

Programmer's Guide

Borland®
ObjectWindows®
Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1991, 1994 Borland International. All rights reserved. All Borland products are trademarks or
registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.

1EOR1094
9495969798-9 8 7 6 5 4 3 2
Hl

Contents
Introduction 1
ObjectWindows documentation 1
Programmer's Guide organization. 2
Typefaces and icons used in this book 3

Chapter 1
Overview of ObjectWindows 5
Working with class hierarchies 5

Using a class 5
Deriving new classes 5
Mixing object behavior 6
Instantiating classes 6
Abstract classes 7

Inheriting members 7
Types of member functions8

Virtual functions 8
Nonvirtual functions 8
Pure virtual functions 9
Default placeholder functions 9

Object typology . 9
Window classes 10

Windows 10
Frame windows 10
MDI windows 10
Decorated windows 10

Dialog box classes 10
Common dialog boxes 10
Other dialog boxes 11

Control classes 11
Standard Windows controls 11
Widgets 11
Gadgets 11
Decorations . 11

Graphics classes 12
DC classes . 12
GDI objects . 13

Printing classes 13
Module and application classes 13
Doc/View classes 13
Miscellaneous classes 14

Menus 14
Clipboard . 14

Chapter 2
Application and module objects 15
The minimum requirements 16

Including the header file 16
Creating an object. 16
Calling the Run function. 16

Finding the object 17
Creating the minimum application 17

Initializing applications 18
Constructing the application object 18
Using WinMain and OwlMain 20
Calling initialization functions. 21

Initializing the application 21
Initializing each new instance 23
Initializing the main window. 23

S~~~~~ ~h~ ~a~.~~~~~ ~~s~l~~ 24
Changing the main window 25

Application message handling 25
Extra message processing. 25
Idle processing 25

Closing applications 26
Changing closing behavior. 26

Closing the application 26
Modifying CanClose 26

Using control libraries 27
Using the Borland Custom Controls

Library 27
Using the Microsoft 3-D Controls Library ... 28

Chapter3
Interface objects 29
Why interface objects? 30

What do interface objects do? 30
The generic interface object: TWindow 30
Creating interface objects 31

When is a window handle valid? 31
Making interface elements visible 31
Object properties. 32
Window properties 32

Destroying interface objects 33
Destroying the interface element 33
Deleting the interface object 33

Parent and child interface elements 34
Child-window lists 34
Constructing child windows 34
Creating child interface elements 35
Destroying windows 36
Automatic creation 37
Manipulating child windows 37

Operating on all children: ForEach 37
Finding a specific child 38
Working with the child list 38

Registering window classes 38

Chapter4
Event handling 39
Declaring response tables . . . 40
Defining response tables. . . . 40
Defining response table entries. . . . 41

Command message macros. 43
Windows message macros 45
Child ID notification message macros 46

EV_CHILD_NOTIFY 46
EV_CHILD_NOTIFY_ALL_CODES 47
EV_CHILD_NOTIFY_AND_CODE 48
EV _CHILD_NOTIFY_AT_CHILD 48

Chapters
Command enabling 49
Handling command-enabling messages . . 49
Working with command-enabling objects ... 51

ObjectWindows command-enabling objects . . 51
TCommandEnabler: The command-enabling

interface . 51
Functions . 52
Data members 53

Common command-enabling tasks 53
Enabling and disabling command items 53
Changing menu item text 55
Toggling command items 56

Chapter6
ObjectWindows exception handling 59
ObjectWindows exception hierarchy 59

Working with TXBase 60
Constructing and destroying TXBase 60
Cloning exception objects. 60
Throwing TXBase exceptions 61

Working with TXOwl 61
Constructing and destroying TX Owl 62
Cloning TXOwl and TXOwl-derived

exception objects 62
Specialized ObjectWindows exception

classes. 62
ObjectWindows exception-handling

macros 63

T~~1?b!e~~':~~~~s. e.x~e.p~~~s.o~ 64
Macro expansion 64

Chapter 7
Window objects
Using window objects .

65
. 65

ii

Constructing window objects 65
Constructing window objects with

virtual bases 66
Setting creation attributes. 66

Overriding default attributes 67
Child-window attributes 67

Creating window interface elements 68
Layout windows 69

Layout constraints 70
Defining constraints 70
Defining constraining relationships 73
Indeterminate constraints 7 4

Using layout windows 74
Frame windows 75

Constructing frame window objects 76
Constructing a new frame window 76
Constructing a frame window alias 77

Modifying frame windows. 78
Decorated frame windows 78

Constructing decorated frame window
objects 79

Adding decorations to decorated frame
windows 80

MDI windows 80
MDI applications. 81

MDI Window menu 81
MDI child windows 81
MDI in ObjectWindows 81

Building MDI applications 82
Creating an MDI frame window. 82
Adding behavior to an MDI client

window 83
Manipulating child windows 83

Creating MDI child windows. 83
Automatic child window creation 83
Manual child window creation 84

Chapters
Menu objects 85
Constructing menu objects . 85
Modifying menu objects . . . 86
Querying menu objects. 86
Using system menu objects 87
Using pop-up menu objects 88
Using menu objects with frame windows 89

Adding menu resources to frame windows . . 89
Using menu descriptors 90

Creating menu descriptors 92
Constructing menu descriptor objects. 93
Creating menu groups in menu resources . . 93
Merging menus with menu descriptors. . . . 94

Chapter9
Dialog box objects 97
Using dialog box objects. 97

Constructing a dialog box object 98
Calling the constructor 98

Executing a dialog box. 98
Modal dialog boxes 98
Modeless dialog boxes 99
Using autocreation with dialog boxes. 100
Managing dialog boxes 101
Handling errors executing dialog boxes . . . 101

Closing the dialog box 102
Using a dialog box as your main window . . 102
Manipulating controls in dialog boxes 103

Communicating with controls 104
Associating interface objects with

controls . 104
Control objects 105
Setting up controls 106

Using dialog boxes 106
Using input dialog boxes 107
Using common dialog boxes 107

Constructing common dialog boxes. 107
Executing common dialog boxes 108

Using color common dialog boxes. 109
Using font common dialog boxes 110
Using file open common dialog boxes 111
Using file save common dialog boxes 112
Using find and replace common dialog

boxes 113
Constructing and creating find and replace

common dialog boxes 113
Processing find-and-replace messages 113
Handling a Find Next command 114

Using printer common dialog boxes. 115

Chap!er 10
DocNiew objects
How documents and views work

117

together. 117
Documents 119
Views 119
Associating document and view classes . . . 120
Managing Doc/View 120

Document templates 121
Designing document template classes. 121
Creating document registration tables 122
Creating template class instances 123
Modifying existing templates 125

Using the document manager 125
Constructing the document manager 126
TDocManager event handling 127

iii

Creating a document class. 128
Constructing TDocument.129
Adding functionality to documents.129
Data access functions129

Stream access 130
Stream list 130
Complex data access 130
Data access helper functions 131

Closing a document.131
Expanding document functionality.132
Working with the document manager132
Working with views 132

Creating a view class 134
Constructing TView.134
Adding functionality to views134

TView virtual functions 135
Adding a menu 135

Adding a display to a view.135
Adding pointers to interface objects 135
Mixing TView with interface objects 136

Closing a view136
Doc/View event handling 136

Doc/View event handling in the
application object137

Doc/View event handling in a view 138
Handling predefined Doc/View events ... 138
Adding custom view events 138

Doc/View properties. 139
Property values and names140
Accessing property information.141

Getting and setting properties141

Chapter 11
Control objects 143
Control classes 143

What are control objects?144
Constructing and destroying control

objects . 144
Constructing control objects144

A!~:~!e.c~~~~l ~~j~~ :~~~e~ ~~~ l4S
Calling control object constructors 145
Changing control attributes.146
Initializing the control 146

Showing controls.146
Destroying the control146

Communicating with control objects 147
Manipulating controls.147
Responding to controls147
Making a window act like a dialog box147

Using particular controls. 147
Using list box controls.148

Constructing list box objects 148

Moclifying list boxes 148
Querying list boxes 149
Responding to list boxes • 149

Using static controls 150
Constructing static control objects. 150
Modifying static controls 151
Querying static controls. 151

Using button controls 151
Constructing buttons 151
Responding to buttons 152

Using check box and radio button
controls . 152

Constructing check boxes and radio
buttons. .153

Modifying selection boxes 153
Querying selection boxes 154

Using group boxes 154
Constructing group boxes 154
Grouping controls 154
Responding to group boxes 155

Using scroll bars 155
Constructing scroll bars 155
Controlling the scroll bar range 155
Controlling scroll amounts 156
Querying scroll bars 156
Modifying scroll bars 156
Responding to scroll-bar messages 156

A voiding thumb tracking messages . . . 157
Specializing scroll bar behavior 157

Using sliders and gauges 158
Using edit controls 159

Constructing edit controls 159
Using the Clipboard and the Edit menu . . .160
Querying edit controls.160
Modifying edit controls 161

Using combo boxes. 162
Varieties of combo boxes 162
Choosing combo box types. . "163
Constructing combo boxes 163
Modifying combo boxes . ;164
Querying combo boxes 164

Setting and reading control values. 164
Using transfer buffers 164
Defining the transfer buffer 165

List box transfer 166
Combo box transfer 167

Defining the correspondillg window or
dialog box . 167

Using transfer with a dialog box.168
Using transfer with a window 168

Transferring the data. 168
Transferring data to a window 168
Transferring data from a dialog box.169
Transferring data from a window.169 ·

iv

Supporting transfer for customized
controls. .169

Chapter 12 ·
Gadget and gadget window objects 171
Gadgets . 171

Class TGadget 171
Constructing and destroying TGadget 171
Identifying a gadget172
Modifying and accessing gadget

appearance173
Bounding the gadget 173
Shrink wrapping a gadget. 173
Setting gadget size 174
Matching gadget colors to system colors ... 174
TGadget public data members 174
Enabling and disabling a gadget. 174

Deriving from TGadget.175
Initializing and cleaning up 175
Painting the gadget 175
Invalidating and updating the gadget. 176
Mouse events in a gadget 176

ObjectWindows gadget classes 177
Class TSeparatorGadget 178
Class TTextGadget 178

Constructing and destroying
TTextGadget.178

Accessing the gadget text 178
Class TBitmapGadget.179

Constructing and destroying
TBitmapGadget.179

Selecting a new image 179
Setting the system colors 179

Class TButtonGadget180
Constructing and destroying

TButtonGadget 180
Accessing button gadget information 181
Setting button gadget style 181
Command enabling 182
Setting the system colors182

Class TControlGadget.182
Constructing and destroying

TControlGadget 182
Gadget windows 182

Constructing and destroying ·
TGadgetWindow 183

Creating a gadget window183
Inserting a gadget into a gadget window. . .183
Re~oving a gadget from a gadget

wmdow 184
Set?ng ~dow margins and layout ·

drrection 184
Laying out the gadgets 184
Notifying ~e window when a gadg~t

changes size 185

Shrink wrapping a gadget window 185
Accessing window font 186
Capturing the mouse for a gadget. 186
Setting the hint mode 186
Idle action processing 187
Searching through the gadgets 187

Deriving from TGadgetWindow. 187
Painting a gadget window 187
Size and inner rectangle. 188
Layout units. 188
Message response functions 189

ObjectWindows gadget window classes . . . 189
Class TControlBar 189
Class TMessageBar 190

Constructing and destroying
TMessageBar 190

Setting message bar text. 190
Setting the hint text 190

Class TStatusBar 191
Constructing and destroying TStatusBar. . . 191
Inserting gadgets into a status bar. 191
Displaying mode indicators 191
Spacing status bar gadgets 192

Class TToolBox 192
Constructing and destroying TToolBox . . . i92
Changing tool box dimensions. 193

Chapter 13
Printer objects 195
Creating a printer object 195
Creating a printout object 197
Printing window contents 198
Printing a document 199

Setting print parameters. 199
Counting pages 199
Printing each page 200
Indicating further pages 200
Other printout considerations 200

Choosing a different printer 201

Chapter 14
Graphics objects 203
GDI class organization. 203
Changes to encapsulated GDI functions . . . 204 -
Working with device contexts 206

TDC class . 206
Constructing and destroying TDC 207
Device-context operators 207
Device-context functions 208
Selecting and restoring GDI objects 208
Drawing tool functions 209
Color and palette functions. 209

v

Drawing attribute functions209
Viewport and window mapping

functions .210
Coordinate functions.210
Clip and update rectangle and region

£Unctions .210
Metafile functions210
Current position functions210
Font functions.211
Path functions.211
Output functions211
Object data members and functions213

TPen class. 213
Constructing TPen.213
Accessing TPen.215

TBrush class . 215
Constructing TBrush215
Accessing TBrush216

TFont class . 217
Constructing TFont 217
Accessing TFont218

TPalette class. 218
Constructing TPa:lette218
Accessing TPa:lette.219

Member functions219
Extending TPalette.220

TBitmap class 221
Constructing TBitmap.221
Accessing TBitmap222

Member functions223
Extending TBitmap224

TRegion class 224
Constructing and destroying TRegion224
Accessing TRegion.226

Member functions _.226
Operators .227

Tlcon class . 229
Constructing Tlcon229
Accessing Tlcon230

TCursor class. 231
Constructing TCursor.231
Accessing TCursor.232

TDib class. 232
Constructing and destroying TDib233
Accessing TDib.234

Type conversions234
Accessing internal structures234
DIB information235
Working in palette or RGB mode 235
Matching interface colors to system

colors 237
Extending TDib237

Chapter 15
Validator objects 239
The standard validator classes 239

Validator base class 240
Filter validator class 240
Range validator class. 240
Lookup validator class. 240
String lookup validator class 241
Picture validator class 241

Using data validatdrs. 242
Constructing an edit control object. 242
Constructing and assigning validator

objects. 242
Overriding validator member functions . . . 243

Member function Valid 243
Member function IsValid 243
Member function IsValidlnput. 243
Member function Error 244

Chapter 16
Visual Basic controls 245
Using VBX controls 245
VBX control classes. 246

TVbxControl class 246
TVbxControl constructors 247
Implicit and explicit construction 248

TVbxEventHandler class 249
Handling VBX control messages. 249

Event response table 249
Interpreting a control event 250
Finding event information 251

Accessing a VBX control. 251
VBX control properties. 251

Finding property information 252
Getting control properties 252
Setting control properties 253

VBX control methods 253

Chapter 17
ObjectWindows dynamic-link
libraries 255

Writing DLL functions. 255
DLL entry and exit functions 256

LibMain . 256
WEP 256
DllEntryPoint 257

Exporting DLL functions 257
Importing (calling) DLL functions 257

Writing shared ObjectWindows classes. . . . 258
Defining shared classes 258

vi

The TModule object. 259
Using ObjectWindows asa DLL 260
Calling an ObjectWindows DLL from a

non-ObjectWindows application 260
Implicit and explicit loading. 261
Mixing static and dynamic-linked libraries. . 261

Chapter 18.
Support for OLE in Borland C++ 263
What does ObjectComponents do? 263
Where should you start? 264

Writing applications 264
Creating a new application264
Converting an application into an OLE

container .264
Converting application into a linking and

embeddfug server265
Adding automation support265
Other useful topics265

Leaming about ObjectComponents.265
What is OLE? 266

Linking and embedding266
Automation. .267

What does OLE look like? 267
Inserting an object268
Editing an object in place269
Activating, deactivating, and selecting an .

. object 271
Finding an object's verbs 272
Linking an object 273
Opening an object to edit it 274

What is ObjectComponents? 275
OLE 2 features supported by

ObjectComponents276
Using ObjectComponents 278

Overview of classes and messages278
Linking and embedding classes279
Connector objects.279
Automation classes.280
ObjectComponents messages. 281
Messages and windows283
New ObjectWindows OLE classes.283

Exception handling in ObjectComponents. . .284
TXOle and OLE error codes.285

Building an ObjectComponents ·
application .286

Distributing files with your application287
How ObjectComponents works · . . . 287

How ObjectComponents talks to OLE287
How ObjectComponents talks to you288
Linking and embedding connections.288
Automation connections291

ObjectComponents Programming Tools . . . 292
Utility programs 292

Where do Ilook for information? 293
Books 293
Online Help . 294
Example programs 294

Glossary of OLE terms 295

Chapter 19
Creating an OLE container 303
Turnillg a Doc/View application into an

OLE container 303
1. Connecting objects to OLE 304

Deriving the application object from
TOcModule 304

Inheriting from OLE classes 305
Creating an application dictionary 306

2. Registering a container 306
Building registration tables. 307
Understanding registration macros 309
Creating a registrar object 310

3. Supporting OLE commands 311
Settin~ up the Edit menu and the

tool ar 312
Loading and saving compound

documents 312
4. Building the container. 313

Including OLE headers 314
Compiling and linking 314

Turnillg an ObjectWindows application
into an OLE container 315

1. Setting up the application 316
Defining an application dictionary object .. 316
Modifying your application class 316

2. Registering a container 317
Creating registration tables 317
Creating a registrar object 318

3. Setting up the client window 319
Inheriting from OLE classes 320
Delaying the creation of the client

window in SDI applications 320
Creating ObjectComponents view and

document objects. 321
4. Programming the user interface 322

Handling OLE-related messages and
events 322

Supporting menu merging 324
Updating the Edit menu 327
Assigning a tool bar ID 328

5. Building a container 328
Including OLE headers 328
Compiling and linking 328

Turnillg a C ++ application into an OLE
container . 328

vii

1. Registering a container.329
Building a registration table.330
Creating the registrar object.330
Creating a memory allocator331

2. Creating a view window.332
Cr~ating,. resizing, and destroying the

view wmdow 332
Creating a TOcDocument and TOcView ... 333
Handling WM_OCEVENT 334
Handling selected view events335
Painting the document.335
Activating and deactivating objects337

3. Programming the main window337
Creating the main window337
Handling WM_ OCEVENT337
Handling selected application events338
Handling standard OLE menu

commands.338
Building the program339

Including ObjectComponents headers339
Compiling and linking.340

Chapter20
Creating an OLE server 341
Turnillg a Doc/View application into an

OLE server . 341
1. Connecting objects to OLE 342

Creating an application dictionary 342
Deriving the application object from

TOcModule 343
Inheriting from OLE classes.344

2. Registering a linking and embedding
server 344

Building registration tables344
Creating a registrar object347
Processing the command line.349

3. Drawing, loading, and saving objects 350
Telling clients when an object changes 350
Loading and saving the server's

documents.351
4. Building the server 351

Including OLE headers351
Compiling and linking.352

Turnillg an ObjectWindows application
into an OLE server 352

1. Registering the server353
Creating an application dictionary 353
Creating registration tables353
Creating the document list355
Creating the registrar object.355

2. Setting up the client window356
Creating helper objects for a document356

3. Modifying the application class 357

Understanding the TRegLink document
list. 358

4. Building the server 359
Including OLE headers 359
Compiling and linking 359

Turning a C++ application into an OLE
server 359

1. Creating a memory allocator. 360
2. Registering the application. 360

Building registration tables. 361
Creating the document list 361
Creating the registrar object 362
Writing the factory callback function 363

3. Creating a view window 366
Creating, resizing, and destroying the

view window 366
Creating a new server document 367
Handling WM_ OCEVENT 368
Handling selected view events 369
Painting the document 369

4. Programming the main window 370
Creating the main window 370
Handling WM_ OCEVENT. 370
Handling selected application events. 371

5. Building the server 371
Including ObjectComponents headers 371
Compiling and linking 371

Understanding registration 372
Storing information in the registration

database . 372
Registering localized entries 373
Registering custom entries 374

Making a DLL server 374
Pros and cons of DLL servers 374
Building a DLL server 375

Updating your document registration
table 375

Compiling and linking 377
Debugging a DLL server 377
Tools for DLL servers 379

Registering your DLL server 379
Running your DLL server 379

Chapter 21
Automating an application 381
Steps to automating an application . . 381

1. Registering an automation server 382
Creating a registration table 382
Creating a registrar object. 385

2. Declaring automatable methods and
properties . 385

Writing declaration macros. 386
Providing optional hooks for validation

and filtering 387

viii

3. Defining external methods and properties .388
Writing definition macros.389
Data type specifiers in an automation

definition. .390
Exposing data for enumeration.392

4. Building the server 393
Including header files394
Compiling and linking.394

Enhancing automation server functions 394
Combining multiple C++ objects into a

single OLE automation object395
Telling OLE when the object goes away 396
Localizing symbol names.397

Putting translations in the resource
script 397

Marking translatable strings in the
source code398

Understanding how ObjectComponents
uses XLAT resources.399

Localizing registration strings400
Exposing collections of objects.400

Constructing and exposing a collection
class401

Implementing an iterator for the
collection. ·.402

Adding other members to the
collection class 404

Creating a type library405

Chapter 22
Creating an automation controller 407
Steps for building an automation

controller . 407
Including header files408
Creating a TOleAllocator object408
Declaring proxy classes408
Implementing proxy classes410

Specifying arguments in a proxy
method411

Creating and using proxy objects412
Compiling and linking412

Enumerating automated collections 413
Declaring a proxy collection class413
Implementirig the proxy collection class414
Declaring a collection property415
Sending commands to the collection415

Appendix A
Converting ObjectWindows code 417
Converting your code 418

Converting to Borland C++ 4.5418
OWLCVT conversions419
OWLCVT command-line syntax420

Backing up your old source files 420
How to use OWLCVT from the command

line 420
How to use OWLCVT in the IDE 422

Conversion checklist 422
Conversion procedures 424

Handling messages and events 424
Removing DDVT functions. 425

Naming conventions 426
Adding an event response table

declaration 426
Adding an event response table

definition . 426
Adding event response table entries 427

Responding to command messages. . . . 427
Responding to child ID-based

messages 427
Responding to notification messages . . . 428
Responding to general messages 428

Event response table samples 429
Changing your window objects 431

Converting constructors 431
Calling Windows API functions 432
Changing header files 433

Using the new header file locations433
Using the new streamlined

Object Windows header files 433
ObjectWindows resources. 434

Compiling resources434
Menu resources.435

Constructing virtual bases. 435
Downcasting virtual bases to derived

types 435
Moving from Object-based containers to

the BIDS library 436
Streaming . 437

Removed insertion and extraction
operators. 437

Implementing streaming 437
MDI classes . 438

Making the frame and client 439
Making a child window. 440
WB_MDICHILD 440
Relocated functions440

ix

Replacing ActiveChild with
GetActiveChild441

Main Window variable441
Using a dialog as the main window .441
TApplication message processing

furictions.442
GetModule function443

DefXXXProc functions443
Overriding.444
Using DefWndProc for registered

messages.444
Paint function.444
CloseWindow, ShutDownWindow, and

Destroy functions445
ForEach and First That functions.445
TComboBoxData and TListBoxData classes. .446
TEditWindow and TFileWindow classes ... 446

Using the OLDFILEW example 447
Adding TEditSearch and TEditFile client

windows .447
TSearchDialog and TFileDialog classes. .448
ActivationResponse function .448
Dispatch-handling functions.448
DispatchAMessage function449

General messages.449
The DefProc parameter449
Command messages.449

KBHandlerWnd . . .449
MAXP ATH450
Style conventions450

Changing WinMain to OwlMain.450
Data types and names451
Replacing Make Window with Create451
Replacing ExecDialog with Execute452
Getting the application and module

instance. .452
Defining WIN30, WIN31, and STRICT452

Troubleshooting. 452
OWLCVT errors452
Compiler warnings . .453
Compiler errors .453
Run-time errors .454

Index 457

T
Tables

1.1 Data member inheritance : 7
1.2 ObjectWindows-encapsulated device

contexts . 12
1.3 GDI support classes 13
4.1 Comm.and message macros. 43
4.2 Message macros. 44
4.3 Sample message macros and function

names 45
4.4 Child notification message macros 46
6.1 Specialized exception classes 63
6.2 ObjectWindows exception-handling macro

expansion. 64
7.1 Window creation attributes 67
7.2 Default window attributes 68
7.3 Default window attributes 71
7.4 Standard MDI child-window menu

behavior . 83
8.1 TMenu constructors for creating menu

objects, . 85
8.2 TMenu constructors for modifying menu

objects 86
8.3 TMenu constructors for querying menu

objects 87
8.4 TMenuDescr constructors. 93
9.1 ObjectWindows-encapsulated dialog,

boxes , 106
9.2 Common dialog box TData members. . . . 108
9.3 Common dialog box TData members. . . . 108
9.4 Color common dialog box TData data

members . 109
9.5 Font common dialog box TData data

members 110
· 9.6 File open and save common dialog box

TData data members 111
9.7 Printer common dialog box TData data

members . 115
10.1 Document manager's File menu. 120
10.2 Document creation mode flags. 123
10.3 Predefined Doc/View event handlers . . . 138
10.4 Doc/View property attributes 140
11.1 Controls and their ObjectWindows

classes. 143
11.2 TListBox member functions for modifying

list boxes . 148
11.3 TListBox member functions for querying

list boxes . 149
11.4 Llst box notification messages 149
11.5 TCheckBox member functions for

modifying selection boxes. 153

x

11.6 TCheckBox member functions for
querying selection boxes 154

11.7 Notification codes and TScrollBar
member functions 157

11.8 Pure virtual functions in TSlider 158
11.9 TEdit member functions and Edit menu

commands . 160
11.10 TEdit member functions for querying

edit controls. 161
11.11 TEdit member functions for modifying

edit controls 161
11.12 Summary of combo box styles 162
11.13 TComboBox member functions for

modifying combo boxes 164
11.14 TComboBox member functions for

querying combo boxes 164
11.15 Transfer buffer members for each type of

control . 166
11.16 TListBoxData data members. 166
ll.17TListBoxData member functions 166
11.18 TComboBoxData data members 167
11.19 TComboBoxData member functions 167
11.20 Transfer flag parameters 169
12.l Hint mode flags 186
17.l Allowable library combinations. 261
18.l How to add container support to an

existing application 264
18.2 How to add server support to an existing

application . 265
18.3 Some ObjectComponents classes used for

linking and embedding. 279
18.4 Some ObjectComponents classes used for .

automation . 280
18.5 Application messages for TOcApp

clients . 281
18.6 View messages for TOcView and

TOcRem View clients 282
18.7 New classes in ObjectWindows for OLE

support . 283
18.8 ObjectComponents exception classes 284
18.9 libraries for building ObjectComponents

programs .. 286
18.10 Descriptions of the ObjectComponents

chapters in this book 293
18.11 Online Help files with information about

ObjectComponents and OLE 294
19.1 Non-OLE classes and the corresponding

classes that add OLE support 305
19.2 Keys a container registers to support

linking and embedding. 308

19.3 Commands an OLE container places on 21.1 Keys an automation server registers 384
its Edit menu. 312 21.2 Automation data types 391

19.4 Libraries for building ObjectComponents 21.3 Enumerable C++ types and the
programs 314 automation types for exposing them. 393

19.5 Standard message handlers providing 22.1 Macros for implementing proxy object
OLE functionality. 322 member functions 411

20.1 Keys a linking and embedding server 22.2 Message response member functions and
registers 346 event response tables 427

20.2 Command-line switches that
ObjectComponents recognizes 349

xi

T
Figures

1.1 TDialog inheritance. 7
2.1 The basic ObjectWindows application 18
2.2 First-instance and each-instance

initialization . 22
2.3 Dialog box using the Borland Custom

Controls Library. 28
2.4 Dialog box using the Microsoft 3-D

Controls Library. 28
3.1 Interface elements vs. interface objects 29.
4.1 Window message processing. 42
5.1 Button gadget states 56
7.1 Example layout windows 70
7.2 Sample decorated frame window 79
7.3 Sample MDI application. 81
8.1 Menu descriptor application without

child windows open 91
8.2 Menu descriptor application with child

windows open. 91
10.l Doc/View model diagram 118
18.1 The Edit menu in the sample program

SdiOle 268

xii

18.2 The Insert Object dialog box 269
18.3 A newly inserted object being edited in

place , 270
18.4 The same inserted object after being

medited . 270
18.5 The container's restored user interface

after the object becomes inactive 271
18.6 The speed menu for a selected object. 272
18.7 The Insert Object dialog box just before

inserting a linked object. 273
18.8 The new verb list for the newly linked

object 274
18.9 An object opened for editing. 275
18.10 How applications interact with OLE

through ObjectComponents 276
18.ll How the ObjectComponents connector

objects are related 280
18.12 How objects in your application interact

with ObjectComponents 290
18.13 How TServedObject connects an

automated class to OLE. 292

Introduction

Object Windows 2.5 is the Borland C ++ application framework for Windows 3.1,
Win32s, and Windows NT. ObjectWindows lets you build full-featured Windows
applications quickly and easily. ObjectWindows 2.5 provides the following features:

• Easy creation of OLE 2.0 applications, including containers, servers, and automated
applications, using the ObjectComponents Framework

• Doc/View classes for easy data abstraction and display

• Ease of portability between 16- and 32-bit platforms

• Automated message cracking

• Robust exception and error handling

• Allows easy porting to other compilers and environments because it doesn't use
proprietary compiler and language extensions

• Encapsulation of Windows GDI objects

• Printer and print preview classes

• Support for Visual Basic controls, including the only available support for using
Visual Basic controls in 32-bit environments

• Input validators

ObjectWindows documentation
The ObjectWindows 2.5 documentation set consists of the Object Windows Programmer's
Guide (this manual), the Object Windows Reference Guide, ahd the Object Windows Tutorial.

The Object Windows Reference Guide presents a comprehensive, alphabetical listing and
description of all ObjectWindows classes, their member functions, data members, and
so on. The Object Windows Reference Guide should be your reference for specific technical
data about an ObjectWindows class or function.

The Object Windows Tutorial contains a tutorial on how to build a basic ObjectWindows
application utilizing many of the Object Windows library's key features. If you' re new to
ObjectWindows, or if there are features with which you're not familiar, you should

Introduction 1

follow the steps in the Object Windows Tutorial to learn how to program using
Object Windows.

Programmer's Guide organization
The Object Windows Programmer's Guide presents topics in a task-oriented fashion,
describing how to use functional groups of ObjectWindows classes to accomplish
various tasks. The manual is organized as follows:

This chapter, Introduction, introduces you to ObjectWindows 2.5 and directs you to
other chapters of the book for more information.

Chapter 1, "Overview of ObjectWindows," presents a brief, nontechnical overview of
the ObjectWindows hierarchy.

Chapter 2, "Application and module objects," describes application objects and the
application class T Application.

Chapter 3, "Interface objects," discusses the use of interface objects in the
ObjectWindows 2.5 programming model. Interface objects are instances of classes
representing windows, dialog boxes, and controls; these classes are based on the class
TWindow.

Chapter 4, "Event handling," explains response tables, the ObjectWindows 2.5 method
for event handling.

Chapter 5, "Command enabling," describes the ObjectWindows 2.5 command
enabling mechanism for enabling and disabling command items such as menu choices
and control bar buttons, setting menu item text, and checking and unchecking
command items.

Chapter 6, "ObjectWindows exception handling," describes the ObjectWindows 2.5
exception-handling mechanism.

Chapter 7, "Window objects," describes window objects, including how to use frame
windows, layout windows, decorated frame windows, and MDI windows.

Chapter 8, "Menu objects," discusses the use of menu objects and the TMenu class.

Chapter 9, "Dialog box objects," explains how to use dialog box objects {such as
TDialog and TDialog-derived objects) and also Windows common dialog boxes, which
are based on the TCommonDialog class.

Chapter 10, "DocNiew objects," presents the ObjectWindows 2.5 Doc/View
programming model, which uses the TDocument, TView, and TDocManager classes.

Chapter 11, "Control objects," discusses the use of various controls, such as buttons, list
boxes, edit boxes, and so on.

Chapter 12, "Gadget and gadget window objects," explains gadgets and gadget
windows, including control bars, status bars, button gadgets, and so on.

Chapter 13, "Printer objects," describes how to use the printer and print preview
classes.

2 ObjectWindows Programmer's Guide

Chapter 14, "Graphics objects," presents the classes that encapsulate Windows GDI.

Chapter 15, "Validator obj eels,'' describes the use of input validators in edit controls.

Chapter 16, "Visual Basic controls," discusses using Visual Basic controls and the
TVbxControl class in your ObjectWindows application.

Chapter 17, "ObjectWindows dynamic-link libraries,'' explains the use of
ObjectWindows-encapsulated dynamic-link libraries (DLLs).

Chapter 18, "Support for OLE in Borland C++,'' presents an overview of the
ObjectComponents encapsulation of OLE capabilities.

Chapter 19, "Creating an OLE container,'' describes how to make a container
application whose compound documents can hold linked and embedded OLE objects.

Chapter 20, "Creating an OLE server,'' describes how to make a server application that
creates data objects for containers to link or embed.

Chapter 21, /1 Automating an application,'' describes what a program must do in order
to let other programs control it through automation.

Chapter 22, "Creating an automation controller,'' describes the steps a program must
take in order to manipulate automation objects.

Appendix A, "Converting ObjectWindows code,'' describes how to convert your
ObjectWindows 1.0 applications so they work properly in ObjectWindows 2.5.

Typefaces and icons used in this book
The following table shows the special typographic conventions used in this book.

Boldface

. Italics

Monospace

Menu I Command

Boldface type indicates language keywords (such as char, switch, and begin) and
command-fine options (such as -m).

Italic type indicates program variables and constants that appear in text. This
typeface is also used to emphasize certain words, such as new terms.

Monospace type represents text as it appears onscreen or in a program. It is also
used for anything you must type literally (such as TD3 2 to start up the 32-bit Turbo
Debugger).

This command sequence represents a choice from the menu bar followed by a menu
choice. For example, the command "File I Open" represents the Open command on
the File menu.

Note This icon indicates material you should take special notice of.

This manual also uses the following icons to indicate sections that pertain to specific
operating environments:

~ 16-bit Windows ~ 32-bit Windows

Introduction 3

4 ObjectWindows Programmer's Guide

Overview of ObjectWindows
This chapter presents an overview of the ObjectWindows 2.5 hierarchy. It also describes
the basic groupings of the ObjectWindows 2.5 classes, explains how each class fits
together with the others, and refers you to specific chapters for more detailed
information about how to use each class.

Working with class hierarchies
This section describes some of the basic properties of classes, focusing specifically on
ObjectWindows classes. It covers the following topics:

• What you can do with a class
• Inheriting members
• Types of member functions

Using a class
There are three basic things you can do with a class:

• Derive a new class from it
• Add its behavior to that of another class
• Create an instance of it (instantiate it)

Deriving new classes
To change or add behavior to a class, you derive a new class from it:

class TNewWindow : public TWindow
{

};

public:
TNewWindow(...);

II

Chapter 1, Overview of Objec!Windows 5

When you derive a new class, you can do three things:

• Add new data members
• Add new member functions
• Override inherited member functions

Adding new members lets you add to or change the functionality of the base class. You
can define a new constructor for your derived class to call the base classes' constructors
and initialize any new data members you might have added.

Mixing object behavior
With ObjectWindows designed using multiple inheritance, you can derive new classes

. that inherit the behavior of more than one class. Such "mixed" behavior is different from
the behavior you get from single inheritance derivation. Instead of inheriting the
behavior of the base class and being able to add to and change it, you're inheriting and
combining the behavior of several classes.

As with single inheritance derivation, you can add new members and override
inherited ones to change the behavior of your new class.

Instantiating classes
To use a class, you must create an instance of it. There are a number of ways you can
instantiate a class:

• You can use the standard declaration syntax. This is the same syntax you use to
declare any standard variable such as an int or char. In this example, app is initialized
by calling the TMyApplication constructor with no arguments:

TMyApplication app;

You can use this syntax only when the class has a default constructor or a constructor
in which all the parameters have default values.

• You can also use the standard declaration syntax along with arguments to call a
particular constructor. In this example, app is initialized by calling the TMyApplication
constructor with a char * argument:

TMyApplication app ("AppName");

• You can use the new operator to allocate space for and instantiate an object. For
example:

TMyApplication *app;
app = new TMyApplication;

• You can also use the new operator along with arguments. In this example, app is
initialized by calling the TMyApplication constructor with a char * argument:

TMyApplication* app = new TMyApplication("AppName");

The constructors call the base class' constructors and initialize any needed data
members. You can only instantiate classes that aren't abstract; that is, classes that don't
contain a pure virtual function.

6 ObjectWindows Programmer's Guide

Abstract classes
Abstract classes, which are classes with pure virtual member functions that you must
override to provide some behavior, serve two main purposes. They provide a
conceptual framework to build other classes on and, on a practical level, they reduce
coding effort.

For example, the ObjectWindows THSlider and TVSlider classes could each be derived
directly from TScrollBar. Although one is vertical and the other horizontal, they have
similar functionality and responses. This commonality warrants creating an abstract
class called TSlider. THSlider and TVSlider are then derived from TSlider with the
addition of a few specialized member functions to draw the sliders differently.

You can't create an instance of an abstract class. Its pure virtual member functions must
be overridden to make a useful instance. TSlider, for example, doesn't know how to
paint itself or respond directly to mouse events.

If you wanted to create your own slider (for example, a circular slider), you might try
deriving your slider from TSlider or it might be easier to derive from THSlider or
TVSlider, depending on which best meets your needs. In any case, you add data
members and add or override member functions to add the desired functionality. If you
wanted to have diagonal sliders going both northwest-southeast and southwest
northeast, you might want to create an intermediate abstract class called T AngledSlider.

Inheriting members
The following figure shows the inheritance of TinputDialog. As you can see,
TinputDialog is derived from TDialog, which is derived from TWindow, which is in turn
derived from TEventHandler and TStreamable. Inheritance lets you add more specialized
behavior as you move further along the hierarchy.

Figure 1.1 TDialog inheritance

TStreamabl e

:11 TWindow 1~>11 TDialog I~> TinputDialog

TEventHandler

The following table shows the public data members of each class, including those
inherited from the TDialog and TWindow base classes:

Table 1.1 Data member inheritance

Status Status Status
HWindow HWindow HWindow
Title Title Title
Parent Parent Parent
Attr Attr Attr

Chapter 1, Overview of ObjectWindows 7

Table 1.1 Data member inheritance {continued)

DefaultProc

Scroll er

DefaultProc

Scroll er

Is Modal

DefaultProc

Scro lier

Is Modal

Prompt

Buffer

BufferSize

TinputDialog inherits all the data members of TDialog and TWindow and adds the data
members it needs to be an input dialog box.

To fully understand what youcan do with TinputDialog, you have to understand its
inheritance: a TinputDialog object is both a dialog box (TDialog) and a window
(TWindow). TDialog adds the concept of modality to the TWindow class. TinputDialog
extends that by adding the ability to store and retrieve user-input data.

Types of member functions
There are four (possibly overlapping) types of ObjectWindows member functions:

• Virtual
• Nonvirtual
• Pure virtual
• Default placeholder

Virtual functions
Virtual functions can be overridden in derived classes. They differ from pure virtual
functions in that they don't have to be overridden in order to use the class. Virtual
functions provide you with polymorphism, which is the ability to provide a consistent
class interface, even when the functionality of your classes is quite different.

Nonvirtual functions
You should not override nonvirtual functions. Therefore, it's important to make virtual
any member function that derived classes might need to override (an exception is the
event-handling functions defined in your response tables). For example,
TWindow::CanClose is virtual because derived classes should override it to verify
whether the window should close. On the other hand, TWindow::SetCaption is
nonvirtual because you usually don't need to change the way a window's caption is set.

The problem with overriding nonvirtual functions is that classes that are derived from
your derived class might try to use the overridden function. Unless the new derived
classes are explicitly aware that you have changed the functionality of the derived
function, this can lead to faulty return values and run-time errors.

8 ObjectWindows Programmer's Guide

Pure virtual functions
You must override pure virtual functions in derived classes. Functions are marked as
pure virtual using the= 0 initializer. For example, here's the declaration of
TSlider::PaintRuler:

virtual void PaintRuler(TDC& de) = O;

You must override all of an abstract class' pure virtual functions in a derived class
before you can create an instance of that derived class. In most cases, when using the
standard ObjectWindows classes, you won't find this to be much of a problem; most of
the ObjectWindows classes you might need to derive from are not abstract classes. In
lieu of pure virtual functions, many ObjectWindows classes use default placeholder
functions.

Default placeholder functions
Unlike pure virtual functions, default placeholder functions don't have to be
overridden. They offer minimal default actions or no actions at all. They serve as
placeholders, where you can place code in your derived classes. For example, here's the
definition of TWindow::EvLButtonDblClk:

inline void
TWindow::EvLButtonDblClk (uint modKeys, TPoint &)
{

DefaultProcessing();

By default, EvLButtonDblClk calls DefaultProcessing to perform the default message
processing for that message. In your own window class, you could override
EvLButtonDblClk by defining it in your class' response table. Your version of
EvLButtonDblClk can provide some custom behavior you want to happen when the user
clicks the left mouse button. You can also continue to provide the base class' default
processing by calling the base class' version of the function.

Object typology
The ObjectWindows hierarchy has many different types of classes that you can use,
modify, or add to. You can separate what each class does into the following groups:

• Windows
• Dialog boxes
• Controls
• Graphics
• Printing
• Modules and applications
• Doc/View applications
• Miscellaneous Windows elements

Chapter 1, Overview of ObjectWindows 9

Window classes
An important part of any Windows application is, of course, the window.
ObjectWindows provides several different window classes for different types of
windows (not to be confused with the Windows "window class'' registration types):

• Windows
• Frame windows
• MDI windows
• Decorated windows

Chapter 7 describes the window classes in detail.

Windows
TWindow is the base class for all window classes. It represents the functionality common
to all windows, whether they are dialog boxes, controls, MDI windows, or so on.

Frame windows
TFrameWindow is derived from TWindow and adds the functionality of a frame window
that can hold other client windows.

MDI windows
Multiple Document Interface (MDI) is the Windows standard for managing multiple
documents or windows in a single application. TMDIFrame, TMDIClient, and
TMDIChild provide support for MDI in ObjectWindows applications.

Decorated windows
Several classes, such as TLayoutWindow and TLayoutMetrics, work together to provide
support for decoration controls like tool bars, status bars, and message bars. Using
multiple inheritance, decoration support is added into frame windows and MDI frame
windows in TDecoratedFrame and TDecoratedMD IFrame.

Dialog box classes
TDialog is a derived class of TWindow. It's used to create dialog boxes that handle a
variety of user interactions. Dialog boxes typically contain controls to get user input.
Dialog box classes are explained in detail in Chapter 9.

Common dialog boxes
In addition to specialized dialog boxes your own application might use,
ObjectWindows supports Windows' common dialog boxes for:

• Choosing files (TFileOpenDialog, and TFileSaveDialog)
• Choosing fonts (TChooseFontDialog)
• Choosing colors (TChooseColorDialog)
• Choosing printing options (TPrintDialog)
• Searching and replacing text (TFindDialog, and TReplaceDialog)

10 ObjectWindows Programmer's Guide

Other dialog boxes
ObjectWindows also provides additional dialog boxes that aren't based on the
Windows common dialog boxes:

• Inputting text (TinputDialog)
• Aborting print jobs (TPrinter AbortDlg, used in conjunction with the TPrinter and

TPrintout classes)

Control classes
TControl is a class derived from TWindow to support behavior common to all controls.
ObjectWindows offers four types of controls:

• Standard Windows controls
• Widgets
• Gadgets
• Decorations

All these controls are discussed in depth in Chapter 11, except for gadgets, which are
discussed in Chapter 12.

Standard Windows controls
Standard Windows controls include list boxes, scroll bars, buttons, check boxes, radio
buttons, group boxes, edit controls, static controls, and combo boxes. Member functions
let you manipulate these controls.

Widgets
Unlike standard Windows controls, ObjectWindows widgets are specialized controls
written entirely in C++. The widgets ObjectWindows offers include horizontal and
vertical sliders (THSlider and TVSlider) and gauges (TGauge).

Gadgets
Gadgets are similar to standard Windows controls, in that they are used to gather input
from or convey information to the user. But gadgets are implemented differently from
controls. Unlike most other interface elements, gadgets are not windows: gadgets don't
have window handles, they don't receive events and messages, and they aren't based on
TWindow.

Instead, gadgets must be contained in a gadget window. The gadget window controls
the presentation of the gadget, all message processing, and so on. The gadget receives its
commands and direction from the gadget window.

Decorations
Decorations are specialized child windows that let the user choose a command, provide
a place to give the user information, or somehow allow for specialized communication
with the user.

Chapter 1, Overview of ObjectWindows 11

• A control bar (TControlBar) lets you arrange a set of buttons on a bar attached to a
window as shortcuts to using menus (the SpeedBar in the Borland C++ IDE is an
example of this functionality).

• A tool box (TToolBox) lets you arrange a set of buttons on a floating palette.

• Message bars (TMessageBar) are bars, usually at the bottom of a window, where you
can display information to the user. For example, the Borland C++ IDE uses a
message bar to give you brief descriptions of what menu commands and SpeedBar
buttons do as you press them.

• Status bars (TStatusBar) are similar to message bars, but have room for more than one
piece of information. The status bar in the Borland C ++ IDE shows your position in
the edit window, whether you're in insert or overtype mode, and error messages.

Graphics classes
Windows offers a powerful but complex graphics library called the Graphics Device
Interface (GDI). ObjectWindows encapsulates GDI to make it easier to use device
context (DC) classes (TDC) and GDI objects (TGDIObject).

See Chapter 14 for full details on these classes.

DC classes
With GDI, instead of drawing directly on a device (like the screen or a printer), you
draw on a bitmap using a device context (DC). A device context is a collection of tools,
settings, and device information regarding a graphics device and its current drawing
state. This allows for a high degree of device independence when using GDI functions.
The following table lists the different types of DCs that ObjectWindows encapsulates.

Table 1.2 ObjectWindows-encapsulated device contexts

Memory TMemoryDC

Metafile TMetaFileDC

Bitmap TDibDC

Printer TPrintDC

Window TWindowDC

Desktop TDesktopDC

Screen TScreenDC

Client TClientDC

Paint TPaintDC

12 0 b j e ct W i n d o w s P r o g r a m m e r ' s G u i d e

GDI objects
TGDIObject is a base class for several other classes that represent things you can use to
draw with and to control drawings. The following table lists these classes and other
ObjectWindows GDI support classes.

Table 1.3 GDI support classes

Type of GDI object ObjectWindows GDI class

Pens

Brushes

Fonts

Palettes

Bitmaps

Icons

Cursors

Regions

Points

Size

Rectangles

Color specifiers

RGB triple color

RGB quad color

Palette entries

Metafile

Printing classes

TPen

TB rush

TFont

TPalette

TBitmap, TDib, TUIBitmap

TI con

TCursor

TRegion

TPoint

TSize

TRect

TColor

TRgbTriple

TRgbQuad

TPaletteEntry

TMetafilePict

TPrinter makes printing significantly easier by encapsulating the communications with
printer drivers. TPrintout encapsulates the task of printing a document. Chapter 13
discusses how to use the printing classes.

Module and application classes
A Windows application is responsible for initializing windows and ensuring that
messages Windows sends to it are sent to the proper window. ObjectWindows
encapsulates that behavior in T Application. A DLL' s behavior is encapsulated in
TModule. For full details on module and application objects, see Chapter 2.

DocNiew classes
The Doc/View classes are a complete abstraction of a generic document-view model.
The base classes of the Doc/View model are TDocManager, TDocument, and TView. The
Doc/View model is a system in which data is contained in and accessed through a
document object, and displayed and manipulated through a view object. Any number
of views can be associated with a particular document type. You can use this to display
the same data in a number of different ways.

Chapter 1, Overview of 0 b j ectWi n d ows 13

For example, you can display a line both graphically (as a line in a window) and as sets
of numbers indicating the coordinates of the points that make up the line. This would
require one document that contains the data and two view classes: one view class to
display the line onscreen and another view class to display the coordinates of the points
in the line. You can also modify the data through the views so that, in this case, you
could change the data in the line by either drawing in the graphical display or by typing
in numbers to modify and add coordinates in the numerical display.

The Doc/View model is discussed in depth in Chapter 10.

Miscellaneous classes
Since Windows is so varied, not all the classes ObjectWindows provides fall into neat
categories. This section discusses those miscellaneous classes.

Menus
Menus can be static or you can modify them or even load whole new menus. TMenu
and its derived classes (TSystemMenu and TPopupMenu) let you easily manipulate
menus. Chapter 8 discusses the menu classes in more detail.

Clipboard
The Windows Clipboard is one of the main ways users share data between applications.
ObjectWindows' TClipboard object lets you easily provide Clipboard support in your
applications. See Chapter 7 for details.

14 ObjectWindows Programmer's Guide

Application and module objects
This chapter describes how to use application objects, including

• Deriving an application object from the T Application class

• Creating an application object

• Overriding base class functions in derived application objects to customize
application behavior

• Using the Borland Custom Control and Microsoft Control 3-D libraries, including
automatically subclassing custom controls as Microsoft Control 3-D controls

ObjectWindows encapsulates Windows applications and DLL modules using the
T Application and TModule classes, respectively. TModule objects

• Encapsulate the initialization and closing functions of a Windows DLL

• Contain the hlnstance and lpCmdLine parameters, which are equivalent to the
parameters of the same name that are passed to the WinMain function in a non
ObjectWindows application (note that both WinMain and LibMain have these two
parameters in common)

T Application objects build on the basic functionality provided by TModule. T Application
and T Application-derived objects

• Encapsulate the initialization, run-time management, and closing functions of a
Windows application

• Contain the values of the hPrevlnstance and nCmdShow parameters, which are
equivalent to the parameters of the same name that are passed to the WinMain
function in a non-ObjectWindows application

The T Application class is derived from the TModule class. You usually won't need to
create a TModule object yourself, unless you're working with a DLL. See Chapter 17 for
more information on using DLLs in an ObjectWindows application.

Ch a p I er 2, App Ii cation and mod u I e obj e c Is 15

The minimum requirements
To use a T Application object, you must first:

• Include the correct header file
• Create an application object
• Call the application object's Run function

Including the header file
T Application is defined in the header file owl \applicat.h; you must include this header
file to use TApplication. Because TApplication is derived from TModule, owl\applicat.h
includes owl \module.h.

Creating an object
You can create a T Application object using one of two constructors. The most commonly
used constructor is this:

TApplication(const char far* name);

This version of the T Application constructor takes a string, which becomes the
application's name. If you don't specify a name, by default the constructor names it the
null string. T Application uses this string as the application name.

The second version of the T Application constructor lets you specify a number of
parameters corresponding to the parameters normally passed to the WinMain function:

TApplication(const char far* name,
HINSTANCE instance,
HINSTANCE previnstance,
const char far* cmdLine,
int cmdShow) ;

You can use this constructor to pass command parameters to the T Application object.
This is discussed on page 20.

Calling the Run function
The most obvious thing that T Application::Run function does is to start your application
running. But in doing so it performs a number of other very important tasks, including

• Initializing the application
• Creating and displaying the main window
• Running the application's message loop

Each of these tasks is discussed later in this chapter. For the purposes of creating the
basic ObjectWindows application, however, it is sufficient to know that Run is the
function you call to make your application go.

16 0 bj ectWi n d ows Programmer's Guide

Finding the object
You may need to access an application object from outside that object's scope. For
example, you may need to call one of the application object's member functions from a
function in a derived window class. But because the window object is not in the same
scope as the application object, you have no way of accessing the application object. In
this case, you must find the application object.

TApplication contains several member functions and data members you might need to
call from outside the scope your application object. To find these easily, the TWindow
class has a member function, GetApplication, that returns a pointer to the application
object. You can then use this pointer to call T Application member functions and access
T Application data members. The following listing shows a possible use of GetApplication.

void
TMyWindow::Error()
(

II display message box containing the application name
MessageBox I "An error occurred!",

GetApplication()->Name, MB_OK);

The TWindow class is discussed in Chapter 7.

Creating the minimum application
Here's the smallest Object Windows application you can create. It includes the correct
header file, creates a T Application object, and calls that object's Run function.

#include <owl\applicat.h>

int
OwlMain(int argc, char* argv[])
{

return TApplication("Wow! ").Run();

This creates a Windows application with a main window with the caption "Wowf' You
can resize, move, minimize, maximize, and close this window. In a real application,
you'd derive a new class for the application to add more functionality. Notice that the
only function you have to call explicitly in this example is the Run function. Figure 2.1
shows how this application looks when it's running.

Ch apter 2, App Ii cation and mod u I e objects 17

Figure 2.1 The basic ObjectWindows application

Initializing applications
Initializing an ObjectWindows application takes four steps:

• Constructing the application object
• Initializing the application
• Initializing each new instance
• Initializing the main window

Constructing the application object
When you construct a T Application object, it calls its InitApplication, Initinstance, and
InitMain Window member functions to start the application. You can override any of
those members to customize how your application initializes. Since the base
InitMain Window function only creates a default window object with no way to
customize its functionality, you must override InitMainWindow to start creating an
application with the functionalty you want to create. To override a function in
T Application you need to derive your own application class from T Application.

The constructor for the T Application-derived class TMyApplication shown in the
following examples takes the application name as its only argument; its default value is
zero, for no name. The application name is used for the default main window title and
in error messages. The application name is referenced by a char far * member of the
TModule base class called Name. You can set the application name one of two ways:

• Your application class' constructor can explicitly call TApplication's constructor,
passing the application name onto T Application. The following example shows this
method:

18 0 b j e ct W i n d a w s P r a g r a m m e r ' s G u i d e

#include <owl\applicat.h>

class TMyApplication: public TApplication
(

};

public:
II This constructor initializes the base class constructor
TMyApplication(const char far* name = 0) : TApplication(name) {}

• Override one of TApplication's initialization functions, usually InitMainWindow, and
set the application name there. The following example shows this method:

#include <owl\applicat.h>

class TMyApplication: public TApplication
{

};

public:
II This constructor just uses the default base class constructor
TMyApplication(const char far* name = 0) {}
void InitMainWindow()
{

if (name)
{

Name= new char[strlen(name) + 1];
strcpy(Name, name);

ObjectWindows applications don't require an explicit WinMain function; the
ObjectWindows libraries provide one that performs error handling and exception
handling. You can perform any initialization you want in the OwlMain function, which
is called by the default WinMain function.

To construct an application object, create an instance of your application class in the
OwlMain function. The following example shows a simple application object's definition
and instantiation:

#include <owl\applicat.h>

class TMyApplication: public TApplication
{

public:
TMyApplication(const char far* name = 0): TApplication(name) {}

};

int
OwlMain{int argc, char* argv[J)
{

return TMyApplication("Wow! ").Run();

Chapter 2, Application and module objects 19

Using WinMain and OwlMain
ObjectWindows furnishes a default WinMain function that provides extensive error
checking and exception handling. This WinMain function sets up the application and
calls the OwlMain function.

Although you can use your own WinMain by placing it in a source file, there's little
reason to do so. Everything you would otherwise do in WinMain you can do in OwlMain
or in T Application initialization member functions. The following example shows a
possible use of OwlMain in an application. OwlMain checks to see whether the user
specified any parameters on the application's command line. If so, OwlMain creates the
application object using the first parameter as the application name. If not, OwlMain
creates the application object using Wow! as the application name.

#include <owl\applicat.h>
#include <string.h>

class TMyApplication: public TApplication
{

public:
TMyApplication(const char far* name = 0) TApplication(name) {}

};

int
OwlMain(int argc, char* argv[])
{

char title[30];
if(argc >= 2)

strcpy(title, argv[l]);
else

strcpy (title, "Wow!");
return TMyApplication(title) .Run();

If you do decide to provide your own WinMain, T Application supports passing
traditional WinMain function parameters with another constructor. The following
example shows how to use that constructor to pass WinMain parameters to the
T Application object:

#include <owl\applicat.h>

class TMyApplication : public TApplication
{

public:

} ;

TMyApplication (const char far* name,
HINSTANCE instance,
HINSTANCE prevlnstance,
const char far* cmdLine,
int cmdShow)

TApplication (name, instance, prevlnstance, cmdLine, cmdShow) {}

int

20 ObjectWindows Programmer's Guide

PASCAL WinMain(HINSTANCE hinstance, HINSTANCE hPrevinstance,
LPSTR lpszCmdLine, int nCmdShow)

return TMyApplicatj_on ("MyApp", hinstance, hPrevinstance,
lpszCmdLine, nCmdShow) .Run();

Calling initialization functions
T Application contains three initialization functions:

• InitApplication initializes the first instance of the application
• Initlnstance initializes each instance of the application
• InitMainWindow initializes the application's main window

How these functions are called depends on whether this is the first instance of the
application. InitApplication is called only for the first instance of the application on the
system. Initlnstance is the next function called for the first instance. It is the first function
called by additional instances. Initlnstance calls InitMain Window.

If the application is a 32-bit application, each instance appears to be the first instance of
the application, affecting this chain of execution. This is described in the next section.

Initializing the application
Users can run multiple copies of an application simultaneously. From the point of view
of a 16-bit application, first-instance initialization happens only when another copy of
the application is not currently running. Each-instance initialization happens every time
the user runs the application. If a user starts and closes your application, starts it again,
and so on, each instance is a first instance because the instances don't run at the same
time.

In the case of 32-bit applications, each application runs in its own address space, with no
shared instance data, so that each instance appears as a first instance. Therefore every
time you start a 32-bit application, it performs both first-instance initialization and each
instance initialization.

If the current instance is a first instance (indicated by the data member hPrevlnstance
being set to zero), InitApplication is called. You can override InitApplication in your
derived application class; the default InitApplication has no functionality.

For example, you could use first-instance initialization to make the main window's
caption indicate whether it's the first instance. To do this,

1 Add a data member called WindowTitle in your derived application class.
2 In the application class' constructor, set WindowTitle to "Additional Instance."
3 Override InitApplication to set WindowTitle to "First Instance."

If your application is the first instance of the application, InitApplication is called and
overwrites the value of WindowTitle that was set in the constructor. The following
example shows how the code might look:

#include <owl\applicat.h>
#include <owl\framewin.h>

Chapter 2, Application and module objects 21

#include <cstring.h>

class TTestApp : public TApplication
{

public:
TTestApp() TApplication('Instance Tester'), WindowTitle('Additional Instance') {}

protected:
string WindowTitle;

void InitApplication() { WindowTitle = string('First Instance'); }
void InitMainWindow(.) { SetMainWindow(new TFrameWindow(O, WindowTitle.c_str()));

};

int
OwlMain(int /* argc */, char*/* argv */[])
{

return TTestApp() .Run();

Figure 2.2 shows.a number of instances of this application open on the desktop. Note
that the first instance-the upper left one-hcis the title "First Instance," while every
other instance has the title "Additional Instance."

Figure 2.2 First-instance and each-instance initialization

- . ~~
- . . " " . . ~~

- Arld1t1onal lristance ~~

Again, this application doesn't function as you might expect when it's built as a 32-bit
application. Because each instance of a 32-bit application perceives itself to be the first
instance of the application, multiple copies running at the same time would all have the
caption "First Instance:'

22 ObjectWindows Programmer's Guide

Initializing each new instance
A user can run multiple instances (copies) of an application simultaneously. You can
override T Application::Initlnstance to perform any initialization you need to do for each
instance.

Initlnstance calls InitMain Window and then creates and shows the main window you set
up in InitMain Window. If you override Initinstance, be sure your new Initinstance calls
TApplication::Initlnstance. The following example shows how to use Initlnstance to load
an accelerator table:

void
T~cstApp: :Initinstance()

TApplication: :Initinstance();
HAccTable = LoadAccelerators(MAKEINTRESOURCE(MYACCELS));

Initializing the main window
By default, TApplication::InitMain Window creates a frame window with the same name
as the application object. This window isn't very useful, because it can't receive or
process any user input. You must override InitMain Window to create a window object
that does process user input.

Normally, your InitMainWindow function creates a TFrameWindow or TFrameWindow
derived object and calls the SetMain Window function. SetMain Window takes one
parameter, a pointer to a TFrameWindow object, and returns a pointer to the old main
window (if this is a new application that hasn't yet set up a main window, the return
value is zero). Chapter 7 describes window classes and objects in detail.

The following example shows a simple application that creates a TFrameWindow object
and makes it the main window:

#include <owl\applicat.h>
#include <owl\framewin.h>

class TMyApplication: public TApplication
{

public:

} ;

TMyApplication(): TApplication() {}
void InitMainWindow();

void
TMyApplication::InitMainWindow()
{

II Just sets the main window with a basic TFrameWindow object
SetMainWindow(new TFrameWindow (0, "My First Main Window"));

int
Ow lMain I int argc, char* argv [J)

{

Chapter 2, Application and module objects 23

return TMyApplication ("Wow!") .Run ();

When you run this application, the caption bar is titled "My First Main Window;' and
not "Wow!". The application name passed in the TApplication constructor is used only
when you do not provide a main window. Once again, this example doesn't do a lot;
there is still no provision for the frame window to process any user input. But once you
have derived a window class that does interact with the user, you use the same simple
method to display the window.

Specifying the main window display mode
You can change how your application's main window is displayed by setting the
TApplication data member nCmdShow, which corresponds to the WinMain parameter
nCmdShow. You can set this variable as soon as the Run function begins, up until the
time you call T Application::Initlnstance. This effectively means you can set nCmdShow in
either the InitApplication or InitMain Window function.

For example, suppose you want to display your window maximized whenever the user
runs the application. Youcould set nCmdShow in your InitMainWindow function:

#include <owl\applicat.h>
#include <owl\framewin.h>

class TMyApplication : public TApplication
{

};

public :
TMyApplication(char far *name) TApplication(name) {}
void InitMainWindow();

void
TMyApplication::InitMainWindow()
{

II Sets the main window
SetMainWindow(new TFrameWindow(O, "Maximum Window"));

II Sets nCmdShow so that the window is maximized when it's created
nCmdShow = SW_SHOWMAXIMIZED;

int
OwlMain(int argc, char* argv[])
{

return TMyApplication ("Wow! ") . Run () ;

nCmdShow can be set to any value appropriate as a parameter to the Show Window
Windows function or the TWindow::Show member function, such as SW _HIDE,
SW _SHOWNORMAL, SW _NORMAL, and so on.

24 0 b jectWi n d ows Programme r's Guide

Changing the main window
You can use the SetMain Window function to change your main window during the
course of your application. SetMain Window takes one parameter, a pointer to a
TFrameWindow object, and returns a pointer to the old main window (if this is a new
application that hasn't yet set up a main window, the return value is zero). You can use
this pointer to keep the old main window in case you want to restore it. Alternatively,
you can use this pointer to delete the old main window object.

Application message handling
Once your application is initialized, the application object's MessageLoop starts running.
MessageLoop is responsible for processing incoming messages from Windows. There are
two ways you can refine message processing in an ObjectWindows application:

• Extra message processing, by overriding default message handling functions
• Idle processing

Extra message processing
T Application has member functions that provide the message-handling functionality for
any ObjectWindows application. These functions are MessageLoop, IdleAction,
PreProcessMenu, and ProcessAppMsg. See the Object Windows Reference Guide for more
information.

Idle processing
Idle processing lets your application take advantage of the idle time when there are no
messages waiting (including user input). If there are no waiting messages, MessageLoop
calls IdleAction.

To perform idle processing, override IdleAction to perform the actual idle processing.
Remember that idle processing takes place while the user isn't doing anything.
Therefore, idle processing should be short-lasting. If you need to do anything that takes
longer than a few tenths of a second, you should split it up into several processes.

IdleAction's parameter (idleCount) is a long specifying the number of times IdleAction
was called between messages. You can use idleCount to choose between low-priority
and high-priority idle processing. If idleCount reaches a high value, you know that a
long period without user input has passed, so it's safe to perform low-priority idle
processing.

Return true from IdleAction to call IdleAction back sooner.

You should always call the base class IdleAction function in addition to performing your
own processing. If you're writing applications for Windows NT, you can also use
multiple threads for background processing.

Chapter 2, Application and module objects 25

Closing applications
Users usually close a Windows application by choosing File I Exit or pressing Alt+F4. It's
important, though, that the application be able to intercept such an attempt, to give the
user a chance to save any open files. T Application lets you do that.

Changing closing behavior
TApplication and all window classes have or inherit a member function CanClose.
Whenever an application tries to shut down, it queries the main window's and
document manager's CanClose function. (The exception to this is when dialog boxes are
cancelled by the user clicking the Cancel button or pressing Esc; in which case, the
dialog box is simply destroyed, bypassing the CanClose function.) If either of the
application object or the document manager has children, it calls the CanClose function
for each child. Jn turn, each child calls the CanClose function of each of their children if
any, and so on.

The CanClose function gives each object a chance to prepare to be shut down. It also
gives the object a chance to cancel the shutdown if necessary. When the object has
completed its clean-up procedure, its CanClose function should return true.

If any of the CanClose functions called returns false, the shut-down procedure is
cancelled.

Closing the application
The CanClose mechanism gives the application object, the main window, and any other
windows a chance to either prepare for closing or prevent the closing from taking place.
In the end, the application object approves the closing of the application. The normal
closing sequence looks like this:

1 Windows sends a WM_ CLOSE message to the main window.

2 The main window object's EvClose member function calls the application object's
CanClose member function.

3 The application object's CanClose member function calls the main window object's
CanClose member function.

4 The main window and document manager objects call CanClose for each of their child
windows. The main window and document manager objects' CanClose functions
return true only if all child windows' CanClose member functions return true.

5 If both the main window and document manager objects' CanClose functions return
true, the application object's CanClose function returns true.

6 If the application object's CanClose function returns true, the EvClose function shuts
down the main window and ends the application.

Modifying CanClose
CanClose should rarely return false. Instead, CanClose gives you a chance to perform any
actions necessary to return true. If you override CanClose in your derived application

26 ObjectWindows Programmer's Guide

objects, the function should return false only if it's unable to do something necessary for
orderly shutdown or if the user wants to keep the application running.

For example, suppose you are creating a text editor. A possible procedure to follow in
the CanClose member function would be to:

Check to see if the editor text had changed.

2 If so, prompt the user to ask whether the text should be saved before closing, using a
message box with Yes, No, and Cancel buttons.

3 Check the return value from the message box:

• If the user clicks Yes, save the file, then return true from the CanClose function.

• If the user clicks No, simply return true from the CanClose function without saving
the file.

• If the user clicks Cancel, indicating the user doesn't want to close the application
yet, return false from the CanClose function without saving the file.

Using control libraries
T Application has functions for loading the Borland Custom Controls Library
(BWCC.DLL for 16-bit applications and BWCC32.DLL for 32-bit applications) and the
Microsoft 3-D Controls Library (contained in the file CTL3DV2.DLL for 16-bit
applications and CTL3D32.DLL for 32-bit applications). These DLLs are widely used to
provide a standard look-and-feel for many applications.

Using the Borland Custom Controls Library
You can open and close the Borland Custom Controls Library using the function
T Application::EnableBWCC. EnableBWCC takes one parameter, a bool, and returns a
void. When you pass true to EnableBWCC, the function loads the DLL if it's not already
loaded. When you pass false to EnableBWCC, the function unloads the DLL if it's not
already unloaded.

You can find out if the Borland Custom Controls Library DLL is loaded by calling the
function T Application::BWCCEnabled. BWCCEnabled takes no parameters. If the DLL is
loaded, BWCCEnabled returns true; if not, BWCCEnabled returns false.

Once the DLL is loaded, you can use all the regular functionality of Borland Custom
Controls Library. EnableBWCC automatically opens the correct library regardless of
whether you have a 16- or a 32-bit application.

Figure 2.3 shows an example of a dialog box using the Borland Custom Controls
Library.

Chapter 2, Application and module objects 27

Figure 2.3 Dialog box using the Borland Custom Controls Library

Using the Microsoft 3-D Controls Library
You can load and unload the Microsoft 3-D Controls Library using the function
T Application::EnableCtl3d. EnableCtl3d takes one parameter, a bool, and returns a void.
When you pass true to EnableCtl3d, the function loads the DLL if it's not already loaded.
When you pass false to EnableCtl3d, the function unloads the DLL if it's not already
unloaded.

Figure 2.4 shows an example of a dialog box using the Microsoft 3-D Controls Library.

Figure 2.4 Dialog box using the Microsoft 3-D Controls Library

You can find out if the Microsoft 3-D Controls Library DLL is loaded by calling the
function TApplication::Ctl3dEnabled. Ctl3dEnabled takes no parameters. If the DLL is
loaded, Ctl3dEnabled returns true; if not, Ctl3dEnabled returns false.

To use the EnableCtl3dAutosubclass function, load the Microsoft 3-D Controls Library
DLL using EnableCtl3d. EnableCtl3dAutosubclass takes one parameter, a bool, and returns
a void. When you pass true to EnableCtl3dAutosubclass, autosubclassing is turned on.
When you pass false to EnableCtl3dAutosubclass, autosubclassing is turned off.

When autosubclassing is on, any non-ObjectWindows dialog boxes you create have a
3-D effect. You can tum autosubclassing off immediately after creating the dialog pox; it
is not necessary to leave it on when displaying the dialog box.

28 ObjectWindows Programmer's Guide

Interface objects
Instances of C++ classes representing windows, dialog boxes, and controls are called
interface objects. This chapter discusses the general requirements and behavior of
interface objects and their relationship with the interface elements-the actual windows,
dialog boxes, and controls that appear onscreen.

The following figure illustrates the difference between interface objects and interface
elements:

Figure 3.1 Interface elements vs. interface objects

Interface object

OWL Application

Window interface
object

Call to
Windows creates
new HWND

Interface element

Ill Sample ObjectWindows Program l:jJIJI

Notice how the interface object is actually inside the application object. The interface
object is an ObjectWindows class that is created and stored on the application's heap or
stack, depending on how the object is allocated. The interface element, on the other
hand, is actually a part of Windows. It is the actual window displayed on the screen.

Chapter 3, Interface objects 29

The information in this chapter applies to all interface objects. This chapter also explains
the relationships between the different interface objects of an application, and describes
the mechanism that interface objects use to respond to Windows messages.

Why interface objects?
One of the greatest difficulties of Windows programming is that controlling interface
elements can be inconsistent and confusing. Sometimes you send a message to a
window; other times you call a Windows API function. The conventions for similar
types of operations often differ when those operations are performed with different
kinds of elements.

ObjectWindows alleviates much of this difficulty by providing objects that encapsulate
the interface elements. This insulates you from having to deal directly with Windows
and provides a more uniform interface for controlling interface elements.

What do interface objects do?
An interface object provides member functions for creating, initializing, managing, and
destroying its associated interface element. The member functions manage many of the
details of Windows programming for you.

Interface objects also encapsulate the data needed to communicate with the interface
element, such as handles and pointers to child and parent windows.

The relationship between an interface object and an interface element is similar to that
between a file on disk and a C++ stream object. The stream object only represents an
actual file on disk; you manipulate that file by manipulating the stream object. With
ObjectWindows, interface objects represent the interface elements that Windows itself
actually manages. You work with the object, and Windows takes care of maintaining the
Windows element.

The generic interface object: TWindow
ObjectWindows' interface objects are all derived from TWindow, which defines behavior
common to all window, dialog box, and control objects. Classes like TFrameWindow,
TDialog, and TControl are derived from TWindow and refine TWindow' s generic behavior
as needed.

As the common base class for all interface objects, TWindow provides uniform ways to:

• Maintain the relationship between interface objects and interface elements, including
creating and destroying the objects and elements

• Handle parent-child relationships between interface objects

• Register new Windows window classes

30 ObjectWindows Programmer's Guide

Creating interface objects
Setting up an interface object with its associated interface element requires two steps:

Calling one of the interface object constructors, which constructs the interface object
and sets its attributes.

2 Creating the interface element by telling Windows to create the interface object with a
new interface element:

• When creating most interface elements, you call the interface object's Create
member function. Create also indirectly calls Setup Window, which initializes the
interface object by creating an interface element, such as child windows.

• When creating a modal dialog box, you create the interface element by calling the
interface object's Execute member function. See page 98 for more information on
modal dialog boxes.

The association between the interface object and the interface element is maintained by
the interface object's HWindow data member, a handle to a window.

When is a window handle valid?
Normally under Windows, a newly created interface element receives a WM_ CREATE
message from Windows, and responds to it by initializing itself. ObjectWindows
interface objects intercept the WM_ CREATE message and call Setup Window instead.
Setup Window is where you want to perform your own initialization.

Note If part of the interface object's initialization requires the interface element's window
handle, you must perform that initialization after you call the base class' Setup Window.
Prior to the time you call the base class' Setup Window, the window and its child
windows haven't been created; HWindow isn't valid and shouldn't be used. You can
easily test the validity of HWindow: if it hasn't been initialized, it is set to NULL.

Although it might seem odd that you can't perform all initialization in the interface
object's constructor, there's a good reason: once an interface element is created, you
can't change many of its characteristics. Therefore, a two-stage initialization is required:
before and after the interface element is created.

The interface object's constructor is the place for initialization before the element is
created and Setup Window is the place for initialization after the element is created. You
can think of Setup Window as the second part of the constructor.

Making interface elements visible
Creating an object and its corresponding element doesn't mean that you'll see
something on the screen. When Windows creates the interface element, Windows
checks to see if the element's style includes WS_ VISIBLE. If it does, Windows displays
the interface element; if it doesn't, the element is created but not displayed onscreen.

TWindow' s constructor sets WS _VISIBLE, so most interface objects are visible by default.
But if your object loads a resource, that resource's style depends on what is defined in its

Chapter 3, Interface objects 31

resource file. If WS_ VISIBLE is turned on in the resource's style, WS_ VISIBLE is turned
on for the object. If WS_ VISIBLE is not turned on in the resource's style, WS_ VISIBLE is
turned off in the object's style. You can set WS_ VISIBLE and other window styles in the
interface object in the Attr.Style data member.

