool Arc(const TRect& r, const TPoint& start, const TPoint& end);

Draws an elliptical arc on this DC using the currently selected pen object. The center of
the arc is the center of the bounding rectangle, specified either by (x1, y1)/(x2, y2) or by
the rectangle r. The starting/ending points of the arc are specified either by (x3, y3)/(x4,
y4) or by the points start and end. All points are specified in logical coordinates. Arc
returns true if the arc is drawn successfully; otherwise, it returns false. The current
position is neither used nor altered by this call. The drawing direction default is
counterclockwise.

Seealso TDC::AngleArc, TPoint, TRect

BeginPath

bool BeginPath();

32-bit only. Opens a new path bracket for this DC and discards any previous paths from
this DC. Once a path bracket is open, an application can start calling draw functions on
this DC to define the points that lie within that path. The draw functions that define
points in a path are the following TDC members: AngleArc, Arc, Chord, CloseFigure,
Ellipse, ExtTextOut, LineTo, MoveToEx, Pie, PolyBezier, PolyBezierTo, PolyDraw, Polygon,
Polyline, PolylineTo, PolyPolygon, PolyPolyline, Rectangle, RoundRect, and TextOut.

A path bracket can be closed by calling TDC::EndPath.
BeginPath returns true if the call is successful; otherwise, it returns false.

Seealso TDC:FillPath, TDC::EndPath, TDC::PathToRegion, TDC::StrokePath,
TDC::StrokeandFillPath, TDC::WidenPath

BitBlIt

bool BitBlt(int dstX, int dstY, int w, int h, const TDC& srcDC, int srcX, int srcY, uint32 rop=SRCCOPY);

bool BitBlt(const TRect& dst, const TDC& srcDC, const TPoint& src, uint32 rop=SRCCOPY);

Performs a bit-block transfer from srcDc (the given source DC) to this DC (the
destination DC). Color bits are copied from a source rectangle to a destination rectangle.
The location of the source rectangle is specified either by its upper left-corner logical
coordinates (srcX, srcY), or by the TPoint object, src. The destination rectangle can be

Chapter 2, ObjectWindows library reference - 123

TDC class

specified either by its upper left-corner logical coordinates (dstX, dstY), width w, and
height h, or by the TRect object, dst. The destination rectangle has the same width and
height as the source. The rop argument specifies the raster operation used to combine
the color data for each pixel. See TDC::MaskBlIt for a detailed list of rop codes. -

When recording an enhanced metafile, an error occurs if the source DC identifies the
enhanced metafile DC.

Seealso TPoint class, TRect class

Chord

bool Chord(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4);

bool Chord(const TRect& r, const TPoint& start, const TPoint& end);

Draws and fills a chord (a region bounded by the intersection of an ellipse and a line
segment) on this DC using the currently selected pen and brush objects. The ellipse is
specified by a bounding rectangle given either by (x1, y1)/(x2, y2) or by the rectangle R.
The starting/ending points of the chord are specified either by (x3, y3)/(x4, y4) or by the
points Start and End. Chord returns true if the call is successful; otherwise, it returns _
false. The current position is neither used nor altered by this call.

Seealso TDC::Arc, TPoint class, TRect class

CloseFigure

bool CloseFigure();

32-bit only. Closes an open figure in this DC's open path bracket by drawing a line from
the current position to the first point of the figure (usually the point specified by the
most recent TDC::MoveTo call), and connecting the lines using the current join style for
this DC. If you close a figure with TDC::LineTo instead of with CloseFigure, end caps
(instead of a join) are used to create the corner. The call fails if there is no open path
bracket on this DC. Any line or curve added to the path after a CloseFigure call starts a
new figure. A figure in a path remains open until it is explicitly closed with CloseFigure
even if its current position and start point happen to coincide.

CloseFigure returns true if the call is successful; otherwise, it returns false.
Seealso TDC::BeginPath, TDC::EndPath

DPtoLP

bool DPtoLP(TPoint* points, int count = 1) const; ‘

Converts each of the count points in the points array from device points to logical points.
The conversion depends on this DC's current mapping mode and the settings of its
window and viewport origins and extents. DPtoLP returns true if the call is successful;
otherwise, it returns false.

Seealso TDC::LPtoDP, TPoint class

DrawFocusRect

bool DrawFocusRect(int x1, int x2, int y1, int y2);

bool DrawFocusRect(const TRect& rect);

Draws the given rectangle on this DC in the style used to indicate focus. Calling the
function a second time with the same rect argument will remove the rectangle from the
display. A rectangle drawn with DrawFocusRect cannot be scolled. DrawFocusRect
returns true if the call is successful; otherwise, it returns false.

124 ObjectWindows Reference Guide

TDC class

Seealso TRect class

Drawlcon

bool Drawlcon(int x, int y, const Tlcon& icon);

bool Drawlcon(const TPoint& point, const Ticon& icon);

Draws the given icon on this DC. The upper left corner of the drawn icon can be
specified by x- and y-coordinates or by the point argument. Drawlcon returns true if the
call is successful; otherwise, it returns false.

Seealso TIcon class

DrawText

virtual bool DrawText(const char far* string, int count, const TRect& r, uint16 format = 0);

Formats and draws in the given rectangle, r, up to count characters of the null-
terminated string using the current font for this DC. If count is -1, the whole string is
written. The rectangle must be specified in logical units. Formatting is controlled with
the format argument, which can be various combinations of the following values:

Meatig = v : ‘
Specifies bottoin;jlistiﬁed text. This value must be combined (bitwise OR'd)
with DT_SINGLELINE.

DT_CALCRECT Determines the width and height of the rectangle. If there are multiple lines
of text, DrawText uses the width of r (the rectangle argument) and extends
the base of the rectangle to bound the last line of text. If there is only one line
of text, DrawText uses a modified value for the right side of so that it
bounds the last character in the line. In both cases, DrawText returns the
height of the formatted text but does not draw the text.

DT_CENTER Centers text horizontally.

DT_EXPANDTABS Expands tab characters. The default number of characters per tab is eight.

DT_EXTERNALLEADING Includes the font external leading in line height. Normally, external leading
‘ is not included in the height of a line of text.

DT_BOTTOM

DT_LEFT Aligns text flush-left.

DT_NOCLIP Draws without clipping. DrawText is somewhat faster when DT_NOCLIP is
used. ,

DT_NOPREFIX Turns off processing of prefix characters. Normally, DrawText interprets the

prefix character & as a directive to underscore the character that follows, and
the prefix characters && as a directive to print a single &. By specifying
DT_NOPREFIX, this processing is turned off.

DT_RIGHT Aligns text flush-right.

DT_SINGLELINE Specifies single line only. Carriage returns and linefeeds do not break the
line.

DT_TABSTOP Sets tab stops. Bits 15-8 (the high-order byte of the low-order word) of the

format argument are the number of characters for each tab. The default
number of characters per tab is eight.

DT_TOP Specifies top-justified text (single line only).
DT_VCENTER Specifies vertically centered text (single line only).
DT_WORDBREAK Specifies word breaking. Lines are automatically broken between words if a

word would extend past the edge of the rectangle specified by r. A carriage
return/line sequence will also break the line.

Note that the DT_CALCRECT, DT_EXTERNALLEADING, DT_INTERNAL,
DT_NOCLIP, and DT_NOPREFIX values cannot be used with the DT_TABSTOP value.

Chapter 2, ObjectWindows library reference 125

TDC class

DrawText uses this DC's currently selected font, text color, and background color to
draw the text. Unless the DT_NOCLIP format is used, DrawText clips the text so that it
does not appear outside the given rectangle. All formatting is assumed to have multiple
lines unless the DT_SINGLELINE format is given. ‘

If the selected font is too large for the specified rectangle, DrawText does not attempt to
substitute a smaller font.

If successful, DrawText returns true; otherwise, returns false.
Seealso TDC:GrayString, TDC::TabbedTextOut, TDC::TextOut, TRect class

Ellipse

bool Ellipse(int x1, int y1, int x2, int y2);

bool Ellipse(const TPoint& p1, const TPoint& p2);

bool Ellipse(const TPoint& point, const TSize& size);

bool Ellipse(const TRect& rect);

Draws and fills an ellipse on this DC using the currently selected pen and brush objects.
The center of the ellipse is the center of the bounding rectangle specified either by (x1,
y1)/(x2, y2) or by the rect argument. Ellipse returns true if the call is successful;
otherwise, it returns false. The current position is neither used nor altered by this call.

Seealso TDC::Arc, TPoint class, TRect class, TSize class

EndPath

bool EndPath();

32-bit only. Closes the path bracket and selects the path it defines into this DC. Returns
true if the call is successful; otherwise, returns false.

Seealso TDC::BeginPath, TDC::CloseFigure

EnumFontFamilies

int EnumFontFamilies(const char far* family, FONTENUMPROG proc, void far* data) const;

Enumerates the fonts available to this DC in the font family specified by family. The
given application-defined callback proc is called for each font in the family or until proc
returns 0, and is defined as

typedef int (CALLBACK* FONTENUMPROC) (CONST LOGFONT *, CONST TEXTMETRIC *, DWORD, LPARAM) ;

data lets you pass both application-specific data and font data to proc. If successful, the
call returns the last value returned by proc.

Seealso TDC::EnumFonts, LOGFONT struct, TEXTMETRIC struct

EnumFonts

int EnumFonts(const char far* faceName, OLDFONTENUMPROC callback, void far* data) const;
Enumerates the fonts available on this DC for the given faceName. The font type,
LOGFONT, and TEXTMETRIC data retrieved for each available font is passed to the
user-defined callback function together with any optional, user-supplied data placed in
the data buffer. The callback function can process this data in any way desired.
Enumeration continues until there are no more fonts or until the callback function
returns 0. If faceName is 0, EnumFonts randomly selects and enumerates one font of each
available typeface. EnumFonts returns the last value returned by the callback function.
Note that OLDFONTENUMPROC is defined as FONTENUMPROC for Win32 only.

126 ObjectWindows Reference Guide

TDC class

FONTENUMPROC is a pointer to a user-defined function and has the following
prototype:
int CALLBACK EnumFontsProc(LOGFONT *1plf, TEXTMETRIC *1ptm, uint32 dwType, LPARAM lpData);

where dwType specifies one of the following font types: DEVICE_FONTTYPE,
RASTER_FONTTYPE, or TRUETYPE_FONTTYPE.

Seealso TDC::EnumFontFamilies, LOGFONT struct, TEXTMETRIC struct

EnumMetaFile

int EnumMetaFile(const TMetaFilePict& metaFile, MFENUMPROC callback, void* data) const;

Enumerates the GDI calls within the given metaFile. Each such call is retrieved and
passed to the given callback function, together with any client data from data, until all
calls have been processed or a callback function returns 0. MFENUMPROC is defined as

typedef int (CALLBACK* MFENUMPROC) (HDC, HANDLETABLE FAR*, METARECORD FAR*, int, LPARAM);
Seealso TDC:PlayMetaFile, METARECORD struct

EnumObjects

int EnumObijects(uint objectType, GOBJENUMPROC proc, void far* data) const;

Enumerates the pen or brush objects available for this DC. The parameter objectType can
be either OB]_BRUSH or OBJ_PEN. For each pen or brush found, proc, a user-defined
callback function, is called until there are no more objects found or the callback function
returns 0. proc is defined as

typedef int (CALLBACK* GOBJENUMPROC) (LPVOID, LPARAM);

Parameter data specifies an application-defined value that is passed to proc.

ExcludeClipRect

int ExcludeClipRect(const TRect& rect);

Creates a new clipping region for this DC. This new region consists of the current
clipping region minus the given rectangle, rect. The return value indicates the new
clipping region's type as follows:

COMPLEXREGION Clipping Region has overlapping borders.

ERROR Invalid DC.
NULLREGION Clipping region is empty.
SIMPLEREGION Clipping region has no overlapping borders.

Seealso TDC::GetClipBox, TRect class

ExcludeUpdateRgn
int ExcludeUpdateRgn(HWND wnd);

Chapter 2, ObjectWindows library reference 127

TDC class

Prevents drawing within invalid areas of a window by excluding an updated region of
this DC's window from its clipping region. The return value indicates the resulting
clipping region's type as follows:

COMPLEXREGION Clipping Region has overlapping borders.

ERROR Invalid DC.

NULLREGION Clipping region is empty.

SIMPLEREGION Clipping region has no overlapping borders.
ExtFloodFill

bool ExtFloodFill(const TPoint& point, TColor color, uint16 fillType);

Fills an area on this DC starting at point and using the currently selected brush object.
The color argument specifies the color of the boundary or of the region to be filled. The
fillType argument specifies the type of fill, as follows:

FLOODFILLBORDER The fill region is bounded by the given color. This style coincides with the filling
method used by FloodFill.

FLOODFILLSURFACE The fill region is defined by the given color. Filling continues outward in all
directions as long as this color is encountered. Use this style when filling
regions with multicolored borders.

Not every device supports ExtFloodFill, so applications should test first with
TDC::GetDeviceCaps.

ExtFloodFill returns true if the call is successful; otherwise, it returns false.
Seealso TDC:FloodFill, TDC::GetDeviceCaps, TColor class, TPoint class

ExtTextOut

virtual bool ExtTextOut(int x, int y, uint16 options, const TRect* r, const char far* string, int count, const
int far* dx = 0);

bool ExtTextOut(const TPoint& p, uint16 options, const TRect* r, const char far* string, int count, const
int far* dx = 0);

Draws up to count characters of the given null-terminated string in the current font on
this DC. If count is -1, the whole string is written.

An optional rectangle r can be specified for clipping, opaquing, or both, as determined
by the options value. If options is set to ETO_CLIPPED, the rectangle is used for clipping
the drawn text. If options is set to ETO_OPAQUE, the current background color is used
to fill the rectangle. Both options can be used if ETO_CLIPPED is OR'd with
ETO_OPAQUE.

The (x, y) o rp arguments specify the logical coordinates of the reference point that is
used to align the first character. The current text-alignment mode can be inspected with
TDC::GetTextAlign and changed with TDC::SetTextAlign. By default, the current position
is neither used nor altered by ExtTextOut. However, if the align mode is set to
TA_UPDATECP, ExtTextOut ignores the reference point argument(s) and uses or
updates the current position as the reference point.

128 ObjectWindows Reference Guide

TDC class

The dx argument is an optional array of values used to set the distances between the
origins (upper left corners) of adjacent character cells. For example, dx[i] represents the
number of logical units separating the origins of character cells i and i+1. If dx is 0,
ExtTextOut uses the default inter-character spacings.

ExtTextOut returns true if the call is successful; otherwise, it returns false.
Seealso TDC:TextOut, TDC::GetTextAlign, TDC::TabbedTextOut, TPoint, TRect

FillPath

bool FillPath();

32-bit only. Closes any open figures in the current pawn of this DC and fills the path's
interior using the current brush and polygon fill mode. After filling the interior, FillPath
discards the path from this DC.

FillPath returns true if the call is successful; otherwise, it returns false.

Seealso TDC:BeginPath, TDC::CloseFigure, TDC::StrokePath,
TDC::StrokeAndFillPath, TDC::SetPolyFillMode

FillRect

bool FillRect(int x1, int y1, int x2, int y2, const TBrush& brush);

bool FillRect(const TRect& rect, const TBrush& brush);

Fills the given rectangle on this DC using the specified brush. The fill covers the left and
top borders but excludes the right and bottom borders. FillRect returns true if the call is
successful; otherwise, it returns false.

Seealso TBrush, TRect

FillRgn

bool FilRgn(const TRegion& region, const TBrush& brush);

Fills the given region on this DC using the specified brush. FillRgn returns true if the call
is successful; otherwise, it returns false.

Seealso TDC:InvertRgn, TDC::PaintRgn, TBrush class, TRegion class

FlattenPath

bool FlattenPath();

32-bit only. Transforms any curves in the currently selected path of this DC. All such
curves are changed to sequences of linear segments. Returns true if the call is successful;
otherwise, returns false.

Seealso TDC:WidenPath, TDC:BeginPath

FloodFill

bool FloodFill(const TPoint& point, TColor color);

Fills an area on this DC starting at point and using the currently selected brush object.
The color argument specifies the color of the boundary or of the area to be filled. Returns
true if the call is successful; otherwise, returns false. FloodFill is maintained in the WIN32
API for compatibility with earlier APIs. New WIN32 applications should use
TDC::ExtFloodFill. ‘

Seealso TDC::ExtFloodFill, TColor, TPoint

Chapter 2, ObjectWindows library reference 129

TDC class -

130 Objec

FrameRect

bool FrameRect(int x1, int x2, int y1, int y2, const TBrushé& brush);

bool FrameRect(const TRect& rect, const TBrush& brush);

Draws a border on this DC around the given rectangle, rect, using the given brush,
brush. The height and width of the border is one logical unit. Returns true if the call is
successful; otherwise, it returns false.

Seealso TBrush class, TRect class

FrameRgn

bool FrameRgn(const TRegion& region, const TBrush& brush, const TPoint& p);

Draws a border or: this DC around the given region, region, using the given brush, brush.
The width and height of the border is specified by the p argument. Returns true if the
call is successful; otherwise, returns false.

Seealso TBrush class, TRegion class

GetAspectRatioFiItef
bool GetAspectRatioFilter(TSize& size) const;
Retrieves the setting of the current aspect-ratio filter for this DC.

Seealso TSize

GetBkColor
TColor GetBkColor() const;
Returns the current background color of this DC.

See also TDC::SetBkColor, TColor class

GetBkMode
int GetBkMode() const;
Returns the background mode of this DC, either OPAQUE or TRANSPARENT.

Seealso TDC:SetBkMode

GetBoundsRect

bool GetBoundsRect(TRect& bounds, uint16 flags) const;

Reports in bounds the current accumulated bounding rectangle of this DC or of the
Windows manager, depending on the value of flags. Returns true if the call is successful;
otherwise, returns false.

The flags argument can be DCB_RESET or DCB_WINDOWMGR or both. The flags value
work as follows:

DCB_RESET Forces the bounding rectangle to be cleared after being set in bounds.
DCB_WINDOWMGR Reports the Windows current bounding rectangle rather than that of this DC.

There are two bounding-rectangle accumulations, one for Windows and one for the
application. GetBoundsRect returns screen coordinates for the Windows bounds, and
logical units for the application bounds. The Windows accumulated bounds can be
queried by an application but not altered. The application can both query and alter the
DC's accumulated bounds.

tWindows Reference Guide

TDC class

Seealso TDC:SetBoundsRect, TRect class

GetBrushOrg

bool GetBrushOrg(TPoint& point) const;

Places in point the current brush origin of this DC. Returns true if successful; otherwise,
returns false.

Seealso TPoint class

GetCharABCWidths

bool GetCharABCWidths(uint firstChar, uint lastChar, ABC* abc);

Retrieves the widths of consecutive characters in the range firstChar to lastChar from the
current TrueType font of this DC. The widths are reported in the array abc of ABC
structures. Returns true if the call is successful; otherwise, returns false.

Seealso TDC::GetCharWidth, ABC struct

GetCharWidth

bool GetCharWidth(uint firstChar, uint lastChar, int* buffer);

Retrieves the widths in logical units for a consecutive sequence of characters in the
current font for this DC. The sequence is specified by the inclusive range, firstChar to
lastChar, and the widths are copied to the given buffer. If a character in the range is not
represented in the current font, the width of the default character is assigned. Returns
true if the call is successful; otherwise, returns false.

Seealso TDC:GetCharABCWidths

GetClipBox

int GetClipBox(TRect& rect) const;

TRect GetClipBox() const;

Places the current clip box size of this DC in rect. The clip box is defined as the smallest
rectangle bounding the current clipping boundary. The return value indicates the
clipping region's type as follows:

COMPLEXREGION Clipping Region has overlapping borders.

ERROR Invalid DC.
NULLREGION Clipping region is empty.
SIMPLEREGION Clipping region has no overlapping borders.

Seealso TDC::ExcludeClipRect, TRect class

GetClipRgn

bool GetClipRgn(TRegion& region) const;

Retrieves this DC's current clip-region and, if successful, places a copy of it in the region
argument. You can alter this copy without affecting the current clip-region. Returns true
if the call is successful; otherwise, returns false.

Seealso TRegion

GetCurrentObject
HANDLE GetCurrentObject(uint objectType) const;

Chapter 2, ObjectWindows library reference 131

TDC class

Returns a handle to the currently selected object of the given objectType associated with
this DC. Returns 0 if the call fails. objectType can be OBJ_PEN, OB]_BRUSH, OBJ_PAL,
OBJ_FONT, or OB]_BITMAP.

GetCurrentPosition

bool GetCurrentPosition(TPoint& point) const;

Reports in point the logical coordinates of this DC's current position. Returns true if the
call is successful; otherwise, returns false.

Seealso TPoint class

GetDCOrg ,

bool GetDCOrg(TPoint& point) const;

Obtains the final translation origin for this device context and places the value in point.
This value specifies the offset used to translate device coordinates to client coordinates
for points in an application window. Returns true if the call is successful; otherwise,
returns false. '

Seealso TPoint class

GetDeviceCaps

virtual int GetDeviceCaps(int index) const;

Used under WIN3.1 or later, GetDeviceCaps returns capability information about this
DC. The index argument specifies the type of information required.

GetDIBits , ,
bool GetDIBits(const TBitmap& bitmap, uint16 startScan, uint16 numScans, void HUGE* bits,

const BITMAPINFO far& info, uint16 usage);
bool GetDIBits(const TBitmap& bitmap, TDib& dib);
The first version retrieves some or all of the bits from the given bitmap on this DC and
copies them to the bits buffer using the DIB (device-independent bitmap) format
specified by the BITMAPINFO argument, info. numScan scanlines of the bitmap are
retrieved, starting at scan line startScan. The usage argument determines the format of
the bmiColors member of the BITMAPINFO structure, according to the following table:

DIB_PAL t
DIB_RGB_COLORS The color table contains literal RGB values.

DIB_PAL_INDICES There is no color table for this bitmap. The DIB bits consist of indexes into the
system palette. No color translation occurs. Only the BITMAPINFOHEADER
portion of BITMAPINFO is filled in.

In the second version of GetDIBits, the bits are retrieved from bitmap and placed in the
dib.Bits data member of the given TDib argument. The BITMAPINFO argument is
supplied from dib.info. ' »

GetDIBits returns true if the call is successful; otherwise, it returns false.
Seealso TDC::SetDIBits, TBitmap, TDib, BITMAPINFO struct

GetFontData
uint32 GetFontData(uint32 table, uint32 offset, void* buffer, long data);

132 ObjectWindows Reference Guide

TDC class

Retrieves font-metric information from a scalable TrueType font file (specified by table
and starting at offset into this table) and places it in the given buffer. data specifies the size
in bytes of the data to be retrieved. If the call is successful, it returns the number of bytes
set in buffer; otherwise, —1 is returned.

GetGlyphOutline
uint32 GetGlyphOutline (uint chr, uint format, GLYPHMETRICS far& gm, uint32 buffSize, voidfar* buffer,

const MAT2 far& mat2);
Retrieves TrueType metric and other data for the given character, chr, on this DC and
places it in gm and buffer. The format argument specifies the format of the retrieved data
as indicated in the following table. (A value of 0 simply fills in the GLYPHMETRICS
structure but does not return glyph-outline data.)

Value Meaning
1 Retrieves the glyph bitmap.

2 Retrieves the curve data points in the rasterizer's native format and uses the font's design units.
With this value of format, the mat2 transformation argument is ignored.

The gm argument specifies the GLYPHMETRICS structure that describes the placement
of the glyph in the character cell. buffSize specifies the size of buffer that receives data
about the outline character. If either buffSize or buffer is 0, GetGlyphOutline returns the
required buffer size. Applications can rotate characters retrieved in bitmap format
(format = 1) by specifying a 2 x 2 transformation matrix via the mat2 argument.

GetGlyphOutline returns a positive number if the call is successful; otherwise, it returns
GDI_ERROR.

Seealso TDC::GetOutlineTextMetrics, GLYPHMETRICS struct

GetKerningPairs

int GetKerningPairs(int pairs, KERNINGPAIR far* krnPair);

Retrieves kerning pairs for the current font of this DC up to the number specified in pairs
and copies them into the krnPair array of KERNINGPAIR structures. If successful, the
function returns the actual number of pairs retrieved. If the font has more than pairs
kerning pairs, the call fails and returns 0. The krnPair array must allow for at least pairs
KERNINGPAIR structures. If krnPair is set to 0, GetKerningPairs returns the total
number of kerning pairs for the current font.

Seealso KERNINGPAIR struct
GetMapMode
int GetMapMode() const;

If successful, returns the current window mapping mode of this DC; otherwise, returns
0. The mapping mode defines how logical coordinates are mapped to device

Chapter 2, ObjectWindows library reference 133

TDC class

coordinates. It also controls the orientation of the device's x- and y-axes. The mode
values are shown in the following table:

MM_ANISOTROPIC Logical units are mapped to arbitrary units with éfbitrarlly scaled axes.
SetWindowExtEx and SetViewportExtEx must be used to specify the desired
units, orientation, and scaling.

MM_HIENGLISH Each logical unit is mapped to 0.001 inch. Positive x is to the right; positive y is at
the top.

MM_HIMETRIC Each logical unit is mapped to 0.01 millimeter. Positive x is to the right; positive y
is at the top.

MM_ISOTROPIC Logical units are mapped to arbitrary units with equally scaled axes; that is, one

unit along the x-axis is equal to one unit along the y-axis. SetWindowExtEx and
SetViewportExtEx must be used to specify the desired units and the orientation of
the axes. GDI makes adjustments as necessary to ensure that the x and y units
remain the same size (e.g., if you set the window extent, the viewport is adjusted

to keep the units isotropic).

MM_LOENGLISH Each logical unit is mapped to 0.01 inch. Positive x is to the right; positive y is at
the top.

MM_LOMETRIC Each logical unit is mapped to 0.1 millimeter. Positive x is to the right; positive y
is at the top.

MM_TEXT Each logical unit is mapped to one device pixel. Positive x is to the right; positive
y is at the bottom.

MM_TWIPS Each logical unit is mapped to one twentieth of a printer's point (1/1440 inch).

Positive x is to the right; positive y is at the top.

Seealso TDC:SetMapMode

GetNearestColor
TColor GetNearestColor(TColor Color) const;
Returns the color nearest to the given Color argument for the current palette of this DC.

Seealso TColor

GetOutlineTextMetrics

uint32 GetOutlineTextMetrics(uint data, OUTLINETEXTMETRIC far& otm);

uint16 GetOutlineTextMetrics(uint data, OUTLINETEXTMETRIC far& otm);

Retrieves metric information for TrueType fonts on this DC and copies it to the given
array of OUTLINETEXTMETRIC structures, ofm. This structure contains a
TEXTMETRIC and several other metric members, as well as four string-pointer
members for holding family, face, style, and full font names. Since memory must be
allocated for these variable-length strings in addition to the font metric data, you must
pass (with the data argument) the total number of bytes required for the retrieved data.
If GetOutlineTextMetrics is called with otm = 0, the function returns the total buffer size
required. You can then assign this value to data in subsequent calls.

Returns nonzero if the call is successful; otherwise, returns 0.

Seealso TDC::GetTextMetrics, OUTLINETEXTMETRIC struct, TEXTMETRIC struct

GetPixel
TColor GetPixel(int x, int y) const;
TColor GetPixel(const TPoint& point) const;

134 ObjectWindows Reference Guide

TDC class

Returns the color of the pixel at the given location.
Seealso TDC::SetPixel, TPoint class

GetPolyFillMode

int GetPolyFillMode() const;

Returns the current polygon-filling mode for this DC, either ALTERNATE or
WINDING.

Seealso TDC:SetPolyFillMode

GetROP2()
int GetROP2() const;
Returns the current drawing (raster operation) mode of this DC.

Seealso TDC::SetROP2

GetStretchBltMode

int GetStretchBltMode() const;

Returns the current stretching mode for this DC: BLACKONWHITE,
COLORONCOLOR, or WHITEONBLACK. The stretching mode determines how
bitmaps are stretched or compressed by the StretchBIt function.

Seealso TDC::SetStretchBltMode, TDC::StretchBlt

GetSystemPaletteEntries

uint GetSystemPaletteEntries(int start, int num, PALETTEENTRY far* entries) const;

Retrieves a range of up to num palette entries, starting at start, from the system palette to
the entries array of PALETTEENTRY structures. Returns the actual number of entries
transferred.

Seealso PALETTEENTRY struct

GetSystemPaletteUse

uint GetSystemPaletteUse() const;

Determines whether this DC has access to the full system palette. Returns
SYSPAL_NOSTATIC or SYSPAL_STATIC.

Seealso TDC::SetSystemPaletteUse

GetTabbedTextExtent
bool GetTabbedTextExtent(const char far* string, int stringLen, int numPositions, const int far* positions,

TSize& size) const;
TSize GetTabbedTextExtent(const char far* string, int stringLen, int numPositions, const int far* positions) const;
Computes the extent (width and height) in logical units of the text line consisting of
stringLen characters from the null-terminated string. The extent is calculated from the
metrics of the current font or this DC, but ignores the current clipping region. In the first
version of GetTabbedTextExtent, the extent is returned in size; in the second version, the
extent is the returned TSize object. Width is size.x and width is size.y.

The width calculation includes the spaces implied by any tab codes in the string. Such
tab codes are interpreted using the numPositions and positions arguments. The positions
array specifies numPositions tab stops given in device units. The tab stops must have
strictly increasing values in the array. If numPositions and positions are both 0, tabs are

Chapter 2, ObjectWindows library reference 135

TDC class

expanded to eight times the average character width. If numPositions is 1, all tab stops
are taken to be positions[0] apart.

If kerning is being applied, the sum of the extents of the characters in a string might not
equal the extent of the string.

See also TDC::TabbedTextOut, TDC::GetTextExtent, TSize class

GetTextAlign

uint GetTextAlign() const;

If successful, returns the current text-alignment flags for this DC; otherwise, returns the
value GDI_ERROR. The text-alignment flags determine how TDC::TextOut and
TDC::ExtTextOut align text strings in relation to the first character's screen position.
GetTextAlign returns certain combinations of the flags listed in the following table:

The reference pomtwﬂl be on the baseline of the text.

TA_BASELI

TA_BOTTOM The reference point will be on the bottom edge of the bounding rectangle.

TA TOP The reference point will be on the top edge of the bounding rectangle.

T A_CENTER The reference point will be aligned horizontally with the center of the bounding
TA_LEFT rectangle.

The reference point will be on the left edge of the bounding rectangle.
TA_RIGHT The reference point will be on the right edge of the bounding rectangle.
TA_NOUPDATECP = The current position is not updated after each text output call.
TA_UPDATECP The current position is updated after each text output call.

When the current font has a vertical default baseline (as with Kanji) the following
values replace TA_BASELINE and TA_CENTER:

VTA_BASELINE The reference point will be on the baseline of the text.

VTA_CENTER The reference point will be aligned vertically with the
center of the bounding rectangle.

The text-alignment flags are not necessarily single bit-flags and might be equal to 0. The
flags must be examined in groups of the following related flags:

e TA_LEFT, TA_RIGHT, and TA_CENTER
e TA_BOTTOM, TA_TOP, and TA_BASELINE
e TA_NOUPDATECP and TA_UPDATECP

If the current font has a vertical default baseline (as with Kanji), these are groups of
related flags:

e TA_LEFT, TA_RIGHT, and VTA_BASELINE
e TA_BOTTOM, TA_TOP, and VTA_CENTER
e TA_NOUPDATECP and TA_UPDATECP

To verify that a particular flag is set in the return value of this function, the application
must perform the following steps:

1 Apply the bitwise OR operator to the flag and its related flags.
2 Apply the bitwise AND operator to the result and the return value.

136 ObjectWindows Reference Guide

TDC class

3 Test for the equality of this result and the flag.

The following example shows a method for determining which horizontal alignment
flag is set:

switch ((TA_LEFT | TA_RIGHT | TA_CENTER) & dc.GetTextAlign()) {
case TA_LEFT:

case TA_RIGHT:
case TA_CENTER:

}
Seealso TDC:SetTextAlign, TDC::TextOut, TDC:ExtTextOut

GetTextCharacterExtra

int GetTextCharacterExtra() const;

If successful, returns the current intercharacter spacing, in logical units, for this DC;
otherwise, returns INVALID_WIDTH.

Seealso TDC::SetTextCharacterExtra

GetTextColor
TColor GetTextColor() const;

Returns the current text color of this DC. The text color determines the color displayed
by TDC::TextOut and TDC::ExtTextOut.

Seealso TDC::SetTextColor, TDC::TextOut, TDC::ExtTextOut, TColor

GetTextExtent

bool GetTextExtent(const char far* string, int stringLen, TSize& size);

TSize GetTextExtent(const char far* string, int stringLen);

Computes the extent (width and height) in logical units of the text line consisting of
stringLen characters from the null-terminated string. The extent is calculated from the
metrics of the current font or this DC, but ignores the current clipping region. In the first
version of GetTextExtent the extent is returned in size; in the second version, the extent is
the returned TSize object. Width is size.x and height is size.y.

If kerning is being applied, the sum of the extents of the characters in a string might not
equal the extent of the string.

Seealso TSize class

GetTextFace

int GetTextFace(int count, char far* facename) const;

Retrieves the typeface name for the current font on this DC. Up to count characters of

this name are copied to facename. If successful, GetTextFace returns the number of
characters actually copied; otherwise, it returns 0.

Seealso TDC:GetTextAlign, TDC::GetTextMetrics

GetTextMetrics
bool GetTextMetrics(TEXTMETRIC far& metrics) const;

Chapter 2, ObjectWindows library reference 137

TDC class

Fills the metrics structure with metrics data for the current font on this DC Returns true
if the call is successful; otherwise, returns false.