For example, if you use TDialog to load a dialog resource that doesn't have WS_ VISIBLE
turned on, you must explicitly tum WS_ VISIBLE before attempting to display the dialog
using Create.

You can find out whether an interface object is visible by calling Is Window Visible.
Is Window Visible returns true if the object is visible.

At any point after the interface element has been created, you can show or hide it by
calling its Show member function with a value of true or false, respectively.

Object properties
In addition to the attributes of its interface element, the interface object possesses certain
attributes as an ObjectWindows object. You can query and change these properties and
characteristics using the following functions:

• SetFlag sets the specified flag for the object.
• Clearflag clears the specified flag for the object.
• IsFlagSet returns true if the specified flag is set, false if the specified flag is not set.

You can use the following flags with these functions:

• uifAlias indicates whether the object is an alias; see page 77.

• wf AutoCreate indicates whether automatic creation is enabled for this object.

• wfFromResource indicates whether the interface element is loaded from a resource.

• uifShrinkToClient indicates whether the frame window should shrink to fit the size of
the client window.

• wfMainWindow indicates whether the window is the main window.

• wfPredefinedClass indicates whether the window is a predefined Windows class.

• wff ransfer indicates whether the window can use the data transfer mechanism. See
Chapter 11 for transfer mechanism information.

Window properties
TWindow also provides a couple of functions that let you change resources and
properties of the interface element. Because TWindow provides generic functionality for
a large variety of objects, it doesn't provide very specific functions for resource and
property manipulation. High-level objects provide much more specific functionality.
But that specific functionality builds on and is in addition to the functionality provided
by TWindow: ·

• SetCaption sets the window caption to the string that you pass as a parameter.

32 ObjectWindows Programmer's Guide

• GetWindowTextTitle returns a string containing the current window caption.

• SetCursor sets the cursor of the instance, identified by the TModule parameter, to the
cursor passed as a resource in the second parameter.

• You can set the accelerator table for a window by assigning the resource ID (which
can be a string or an integer) to Attr.AccelTable. For example, suppose you have an
accelerator table resource called MY_ACCELS. You would assign the resource to
Attr.AccelTable like this:

TMyWnd: :TMyWnd(const char* title)
{

T~ ~ -1-- In -1-- ~ -1-- l - \
..Lll..LL. \U1 L...LL.J..e) i

Attr.AccelTable = MY_ACCELS; // AccelTable can be assigned

For more specific information on these functions, refer to the ObjectWindows Reference
Guide.

Destroying interface objects
Destroying interface objects is a two-step process:

• Destroying the interface element
• Deleting the interface object

You can destroy the interface element without deleting the interface object, if you need
to create and display the interface element again.

Destroying the interface element
Destroying the interface element is the responsibility of the interface object's Destroy
member function. Destroy destroys the interface elements by calling the Destroy Window
API function. When the interface element is destroyed, the interface object's HWindow
data member is set to zero. Therefore, you can tell if an interface object is still associated
with a valid interface element by checking its HWindow.

When a user closes a window on the screen, the following things happen:

• Windows notifies the window.

• The window goes through the CanClose mechanism to verify that the window should
be closed.

• If CanClose approves the closing of the window, the interface element is destroyed
and the interface object is deleted.

Deleting the interface object
If you destroy an interface element yourself so that you can redisplay the interface object
later, you must make sure that you delete the interface object when you're done with it.

Chapter 3, Interface objects 33

Because an interface object is nothing more than a regular C++ object, you can delete it
using the delete statement if you've dynamically allocated the object with new.

The following code illustrates how to destroy the interface element and the interface
object.

TWindow *window = new TWindow (0, "My Window" I ;

/I ...

window->Destroy();
delete window;

Parent and child interface elements
In a Windows application, interface elements work together through parent-child links.
A parent window controls its child windows, and Windows keeps track of the links.
ObjectWindows maintains a parallel set of links between corresponding interface
objects.

A child window is an interface element that is managed by another interface element.
For example, list boxes are managed by the window or dialog box in which they appear.
They are displayed only when their parent windows are displayed. In tum, dialog
boxes are child windows managed by the windows that create them.

When you move or close the parent window, the child windows automatically close or
move with it. The ultimate parent of all child windows in an application is the main
window (there are a couple of exceptions: you can have windows and dialog boxes
without parents and all main windows are children of the Windows desktop).

Child-window lists
When you construct a child-window object, you specify its parent as a parameter to its
constructor. A child-window object keeps track of its parent through the Parent data
member. A parent keeps track of its child-window objects in a private data member
called ChildList. Each parent maintains its list of child windows automatically.

You can access an object's child windows using the window iterator member functions
FirstThat and ForEach. See page 37 for more information on these functions.

Constructing child windows
As with all interface objects, child-window objects get created in two steps: constructing
the interface object and creating the interface element. If you construct child-window
objects in the constructor of the parent window, their interface elements are
automatically created when the parent is, assuming that automatic creation is enabled
for the child windows. By default, automatic creation is enabled for all ObjectWindows
objects based on TWindow, with the exception of TDialog. See page 37 for more
information on automatic creation.

34 ObjectWindows Programmer's Guide

For example, the constructor for a window object derived from TWindow that contains
three button child windows would look like this:

TTestWindow::TTestWindow(TWindow *parent, const char far *title)
(

Init(parent, title);

buttonl = new TButton(this, ID_BUTTONl, "Show",
190, 270, 65, 20, false);

button2 = new TButton (this, ID_BUTTON2, "Hide",
275, 270, 65, 20, false);

button3 = :ievv TButton(this, ID_BUTTON3, 11 Transfer 11
1

360, 270, 65, 20, false);

Note the use of the this pointer to link the child windows with their parent. Interface
object constructors automatically add themselves to their parents' child window lists.
When an instance of TTestWindow is created, the three buttons are automatically
displayed in the window.

Creating child interface elements
If you don't construct child-window objects in their parent window object's constructor,
they won't be automatically created and displayed when the parent is. You can then
create them yourself using Create or, in the case of modal dialog boxes, Execute. In this
context, creating means instantiating an interface element.

For example, suppose you have two buttons displayed when the main window is
created, one labeled Show and the other labeled Hide. When the user presses the Show
button, you want to display a third button labeled Transfer. When the user presses the
Hide button, you want to remove the Transfer button:

class TTestWindow : public TFrameWindow
(

public:
TestWindow(TWindow *parent, const char far *title);

void
EvButtonl I I
(

if(!button3->HWindow)
button3->Create();

void
EvButton2 I I
(

if(button3->HWindow)
button3->Destroy();

void

Chapter 3, Interface objects 35

};

EvButton3 (I
{

MessageBeep(-1);

protected:
TButton *buttonl, *button2, *button3;

DECLARE_RESPONSE_TABLE(TTestWindow);

DEFINE_RESPONSE_TABLEl(TTestWindow, TFrameWindow)
EV_COMMAND(ID_BUTTONl, EvButtonl),
EV_COMMAND(ID_BUTTON2, EvButton2),
EV_COMMAND(ID_BUTTON3, EvButton3),

END_RESPONSE_TABLE;

TTestWindow::TTestWindow(TWindow *parent, const char far *title)
{

Init(pareht, title);
buttonl = new TButton(this, ID_BUTTONl, "Show",

10, 10, 75, 25, false);
button2 =new TButton(this, ID_BUTTON2, "Hide",

95, 10, 75, 25, false);
button3 = new TButton(this, ID_BUTTON3, "Transfer",

180, 10, 75, 25, false);
button3->DisableAutoCreate();

The call to DisableAutoCreate in the constructor prevents the Transfer button from being
displayed when TTestWindow is created. The conditional tests in the EvButtonl and
EvButton2 functions work by testing the validity of the HWindow data member of the
button3 interface object; if the Transfer button is already being displayed, EvButtonl
doesn't try to display it again, and EvButton2 doesn't try to destroy the Transfer button if
it isn't being displayed.

Destroying windows
Destroying a parent window also destroys all of its child windows. You do not need to
explicitly destroy child windows or delete child window interface objects. The same is
true for the CanClose mechanism; CanClose for a parent window calls CanClose for all its
children. The parent's CanClose returns true only if all its children return true for
CanClose.

When you destroy an object's interface element, it enables automatic creation for all of
its children, regardless of whether automatic creation was on or off before. This way,
when you create the parent, all the children are restored in the state they were in before
their parent was destroyed. You can use this to destroy an interface element, and then
re-create it in the same state it was in when you destroyed it.

To prevent this, you must explicitly tum off automatic creation for any child objects you
don't want to have created automatically.

36 ObjectWindows Programmer's Guide

Automatic creation
When automatic creation is enabled for a child interface object before its parent is
created, the child is automatically created at the same time the parent is created. This is
true for all the parent object's children.

To explicitly exclude a child window from the automatic create-and-show mechanism,
call the DisableAutoCreate member function in the child object's constructor. To explicitly
add a child window (such as a dialog box, which would normally be excluded) to the
automatic create-and-show mechanism, call the EnableAutoCreate member function in
the child object's constructor.

By default automatic creation is enabled for all ObjectWindows classes except for dialog
boxes.

Manipulating child windows
TWindow provides two iterator functions, For Each and FirstThat, that let you perform
operations on either all the children in the parent's child list or a single child at a time.
TWindow also provides a number of other functions that let you determine the number
of children in the child list, move through them one at a time, or move to the top or
bottom of the list.

Operating on all children: ForEach
You might want to perform some operation on each of a parent windo';V' s child
windows. The iterator function For Each takes a pointer to a function. The function can be
either a member function or a stand-alone function. The function should take a TWindow
* and a void * argument. ForEach calls the function once for each child. The child is
passed as the TWindow *.The void* defaults to 0. You can use the void* to pass any
arguments you want to your function.

After ForEach has called your function, you often need to be careful when dealing with
the child object. Although the object is passed as a TWindow *,it is actually usually a
descendant of TWindow. To make sure the child object is handled correctly, you should
use the DYNAMIC_ CAST macro to cast the TWindow *to a TClass *,where TClass is
whatever type the child object is.

For example, suppose you want to check all the check box child windows in a parent
window:

void
CheckTheBox(TWindow* win, void*)
{

TCheckbox *cb = DYNAMIC_CAST(win, TCheckbox);
if(cb)

cb->Check();

void
TMDIFileWindow::CheckAllBoxes()
{

C h a p I e r 3 , I n t e r fa c e o b j e c I s 37

ForEach(CheckTheBox);

If the class you're downcasting to (in this case from a TWindow to a TCheckbox) is
virtually derived from its base, you must use the DYNAMIC_ CAST macro to make the
assignment. In this case, TCheckbox isn't virtually derived from TWindow, making the
DYNAMIC_ CAST macro superfluous in this case.

DYNAMIC_ CAST returns 0 if the cast could not be performed. This is useful here,
because not all of the children are necessarily of type TCheckbox. If a child of type
TControlBar was encountered, the value of cb would be 0, thus assuring that you don't
try to check a control bar.

Finding a specific child
You might also want to perform a function only on a specific child window. For
example, if you wanted to find the first check box that's checked in a parent window
with several check boxes, you would use TWindow::FirstThat:

bool
IsThisBoxChecked(TWindow* cb, void*)
{

return cb ? (cb->GetCheck == BF_CHECKED) false;

TCheckBox*
TMDIFileWindow::GetFirstChecked()
{

return FirstThat(IsThisBoxChecked);

Working with the child list
In addition to the iterator functions ForEach and FirstThat, TWindow provides a number
of functions that let you locate and manipulate a single child window:

• NumChildren returns an unsigned. This value indicates the total number of child
windows in the child list.

• GetFirstChild returns a TWindow * that points to the first entry in the child list.
• GetLastChild returns a TWindow * that points to the last entry in the child list.
• Next returns a TWindow * that points to the next entry in the child list.
• Previous returns a TWindow * that points to the prior entry in the child list.

Registering window classes
Whenever you create an interface element from an interface object using the Create or
Execute functions, the object checks to see if another object of the same type has
registered with Windows. If so, the element is created based on the existing Windows
registration class. If not, the object automatically registers itself, then is created based on
the class just registered. This removes the burden from the programmer of making sure
all window classes are registered before use.

38 ObjectWindows Programmer's Guide

Event handling
This chapter describes how to use ObjectWindows response tables. Response tables are
the method you use to handle all events in an ObjectWindows application. There are
four main steps to using ObjectWindows response tables:

1 Declare the response table
2 Define the response table
3 Define the response table entries
4 Declare and define the response member functions

To use any of the macros described in this chapter, the header file owl \eventhan.h must
be included. This file is already included by owl\module.h (which is included by owl\
applicat.h) and owl\ window.h, so there is usually no need to explicitly include this file.

ObjectWindows response tables are a major improvement over other methods of
handling Windows events and messages, including switch statements (such as those in
standard C Windows programs) and schemes used in other types of application
frameworks. Unlike other methods of event handling, ObjectWindows response tables
provide:

• Automatic message "cracking" for predefined command messages, eliminating the
need for manually extracting the data encoded in the WP ARAM and LPARAM
values.

• Compile-time error and type checking, which checks the event-handling function's
return type and parameter types.

• Ability to have one function handle multiple messages.

• Support for multiple inheritance, enabling each derived class to build on top of the
base class or classes' response tables.

• Portability across platforms by not relying on product-specific compiler extensions.

• Easy handling of command, registered, child ID notification, and custom messages,
using the predefined response table macros.

C h a pt e r 4 , E v e n I h a n d I i n g 39

Declaring response tables
Because the response table is a member of an ObjectWindows class, you must declare
the response table when you define the class. ObjectWindows provides the
DECLARE_RESPONSE_TABLE macro to hide the actual template syntax that response
tables use.

The DECLARE_RESPONSE_TABLE macro takes a single argument, the name of the
class for which the response table is being declared. Add the macro at the end of your
class definition. For example, TMyframe, derived from TFrameWindow, would be
defined like this:

class TMyFrame : public TFrameWindow
{

DECLARE_RESPONSE_TABLE(TMyFrame);
);

It doesn't matter what the access level is at the point where you declare the response
table. That is, it doesn't matter if the declaration is in a position where it would public,
protected, or private. The DECLARE_RESPONSE_TABLE macro sets up its own access
levels when it's expanded by the preprocessor. By the same token, you must make
certain that the DECLARE_RESPONSE_TABLE macro is the last element in your class
declaration; otherwise, any members declared after the macro will have unpredictable
access levels.

Defining response tables
Once you've declared a response table, you must define it. Response table definitions
must appear outside the class definition.

ObjectWindows provides the DEFINE_RESPONSE_TABLEX macro to help define
response tables. The value of X depends on your class' inheritance, and is a number
equal to the number of immediate base classes your class has.
END_RESPONSE_TABLE ends the event response table definitioh.

To define your response table,

1 Begin the response table definition for your class using the
DEFINE_RESPONSE_TABLEX macro. DEFINE_RESPONSE_TABLEX takes X + 1
arguments:

• The name of the class you're defining the response table for
• The name of each immediate base class

2 Fill in the response table entries (see the next section for information on how to do
this step).

3 End the response table definition using the END_RESPONSE_TABLE macro.

For example, the response table definition for TMyFrame, derived from TFrameWindow,
would look like this:

40 ObjectWindows Programmer's Guide

DEFINE_RESPONSE_TABLEl(TMyFrame, TFrameWindow)
EV_WM_LBUTTONDOWN,
EV_WM_LBUTTONUP,
EV_WM_MOUSEMOVE,
EV_WM_RBUTTONDOWN,

END_RESPONSE_TABLE;

You must always place a comma after each response table entry and a semicolon after
the END_RESPONSE_TABLE macro.

Defining response table entries
Response table entries associate a Windows event with a particular function. When a
window or control receives a message, it checks its response table to see if there is an
entry for that message. If there is, it passes the message on to that function. If not, it
passes the message up to its parent. If the parent is not the main window, it passes the
message up to its parent. Once the parent is the main window, it passes the message on
to the application object. If the application object doesn't have a response entry for that
particular message, the message is handled by ObjectWindows default processing. This
is illustrated in Figure 4.1.

C h a pt e r 4 , E v e n t h a n d I i n g 41

Figure 4.1 Window message processing

r'" virtual ~response table

42 ObjectWindows Programmer's Guide

Enable Command
Sender

Disable Command
enabler

Table 4.1

ObjectWindows provides a large number of macros for response table entries. These
include:

• Command message macros that let you handle command messages and route them
to a specified function.

• Standard Windows message macros for handling Windows messages.

• Registered messages (messages returned by RegisterWindowMessage).

• Child ID notification macros that let you handle child ID notification codes at the
child or the parent.

• Control notification macros that handle messages from specialized controls such as
buttons, combo boxes, edit controls, list boxes, and so on.

• Document manager message macros to notify the application that a document or
view has been created or destroyed and to notify views about events from the
document manager.

• VBX control notifications.

Command message macros
ObjectWindows provides a large number of macros, called command message macros, that
let you assign command messages to any function. The only requirement is that the
signature of the function you specify to handle a message must match the signature
required by the macro for that message. The different types of command message
macros and the corresponding function signatures are listed in Table 4.1:

Command message macros

EV _COMMAND(CMD, UserName) void UserName() Calls UserName when the
CMD message is received.

EV_ COMMAND _AND _ID(CMD, UserName) void UserName(WPARAM)

EV_COMMAND_ENABLE(CMD, UserName) void UserName(TCommandEnabler&)

Calls User Name when the
CMD message is received.
Passes the command's ID
(WPARAM parameter) to
User Name.

Used to automatically enable
and disable command
controls such as menu items,
tool bar buttons, and so on.

Chapter 4, Event handling 43

Table4.2

There are other message macros that let you pass the raw, unprocessed message on to
the event-handling function. These message macros handle any kind of generic message
and registered message.

Message macros

EV_MESSAGE(MSG, UserName) LRESULT UserName(WPARAM, LPARAM) Calls User Name when the user
defined message MSG is received.
MSG is passed to User Name
without modification.

EV _REGISTERED(MSG, UserName) LRESULT UserName(WPARAM, LPARAM) Calls User Name when the
registered message MSG is
received. MSG is passed to
User Name without modification.

It is very important that you correctly match the function signature with the macro that
you use in the response table definition. For example, suppose you have the following
code:

class TMyFrame : public TFrameWindow
{

public:
TMyFrame(TWindow* parent, const char* name) TFrameWindow(parent, name) {)

protected:
void CmAdvise();

DECLARE_RESPONSE_TABLE(TMyFrame);
} ;

DEFINE_RESPONSE_TABLE(TMyFrame, TFrameWindow)
EV_COMMAND_AND_ID(CM_ADVISE, CmAdvise),

END_RESPONSE_TABLE;

void
TMyFrame::CmAdvise()
{

This code produces a compile-time error because the EV_ COMMAND _AND _ID macro
requires a function that returns void and takes a single WP ARAM parameter. In this
example, the function correctly returns void, but incorrectly takes no parameters. To
make this code compile correctly, change the member declaration and function
definition of TMyFrame::CmAdvise to:

void TMyFrame::CmAdvise(WPARAM cmd);

44 ObjectWindows Programmer's Guide

Windows message macros
ObjectWindows provides predefined macros for all standard Windows messages. You
can use these macros to handle standard Windows messages in one of your class'
member functions.

To find the name of the macro to handle a particular predefined message, preface the
message name with EV_. This macro passes the message on to a function with a
predefined name. To determine the function name, remove the WM_ from the message
name, add Ev to the remaining part of the message name, and convert the name to
lowercase with capital letters at word boundaries. Table 4.3 shows some examples.

Table 4.3 Sample message macros and function names

M~ssage

WM_PAINT EV _WM_FAINT

WM_LBUTTONDOWN EV _WM_LBUTTONDOWN

WM_MOVE EV_WM_MOVE

Ev Paint

EvLButtonDown

Ev Move

The advantage to using these message macros is that the message is automatically
11 cracked;' that is, the parameters that are normally encoded in the LP ARAM and
WP ARAM parameters are broken out into their constituent parts and passed to the
event-handling function as individual parameters.

For example, the EV_ WM_ CTLCOLOR macro passes the cracked parameters to an
event-handling function with the following signature:

HBRUSH EvCtlColor(HDC hDCChild, HWND hWndChild, uint nCtrlType);

Message cracking provides for strict C ++ compile-time type checking, and helps you
catch errors as you compile your code rather than at run time. It also helps when
migrating applications from 16-bit to 32-bit and vice versa. Chapter 3 in the
Object Windows Reference Guide lists each predefined message, its corresponding
response table macro, and the signature of the corresponding event-handling function.

To use a predefined Windows message macro:

1 Add the macro to your response table.

2 Add the appropriate member function with the correct name and signature to your
class.

3 Define the member function to handle the message however you want.

For example, suppose you wanted to perform some operation when your TMyFrame
window object received the WM_ERASEBKGND message. The code would look like
this:

class TMyFrame : public TFrameWindow {
public:

bool EvEraseBkgnd(HDC);

DECLARE_RESPONSE_TABLE(TMyFrame);
};

Chapter 4, Event handling 45

Table 4.4

DEFINE_RESPONSE_TABLE(TMyFrame, TFrameWindow)
EV_WM_ERASEBKGND,

END_RESPONSE_TABLE;

bool
TMyFrame::EvEraseBkgnd(HDC hdc)
(

Child ID notification message macros
The child ID notification message macros provide a number of different ways to handle
child ID notification messages. You can

• Handle notification codes from multiple children with a single function
• Pass all notification codes from a child to a response window
• Handle the notification code at the child

Use these macros to facilitate controlling and communicating with child controls. The
different types of child ID notification message macros are listed in the following table.

Child notification message macros

EV _CHILD_NOTIFY(ID, Code, UserName) void UserName() Dispatches the message and
notification code to the
member function UserName.

EV _CHILD _NOTIFY_AND _coDE(Id, Code, void UserName(WP ARAM code) Dispatches message Id with
UserName) the notification code Code to

the function UserName.

EV_ CHILD _NOTIFY_ALL_CODES(Id, User Name) void UserName(WP ARAM code) Dispatches message Id to the
function UserName,
regardless of the message's
notification code.

EV _CHILD_NOTIFY_AT_CHILD(Code, void UserName() Dispatches the notification
UserName) code Code to the child-object

member function User Name.

These macros provide different methods for handling child ID notification codes. There
are described in the next sections.

EV CHILD NOTIFY - -
If you want child ID notifications to be handled at the child's parent window, use
EV _CHILD_NOTIFY, which passes the notification code as a parameter and lets
multiple child ID notifications be handled with a single function. This also prevents
having to handle each child's notification message in separate response tables for each
control. Instead, each message is handled at the parent, enabling, for example, a dialog
box to handle all its controls in its response table.

46 ObjectWindows Programmer's Guide

For example, suppose you have a dialog box called TTestDialog that has four buttons.
The buttons IDs are ID_BUTTONl, ID_BUTTON2, ID_BUTTON3, and ID_BUTTON4.
When the user clicks a button, you want a single function to handle the event, regardless
of which button was pressed. If the user double-clicks a button, you want a special
function to handle the event. The code would look like this:

class TTestDialog : public TDialog
{

public:
TTestDialog(TWindow* parent, TResid resid);

void H~ndleClick();
void HandleDblClickl();
void HandleDblClick2();
void HandleDblClick3();
void HandleDblClick4();

DECLARE_RESPONSE_TABLE(TTestDialog);
};

DEFINE_RESPONSE_TABLEl(TTestDialog, TDialog)
EV_CHILD_NOTIFY(ID_BUTTONl, BN_CLICKED, HandleClick),
EV_CHILD_NOTIFY(ID_BUTTON2, BN_CLICKED, HandleClick)'
EV_CHILD_NOTIFY(ID_BUTTON3, BN_CLICKED, HandleClick),
EV_CHILD_NOTIFY(ID_BUTTON4, BN_CLICKED, HandleClick),
EV_CHILD_NOTIFY(ID_BUTTONl, BN_DOUBLECLICKED, HandleDblClickl),
EV_CHILD_NOTIFY(ID_BUTTON2, BN_DOUBLECLICKED, HandleDblClick2),
EV_CHILD_NOTIFY(ID_BUTTON3, BN_DOUBLECLICKED, HandleDblClick3),
EV_CHILD_NOTIFY(ID_BUTTON4, BN_DOUBLECLICKED, HandleDblClick4),

END_RESPONSE_TABLE;

EV CHILD NOTIFY ALL CODES - - - -
If you want all notification codes from the child to be passed to the parent window, use
EV _CHILD_NOTIFY_ALL_CODES, the generic handler for child ID notifications. For
example, the sample program BUTTONX.CPP defines this response table:

DEFINE_RESPONSE_TABLEl(TTestWindow, TWindow)
EV_COMMAND(ID_BUTTON, HandleButtonMsg),
EV_COMMAND(ID_CHECKBOX, HandleCheckBoxMsg),
EV_CHILD_NOTIFY_ALL_CODES(ID_GROUPBOX, HandleGroupBoxMsg),

END_RESPONSE_TABLE;

This table handles button, check box, and group box messages. In this case, the parent
window (TTestWindow) gets all notification messages sent by the child
(ID_GROUPBOX). The EV _CHILD_NOTIFY_ALL_CODES macro uses the user
defined function HandleGroupBoxMsg to process these messages. As a result, if the user
clicks the mouse on one of the group box radio buttons, a message box appears that tells
the user which button was selected.

Chapter 4, Event handling 47

EV CHILD NOTIFY AND CODE - - - -
You can use the macro EV _CHILD_NOTIFY_AND_CODE if you want the parent
window to handle more than one message using the same function. For example:

DEFINE_RESPONSE_TABLEl(TTestWindow, TWindow)
EV_CHILD_NOTIFY_AND_CODE(ID_GROUPBOX, SomeNotifyCode, HandleThisMessage),
EV_CHILD_NOTIFY_AND_CODE(ID_GROUPBOX, AnotherNotifyCode, HandleThisMessage),

END_RESPONSE_TABLE;

If your window has several different messages to handle and uses several different
functions to handle these messages, it's better to use EV_ CHILD _NOTIFY _AND_ CODE
instead of EV_ CHILD _NOTIFY because EV_ CHILD _NOTIFY message-handling
function receives no parameters and therefore doesn't know which message it's
handling.

EV CHILD NOTIFY AT CHILD
To handle child ID notifications at the child window, use
EV _CHILD_NOTIFY_AT_CHILD. The sample program NOTITEST.CPP contains the
following response table:

DEFINE_RESPONSE_TABLEl(TBeepButton, TButton)
EV_NOTIFY_AT_CHILD(BN_CLICKED, BnClicked),

END_RESPONSE_TABLE;

This response table uses the macro EV _NOTIFY_AT_CHILD to tell the child window
(TBeepButton) to handle the notification code (BN_CLICKED) using the function,
BnClicked.

48 ObjectWindows Programmer's Guide

Command enabling
This chapter discusses the ObjectWindows implementation of command enabling. Most
applications provide menu items and control bar or palette button gadgets to access the
application's functionality. Some of the commands accessed by these controls are not
always available. The menu items and buttons that access these commands should
somehow indicate to the application's user when the command isn't available. These
menu items and button gadgets can also indicate an application state, such as the
current character format, whether a feature is turned on or off, and so on.

ObjectWindows provides a mechanism, known as command enabling, that you can use to
perform a number of important tasks. This chapter describes how to use
ObjectWindows command enabling to

• Turn menu choices and button gadgets on and off

• Set the state of toggled items such as checked menu items and control bar buttons
that can be clicked on and off

• Change the text of menu items

For information on menus, please see Chapter 8. For information on button gadgets,
such as control bar buttons or palette buttons, and gadget windows, such as control bars
and status bars, see Chapter 12.

Handling command-enabling messages
The basic idea behind ObjectWindows command enabling is that the decision to enable
or disable a function should be made by the object that handles the command.
ObjectWindows does this by sending the WM_COMMAND_ENABLE message
through the same command chain as a WM_ COMMAND event. The event is then
received by the window that implements the functionality that you are enabling or
disabling. The command event chain is discussed in Chapter 4.

C h a pt e r 5 , C o m m a n d e n a b I i n g 49

When a WM_COMMAND_ENABLE message is sent depends on the type of command
item that is affected. TFrameWindow performs command enabling for menu items when
the user clicks a menu, spawning a WM_INITMENUPOPUP message. Gadget windows
perform command enabling for control bar buttons during the window's idle
processing.

To handle command-enabling messages for a particular function,

1 Add a member function to the window class to handle the command-enabling
message. This function should return void and take a single parameter, a reference to
a TCommandEnabler object. The abstract base class TCommandEnabler is declared in
the ObjectWindows header file window.h.

2 Place the EV_ COMMAND _ENABLE macro in the parent window's response table.
This macro takes two parameters, the command identifier and the name of the
handler function.

Suppose you have a frame window class that handles a File I Save menu command that
uses the command identifier CM_FILESA VE. The class definition would look
something like this:

class TMyFrame : public TFrameWindow
{

public:
TMyFrame(TWindow *parent = 0, char *title = 0)

: TFrameWindow(parent, title), IsDirty(false) {}

protected:
void CmFileSave();

DECLARE_RESPONSE_TABLE(TMyFrame);
};

DEFINE_RESPONSE_TABLE(TMyFrame)
EV_COMMAND(CM_FILESAVE, CmFileSave)'

END_RESPONSE_TABLE;

Suppose you don't want the user to be able to access the File I Save command if the file
hasn't been modified since it was opened or last saved. Adding a handler function and
response table macro to affect the CmFileSave function looks something like this:

class TMyFrame : public TFrameWindow
{

public:
TMyFrame(TWindow *parent = 0, char *title = 0)

: TFrameWindow(parent, title), IsDirty(false) {}

protected:
void CmFileSave();

II This is the command-enabling handler function.
void CeFileSave(TCommandEnabler& commandEnabler);

DECLARE_RESPONSE_TABLE(TMyFrame);

50 Objec!Windows Programmer's Guide

};

DEFINE_RESPONSE_TABLE(TMyFrame)
EV_COMMAND(CM_FILESAVE, CmFileSave),
EV_COMMAND_ENABLE(CM_FILESAVE, CeFileSave),

END_RESPONSE_TABLE;

Notice that the EV_ COMMAND macro and the EV_ COMMAND _ENABLE macro both
use the same command identifier. Often a single function can be accessed through
multiple means. For example, many applications let you open a file through a menu
item and also through a button on the control bar. Command enabling in
ObjectWindows lets you do command enabling for all means of accessing a function
through a single common identifier. The abstraction of command enabling through
command-enabling objects saves a great deal of time by removing the need to write
multiple command-enabling functions for each different command item.

Working with command-enabling objects
Once you have received a command-enabling message and the handler function has
been called, you can perform a number of actions using the command-enabling object
passed to the handler function. This section discusses the various types of
ObjectWindows command-enabling objects.

ObjectWindows command-enabling objects
ObjectWindows provides three predefined command-enabling objects:

• TCommandEnabler is the abstract base class for command-enabling objects. It's
declared in the ObjectWindows header file window.h.

• TMenultemEnabler is the command-enabling class for menu items. This class enables
and disables menu items, sets check marks by menu items, and changes menu item
text. This class is declared in the ObjectWindows source file FRAMEWIN.CPP.

• TButtonGadgetEnabler is the command-enabling class for button gadgets. This class
enables and disables button gadgets and toggles boolean button gadgets. This class is
declared in the ObjectWindows source file BUTTONGA.CPP.

TCommandEnabler: The command-enabling interface
Although in your command-enabling functions you always manipulate an object
derived from TCommandEnabler as opposed to an actual TCommandEnabler object, in
practice it appears as if you are working with a TCommandEnabler object.
TCommandEnabler provides a consistent interface for the other command-enabling
classes, which implement the appropriate functionality for the type of command object
that each class services. Because you never create an instance of the TMenultemEnabler
and TButtonGadgetEnabler classes, they are declared in source files instead of header
files. You don't need to be able to create one of these objects; instead you work with the

Ch apter 5, Command enabling 51

basic TCommandEnabler interface, while your handler functions are ignorant of the
specific command tool. that is being handled. .

This section describes the TCorrimandEnabler function interface. There are two
approaches to the TCommandEnabler function interface:

• If you are using existing command-enabling classes, you need to be familiar with the
basic interface as implemented in the TCommandEnabler class.

• If you are deriving new command-enabling classes, you need to be familiar with the
actual implementation of functionality in the TCommandEnabler base class.

This section discusses both approaches and points out which aspects are relevant to
using existing classes and which are relevant to creating new classes.

Functions
TCommandEnabler has a nµmber of member functions:

• Because TCommandEnabler is an abstract class, its constructor is of interest only when
you are deriving a new co~d-enabling class. The TCommandEnabler constructor
takes two parameters, a uint and an HWND. The uint is the command identifier. The
constructor initializes the Id data member with the value of the command identifier.
The HWND is the handle to the window that received the command-enabling
message. The constructor initializes HWndReceiver with the value of the HWND
parameter.

• Enable takes a single bool parameter and returns void. The bool parameter indicates
whether the command should be enabled or disabled; if it's true, the command is
enabled, if it's false, the command is disabled.

From the standpoint of deriving new classes, all that TCommandEnabler::Enable does is
perform initialization of data members in the base class. Any other actions required
for enabling or disabling a command item must be handled in the derived class. For
example, TMenuitemEnabler performs all the work necessary to turn menu items on
or off. Derived classes' Enable functions should always call TCommandEnabler::Enable.

• SetText takes a single parameter, a const char far*, and returns void. This function
sets the text of the command item to the string passed in the character array
parameter. SetText has,no effect on button gadgets.

SetText is declared as a pure virtual; you must declare and define SetText in classes
derived from TCommandEnabler. Whatever steps are needed to implement this
functionality in your command item must be done in the derived SetText function. If,
as is the case in TButtonGadgetEnabler, there is no valid application for the SetText
function, you can simply implement it as an empty function.

• SetCheck takes a single int parameter and returns void. This function toggles the
command item on or off, depending on the value of the int parameter. This
parameter can be one of three enumerated values defined in the TCommandEnabler
class, Unchecked, Checked, or Indeterminate. Unchecked sets the state of the command
item to be unchecked, Checked sets the state of the command item to be checked, and
Indeterminate sets the command item to its indeterminate state. The nature of the
indeterminate state is defined by the command item:

52 ObjectWindows Programmer's Guide

• For menu items, the indeterminate state is the same as unchecked.

• For button gadgets, the indeterminate state is an intermediate state between
checked and unchecked.

SetCheck is declared as a pure virtual; you must declare and define SetCheck in classes
derived from TCommandEnabler. Whatever steps are needed to implement this
functionality in your command item must be done in the derived SetCheck function.

• GetHandled takes no parameters and returns bool. This function returns true if the
command enabler has been handled by calling the Enable function. Otherwise, it
returns false.

• IsReceiver takes a single HWND parameter and returns a bool value. IsReceiver
returns true if the HWND parameter matches the receiver HWND passed into the
TCommandEnabler constructor and stored in HWndReceiver. Otherwise, it returns
false.

Data members
TCommandEnabler contains three data members:

• Id is the only public data member. This member contains the identifier for the
command. It is declared as a const uint and is initialized in the constructor. Once
initialized, it cannot be modified.

• HWndReceiver contains the handle of the window that implements the command.
This is a protected data member and cannot be directly accessed unless you are
deriving a class from TCommandEnabler. HWndReceiver can be accessed indirectly by
calling the IsReceiver function, which compares the value of the HWND parameter
passed in to the value of HWndReceiver.

• Handled indicates whether the command-enabling object has been dealt with. It is
initialized to false in the TCommandEnabler constructor and set to true in
TCommandEnabler::Enable. This is a protected data member and cannot be directly
accessed unless you are deriving q class from TCommandEnabler. Handled can be
accessed indirectly by calling the GetHandled function, which returns the value of
Handled.

Common command-enabling tasks
This section describes how to perform some of the more common tasks for which you'll
use command enabling, including

• Enabling and disabling command items
• Changing menu item text
• Toggling command items

Enabling and disabling command items
Enabling and disabling command items is as simple as calling the Enable function in
your handler function. You decide the criteria for enabling and disabling a particular

Chapter 5, Command enabling 53

item~ For example, if a particular library is not available, you may want to disable any
commands that access that library. If your application handles files in a number of
different formats, you may want to disable commands that aren't appropriate to the
current format.

To enable or disable a command,

1 Add the command-enabling handler function and response table macro to your
window class as described on page 49.

2 Define the handler function.

3 Inside the handler function, call the Enable member function of the command
enabling object passed into the handler function. The Enable function takes a single
bool parameter. Call Enable with the value of the parameter as true to enable the
command, and with the value of the parameter as false to disable the command.

Here's the earlier example class from page 50, but with a bool flag, IsDirty, added to tell
if the file has been modified since it was opened or last saved, and the CeFileSave
function added to enable and disable the File I Save command:

class TMyFrame : public TFrameWindow
{

};

public:
TMyFrame(TWindow *parent = 0, char *title = 0)

: TFrameWindow(parent, title), IsDirty(false) {}

protected:
bool IsDirty;

void CmFileSave();

II This is the command-enabling handler function.
void CeFileSave(TComrnandEnabler& comrnandEnabler);

DECLARE_RESPONSE_TABLE(TMyFrame);

DEFINE_RESPONSE_TABLE(TMyFrame)
EV_COMMAND(CM_FILESAVE, CmFileSave),
EV_COMMAND_ENABLE(CM_FILESAVE, CeFileSave),

END_RESPONSE_TABLE;

void
TMyFrame::CeFileSave(TComrnandEnabler& ce)
{

ce.Enable(IsDirty);

CeFileSave checks the IsDirty flag. If IsDirty is false (the file has not been modified), then
disable the CmFileSave command by calling Enable, passing false as the parameter. If
IsDirty is true (the file has been modified), then enable the CmFileSave command,
passing true as the parameter. Because you want to call Enable with the true parameter
wheri IsDirty is true and vice versa, you can just pass IsDirty as the parameter to Enable.

54 ObjectWindows Programmer's Guide

This method of enabling and disabling a command works for both menu items and
button gadgets. In the preceding example, if you have both a control bar button and a
menu item that send the CM_FILESA VE command, both commands are implemented
in the CmFileSave function. Similarly, command enabling for the control bar button and
the menu item is implemented in the CeFileSave function.

Changing menu item text
Changing the text of a menu item is done with the SetText function. To change the text of
a menu item,

Add the command-enabling handler function and response table macro to your
window class as described on page 49.

2 Define the handler function.

3 In the handler function, call the SetText member function of the command-enabling
object passed into the handler function. SetT ext takes a single parameter, a const far
char*. This character array parameter should contain the new text for the menu item.
SetText returns void.

Note If you're setting the text for a menu item and turning on a check mark for that menu
item in the same function, you must call SetText before you call SetCheck. Reversing this
order removes the check mark. See page 56 for information on setting check marks for
menu items.

Suppose your application supports three different file formats, text, binary, and
encrypted. You want the File I Save menu item to reflect the format of the file being
saved. Here's the example class from earlier on page 50, modified with an enum type,
TFormat, and a TFormat data member called Format:

class TMyFrame : public TFrameWindow
(

public:
TMyFrame(TWindow *parent = 0, char *title = 0);
enum TFormat (Text, Binary, Encrypted};

protected:
TFormat Format;

void CmFileSave();

II This is the command-enabling handler function.
void CeFileSave(TCommandEnabler& commandEnabler);

DECLARE_RESPONSE_TABLE(TMyFrame);
};

DEFINE_RESPONSE_TABLE(TMyFrame)
EV_COMMAND(CM_FILESAVE, CmFileSave),
EV_COMMAND_ENABLE(CM_FILESAVE, CeFileSave),

END_RESPONSE_TABLE;

Chapter 5, Command enabling 55

void
TMyFrarne::CeFileSave(TConunandEnabler& ce)
{

switch(Forrnat) {
case Text:

ce.SetText("Save as text file");
break;

case Binary:
ce.SetText("Save as binary file");
break;

case Encrypted:
ce.SetText("Save as encrypted file");
break;

default:
ce.SetText("Save");

Toggling command items
You can use command item toggling to provide the users of your applications visual
cues about what functions are enabled, various application states, and so on. Anything
that can be presented in a boolean fashion, such as on and off, in and out, and so on, can
be represented by command item toggling.

There are two different types of toggling implemented in ObjectWindows, but both are
implemented the same way. You can turn check marks by menu items on and off. You
can also "check" and "uncheck" button gadgets so that the gadget stands out when it's
off and is recessed and light when it's on. There is also a third indeterminate state that
indicates when something is not checked or unchecked. The meaning of this state is
mostly up to you, but usually indicates a situation where the criteria for being enabled
or disabled is mixed. For example, many word processors have control bar buttons that
indicate the current text format, such as a button with a "B" on it to indicate bold text.
This button is unchecked when the current text format is not bold, and checked when
the format is bold. But if a block of text contains text, some of which is bold and some
not, the button is placed in its indeterminate state. Figure 5.1 shows a button gadget in
each of the three states:

Figure 5.1 Button gadget states

Checked Unchecked Indeterminate

A variation of toggling button gadgets is that you can enable or disable an exclusive
button gadget. Exclusive button gadgets function just like radio buttons. In a group of
exclusive button gadgets only one button gadget can be on at a time. Enabling another
button gadget in the group disables the previously enabled button gadget.

To toggle a command item,

56 ObjectWindows Programmer's Guide

Add the command-enabling handler function and response table macro to your
window class as described on page 49.

2 Define the handler function.

3 Inside the handler function, call the SetCheck member function of the command
enabling object passed into the handler function. The SetCheck function takes a single
int parameter. Call SetCheck with one of the enumerated values defined in
TCommandEnabler: Checked, Unchecked, or Indeterminate.

Note If you are turning on a check mark for a menu item and setting the text for that menu
item in the same function, you must call SetText before you call SetCheck. Reversing this
order removes the check mark. See page 56 for information on setting check marks for
menu items.

A common use for toggling command items is to let the user of your application specify
whether some feature should be active. For example, suppose your application provides
both a menu item and control bar button to access the CmFileSave function. Many
applications provide "fly-over" hints, short descriptions that appear in the status bar
when the pointer moves over a menu item or button gadget. You may want to let the
user tum these hints off. To provide this option to the user,

1 Add a new command identifier to your application, such as CM_TOGGLEHINTS.

2 Add a new menu, perhaps named Options, with a menu item Fly-over Hints.

3 You can also add a new button to your button bar (see Chapter 12 for information on
adding a new button gadget to your control bar).

4 Add a function to handle the CM_TOGGLEHINTS event and actually tum the hints
on and off.

5 Add a command-enabling function to check and uncheck the command items.

Here's the example class from earlier on page 50, modified to use a decorated frame
window. The user can toggle hints by choosing the command item set up for this.

class TMyDecFrame : public TDecoratedFrame
{

public:
TMyDecFrame(TWindow *parent= 0, char *title = 0, TWindow* client)

: TDecoratedFrame(parent, title, client), hintMode (true) {}

II Cb must be set by the application object during the InitMainWindow function.
TControlBar* Cb;

protected:
II hintMode indicates whether the hints are currently on or off.
bool HintMode;

II This is the function that actually turns the hints on and off.
void CmToggleHints();

II This is the command-enabling handler function.
void CeToggleHints(TCommandEnabler& commandEnabler);

C h a p I e r 5 , C o m m a n d e n a b I i n g 57

DECLARE_RESPONSE_TABLE(TMyDecFrame);
};

DEFINE_RESPONSE_TABLE(TMyDecFrame)
EV_COMMAND(CM_TOGGLEHINTS, CmToggleHints),
EV_COMMAND_ENABLE(CM_TOGGLEHINTS, CeToggleHints),

END_RESPONSE_TABLE;

void
TMyDecFrame::CmToggleHints()
{

if(HintMode)
Cb->SetHintMode(TGadgetWindow::EnterHints);

else
Cb->SetHintMode(TGadgetWindow::NoHints);

HintMode = !HintMode;

void
TMyDecFrame::CeToggleHints(TCommandEnabler& ce)
{

ce.SetChecked(HintMode);

Note that the control bar is set up by the application object in its InitMain Window
function. The code for this is not shown here. For an explanation of application objects
and the InitMain Window function see Chapter 2. For an explanation of button gadgets
and control bars, see Chapter 12. For a working example of command item toggling, see
the example EXAMPLES/OWL/OWLAPPS/MDIFILE.

58 Objec!Windows Programmer's Guide

ObjectWindows exception handling
ObjectWindows provides a robust exception-handling mechanism for dealing with
exceptional situations. An exceptional situation is any situation that falls outside of your
application's normal operating parameters. This can be something as innocuous as an
unexpected user response or something as serious as an invalid handle or memory
allocation failure. Exception handling provides a clean, efficient way to deal with these
and other conditions.

This chapter describes the ObjectWindows exception-handling encapsulation, including

• Exception class hierarchy
• Exception resource identifiers
• Code macros, which make it easy to turn exception handling off and on

You should be thoroughly familiar with C ++ exception handling before reading this
chapter. C++ exception handling is described in Chapter 4 of the Borland C++
Programmer's Guide.

ObjectWindows exception hierarchy
ObjectWindows provides a number of classes that can be thrown as exceptions. Based
on the TXBase and TXOwl classes, these exception classes can inform the user of the
existing exceptional state, prompt the user for a course of action, create new exception
objects, throw exceptions, and so on. There are four exception classes that are
implemented as independent classes:

• TXBase is the base class for all ObjectWindows and ObjectComponents exception
classes. TXBase is derived from the Borland C++ xmsg class. xmsg is described in
Chapter 4 of the Borland C++ Programmer's Guide.

• TXOwl is derived from TXBase. TXOwl is the base class for the ObjectWindows
exception classes.

Chapter 6, ObjectWindows exception handling 59 ·

• TXCompatibility describes exceptions that occur when TModule::Status is non-zero.
This provides backwards compatibility between the ObjectWindows 1.0 method of
detecting exceptional situations and the ObjectWindows 2.x exception hierarchy.
TXCompatibility maps the value of TModule::Status to a resource string identifier.

• TXOutO.fM.emory describes an exception that occurs when an attempt to allocate
memory space for an object fails. This is analogous to the xalloc object thrown when
new fails to properly allocate memory.

Two other classes, TXOle and TXAuto, are derived from TXBase. These classes provide
exception handling for the ObjectComponents classes. They are described in the
Object Windows Reference Guide.

Working with TXBase
As the base class for the ObjectWindows exception classes, TXBase provides the basic
interface for working with Object Windows exceptions. TXBase can perform a number of
functions:

• It can construct itself, initializing its base xmsg object.
• It can clone itself, making a copy of the exception object.
• It can throw itself as an exception object.

Constructing and destroying TXBase
TXBase provides two public constructors:

TXBase(const string& msg);
TXBase(const TXBase& src);

The first constructor initializes the xmsg base class with the value of the string parameter,
calling the xmsg constructor that takes a string parameter. The second creates a new
object that is a copy of the TXBase object passed in as a parameter.

Both constructors increment the TXBase data member InstanceCount. InstanceCount is a
static int, meaning there is only a single instance of the member no matter how many
actual TXBase or TXBase-derived objects exist in the application. The TXBase destructor
decrements InstanceCount. The destructor is declared virtual to allow easy overriding of
the destructor.

Because each new TXBase or TXBase-derived object increments InstanceCount, and each
deleted TXBase or TXBase-derived object decrements InstanceCount, the value of
InstanceCount reflects the total number of TXBase and TXBase-derived objects existing in
the application at the time. To access InstanceCount from outside a TXBase or TXBase
derived class, qualify the name InstanceCount with a TXBase:: scope qualifier.

Cloning exception objects
TXBase contains a function called Clone. This function takes no parameters and returns a
TXBase*. Clone creates a copy of the current exception object by allocating a new TXBase
object with new and passing a dereferenced this pointer to the copy constructor.

TXBase*
TXBase: : Clone (I

60 ObjectWindows Programmer's Guide

return new TXBase(*this);

It is important to note that any classes derived from TXBase must override this function
to use the proper constructor. For example, the TXOwl class, which is derived from
TXBase, implements the Clone function like this:

TXOwl*
TXOwl: :Clone ()
{

return new TXOwl(*this);

Throwing TXBase exceptions
Once you have a TXBase object, either by creating it or cloning it, you can throw the
object one of three ways.

• Use the throw keyword followed by the object name

TXBase xobj ("Some exception ... ");
throw xobj;

• Use the ObjectWindows THROW macro, which corresponds to the C++ keyword
throw. See page 63 for an explanation of the ObjectWindows exception-handling
macros. The previous example would look like this:

TXBase xobj ("Some exception ... ");
throw xobj;

• Call the exception object's Throw function:

TXBase xobj I "Some exception ... ");
xobj . Throw I) ;

This method provides for strict type safety when you throw the exception. It also
provides a polymorphic interface when throwing the exception, so that the function
that catches a TXBase-derived exception object can treat the object as a TXBase,
regardless of what it actually is.

Working with TXOwl
As the base class for the ObjectWindows exception classes, TXOwl provides the basic
interface for working with ObjectWindows exceptions. In addition to the functionality
provided in the TXBase class, TXOwl can perform a number of other functions.

• It can construct itself, initializing its base objects.
• It can clone itself, making a copy of the exception object.
• It can pass unhandled exceptions to the application object's Error function or to the

global exception handler HandleGlobalException (HandleGlobalException is discussed
later).

Chapter 6, ObjectWindows exception handling 61

Constructing and destroying TXOwl
TXOwl has two constructors to provide flexibility in passing the exception message
string:

TXOwl(const string& str, unsigned resid = 0);
TXOwl(unsigned resid, TModule* module= ::Module);

The first constructor initializes the TXBase base object with the value of the string
parameter. The unsigned parameter is used as an error number.

The second constructor loads the string resource identified by resld and uses the string
to initialize TXBase. The TModule* identifies the module from which the resource should
be loaded. It defaults to the global current module pointer Module, meaning the resource
should be loaded from the current module or application.

The TXOwl destructor has no default functionality other than that inherited from
TXBase.

Cloning TXOwl and TXOwl-derived exception objects
TXOwl also contains the Clone function. This function takes no parameters and returns a
TXOwl*. Clone creates a copy of the current exception object by allocating a new TXOwl
object with new and passing a dereferenced this pointer to the automatic copy
constructor.

TXOwl*
TXOwl: :Clone()
{

return new TXOwl(*this);

It is important to note that any classes derived from TXOwl must override this function
to use the proper constructor. For example, the TXOutOJM.emory class, which is derived
from TXOwl, implements the Clone function like this:

TXOwl*
TXOutOfMemory::Clone()
{

return new TXOutOfMemory(*this);

Note that the return type is still TXOwl*. This lets the ObjectWindows exception
handling functions treat any exception object as a TXOwl object, in keeping with the
polymorphic nature of the ObjectWindows hierarchy. But also note that the return type
for TXOwl::Close differs from the TXBase::Clone function. That is because, while TXBase
provides the basic functionality for the ObjectWindows and ObjectComponents
exception classes, TXOwl provides the basic interface for the ObjectWindows exception
classes.

Specialized ObjectWindows exception classes
A number of regular ObjectWindows classes implement specialized exception classes,
all of which are based on TXOwl but are defined within the implementing class

62 ObjectWindows Programmer's Guide

definition to provide name scoping. The following table describes these classes, along
with the unique functionality of each class. The various IDS_* resources mentioned in
the table, along with many others, are described in Chapter 2 of the Object Windows
Reference Guide.

Table 6.1 Specialized exception classes

Pa.rentdass Exception dass Function
T Application TXInvalidMain Window Initializes the exception message with the

IDS_INV ALIDMAINWINDOW string resource. This object is
thrown when the Main Window member of T Application contains
either an invalid pointer or a pointer to an invalid window.

TModule TXInvalidModule Initializes the exception message with the
IDS_INV ALIDMODULE string resource. This exception is
thrown in the TModule constructor when the module's Hlnstance
is invalid.

TWindow TXWindow Initializes the exception message with the window title and with
a string resource passed to the TXWindow constructor. This
exception is thrown in situations where an error relating to a
window object has occurred.

TMenu TXMenu Initializes the exception message with a string resource passed to
the TXMenu constructor. By default this is the IDS_GDIFAILURE
string resource. This exception is thrown when a menu object's
handle is invalid.

TValidator TXValidator Initializes the exception message with a string resource passed to
the TXValidator constructor. By default this is the
IDS_ VALIDATORSYNTAX string resource. This exception is
thrown when a validator expression is corrupt or invalid.

TGdiBase TXGdi Initializes the exception message with a string resource passed to
the TXGdi constructor, along with the GDI object handle. By
default, the string resource is IDS_ GDIF AIL URE and the GDI
object handle is 0. This exception is thrown in numerous
situations when an error relating to a graphics object has
occurred.

TPrinter TXPrinter Initializes the exception message with a string resource passed to
the TXPrinter constructor. By default this is the
IDS_PRINTERERROR string resource. This exception is thrown
when the printer's device context is invalid.

ObjectWindows exception-handling macros
ObjectWindows provides a number of macros for implementing exception handling.
Although you can use the standard C ++ keywords such as try, catch, throw, and so on,
the ObjectWindows macros enable you to tum exception handling on and off simply by
defining or not defining a single symbol. The macros provided are

• TRY
• THROW(x)
• THROWX(x)
• RETHROW
• CATCH(x)

These macros are explained later in this section.

Chapter 6, ObjectWindows exception handling 63

Turning ObjectWindows exceptions on and off
The symbol that switches exception handling on and off in ObjectWindows applications
is NO_CPP _EXCEPTIONS. The value (or lack of value) assigned to
NO_ CPP _EXCEPTIONS doesn't matter. What matters is whether it is defined. If it's not,
the exception-handling macros expand to implement exception handling. If it is defined,
the macros provide only the barest functionality by aborting the application when an
exception is thrown. The precise behaviors of the macros when exception handling is
switched on and off is described later.

There are many different methods for defining NO_CPP _EXCEPTIONS. This list
doesn't contain all the ways to define it, but makes a few suggestions.

• You can specify the -DNO _ CPP _EXCEPTIONS option on the MAKE command line. This
defines the macro, but with no specific value.

• You can define a symbol using a graphical development environments such as the
Borland C++ IDE. Use the method provided in your graphical development to define
the NO_CPP _EXCEPTIONS symbol.

• You can define NO_CPP _EXCEPTIONS in your source code. This is a less desirable
method than the previous ones, mainly because if you're using some type of MAKE
or dependency-checking program for building your application, modifying the
source code modifies the time stamp on the file. You might or might not want the
time stamp to change.

Macro expansion
The exception-handling macros in ObjectWindows behave differently depending on
whether NO_ CPP _EXCEPTIONS is defined. The following table explains how each
macro is expanded depending on the state of NO_ CPP _EXCEPTIONS:

Table 6.2 ObjectWindows exception-handling macro expansion

TRY Expands to nothing, removing the try Expands to try, allowing the code in the try
statement. block to be tested for thrown exceptions.

THROW(x) Calls the abort function. Expands to throw(x), throwing the x object if
the exceptional conditions are met.

11-!ROWX(x) Calls the abort function. Expands to x.Throw(), calling the object x's
Throw function. This macro should only be used
with TXBase-derived classes.

RETI-!ROW Expands to nothing, removing the Expands to throw. This macro should be used
throw statement. only inside of catch (or CATCH) clauses to

rethrow the caught exception.

CATCH(x) Expands to nothing, removing the Expands to catch x, catching exceptions thrown
catch statement. with objects of type x.

64 ObjectWindows Programmer's Guide

Window objects
ObjectWindows window objects provide an interface wrapper around windows,
making dealing with windows and their children and controls much easier.
ObjectWindows provides several different types of window objects:

• Layout windows (described starting on page 69)
• Frame windows (described starting on page 75)
• Decorated frame windows (described starting on page 78)
• MDI windows (described starting on page 80)

Another class of window objects, called gadget windows, is discussed in Chapter 12.

Using window objects
This section explains how to create, display, and fill window objects. It describes how to
perform the following tasks:

• Constructing window objects
• Setting creation attributes
• Creating window interface elements

The different types of windows discussed in this chapter-frame windows, layout
windows, decorated frame windows, and MDI windows-are all examples of window
objects. The information in this section applies to all the different types of window
objects.

Constructing window objects
Window objects represent interface elements. The object is connected to the element
through a handle stored in the object's HWindow data member. HWindow is inherited
from TWindow. When you construct a window object, its interface element doesn't yet

Chapter 7, Window objects 65

exist. You must create it in a separate step. TWindow also has a constructor that you can
use in a DLL to create a window object for an interface element that already exists.

Constructing window objects with virtual bases
Several ObjectWindows classes use TWindow or TFrameWindow as a virtual base. These
classes are TDialog, TMDIFrame, TTinyCaption, TMDIChild, TDecoratedFrame,
TLayoutWindow, TClipboardViewer, TKeyboardModeTracker, and TFrameWindow. In C++,
virtual base classes are constructed first, which means that the derived class' constructor
cannot specify default arguments for the base class constructor. There are two ways to
handle this problem:

• Explicitly construct your immediate base class or classes and any virtual base classes
when you construct your derived class.

• Use the virtual base's default constructor. Both TWindow and TFrameWindow have a
default constructor. They also each have an !nit function that lets you specify
parameters for the base class; call this !nit function in the constructor of your derived
class to set any parameters you need in the base class.

Here's a couple of examples showing how to construct a window object using the each
of the methods described above:

class TMyWin : public TFrameWindow
{

public:
II This constructor calls the base class constructors
TMyWin(TWindow *parent, char *title)

TFrameWindow(parent, title),
TWindow(parent, title) {}

TMyWin *myWin =new TMyWin(GetMainWindow(), "Child window");

class TNewWin : virtual public TWindow

public:
TNewWin(TWindow *parent, char *title);

TNewWin: :TNewWin(TWindow *parent, char *title)
(

};

II This constructor uses the default base class constructors and calls Init
Init(parent, title, IDL_DEFAULT);

TNewWin *newWin =new TMyWin(GetMainWindow(), "Child window");

Setting creation attributes
A typical Windows application has many different types of windows: overlapped or
pop-up, bordered, scrollable, and captioned, to name a few. The different types are

66 ObjectWindows Programmer's Guide

selected with style attributes. Style attributes, as well as a window's title, are set during a
window object's initialization and are used during the interface element's creation.

A window object's creation attributes, such as style and title, are stored in the object's
Attr member, a TWindowAttr structure. Table 7.1 shows TWindowAttr's members.

Table 7.1 Window creation attributes

Member

Style

ExStyle

Type Descripti()n

uint32 Style constant.

uint32 Extended style constant.

x int The horizontal screen coordinate of the window's upper-left comer.
y int The vertical screen coordinate of the window's upper-left comer.

w int The window's initial width in screen coordinates.

H int The window's initial height in screen coordinates.

Menu TResid ID of the window's menu resource. You should not try to directly assign a
menu identifier to Attr.Menu! Use the AssignMenu function instead.

Id int Child window ID for communicating between a control and its parent. Id
should be unique for all child windows of the same parent. If the control is
defined in a resource, its Id should be the same as the resource ID. A window
should never have both Menu and Id set, since these members actually occupy
the same in the window's HWND structure.

Par am char far* Used by TMDIClient to hold information about the MDI frame and child
windows.

AccelTable TResid ID of the window's accelerator table resource.

Overriding default attributes
Table 7.2 lists the default window creation attributes. You can override those defaults in
a derived window class' constructor by changing the values in the Attr structure. For
example:

TTestWindow::TTestWindow(TWindow* parent, const char* title)
TFrarneWindow(parent, title),
TWindow(parent, title)

Attr.Style &= (WS_SYSMENU I WS_MAXIMIZEBOX);
Attr.Style I= WS_MINIMIZEBOX;
Attr.X = 100;
Attr.Y = 100;
Attr. W = 415;
Attr.H = 355;

Child-window attributes
You can set the attributes of a child window in the child window's constructor or in the
code that creates the child window. When you change the attributes in the parent
window object's constructor, you need to use a pointer to the child window object to get
access to its Attr member.

TTestWindow::TTestWindow(TWindow* parent, const char* title)
: TWindow(parent, title)

C h a pt e r 7 , W i n d o w o b j e ct s 67

TWindow helpWindow(this, "Help System");

helpWindow.Attr.Style I= WS_POPUPWINDOW WS_CAPTION;
helpWindow.Attr.X = 100;
helpWindow.Attr.Y = 100;
helpWindow.Attr.W = 300;
helpWindow.Attr.H = 300;
helpWindow.SetCursor(O, IDC_HAND);

Table 7.2 shows some default values you might want to override for Attr members. A
default value of 0 means to use the Windows default value.

Table 7.2 Default window attributes

Style WS_CHILD I WS_VISIBLE

Ex Style 0

x 0
y 0

w 0

H 0

Menu 0

Id 0

Param 0

AccelTable 0

Creating window interface elements
Once you've constructed a window object, you need to tell Windows to create the
associated interface element. Do this by calling the object's Create member function:

window.Create();

Create does the following things:

• Creates the interface element

• Sets HWindow to the handle of the interface element

• Sets members of Attr to the actual state of the interface element
(Style, ExStyle, X, Y, H, W)

• Calls Setup Window

An application's main window is automatically created by TApplication::Initinstance.
You don't need to call Create yourself to create the main window. See page 23 for more
information about main windows.

Two ObjectWindows exceptions can be thrown while creating a window object's
interface element. You should therefore enclose calls to Create within a try I catch block
to handle any memory or resource problems your application might encounter. Create

68 ObjectWindows Programmer's Guide

throws a TXInvalidWindow exception when the window can't be created. Setup Window
throws TXInvalidChildWindow when a child window in the window can't be created.
Both exceptions are usually caused by insufficient memory or other resources. Here is
an example of using exceptions to catch an error while creating a window object:

try
{

TWindow* window = new TMyWindow(this);
window->Create();

catch(TXOwl& exp)
(

MessageBox (exp. why. c_str I I, "Window creation error");
throw I exp I ;
}

ObjectWindows exception objects are described in Chapter 6.

Layout windows
This section discusses layout windows. Layout windows are encapsulated in the class
TLayoutWindow, which is derived from TWindow. Along with TFrameWindow,
TLayoutWindow provides the basis for decorated frame windows and their ability to
arrange decorations in the frame area.

Layout windows are so named because they can lay out child windows in the layout
window's client area. The children's locations are determined relative to the layout
window or another child window (known as a sibling). The location of a child window
depends on that window's layout metrics, which consist of a number of rules that
describe the window's X and Y coordinates, its height, and its width. These rules are
usually based on a sibling window's coordinates and, ultimately, on the size and
arrangement of the layout window. Figure 7.1 shows two shots of an example layout
window with a child window in the client area. In this example, the child's layout
metrics specify that the child is to remain the same distance from each side of the layout
window. Notice how, in the first shot, the child window is rather small. Then, in the
second shot, the layout window has been enlarged. The child window, following its
layout constraints, got larger so that each of its edges stayed the same distance from the
edge of the layout window.

C h a p I e r 7 , W i n d o w o b j e c I s 69

Figure 7.1 Example layout windows

Layout o-__ L•~Y•_ut _____________ ---ff

Layout metrics for a child window are contained in a class called TLayoutMetrics. A
layout metrics object consists of a number of layout constraints. Each layout constraint
describes a rule for finding a particular dimension, such as the X coordinate or the width
of the window. It takes four layout constraints to fully describe a layout metrics object.
Layout constraints are contained in a structure named TLayoutConstraints, but you
usually use one of the TLayoutConstraints-derived classes, such as TEdgeConstraint,
TEdgeOrWidthConstraint, or TEdgeOrHeightConstraint.

Layout constraints
Layout constraints specify a relationship between an edge or dimension of one window
and an edge or dimension of a sibling window or the parent layout window. This
relationship can be quite flexible. For example, you can set the width of a window to be
a percentage of the width of the parent window, so that whenever the parent is resized,
the child window is resized to take up the same relative window area. You can also set
the left edge of a window to be the same as the right edge of another child, so that when
the windows are moved around, they are tied together. You can even constrain a
window to occupy an absolute size and position in the client area.

The three types of constraints most often used are TEdgeConstraint,
TEdgeOrWidthConstraint, and TEdgeOrHeightConstraint. These structures constitute the
full set of constraints used in the TLayoutMetrics class. TEdgeOrWidthConstraint and
TEdgeOrHeightConstraint are derived from TEdgeConstraint. From the outside, these
three objects look almost the same. When this section discusses TEdgeConstraint, it is
referring to all three objects-TEdgeConstraint, TEdgeOrWidthConstraint, and
TEdgeOrHeightConstraint-unless the other two classes are explicitly excluded from the
statement.

Defining constraints
The most basic way to define a constraining relationship (that is, setting up a
relationship between an edge or size of one window and an edge or size of another
window) is to use the Set function. The Set function is defined in the TEdgeConstraint
class and subsequently inherited by TEdgeOrWidthConstraint and
TEdgeOrHeightConstraint.

Here is the Set function declaration:

70 ObjectWindows Programmer's Guide

void Set(TEdge edge, TRelationship rel,
TWindow* otherWin, TEdge otherEdge,
int value= 0);

where:

• edge specifies which part of the window you are constraining. For this, there is the
enum TEdge, which has five possible values:

• lmLeft specifies the left edge of the window.
• lmTop specifies the top edge of the window.
• lmRight specifies the right edge of the window.
• lmBottom specifies the bottom edge of the window.
• lmCenter specifies the center of the window. The object that owns the constraint,

such as TLayoutMetrics, decides whether this means the vertical center or the
horizontal center.

• You can also specify the window's width or height as a constraint, but only with
TEdgeOrWidthConstraint and TEdgeOrHeightConstraint. For this, there is the enum
TWidthHeight. TWidthHeight has two possible values:

• Im Width specifies that the width of the window should be constrained.
• lmHeight specifies that the height of the window should be constrained.

• rel specifies the relationship between the two edges:

Table 7.3

lmAsls

lrnPercent
Of

lrnAbove

lmLeftOf
Im Below

ImRightOf

lmSarneAs

lrnAbsolute

Default window attributes

This dllnension is constrained to its current value.

This dllnension is constrained to a percentage of the constraining edge's size. This is usually
used with a constraining width or height.

This dllnension is constrained to a certain distance above its constraining edge.

This dllnension is constrained to a certain distance to the left of its constraining edge.

This dllnension is constrained to a certain distance below its constraining edge.

This dimension is constrained to a certain distance to the right of its constraining edge.

This dimension is constrained to the same value as its constraining edge.

This dimension is constrained to an absolute coordinate or size.

• other Win specifies the window with which you are constraining your child window.
You must use the value lmParent when specifying the parent window. Otherwise,
pass a pointer to the TWindow or TWindow-derived object containing the other
window.

• otherEdge specifies the particular edge of otherWin with which you are constraining
your child window. otherEdge can have any of the same values that are allowed for
edge.

Chapter 7, Window objects 71

• value means different things, depending on the value of rel:

lmAsis value has no meaning and should be set to 0.

lmPercentOf value indicates what percent of the constraing measure the constrained measure
should be.

lmAbave

lmLeftOf

lmBelow

lmRightOf

lmSameAs
lmAbsolute

value indicates how many units above the constraining edge the constrained edge
should be.

value indicates how many units to the left of the constraining edge the constrained
edge should be.

value indicates how many units below the constraining edge the constrained edge
should be.

value indicates how many units to the right of the constraining edge the constrained
edge should be.

value has no meaning and should be set to 0.

value is the absolute measure for the constrained edge:
When edge is lmLeft, lmRight, or sometimes lmCenter, value is the X coordinate for the
edge.
When edge is lmTap, lmBottom, or sometimes lmCenter, value is the Y coordinate for
the edge.
When edge is Im Width or lmHeight, value represents the size of the constraint.
The owning object determines whether lmCenter represents an X or Y coordinate.
Seepage70.

• The meaning of value is also dependent on the value of Units. Units is a
TMeasurementUnits member of TLayoutConstraint. TMeasurementUnits is an enum
that describes the type of unit represented by value. Units can be either lmPixels or
lmLayoutUnits. lmPixels indicates that value is meant to represent an absolute number
of physical pixels. lmLayoutUnits indicates that value is meant to represent a number
of logical units. These layout units are based on the size of the current font of the
layout window.

TEdgeConstraint also contains a number of functions that you can use to set up
predefined relationships. ·These correspond closely to the relationships you can specify
in the Set function. In fact, these functions call Set to define the constraining relationship.
You can use these functions to set up a majority of the constraint relationships you
define.

The following four functions work in a similar way:

void LeftOf(TWindow* sibling, int margin= 0);
void RightOf(TWindow* sibling, int margin= 0);
void Above(TWindow* sibling, int margin= 0);
void Below(TWindow* sibling, int margin= 0);

Each of these functions place the child window in a certain relationship with the
constraining window sibling. The edges are predefined, with the constrained edge being
the opposite of the function name and the constraining edge being the same as the
function name.

72 ObjectWindows Programmer's Guide

For example, the LeftOf function places the child window to the left of sibling. This
means the constrained edge of the child window is lmRight and the constraining edge of
sibling is lmLeft.

You can set an edge of your child window to an absolute value with the Absolute
function:

void Absolute(TEdge edge, int value);

edge indicates which edge you want to constrain, and value has the same value as when
used in Set with the lmAbsolute relationship.

There are two other shortcut functions you can use:

void SarneAs(TWindow* otherWin, TEdge edge);
void PercentOf(TWindow* otherWin, TEdge edge, int percent);

These two use the same edge for the constrained window and the constraining window;
that is, if you specify lmLeft for edge, the left edge of your child window is constrained to
the left edge of otherWin.

Defining constraining relationships
A single layout constraint is not enough to lay out a window. For example, specifying
that one window must be 10 pixels below another window doesn't tell you anything
about the width or height of the window, the location of the left or right borders, or the
location of the bottom border. It only tells you that one edge is located 10 pixels below
another window.

A combination of layout constraints can define fully a window's location (there are
some exceptions, as discussed on page 74). The class TLayoutMetrics uses four layout
constraint structures-two TEdgeConstraint objects named X and Y, a
TEdgeOrWidthConstraint named Width, and a TEdgeOrHeightConstraint named Height.

TLayoutMetrics is a fairly simple class. The constructor takes no parameters. The only
thing it does is to set up each layout constraint member. For each layout constraint, the
constructor

• Zeroes out the value for the constraining window.
• Sets the constraint's relationship to lmAsls.
• Sets units to lmLayoutUnits. ·
• Sets the value to 0.

The only difference is to MyEdge, which indicates to which edge of the window this
constraint applies.Xis set to lmLeft, Y is set to lmTop, Width is set to lmWidth, and Height
is set to lmHeight.

Once you have constructed a TLayoutMetrics object, you need to set the layout
constraints for the window you want to lay out. You can use the functions described in
the preceding section for setting each layout constraint.

It is important to realize that the labels X, Y, Width, and Height are more labels of
convenience than strict rules on how the constraints should be used. X can represent the
X coordinate of the left edge, the right edge, or the center. You can combine this with the
Width constraint-which can be one of lmCenter, lmRight, or lmWidth-to completely

Chapter 7, Window objects 73

define the window's X-axis location and width. Using all of the edge constraints is easy,
and is useful in situations where tiling is performed.

The simplest way is to assign an X coordinate to X and a width to width. But you could
also set the edge for X to lmCenter and the edge for Width to lmRight. So Width doesn't
really represent a width, but the X-coordinate of the window's right edge. If you know
the X-coordinate of the right edge and the center, it's easy to calculate the X-coordinate
of the left edge.

To better understand how constraints work together to describe a window, try building
and running the example application LAYOUT in the directory EXAMPLES\ OWL\
OWLAPI\LAYOUT. This application has a number of child windows in a layout
window. A dialog box you can access from the menu lets you change the constraints of
each of the windows and then see the results as the windows are laid out. Be careful,
though. If you specify a set of layout constraints that doesn't fully describe a window,
the application will probably crash, or, if diagnostics are on, a check will occur. The
reason for this is discussed in the next section.

Indeterminate constraints
You must be careful about how you specify your layout constraints. The constraints
available in the TLayoutMetrics class give you the ability to fully describe a window. But
they do not guarantee that the constraints you use will fully describe a window. In cases
where the constraints do not fully describe a window, the most likely result is an
application crash.

Using layout windows
Once you've set up layout constraints, you're ready to create a layout window to
contain your child windows. Here's the constructor for TLayoutWindow:

TLayoutWindow(TWindow* parent,

where:

const char far* title = 0,
TModule* module= 0);

• parent is the layout window's parent window.
• title is the layout window's title. This parameter defaults to a null string.
• module is passed to the TWindow base class constructor as the TModule parameter for

that constructor. This parameter defaults to 0.

After the layout window is constructed and displayed, there are a number of functions
you can call:

• The Layout function returns void and takes no parameters. This function tells the
layout window to look at all its child windows and lay them out again. You can call
this to force the window to recalculate the boundaries and locations of each child
window. You usually want to call Layout after you've moved a child window, resized
the layout window, or anything else that could affect the constraints of the child
windows.

7 4 0 b j e c tW ind ow s Pro g ram mer' s Guide

Note that TLayoutWindow overrides the TWindow version of EvSize to call Layout
automatically whenever a WM_SIZE event is caught. If you override this function
yourself, you should be sure either to call the base class version of the function or call
Layout in your derived version.

• SetChildLayoutMetrics returns void and takes a TWindow & and a TLayoutMetrics & as
parameters. Use this function to associate a set of constraints contained in a
TLayoutMetrics object with a child window. Here is an example of creating a
TLayoutMetrics object and associating it with a child window:

TMyLayoutWindow: :TMyLayoutWindow(TWindow* parent, char far* title)
: TLayoutWiJ.dow(pa.rent, title)

TWindow MyChildWindow(this);

TLayoutMetrics layoutMetrics;

layoutMetrics.X.Absolute(lmLeft, 10);
layoutMetrics.Y.Absolute(lmTop, 10);
layoutMetrics.Width.PercentOf(lmParent, lmWidth, 60);
layoutMetrics.Height.PercentOf(lmParent, lmHeight, 60);

SetChildLayoutMetrics(MyChildWindow, layoutMetrics);

Notice that the child window doesn't need any special functionality to be associated
with a layout metrics object. The association is handled entirely by the layout
window itself. The child window doesn't have to know anything about the
relationship.