Seealso TEXTMETRIC struct
GetViewportExt

bool GetViewportExt(TSize& extent) const;
TSize GetViewportExt() const;

- The first version retrieves this DC's current viewport's x- and y-extents (in device units)

and places the values in extent. This version returns true if the call is successful;
otherwise, it returns false. The second version returns only these x- and y-extents.

The extent value determines the amount of stretching or compression needed in the
logical coordinate system to fit the device coordinate system. extent also determines the
relative orientation of the two coordinate systems.

Seealso TDC:SetViewportExt, TSize class

GetViewportOrg

bool GetViewportOrg(TPoint& point) const;

TPoint GetViewportOrg() const;

The first version sets in the point argument the x- and y-extents (in device-units) of this
DC's viewport. It returns true if the call is successful; otherwise, it returns false. The
second version returns the x- and y-extents (in device-units) of this DC's viewport.

Seealso TDC:SetViewportOrg, TDC::OffsetViewportOrg, TPoint class
GetWindowExt

-bool GetWindowExt(TSize& extent) const;

138 Objec

TSize GetWindowExt() const;

Retrieves this DC's window current x- and y-extents (in device units). The first version
places the values in extent and returns true if the call is successful; otherwise, it returns
false. The second version returns the current extent values. The extent value determines
the amount of stretching or compression needed in the logical coordinate system to fit
the device coordinate system. extent also determines the relative orientation of the two
coordinate systems.

Seealso TDC:SetWindowkExt, TSize class

GetWindowOrg

bool GetWindowOrg(TPoint& point) const;

TPoint GetWindowOrg() const;

Places in point the x- and y-coordinates of the origin of the window associated with this
DC. Returns true if the call is successful; otherwise, returns false.

Seealso TDC:SetWindowOrg, TDC::OffsetWindowOrg, TPoint class

GrayString

virtual bool GrayString(const TBrush& brush, GRAYSTRINGPROC outputFunc const char far* string, int count,
const TRect& r);

Draws in the given rectangle (r) up to count characters of gray text from string using the

given brush, brush, and the current font for this DC. If count is —1 and string is null- ,

terminated, the whole string is written. The rectangle must be specified in logical units.

tWindows Reference Guide

TDC class

If brush is 0, the text is grayed with the same brush used to draw window text on this
DC. Gray text is primarily used to indicate disabled commands and menu items.

GrayString writes the selected text to a memory bitmap, grays the bitmap, then displays
the result. The graying is performed regardless of the current brush and background
color.

The outputFunc pointer to a function can specify the procedure instance of an
application-supplied drawing function and is defined as

typedef BOOL (CALLBACK* GRAYSTRINGPROC) (HDC, LPARAM, int);

If outputFunc is 0, GrayString uses TextOut and string is assumed to be a normal, null-
terminated character string. If string cannot be handled by TextOut (for example, the
string is stored as a bitmap), you must provide a suitable drawing function via
outputFunc.

If the device supports a solid gray color, it is possible to draw gray strings directly
without using GraySring. Call GetSysColor to find the color value; for example, G of
COLOR_GRAYTEXT. If G is nonzero (non-black), you can set the text color with
SetTextColor(G) and then use any convenient text-drawing function.

GrayString returns true if the call is successful; otherwise, it returns false. Failure can
result if TextOut or outputFunc return false, or if there is insufficient memory to create
the bitmap.

Seealso TDC::TextOut, TBrush class, TRect class

operator HDC()

operator HDC() const{return Handle;}

Typecasting operator. Converts a pointer to type HDC (the data type representing the
handle to a DC).

IntersectClipRect

int IntersectClipRect(const TRect& rect);

Creates a new clipping region for this DC's window by forming the intersection of the
current region with the rectangle specified by rect. The return value indicates the
resulting clipping region's type as follows:

.
COMPLEXREGION Clipping Region has overlapping borders.

ERROR Invalid DC.
NULLREGION Clipping region is empty.
SIMPLEREGION Clipping region has no overlapping borders.

Seealso TDC:GetClipBox, TRect class

InvertRect

bool InvertRect(int x1, int x2, int y1, int y2);

bool InvertRect(const TRect& rect);

Inverts the given rectangle, rect, on this DC. On monochrome displays, black and white
pixels are interchanged. On color displays, inversion depends on how the colors are

Chapter 2, ObjectWindows library reference 139

TDC class

generated for particular displays. Calling InvertRect an even number of times restores
the original colors. InvertRect returns true if the call is successful; otherwise, it returns
false.

Seealso TRect class

InvertRgn

bool InvertRgn(const TRegion& region);

Inverts the given region, on this DC. On monochrome displays, black and white pixels
are interchanged. On color displays, inversion depends on how the colors are generated
for particular displays. Calling InvertRegion an even number (n>=2) of times restores the
original colors. Returns true if the call is successful; otherwise, it returns false.

" Seealso TDC::PaintRgn, TDC::FillRgn, TRegion class

LineTo

bool LineTo(int x, int y);

bool LineTo(const TPoint& point);

Draws a line on this DC using the current pen object. The line is drawn from the current
position up to, but not including, the given end point, which is specified by (x, y) or by
point. If the call is successful, LineTo returns true and the current point is reset to point;
otherwise, it returns false.

Seealso TPoint

LPtoDP

bool LPtoDP(TPoint* points, int count = 1) const

Converts each of the count points in the points array from logical points to device points.
The conversion depends on this DC's current mapping mode and the settings of its
window and viewport origins and extents. Returns true if the call is successful;
otherwise, it returns false.

Seealso TDC:DPtoLP, TPoint

MaskBIt
bool MaskBIt(const TRect& dst, const TDC& srcDC, const TPoint& src, const TBitmap& maskBm,

const TPoint& maskPos, uint32 rop=SRCCOPY);
Copies a bitmap from the given source DC to this DC. MaskBIt combines the color data
from source and destination bitmaps using the given mask and raster operation. The
srcDC argument specifies the DC from which the source bitmap will be copied. The
destination bitmap is given by the rectangle, dst. The source bitmap has the same width
and height as dst. The src argument specifies the logical coordinates of the upper left
corner of the source bitmap. The maskBm argument specifies a monochrome mask
bitmap. An error will occur if maskBm is not monochrome. The maskPos argument gives
the upper left corner coordinates of the mask. The raster-operation code, rop, specifies
how the source, mask, and destination bitmaps combine to produce the new destination
bitmap The raster-operation codes are as follows:

Valueofmp i ;’*Meamng (B s
BLACKNESS Fill dst with mdex—O color of physmal palette (default is black)
DSTINVERT Invert dst.

140 ObjectWindows Reference Guide

Value of rop
MERGECOPY
MERGEPAINT
NOTSRCCOPY
NOTSRCERASE
PATCOPY
PATINVERT
PATPAINT

SRCAND
SRCCOPY
SRCERASE
SRCPAINT
WHITENESS

TDC class

Meaning

Merge the colors of source with mask with Boolean AND.

Merge the colors of inverted-source with the colors of dst using Boolean OR.
Copy inverted-source to dst.

Combine the colors of source and dst using Boolean OR, then invert result.
Copy mask to dst.

Combine the colors of mask with the colors of dst using Boolean XOR.

Combine the colors of mask with the colors of inverted-source using Boolean
OR, then combine the result with the colors of dst using Boolean OR.

Combine the colors of source and dst using the Boolean AND.

Copy source directly to dst.

Combine the inverted colors of dst with the colors of source using Boolean AND.
Combine the colors of source and dst using Boolean OR.

Fill dst with index-1 color of physical palette (default is white).

If rop indicates an operation that excludes the source bitmap, the srcDC argument must
be 0. A value of 1 in the mask indicates that the destination and source pixel colors
should be combined using the high-order word of rop. A value of 0 in the mask indicates
that the destination and source pixel colors should be combined using the low-order
word of rop. If the mask rectangle is smaller than dst, the mask pattern will be suitably

duplicated.

When recording an enhanced metafile, an error occurs if the source DC identifies the
enhanced metafile DC.

If a rotation or shear transformation is in effect for the source DC when MaskBIt is called,
an error occurs. Other transformations are allowed. If necessary, MaskBIt will adjust the
destination and mask color formats to match that of the source bitmaps. Before using
MaskBIt, an application should call GetDeviceCaps to determine if the source and
destination DCs support MaskBIt.

MaskBIt returns true if the call is successful; otherwise, it returns false.
Seealso TDC::BitBlt, TDC::PlgBlt, TDC::GetDeviceCaps, TBitmap class, TPoint class,

TRect class

ModifyWorldTransform

bool ModifyWorldTransform(XFORM far& xform, uint32 mode);
Changes the current world transformation for this DC using the given xform and mode
arguments. mode determines how the given XFORM structure is applied, as listed

below.

Value

MWT_IDENTITY

Meaning

Resets the current world transformation using the identity matrix. If this
mode is specified, the XFORM structure pointed to by IpXform is ignored.

Chapter 2, ObjectWindows library reference 141

TDC class

“Value L . ;é’Meanxng ; L e
MWT LEFTMULTIPLY Multiplies the current transformatlon by the data in the XFORM structure

(The data in the XFORM structure becomes the left multiplicand, and the
data for the current transformation becomes the right multiplicand.)

MWT_RIGHTMULTIPLY Multiplies the current transformation by the data in the XFORM structure.
(The data in the XFORM structure becomes the right multiplicand, and the
data for the current transformation becomes the left multiplicand.)
ModifyWorldTransform returns true if the call is successful; otherwise, it
returns false.

Seealso TDC::SetWorldTransform, XFORM struct

MoveTo

bool MoveTo(int x, int y);

bool MoveTo(const TPoint& point);

bool MoveTo(const TPoint& point, TPoint& oldPoint);

Moves the current position of this DC to the given x- and y-coordinates or to the given
point. The third version sets the previous current position in oldPoint. Returns true if the
call is successful; otherwise, returns false.

Seealso TPoint class

OifsetClipRgn

int OffsetClipRgn(const TPoint& delta);

Moves the clipping region of this DC by the x- and y-offsets specified in delta. The return
value indicates the resulting clipping region's type as follows:

Region L Meanmg | :
COMPLEXREGION Cllppmg region has overlappmg borders
ERROR Invalid DC.

NULLREGION Clipping region is empty. ~
SIMPLEREGION Clipping region has no overlapping borders.

Seealso TDC::GetClipBox, TPoint class

OffsetViewportOrg

virtual bool OffsetViewportOrg(const TPoint& delta, TPoint* oldOrg = 0);

Modifies this DC's viewport origin relative to the current values. The delta x- and y-
components are added to the previous origin and the resulting point becomes the new
viewport origin. The previous origin is saved in 0ldOrg. Returns true if the call is
successful; otherwise, returns false.

Seealso TDC:SetViewportOrg, TDC::GetViewportOrg, TPoint class

OffsetWindowOrg

bool OffsetWindowOrg(const TPoint& delta, TPoint* oldOrg = 0);

Modifies this DC's window origin relative to the current values. The delta x- and y-
components are added to the previous origin and the resulting point becomes the new
window origin. The previous origin is saved in 0ldOrg. Returns true if the call is
successful; otherwise, returns false.

142 ObjectWindows Reference Guide

TDC class

Seealso TDC:GetWindowOrg, TDC::SetWindowOrg, TPoint class

OWLFastWindowFrame

void OWLFastWindowFrame(TBrush& brush, TRect& rect, int xWidth, int yWidth)

Draws a frame of the specified size and thickness with the given brush. The old brush is
restored after completion.

Seealso TBrush, TRect

PaintRgn

bool PaintRgn(const TRegion& region);

Paints (fills) the given region on this DC using the currently selected brush. Returns true
if the call is successful; otherwise, returns, false.

Seealso TDC:FillRgn, TDC::SelectObject, TRegion class

PatBIt

bool PatBlt(int x, int y, int w, int h, uint32 rop=PATCOPY);

bool PatBlt(const TRect& dst, uint32 rop=PATCOPY);

Paints the given rectangle using the currently selected brush for this DC. The rectangle
can be specified by its upper left coordinates (x, y), width w, and height &, or by a single
TRect argument. The raster-operation code, rop, determines how the brush and surface
color(s) are combined, as explained in the following table:

Value Meaning

PATCOPY Copies pattern to destination bitmap.

PATINVERT. Combines destination bitmap with pattern using the Boolean OR operator.
DSTINVERT Inverts the destination bitmap.

BLACKNESS Turns all output to binary Os.

WHITENESS Turns all output to binary 1s.

The allowed values of rop for this function are a limited subset of the full 256 ternary
raster-operation codes; in particular, an operation code that refers to a source cannot be
used with PatBIt.

Not all devices support the PatBIt function, so applications should call
TDC::GetDeviceCaps to check the features supported by this DC.

PatBlt returns true if the call is successful; otherwise, returns false.
Seealso TDC:GetDeviceCaps, TRect class

PathToRegion
HRGN PathToRegion();

If successful, returns a region created from the closed path in this DC; otherwise, returns
0.

Pie
bool Pie(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4);
bool Pie(const TRect& rect, const TPoint& start, const TPoint& end);

Using the currently selected pen and brush objects, draws and fills a pie-shaped wedge
by drawing an elliptical arc whose center and end points are joined by lines. The center

Chapter 2, ObjectWindows library reference 143

TDC class

of the ellipse is the center of the rectangle specified either by (x1, y1)/(x2, y2) or by the
rect argument. The starting/ending points of pie are specified either by (x3, y3)/ (x4, y4)
or by the points Start and End. Returns true if the call is successful; otherwise, returns
false. The current position is neither used nor altered by this call.

Seealso TDC:Chord, TDC::Arc, TPoint class, TRegion class, TRect class

PlayMetaFile

bool PlayMetaFile(const TMetaFilePict& metaFile);

Plays the contents of the given metaFile on this DC. The metafile can be played any
number of times. Returns true if the call is successful; otherwise, returns false.

Seealsoclass TDC:EnumMetaFile, TDC::PlayMetaFileRecord, TMetaFilePict

PlayMetaFileRecord

void PlayMetaFileRecord(HANDLETABLE far& Handletable, METARECORD far& metaRecord, int count);
Plays the metafile record given in metaRecord to this DC by executing the GDI function
call contained in that record. Handletable specifies the object handle table to be used.
count specifies the number of handles in the table.

Seealso TDC:PlayMetaFile, TDC::EnumMetaFile, HANDLETABLE struct,
METARECORD struct

PigBit

bool PlgBlt(const TPoint& dst, const TDC& srcDC, const TRect& src, const TBitmap& maskBm, const TPoint& m
askPos, uint32 rop=SRCCOPY);

32-bit only. Performs a bit-block transfer from the given source DC to this DC. Color bits
are copied from the src rectangle on srcDC, the source DC, to the parallelogram dst on
this DC. The dst array specifies three points A,B, and C as the corners of the destination
parallelogram. The fourth point D is generated internally from the vector equation D =B
+ C — A. The upper left corner of src is mapped to A, the upper right corner to B, the
lower left corner to C, and the lower right corner to D. An optional monochrome bitmap
can be specified by the maskBm argument. (If maskBm specifies a valid monochrome
bitmap, PIgBIt uses it to mask the colorbits in the source rectangle. An error occurs if
maskBm is not a monochrome bitmap.) maskPos specifies the upper left corner
coordinates of the mask bitmap. With a valid maskBm, a value of 1 in the mask causes
the source color pixel to be copied to dst; a value of 0 in the mask indicates that the
corresponding color pixel in dst will not be changed. If the mask rectangle is smaller
than dst, the mask pattern will be suitably duplicated.

The destination coordinates are transformed according to this DC (the destination DC).
The source coordinates are transformed according to the source DC. If a rotation or
shear transformation is in effect for the source DC when PIgBlIt is called, an error occurs.
Other transformations, such as scaling, translation, and reflection are allowed. The
stretching mode of this DC (the destination DC) determines how PIgBIt will stretch or
compress the pixels if necessary. When recording an enhanced metafile, an error occurs
if the source DC identifies the enhanced metafile DC.

If necessary, PIgBIt adjusts the source color formats to match that of the destination. An
error occurs if the source and destination DCs are incompatible. Before using PIgBIt, an
application should call GetDeviceCaps to determine if the source and destination DCs are
compatible.

144 ObjectWindows Reference Guide

TDC class

PlgBIt returns true if the call is successful; otherwise, it returns false.

Seealso TDC:GetDeviceCaps, TDC::MaskBlt, TDC::SetStretchBltMode,
TDC::StretchBlt, TBitmap class, TPoint class, TRect class

PolyBezier

bool PolyBezier(const TPoint* points, int count);

Draws one or more connected cubic Bezier splines through the points specified in the
points array using the currently selected pen object. The first spline is drawn from the
first to the fourth point of the array using the second and third points as controls.
Subsequent splines, if any, each require three additional points in the array, since the
previous end point is taken as the next spline's start point. The count argument (>=4)
specifies the total number of points needed to specify the complete drawing. To draw n
splines, count must be set to (3n + 1). Returns true if the call is successful; otherwise,
returns false. The current position is neither used nor altered by this call. The resulting
figure is not filled.