• GetChildLayoutMetrics returns bool and takes a TWindow & and a TLayoutMetrics & as
parameters. This looks up the child window that is represented by the TWindow &. It
then places the current layout metrics associated with that child window into the
TLayoutMetrics object passed in. If GetChildLayoutMetrics doesn't find a child window
that equals the window object passed in, it returns false.

• RemoveChildLayoutMetrics returns bool and takes a TWindow & for a parameter. This
looks up the child window that is represented by the TWindow &. It then removes the
child window and its associated layout metrics from the layout window's child list. If
RemoveChildLayoutMetrics doesn't find a child window that equals the window object
passed in, it returns false.

You must provide layout metrics for all child windows of a layout window. The layout
window assumes that all of its children have an associated layout metrics object.
Removing a child window from a layout window, or deleting the child window object
automatically removes the associated layout metrics object.

Frame windows
Frame windows (objects of class TFrameWindow) are specialized windows that support
a client window. Frame windows are the basis for MDI and SDI frame windows, MDI
child windows, and, along with TLayoutWindow, decorated frame windows.

Chapter 7, Window objects 75

Frame windows have an important role in ObjectWindows development: frame
windows manage application-wide tasks like menus and tool bars. Client windows
within the frame can be specialized to perform a single task Changes you make to the
frame window (for example, adding tool bars and status bars) don't affect the client
windows.

Constructing frame window objects
You can construct a frame window object using one of the two TFrameWindow
constructors. These two constructors let you create new frame window objects along
with new interface elements, and let you connect a new frame window object to an
existing interface element.

Constructing a new frame window
The first TFrameWindow constructor is used to create an entirely new frame window
object:

TFrameWindow(TWindow *parent,

where:

const char far *title = 0,
TWindow *clientWnd = 0,
bool shrinkToClient = false,
TModule *module = 0);

• The first parameter is the window's parent window object. Use zero if the window
you're creating is the main window (which doesn't have a parent window object).
Otherwise, use a pointer to the parent window object. This is the only parameter that
you must provide.

• The second parameter is the window title. This is the string that appears in the
caption bar of the window. If you don't specify anything for the second parameter,
no title is displayed in the title bar.

• The third parameter lets you specify a client window for the frame window. If you
don't specify anything for the third parameter, by default the constructor gets a zero,
meaning that there is no client window. Otherwise, pass a pointer to the client
window object.

• The fourth parameter lets you specify whether the frame window should shrink to fit
the client window. If you don't specify anything, by default the constructor gets false,
meaning that it should not fit the frame to the client window.

• The fifth parameter is passed to the base class constructor as the TModule parameter
for that constructor. This parameter defaults to 0.

Here are some examples of using this constructor:

void
TMyApplication: :InitMainWindow()
{ '

II default is for no client window
SetMainWindow(new TFrameWindow(O, "Main Window"));

76 0 bje ctWi n d ows Programmer's Guide

void
TMyApplication: :InitMainWindow()
(

II client window is TMyClientWindow
SetMainWindow(new TFrameWindow(O, "Main window with client",

new TMyClientWindow, true));

Constructing a frame window alias
The second TFrameWindow constructor is used to connect an existing interface element
to a new TFrameWindow object. This object is known as an alias for the existing window:

TFrameWindow(HWND hWnd, TModule *module);

where:

• The first parameter is the window handle of the existing interface element. This is the
window the TFrameWindow object controls.

• The second parameter is passed to the base class constructor as the TModule
parameter for that constructor. This parameter defaults to 0.

This is useful for creating window objects for existing windows. You can then
manipulate any window as if it was an ObjectWindows-created window. This is useful
in situations such as DLLs, when a non-ObjectWindows application calling into the DLL
passes in an HWND. You can then construct a TFrameWindow alias for the HWND and
proceed to call TFrameWindow member functions like normal.

The following example shows how to construct a TFrameWindow for an existing
interface element and use that window as the main window:

void
TMyApplication::AddWindow(HWND hWnd)
(

TFrameWindow* frame= new TFrameWindow(hWnd);
TFrameWindow* tmp = SetMainWindow(frame);
ShowWindow(GetMainWindow()->HWindow, SW_SHOW);
tmp->ShutDownWindow();

When you use the second constructor for TFrameWindow, it sets the flag wfAlias. You can
tell whether a window element was constructed from its window object or whether it's
actually an alias by calling the function IsFlagSet with the wf Alias flag. For example,
suppose you don't know whether the function AddWindow in the last example has
executed yet. If your main window is not an alias, AddWindow hasn't executed. If your
main window is an alias, AddWindow has executed:

void
TMyApplication: :CheckAddExecute()
(

if(GetMainWindow()->IsFlagSet(wfAlias))
II MainWindow is an alias; AddWindow has executed

Chapter 7, Window objects 77

else
II MainWindow is not an alias; AddWindow has not executed

See page 32 for more information on windows object attributes.

Modifying frame windows
Many frame window attributes can be set after the object has been constructed. You can
change and query object attributes using the functions discussed on page 32. You can
also use the TWindow functions discussed on page 32. TFrameWindow provides an
additional set of functions for modifying frame windows:

• AssignMenu is typically used to set up a window's menu before the interface element
has been created, such as in the InitMainWindow function or the window object's
constructor or Setup Window function.

• SetMenu sets the window's menu handle to the HMENU parameter passed in.

• SetMenuDescr sets the window's menu description to the TMenuDescr parameter
passed in.

• GetMenuDescr returns the current menu description.

• MergeMenu merges the current menu description with the TMenuDescr parameter
passed in.

• RestoreMenu restores the window's menu from Attr.Menu.

• Setlcon sets the icon in the module passed as the first parameter to the icon passed as
a resource in the second parameter.

For more specific information on these functions, refer to the Object Windows Reference
Guide.

Decorated frame windows
This section discusses decorated frame windows. Decorated frame windows are
encapsulated in TDecoratedFrame, which is derived from TFrameWindow and
TLayoutWindow. Decorated frame windows provide all the functionality of frame
windows and layout, but in addition provide:

• Support for adding controls (known as decorations) to the frame of the window
• Automatic adjustment of child windows to accommodate the placement of

decorations

Figure 7.2 shows a sample decorated frame window.

78 ObjectWindows Programmer's Guide

Figure 7.2 Sample decorated frame window

Constructing decorated frame window objects
TDecoratedFrame has only one constructor. Except for the fourth parameter, this
constructor looks nearly identical to the first TFrameWindow constructor described on
page 76.

TDecoratedFrame(TWindow* parent,

where:

const char far* title,
TWindow* clientWnd,
bool trackMenuSelection = false,
TModule* module = OJ;

• The first parameter is the window's parent window object. Use zero if the window
you're creating is the main window (which doesn't have a parent window object).
Otherwise use a pointer to the parent window object. This is the only parameter that
you must provide.

• The second parameter is the window title. This string appears in the caption bar of
the window. If you don't specify anything for the second parameter, no title is
displayed in the title bar.

• The third parameter lets you specify a pointer to a client window for the frame
window. If you don't specify anything for the third parameter, by default the
constructor gets a zero, meaning that there is no client window.

• The fourth parameter lets you specify whether menu commands should be tracked.
When tracking is on, the window tries to pass a string to the window's status bar. The
string passed has the same resource name as the currently selected menu choice. You

Chapter 7, Window objects 79

should not turn on menu selection tracking unless you have a status bar in your
window. If you don't specify anything, by default the constructor gets false, meaning
that it should not track menu commands.

• The fifth parameter is passed to the base class constructor as the TModule parameter
for that constructor. This parameter defaults to 0.

Adding decorations to decorated frame windows
You can use the methods for modifying windows described on pages 32 and 78 to
modify the basic attributes of a decorated frame window. TDecoratedFrame provides the
extra ability to add decorations using the Insert member function.

To use the Insert member function, you must first construct a control to be inserted.
Valid controls include control bars (TControlBar), status bars (TStatusBar), button
gadgets (TButtonGadget), and any other control type based on TWindow.

Once you have constructed the control, use the Insert function to insert the control into
the decorated frame window. The Insert function takes two parameters: a reference to
the control and a location specifier. TDecoratedFrame provides the enum TLocation.
TLocation has four possible values: Top, Bottom, Left, and Right.

Suppose you want to construct a status bar to add to the bottom of your decorated
frame window. The code would look something like this:

TStatusBar* sb =new TStatusBar(O, TGadget::Recessed,
TStatusBar::CapsLock I
TStatusBar: :NumLock I

TStatusBar::Overtype);

TDecoratedFrame* frame= new TDecoratedFrame(O,

frame->Insert(*sb, TDecoratedFrame::Bottom);

MDI windows

"Decorated Frame",
0,
true);

Multiple-document interface, or MDI, windows are part of the MDI interface for
managing multiple windows or views in a single frame window. MDI lets the user
work with a number of child windows at the same time. Figure 7.3 shows a sample MDI
application.

80 ObjectWindows Programmer's Guide

Figure 7.3 Sample MDI application

jrhis must he heaven. tonight I cross the line.
You must be the angel. I though I might never find.
Was it you I heard singing. Oh while I was chasin' dreams.
Driven by the wind. like the dust that blows around.
And the rain fallin' down. but I never know.
Got to be heaven, cause here's where the rainbow ends.
If this ain't the real thing. then it's close enough to pretend.
When that wind blows. when the night's about to fall.
You can hear the silence call. it's a certain sort of sound.
Like the rain fallin' down.

Holes in what's left of my reason, holes in the knees of my blues.
Odds against me been increasin'. but I'll pull through.
I never could read no road map, I don't know whatthe weather might do.
But when that rich wind whines and I see the dark star shine,
I got a feeling there's no time to lose, no time to lose.

MDI applications
Certain components are present in every MDI application. Most evident is the main
window, called the MDI frame window. Within the frame window's client area is the
MDI client window, which holds child windows called MDI child windows. When using
the Doc/View classes, the application can put views into MDI windows. See Chapter 10
for more information on the Doc/View classes.

MDI Window menu
An MDI application usually has a menu item labeled Window that controls the MDI
child windows. The Window menu usually has items like Tile, Cascade, Arrange, and
Close All. The name of each open MDI child window is automatically added to the end
of this menu, and the currently selected window is checked.

MDI child windows
MDI child windows have some characteristics of an overlapped window. An MDI child
window can be maximized to the full size of its MDI client window, or minimized to an
icon that sits inside the client window. MDI child windows never appear outside their
client or frame windows. Although MDI child windows can't have menus attached to
them, they can have a TMenuDescr that the frame window uses as a menu when that
child is active. The caption of each MDI child window is often the name of the file
associated with that window; this behavior is optional and under your control.

MDI in ObjectWindows
ObjectWindows defines classes for each type of MDI window:

Chapter 7, Window objects 81

• TMDIFrame
• TMDIClient
• TMDIChild

In ObjectWindows, the MDI frame window owns the MDI client window, and the MDI
client window owns each of the MDI child windows.

TMDIFrame's member functions manage the frame window and its menu.
ObjectWindows first passes commands to the focus window and then to its parent, so
the client window can process the frame window's menu commands. Because
TMDIFrame doesn't have much specialized behavior, you'll rarely have to derive your
own MDI frame window class; instead, just use an instance of TMDIFrame. Since
TMDIChild is derived from TFrameWindow, it can be a frame window with a client
window. Therefore, you can create specialized windows that serve as client windows in
a TMDIChild, or you can create specialized TMDIChild windows. The preferred style is
to use specialized clients with the standard TMDIChild class. The choice is yours, and
depends on your particular application.

Building MDI applications
Follow these steps to building an MDI application in ObjectWindows:

1 Create an MDI frame window
2 Add behavior to an MDI client window
3 Create MDI child windows

The ObjectWindows TMDIXxx classes handle the MDI-specific behavior for you, so you
can concentrate on the application-specific behavior you want.

Creating an MDI frame window
The MDI frame window is always an application's main window, so you construct it in
the application object's InitMain Window member function. MDI frame windows differ
from other frame windows in the following ways:

• An MDI frame is always a main window, so it never has a parent. Therefore,
TMDIFrame's constructor doesn't take a pointer to a parent window object as a
parameter.

• An MDI frame must have a menu, so TMDIFrame's constructor takes a menu
resource identifier as a parameter. With non-MDI main frame windows, you'd call
AssignMenu to set the windows menu. TMDIFrame's constructor makes the call for
you. Part of what TMDIFrame::AssignMenu does is search the menu for the child
window menu, by searching for certain menu command IDs. If it finds a Window
menu, new child window titles are automatically added to the bottom of the menu.

A typical InitMain Window for an MDI application looks like this:

void
TMDIApp::InitMainWindow()
{

SetMainWindow(new TMDIFrame("MDI App", ID_MENU, *new TMyMDIClient));

82 0 b j e ct W i n d o w s P r o g r a m m e r ' s G u i d e

The example creates an MDI frame window titled "MDI App" with a menu from the
ID_MENU resource. The ID_MENU menu should have a child-window menu. The
MDI client window is created from the TMyMDIClient class.

Adding behavior to an MDI client window
Since you usually use an instance of TMDIFrame as your MDI frame window, you need
to add application-wide behavior to your MDI client window class. The frame window
owns menus and tool bars but passes the commands they generate to the client window
and to the application. A common message-response function would respond to the
File I Open menu command to open another MDI child window.

Manipulating child windows
TMDIClient has several member functions for manipulating MDI child windows.
Commands from an MDI application's child-window menu control the child windows.
TMDIClient automatically responds to those commands and performs the appropriate
action:

Table 7.4 Standard MDI child-window menu behavior

Cascade CM_CASCADECIBLDREN CmCascadeChildren

Tile CM_TILECIBLDREN CmTileChildren

Tile Horizontally CM_TILECHILDRENHORIZ CmTileChildrenHoriz

Arrange Icons CM_ARRANGEICONS CmArrangeicons

Close All CM_CLOSECIBLDREN CmCloseChildren

The header file owl \mdi.h includes owl \mdi.rh for your applications. owl \mdi.rh is a
resource header file that defines the menu command IDs listed in Table 7.4. When you
design your menus in your resource script, be sure to include owl \mdi.rh to get those
IDs.

MDI child windows shouldn't respond to any of the child-window menu commands.
The MDI client window takes care of them.

Creating MDI child windows
There are two ways to create MDI child windows: automatically in
TMDIClient::InitChild or manually elsewhere.

Automatic child window creation
TMDIClient defines the CmCreateChild message response function to respond to the
CM_ CREA TECHILD message. CmCreateChild is commonly used to respond to an MDI
application's File I New menu command. CmCreateChild calls CreateChild, which calls
InitChild to construct an MDI child window object, and finally calls that object's Create
member function to create the MDI child window interface element.

Chapter 7, Window objects 83

If your MDI application uses CM_CREATECHILD as the command ID to create new
MDI child windows, then you should override InitChild in your MDI client window
class to construct MDI child window objects whenever the user chooses that command:

TMDIChild*
TMyMDIClient::InitChild()
{

return new TMDIChild (*this, "MDI child window") ;

Since TMDIChild's constructor takes a reference to its parent window object, and not a
pointer, you need to dereference the this pointer.

Manual child window creation
You don't have to construct MDI child window objects in InitChild. If you construct
them elsewhere, however, you must create their mterface element yourself:

void
TMyMDIClient::CrnFileOpen()
{

new TMDIChild (*this, "")->Create () ;

84 ObjectWindows Programmer's Guide

Menu objects
ObjectWindows menu objects encapsulate menu resources and provide an interface for
controlling and modifying the menu. Many applications use only a single menu
assigned to the main window during its initialization. Other applications might require
more complicated menu handling. ObjectWindows menu objects, encapsulated in the
TMenu, TSystemMenu, TPopupMenu, and the TMenuDescr classes, give you an easy way
to create and manipulate menus, from basic functionality to complex menu merging.

This chapter discusses the following tasks you can perform with menu objects:

• Constructing menu objects
• Modifying menu objects
• Querying menu objects
• Using system menu objects
• Using pop-up menu objects
• Using menu objects with frame windows

Constructing menu objects
TMenu has several constructors to create menu objects from existing windows or from
menu resources. After the menu is created, you can add, delete, or modify it using
TMenu member functions. Table 8.1 lists the constructors you can use to create menu
objects.

Table 8.1 TMenu constructors for creating menu objects

TMenu() Creates an empty menu.

TMenu(HWND) Creates a menu object representing the window's current menu.

TMenu(HMENU) Creates a menu object from an already-loaded menu.

TMenu(LPCVOID*) Creates a menu object from a menu template in memory.

TMenu(HINSTANCE, TResID) Creates a menu object from a resource.

Chapter 8, Menu objects 85

Modifying menu objects
After you create a menu object, you can use TMenu member functions to modify it.
Table 8.2 lists the member functions you can call to modify menu objects.

Table8.2 TMenu constructors for modifying menu objects

Adding menu items:

Append.Menu(uint, uint, const char*)

Append.Menu(uint, uint, const TBitmap&)

InsertMenu(uint, uint, uint, const char*)

InsertMenu(uint, uint, uint, const TBitmap&)

Modifying menu items:

ModifyMenu(uint, uint, uint, const char*)

ModifyMenu(uint, uint, uint, const TBitmap&)

Enabling and disabling menu items:

EnableMenultem(uint, uint)

Deleting and removing menu items:

DeleteMenu(uint, uint)

RemoveMenu(uint, uint)

Checking menu items:

CheckMenultem(uint, uint)

SetMenultemBitmaps(uint, uint, const TBitmap*, const TBitmap*)

Displaying pop-up menus:

TrackPopupMenu(uint, int, int, int, HWND, TRect*)
TrackPopupMenu(uint, TPoint&, int, HWND, TRect*)

Adds a menu item to the end of the
menu.

Adds a bitmap as a menu item at the
end of the menu.

Adds a menu item to the menu after
the menu item of the given ID.

Adds a bitmap as a menu item after
the menu item of the given ID.

Changes the given menu item.

Changes the given menu item to a
bitmap.

Enables or clisables the given menu
item.

Removes the menu item from the
menu it is part of. Deletes it if it's a
pop-up menu.

Removes the menu item from the
menu but not from memory.

Check or unchecks the menu item.

Specifies the bitmap to be clisplayed
when the given menu item is checked
and unchecked.

Displays the menu as a pop-up menu
at the given location on the specified
window.

After modifying the menu object, you should call the window object's DrawMenuBar
member function to update the menu bar with the changes you've made.

Querying menu objects
TMenu has a number of member functions and member operators you can call to find
out information about the menu object and its menu. You might need to call one of the
query member functions before you call one of the modify member functions. For

86 ObjectWindows 'Programmer's Guide

example, you need to call GetMenuCheckmarkDimensions before calling
SetMenuitemBitmaps.

Table 8.3 lists the menu-object query member functions.

Table 8.3 TMenu constructors for querying menu objects

TMenu me111.6erfondfon

Querying the menu object as a whole:
operator uint()

operator HMENU()

lsOK()

GetMenultemCount()

GetMenuCheckMarkDimensions(TSize&)

Querying items in the menu:
GetMenultemID(int)

GetMenuState(uint, uint)

GetMenuString(uint, char*, int, uint)

GetSubMenu(int)

Using system menu objects

D~scripµon .

Returns the menu's handle as a uint.

Returns the menu's handle as an HMENU.

Checks if the menu is OK (has a valid handle).

Returns the number of items in the menu.

Gets the size of the bitmap used to display the check mark on
checked menu items.

Returns the ID of the menu item at the specified position.

Returns the state flags of the specified menu item.

Gets the text of the given menu item.

Returns the handle of the menu at the given position.

ObjectWindows' TSystemMenu class lets you modify a window's System menu.
TSystemMenu is derived from TMenu and differs from it only in its constructor, which
takes a window handle and a bool flag. If the flag is true, the current System menu is
deleted and a menu object representing the unmodified menu that's put in its place is
created. If the flag is false, the menu object represents the current System menu. By
default this flag is false.

You can use all the member functions inherited from TMenu to manipulate the System
menu. For example, the following example shows how to add an About menu choice to
the System menu.

void
TSysMenuFrame: :SetupWindow()
(

TFrameWindow: :SetupWindow();

II Append about menu item to system menu.
TSystemMenu sysMenu(HWindow);
sysMenu.AppendMenu(MF_SEPARATOR, 0, (LPSTR)O);
sysMenu.Appenc:!Menu(MF_STRING, CM_ABOUT, "&About ... ");

Notice that the System menu is modified in the Setup Window function of the window
object. The System menu should be modified before the window is created. It's usually
easiest to do this simply by overriding the base window class' Setup Window function.

C h a p I e r B , M e n u o b j e ct s 87

Using pop-up menu objects
You can use TPopupMenu to create a pop-up menu that you can add to an existing menu
structure or pop up anywhere in the window. Like TSystemMenu, TPopupMenu is
derived from TMenu and differs from it only in its constructor, which creates an empty
pop-up menu. You can then add whatever menu items you like using the AppendMenu
function.

Once you've created a pop-up menu, you can use TrackPopupMenu to display it as a
"free-floating'' menu. TrackPopupMenu creates a pop-up menu at a particular location in
your window. There are two forms of this function.

bool TrackPopupMenu(uint flags, int x, int y, int rsvd, HWND wnd, TRect* rect = 0);
bool TrackPopupMenu(uint flags, TPoint& point, int rsvd, HWND wnd, TRect* rect = 0);

where:

• flags specifies the relative location of the pop-up menu. It can be one of the following
values:

• TPM_CENTERALIGN
• TMP _LEFTALIGN
OJI TPM_RIGHTALIGN
OJI TPM_LEFTBUTTON
• TPM_RIGHTBUTTON

• x and y specify the screen location of the pop-up menu. In the second form of
TrackPopupMenu, point does the same thing, combining x and y into a single TPoint
object. The menu is then created relative to this point, depending on the value of flags.

• rsvd is a reserved value and must be set to 0.

• wnd is the handle to the window that receives messages about the menu.

• rect defines the area that the user can click without dismissing the menu.

The following example shows a window class that displays a pop-up menu in response
to a right mouse button click.

class TPopupMenuFrame : public TFraemeWindow
{

public:
TPopupMenuFrame(TWindow* parent, const char *name);

protected:
TPopupMenu PopupMenu;
void EvRButtonDown(uint modKeys, TPoint& point);

DECLARE_RESPONSE_TABLE(TPopupMenuFrame);
};

DEFINE_RESPONSE_TABLEl(TSysMenuFrame, TFrameWindow)
EV_WM_RBUTTONDOWN,

END_RESPONSE_TABLE;

88 ObjectWindows Programmer's Guide

TPopupMenuFrame::TPopupMenuFrame(TWindow* parent, const char *name)
: TFrameWindow(parent, name)

PopupMenu.AppendMenu(MF_STRING, CM_FILENEW, "Create new file");
PopupMenu. AppendMenu (MF _STRING, CM_FILEOPEN, "Open file") ;
PopupMenu.AppendMenu(MF_STRING, CM_FILESAVE, "Save file");
PopupMenu.AppendMenu(MF_STRING, CM_FILESAVEAS, "Save file under new name");
PopupMenu.AppendMenu(MF_STRING, CM_PENSIZE, "Change pen size");
PopupMenu.AppendMenu(MF_STRING, CM_PENCOLOR, "Change pen color");
PopupMenu.AppendMenu(MF_STRING, CM_ABOUT, "&About ... ");
PopupMenu.AppendMenu(MF_STRING, CM_EXIT, "Exit Program");

void
TPopupMenuFrame::EvRButtonDown(uint /* modKeys */, TPoint& point)
{

PopupMenu.TrackPopupMenu(TPM_LEFTBUTTON, point, 0, HWindow);

Using menu objects with frame windows
ObjectWindows frame window objects (TFrameWindow and TFrameWindow-derived
classes) provide a number of functions that you can use to assign, change, and modify
menus. There are two ways to manipulate frame window menus:

• Directly assigning or changing the frame window's main menu. This is typically how
you work with menus when you have a single menu that doesn't use menu merging.

• Assigning and merging the frame window's menu descriptor with that of client and
child windows. Menu descriptors are objects that divide the menu bar into functional
groups and permit easy merging and removal of pop-up menus.

These methods of using menu objects are described in the next sections.

Adding menu resources to frame windows
It was fairly common practice in ObjectWindows 1.0 to assign a menu resource directly
to the Attr.Menu member of a frame window; for example,

Attr.Menu = MENU_l;

ObjectWindows no longer permits this type of assignment; you should instead use the
AssignMenu function. AssignMenu is defined in the TFrameWindow class, and is available
in any class derived from TFrameWindow, such as TMDIFrame, TMDIChild,
TDecoratedFrame, and TFloatingFrame.

The AssignMenu function takes a TResid for its only parameter and returns true if the
assignment operation was successful. AssignMenu is declared virtual, so you can
override it in your own TFrameWindow-derived classes. Here's what the previous
example looks like when the AssignMenu function is used:

AssignMenu(MENU_l);

Chapter 8, Menu objects 89

You can also change the menu after the frame window has been created. To change the
frame window's menu, call the window object's SetMenu function.

SetMenu(MENU_2);

Using menu descriptors
Managing menus-adding menus for child windows, merging menus, and so on--can
be a tedious and confusing chore. ObjectWindows simplifies menu management with
objects known as menu descriptors. Menu descriptors divide the menu bar into six
groups, which correspond to conventional ways of arranging functions on a menu bar:

• File
• Edit
• Container
• Object
• Window
• Help

Organizing menus into functional groups makes it easy to insert a new menu into an
existing menu bar. For example, consider an MDI application, such as Step 11 of the
ObjectWindows tutorial in the Object Windows Tutorial manual. The frame and client
windows provide menus that let the user perform general application functions such as
opening files, managing windows, and so on. The child windows handle the menu
commands for functions specific to a particular drawing, such as setting the line width
and color.

In the tutorial, the menu stays the same, but menu items handled by the child windows
are grayed out when no child window is available to handle the command. Another
way to handle this would be to have the menu bar populated only with the menus
handled by the frame and client windows. Then, when a child window is opened, the
menus handled by the child window would be merged into the existing menu bar. The
figures below show how this looks to the user. Figure 8.1 shows the application with no
child windows open. Notice that there are only four pop-up menus on the menu bar.

90 Objec!Windows Programmer's Guide

Figure 8.1 Menu descriptor application without child windows open

Figure 8.2 shows the application once one or more child windows have been opened.
Notice the extra pop-up menu labeled Tools. The Tools menu is merged into the main
menu bar only when there is a child window where the tools can be used.

Figure 8.2 Menu descriptor application with child windows open

Adding menu descriptors to an application is a simple process.

• Set the menu descriptor for the frame window's menu bar by calling the frame
window's SetMenuDescr function.

C h a pt e r 8 , M e n u o b j e c I s 91

• When creating a new child window, set the child's menu descriptor by calling the
child's SetMenuDescr function. Once the child window is created, ObjectWindows
automatically merges the menu from the child with the frame window's menu bar
while the child is active. Note that different MDI child windows in the same
application can have different menu descriptors. This is useful when the child
windows contain different kinds of documents.

Creating menu descriptors and using the menu descriptor handling functions is
described in the next sections.

Creating menu descriptors
The TMenuDescr class implements the ObjectWindows menu descriptor functionality.
Menu descriptors take a menu resource and place the separate pop-up menus in the
resource into six functional groups. The naming of the groups is arbitrary in that you are
not restricted to putting only menus of a certain functional type into a particular group.
However, the naming convention does reflect standard conventions of menu item
placement. These names are contained in the TGroup enum defined in the TMenuDescr
class:

• FileGroup
• EditGroup
• ContainerGroup
• ObjectGroup
• WindowGroup
• HelpGroup

These groups are arranged consecutively on the menu bar from left to right. When
another menu descriptor is merged with the existing menu bar, the new pop-up menus
are merged according to their groups. For example, consider the example show Figure
8.1 and Figure 8.2. The original three pop-up menus are placed in the following menu
groups:

• The File menu is placed in the FileGroup group.
• The Window menu is placed in the WindowGroup group.
• The Help menu is placed in the HelpGroup group.

When the child window is created, its pop-up menu, called Tools, is placed in the
EditGroup group. Then, when the menus are merged, the child window's menu is
automatically placed between the File menu and the Window menu.

92 0 b j e ct W i n d o w s P r o g r a m m e r ' s G u i d e

Constructing menu descriptor objects
There are a number of different constructors for TMenuDescr. These are described in
Table 8.4.

Table 8.4 TMenuDescr constructors

Constructor

TMenuDescr(TResld id,
TModule* module= ::Module)

TMenuDescr(TResld id,
int Jg, int eg, int cg,
int og, int wg, int hg,
TModule* module= ::Module);

TMenuDescr(HMENU hMenu,
int Jg, int eg, int cg,
int og, int wg, int hg,
TModule* module= ::Module);

Function

Creates a menu descriptor from the menu resource identified
by id. The grouping of the pop-up menus are determined by
the occurrence of separators at the menu level (that is,
separators inside of a pop-up menu are disregarded for
grouping purposes) in the menu resource. This is discussed in
more detail in the next section.

Creates a menu descriptor from the menu resource identified
by id or hMenu. The separate pop-ups in the resource are then
placed in groups according to the values of Jg, eg, cg, og, wg,
and hg. The total of all the values of Jg, eg, cg, og, wg, and hg
should be equivalent to the number of pop-ups in the menu
resource. The Jg, eg, cg, og, wg, and hg parameters correspond to
the groups defined in the TMenuDescr::TGroup enum.
You can place more than one pop-up in a single group, and
you don't have to place a pop-up in every group. For example,
suppose you have a menu resource with a File menu, a
Window menu, and a Help menu, all contained in the menu
resource COMMANDS. You want to insert the File menu in
the FileGroup group, the Window menu in the WindowGroup
group, and the File menu in the FileGroup group. The
constructor would look something like this:

TMenuDescr md(COMMANDS, 1, 0, 0, 0, 1, 1);
TMenuDescr() Creates a default menu constructor without menu resources or

any group counts.

TMenuDescr(const TMenuDescr& original) Creates a copy of the menu descriptor object original.

Creating menu groups in menu resources
The TMenuDescr class provides two ways to set up the groups that your various pop-up
menus belong in:

• Explicitly numbering the menu resources in the TMenuDescr constructor
• Placing separators at the pop-up menu level in the menu resource

Earlier versions of ObjectWindows provided only the first method. The second method
is new in ObjectWindows 2.5 . This method is more flexible, eliminating the need to
modify the TMenuDescr constructor whenever you add or remove a pop-up menu in
your menu resource.

To set up groups in your menu resource, you need to put separators at the pop-up menu
level. This means placing the separators outside of pop-up definitions. These separators
have meaning only to the TMenuDescr constructor and don't cause any changes in the
appearance of your menu bar. Separators inside pop-up menus are treated normally,
that is, they appear in the pop-up menu as separator bars between menu choices.

The following example shows how a menu resource might be divided up into groups
using separators in the menu resource. The menu resource is divided up into the
requisite six groups, with four of the groups containing actual pop-up menus-the File

Chapter 8, Menu objects 93

menu, the Edit menu, the Window menu, and the Help menu. The other two groups are
empty.

IDM_COMMANDS MENU
{

POPUP "File"

MENUITEM "&New\aCtrl+N", CM_FILENEW
MENUITEM "&Open\aCtrl+O", CM_FILEOPEN
MENUITEM "&Save\aCtrl+S", CM_FILESAVE
MENUITEM "Save &as ... ", CM_FILESAVEAS
MENUITEM SEPARATOR
MENUITEM "&Print\aCtrl+P", CM_FILEPRINT

MENUITEM SEPARATOR
POPUP "&Edit"

MENUITEM "&Undo\aCtrl+Z", CM_EDITUNDO
MENUITEM Separator
MENUITEM "&Cut\aCtrl+X", CM_EDITCUT
MENUITEM "C&opy\aCtrl+C", CM_EDITCOPY
MENUITEM "&Paste\aCtrl+V"' CM_EDITPASTE
MENUITEM "&Delete\aDel", CM_EDITDELETE

MENUITEM SEPARATOR
MENUITEM SEPARATOR
MENUITEM SEPARATOR
POPUP "&Window"
{

MENUITEM "&Cascade", CM_CASCADECHILDREN
MENUITEM "&Tile", CM_TILECHILDREN
MENUITEM "Arrange &Icons", CM_ARRANGEICONS
MENUITEM "C&lose All", CM_CLOSECHILDREN
MENUITEM "Add &View", CM_VIEWCREATE

MENUITEM SEPARATOR
POPUP "&Help"
{

MENUITEM "&About", CM_ABOUT

Merging menus with menu descriptors
To use menu descriptors for menu merging, you need to set your frame window's menu
descriptor sometime before the creation of the window, usually during the
InitMain Window function. Then whenever you wish to merge a child window's menu or
menus with that of its parent, you set the child window's menu descriptor before
creating the child. When child is created, its menu descriptor is automatically merged
with the parent.

You set a window's menu descriptor using the SetMenuDescr function. SetMenuDescr is
inherited from TFrameWindow. It returns void and takes a const TMenuDescr reference

94 ObjectWindows Programmer's Guide

as its only parameter. The following example shows how you might create and set the
menu descriptors for the examples shown in Figure 8.1 and Figure 8.2.

class TMenuDescrApp : public TApplication
{

};

public:
TMenuDescrApp(const char* name) TApplication(name) {}

void InitMainWindow()
{

SetMainWindow(Frame =new TMDIFrame(Name, COMMANDS, *new TMenuDescrMDIClient));
Frame->SetMenuDescr(TMenuDescr(COMMANDS));

protected:
TMDIFrame* Frame;

void
TMenuDescrMDIClient::CmAddMenul()
{

TMDIChild *child = new TMDIChild (*this, "Child Window, 1", new TMenuDescrWindow, true) ;
child->SetMenuDescr(TMenuDescr(IDM_MENUl));
child->Create();

C h apt e r 8 , M e n u o b j e ct s 95

96 ObjectWindows Programmer's Guide

Dialog box objects
Dialog box objects are interface objects that encapsulate the behavior of dialog boxes.
The TDialog class supports the initialization, creation, and execution of all types of
dialog boxes. As with window objects derived from TWindow, you can derive
specialized dialog box objects from TDialog for each dialog box your application uses.

ObjectWindows also supplies classes that encapsulate Windows' common dialog boxes.
Windows provides common dialog boxes as a way to let users choose file names, fonts,
colors, and so on.

This chapter covers the following topics:

• Using dialog box objects
• Using a dialog box as your main window
• Manipulating controls in dialog boxes
• Associating interface objects with controls
• Using common dialog boxes

Using dialog box objects
Using dialog box objects is a lot like using window objects. For simple dialog boxes that
appear for only a short period of time, you can control the dialog box in one member
function of the parent window. The dialog box object can be constructed, executed, and
destroyed in the member function.

Using a dialog box object requires the following steps:

• Constructing the object
• Executing the dialog box
• Closing the dialog box
• Destroying the object

Chapter 9, Dialog box objects 97

. Constructing a dialog box object
Dialog boxes are designed and created using a dialog box resource. You can use
Borland' s Resource Workshop or any other resource editor to create dialog box
resources and bind them to your application. The dialog box resource describes the
appearance and location of controls, such as buttons, list boxes, group boxes, and so on.
The dialog box resource isn't responsible for the behavior of the dialog box; that's the
responsibility of the application.

Each dialog box resource has an identifier that enables a dialog box object to specify
which dialog box resource it uses. The identifier can be either a string or an integer. You
pass this identifier to the dialog box constructor to specify which resource the object
should use.

Calling the constructor
To construct a dialog box object, create it using a pointer to a parent window object and
a resource identifier (the resource identifier can be either string or integer based) as the
parameters to the constructor:

TDialog dialogl (this, "DIALOG_l");

TDialog dialog2(this, IDD_MY_DIALOG);

The parent window is almost always this, since you normally construct dialog box
objects in a member function of a window object. If you don't construct a dialog box
object in a window object, use the application's main window as its parent, because that
is the only window object always present in an ObjectWindows application:

TDialog mySpecialDialog(GetApplication()->GetMainWindow(), IDD_DLG);

The exception to this is when you specify a dialog box object as a client window in a
TFrameWindow or TFrameWindow-based constructor. The constructor passes the dialog
box object to the TFrameWindow::Init function, which automatically sets the dialog box's
parent. See page 102.

Executing a dialog box
Executing a dialog box is analogous to creating and displaying a window. However,
because dialog boxes are usually displayed for a shorter period of time, some of the
steps can be abbreviated. This depends on whether the dialog box is a modal or
modeless dialog box. · ·

Modal dialog boxes
Most dialog boxes are modal. While a modal dialog box is displayed, the user can't select
or use its parent window. The user must use the dialog box and close it before
proceeding. A modal dialog qox, in effect, freezes the operation of the rest of the
application.

Use TDi.alog::Execute to execute a dialog box modally. When the user closes the dialog
box, Execute returns an integer value indicating how the user closed the dialog box. The
return value is the identifier of the control the user pressed, such as IOOK for the OK

98 ObjectWindows Programmer's Guide

button or IDCANCEL for a Cancel button. If the dialog box object was dynamically
allocated, be sure to delete the object.

The following example assumes you have a dialog resource IDD_MY_DIALOG, and
that the dialog box has two buttons, an OK button that sends the identifier value IDOK
and a Cancel button that sends some other value:

if (TMyDialog(this, IDD_MY_DIALOG) .Execute() == IDOK)
II User pressed OK

else
II User pressed Cancel

Only the object is deleted when it goes out of scope, not the dialog box resource. You can
create and delete any number of dialog boxes using only a single dialog box resource.

Modeless dialog boxes
Unlike a modal dialog box, you can continue to use other windows in your application
while a modeless dialog box is open. You can use a modeless dialog box to let the user
continue to perform actions, find information, and so on, while still using the dialog box.

Use TDialog::Create to execute a dialog box modelessly. When using Create to execute a
dialog box, you must explicitly make the dialog box visible by either specifying the
WS_ VISIBLE flag for the resource style or using the Show Window function to force the
dialog box to display itself.

For example, suppose your resource script file looks something like this:

DIALOG_l DIALOG 18, 18, 142, 44
STYLE DS_MODALFRAME I WS_POPUP I WS_CAPTION WS_SYSMENU
CAPTION "Dialog l"
{

PUSHBUTTON "Button", IDOK, 58, 23, 25, 16

Now suppose that you try to create this dialog box modelessly using the following code:

TDialog dialogl (this, "DIALOG_l") ;
dialogl.Create();

This dialog box wouldn't appear on your screen. To make it appear, you'd have to do
one of two things:

• Change the style of the dialog box to have the WS_ VISIBLE flag set:

STYLE DS_MODALFRAME I WS_POPUP I WS_CAPTION I WS_SYSMENU I WS_VISIBLE

• Add the ShowWindow function after the call to Create:

TDialog dialogl (this, "DIALOG_l") ;
dialogl.Create();
dialogl.ShowWindow(SW_SHOW);

Chapter 9, Dialog box objects 99

The TDialog::CmOk and TDialog::CmCancel functions close the dialog box and delete the
object. These functions handle the IDOK and IDCANCEL messages, usually sent by the
OK and Cancel buttons, in the TDialog response table. The CmOk function calls
Close Window to close down the modeless dialog box. The CmCancel function calls
Destroy with the IDCANCEL parameter. Both of these functions close the dialog box. If
you override either CmOk or CmCancel, you need to either call the base class CmOk or
CmCancel function in your overriding function or perform the closing and cleanup
operations yourself.

Alternately, you can create your dialog box object in the dialog box's parent's
constructor. This way, you create the dialog box object just once. Furthermore, any
changes made to the dialog box state, such as its location, active focus, and so on, are
kept the next time you open the dialog box.

Like any other child window, the dialog box object is automatically deleted when its
parent is destroyed. This way, if you close down the dialog box's parent, the dialog box
object is automatically destroyed; you don't need to explicitly delete the object.

In the following code fragment, a parent window constructor constructs a dialog box
object, and another function actually creates and displays the dialog box modelessly:

class TParentWindow : public TFrameWindow

} ;

public:
TParentWindow(TWindow* parent, const char* title);
void CmDOIT();

protected:
TDialog *dialog;

void
TParentWindow: :CmDO_IT()
{

dialog= new TDialog(this, IDD_EMPLOYEE_INFO);
dialog->Create();

Using autocreation with dialog boxes
You can use autocreation to let ObjectWindows do the work of explicitly creating your
child dialog objects for you. By creating the objects in the constructor of a TWindow
derived class and specifying the this pointer as the parent, the TWindow-derived class
builds a list of child windows. This also happens when the dialog box object is a data
member of the parent class. Then, when the TWindow-derived class is created, it
attempts to create all the children in its list that have the wf AutoCreate flag turned on.
This results in the children appearing onscreen at the same time as the parent window.

Tum on the wf AutoCreate flag using the function EnableAutoCreate. Turn off the
wf AutoCreate flag using the function DisableAutoCreate.

100 ObjectWindows Programmer's Guide

TWindow uses Create for autocreating its children. Thus any dialog boxes created with
autocreation are modeless dialog boxes.

Just as with regular modeless dialog boxes, if you're using autocreation to turn your
dialog boxes on, you must make your dialog box visible. But with autocreation you
must tum the WS_ VISIBLE flag on in the resource file. You can't use the Show Window
function to enable autocreation.

The following code shows how to enable autocreation for a dialog box:

class TMyFrame : public TFrameWindow
{

public:
TDialog *dialog;
TMyFrame(TWindow *, const char far*);

};

TMyFrame::TMyFrame(TWindow *parent, const char far *title)
{

Init(parent, true);
dialog= new TDialog(this, "MYDIALOG");

II For the next line to work properly, the WS_VISIBLE attribute
II must be specified for the MYDIALOG resource.

dialog->EnableAutoCreate();

When you execute this application, the dialog box is automatically created for you. See
page 37 for more information on autocreation.

Managing dialog boxes
Dialog boxes differ from other child windows, such as windows and controls, in that
they are often displayed and destroyed many times during the life of their parent
windows but are rarely displayed or destroyed at the same time as their parents.
Usually, an application displays a dialog box in response to a menu selection, mouse
click, error condition, or other event.

Therefore, you must be sure to not repeatedly construct new dialog box objects without
deleting previous ones. Remember that when you construct a dialog box object in its
parent window object's constructor or include the dialog box as a data member of the
parent window object, the dialog box object is inserted into the child-window list of the
parent and deleted when the parent is destroyed.

You can retrieve data from a dialog box at any time, as long as the dialog box object still
exists. You'll do this most often in the dialog box object's CmOK member function,
which is called when the user presses the dialog box's OK button.

Handling errors executing dialog boxes
Like window objects, a dialog box object's Create and Execute member functions can
throw the C++ exception TXWindow. This exception is usually thrown when the dialog

C h a p I e r 9 , D i a I o g b o x o b j e c Is 101

box can't be created, usually because the specified resource doesn't exist or because of
insufficient memory.

You can rely on the global exception handler that ObjectWindows installs when your
application starts to catch TXWindow, or you can install your own exception handler. To
install your own exception handler, place a try I catch block around the code you want
to protect. For example, if you want to know if your function DoStuff produces an error,
the code would look something like this:

try
{

DoStuff();

catch(TWindow::TXWindow& e)
{

II You can do whatever exception handling you like here.
MessageBox(O, e.why() .c_str(),

"Error", MB_OK);

ObjectWindows exception handling is explained in more detail in Chapter 6.

Closing the dialog box
Every dialog box must have a way for the user to close it. For modal dialog boxes, this is
usually an OK or Cancel button, or both. TDialog has the event response functions CmOk
and CmCancel to respond to those buttons.

CmOk calls Close Window, which calls CanClose to see if it's OK to close the dialog box. If
CanClose returns true, Close Window transfers the dialog's data and closes the dialog box
by calling Close Window.

CmCancel calls Destroy, which closes the dialog box. No checking of CanClose is
performed, and no transfer is done.

To verify the input in a dialog box, you can override the dialog box object's CanClose
member function. Also see the description of the TinputValidator classes in Chapter 15. If
you override CanClose, be sure to call the parent TWindow::CanClose function, which
handles calling CanClose for child windows.

Using a dialog box as your main window
To use a dialog box as your main window, it's best to make the main window a frame
window that has your dialog box as a client window. To do this, derive an application
class from TApplication. Aside from a constructor, the only function necessary for this
purpose is InitMainWindow. In the InitMainWindow function, construct a frame window
object, specifying a dialog box as the client window. In the five-parameter
TFrameWindow constructor, pass a pointer to the client window as the third parameter.
Your code should look something like this:

102 Objec!Windows Programmer's Guide

#include <owl\applicat.h>
#include <owl\framewin.h>
#include <owl\dialog.h>

class TMyApp : public TApplication
{

};

public:
TMyApp I char *title) : TApplication (title I {}
void InitMainWindow();

·void
TMyApp: : Ini tMainWindow I I
(

SetMainWindow(new TFrameWindow(O, "My App",
new TDialog I 0, "MYDIALOG" I, true) I;

int
OwlMain(int argc, char* argv[])
{

return TMyApp I "My App" I . Run I I ;

The TFrameWindow constructor turns autocreation on for the dialog box object that you
pass as a client, regardless of the state you pass it in. For more information on
autocreation for dialog boxes, see page 100.

You also must make sure the dialog box resource has certain attributes:

• Destroying your dialog object does not destroy the frame. You must destroy the
frame explicitly.

• You can no longer dynamically add resources directly to the dialog, because it isn't
the main window. You must add the resources to the frame window. For example,
suppose you added an icon to your dialog using the Setlcon function. You now must
use the Setlcon function for your frame window.

• You can't specify the caption for your dialog in the resource itself anymore. Instead,
you must set the caption through the frame window.

• You must set the style of the dialog box as follows:

Visible (WS_ VISIBLE)
" Child window (WS_CHILD)
" No Minimize and Maximize buttons, drag bars, system menus, or any of the other

standard frame window attributes

Manipulating controls in dialog boxes
Almost all dialog boxes have (as child windows) controls such as edit controls, list
boxes, buttons, and so on. Those controls are created from the dialog box's resource.

Chapter 9, Dialog box objects 103

There is a two-way communication between a dialog box object and its controls. In one
direction, the dialog box needs to manipulate its controls; for example, to fill a list box.
In the other direction, it needs to process and respond to the messages the controls
generate; for example, when the user selects an item from a list box. To learn about
responding to controls, see Chapter 3.

Chapter 11 describes using controls in more detail, and also discusses how to use
controls in windows instead of dialog boxes.

Communicating with controls
Windows defines a set of control messages that are sent from the application back to
Windows. For example, list-box messages include LB_GETTEXT, LB_GETCURSEL, and
LB_ADDSTRlNG. Control messages specify the specific control and pass along
information in wParam and lParam arguments. Each control in a dialog resource has an
identifier, which you use to specify the control to receive the message. To send a control
message, you can call SendDlgltemMessage. For example; the following member function
adds the specified string to the list box using the LB _ADDSTRlNG message:

void
TTestDialog: :FillListBox(const char far* string)
{

SendDlgitemMessage (ID_LISTBOX, LB_ADDSTRING, 0, (LPARAM) string);

It's rarely necessary to communicate with controls like this; ObjectWindows control
classes provide member functions to perform the same actions. This section discusses
the mechanisms used to perform this communication only to enhance your
understanding of the process. Although TListBox::AddString does basically the same
thing as this function and is easier to understand, this shows how you can use
SendDlgltemMessage to force actions.

Associating interface objects with controls
Because a dialog box is created from its resource, you don't use C++ code to specify
what it looks like or the controls in it. Although this lets you create the dialog box
visually, it makes it harder to manipulate the controls from your application.
ObjectWindows lets you "connect'' or associate controls in a dialog box with interface
objects. Associating controls with control objects lets you do two things:

• Provide specialized responses to messages. For example, you might want an edit
control that allows only digits to be entered, or you might want a button that changes
styles when it's pressed.

• Use member functions and data members to manipulate the control. This is easier
and more object-oriented than using control messages.

104 Objec!Windows Programmer's Guide

Control objects
To associate a control object with a control element, you can define a pointer to a control
object as a data member and construct a control object in the dialog box object's
constructor. Control classes such as TButton have a constructor that takes a pointer to
the parent window object and the control's resource identifier. In the following example,
TTestDialog's constructor creates a TButton object from the resource ID_BUTTON:

TTestDialog::TTestDialog(TWindow* parent, const char* resID)
: TDialog(parent, resID), TWindow(parent)

new TButton(this, ID_BUTTON);

You can also define your own control class, derived from an existing control class (if you
want to provide specialized behavior). In the following example, TBeepButton is a
specialized TButton that overrides the default response to the BN_ CLICKED notification
code. A TBeepButton object is associated with the ID _BUTTON button resource.

class TBeepButton : public TButton
{

public:
TBeepButton(TWindow* parent, int resid) TButton(parent, resid) {}

void BNClicked(); // BN_CLICKED

DECLARE_RESPONSE_TABLE(TBeepButton);
};

DEFINE_RESPONSE_TABLEl(TBeepButton, TButton)
EV_NOTIFY_AT_CHILD(BN_CLICKED, BNClicked),

END_RESPONSE_TABLE;

void
TBeepButton::BNClicked()
{

MessageBeep(-1);

TBeepDialog::TBeepDialog(TWindow* parent, const char* name)
: TDialog(parent, name), TWindow(parent)

button= new TBeepButton(this, ID_BUTTON);

Unlike setting up a window object, which requires two steps (construction and
creation), associating an interface object with an interface element requires only the
construction step. This is because the interface element already exists: it's loaded from
the dialog box resource. You just have to tell the constructor which control from the
resource to use, using its resource identifier.

· Chapter 9, Dialog box objects 105

Setting up controls
You can't manipulate controls by, for example, adding strings to a list box or setting the
font of an edit control until the dialog box object's Setup Window member function
executes. Until TDialog::SetupWindow has called TWindow::SetupWindow, the dialog
box's controls haven't been associated with the corresponding objects. Once they're·
associated, the objects' HWindow data members are valid for the controls.

In this example, the AddString function isn't called until the base class Setup Window
function is called:

class TDerivedDialog : public TDialog
{

public:
TDerivedDialog(TWindow* parent, TResid resid)

: TDialog(parent, resid), TWindow(parent)

listbox =new TListBox(this, IDD_LISTBOX);

protected:
TListBox* listbox;

};

void
TDerivedDialog::SetupWindow()
{

TDialog::SetupWindow();
listbox->AddString ("First entry");

Using dialog boxes
A Windows application often needs to prompt the user for file names, colors, or fonts.
ObjectWindows provides classes that make it easy to use dialog boxes, including
Windows' common dialog boxes. The following table lists the different types of dialog
boxes and the ObjectWindows class that encapsulates each one.

Table 9.1 ObjectWindows-encapsulated dialog boxes

Color TChooseColorDialog
Font TChooseFontDialog

File open TFileOpenDialog
File save

Find string

Input from user

Printer abort dialog

TFileSaveDialog

TFindDialog

TlnputDialog

TPrinter AbortDlg

106 ObjectWindows Programmer's Guide

Table 9.1

Type

ObjectWindows-encapsulated dialog boxes (continued)

Printer control

Replace string

.Ol'>jt;"!t;:~}\Tind,Q1;VS .dai;s

TPrintDialog

TReplaceDialog

Using input dialog boxes
Input dialog boxes are simple dialog boxes that prompt the user for a single line of text
input. You can run input dialog boxes as either modal or modeless dialog boxes, but
you'll usually run them modally. Input dialog box objects have a dialog box resource
associated with them, provided in the resource script file owl\inputdia.rc. Your
application's .RC file must include owl \inputdia.rc.

When you construct an input dialog box object, you specify a pointer to the parent
window object, caption, prompt, and the text buffer and its size. The contents of the text
buffer is the default input text. When the user chooses OK or presses Enter, the line of
text entered is automatically transferred into the character array. Here's an example:

char patientName[33] = "";

TinputDialog(this, "Patient name",
"Enter the patient's name:",
patientName, sizeof(patientName)) .Execute();

In this example, patientName is a text buffer that gets filled with the user's input when
the user chooses OK It's initialized to an empty string for the default text.

Using common dialog boxes
The common dialog boxes encapsulate the functionality of the Windows common
dialog boxes. These dialog boxes let the user choose colors, fonts, file names, find and
replace strings, print options, and more. You construct, execute, and destroy them
similarly. The material in this section describes the common tasks; the material in the
following sections describes the tasks specific to each type of common dialog box.

Constructing common dialog boxes
Each common dialog box class has a nested class called TData. TData contains some
common housekeeping members and data specific to each type of common dialog box.
For example, TChooseColorDialog::TData has members for the color being chosen and an
array for a set of custom colors. The following table lists the two members common to all
TData nested classes.

Chapter 9, Dialog box objects 107

Table 9.2

Flags

Error

Common dialog box TData members

uint32

uint32

A set of common dialog box-specific flags that control the appearance and
behavior of the dialog box. For example, CC_SHOWHELP is a flag that tells
the color selection common dialog box to display a Help button the user can
press to get context-sensitive Help. Full information about the various flags is
available in the ObjectWindaws Reference Guide.

This is an error code if an error occurred while processing a common dialog
box; it's zero if no error occurred. Execute returns IDCANCEL both when the
user chose Cancel and when an error occurred, so you should check Error to
determine whether an error actually occurred.

Each common dialog box class has a constructor that takes a pointer to a parent window
object, a reference to that class' TData nested class, and optional parameters for a custom
dialog box template, title string, and module pointer.

Here's a sample fragment that constructs a common color selection dialog box:

TChooseColorDialog::TData colors;
static TColor custColors[16] =
(

Ox010101L, Ox101010L, Ox202020L, Ox303030L,
Ox404040L, Ox505050L, Ox606060L, Ox707070L,
Ox808080L, Ox909090L, OxAOAOAOL, OxBOBOBOL,
OxCOCOCOL, OxDODODOL, OxEOEOEOL, OxFOFOFOL

};

colors.CustColors = custColors;
colors.Flags = CC_RGBINIT;
colors.Color= TColor::Black;
if (TChooseColorDialog(this, colors) .Execute() == IDOK)

SetColor(colors.Color);

Once the user has chosen a new color in the dialog box and pressed OK, that color is
placed in the Color member of the TData object.

Executing common dialog boxes
Once you've constructed the common dialog box object, you should execute it (for a
modal dialog box) or create it (for a modeless dialog box). The following table lists
whether each type of common dialog box must be modal or modeless.

Table 9.3 Common dialog box TData members

Color Modal Execute

Font Modal Execute

File open Modal Execute

File save Modal Execute

Find Modeless Create

108 ObjectWindows Programmer's Guide

Table 9.3

Type

Find/replace

Printer

Common dialog box TData members (continued)

Modeless

Modal

Create

Execute

You must check Execute' s return value to see whether the user chose OK or Cancel, or to
determine if an error occurred:

TChooseColorDialog::TData colors;
TChooseColorDialog colorDlg(this, colors);

if (colorDlg.Execute() == IDOK)
II OK: data.Color== the color the user chose
: II Some code here.

else if (data.Error)
II error occurred
: II Some code here.

MessageBox("Error in color dialog box!", GetApplication()->Name,
MB_OK I MB_ICONSTOP);

Using color common dialog boxes
The color common dialog box lets you choose and create colors for use in your
application. For example, a paint application might use the color common dialog box to
choose the color of a paint bucket.

TChooseColorDialog::TData has several members you must initialize before constructing ·
the dialog box object:

Table 9.4 Color common dialog box TData data members

Color TColor

CustColors TColor*

The selected color. When you execute the dialog box, this specifies the
default color. When the user closes the dialog box, this specifies the
color the user chose.

A pointer to an array of sixteen custom colors. On input, it specifies the
default custom colors. On output, it specifies the custom colors the user
chose.

In the following example, a color common dialog box is used to set the window object's
Color member, which is used elsewhere to paint the window. Note the use of the
TWindow::Invalidate member function to force the window to be repainted in the new
color.

void
TCornrnDlgWnd::CmColor()
{

II use static to keep custom colors around between
II executions of the color common dialog box
static TColor custColors[16];

Chapter 9, Dialog box objects 109

TChooseColorDialog::TData choose;

choose.Flags = CC_RGBINIT;
choose.Color = Color;
choose.CustColors = custColors;

if(TChooseColorDialog(this, choose) .Execute() IDOK)
Color = choose.Color;

Invalidate();

For details about TData::Flags in the TChooseColorDialog class, see the Object Windows
Reference Guide.

Using font common dialog boxes
The font common dialog box lets you choose a font to use in your application, including
its typeface, size, style, and so on. For example, a word processor might use the font
common dialog box to choose the font for a paragraph.

TChoosefontDialog::TData has several members you must initialize before constructing
the dialog box object:

Table 9.5

oc

LogFont

PointSize

Color

Style

FontType

SizeMin

Size Max

Font common dialog box TData data members

HDC A handle to the device context of the printer whose fonts you want to
select, if you specify CF _PRINTERFONTS in Flags. Otherwise ignored.

LOGFONT A handle to a LOGFONT that specifies the font's appearance. When you
execute the dialog box and specify the flag

int

TColor

char far*

uint16

int
int

CF _INITTOLOGFONTSTRUCT, the dialog box appears with the
specified font (or the closest possible match) as the default. When the
user closes the dialog box, LogFont is filled with the selections the user
made.

'The point size of the selected font (in tenths of a point). On input, it sets
the size of the default font. On output, it returns the size the user
selected.

The color of the selected font, if the CF _EFFECTS flag is set. On input, it
sets the color of the default font. On output, it holds the color the user
selected.

Lets you specify the style of the dialog.

A set of flags describing the styles of the selected font. Set only on
output.

Specifies the minimum and maximum

Point sizes (in tenths of a point) the user can select, if the CF _LIMITSIZE
flag is set.

In this example, a font common dialog box is used to set the window object's Font
member, which is used elsewhere to paint text in the window. Note how a new font
object is constructed, using Tfont.

void
TCommDlgWnd::CmFont()

110 Objec!Windows Programmer's Guide

TChooseFontDialog::TData FontData;

FontData.DC = O;
FontData.Flags = CF_EFFECTS CF_FORCEFONTEXIST I CF_SCREENFONTS;
FontData.Color = Color;
FontData.Style = O;
FontData.FontType = SCREEN_FONTTYPE;

FontData.SizeMin = O;
FontData.SizeMax = O·

if (TChooseFontDialog(this, FontData) .Execute()
delete Font;

IDOK) {

Color = FontData.Color;
Font= new TFont(&FontData.LogFont);

Invalidate();

Using file open common dialog boxes
The file open common dialog box serves as a consistent replacement for the many
different types of dialog boxes applications have used to open files.

TOpenSaveDialog::TData has several members you must initialize before constructing the
dialog box object. You can either initialize them by assigning values, or you can use
TOpenSaveDialog::TData's constructor, which takes Flags, Filter, CustomFilter, InitialDir,
and DefExt (the most common) as parameters with default arguments of zero.

Table 9.6

FileName

Filter

CustomFilter

Filter Index

InitialDir

Deffixt

File open and save common dialog box TData data members

char*

char*

char*

int

char*

char*

The selected file name. On input, it specifies the default file name. On
output, it contains the selected file name.

The file name filters and filter patterns. Each filter and filter pattern is in
the form:

filter I filter pattern I ...

where filter is a text string that describes the filter and filter pattern is a
DOS wildcard file name. You can repeat filter and filter pattern for as
many filters as you need. You must separate them with I characters.

Lets you specify custom filters.

Specifies which of the filters specified in Filter should be displayed by
default.

The directory to be displayed on opening the file dialog box. Use zero
for the current directory.

Default extension appended to FileName if the user doesn't type an
extension. If DefExt is zero, no extension is appended.

Chapter 9, Dialog box objects 111

In this example, a file open common dialog box prompts the user for a file name. If an
error occurred (Execute returns IDCANCEL and Error returns nonzero), a message box
is displayed.

void
TCommDlgWnd: :CmFileOpen()
{

TFileOpenDialog::TData FilenameData
(OFN_FILEMUSTEXIST I OFN_HIDEREADONLY I OFN_PATHMUSTEXIST,
"All Files(*.*) l*.*IText Files (*.txt) l*.txtl",
0 f ti 11 f II* 11) ;

if (TFileOpenDialog(this, FilenameData) .Execute() != IDOK) {
if (FilenameData.Errval) {

char msg[SOJ;
wsprintf (msg, "GetOpenFileName returned Error #%ld", Errval);
MessageBox (msg, "WARNING", MB_OK I MB_ICONSTOP);

Using file save common dialog boxes
The file save common dialog box serves as a single, consistent replacement for the many
different types of dialog boxes that applications have previously used to let users choose
file names.

TOpenSaveDialog::TData is used by both file open and file save common dialog boxes.

In the following example, a file save common dialog box prompts the user for a file
name to save under. The default directory is WINDOWS and the default extension is
.BMP.

void
TCanvasWindow::CmFileSaveAs()
{

TOpenSaveDialog::TData data
(OFN_HIDEREADONLY I OFN_OVERWRITEPROMPT,
"Bitmap Files (*.BMP)l*.bmpl",

0'
"\windows",
"BMP");

if (TFileSaveDialog(this, data) .Execute() == IDOK) {
II save data to file
ifstream is(FileData~>FileName);

if (!is)
MessageBox("Unable to open file", "File Error", MB_OK I MB_ICONEXCLAMATION);

else
II Do file output

112 ObjectWindows Programmer's Guide

Using find and replace common dialog boxes
The find and replace common dialog boxes let you search and optionally replace text in
your application's data. These dialog boxes are flexible enough to be used for
documents or even databases. The simplest way to use the find and replace common
dialog boxes is to use the TEditSearch or TEditFile edit control classes; they implement an
edit control that you can search and replace text in. If your application is text-based, you
can also use the find and replace common dialog boxes manually.

Constructing an& creating find and replace common dialog boxes
Since the find and replace dialog boxes are modeless, you normally keep a pointer to
them as a data member in your parent window object. This makes it easy to
communicate with them.

The find and replace common dialog boxes are modeless. You should construct and
create them in response to a command (for example, a menu item Search I Find or
Search I Replace). This displays the dialog box and lets the user enter the search
information.

TFindReplaceDialog::TData has the standard Flags members, plus members for holding
the find and replace strings. See the Object Windows Reference Guide for more details
about Flags.

The following example shows the pointer to the find dialog box in the parent window
object and shows the command event response function that constructs and creates the
dialog box.

class TDatabaseWindow : public TFrameWindow

};

TFindReplaceDialog::TData SearchData;
TFindReplaceDialog* SearchDialog;

void
TDatabaseWindow::CmEditFind()
{

II If the find dialog box isn't already
II constructed, construct and create it now
if (!SearchDialog) (

SearchData.Flags I= FR_DOWN; II default to searching down
SearchDialog = new TFindDialog(this, SearchData)
SearchDialog->Create();

Processing find-and-replace messages
Since the find and replace common dialog boxes are modeless, they communicate with
their parent window object by using a registered message FINDMSGSTRING. You must
write an event response function that responds to FINDMSGSTRING. That event

Ch a p I er 9, Di a Io g box objects 113

response function takes two parameters-a WPARAM and an LPARAM-and returns
an LRESULT. The LPARAM parameter contains a pointer that you must pass to the
dialog box object's UpdateData member function.

After calling UpdateData, you must check for the FR_DIALOGTERM flag. The common
dialog box code sets that flag when the user closes the modeless dialog box. Your event
response function should then zero the dialog box object pointer because it's no longer
valid. You must construct and create the dialog box object again.

As long as the FR_DIALOGTERM flag wasn't set, you can process the
FINDMSGSTRING message by performing the actual search. This can be as simple as an
edit control object's Search member function or as complicated as triggering a search of a
Paradox or dBASE table.

In this example, EvFindMsg is an event response function for a registered message.
EvFindMsg calls UpdateData and then checks the FR_DIALOGTERM flag. If it wasn't set,
EvFindMsg calls another member function to perform the search.

DEFINE_RESPONSE_TABLEl(TDatabaseWindow, TFrameWindow)

EV_REGISTERED(FINDMSGSTRING, EvFindMsg),
END_RESPONSE_TABLE;

LRESULT TDatabaseWindow::EvFindMsg(WPARAM, LPARAM lParam)
{

if (SearchDialog) {
SearchDialog->UpdateData(lParam);
II is the dialog box closing?
if (SearchData.Flags & FR_DIALOGTERM)

SearchDialog = O;
SearchCmd = O;
else
DoSearch();

return 0;

Handling a Find Next command
The find and replace common dialog boxes have a Find Next button that users can use
while the dialog boxes are visible. Most applications also support a Find Next command
from the Search menu, so users can find the next occurrence in one step instead of
having to open the find dialog box and click the Find Next button. TFindDialog and
TReplaceDialog make it easy for you to offer the same functionality.

Setting the FR_FINDNEXT flag has the same effect as clicking the Find Next button:

void
TDatabaseWindow::CmEditFindNext()
{

SearchDialog->UpdateData();
SearchData.Flags I= FR_FINDNEXT;
Do Search () ;

114 ObjectWindows Programmer's Guide

Using printer common dialog boxes
There are two printer common dialog boxes. The print job dialog box lets you choose
what to print, where to print it, the print quality, the number of copies, and so on. The
print setup dialog box lets you choose among the installed printers on the system, the
page orientation, and paper size and source.

TPrintDialog::TData's members let you control the appearance and behavior of the
printer common dialog boxes:

Table 9.7 Printer common dialog box TData data members

TVata member

FromPage

To Page

MinPage

MaxPage

Copies

Type

int

int

int

int

int

Description

The first page of output, if the PD _PAGENUMS flag is specified. On
input, it specifies the default first page. On output, it specifies the first
page the user chose.

The last page of output, if the PD _PAGENUMS flag is specified. On
input, it specifies the default last page number. On output, it specifies
the last page number the user chose.

The fewest number of pages the user can choose.

The largest number of pages the user can choose.

The number of copies to print. On input, the default number of copies.
On output, the number of copies the user actually chose.

In the following example, CmFilePrint executes a standard print job common dialog box
and uses the information in TPrintDialog::TData to determine what to print.
CmFilePrintSetup adds a flag to bring up the print setup dialog box automatically.

void
TCanvas::CmFilePrint()
{

if (TPrintDialog(this, data) .Execute() == IDOK)
II Use TPrinter .and TPrintout to print the drawing

void
TCanvas::CmFilePrintSetup()
{

static TPrintDialog: :TData data;
data.Flags I= PD_PRINTSETUP;

if (TPrintDialog(this, data, 0) .Execute() IDOK)
II Print

Ch a p I er 9, Di a Io g box obj e c Is 115

116 0 b j e ct Windows Programmer's Guide

DocMew objects
ObjectWindows provides a flexible and powerful way to contain and manipulate data:
the Doc/View model. The Doc/View model consists of three parts:

• Document objects, which can contain many different types of data and provide
methods to access that data.

• View objects, which form an interface between a document object and the user
interface and control how the data is displayed and how the user can interact with
the data.

• An application-wide document manager that maintains and coordinates document
objects and the corresponding view objects.

How documents and views work together
This section describes the basic concept of the Doc/View model. If you're already
familiar with these concepts or if you want more technical information, refer to the
programming sections beginning on page 121.

The Doc/View model frees the programmer and the user from worrying about what
type of data a file contains and how that data is presented on the screen. Doc/View
associates data file types with a document class and a view class. The document
manager keeps a list of associations between document classes and view classes. Each

· association is called a document template (note that document templates are not related to
C++ templates).

A document class handles data storage and manipulation. It contains the information
that is displayed on the screen. A document object controls changes to the data and
when and how the data is transferred to persistent storage (such as the hard drive, RAM
disk, and so on).

When the user opens a document, whether by creating a new document or opening an
existing document, the document is displayed using an associated view class. The view

Chapter 10, Doc/View objects 117

class manages how the data is displayed and how the user interacts with the data
onscreen. In effect, the view forms an interface between the display window and the
document. Some document types might have only one associated view class; others
might have several._Each different view type can be used to let the user interact with the
data in a different way.

Table 10.1 illustrates the interaction between the document manager, a document class,
and the document's associated views:

Figure 10.1 DocNiew model diagram

Property view Dump view

This figure shows a file document object from the TFileDocument class, along with some
associated views. The TFileDocument class is shown in the DOCVIEWX example. This
example is in the directory \BC45\EXAMPLES\OWL \OWLAPI\DOCVIEW,where
BC45 is the directory in which you installed Borland C++ 4.5.

118 ObjectWindows Programmer's Guide

Documents
The traditional concept of a document and the Doc/View concept of a document differ
in several important ways. The traditional concept of a document is generally like that
of a word-processing file. It consists of text mixed with the occasional graphic, along
with embedded commands to assist the word-processing program in formatting the
document.

A Doc/View document differs quite significantly from the traditional concept of a
document:

• The first distinction is between the contents of the two types of documents. Whereas
the traditional document is mostly text with a few other bits of data, a Doc/View
document can contain literally any type of data, such as text, graphics, sounds,
multimedia files, and even other documents.

• The next distinction is in terms of presentation. Whereas the format of the traditional
document is usually designed with the document's presentation in mind, a Doc/
View document is completely independent of how it is displayed.

• The last distinction is that a document from a particular word-processing program is
generally dependent on the format demanded by that program; documents are
usually portable between different word-processing programs only after a tedious
porting process. The intention of Doc/View documents is to let data be easily ported
between different applications, even applications whose basic functions are highly
divergent.

The basic functionality for a document object is provided in the ObjectWindows class
TDocument. A more in-depth discussion of TDocument and how to use it as a basis for
your own document classes is presented later in this chapter on page 128.

Views
View objects enable document objects to present themselves to the world. Without a
view object, you can't see or manipulate the document. But when you pair a document
with a view object into a document template, you've got a functional piece of data and
code that provides a graphic representation of the data stored in the document and a
way to interact with and change that data.

The separation between the document and view also permits flexibility in when and
how the data in document is modified. Although the data is manipulated through the
view, the view only relays those changes on to the document. It is then up to the
document to determine whether to change the data in the document (known as
committing the changes) or discarding the changes (known as reverting back to the
document).

Another advantage of using view objects instead of some sort of fixed-display method
(such as a word-processing program) is that view objects offer the programmer and the
user a number of different ways to display and manipulate the same document.
Although you might need to provide only one view for a document type, you might
also want to provide three or four views.

Chapter 10, Doc/View objects 119

For example, suppose you create a document class to store graphic information, such as
a picture or drawing. For a basic product, you might want to provide only one type of
view, such as a view that draws the picture in a window and then lets the user "paint"
and modify the picture. For a more advanced version, you might want to provide extra
views; for example, the drawing could be displayed as a color separation, as a
hexadecimal file, or even as a series of equations if the drawing was mathematically
generated. To access these other views, users choose the type of view desired when they
open the document. In all these scenarios, the document itself never changes.

The basic functionality for a view is provided in the ObjectWindows class TView. A
more in-depth discussion of TView and how to use it as a basis for your own view
classes is presented on page 134.

Associating document and view classes
A document class is associated with its view class (or classes) by a document template.
Document templates are created in two steps:

1 Define a template class by associating a document class with a view class.
2 Instantiate a template from a defined class.

The difference between these two steps is important. After you've defined a template
class, you can create any number of instances of that template class. Each template
associates only a document class and a view class. Each instance has a name, a default
file extension, directory, flags, and file filters. Thus you could provide a single template
class that associates a document with a view. You could then provide a number of
different instances of that template class, where each instance handles files in a different
default directory, with different extensions, and so on, still using the same document
and view classes.

Managing DocNiew
The document manager maintains the list of template instances used in your application
and the list of current documents. Every application that uses Doc/View documents
must have a document manager, but each application can have only one document
manager at a time.

The document manager brings the Doc/View model together: document classes, view
classes, and templates. The document manager provides a default File menu and
default handling for each of the choices on the File menu:

Table 10.1 Document manager's File menu

New Creates a new document.

Open... Opens an existing document.

Save Saves the current document.

As... Saves the current document with a new name.

Revert To Saved Reverts changes to the last document saved.

120 0 b j e c I W i n d ow s P r o g r a m m e r ' s G u i d e

Table 10.1 Document manager's File menu (continued)

Mentn.~hoil.ce "'Haridlin.g ·

Closes the current document. Close

Exit Quits the application, prompts to save documents.

Once you've written your document and view classes, defined any necessary templates,
and made instances of the required templates, all you still need to do is to create your
document manager. When the document manager is created, it sets up its list of
template instances and (if specified in the constructor) sets up its menu. Then whenever
it receives one of the events that it handles, it performs the command specified for that
event. The example on page 193 shows how to set up document manager for an
application.

Document templates
Document templates join together document classes and view classes by creating a new
class. The document manager maintains a list of document templates that it uses when
creating a new Doc/View instance. This section explains how to create and use
document templates, including

• Designing document template classes
• Creating document registration tables
• Creating instances of document template classes
• Modifying existing document template classes

Designing document template classes
You create a document template class using the DEFINE_DOC_TEMPLATE_CLASS
macro. This macro takes three arguments:

• Document class
• View class
• Template class name

The document class should be the document class you want to use for data containment.
The view class should be the view class you want to use to display the data contained in
the document class. The template class name should be indicative of the function of the
template. It cannot be a C ++keyword (such as int, switch, and so on) or the name of any
other type in the application.