Seealso TDC:PolyBezierTo, TPoint

PolyBezierTo

bool PolyBezierTo(const TPoint* points, int count);

Draws one or more connected cubic Beziers plines through the points specified in the
points array using the currently selected pen object. The first spline is drawn from the
current position to the third point of the array using the first and second points as
controls. Subsequent splines, if any, each require three additional points in the array,
since the previous end point is taken as the next spline's start point. The count argument
(>=4) specifies the total number of points needed to specify the complete drawing. To
draw # splines, count must be set to 3n. Returns true if the call is successful; otherwise,
returns false. The current position is moved to the end point of the final Bezier curve.
The resulting figure is not filled.

Seealso TDC::PolyBezier, TPoint class

PolyDraw

bool PolyDraw(const TPoint* points, uint8* types, int count);

Using the currently selected pen object, draws one or more possibly disjoint sets of line
segments or Bezier splines or both on this DC. The count points in the points array
provide the end points for each line segment or the end points and control points for
each Bezier spline or both. The count BYTEs in the types array determine as follows how
the corresponding point in points is to be interpreted:

PT_BEZIERTO This point is a control or end point for a Bezier spline. PT_BEZIERTO ty}gfs must

appear in sets of three: the current position is the Bezier start point; the first two
PT_BEZIERTO points are the Bezier control points; and the third PT_BEZIERTO
point is the Bezier end point, which becomes the new current point. An error
occurs if the PT_BEZIERTO types do not appear in sets of three. An end-point
PT_BEZIERTO can be bit-wise OR'd with PT_CLOSEFIGURE to indicate that
the current figure is to be closed by drawing a spline from this end point to the
start point of the most recent disjoint figure.

PT_CLOSEFIGURE Optional flag that can be bit-wise OR'd with PT_LINETO or PT_BEZIERTO, as
explained above. Closure updates the current point to the new end point.

Chapter 2, ObjectWindows library reference 145

TDC class

PT_LINETO A line is drawn from the current position to this point, which then becomes the
new current point. PT_LINETO can be bit-wise OR'd with PT_CLOSEFIGURE
to indicate that the current fi is to be closed by drawing a Tine segment from
this point to the start point of the most recent disjoint figure.

PT_MOVETO This point starts a new (disjoint) figure and becomes the new current point.

PolyDraw is an alternative to consecutive calls to MoveTo, LineTo, Polyline, PolyBezier, and -
PolyBezierTo. If there is an active path invoked via BeginPath, PolyDraw will add to this
path.

Returns true if the call is successful; otherwise, returns false.

Seealso TDC:MoveTo, TDC::LineTo, TDC::PolyBezier, TDC::PolyBezierTo,
TDC::Polyline, TDC::BeginPath, TPoint class

Polygon

bool Polygon(const TPoint* points, int count);

Using the current pen and polygon-filling mode, draws and fills on this DC a closed
polygon with a number of line segments equal to count (which must be >= 2). The points
array specifies the vertices of the polygon to be drawn. The polygon is automatically
closed, if necessary, by drawing a line from the last to the first vertex. The current
position is neither used nor altered by Polygon. Returns true if the call is successful;
otherwise, returns false.

Seealso TDC::Polyline, TDC::SetPolyFillMode, TDC::GetPolyFillMode, TPoint class

Polyline

bool Polyline(const TPoint* points, int count);

Using the current pen object, draws on this DC a count of line segments (there must be at
least 2). The points array specifies the sequence of points to be connected. The current
position is neither used nor altered by Polyline. Returns true if the call is successful;
otherwise, returns false.

Seealso TDC::Polygon, TDC::PolyPolyline, TPoint

PolylineTo

bool PolylineTo(const TPoint* points, int count);

Draws one or more connected line segments on this DC using the currently selected pen
object. The first line is drawn from the current position to the first of the count points in
the points array. Subsequent lines, if any, connect the remaining points in the array, with
each end point providing the start point of the next segment. The final end point
becomes the new current point. No filling occurs even if a closed figure is drawn.
Returns true if the call is successful; otherwise, returns false.

Seealso TDC:PolyDraw, TDC::LineTo, TPoint class

PolyPolygon

bool PolyPolygon(const TPoint* points, const int* PolyCounts, int count);

Using the current pen and polygon-filling mode, draws and fills on this DC the number
of closed polygons indicated in count (which must be >= 2). The polygons can overlap.
The points array specifies the vertices of the polygons to be drawn. PolyCounts is an array

146 ObjectWindows Reference Guide

TDC class

of count integers specifying the number of vertices in each polygon. Each polygon must
be a closed polygon. The current position is neither used nor altered by Polygon. Returns
true if the call is successful; otherwise, returns false.

Seealso TDC:PolyPolyline, TDC::SetPolyFillMode, TDC::GetPolyFillMode, TPoint
class

PolyPolyline

bool PolyPolyline(const TPoint* points, const int* PolyCounts, int count);

Using the currently selected pen object, draws on this DC the number of polylines
(connected line segments) indicated in count. The resulting figures are not filled. The
PolyCounts array provides count integers specifying the number of points (>= 2) in each
polyline. The points array provides, consecutively, each of the points to be connected.
Returns true if the call is successful; otherwise, returns false. The current position is
neither used nor altered by this call.

Seealso TDC::Polyline, TDC::PolyPolygon, TPoint class

PtVisible

bool PtVisible(const TPoint& point) const;

Returns true if the given point lies within the clipping region of this DC; otherwise,
returns false.

Seealso TDC::RectVisible, TPoint class

RealizePalette

int RealizePalette();

Maps to the system palette the logical palette entries selected into this DC. Returns the
number of entries in the logical palette that were mapped to the system palette.

Seealso TPalette class

Rectangle

bool Rectangle(int x1, int y1, int x2, int y2);

bool Rectangle(const TPoint& p1, const TPoint& p2);

bool Rectangle(const TPoint& point, const TSize& s);

bool Rectangle(const TRect& rect);

Draws and fills a rectangle of the given size on this DC with the current pen and brush
objects. The current position is neither used nor altered by this call. Returns true if the
call is successful; otherwise, returns false.

Seealso TDC:RoundRect, TPoint class, TRect class, TSize class

RectVisible

bool RectVisible(const TRect& rect) const,

Returns true if any part of the given rectangle, rect, lies within the clipping region of this
DC; otherwise, returns false.

Seealso TDC:PtVisible, TRect class
ResetDC
virtual bool ResetDC(DEVMODE far& devMode);

Updates this DC using data in the given devMode structure. Returns true if the call is
successful; otherwise, returns false.

Chapter 2, ObjectWindows library reference 147

TDC class

>See also DEVMODE struct

RestoreBrush
void RestoreBrush();
Restores the original GDI brush object to this DC.

Seealso TDC::OrgBrush, TBrush class

RestoreDC

virtual bool RestoreDC(int savedDC =-1);

Restores the given savedDC. Returns true if the context is successfully restored;
otherwise, returns false.

Seealso TDC::SaveDC

RestoreFont
virtual void RestoreFont();
Restores the original GDI font object to this DC.

Seealso TDC::OrgFont, TFont class

RestoreObjects
void RestoreObjects();
Restores all the original GDI objects to this DC.

Seealso TGdiObject class

RestorePalette
void RestorePalette();
Restores the original GDI palette object to this DC.

Seealso TDC:OrgPalette, TPalette class

RestorePen
void RestorePen();
Restores the original GDI pen object to this DC.

Seealso TDC:OrgPen, TPen class

RestoreTextBrush
void RestoreTextBrush();
Restores the original GDI text brush object to this DC.

Seealso TBrush class

RoundRect

bool RoundRect(int x1, int y1, int x2, int y2, int x3, int y3);

bool RoundRect(const TPoint& p1, const TPoint& p2, const TPoint& rad);

bool RoundRect(const TPoint& p, const TSize& s, const TPoint& rad);

bool RoundRect(const TRect& rect, const TPoint& rad); , ~

Draws and fills a rounded rectangle of the given size on this DC with the current pen
and brush objects. The current position is neither used nor altered by this call. Returns
true if the call is successful; otherwise, returns false.

Seealso TDC:Rectangle, TPoint class, TRect class, TSize class

148 ObjectWindows Reference Guide

Form 1

Form 2

TDC class

SaveDC

virtual int SaveDC() const;

Saves the current state of this DC on a context stack. The saved state can be restored later
with RestoreDC. Returns a value specifying the saved DC or 0 if the call fails.

Seealso TDC:RestoreDC

ScaleViewportExt

virtual bool ScaleViewportExt(int xNum, int xDenom, int yNum, int yDenom, TSize* oldExtent = 0);

Modifies this DC's viewport extents relative to the current values. The new extents are
derived as follows:

xNewVE = (xO1dVE * xNum)/ xDenom
yNewVE = (I * yNum)/ yDenom

The previous extents are saved in oldExtent. Returns true if the call is successful;
otherwise, returns false.

Seealso TDC::SetViewportExt, TSize cass

ScaleWindowExt

virtual bool ScaleWindowExt(int xNum, int xDenom, int yNum, int yDenom, TSize* oldExtent = 0);

Modifies this DC's window extents relative to the current values. The new extents are
derived as follows:

xNewWE = (xO1dWE * xNum)/ xDenom
yNewWE = (yOl1dWE * yNum)/ yDenom

The previous extents are saved in oldExtent. Returns true if the call is successful;
otherwise, returns false.

Seealso TDC::SetWindowExt, TSize

ScrollDC
bool ScrollDC(int x, int y, const TRect& scroll, const TRect& clip, TRegion& updateRgn, TRect& updateRect);

bool ScrollDC(const TPoint& delta, const TRect& scroll, const TRect& clip, TRegion& updateRgn,

TRect& updateRect);
Scrolls a rectangle of bits horizontally by x (or delta.x in the second version) device-units,
and vertically by y (or delta.y) device-units on this DC. The scrolling and clipping
rectangles are specified by scroll and clip. ScrollDC provides data in the updateRgn
argument telling you the region (not necessarily rectangular) that was uncovered by the
scroll. Similarly, ScrollDC reports in updateRect the rectangle (in client coordinates) that
bounds the scrolling update region. This is the largest area that requires repainting.

Returns true if the call is successful; otherwise, returns false.

Seealso TPoint class, TRect class, TRegion class

SelectClipPath
bool SelectClipPath(int mode);

Chapter 2, ObjectWindows library reference 149

TDC class

Selects the current path on this DC as a clipping region, combining any existing chppmg
region using the specified mode as shown in the following table:

RGN_AND The new clipping region includes the overlapping areas of the current chppmg region
and the current path (intersection). v ‘

RGN_COPY The new clipping region is the current path.

RGN_DIFF The new clipping region includes the areas of the current clipping region with those of
the current path excluded.
RGN_OR The new clipping region includes the combined areas of the current clipping region

and the current path (union).

RGN_XOR The new clipping region includes the combined areas of the current clipping region
and the current path but without the overlapping areas.

Returns true if the call is successful; otherwise, returns false.

SelectClipRgn

int SelectClipRgn(const TRegion& region);

Selects the given region as the current clipping region for this DC. A copy of the given
region is used, letting you select the same region for other DC objects. The return value
indicates the new clipping region's type as follows:

COMPLEXREGION Clipi)iﬁg iiegion has o‘}erlap ﬁig borders.

ERROR Invalid DC.
NULLREGION Clipping region is empty.
SIMPLEREGION Clipping region has no overlapping borders.

Seealso TDC::OffsetClipRgn, TDC::GetClipBox, TRegion class

SelectObject

void SelectObject(const TBrush& brush);

void SelectObject(const TPen& pen);

virtual void SelectObject(const TFont& font);

void SelectObject(const TPalette& palette, bool forceBackground false);

Selects the given GDI object into this DC. The previously selected object is saved in the
appropriate OrgXXX protected data member. For a palette argument, if forceBackgound
is set false (the default), the selected logical palette is a foreground palette when the
window has input focus. If forceBackground is true, the selected palette is always a
background palette whether the window has focus or not.

Seealso TDC::OrgBrush, TDC::OrgFont, TDC::OrgPalette, TDC::OrgPen,
TDC::OrgTextBrush, TBrush class, TFont class, TPalette class, TPen class,
TMemoryDC::SelectObject

SelectStockObject
virtual void SelectStockObject(int index);
Selects into the DC a predefined stock pen, brush, font, or palette

Seealso TPrintPreviewDC::SelectStockObject

150 ObjectWindows Reference Guide

TDC class

SetBkColor :

virtual TColor SetBkColor(TColor color);

Sets the current background color of this DC to the given color value or the nearest
available. Returns 0x80000000 if the call fails.

Seealso TDC::GetBkColor, TColor class

SetBkMode

int SetBkMode(int mode);

Sets the background mode to the given mode argument, which can be either OPAQUE or
TRANSPARENT. Returns the previous background mode.

Seealso TDC:GetBkMode

SetBoundsRect

uint SetBoundsRect(TRect& bounds, uint flags);

Controls the accumulation of bounding rectangle information for this DC. Depending
on the value of flags, the given bounds rectangle (possibly NULL) can combine with or
replace the existing accumulated rectangle. flags can be any appropriate combination of
the following values:

3 unds (rect
DCB_DISABLE Turn off bounds accumulation.
DCB_ENABLE Turn on bounds accumulation (the default setting for bounds accumulation is
disabled).
DCB_RESET Set the bounding rectangle to empty.
DCB_SET Set the bounding rectangle to bounds.

There are two bounding-rectangle accumulations, one for Windows and one for the
application. The Windows-accumulated bounds can be queried by an application but
not altered. The application can both query and alter the DC's accumulated bounds.

Seealso TDC::GetBoundsRect, TRect class

SetBrushOrg

bool SetBrushOrg(const TPoint& origin, TPoint* 0ldOrg = 0);

Sets the origin of the currently selected brush of this DC with the given origin value. The
previous origin is passed to 0ldOrg. Returns true if successful; otherwise, returns false.

Seealso TDC::GetBrushOrg, TPoint class

SetDIBits
bool SetDIBits(TBitmap& bitmap, uint16 startScan, uint16 numScans, const void HUGE* bits,

const BITMAPINFO far& Info, uint16 usage);
bool SetDIBits(TBitmap& Bitmap, const TDibé& dib);
The first version sets the pixels in bitmap (the given destination bitmap on this DC) from
the source DIB (device-independent bitmap) color data found in the byte array bits and
the BITMAPINFO structure, Info.numScan scanlines are taken from the DIB, starting at
scanline startScan. The usage argument specifies how the bmiColors member of
BITMAPINEFO is interpreted, as explained in TDC::GetDIBits.

Chapter 2, ObjectWindows library reference 151

TDC class

In the second version of SetDIBits, the pikels are set in bitmap from the given source TDib
argument. ’

SetDIBits returns true if the call is successful; otherwise, it returns false.

Seealso TDC::GetDIBits, TDC::SetDIBitsToDevice, TBitmap class, BITMAPINFO
struct, TDib class

SetDIBitsToDevice
bool SetDIBitsToDevice(const TRect& dst, const TPoint& src, uint16 startScan, uint16 numScans,

const void HUGE* bits, const BITMAPINFO far& bitsInfo, uint16 usage);
bool SetDIBitsToDevice(const TRect& dst, const TPoint& src, const TDib& dib);
The first version sets the pixels in dst (the given destination rectangle on this DC) from
the source DIB (device-independent bitmap) color data found in the byte array bits and
the BITMAPINFO structure, bitsInfo. The DIB origin is specified by the point src.
numScan scanlines are taken from the DIB, starting at scanline startScan. The usage
argument determines how the bmiColors member of BITMAPINFO is interpreted, as
explained in TDC::GetDIBits.

In the second version of SetDIBitsToDevice, the pixels are set in dst from dib, the given
source TDib argument.

SetDIBitsToDevice returns true if the call is successful; otherwise, it returns false.
Seealso TDC::GetDIBits, TDib class, TPoint class, TRect class, BITMAPINFO struct

SetMapMode

virtual int SetMapMode(int mode);

Sets the current window mapping mode of this DC to mode. Returns the previous
mapping mode value. The mapping mode defines how logical coordinates are mapped
to device coordinates. It also controls the orientation of the device's x- and y-axes. See
TDC::GetMapMode for a complete list of mapping modes.

Seealso TDC::GetMapMode

SetMapperFlags

uint32 SetMapperFlags(uint32 flag);

Alters the algorithm used by the font mapper when mapping logical fonts to physical
fonts on this DC. If successful, the function sets the current font-mapping flag to flag and
returns the previous mapping flag; otherwise GDI_ERROR is returned. The mapping
flag determines whether the font mapper will attempt to match a font's aspect ratio to
this DC's aspect ratio. If bit 0 of flag is set to 1, the mapper selects only matching fonts. If
no matching fonts exist, a new aspect ratio is chosen and a font is retrieved to match this
ratio.