For example, suppose you've two document classes----0ne called TPlotDocument, which
contains graphics data, and another called TDataDocument, which contains numerical
data. Now suppose you have four view classes, two for each document class. For
TPlotDocument, you have TPlotView, which displays the data in a TPlotDocument object
as a drawing, and THexView, which displays the data in a TPlotDocument object as
arrays of hexadecimal numbers. For TDataDocument, you have TSpreadView, which
displays the data in a TDataDocument object much like a spreadsheet, and TCalcView,

Chapter 10, Doc/View objects 121

which displays the data in a TDataDocument object after performing a series of
calculations on the data.

To associate the document classes with their views, you would use the
DEFINE_DOC_TEMPLATE_CLASS macro. The code would look something like this:

DEFINE_DOC_TEMPLATE_CLASS(TPlotDocument, TPlotView, TPlotTemplate);
DEFINE_DOC_TEMPLATE_CLASS(TPlotDocument, THexView, THexTemplate);
DEFINE_DOC_TEMPLATE_CLASS(TDataDocument, TSpreadView, TSpreadTemplate);
DEFINE_DOC_TEMPLATE_CLASS(TDataDocument, TCalcView, TCalcTemplate);

As you can see from the first line, the existing document class TPlotDocument and the
existing view class TPlotView are brought together and associated in a new class called
TPlotTemplate. The same thing happens in all the other lines, so that you have four new
classes, TPlotTemplate, THexTemplate, TSpreadTemplate, and TCalcTemplate. The next
section describes how to use these new classes you've created.

Creating document registration tables
Once you've defined a template class, you can create any number of instances of that
class. You can use template class instances to provide different descriptions of a
template, search for different default file names, look in different default directories, and
so on. Each of these attributes of a template class instance is affected by the document
registration table passed to the template class constructor.

Document registration tables let you specify the various attributes and place them in a
single object. The object type is TRegList, although in normal cirsumstances, you
shouldn't ever have to access this object directly. To create a registration table,

1 You always start a registration table definition with the BEGIN_REGISTRATION
macro. This macro takes a single parameter, the name of the registration object. This
name can be whatever you want it to be, although it should be somewhat descriptive
of the particular template instance you want to create with it.

2 Once you've started the table you need to register a number of data items in the table.
You can place these items in the table using the REGDATA macro. REGDATA takes
two parameters. The first is a key that identifies the type of data, while the second is a
string containing the actual data. The key should be a string composed of
alphanumeric characters; you don't need to place quotes around this value. The
actual data string can be any legal string; you do need to place quotes around this
value. Also, you don't need to use commas or semicolons after the macros. There are
three data items you need to enter in the table for an instance of a document template:

The description value should be a short text description of the template class. It
should be indicative of the type of data handled by the document class and how
that data is displayed by the view class.

2 The extension value should indicate the default file extension for documents of this
type.

3 The docfilter value should indicate the file name masks that should be applied to
documents when searching through file names.

122 0 b j e c I W i n d o w s P r o g r a m m e r ' s G u i d e

3 You also need to register a number of flags describing how this document type is to
be opened or created. These document flags can be registered with the
REGDOCFLAGS macro. REGDOCFLAGS takes a single parameter, the flags
themselves. The flags specified can be one or more of the following:

Table 10.2 Document creation mode flags

.Function
dtAutoDelete

dtNoAutoView

dtSingleView

dtAutoOpen

dtHidden

Close and delete the document object when the last view is closed.

Do not automatically create a default view.

Allow only one view per document.

Open a document upon creation.

Hide template from list of user selections.

4 Once you've registered the necessary data items and the document mode flags, you
can end the table definition with the END _REGISTRATION macro. This macro takes
no parameters. You don't need to append a semicolon at the end of the line either.

The code below shows a sample registration table declaration. The resulting registration
table is called ListReg, applies to a document template class described as a Line List,
which has the default extension PTS, the default file-name mask *.pts, is set to be
automatically deleted when the last view on the document is closed, and is hidden from
the list of documents available to the user.

BEGIN_REGISTRATION(ListReg)
REGDATA(description, "Line List")
REGDATA (extension, " . PTS")
REGDATA(docfilter, "* .pts")
REGDOCFLAGS(dtAutoDelete I dtHidden)

END_REGISTRATION

Creating template class instances
Once you've created a document template class and a registration table, you're ready to
create an actual instance of the template class. An instance of a document template class
serves as an entry in the document manager's list of possible document and view
combination that can be opened. Once this is in place, you can open documents of the
type defined in the document template class and display the document in the specified
view.

The signature of a template class constructor is always the same:

TplName name(TRegList& regTable);

where:

• TplName is the name you gave the template class when defining it.

• name is the name you want to give this instance (this name isn't very useful until you
want to revise an existing template class instance).

·• regTable is a registration table created using the BEGIN/END_REGISTRATION
macros.

Chapter 10, Doc/View objects 123

For example, suppose you've got the following template class definition:

DEFINE_DOC_TEMPLATE_CLASS(TPlotDocument, TPlotView, TPlotTemplate);

Now suppose you want to create three instances of this template class:

• One instance should have the description /1 Approved plots", for document files with
the extension .PLT. You want to allow only a single view of the document and to
automatically delete the document when the view is closed.

• Another instance should have the description "In progress", for document files with
the extension .PLT. You want to automatically delete the document when the last
view is closed.

• Another instance should have the description "Proposals", for document files with
the extensions .PLT or .lMP (but with the default extension of .PLT). You want to
keep this template hidden until the user has entered a password, and delete the
document object when the last view is closed.

The code for creating these instances would look something like this:

BEGIN_REGISTRATION(aReg)
REGDATA(description, "Approved plots",
REGDATA(docfilter, "* .PLT",
REGDATA(extension, "PLT"'
REGDOCFLAGS(dtSingleView I dtAutoDelete)

END_REGISTRATION

TPlotTemplate atpl(aReg);

BEGIN_REGISTRATION(bReg)
REGDATA(description, "In progress",
REGDATA(docfilter, "*. PLT",
REGDATA(extension, "PLT",
REGDOCFLAGS(dtAutoDelete);

END_REGISTRATION

TPlotTemplate btpl(bReg);

BEGIN_REGISTRATION(cReg)
REGDATA(description, "Proposals",
REGDATA(docfilter, "* .PLT; * .TMP",
REGDATfl:(extension, "PLT",
REGDOCFLAGS(dtHidden I dtAutoDelete);

END_REGISTRATION

TPlotTemplate *ctpl =new TPlotTemplate(cReg);

Just as in any other class, you can create both static and dynamic instances of a
document template.

124 ObjectWindows Programmer's Guide

Modifying existing templates
Once you've created an instance of a template class, you usually don't need to modify
the template object. However, you might occasionally want to modify the properties
with which you constructed the template. You can do this using these access functions:

• Use the GetFileFilter and SetFileFilter functions to get and set the string used to filter
file names in the current directory.

• Use the GetDescription and SetDescription functions to get and set the text description
of the template class.

• Use the GetDirectory and SetDirectory functions to get and set the default directory.

• Use the GetDefaultExt and SetDefaultExt functions to get and set the default file
extension.

• Use the GetFlags, IsFlagSet, SetFlag, and ClearFlag functions to get and set the flag
settings.

Using the document manager
The document manager, an instance of TDocManager or a TDocManager-derived class,
performs a number of tasks:

• Manages the list of current documents and registered templates

• Handles the standard File menu command events CM_FILENEW, CM_FILEOPEN,
CM_FILESA VE, CM_FILESA VEAS, CM_FILECLOSE, and optionally
CM_FILEREVERT

• Provides the file selection interface

To support the Doc/View model, a document manager must be attached to the
application. This is done by creating an instance of TDocManager and making it the
document manager for your application. The following code shows an example of how
to attach a document manager to your application:

class TMyApp : public TApplication
{

public:
TMyApp() : TApplication() {}

void InitMainWindow() {

SetDocManager(new TDocManager(dmMDI I dmMenu));

};

You can set the document manager to a new object using the SetDocManager function.
SetDocManager takes a TDocManager & and returns void.

C h a pt e r 1 O , D o c IV i e w o b j e ct s 125

The document manager's public data and functions can be accessed through the
document's GetDocManager function. GetDocManager takes no parameters and returns a
TDocManager &. The document manager provides the following functions for creating
documents and views:

• CreateAnyDoc presents all the visible templates, whereas the TDocTemplate member
function CreateDoc presents only its own template.

• CreateAnyView filters the template list for those views that support the current
document and presents a list of the view names, whereas the TDocTemplate member
function Create View directly constructs the view specified by the document template
class.

Specialized document managers can be used to support other needs. For example, an
OLE 2.0 server needs to support class factories that create documents and views
through interfaces that are not their own. If the server is invoked with the embedded
command-line flags, it doesn't bring up its own user interface and can attach a
document manager that replaces the interface with the appropriate OLE support.

Constructing the document manager
The constructor for TDocManager takes a single parameter that's used to set the mode of
the document manager. You can open the document manager in one of two modes:

• In single-document interface (SDI) mode, you can have only a single document open
at any time. If you open a new document while another document is already open,
the document manager attempts to close the first document and replace it with the
new document.

• In multiple-document interface (MDI) mode, you can have a number of documents
and views open at the same time. Each view is contained in its own client window.
Furthermore, each document can be a single document type presented by the same
view class, a single document presented with different views, or even entirely
different document types.

To open the document manager in SDI mode, call the constructor with the dmSDI
parameter. To open the document manager in MDI mode, call the constructor with the
dmMDI parameter.

There are three other parameters you can also specify:

• dmMenu specifies that the document manager should install its own File menu,
which provides the standard document manager File menu and its corresponding
commands.

• dmSaveEnabled enables the Save command on the File menu even if the document has
not been modified.

• dmNoRevert disables the Revert command on the File menu.

Once you've constructed the document manager you cannot change the mode. The
following example shows how to open the document manager in either SDI or MDI
mode. It uses command-line arguments to let the user specify whether the document
manager should open in SDI or MDI mode.

126 0 b j e c I Wind o Iii s P r o gram mer' s G u id e

class TMyApp public TApplication
{

};

public:
TMyApp() : TApplication() {}
void InitMainWindow();
int DocMode;

void
TMyApp: : InitMainWindow ()
{

swilch ((_argc > 1 && _argv[l] [OJ=='-' ? _argv[l] [1] : (char)O) ('S'A's'))

case 's': DocMode = dmSDI; break; II command line: -s
case 'm': DocMode = dmMDI; break; II command line: -m
default DocMode = dmMDI; break;_ 11 no command line

SetDocManager(new TDocManager(DocMode I dmMenu));
};

Thus, if the user starts the application with the -s option, the document manager opens
in SDI mode. If the user starts the application with the -m option or with no option at all,
the document manager opens in MDI mode.

TDocManager event handling
If you specify the dmMenu parameter when you construct your TDocManager object, the
document manager handles certain events on behalf of the documents. It does this by
using a response table to process standard menu commands. These menu commands
are provided by the document manager even when no documents are opened and
regardless of whether you explicitly add the resources to your application. The File
menu is also provided by the document manager.

The events that the document manager handles are

• CM_FILECLOSE
• CM_FILENEW
• CM_FILEOPEN
• CM_FILEREVERT
• CM_FILESA VE
• CM_FILESA VEAS
• CM_ VIEWCREATE

In some instances, you might want to handle these events yourself. Because the
document manager's event table is the last to be searched, you can handle these events
at the view, frame, or application level. Another option is to construct the document
manager without the dmMenu parameter. You must then provide functions to handle
these events, generally through the application object or your interface object.

You can still call the document manager's functions through the DocManager member of
the application object. For example, suppose you want to perform some action before

Chapter 10, Doc/View objects 127

opening a file. Providing the function through your window class TMyWindow might
look something like this:

class TMyApp : public TApplication
{

};

public:
TMyApp() : TApplication() {}
void InitMainWindow();
int DocMode;

void
TMyApp: :InitMainWindow()
{

II Don't specify dmMenu when constructing TDocManager
SetDocManager(new TDocManager(dmMDI));

}; .

class TMyWindow : public TDecoratedMDIFrame
{

public:
TMyWindow () ;
void CrnFileOpen();

II You also need to provide the other event handlers provided by the document manager.

DECLARE_RESPONSE_TABLE(TMyWindow);
};

DEFINE_RESPONSE_TABLEl(TMyWindow, TDecoratedMDIFrame)
EV_COMMAND(CM_FILEOPEN, CmFileOpen),

END_RESPONSE_TABLE;

void
'TMyWindow: : CrnFileOpen ()
{

II Do your extra work here.
GetApplication()->GetDocManager()->CmFileOpen();

Creating a document class
The primary function of a document class is to provide callbacks for requested data
changes in a view, to handle user actions as relayed through associated views, and to tell
associated views when data has been updated. TDocument provides the framework for
this functionality. The programmer needs only to add the parts needed for a specific
application of the document model.

128 ObjectWindows Programmer's Guide

Constructing TDocument
TDocument is an abstract base class that cannot be directly instantiated. Therefore you
implement document classes by deriving them from TDocument.

You must call TDocument' s constructor when constructing a TDocument-derived class.
The TDocument constructor takes only one parameter, a TDocument * that points to the
parent document of the new document. If the document has no parent, you can either
pass a 0 or pass no parameters; the default value for this parameter is 0.

Adding functionality to documents
As a standard procedure, you should avoid overriding TDocument functions that aren't
declared virtual. The document manager addresses all TDocument-derived objects as if
they were actually TDocument objects. If you override a nonvirtual function, it isn't
called when the document manager calls that function. Instead, the document manager
calls the TDocument version of the function. But if you override a virtual function, the
document manager correctly calls your class' version of the function.

The following functions are declared virtual in TDocument:

-TDocument InStream

OutStream Open

Close Commit

Revert Root Document

SetDocPath SetTitle

Get Property Is Dirty

Is Open Can Close

AttachStream DetachStream

You can override these functions to provide your own custom interpretation of the
function. But when you do override a virtual function, you should be sure to find out
what the base class function does. Where the base class performs some sort of essential
function, you should call the base class version of the function from your own function;
the base class versions of many functions perform a check of the document's hierarchy,
including checking or notifying any child documents, all views, any open streams, and
soon.

Data access functions
TDocument provides a number of functions for data access. You can access data as a
simple serial stream or in whatever way you design into your derived classes. The
following sections describe the helper functions you can use to control when the
document attempts data access operations.

Chapter 10, Doc/View objects 129

Stream access
TDocument provides two functions, InStream and OutStream, that return pointers to a
TlnStream and a TOutStream, respectively. The TDocument versions of these function
both return a 0, because the functions actually perform no actions. To provide stream
access for your document class you must override these functions, construct the
appropriate stream class, and return a pointer to the stream object.

TinStream and TOutStream are abstract stream classes, derived from TStream and istream
or ostream, respectively. TStream provides a minimal functionality to connect the stream
to a document. istream and ostream are standard C ++ iostreams. You must derive
document-specific stream classes from TinStream and TOutStream. The TlnStream and
TOutStream classes are documented in the ObjectWindows Reference Guide. Here, though,
is a simple description of the InStream and OutStream member functions. Both InStream
and OutStream take two parameters in their constructors:

XXXStream(int mode, LPCSTR strmid = 0);

where XXX is either In or Out, mode is a stream opening mode igentical to the open_mode
flags used for istream and ostream, and strmld is a pointer to an existing stream object.
Passing a valid pointer to an existing stream object in strmld causes that stream to be
used as the document's stream object. Otherwise, the object opens a new stream object.

There are also two stream-access functions called AttachStream and DetachStream. Both ·
of these functions take a reference to an existing (that is, already constructed and open)
TStream-derived object. AttachStream adds the TStream-derived object to the clocument' s
list of stream objects, making it available for access. DetachStream searches the
document's list of stream objects and deletes the TStream-derived object passed to it.
Both of these functions have protected access and thus can be called only from inside the
document object.

Stream list
Each document maintains a list of open streams that is updated as streams are added
and deleted. This list is headed by the TDocument data StreamList. StreamList is a TStream
* that points to the first stream in the list. If there are no streams in the list, StreamList is 0.
Each TStream object in the list has a member named NextStream, which points to the next
stream in the stream list.

Whena new stream is opened in a document object or an existing stream is attached to
the object, it is added to the document's stream list. When an existing stream is closed in
a document object or detached from the object, it is removed from the document's
stream list.

Complex data access
Streams can provide only simple serial access to data. In cases where a document
contains multimedia files, database tables, or other complex data, you probably want
more sophisticated access methods. For this purpose, TDocument uses two more access
functions, Open and Close, which you can override to define your own opening and
closing behavior.

The TDocument version of Open performs no actions; it always returns true. You can
write your own version of Open to work however you want. There are no restrictions

130 ObjectWindows Programmer's Guide

placed on how you define opening a document. You can make it as simple as you like or
as complex as necessary. Open lets you open a document and keep it open, instead of
opening the document only on demand from one of the document's stream objects.

The TDocument version of Close provides a little more functionality than does Open. It
checks any existing children of your document and tries to close them before closing
your document. If you provide your own Close, the first thing you should do in that
function is call the TDocument version of Close to ensure that all children have been
closed before you close the parent document. Other than this one restriction, you are
free to define the implementation of the Close function. Just as with Open, Close lets you
close a document when you want it closed, as opposed to permitting the document's
stream objects to close the document.

Data access helper functions
TDocument also provides a number of functions that you can use to help protect your
data:

IsDirty first checks to see whether the document itself is "dirty" (that is, modified but
not updated) by checking the state of the data member DirtyFlag. It then checks whether
any child documents are dirty, then whether any views are dirty. IsDirty returns true if
any children or views are dirty.

IsOpen checks to see whether the document is held open or has any streams in its stream
list. If the document is not open, IsOpen returns false. Otherwise, IsOpen returns true.

Commit commits any changes to your data to storage. Once you've called Commit, you
cannot back out of any changes made. The TDocument version of this function checks
any child documents and commits them to their changes. If any child document returns
false, the Commit is aborted and returns false. All child documents must return true
before the Commit function commits its own data. After all child documents have
returned true, Commit flushes all the views for operations that might have taken place
since the document last checked the views. Data in the document is updated according
to the changes in the views and then saved. Commit then returns true.

Revert performs the opposite function from Commit. Instead of updating changes and
saving the data, Revert clears any changes that have been made since the last time the
data was committed. Revert also polls any child documents and aborts if any of the
children return false. If all operations are successful, Revert returns true.

Closing a document
Like most other objects, TDocument provides functions that let you safely close and
destroy the object.

-TDocument does a lot of cleanup. First it destroys its children and closes all open
streams and other resources. Then, in order, it detaches its attached template, closes all
associated views, deletes its stream list, and removes itself from its parent's list of
children if the document has a parent or, if it doesn't have a parent, removes itself from
the document manager's document list.

Chapter 10, Doc/View objects 131

In addition to a destructor, TDocument also provides a CanClose function to make sure
that it's OK to close. CanClose first checks whether all its children can close. If any child
returns false, CanClose returns false and aborts. If all child documents return true,
CanClose calls the document manager function FlushDoc, which checks to see if the
document is dirty. If the document is clean, FlushDoc and CanClose return true. If the
document is dirty, FlushDoc opens a message box that prompts the user to either save
the data, discard any changes, or cancel the close operation.

Expanding document functionality
The functions described in this section include most of what you need to know to make
a functioning document class. It is up to you to expand the functionality of your
document class. Your class needs special functions for manipulating data,
understanding and acting on the information obtained from the user through the
document's associated view, and so on. All this functionality goes into your TDocument
derived class.

Because the Doc/View model is so flexible, there are no requirements or rules as to how
you should approach this task. A document can handle almost any type of data because
the Doc/View data-handling mechanism is a primitive framework, intended to be
extended by derived classes. The base classes provided in ObjectWindows provide the
functionality to support your extensions to the Doc/View model.

Working with the document manager
TDocument provides two functions for accessing the document manager,
GetDocManager and SetDocManager. GetDocManager returns a pointer to the current
document manager. You can then use this pointer to access the data· ;:ind function
members of the document manager. SetDocManager lets you assign the document to a
different document manager. All other document manager functionality is contained in
the document manager itself.

Working with views
TDocument provides two functions for working with views, Notify Views and
Query Views. Both functions take three parameters, an int corresponding to an event, a
long item, and a TView *.The meaning of the long item is dependent on the event and is
essentially a parameter to the event. The TView * lets you exclude a view from your
query or notification by passing a pointer to that view to the function. These two
functions are your primary means of communicating information between your
document and its views.

Both functions call views through the views' response tables. The general-purpose
macro used for ObjectWindows notification events is EV _OWLNOTIFY. The response
functions for EV _OWLNOTIFY events have the following signature:

bool FnName(long);

The long item used in the Notify Views or Query Views function call is used for the long
parameter for the response function.

132 0 b j e ct W i n d o w s P r o g r a m m e r ' s G u i d e

You can use Notify Views to notify your child documents, their associated views, and the
associated views of your root document of a change in data, an update, or any other
event that might need to be reflected onscreen. The meaning of the event and the
accompanying item passed as a parameter to the event are implementation defined.

Notify Views first calls all the document's child documents' Notify Views functions, which
are called with the same parameters. Once all the children have been called, Notify Views
passes the event and item to all of the document's associated views. Notify Views returns
a bool. If any child document or associated view returns false, Notify Views returns false.
Otherwise Notify Views returns true.

Query Views sends an event and accompanying parameter just like Notify Views. The
difference is that, whereas Notify Views returns true when any child or view returns true,
Query Views returns a pointer to the first view that returns true. This lets you find a view
that meets some condition and then perform some action on that view. If no views
return true, Query Views returns 0.

Another difference between Notify Views and Query Views fa that Notify Views always
sends the event and its parameter to all children and associated views, whereas
Query Views stops at the first view that returns true.

For example, suppose you have a document class that contains graphics data in a
bitmap. You want to know which of your associated views is displaying a certain area of
the current bitmap. You can define an event such as WM_CHECKRECT. Then you can
set up a TRect structure containing the coordinates of the rectangle you want to check
for. The excerpted code for this would look something like this:

DEFINE_RESPONSE_TABLEl(TMyView, TView)

EV_OWLNOTIFY(WM_CHECKREST, EvCheckRest),

END_RESPONSE_TABLE;

void
MyDocClass::Function()
(

II Set up a TRect *with the coordinates you want to send.
TRect *rect =new TRect(lOO, 100, 300, 300);

II QueryViews
TView *view= QueryViews(WM_CHECKRECT, (long) rect);

II Clear all changes from the view
if(view)

view->Clear();

II The view response function gets the pointer to the rectangle
II as the long parameter to its response function.
bool
TMyView::EvCheckRest(long item)
(

TRect *rect = (TRect *I item;

Chapter 10, Doc/View objects 133

II Check to see if rect is equal to this view's.
if(*rect == this->rect)

return true;
else

return false;

You can also set up your own event macros to handle view notifications. See page 136.

Creating a view class
The user almost never interacts directly with a document. Instead the user works with
an interface object, such as a window, a dialog box, or whatever type of display is
appropriate for the data being presented and the method in which it is presented. But
this interface object doesn't stand on its own. A window knows nothing about the data
it displays, the document that contains that data, or about how the user can manipulate
and change the data. All this functionality is handled by the view object.

A view forms an interface between an interface object (which can only do what it's told
to do) and a document (which doesn't know how to tell the interface object what to do).
The view's job is to bridge the gap betwe~n the two objects, reading the data from the
document object and telling the interface object how to display that data.

This section discusses how to write a view class to work with your document classes.

Constructing TView
You cannot directly create an instance of TView. TView contains a number of pure
virtual functions and placeholder functions whose functionality must be provided in
any derived classes. But you must call the TView constructor when you are constructing
your TView-derived object. The TView constructor takes one parameter, a reference to
the view's associated document. You must provide a valid reference to a TDocument
derived object.

Adding functionality to views
TView contains some pure virtual functions that you must provide in every new view
class. It also contains a few placeholder functions that have no base class functionality.
You need to provide new versions of these functions if you plan to use them for
anything.

Much like TDocument, you should not override a TView function unless that function is
a virtual. When functions in TDocument call functions in your view, they address the
view object as a TView. If you override a nonvirtual function and the document calls that
function, the document actually calls the TView version of that function, rendering your
function useless in that context.

134 0 bj ec!Wi n d ows Programmer's Guide

TView virtual functions
The following functions are declared virtual so you can override them to provide some
useful functionality. But most are not declared as pure virtuals; you are not required to
override them to construct a view. Instead, you need to override these functions only if
you plan to view them.

GetViewName returns the static name of the view. This function is declared as a pure
virtual function; you must provide a definition of this function in your view class.

Get Window returns a TWindow *that should reference the view's associated interface
object if it has one; otherwise, Get Window returns 0.

SetDocTitle sets the view window's caption. It should be set to call the SetDocTitle
function in the interface object.

Adding a menu
TView contains the TMenuDescr * data member ViewMenu. You can assign any existing
TMenuDescr object to this member. The menu should normally be set up in the view's
constructor. This menu is then merged with the frame window's menu when the view is
activated.

Adding a display to a view
TView itself makes no provision for displaying data-it has no pointer to a window, no
graphics functions, no text display functions, and no keyboard handling. You need to
provide this functionality in your derived classes; you can use one of the following
methods to do so:

• Add a pointer to an interface object in your derived view class.
• Mix in the functionality of an interface object with that of TView when deriving your

new view class.

Each of these methods has its advantages and drawbacks, which are discussed in the
following sections. You should weigh the pros and cons of each approach before
deciding how to build your view class.

Adding pointers to interface objects
To add a pointer to an interface object to your TView-derived class, add the member to
the new class and instantiate the object in the view class' constructor. Access to the
interface object's data and function members is through the pointer.

The advantage of this method is that it lets you easily attach and detach different
interface objects. It also lets you use different types of interface objects by making the
pointer a pointer to a common base class of the different objects you might want to use.
For example, you can use most kinds of interface objects by making the pointer a
TWindow*.

The disadvantage of this method is that event handling must go through either the
interface object or the application first. This basically forces you to either use a derived
interface object class to add your own event-handling functions that make reference to

Chapter 1 o, Doc/View objects 135

the view object, or handle the events through the application object. Either way, you
decrease your flexibility in handling events.

Mixing TView with interface objects
Mixing TView or a TView-derived object with an interface object class gives you the
ability to display data from a document, and makes that ability integral with handling
the flow of data to and from the document object. To mix a view class with an interface
object class is a fairly straightforward task, but one that must be undertaken with care.

To derive your new class, define the class based on your base view class (TView or a
TView-derived class) and the selected interface object. The new constructor should call
the constructors for both base classes, and initialize any data that needs to be set up. At a
bare minimum, the new class must define any functions that are declared pure virtual
in the base classes. It should also define functions for whatever specialized screen
activities it needs to perform, and define event-handling functions to communicate with
both the interface element and the document object.

The advantage of this approach is that the resulting view is highly integrated. Event
handling is performed in a central location, reducing the need for event handling at the
application level. Control of the interface elements does not go through a pointer but is
also integrated into the new view class.

However, if you use this approach, you lose the flexibility you have with a pointer. You
cannot quickly detach and attach new interface objects; the interface object is an organic
part of the whole view object. You also cannot exchange different types of objects by
using a base pointer to a different interface object classes. Your new view class is locked
into a single type of interface element.

Closing a view
Like most other objects, TView provides functions that let you safely close and destroy
the object.

~ TView does fairly little. It calls its associated document's Detach View function, thus
removing itself from the document's list of views.

TView also provides a CanClose function, which calls its associated document's CanClose
function. Therefore the view's ability to close depends on the document's ability to
close.

DocNiew event handling
You should normally handle Doc/View events through both the application object and
your view's interface element. You can either control the view's display through a
pointer to an interface object or mix the functionality of the interface object with a view
class (see page 135 for details on constructing an interface element).

You can find more information about event handling and response tables in an
ObjectWindows application in Chapter 4.

136 Obj ec!Wind ows P rog ram mer' s Guide

DocNiew event handling in the application object
The application object generally handles only a few events, indicating when a document
or a view has been created or destroyed. The dnCreate event is posted whenever a view
or document is created. The dnClose event is posted whenever a view or document is
closed.

To set up response table entries for these events, add the EV _OWLDOCUMENT and
EV_ OWL VIEW macros to your response table:

• Use the EV_ OWLDOCUMENT macro to check for:

• The dnCreate event when a new document object is created. The standard name
used for the handler function is EvNewDocument. EvNewDocument takes a
reference to the new TDocument-derived object and returns void.

• The dnClose event when a document object is about to be closed. The standard
name used for the handler function is EvCloseDocument. EvCloseDocument takes a
reference to the TDocument-derived object that is being closed and returns void.

The response table entries and function declarations for these two macros would look
like this:

DEFINE_RESPONSE_TABLEl(MyDVApp, TApplication)

EV_OWLDOCUMENT(dnCreate, EvNewDocument),
EV_OWLDOCUMENT(dnClose, EvCloseDocument),

END_RESPONSE_TABLE;

void EvNewDocument(TDocument& document);
void EvCloseDocument(TDocument& document);

• Use the EV_ OWL VIEW macro to check for:

• The dnCreate event when a new view object is constructed. The standard name
used for the handler function is EvNewView. EvNewView takes a reference to the
new TView-derived object and returns void.

If the view contains a window interface element, either by inheritance or through a
pointer, the interface element typically has not been created when the view is
constructed. You can then modify the interface element's creation attributes before
actually calling the Create function.

• The dnClose event when a view object is destroyed. The standard name used for
the handler function is EvCloseView. EvCloseView takes a reference to the TView
derived object that is being destroyed and returns void.

The response table entries and function declarations for these two macros would look
like this:

DEFINE_RESPONSE_TABLEl(MyDVApp, TApplication)

EV_OWLVIEW(dnCreate, EvNewView),
EV_OWLVIEW(dnClose, EvCloseView),

Ch apter 1 O, Doc JV i e w objects 137

END_RESPONSE_TABLE;

void EvNewView(TView &view);
void EvCloseView(TView &view);

Doc/View event handling in a view
The header file docview.h provides a number of response table macros for predefined
events, along with the handler function names and type checking for the function
declarations. You can also define your own events and functions to handle those events
using the NOTIFY_SIG and VN_DEFINE macros.

Handling predefined DocNiew events
There are a number of predefined Doc/View events. Each event has a corresponding
response table macro and handler function signature defined. Note that the Doc/View
model doesn't provide versions of these functions. You must declare the functions in
your view class and provide the appropriate functionality for each function.

Table 10.3 Predefined DocNiew event handlers

EV_ VN_ VIEWOPENED vn ViewOpened VnViewOpened(TView *)

EV_ VN_ VIEWCLOSED vn ViewClosed VnViewClosed(TView *)

EV_ VN_DOCOPENED vnDocOpened VnDocOpened(int)

EV_ VN_DOCCLOSED vnDocClosed VnDocClosed(int)

EV_ VN_COMMIT vnCommit VnCommit(booI)

EV_ VN_REVERT vnRevert VnRevert(bool)

EV_ VN_ISDIRTY vnlsDirty VnisDirty(void)

EV_ VN_ISWINDOW vnlsWindow VnisWindow(HWND)

Indicates that a new view has been constructed.

Indicates that a view is about to be destroyed.

Indicates that a new document has been
opened.

Indicates that a document has been closed.

Indicates that changes made to the data in the
view should be committed to the document.

Indicates that changes made to the data in the
view should be discarded and the data should
be restored from the document.

Should return true if changes have been made
to the data in the view and not yet committed to
the document, otherwise returns false.

Should return true if the HWND parameter is
the same as that of the view's display window.

All the event-handling functions used for these messages return bool.

Adding custom view events
You can use the VN_DEFINE and NOTIFY_SIG macros to post your own custom view
events and to define corresponding response table macros and event-handling
functions. This section describes how to define an event and set up the event-handling
function and response table macro for that event.

First you must define the name of the event you want to handle. By convention, this
name should begin with the letters vn followed by the event name. A custom view event
should be defined as a const int greater than the value vnCustomBase. You can define
your event values as being vnCustomBase plus some offset value. For example, suppose
you are defining an event called vnPenChange. The code would look something like this:

138 0 bj ectWi n d ows Prag ram me r's Guide

const int vnPenChange = vnCustomBase + l;

Next use the NOTIFY_SIG macro to specify the signahrre of the event-handling
function. The NOTIFY_SIG macro takes two.parameters, the first being the event name
and the second being the exact parameter type to be passed to the function. The size of
this parameter can be no larger than type long; if the object being passed is larger than a
long, you must pass it by pointer. For example, suppose for the vnPenChange event, you
want to pass a TPen object to the event-handling function. Because a TPen object is quite
a bit larger than a long, you must pass the object by pointer. The macro would look
something like this:

NOTIFY_SIG(vnPenChange, TPen *)

Now you need to define the response table macro for your event. By convention, the
macro name uses the event name, in all uppercase letters, preceded by EV_ VN_. Use the
#define macro to define the macro name. Use the VN_DEFINE macro to define the
macro itself. This macro takes three parameters:

• Eventname

• Event-handling function name (by convention, the same as the event name preceded
by Vn instead of the vn used for the event name)

• Size of the parameter for the event-handling function; this can have four different
values:

• void
• int (size of an int parameter depends on the platform)
• long (32-bit integer or far pointer)
• pointer (size of a pointer parameter depends on the memory model)

You should specify the value that most closely corresponds to the event-handling
function's parameter type.

The definition of the response table macro for the vnPenChange event would look
something like this:

#define EV_VN_PENCHANGE \
VN_define (vnPenChange, VnPenChange, pointer)

Note that the third parameter of the VN_DEFINE macro in this case is pointer. This
indicates the size of the value passed to the event-handling function.

DocNiew properties
Every document and view object contains a list of properties, along with functions you
can use to query and change those properties. The properties contain information about
the object and its capabilities. When the document manager creates or destroys a
document or view object, it sends a notification event to the application. The application
can query the object's properties to determine how to proceed. Views can also access the
properties of their associated document.

Chapter 10, Doc/View objects 139

Property values and names
TDocument and TView each have some general properties. These properties are available
in any classes derived from TDocument and TView. These properties are indexed by a list
t>f enumerated values. The first property for every TDocument- and TView-derived class
should be PrevProperty. The last value in the property list should be NextProperty. These
two values delimit the property list of every document and view object; they ensure that
your property list starts at the correct value and doesn't overstep another property's
value, and allows derived classes to ensure that their property lists start at a suitable
value. PrevProperty should be set to the value of the most direct base class'
NextProperty- 1.

For example, a property list for a class derived from TDocument might look something
like this:

en um

PrevProperty = TDocument::NextProperty-1,
Size,
StorageSize,
Nextproperty,

};

Note the use of the scope operator(::) when setting PrevProperty. This ensures that you
set PrevProperty to the correct value for NextProperty.

Property names are usually contained in an array of strings, with the position of each
name in the array corresponding to its enumerated property index. But, when adding
properties to a derived class, you can store and access the strings in whatever style you
want. Because you have to write the functions to access the properties, complicated
storage schemes aren't recommended. A property name should be a simple description
of the property.

Property attributes are likewise usually contained in an array, this time an array on ints.
Again, you can handle this however you like. But the usual practice is to have the
attributes for a property contained in an array corresponding to the value of its property
index. The attributes indicate how the property can be accessed:

Table 10.4

pfG~tText

pfGetBinary

pfConstant

pfSettable

pfUnknown

pfHidden

pfUserDef

DocNiew property attributes

Property accessible as text format.

Property accessible as native non-text format.

Property cannot be changed once the object is created.

Property settable, must supply native format.

Property defined but unavailable in this object.

Property should be hidden from normal browse (don't
let the user see its name or value).

Property has been user-defined at run time.

140 ObjectWindows Programmer's Guide

Accessing property information
There are a number of functions provided in both TDocument and TView for accessing
Doc/View object property information. All of these functions are declared virtual.
Because the property access functions are virtual, the function in the most derived class
gets called first, and can override properties defined in a base class. It's the
responsibility of each class to implement property access and to resolve its property
names.

You normally access a property by its index number. Use the FindProperty function with
the property name. FindProperty takes a char * parameter and searches the property list
for a property with the same name. lt returns an int, which is used as the property index
for succeeding calls.

You can also use the Property Name function to find the property name frpm the index.
PropertyName takes an int parameter and returns a char * containing the name of the
property.

You can get the attributes of a property using the PropertyFlags function. This function
takes an int parameter, which should be the index of the desired property, and returns
an int. You can determine whether a flag is set by using the & operator. For example, to
determine whether you can get a property value in text form, you should check to see
whether the pfGetText flag is set:

if(doc->PropertyFlags(} & pfGetText}
{

II Get property as text

Getting and setting properties
You can use the GetProperty and SetProperty functions to query and modify the values of
a Doc/View object's properties.

The GetProperty function lets you find out the value of a property:

int GetProperty(int index, void far* dest, int textlen = 0};

where:

• index is the property index.
• dest is used by GetProperty to contain the property data.
• textlen indicates the size of the memory array pointed to by dest. If textlen is 0, the

property data is returned in binary form; otherwise the data is returned in text form.
Data can be returned in binary form only if the pJGetBinary attribute is set; it can be
returned in text form only if the pfGetText attribute is set. To get or set the binary data
of properties, the data type and the semantics must be known by the caller.

The SetProperty function lets you set the value of a property:

bool SetProperty(int index, const void far* src}

where:

• index is the property index.

Chapter 10, Doc/View objects 141

• src contains the data to which the property should be set; src must be in-the correct
native format for the property.

A derived class that duplicates property names should provide the same behavior and
data type.

142 ObjectWindows Programmer's Guide

Control objects
Windows provides a number of controls, which are standard user-interface elements
with specialized behavior. ObjectWindows provides several custom controls; it also
provides interface objects for controls so you can use them in your applications.
Interface objects for controls are called control objects.

To learn more about interface objects, see Chapter 3. This chapter covers the following
topics:

• Tasks common to all control objects
• Constructing and destroying control objects
• Communicating with control objects

• Using each of the different control objects
• Setting and reading control values

Control classes
The following table lists all the control classes ObjectWindows provides.

Table 11.1 Controls and their ObjectWindows classes

Standard Windows controls:
List box TListBox A list of items to choose from.

Scroll bar TScrollBar A scroll bar (like those in scrolling windows and list boxes) with direction
arrows and an elevator thumb.

Button TButton A button with an associated text label.

Check box TCheckBox A button consisting of a box that can be checked (on) or unchecked (off),
with an associated text label.

Radio button TRadioButton A button that can be checked (on) or unchecked (off), usually in mutually
exclusive groups.

Group box TGroupBox A static rectangle with optional text in the upper-left comer.

Chapter 11, Control objects 143

Table 11.1 Controls and their ObjectWindows classes (continued}

Edit control TEdit

Static control TStatic

A field for the user to type text in.

Visible text the user can't change.

Combo box TComboBox A combined list box and edit or static control.

Custom ObjectWindows controls:
Slider THSlider and Horizontal and vertical controls that let the user choose from an upper

TVSlider and lower range (similar to scroll bars).

Gauge TGauge Static controls that display a range of process completion.

Control object example programs can be found in EXAMPLES\ OWL \OWLAPI and
EXAMPLES\OWL \OWLAPPS.

What are control objects?
To Windows, controls are just specialized windows. In ObjectWindows, TControl is
derived from TWindow. Control objects and window objects are similar in how they
behave as child windows, and in how you create and destroy them. Standard controls
differ from other windows, however, in that Windows handles their event messages
and is responsible for painting them. Custom Object Windows controls handle these
tasks themselves because the ObjectWindows control classes contain the code needed to
paint the controls and handle events.

In many cases, you can directly use instances of the classes listed in the previous table.
However, sometimes you might need to create derived classes for specialized behavior.
For example, you might derive a specialized list box class from TListBox called
TFontListBox that holds the names of all the fonts available to your application and
automatically displays them when you create an instance of the class.

Constructing and destroying control objects
Regardless of the type of control object you're using, there are several tasks you need to
perform for each:

• Constructing the control object
• Showing the control
• Destroying the control

Constructing control objects
Constructing a control object is no different from constructing any other child window.
Generally, the parent window's constructor calls the constructors of all its child
windows. Notifications are described in Chapter 3. Controls communicate with parent
windows in special ways (called notifications) in addition to the usual links between
parent and child.

To construct and initialize a control object:

144 ObjectWindows Programmer's Guide

1 Add a control object pointer data member to the parent window.
2 Call the control object's constructor.
3 Change any control attributes.
4 Initialize the control in Setup Window.

Each of these steps is described in the following sections.

Adding the control object pointer data member
Often when you construct a control in a window, you want to keep a pointer to the
control in a window object data member. This is for convenience in accessing the
control's member functions. Here's a fragment of a parent window object with the
declaration for a pointer to a button control object:

class TMyWindow : public TWindow
(

TButton *OkButton;

} ;

Controls that you rarely manipulate, like static text and group boxes, don't need these
pointer data members. The following example constructs a group box without a data
member and a button with a data member (OkButton):

TMyWindow::TMyWindow(TWindow *parent, const char far *title)
: TWindow(parent, title)

new TGroupBox(this, ID_GROUPBOX, "Group box", 10, 10, 100, 100);
OkButton = new TButton(this, IDOK, "OK", 10, 200, 50, 50, true);

Calling control object constructors
Some control object constructors are passed parameters that specify characteristics of
the control object. These parameters include

• A pointer to the parent window object
• A resource identifier
• The x-coordinate of the upper-left comer
• They-coordinate of the upper-left comer
• Thewidth
• Theheight
• Optional module pointer

For example, one of TListBox' s constructors is declared as follows:

TListBox(TWindow *parent, int resourceid,
int x, int y, int w, int h,
TModule* module = 0);

There are also constructors for associating a control object with an interface element (for
example a dialog box) created from a resource definition:

TListBox(TWindow* parent, int resourceid, TModule* module= 0);

Chapter 11, Control objects 145

Changing control attributes
All control objects get the default window styles WS_CHILD, WS_ VISIBLE,
WS_GROUP, and WS_TABSTOP. If you want to change a control's style, you
manipulate its Attr.Style, as described in Chapter 7. Each control type also has other
styles that define its particular properties.

Each control object inherits certain window styles from its base classes. You should
rarely assign a value to Attr.Style. Instead, you should use the bitwise assignment
operators (I= and&=) to "mask" in or out the window style you want. For example:

II Mask in the WS_BORDER window style
Attr.Style I= WS_BORDER;

II Mask out the WS_VSCROLL style
Attr.Style &= -WS_VSCROLL;

Using the bitwise assignment operators helps ensure that you don't inadvertently
remove a style.

Initializing the control
A control object's interface element is automatically created by the Setup Window
member function inherited by the parent window object. Make sure that when you
derive new window classes, you call the base class' Setup Window member function
before attempting to manipulate its controls (for example, by calling control object
member functions, sending messages to those controls, and so on).

You must not initialize controls in their parent window object's constructor. At that
time, the controls' interface elements haven't yet been created.

Here's a typical Setup Window function:

void
TMyWindow:: SetupWindow(I
{

TWindow::SetupWindow(); II Lets TWindow create any child controls

listl->AddString("Item 1");
listl->AddString("Item 2");

Showing controls
It's not necessary to call the Windows function Show to display controls. Controls are
child windows, and Windows automatically displays and repaints them along with the
parent window. You can use Show, however, to hide or reveal controls on demand.

Destroying the control
Destroying controls is the parent window's responsibility. The control's interface
element is automatically destroyed along with the parent window when the user closes

146 ObjectWindows Programmer's Guide

the window or application. The parent window's destructor automatically destroys its
child window objects (including child control objects).

Communicating with control objects
Communication between a window object and its control objects is similar in some
ways to the communication between a dialog box object and its controls. Like a dialog
box, a window needs a mechanism for manipulating its controls and for responding to
control events, such as a list box selection.

Manipulating controls
One way dialog boxes manipulate their controls is by sending them messages using
member functions inherited from TWindow (see Chapter 7), with a control message like
LB_ADDSTRING. Control objects greatly simplify this process by providing member
functions that send control messages for you. TListBox::AddString, for example, takes a
string as its parameter and adds it to the list box by calling the list box object's
HandleMessage member function:

int
TListBox::AddString(const char far* str)
{

return (int)HandleMessage(LB_ADDSTRING, 0, (LPARAM)str);

This example shows how you can call the control objects' member functions via a
pointer:

ListBoxl->AddString ("Atlantic City"); //where ListBoxl is a TListBox *

Responding to controls
When a user interacts with a control, Windows sends various control messages. To learn
how to respond to control messages, see Chapter 3.

Making a window act like a dialog box
A dialog box lets the user use the Tab key to cycle through all of the dialog box's
controls. It also lets the user use the arrow keys to select radio buttons in a group box. To
emulate this keyboard interface for windows with controls, call EnableKBHandler in the
window object's constructor.

Using particular controls
Each type of control operates somewhat differently from the others. In this section,
you'll find specific information on how to use the objects for each of the standard
Windows controls and the custom controls supplied with ObjectWindows.

Ch apter 1 1 , Cant r a I abjects 147

Using list box controls
Using a list box is the simplest way to ask the user to pick something from a list. The
TListBox class encapsulates list boxes. TListBox defines member functions for:

• Creating list boxes
• Modifying the list of items
• Inquiring about the list of items
• Finding out which item the user selected

Constructing list box objects
One of TListBox's constructors takes seven parameters: a parent window, a resource
identifier, the control's x, y, h, and w dimensions, and an module pointer:

TListBox(TWindow *parent,
int resourceid,
int x, int y, int w, int h,
TModule* module = 0);

TListBox gets the default control styles (WS_CHILD, WS_ VISIBLE, WS_GROUP, and
WS_TABSTOP; see page 146) and adds LBS_STANDARD, which is a combination of
LBS_NOTIFY (to receive notification messages), WS_ VSCROLL (to have a vertical scroll
bar), LBS_SORT (to sort the list items alphabetically), and WS_BORDER (to have a
border). If you want a different list box style, you can modify Attr.Style in the list box
object's constructor or in its parent's constructor. For example, for a list box that doesn't
sort its items, use the following code:

listbox = new TListBox(this, ID_LISTBOX, 20, 20, 340, 100);
listbox->Attr.Style &= -LBS_SORT;

Modifying list boxes
After you create a list box, you need to fill it with list items (which must be strings).
Later, you can add, insert, or remove items or clear the listcompletely. The following
table summarizes the member functions you use to perform these actions.

Table 11.2 TListBox member functions for modifying list boxes

Clear List

Directory List

AddString

InsertString

Delete String

SetSellndex, SetSel, or SetSelString

SetSelStrings, SetSellndexes, or SetSelltemRange

SetToplndex

SetTabStops

SetHorizontalExtent

SetColumn Width

148 Objec!Windows Programmer's Guide

Delete every item.

Put file names in the list.

Add an item.

Insert an item.

Delete an item.

Select an item.

Select multiple items.

Scroll the list box so the specified item is visible.

Set tab stops for multicolumn list boxes.

Set number of pixels by which the list box can scroll
horizontally.

Set width of all columns in multicolumn list boxes.

Table 11.2 TListBox member functions for modifying list boxes (continued)

··Member function

SetCaretlndex

SetltemData

SetltemHeight

Querying list boxes

Descriptiqn

Set index of the currently focused item.

Set a uint32 value to be associated with the specified
index.

Set the height of item at the specified index or height of
all items.

There are several member functions you can call to find out information about the list
box or its item list. The following table summarizes the list box query member functions.

Table 11.3 TListBox member functions for querying list boxes

Member functions

GetCount

FindString or FindExactString

GetTopindex

GetCaretlndex

GetHorizontalExtent

GetltemData

GetltemHeight

GetltemRect

Get Se I Count

GetSelindex or GetSel

GetSelString

GetSelStrings or GetSelindexes

Get String

GetStringLen

Description
Number of items in the list.

Find string index.

Index of the item at the top of the list box.

Index of the currently focused item.

Number of pixels the list box can scroll horizontally.

uint32 data set by SetltemData.

Height, in pixels, of the specified item.

Rectangle used to display the specified item.

Number of selected items (either 0or1).

Index of the selected item.

Selected item.

Selected items.

Item at a particular index.

Length of a particular item.

Responding to list boxes
The member functions for modifying and querying list boxes let you set values or find
out the status of the control at any given time. To know what a user is doing to a list box
at run time, however, you have to respond to notification messages from the control.

There are only a few things a user can do with a list box: scroll through the list, click an
item, and double-dick an item. When the user does one of these things, Windows sends
a list box notification message to the list box's parent window. Normally, you define
notification-response member functions in the parent window object to handle
notifications for each of the parent's controls.

The following table summarizes the most common list box notifications:

Table 11.4 List box notification messages

EV _LBN_SELCHANGE

EV _LBN_DBLCLK

An item has been selected with a single mouse click.

An item has been selected with a double mouse click.

Chapter 11, Control objects 149

Table 11.4 List box notification messages (continued)

EV _LBN_SELCANCEL

EV _LBN_SETFOCUS

EV _LBN_KILLFOCUS

The user has deselected an item.

The user has given the list box the focus by clicking or double-clicking
an item, or by using Tab. Precedes LBN_SELCHANGE notification.

The user has removed the focus from the list box by clicking another
control or pressing Tab.

Here's a sample parent window object member function to handle an
LBN_SELCHANGE notification:

DEFINE_RESPONSE_TABLEl(TLBoxWindow, TFrameWindow)
EV_LBN_SELCHANGE(ID_LISTBOX, EvListBoxSelChange),

END_RESPONSE_TABLE;

void
TLBoxWindow::EvListBoxSelChange()
{

int index= ListBox->GetSelindex();
if (ListBox->GetStringLen(index) < 10)

char string[10];
ListBox->GetSelString(string, sizeof(string));
MessageBox(string, "You selected:", MB_OK);

Using static controls
Static controls are usually unchanging units of text or simple graphics. The user doesn't
interact with static controls, although your application can change the static control's
text. See EXAMPLES\OWL \OWLAPI\STATIC for an example showing static controls.

Constructing static control objects
Because the user never interacts directly with a static control, the application doesn't
receive control-notification messages from static controls. Therefore, you can construct
most static controls with -1 as the control ID. However, if you want to use
TWindow::SendDlgitemMessage to manipulate the static control, you need a unique ID.

One of TStatic's constructors is declared as follows:

TStatic(TWindow* parent,
int resourceid,
const char far* title,
int x, int y, int w, int h,
UINT textLen = 0,
TModule* module= 0);

It takes the seven parameters commonly found in this form of a control object
constructor (a parent window, a resource ID, the control's x, y, h, and w dimensions, and
an optional module pointer), and two parameters specific to static controls: the text

150 0 b j e c I W i n d o w s P r o g r a m m e r ' s G u i d e

, string the static control displays and its maximum length (including the terminating
NULL). A typical call to construct a static control looks like this:

new TStatic(this, -1, "Sample &Text", 170, 20, 200, 24);

If you want to be able to change the static control's text, y~u need to assign the control
object to a data member in the parent window object so you can call the static control
object's member function. If the static control's text doesn't need to change, you don't
need a data member.

TStatic gets the default control styles (WS_CHILD, WS_ VISIBLE, WS_GROUP, and
WS_TABSTOP; see page 146), adds SS_LEFT (to left-align the text), and removes the
WS_TABSTOP style (to prevent the user from selecting the control using Tab). To
change the style, modify Attr.Style in the static control object's constructor. For example,
the following code centers the control's text:

Attr.Style = (Attr.Style & -SS_LEFT) I SS_CENTER;

To indicate a mnemonic for a nearby control, you can underline one or more characters
in the static control's text string. To do this, insert an ampersand & in the string
immediately preceding the character you want underlined. For example, to underline
the Tin Text, use &Text. If you want to use an ampersand in the string, use the static style
SS_NOPREFIX.

Modifying static controls
TStatic has two member functions for altering the text of a static control: SetText sets the
text to the passed string, and Clear erases the text. You can't change the text of static
controls created with the SS_SIMPLE style.

Querying static controls
TStatic::GetTextLen returns the length of the static control's text. To get the text itself, use
TStatic::GetText.

Using button controls
Buttons (sometimes called push buttons or command buttons) perform a task each time
the button is pressed. There are two kinds of buttons: default buttons and non-default
buttons. A default button, distinguished by the button style BS_DEFPUSHBUTTON,
has a bold border that indicates the default user response. Nondefault buttons have the
button style BS_PUSHBUTTON.

See EXAMPLES\OWL \OWLAPI\BWCC for an example of button controls.

Constructing buttons
One of TButton' s constructors takes the seven parameters commonly found in a control
object constructor (a parent window, a resource identifier, the control's x, y, h, and w
dimensions, and an optional module pointer), plus a text string that specifies the
button's label, and a bool flag that indicates whether the button should be a default
button. Here's the constructor declaration:

C h a p t e r 1 1 , Co n t r o I o b j e ct s 151

TButton(TWindow *parent,
int resourceid,
const char far *text,
int X, int Y, int W, int H,
bool isDefault = false,
TModule *module = 0);

A typical button would be constructed like this:

btn =new TButton(this, ID_BUTTON, "DO_IT!", 38, 48, 316, 24, true);

Responding to buttons
When the user clicks a button, the button's parent window receives a notification
message. If the parent window object intercepts the message, it can respond to these
events by displaying a dialog box, saving a file, and so on.

To intercept and respond to button messages, define a command response member
function for the button. The following example uses ID ID _BUTTON to handle the
response to the user clicking the button:

DEFINE_RESPONSE_TABLEl(TTestWindow, TFrameWindow)
EV_COMMAND(ID_BUTTON, HandleButtonMsg),

END_RESPONSE_TABLE;

void
TTestWindow::HandleButtonMsg()
{

II Button was pressed

Using check box and radio button controls
A check box generally presents the user with a two-state option. The user can check or
uncheck the control, or leave it as is. In a group of check boxes, any or all might be
checked. For example, you might use a check box to enable or disable the use of sound
in your application.

Radio buttons, on the other hand, are used for selecting one of several mutually exclusive
options. For example, you might use radio buttons to choose between a number of
sounds in your application.

TCheckBox is derived from TButton and represents check boxes. Since radio buttons
share some behavior with check boxes, TRadioButton is derived from TCheckBox.

Check boxes and radio buttons are sometimes collectively referred to as selection boxes.
While displayed on the screen, a selection box is either checked or unchecked. When the
user clicks a selection box, it's an event, generating a Windows notification. As with
other controls, the selection box's parent window usually intercepts and acts on these
notifications.

See EXAMPLES\ OWL \OWLAPI\BUTTON for radio button and check box control
examples.

152 0 b j e ct W i n d ow s P r o g ram m e r ' s G u i d e

Constructing check boxes and radio buttons
TCheckBox and TRadioButton each have a constructor that takes the seven parameters
commonly found in a control object constructor (a parent window, a resource identifier,
the control's x, y, h, and w dimensions, and an optional module pointer). They also take
a text string and a pointer to a group box object that groups the selection boxes. If the
group box object pointer is zero, the selection box isn't part of a group box. Here are one
each of their constructors:

TCheckBox(TWindow *parent,
int resourceid,
canst char far *title,
int x, int y, int w, int h,
TGroupBox *group = 0,
TModule *module = 0);

TRadioButton(TWindow *parent,
int resourceid,
canst char far *title,
int x, int y, int w, int h,
TGroupBox *group = 0,
TModule *module = 0);

The following listing shows some typical constructor calls for selection boxes.

CheckBox =new TCheckBox(this, ID_CHECKBOX, "Check Box Text", 158, 12, 150, 26);
GroupBox =new TGroupBox(this, ID_GROUPBOX, "Group Box", 158, 102, 176, 108);

RButtonl = new TRadioButton(this, ID_RBUTTONl, "Radio Button 1",
174, 128, 138, 24, GroupBox);

RButton2 = new TRadioButton(this, ID_RBUTTON2, "Radio Button 2",
174, 162, 138, 24, GroupBox);

Check boxes by default have the BS_AUTOCHECKBOX style, which means that
Windows handles a click on the check box by toggling the check box. Without
BS _AUTOCHECKBOX, you'd have to set the check box's state manually. Radio buttons
by default have the BS_AUTORADIOBUTTON styk which means that Windows
handles a click on the radio button by checking the radio button and unchecking the
other radio buttons in the group. Without BS_AUTORADIOBUTTON, you'd have to
intercept the radio button's notification messages and do this work yourself.

Modifying selection boxes
Checking and unchecking a selection box seems like a job for the application user, not
your application. But in some cases, your application needs control over a selection
box's state. For example, if the user opens a text fik you might want to automatically
check a check box labeled "Save as ANSI text." TCheckBox defines several member
functions for modifying a check box's state:

Table 11.5 TCheckBox member functions for modifying selection boxes

Check or SetCheck (BF _CHECKED) Check

Uncheck or SetCheck (BF _UNCHECKED) Uncheck

Ch a p I er 11 , Con Ir o I obj e c Is 153

Table 11.5 TCheckBox member functions for modifying selection boxes (continued)

Toggle

SetState

SetStyle

Toggle

Highlight

Change the button's style

When you use these member functions with radio buttons, Object Windows ensures that
only one radio button per group is checked, as long as the buttons are assigned to a
group.

Querying selection boxes
Querying a selection box is one way to find out and respond to its state. Radio buttons
have two states: checked (BF_CHECKED) and unchecked (BF_UNCHECKED). Check
boxes can have an additional (and optional) third state: grayed (BF_ GRA YEO). The
following table summarizes the selection-box query member functions.

Table 11.6 TCheckBox member functions for querying selection boxes

GetCheck Return the check state.

GetState Return the check, highlight, or focus state.

Using group boxes
In its simplest form, a group box is a labeled static rectangle that visually groups other
controls.

Constructing group boxes
TGroupBox has a constructor that takes the seven parameters commonly found in a
control object constructor (a parent window, a resource identifier, the control's x, y, h,
and w dimensions, and an optional module pointer), and also takes a text string
parameter to label the group:

TGroupBox(TWindow *parent,
int resourceid,
const char far *text,
int X, int Y, int W, int H,
TModule *module = 0);

Grouping controls
Usually a group box visually associates a group of other controls; however, it can also
logically associate a group of selection boxes (check boxes and radio buttons). This
logical group performs the automatic unchecking (BS_AUTOCHECKBOX,
BS_AUTORADIOBUTTON) discussed on page 153.

To add a selection box to a group box, pass a pointer to the group box object in the
selection box's constructor call.

154 0 b j e ct W i n d o w s P r o g r a m m e r ' s G u i d e

Responding to group boxes
When an event occurs that might change the group box's selections (for example, when
a user clicks a button or the application calls Check), Windows sends a notification
message to the group box's parent window. The parent window can intercept the
message for the group box as a whole, rather than responding to the individual selection
boxes in the group box. To find out which control in the group was affected, you can
read the current status of each control.

Using scroll bars
Scroll bars are the primary mechanism for changing the user's view of an application
window, a list box, or a combo box. However, you might want a separate scroll bar to
perform a specialized task, such as controlling the temperature on a thermostat or the
color in a drawing program. Use TScrollBar objects when you need a separate,
customizable scroll bar.

See EXAMPLES\ OWL \OWLAPI\SCROLLER for a scroll bar control example.

Constructing scroll bars
TScrollBar has a constructor that takes the seven parameters commonly found in a
control object constructor (a parent window, a resource identifier, the control's x, y, h,
and w dimensions, and an optional module pointer), and also takes a bool flag
parameter that specifies whether the scroll bar is horizontal. Here's a TScrollBar
constructor declaration:

TScrollBar(TWindow *parent,
int resourceid,
int x, int y, int w, int h,
bool isHScrollBar,
TModule *module = 0);

If you specify a height of zero for a horizontal scroll bar or a width of zero for a vertical
scroll bar, Windows gives it a standard height and width. This code creates a standard
height horizontal scroll bar:

new TScrollBar(this, ID_THERMOMETER, 100, 150, 180, 0, true);

TScrollBar's constructor constructs scroll bars with the style SBS_HORZ for horizontal
scroll bars and SBS_ VERT for vertical scroll bars. You can specify additional styles, such
as SBS_TOPALIGN, by changing the scroll bar object'sAttr.Style.

Controlling the scroll bar range
One attribute of a scroll bar is its range, which is the set of all possible thumb positions.
The thumb is the scroll bar's sliding box that the user drags or scrolls. Each position is
associated with an integer. The parent window uses this integer, the position, to set and
query the scroll bar. By default, a scroll bar object's range is 1to100.

The thumb's minimum position (at the top of a vertical scroll bar and the left of a
horizontal scroll bar) corresponds to position 1, and the thumb's maximum position
corresponds to position 100. Use SetRange to set the range differently.

C h a pt e r 1 1 , C o n t r o I o b j e ct s 155

Controlling scroll amounts
A scroll bar has two other important attributes: its line magnitude and page magnitude.
The line magnitude, initialized to 1, is the distance, in range units, the thumb moves
when the user clicks the scroll bar's arrows. The page magnitude, initialized to 10, is the
distance, also in range units, the thumb moves when the user clicks the scrolling area.
You can change these values by changing the TScrollBar data members LineMagnitude
and PageMagnitude.

Querying scroll bars
TScrollBar has two member functions for querying scroll bars:

• GetRange gets the upper and lower ranges.
• GetPosition gets the current thumb position.

Modifying scroll bars
Modifying scroll bars is usually done by the user, but your application can also modify a
scroll bar directly:

• SetRange sets the scrolling range.
• SetPosition sets the thumb position.
• DeltaPos moves the thumb position.

Responding to scroll-bar messages
When the user moves a scroll bar's thumb or clicks the scroll arrows, Windows sends a
scroll bar notification message to the parent window. If you want your window to
respond to scrolling events, respond to the notification messages.

Scroll bar notification messages are slightly different from other control notification
messages. They're based on the WM_HSCROLL and WM_ VSCROLL messages, rather
than WM_ COMMAND command messages. Therefore, to respond to scroll bar
notification messages, you need to define EvHScroll or Ev VScroll event response
functions, depending on whether the scroll bar is horizontal or vertical:

class TTestWindow : public TFrarneWindow
{

};

public:
TTestWindow(TWindow* parent, const char* title);
virtual void SetupWindow();

void EvHScroll(UINT code, UINT pos, HWND wnd);

DECLARE_RESPONSE_TABLE(TTestWindow);

DEFINE_RESPONSE_TABLEl(TTestWindow, TFrarneWindow)
EV_WM_HSCROLL,

END_RESPONSE_TABLE;

156 0 b j e ct W i n d ow s P r o g r a m m e r' s G u i d e

Usually, you respond to all the scroll bar notification messages by retrieving the current
thumb position and taking appropriate action. In that case, you can ignore the
notification code:

void
TTestWindow: :EvHScroll(UINT code, UINT pos, HWND wnd)
{

TFrameWindow::EvHScroll(); //perform default WM_HSCROLL processing
int newPos = ScrollBar->GetPosition();
II do some processing with newPos

Avoiding thumb tracking messages
You might not want to respond to the scroll bar notification messages while the user is
dragging the scroll bar's thumb, because the user is usually dragging the thumb quickly,
generating many notification messages. It's more efficient to wait until the user has
stopped moving the thumb, and then respond. To do this, screen out the notification
messages that have the SB_THUMBTRACK code.

Specializing scroll bar behavior
You might want a scroll bar object respond to its o\vn notification messages. TWindow
has built-in support for dispatching scroll bar notification messages back to the scroll
bar. TWindow::EvHScroll or TWindow::EvVScroll execute the appropriate TScrollBar
member function based on the notification code. For example:

class TSpecializedScrollBar : public TScrollBar
{

public:
virtual void SBTop();

};

void
TSpecializedScrollBar::SBTop()
{

TScrollBar: :SBTop();
::sndPlaySound("AT-TOP.WAV", SND_ASYNC); //play sound

Be sure to call the base member functions first. They correctly update the scroll bar to its
new position.

The following table associates notification messages with the corresponding TScrollBar
member function:

Table 11.7 Notification codes and TScrollBar member functions

SB_LINEUP SBLineUp

SB_LINEOOWN

SB_PAGEUP

SB_PAGEDOWN

SBLineDown

SBPageUp

SBPageDown

Chapter 11, Control objects 157

Table 11.7 Notification codes and TScrollBar member functions (continued)

SB_THUMBPOSITION

SB_THUMBTRACK

SB_TOP

SB_BOTTOM

SBThumbPosition

SBThumbTrack

SBTop

SB Bottom

Using sliders and gauges
Sliders are specialized scrollers used for nonscrolling position information. The abstract
base class TSlider is derived from the TScrollBar class. Like other control constructors, the
TSlider constructor takes the seven parameters commonly found in a control object
constructor (a parent window, a resource identifier, the control's x, y, h, and w
dimensions, and an optional module pointer), and also takes a TResld object, which is a
bitmap resource identifier. The bitmap is displayed as the thumb knob for the slider.
Here's the TSlider constructor:

THSlider(TWindow* parent,
int id,
int X, int Y, int W, int H,
TResid thumbResid = IDB_HSLIDERTHUMB,
TModule* module= 0);

To implement a class based on TSlider, you must implement a number of functions
which are declared as pure virtual functions in TSlider:

Table 11.8 Pure virtual functions in TSlider

HitTest Determines whether a point in inside the thumb or any other "hot" area of the slider.

NotifyParent Notifies the slider's parent of a scroll event.

PaintRuler Paints the ruler.

PaintSlot Paints the slot that the thumb rides over.

PointToPos

PosToPoint

SetupThumbRgn

SlideThumb

Converts a point inside the slider to a slider position.

Converts a slider position to a point inside the slider.

Sets up the thumb region. By default, this is a simple rectangle.

Slides the thumb and does the required blitting and painting.

Two classes derived from TSlider, THSlider and TVSlider, implement vertical and
horizontal slider versions. Both THSlider and TVSlider have only one constructor. These
constructors resemble the TSlider constructor, with the exception that each has a default
value for the thumb knob bitmap:

THSlider(TWindow* parent,
int id,
int X, int Y, int W, int H,
TResid thumbResid = IDB_HSLIDERTHUMB,
TModule* module = 0);

158 0 b j e ct W i n d ow s P r o g ram m e r ' s G u i d e

TVSlider(TWindow* parent,
int id,
int X, int Y, int W, int H,
TResid thumbResid = IDB_VSLIDERTHUMB,
TModule* module= 0);

Gauges are controls that display duration or other information about an ongoing
process. Class TGauge implements gauges, and is derived from class TControl. The
TGauge constructor looks like this:

TGauge(TWindow* parent,
const char far* title,
int id,
int X, int Y, int W, int H,
bool isHorizontal = true,
int margin = 0,
TModule *module= 0);

The TGauge constructor has the normal control constructor parameters (a parent
window, a resource identifier, the control's x, y, h, and w dimensions, and an optional
module pointer). The isHorizontal parameter determines whether you get a horizontal or
vertical gauge. If isHorizontal is true, the gauge is displayed horizontally. If isHorizontal is
false, the gauge is displayed vertically. The default is horizontal. Horizontal gauges are
usually used to display process information, and vertical gauges are usually used to
display analog information.

The margin parameter determines the size of the gauge's margin.

See EXAMPLES\OWL \OWLAPI\SLIDER for slider and gauge control examples.

Using edit controls
Edit controls are interactive static controls. They're rectangular areas that can be filled
with text, modified, and cleared by the user or application. Edit controls are very useful
as fields for data entry screens. They support the following operations:

• User text input
• Dynamic display of text (by the application)
• Cutting, copying, and pasting to the Clipboard
• Multiline editing (good for text editors)

See EXAMPLES\OWL \OWLAPI\ VALIDATE for an edit controls example.

Constructing edit controls
One of TEdit's constructors takes parameters for an initial text string, maximum string
length (including the terminating NULL), and a bool flag specifying whether or not it's
a multiline edit control (in addition to the parent window, resource identifier, and
placement coordinates). This TEdit constructor is declared as follows:

TEdit(TWindow *parent,
int resourceid,
canst char far *text,
int x, int y, int w, int h,

C h apt e r 1 1 , Co n tr o I o b j e ct s 159

UINT textLen,
bool multiline = false,
TModule *module= 0);

By default, the edit control has the styles ES_LEFT (for left-aligned text),
ES_AUTOHSCROLL (for automatic horizontal scrolling), and WS_BORDER (for a
visible border surrounding the edit control). Multiline edit controls get the additional
styles ES_MULTILINE (specifies a multiline edit control), ES_AUTOVSCROLL
(automatic vertical scrolling), WS_ VSCROLL (vertical scroll bar), and WS_HSCROLL
(horizontal scroll bar).

The following are typical edit control constructor calls, one for a single-line control, the
other multiline:

Editl =new TEdit(this, ID_EDITl, "Default Text", 20, 50, 150, 30, MAX_TEXTLEN, false);
Edit2 =new TEdit(this, ID_EDIT2, "", 260, 50, 150, 30, MAX_TEXTLEN, true);

Using the Clipboard and the Edit menu
You can directly transfer text between an edit control object and the Windows
Clipboard using TEdit member functions. You probably want to give users access to
these member functions by giving your window an Edit menu.

Edit control objects have built-in responses to menu items like Edit I Copy and Edit I
Undo. TEdit has command response member functions, such as CmEditCopy and
CmEditUndo, which ObjectWindows invokes in response to users choosing items from
the parent window's Edit mertu.

The table below shows the Clipboard and editing member functions and the menu
commands that invoke them.

Table 11.9 TEdit member functions and Edit menu commands

Copy CM_EDITCOPY Copy text to Clipboard.

Cut CM_EDITCUT Cut text to Clipboard.

Undo CM_EDIIUNDO Undo last edit.

Paste CM_EDITP ASTE Paste text from Clipboard.

Delete Selection CM_EDITDELETE Delete selected text.

Clear CM_EDITCLEAR Clear entire edit control.

To add an editing menu to a window that contains edit control objects, define a menu
resource for the window using the menu commands listed above. You don't need to
write any new member functions.

Querying edit controls
Often, you want to query an edit control to store the entry for later use. TEdit has a
number of querying member functions. Many of the edit control query and
modification member functions return, or require you to specify, a line number or a
character's position in a line. All of these indexes start at zero. In other words, the first

160 ObjectWindows Programmer's Guide

line is line zero and the first character of a line is character zero. The following table
summarizes TEdit' s query member functions.

Table 11.10 TEdit member functions for querying edit controls

Is Modified

GetText

Get Line

GetNumLines

GetLineLength

Get Selection

GetSubText

GetLinelndex

GetLineFromPos

GetRect

Get Handle

GetFirst V isibleLine

GetPasswordChar

GetWordBreakProc

Can Undo

/)'"';,,\,, ,, >f;1jibfl!;;;0'/'.'''

J?escription" :~'
Find out if text has changed.

Retrieve all text.

Retrieve a line.

Get number of lines.

Get length of a given line.

Get index of selected text.

Get a range of characters.

Count characters before a line.

Find the line containing an index.

Get formatting rectangle.

Get memory handle.

Get index of first visible line.

Get character used in passwords.

Get word-breaking procedure.

Find out if edit can be undone.

Text that spans lines in a multiline edit control contains two extra characters for each
line break: a carriage return ('\r') and a line feed ('\n'). TEdit's member functions retain
the text's formatting when they return text from a multiline edit control. When you
insert this text back into an edit control, paste it from the Clipboard, write it to a file, or
print it to a printer, the line breaks appear as they did in the edit control. When you use
query member functions to get a specified number of characters, be sure to account for
the two extra characters in a line break.

Modifying edit controls
Many uses of edit controls require that your application explicitly substitute, insert,
clear, or select text. TEdit supports those operations, plus the ability to force the edit
control to scroll.

Table 11.11 TEdit member functions for modifying edit controls

Clear

DeleteSelection

DeleteSubText

DeleteLine

Insert

Paste

Set Text

Set Selection

Scroll

Delete all text.

Delete selected text.

Delete a range of characters.

Delete a line of text.

Insert text.

Paste text from Clipboard.

Replace all text.

Select a range of text.

Scroll text.

Chapter 11, Control objects 161

Table 11.11 TEdit member functions for modifying edit controls (continued)

Clear Modify

Search

SetRect or SetRectNP

FormatLines

SetTabStops

Set Handle

SetPasswordChar

SetReadOnly

SetWordBreakProc

Em:ptyUndoBuffer

Clear the modified flag.

Search for text.

Set formatting rectangle.

Turn on or off soft line breaks.

Set tab stops.

Set local memory handle.

Set password character.

Make the edit control read-only.

Set word-breaking procedure.

Empty undo buffer.

Using combo boxes
A combo box control is a combination of two other controls: a list box and an edit or
static control. It serves the same purpose as a list box-it lets the user choose one text
item from a scrollable list of text items by clicking the item with the mouse. The edit
control, grafted to the top of the list box, provides another selection mechanism,
allowii1_g users to type the text of the desired item. If the list box area of the combo.box is
displayed, the desired item is automatically selected. TComboBox is derived from
TListBox and inherits its member functions for modifying, querying, and selecting list
items. In addition, TComboBox provides member functions for manipulating the list part
of the combo box, which, in some types of combo boxes, can· drop down on request.

See EXAMPLES\OWL \OWLAPI\COMBOBOX for a combo box control example.

Varieties of combo boxes
There are three types of combo boxes: simple, drop down, and drop down list. All
combo boxes show their edit area at all times, but some can show and hide their list box
areas. The following table summarizes the properties of each type of combo box.

Table 11.12 Summary of combo box styles

Simple

Drop down

Drop down list

No

Yes

Yes

No

No

Yes

From a user's perspective, these are the distinctions between the different styles of
combo boxes:

• A simple combo box cannot hide its list box area. Its edit area behaves just like an edit
control; the user can enter and edit text, and the text doesn't need to match one of the
items in the list. If the text does match, the corresponding list item is selected.

• A drop down combo box behaves like a simple combo box, with one exception. In its
initial state, its list area isn't displayed. It appears when the user clicks on the icon to

162 ObjectWindows Programmer's Guide

the right of the edit area. When drop down combo boxes aren't being used, they take
up less space than a simple combo box or a list box.

• The list area of a drop down list combo box behaves like the list area of a drop down
combo box-it appears only when needed. The two combo box types differ in the
behavior of their edit areas. Whereas drop down edit areas behave like regular edit
controls, drop down list edit areas are limited to displaying only the text from one of
their list items. When the edit text matches the item text, no more characters can be
entered.

Choosing combo box types
Drop down list combo boxes are useful in cases where no other selection is acceptable
besides those listed in the list area. For example, when choosing a printer, you can only
choose a printer accessible from your system.

On the other hand, drop down combo boxes can accept entries other than those found in
the list. A typical use of drop down combo boxes is selecting disk files for opening or
saving. The user can either search through directories to find the appropriate file in the
list, or type the full path name and file name in the edit area, regardless of whether the
file name appears in the list area.

Constructing combo boxes
TComboBox has two constructors. The first constructor takes the seven parameters
commonly found in a control object constructor (a parent window, a resource identifier,
the control's x, y, h, and w dimensions, and an optional module pointer), and also style
and maximum text length parameters. This constructor is declared like this:

TComboBox(TWindow *parent,
int resourceid,
int x, inf y, int w, int h,
uint32 style,
uint16 textLen,
TModule *module= 0);

All combo boxes have the styles WS_CHILD, WS_ VISIBLE, WS_GROUP,
WS_TABSTOP, CBS_SORT (to sort the list items), CBS_AUTOHSCROLL (to let the user
enter more text than fits in the visible edit area), and WS_ VSCROLL (vertical scroll bar).
The style parameter you supply is one of the Windows combo box styles CBS_SIMPLE,
CBS_DROPDOWN, or CBS_DROPDOWNLIST. The text length specifies the maximum
number of characters allowed in the edit area.

The second TComboBox constructor lets you create an ObjectWindows object that serves
as an alias for an existing combo box. This constructor looks like this:

TComboBox(TWindow* parent,
int resourceid,
UINT textLen = 0,
TModule* module= 0);

The following lines show a typical combo box constructor call, constructing a drop
down list combo box with an unsorted list:

Chapter 11, Control objects 163

Cornbol = new_TComboBox(this, ID_COMBOl, 190, 30, 150, 100, CBS_SIMPLE, 20);
Cornbol->Attr.Style &= -CBS_SORT;

Modifying combo boxes
TComboBox defines several member functions for modifying a combo box's list and edit
areas. The following table summarizes these member functions.

· Because TComboBox is derived from TListBox, you can also use TListBox member
functions to manipulate a combo box's list area.

Table 11.13 TComboBox member functions for modifying combo boxes

SetText

SetEditSel

Clear
ShowList or ShowList(true)

HideList or ShowList(jalse)

SetExtendedUI

Replace all text in the edit area.

Select text in the edit area.

Delete all text in the edit area.

Show the list area.

Hide the list area.

Set the extended combo box UI.

Querying combo boxes
TComboBox adds several member functions to those inherited from TListBox for
querying the contents of a combo box's edit and list areas. The following table
summarizes these member functions.

Table 11.14 TComboBox member functions for querying combo boxes

GetTextLen

GetText

GetEditSel

GetDroppedControlRect

GetDroppedState

GetExtendedUI

Get length of text in edit area.

Retrieve all text in edit area.

Get indexes of selectecl text in edit area.

Get rectangle of dropped-down list.

Determine if list area is visible.

Determine if mmbo box has extended UI.

Setting and reading control values
To manage complex dialog boxes or windows with many child-window controls, you
might create a derived class to store and retrieve the state of the dialog box or window
controls. The state of a control includes the text of an edit control, the position of a scroll
bar, and whether a radio button is checked.

Using transfer buffers
As an alternative to creating a derived class, you can use a structure to represent the
state of the dialog box's or window's controls. This structure is called a transfer buffer

164 ObjectWindows Programmer's Guide

because control states are transferred to the buffer from the controls and to the controls
from the buffer.

For example, your application can bring up a modal dialog box and, after the user closes
it, extract information from the transfer buffer about the state of each control. Then, if
the user brings up the dialog box again, you can transfer the control states from the
transfer buffer. In addition, you can set the initial state of each control based on the
transfer buffer. You can also explicitly transfer data in either direction at any time, such
as to reset the states of the controls to their previous values. A window or modeless
dialog box with controls can also use the transfer mechanism to set or retrieve state
information at any time.

The transfer mechanism requires the use of ObjectWindows objects to represent the
controls for which you'd like to transfer data. To use the transfer mechanism, you have
to do three things:

• Define the transfer buffer, with an instance variable for each control for which you
want to transfer data.

• Define the corresponding window or dialog box.

• Transfer the data.

Defining the transfer buffer
The transfer buffer is a structure with one member for each control participating in the
transfer. These members are known as instance variables. A window or dialog box can
also have controls with no states to transfer. For example, by default, buttons, group
boxes, and static controls don't participate in transfer. The type of the control
determines the type of member needed in the transfer buffer.

To define a transfer buffer, define an instance variable for each participating control in
the dialog box or window. It isn't necessary to define an instance variable for every
control, only for those controls you want to transfer values to and from. The transfer
buffer stores one of each type of control, except buttons, group boxes, and static
controls. For example:

struct TSampleTransferStruct
{

char editCtl[sizeOfEditCtl]; II edit control
uint16 checkBox; II check box
uint16 radioButton; II radio button
TListBoxData listBox; II list box
TComboBoxData comboBox; II combo box
TScrollBarData scrollBar; II scroll bar

};

Chapter 11, Control objects 165

Each type of control has different information to store. The following table explains the
transfer buffer for each of ObjectWindows' controls.

Table 11.15 Transfer buffer members for each type of control

Static char array A character array up to the maximum length of text
allowed, plus the terminating NULL. By default, static
controls don't participate in transfer, but you can
explicitly enable them.

Edit char array A character array up to the maximum length of text
allowed, plus the terminating NULL.

List box TListBoxData An instance of the TListBoxData class; TListBoxData has
several members for holding the list box strings, item
data, and the selected indexes.

Combo box TComboBoxData An instance of the TComboBoxData class;
TComboBoxData has several members for holding the
combo box list area strings, item data, the selection
index, and the contents of the edit area.

Check box or radio button uint16 BF_CHECKED, BF_UNCHECKED, or BF_GRAYED,
indicating the selection box state.

Scroll bar TScrollBarData An instance of TScrollBarData; TScrollBarData has three
int members: Low Value to hold the minimum range;
High Value to hold the maximum range; and Position to
hold the current thumb position.

List box transfer
Because list boxes need to transfer several pieces of information (strings, item data, and
selection indexes), the transfer buffer uses a class called TListBoxData. TListBoxData has
several data members to hold the list box information:

Table 11.16 TListBoxData data members

ItemDatas

Se!Indices

Strings

TUint32Array*

TlntArray*

TStringArray*

Contains the item data uint32 for each item in the list box.

Contains the indexes of each selected string (in a multiple
selection list box).

Contains all the strings in the list box.

TListBoxData also has member functions to manipulate the list box data:

Table 11.17 TListBoxData member functions

AddltemData

AddString

AddStringltem

GetSelString

GetSelStringLength

Reset Selections

Adds item data to the ItemDatas array.

Adds a string to the Strings array, and optionally selects it.

Adds a string to the Strings array, optionally selects it, and adds item data to the
ItemDatas array.

Get the selected string at the given index.

Returns the length of the selected string at the given index.

Removes all selections from the Se/Indices array.

166 0 b jec!Wi n dows Programmer's Guide

Table 11.17 TListBoxData member functions (continued)

r flm:ctiort DestrljftiM' ,

Select

SelectString
Selects the string at the given index.

Selects the given string.

Combo box transfer
Combo boxes need to transfer several pieces of information (strings, item data, selected
item, and the index of the selected item). The transfer buffer for combo boxes is a class
called TComboBoxData. TComboBoxData has several data members to hold the combo
box information:

Table 11.18 TComboBoxData data members

ItemDatas

Selection

Strings

'Type
TUint32Array*

char*

TStringArray*

Contains the item data uint32 for each item in the list box.

Contains the selected string.

Contains all the strings in the list box.

TComboBoxData also has several member functions to manipulate the combo box
information:

Table 11.19 TComboBoxData member functions

AddString
AddStringltem

Clear

GetltemDatas

GetSelCaunt

Get Selection

GetSellndex

GetSelString

GetSelStringLength

GetStrings

Reset Selections

Select

Select String

Adds a string to the Strings array, and optionally selects it.

Adds a string to the Strings array, optionally selects it, and adds item data to the
ItemDatas array.

Clears all data.

Returns a reference to ItemDatas.

Returns number of selected items.

Returns a reference to the current selection.

Returns the index of the current selection.

Places a copy of the current selection into a character buffer.

Returns the length of the currently selected string.

Returns a reference to the entire array of strings in the combobox.

Sets the current selection to a null string and sets the index to CB_ERR.

Sets a string in Strings to be the current selection, based on an index parameter.

Sets a string in Strings to be the current selection, based on matching a const char
far* parameter.

Defining the corresponding window or dialog box
A window or dialog box that uses the transfer mechanism must construct its
participating control objects in the exact order in which the corresponding transfer
buffer members are defined. To enable transfer for a window or dialog box object, call
SetTransferBuffer and pass a pointer to the transfer buffer.

Chapter 11, Control objects 167

Using transfer with a dialog box
Because dialog boxes get their definitions and the definitions of their controls from
resources, you should construct control objects using the constructors that take resource
IDs. For example:

struct TTransferBuffer

char edit [30];
TListBoxData listBox;
TScrollBarData scrollBar;

TTransferDialog::TTransferDialog(TWindow* parent, int resid)
TDialog(parent, resid),
TWindow(parent)

new TEdit(this, ID_EDIT, 30);
new TListBox(this, ID_LISTBOX);
new TScrollBar(this, ID_SCROLLBAR);

SetTransferBuffer(&TTransferBuffer);

Control objects you construct like this automatically have transfer enabled (except for
button, group box, and static control objects). To explicitly exclude a control from the
transfer mechanism, call its DisableTransfer member function after constructing it.

Using transfer with a window
Controls constructed in a window have transfer disabled by default. To enable transfer,
call the control object's EnableTransfer member function:

ListBox = new TListBox(this, ID_LISTBOX, 20, 20, 340, 100);
ListBox->EnableTransfer();

Transferring the data
In most cases, transferring data to or from a window is automatic, but you can also
explicitly transfer data at any time.

Transferring data to a window
Transfer to a window happens automatically when you construct a window object. The
constructor calls Setup Window to create an interface element to represent the window
object; it then calls TransferData to load any data from the transfer buffer. The window
object's Setup Window calls Setup Window for each of its child windows as well, so each of
the child windows has a chance to transfer its data. Because the parent window sets up
its child windows in the order it constructed them, the data in the transfer buffer must
appear in that same order.

168 0 bj ectWi n d ows Programmer's Guide

Transferring data from a dialog box
When a modal dialog box receives a command message with a control ID of IDOK, it
automatically transfers data from the controls into the transfer buffer. Usually this
message indicates that the user chose OK to close the dialog box, so the dialog box
automatically updates its transfer buffer. Then, if you execute the dialog box again, it
transfers from the transfer buffer to the controls.

Transferring data from a window
You can explicitly transfer data in either direction at any time. For example, you might
want to transfer data out of controls in a window or modeless dialog box. Or you might
want to reset the state of the controls using the data in the transfer buffer in response to
the user clicking a Reset or Revert button.

Use the TransferData member function in either case, passing the tdSetData enumeration
to transfer from the transfer buffer to the controls or tdGetData to transfer from the
controls to the transfer buffer. For example, you might want to call TransferData in the
Close Window member function of a window object:

void
TMyWindow: :CloseWindow()
{

TransferData(tdGetData);
TWindow::CloseWindow();

Supporting transfer for customized controls
You might want to modify the way a particular control transfers its data, or to include a
new control you define in the transfer mechanism. In either case, all you need to do is to
write a Transfer member function for your control object. See the following table to
interpret the meaning of the transfer flag parameter.

Table 11.20 Transfer flag parameters

tdGetData

tdSetData

tdSizeData

Copy data from the control to the location specified by the supplied pointer.
Return the number of bytes transferred.

Copy the data from the transfer buffer at the supplied pointer to the control.
Return the number of bytes transferred.

Return the number of bytes that would be transferred.

Ch a p I er 11 , Con Ir o I obj e c Is 169

170 ObjectWindows Programmer's Guide

Gadget and gadget window objects
This chapter discusses the use of gadgets and gadget windows. In function, gadgets are
similar to controls, in that they are used to gather input from or convey information to
the user. But gadgets are implemented differently from controls. Unlike most other
interface elements, gadgets are not windows: gadgets don't have window handles, they
don't receive events and messages, and they aren't based on TWindow.

Instead, gadgets must be contained in a gadget window that controls the presentation of
the gadget, all message processing, and so on. The gadget receives its commands and
direction from the gadget window.

This chapter discusses the various kinds of gadgets implemented in ObjectWindows. It
then describes the different kinds of gadget windows available for use with the gadgets.

Gadgets
This section discusses a number of gadgets. It begins with a discussion of TGadget, the
base class for ObjectWindows gadgets. It then discusses the other gadget classes,
TSeparatorGadget, TBitmapGadget, TControlGadget, TTextGadget, and TButtonGadget.

Class TGadget
All gadgets are based on the TGadget class. The TGadget class contains the basic
functionality required by all gadgets, including controlling the gadget's borders and
border style, setting the size of the gadget, enabling and disabling the gadget, and so on.

Constructing and destroying TGadget
Here is the TGadget constructor:

TGadget(int id= 0, TBorderStyle style= None);

Chapter 12, Gadget and gadget window objects 171

where:

• id is an arbitrary value as the ID number for the gadget. You can use the ID to identify
a particular gadget in a gadget window. Other uses for the gadget ID are discussed in
the next section.

• style is an enum TBorderStyle. There are five possible values for style:

• None makes the gadget with no border style; that is, it has no visible borders.

• Plain makes the gadget borders visib.le as lines, much like the border of a window
frame. ·

• Raised makes the gadget look as if it is raised up from the gadget window.

• Recessed makes the gadget look as if it is recessed into the gadget window.

• Embossed makes the gadget border look as if it has an embossed ridge as a border.

The TGadget destructor is declared virtual. The only thing it does is to remove the
gadget from its gadget window if that window is still valid.

Identifying a gadget
You can identify a gadg~t by using the Getld function to access its identifier. Getld takes
no parameters and returns an int that is the gadget identifier. The identifier comes from
the value passed in as the first parameter of the TGadget constructor.

There are a number of uses for the gadget identifier:

• You can use the identifier to identify a particular gadget. If you have a large number
of gadgets in a gadget window, the easiest way to determine which gadget is which
is to use the gadget identifier.

• You can set the identifier to the desired event identifier when the gadget is used to
generate a command. For example, a button gadget used to open a file usually has

· the identifier CM_FILEOPEN.

• You can set the identifier to a string identifier if you want display a text string in a
message bar or status bar when the gadget is pressed. For example, suppose you
have a string identifier named IDS_MYSTRING that describes your gadget. You can
set the gadget identifier to IDS_MYSTRING. Then, assuming your window has a
message or status bar and you've turned menu tracking on, the string
IDS_MYSTRING is displayed in the message or status bar whenever you press the
gadget IDS_MYSTRING.

The last two techniques ate often t:ombined. Suppose you have a command identifier
CM_FILEOPEN for the File Open menu command. You can also give the gadget the
identifier CM_FILEOPEN. Then when you press the gadget, the gadget window posts
the CM_FILEOPEN event. Then if you have a string with the resource identifier
CM_FILEOPEN, that string is displayed in the message or status bar when you press
the gadget. You can see an illustration of this technique in Step 10 of the Object Windows
Tutorial manual.

172 ObjectWindows Programmer's Guide

Modifying and accessing gadget appearance
You can modify and check the margin width, border width, and border style of a gadget
using the following functions:

void SetBorders(TBorders& borders);
TBorders &GetBorders();
void SetMargins(TMargins& margins);
TMargins &GetMargins();
void SetBorderStyle(TBorderStyle style);
TBorderStyle GetBorderStyle();

The border is the outermost boundary of a gadget. The TBorders structure used with the
SetBorders and GetBorders functions has four data members. These unsigned data
members, Left, Right, Top, and Bottom, contain the width of the respective borders of the
gadg~t.

The margin is the area between the border of the gadget and the inner rectangle of the
gadget. The TMargins structure used with the SetMargins and GetMargins functions has
four data members. These int data members, Left, Right, Top, and Bottom, contain the
width of the respective margins ofthe gadget.

The TBorderStyle enum used with the SetBorderStyle and GetBorderStyle functions is the
same one used with the TGadget constructor. The various border style effects are
achieved by painting the sides of the gadget borders and margins differently for each
style.

Bounding the gadget
The gadget's bounding rectangle is the entire area occupied by a gadget. It is contained
in a TRect structure and is composed of the relative X and Y coordinates of the upper-left
and lower-right comers of the gadget in the gadget window. The gadget window uses
the bounding rectangle of the gadget to place the gadget. The gadget's bounding
rectangle is also important in determining when the user has clicked the gadget.

To find and set the bounding rectangle of a gadget, use the following functions:

TRect &GetBounds();
virtual void SetBounds(TRect& rect);

Note that SetBounds is declared virtual. The default SetBounds updates only the
bounding rectangle data. A derived class can override SetBounds to monitor changes
and update the gadget's internal state.

Shrink wrapping a gadget
You can use the SetShrinkWrap function to specify whether you want the gadget
window to "shrink wrap" a gadget. When shrink wrapping is on for an axis, the overall
size required for the gadget is calculated automatically based on the border size, margin
size, and inner rectangle. This saves you from having to calculate the bounds size of the
gadget manually.

You can tum shrink wrapping on and off independently for the width and height of the
gadget:

void SetShrinkWrap(bool shrinkWrapWidth, bool shrinkWrapHeight);

Chapter 12, Gadget and gadget window objects 173

where:

• shrinkWrapWidth turns horizontal shrink wrapping on or off, depending on whether
true or false is passed in.

• shrinkWrapHeight turns vertical shrink wrapping on or off, depending on whether
true or false is passed in.

Setting gadget size
The gadget's size is the size of the bounding rectangle of the gadget. The size differs
from the bounding rectangle in that it is independent of the position of the gadget. Thus,
you can adjust the size of the gadget without changing the location of the gadget.

You can set the desired size of a gadget using the SetSize function:

void SetSize(TSize& size);

You can get use the GetDesiredSize function to get the size the gadget would like to be:

virtual void GetDesiredSize(TSize& size);

Even if you've set the desired size of the gadget with the Set Size function, you should
still call the GetDesiredSize function to get the gadget's desired size. Gadget windows can
change the desired size of a gadget during the layout process.

Matching gadget color$ to system colors
To make your interface consistent with your application user's system, you should
implement the SysColorChange function. The gadget window calls the SysColorChange
function of each gadget contained in the window when the window receives a
WM_SYSCOLORCHANGE message, which has this syntax:

virtual void SysColorChange();

The default version of SysColorChange does nothing. If you want your gadgets to follow
changes in system colors, you should implement this function. You should make sure to
delete and reallocate any resources that are dependent on system color settings.

TGadget public data members
There are two public data members in TGadget; both are bools:

bool Clip;
bool WideAsPossible;

The value of Clip indicates whether a clipping rectangle should be applied before
painting the gadget.

The value of WideAsPossible indicates whether the gadget should be expanded to fit the
available room in the window. This is useful for such things as a text gadget in a
message bar.

Enabling and disabling a gadget
You can enable and disable a gadget using the following functions:

174 Ob,iectWindows Programmer's Guide

virtual void SetEnabled(bool);
bool GetEnabled();

Changing the state of a gadget using the default SetEnabled function causes the gadget's
bounding rectangle to be invalidated, but not erased. A derived class can override
SetEnabled to modify this behavior.

If your gadget generates a command, you should implement the CommandEnable
function:

virtual void CommandEnable();

The default version of CommandEnable does nothing. A derived class can override this
function to provide command enabling. The gadget should send a
WM_COMMAND_ENABLE message to the gadget window's parent with a command
enabler object representing the gadget.

For example, here's how the CommandEnable function might be implemented:

void
TMyGadget::CommandEnable()
{

Window->Parent->HandleMessage(WM_COMMAND_ENABLE,
0,
(LPARAM) &TMyGadgetEnabler(*Window->Parent, this));

Deriving from TGadget
TGadget provides a number of protected access functions that you can use when
deriving a gadget class from TGadget.

Initializing and cleaning up
TGadget provides a couple virtual functions that give a gadget a chance to initialize or
clean up:

virtual void Inserted();
virtual void Removed();

Inserted is called after inserting a gadget into a gadget window. Removed is called before
removing the gadget from its gadget window. The default versions of these function do
nothing.

Painting the gadget
The TGadget class provides two different paint functions: PaintBorder and Paint.

The PaintBorder function paints the border of the gadget. This virtual function takes a
single parameter, a TDC &, and returns void. PaintBorder implements the standard
border styles. If you want to create a new border style, you need to override this
function and provide the functionality for the new style. If you want to continue to
provide the standard border styles, you should also call the TGadget version of this
function. PaintBorder is called by the Paint function.

Chapter 12, Gadget and gadget window objects 175

The Paint function is similar to the TWindow function Paint. This function takes a single
parameter, a TDC&, and returns void. Paint is declared virtual. TGadget's PaintGadgets
function calls each gadget's Paint function when painting the gadget window. The
default Paint function only calls the PaintBorder function. To paint the inner rectangle of
the gadget's bounding rectangle, you should override this function to provide the
necessary functionality.

If you're painting the gadget yourself in the Paint function, you often need to find the
area inside the borders and margins of the gadget. This area is called the inner rectangle.
You can find the inner rectangle using the GetlnnerRect function:

void GetinnerRect(TRect& rect);

GetinnerRect places the coordinates of the inner rectangle into the TRect reference passed
into it.

Invalidating and updating the gadget
Just like a window, a gadget can be invalidated. TGadget provides two functions to
invalidate the gadget:

void Invalidate(bool erase= true); ,
void InvalidateRect(const TRect& rect, bool erase= true);

These functions are similar to the TWindow functions InvalidateRect and Invalidate.
InvalidateRect looks and functions much like its Windows API version, except that it
omits its HWND parameters. Invalidate invalidates the entire bounding rectangle of the
gadget. Invalidate takes a single parameter, a bool indicating whether the invalid area
should be erased when it's updated. By default, this parameter is true. So to erase the
entire area of your gadget, you need only call Invalidate, either specifying true or nothing
at all for its parameter.

A related function is the Update function, which attempts to force an immediate update
of the gadget. It is similar to the Windows API Update Window function.

void Update();

Mouse events in a gadget
You can track mouse events that happen inside and outside of a gadget. This happens
through a number of "pseudo-event handlers" in the TGadget class. These functions
look much like standard ObjectWindows event-handling functions, except that the
names of the functions are not prefixed with Ev.

Gadgets don't have response tables like other ObjectWindows classes. This is because a
gadget is not actually a window. All of a gadget's communication with the outside is
handled through the gadget window. When a mouse event takes place in the gadget
window, the window tries to determine which gadget is affected by the event. To find
out if an event took place inside a particular gadget, you can call the Ptln function:

virtual bool Ptin(TPoint& point);

The default behavior for this function is to return true if point is within the gadget's
bounding rectangle. You could override this function if you were designing an oddly
shaped gadget.

176 ObjectWindows Programmer's Guide

When the mouse enters the bounding rectangle of a gadget, the gadget window calls the
function MouseEnter. This function looks like this:

virtual void MouseEnter(uint modKeys, TPoint& point);

modKeys contains virtual key information identical to that passed-in in the standard
ObjectWindows EvMouseMove function. This indicates whether various virtual keys are
pressed. This parameter can be any combination of the following values:
MK_ CONTROL, MK_LBUTTON, MK_MBUTTON, MK_RBUTTON, or MK_SHIFT.
See the Object Windows Reference Guide for a full explanation of these flags. point tells the
gadget where the mouse entered the gadget.

Once the gadget window calls the gadget's Mouse Enter function to inform the gadget
that the mouse has entered the gadget's area, the gadget captures mouse movements by
calling the gadget window's GadgetSetCapture to guarantee that the gadget's MouseLeave
function is called.

Once the mouse leaves the gadget bounds, the gadget window calls MouseLeave. This
function looks like this:

virtual void MouseLeave(uint modKeys, TPoint& point);

There are also a couple of functions to detect left mouse button clicks, LButtonDown and
LButtonUp. The default behavior for LButtonDown is to capture the mouse if the bool
flag TrackMouse is set. The default behavior for LButtonUp is to release the mouse if the
bool flag TrackMouse is set. By default TrackMouse is not set.

virtual void LButtonDown(uint modKeys, TPoint& point);
virtual void LButtonUp(uint modKeys, TPoint& point);

When the mouse is moved inside the bounding rectangle of a gadget while mouse
movements are being captured by the gadget window, the window calls the gadget's
MouseMove function. This function looks like this:

virtual void MouseMove(uint modKeys, TPoint& point);

Like with MouseEnter, modKeys contains virtual key information. point tells the gadget
where the mouse stopped moving.

ObjectWindows gadget classes
ObjectWindows provides a number of classes derived from TGadget. These gadgets
provide versatile and easy-to-use decorations and new ways to communicate with the
user of your application. The gadget classes included in ObjectWindows are:

• TSeparatorGadget
• TTextGadget
• TButtonGadget
• TControlGadget
• TBitmapGadget

These gadgets are discussed in the following sections.

Ch apter 1 2, Gadget and gadget window objects 177

Class TSeparatorGadget
TSeparatorGadget is a very simple gadget. Its only function is to take up space in a gadget
window. You can use it when laying other gadgets out in a window to provide a margin
of space between gadgets that would otherwise be placed border-to-border in the
window.

The TSeparatorGadget constructor looks like this:

TSeparatorGadget(int size= 6);

The separator disables itself and turns off shrink wrapping. The size parameter is used
for both the width and the height of the gadget. This lets you use the separator gadget
for both vertical and horizontal spacing.

Class TTextGadget
TTextGadget is used to display text information in a gadget window. You can specify the
number of characters you want to be able to display in the gadget. You can also specify
how the text should be aligned in the text gadget.

Constructing and destroying TTextGadget
Here is the constructor for TTextGadget:

TTextGadget(int id= 0,

where:

TBorderStyle style = Recessed,
TAlign alignment = Left,
uint numChars = 10,
const char* text= 0);

• id is the gadget identifier.

• style is the gadget border style.

• align specifies how text should be aligned in the gadget. There are three possible
values for the enum TAlign: Left, Center, and Right.

• numChars specifies the number of characters to be displayed in the gadget. This
parameter determines the width of the gadget. The gadget calculates the required
gadget width by multiplying the number of characters by the maximum character
width of the current font. The height of the gadget is based on the maxii:num
character height of the current font, plus space for the margin and border.

• text is a default message to be displayed in the gadget.

~ TTextGadget automatically deletes the storage for the gadget's text string.

Accessing the gadget text
You can get and set the text in the gadget using the GetText and SetText functions.

GetText takes no parameters and returns a const char*. You shouldn't attempt to
modify the gadget text through the use of the returned pointer.

178 ObjectWindows Programmer's Guide

The SetText function takes a const char* and returns void. The gadget makes a copy of
the text and stores it internally.

Class TBitmapGadget
TBitmapGadget is a simple gadget that can display an array of bitmap images, one at a
time. You should store the bitmaps as an array. To do this, the bitmaps should be drawn
side by side in a single bitmap resource. The bitmaps should each be the same width.

Constructing and destroying TBitmapGadget
Here is the constructor for TBitmapGadget:

TBitmapGadget(TResid bmpResid,
int id,
TBorderStyle style,
int numirnages,
int startimage) ;

where:

• bmResid is the resource identifier for the bitmap resource.

• id is the gadget identifier.

• style is the gadget border style.

• numimages is the total number of images contained in the bitmap. The gadget figures
the width of each single bitmap in the resource by dividing the width of the resource
bitmap by numimages.

For example, suppose you pass a bitmap resource to the TBitmapGadget constructor
that is 400 pixels wide by 200 pixels high, and you specify numimages as 4. The
constructor would divide the bitmap resource into four separate bitmaps, each one
100 pixels wide by 200 pixels high.

• startimage specifies which bitmap in the array should be initially displayed in the
gadget.

~ TBitmapGadget deletes the storage for the bitmap images.

Selecting a new image
You can change the image being displayed in the gadget with the Selectimage function:

int Selectimage(int irnageNurn, bool immediate);

The imageNum parameter is the array index of the image you want displayed in the
gadget. Specifying true for immediate causes the gadget to update the display
immediately. Otherwise, the area is invalidated and updated when the next
WM_PAINT message is received.

Setting the system colors
TBitmapGadget implements the SysColorChange function so that the bitmaps track the
system colors. It deletes the bitmap array, calls the MapUIColors function on the bitmap

Chapter 12, Gadget and gadget window objects 179

resource, then re-creates the array. For more information on the MapUIColors function,
see page 237.

Class TButtonGadget
Button gadgets are the only type of gadget included in ObjectWindows that the user
interacts with directly. Control gadgets, which are discussed in the next section, also
provide a gadget that receives input from the user, but it does so through a control class.
The gadget in that case only acts as an intermediary between the control and gadget
window.

There are three normal button gadget states: up, down, and indeterminate. In addition
the button can be highlighted when pressed in all three states.

There are two basic type of button gadgets, command gadgets and setting gadgets.
Setting gadgets can be exclusive (like a radio button) or non-exclusive (like a check box).
Commands can only be in the "up" state. Settings can be in all three states.

A button gadget is pressed when the left mouse button is pressed while the cursor
position is inside the gadget's bounding rectangle. The gadget is highlighted when
pressed.

Once the gadget has beenpressed, it then captures the mouse's movements. When the
mouse moves outside of the gadget's bounding rectangle without the left mouse button
being released, highlighting is canceled but mouse movements are still captured by the
gadget. The gadget is highlighted again when the mouse comes back into the gadget's
bounding rectangle without the left mouse button being released.

When the left mouse button is released, mouse movements are no longer captured. If
the cursor position is inside the bounding rectangle when the button is released, the
gadget identifier is posted as a command message by the gadget window.

Constructing and destroying TButtonGadget
Here is the TButtonGadget constructor:

TButtonGadget(TResid bmpResid,
int id,

where:

TType type = Command,
bool enabled = false,
TState state = Up,
bool repeat = false) ;

• bmpResid is the resource identifier for the bitmap to be displayed in the button. The
size of the bitmap determines the size of the gadget, because shrink wrapping is
turned on.

• id is the gadget identifier. This is also the command that is posted when the gadget is
pressed.

• type specifies the type of the gadget. The TType enum has three possible values:

• Command specifies that the gadget is a command.

180 0 bj ec!Wi n d ows Programmer's Gui de

• Exclusive specifies that the gadget is an exclusive setting button. Exclusive button
gadgets that are adjacent to each other work together. You can set up exclusive
groups by inserting other gadgets, such as separator gadgets or text gadgets, on
either side of the group.

• NonExclusive specifies that the gadget is a nonexclusive setting button.

• enabled specifies whether the button gadget is enabled or not when it is first created. If
the corresponding command is enabled when the gadget is created, the button is
automatically enabled.

• state is the default state of the button gadget. The enum TState can have three values:
Up, Down, or Indeterminate.

• repeat indicates whether the button repeats when held down. If repeat is true, the
button repeats when it is clicked and held.

The - TButtonGadget function deletes the bitmap resources and, if the resource
information is contained in a string, deletes the storage for the string.

Accessing button gadget information
There are a number of functions you can use to access a button gadget. These functions
let you set the state of the gadget to any valid TState value, get the state of the button
gadget, and get the button gadget type.

You can set the button gadget's state with the SetButtonState function:

void SetButtonState(TState);

You can find the button gadget's current state using the GetButtonState function:

TState GetButtonState();

You can find out what type of button a gadget is using the GetButtonType function:

TType GetButtonType();

Setting button gadget style
You can modify the appearance of a button gadget using the following functions:

• You can turn corner notching on and off using the SetNotchCorners function:

void SetNotchCorners(bool notchCorners=true);

• You can turn antialiasing of the button bevels on and off using the SetAntialiasEdges
function:

void SetAntialiasEdges(bool anti=true);

• You can change the style of the button shadow using the SetShadowStyle function.
There are two options for the shadow style, using the enum TShadowStyle,
SingleShadow and DoubleShadow:

void SetShadowStyle(TShadowStyle style=DoubleShadow);

Chapter 12, Gadget and gadget window objects 181

Command enabling
TButtonGadget overrides the TGadget function CommandEnable. It is implemented to
initiate a WM_COMMAND_ENABLE message for the gadget.

Here is the signature of the TButtonGadget::CommandEnable function:

void CornmandEnable();

Setting the system colors
TButtonGadget implements the SysColorChange function so that the gadget's bitmaps
track the system colors. It rebuilds the gadget using the system colors. If the system
colors have changed, these changes are reflected in the new button gadget. This is not set
up to automatically track the system colors; that is, it is not necessarily call in response to
a WM_SYSCOLORCHANGE event.

Class TControlGadget
The TControlGadget is a fairly simple class that serves as an interface between a regular
Windows control (such as a button, edit box, list box, and so on) and a gadget window.
This lets you use a standard Windows control in a gadget window, like a control bar,
status bar, and so on.

Constructing and destroying TControlGadget
Here's the constructor for TControlGadget:

TControlGadget(TWindow& control, TBorderStyle style= None);

where:

• control is a reference to an ObjectWindows window object. This object should be a
valid constructed control object.

• style is the gadget border style:

The ~ TControlGadget function destroys the control interface element, then deletes the
storage for the control object.

Gadget windows
Gadget windows are based on the class TGadgetWindow, which is derived from
TWindow. Gadget windows are designed to hold a number of gadgets, lay them out, and
display them in another window.

Gadget window provide a great deal of the functionality of the gadgets they contain.
Because gadgets are not actually windows, they can't post or receive events, or directly
interact with windows, or call Windows function for themselves. Anything that a
gadget needs to be done must be done through the gadget window.

A gadget has little or no control over where it is laid out in the gadget window. The
gadget window is responsible for placing and laying out all the gadgets it contains.
Gadgets are generally laid in a line, either vertically or horizontally.

182 0 bj ectWi n d ows Prag ram mer 's Guide

Gadget windows generally do not stand on their own, but instead are usually contained
in another window. The most common parent window for a gadget window is a
decorated frame window, such as TDecoratedFrame or TDecoratedMDIFrame, although
the class TToolBox usually uses a TFloatingFrame.

Constructing and destroying TGadgetWindow
Here is the constructor for TGadgetWindow:

TGadgetWindow(TWindow* parent = 0,

where:

TTileDirection direction = Horizontal,
TFont* font = new TGadgetWindowFont,
TModule* module= 0);

• parent is a pointer to the parent window object.

• direction is an enum TTileDirection. There are two possible values for direction:
Horizontal or Vertical.

• font is a pointer to a TFont object. This contains the font for the gadget window. By
default, this is set to TGadgetWindowFont, which is a variable-width sans-serif font,
usually Helvetica.

• module is passed as the TModule parameter for the TWindow base constructor. This
parameter defaults to 0.

The -TGadgetWindow function deletes each of the gadgets contained in the gadget
window. It then deletes the font object.

Creating a gadget window
TGadgetWindow overrides the default TWindow member function Create. The
TGadgetWindow version of this function chooses the initial size based on a number of
criteria:

• Whether shrink wrapping was requested by any of the gadgets in the window
• The size of the gadgets contained in the window
• The direction of tiling in the gadget window
• Whether the gadget window has a border, and the size of that border

The Create function determines the proper size of the window based on these factors,
sets the window size attributes, then calls the base TWindow::Create to actually create the
window interface element.

Inserting a gadget into a gadget window
For a gadget window to be useful, it needs to contain some gadgets. To place a gadget
into the gadget window, use the Insert function:

virtual void Insert(TGadget& gadget,
TPlacement placement = After,
TGadget* sibling= 0);

Ch apter 1 2, Gad g e I and gad g e I window obj e c Is 183

where:

• gadget is a reference to the gadget to be inserted into the gadget window.

• placement indicates where the gadget should be inserted. The enum TPlacement can
have two values, Before and After. If a sibling gadget is specified by the sibling
parameter, the gadget is inserted Before or After the sibling, depending on the value of
placement. If sibling is 0, the gadget is placed at the beginning of the gadgets in the
window if placement is Before, and at the end of the gadgets if placement is After.

• sibling is a pointer to a sibling gadget.

If the gadget window has already been created, you need to call LayoutSession after
calling Insert. Any gadget you insert will not appear in the window until the window
has been laid out.

Removing a gadget from a gadget window
To remove a gadget from your gadget window, use the Remove function:

virtual TGadget* Remove(TGadget& gadget);

where gadget is a reference to the gadget you want to remove from the window.

This function removes gadget from the gadget window. The gadget is returned as a
TGadget *. The gadget object is not deleted. Remove returns 0 if the gadget is not in the
window.

As with the Insert function, if the gadget window has already been created, you need to
call LayoutSession after calling Remove. Any gadget you remove will not disappear from
the window until the window has been laid out.

Setting window margins and layout direction
You can change the margins and the layout direction either before the window is
created or afterwards. To do this, use the SetMargins and SetDirection functions:

void SetMargins(TMargins& margins);
virtual void SetDirection(TTileDirection direction);

Both of these functions set the appropriate data members, then call the function
LayoutSession, which is described in the next section.

You can find out in which direction the gadgets are laid out by calling the GetDirection
function:

TTileDirection GetDirection() const;

Laying out the gadgets
To lay out a gadget window, call the LayoutSession function.

virtual void LayoutSession();

The default behavior of the LayoutSession function is to check to see if the window
interface element is already created. If not, the function returns without taking any
further action; the window is laid out automatically when the window element is

184 0 bj ectW ind ows Programmer's Guide

created. But if the window element has already been created, LayoutSession tiles the
gadgets and then invalidates the modified area of the gadget window.

A layout session is typically initiated by a change in margins, inserting or removing
gadgets, or a gadget or gadget window changing size.

The actual work of tiling the gadgets is left to the function TileGadgets:

virtual TRect TileGadgets();

TileGadgets determines the space needed for each gadget and lays each gadget out in
tum. It returns a TRect containing the area of the gadget window that was modified by
laying out the gadgets.

TileGadgets calls the function PositionGadget. This lets derived classes adjust the spacing
between gadgets to help in implementing a custom layout scheme.

virtual void PositionGadget(TGadget* previous, TGadget* next, TPoint& point);

This function takes the gadgets pointed to by previous and next, figures the required
spacing between the gadgets, then fills in point. If you're tiling horizontally, then the
relevant measure is contained in point.x. If you're tiling vertically, then the relevant
measure is contained in point.y.

Notifying the window when a gadget changes size
When a gadget changes size, it should call the GadgetChangedSize function for its gadget
window. Here's the signature for this function:

void GadgetChangedSize(TGadget& gadget);

gadget is a reference to the gadget that changed size. The default version of this function
simply initiates a layout session.

Shrink wrapping a gadget window
You can specify whether you want the gadget window to "shrink wrap'' a gadget using
the SetShrinkWrap function. Shrink wrapping for a gadget window has a slightly
different meaning than for a gadget. When a gadget window is shrink wrapped for an
axis, the axis' size is calculated automatically based on the desired sizes of the gadgets
laid out on that axis.

You can tum shrink wrapping on and off independently for the width and height of the
gadget window:

void SetShrinkWrap(bool shrinkWrapWidth, bool shrinkWrapHeight);

where:

• shrinkWrapWidth turns horizontal shrink wrapping on or off, depending on whether
true or false is passed in.

• shrinkWrapHeight turns vertical shrink wrapping on or off, depending on whether
true or false is passed in.

C h a pt e r 1 2 , G a d g et a n d g ad g e t w i n d o w o b j e ct s 185

Accessing window font
·You can find out the current font and font size using the GetFont and GetFontHeight
functions:

TFont& GetFont();
uint GetFontHeight() const;

Capturing the mouse for a gadget
A gadget is always notified when the left mouse button is pressed down within its
bounding rectangle. After the button is pressed, you need to capture the mouse if you
want to send notification of mouse movements. You can do this using the
GadgetSetCapture and GadgetReleaseCapture functions:

bool GadgetSetCapture(TGadget& gadget);
void GadgetReleaseCapture(TGadget& gadget);

The gadget parameter for both functions indicates for which gadget the window should
set or release the capture. The bool returned by GadgetSetCapture indicates whether the
capture was successful.

These functions are usually called by a gadget in the window through the gadget's
Window pointer to its gadget window.

Setting the hint mode
The hint mode of a gadget dictates when hints about the gadget are displayed by the
gadget window's parent You can set the hint mode for a gadget using the SetHintMode
function:

void SetHintMode(THintMode hintMode);

The enum THintMode has three possible values:

Table 12.1 Hint mode flags

NoHints Hints are not displayed.

PressHints Hints are displayed when th~ gadget is pressed until the button is released.

EnterHints Hints are displayed when the mouse passes over the gadget; that is, when the mouse
enters the gadget.

You can find the current hint mode using the GetHintMode function:

THintMode GetHintMode();

Another function, the SetHintCommand function, determines when a hint is displayed:

void SetHintCornmand (int' id);

This function is usually called by a gadget through the gadget's Window pointer to its
gadget window, but the gadget window could also call it. Essentially, SetHintCommand
simulates a menu choice, making pressing the gadget the equivalent of selecting a menu
choice.

186 ObjectWindows Programmer's Guide

For SetHintCommand to work properly with the standard ObjectWindows classes, a
number of things must be in place:

• The decorated frame window parent of the gadget window must have a message or
status bar.

• Hints must be on in the frame window.

• There must be a string resource with the same identifier as the gadget; that is, if the
gadget identifier is CM_MYGADGET, you must also have a string resource defined
as CM_MYGADGET.

Idle action processing
Gadget windows have default idle action processing. The IdleAction function attempts
to enable each gadget contained in the window by calling each gadget's CommandEnable
function. The function then returns false.

bool IdleAction(long idleCount);

Searching through the gadgets
Use one of the following functions to search through the gadgets contained in a gadget
window:

TGadget* FirstGadget() const;
TGadget* NextGadget(TGadget& gadget) const;
TGadget* GadgetFromPoint(TPoint& point) const;
TGadget* GadgetWithid(int id) const;

• FirstGadget returns a pointer to the first gadget in the window's gadget list.

• NextGadget returns a pointer to the next gadget in the window's gadget list. If the
current gadget is the last gadget in the window, NextGadget returns 0.

• GadgetFromPoint returns a pointer to the gadget that the point point is in. If point is not
in a gadget, GadgetFromPoint returns 0.

• Gadget Withld returns a pointer to the gadget with the gadget identifier id. If no gadget
in the window has that gadget identifier, GadgetWithld returns 0.

Deriving from TGadgetWindow
You can derive from TGadgetWindow to make your own specialized gadget window.
TGadgetWindow provides a number of protected access functions that you can use when
deriving a gadget class from TGadgetWindow.

Painting a gadget window
Just as with regular windows, TGadgetWindow implements the Paint function:

void Paint(TDC& de, bool erase, TRect& rect);

C h a p I e r 1 2 , G ad g e I a n d g a d g et w i n d o w o b j e c Is 187

This implementation of the Paint function selects the window's font into the device
context and calls the function PaintGadgets:

virtual void PaintGadgets(TDC& de, bool erase, TRect& rect);

PaintGadgets iterates through the gadgets in the window and asks each one to draw
itself. Override PaintGadgets to implement a custom look for your window, such as
separator lines, a raised look, and so on.

Size and inner rectangle
Use the GetDesiredSize and GetlnnerRect functions to find the overall desired size (that is,
the size needed to accommodate the borders, margins, and the widest or highest gadget)
and the size and location of the window's inner rectangle.

virtual void GetDesiredSize(TSize& size);

If shrink wrapping was requested for the window, GetDesiredSize calculates the size the
window needs to be to accommodate the borders, margins, and the widest or highest
gadget. If shrink wrapping was not requested, GetDesiredSize uses the current width and
height. The results are then placed into size.

virtual void GetinnerRect(TRect& rect);

GetlnnerRect calculates the area inside the borders and margins of the window. The
results are then placed into reef.

You can override GetDesiredSize and GetlnnerRect to leave extra room for a custom look
for your window. If you override either one of these functions, you probably also need
to override the other.

Layout units
You can use three different units of measurement in a gadget window:

• Pixels, which are based on a single screen pixel

• Layout units, which are logical units defined by dividing the window font "em" into
8 vertical and 8 horizontal segments.

• Border units are based on the thickness of a window frame. This is usually equivalent
to one pixel, but it could be greater at higher screen resolutions.

It is usually better to use layout units; because they are based on the font size, you don't
have to worry about scaling your measures when you change window size or system
metrics.

If you need to convert layout units to pixels, use the LayoutUnitsToPixels function:

int LayoutUnitsToPixels(int units);

where units is the layout unit measure you want to convert to pixels.
LayoutUnitsToPixels returns the pixel equivalent of units.

You can also convert a TMargins object to actual pixel measurements using the
GetMargins function:

188 0 b j e ct W i n d o w s P r o g r a m m e r ' s G u i d e

void GetMargins(TMargins& margins,
int& left,
int& right,
int& top,
int& bottom) ;

where:

• margins is the object containing the measurements you want to convert. The
measurements contained in margins can be in pixels, layout units, or border units.

• left, right, top, and bottom are the results of the conversion are placed.

Message response functions
TGadgetWindow catches the following events:

• WM_CTLCOLOR
• WM_LBUTTONDOWN
• WM_LBUTTONUP
• WM_MOUSEMOVE
• WM_SIZE
• WM_SYSCOLORCHANGE

It also implements the corresponding event-handling functions.

ObjectWindows gadget window classes
ObjectWindows provides a number of classes derived from TGadgetWindow. These
windows provide a number of ways to display and lay out gadgets. The gadget window
classes included in ObjectWindows are:

• TControlBar
• TMessageBar
• TStatusBar
• TToolBox

These classes are discussed in the following sections.

Class TControlBar
The class TControlBar implements a control bar similar to the "tool bar" or "control bar"
found along the top of the window of many popular applications. You can place any
type of gadget in a control bar.

Here's the constructor for TControlBar:

TControlBar(TWindow* parent = 0,
TTileDirection direction = Horizontal,
TFont* font = new TGadgetWindowFont,
TModule* module= 0);

Ch apter 1 2, Gadget and gadget window objects 189

where:

• parent is a pointer to the control bar's parent window.

• direction is an enum ITileDirection. There are two possible values for direction:
Horizontal or Vertical.

• font is a pointer to a TFont object. This contains the font for the gadget window. By
default, this is set to TGadgetWindowFont, which is a variable-width sans-serif font,
usually Helvetica.

• module is passed as the TModule parameter for the TWindow base constructor. This
parameter defaults to 0.

Class TMessageBar
The TMessageBar class implements a message bar with no border and one text gadget as
wide as the window. It positions itself horizontally across the bottom of its parent
window.

Constructing and destroying TMessageBar
Here's the constructor for TMessageBar:

TMessageBar(TWindow* parent = 0,

where:

TFont* font = new TGadgetWindowFont,
TModule* module= 0);

• parent is a pointer to the control bar's parent window.

• font is a pointer to a TFont object. This contains the font for the gadget window. By
default, this is set to TGadgetWindowFont, which is a variable-width sans-serif font,
usually Helvetica.

• module is passed as the TModule parameter for the TWindow base constructor. This
parameter defaults to 0.

The - TMessageBar function deletes the object's text storage.

Setting message bar text
Use the SetText function to set the text for the message bar text gadget:

void SetText(const char* text);

This function causes the string text to be displayed in the message bar.

Setting the hint text
Use the SetHintText function to set the menu or command item hint text to be displayed
in a raised field over the message bar:

virtual void SetHintText(const char* text);

If you pass text as 0, the hint text is cleared.

190 0 b j e ct Windows Programmer's Guide

Class TStatusBar
TStatusBar is similar to TMessageBar. The difference is that status bars have more options
than a plain message bar, such as multiple text gadgets and reserved space for keyboard
mode indicators such as Caps Lock, Insert or Overwrite, and so on.

Constructing and destroying TStatusBar
Here's the constructor for TStatusBar:

TStatusBar(TWindow* parent = 0,
TGadget: :TBorderStyle borderStyle = TGadget::Recessed,
uint modeindicators = 0,
TFont* font = new TGadgetWindowFont,
TModule* module= 0);

where:

• parent is a pointer to the parent window object.

• style is an enum TBorderStyle.

• modeindicators indicates which keyboard modes can be displayed in the status bar. A
defined enum type called TModeindicator provides the following valid values for this
parameter:

• ExtendSelection
• CapsLock
• NumLock
• ScrollLock
• Overtype
• RecordingMacro

These values can be ORed together to indicate multiple keyboard mode indicators.

• font is a pointer to a TFont object that contains the font for the gadget window.

• module is passed as the TModule parameter for the TWindow base constructor. This
parameter defaults to 0.

Inserting gadgets into a status bar
TStatusBar overrides the default Insert function. By default, the TStatusBar version adds
the new gadget after the existing text gadgets but before the mode indicator gadgets.

You can place a gadget next to an existing gadget in the status bar by passing a pointer
to the existing gadget in the Insert function as the new gadget's sibling. You can't insert a
gadget beyond the mode indicators, however.

Displaying mode indicators
For a particular mode indicator to appear on the status bar, you must have specified the
mode when the status bar was constructed. But once the mode indicator is on the status
bar, it is up to you to make any changes in the indicator. TStatusBar provides a number
of functions to modify the mode indicators.

Chapter 12, Gadget and gadget window objects 191

You can change the status of a mode indicator to any valid arbitrary state with the
SetModeindicator function:

void SetModeindicator(TModeindicator indicator, bool state);

where:

• indicator is the mode indicator you want to set. This can be any value from the enum
TModeindicator used in the constructor.

• state is the state to which you want to set the mode indicator.

You can also toggle a mode indicator with the ToggleModeindicator function:

void ToggleModeindicator(TModeindicator indicator);

where indicator is the mode indicator you want to toggle. This can be any value from the
enum TModelndicator used in the constructor.

Spacing status bar gadgets
You can vary the spacing between mode indicator gadgets on the status bar using the
SetSpacing function:

void SetSpacing(TSpacing& spacing);

where spacing is a reference to a TSpacing object. TSpacing is a struct defined in the
TStatusBar class. It has two data members, a TMargins::TUnits member named Units and
an int named Value. The TSpacing constructor sets Units to TMargins::LayoutUnits and
Value to 0.

The TSpacing struct lets you specify a unit of measurement and a number of units in a
single object. When you pass this object into the SetSpacing command, the spacing
between mode indicator gadgets is set to Value Units. You need to lay out the status bar
before any changes take effect.

Class TToolBox
TToolBox differs from the other ObjectWindows gadget window classes discussed so far
in that it doesn't arrange its gadgets in a single line. Instead, it arranges them in a matrix.
The columns of the matrix are all the same width (as wide as the widest gadget) and the
rows of the matrix are all the same height (as high as the highest gadget). The gadgets
are arranged so that the borders overlap and are hidden under the tool box's border.

TToolBox can be created as a client window in a TFloatingFrame to produce a palette-type
tool box. For an example of this, see the PAINT example in the directory EXAMPLES\
OWL \OWLAPPS\PAINT.

Constructing and destroying TioolBox
Here's the constructor for TToolBox:

TToolBox(TWindow* parent,
int numColumns = 2,
int numRows = AS_MANY_AS_NEEDED,

192 0 bj ectWi n d ows Prag ram mer' s Guide

TTileDirection direction = Horizontal,
TModule* module = 0);

where:

• parent is a pointer to the parent window object.

• numColumns is the number of columns in the tool box.

• numRows is the number of rows in the tool box.

• direction is an enum TTileDirection. There are two possible values for direction:
Horizontal or Vertical. If direction is Horizontal, the gadgets are tiled starting at the
upper left comer and moving from left to right, going down one row as each row is
filled. If direction is Vertical, the gadgets are tiled starting at the upper left comer and
moving down, going right one column as each column is filled.

• module is passed as the TModule parameter for the TWindow base constructor. This
parameter defaults to 0.

You can specify the constant AS_MANY_AS_NEEDED for either numColumns or
numRows, but not both. When you specify AS_MANY_AS_NEEDED for either
parameter, the toolbox figures out how many divisions are needed based on the
opposite dimension. For example, if you have 20 gadgets and you requested 4 columns,
you would get 5 rows.

Changing tool box dimensions
You can switch the dimensions of your tool box using the SetDirection function:

virtual void SetDirection(TTileDirection direction);

where direction is an enum TTileDirection. There are two possible values for direction:
Horizontal or Vertical.

If direction is not equal to the current direction for the tool box, the tool box switches its
rows and columns count. For example, suppose you have a tool box that has three
columns and five rows, and is laid out vertically. If you call SetDirection and set direction
to Horizontal, the tool box switches rows and columns, giving it five columns and three
rows.

Chapter 12, Gadget and gadget window objects 193

194 ObjectWindows Programmer's Guide

Printer objects
This chapter describes ObjectWindows classes that help you complete the following
printing tasks:

• Creating a printer object
• Creating a printout object
• Printing window contents
• Printing a document
• Choosing and configuring a printer

Two ObjectWindows classes make these tasks easier:

• TPrinter encapsulates printer behavior and access to the printer drivers. It brings up a
dialog box that lets the user select the desired printer and set the current settings for
printing.

• TPrintout encapsulates the actual printout. Its relationship to the printer is similar to
TWindow' s relationship to the screen. Drawing on the screen happens in the Paint
member function of the TWindow object, whereas writing to the printer happens in
the PrintPage member function of the TPrintout object. To print something on the
printer, the application passes an instance of TPrintout to an instance of TPrinter's
Print member function.

Creating a printer object
The easiest way to create a printer object is to declare a TPrinter* within your window
object that other objects in the program can use for their printing needs.

Chapter 13, Printer objects 195

class MyWindow: public TFrameWindow
{

protected:
TPrinter* Printer;

};

To make the printer available, make Printer point to an instance of TPrinter. This can be
done in the constructor:

MyWindow::MyWindow(TWindow* parent, char *title)
{

Printer = new TPrinter;

You should also eliminate the printer object in the destructor:

MyWindow: :-MyWindow()
{

delete Printer;

Here's how it's done in the PRINTING.CPP example from directory OWLAPI\
PRINTING:

class TRulerWin : public TFrameWindow

protected:
TPrinter* Printer;

};

TRulerWin::TRulerWin(TWindow* parent, const char* title, TModule* module)
TFrameWindow(parent, title, 0, false, module), TWindow(parent, title, module)

Printer = new TPrinter;

For most applications, this is sufficient. The application's main window initializes a
printer object that uses the default printer specified in WIN.IN!. In some cases, however,
you might have applications that use different printers from different windows
simultaneously. In that case, construct a printer object in the constructors of each of the
appropriate windows, then change the printer device for one or more of the printers. If
the program uses different printers but not at the same time, it's probably best to use the
same printer object and select different printers as needed.

Although you might be tempted to override the TPrinter constructor to use a printer
other than the system default, the recommended procedure is to always use the default
constructor, then change the device associated with the object (see page 201).

196 0 bj ectWi ndows Programmer's Guide

Creating a printout object
Creating a printout object is similar to writing a Paint member function for a window
object: you use Windows' graphics functions to generate the image you want on a
device context. The window object's display context manages interactions with the
screen device; the printout object's device context insulates you from the printer device
in much the same way. Windows graphics functions are explained in Chapter 14.

To create a printout object,

• Derive a new object type from TPrintout that overrides the PrintPage member
function. In very simple cases, that's all you need to do. See the Object Windows
Reference Guide for a description of the TPrintout class.

• If the document has more than one page, you must also override the HasPage
member function. It must return non-zero while there is another page to be printed.
The current page number is passed as a parameter to PrintPage.

The printout object has fields that hold the size of the page and a device context that is
already initialized to render to the printer. The printer object sets those values by calling
the printout object's SetPrintParams member function. You should use the printout
object's device context in any calls to Windows graphics functions.

Here is the class TWindowPrintout, derived from TPrintout, from the example program
PRINTING.CPP:

class TWindowPrintout : public TPrintout

};

public:
TWindowPrintout(const char* title, TWindow* window);

void GetDialoginfo(int& minPage, int& maxPage,
int& selFromPage, int& selToPage);

void PrintPage(int page, TRect& rect, unsigned flags);
void SetBanding(bool b) {Banding= b;}
bool HasPage(int pageNumber) {return pageNumber == 1;}

protected:
TWindow* Window;
bool Scale;

GetDialoglnfo retrieves page-range information from a dialog box if page selection is
possible. Since there is only one page, GetDialoglnfo for TWindowPrintout looks like this:

void
TWindowPrintout::GetDialoginfo(int& minPage, int& maxPage,

minPage = O;
maxPage = O;
selFromPage = selToPage = O;

int& selFromPage, int& selToPage)

Chapter 13, Printer objects 197

PrintPage must be overridden to print the contents of each page, band (if banding is
enabled), or window. PrintPage for TWindowPrintout looks like this:

void
TWindowPrintout::PrintPage(int, TRect& rect, unsigned)
{

II Conditionally scale the DC to the window so the printout
II will resemble the window
int prevMode;
TSize oldVExt, oldWExt;
if (Scale) {

prevMode = DC->SetMapMode(MM_ISOTROPIC);
TRect windowSize = Window->GetClientRect();
DC->SetViewportExt(PageSize, &oldVExt);
DC->SetWindowExt(windowSize.Size(), &oldWExt);
DC->IntersectClipRect(windowSize);
DC->DPtoLP(rect, 2);

II Call the window to paint itself
Window->Paint(*DC, false, rect);

II Restore changes made to the DC
if (Scale) {

DC->SetWindowExt(oldWExt);
DC->SetViewportExt(oldVExt);
DC->SetMapMode(prevMode);

SetBanding is called with banding enabled:

printout.SetBanding(true);

HasPage is called after every page is printed, and by default returns false, which means
only one page will be printed. This function must be overridden to return true while
pages remain in multipage documents.

Printing window contents
The simplest kind of printout to generate is a copy of a window, because windows don't
have multiple pages, and window objects already know how to draw themselves on a
device context.

To create a window printout object, construct a window printout object and pass it a
title string and a pointer to the window you want printed:

TWindowPrintout printout("Ruler Test", this);

Often, you'll want a window to create a printout of itself in response to a menu
command. Here is the message response member function that responds to the print
command in PRINTING.CPP:

198 0 b j e c I Windows Programmer's Guide

void
TRulerWin::CmFilePrint()
{

II Execute File:Print command

if (Printer) {
TWindowPrintout printout ("Ruler Test", this);
printout.SetBanding(true);
Printer->Print(this, printout, true);

This member function calls the printer object's Print member function, which passes a
pointer to the parent window and a pointer to the printout object, and specifies whether
or not a printer dialog box should be displayed.

TWindowPrintout prints itself by calling your window object's Paint member function
(within TWindowPrintout::PrintPage), but with a printer device context instead of a
display context.

Printing a document
Windows sees a printout as a series of pages, so your printout object must tum a
document into a series of page images for Windows to print. Just as you use window
objects to paint images for Windows to display on the screen, you use printout objects to
paint images on the printer.

Your printout object needs to be able to do these things:

• Set print parameters
• Calculate the total number of pages
• Draw each page on a device context
• Indicate if there are more pages

Setting print parameters
To enable the document to paginate itself, the printer object (derived from class TPrinter)
calls two of the printout object's member functions: SetPrintParams and then
GetDialoginfo.

The SetPrintParams function initializes page-size and device-context variables in the
printout object. It can also calculate any information needed to produce an efficient
printout of individual pages. For example, SetPrintParams can calculate how many lines
of text in the selected font can fit within the print area (using Windows API
GetTextMetrics). If you override SetPrintParams, be sure to call the inherited member
function, which sets the printout object's page-size and device-context defaults.

Counting pages
After calling SetPrintParams, the printer object calls GetDialoginfo, which retrieves user
page-range information from the printer dialog box. It can also be used to calculate the
total number of pages based on page-size information calculated by SetPrintParams.

Chapter 13, Printer objects 199

Printing each page
After the printer object has given the document a chance to paginate itself, it calls the
printout object's PrintPage member function for each page to be printed. The process of
printing out just the part of the document that belongs on the given page is similar to
deciding which portion gets drawn on a scrolling window.

When you write PrintPage member functions, keep these two issues in mind:

• Device independence. Make sure your code doesn't make assumptions about scale,
aspect ratio, or colors. Those properties can vary between different video and
printing devices, so you should remove any device dependencies from your code.

• Device capabilities. Although most video devices support all GDI operations, some
printers do not. For example, many print devices, such as plotters, do not accept
bitmaps at all. Others support only certain operations. When performing complex
output tasks, your code should call the Windows API function GetDeviceCaps, which
returns important information about the capabilities of a given output device.

Indicating further pages
Printout objects have one last duty: to indicate to the printer object whether there are
printable pages beyond a given page. The HasPage member function takes a page
number as a parameter and returns a Boolean value indicating whether further pages
exist. By default, HasPage returns true for the first page only. To print multiple pages,
your printout object needs to override HasPage to return true if the document has more
pages to print and false if the parameter passed is the last page.

Be sure that HasPage returns false at some point. If HasPage always returns true, printing
goes into an endless loop.

Other printout considerations
Printout objects have several other member functions you can override as needed.
BeginPrinting and EndPrinting are called before and after any documents are printed,
respectively. If you need special setup code, you can put it in BeginPrinting and undo it
in EndPrinting.

Printing of pages takes place sequentially. That is, the printer calls PrintPage for each
page in sequence. Before the first call to PrintPage, however, the printer object calls
BeginDocument, passing the numbers of the first and last pages it prints. If your
document needs to prepare to begin printing at a page other than the first, you should
override BeginDocument. The corresponding member function, EndDocument, is called
after the last page prints.

If multiple copies are printed, the multiple BeginDocument/EndDocument pairs can be
called between BeginPrinting and EndPrinting.

200 ObjectWindows Programmer's Guide

Choosing a different printer
You can associate the printer objects in your applications with any printer device
installed in Windows. By default, TPrinter uses the Windows default printer, as
specified in the [devices] section of the WIN.IN! file.

There are two ways to specify an alternate printer: directly (in code) and through a user
dialog box.

By far the most common way to assign a different printer is to bring up a dialog box that
lets you choose from a list of installed printer devices. TPrinter does this automatically
when you call its Setup member function. Setup displays a dialog box based on
TPrinter Dialog.

One of the buttons in the printer dialog box lets the user change the printer's
configuration. The Setup button brings up a configuration dialog box defined in the
printer's device driver. Your application has no control over the appearance or function
of the driver's configuration dialog box.

In some cases, you might want to assign a specific printer device to your printer object,
without user input. TPrinter has a SetPrinter member function that does just that.
SetPrinter takes three strings as parameters: a device name, a driver name, and a port
name.

Chapter 13, Printer objects 201

202 0 b j e c t W i n d o w s P r o g r a m m e r ' s G u i d e

Graphics objects
This chapter discusses the ObjectWindows encapsulation of the Windows GDI.
ObjectWindows makes it easier to use GDI graphics objects and functions because it
simplifies how you create and manipulate GDI objects. From simple objects such as
pens and brushes to more complex objects such as fonts and bitmaps, the GDI
encapsulation of the ObjectWindows library provides a simple, consistent model for
graphical programming in Windows.

GDI class organization
There are a number of ObjectWindows classes used to encapsulate GDI functionality.
Most are derived from the TGdiObject class. TGdiObject provides the common
functionality for all ObjectWindows GDI classes.

TGdiObject is the abstract base class for ObjectWindows GDI objects. It provides a base
destructor, an HGDIOBJ conversion operator, and the base GetObject function. It also
provides orphan control for true GDI objects (that is, objects derived from TGdiObject;
other GDI objects, such as TRegion, Tlcon, and TDib, which are derived from TGdiBase,
are known as pseudo-GD I objects).

The other classes in the ObjectWindows GDI encapsulation are:

• TDC is the root class for encapsulating ObjectWindows GDI device contexts. You can
create a TDC object directly or-for more specialized behavior-you can use derived
classes.

• TPen contains the functionality of Windows pen objects. You can construct a pen
object from scratch or from an existing pen handle, pen object, or logical pen
(LOGPEN) structure.

• TBrush contains the functionality of Windows brush objects. You can construct a
custom brush, creating a solid, styled, or patterned brush, or you can use an existing
brush handle, brush object, or logical brush (LOGBRUSH) structure.

C h a pt e r 1 4 , G r a p h i c s o b j e ct s 203

• TFont lets you easily use Windows fonts. You can construct a font with custom
specifications, or from an existing font handle, font object, or logical font (LOGFONT)
structure.

• TPalette encapsulates a GDI palette. You can construct a new palette or use existing
palettes from various color table types that are used by DIBs.

• TBitmap contains Windows bitmaps. You can construct a bitmap from many sources,
including files, bitmap handles, application resources, and more.

• TRegion defines a region in a window. You can construct a region in numerous
shapes, including rectangles, ellipses, and polygons. TRegion is a pseudo-GD! object;
it isn't derived from TGdiObject.

• Tlcon encapsulates Windows icons. You can construct an icon from a resource or
explicit information. Tlcon is a pseudo-GD! object.

• TCursor encapsulates the Windows cursor. You can construct a cursor from a
resource or explicit information.

• TDib encapsulates the device-independent bitmap (DIB) class. DIBs have no
Windows handle; instead they are just a structure containing format and palette
information and a collection of bits (pixels). This class provides a convenient way to
work with DIBs like any other GDI object. ADIB is what is really inside a .BMP file,
in bitmap resources, and what is put on the Clipboard as a DIB. TDib is a pseudo-GD!
object.

Changes to encapsulated GDI functions
Many of the functions in the ObjectWindows GDI classes might look familiar to you;
this is because many of them have the same names and very nearly, if not exactly, the
same function signature as regular Windows API functions. Because the
ObjectWindows GDI classes replicate the functionality of so many Windows objects,
there was no need to alter the existing terminology. Therefore, function names and
signatures have been deliberately kept as close as possible to what you are used to in the
standard Windows GDI functions.

Some improvements, however, have been made to the functions. These improvements,
many of which are discussed in this section, include such things as cracking packed
return values and using ObjectWindows objects in place of Windows-defined
structures.

Note None of these changes are hard and fast rules; just because a function can somehow be
converted doesn't mean it necessarily has been. But if you see an ObjectWindows
function with the same name as a Windows API function that looks a little different, one
of the following reasons should explain the change to you:

• API functions that take an object handle as a parameter often omit the handle in the
ObjectWindows version. The TGdiObject base object maintains a handle to each
object. The ObjectWindows version then uses that handle when passing the call on to
Windows. For example, when selecting an object in a device context, you would
normally use the SelectObject API function, as shown here:

204 ObjectWindows Programmer's Guide

void
SelectPen(HDC& hdc, HPEN& hpen)
{

HPEN hpenOld;
hpenOld = SelectObject(hdc, hpen);

II Do something with the new pen.

II Now select the old pen again.
SelectObject(hdc, hpenOld);

The ObjectWindows version of this function is encapsulated in the TDC class, which
is derived from TGdiObject. The following example shows how the previous function
would appear in a member function of a TDC-derived class. Notice the difference
between the two calls to SelectObject:

void
SelectPen(TDC& de, TPEN& pen)
{

dc.SelectObject(pen);

II Do something with the new pen.

II Now select the old pen again.
dc.RestorePen();

• ObjectWindows GDI functions usually substitute an ObjectWindows type in place of
a Windows type:

• Windows API functions use individual parameters to specify x and y coordinate
values; ObjectWindows GDI functions use TPoint objects.

• Windows API function5 use RECT structures to specify a rectangular area;
ObjectWindows GDI functions use TRect objects.

• Windows API functions use RGN structures to specify a region; ObjectWindows
GDI functions use TRegion objects.

• Windows API functions take HLOCAL or HGLOBAL parameters to pass an
object that doesn't have a predefined Windows structure; ObjectWindows GDI
functions use references to ObjectWindows objects.

• Some Windows functions return a uint32 with data encoded in it. The uint32 must
then must be cracked to get the data from it. The ObjectWindows versions of these
functions take a reference to some appropriate object as a parameter. The function
then places the data into the object, relieving the programmer from the responsibility
of cracking the value. These functions usually return a bool, indicating whether the
function call was successful.

Chapter 14, Graphics objects 205

For example, the Windows version of SetViewportOrg returns a uint32, with the old
value for the viewport origin contained in it. The ObjectWindows version of
SetViewportOrg takes a TPoint reference in place ofthe two ints the Windows version
takes as parameters. It also takes a second parameter, a TPoint *, in which the old·
viewport origins are placed.

Working with device contexts
When working with the Windows GDI, you use a device context to access all devices,
from windows to printers to plotters. The device context is a structure maintained by
GDI that contains essential information about the device with which you are working,
such as the default foreground and background colors, font, palette, and so on.
ObjectWindows encapsulates device-context information in a number of device context
classes, all of which are based on the TDC class.

TDC contains most of the device-context functionality you might require. The other DC
related classes are derived from TDC or TDC-derived classes. These derived classes only
specialize the functionality of the TDC class and apply it to a discrete set of operations.
Here is a description of each of the device-context classes:

• TDC is the root class for all GDI device contexts for ObjectWindows; it can be
instantiated itself or specialized subclasses can be used to get i;pecific behavior.

• TWindowDC provides access to the entire area owned by a window; this is the base
for any device context class that releases its handle when done.

• TScreenDC provides direct access to the screen bitmap using a device context for
window handle 0, which is for the whole screen with no clipping.

• TDesktopDC provides access to the desktop window's client area, which is the screen
behind all other windows.

• TClientDC provides access to the client area owned by a window.

• TPaintDC wraps BeginPaint and EndPaint calls for use in an WM_P AINT response
function.

• TMetaFileDC provides a device context with a metafile loaded for use.

• TCreatedDC lets you create a device context for a specified device.

• TIC lets you create an information context for a specified device.

• TMemoryDC provides access to a memory device context.

• TDibDC provides access to DIBs using the DIB.DRV driver.

• TPrintDC provides access to a printer device context.

TDC class
Although the specialized device-context classes provide extra functionality tailored to
each class' specific purpose, the TDC class provides most of each class' functionality.
This section discusses this base functionality.

206 ObjectWindows Programmer's Guide

Because of the large number of functions contained in TDC, this section doesn't discuss
every function in detail. Instead, areas of functionality contained in the TDC class are
described, with ObjectWindows-specific functions and the most important API-like
functions discussed in detail; the other functions are described in the Object Windows
Reference Guide. In particular, many of the TDC functions look much like Windows API
functions and are therefore described only briefly in this section. You can find general
information on the difference between the Windows API functions and the
ObjectWindows versions of those functions on page 204.

Constructing and destroying TDC
TDC provides one public constructor and one public destructor. The public constructor
takes an HDC, a handle to a device context. Essentially this means that you must have
an existing device context before constructing a TDC object. Usually you don't construct
a TDC directly, even though you can. Instead you usually use a TDC object when
passing some device context as a function parameter or a pointer to a TDC to point to
some device context contained in either a TDC or TDC-derived object.

- TDC restores all the default objects in the device context and discards the objects.

TDC also provides two protected constructors for use by derived classes. The first is a
default constructor so that derived classes don't have to explicitly call TDC's
constructor. The second takes an HDC and a TAutoDelete flag. TAutoDelete is an enum
that can be NoAutoDelete or AutoDelete. The T AutoDelete parameter is used to initialize
the ShouldDelete member, which is inherited from TGdiObject (the public TDC
constructor initializes this to NoAutoDelete).

Device-context operators
TDC provides one conversion operator, HDC, that lets you return the handle to the
device context of your particular TDC or TDC-derived object. This operator is most
often invoked implicitly. When you use a TDC object where you would normally use an
HDC, such as in a function call or the like, the compiler tries to find a way to cast the
object to the required type. Thus it uses the HDC conversion operator even though it is
not explicitly called.

For example, suppose you want to create a device context in memory that is compatible
with the device associated with a TDC object. You can use the CreateCompatibleDC
Windows API function to create the new device context from your existing TDC object:

HDC
GetCompatDC(TDC& de, TWindow& window)
(

HDC compatDC;

if(! (compatDC = CreateCompatibleDC(dc) II
window.MessageBox("Couldn't create compatible device context!", "Failure",

MB_OK I MB_ICONEXCLAMATION);
return NULL;
else return compatDC;

Chapter 14, Graphics objects 207

Notice that CreateCompatibleDC takes a single parameter, an HOC. Thus the function
parameter de is implicitly cast to an HDC in the CreateCompatibleDC call.

Device-context functions
The functions in this section are used to access information about the device context
itself. They are equivalent to the Windows API functions of the same names.

You can save and restore a device context much like normal using the functions SaveDC
and RestoreDC. The following code sample shows how these functions might be used.
Notice that RestoreDC's single parameter uses a default value instead of specifying the
int parameter:

void
TMyDC::SomeFunc(TDC& de, int xl, int yl, int x2, int y2)
(

dc.SaveDC();
dc.SetMapMode(MM_LOENGLISH);

dc.Rectangle(xl, -yl, x2, -y2);
dc.RestoreDC();

You can also reset a device context to the settings contained in a DEVMODE structure
using the ResetDC function. The only parameter ResetDC takes is a reference to a
DEVMODE structure.

You can use the GetDeviceCaps function to retrieve device-specific information about a
given display device. This function takes one parameter, an int index to the type of
information to retrieve from the device context. The possible values for this parameter
are the same as for the Windows API function.