SetMiterLimit

bool SetMiterLimit(float newLimit, float* oldLimit = 0); ,

Sets the limit of miter joins to newLimit and puts the previous value in oldLimit. Returns
true if successful; otherwise, returns false.

SetPixel
TColor SetPixel(int x, int y, TColor color);
TColor SetPixel(const TPoint& p, TColor color); -

152 ObjectWindows Reference Guide

TDC class

Sets the color of the pixel at the given location to the given color and returns the pixel's

previous color.

Seealso TDC::GetPixel, TColor, TPoint

SetPolyFillMode

int SetPolyFillMode(int mode);
Sets the polygon-filling mode for this DC to the given mode value, either ALTERNATE
or WINDING. Returns the previous fill mode.

Seealso TDC:GetPolyFillMode, TDC::Polygon

SetROP2

int SetROP2(int mode);
Sets the current foreground mix mode mode of this DC to the given mode value and
returns the previous mode. The mode argument determines how the brush, pen, and
existing screen image combine when filling and drawing. mode can be one of the
following values:

R2_BLACK
R2_COPYPEN
R2_ MASKNOTPEN

R2_MASKPEN
R2_MASKPENNOT

R2_MERGEPEN
R2_MERGENOTPEN
R2_MERGEPENNOT
R2_NOP

R2_NOT
R2_NOTCOPYPEN
R2_NOTMASKPEN
R2_NOTMERGEPEN
R2_NOTXORPEN
R2_WHITE
R2_XORPEN

Pixel is alwayé bmary 0.
Pixel is the pen color.

Pixel is a combination of the colors common to both the display and the inverse
of the pen.

Pixel is a combination of the colors common to both the pen and the display.

Pixel is a combination of the colors common to both the pen and the inverse of
the display.

Pixel is a combination of the pen color and the display color.

Pixel is a combination of the display color and the inverse of the pen color.
Pixel is a combination of the pen color and the inverse of the display color.
Pixel remains unchanged.

Pixel is the inverse of the display color.

Pixel is the inverse of the pen color.

Pixel is the inverse of the R2_ MASKPEN color.

Pixel is the inverse of the R2_MERGEPEN color.

Pixel is the inverse of the R2_XORPEN color.

Pixel is always binary 1.

Pixel is a combination of the colors in the pen and in the display, but not in both.

Seealso TDC:GetROP2, TDC::GetDeviceCaps

SetStretchBitMode

int SetStretchBltMode(int mode);

Sets the stretching mode of this DC to the given mode value and returns the previous
mode. The mode argument (BLACKONWHITE, COLORONCOLOR, or
WHITEONBLACK) defines which scan lines or columns or both are eliminated by

TDC::StretchBIt.

Seealso TDC::GetStretchBltMode, TDC::StretchBlt

Chapter 2, ObjectWindows library reference 153

TDC class

SetSystemPaletteUse

int SetSystemPaletteUse(int usage);

Changes the usage of this DC's system palette. The usage argument can be
SYSPAL_NOSTATIC or SYSPAL_STATIC. Returns the previous usage value.

Seealso TDC:GetSystemPaletteUse

SetTextAlign

uint SefTextAlign(uint flags); ,

Sets the text-alignment flags for this DC. If successful, SetTextAlign returns the previous
text-alignment flags; otherwise, it returns GDI_ERROR. The flag values are as listed for
the TDC::GetTextAlign function. The text-alignment flags determine how TDC::TextOut
and TDC::ExtTextOut align text strings in relation to the first character's screen position.

Seealso TDC:GetTextAlign, TDC:TextOut, TDC::ExtTextOut

SetTextCharacterExtra

int SefTextCharacterExtra(int extra);

If successful, sets the current intercharacter spacing to extra, in logical units, for this DC,
and returns the previous intercharacter spacing. Otherwise, returns 0. If the current
mapping mode is not MM_TEXT, the extra value is transformed and rounded to the
nearest pixel.

Seealso TDC:GetTextCharacterExtra

.SetTextColor

154 Objec

virtual TColor SetTextColor(TColor color);
Sets the current text color of this DC to the given color value. The text color determmes
the color displayed by TDC::TextOut and TDC::ExtTextOut.

Seealso TDC::GetTextColor, TColor

SetTextJustification

bool SetTextJustification(int breakExtra, int breakCount);

When text strings are displayed using TDC::TextOut and TDC::ExtTextOut, sets the
number of logical units specified in breakExtra as the total extra space to be added to the
number of break characters specified in breakCount. The extra space is distributed evenly
between the break characters. The break character is usually ASCII 32 (space), but some
fonts define other characters. TDC::GetTextMetrics can be used to retrieve the value of
the break character.

If the current mapping mode is not MM_TEXT, the extra value is transformed and
rounded to the nearest pixel.

SetTextJustification returns true if the call is successful; otherwise, it returns false.

SetViewportExt

virtual bool SetViewportExt(const TSize& extent, TSize* oldExtent = 0);

Sets this DC's viewport x- and y-extents to the given extent values. The previous extents
are saved in oldExtent. Returns true if the call is successful; otherwise, returns false. The
extent value determines the amount of stretching or compression needed in the logical
coordinate system to fit the device coordinate system. extent also determines the relative
orientation of the two coordinate systems.

tWindows Reference Guide

TDC class

Seealso TDC::GetViewportExt, TSize class

SetViewportOrg

virtual bool SetViewportOrg(const TPoint& origin, TPoint* oldOrg = 0);

Sets this DC's viewport origin to the given origin value, and saves the previous origin in
0ldOrg. Returns true if the call is successful; otherwise, returns false.

Seealso TDC::GetViewportOrg, TDC::OffsetViewportOrg, TPoint class

SetWindowExt

virtual bool SetWindowExt(const TSize& extent, TSize* oldExtent = 0);

Sets this DC's window x- and y-extents to the given extent values. The previous extents
are saved in oldExtent. Returns true if the call is successful; otherwise, returns false. The
extent value determines the amount of stretching or compression needed in the logical
coordinate system to fit the device coordinate system. extent also determines the relative
orientation of the two coordinate systems.

Seealso TDC:GetWindowExt, TDC::ScaleWindowExt, TSize class

SetWindowOrg

bool SetWindowOrg(const TPoint& origin, TPoint* oldOrg = 0);

Sets the origin of the window associated with this DC to the given origin value, and
saves the previous origin in 0ldOrg. Returns true if the call is successful; otherwise,
returns false.

Seealso TDC::GetWindowOrg, TDC::OffsetWindowOrg, TPoint class

SetWorldTransform

bool SetWorldTransform(XFORM far& xform);

32-bit only. Sets a two-dimensional linear transformation, given by the xform structure,
between world space and page space for this DC. Returns true if the call is successful;
otherwise, returns false.

Seealso TDC:ModifyWorldTransform, XFORM struct

StretchBlt

bool StretchDIBits(const TRect& dst, const TRect& src, const void HUGE* bits, const BITMAPINFO far& bitsinfo,
uint16 usage, uint32 rop=SRCCOPY);

bool StretchDIBits(const TRect& dst, const TRect& src, const TDib& dib, uint32 rop=SRCCOPY);

Copies the color data from src, the source rectangle of pixels in the given DIB (device-

independent bitmap) on this DC, to dst, the destination rectangle. The DIB bits and color

data are specified in either the byte array bits and the BITMAPINFO structure bitsInfo or

in the TDib object, dib. The rows and columns of color data are stretched or compressed

to match the size of the destination rectangle. The usage argument specifies how the

bmiColors member of BITMAPINFO is interpreted, as explained in TDC::GetDIBits The

raster operation code, rop, specifies how the source pixels, the current brush for this DC,

and the destination pixels are combined to produce the new image. See TDC::MaskBIt

for a detailed list of rop codes. -

Seealso TDC::GetDIBits, TDC::MaskBlt, TDib class, TRect class, BITMAPINFO struct

Chapter 2, ObjectWindows library reference 155

TDC class

StretchDIBits

bool StretchDIBits(const TRect& dst, const TRect& src, const void HUGE* bits, const BITMAPINFO far& bitsInfo,
uint16 usage, uint32 rop=SRCCOPY);

bool StretchDIBits(const TRect& dst, const TRect& src, const TDib& dib, uint32 rop=SRCCOPY);

Copies the color data from src, the source rectangle of pixels in the given DIB (device-

independent bitmap) on this DC, to dst, the destination rectangle. The DIB bits and color

data are specified in either the byte array bits and the BITMAPINFO structure bitsInfo or

in the TDib object, dib. The rows and columns of color data are stretched or compressed

to match the size of the destination rectangle. The usage argument specifies how the

bmiColors member of BITMAPINFO is interpreted, as explained in TDC::GetDIBits The

raster operation code, rop, specifies how the source pixels, the current brush for this DC,

and the destination pixels are combined to produce the new 1mage See TDC::MaskBlt

for a detailed list of rop codes.

See also . TDC::GetDIBits, TDC::MaskBIt, TDib class, TRect class, BITMAPINFO struct

StrokeAndFillPath

bool StrokeAndFillPath();

32-bit only. Closes any open figures in the current path of this DC, strokes the outline of
the path using the current pen, and fills its interior using the current brush and polygon
fill mode. Returns true if the call is successful; otherwise, returns false.

Seealso TDC::StrokePath, TDC::BeginPath, TDC::FillPath, TDC::EndPath,
TDC::SetPolyFillMode, TBrush class, TPen class

StrokePath
bool StrokePath();
32-bit only. Renders the current, closed path on this DC and uses the DC's current pen.

Seealso TDC::StrokeAndFillPath, TDC::BeginPath

TabbedTextOut
bool TabbedTextOut(const TPoint& p, const char far* string, int count, int numPositions, const int far* positions,
int tabOrigin);
virtual bool TabbedTextOut(const TPoint& p, const char far* string, int count, int numPositions,
const int far* positions, int tabOrigin, TSize& size);
Draws up to count characters of the given null-terminated string in the current font on
this DC. If count is -1, the whole string is written.

Tabs are expanded according to the given arguments. The positions array specifies
numPositions tab stops given in device units. The tab stops must have strictly increasing
values in the array. If numPositions and positions are both 0, tabs are expanded to eight
times the average character width. If numPositions is 1, all tab stops are taken to be
positions[0] apart. tabOrigin specifies the x-coordinate in logical units from which tab
expansion will start.

The p argument specifies the logical coordinates of the reference point that is used to
align the first character depending on the current text-alignment mode. This mode can
be inspected with TDC::GetTextAlign and changed with TDC::SetTextAlign. By default,
the current position is neither used nor altered by TabbedTextOut. However, if the align
mode is set to TA_UPDATECP, TabbedTextOut ignores the reference point argument(s)
and uses/updates the current position as the reference point.

156 ObjectWindows Reference Guide

TDC class

The size argument in the second version of TabbedTextOut reports the dimensions (size.y
= height and size.x = width) of the string in logical units. ‘

TabbedTextOut returns true if the call is successful; otherwise, it returns false.

Seealso TDC:TextOut, TDC::GetTextAlign, TDC::SetTextAlign, TPoint class, TSize
class

TextOut

virtual bool TextOut(int x, int y, const char far* string, int count = -1);

bool TextOut(const TPoint& p, const char far* string, int count = -1);

Draws up to count characters of the given null-terminated string in the current font on
this DC. If count is -1 (the default), the entire string is written.

The (x, y) or p arguments specify the logical coordinates of the reference point that is
used to align the first character, depending on the current text-alignment mode. This
mode can be inspected with TDC::GetTextAlign and changed with TDC::SetTextAlign. By
default, the current position is neither used nor altered by TextOut. However, the align
mode can be set to TA_UPDATECP, which makes Windows use and update the current
position. In this mode, TextOut ignores the reference poirtt argument(s).

TextOut returns true if the call is successful; otherwise, it returns false.
Seealso TDC:ExtTextOut, TDC::GetTextAlign, TDC::SetTextAlign, TPoint class

TextRect

bool TextRect(int x1, int y1, int x2, int y2);

bool TextRect(const TRect& rect);

bool TextRect(int x1, int y1, int x2, int y2, TColor color);

bool TextRect(const TRect rect, TColor color);

Fills the given rectangle, clipping any text to the rectangle. If no color argument is
supplied, the current backgound color is used. If a color argument is supplied, that color
is set to the current background color which is then used for filling. TextRect returns true
if the call is successful; otherwise, it returns false.

Seealso TDC::SetBkColor, TColor class, TRect class

UpdateColors

void UpdateColors();

Updates the client area of this DC by matching the current colors in the client area to the
system palette on a pixel-by-pixel basis.

WidenPath

bool WidenPath();

32-bit only. Redefines the current, closed path on this DC as the area that would be -
painted if the path were stroked with this DC's current pen. The current pen must have
been created under the following conditions:

If the TPen(int Style, int Width, TColor Color) constructor, or the TPen(const LOGPEN*
LogPen) constructor is used, the width of the pen in device units must be greater than 1.

If the TPen(uint32 PenStyle, uint32 Width, const TBrush& Brush, uint32 StyleCount,
LPDWORD pSTyle) constructor, or the TPen(uint32 PenStyle, uint32 Width, const

Chapter 2, ObjectWindows library reference 157

TDC class

Form 1

Form 2

LOGBRUSHE& logBrush, uint32 StyleCount, LPDWORD pSTyle) constructor is used, the
pen must be a geometric pen.

Any Bezier curves in the path are converted to sequences of linear segments
approximating the widened curves, so no Bezier curves remain in the path after a
WidenPath call.

WidenPath returns true if the call is successful; otherwise, it returns false.
Seealso TDC:FlattenPath, TDC::BeginPath, TPen class

Protected constructors

Constructors

TDC();

For use by derived classes only. Calls Init to clear the OrgXXX data members and sets
ShouldDelete to true.

TDC(HDC handle, TAutoDeIete AutoDelete);
For use by derived "classes only. Constructs a TDC object using an existing DC handle.
Calls Init to clear the OrgXXX data members.

Seealso TDC::Init

Protected data members

Handle
TGdiBase::Handle;
The handle of this DC. Uses the base class's handle (TGdiBase::Handle.)

Seealso TDC

OrgBrush

HBRUSH OrgBrush;

Handle to the original GDI brush object for this DC. Holds the previous brush object
whenever a new brush is selected with SelectObject(brush,).

Seealso TDC::SelectObject, TBrush class

OrgFont

HFONT OrgFont;

Handle to the original GDI font object for this DC. Holds the previous font object
whenever a new font is selected with SelectObject(font).

Seealso TDC::SelectObject, TFont class

OrgPalette

HPALETTE OrgPalette;

Handle to the original GDI palette object for this DC. Holds the previous palette ob]ect
whenever a new palette is selected with SelectObject(palette).

Seealso TDC::SelectObject, TPalette class

158 ObjectWindows Reference Guide

TDecoratedFrame class

OrgPen

HPEN OrgPen;

Handle to the original GDI pen object for this DC. Holds the previous pen object
whenever a new pen is selected with SelectObject(pen).

Seealso TDC::SelectObject, TPen class

OrgTextBrush

HBRUSH OrgTextBrush

32-bit only. The handle to the original GDI text brush object for this DC. Stores the
previous text brush handle whenever a new brush is selected with
SelectObject(text_brush).

Seealso TDC::SelectObject, TBrush class

ShouldDelete

TGdiBase::ShouldDelete;

Set to true if the handle for this object should be deleted by the destructor; otherwise, set
to false.

Protected member functions

CheckValid
Form 1 TGdiBase::CheckValid(uint resld=IDS_GDIFAILURE)

Form2 static void CheckValid(HANDLE handle, uint resld=IDS_GDIFAILURE)
Both versions of CheckValid check for a valid GDI object handle. If one is not found a
GDI exception is thrown for the given resource id. Both versions use
TGdiBase::CheckValid.

GetAttributeHDC
virtual HDC GetAttributeHDC() const;
Returns the attributes of the DC object.

Seealso TPrintPreviewDC::GetAttributeHDC

GetHDC
HDC GetHDC() const;
Returns a handle to the DC.

Init

void Init();

Sets OrgBrush, OrgPen, OrgFont, OrgBitmap, and OrgPalette to 0, and sets ShouldDelete to
true. This function is for internal use by the TDC constructors.

Seealso TDC constructors, TDC::SelectObject

TDecoratedFrame class decframe.h

TDecoratedFrame automatically positions its client window (you must supply a client
window) so that it is the same size as the client rectangle. You can add additional

Chapter 2, ObjectWindows library reference 159

TDecoratedFrame class

decorations like toolbars and status lines to a window.You can create a TDecoratedFrame
without a caption bar by clearing all of the bits in the style data member of the
TWindowAttr structure. TDecoratedFrame is a streamable class.

For OLE-enabled apphca‘uons, use TOleFrame, which creates a decorated frame and
manages decorations such as toolbars for the main window of an SDI (Single Document
Interface) OLE application.