You can use the GetDCOrg function to locate the current device context's logical
coordinates within the display device's absolute physical coordinates. This function
takes a reference to a TPoint structure and returns a bool. The bool indicates whether
the function call was successful, and the TPoint object contains the coordinates of the
device context's translation origin.

Selecting and restoring GDI objects
You can use the SelectObject function to place a GDI object into a device context. There
are four versions of the SelectObject function; all of them return void, but each takes
different parameters. The version you should use depends on the type of object you are
selecting into the device context. The different versions are:

SelectObject(const TBrush& brush);
SelectObject(const TPen& pen);
SelectObject(const TFont& font);
SelectObject(const TPalette& palette, bool forceBG=false);

In addition, TMemoryDC lets you select a bitmap.

Graphics objects that you can select into a device context normally exist as logical
objects, which contain the information required for the creation of the object. The
graphics objects are connected to the logical objects through a Windows handle. When

208 0 b j e ct Windows P ,ro gram mer' s Gu id e

the graphics object is selected into the device context, a physical tool (created using the
attributes contained in the logical pen) is created inside the device context.

You can also select a stock object using the function SelectStockObject. SelectStockObject
takes one parameter, an int that is equivalent to the parameter used to call the API
function GetStockObject. Essentially the SelectStockObject function takes the place of two
calls: a call to GetStockObject to actually get a stock object, then a call to SelectObject to
place the stock object into the device context.

TDC provides functions to restore original objects in a device context. There are
normally four versions of this function, RestoreBrush, RestorePen, RestoreFont, and
RestorePalette. A fifth, RestoreTextBrush, exists only for 32-bit applications. The
RestoreObjects function calls all four functions (or five, under 32 bits), and restores all
original objects in the device context. All of these functions return void and take no
parameters.

Drawing tool functions
GetBrushOrg takes one parameter, a reference to a TPoint object. It places the coordinates
of the brush origin into the TPoint object. GetBrushOrg returns true if the operation was
successful.

SetBrushOrg takes two parameters, a reference to a TPoint object and a TPoint *. This sets
the device context's brush origin to the x and y values in the first TPoint object. If you
don't specify a value for the second parameter, it defaults to 0. If you do pass a pointer
to a TPoint object as the second parameter, TDC::SetBrushOrg places the old values for
the brush origin into the x and y members of the object. The return value indicates
whether the operation was successful.

Color and palette functions
TDC provides a number of functions you can use to manipulate the colors and palette of
a device context.

GetNearestColor
GetSystemPaletteEntries
GetSystemPaletteUs

RealizePalette
SetSystemPaletteUse
UpdateColorse

Drawing attribute functions
Use drawing attribute functions to set the device context's drawing mode. All of these
functions are analogous to the API functions of the same names, except that the HDC
parameter is omitted in each.

GetBkColor
GetBkMode
GetPolyFillMode
GetROP2
GetStretchBltMode
GetTextColor

SetBkColor
SetBkMode
SetPolyFillMode
SetROP2
SetStretchBltMode
SetTextColor

Chapter 14, Graphics objects 209

Another function, SetMiterLimit, is available only for 32-bit applications.

Viewport and window mapping functions
Use these functions to set the viewport and window mapping modes:

GetMapMode
GetViewportExt
GetViewportOrg
GetViewportOrg
GetWindowExt
GetWindowExt
GetWindowOrg
GetWindowOrg
OffsetViewportOrg

GetViewportExt
OffsetWindowOrg
Scale ViewportExt
Scale Window Ext
SetMapMode
SetViewportExt
SetViewportOrg
Set Window Ext
SetWindowOrg

The following viewport and window mapping functions are available only for 32-bit
applications:

ModifyWorldTransform SetWorldTransform

Coordinate functions
Coordinate functions convert logical coordinates to physical coordinates and vice versa:

DPtoLP LPtoDP

Clip and update rectangle and region functions
Use clip and update rectangle and region functions to set up and retrieve simple or
complex areas in a device context's clipping region:

ExcludeClipRect
ExcludeUpdateRgn
GetBoµndsRect
GetClipBox
GetClipRgn
IntersectClipRect

Metafile functions

OffsetClipRgn
Pt Visible
RectVisible
SelectClipRgn
SetBoundsRect

Use the metafile fur\ctions to access metafiles:

EnumMetaFile
PlayMetaFile

PlayMetaFileRecord

Current position functions
Use these functions to move to the current point in the device context. Three versions of
MoveTo are provided:

• MoveTo(int x, int y) moves the pen to the point x, y.

210 ObjectWindows Programme r's Guide

• MoveTo(TPoint &point) moves the pen to the point point.x, point.y.
• MoveTo(TPoint &point, TPoint &oldPoint) moves the pen to the point point.x, point.y

and places the old location of the pen into oldPoint.

GetCurrentPosition takes a reference to a TPoint object. It places the coordinates of the
current position into the TPoint object and returns true if the function call was
successful.

Font functions
Use TDC's font functions to access and manipulate fonts:

EnumFontFamilies
EnumFonts
GetAspectRatioFilter
GetCharABCWidths

Path functions

GetCharWidth
GetFontData
SetMapperFlags

Path functions are available only to 32-bit applications. The TDC path functions are the
same as the Win32 versions, with the exception that the TDC versions don't take a HOC
parameter.

BeginPath
CloseFigure
EndPath
FillPath
FlattenPath

Output functions

PathToRegion
SelectClipPath
StrokeAndFillPath
StrokePath
WidenPath

TDC provides a great variety of output functions for all different kinds of objects that a
standard device context can handle, including:

• Icons
• Rectangles
• Regions
• Shapes
• Bitmaps
• Text

Nearly all of these functions provide a number of versions: one version that provides
functionality nearly identical to that of the corresponding API function (with the
exception of omitting the HOC parameter) and alternate versions that use TPoint, TRect,
TRegion, and other ObjectWindows data encapsulations to make the calls more concise
and easier to understand. These functions are discussed in further detail in the
ObjectWindows Reference Guide.

• Current position

GetCurrentPosition MoveTo

C h apt e r 1 4 , G rap h i c s o b j e ct s 211

.. '

• Icons

Draw Icon

• Rectangles

DrawFocusRect
FrameRect
InvertRect

• Regions

FillRgn
InvertRgn

• Shapes

Arc
Ellipse
Line To
Polygon
Poly Polygon
RoundRect

FillRect
TextRect

FrameRgn
PaintRgn

Chord
LineDDA
Pie
Polyline
Rectangle

• Bitmaps and blitting

BitBlt ExtFloodFill
FloodFill GetDIBits
GetPixel PatBlt
Scroll DC SetDIBits
SetDIBitsToDevice SetPixel
StretchBlt StretchDIBits

• Text

DrawText ExtTextOut
GrayString TabbedTextOut
TextOut

The following functions are available for 32-bit applications only:

• Shapes

AngleArc
PolyBezier
PolyBezierTo

• Bitmaps and blitting

MaskBlt

PolyDraw
Polyline To
Poly Polyline

PlgBlt

212 Objec!Windows Programmer's Guide

Object data members and functions
These data members and functions are used to administer the device context object
itself. The functions and data members discussed in this section are protected and can
be accessed only by a TDC-derived cl~ss.

• ShouldDelete indicates whether the object should delete its handle to the device
context when the destructor is invoked.

• Handle contains the actual handle of the device context.

• OrgBrush, OrgPen, OrgFont, and OrgPalette are the handles to the original objects
when the device context was created; OrgTextBrush is also present in 32-bit
applications.

• Check Valid throws an exception if the device context object is not valid.

• Init sets the OrgBrush, OrgPen, OrgFont, and OrgPalette when the object is created; if
you're creating a TDC-derived class without explicitly calling a TDC constructor, you
should call the TDC::Init first in your constructor.

• GetHDC returns an HDC using Handle.

• GetAttributeHDC, like GetHDC, returns an HDC using Handle; if you're creating an
object with more than one device context, you should override this function and not
GetHDC to provide the proper return.OWLFastWindowFrame draws a frame that is
often used for window borders. This function uses the undocumented Windows API
function FastWindowFrame if available, or PatBlt if not.

TPen class
The TPen class encapsulates a logical pen. It contains a color for the pen's "ink"
(encapsulated in a TColor object), a pen width, and the pen style.

Constructing TPen
You can construct a TPen either directly, specifying the color, width, and style of the
pen, or indirectly, by specifying a TPen & or pointer to a LOGPEN structure. Directly
constructing a pen creates a new object with the specified attributes. Here is the
constructor for directly constructing a pen:

TPen(TColor color, int width=l, int style=PS_SOLID);

The style parameter can be one of the following values: PS_SOLID, PS_DASH, PS_DOT,
PS_DASHDOT, PS_DASHDOTDOT, PS_NULL, or PS_INSIDEFRAME. These values
are discussed in the Object Windows Reference Guide.

Indirectly creating a pen creates a new object, but copies the attributes of the object
passed to it into the new pen object. Here are the constructors for indirectly creating a
pen:

TPen(const LOGPEN far* logPen);
TPen(const TPen&);

C h a pt e r 1 4 , G rap h i c s o b j e ct s 213

You can also create a new TPen object from an existing HPEN handle:

TPen (HPEN handle, TAutoDelete autoDelete = NoAutoDelete) .;

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

Two other constructors are available only for 32-bit applications. You can use these
constructors to create cosmetic or geometric pens:

TPen(uint32 penStyle,
uint32 width,
const TBrush& brush,
uint32 styleCount,
LPDWORD style);

TPen(uint32 penStyle,
uint32 width,
const LOGBRUSH& logBrush,
uint32 styleCount,
LPDWORD style);

where:

• penStyle is a combination of type, style, end cap, and join of the pen, where:

• Type is either PS_GEOMETRIC or PS_COSMETIC.

• Style can be any one of the following values:

PS_ALTERNATE
PS_DASHDOT
PS_DOT
PS_NULL
PS_USERSTYLE

PS_DASH
PS_DASHDOTDOT
PS_INSIDEFRAME
PS_SOLID

• End cap is specified only for geometric pens, and can be one of the following
values:

PS_ENDCAP _FLAT PS_ENDCAP _ROUND
PS_ENDCAP _SQUARE

.. Join is specified only for geometric pens, and can be one of the following values:

PS_JOIN_BEVEL PS_JOIN_MITER
PS_JOIN_ROUND

• width is the pen width.

• brush or logBrush is a reference to an existing TBrush or LOGBRUSH object.

• styleCount is the size (in uint32s) of the style array; styleCount should be 0 unless the
pen style is PS_USERSTYLE.

• style is a pointer to an array of uint32s that specifies the pattern of the pen; style
should be NULL unless the pen style is PS_USERSTYLE.

214 ObjectWindows Programmer's Guide

Accessing TPen
You can access TPen through an HPEN or as a LOGPEN structure. To get an HPEN
from a TPen object, use the HPEN operator with the TPen object as the parameter. The
HPEN operator is almost never explicitly invoked:

HPEN
GetHPen(TPen& pen)
(

return pen;

This code automatically invokes the HPEN conversion operator to cast the TPen object
to the correct type.

To convert a TPen object to a LOGPEN structure, use the GetObject function:

bool
GetLogPen(LOGPEN far& logPen)
{

TPen pen(TColor: :LtMagenta, 10);
return pen.GetObject(logPen);

The following example shows how to use a pen with a TDC to draw a line:

void
TPenDemo::DrawLine(TDC& de, canst TPoint& point, TColor& color)
{

TPen BrushPen(color, PenSize);
dc.SelectObject(BrushPen);
dc.LineTo(point);

TBrush class
The TBrush class encapsulates a logical brush. It contains a color for the brush's ink
(encapsulated in a TColor object), a brush width, and, depending on how the brush is
constructed, the brush style, pattern, or bitmap.

Constructing TBrush
You can construct a TBrush either directly, specifying the color, width, and style of the
brush, or indirectly, by specifying a TBrush & or pointer to a LOGBRUSH structure.
Directly constructing a brush creates a new object with the specified attributes. Here are
the constructors for directly constructing a brush:

TBrush(TColor color);
TBrush(TColor color, int style);
TBrush(const TBitmap& pattern);
TBrush(const TDib& pattern);

The first constructor creates a solid brush with the color contained in color.

C h a p t e r 1 4 , G rap h i c s o b j e ct s 215

The second constructor creates a hatched brush with the color contained in color and the
hatch style contained in style. style can be one of the following values:

HS_BDIAGONAL
HS_DIAGCROSS
HS_HORIZONTAL

HS_CROSS
HS_FDIAGONAL
HS_ VERTICAL

The third and fourth constructors create a brush from the bitmap or DIB passed as a
parameter. The width of the brush depends on the size of the bitmap or DIB.

Indirectly creating a brush creates a new object, but copies the attributes of the object
passed to it into the new brush object. Here are the constructors for indirectly creating a
brush:

TBrush(const LOGBRUSH far* logBrush);
TBrush(const TBrush& src);

You can also create a new TBrush object from an existing HBRUSH handle:

TBrush(HBRUSH handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

Accessing TBrush
You can access TBrush through an HBRUSH or as a LOGBRUSH structure. To get an
HBRUSH from a TBrush object, use the HBRUSH operator with the TBrush object as the
parameter. The HBRUSH operator is almost never explicitly invoked:

HBRUSH
GetHBrush(TBrush& brush)
{

return brush;

This code automatically invokes the HBRUSH conversion operator to cast the TBrush
object to the correct type.

To convert a TBrush object to a LOGBRUSH structure, use the GetObject function:

bool
GetLogBrush(LOGBRUSH far& logBrush)
{

TBrush brush(TColor: :LtCyan, HS_DIAGCROSS);
return brush.GetObject(logBrush);

To reset the origin of a brush object, use the UnrealizeObject function. UnrealizeObject
resets the brush's origin and returns nonzero if successful.

The following code shows how to use a brush to paint a rectangle in a window:

void
TMyWindow::PaintRect(TDC& de, TPoint& p, TSize& size)
{

216 0 b j e c I Windows Programmer's Guide

TBrush brush(TColor(5,5,5));
dc.SelectObject(brush);
dc.Rectangle(p, size);
dc.RestoreBrush();

TFont class
The TFont class lets you easily create and use Windows fonts in your applications. The
TFont class encapsulates all attributes of a logical font.

Constructing TFont
You can construct a TFont either directly, specifying all the attributes of the font in the
constructor, or indirectly, by specifying a TFont & or pointer to a LOGFONT structure.
Directly constructing a pen creates a new object with the specified attributes. Here are
the constructors for directly constructing a font:

TFont(const char far* facename=O,
int height=O, int width=O, int escapernent=O,
int orientation=O, int weight=FW_NORMAL,
uintB pitchAndFarnily=DEFAULT_PITCHIFF_DONTCARE,
uintB italic=false, uintB underline=false,
uintB strikeout=false,
uintB charSet=l,
uint8 outputPrecision=OUT_DEFAULT_PRECIS,
uintB clipPrecision=CLIP_DEFAULT_PRECIS,
uint8 quality=DEFAULT_QUALITY);

TFont(int height, int width, int escapernent=O,
int orientation=O,
int weight=FW_NORMAL,
uintB italic=false, uintB underline=false,
uintB strikeout=false,
uintB charSet=l,
uintB outputPrecision=OUT_DEFAULT_PRECIS,
uint8 clipPrecision=CLIP_DEFAULT_PRECIS,
uint8 quality=DEFAULT_QUALITY,
uintB pitchAndFarnily=DEFAULT_PITCHIFF_DONTCARE,
const char far* facenarne=O);

The first constructor lets you conveniently plug in the most commonly used attributes
for a font (such as name, height, width, and so on) and let the other attributes (which
generally have the same value time after time) take their default values. The second
constructor has the parameters in the same order as the CreateFont Windows API call so
you can easily cut and paste from existing Windows code.

Indirectly creating a font creates a new object, but copies the attributes of the object
passed to it into the new font object. Here are the constructors for indirectly creating a
font:

Chapter 14, Graphics objects 217

TFont(const LOGFONT far* logFont);
'TFont(const TFont&);

You can also create a new TFont object from an existing HFONT handle:

TFont(HFONT handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

Accessing TFont
You can access Tfont through an HFONT or as a LOGFONT structure. To get an
HFONT from a ri:ont object, use the HFONT operator with the TFont object as the
parameter. The HFONT operator is almost never explicitly invoked:

HFONT
GetHFont(TFont& font)
{

return font;

This code automatically invokes the HFONT conversion operator to cast the TFont
object to the correct type.

To convert a TFont object to a LOGFONT structure, use the GetObject function:

bool
GetLogFont(LOGFONT far& logFont)
{

TFont font I" Times Roman", 2 0, 8) ;
return font.GetObject(logFont);

TPalette class
The TPalette class encapsulates a Windows color palette that can be used with bitmaps
and DIBs. TPalette lets you adjust the color table, match individual colors, move a palette
to the Clipboard, and more.

Constructing TPalette
You can construct a TPalette object either directly, passing an array of color values to the
constructor, or indirectly, by specifying a TPalette &, a pointer to a LOGPALETTE
structure, a pointer to a bitmap header, and so on. Directly constructing a palette creates
a new object with the specified attributes. Here is the constructor for directly
constructing a palette:

TPalette(const PALETTEENTRY far* entries, int count);

entries is an array of P ALETTEENTRY objects. Each P ALETTEENTRY object contains a
color value specified by three separate values, one each of red, green, and blue, plus a

218 0 b j e ct W i n d ow s P r o g r a m m e r ' s G u i d e

flags variable for the entry. count specifies the number of values contained in the entries
array.

Indirectly creating a palette creates a new object, but copies the attributes of the object
passed to it into the new palette object. Here are the constructors for indirectly creating a
palette:

TPalette(const TClipboard&);
TPalette(const TPalette& palette);
TPalette(const LOGPALETTE far* logPalette);
TPalette(const BITMAPINFO far* info, uint flags=O);
TPalette(const BITMAPCOREINFO far* core, uint flags=O);
TPalette(const TDib& dib, uint flags=O);

Each of these constructors copies the color values contained in the object passed into the
constructor into the new object. The objects passed to the constructor are not necessarily
palettes themselves; many of them are objects that use palettes and contain a palette
themselves. In these cases, the TPalette constructor extracts the palette from the object
and copies it into the new palette object.

You can also create a new TPalette object from an existing HPALETTE handle:

TPalette(HPALETTE handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

Accessing TPalette
You can access TPalette through an HPALETTE or as a LOGP ALETTE structure. To get
an HP ALETTE from a TPalette object, use the HP ALETTE operator with the TPalette
object as the parameter. The HP ALETTE operator is almost never explicitly invoked:

HPALETTE
GetHPalette(TPalette& palette)
{

return palette;

This code automatically invokes the HPALETTE conversion operator to cast the TPalette
object to the correct type.

The GetObject function for TPalette functions the same way the Windows API call
GetObject does when passed a handle to a palette: it places the number of entries in the
color table into the uint16 reference passed to it as a parameter. TPalette::GetObject
returns true if successful.

Member functions
TPalette also encapsulates a number of standard API calls for manipulating palettes:

• You can match a color with an entry in a palette using the GetNearestPaletteindex
function. This function takes a single parameter (a TColor object) and returns the
index number of the closest match in the palette's color table.

Ch a p I er 1 4, Graphics objects 219

• GetNumEntries takes no parameters and returns the number of entries in the palette's
color table.

• You can get the values for a range of entries in the palette's color table using the
GetPaletteEntries function. TPalette::GetPaletteEntries functions just like the Windows
API call GetPaletteEntries, except that TPalette::GetPaletteEntries omits the HPALETTE
parameter.

• You can set the values for a range of entries in the palette's color table using the
SetPaletteEntries function. TPalette::SetPaletteEntries functions just like the Windows
API call SetPaletteEntries, except that TPalette::SetPaletteEntries omits the HPALETTE
parameter.

• The GetPaletteEntry and SetPaletteEntry functions work much like GetPaletteEntries
and SetPaletteEntries, except that they work on a single palette entry at a time. Both
functions take two parameters, the index number of a palette entry and a reference to
a PALETTEENTRY object. GetPaletteEntry places the color value of the desired
palette entry into the PALETTEENTRY object. SetPaletteEntry sets the palette entry
indicated by the index to the value of the P ALETTEENTRY object.

• You can use the ResizePalette function to resize a palette. ResizePalette takes a uint
parameter, which specifies the number of entries in the resized palette. ResizePalette
functions exactly like the Windows API ResizePalette call.

• The AnimatePalette function lets you replace entries in the palette's color table.
AnimatePalette takes three parameters, two UINTs and a pointer to an array of
P ALETTEENTRY objects. The first uint specifies the first entry in the palette to be
replaced. The second uint specifies the number of entries to be replaced. The entries
indicated by these two UINTs are replaced by the values contained in the array of
PALETTEENTRYs.

• You can also use the UnrealizeObject function for your palette objects. UnrealizeObject
matches the palette to the current system palette. UnrealizeObject takes no parameters
and functions just like the Windows API call.

• You can move a palette to the Clipboard using the ToClipboard function. ToClipboard
takes a reference to a TClipboard object as a parameter. Because the ToClipboard
function actually removes the object from your application, you should usually use a
TPalette constructor to create a temporary object:

TClipboard clipBoard;
TPalette (tmpPalette) .ToClipboard(clipBoard);

Extending TPalette
TPalette contains two protected-access functions, both called Create. The two functions
differ in that one takes BITMAPINFO * as its first parameter and the other takes a
BITMAPCOREINFO * as its first parameter. These functions are called from the TPalette
constructors that take a BITMAPINFO *,a BITMAPCOREINFO *,or a TDib &. The
BITMAPINFO * and BITMAPCOREINFO * constructors call the corresponding Create
functions. The TDib & constructor extracts a BITMAPCOREINFO * or a BITMAPINFO *
from its TDib object and calls the appropriate Create function.

220 ObjectWindows Programmer's Guide

Both Create functions take a uint for their second parameter. This parameter is
equivalent to the peFlags member of the P ALETTEENTRY structure and should be
passed either as a 0 or with values compatible with peFlags: PC_EXPLICIT,
PC_NOCOLLAPSE, and PC_RESERVED. A palette entry must have the
PC_RESERVED flag set to use that entry with the AnimatePalette function. ·

The Create functions create a LOGP ALETTE using the color table from the bitmap
header passed as its parameter. You can use Create for 2-, 16-, and 256-color bitmaps. It
fails for all other types, including 24-bit DIBs. It then uses the LOGP ALETTE to create
the HP ALETTE.

TBitmap class
The TBitmap class encapsulates a Windows device-dependent bitmap, providing a
number of different constructors, plus member functions to manipulate and access the
bitmap.

Constructing TBitmap
You can construct a TBitmap object either directly or indirectly. Using direct
construction, you can specify the bitmap's width, height, and so on. Using indirect
construction, you can specify an existing bitmap object, pointer to a BITMAP structure, a
metafile, a TDC device context, and more.

Here is the constructor for directly constructing a bitmap object:

TBitmap(int width, int height, uint8 planes=l, uint8 count=l, void* bits=O);

width and height specify the width and height in pixels of the bitmap. planes specifies the
number of color planes in the bitmap. count specifies the number of bits per pixel. Either
plane or count must be 1. bits is an array containing the bits to be copied into the bitmap.
bits can be 0, in which case the bitmap is left uninitialized.

You can create bitmap objects from existing bitmaps, either encapsulated in a TBitmap
object or contained in a BITMAP structure.

TBitmap(const TBitmap& bitmap);
TBitmap(const BITMAP far* bitmap);

TBitmap provides two constructors you can use to create bitmap objects that are
compatible with a given device context. The first constructor creates an uninitialized
bitmap of the size height by width. Specifying true for the discardable parameter makes
the bitmap discardable. A bitmap should never be discarded if it is the currently
selected object in a device context.

TBitmap(const TDC& De, int width, int height, bool discardable =false);,

The second constructor creates a bitmap compatible with the device represented by the
device context from a DIB. The usage parameter should be CBM_INIT for 16-bit
applications. CBM_INIT indicates that the bitmap should be initialized with the bits
contained in the DIB object. If you don't specify CBM_INIT, the bitmap is created, but is
left empty. CBM_INIT is the default.

Chapter 14, Graphics objects 221

32-bit applications can also specify CBM_CREATEDIB. The CBM_CREATEDIB flag
indicates that the color format of the new bitmap should be compatible with the color
format contained in the DIB's BITMAPINFO structure. If the CBM_CREATEDIB flag
isn't specified, the bitmap is assumed to be compatible with the given device context.

TBitmap(const TDC& De, const TDib& dib, uint32 usage);

You can also create bitmaps from the Windows Clipboard, frqm a metafile, or from a
DIB object. To create a bitmap from the Clipboard, you only need to pass a reference to a
TClipboard object to the constructor. The constructor gets the handle of the bitmap in the
Clipboard and .constructs a bitmap object from the handle:

'
TBitmap(const TClipboard& clipboard);

To create a bitmap from a metafile, you need to pass a TMetaFilePict &, a TPalette &, and
a TSize &. The constructor initializes a device-compatible bitmap (based on the palette)
and plays the metafile into the bitmap:

TBitmap(const TMetaFilePict& metaFile, TPalette& palette, const TSize& size);

To create a bitmap from a device-independent bitmap, you need to pass a TDib & to the
constructor. You can also specify an optional palette. The constructor creates a device
context and renders the DIB into a device-compatible bitmap:

TBitmap(const TDib& dib, const TPalette* palette= 0);

You can create a bitmap object by loading it from a module. This constructor takes two
parameters, first the HINSTANCE of the module containing the bitmap and second the
resource ID of the bitmap you want to load:

TBitmap(HINSTANCE, TResid);

You can also create a new TBitmap object from an existing HBITMAP handle:

TBitmap(HBITMAP handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

Accessing TBitmap
You can access TBitmap through an HBITMAP or as a BITMAP structure. To get an
HBITMAP from a TBitmap object, use the HBITMAP operator with the TBitmap object as
the parameter. The HBITMAP operator is almost never explicitly invoked:

HBITMAP
GetHBitmap(TBitmap &bitmap)
{

return bitmap;

This code automatically invokes the HBITMAP conversion operator to cast the TBitmap
object to the correct type.

To convert a TBitmap object to a BITMAP structure, use the GetObject function:

222 Objec!Windows Programmer's Guide

bool
GetBitmap(BITMAP far& dest)
{

TBitmap bitmap(200, 100);
return bitmap.GetObject(dest);

The GetObject function fills out only the width, height, and color format information of
the BITMAP structure. You can get the actual bitmap bits with the GetBitmapBits
function.

Member functions
TBitmap also encapsulates a number of standard API calls for manipulating palettes:

• You can get the same information as you get from GetObject, except one item at a
time, using the following functions. Each function returns a characteristic of the
bitmap object:

int Width();
int Height () ;
uintB Planes();
uintB BitsPixel();

• The GetBitmapDimension and SetBitmapDimension functions let you find out and
change the dimensions of the bitmap. GetBitmapDimension, which takes a reference to
a TSize object as its only parameter, places the size of the bitmap into the TSize object.
SetBitmapDimension can take two parameters, the first a reference to a TSize object
containing the new size for the bitmap and a pointer to a TSize, in which the function
places the old size of the bitmap. You don't have to pass the second parameter to
SetBitmapDimension. Both functions return true if the operation was successful.

The GetBitmapDimension and SetBitmapDimension functions don't actually affect the
size of the bitmap in pixels. Instead they modify only the physical size of the bitmap,
which is often used by programs when printing or displaying bitmaps. This lets you
adjust the size of the bitmap depending on the size of the physical screen.

• The GetBitmapBits and SetBitmapBits functions let you query and change the bits in a
bitmap. Both functions take two parameters: a uint32 and a void*. The uint32
specifies the size of the array in bytes, and the void* points to an array. GetBitmapBits
fills the array with bits from the bitmap, up to the number of bytes specified by the
uint32 parameter. SetBitmapBits copies the array into the bitmap, copying over the
number of bytes specified in the uint32 parameter.

• You can move a bitmap to the Clipboard using the ToClipboard function. ToClipboard
takes a reference to a TClipboard object as a parameter. Because the ToClipboard
function actually removes the object from your application, you should usually use a
TBitmap constructor to create a temporary object:

TClipboard clipBoard;
TBitmap (tmpBitmap) .ToClipboard(clipBoard);

Chapter 14, Graphics objects 223

Extending TBitmap
TBitmap has three functions that have protected access: a constructor and two functions
called Create.

The constructor is a default constructor. You can use it when constructing a derived
class to prevent having to explicitly call the base class constructor. If you use the default
constructor, you need to initialize the bitmap properly in your own constructor.

The first Create function takes a reference to a TBitmap object as a parameter. Essentially,
this function copies the passed TBitmap object over to itself.

The second Create function takes references to a TDib object and to a TPalette object.
Create creates a device context compatible with the TPalette and renders the DIB into a
device-compatible bitmap.

TRegion class
Use the TRegion class to define a region in a device context. You can perform a number
of operations on a device context, such as painting, filling, inverting, and so on, using
the region as a stencil. You can also use the TRegion class to define a region for your own
custom operations.

Constructing and destroying TRegion
Regions come in many shapes and sizes, from simple rectangles and rectangles with
rounded comers to elaborate polygonal shapes. You can determine the shape of your
region by the constructor used. You can also indirectly construct a region from a handle
to a region or an existing TRegion object.

TRegion provides a default constructor that produces an empty rectangular region. You
can use the function SetRectRgn to initialize an empty TRegion object. For example,
suppose you derive a class from TRegion. In the constructor for your derived class, call
SetRectRgn to initialize the region. This prevents you from having to call TRegion's
constructor explicitly:

class TMyRegion : public TRegion
{

public:
TMyRegion(TRect& rect);

};

TMyRegion::TMyRegion(TRect& rect)
{

II Initialize the TRegion base with rect.
SetRectRgn(rect);

You can directly create a TRegion from a number of different sources. To create a simple
rectangular region, use the following constructor:

224 0 b j e ct Windows Programmer's Guide

TRegion(const TRect& rect);

This creates a rectangular region from the logical coordinates in the TRect object.

To create a rectangular region with rounded comers, use the following constructor:

TRegion(const TRect& rect, const TSize& corner);

This creates a rectangular region from the logical coordinates in the TRect object, then
rounds the comers into an ellipse. The height and width of the ellipse used is defined by
the values in the TSize object.

To create an elliptical region, use the following constructor:

TRegion(const TRect& e, TEllipse);

This creates an elliptical region bounded by the logical coordinates contained in the
TRect structure. TEllipse is an enumerated value with only one possible value, Ellipse. A
call to this constructor looks something like this:

TRect rect(20, 20, 80, 60);
TRegion rgn(rect, TRegion: :Ellipse);

To create regions with an irregular polygonal shape, use the following constructor:

TRegion(const TPoint* points, int count, int fillMode);

points is an array of TPoint objects. Each TPoint contains the logical coordinates of a
vertex of the polygon. count indicates the number of points in the points array. fillMode
indicates how the region should be filled; this can be either ALTERNATE or WINDING.
There is another constructor that you can use to create regions consisting of multiple
irregular polygonal shapes:

TRegion(const TPoint* points,
const int* polyCounts,
int count,
int fillMode);

As in the other polygonal region constructor, points is an array of TPoint objects. But for
this constructor, points contains the vertex points of a number of polygons. polyCounts
indicates the number of points in the points array for each polygon. count indicates the
total number of polygons in the region and the number of members in the polyCount
array. fillMode indicates how the region should be filled; this can be either ALTERNATE
or WINDING.

For example, suppose you're constructing a region that encompasses two triangular
areas. Each triarigle would consist of three points. Therefore points would have six
members, three for each triangle. polyPoints would have two members, one for each
triangle. Each member of polyPoints would have the value three, indicating the number
of points in the points array that belongs to each polygon. count would have the value
two, indicating that the region consists of two polygons.

You can create a TRegion from an existing HRGN:

TRegion(HRGN handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

Chapter 14, Graphics objects 225

You can also create a new TRegion object from an existing TRegion object:

TRegion(const TRegion& region);

~ TRegion deletes the region and its storage space.

Accessing TRegion
You can access and modify TRegion objects directly through an HRGN handle or
through a number of member functions and operators. To get an HRGN from a TRegion
object, use the HRGN operator with the TRegion object as the parameter. The HRGN
operator is almost never explicitly invoked:

HRGN
TMyBitmap: :GetHRgn()
{

return *this;
}

. \
This code automatically invokes the HRGN conversion operator to cast the TRegion
object to the correct type.

Member functions
TRegion provides a number of member functions to get information from the TRegion
object, including whether a point is contained in or touches the region:

• You can use the SetRectRgn function to reset the object's region to a rectangular
region:

void SetRectRgn(const TRect& rect);

This sets the TRegion's area to the logical coordinates contained in the TRect object
passed as a parameter to the SetRectRgn function. The region is set to a rectangular
region regardless of the shape that it previously had.

• You can use the Contains function to find out whether a point is contained in a region:

bool Contains(const TPoint& point);

point contains the coordinates of the point in question. Contains returns true if point is
within the region and false if not.

• You can use the Touches function to find out whether any part of a rectangle is
contained in a region:

bool Touches(const TRect& rect);

rect contains the coordinates of the rectangle in question. Touches returns true if any
part of rect is within the region and false if not.

• You can use the GetRgnBox functions to get the coordinates of the bounding rectangle
of a region:

int GetRgnBox(TRect& box);
TRect GetRgnBox();

226 ObjectWindows Programmer's Guide

The bounding rectangle is the smallest possible rectangle that encloses all of the area
contained in the region. The first version of this function takes a reference to a TReet
object as a parameter. The function places the coordinates of the bounding rectangle
in the TReet object. The return value indicates the complexity of the region, and can
be either SIMPLEREGION (region has no overlapping borders), COMPLEXREGION
(region has overlapping borders), or NULLREGION (region is empty). If the function
fails, the return value is ERROR.

The second version of GetRgnBox takes no parameters and returns a TReet, which
contains the coordinates of the bounding rectangle. The second version of this
function doesn't indicate the complexity of the region.

Operators
TRegion has a large number of operators. These operators can be used to query and
modify the values of a region. They aren't necessarily restricted to working with other
regions; many of them let you add and subtract rectangles and other units to and from
the region.

TRegion provides two Boolean test operators, == and !=. These operators work to
compare two regions. If two regions are equivalent, the == operator returns true, and
the != operator returns false. If two regions aren't equivalent, the == operator returns
false, and the !=operator returns true. You can use these operators much as you do their
equivalents for ints, chars, and so on.

For example, suppose you want to test whether two regions are identical, and, if they're
not, perform an operation on them. The code would look something like this:

TRegion rgnl;
TRegion rgn2;

II Initialize regions ...

if(rgnl 1= rgn2) {
II Perform your operations here

TRegion also provides a number of assignment operators that you can use to change the
region:

• The= operator lets you assign one region to another. For example, the statement rgnl
= rgn2 sets the contents of rgnl to the contents of rgn2, regardless of the contexts of
rgnl prior to the assignment.

• The += operator lets you move a region by an offset contained in a TSize object. This
operation is analogous to numerical addition: just add the offset to each point in the
region. The region retains all of its properties, except that the coordinates defining the

. region are shifted by the values contained in the ex and cy members of the TSize
object:

• If ex is positive, the region is shifted ex pixels to the right.
• If ex is negative, the region is shifted ex pixels to the left.

C h a pt e r 1 4 , G r a p h i c s o b j e c I s 227

• If cy is positive, the region is shifted cy pixels down.
• If cy is negative, the region is shifted cy pixels up.

For example, suppose you want to move a region to the right 50 pixels and up 20
pixels. The code would look something like this:

TRegion rgn;

II Initialize region ...

TSize size(50, -20);
rgn += size;

II Continue working with new region.

• The-= operator, when used with a TSize object, does essentially the opposite of the
+= operator; that is, it subtracts the offset from each point in the region. For example,
suppose you have the same code as in the previous example, except that instead of
using the += operator, it uses the-= operator. This would offset the region in exactly
the opposite way from the += operator, 50 pixels to the left and down 20 pixels.

• The-= operator, when used with a TRegion object, behaves differently from when it
is used with a TSize object. To demonstrate how the-= operator works when used
with TRegion, consider the following code:

TRegion rgnl, rgn2;
rgnl -= rgn2;

After execution of this code, rgnl contains all the area it contained originally, minus
any parts of that area shared by rgn2. Thus any point that is contained in rgn2 is not
contained in rgnl after this code has executed. This is analogous to subtraction:
subtract the area defined by rgn2 from rgnl.

• The &= operator can be used with both TRegion objects and TRect objects (before any
operations are performed, the TRect is converted to a TRegion using the constructor
TRegion::TRegion(TRect &)).To demonstrate how the&= operator works, consider the
following code:

TRegion rgnl, rgn2;
rgnl &= rgn2;

After execution of this code, rgnl contains all the area it originally shared with rgn2;
that is, areas that were common to both regions before the execution of the &=
statement. This is a logical AND operation: only the areas that are part of both rgnl
AND rgn2 become part of the new region.

• The I = operator can be used with both TRegion objects and TRect objects (before any
operations are performed, the TRect is converted to a TRegion using the constructor
TRegion::TRegion(TRect &)).To demonstrate how the I= operator works, consider the
following code:

TRegion rgnl, rgn2;
rgnl I= rgn2;

228 ObjectWindows Programmer's Guide

After execution of this code, rgnl contains all the area it originally contained, plus all
the area contained in rgn2; that is, it contains all of both regions. This is a logical OR
operation: areas that are part of either rgnl OR rgn2 become part of the new region.

• The A= operator can be used with both TRegion objects and TRect objects (before any
operations are performed, the TRect is converted to a TRegion using the constructor
TRegion::TRegion(TRect &)).To demonstrate how the A= operator works, consider the
following code:

TRegion rgnl, rgn2;
rgnl A= rgn2;

After execution of this code, rgnl contains only that area it originally contained but
did not share with rgn2, plus all the area originally contained in rgn2 that was not
shared with rgnl. This operator combines both areas and removes the overlapping
sections. This is a logical XOR (exclusive OR) operation: areas that are part of either
rgnl OR rgn2 but not of both become part of the new region.

Tlcon class
The Ticon class encapsulates an icon handle and constructors for instantiating the Ticon
object. You can use the Ticon class to construct an icon from a resource or explicit info.

Constructing Tlcon
You can construct a Ticon in a number of ways: from an existing TI con object, from a
resource in the current application, from a resource in another module, or explicitly
from size and data information.

You can create icon objects from an existing icon encapsulated in a Ticon object:

Ticon(HINSTANCE instance, const Ticon& icon);

instance can be any module instance. For example, you could get the instance of a DLL
and get an icon from that instance:

TModule iconLib ("MYICONS. DLL") ;
Ticon icon (iconLib, "MYICON" I;

Note the implicit conversion of the TModule iconLib into an HINSTANCE in the call to
the Ticon constructor.

You can create a Ticon object from an icon resource in any module:

Ticon(HINSTANCE instance, TResid resid);

In this case, instance should be the HINSTANCE of the module from which you want to
get the icon, and resid is the resource ID of the particular icon you want to get. Passing in
0 for instance gives you access to built-in Windows icons.

You can also load an icon from a file:

Ticon(HINSTANCE instance, char far* filename, int index);

Chapter 14, Graphics objects 229

In this case, instance should be the instance of the current module, filename is the name of
the file containing the icon, and index is the index of the icon to be retrieved.

You can also create a new icon:

Ticon(HINSTANCE instance,
TSize& size,
int planes,
int bitsPixel,
void far* andBits,
void f.ar* xorBits);

In this case, instance should be the instance of the current module, size indicates the size
of the icon, planes indicates the number of color planes, bitsPixel indicates the number of
bits per pixel, andBits points to an array containing the AND mask of the icon, and
xorBits points to an array containing the XOR mask of the icon. The andBits array must
specify a monochrome mask. The xorBits array can be a monochrome or device
dependent color bitmap.

You can also create a new Tlcon object from an existing HICON handle:

Ticon(HICON handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

There are two other constructors that are available only for 32-bitapplications:

Ticon(const void* resBits, uint32 resSize);
Ticon(const ICONINFO* iconinfo);

The first constructor takes two parameters: resBits is a pointer to a buffer containing the
icon data bits (usually obtained from a call to LookuplconldFromDirectory or LoadResource
functions) and resSize indicates the number of bits in the resBits buffer.

The second constructor takes a single parameter, an ICONINFO structure. The
constructor creates an icon from the information in the ICONINFO structure. The ff.con
member of the ICONINFO structure must be true, indicating that the ICONINFO
structure contains an icon.

~TI con deletes the icon and its storage space.

Accessing Tlcon
You can access Tlcon through an HICON. To get an HICON from a Tlcon object, use the
HICON operator with the Tlcon object as the parameter. The HICON operator is almost
never explicitly invoked:

HI CON
TMyicon: : GetHicon ()
{

return *this;

This code automatically invokes the HICON conversion operator to cast the Tlcon object
to the correct type.

230 ObjectWindows Programmer's Guide

The other access function in Tlcon, called Getlconlnfo, is available for 32-bit applications
only. Getlconlnfo takes as its only parameter a pointer to a ICONINFO structure. The
function fills out the ICONINFO structure and returns true if the operation was
successful. For example, suppose you create an icon object, then want to extract the icon
data into an ICONINFO structure. The code would look something like this:

ICONINFO iconinfo;

II Load stock icon - Exclamation
Ticon icon(O, IDI_EXCLAMATION);

icon.Geticoninfo(&iconinfo);

TCursor class
The TCursor class encapsulates a cursor handle and constructors for instantiating the
TCursor object. You can use the TCursor class to construct a cursor from a resource or
explicit information.

Constructing TCursor
You can construct a TCursor in a number of ways: from an existing TCursor object, from
a resource in the current application, from a resource in another application, or explicitly
from size and data information.

You can create cursor objects from an existing cursor encapsulated in a TCursor object:

TCursor(HINSTANCE instance, const TCursor& cursor);

instance in this case should be the instance of the current application. TCursor does not
encapsulate the application instance because TCursors know nothing about application
objects. It is usually easiest to access the current application instance in a window or
other interface object.

TCursor(HINSTANCE instance, TResid resid);

TCursor(HINSTANCE instance,
const TPoint& hotspot,
TSize& size,
void far* andBits,
void far* xorBits);

You can also create a new TCursor object from an existing HCURSOR handle:

TCursor(HCURSOR handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

There are two other constructors that are available only for 32-bit applications:

TCursor(const void* resBits, uint32 resSize);
TCursor(const ICONINFO* iconinfo);

Chapter 14, Graphics objects 231

The first constructor takes two parameters: resBits is a pointer to a buffer containing the
cursor data bits (usually obtained from a call to LookuplconldFromDirectory or
LoadResource functions) and resSize indicates the number of bits in the resBits buffer.

The second constructor takes a single parameter, an ICONINFO structure. The
constructor creates an icon from the information in the ICONINFO structure. The ff-con
member of the ICONINFO structure must be false, indicating that the ICONINFO
structure contains an cursor.

~ TCursor deletes the cursor. If the deletion fails, the destructor throws an exception.

Accessing TCursor
You can access TCursor through an HCURSOR. To get an HCURSOR from a TCursor
object, use the HCURSOR operator with the TCursor object as the parameter. The
HCURSOR operator is almost never explicitly invoked:

HCURSOR
TMyCursor::GetHCursor()
{

return *this;

This code automatically invokes the HCURSOR conversion operator to cast the TCursor
object to the correct type.

The other access function in TCursor, called Getlconlnfo, is available for 32-bit
applications only. Getlconlnfo takes as its only parameter a pointer to a ICONINFO
structure. The function fills out the ICONINFO structure and returns true if the
operation was successful. For example, suppose you create an cursor object, then want
to extract the cursor data into an ICONINFO structure. The code would look something
like this:

ICONINFO cursorinfo;

II Load stock cursor - slashed circle
TCursor cursor(NULL, IDC_NO);

cursor.Geticoninfo(&cursorinfo);

TDib class
A device-independent bitmap, orDIB, has no GDI handle like a regular bitmap,
although it does have a global handle. Instead, it is just a structure containing format
and palette information and a collection of bits (pixels). The TDib class provides a
convenient way to work with DIBs like any other GDI object. The memory for the DIB is
in one chunk allocated with the Windows GlobalAlloc functions, so that it can be passed
to the Clipboard, an OLE server or client, and others outside of its instantiating
application.

232 0 b j e c I W i n d ow s P r o g r a m m e r ' s G u i d e

Constructing and destroying TDib
You can construct a TDib object either directly or indirectly. Using direct construction,
you can specify the bitmap's width, height, and so on. Using indirect construction, you
can specify an existing bitmap object, pointer to a BITMAP structure, a metafile, a TDC
device context, and more.

Here is the constructor for directly constructing a TDib object:

TDib(int width, int height, int nColors, uintl6 mode=DIB_RGB_COLORS);

width and height specify the width and height in pixels of the DIB. nColors specifies the
number of colors actually used in the DIB. mode can be either DIB_RGB_COLORS or
DIB_PAL_COLORS. DIB_RGB_COLORS indicates that the color table consists of literal
RGB values. DIB_PAL_COLORS indicates that the color table consists of an array of 16-
bit indices into the currently realized logical palette.

You can create a TDib object by loading it from an executable application module. This
constructor takes two parameters: the first is the HINSTANCE of the module containing
the bitmap and the second is the resource ID of the bitmap you want to load:

TDib(HINSTANCE instance, TResid resid);

To create a TDib object from the Clipboard, pass a reference to a TClipboard object to the
constructor. The constructor gets the handle of the bitmap in the Clipboard and
constructs a bitmap object from the handle.

TDib(const TClipboard& clipboard);

You can load a DIB from a file (typically a .BMP file) into a TDib object by specifying the
name as the only parameter of the constructor:

TDib(const char* name);

You can also construct a TDib object given a TBitmap object and a TPalette object. If no
palette is give, this constructor uses the focus window's currently realized palette.

TDib(const TBitmap& bitmap, canst TPalette* pal= 0);

You can create a DIB object from an existing DIB object:

TDib(const TDib& dib);

You can also create a new TDib object from an existing HGLOBAL handle:

TDib(HGLOBAL handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message. Because an HGLOBAL handle can point to
many different kinds of objects, you must ensure that the HGLOBAL you use in this
constructor is actually the handle to a device-independent bitmap. If you pass a handle
to another type of object, the constructor throws an exception.

If ShouldDelete is true, ~ TDib frees the resource and unlocks and frees the chunk of
global memory as needed.

Chapter 14, Graphics objects 233

Accessing TDib
TDib provides a number of different types of functions for accessing the encapsulated
DIB.

Type conversions
The type conversion functions for TDib let you access TDib in the most convenient
manner for the operation you want to perform.

You can use the HANDLE conversion operator to access TDib through a HANDLE. To
get a HANDLE from a TDib object, use the HANDLE operator with the TDib object as
the parameter. The HANDLE operator is almost never explicitly invoked:

HANDLE
TMyDib: :GetHandle (I
{

return *this;

This code automatically invokes the HANDLE conversion operator to cast the TDib
object to the correct type.

You can also convert a TDib object to three other bitmap types. You can use the
following operators to convert a TDib to any one of three types: BITMAPINFO *,
BITMAPINFOHEADER *,or TRgbQuad *.You can use the result wherever that type is
normally used:

operator BITMAPINFO far*();
operator BITMAPINFOHEADER far*();
operator TRgbQuad far*();

Accessing internal structures
The functions in this section give you access to the DIB' s internal data structures. These
three functions return the DIB's equivalent bitmap types as pointers to BITMAPINFO,
BITMAPINFOHEADER, and TRgbQuad objects:

BITMAPINFO far* Getinfo();
BITMAPINFOHEADER far* GetinfoHeader();
TRgbQuad far* GetColors();

The following function returns a pointer to an array of WORDs containing the color
indices for the DIB:

uint16 far* Getindices();

This function returns a pointer to an array containing the bits that make up the actual
DIBimage:

void HUGE* GetBits();

Clipboard

You can move a DIB to the Clipboard using the ToClipboard function. ToClipboard takes a
reference to a TClipboard object as a parameter. Because the ToClipboard function actually

234 ObjectWindows Programmer's Guide

removes the object from your application, you should usually use a TDib constructor to
create a temporary object:

TClipboard clipBoard;
TDib(ID_BITMAP) .ToClipboard(clipBoard);

DIB information
The TDib class provides a number of accessor functions that you can use to query a TDib
object and get information about the DIB contained in the object:

• To find out whether the object is valid, call the IsOK function. The IsOK takes no
parameters. It returns true if the object is valid and false if not.

• The IsPM function takes no parameters. This function returns true when the DIB is a
Presentation Manager-compatible bitmap.

• The Width and Height functions return the bitmap's width and height respectively, in
pixel units.

• The Size function returns the bitmap's width and height in pixel units, but contained
in a TSize object.

• The NumColors function returns the number of colors used in the bitmap.

• StartScan is provided for compatibility with older code. This function always
returns 0.

• NumScans is provided for compatibility with older code. This functions returns the
height of the DIB in pixels.

• The Usage function indicates what mode the DIB is in. This value is either
DIB_RGB_COLORS or DIB_PAL_COLORS.

• The WriteFile function writes the DIB object to disk. This function takes a single
parameter, a const char*. This should point to the name of the file in which you want
to save the bitmap.

Working in palette or RGB mode
ADIB can hold color values in two ways. In palette mode, the DIB's color table contains
indices into a palette. The color values don't themselves indicate any particular color.
The indices must be cross-referenced to the corresponding palette entry in the currently
realized palette. In RGB mode, each entry in the DIB's color table represents an actual
RGB color value.

You can switch from RGB to palette mode using these functions:

bool ChangeModeToPal(const TPalette& pal);
bool ChangeModeToRGB(const TPalette& pal);

When you switch to palette mode using ChangeModetoPal, the TPalette & parameter is
used as the DIB's palette. Each color used in the DIB is mapped to the palette and
converted to a palette index. When you switch to RGB mode using ChangeModetoRGB,
the TPalette & parameter is used to convert the current palette indices to their RGB
equivalents contained in the palette.

Chapter 14, Graphics objects 235

If you're working in RGB mode, you can use the following functions to access and
modify the DIB's color table:

• Retrieve any entry in the DIB' s color table using the GetColor function. This function
takes a single parameter, an int indicating the index of the color table entry. GetColor
returns a TColor object.

• Change any entry in the DIB's color table using the SetColor function. This function
takes two parameters, an int indicating the index of the color table entry you want to
change and a TColor containing the value to which you want to change the entry.

• Match a TColor object to a color table entry by using the FindColor function. FindColor
takes a single parameter, a TColor object. FindColor searches through the DIB's color
table until it finds an exact match for the TColor object. If it fails to find a match,
FindColor returns -1.

• Substitute one color for a color that currently exists in the DIB's color table using the
MapColor function. This function takes three parameters, a TColor object containing
the color to be replaced, a TColor object containing the new color to be placed in the
color table, and a bool that indicates whether all occurrences of the second color
should be replaced. If the third parameter is true, all color table entries that are equal
to the first parameter are replaced by the second. If the third parameter is false, only
the first color table entry that is equal to the first parameter is replaced. By default, the
third parameter is false. The return value of this function indicates the total number
of palette entries that were replaced.

For example, suppose you wanted to replace all occurrences of white in your DIB
with light gray. The code would look something like this:

myDib->MapColor(TColor::LtGray, TColor::White, true);

If you're working in palette mode, you can use the following functions to access and
modify the DIB's color table:

• Retrieve the palette index of any color table entry using the Getlndex function. This
function takes a single parameter, an int indicating the index of the color table entry.
Getlndex returns a uint16 containing the palette index.

• Change any entry in the DIB's color table using the Setlndex function. This function
takes two parameters, an int indicating the index of the color table entry you want to
change and a uint16 containing the palette index to which you want to change the
entry.

• Match a palette index to a color table entry by using the Findindex function. Findindex
takes a single parameter, a uint16. Findindex searches through the DIB's color table
until it finds a match for the uint16. If it fails to find a match, Findindex returns -1.

• Substitute one color for a color that currently exists in the DIB's color table using the
Mapindex function. This function takes three parameters, a uint16 indicating the index
to be replaced, a uint16 indicating the new palette index to be placed in the color
table, and a bool that indicates whether all occurrences of the second color should be
replaced. If the third parameter is true, all color table entries that are equal to the first
parameter are replaced by the second. If the third parameter is false, only the first
color table entry that is equal to the first parameter is replaced. By default, the third

236 ObjectWindows Programmer's Guide

parameter is false. The return value of this function indicates the total number of
palette entries that were replaced.

Matching interface colors to system colors
DIBs are often used to enhance and decorate a user interface. To make your interface
consistent with your application user's system, you should use the MapUIColors
function, which replaces standard interface colors with the user's own system colors.
Here is the syntax for MapUIColors:

void MapUIColors(uint mapColors, TColor* bkColor = 0);

The mapColors parameter should be an OR'ed combination of five flags: TDib::MapFace,
TDib::MapText, TDib::MapShadow, TDib::MapHighlight, and TDib::MapFrame. Each of
these values causes a different color substitution to take place:

.)11i11 aa~ '
TDib::MapText TColor::Black COLOR_B1NTEXT

TDib::MapFace TColor::LtGray COLOR_BTNFACE

TDib::MapFace TColor::Gray COLOR_BTNSHADOW

TDib::MapFace TColor::White COLOR_BTNHIGHLIGHT

TDib::MapFrame TColor::LtMagenta COLOR_ WINDOWFRAME

The bkColor parameter, if specified, causes the color TColor::LtYellow to be replaced by
the color bkColor.

Because MapUIColors searches for and replaces TColor table entries, this function is
useful only with a DIB in RGB mode. Furthermore, because it replaces particular colors,
you must design your interface using the standard system colors; for example, your
button text should be black (TColor::Black), button faces should be light gray
(TColor::LtGray), and so on. This should be fairly simple, since these are specifically
designed so that they are equivalent to the standard default colors for each interface
element.

You should also call the MapUIColors function before you modify any of the colors
modified by MapUIColors. If you don't do this, MapUIColors won't be able to find the
attribute color for which it is searching, and that part of the interface won't match the
system colors.

Extending TDib
TDib provides a number of protected functions that are accessible only from within
TDib and TDib-derived classes. You can also access TDib's control data:

• Info is a pointer to a BITMAPINFO or BITMAPCOREINFO structure, which contains
the attributes, color table, and other information about the DIB.

• Bits is a void pointer that points to an area of memory containing the actual graphical
data for the DIB.

• NumClrs is a long containing the actual number of colors used in the DIB; note that
this isn't the number of colors possible, but the number actually used.

Ch apter 1 4, Graphics objects 237

• Wis an int indicating the width of the DIB in pixels.

• His an int indicating the height of the DIB in pixels.

• Mode is a uint16 indicating whether the DIB is in RGB mode (DIB_RGB_COLORS) or
palette mode (DIB _p AL_ COLORS).

• IsCore is a bool; it is true if the Info pointer points to a BITMAPCOREINFO structure
and false if it doesn't.

• IsResHandle indicates whether the DIB was loaded as a resource and therefore
whether Handle is a resource handle.

You can use the InfoFromHandle function to fill out the structure pointed to by Info.
InfoFromHandle extracts information from Handle and fills out the attributes of the Info
structure. InfoFromHandle takes no parameters and has no return value.

The Read function reads a Windows 3.0- or Presentation Manager-compatible DIB from
a file referenced by a TFile object. When loading, Read checks the DIB's header,
attributes, palette, and bitmap. Presentation Manager-compatible DIBs are converted to
Windows DIBs on the fly. This function returns true if the DIB was read in correctly.

You can use the LoadResource function to load a DIB from an application or DLL module.
This function takes two parameters, an HINSTANCE indicating the application or DLL
module from which you want to load the DIB and a TResid indicating the particular
resource within that module you want to retrieve. LoadResource returns true if the
operation was successful.

You can use the LoadFile function to load a DIB from a file. This function takes one
parameter, a char * that points to a string containing the name of the file containing the
DIB. LoadFile returns true if the operation was successful.

238 ObjectWindows Programmer's Guide

Validator objects
ObjectWindows provides several ways you can associate validator objects with the edit
control objects to validate the information a user types into an edit control. Using
validator objects makes it easy to add data validation to existing ObjectWindows
applications or to change the way a field validates its data.

This chapter discusses three topics related to data validation:

• Using the standard validator classes
• Using data validator objects
• Writing your own validator objects

At any time, you can validate the contents of any edit control by calling that object's
CanClose member function, which in tum calls the appropriate validator object.
ObjectWindows validator classes also interact at the keystroke and gain/lose focus
level.

The standard validator classes
The ObjectWindows standard validator classes automate data validation.
ObjectWindows defines six validator classes in validate.h:

• TValidator, a base class from which all other validator classes are derived.
• TFilterValidator, a filter validator class.
• TRangeValidator, a numeric-range validator class based on TFilterValidator.
• TLookup Validator, a lookup validator base class.
• TStringLookupValidator, a string lookup validator class based on TLookupValidator.
• TPXPictureValidator, a picture validator class that validates a string based on a given

pattern or "picture."

The following sections briefly describe each of the standard validator classes.

Chapter 15, Validator objects 239

Validator base class
The abstract class TValidator is the base class from which all validator classes are
derived. TValidator is a validator for which all input is valid: member functions Is Valid
and Is Validinput always return true, and Error does nothing. Derived classes should
override Is Valid, IsValidinput, and Error to define which values are valid and when
errors should be reported. Use TValidator as a starting point for your own validator
classes if none of the other validator classes are appropriate starting points.

Filter validator class
TFilterValidator is a simple validator that checks input as the user enters it. The filter
validator constructor takes one parameter, a set of valid characters:

TFilterValidator(const TCharSet& validChars);

TCharSet is defined in bitset.h.

TFilter Validator overrides Is Validinput to return true only if all characters in the current
input string are contained in the set of characters passed to the constructor. The edit
control inserts characters only if Is Validinput returns true, so there is no need to override
Is Valid: because the characters made it through the input filter, the complete string is
valid by definition. Descendants of TFilterValidator, such as TRangeValidator, can
combine filtering of input with other checks on the completed string.

Range validator class
TRangeValidator is a range validator derived from TFilterValidator. It accepts only
numbers and adds range checking on the final result. The constructor takes two
parameters that define the minimum and maximum valid values:

TRangeValidator(long min, long max);

The range validator constructs itself as a filter validator that accepts only the digits 0
through 9 and the plus and minus characters. The inherited IsValidinput, therefore,
ensures that only numbers filter through. TRangeValidator then overrides Is Valid to
return true only if the entered numbers are a valid integer within the range defined in
the constructor. The Error member function displays a message box indicating that the
entered value is out of range.

Lookup validator class
TLookup Validator is an abstract class that compares entered values with a list of
acceptable values to determine validity. TLookup Validator introduces the virtual member
function Lookup. By default, Lookup returns true. Derived classes should override Lookup
to compare the parameter with a list of items, returning true if a match is found.

TLookup Validator overrides Is Valid to return true only if Lookup returns true. In derived
classes you should not override Is Valid; you should instead override Lookup.
TStringLookupValidator class is an instance class based on TLookupValidator.

240 0 bj e ctWi n d ows Programmer's Guide

String lookup validator class
TStringLookupValidator is a working example of a lookup validator; it compares the
string passed from the edit control with the items in a string list. If the passed-in string
occurs in the list, Is Valid returns true. The constructor takes only one parameter, the list
of valid strings:

TStringLookupValidator(TSortedStringArray* strings);

TSortedStringArray is defined as

typedef TSArrayAsVector<string> TSortedStringArray;

To use a different string list after constructing the string lookup validator, use member
function NewStringList, which disposes of the old list and installs the new list.

TStringLookupValidator overrides Lookup and Error. Lookup returns true if the passed-in
string is in the list. Error displays a message box indicating that the string is not in the
list.

Picture validator class
Picture validators compare the string entered by the user with a "picture" or template
that describes the format of valid input. The pictures used are compatible with those
used by Borland's Paradox relational database to control user input. Constructing a
picture validator requires two parameters: a string holding the template image and a
Boolean value indicating whether to automatically fill-in the picture with literal
characters:

TPXPictureValidator(const char far* pie, bool autoFill=false);

TPXPictureValidator overrides Error, Is Valid, and IsValidinput, and adds a new member
function, Picture. Error displays a message box indicating what format the string should
have. Is Valid returns true only if the function Picture returns true; thus you can derive
new kinds of picture validators by overriding only the Picture member function.
Is Validinput checks characters as the user enters them, allowing only those characters
permitted by the picture format, and optionally filling in literal characters from the
picture format.

Here is an example of a picture validator that is being constructed to accept social
security numbers:

edit->SetValidator(new TPXPictureValidator("###-##-####"));

Picture syntax is fully described under TPXPictureValidator member function Picture in
the Object Windows Reference Guide.

The Picture member function tries to format the given input string according to the
picture format and returns a value indicating the degree of its success. The following
code lists those return values:

II TPXPictureValidator result type
enum TPicResult

prComplete,

Chapter 15, Validator objects 241

};

princomplete,
prEmpty,
prError,
pr Syntax,
prAmbiguous,
princompNoFill

Using data validators
To use data validator objects, you must first construct an edit control object and then
construct a validator object and assign it to the edit control. From this point on, you

·don't need to interact with the validator object directly. The edit control knows when to
call validator member functions at the appropriate times.

Constructing an edit control object
Edit controls objects are instances of the TEdit class. Here is an example of how to
construct an edit control:

TEdit* edit;
edit= new TEdit(this, 101, sizeof(transfer.NameEdit));

For more information on TEdit and using edit controls, see Chapter 11.

Constructing and assigning validator objects
Because valid<'!.tor objects aren't interface objects, their constructors require only enough
information to establish the validation criteria. For example, a numeric-range validator
object requires only two parameters: the minimum and maximum values in the valid
range.

Every edit control object has a data member that can point to a validator object. This
pointer's declaration looks like this:

TValidator *Validator

If Validator doesn't point to a validator object, the edit control behaves as described in
Chapter 11. You assign a validator by calling the edit control object's Set Validator
member function. The edit control automatically checks with the validator object when
processing key events and when called on to validate itself.

The following code shows the construction of a validator and its assignment to an edit
control. In this case, a filter validator that allows only alphabetic characters is used.

edit->SetValidator(new TFilterValidator("A-Za-z. "));

A complete example showing the use of the standard validators can be found in
OWLAPI\ VALIDATE.

242 ObjectWindows Programmer's Guide

Overriding validator member functions
Although the standard validator objects should satisfy most of your data validation
needs, you can also modify the standard validators or write your own validation
objects. If you decide to do this, you should be familiar with the following list of
member functions inherited from the base class TValidator; in addition to understanding
the function of each member function, you should also know how edit controls use
them and how to override them if necessary.

• Valid
• IsValid
• IsValidinput
• Error

Member function Valid
Member function Valid is called by the associated edit-control object to verify that the
data entered is valid. Much like the CanClose member functions of interface objects, Valid
is a Boolean function that returns true only if the string passed to it is valid data. One
responsibility of an edit control's CanClose member function is calling the validator
object's Valid member function, passing the edit control's current text.

When using validators with edit controls, you shouldn't need to call or override the
validator's Valid member function; the inherited version of Valid will suffice. By default,
Valid returns true if the member function Is Valid returns true; otherwise, it calls Error to
notify the user of the error and then returns false.

Member function lsValid
The virtual member function Is Valid is called by Valid, which passes Is Valid the text
string to be validated. Is Valid returns true if the string represents valid data. Is Valid does
the actual data validation, so if you create your own validator objects, you'll probably
override Is Valid.

Note that you don'tcalllsValid directly. Use Valid to call Is Valid, because Valid calls Error
to alert the user if Is Valid returns false. This separates the validation role from the error-
reporting role. ·

Member function lsValidlnput
When an edit control object recognizes a keystroke event intended for it, it calls its
validator's IsValidinput member function to ensure that the entered character is a valid
entry. By default, IsValidinput member functions always return true, meaning that all
keystrokes are acceptable, but some derived validators override IsValidinput to filter out
unwanted keystrokes.

For example, range validators, which are used for numeric input, return true from
Is Validinput only for numeric digits and the characters'+' and'-'.

Chapter 15, Validator objects 243

Is Validinput takes two parameters:

virtual bool IsValidinput(char far* str, bool suppressFill);

The first parameter, str, points to the current input text being validated. The second
parameter is a Boolean value indicating whether the validator should apply filling or
padding to the input string before attempting to validate it. TPXPictureValidator is the
only standard validator object that uses the second parameter.

Member function Error
Virtual member function Error alerts the user that the contents of the edit control don't
pass the validation check. The standard validator objects generally present a simple
message box notifying the user that the contents of the input are invalid and describing
what proper input would be.

For example, the Error member function for a range validator object creates a message
box indicating that the value in the edit control is not between the indicated minimum
and maximum values.

Although most descendant validator objects override Error, you should never call it
directly. Valid .calls Error for you if Is Valid returns false, which is the only time Error
needs to be called.

244 ObjectWindows Programmer's Guide

Chapter

Visual Basic controls
ObjectWindows lets you use Visual Basic (VBX) LO-compatible controls in your
Windows applications as easily as you use standard Windows or ObjectWindows
controls.

VBX controls offer a wide range of functionality that is not provided in standard
Windows controls. There are numerous public domain and commercial packages of
VBX controls that can be used to provide a more polished and useful user interface.

This chapter describes how to design an application that uses VBX controls, describes
the TVbxControl and TVbxEventHandler classes, explains how to receive messages from a
VBX control, and shows how to get and set the properties of a control.

Using VBX controls
To use VBX controls in your ObjectWindows application, follow this process:

• In your OwlMain function, call the function VBXInit before you call the Run function
of your application object. Call the function VBXTerm after you call the Run function
of your application object. VBXInit takes the application instance as a parameter.
VBXTerm takes no parameters. Your OwlMain function might look something like
this:

int
OwlMain(int argc, char* argv[])
{

VBXInit(_hinstance);

return TApplication("Wow! ").Run();

VBXTerm();
}

C h a p I e r 1 6 , Vi s u a I B a s i c c o n Ir o I s 245

These functions initialize and close each instance's host environment necessary for
using VBX controls.

• Derive a class mixing your base interface class with TVbxEventHandler. Your base
interface class is whatever class you want to display the control in. If you're using the
control in a dialog box, you need to mix in TDialog. The code would look something
like this:

class MyVbxDialog : public TDialog, public TVbxEventHandler
{

public:
MyVbxDialog(TWindow *parent, char *name)

: TDialog(parent, name), TWindow(parent, name) {}

DECLARE_RESPONSE_TABLE(MyVbxDialog);
};

• Build a response table for the parent, including all relevant events from your control.
Use the EV_ VBXEVENTNAME macro to set up the response for each control event.
Response tables are described in greater detail in Chapter 4.

• Create the control's parent. You can either construct the control when you create the
parent or allow the parent to construct the control itself, depending on how the
control is being used. This is discussed in further detail on page 248.

vex control classes
ObjectWindows provides two classes for use in designing an interface for VBX controls.
These classes are TVbxControl and TVbxEventHandler.

TVbxControl class
TVbxControl provides the actual interface to the control by letting you:

• Construct a VBX control object

• Get and change control properties

• Find the number of control properties and convert property names to and from
property indices

• Find the number of control events and convert event names to and from event indices

• Call the Visual Basic 1.0 standard control methods Addltem, Move, Refresh, and
Removeltem

• Get the handle to the control element using the TVbxControl member function
GetHCTL

TVbxControl is derived from the class TControl, which is derived from TWindow. Thus,
TVbxControl acts much the same as any other interface element based on TWindow.

246 ObjectWindows Programmer's Guide

TVbxControl constructors
TVbxControl has two constructors. The first constructor lets you dynamically construct a
VBX control by specifying a VBX control file name (for example, SWITCH.VBX), control
ID, control class, control title, location, and size:

TVbxControl(TWindow *parent,
int id,

where:

canst char far *FileName,
canst char far *ClassName,
canst char far *title,
int x, int y,
int w, int h,
TModule *module= 0);

• parent is a pointer to the control's parent.

• id is the control's ID, which is used when defining the parent's response table; this
usually looks much like a resource ID.

• FileName is the name of the file that contains the VBX control, including a path name
if necessary.

• ClassName is the class name of the control; a given VBX control file might contain a
number of separate controls, each of which is identified by a unique class name
(usually found in the control reference guide of third-party VBX control libraries).

• title is the control's title or caption.

• x and y are the coordinates within the parent object at which you want the control
placed.

• wand hare the control's width and the height.

• module is passed to the TControl base constructor as the TModule parameter for that
constructor; it defaults to 0.

The second constructor lets you set a TVbxControl object using a VBX control that has
been defined in the application's resource file:

TVbxControl(TWindow *parent,
int resid,
TModule *module= 0);

where:

• parent is a pointer to the control's parent.

• resld is the resource ID of the VBX control in the resource file.

• module is passed to the TControl base constructor as the TModule parameter for that
constructor; it defaults to 0.

Chapter 16, Visual Basic controls 247

Implicit and explicit construction
You can construct VBX controls either explicitly or implicitly. You explicitly construct an
object when you call one of the constructors. You implicitly construct an object when
you do not call one of the constructors and allow the control to be instantiated and
created by its parent.

Explicit construction involves calling either constructor of a VBX control object. This is
normally done in the parent's constructor so that the VBX control is constructed and
ready when the parent window is created. You can also wait to construct the control
until it's needed; for example, you might want to do this if you had room for only one
control. In this case, you could let the user choose a menu choice or press a button. Then,
depending what the user does, you would instantiate an object and display it in an
existing interface element.

The following code demonstrates explicit construction using both of the TVbxControl
constructors in the constructor of a dialog box object:

class TTestDialog : public TDialog, public TVbxEventHandler
{

};

public:
TTestDialog(TWindow *parent, char *name)

: TDialog(parent, name), TWindow(parent, name)

new TVbxControl(this, IDCONTROLl);
new TVbxControl(this, IDCONTROL2,

"SWITCH.VEX"' "EiSwitch"'
"&Program VEX Control",
16, 70, 200, 50);

DECLARE_RESPONSE_TAELE(TTestDialog);

Implicit construction takes place when you design your interface element outside of
your application source code, such as in Resource Workshop. You can use Resource
Workshop to add VBX controls to dialog boxes and other interface elements. Then when
you instantiate the parent object, the children, such as edit boxes, list boxes, buttons, and
VBX controls, are automatically created along with the parent. The following code
demonstrates how the code for this might look. It's important to note, however, that
what you don't see in the following code is a VBX control. Instead, the VBX control is
included in the dialog resource DIALOG_l. When DIALOG_l is loaded and created,
the VBX control is automatically created.

class TTestDialog : public TDialog, public TVbxEventHandler
(

};

public:
TTestDialog(TWindow *parent, char *name)

: TDialog(parent, name), TWindow(parent, name) {}
DECLARE_RESPONSE_TAELE(TTestDialog);

void
TTestWindow::CmAbout()

248 0 b j e c I W i n d ow s P r o g r a m m e r ' s G u i d e

TTestDialog(this, 'DIALOG_l') .Execute();

TVbxEventHandler class
The TVbxEventHandler class is quite small and, for the most part, of little interest to most
programmers. What it does is very important, though. Without the functionality
contained in TVbxEventHandler, you could not communicate with your VBX controls.
The event-handling programming model is described in greater detail in the following
sections; this section explains only the part that TVbxEventHandler plays in the process.

TVbxEventHandler consists of a single function and a one-message response table. The
function is called EvVbxDispatch, and it is the event-handling routine for a message
called WM_ VBXFIREEVENT. EvVbxDispatch receives the WM_ VBXFIREEVENT
message, converts the uncracked message to a VBXEVENT structure, and dispatches a
new message, which is handled by the control's parent. Because the parent object is
necessarily derived from TVbxEventHandler, this means that the parent calls back to
itself with a different message. The new message is much easier to handle and
understand. This is the message that is handled by the WM_ VBXEVENTNAME macro
described in the next section.

Handling vex control messages
You must handle VBX control messages through the control's parent object. For the
parent object to be able to handle these messages, it must be derived from the class
TVbxEventHandler. To accomplish this, you can mix whatever interface object class you
want to use to contain the VBX control (for example, TDialog, TFrameWindow, or classes
you might have derived from ObjectWindows interface classes) with the
TVbxEventHandler class.

Event response table
Once you've derived your new class, you need to build a response table for it. The
response table for this class looks like a normal response table; you still need to handle
all the regular command messages and events you normally do. The only addition is the
EV_ VBXEVENTNAME macro to handle the new class of messages from your VBX
controls.

The EV_ VBXEVENTNAME macro takes three parameters:

EV_VBXEVENTNAME(ID, Event, EvHandler)

where:

• ID is the control ID. You can find this ID either as the second parameter to both
constructors or as the resource ID in the resource file.

• Event is a string identifying the event name. This is dependent on the control and can
be one of the standard VBX event names or a custom event name. You can find this

Chapter 16, Visual Basic controls 249

event name by looking in the control reference guide if the control is from a third
party VBX control library.

• EvHandler is the handler function for this event and control. The EvHandler function
has the signature:

void EvHandler(VBXEVENT FAR *event);

When a message is received from a VBX control by its parent, it dispatches the message
to the handler function that corresponds to the correct control and event. When it calls
the function, it passes it a pointer to a VBXEVENT structure. This structure is discussed
in more detail in the next section.

Interpreting a control event
Once a VBX control event has taken place and the event-handling function has been
called, the function needs to deal with the VBXEVENT structure received as a
parameter. This structure looks like this:

struct VBXEVENT
{

};

HCTL hCtl;
HWND hWnd;
int nID;
int iEvent;
LPCSTR lpszEvent;
int cParams;
LPVOID lpParams;

where:

• hCtl is the handle of the sending VBX control (not a window handle).
• hWnd is the handle of the control window.
• nID is the ID of the VBX control.
• iEvent is the event index.
• lpszEvent is the event name.
• cParams is the number of parameters for this event.
• lpParams is a pointer to an array containing pointers to the parameter values for this

event.