Seealso TOleFrame

Type definitions

TLocation

enum TLocation (Top, Bottom, Left, Right);

TLocation enum describes Top, Left, Bottom, and Right positions where the decoratlon can
be placed. Insert uses this enum to position the decoration.

Public constructor

Constructor

TDecoratedFrame(TWindow* parent, const char far *title, TWindow* clientWnd, bool trackMenuSelection = false,
TModule* module = 0);

Constructs a TDecoratedFrame object with the specified parent window (parent), window

caption (title), and module ID. Sets TWindow::Attr.Title to the new title. Passes a pointer

to the client window if one is specified. By default set to false, trackMenuSelection

controls whether hint text appears at the bottom of the window when a menu item is

highlighted.

Public member functions

Insert

void Insert (TWindow& decoration, TLocation = Top);

After you specify where the decoration should be placed, Insert adds it just above,
below, left, or right of the client window. This process is especially important when
there are multiple decorations. Insert looks at the decoration's Attr.Style member and
checks the WS_VISIBLE flag to tell whether the decoration should initially be visible or
hidden.

To position the decoration, Insert uses TLocation enum, which describes Top, Left, Bottom,
and Right positions where the decoration can be placed.

PreProcessiMsg

bool PreProcessMsg (MSG& msg);

Opverrides the virtual function defined in TFrameWindow to give decorations an
opportunity to perform mnemonic access preprocessing.

Seealso TFrameWindow::PreProcessMsg, TWindow::PreProcessMsg

SetClientWindow
TWindow* SetCIlenthdow(TWmdow* cllenthd)

160 ObjectWindows Reference Guide

TDecoratedFrame class

Overrides TFrameWindow's virtual function. Sets the client window to the specified
window. Users are responsible for destroying the old client window if they want to
remove it.

Protected data members

MenultemiD
uint MenultemiD;
Specifies the menu item ID.

TrackMenuSelection
bool TrackMenuSelection;
Specifies whether you want menu selection and help status information visible.

Protected member functions

EvCommand
LRESULT EvCommand(uint Id, HWND hWndCtl, uint notifyCode);
Automates hiding and showing of decorations.

EvCommandEnable
void EvCommandEnable(TCommandEnabler& ce);

Handles checking and unchecking of menu items that are associated with decorations.

EvEnterldle
void EvEnterldle(uint source, HWND hWndDlg);

Responds to a window message that tells an application's main window that a dialog
box or a menu is entering an idle state. EvEnterldle also handles updating the status bar

with the appropriate help message.

EvMenuSelect

void EvMenuSelect(uint Menultemld, uint flags, HMENU hMenu);

Responds to user menu selection. If Menultemld is blank, displays an empty help
message; otherwise, it displays a help message with the specified string ID. See
EvEnterldle for a description of how the help message is loaded.

EvSize
void EvSize(uint sizeType, TSize& size);
Passes a WM_SIZE message to TLayoutWindow.

SetupWindow
void SetupWindow();
Calls TLayoutWindow::Layout to size and position the decoration.

Seealso TFrameWindow::SetUpWindow, TWindow::SetUpWindow,
TLayoutWindow::Layout

Chapter 2, ObjectWindows library reference

161

TDecoratedMDIFrame class

Response table entries

EV_WM_ENTERIDLE EvEnterldle
EV_WM_MENUSELECT EvMenuSelect
EV_WM_SIZE EvSize
TDecoratedMDIFrame class | decmdifr.h

Derived from both TMDIFrame and TDecoratedFrame, TDecoratedMDIFrame is an MDI
frame that supports decorated child windows.

TDecorated MDIFrame supports custom toolbars. You can insert one set of decorations
(for example, toolbars and rulers) into a decorated frame. When a different set of tools is
needed, you can remove the previous set and reinsert another set of decorations.
However, be sure to remove all of the unwanted decorations from the adjusted sides
(that is, the top, left, bottom, and right) before reinserting a new set.

TDecoratedMDIFrame is a streamable class.

Public constructor

Constructor
TDecoratedMDIFrame(const char far *itle, TResld menuResld, TMDIClient &clientWnd = *new TMDIClient,
bool trackMenuSelection = false, TModule* module = 0);

Constructs a decorated MDI frame of the specified client window with the indicated
menu resource ID. By default, menu hint text is not displayed.

Protected member function

DefWindowProc

LRESULT DefWindowProc(uint message, WPARAM wParam, LPARAM IParam);

Overrides TWindow::DefWindowProc. If the message parameter is WM_SIZE,
DefWindowProc returns 0; otherwise, DefWindowProc returns the result of calling
TMDIFRame::DefWindowProc.

Seealso TMDIFrame::DefWindowProc

Response table entries

The TDecoratedMDIFrame response table has no entries.

162" ObjectWindows Reference Guide

TDesktopDC class

TDesktopDC class dc.h

A DC class derived from TWindowDC, TDesktopDC provides access to the desktop
window's client area, which is the screen behind all other windows.

Public constructor

Constructor
TDesktopDC();
Default constructor for TDesktopDC objects.

TDialog class dialog.h

Typically used to obtain information from a user, a dialog box is a window inside of
which other controls such as buttons and scroll bars can appear. Unlike actual child
windows which can only be displayed in the parent window's client area, dialog boxes
can be moved anywhere on the screen. TDialog objects represent both modal and
modeless dialog box interface elements. (A modal dialog box disables operations in its
parent window while it is open, and, thus, lets you function in only one window
"mode.")

A TDialog object has a corresponding resource definition that describes the placement
and appearance of its controls. The identifier of this resource definition is supplied to the
constructor of the TDialog object. A TDialog object is associated with a modal or
modeless interface element by calling its Execute or Create member function,
respectively.

You can use TDialog to build an application that uses a dialog as its main window by
constructing your dialog as a TDialog and passing it as the client of a TFrameWindow.
Your code might look something like this:

SetMainWindow (new TFrameWindow(0, "title" new TDialog(0, IDD_MYDIALOG)));

ObjectWindows provides three-dimensional (3-D) support for dialog boxes. If your
application expects to use Microsoft's CTL3D DLL, you need to register your application
by calling TApplication::EnableCt13d. ObjectWindows will then automatically forward
the WM_CTLCOLOR message to the CTL3D DLL.

ObjectWindows also provides BWCC support for dialog boxes. Unless a custom
template is specified, TDialog uses the BWCC templates. (By default, TApplication’s
member function EnableBWCC enables BWCC support.)

TDialog is a streamable class.

ObjectWindows also encapsulates common dialog boxes that let the user select font, file
name, color, print options, and so on. TCommonDialog is the parent class for this group
of common dialog box classes.

Chapter 2, ObjectWindows library reference 163

TDialog class

Public data members

Attr
TDialogAttr Attr;
Attr holds the creation attributes of the dialog box (for example, size and style).

Seealso TDialogAttr

IsModal
bool IsModal ‘
IsModal is true if the dialog box is modal and false if it is modeless.

Public constructor and destructor

Constructor

TDialog(TWindow* parent, TResld resld, TModule* module = 0);

Invokes a TWindow constructor, passing parent and module, and calls DisableAutoCreate
to prevent TDialog from being automatically created and displayed along with its
parent. TDialog then initializes Title to —1 and sets TDialogAttr.Name using the dialog
box's integer or string resource identifier, which must correspond to a dialog resource
definition in the resource file. Finally, it initializes TDialogAttr.Param to 0 and sets
IsModal to false.

Destructor

~TDialog();

If Attr.Name is a string and not an integer resource identifier, this destructor frees
memory allocated to Attr.Name, which holds the name of the dialog box.

Seealso TApplication::EnableBWCC, TWindow:~TWindow,
TWindow::DisableAutoCreate, TWindow:: TWindow, TDialog::Attr

Public member functions

CloseWindow

void CloseWindow(int retValue = IDCANCEL);

Opverrides the virtual function defined by TWindow and conditionally shuts down the
dialog box. If the dialog box is modeless, it calls TWindow::CloseWindow. If the dialog box
is modal, it calls CanClose. If CanClose returns true, CloseWindow calls TransferData to
transfer dialog box data, passing it retValue. The default value of retValue is IDCANCEL.

Seealso TWindow::CloseWindow

CmCancel
void CmCancel();

Automatic response to a click on the Cancel button of the dialog box. Calls Destroy,
passing IDCANCEL.

Seealso TDialog::CloseWindow

164 ObjectWindows Reference Guide

TDialog class

CmOk

void CmOKk();

Responds to a click on the dialog box's OK button with the identifier IDOK. Calls
CloseWindow, passing IDOK.

Seealso TDialog::CloseWindow

Create

virtual bool Create();

Creates a modeless dialog box interface element associated with the TDialog object.
Registers all the dialog's child windows for custom control support. Calls DoCreate to
perform the actual creation of the dialog box.

Create returns true if successful. If unsuccessful, Create throws a TXInvalidWindow
exception.

Seealso TDialog::Execute, TModule:MakeWindow, TWindow::DisableAutoCreate

Destroy

virtual void Destroy(int retValue = IDCANCEL);

Destroys the interface element associated with the TDialog object. If the element is a
modeless dialog box, Destroy calls TWindow::Destroy. If the element is a modal dialog
box, Destroy calls EnableAutoCreate on all child windows. Then Destroy calls the
Windows function ::EndDialog, passing retValue as the value returned to indicate the
result of the dialog's execution. The default retValue is IDCANCEL.

Seealso TWindow::Destroy, TWindow::EnableAutoCreate

DialogFunction

virtual bool DialogFunction(uint message, WPARAM wParam, LPARAM IParam);

To process messages within the dialog function, your application must override this
function. DialogFunction returns true if the message is handled and false if the message
is not handled.

DoCreate
virtual HWND DoCreate();
DoCreate is called by Create to performs the actual creation of a modeless dialog box.

DoExecute
virtual int DoExecute();
DoExecute is called by Execute to perform the actual execution of a modal dialog box.

Seealso TDialog::Execute

EvClose
void EvClose();
Responds to an incoming EvClose message by shutting down the window.

EvCtiColor

HBRUSH EvCiiColor(HDC hDC, HWND hWndChild, uint ctiType);

Passes the handle to the display context for the child window, the handle to the child
window, and the default system colors to the parent window. The parent window then

Chapter 2, ObjectWindows library reference 165

TDialog class

uses the display-context handle given in 2DC to set the text and background colors of
the child window.

If three-dimensional (3-D) support is enabled, EvCtIColor handles the
EV_WM_CTLCOLOR message by allowing the CTL3D DLL to process the
WM_CTLCOLOR message in order to set the background color and provide a
background brush for the window.

Seealso TApplication::EnableCtl3d

EvinitDialog

virtual bool EvinitDialog(HWND hWndFocus);

EvInitDialog is automatically called just before the dialog box is displayed. It calls
SetupWindow to perform any setup required for the dialog box or its controls.

Seealso TWindow::SetupWindow

EvPaint

void EvPaint();

EvPaint calls TWindow's general-purpose default processing function, DefaultProcessing,
for Windows-supplied painting.

Seealso TWindow::DefaultProcessing

EvSetFont
virtual void EvSetFont(HFONT hfont, bool redraw);
Responds to a request to change a dialog's font.

Execute

virtual int Execute();

Creates and executes a modal dialog box interface element associated with the TDialog
object. If the element is successfully associated, Execute does not return until the TDialog
is closed.

Execute performs the following tasks:

1 Registers this dialog's window class and all of the dialog's child windows.
2 (Calls DoExecute to execute the dialog box.

3 Checks for exceptions and throws a TXWindow exception if an error occurs.

Execute returns an integer value that indicates how the user closed the modal dialog box.
If the dialog box cannot be created, Execute returns —1.

Seealso TModule::ExecDialog, TWindow::DisableAutoCreate, TXWindow

GetDefaultld
uint GetDefaultld() const;
Gets the default resource ID.

GetltemHandle

HWND GetltemHandle(int childid);

Returns the dialog box control's window handle identified by the supplied ID. Because
GetltemHandle is now obsolete, new applications should use TWindow::GetDIgItem.

166 ObjectWindows Reference Guide

TDialog class

PerformDiginit

bool PerformDlglnit();

Initializes the dialog box controls with the contents of RT_DLGINIT, the dialog box
resource identifier, which describes the appearance and location of the controls (buttons,
group boxes, and so on). Returns true if successful; otherwise, returns false.

PreProcesshsg
bool PreProcessMsg(MSG& msg);

Overrides the virtual function defined by TWindow in order to perform preprocessing
of window messages. If the child window has requested keyboard navigation,
PreProcessMsg handles any accelerator key messages and then processes any other
keyboard messages.

Seealso TWindow::PreProcessMsg, MSG struct

SendDigltemMsg

uint32 SendDlgltemMsg(int Childld, uint16 Msg, uint16 WParam, uint32 LParam);

Sends a window control message, identified by Msg, to the dialog box's control
identified by its supplied ID, ChildID. WParam and LParam become parameters in the
control message. SendDIgltemMSsg returns the value returned by the control, or 0 if the
control ID is invalid. This function is obsolete.

SetCaption
void SetCaption(const char far* title);
Sets the caption of the dialog box. to the value of the title parameter.

Seealso TWindow::SetCaption

SetDefaultld
void SetDefaultid(uint Id);
Sets the default resource ID.

Protected member functions

GetClassName

char far* GetClassName();

Opverrides the virtual function defined in TWindow and returns the name of the dialog
box's default Windows class, which must be used for a modal dialog box. For a
modeless dialog box, GetClassName returns the name of the default TWindow. If BWCC
is enabled, GetClassName returns BORDLGCLASS.

Seealso TWindow::GetClassName

GetWindowClass

void GetWindowClass(WNDCLASS& wndClass);

Overrides the virtual function defined in TWindow. Fills WndClass with a TDialog
registration attributes obtained from an existing TDialog window or from BWCC if it is
enabled.

If the class style is registered with CS_GLOBALCLASS, you must unregister the class
style. You can do this by turning off the style bit. For example,

Chapter 2, ObjectWindows library reference 167

TDialog class::TDialogAttr struct

{
baseclass: :GetWindowClass (wndClass);

WndClass.style &= ~CS_GLOBALCLASS:

Seealso TWindow::GetWindowClass, TWindow, WNDCLASS struct
SetupWindow
void SetupWindow();

Overrides the virtual function defined in TWindow. Sets up the dialog box by calling
SetCaption (sets Title) and TWindow::SetupWindow.

If three-dimensional (3-D) support is enabled, SetupWindow calls the CTL3D DLL to
_ register the dialog box.

Seealso TCommonDialog:SetupWindow, TDialog::SetCaption,
TWindow::SetupWindow

‘Response table entries

EV_COMMAND (IDCANCEL, CmCancel) CmCancel

EV_COMMAND (IDOK, CmOKk) CmOk
EV_WM_CTLCOLOR EvCtlColor
EV_WM_CLOSE EvClose
EV_WM_PAINT EvPaint

Seealso TCommonDialog

TDialog class::TDialogAttr struct | dialog.h

A TDialogAttr is used to hold a TDialog's creation attributes, which include the style,
appearance, size, and types of controls associated with the dialog box. TDialogAttr
contains two data members: Name (the resource id) and Param. These members contain
user-defined data used for dialog box creation.

Public data members

Name

char far* Name;

Name holds the identifier, which can be either a string or an integer resource identifier,
of the dialog box resource.

Param
uint32 Param;

168 ObjectWindows Reference Guide

TDib class

Param is used to pass initialization data to the dialog box when it is constructed. You can
assign a value to this field in a derived class's constructor. Although any Param-type
information passed to the dialog box can be saved as a data member, Param is especially
useful if you want to create a dialog box that's implemented by non-ObjectWindows
code.

After Param is accepted it is then available in the message response functions (for
example, EvInitDialog), associated with WM_INITDIALOG.

Seealso TDialog:Attr

TDib class gdiobjec.h

Form 1

Form 2

Form 3

The class TDib, derived from TGdiObject, represents GDI Device Independent Bitmap
(DIB) objects. TDibDCs encapsulate the creation of DCs using DIB.DRV (a GDI driver
provided with Windows MME and 3.1). DIBs have no Windows handle; they are just
structures containing format and palette information and a collection of bits or pixels.
TDib provides a convenient way to work with DIBs like any other GDI object. The
memory for the DIB is in one GlobalAlloc’d unit so it can be passed to the Clipboard, OLE
2, and so on.

The TDib Destructor overloads the base destructor because DIBs are not real GDI
objects.

Type definitions

Map
enum Map{MapFace, MapText, MapShadow, MapHighlight, MapFrame};

Enumerates the values for the part of the window whose color is to be set. You can OR
these together to control the colors used for face shading on push buttons, the color of a
selected control button, the edge shading on push buttons, text on push buttons, the
color of the window frame, and the background color of the various parts of a window.
The function MapUIColors uses one of these values to map the colors of various parts of
a window to a specified color.

Seealso TDib::MapUIColors

Public constructors and destructor

Constructors

TDib(HGLOBAL handle, TAutoDelete autoDelete = NoAutoDelete);

Creates a TDib object and sets the Handle data member to the given borrowed handle.
The ShouldDelete data member defaults to false, ensuring that the borrowed handle will
not be deleted when the C++ object is destroyed.

TDib(const TClipboardé& clipboard);
Constructs a TDib object with a handle borrowed from the given Clipboard.

TDib(const TDib& dib);

Chapter 2, ObjectWindows library reference 169

TDib class

Form 4

Form 5

Form 6

Form7

This public copy constructor creates a complete copy of the given dib object as in
TDib myDib = yourDib;

TDib(int width, int height, int nColors, uint16 mode = DIB_RGB_COLORS);

Creates a DIB object with the given width, height, number of colors, mode values.

TDib(HINSTANCE instance, TResID resID);
Creates a DIB object from the resource with the given ID.

TDib(const char* name);
Creates a DIB object from the given resource file.

TDib(const TBitmap& bitmap, const TPalette* pal =.0);
Creates a DIB object from the given resource bitmap and palette. If pal is O (the default),
the default palette is used.

Destructor
~TDib();
Overrides the base destructor.

Seealso ::GetClipboardData, ~TGdiObject, TDib::InfoFromHandle, TDib::LoadFile,
TDib::LoadResource, TGdiObject::Handle, TGdiObject::ShouldDelete

Public member functions

operator BITMAPINFO()
operator const BITMAPINFO far*() const;
operator BITMAPINFO far¥();

Typecasts this DIB by returning a pointer to its bitmap information structure
(BITMAPINFO) which contains information about this DIB's color format and
dimensions (size, width, height, resolution, and so on).

Seealso TDib::GetInfo, BITMAPINFO struct

operator BITMAPINFOHEADER()

operator const BITMAPINFOHEADER far*() const;

operator BITMAPINFOHEADER far*();

Typecasts this DIB by returning a pointer to its bitmap info header.

Seealso TDib::GetInfoHeader, BITMAPINFOHEADER struct

ChangeModeToPal

bool ChangeModeToPal(const TPalette& pal);

Converts the existing color table in place to use palette relative values. The palette that is
passed is used as a reference. Returns true if the call is successful; otherwise returns
false.

Seealso TDib::ChangeModeToRGB, TPalette::GetPaletteEntry

ChangeModeToRGB
bool ChangeModeToRGB(const TPalette& pal);

170 ObjectWindows Reference Guide

TDib class

Converts the existing color table in place to use absolute RGB values. The palette that is

passed is used as a reference. Returns true if the call is successful; otherwise returns
false.

Seealso TDib::ChangeModetoPal, TPalette::GetPaletteEntry

FindColor
int FindColor(TColor color);
Returns the palette entry for the given color.

Seealso TDib::GetColor, TColor, TDib::SetColor, TDib:MapColor

Findindex
int FindIndex(uint16 index);
Returns the palette entry corresponding to the given index.

Seealso TDib::GetIndex, TDib::SetIndex, TDib::MapIndex

GetBits

const void HUGE* GetBits() const;

void HUGE* GetBits();

Returns the Bits data member for this DIB.

Seealso TDib::Bits

GetColor
TColor GetColor(int entry) const;
Returns the color for the given palette entry.

Seealso TDib::SetColor, TColor, TDib::FindColor, TDib:MapColor

GetColors

const TRgbQuad far* GetColors() const;
TRgbQuad far* GetColors();

Returns the bmiColors value of this DIB.

Seealso TRgbQuad

Getindex
uint16 Getindex(int entry) const;
Returns the color index for the given palette entry.

Seealso TDib::SetIndex, TDib::FindIndex,, TDib::MapIndex
Getindices
const uint16 far* Getindices() const;

uint16 far* Getindices();
Returns the bmiColors indexes of this DIB.

Seealso TDib::GetColors

Getinfo
const BITMAPINFO far* Getinfo() const;
BITMAPINFO far* Getinfo();

Chapter 2, ObjectWindows library reference

171

TDib class

Returns this DIB's Info field. A DIB's BITMAPINFO structure contains information about
the dimensions and color of the DIB and specifies an array of data types that define the
colors in the bitmap.

Seealso TDib:Info, TDib::GetInfoHeader

GetinfoHeader

const BITMAPINFOHEADER far* GetinfoHeader() const;

BITMAPINFOHEADER far* GetinfoHeader();

Returns this DIB's bmiHeader field of the BITMAPINFO structure contains information
about the color and dimensions of this DIB.

See also TDib:Info, TDib::GetInfo, BITMAPINFOHEADER struct

operator HANDLE()
operator HANDLE() const;
Typecasts this DIB by returning its Handle.

Seealso . TGdiObject::Handle

Height
int Height() const;
Returns H, this DIB's height.

Seealso TDib::Info

IsOK

bool IsOK() const; «

Returns false if Inifo is 0, otherwise returns true. If there is a problem with the
construction of the DIB, memory is freed and Info is set to 0. Therefore, using Info is a
reliable way to determine if the DIB is constructed correctly.

Seealso TDib constructors, TDib:Info

IsPM

bool IsPM() const;

Returns true if IsCore is true; that is, if the DIB is an old-style PM DIB using core headers.
Otherwise returns false. ‘

Seealso TDib::IsCore

MapColor
int MapColor(TColor fromColor, TColor toColor, bool doAll = false);
Maps the fromColor to the toColor in the current palette of this DIB.

Returns the palette entry for the given color. Returns the palette entry for the toColor
argument.

Seealso TDib::GetColor, TColor, TDib::SetColor, TDib::FindColor

Mapindex
int Mapindex(uint16 fromindex, Word tolndex, bool doAll = false);
Maps the fromIndex to the tolndex in the current palette of this DIB.

Returns the palette entry for the tolndex argument.

172 ObjectWindows Reference Guide

TDib class

Seealso TDib::FindIndex, TDib::SetIndex, TDib::GetIndex

MapUIColors

void MapUIColors(uint mapColors, TColor* bkColor = 0)

Maps the Ul colors to the value specified in the parameter, mapColors, which is one of the
values of the Map enum. Use this function to get the colors for the face shading on
pushbuttons, the highlighting for a selected control button, the text on pushbuttons, the
shade of the window frame and the background color.

Seealso TDib:Map enum

NumColors
long NumColors() const;
Returns NumClrs, the number of colors in this DIB's palette.

Seealso TDib:Info

NumScans
uint16 NumScans() const;
Returns the number of scans in this DIB.

Seealso TDib::StartScan

operator <<

TClipboard& operator <<(TClipboard& clipboard, TDib& dib);

Writes the given dib to the given clipboard. Returns a reference to the resulting Clipboard,
allowing the normal chaining of <<.

Seealso TClipboard

operator ==

bool operator ==(const TDib& other) const;

Compares two handles and returns true if this DIB's handle equals the other (other)
DIB's handle.

Seealso Tdib::Handle
SetColor

void SetColor(int entry, TColor color);
Sets the given color for the given palette entry.

Seealso TDib:GetColor, TColor, TDib::MapColor, TDib::FindColor

Setindex
void Setindex(int entry, uint16 index);
Sets the given index for the given entry.

Seealso TDib::GetIndex, TDib::FindIndex, TDib::MapIndex
Size

TSize Size() const;
Returns TSize(W,H), the size of this DIB.

Seealso TDib::Info, TSize

Chapter 2, ObjectWindows library reference 173

TDib class

StartScan
uint16 StartScan() const;
Returns the DIB's starting scan line.

Seealso TDib::numScans

ToClipboard
void ToClipboard(TClipboard& clipboard);
Puts this DIB onto the specified Clipboard.

Seealso TClipboard
operator TRgbQuad()
operator const TRgbQuad far*() const;

operator TRgbQuad far*() const;
Typecasts this DIB by returning a pointer to its colors structure.

Seealso TDib::GetColors, TRgbQuad
Usage

uint16 Usage() const;
Returns the Mode for this DIB. This value tells GDI how to treat the color table.

Seealso TDib::Mode

Width
int Width() const;
Returns W, the DIB width.

Seealso TDib:Info

WriteFile
bool WriteFile(const char* filename);
Returns true if the call is successful; otherwise returns false.

Protected data members

Bits
void HUGE* Bits; .
Bits points into the block of memory pointed to by Info.

Seealso TDib::GetBits

H
int H;
The height of this DIB in pixels.

Seealso TDib:Height, TDib::Size, TDib:NumScans

Info
BITMAPINFO far* Info;
Locked global allocated block.

Seealso TDib::GetInfo

174 ObjectWindows Reference Guide

TDib class

IsCore
bool IsCore;
Set true if this DIB is an old-style PM DIB using core headers; otherwise, set false.

Seealso TDib::isPM

IsResHandle
bool IsResHandle;
Set true if this DIB is using a resource handle; otherwise, set false.

Mode

uint16 Mode;

If Mode is DIB_RGB_Colors, the color table contains 4-byte RGB entries. If Mode is
DIB_PAL_COLORS, the color table contains 2-byte indexes into some other palette (such
as the system palette). Because either of these two cases might exist, two versions of
certain functions (such as GetColors and GetIndices) are required.

Seealso TDib::GetColors, TDib::GetIndices, TDib::Usage

NumClrs
long NumClrs;
The number of colors associated with this DIB.

‘Seealso TDib::NumColors

w
int W;
The width of this DIB in pixels.

Seealso TDib::Width, TDib::Size

Protected member functions

InfoFromHandle

void InfoFromHandle();

Locks this DIB's handle and extracts the remaining data member values from the DIB
header.

Seealso TDib::GetInfoHeader
LoadFile
bool LoadFile(const char* name);

Loads this DIB from the given file name. Returns true if the call is successful; otherwise
returns false.

Seealso TDib::LoadResource, TDib constructors

LoadResource
bool LoadResource(HINSTANCE instance, TResID resID);
Loads this DIB from the given resource and returns true if successful.

Seealso TDib::LoadFile, TDib constructors

Chapter 2, ObjectWindows library reference 175

TDibDC Class

Read

bool Read(TFile& file, long offBits = 0);

Reads data to this DIB, starting at offset offBits, from any file, BMP, or resource. Returns
true if the call is successful; otherwise returns false.

Seealso TDib::LoadFile

TDibDC Class dc.h

A DC class derived from TDC, TDibDC provides access to device-independent bitmaps
(DIBs).

Public constructors

Constructor
TDibDC(const TDib& dib);
Creates a TDibDC object with the data provided by the given TDib object.

Seealso classTDib, TDC::TDC

TDocManager class docmanag.h

TDocManager creates a document manager object that manages the list of current
documents and registered templates, handles standard file menu commands, and
displays the user-interface for file and view selection boxes. To provide support for
documents and views, an instance of TDocManager must be created by the application
and attached to the application.

The document manager normally handles events on behalf of the documents by using a
response table to process the standard CM_FILENEW, CM_FILEOPEN,
CM_FILECLOSE, CM_FILESAVE, CM_FILESAVEAS, CM_FILEREVERT,
CM_FILEPRINT, CM_FILEPRINTERSETUP, and CM_VIEWCREATE. and
CM_VIEWCREATE File menu commands. In response to a CM_FILENEW or a
CM_FILEOPEN command, the document manager creates the appropriate document
based on the user's selections. In response to the other commands, the document
manager determines which of the open documents contains the view associated with
the window that has focus. The menu commands are first sent to the window that is in
focus and then through the parent window chain to the main window and finally to the
application, which forwards the commands to the document manager.

When you create a TDocManager or a derived class, you must specify that it has either a
multi-document (dmMDI) or single-document (dmSDI) interface. In addition, if you
want the document manager to handle the standard file commands, you must OR
dmMDI or dmSDI with dmMenu.

You can also enable or disable the document manager menu options by passing
dmSaveEnable or dmNoRevert in the constructor. If you want to enable the File | Save
menu option if the document is unmodified, pass the dmSaveEnable flag in the

176 " ObjectWindows Reference Guide

Form 1

Form 2

TDocManager class

constructor. To disable the "Revert to Saved" menu option, pass dmNoRevert in the
constructor.

When the application directly creates a new document and view, it can attach the view
to its frame window, create MDI children, float the window, or create a splitter.
However, when the document manager creates a new document and view from the
File | Open or File | New menu selection, the application doesn't control the process. To
give the application control, the document manager sends messages after the new
document and view are successfully created. Then, the application can use the
information contained in the template to determine how to install the new document or
view object.

Public constructor and destructor

Constructors

TDocManager(int mode, TDocTemplate*& templateHead = DocTemplateStaticHead);

Constructs a TDocManager object that supports either single (SDI) or multiple (MDI)
open documents depending on the application. mode is set to either dmMenu, dmMDI,
dmSDI, dmSaveEnable, or dmNoRevert. To install the standard TDocManager File menu
commands, you must OR dmMDI or dmSDI with dmMenu. For example,

DocManager = new TDocManager (DocMode | dmMenu) ;

The document manager can then use its menu and response table to handle these
events. If you do not specify the dmMenu parameter, you must provide the menu and
functions to handle these commands. However, you can still use your application
object's DocManager data member to access the document manager's functions.

TDocManager(int mode, TApplication* app, TDocTemplate*& templateHead = DocTemplateStaticHead);
The constructor performs the same operations as the first constructor. The additional
app parameter, however, points to the application associated with this document.

Destructor

virtual ~TDocManager();

Destroys a TDocManager object removes attached documents templates. The constructor
resets TDocTemplate::DocTemplateStaticHead so that it points to the head of the static
template list.

Seealso dmdoxx document manager mode constants

Public data members

DocList
TDocument::List DocList;
Holds the list of attached documents or 0 if no documents exist.

Public member functions

AttachTemplate
void AttachTemplate(TDocTemplate&);

Chapter 2, ObjectWindows library reference 177

TDocManager class

Inserts a template into the chain of templates.

CmFileClose

virtual void CmFileClose(); ,

Responds to a file close message. Tests to see if the document has been changed since it
was last saved, and if not, prompts the user to confirm the save operation.

CmFileNew
virtual void CmFileNew();
Calls CreateAnyDoc with no path specified.

See also TDocManager::CreateAnyDoc, dbooxx document template constants

CmFileOpen

virtual void CmFileOpen();

Lets the user select a registered template from the list displayed in the dialog box. Calls
CreateAnyDoc.

Seealso TDocManager::CreateAnyDoc

CmFileRevert

virtual void CmFileRevert();

Reverts to the previously saved document. Does not revert if the document has not been
changed since last save; that is, if the document's IsDirty function returns false.

CmFileSave

virtual void CmFileSave(); '

Responds to a file save message. Sets doc to the current document. CmFileSave checks
IsDirty only if the dmSaveEnable flag was not specified. Calls PostDocError with
IDS_NOTCHANGED if dmSaveEnable was NOT specified and IsDirty returns false.

Seealso IDS_xxxx Document String ID constants

CmFileSaveAs
virtual void CmFileSaveAs();

- Prompts the user to enter a new name for the document and saves the document to that
file.
CmViewCreate
virtual void CmViewCreate();
Creates a document view based on the view name of the current document. If more than
one template exists for the document, CmViewCreateallows the user to select the type of
view from the template list.

CreateAnyDoc

virtaul TDocument* CreateAnyDoc(const char far* path, long flags= 0);

Creates a document based on the directory path and the specified template. flags, one of
the document template constants, determines how the document template is created. If
path is 0 and this is not a new document (the flag dtNewDoc is not set), it displays a
dialog box. If path is 0, dtNewDoc is not set, and more than one template exists, it
displays a dialog box and a list of templates.

Seealso TDocTemplate:CreateDoc, dtxxxx document template constants

178 ObjectWindows Reference Guide

TDocManager class

CreateAnyView

virtual TView* CreateAnyView(TDocument& doc, long flags= 0);

Creates a document view based on the directory path and specified template. flags, one
of the document template constants, determines how the document template is created.

Seealso TDocument, TDocTemplate::CreateView, dtxxxx document templateconstants

CreateDoc

TDocument* CreateDoc(TDocTemplate* tpl, const char far *, TDocument* parent, long flags = 0);
CreateDoc creates a document based on the directory path and the specified template.
flags contains one of the document template constants that determines how the
documentis created.

Seealso TDocument, TDocTemplate::CreateView, dtxxxx document template constants

CreateView
TView* CreateView(TDocument* doc);
CreateView creates a view of the specified document.

Seealso TDocTemplate::CreateView, dtxxxx document template constants

DeleteTemplate
void DeleteTemplate(TDocTemplate&);
Removes a template from the list of templates attached to the document.

Seealso TDocManager::RefTemplate

EvCanClose

bool EvCanClose();

Checks to see if all child documents can be closed before closing the current document.
If any child returns false, returns false and aborts the process. If all children return true,
EvCanClose calls TDocManager::FlushDoc for each document. If FlushDoc finds that the
document is dirty, it displays a message asking the user to save the document, discard
any changes, or cancel the operation. If the document is not dirty and EvCanClose
returns true, EvCanClose returns true.