To understand this structure, you need to understand how a VBX control event works.
The first three members are straightforward: they let you identify the sending control.
The next two members are also fairly simple; each event that a VBX control can send has
both an event index, represented here by iEvent, and an event name, represented here
by lpszEvent.

The next two members, which store the parameters passed with the event, are more
complex. cParams contains the total number of parameters available for this event.
lpParams is an array of pointers to the event's parameters (like any other array, lpParam
is indexed from 0 to cParams -1). These two members are more complicated than the
previous members because there is no inherent indication of the type or meaning of
each parameter. If the control is from a third-party VBX control library, you can look in

250 ObjectWindows Programmer's Guide

the control reference guide to find this information. Otherwise, you'll need to get the
information from the designer of the control (or to have designed the control yourself).

Finding event information
The standard way to interpret the information returned by an event is to refer to the
documentation for the VBX control. Failing that, TVbxControl provides a number of
methods for obtaining information about an event.

You can find the total number of events that a control can send by using the TVbxControl
member function GetNumEvcnts. This returns an int that gives the total number of
events. These events are indexed from 0 to the return value of GetNumEvents -1.

You can find the name of any event in this range by calling the TVbxControl member
function GetEventName. GetEventName takes one parameter, an int index number, and
returns a string containing the name of the event.

Conversely, you can find the index of an event by calling the TVbxControl member
function GetEventindex. GetEventindex takes one parameter, a string containing the event
name, and returns the corresponding int event index.

Accessing a VBX control
There are two ways you can directly access a VBX control. The first way is to get and set
the properties of the control. A control has a fixed number of properties you can set to
affect the look or behavior of the control. The other way is to call the control's methods.
A control's methods are similar to member functions in a class and are actually accessed
through member functions in the TVbxControl class. You can use these methods to call
into the object and cause an action to take place.

vex control properties
Every VBX control has a number of properties. Control properties affect the look and
behavior of the control; for example, the colors used in various parts of the control, the
size and location of the control, the control's caption, and so on. Changing these
properties is usually your main way to manipulate a VBX control.

Each control's properties should be fully documented in the control reference guide of
third-party VBX control libraries. If the control is not a third-party control or part of a
commercial control package, then you need to consult the control's designer for any
limits or special meanings to the control's properties. Many properties often function
only as an index to a property. An example of this might be background patterns: 0
could mean plain, 1 could mean cross-hatched, 2 could mean black, and so on. Without
the proper documentation or information, it can be quite difficult to use a control's
properties.

C h a pt e r 1 6 , V i s u a I B as i c c o n t r o I s 251

Finding prop.erty information
The standard way to get info~ation about a control's properties is to refer to the
documentation for the VBX control. Failing that, TVbxControl provides a number of
methods for obtaining information about a control's properties.

You can find fue total number of properties for a control by calling the TVbxControl
member function GetNumProps, which returns an int that gives the total number of
properties. These properties are indexed from 0 to the return value of GetNumProps -1.

You can find the name of any property in this range by calling the TVbxControl member
function GetPropName. GetPropName takes one parameter, an int index number, and
returns a string containing the name of the property.

Conversely, you can find the index of an property by calling the TVbxControl member
function GetProplndex. GetProplndex takes one parameter, a string containing the
property name, and returns the corresponding int property index.

Getting control properties
You can get the value of a control property using either its name or its index number.
Although using the index is somewhat more efficient (because there's no need to look
up a string), using the property name is usually more intuitive. You can use either
method, depending on your preference.

TVbxControl provides the function GetProp to get the properties of a control. GetProp is
overloaded to allow getting properties using fue index or name of the property. Each of
these versions is further overloaded to allow getting a number of different types of
properties:

II get properties by index
bool GetProp(int propindex, int& value, int arrayindex = -1);
bool GetProp(int propindex, long& value, int arrayindex = -1);
bool GetProp(int propindex, HPIC& value, int arrayindex = -1);
bool GetProp(int propindex, float& value, int arrayindex = -1);
bool GetProp(int propindex, string& value, int arrayindex = -1);

II get properties by name
bool GetProp(const char far* name, int& value, int arrayindex = -1);
bool GetProp(const char far* name, long& value, int arrayindex = ~l);
bool GetProp(const char far* name, HPIC& value, int arrayindex = -1);
bool GetProp(const chat far* name, float& value, int arrayindex = -1);
bool GetProp(const char far* name, string& value, int arrayindex = -1);

In the versions where the first parameter is an int, you specify the property by passing
in the property index. In the versions where the first parameter is a char*, you specify
the property by passing in the property name.

Instead of returning the value property as the return value of the GetProp function, the
second parameter of the function is a reference to the property's data type. Create an
object of the same type as the property and pass a reference to the object in the GetProp
function. When GetProp returns, the object contains the current value of the property.

The third parameter is the index of an array property, which you should supply if
required by your control. You can find whether you need to supply this parameter and

252 ObjectWindows Programmer's Guide

the required values by consulting the documentation for your VBX control. The function
ignores this parameter if it is -1.

Setting control properties
As when you get control properties, you set the value of control property using either
their name or their index number. Although using the index is somewhat more efficient
(because there's no need to look up a string), using the property name is usually more
intuitive. You can use either method, depending on your preference.

TVbxControl provides the function SetProp to set the properties of a control. SetProp is
overloaded to allow setting properties using the index or name of the property. Each of
these versions is further overloaded to allow setting a number of different types of
properties:

II set properties by index
bool SetProp(int propindex, int value, int arrayindex = -1);
bool SetProp(int propindex, long value, int arrayindex = -1);
bool SetProp(int propindex, HPIC value, int arrayindex = -1);
bool SetProp(int propindex, float value, int arrayindex = -1);
bool SetProp(int propindex, const string& value, int arrayindex = -1);
bool SetProp(int propindex, const char far* value, int arrayindex = -1);

II set properties by name
bool SetProp(const char far* name, int value, int arrayindex = -1);
bool SetProp(const char far* name, long value, int arrayindex = -1);
bool SetProp(const char far* name, HPIC value, int arrayindex = -1);
bool SetProp(const char far* name, float value, int arrayindex = -1);
bool SetProp(const char far* name, const string& value, int arrayindex = -1);
bool SetProp(const char far* name, const char far* value, int arrayindex = -1);

In the versions where the first parameter is an int, you specify the property by passing
in the property index. In the versions where the first parameter is a char*, you specify
the property by passing in the property name.

The second parameter is the value to which the property should be set.

The third parameter is the index of an array property, which you should supply if
required by your control. You can find whether you need to supply this parameter and
the required values by consulting the documentation for your VBX control. The function
ignores this parameter if it is -1.

Although there are five different data types you can pass in to GetProp, SetProp provides
for six different data types. This is because the last two versions use both a char* and the
ANSI string class to represent a string. This provides you with more flexibility when
you're passing a character string into a control. In the GetProp version, casting is
provided to allow a char * to function effectively as a string object.

VBX control methods
Methods are functions contained in each VBX control that you can use to call into the
control and cause an action to take place. TVbxControl provides compatibility with the
methods contained in Visual Basic 1.0-compatible controls:

Chapter 16, Visual Basic controls 253

Move(int x, int y, int w, int h);
Refresh(I;
Additem(int index, const char far *item);
Removeitem(int index);

where:

• The Move function moves the control to the coordinates x, y and resizes the control to
w pixels wide by h pixels high.

• The Refresh function refreshes the control's display area.

• The Additem function adds the item item to the control's list of items and gives the
new item the index number index.

• The Removeitem function removes the item with the index number index.

254 ObjectWindows Programmer's Guide

ObjectWindows dynamic-link
libraries

A dynamic-link library (DLL) is a library of functions, data, and resources whose
references are resolved at run time rather than at compile time.

Applications that use code from static-linked libraries attach copies of that code at link
time. Applications that use code from DLLs share that code with all other applications
using the DLL, therefore reducing application size. For example, you might want to
define complex windowing behavior, shared by a group of your applications, in an
ObjectWindows DLL.

This chapter describes how to write and use ObjectWindows DLLs.

Writing DLL functions
When you write DLL functions that will be called from an application, keep these things
in mind:

• Calls to 16-bit DLL functions should be made far calls. Similarly, pointers that are
specified as parameters and return values should be made far pointers. You need to
do this because a 16-bit DLL has different code and data segments than the calling
application. (This isn't necessary for 32-bit DLLs.) Use the _FAR macro to make your
code portable between platforms.

• Static data defined in a 16-bit DLL is global to all calling applications because 16-bit
DLLs have one data segment that all 16-bit DLL instances share. Global data set by
one caller can be accessed by another. If you need data to be private for a given caller
of a 16-bit DLL, you need to dynamically allocate and manage the data yourself on a
per-task basis. For 32-bit DLLs, static data is private for each process.

Chapter 17, ObjectWindows dynamic-link libraries 255

DLL entry and exit functions
Windows requires that two functions be defined in every DLL: an entry function and an
exit function. For 16-bit DLLs, the entry function is called LibMain and the exit function
is called WEP (Windows Exit Procedure). LibMain is called by Windows for the first
application that calls the DLL, and WEP is called by Windows for the last application
that uses the DLL.

For 32-bit DLLs, DllEntryPoint serves as both the entry and exit functions. DllEntryPoint
is called each time the DLL is loaded or unloaded, each time a process attaches to or
detaches from the DLL, and each time a thread within a process is created or destroyed.

Windows calls the entry procedure (LibMain or DllEntryPoint) once, when the library is
first loaded. The entry procedure initializes the DLL; this initialization depends almost
entirely on the particular DLL's function, but might include the following tasks:

• Unlocking the data segment with UnlockData, if it has been declared as MOVEABLE
• Setting up global variables for the DLL, if it uses any

There is no need to initialize the heap because the DLL startup code (CODx.OBJ)
initializes the local heap automatically. The following sections describe the DLL entry
and exit functions for 16- and 32-bit applications.

LibMain
The 16-bit DLL entry procedure, LibMain, is defined as follows:

int FAR PASCAL LibMain(HINSTANCE hinstance,
uint16 wDataSeg,
uint16 cbHeapSize,
LPSTR lpCmdLine)

The parameters are described as follows:

• hlnstance is the instance handle of the DLL.

• wDataSeg is the value of the data segment (DS) register.

• cbHeapSize is the size of the local heap specified in the module definition file for the
DLL.

• lpCmdLine is a far pointer to the command line specified when the DLL was loaded.
This is almost always null, because typically DLLs are loaded automatically without
parameters. It is possible, however, to supply a command line to a DLL when it is
loaded explicitly.

The return value for LibMain is either 1 (successful initialization) or 0 (unsuccessful
initialization). Windows unloads the DLL from memory if 0 is returned.

WEP
WEP is the exit procedure of a DLL. Windows calls it prior to unloading the DLL. This
function isn't necessary in a DLL (because the Borland C++ run-time libraries provide a
default one), but can be supplied by the DLL writer to perform any cleanup before the

256 ObjectWindows Programmer's Guide

DLL is unloaded from memory. Often the application has terminated by the time WEP
is called, so valid options are limited.

Under Borland C++, WEP doesn't need to be exported. Here is the WEP prototype:

int FAR PASCAL WEP (int nParameter);

nParameter is either WEP _SYSTEMEXIT, which means Windows is shutting down, or
WEP _FREE_DLL, which means just this DLL is unloading. WEP returns 1 to indicate
success. Windows currently doesn't use this return value.

DllEntryPoint
The 32-bit DLL entry point, DllEntryPoint, is defined as follows:

bool WINAPI DllEntryPoint(HINSTANCE hinstDll, uint32 fdwReason, LPVOID lpvReserved);

The parameters are described as follows:

• hlnstDll is the DLL instance handle.

• fdwReason is a flag that describes why the DLL is being called (either a process or
thread). The flags can take the following values:

" DLL_PROCESS_ATTACH
• DLL_THREAD_ATTACH
• DLL_THREAD_DETACH
• DLL_PROCESS_DETACH

• lpvReserved specifies further aspects of the DLL initialization and cleanup based on
the value of fdwReason.

Exporting DLL functions
After writing your DLL functions, you must export the functions that you want to be
available to a calling application. There are two steps involved: compiling your DLL
functions as exportable functions and exporting them. You can do this in the following
ways:

• If you flag a function with the _export keyword, it's compiled as exportable and is
then exported.

• If you add the _export keyword to a class declaration, the entire class (data and
function members) is compiled as exportable and is exported.

• If you don't flag a function with _export, use the appropriate compiler switch or IDE
setting to compile functions as exportable. Then list the function in the module
d~finition (.DEF) file EXPORTS section.

Importing (calling) DLL functions
You call a DLL function from an application just as you would call a function defined in
the application itself. However, you must import the DLL functions that your
application calls.

C h a p I e r 1 7 , 0 b j e c I W i n d o w s d y n a m i c - I i n k I i b r a r i e s 257

To import a DLL function, you can

• Add an IMPORTS section to the calling application's module definition (.DEF) file
and list the DLL function as an import.

• Link an import library that contains import information for the DLL function to the
calling application. (Use IMPLIB to make the import library).

• Explicitly load the DLL using LoadLibrary and obtain function addresses using
GetProcAddress.

When your application executes, the files for the called DLLs must be in the current
directory, on the path, or in the Windows or Windows system directory; otherwise your
application won't be able to find the DLL files and won't load.

Writing shared ObjectWindows classes
A class instance in a DLL can be shared among multiple applications. For example, you
can share code that defines a dialog box by defining a shared dialog class in a DLL. To
share a class, you need to export the class from the DLL and import the class into your
application.

Defining shared classes
To define shared classes, you need to

• Conditionally declare your class as either _export or _import.
• Pass a TModule* parameter to the window constructors (in some situations).

Note If you declare a shared class in an include file that is included by both the DLL and an
application using the DLL, the class must be declared _export when compiling the DLL
and _import when compiling the application. You can do this by defining a group of
macros, one of which is conditionally set to _export when building the DLL and to
_import when using the DLL. For example,

#if defined(BUILDEXAMPLEDLL)
#define _EXAMPLECLASS __ export

#elif defined (USEEXAMPLEDLL)
#define _EXAMPLECLASS __ import

#else
#define _EXAMPLECLASS

#endif

class _EXAMPLECLASS TColorControl public TControl
{

public:

);

By defining BUILDEXAMPLEDLL (on the command line, for example) when you are
building the DLL, you cause _EXAMPLECLASS to expand to _export. This causes the
class to be exported and shared by applications using the DLL.

258 ObjectWindows Programmer's Guide

By defining USEEXAMPLEDLL when you're building the application that will use the
DLL, you cause _EXAMPLECLASS to expand to _import. The application will know
what type of object it will import.

The TModule object
An instance of the TModule class serves as the object-oriented interface for an
ObjectWindows DLL. TModule member functions provide support for window and
memory management, and process errors. See the Object Windows Reference Guide for a
complete TModule class description.

The following code example shows the declaration and initialization of a TModule
object. This example is conditionalized so that either 16-bit (LibMain) or 32-bit
(DllEntryPoint) DLLs can use the same source file.

static TModule *ResMod;

#if defined(__ WIN32 __)
bool WINAPI
DllEntryPoint(HINSTANCE instance, uint32 /*flag*/, LPVOID)

#else // !defined(__ WIN32 __)
int
FAR PASCAL
LibMain(HINSTANCE instance,

uint16 /*wDataSeg*/,
uint16 /*cbHeapSize*/,
char far* /*cmdLine*/)

#endif
{

II We're using the DLL and want to use the DLL's resources
II
if (!ResMod)

ResMod =new TModule(O,instance);
return true;

Within the entry point function, the TModule object ResMod is initialized with the
instance handle of the DLL. If the module isn't loaded an exception is thrown.

If your DLL requires additional initialization and cleanup, you can perform this
processing in your LibMain, DllEntryPoint, or WEP functions. A better method, though,
is to derive a TModule class, define data members for data global to your DLL within the
class, and perform the required initialization and cleanup in its constructor and
destructor.

After you've compiled and linked your DLL, use IMPLIB to generate an import library
for your DLL. This import library will list all exported member functions from your
shared classes as well as any ordinary functions you've exported.

Chapter 17, ObjectWindows dynamic-link libraries 259

Using ObjectWindows as a DLL
To enable your ObjectWindows applications to share a single copy of the
ObjectWindows library, you can dynamically link them to the ObjectWindows DLL. To
do this, you'll need to be sure of the following:

• When compiling, define the macro _OWLDLL on the compiler command line or in
the IDE.

• Instead of specifying the static link ObjectWindows library when linking (that is,
OWLWS.LIB, OWL WM.LIB, OWLWL.LIB, or OWLWF.LIB), specify the
ObjectWindows DLL import library (OWL WI.LIB for 16-bit applications, or
OWLWFI.LIB for 32-bit applications).

Calling an ObjectWindows DLL from a
non-ObjectWindows application

When a child window is created in an ObjectWindows DLL, and the parent window is
created in an ObjectWindows application, the ObjectWindows support framework for
communication between the parent and child windows is in place. But you can also
prepare your DLL for use by non-ObjectWindows applications.

When a child window is created in an ObjectWindows DLL and the parent window is
created by a non-ObjectWindows application, the parent-child relationship must be
simulated in the ObjectWindows DLL. This is done by constructing an alias window
object in the ObjectWindows DLL that is associated with the parent window whose
handle is specified on a DLL call.

In the following code, the exported function CreateDLLWindow is in an ObjectWindows
DLL. The function will work for both ObjectWindows and non-ObjectWindows
applications.

bool far _export
CreateDLLWindow(HWND parentHWnd)
(

}

TWindow* parentAlias = GetWindowPtr(parentHWnd); //check if an OWL window

if (!parentAlias)
parentAlias =new TWindow(parentHWnd); //if not, make an alias

TWindow* window = new TWindow (parentAlias, "Hello from a DLL ! "I ;
window->Attr.Style I= WS_POPUPWINDOW I WS_CAPTION I WS_THICKFRAME

I WS_MINIMIZEBOX I WS_MAXIMIZEBOX;
window->Attr.X = 100; window->Attr.Y = 100;
window->Attr.W = 300; window->Attr.H = 300;
return window->Create();

CreateDLLWindow determines if it has been passed a non-ObjectWindows window
handle by the call to GetWindowPtr, which returns 0 when passed a non-ObjectWindows

260 Objec!Windows Programmer's Guide

window handle. If it is a non-ObjectWindows window handle, an alias parent TWindow
object is constructed to serve as the parent window.

Implicit and explicit loading
Implicit loading is done when you use a .DEF or import library to link your application.
The DLL is loaded by Windows when the application using the DLL is loaded.

Explicit loading is used to load DLLs at run time, and requires the use of the Windows
API functions LoadLibrary to load the DLL and GetProcAddress to return DLL function
addresses.

Mixing static and dynamic-linked libraries
The ObjectWindows libraries are built using the BIDS (container class) libraries, which
in tum are built using the C run-time library.

If you link with the DLL version of the ObjectWindows libraries, you must link with the
DLL version of the BIDS and run-time libraries. You do this by defining the _ OWLDLL
macro. This isn't the only combination of static and dynamic-linked libraries you can
use: each line in the table below lists an allowable combination of static and dynamic
linked libraries.

Table 17.1 Allowable library combinations

OWL, BIDS, RTL

OWL, BIDS

OWL

(none)

(none)

RTL

BIDS, RTL

OWL, BIDS, RTL

Ch a p I er 1 7, 0 b j e c I Windows dynamic - Ii n k Ii bra r i es 261

262 ObjectWindows Programmer's Guide

Support for OLE in Borland C++
This section of the ObjectWindows Programmer's Guide describes ObjectComponents, a
set of classes for creating OLE 2 applications in C++. This introductory chapter answers
these questions:

• What does ObjectComponents do?
• What is OLE?
• What does OLE look like?
• What is ObjectComponents?
• How does ObjectComponents work?
• What documentation and tools help with using ObjectComponents?
• What do all the terms mean?

Subsequent chapters show how to create different kinds of programs using
ObjectComponents.

What does ObjectComponents do?
ObjectComponents makes OLE programming easy. It supports all the following OLE 2
capabilities:

• Linking • Embedding
• In-place editing • Drag-and-drop operations
• OLE Clipboard operations • Compound document storage
• Automation servers and controllers • DLL servers
• Localization • Registration

These features are described in more detail in "OLE 2 features supported by
ObjectComponents" on page 276.

Chapter 18, Support for OLE in Borland Ctt 263

Using ObjectComponents confers these other benefits as well:

• An easy upgrade path to linking and embedding for existing C ++ applications,
especially if they use ObjectWindows

• Easy automation of existing C++ applications, whether or not they use
Object Windows

• Default implementations of standard OLE 2 user interface elements, such as the
Insert Object and Paste Link dialog boxes

• The ability to create OLE 2 applications with AppExpert, which generates and
understands the new OLE classes

• Compatibility with other OLE applications, including OLE 1 applications, whether or
not they were built with Borland tools

• Virtually no operating overhead imposed on ObjectWindows applications that
choose not to use OLE

Where should you start?
That depends on what you want to know and what application you want to create. This
section lists things you might want to do and tells you where to find the information
you need.

Writing applications
The right starting place depends on whether you are creating a new application or
adapting an existing one.

Creating a new application
You can generate a complete OLE application almost instantly using AppExpert.
AppExpert fully supports all the new features of ObjectComponents. To start an OLE
application from scratch, simply choose Project I App Expert from the IDE menu. For
more information about AppExpert, consult the User's Guide.

The programs AppExpert creates use the ObjectWindows Library. If you are new to
ObjectWindows, begin with the Object Windows Tutorial book.

Converting an application into an OLE container
Where you should start depends on whether your application uses ObjectWindows,
and if so, whether it uses the Doc/View model.

Table 18.1 How to add container support to an existing application

Yes Yes

264 ObjectWindows Programmer's Guide

"Turning a Doc/View application into an OLE container" on
page303

Table 18.1 How to add container support to an existing application (continued)

Yes No

No No

"Turning an ObjectWindows application into an OLE
container" on page 315

"Turning a C ++ application into an OLE container" on
page328

Converting an application into a linking and embedding server
Where you should start depends on whether your application uses ObjectWindows,
and if so, whether it uses the Doc/View model.

Table 18.2 How to add server support to an existing application

Yes Yes

Yes No

No No

Adding automation support

"Turning a Doc/View- application into an OLE server" on
page341

"Turning an ObjectWindows application into an OLE server"
onpage352

"Turning a C ++ application into an OLE server" on page 359

The process of adding automation support to an existing application is the same
regardless of whether the application uses Object Windows or the Doc/View model. For
help creating an automation server, a controller, or a type library, turn to the indicated
section;

• Automation server: "Automating an application" on page 381
• Automation client: "Creating an automation controller" on page 407
• Type library: "Creating a type library" on page 405

Other useful topics
Here are some topics common to different kinds of OLE applications. For help with
them, tum to the indicated section.

• DLL server: "Making a DLL server" on page 374
• Localization: "Localizing symbol names" on page 397
• Registration: "Building registration tables" on page 344
• Compiling and linking: "Building an ObjectComponents application" on page 286
• Exception handling: "Exception handling in ObjectComponents" on page 284

Learning about ObjectComponents
The tasks listed in this section help you find your way around ObjectComponents.

• Understanding OLE

For an introduction to OLE, see the following section, "What is OLE?" For
illustrations showing how common OLE interactions look onscreen, see "What does
OLE look like?" on page 267.

Chapter 18, Support for OLE in Borland C++ 265

• Surveying the new classes
For tables summarizing new classes and messages in ObjectComponents and
ObjectWindows, see "Using ObjectComponents" on page 278.

• Understanding how ObjectComponents works
"How ObjectComponents works" on page 287 explains how ObjectComponents
classes mediate between OLE and your own C ++ classes.

• Finding example programs
Brief description of some of the sample ObjectComponents programs in Borland C++
appear in "Example programs" on page 294.

• Finding the right documentation
All the parts of the documentation that describe ObjectComponents are listed in
"Books" on page 293 and "Online Help" on page 294.

• Understanding terms
For definitions of terms used in the documentation, see the "Glossary of OLE terms"
on page 295. Skimming the glossary is also a good way to introduce yourself to the
features of ObjectComponents.

What is OLE?
OLE, which stands for object linking and embedding, is an operating system extension
that lets applications achieve a high degree of integration. OLE defines a set of standard
interfaces so that any OLE program can interact with any other OLE program. No
program needs to have any built-in knowledge of its possible partners.

Programmers implement OLE applications by creating objects that conform to the
Component Object Model (COM). COM is the specification that defines what an OLE
object is. COM objects support interfaces, composed of functions for other objects to call.
OLE defines a number of standard interfaces. COM objects intended for public access
expose their interfaces in a registration database. Interfaces have unique identifiers to
distiguish them.

ObjectComponents encapsulates the COM specification for creating objects and
provides default implementations of the interfaces used for two common OLE tasks:
linking and embedding, and automation. Linking and embedding lets one application
incorporate live data from otherOLE applications in its documents. Automation lets one
application issue commands to control another application.

Linking and embedding
Linking and embedding refer to the transfer of data from one program to another. The first
program, the server, sends its data to the second program, the container. For example,
cells from a spreadsheet can be dropped into a word processing document. Of course
you don't need OLE to pass data from one Windows program to another. You can do ,
that much with just the Clipboard. The difference between OLE and the Clipboard is
that in OLE the receiving program doesn't have to know anything at all about the
format of the data in the object. Any OLE server application can give its data to any OLE

266 ObjectWindows Programmer's Guide

container application. Thanks to OLE, the container doesn't care whether the object it
receives is a metafile, a bitmap, or ASCII text. The server passes whatever data it uses
internally and the container accepts it. Furthermore, the object remains dynamic even
after being transplanted. When the container wants to display, modify, or save the
object, it calls OLE to do it. OLE, working behind the scenes, calls the server to execute
the user's command. The object belongs to the container's document, but OLE maintains
a live connection back to the server. The user can continue to edit the object using all of
the server's tools. As a result, the user can combine objects from different servers into a
single document without losing the ability to update and modify any object as the
document evolves.

Automation
Automation happens when one program issues commands to another. If you write a
calculator program, for example, you might allow other programs to issue commands
like these:

Press the nine button.
Press the plus button.
Press the six button.
Press the equals button.
Tell me what's in the Total window.

These are commands a person might normally issue through the calculator's user
interface. With automation, the calculator exposes its internal functions to other
programs. The calculator becomes an automation object, and programs that send
commands to it are automation controllers. OLE defines standard interfaces that let a
controller ask any installed server to create one of its objects. OLE also makes it possible
for the controller to browse through a list of automated commands the server supports
and execute them.

What does OLE look like?
The linking and embedding features of OLE include a standard user interface for
performing common operations such as placing OLE objects in container documents
and activating them once they are linked or embedded. The OLE standards cover menu
commands, dialog boxes, tool bars, drag and drop support, and painting conventions,
so that the user interface for OLE operations is consistent across applications. Together,
ObjectComponents and ObjectWindows execute most of the interface tasks for you.

Understanding OLE programming can be difficult without a clear grasp of the interface
you are trying to create. The following sections present pictures of a container showing
what happens onscreen at each step in a common sequence of OLE operations. The user
runs a container, inserts objects from several OLE servers into the document, edits an

Ch a p I er 1 8, Supp or I for 0 LE in Bo r I and C ++ 267

object, and saves the document. The descriptions of these steps introduce the following
OLE features:

• Insert Object command • Paste Special command
• Embedding • Linking
• Object verbs • Selecting an object
• Activating an object • Open editing
• In-place editing • Menu merging
• Tool bar negotiation

Inserting an object
The first illustration shows the example program called SdiOle, which is an OLE
container using the single-document interface (SDI) and written with ObjectWindows
and ObjectComponents. The source code for SdiOle is in EXAMPLES/OWL/OCF I
SDI OLE.

The SdiOle Edit menu contains five standard OLE commands that most containers
possess: Paste Special, Paste Link, Insert Object, Links, and Object. Most of these are
disabled in the illustration because the Clipboard is empty and nothing has been linked
or embedded in the open SdiOle document.

Object Windows implements all five of the standard commands for you if you like, but a
container does not have to use them all. This section explains only the Insert Object and
Object commands. For a brief summary of all the commands, see Table 19.3 on page 312.

Figure 18.1 The Edit menu in the sample program SdiOle

Ctrl+V
Paste Special...
Paste 1,ink
Qelete Del

Links ...
Qbjecl

Figure 18.2 shows the Insert Object dialog box. Like the common dialog boxes in
Windows for opening files and choosing fonts, the Insert Object dialog box is a standard
resource implemented by the system. For consistency, it is best to use the standard

268 ObjectWindows Programmer's Guide

dialog boxes unless your application has some unusual requirement that the standard
dialog box does not meet.

The box under Object Type lists all the kinds of objects available in the system.
Whenever a server installs itself, it tells the system what objects it can create. The system
keeps this information in its registration database. The Insert Object dialog box queries
the database and shows all the types that OLE can create for you using the available
server applications.

Jn the illustration, the user has chosen to insert a Quattro Pro spreadsheet. The Result
box at the bottom of the dialog box explains what will happen if the user clicks OK now.
Because the Create New button is selected, clicking OK will embed a new, empty
spreadsheet object into the user's open document. Figure 18.3 shows the result. (The
Create from File button is explained later.)

Figure 18.2 The Insert Object dialog box

- Insert Object

Object .lYpe: I ..
=m~.2~.0~1.~.p~Jac-e~s.-ov-e1=ou~Ui-ne-~ '! '
Ole 2.0 Server Sample Outline

@ Create Hew:

0 Create horn [ile:
OleTest Srlesl 2.0 Shape
Package
Paintbrush Piclure
Paradox Table

llJ~"!!l,;~'m"~fli~ii!i'~IJi~·i!I? Gm'."[i. ~ii!!• ·---· 0 D._ispla.v As Icon

Result-----------~

Inserts a new Quattro Pro 6.0 Notebook object into your
document

Editing an object in place
Jn Figure 18.3 the SdiOle application window is barely recognizable. Only from the title
bar at the top of the window can you be sure this is the same application. The menu bar
has changed-it has many more drop-down menus than it did in Figure 18.1. The Block,
Notebook, Graphics, Tools, and Help menus are all new. There are three button bars
now instead of one, and none of them is the same as the original one.

All the new window elements come from Quattro Pro, the server application that
created the active object. Quattro Pro has taken over the SdiOle window and is
displaying its own menus and tool bars. All the Quattro Pro menu and tool bar
commands can be executed right here in SdiOle. The feature of OLE that lets a server
take over a container's main window is called in-place editing. It lets the user edit the
object in its place, without switching back and forth between different windows. The
programming task that makes this possible is ca1led menu merging, combining menus
from two programs in one menu bar.

Ch apter 1 8 , S up port for 0 LE i n Bo r I an d C ++ 269

Figure 18.3 A newly inserted object being edited in place

Figure 18.4 shows what the object looks like after it is edited. The user entered labels and
numbers into notebook cells and created a small spreadsheet. Although many programs
let you paste data from other programs into your documents, without OLE you cannot
continue to edit the objects after they are transferred.

Figure 18.4 The same inserted object after being edited

The user who entered the data shown in Figure 18.4 clearly had access to Quattro Pro
tools. SdiOle is a very simple application and knows nothing about columns and rows
or fonts and shading. But even though the Quattro Pro server created and formatted the
object, that data in the object belongs to the container. When the user chooses File I Save
from the SdiOle menu bar, what gets written is an SdiOle document, not a Quattro Pro
document. With the help of ObjectComponents and the OLE system, SdiOle marks an
area in its own file to store the data for the embedded object. When the user chooses

270 ObjectWindows Programmer's Guide

File I Load to reload the same document, the spreadsheet cells will still be there. If the
user tries to edit the object again, OLE invokes Quattro Pro to take over the SdiOle
window once more. The object remains associated with the application that created it
even though the object is stored in a foreign file.

When OLE places the data for an object directly into the container's document as it has
the data for this spreadsheet, the object is said to be embedded. Besides embedding, OLE
also links objects to container documents, as you'll see in Figure 18.7.

Activating, deactivating, and selecting an object
In Figures 18.3 and 18.4, the embedded object is outlined by a thick gray rectangle. The
presence of this rectangle indicates that the object is active. The activation rectangle
appears when you double-click the object. Usually activating an object initiates an
editing session, but the server decides whether to follow that convention. For example,
embedded sound objects might play when activated. In most cases, only one object can
be active at a time.

The activation rectangle in Figure 18.4 has eight small black boxes spaced evenly around
it. They are called grapples. The user can resize the object by clicking a grapple and
dragging the mouse. Also, the user can move the object by clicking anywhere else on the
activation rectangle and dragging. ObjectWindows uses the TUIHandle class to draw
rectangles and grapples around objects.

Figure 18.5 shows what happens in the container window when the user clicks the
mouse button outside the activated object. The activation rectangle goes away. The
object is now inactive. Deactivating an object tells OLE that you are through editing. The
server relinquishes its place, and the container's window returns to normal. The only
commands on the menu bar are the ones SdiOle put there. The tool bar and window
caption are back to normal, as well.

Figure 18.5 The container's restored user interface after the object becomes inactive

Chapter 18, Support for OLE in Borland Ctt 271

You can select an inactive object without activating it. When you press the mouse button
over an inactive object, the container draws a thin black rectangle to show that you have
selected it. The selection rectangle is visible in Figure 18.6. Like the activation rectangle,
it has grapples. The user can move and resize a selected object just like an active object.

Finding an object's verbs
When an object is selected, like the one in Figure 18.6, the container modifies its menus
to offer a choice of whatever actions the object's server can do with the object. OLE calls
these actions verbs. Conventionally, the container displays available verbs in two places:
on its Edit menu and on a SpeedMenu. The SpeedMenu in Figure 18.6 popped up when
the user right-clicked the object. The first three commands on the SpeedMenu are
always Cut, Copy, and Delete. The fourth item, Notebook Object, changes depending on
the object selected. When an object from Paradox is inserted, for example, the fourth
item becomes Paradox 5 Object.

The smaller cascading menu lists the particular verbs that the server supports. Quattro
Pro has only two verbs. It can edit an object or open an object. The Edit verb initiates an
in-place editing session, as shown in Figure 18.3. The Open verb inititates an open
editing session, as shown in Figure 18.9.

The final item, Convert, is the same for all objects. It invokes another standard OLE
dialog box that lets the user convert an object from one server's data format to another.
The Convert command is useful when, for example, you have Paradox installed on your
machine, but someone gives you a compound document with an embedded object from
some other database application. If Paradox knows how to convert data from the other
database, then the Convert command binds the foreign database object to Paradox.

Figure 18.6 The speed menu for a selected object

Qpen

Convert ...

Figure 18.8 shows where verbs appear on the Edit menu. When no object is selected, the
last command on the Edit menu is disabled and says simply Object, as you see in Figure

272 ObjectWindows Programmer's Guide

18.l. When an object is selected, the Object command changes to describe the selected
object. In the example, Object changes to Notebook Object.

Linking an object
By default, the Insert Object command creates a brand new empty object, like the one in
Figure 18.3, and embeds it. Instead of embedding an object, you can choose to link it.

When OLE links an object, it does not store the object's data in the container's document.
It stores only the name of the server file where the data is stored (along with the location
of the data within the file and a snapshot of the object as it appears onscreen. The
snapshot is usually a metafile.) The container doesn't receive a copy of the object; it
receives a pointer to the object. OLE still draws the object in the container's document,
just as though it was embedded, but the container doesn't own the data.

If the server document that holds the data for the linked object is deleted, then the user
can no longer activate and edit the linked object. On the other hand, if the data in the
server document is updated, then the updates appear automatically in all the container
documents that have been linked to the same object. If several documents embed the
same object, then they are creating copies, and changes made in one document have no
effect on the copies in other documents.

Figure 18.7 shows what happens if you select the Create From File button in the Insert
Object dialog box. Instead of creating a new empty object, you choose a file with existing
data and OLE invokes the server that created the file. You can embed data from the file,
but in Figure 18.7 the user has checked the Link box, so when the user clicks OK, OLE
does not copy data from CHECKS.DB into the server's document. It creates a link that
refers back to the data stored in the original file.

Figure 18.7 The Insert Object dialog box just before inserting a linked object

0 C.eate Hew: FilJt: ParadOJ.C For Windows 5.0

I c:\pdoxwin\examples\checks.db @ Create from file:

[

Result

l~H~

t8l!jj~~::

Inserts a picture of the file contents: into_your document.]
The picture will be ijnked to the file so that changes to lhe
file will be reflected in your document.

0 .ll,isplay As Icon

The text in the Result box at the bottom of the dialog box explains what will happen
when the user clicks OK. You can see the result in Figure 18.8. The EXAMPLE.DFL
document now contains two OLE objects-the embedded Quattro Pro spreadsheet and
the linked Paradox table.

Neither of the two objects is active. The spreadsheet is inactive and the database table is
selected. Because the database table is linked, ObjectWindows draws the selection
rectangle with a dashed line. Compare the selection rectangle in Figure 18.8 to the one
for an embedded object in Figure 18.6.

Chapter 18, Support for OLE in Borland Ctt 273

Figure 18.8 The new verb list for the newly linked object

Opening an object to edit it
The Edit menu in Figure 18.8 shows the verbs for the selected Paradox table. Edit and
Open are the two most common verbs, and Quattro Pro and Paradox both use them.
Choosing the Open verb produces the screen shown in Figure 18.9. The same table is
visible in two windows-the container window where it is linked and the server
window where it is being edited. When finished editing in the server window, the user
chooses File I Close and returns to the container. Any changes made during the editing
session automatically appear in the container window afterward.

Contrast this editing session with the in-place editing in Figure 18.3. In this session, the
container window remains unchanged. The SdiOle window has only its own
commands and its own tool bar. The editing takes place in a separate window that OLE
opened just for this session. Returning to the server to edit is called open editing. Some
servers support only open editing, not in-place editing.

27 4 0 b j e ct Windows Pro g ram mer' s Gu id e

Figure 18.9 An object opened for editing

This series of illustrations shows the most common linking and embedding operations.
The user links or embeds an object, selects it, activates it, edits it in place or open, and
saves the compound document complete with its OLE object. The examples show how
to link and embed objects with the Insert Object dialog box, but there are other ways as
well. The Paste, Paste Special, and Paste Link commands can all create OLE objects from
data on the Clipboard. You can also link or embed objects by dragging them from one
applicaton and dropping them on another.

What is ObjectComponents?
Microsoft's OLE 2 operating system extensions require the programmer to implement a
variety of interfaces depending on the tasks an application undertakes. Borland has
developed an OLE engine, already used in several of its commercial applications, that
simplifies the programmer's job by implementing a smaller set of high-level interfaces
on top of OLE. The engine resides in a library called BOCOLE.DLL. The BOCOLE
support library provides default implementations for many standard OLE interfaces.

C ++ programmers can make use of the OLE support in BOCOLE.DLL through a set of
new classes collectively called the ObjectComponents Framework (OCF). Instead of
implementing OLE-style interfaces, you create objects from the ObjectComponents
classes and call their methods. Your own classes can gain OLE capabilities simply by
inheriting from the ObjectComponents classes. ObjectComponents translates between
C++andOLE.

Figure 18.10 shows how the layers of Borland's OLE support fit together.

C h a p I e r 1 8 , S u p p o r I Io r 0 L E i n B o r I a n d C ++ 275

Figure 18.10 How applications interact with OLE through ObjectComponents

The ObjectComponents classes implement OLE-style interfaces for talking to the
BOCOLE support library. Your programs reach OLE by calling methods from
ObjectComponents classes. When OLE sends information to you, ObjectComponents
sends messages to your application using the standard Windows message mechanisms.
The ObjectComponents classes also contain default implementations for all the OLE
messages. You can override the default event handlers selectively to modify your
application's responses.

ObjectComponents is not part of the Object Windows Library. That means C ++
programs that don't use ObjectWindows can still take full advantage of
ObjectComponents for linking, embedding, and automation. But ObjectWindows can
simplify your work even more. ObjectWindows 2.5 introduces new classes such as
TOleWindow and TOleDocument that inherit from ObjectComponents classes to bring
OLE support into Borland's C++ application framework. An ObjectWindows
application that uses the Doc/View model doesn't need to use ObjectComponents
directly at all. A few simple changes to your Doc/View program will have you linking
and embedding almost instantly. Programs that don't use the Doc/View model can do
the same thing with just a little more work.

The chapters that follow explain step by step how to modify your code to create
containers, servers, automation objects, and controllers.

OLE 2 features supported by ObjectComponents
The following list summarizes the OLE 2 capabilities that ObjectComponents gives your
applications. The descriptions assume you are using ObjectWindows, as well. All the
same features are available through ObjectComponents without ObjectWindows, but
then you have to code explicitly some things that ObjectWindows does by default.

276 0 b j e c I Windows Programmer's Guide

• Linking and embedding: To embed data from one application in the document of
another, ObjectComponents gives you classes to represent the data in the object and
an image of the data for drawing on the screen. The data must be separable from its
graphical representation because in OLE transactions they are sometimes handled by
different programs. When the container asks the server for an object to embed, the
server must provide data and a view of the data. The server can also be asked to edit
the object even after it is embedded and to read or write the object to and from the
container's document file. The ObjectComponents classes handle both sides of these
negotiations for you.

• Clipboard operations: The default event handlers for the ObjectComponents
· messages handle cutting and pasting for you. If you add to your menus standard
commands such as Insert Object and Paste Link, ObjectComponents will implement
them for you.

• Drag and drop operations: The default event handlers for ObjectComponents
messages help you here, too. If the user drops an OLE object on your container's
window, ObjectComponents inserts it in your document. If the user double-dicks the
embedded object, ObjectComponents activates it. If the user drags the object,
ObjectComponents moves it.

• Standard OLE 2 user interface: OLE defines standard user interface features and
asks OLE programmers to comply with them. Built into ObjectComponents are
dialog boxes for commands like Insert Object, Paste Special, and Paste Link; a pop-up
menu that appears whenever the user right-clicks an embedded object; and an item
on the container's Edit menu that always shows the verbs (server commands)
available for the active object. ObjectComponents even arranges to modify the
container's window if the server takes over the container's tool bar, status bar, and
menus for in-place editing.

• Compound files: A new ObjectComponents class (TOcStorage) encapsulates file
input and output to compound files. If you convert an ObjectWindows Doc/View
application into an ObjectComponents container, the document writes itself to
compound files automatically, creating storages and substorages within the file as
needed. (Instructions for the conversion appear in Chapter 19.)

• EXE and DLL servers: ObjectComponents lets you construct your OLE server as
either a standalone executable program or as an in-process DLL server. DLL servers
respond to clients more quickly because a DLL is not a separate process. OLE doesn't
have to serialize calls or marshall parameters to communicate between a DLL server
and its client. See "Making a DLL server" on page 374 for more information.

• Automation: ObjectComponents permits C++ classes to be automated without
structural changes to the classes themselves. It accomplishes this with nested classes
that have direct access to the existing class members. These nested classes instantiate
small command objects that reach the members through standard C++ mechanisms,
avoiding the use of restrictive, non-portable stack manipulations. The command
objects support hooks for undoing, recording, and filtering automation commands. A
prQgram can even send itself automation commands using standard C++ code.
Chapters 21 and 22 describe automation programming.

Ch a p I er 1 8, Su pp or I for 0 LE in Bo r I and C ++ 277

• Type libraries: A type library describes for OLE all the classes, methods, properties,
and data members available for controlling an automated application. Once you
create an automation server (following the steps in Chapter 21), you can ask
ObjectComponents to build and register the type library for you. Instructions for
creating a type library are on page 405.

• Registration: OLE requires applications to register themselves with the system by
providing a unique identifier string. For servers, this string and much other
information besides must be recorded in the system's registration database as part of
the program's installation process. With ObjectComponents, all you have to do is list
all the information in one place using macros. Every time your server starts up,
ObjectComponents confirms that the database accurately reflects the server's status.
When necessary, ObjectComponents records or updates registration entries
automatically. For more about registration, see "2. Registering a container" on
page306.

• Localization: OLE servers need to speak the language of their client programs. If an
automation server is marketed in several countries, it needs to recognize commands
sent in each different language. A linking and embedding server registers strings that
describe its objects to the user, and those too should be available in multiple
languages in order to accommodate whatever language the user might request. If
you provide translations for your strings, ObjectComponents uses the right strings at
the right time. Add your translations to the program's resources and mark the
original strings as localized when you register them. At run time, ObjectComponents
quickly and efficiently retrieves translations to match whatever language OLE
requests. For more about localization, see "Registering localized entries" on page 373.

Using ObjectComponents
This section includes information to help you use ObjectComponents. It surveys the
classes and messages in ObjectComponents, as well as new classes in ObjectWindows
that help you take advantage of ObjectComponents. It also explains how
ObjectComponents uses C++ exception handling, how to build an ObjectComponents
application, and what files to distribute with your application.

Overview of classes and messages
The following tables introduce the ObjectComponents classes and messages you are
likely to use most often. Subsequent chapters describe their use in more detail.

278 0 b j e ct W i n d ow s P r o g r a rn rn e r ' s G u i d e

Linking and embedding classes
The classes in Table 18.3 support linking and embedding, but if your program uses
ObjectWindows you won't need to work directly with most of them.

Table 18.3

Class

TOcApp

Some ObjectComponents classes used for linking and embedding

Description

TOcDocument

TOcModule

TOcPart

TOcRegistrar

TOcRemView

TOcView

Connects containers and servers to OLE. It implements COM interfaces for the
application.

Represents a compound document. It holds parts (embedded objects).

A mbc-in class for deriving the application object in a linking and embedding program.
It coordinates some basic housekeeping chores related to registration and memory
management.

Represents an embedded or linked object in a document.

Records application information in the system registration database and tells OLE
when the application starts and stops. Also creates the TOcApp object and responds
when OLE wants a server to make something.

Represents a remote view for a server document. The server creates a remote view for
every object it donates to a container. The remote view is drawn in the container's
window.

Responsible for displaying a part. A container needs a view for every part it embeds.

Although ObjectComponents includes classes for documents and views, it does not
require applications to use the ObjectWindows Doc/View model. If you do use the
Doc/View model, the new TOleDocument and TOleView classes make OLE
programming even easier. ObjectWindows is not required, however. Any C++ program
can use the ObjectComponents Framework. The chapters that follow address all types
of applications.

Connector objects
A few of the ObjectComponents classes actually implement COM interfaces. (COM
stands for Component Object Model. COM is the standard that defines what an OLE
object is.) Most of the supported interfaces are not standard OLE interfaces; they are
custom interfaces that communicate with OLE through the BOCOLE support library.
But like any COM object they do implement !Unknown (by deriving from TUnknown, as
shown in Figure 18.11).

The classes that define COM objects for linking and embedding are TOcApp, TOcView,
TOcRem View, and TOcPart. These classes are special because they connect your
application to OLE. They are called connector objects. An ObjectComponents application
must create connector objects in order to interact with other OLE applications.

Because they are COM objects, connector objects have one peculiarity: their destructors
are protected so you cannot call delete to destroy them. Readers familiar with OLE will
recognize that the connector objects have internal reference counts that track the
number of clients using them. Often you are not the only user of your own connectors.
For example, when a server creates a TOcRem View to paint an object in a container's
window, the container becomes a client of the same object. The server must not destroy
the view object until the container is through with it, otherwise OLE could end up
attempting to address functions that no longer exist in memory.

C h a p t e r 1 B , S u p p o rt f o r 0 L E i n B o r I a n d C ++ 279

. The Component Object Model decrees that an object must maintain an internal
reference count. When an object provides anyone a pointer to one of its interfaces, the
object also increments its own reference count. When the client finishes with the pointer,
it calls Release and the object decrements its reference count. As long as the count is
greater than zero, the object must not be destroyed. When the count reaches 0, the object
destroys itself.

ObjectComponents shields you from the details of reference counting. You never have
to increment or decrement a reference count. You cannot delete COM objects, however,
because the delete command pays no attention to the reference count. Instead, call the
connector's ReleaseObject method.

Figure 18.11 How the ObjectComponents connector objects are related

TUnknown

Nonvirtual inheritance Virtual inheritance

Automation classes
Table 18.4 describes some of the classes that appear in automation programs.

Table 18.4 Some ObjectComponents classes used for automation

TAutoBase Simplifies clean-up chores when an automated object is destroyed. Make it the base
class for your automated classes if you want that help.

TAutoProxy The base class for an automation controller's proxy objects. Controllers create C ++
proxy objects to represent the OLE objects they want to manipulate. The proxy objects
become connected to OLE when they derive from TAutoProxy.

TOleAllocator Initializes the OLE libraries and, optionally, passes OLE a custom memory allocator for
managing any memory the system allocates on the program's behalf.

TRegistrar Records application information in the system registration database and tells OLE when
the application starts and stops.

There are more automation classes than the table shows, but many of them are internal
to the ObjectComponents implementation. Most of the work in automating an existing
application is done with macros. Automating a class means writing two tables of
macros, one in the class declaration and one in the class implementation. The macros
describe the methods you choose to expose. Within the parent class they create nested

280 ObjectWindows Programmer's Guide

classes, one for each command. ObjectComponents knows how to make a nested object
execute the method it exposes, and the nested class calls members of the parent class
directly.

The connector objects that ObjectComponents creates to implement COM interfaces for
an automation program are considered internal. ObjectComponents makes them for
you when they are needed.

ObjectComponents messages
When ObjectComponents needs to tell an application about signals and events that
come from OLE, it sends a message through the normal Windows message queues. The
message it sends is WM_OCEVENT. The value in the message's wParam identifies a
particular event. Only applications that support linking and embedding receive
WM_OCEVENT messages. (They are sent by the application's TOcApp, TOcView, and
TOcRemView objects. Automation applications that don't support linking and
embedding have no need for any of these objects.)

Simple ObjectWindows applications don't need to process any of the events because the
new OLE classes have default event handlers that make reasonable responses for you.
To modify the default behavior, add event handlers to your ObjectWindows program.
For more information about handling events in ObjectWindows, see Chapter 4. If you
are programming without ObjectWindows, handle WM_OCEVENT in your window
procedure.

The events are divided into two groups. Those that concern the application as a whole
are listed in Table 18.5. Those that call for a response from a particular document are
addressed to the view window. They are listed in Table 18.6.

Table 18.5 Application messages for TOcApp clients

OC_APPDIALOGHELP

OC_APPBORDERSPACEREQ

OC_APPBORDERSPACESET

OC_APPCREATECOMP

OC_APPFRAMERECT

OC_APPINSMENUS

OC_APPMENUS

OC_APPPROCESSMSG

OC_APPRESTOREUI

Container

Container

Container

Server(and
container acting
as link source)

Container

Container

Container

Container

Container

Asks the container to show Help for one of the
standard OLE dialog boxes where the user has just
clicked the Help button.

Asks the container whether it can give the server
border space in its frame window.

Asks the container to rearrange its client area
windows to make room for server tools.

Asks the application to create a new component for
embedding in another application.

Requests client area coordinates for the inner
rectangle of the program's main window.

Asks the container to merge its menu into the
server's.

Asks the container to install the merged menu bar.

Asks the container to process accelerators and other
messages from the server's message queue.

Tells the container to restore its normal menu,
window titles, and borders because in-place editing
has ended.

Ch a p I er 1 8, Su pp or I for 0 LE in Bo r I and C ++ 281

Table 18.5 Application messages for TOcApp clients (continued)

OC_APPSHUTOOWN server

OC_APPSTATUSTEXT Container

Tells the server when its last embedded object
closes down. If the server has nothing else to do, it
can terminate.

Passes text for the status bar from the server to the
container.

A view is the image of an object as it appears onscreen. When an OLE server gives an
object to a container, the object contains data. The server also provides a view of the data
so OLE can draw the object onscreen. Sometimes the word view also refers to the
window where the container draws a compound document with all its embedded parts.
Each object has its own small view, and the container has a single larger view of the
whole document with all its embedded objects.

Table 18.6 View messages for TOcView and TOcRemView clients

OC_ VIEWATTAGIWINDOW Server

OC_ VIEWBORDERSPACEREQ Container

OC_VIEWBORDERSPACESET Container

OC_ VIEWCLlPDATA Server

OC_ VIEWCLOSE Server

OC_ VIEWDRAG Server

OC_ VIEWDROP Container

OC_VIEWGETPALETTE Server

OC_ VIEWGETSCALE Container

OC_ VIEWGETSITERECT Container

OC_VIEWINSMENUS Server

OC_ VIEWLOADPART Server

OC_ VIEWOPENDOC Server

OC_VIEWPAINT Server

OC_ VIEWP ARTINV ALID Container

OC_VIEWPARTSIZE Server

OC_ VIEWSA VEPART Server

OC_ VIEWSCROLL Container

282 ObjectWindows Programmer's Guide

Asks server window to attach to its own frame
window or container's window.

Asks whether server can have space for a tool bar
within the view of an embedded object.

Asks container to rearrange its windows so the server
can show its tool bar within an embedded object.

Asks server to provide clipboard data in a particular
format.

Asks server to close its document.

Asks server to provide visual feedback as the user
drags its embedded object.

Tells container an object has been dropped on its
window and asks it to create a TOcPart.

Asks server for the color palette it uses to draw an
object.

Asks container to give scaling information.

Asks container for the site rectangle that a part
occupies.

Asks server to insert its menus in a composite menu
bar.

Asks server to load an embedded object stored in the
container's data file.

Asks server to open a document with the specified
path.

Asks server to draw or redraw an object at a
particular position in a given device context.

Tells container that one of its embedded objects needs.
to be redrawn.

Asks server the initial size of its view in pixels.

Asks server to write the data for an object into the
container's file.

Asks container to scroll its view window.

Table 18.6 View messages for TOcView and TOcRemView clients (continued)

oc_ VIEWSETSCALE

OC_ VIEWSETSITERECT

OC_ VIEWSHOWTOOLS

OC_ VIEWTITLE

Server

Container

Server

Container

f''"'''D~scn:ptiort'
,, ''i'"1;:fa1t";,

Asks server to handle scaling.

Asks container to set the site rectangle.

Asks server to display its tool bar in container's
window.

Asks container for the caption in its frame window.

Most of the events in Tables 18.5 and 18.6 are sent only to a server or to a container. A
single application receives both kinds of messages if it chooses to support both container
and server capabilities.

Messages and windows
Because the view and part objects expect to send notification messages to a particular
document, every ObjectComponents application is expected to create a new window for
each open document. Document windows should not be frame windows; they should
be client windows that exactly fill the client area of a parent frame window. In an SDI
application, the parent is the application's main frame window. In an MDI application,
the parent is an MDI child frame. ObjectWindows programs should use TOleWindow for
client windows. Many ObjectWindows applications, including all those that use the
Doc/View model, already possess client windows. For help implementing client
windows with ObjectWindows, see "3. Setting up the client window" on page 319. To
implement client windows in a C++ program, see "3. Creating a view window" on
page366.

New ObjectWindows OLE classes
Another set of new classes integrates ObjectWindows with ObjectComponents.
Internally, the new ObjectWindows classes use the the ObjectComponents classes to
connect with OLE for you. Depending on the complexity of your ObjectWindows
application, you might not need to interact directly with ObjectComponents at all. Table
18.7 briefly summarizes the most important new ObjectWindows classes.

Table 18.7 New classes in ObjectWindows for OLE support

TOleFrame

TOleMDIFrame

TOleWindow

TStorageDocument

TOleDocument

TIJecoratedFrame

TMDIFrame and
TOleFrame

TWindow

TIJocument

TStorageDocument

Provides OLE user interface support for the main
window of an SDI application.

Provides OLE user interface support for the main
window of an MDI application.

Used as the client of a frame window, provides
support for embedding objects in a compound
document.

Adds the ability to work with OLE's compound
file structure. It is the natural class to choose for
compound documents with embedded objects.

Implements the Document half of an OLE
enabled Doc/View pair.

Chapter 18, Support for OLE in Borland C++ 283

Table 18.7 New classes in ObjectWindows for OLE support (continued)

TOleView TOleWindow,
TView

TOleFactory<> TOleFactoryBase
TOleDocViewFactory<>
TOleAutoFactory<>
TOleDocView AutoFactory<>
TAutoFactory<>
TOcAutoFactory<>

Implements the View half of a Doc/View pair.
(For information about Doc/View pairs see
Chapter 10.)
Implements the function OLE calls when an
application should create an object.

The ObjectWindows OLE classes create ObjectComponents objects for you as needed.
For example, whenever a container or a server creates a compound document, it also
creates a a TOcView (or TOcRemView) object to implement the interfaces that tie a
document to OLE. TOleView::CreateOcView does that for you. Furthermore, when the
new TOcView object sends event messages to the view window, TOleView processes
them for you with handlers like EvOcViewSavePart and EvOcViewlnsMenus. The default
event handlers manage much of the OLE user interface for you.

Exception handling in ObjectComponents
ObjectWindows 2.5 modifies the hierarchy of exception classes. TXBase is the new base
class for all exception classes. TXOwl derives fy:om it, as do the new exception classes
summarized in Table 18.8.

Table 18.8 ObjectComponents exception classes

TXAuto Exceptions that occur during automation
TXObjComp Exceptions that occur during ObjectComponents linking and embedding operations
TXOle Exceptions that occur while processing OLE API commands
TXRegistry Exceptions that occur while using the system registration database

Because the exception classes all derive from TXBase, a general-purpose catch statement
often takes a TXBase& as a parameter. The catch statement in the following example
receives any exception thrown by ObjectWindows or ObjectComponents:

int
OwlMain(int /*argc*/, char* /*argv*/ [])
{

try {
Registrar= new TOcRegistrar(AppReg, TOleFactory<TMyApp>(),

TApplication::GetCmdLine());
return Registrar->Run();

catch (TXBase& x)
: :MessageBox(O, x.why() .c_str(), "Exception", MB_OK);

284 ObjectWi n d ows Programmer's Guide

return -1;

TXOle and OLE error codes
Most of the OLE API functions pass back a return value of type HRESULT (or the nearly
identical SCODE). The return value indicates whether the call was successful, and it can
also encode other status information. When a public member function of an
ObjectComponents class results in a call to an OLE interface and the interface call fails,
then ObjectComponents turns the OLE return result into a C ++ exception object of type
TX Ole. This allows you to handle OLE error codes via the standard C ++ try and catch
constructs.

The TXOle class defines a variable, Stat, which holds the return value passed back from
from a failed OLE API call. Therefore, a catch statement taking a TX Ole& as a parameter
has access to the OLE error code. The following code shows an example of a routine
where the error value is simply returned back to the caller. This is useful if the function
is called from an application that cannot handle C++ exceptions.

HRESULT
TMyAppDescriptor::CheckTypeLib(TLangid lang, canst char far* file)
{

HRESULT stat = HR_NOERROR;

II Create OCF classes and invoke OCF methods to perform operation
try {

TOleCreateList typeList(new TTypeLibrary(*this, lang), file);

catch(TXOle& xi II Catch OLE exception
stat= ResultFromScode(x.Stat); II Create HRESULT from SCODE

return stat; II Return OLE error code

The previous example uses the ResultFromScode macro to cast an SCODE to an
HRESULT. The OLE headers define various other macros that allow you to break down,
assemble, and convert the various components of the value returned from an OLE API
call. For more information, search for the topic "Error Handling Functions and Macros"
inOLE.HLP.

If ObjectComponents catches a TXOle exception internally, it displays a dialog box
showing the OLE return code. If the OLE_ERR.DLL library is present,
ObjectComponents attempts to translate the error code into a string for the dialog box.
Otherwise it displays just the numerical code.

OLE documents the codes only in the header files where they are defined. To make
what information there is more accessible, the DOCS/OLE_ERR.TXT file extracts
information from that header and presents the codes in numerical order. Also, the
source code for the error message DLL is in SOURCE/OCTOO,LS/OLE_ERR.

Chapter 18, Support for OLE in Borland C++ 285

Building an ObjectComponents application
All ObjectComponents applications require exception handling and RTTI. Do not set
any compiler options that disable these features.

Linking and embedding applications must use the large memory model. Automation
applications can use the medium model as well (and they nin faster in medium model).

The integrated development environment (IDE) sets the appropriate compiler and
linker options for you automatically when you select OCF in the TargetExpert.

To build any ObjectComponents program from the command line, create a short
makefile that includes the OWLOCFMK.GEN found in the EXAMPLES subdirectory. If
your application does not use ObjectWindows, include the OCFMAKE.GEN instead.
Here, for example, is the makefile that builds the AutoCalc sample program:

EXERES = MYPROGRAM
OBJEXE = winmain.obj autocalc.obj
HLP = MYPROGRAM
!include $(BCEXAMPLEDIR)\ocfmake.gen

EXERES and OBJRES hold the name of the file to build and the names of the object files
to build it from. HLP is optional. Use it if your project includes an online Help file.
Finally, your makefile should include OWLOCFMK.GEN or OCFMAKE.GEN.

Name your file MAKEFILE and type this at the command line prompt:

make MODEL=l

MAKE, using instructions in the included file, will build a new makefile tailored to your
project. The new makefile is called WlN16Lxx.MAK. The final two digits of the name
tell whether the makefile uses diagnostic or debugging versions of the libraries. 01
indicates a debugging version, 10 a diagnostic version, and 11 means both kinds of
information are included. The same command also then runs the new makefile and
builds the program. If you change the command to define MODEL as d, the new
makefile is W1Nl6Dxx.MAK and it builds the program as a DLL.

For more information about how to use OCFMAKE.GEN and OWLOCFMK.GEN, read
the instructions at the beginning of MAKEFILE.GEN, found in the same directory.

Table 18.9 shows the libraries an ObjectComponents program links with.

Table 18.9 Libraries for building ObjectComponents programs

OCFWM.UB OCFWL.LIB OCFWI.LIB ObjectComponents

OWLWM.UB OWLWL.LIB OWL WI.LIB Object Windows

BIDSM.UB BIDSL.UB BIDSI.LIB Class libraries

OLE2Wl6.LIB OLE2Wl6.UB OLE2Wl6.LIB OLE system DLLs

IMPORT.LIB IMPORT.UB IMPORT.UB Windows system DLLs

MATHWM.UB MATHWL.LIB Math support

CWM.UB CWL.LIB CRTLDLL.UB C run-time libraries

The ObjectComponents library must be linked first, before the ObjectWindows library.

286 ObjectWindows Programmer's Guide

Distributing files with your application
When you distribute your application, you need to distribute along with it some
libraries that ObjectComponents requires. Your installation program should install the
files for the user, being careful not to replace any more current versions the user might
already have.

The following files are part of OLE 2 and should be distributed with any 16-bit OLE
application, whether it uses ObjectComponents or not.

compobj.dll
ole2.dll
storage.dll
ole2.reg

ole2conv.dll
ole2nls.dll
typelib.dll

ole2disp.dll
ole2prox.dll
stdole.tlb

All these files belong in the user's WINDOWS/SYSTEM directory. Microsoft requires
that if you distribute any of the files, you must distribute all of them. Call RegEdit to
merge OLE2.REG with the user's registration database. (The RegEdit registration editor
comes with Windows.) Double-clicking OLE2.REG in the File Manager accomplishes
the same thing.

Any program that uses ObjectComponents should also distribute BOCOLE.DLL.

In addition, if your program uses the DLL version of OWL, of the container class
libraries, or of the run-time library, you should distribute those as well.

How ObjectComponents works
The information in this section is not essential for using ObjectComponents, only for
understanding what goes on behind the scenes when you create ObjectComponents
connector objects.

The essential function of ObjectComponents is to connect you with OLE.
ObjectComponents is an intermediate layer standing between OLE on one side and
your C++ code on the other.

How ObjectComponents talks to OLE
Fundamentally, all OLE interaction of any sort requires the implementation of standard
OLE interfaces, such as !Unknown and !Dispatch, as defined by the Component Object
Model (COM).

An interface is just a set of related function prototypes forming a pure base class. Every
OLE object that implements the same interface can choose to implement the prescribed
functions in its own way. All that matters is that the interface functions always accept
the same parameters and always produce the same results. This makes it possible for
any OLE object to call any standard function in any other OLE object that supports the
interface.

Ch a p I er 1 8, Supp or I for 0 LE in Bo r I and C ++ 287

Every OLE object must implement the !Unknown interface. One of the three functions in
the !Unknown interface is Querylnteiface. This common function implemented on all
OLE objects lets you ask whether the object supports other interfaces that you want to
use, such as automation interfaces or data transfer interfaces. This makes it possible for
any OLE object to determine at run time what any other OLE object can do.

OLE defines a large number of standard interfaces that are notoriously tedious to
implement. Borland' s BOCOLE support library defines an alternate set of custom COM
interfaces that collectively provide an alternative interface to OLE programming, one
conceived at a higher level of abstraction. Client objects of the support library must still
implement !Unknown, as all COM objects must, but instead of other standard OLE
interfaces such as IDataObject and !Moniker, they implement interfaces defined by
BOCOLE. The support library acts as an agent translating commands received through
its custom interfaces into standard OLE. All the custom interfaces commands are carried
out for you using standard OLE interfaces.

The custom interfaces in the BOCOLE support library have names like IBContainer and
IE Document. You'll see them used if you look in the ObjectComponents source code.
Because the support library is an internal tool and subject to change, its interfaces are not
documented. The complete library source code, however, comes with Borland C++, so
you can refer to it if you need to track the OLE interactions minutely. You can also
modify and rebuild the support library, just as you can the ObjectWindows Library, if
that suits your purposes.

How ObjectComponents talks to you
Some of the ObjectComponents classes define COM objects. These objects derive from
TUnknown, an ObjectComponents base class that implements the !Unknown interface
and handles details of aggregation (a way of combining several objects into a single
functional unit). They also mix in other base classes that implement interfaces from the
BOCOLE support library.

The ObjectComponents objects that implement COM interfaces are called connector
objects, because they connect your application to OLE. TOcPart, for example, is the
connector object that implements the interfaces a container must support for each OLE
object (part) that is placed in its document. To embed an object in your document, you
take information ObjectComponents gets from the Clipboard, a drop message, or the
Insert Object dialog box, and you pass the information to the TOcPart constructor.
Among other things, the constructor (indirectly) calls a BOCOLE function to create an
embedded OLE object. TOcPart holds the pointer to that object, queries it for interfaces,
and stores the coordinates of the site where the part should be drawn. When you want
the part to do something, you call TOcPart methods such as Activate and Save.

Linking and embedding connections
A linking and embedding application always creates a TOcApp object (usually it is
created for you). TOcApp is a connector object that implements interfaces every linking
and embedding application needs. Another connector object that all linking and
embedding applications create is the view object, either TOc View for a container or
TOcRem View for a server. You create one view object for each document you open. A

288 ObjectWindows Programmer's Guide

view object is associated with the window where the document is drawn. The only other
connector object used for linking and embedding is TOcPart, which containers create for
each object deposited in their documents.

Of course communication through a connector object is not just one way. When you call
methods on a connector object, the object calls through to OLE, but sometimes OLE
needs to call you. For example, if when user chooses Insert Object and asks for an object
from a server, OLE must invoke the server and ask it to create an object. The connector
objects cannot, of course, call your functions the same way you can call theirs because
they don't know anything about your code. When a connector object needs to
communicate a request or a notification from OLE to you, it sends WM_OCEVENT
message to one of your windows. TOcApp sends its messages to your frame window.
The view and part objects send messages to the client window where you draw your
document.

Communication from you to OLE happens through function calls to connector objects.
Communication from OLE to you happens through messages from connector objects to
your windows. Figure 18.12 diagrams these interactions.

Chapter 18, Support for OLE in Borland C++ 289

Per
application

Per
document

Figure 18.12 How objects in your application interact with ObjectComponents

User Objects ObjectComponents Objects

TOcModule

TMyApp

TOleWindow

TOie View

--0 BOCOLE interlace y !Unknown interlace B Object created
through inheritance

The objects on the left side are instances of the ObjectWindows classes you normally
create: an application, a frame window, a document, and a view. In applications that do
not use the Doc/View model or do not use ObjectWindows, different classes fulfill the
same functions. You always have a frame window and a document window, for
example. The flow of interaction is the same in every ObjectComponents application.

The objects on the right side are the helpers from ObjectComponents that connect
corresponding parts of your application to OLE.

The initial wiring between you and ObjectComponents is established the first time the
registrar object calls your factory callback function. The TOcApp object is bound to a
window in TOleFrame::SetupWindow, or in the WM_ CREATE handler of your main
window.

290 ObjectWindows Programmer's Guide

Automation connections
Applications that support automation but not linking and embedding use a different set
of objects. The central function of the automation layer in OLE is to pass arguments from
the controller to the server, an operation with no user interface. The COM interfaces for
automation are buried deeper in the implementation of ObjectCGmponents than the
linking and embedding interfaces.

To support automation, ObjectComponents must identify exposed commands and
arguments, attach type information to them, transfer values to and from the stack of
VARIANT unions that OLE uses to pass values, and invoke your C++ functions when a
controller sends a command. Once you set up the tables that describe what you want to
expose, there is little in the automation process to customize or override. You never
directly create or manipulate the connector objects for automation; ObjectComponents
does it for you.

Advanced users who enjoy reading source code might like to know that TServedObject is
the class that implements !Dispatch and ITypeinfo, that TTypeLibrary implements
ITypeLib, and that T Autoiterator implements IEnum VARIANT. Of these, only
T Autoiterator is exposed as a public part of ObjectComponents. The others are
considered internal implementation.

To automate a class, ObjectComponents asks you to build two descriptive tables from
macros. A declaration table goes with the class declaration and declares which members
are accessible to OLE. A definition table goes with the class implementation and assigns
public names for controllers to use when invoking your functions. The automation
macros also create nested classes within the automated parent, one for each exposed
function or data member. The nested classes have an Invoke method that calls your
function. Because the nested classes are friends of the surrounding class, they have
direct access to it through normal C ++ mechanisms.

TServedObject is the connector that receives !Dispatch commands from OLE and
translates them into the appropriate Invoke calls. TServedObject finds the information it
needs to do this in an object of type T AutoClass, which holds the symbol information
from the automation tables. TServedObject receives dispatch IDs, looks them up in
TAutoClass, uses the information it finds to extract arguments from the stack of
VARIANT unions passed by OLE. Finally it calls Invoke on the appropriate nested
command object. Figure 18.13 diagrams the interaction of TServedObject with T AutoClass
and your automated class.

Ch a p I er 1 8, Supp or I for 0 LE in Bo r I and C ++ 291

Figure 18.13 How TServedObject connects an automated class to OLE

ObjectComponents Programming Tools
The most powerful tool in Borland C++ to help you with ObjectComponents
programming is AppExpert. AppExpert generates a complete basic application
according to your specification. It fully supports both linking and embedding and
automation. Use it to create containers, servers, and automation servers. ClassExpert
helps you modify the generated code to make it do what you need.

The TargetExpert in the integrated development environment (IDE) also supports
ObjectComponents. Click the option for OCF and it automatically sets the right build
options.

Utility programs
Borland C++ 4.5 comes with some new utility programs that simplify common OLE
programming chores. Some of them solve problems that other chapters explain in more
detail.

AutoGen: Generates proxy classes for an automation controller. Scans the type library
of an automated application and writes the source code for classes a controller uses to
send commands automation commands.

DllRun: Launches a DLL server in executable mode. Any DLL server written with
ObjectComponents can also run as a standalone application if you invoke it with
DllRun. Running in executable mode sometimes makes it easier to debug the DLL. It
also makes it possible to distribute a single program that your users can run either as an
in-process server or as an independent application.

292 ObjectWindows Programmer's Guide

GuidGen: Generates globally unique identifiers for use in registering applications.
Every server must have an absolutely unique ID. Containers need them in order to be
link sources.

MacroGen: Generates automation macros for exposing functions with any number of
arguments. The ObjectComponents headers declare versions of the macros for functions
with up to four arguments. MacroGen saves you from having to revise the macros by
hand to accommodate more arguments.

Register: Registers or unregisters any ObjectComponents EXE or DLL. Usually the
applications register themselves if necessary when they run, or in response to
command-line switches. Developers, however, sometimes need to register and
unregister different versions of an application over and over. Register is especially
useful for DLLs because you can't pass command-line switches to a DLL.

Win:Run: A background program that makes it possible to launch Windows programs
from the command line prompt in a DOS box. WinRun makes it possible to run GUI
programs (such as Register) from a make file.

The source code for all the utilities but WINRUN is in the OCTOOLS directory.

You might find it helpful to install these tools in the integrated development
environment (IDE). For more information, open the EXAMPLES\IDE\IDEHOOK\
IDEHOOK.IDE file and read the instructions in OLETOOLS.CPP.

Where do I look for information?
You can find information about programming with ObjectComponents in this book, in
other books, in the online Help, and in the directories of sample programs.

Throughout the documentation, OLE refers to OLE 2.0 unless version 1 is indicated
explicitly.

Books
The chapters that follow describe how to build programs that perform all these
functions.

Table 18.10 Descriptions of the ObjectComponents chapters in this book

Support for OLE in Borland C ++ Overview of ObjectComponents

Creating an OLE container How to build an application that receives OLE objects
in its documents

Creating an OLE server How to build an application that creates OLE objects
for containers to use

Automating an application How to build an application that other programs can
control

Creating an automation controller How to build an application that controls other
applications

C h a pt e r 1 B , S u p p o rt f o r 0 L E in B o r I a n d C ++ 293

For complete reference material covering all the new OLE-related classes and macros in
ObjectComponents andObjectWindows, see the Object Windows Reference Guide.

The ObjectComponents material in this book and in the Object Windows Reference Guide is
also in the online Help for Borland C++.

The Object Windows Tutorial develops a sample application from scratch. The later steps
use add OLE container, server, and automation capabilities.