Seealso TApplication::CanClose, TDocManager::FlushDoc

EvPreProcessMenu

void EvPreProcessMenu(HMENU hmenu);

Called from MainWindow, EvPreProcessMenu loads and deletes a menu at the position
specified by ME_POSITION or MF_POPUP. Your application can call EvPreProcessMenu
to process the main window's menu before it is displayed.

Seealso TApplication::PreProcessMenu

EvWakeUp

void EvWakeUp();

Used only after streaming in the doc manager, EvWakeUp allows for the windows to be
created after the streaming has occurred.

FindDocument
TDocTemplate* FindDocument(const char far* path);

Chapter 2, ObjectWindows library reference 179

TDocManager class

MatchDocument returns the first document whose pattern matches the given file name. If
no document is compatible with the supplied file name, or if the document is open
already, it returns 0.

Seealso TDocTemplate

FlushDoc

virtual bool FlushDoc(TDocument& doc);

Updates the document with any changes and prompts the user for confirmation of
updates.

Seealso TDocument

GetApplication
TApplication* GetApplication();
Returns the current application.

Seealso TApplication

GetCurrentDoc

virtual TDocument* GetCurrentDoc();

Calls TWindow::GetFocus to determine the window with the focus. Searches the list of
documents and returns the document that contains the view with the focus. Returns 0 if
no document has a view with focus.

Seealso TDocument

GetNextTemplate
TDocTemplate* GetNextTemplate(TDocTemplate* tpl);
Returns the next document template.

Seealso TDocTemplate

InitDoc

TDocument* InitDoc(TDocument* doc, const char far* path, long flags)

Initializes the documents, directory path for the document, and dtXXXX document flag
values (such as dtNewDoc) used to create document templates.

Seealso TDocTemplate, dt Documentview Constants

IsFlagSet
bool IsFlagSet(int Flag);
Returns true if the dtXXXX document template constant specified in Flag is set.

Seealso dt Documentview Constants

MatchTemplate
TDocTemplate* MatchTemplate(const char far* path);

- MatchTemplate returns the first registered template whose pattern matches the given file
name. If no template is compatible with the supplied file name, or if the template is open
already, it returns 0.

Seealso TDocTemplate

180 ObjectWindows Reference Guide

TDocManager class

PostDocError

virtual uint PostDocError(TDocument& doc, uint sid, uint choice = MB_OK);

Displays a message box with the error message passed as a string resource ID in sid. By
default, the message box contains either an OK pushbutton or a question mark icon. If
an error message can't be found, PostDocError displays a "Message not found" message.
choice can be one or more of the MB_Xxxx message style constants. This function can be
overridden.

Seealso TDocument::PostError, MB_Xxxx Message Constants

PostEvent

Form1 virtual void PostEvent(int id, TDocument& doc);
If the current document changes, posts a WM_OWLDOCUMENT message to indicate a
change in the status of the document.

Form 2 virtual void PostEvent(int id, TView& view);
If the current view changes, posts a WM_OWLVIEW message to indicate a change in
the status of the view.

Seealso TDocument, TView

RefTemplate
void RefTemplate(TDocTemplate&);
Adds a template to the list of templates attached to the document.

Seealso TDocManager::UnRefTemplate, TDocTemplate

SelectAnySave
virtual TDocTemplate* SelectAnySave(TDocument& doc, bool samedoc = true);
Selects a registered template to save with this document.

Seealso TDocTemplate, TDocument

SelectSave
bool SelectSave(TDocument& doc);
Prompts the user to select a file name for the document. Filters out read-only files.

Seealso TDocTemplate::SelectSave

UnRefTemplate
void UnRefTemplate(TDocTemplated);
Removes a template to the list of templates attached to the document.

Seealso TDocManager::RefTemplate, TDocTemplate

Protected member functions

SelectDocPath
virtual int SelectDocPath(TDocTemplate** tpllist, int tplcount, char far* path, int buflen, long flags,
bool save=false);
Prompts the user to select one of the templates to use for the file to be opened. Returns
the template index used for the selection or 0 if unsuccessful. For a file open operation,

Chapter 2, ObjectWindows library reference 181

TDocument class

save is false. For a file save operation, save is true. This function can be overridden to
provide a customized user-interface.

Seealso TDocTemplate

SelectDocType
virtual int SelectDocType(TDocTemplate** tpliist, int tplcount);
SelectDocType, which can be overridden, lets the user select a document type from a list

of document templates. Returns the template index used for the selection or 0 if
unsuccessful.

Seealso TDocTemplate

SelectViewType
virtual int SelectViewType(TDocTemplate** tpllist, int tplcount);
SelectViewType, which can be overridden, lets the user select a view name for a new view

from a list of view names. Returns the template index used for the selection or 0 if
unsuccessful.

Seealso TDocTemplate

Response table entries

‘Response table er -
EV_COMMAND(CM_FILECLOSE, CmFileClose)

CmFileClose
EV_COMMAND(CM_FILENEW, CmFileNew) CmFileNew
EV_COMMAND(CM_FILEOPEN, CmFileOpen) CmFileOpen
EV_COMMAND(CM_FILEREVERT, CmFileRevert) CmFileRevert
EV_COMMAND(CM_FILESAVE, CmFileSave) CmPFileSave
EV_COMMAND(CM_FILESAVEAS, CmFileSaveAs) CmFileSaveAs
EV_COMMAND(CM_VIEWCREATE, CmViewCreate) CmViewCreate
EV_COMMAND_ENABLE(CM_FILECLOSE, CmEnableClose) CmEnableClose
EV_COMMAND_ENABLE(CM_FILENEW, CmEnableNew) CmEnableNew
EV_COMMAND_ENABLE(CM_FILEOPEN, CmEnableOpen) CmEnableOpen
EV_COMMAND_ENABLE(CM_FILEREVERT, CmEnableRevert) EmEnableRevert
EV_COMMAND_ENABLE(CM_FILESAVE, CmEnableSave) CmEnableSave
EV_COMMAND_ENABLE(CM_FILESAVEAS, CmEnableSaveAs) CmEnableSaveAs
EV_COMMAND_ENABLE(CM_VIEWCREATE, CmEnableCreate) CmEnableCreate
EV_WM_CANCLOSE EvCanClose
EV_WM_PREPROCMENU EvPreProcessMenu
EV_WM_WAKEUP EvWakeUp

TDocument class

docview.h

An abstract base class, TDocument is the base class for all document objects and serves
as an interface between the document, its views, and the document manager

182 ObjectWindows Reference Guide

TDocument class

(TDocManager class). TDocument creates, destroys, and sends messages about the view.
For example, if the user changes a document, TDocument tells the view that the
document has been updated. The DEFINE_DOC_TEMPLATE_CLASS macro associates
a document with its views.

In order to send messages to its associated views, the document maintains a list of all the
views existing for that document and communicates with the views using
ObjectWindows event-handling mechanism. Rather than using the function
SendMessage, the document accesses the view's event table. The views can update the
document's data by calling the member functions of the particular document. Views can
also request streams, which are constructed by the document.

Both documents and views have lists of properties for their applications to use. When
documents and views are created or destroyed, messages are sent to the application,
which can then query the properties to determine how to process the document or view.
It is the document manager's responsibility to determine if a particular view is
appropriate for the given document.

Because the property attribute functions are virtual, a derived class (which is called first)
might override the properties defined in a base class. Each derived class must
implement its own property attribute types of either string or binary data. If the derived
class duplicates the property names of the parent class, it should provide the same
behavior and data type as the parent.

In order to add persistence to documents, TDocument contains several virtual functions
(for example, InStream and OutStream) that support streaming. Your derived classes
need to override these functions in order to read and write data.

Although documents are usually associated with files, they do not necessarily have to
be files; they can also consist of database tables, mail systems, fax or modem
transmissions, disk directories, and so on.

Public data members

ChildDoc
List ChildDoc;
The list of child documents associated with this document.

Tag

void far* Tag;

Tag holds a pointer to the application-defined data. Typically, you can use Tag to install
a pointer to your own application's associated data structure. Tag, which is initialized to
0 at the time a TDocument is constructed, is not used otherwise by the document view
classes.

Type definition

TDocProp
enum TDocProp{ PrevProperty = 0, DocumentClass, TemplateName, ViewCount, StoragePath, DocTitle,
NextProperty, };

Chapter 2, ObjectWindows library reference 183

TDocument class

These property values, defined for TDocument, are available in classes derived from
TDocument. PrevProperty and NextProperty are delimiters for every document's

property list.

Public constructor and destructor

Constructor

TDocument(TDocument* parent = 0);

Although you don't create a TDocument object directly, you must call the constructor
when you create a derived class. parent points to the parent of the new document. If no
parent exists, parent is 0.

Destructor

virtual ~TDocument();

Deletes a TDocument object. Normally, Close is called first. TDocument's destructor
destroys all children and closes all open streams. If this is the last document that used
the template, it closes the object's template and any associated views, deletes the object's
stream, and removes itself from the parent's list of children if a parent exists. If there is
no parent, it removes itself from the document manager's document list.

Seealso TDocument::Close

Public member functions

CanClose

virtual bool CanClose();

Checks to see if all child documents can be closed before closing the current document.
If any child returns false, CanClose returns false and aborts the process. If all children
return true, calls TDocManager::FlushDoc. If FlushDoc finds that the document has been
changed but not saved, it displays a message asking the user to either save the
document, discard any changes, or cancel the operation. If the document has not been
changed and all children's CanClose functions return true, this CanClose function returns
true.

Seealso TDocManager::FlushDoc

Close

virtual bool Close();

Closes the document but does not delete or detach the document. Before closing the
document, Close checks any child documents and tries to close them before closing the
parent document. Even if you write your own Close function, call TDocument's version
so that all child documents are checked before the parent document is closed.

Commit

virtual bool Commit(bool force = false);

Saves the current data to storage. When a file is closed, the document manager calls
either Commit or Revert. If force is true, all data is written to storage. TDocument's Commit
checks any child documents and commits their changes to storage also. Before the
current data is saved, all child documents must return true. If all child documents return

184 ObjectWindows Reference Guide

TDocument class

true, Commit flushes the views for operations that occurred since the last time the view
was checked. Once all data for the document is updated and saved, Commit returns true.

Seealso TDocument:Revert

FindProperty

virtual int FindProperty(const char far* name);

Gets the property index, given the property name (name). Returns the integer index
number that corresponds to the name or 0 if the name isn't found in the list of
properties.

Seealso pfxxxx property attribute constants, TDocument::PropertyName

GetDocManager
TDocManager& GetDocManager();
Returns a pointer to the current document manager.

GetDocPath
const char far* GetDocPath();
Returns the directory path for the document. This might change the SaveAs operation.

GetOpenlMode
int GetOpenMode;
Gets the mode and protection flag values for the current document.

Seealso TDocument:SetOpenMode

GetParentDoc

TDocument* GetParentDoc():

Returns the parent document of the current document or 0 if there is no parent
document.

GetProperty

virtual int GetProperty(int index, void far* dest, int textlen=0);

Returns the total number of properties for this document where index is the property
index, dest contains the property data, and textlen is the size of the array. If textlen is 0,
property data is returned as binary data; otherwise, property data is returned as text

data.

Seealso phHxxxx property attribute constants, TDocument::SetProperty

GetTemplate

TDocTemplate* GetTemplate();

Gets the template used for document creation. The template can be changed during a
SaveAs operation.

GetTitle
CONST CHAR FAR* GetTitle();
Returns the title of the document.

HasFocus
bool HasFocus(HWND hwnd);

Chapter 2, ObjectWindows library reference 185

TDocument class

Used by the document manager, HasFocus returns true if this document's view has
focus. hwnd is a handle to the document to determine if the document contains a view
with a focus.

The view associated with this document is the active view.

InitDoc

virtual bool InitDoc();

TDocument's InitDoc is a virtual method that is overridden by TOleDocument's InitDoc.
- You can use this function to prepare the document before the dnCreate event, which

indicates that the document has been created, is posted and before the view is

constructed.

Seealso TOleDocument::InitDoc, dnxxxx document message enum

InStream

virtual TInStream* InStream(int mode, const char far* strmld=0);

Generic input for the particular storage medium, InStream returns a pointer to a
TInStream. mode is a combination of the ios bits defined in iostream.h. See the document
open mode constants for a list of the open modes. Used for documents that support
named streams, strmld is a pointer to the name of a stream. Override this function to
provide streaming for your document class.

Seealso TDocument:OutStream

IsDirty
virtual bool IsDirty();
Returns true if the document or one of its views has changed but has not been saved.

IsEmbedded
virtual bool IsEmbedded();
Returns true if the document is embedded in an OLE2 container.

Seealso TDocument::SetEmbedded

IsOpen

virtual bool IsOpen();

Checks to see if the document has any streams in its stream list. Returns false if no
streams are open; otherwise, returns true.

NextStream
TStream* NextStream(const TStream* strm);
Gets the next entry in the stream. Holds 0 if none exists.

NextView
TView* NextView(const TView* view);
Gets the next view in the list of views. Holds 0 if none exists.

NotifyViews

bool NotifyViews(int event, long item=0, TView* exclude=0);

Notifies the views of the current document and the views of any child documents of a
change, In contrast to QueryViews, NotifyViews sends notification of an event to all views
and returns true if any views returned a true result. The event, EV_OWLNOTIFY, is

186 ObjectWindows Reference Guide

TDocument class

sent with an event code, which is private to the particular document and view class, and
a long argument, which can be cast appropriately to the actual type passed in the
argument of the response function.

Seealso TDocument:QueryViews

Open

virtual bool Open(int mode, const char far* path = 0);

Opens the document using the path specified by DocPath. Sets OpenMode to mode.
TDocument's version always returns true and actually performs no actions. Other classes
override this function to open specified file documents and views.

‘Seealso TFileDocument::Open

OutStream

virtual TOutStream* OutStream(int mode, const char far* strmld = 0);

Generic output for the particular storage medium, OutStream returns a pointer to a
TOutStream. mode is a combination of the ios bits defined in iostream.h. Used for
documents that support named streams, strmld points to the name of the stream.
TDocument's version always returns 0. Override this function to provide streaming for
your document class.

Seealso TDocument:InStream

PostError

virtual uint PostError(uint sid, uint choice = MB_OK);

Posts the error message passed as a string resource ID in sid. choice is one or more of the
MB_Xxxx style constants.

Seealso TDocManager::PostDocError, MB_Xxxx message constants

PropertyCount
virtual int PropertyCount();
Gets the total number of properties for the TDocument object. Returns NextProperty —1.

Seealso pfxxxx property attribute constants

PropertyFlags

virtual int PropertyFlags(int index);

Returns the attributes of a specified property given the index (index) of the property
whose attributes you want to retrieve.

Seealso phHxxxx property attribute constants, TDocument::FindProperty,
TDocument::PropertyName

PropertyName
virtual const char* PropertyName(int index);
Returns the name of the property given the index value (index).

Seealso phxxxx property attribute constants, TDocument::FindProperty

QueryViews
TView* QueryViews(int event, long item=0, TView* exclude=0);

Chapter 2, ObjectWindows library reference 187

TDocument class

Queries the views of the current document and the views of any child documents about
a specified event, but stops at the first view that returns true, In contrast to NotifyViews,
QueryViews returns a pointer to the first view that responded to an event with a true
result. The event, EV_OWLNOTIFY, is sent with an event code (which is private to the
particular document and view class) and a long argument (which can be cast
appropriately to the actual type passed in the argument of the response function).

Seealso TDocument:NotifyViews

Revert

virtual bool Revert(bool clear = false);

Performs the reverse of Commit and cancels any changes made to the document since
the last commit. If clear is true, data is not reloaded for views. Revert also checks all child
documents and cancels any changes if all children return true. When a file is closed, the
document manager calls either Commit or Revert. Returns true if the operation is
successful.

Seealso TDocument:Commit

RootDocument
virtual TDocument& RootDocument();
Returns the this pointer as the root document.

SetDocManager
void SetDocManager(TDocManager& dm);
Sets the current document manager to the argument dm.

SetDocPath
virtual bool SetDocPath(const char far* path);
Sets the document path for Open and Save operations.

SetEmbedded

virtual bool SetEmbedded();

SetEmbedded marks the document as being embedded in an OLE2 container. Typically,
this happens when the server is created and when the factory template class create the
component.

Seealso TDocument:IsEmbedded
SetOpenMode

void SetOpenMode(int mode);
Sets the mode and protection flag values for the current document.

Seealso TDocument:GetOpenMode

SetProperty

virtual bool SetProperty(int index, const void far* src);

Sets the value of the property, given index, the index value of the property, and src, the
data type (either binary or text) to which the property must be set.

Seealso pfxxxx property attribute constants, TDocument::GetProperty

188 ObjectWindows Reference Guide

TDocument::List class

SetTemplate

bool SetTemplate(TDocTemplate* tpl);

Sets the document template. However, if the template type is incompatible with the file,
the document manager will refuse to save the file