Online Help
In addition, Borland C ++ includes three online Help files covering the OLE APL For the
most part, ObjectComponents makes knowledge of OLE interfaces unnecessary, but if
you want to understand more about how ObjectComponents works, or if your
application requires advanced programming at the OLE interface level, then you might
find these files useful.

Table 18.11 Online Help files with information about ObjectComponents and OLE

OCF.HLP

OWL.HLP

OLE.HLP

ObjectComponents chapters from the Object Windows Programmer's Guide
and the Object Windows Reference Guide

Reference material for new OLE-enabled classes in ObjectWindows

OLE system overviews and reference

Example programs
One of the best ways to learn about programming is to study working code. AppExpert
is a good place to start. Use it to generate the code for servers, containers, automation
servers, and DLL servers. In addition, Borland C++ comes with a variety of sample
programs that show off ObjectComponents. Some of them are described in this list.

EXAMPLES I OCF: ObjectComponents without Object Windows

" AutoCalc: An automation server; draws a calculator onscreen and lets a controller
click the buttons

" CallCalc: An automation controller to manipulate the calculator in AutoCalc

" CppOcf: Three-step linking and embedding tutorial that starts with a simple C ++
program, turns it into a container, and then into a server

" Localize: Pulls translated strings from XLAT resources to reflect language settings

" RegTest: Registers, validates the registration, and unregisters an
ObjectComponents application

EXAMPLES/OWL/TUTORIAL: ObjectWindows tutorial examples

.. OwlOcf: Three-step linking and embedding tutorial that starts with a simple
ObjectComponents program, turns it into a container, and then into a server.

" Step14 - Step17: The final steps of the tutorial application described in
ObjectWindows Tutorial; shows how to be a linking and embedding container or

294 ObjectWindows Programmer's Guide

server, how to be an automation server or controller, and how to support both
automation and linking and embedding at the same time

EXAMPLES/OWL/OCF: ObjectComponents with ObjectWindows

• MdiOle: A multidocument interface application with container capabilities
• SdiOle: A single document interface application with container capabilities
• Tic Tac Toe: A linking and embedding server

SOURCE/OCTOOLS: source code for programming utilities

• AutoGen: Scans a type library and generates proxy classes for an automation
controller

• DllRun: Runs a DLL server in executable mode

• GuidGen: Generates globally unique identifiers (GUIDs)

• Register: Registers or unregisters a server (EXE or DLL)

Glossary of OLE terms
The definitions in this list explain common terms in OLE programming. Read it for an
introduction to important programming topics, or refer to it for clarification as you read
other ObjectComponents chapters.

The definitions of advanced concepts assume you already know something about OLE
and its standard interfaces. For more information about OLE, refer to the three OLE
online Help files.

• Activate: the user activates a linked or embedded object by double-clicking it.
Activating an object causes the server to execute the object's primary verb. For
document-style objects, the primary verb is generally initiates an editing session,
either in-place or open. For other objects, such as movies and sounds, the primary
verb is usually Play. Activating is not the same as selecting; see the entry for Select.

• Aggregation: a way of combining several OLE objects to make them function as a
single bigger object. Objects are aggregated at run time. You can aggregate with
objects that you did not design. An object aggregates to delegate commands or to
inherit and override the functionality of other objects.

Aggregation is an advanced programming technique. In order for aggregated objects
to act as a unit, all the aggregated objects must delegate any Querylnterface call they
receive to the primary object, usually called the outer object. The outer object begins
an aggregation by passing its own !Unknown pointer. The second object remembers
the outer !Unknown pointer and routes all requests for an interface to the outer object.
If the outer object does not support a requested interface, it forwards the request to
the first in what might be a chain of aggregated objects. A client can reach all the
interfaces supported by any of the auxiliary objects through the !Unknown of the
outer object.

• Automated object or application: an OLE object that publishes commands other
applications can send it. An automation server creates automated objects. The

C h a pt e r 1 8 , S u p p o rt Io r 0 LE i n B o r I a n d C + + 295

automated object can be the application itself or something that the application
creates.

• Automation: the ability of an application to define a set of commands for other
applications to invoke.

• Automation controller: an application that invokes commands to control automated
objects or applications. A controller is sometimes called an automation client.

• Automation server: an application that exposes some of its own internal function
calls as a set of commands that other programs can invoke. An automation object is
what the server creates for other programs to control.

• BOCOLE support library: a DLL of OLE implementation utility interfaces that
ObjectComponents calls internally. The support library implements a number of
custom OLE interfaces designed by Borland. The BOCOLE.DLL file should be
distributed with any ObjectComponents program. Its custom interfaces are
considered internal and so are not documented. The source code for the BOCOLE
support library, however, is included with Borland C++.

• COM object: An object whose architecture conforms to the Component Object
Model, a Microsoft specification that forms the basis of the OLE system. Briefly
stated, the characteristics of COM objects are

• They communicate through predefined interfaces.
• They all support the !Unknown interface, and !Unknown includes the Querylnterface

method for getting other optional interfaces.
• They keep a reference count of their clients and delete themselves if the count

reaches zero.

Only COM objects can communicate with OLE. Some of the classes in
ObjectComponents are COM objects (see Connector object). ObjectComponents shields
you from the details of interface methods, interface pointers, and reference counters.
It connects you to OLE using familiar C++ and Windows programming models such
as inheritance and messages.

• Compound document: a document that contains OLE objects brought in from other
applications. A compound document might contain pieces of information from a
spreadsheet, a database, and a word processor, all in one document that the user
loads or saves with a single command. The objects from other applications are either
linked or embedded in the container's document.

• Compound file: a single disk file that the operating system divides into independent
compartments called storages. In effect, each storage has its own file 1/0 pointer so
you can read, write, rewrite, and erase data in any one storage without needing to
maintain offsets to other storages in the same file. Compound files are useful for
storing compound documents because you can create a new storage for each linked
or embedded object. OLE extends the file system by implementing interfaces to
support compound files.

• Connector object: an ObjectComponents class that communicates with OLE for you.
Connector objects connect parts of your application to OLE. TOcApp, for example,
performs OLE functions for the application. TOcView performs OLE functions for
one view of a document. TOcPart performs OLE functions for a linked or embedded

296 0 b j e ct W i n d o w s P r o g r a m m e r ' s G u i d e

object. The connector objects are partners that work together with correspu• 1ding
parts of your application. You call their methods and they send you messages.
Connectors are Component Object Model objects and implement COM interfaces.
(Not all ObjectComponents classes are connectors.)

• Container: an application that permits OLE to embed or link objects from other
applications into its own documents. Containers are also called clients of the servers
that give them objects.

• DLL server: a server whose code is in a dynamic-link library rather than an
executable file. The advantage of a DLL server is speed. When OLE invokes an .EXE
server to support an embedded object, it has to create a a separate process and
marshall data to pass it between the two applications. A DLL, on the other hand, is
part of the same system task as its client, so OLE calls from a container to a DLL
server run much more quickly. See "Making a DLL server" on page 374.

• Document: this word has two different meanings for programmers. First, a
document is a set of data that an application loads in response to File I Open. A
document can be a spreadsheet, or a bitmap, or a letter, or any other set of data that
an application treats as a whole.

Sometimes it is useful to distinguish between the data in a document and the
appearance of the data onscreen. A spreadsheet, for example, might be able to
display a single set of data as either a table of numbers or a chart. One document can
be displayed different ways. In such cases, document refers only to the data, and each
possible representation of the document is called a view.

ObjectWindows programmers are familiar with an application architecture called the
Doc/View model that separates the code for managing document data from the code
for displaying the data. ObjectComponents also has a document class and view
classes, but they are not part of the ObjectWindows Doc/View model. The document
class keeps track of the objects embedded in a document and the view classes draw
the objects onscreen.

• Embedded object: data from a server application deposited by OLE in a container's
document. OLE lets the user paste, drag, or insert objects into a container. If during
these actions the user chooses to create an embedded object, then all the data in the
object is copied to the container's document. When the user loads or saves the
document, the data for the embedded object is written to the file along with the
container's own native data.

Contrast embedded objects with linked objects, where the the data for the OLE object
is stored in another application and the container receives only a reference to the
object's file.

• EXE server: aserver application compiled and linked into an executable file. A server
can also be built as a library; see DLL server.

• GUID: globally unique identifier, a 16-byte value. OLE uses GUIDs to identify
applications, the objects they produce, and the interfaces that objects implement. For
linking and embedding, OLE needs GUIDs to match embedded objects to their
servers even after the user transfers a compound document from system to system. If
two servers had the same ID, OLE might accidentally invoke the wrong one. Each

C h a p I e r 1 8 , S u p p o r I f o r 0 L E i n B o r I a n d C ++ 297

server and object type must have an absolutely unique ID. Tools such as GUIDGEN
create the ID for you. For more information, see the clsid entry in the Object Windows
Reference Guide.

• !Dispatch interface: the OLE interface that all automated objects implement. With
the four methods of the !Dispatch interface, you can ask any automated object for
information about its automated commands, look up the identifiers for particular
commands, or invoke any command. For more information, see the OLE.HLP Help
file.

• In-place editing: editing an OLE object in the container's window. During in-place
editing, the container lets the server display its own menus and tool bars in the
container's window. The purpose of in-place editing is to let the user edit any object
in a document without leaving the document's window. In-place editing is illustrated
in Figure 18.3 on page 270. Contrast Open editing.

• In-process server: same as DLL server.

• Interface: a set of function prototypes, usually declared as an abstract base class. OLE
objects are able to communicate with each other because they implement standard
interfaces, sets of functions that the system defines. The system defines only what
functions an interface contains; it does not implement the functions. Each object
implements the functions for itself. The interfaces are defined in the OLE system
headers such as compobj.h and ole2.h. The OLE system communicates with
applications and objects by calling the functions it assumes each one has
implemented. For more about the OLE interface model, see the entry for Component
Object Model (COM). For examples of standard OLE interfaces, see !Dispatch and
!Unknown.

Besides the standard interfaces, an object can define and implement its own custom
interfaces. Of course the system can't call functions from custom interfaces because it
doesn't know they exist, but other applications that know about the custom interface
can use it. Internally, ObjectComponents works through a set of Borland custom
interfaces. See BOCOLE support library.

ObjectComponents shields you from having to understand or implement particular
interfaces. Advanced users who want to manipulate interfaces directly or mix in their
own custom interfaces are free to do so.

• !Unknown interface: the root interface that all OLE objects and interfaces must
implement. With the three methods of the !Unknown interface, you can ask any object
for a pointer to another interface it might also support, and you can adjust the object's
reference count. For more information, see the OLE.HLP Help file.

• Linked object: an object that appears in a container document but whose data really
resides in another file. When dragging or pasting an object into a container, the user
can choose to create a link to the object instead of embedding it. The container does
not receive or store the linked object's data in its own document. Instead, it receives
only a string identifying the location of the actual data, which can be in a file.

Several containers can link to the same object. In that case, all the containers receive
the same string pointing to the same object. If the data in the original object changes,
then the changes are reflected automatically in all the documents that link to it. If the

298 0 b j e ct W i n d o w s P r o g r a m m e r ' s G u i d e

user embeds one object in several containers, then each container has its own copy of
the object's data and changes in one copy do not affect the other copies.

• Link source: the document that a link refers to, the source for the data in a linked
object. Usually the link source is a server document, but it is not uncommon for
containers to export link source data so that other applications can link to objects
embedded or linked in the container's document. For information on becoming a link
source, see the entry for REGFORMAT in the ObjectWindows Reference Guide.

• Localization: adapting an application to display strings in the user's language,
whatever that might be. OLE servers need to speak the language of their client
programs. If an automation server is marketed in several countries, it needs to
recognize commands sent in each different language. A linking and embedding
server registers strings that describe its objects to the user, and those too should be
available in multiple languages in order to accommodate whatever language the user
might request. ObjectComponents lets you place translations for all your strings in
your resource file as XLAT resources. ObjectComponents chooses the right string at
the right time.

• ObjectComponents Framework: a set of C++ classes from Borland International that
encapsulate linking and embedding functions as well as automation functions.
Internally the ObjectComponents classes implement standard and custom OLE
interfaces. With ObjectComponents you write for OLE using familiar programming
models such as inheritance and window messages instead of implementing COM
interfaces.

• ObjectWindows Library: a set of C++ classes from Borland International that
encapsulate standard Windows programming functions such as managing windows
and dialog boxes. The current version of ObjectWindows introduces some new
classes, such as TOie Window and TOie View, that use ObjectComponents classes to ·
acquire OLE capabilities. The new classes make it very easy to add OLE support to
existing ObjectWindows applications.

• OLE: object linking and embedding, an extension to the Windows system. (In newer
versions of Windows, OLE is an integral part of the system, not an extension.) The
new commands that OLE implements and the interfaces it defines add many new
features to the system, including linking and embedding, automation, and
compound file 1/0.

• OLE interface: see Interface.

• Open editing: editing an OLE object in the server's own window. Open editing
happens when the user executes the Open verb. During open editing, the server's
window opens up in front of the container's window. When the user finishes editing
the object, the server window disappears and the modifications become visible back
in the container window. Open editing is illustrated in Figure 18.J on page 275.
Contrast In-place editing.

• Part: an object linked or embedded in a compound document. An ObjectComponents
container creates an object of class TOcPart to represent each object linked or
embedded in its document.

Chapter 18, Support for OLE in Borland Ct+ 299

Part is the container's word for an object created by a server. In the server's code, the
same object is created as a normal server document. ObjectComponents presents the
docUm.ent to OLE as an OLE object. The container, when it receives the OLE object,
creates a TOcPart. When the part needs to be painted, the part object communicates
through OLE with the server's view object.

• Reference counting: a way of remembering how many clients an object has. Every
section of code that requires the object to exist calls the object's AddRef method to
increment the reference count. When the client code is done, it calls the object's
Release method to decrement the reference count. If a Release call causes the count to
reach 0, then the object is allowed to destroy itself.

Every OLE object has AddRef and Release methods because they are part of the
IUnknown interface. Knowing who is a client and when to call AddRef or Release is
sometimes complicated. ObjectComponents manages reference counting for you.
Only advanced users will find any need to call AddRef or Release directly.

• Registrar object: an object of type TRegistrar or TOcRegistrar. Every
ObjectComponents application needs a registrar object. The registrar processes the
application's command line, sets running mode flags, verifies the application's
entries in the system registration database, and calls the application's factory function
to launch the application. ·

• Registration: giving information about the application to the system. OLE programs
perform two different kinds of registration. When an application is first installed,
ObjectComponents writes information from the application's registration tables into
the system registration database. This information is static and needs to be recorded
only once. The registrar object performs this task

Subsequently whenever the user launches the application, ObjectComponents tells
OLE that the application is running and it registers a factory for each type of
document the application can produce. When the application ends,
ObjectComponents unregisters the factories. The TOcApp or TRegistrar object
performs this task

• Registration database: see System registration database.

• Registration table: a table built with registration macros and containing information
about an application or about the types of documents an application creates. The
macros create a structure of type TRegList. The registrar object reads the registration
structure and copies any necessary information to the system registration database.

• Remote view: the view of its own object a server draws in a container's window.
When an ObjectComponents server is launched to manage an object linked or
embedded in a container's document, the server creates a TOcRemView object and a
TOcDocument object. The view object draws in the container's window. The
document object loads and saves the object's data.

300 ObjectWindows Programmer's Guide

• Select: the user selects an object by clicking it once. The selected object does not
become active and cannot be edited. Conventionally a container indicates that an
object is selected by drawing a rectangle with grapples around the object. (Grapples
are small handles for moving the rectangle.) The container might permit the user to
select several objects at once to move or delete as a group, but usually only one object
per child window can be active at a time.

• Server: an application that creates objects for other applications to use. In this
documentation, server usually refers to either a linking and embedding server or an
automation server. A linking and embedding server creates data objects that
containers can paste, drop, or insert into their own compound documents. An
automation server creates objects that other applications can manipulate by sending
commands for the object to execute. (A single application can choose to create both
kinds of objects. It is even possible to link and embed automated objects.)

• System registration database: a structured repository of information about
applications installed on a particular computer. In 16-bit Windows, the database is
kept in the REG.DAT file. In 32-bit Windows, the database is called the system registry
and resides in private system files. Applications record their information during
installation. The information includes identifiers for the application and its
documents, descriptions of the application and its documents, the path to the
application file, the default extension of the application's document files, and other
details that help the OLE system associate servers with their objects.

• Type library: a file describing the commands an automation controller supports.
Creating a type library is the standard way for an automation server to publish the
programming interface it implements. The type library tells what objects the server
creates and describes the objects' properties and methods. Type information is read
by compilers and interpreters that process automation commands. Some applications
also allow the user to browse the type information.

Any ObjectComponents automation server generates a type library if you invoke it
with the -TypeLib command line switch. Type libraries conventionally use the .TLB
or .OLB extension. An automation server registers the location of its type library
during installation.

• Verb: a command that a linking and embedding server can execute with its objects.
The server tells the container what verbs it supports and the container displays the
verb strings on its own Edit menu. To execute a verb, the user selects an object and
then chooses a verb from the menu. The container updates the verb menu each time
the user selects a new object.

The server can support any verbs it chooses. Most servers support the Edit and Open
verbs for in-place or open editing. Depending on the kind of data it owns, a server
might choose to offer other verbs such as Play and Rewind.

• View: the graphical representation of data. The term is used to distinguish between
the way the data is painted and the data itself, usually called the document. A single
word processor document, for example, might have three different views: a page
layout view, a draft view without fancy fonts, and a print preview view.

Chapter 18, Support for OLE in Borland C++ 301

In ObjedComponents, mntainers create views to draw their compound documents.
Servers also create views.to draw the objects they create. Both create a TOcDocument
object to manage the data and a view object, either TOc View or TOcRem View, to draw
the document.

In Object Windows, Doc/View refers to a particular application architecture supported
by the framework that also treats data and its representation in separate classes.

302 ObjectWindows Programmer's Guide

Creating an OLE container
An OLE container is an application that can store in its own documents data objects
taken from other applications. A container can link objects or embed them in its
documents. A program that creates objects to be linked or embedded is called a server.

This chapter explains how to take existing programs and turn them into OLE containers.
It describes the steps required for adapting three different kinds of programs:

• An ObjectWindows application that uses the Doc/View model
• An ObjectWindows application that does not use the Doc/View model
• AC++ application that does not use ObjectWindows

The first case turns out to be very simple. The last case, relying entirely on the
ObjectComponents Framework, requires the most new code, but it is still substantially
easier than programming directly to OLE.

Turning a DocNiew application into an OLE container
Turning a Doc/View application into an OLE container requires only a few
modifications. The following list describes the changes briefly. Subsequent sections give
more detail for each one.

Connect your application, window, document, and view objects to OLE.

"' Derive your application class from TOcModule as well as T Application.
,. Derive frame window, document, and view classes from new OLE-enabled

classes.

Create a T App Dictionary object.

2 Register the application .

.. Using macros, build registration tables to describe your application.
"' Create a registrar object and call its Run method.

Chapter 19, Creating an OLE container 303

3 Support OLE commands.

"' Set up your Edit menu and tool bar using the appropriate predefined identifiers to
support standard OLE commands.

" Make your Open and Save commands read and write embedded objects in your
compound documents.

4 Build the container application.

Include new ObjectWindows OLE headers at the beginning of your source code.

"' Compile the program using the large memory model. Link to the OLE and
ObjectComponents libraries.

That's all you need to do. By following these steps, you can create an OLE container that
supports all the following features:

• Linking • Embedding
• OLE clipboard operations • Drag and drop operations
• In-place editing • Tool bar and menu merging
• Compound document storage

You also get standard OLE 2 user interface features, such as object verbs on the Edit
menu, the Insert Object dialog box, and a pop-up menu that appears when the user
right-clicks an embedded object.

ObjectComponents provides default behavior for all these common OLE features.
Should you want to modify the default behavior, you can additionally choose to
override the default event handlers for messages that ObjectComponents sends. For a
list of the event messages, see Tables 18.5 and 18.6.

The code examples in this section are based on the STEP14.CPP and STEP14DV.CPP
sample programs in EXAMPLES/OWL/TUTORIAL. Look there for a complete
working program that incorporates all the prescribed steps.

1. Connecting objects to OLE
Your application, window, document, and view objects need to make use of new OLE
enabled classes. The constructor for the application object expects to receive an
application dictionary object, so create that first.

Deriving the application object from TOcModule
The application object of an ObjectComponents program needs to derive from
TOcModule as well as T Application. TOcModule coordinates some basic housekeeping
chores related to registration and memory management. It also connects your
application to OLE. More specifically, TOcModule manages the connector object that
implements COM interfaces on behalf of an application.

304 ObjectWindows Programmer's Guide

If the declaration of your application object looks like this:

class TMyApp public TApplication
public:

TMyApp() TApplication() {};

};

Then change it to look like this:

class TMyApp : public TApplication, public TOcModule {
public:

'l'M,r.l\pp () : '1'2'.pplico:tion (: :AppReg ["appname"] , : :Module, & : : AppDictionary) {);

};

The constructor for the revised TMyApp class takes three parameters.

• A string naming the application

AppReg is the application's registration table, shown later in "Building registration
tables." The expression ::AppReg[11appname 11

] extracts a string that was registered as
the application's name.

• A pointer to the application module.

Module is a global variable of type TModule* defined by ObjectWindows.

• The address of the application dictionary.

AppDictionary is the application dictionary object explained in the previous section.

Inheriting from OLE classes
ObjectWindows includes classes that let windows, documents, and views interact with
the ObjectComponents classes. The ObjectWindows OLE classes include default
implementations for most normal OLE operations. To adapt an existing Object Windows
program to OLE, change its derived classes so they inherit from the OLE classes. Table
19.1 shows which OLE class replaces each of the non-OLE classes.

Table 19.1 Non-OLE classes and the corresponding classes that add OLE support

TFrameWindow

TMDIFrame

TDecoratedFrame

TDecoratedMDIFrame

TWindow

TDocument

TView

· TFileDocument

TOleFrame

TOleMDIFrame

TO!eFrame

TO!eMDIFrame

TOie Window

TOie Document

TOie View

TO le Document

The TOleFrame and TOleMDIFrame classes both derive from decorated window classes.
The OLE 2 user interface requires containers to handle tool bars and status bars. Even if

Chapter 19, Creating ~in OLE container 305

the container has no decorations, servers might need to display their own in the
container's window. The OLE window classes handle those negotiations for you.

Wherever your existing OWL program uses a non-OLE class, replace it with an OLE
class, as shown here. Boldface type highlights the change.

Before

II pre-OLE declaration of a window class
class TMyFrame: public TFrameWindow (I* declarations *I I;

After

II new declaration of the same window class
class TMyFrame: public TOleFrame { I* declarations *I);

Note If the implementation of your class makes direct calls to its base class, be sure to change
the base class calls, as well. Response tables also refer to the base class and need to be
updated.

Creating an application dictionary
An application dictionary tracks information for the currently active process. It is
particularly useful for DLLs. When several processes use a DLL concurrently, the DLL
must maintain multiple copies of the global, static, and dynamic variables that represent
its current state in each process. For example, the DLL version of ObjectWindows
maintains a dictionary that allows it to retrieve the T Application corresponding to the
currently active client process. If you convert an executable server to a DLL server, your
application too must maintain a dictionary of the T Application objects representing each
of its container clients. If your DLL uses the DLL version of Object Windows, then your
DLL needs its own dictionary and cannot use the one in ObjectWindows. ·

The DEFINE_APP _DICTIONARY macro provides a simple and unified way to create
the application object for any application, whether it is a container or a server, a DLL or
an EXE. Insert this statement with your other static variables:

DEFINE_APP_DICTIONARY(AppDictionary);

For any application linked to the static version of the DLL, the macro simply creates a
reference to the application dictionary in ObjectWindows. For DLL servers using the
DLL version of ObjectWindows, however, it creates an instance of the T App Dictionary
class.

Note Name your dictionary object App Dictionary to take advantage of the factory templates
such as TOleDocViewFactory (as explained in the section, "Creating a registrar object").

2. Registering a container
To register your application with OLE, create registration tables describing the
application and the kinds of documents it creates. Create a registrar object to process the
information in the tables.

306 ObjectWindows Programmer's Guide

Building registration tables
OLE requires programs to identify themselves by registering unique identifiers and
names. OLE also needs to know what Clipboard formats a program supports. Doc/
View applications also register their document file extensions and document flags. To
accommodate the many new items an application might need to register, in
ObjectWindows 2.5 you use macros to build structures to hold the items. Then you can
pass the structure to the object that needs the information. The advantage of this method
lies in the structure's flexibility. It can hold as many or as few items as you need.

Note Previous versions of ObjectWindows passed some of the same information in
parameters. Old code still works unchanged, but passing information in registration
structures is the recommended method for all new applications.

A Doc/View OLE container fills one registration structure with information about the
application and then creates another to describe each of its Doc/View pairs. The
structure with application information is passed to the TOcRegistrar constructor, as
you'll see in the next section. Document registration structures are passed to the
document template constructor.

Here are the commands to register a typical container:

REGISTRATION_FORMAT_BUFFER(lOO) II allow extra space for expanding macros

BEGIN_REGISTRATION(AppReg) II information for the TOcRegistrar constructor
REG DATA (els id, " { 3 83882Al -8ABC-101B-A23B-CE4E85D07ED2)")
REGDATA(appname, "DrawPad Container")

END_REGISTRATION

BEGIN_REGISTRATION(DocReg) II information for the document template
REGDATA(progid, "DrawPad. Document .14" I
REGDATA(description,"Drawing Pad (Step14--Container) ")
REGDATA (extension, "pl4")
REGDATA(docfilter, "*.p14")
REGDOCFLAGS(dtAutoOpen I dtAutoDelete I dtUpdateDir I dtCreatePrompt I dtRegisterExt)
REGFORMAT(O, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
REGFORMAT(l, ocrMetafilePict, ocrContent, ocrMfPictlocrStaticMed, ocrGet)
REGFORMAT(2, ocrBitmap, ocrContent, ocrGDilocrStaticMed, ocrGet)
REGFORMAT(3, ocrDib, ocrContent, ocrHGloballocrStaticMed, ocrGet)
REGFORMAT(4, ocrLinkSource, ocrContent, ocrIStream, ocrGet)

END_REGISTRATION

The registration macros build structures of type TRegList. Each entry in a registration
structure contains a key, such as clsid or progid, and a value assigned to the key.
Internally ObjectComponents finds the values by searching for the keys. The order in
which the keys appear does not matter.

Insert the registration macros after your declaration of the application dictionary. Since
the value of the clsid key must be a unique number identifying your application, it is
recommended that you generated a new value using the GUIDGEN.EXE utility. (The
Object Windows Reference Guide entry for clsid explains other ways to generate an
identifer.) Of course, modify the value of the description key to describe your container.

Chapter 19, Creating an OLE container· 307

The example builds two structures, one named App Reg and one named DocReg. AppReg
is an application registration structure and DocReg is a document registration structure. Both
structures are built alike, but each contains a different set of keys and values. The keys in
an application registration structure describe attributes of the application. A document
registration structure describes the type of document an application can create. A
document's attributes include the data formats that it can exchange with the clipboard,
its file extensions, and its document type name.

The set of keys you place in a structure depends on what OLE capabilities you intend to
support. The macros in the example show the minimum amount of information a
container should provide.

Table 19.2 briefly describes all the registration keys that a container can use. It shows
which are optional and which required as well as which belong in the application
registration table and which in the document registration table.

Table 19.2 Keys a container registers to support linking and embedding

appname Optional No A short name for the application

els id Yes Optional Globally unique identifier (GUID); generated
automatically for the DocReg structure.

description No Yes Descriptive string (up to 40 characters)

progid No Yes for a link Identifier for program or document type (unique
source string)

extension No Optional Document file extension associated with server

docfilter No Yes Wildcard file filter for File Open dialog box

docflags No Yes Options for numing the File Open dialog box

formatn No Yes A clipboard format the container supports

directory No Optional Default directory for storing document files

permid No Optional Name string without version information

permname No Optional Descriptive string without version information

version Optional No Major and minor version numbers (defaults to "1.0")

The table shows what is required for container documents that let other containers link
to their embedded objects. For documents that do not support linking to embedded
objects, the container needs to register only docflags and docfilter.

If your container is also a linking and embedding server or an automation server, then
you should also consult the server table on page 346 or the automation table on
page 384. Register all the keys required in any tables that apply to your application.

For more information about registration tables, see "Understanding registration" on
page 372. For more information about individual registration keys and the values they
hold, see the ObjectWindows Reference Guide.

The values assigned to keys can be translated to accommodate system language
settings. For more about localization, see the section "Registering localized entries" on
page 373 and "Localizing symbol names" on page 397.

308 ObjectWindows Programmer's Guide

Understanding registration macros
The first macro in the example, REGISTRATION_FORMAT_BUFFER, sets the size of a
buffer needed temporarily as the macros that follow are expanded. For more about
about determining the buffer size, see page 347.

The REGDATA, REGFORMAT, and REGDOCFLAGS macros place items in the
registration structure. All the registration macros are documented in the Object Windows
Reference Guide.

REGDATA's first parameter is a key and the second is a value to associate with the key.
In the example, the AppReg structure begins by assigning a value to the key clsid. The
clsid is a globally unique identifier (GUID) specifying the application. The application's
progid is a text string that serves the same purpose. The description key briefly describes
the application (Drawing Pad (Step14---Container)). Of these three keys, only the
description value is visible to users. (Users also see the progid if the application is
automated; see Chapter 21, "Automating an application.") The document structure
registers its own progid and description. Although each document type also needs its own
unique clsid, if you omit it ObjectComponents supplies it for you by incrementing the
application's clsid.

REGFORMA T entries list the data formats that the container can place on the Clipboard.
The first parameter sets a priority order for the formats you use. 0 marks the format that
renders data with the best fidelity, and higher numbers indicate lower fidelity. The
second parameter represents a data format. The other parameters tell what presentation
aspect of the format you use, what medium you use to transfer the data, and whether
you can supply and receive Clipboard data in that format. All the data formats you
specify with REGFORMAT are registered with the Windows Clipboard for you.

Even a simple container is usually capable of placing OLE objects on the Clipboard. If
the user selects a linked or embedded object from the container's document and wants
to transfer it through the Clipboard to another container, then the first container needs
to act as a server by supporting at least the ocrEmbedSource or ocrLinkSource formats. Any
application that registers either of these formats must also register ocrMetafilePict. The
usual case is to register the five formats shown in the example. ObjectComponents
automatically handles OLE objects in any of the standard formats for you. All you have
to do is register the ones you want to support.

To register user-defined formats, replace the data format parameter with a string
naming your format.

REGFORMAT(3, "MyOwnFormat", ocrContent, ocrIStorage, ocrGet)

If you register any custom Clipboard formats, you must also provide OLE with strings
to describe your format in dialog boxes. Call AddUserFormatName, a method on classes
derived from TOleFrame, to supply the descriptions.

For more information, see REGFORMAT in the Object Windows Reference Guide.

REGDOCFLAGS adds to the registration structure an entry containing flags for a
document template. The flags set options for running the File Open common dialog box.

After creating registration tables, you must pass them to the appropriate object
constructors. The AppReg structure is passed to the TOcRegistrar constructor, as

Chapter 19, Creating an OLE container 309

described in "Creating a registrar object." In a Doc/View application, document
registration tables are passed to the document template constructor.

DEFINE_DOC_TEMPLATE_CLASS(TMyOleDocument, TMyOleView, MyTemplate);
MyTemplate myTpl(DocReg);

A program that uses several document templates should create a different registration
table for each template. Each registration table must start with the
BEGIN_REGISTRATION macro and have a different name, for example DocReg1 and
DocReg2.

All the information that normally gets passed to a document template constructor can
be placed in a registration structure using REGFORMAT, REGDOCFLAGS, and
REGDATA. Previous versions of OWL passed the same information to the document
template as a series of separate parameters. The old method is still supported for
backward compatibility, but new programs, whether they use OLE or not, should use
the registration macros to supply document template parameters.

Creating a registrar object
Every ObjectComponents application needs a registrar object to manage its registration
tasks. In a linking and embedding application, the registrar is an object of type
TOcRegistrar. At the top of your source code file, declare a global variable holding a
pointer to the registrar.

static TPointer<TOcRegistrar> Registrar;

The TPointer template ensures that the TOcRegistrar instance is deleted when the
program ends.

Note Name the variable Registrar to take advantage of the factory callback template used in
the registrar's constructor.

The next step is to modify your OwlMain function to allocate a new TOcRegistrar object
and initialize the global pointer Registrar. The TOcRegistrar constructor expects three
parameters: the application's registration structure, the component's factory callback
and the command line string that invoked that application.

• The registration structure you create with the registration macros.

• The factory callback you create with a template class.

For a linking and embedding ObjectWindows application that uses Doc/View, the
template class is called TOleDocViewFactory. The code in the factory template
assumes you have defined an application dictionary called App Dictionary and a
TOcRegistrar* called Registrar.

• The command line string can come from the GetCmdLine method of T Application.

int
OwlMain(int l*argc*I, char* l*arrJV*I [])
{

try {
II Create Registrar object
Registrar= new TQcRegistrar(::AppReg, TOleDocViewFactory<TMyApp>(),

TApplication::GetCmdLine());

310 ObjectWindows Programmer's ,Guide

return Registrar->Run();

catch (xmsg& x) {
::MessageBox(O, x.why().c_str(), "Exception", MB_OK);

return -1;

After initializing the Registrar pointer, your OLE container application must invoke the
Run method of the registrar instead of TApplication::Run. For OLE containers, the
registrar's Run simply invokes the application object's Run to create the application's
windows and process messages. However, using the registrar method makes your
application OLE server-ready. The following code shows a sample OwlMain before and
after the addition of a registrar object. Boldface type highlights the changes.

Before:

II Non-OLE OwlMain
int
OwlMain(int l*argc*I, char* l*argv*l[J I
{

return TMyApp() .Run();

After adding the registrar object:

int
OwlMain(int l*argc*I, char* l*argv*l[J)
{

::Registrar= new TOcRegistrar(::AppReg,
TOleDocViewFactory<TMyApp>(},
TApplication::GetCmdLine(}};

return ::Registrar->Run(};

The last parameter of the TOcRegistrar constructor is the command line string that
invokes the application. The registrar object processes the command line by searching
for switches, such as -Embedding or -Automation, that OLE may have placed there.
ObjectComponents takes whatever action the switches call for and then removes them.
If for some reason you need to test the OLE switches, be sure to do it before constructing
the registrar. If you have no use for the OLE switches, wait until after constructing the
registrar before parsing the command line. For more information about command line
switches, see "Processing the command line" on page 349.

3. Supporting OLE commands
A container needs to place some standard OLE commands on its Edit menu.
ObjectWindows implements the commands for you. A container also needs to let
ObjectComponents read and write any linked or embedded objects when loading or
saving documents.

Chapter 19, Creating an OLE container 311

Setting up the Edit menu and the tool bar
An OLE container places OLE commands on its Edit menu. Table 19.3 describes the
standard OLE commands. It's not necessary to use all of them, but every container
should support at least Insert Object, to let the user add new objects to the current
document, and Edit Object, to let the user activate the currently selected object. The
TO le View class has default implementations for all the commands. It invokes standard
dialog boxes where necessary and processes the user's response. All you have to do is
add the commands to the Edit menu for each view you derive from TOleView.

Table 19.3 Commands an OLE container places on its Edit menu

Paste Special

Paste Link

Insert Object

Edit Links

Convert

Object

CM_EDITP ASTESPECIAL Lets the user choose from available formats for pasting
an object from the Clipboard.

CM_EDITP ASTELINK Creates a link in the current document to the object on
the Clipboard.

CM_EDITINSERTOBJECT Lets the user create a new object by choosing from a
list of available types.

CM_EDITLINKS Lets the user manually update the list of linked items
in the current document.

CM_EDITCONVERT Lets the user convert objects from one type to another.

CM_EDITOBJECT Reserves a space on the menu for the server's verbs
(actions the server can take with the container's object).

If your OLE container has a tool bar, assign it the predefined identifier IDW _TOOLBAR.
ObjectComponents must be able to find the container's tool bar if a server asks to
display its own tool bar in the container's window. If ObjectComponents can identify
the old tool bar, it temporarily replaces it with a new one taken from the server. For
ObjectComponents to identify the container's tool bar, the container must use the
IDW _TOOLBAR as its window ID, as shown here.

TControlBar *cb =new TControlBar(parent);
cb->Attr.Id = IDW_TOOLBAR; //use this identifier

The TOleFrame::EvAppBorderSpaceSet method uses the IDW _TOOLBAR for its default
implementation. A container can provide its own implementation to handle more
complex situations, such as merging with multiple tool bars.

Loading and saving compound documents
When the user pastes or drops an OLE object into a container, the object becomes data in
the container's document. The container must store and load the object along with the
rest of the document whenever the user chooses Save or Open from the File menu. The
new Commit and Open methods of TOleDocument perform this chore for you. All you
have to do is add calls to the base class in your own implementation of Open and
Commit. The code that reads and writes your document's native data remains
unchanged.

Because TOleDocument is derived from TStorageDocument rather than TFileDocument, it
always creates compound files. Compound files are a feature of OLE 2 used to organize
the contents of a disk file into separate compartments . You can ask to read or write from
any compartment in the file without worrying about where on the disk the

312 ObjectWindows Programmer's Guide

comparhnent begins or ends. OLE calls the comparhnents storages. The storages in a file
can be ordered hierarchically, just like directories and subdirectories. Any storage
comparhnent can contain other sub-storages.

Compound files are good for storing compound documents. When you call Open or
Commit, ObjectComponents automatically creates storages in your file to hold whatever
objects the document contains. All the document's native data is saved in the file's root
storage. Your existing file data structure remains intact, isolated in a separate
comparhnent. The following code shows how load compound documents.

II document class declaration derived from TOleDocument
class _DOCVIEWCLASS TMyDocun.>e!!t : public TOleDocument {

II declarations

II document class implementation
bool
TDrawDocument::Open(int mode, canst char far* path)

TOleDocument::Open(mode, path); II load any embedded objects
II code to load other document data

The TOleDocument::Open command does not actually copy the data for all the objects
into memory. ObjectComponents is smart enough to load the data for particular objects
only when the user activates them.

The next code shows how to save compound documents.

bool
TMyDocument: :Comrnit(bool force)

TOleDocument::Comrnit(force); II save the embedded objects
II code to save other document data

TOleDocument::ComrnitTransactedStorage(); II commit if in transacted mode

By default, TOleDocument opens compound files in transacted mode. Transacted mode
saves changes in a temporary buffer and merges them with the file only after an explicit
command. A revert command discards any uncommitted changes. Commit buffers a
new transaction. CommitTransactedStorage merges all pending transactions.

The opposite of transacted mode is direct mode. Direct mode eliminates buffers and
makes each change take effect immediately. To alter the default mode, override
TOleDocument::PreOpen. Omit the ofTransacted flag to specify direct mode.

Note In order for compound file I/Oto work correctly, you need to include the dtAutoOpen
flag when you register docflags in the document registration table.

4. Building the container
To build the container, include the right headers, compile with a supported memory
model, and link to the ObjectComponents and OLE libraries.

Ch a p I er 1 9, Crea Ii n g an 0 LE con I a in er 313

Including OLE headers
An ObjectComponents program needs the classes, structures, macros, and symbols
defined in the header files for the ObjectWindows OLE classes. The following list shows
the headers needed for an OLE container that uses the Doc/View model and an MDI
frame window.

#include <owlloledoc.h> II replaces docview.h
#include <owlloleview.h> II replaces docview.h
#include <owllolemdifr.h> II replaces mdi.h

An SDI application includes oleframe.h instead of olemdifr.h.

Compiling and linking
Containers that use ObjectComponents and ObjectWindows require the large memory
model. Link them with the OLE and ObjectComponents libraries.

The integrated development environment (IDE) chooses the right build options when
you ask for OLE support. To build any ObjectComponents program from the command
line, create a short makefile that includes the OWLOCFMK.GEN file found in the
EXAMPLES subdirectory. Here, for example, is the makefile that builds the AutoCalc
sample program:

EXERES = MYPROGRAM
OBJEXE = winmain.obj autocalc.obj
HLP = MYPROGRAM
!include $(BCEXAMPLEDIR)\owlocfmk.gen

EXERES and OBJEXE hold the name of the file to build and the names of the object files
to build it from. HLP is an optional online Help file. Finally, your makefile should
include the OWLOCFMK.GEN file.

Name your file MAKEFILE and type this at the command line prompt:

make MODEL=l

Make, using instructions in OWLOCFMK.GEN, builds a new makefile tailored to your
project. The new makefile is called WIN16Lxx.MAK. The final two digits of the name
tell whether the makefile builds diagnostic or debugging versions of the libraries. 01
indicates a debugging version, 10 a diagnostic version, and 11 means both kinds of
information are included. The same command then runs the new makefile and builds
the program. If you change the command to define MODEL as d, the new makefile is
WIN16Dxx.MAK and it builds the program as a DLL.

For more information about how to use OWLOCFMK.GEN, read the instructions at the
beginning of MAKEFILE.GEN, found in the EXAMPLES directory.

Table 19.4 shows the libraries an ObjectComponents program links with.

Table 19.4 Libraries for building ObjectComponents programs

OCFWL.LIB

OWLWL.LIB

BIDSL.LIB

OCFWl.LIB

OWL WI.LIB

BIDSI.LIB

314 ObjectWindows Programmer's Guide

ObjectComponents

Object Windows

Class libraries

Table 19.4 Libraries for building ObjectComponents programs (continued)

OLE2Wl6.LIB

IMPORT.LIB

MATHWL.LIB

CWL.LIB

OLE2W16.LIB

IMPORT.LIB

CRTLDLL.LIB

OLE system DLLs

Windows system DLLs

Math support

C run-time libraries

The ObjectComponents library must be linked first, before the ObjectWindows library.
Also, ObjectComponents requires RTTI and exception handling. Do not use compiler
command line options that disable these features.

Turning an ObjectWindows application into an OLE container
Turning an ObjectWindows application into an OLE container requires a few
modifications. This list describes them briefly. The sections that follow give more detail
for each one.

Set up the application.

• Define an application dictionary object.
" Modify your application object and implement a new method for it.

2 Register the application.

" Use registration macros to describe your container.
" Create a TOcRegistrar object to register and run the application.

3 Set up the client window.

" Use a client window if you have an SDI application and use client windows in
your MDI child windows if you have an MDI application.

" Derive your frame window and client window from the new ObjectWindows
OLE classes.

" Create your frame and client in two steps if you have an SDI application.

• Create a pair of ObjectComponents objects for each document the application
opens.

4 Program the user interface.

" If you override handlers for certain windows messages, be sure to call the handler
in the base class.

• Set up your menu resource to support menu sharing.

• Place standard OLE commands on the Edit menu.

• If you have a tool bar, assign it the standard predefined identifier.

5 Build the application.

• Include new ObjectWindows OLE headers.
• Compile and link the application.

Chapter 19, Creating an OLE container 315

By followmg these steps, you give your ObjectWindows application the following
features:

• Linking • Embedding
• OLE clipboard operations • Drag and drop operations
• In-place editing • Tool bar and menu merging
• Compound document storage • OLE 2 user .interface

The following sections expand on each step required to convert your Object Windows
application into an OLE 2 container. The code excerpts are from the OWLOCFO.CPP
sample in the EXAMPLES/OWL/TUTORIAL/OLE directory. The OWLOCFO.CPP
sample is based on the STEPlO.CPP sample used in the Object Windows Tutorial. It does
not support OLE. OWLOCFl.CPP modifies the first program to create an OLE
container.

1. Setting up the application
This section describes the changes needed to set up the application for
ObjectComponents. The application needs an application dictionary, and the object you
derive from T Application must also derive from TOcModule.

Defining an application dictionary object
When a DLL is used by more than one application or process, it must maintain multiple
copies of the global, static, and dynamic variables that represent its current state in each
process. For example, the DLL version of ObjectWindows maintains a dictionary that
allows it to retrieve the T Application object which corresponds to the current active
process. If you tum your application into a DLL server, the application must also
maintain a dictionary of the T Application objects created as each new client attaches to
the DLL. The DEFINE_APP _DICTIONARY macro provides a simple and unified
method for creating an application dictionary object. Insert the following statement
with your other static variable declarations.

DEFINE_APP_DICTIONARY(AppDictionary);

The DEFINE_APP _DICTIONARY macro correctly defines the App Dictionary variable
regardless of how the application is built. In applications using the static version of
ObjectWindows, it simply creates a reference to the existing ObjectWindows application
dictionary. For DLL-servers using the DLL version of ObjectWindows, however, the
macro declares a instance of the T App Dictionary class. It is important to use the name
App Dictionary when creating your application dictionary object. This allows you to take
advantage of the factory template classes for implementing a factory callback function
(see "Creating a registrar object").

Modifying your application class
ObjectWindows provides the mix-in class TOcModule for applications that support
linking and embedding. Change your application object so it derives from both
T Application and TOcModule as shown in the following example:

II Non-OLE application
class TScribbleApp : public TApplication { I* declarations *I);

316 ObjectWindows Programmer's Guide

II New declaration of same class
class TScribbleApp : public TApplication, public TOcModule { I* declarations *I);

The TOcModule object coordinates basic housekeeping chores related to registration and
memory management. It also connects your application object to OLE.

Your T Application-derived class must provide a CreateOleObject method with the
following signature:

TUnknown* CreateOleObject(uint32 options, TDocTemplate* tpl);

The method is used by the factory template class. Because containers don't create OLE
objects, a container can implement CreateOleObject by simply returning 0. As the next
chapter explains, servers have more work to do to implement CreateOleObject.

II
II non-OLE application class
II
class TScribbleApp public TApplication {

public:
TScribbleApp () TApplication ("Scribble Pad") {}

protected:
InitMainWindow();

};

II
II New declaration of same class
II
class TScribbleApp : public TApplication, public TOcModule {

public:
TScribbleApp () : TApplication (: :AppReg ["description" l) {}
TUnknown* CreateOleObject(uint32, TDocTemplate*){ return O;

protected:
InitMainWindow();

2. Registering a container
To register an application, you build registration tables with macros. Then you pass the
tables to a registrar object to process the information they contain.

Creating registration tables
OLE requires programs to identify themselves by registering unique identifiers and
names. ObjectWindows offers macros that let you build a structure to hold registration
information. The structure can then be used when creating the application's instance of
TOcRegistrar. Here are the commands to create a simple container registration structure:

Chapter 19, Creating an OLE container 317

REGISTRATION_FORMAT_BUFFER(lOO) II create buffer for expanding macros

BEGIN_REGISTRATION(AppReg)
REGDATA(clsid, '{9BOBBE60-B6BD-101B-B3FF-86C8A0834EDE}")
REGDATA (description, "Scribble Pad Conta1ner")

END_REGISTRATION

The first macro, REGISTRATION_FORMAT_BUFFER, sets the size of a buffer needed
temporarily as the macros that are expanded. The REGDATA macro places items in the
registration structure, App Reg. Each item in App Reg is a smaller structure that contains a
key, such as clsid or progid, and a value assigned to the key. The values you assign are
case-sensitive strings. The order of keys within the registration table does not matter.

Insert the registration macros after your declaration of the application dictionary. Since
the value of the clsid key must be a unique number identifying your application, it is
recommended that you generated a new value using the GUIDGEN.EXE utility. (The
ObjectWindows Reference Guide entry for clsid explains other ways to generate an
identifer.) Of course, modify the value of the description key to describe your container.

The AppReg structure built in the sample code is an application registration structure. A
container may also build one or more document registration structures. Both structures are
built alike, but each contains a different set of keys and values. The keys in an
application registration structure describe attributes of the application. A document
registration structure describes the type of document an application can create. A
document's attributes include the data formats that it can exchange with the clipboard,
its file extensions, and its document type name. The OWLOCFl sample application
does not create any document registration structures.

For a list of all the registration keys that a container can use, refer to Table 19.2.

Creating a registrar object
Every ObjectComponents application needs to create a registrar object to manage all of
its registration tasks. Insert the following line after the #include statements in your main
.CPP file.

static TPointer<TOcRegistrar> Registrar;

The TOcRegistrar instance is created in your OwlMain function. Declaring the pointer of
type TPointer<TOcRegistrar> instead of TOcRegistrar* ensures that the TOcRegistrar
instance isdeleted.

Note Name the variable Registrar to take advantage of the TOleFactory template for
implementing a factory callback.

The next step is to modify your OwlMain function to allocate a new TOcRegistrar object
to initialize the global pointer Registrar. The TOcRegistrar constructor requires three
parameters: the application's registration structure, the component's factory callback
and the command line string that invoked that application.

• The registration structure you create with the registration macros (see the preceding
section "Creating registration tables").

• The factory callback you create with an ObjectWindows factory template.

318 ObjectWindows Programmer's Guide

You can write your own callback function from scratch if you prefer, but the
templates are much easier to use. For a linking and embedding ObjectWindows
application that doesn't use Doc/View, the template class is called TOleFactory. The
code in the factory template assumes you have defined an application dictionary
called AppDictionary and a TOcRegistrar* called Registrar.

• The command line string comes from the GetCmdLine method of T Application.

Here is the code to create the registrar.

int OwlMain(int, char*[])
(

II create the registrar object
::Registrar= new TOcRegistrar(: :AppReg, TOleFactory<TScribbleApp>(),

TApplication::GetCmdLine() I;

Factories are explained in more detail in the Object Windows Reference Guide.

After initializing the Registrar pointer, your OLE container application must invoke
TOcRegistrar::Run instead of TApplication::Run. For OLE containers, the registrar's Run
simply invokes the application object's Run to create the application's windows and
process messages. In a server, however, TOcRegistrar::Run does more. Using the
registrar's Run method in a container makes it easier to modify the application later if
you decide to tum it into a server.

Here is the OwlMain from OWLOCFl, omitting for clarity the usual try and catch
statements. The lines in bold are the new code.

Before:

II Non-OLE OwlMain
int
OwlMain(int l*argc*I, char* l*argv*llll
{

return TScribbleApp() .Run();

After adding the registrar object:

int
OwlMain(int l*argc*I, char* l*argv*I[])
{

::Registrar= new TOcRegistrar(::AppReg, TOleFactory<TScribbleApp>(),
TApplication::GetCmdLine());

return ::Registrar->Run();

3. Setting up the client window
An ObjectWindows SDI application can use a frame window that does not contain a
client window. Similarly, an ObjectWindows MDI application can use MDI child
windows that do not contain a client window. Omitting the client window makes it

Chapter 19, Creating an OLE container 319

harder to convert the application from one kind of frame to another-SDI, MDI, or
decorated frame. It is also awkward when building OLE 2 applications. For example, it
is easier for a container's main window to make room for a server's tool bar if the
container owns a client window. To take full advantage ofthe ObjectWindows OLE
classes, your application must use a client window. For more information about using
client windows, see the Object Windows Tutorial.

Inheriting from OLE classes
ObjectWindows provide several classes that include default implementations for many
OLE operations. To adapt an existing ObjectWindows program to OLE, change its
derived classes to inherit from the OLE classes. For a list of the OLE classes and the
corresponding classes they replace, see Table 19.1.

The TOleFrame and TOleMDIFrame classes both derive from decorated window classes.
The OLE 2 user interface requires that containers be prepared to handle tool bars and
status bars. Even if a container has no such decorations, servers might need to display
their own in the container's window. The OLE window classes handle those
negotiations for you. The following code shows how to change the declaration for a
client window. Boldface type highlights the changes.

Before:

II Pre-OLE declaration of a client window
class TScribbleWindow : public TWindow {

II declarations
};

DEFINE_RESPONSE_TABLEl(TScribbleWindow, TWindow);

After changing the declaration to derive from an OLE-enabled class:

II New declaration of the same window class
class TScribbleWindow : public TOleWindow {

II declarations
};

DEFINE_RESPONSE_TABLEl(TScribbleWindow, TOleWindow);

Delaying the creation of the client window in SDI applications
Object Windows applications create their main window in the InitMain Window method
of the T Application-derived class. Typically, SDI applications also create their initial
client window in the InitMain Window function. The following code shows the typical
sequence.

void
TDrawApp::InitMainWindow()
{

II Construct the decorated frame window
TDecoratedFrame* frame = new TDecoratedFrame (0, "Drawing Pad",

new TDrawWindow(O), true);
II more declarations to init and set the main window

When used in the OLE frame and client classes, however, that sequence presents a
timing problem for OLE. The OLE client window must be created after the OLE frame

320 0 b j e ct W i n d o w s P r o g r a m m e r ' s G u i d e

has initialized its variables pointing to ObjectComponents classes. To meet this
requirement, an SDI OLE application should create only the frame window in the
InitMain Window function. Create the client window in the Initinstance method of your
application class. Boldface type highlights the changes.

void
TDrawApp::InitMainWindow()
{

II construct the decorated frame window
TOleFrame* frame = new TOleFrame("Drawing Pad", 0, true);

// rrrore declarations to init and set the main windm1.r

void
TDrawApp::Initinstance(}
{

TApplication::Initinstance(};

II create and set client window
GetMainWindow(}->SetClientWindow(new TDrawWindow(O}};

Creating ObjectComponents view and document objects
For every client window capable of having linked or embedded objects, you must create
a TOcDocument object to manage the embedded OLE objects, and a TOc View object to
manage the presentation of the OLE objects. The CreateOc View method from the
TOleWindow class creates both the container document and the container view. Add a
call to CreateOc View in the constructor of your TO le Window-derived class.

II Pre-OLE declaration of a client window constructor
TScribbleWindow::TScribbleWindow(TWindow* parent, char far* filename)

TWindow(parent, 0, 0)

II New'declaration of client window constructor
TScribbleWindow: :TScribbleWindow(TWindow* parent, char far* filename)
: TOleWindow(parent, 0)
{

II Create TOcDocument object to hold OLE parts
II and TOcView object to provide OLE services.
CreateOcView(O, false, 0};

Notice that unlike the TWindow constructor, the TOleWindow constructor does not
require a title parameter. It is unnecessary because TOleWindow is always the client of a

Chapter 19, Creating an 0 LE container 321

frame. TWindow, on the other hand, can be used as a non-client window-a pop~up, for
example.

4. Programming the user interface
The next set of adaptations provide standard OLE user interface features such as menu
merging and drag and drop.

Handling OLE-related messages and events
ObjectComponents notifies your application's windows of OLE-related events by
sending the WM_OCEVENT message. The ObjectWindows OLE classes provide
default handlers for the various WM_OCEVENT event notifications. Furthermore, the
ObjectWindows classes also process a few standard Windows messages to add
additional features of the standard OLE user interface. For example, if a user double
clicks within the client area of your container window, a handler in TOleWindow checks
whether the click occurred over an embedded object and, if so, activates the object.
Similarly, the TOleWindow::EvPaint method causes each embedded object to draw itself.
Table 19.5 lists the methods implemented by the client window (TOleWindow) and
frame window(TOleFrame, TOleMDIFrame) classes. If you override these handlers in
your derived class you must invoke the base class version.

Table 19.5 Standard message handlers providing OLE functionality

EvSize WM_SIZE Frame Notifies embedded servers of the size
change.

Ev Timer WM_TIMER Frame Invokes IdleAction so that DLL servers
can carry out command enabling.

Ev ActivateApp WM_ACTIV ATEAPP Frame Notifies embedded servers about being
activated.

EvLButtonDown WM_LBUTIONDOWN Client Deactivates any in-place active object.

EvRButtonDown WM_RBUTIONDOWN Client Displays pop-up verb menu if cursor is
on an embedded object.

EvLButtonDblClk WM_LBUTIONDBLCLK Client Activates any embedded object under
the cursor.

EvMouseMove WM_MOUSEMOVE Client Allows user to move or resize an
embedded object.

EvLButtonUp WM_LBUTIONUP Client Informs the selected object of position or
size changes.

EvSize WM_SIZE Client Informs TOc View object that window
has changed size.

EvMdiActivate WM_MDIACTIV ATE Client Informs TOc View object that window
has changed size.

EvMouseActivate WM_MOUSEACTIV ATE Client Forwards the message to the top-level
parent window and returns the code to
activate the client window.

EvSetFocus WM_SETFOCUS Client Notifies any in-place server of focus
change.

EvSetCursor WM_SETCURSOR Client Changes cursor shape if within an
embedded object.

322 0 b j e ct Windows Pro g ram mer' s G u id e

Table 19.5 Standard message handlers providing OLE functionality (continued)

Ev Drop Files WM_DROPFILES Client Embeds dropped file(s).

Ev Paint WM_PAINT Client Causes embedded objects to paint.

EvCommand WM_ COMMAND Client Processes command IDs of verbs.

EvCommandEnable WM_COMMANDENABLE Client Processes command IDs of verbs.

In some cases, you might need to know what action the base class handler took before
you decide what to do in your overriding handler. This is particularly true for mouse
related messages. If the base class handled a double-dick action, for example, the user
intended the action to activate an object and you probably don't want your code to
reinterpret the double-dick as a different command. The code that follows shows how
to coordinate with a base class handler. These three procedures let the user draw on the
surface of the client window with the mouse.

void
TMyClient: :EvLButtonDown(uint modKeys, TPoint& pt)
{

if (!Drawing) (
SetCapture()
Drawing = true;

II additional GDI calls to display drawing

void
TMyClient::EvMouseMove(uint modKeys, TPoint& pt)
(

if (Drawing) (
II additional GDI calls to display drawing

void
TMyClient::EvLButtonUp(uint modKeys, TPoint& pt)
(

if (Drawing) {
Drawing = false;
ReleaseCapture();

As an OLE container, however, the client window may contain embedded objects.
Mouse events performed on these objects should not result in any drawing operation.
This code shows the handlers updated to allow and check for OLE related processing.
Boldface type highlights the changes.

void
TMyClient: :EvLButtonDown(uint modKeys, TPoint& pt)
(

TOleWindow::EvLButtonDown(rnodKeys, pt);

C h a p t e r 1 9 , C r e at i n g a n 0 L E c o n t a i n e r 323

if (!Drawing && !SelectEmbedded())
SetCapture I)
Drawing = true;

II additional GDI calls to display drawing

void
TMyClient::EvMouseMove(uint modKeys, TPoint& pt)
{

TOleWindow::EvMouseMove(modKeys, pt);

if (Drawing && !SelectEmbedded())
II additional GDI calls to display drawing

void
TMyClient: :EvLButtonUp(uint modKeys, TPoint& pt)
{

if (Drawing && !SelectEmbedded())
Drawing = false;
ReleaseCapture();

TOleWindow::EvLButtonUp(modKeys, pt);

The SelectEmbedded method is inherited from TOleWindow. It returns true if an
embedded object is currently being moved. The client window calls it to determine
whether a mouse message has already been processed by the OLE base class.

Typically, your derived class must call the base class handlers before processing any
event or message. The EvLButtonUp handler, however, calls the base class last. Doing so
allows the handler to rely on SelectEmbedded which is likely to be reset after TOleWindow
processes the mouse-up message.

Supporting menu merging
The menu bar of an OLE container with an active object is composed of individual
pieces from the normal menus of both the container and server. The container
contributes pop-up menus dealing with the application frame or with documents. The
server, on the other hand, provides the Edit menu, the Help menu, and any menus that
let the user manipulate the activated object.

OLE divides the top-level menus of a menu bar into six groups. Each group is a set of
contiguous top-level drop-down menus. Each group is made up of zero or more pop-up
menus. The menu groups are named File, Edit, Container, Object, Window, and Help.
The group names are for convenience only. They suggest a common organization of
related commands, but you can group the commands any way you like.

324 ObjectWindows Programmer's Guide

When operating on its own, a container or server provides the menus for all of the six
groups. During an in-place edit session, however, the container retains control of the
File, Container and Window groups while the server is responsible for the Edit, Object,
and Help groups.

The TMenuDescr class automatically handles all menu negotiations between the server
and the container. You simply identify the various menu groups within your menu
resource, and ObjectWindows displays the right ones at the right times.

To indicate where groups begin and end in your menu resource, insert SEPARATOR
menu items between them. Remember to mark all six groups even if some of them are
empty. The TMenuDescr class scans for the separators when loading a menu from a
resource. It removes the separators found between top-level entries and builds a
structure which stores the number of pop-up menus assigned to each menu group. This
information allows ObjectWindows to merge the server's menu into your container's
menu bar.

The following menu resource script, taken from STEPIO.RC in the Object Windows
Tutorial tutorial, illustrates defining a simple application menu before it is divided into
groups.

COMMANDS MENU
{

pop-up "&File"
{

MENUITEM "&New",
MENUITEM "&Open",

CM_FILENEW
CM_FILEOPEN

MENUITEM "&Save", CM_FILESAVE
MENUITEM "Save &As", CM_FILESAVEAS

pop-up "&Tools"
{

MENUITEM "Pen &Size", CM_PENSIZE
MENUITEM "Pen &Color", CM_PENCOLOR

pop-up "&Help"
{

MENUITEM "&About", CM_ABOUT

The File menu entry belongs to the OLE File menu group. The Tools menu allows the
user to edit the application's document, so it belongs to the Edit group. This application
does not contain any menus belonging to the Object, Container, or Window group. And
finally, the Help menu belongs to the Help group.

The following code is a modified version of the same menu resource with SEP ARA TOR
dividers inserted to indicate where one group stops and the next begins. Boldface type
highlights the changes.

COMMANDS MENU
{

C h a p I e r 1 9 , C r e a I i n g a n 0 L E c o n I a i n e r 325

pop-up "&File"
{

MENUITEM "&New",
MENUITEM "&Open" '

CM_FILENEW
CM_FILEOPEN

MENUITEM "&Save", CM_FILESAVE
MENUITEM "Save &As", CM_FILESAVEAS

MENUITEM SEPARATOR

pop-up "&Tools"
{

II end of File group, beginning of Edit group

MENUITEM "Pen &Size", CM_PENSIZE
MENUITEM "Pen &Color", CM_PENCOLOR

MENUITEM SEPARATOR
MENUITEM SEPARATOR
MENUITEM SEPARATOR
MENUITEM SEPARATOR

pop-up "&Help"
{

II end of Edit group, beginning of Container group
II end of Container group, beginning of Object group
II end of Object group, beginning of Window group
II end of Window group, beginning of Help group

MENUITEM "&About", CM_ABOUT

Insert separators in your application's menu to indicate the various menu groups. Then
modify your code to use the SetMenuDescr method when assigning your frame
window's menu. This example shows the menu assignment before and after adding
menu merging. Boldface type highlights the changes.

Before:

II original menu assignment
void
TScribbleApp::InitMainWindow()
{

TDecoratedFrame* frame;
II Initialize frame and decorations etc. etc.

II Assign frame's menu
frame->AssignMenu ("COMMANDS") ;

After including group indicators in the menu:

void
TScribbleApp: :InitMainWindow()
{

TOleFrame* frame;
II Initialize frame and decorations etc. etc.

II Assign frame's menu

326 0 b j e ct Windows P r o gram mer' s G u id e

frarne->SetMenuDescr (TMenuDescr ("COMMANDS") I;

Instead of using separators to show which drop-down menus belong to each group, you
can use the TMenuDescr constructor whose parameters accept a count for each group.
For more details, see the description of the TMenuDescr constructors in the
Object Windows Reference Guide.

Updating the Edit menu
An OLE container places OLE commands on its Edit menu. Table 19.3 on page 312 lists
all of the commands. The TOleWindow class has default implementations for all of them.
It invokes standard dialogs boxes where necessary and processes the user's response.
All you have to do is add the commands to the Edit menu of your frame window. It's
not necessary to support all six commands, but every container should support at least
CM_EDITINSERTOBJECT, to let the user add new objects to the current document, and
CM_EDITOBJECT, to let the user choose verbs for the currently selected object.

ObjectWindows defines standard identifiers for the OLE Edit menu commands in owl/
oleview.rh. Update your resource file to include the header file and use the standard
identifiers to put OLE commands on the Edit menu.

#include <owlloleview.rh>
#include <owlledit.rh>

COMMANDS MENU
(

II File menu goes here

MENUITEM SEPARATOR
pop-up "&Edit"
{

MENUITEM "&Undo\aCtrl+Z",
MENUITEM Separator
MENUITEM "&Cut \aCtrl+X",
MENUITEM "C&opy\aCtrl+C"'
MENUITEM "&Paste\aCtrl+V",
MENUITEM "Paste &Special ... ",
MENUITEM "Paste &Link",
MENUITEM "&Delete\aDel",
MENUITEM SEPARATOR
MENUITEM "&Insert Object ... ",
MENUITEM "&Links ••. ",
MENUITEM "&Object",
MENUITEM SEPARATOR
MENUITEM "&Show Objects",

II other menus go here

CM_EDITUNDO

CM_EDITCUT
CM_EDITCOPY
CM_EDITPASTE
CM_EDITPASTESPECIAL
CM_EDITPASTELINK
CM_EDITDELETE

CM_EDITINSERTOBJECT
CM_EDITLINKS
CM_EDITOBJECT

CM_EDITSHOWOBJECTS

C h a pt e r 1 9 , C r e at i n g a n 0 L E c o n t a i n e r 327

Assigning a tool bar ID
If your OLE container has a tool bar, assign it the predefined identifier IDW _TOOLBAR.
ObjectWindows must be able to find the container's tool bar if a server needs to display
its own tool bar in the container's window. If ObjectWindows can identify the old tool
bar, it temporarily replaces it with the new one taken from the server. For
ObjectWindows to identify the container's tool bar, the container must use the
IDW _TOOLBAR as its window ID.

TControlBar* cb = new TControlBar(parent);
cb->Attr.Id = IDW_TOOLBAR;

The TOleFrame::EvAppBorderSpaceSet method uses the IDW _TOOLBAR for its default
implementation. A container can provide its own implementation to handle more
complex situations, such as merging with multiple tool bars.

5. Building a container
A container must include OLE ObjectWindows headers, compile with a supported
memory model, and link to the right libraries.

Including OLE headers
ObjectWindows provides OLE-related classes, structures, macros and symbols in
various header files. The following list shows the headers needed for an OLE container
using an SDI frame window.

#include <owl/oleframe.h>
#include <owl/olewindo.h>
#include <ocf/ocstorag.h>

An MDI application includes olemdifr.h instead of oleframe.h.

Compiling and linking
ObjectWindows containers and servers must be compiled with the large memory
model. They must be linked with the OLE, ObjectComponents, and ObjectWindows
libraries. Follow the same steps described on page 314 for building a Doc/View
application.

Turning a C++ application into an OLE container
If you are writing a new program, consider using Object Windows to save yourself some
work. The ObjectWindows Library contains built-in code that automatically performs
some tasks common to all ObjectComponents programs. Programs that don't use
ObjectWindows must undertake these chores for themselves.

If you are writing a new program, consider using the App Expert and ObjectWindows to
save yourself some work. But ObjectComponents works well in straight C++ programs
without ObjectWindows, as well.

This list briefly describes the changes needed for turning a C ++ application into an
ObjectComponents container. The sections that follow explain each step in more detail.

328 0 b j e c I Windows P r o gramme r's G u id e

1 Register the application.

• Build an application registration table with registration macros.
• Create a registrar object and call its CreateOcApp function.
• Create a TOleAllocator object to initialize the OLE libraries.

2 Create a view window to display an open document.

• Create, resize, and destroy the view window together with the main window.

• Create a pair of helper objects, TOcDocument and TOc View, to manage the OLE
side of a compound document.

• Make the view window handle the WM_OCEVENT message.

• Write handlers for selected ObjectComponents view events.

• Draw the compound document in the view window.

• Activate and deactivate objects in response to user actions.

3 Program the main window to handle OLE commands and events.

• Pass the TOcApp object a handle to the main window.

• Make the main window handle the WM_OCEVENT message.

• Write handlers for selected ObjectComponents application events.

• Add OLE commands (such as Insert Object) to the Edit menu anp. write handlers
for them.

4 Build the program.

• Include ObjectComponents headers.

• Compile with the large memory model. Link to the OLE and ObjectComponents
libraries.

The sections that follow illustrate each step using examples from the programs in the
EXAMPLES I OCF I CPPOCF directory. The source files titled CPPOCFO contain a
windows application that does not support OLE. CPPOCFl modifies the first program
to make it an OLE container. The code samples for this discussion come from CPPOCFl.
The same directory also contains CPPOCF2, an OLE server. Chapter 20 uses CPPOCF2
to illustrate making an OLE server without ObjectWindows.

CPPOCFl is a simple application that supports basic container functions: registering the
application, creating objects to initialize a new document, and embedding an object in
the document. For ideas about implementing other features, you might want to look at
the source code for ObjectWindows OLE classes such as TOleWindow and TOleView.

The explanations that follow do not describe all the differences in the source code from
CPPOCFO to CPPOCFl. The omit details that are not specific to ObjectComponents and
OLE, such as calling RegisterClass for a new child window.

1. Registering a container
Giving the system the information it needs about your container takes three steps:
building a registration table, passing the table to a registrar object, and creating a
memory allocator object.

C h a p I e r 1 9 , C r e a I i n g a n 0 L E c o n I a i n e r 329

Building a registration table
A container uses the registration macros to build a registration table describing the
application. A container does not need to create document registration tables except to
support being a link source. (When a container is a link source, it allows other containers
to create links to objects in its own documents.)

Here is the registration table from CPPOCFl:

REGISTRATION_FORMAT_BUFFER(l00)
BEGIN_REGISTRATION(AppReg)

REGDATA(clsid, "{8646DB80.-94E5-101B-B01F-00608CC04F66} ")
REGDATA (progid, APPSTRING ".Application. l" I
REGDATA(description, "Sample container" I

END_REGISTRATION

The application's header file includes this line:

#define APPSTRING "CppOcfl"

The progid string is therefore "CppOcfl.Application.l."

The registration macros build a structure of type TRegList. Each entry in the structure
contains a key, such as clsid or progid, and a value assigned to the key. Internally
ObjectComponents finds the values by searching for the keys. The order in which the
keys appear does not matter. For more information about the keys a container can
choose to register, refer to Table 19.2. For more information about registration in
ObjectComponents, see "Understanding registration" on page 372.

Creating the registrar object
The registrar object records application information in the system registration database,
processes any OLE switches on the application's command line, and notifies OLE that
the server is running. CPPOCFl declares a static pointer for the registrar object:

TOcRegistrar* OcRegistrar = O;
TOcApp * OcApp = 0 ;

The second variable, OcApp, points to the connector object that implements OLE
interfaces for the application to communicate with OLE. The registrar creates the
TOcApp object in WinMain.

Create the registrar as you initialize the application in WinMain. Instead of entering a
message loop, call the registrar's Run method. When Run returns, the application is
ready to shut down. Delete the registrar before you quit. This excerpt from the
CPPOCFl WinMain function shows all the steps.

int PASCAL
WinMain(HINSTANCE hinstance, HINSTANCE hPrevinstance,

char far* lpCmdLine, int nCmdShow)

try {
TOleAllocator allocator(O); //required for OLE2
MSG msg;

II Initialize OCF objects

330 ObjectWindows Programmer's Guide

OcRegistrar =new TOcRegistrar(::AppReg, 0,
string(lpCmdLine), 0);

OcRegistrar->CreateOcApp(OcRegistrar->GetOptions(), OcApp);

II per-instance and per-task initialization code goes here

II Standard Windows message loop
while (GetMessage(&msg, 0, 0, 0) I

TranslateMessage(&msg);
DispatchMessage(&msg);

catch (TXBase& xbase) {
MessageBox (GetFocus (), xbase. why (I . c_str (I, "Exception caught", MB_OK);

II free the registrar object
delete OcRegistrar;
return O;

The TOcRegistrar constructor takes four parameters:

• ::AppReg, is the application registration structure already built with the registration
macros. (See the section "Building a registration table.")

• ComponentFactory is a callback function described in the next section.

The callback is responsible for creating any of the application's OLE components,
including the application itself, as required. The callback contains the application's
message loop, as well.

• cmdLine is a string object holding the application's command line.

The registrar searches the command line for OLE-related switches such as
-Automation or -Embedding, and it sets internal running mode flags accordingly.

• 0 is a null pointer to a document list.

Because CPPOCFl does not register any document types, this list is empty. A
container registers document types to support being a link source. For more
information about document lists, see "Creating the document list" on page 361.

Besides recording information in the registration database, the registrar object also
creates the TOcApp connector object when you call CreateOcApp.

Creating a memory allocator
The beginning of the WinMain procedure creates a TOleAllocator:

TOleAllocator allocator{O); II use default memory allocator

The allocator's constructor initializes the OLE libraries and its destructor releases them
when the object goes out of scope. Passing 0 to the constructor tells it to let OLE use its
standard memory functions whenever allocating memory on behalf of this application.

Ch apter 1 9, Creating an 0 LE container 331

2. Creating. a view window
ObjectComponents imposes one design requirement: a compound document must have
its own window, separate from the application's main window. To keep the distinction
clear, we'll call the main window the frame window, because it uses the
WS_:THICKFRAME style and has a visible border on the screen. The second window
has no visible border. We'll call it the view window because that is where the application
displays its data. The view window always exactly fills the frame window's client area,
so from the user's point of view the frame window appears to be the only window.
ObjectComponents needs the view window, though, because it expects to send some
event messages to the application and some to the view. (View windows are sometimes
called client windows, too.)

In an SDI application like the CPPOCFl sample program, the frame window controls
the view window. When the ·frame window receives a WM_SIZE message, it moves the
view to keep it aligned with the frame's client area. When it receives WM_ CLOSE, it
destroys both itself and the view window.

In an MDI application, each child window creates its own view. The child window does
what the SDI frame does: creates and manages a view for the document it displays.

Creating, resizing, and destroying the view window
Before creating the view window, the application must first register a class for the view
window. CPPOCFl registers both classes in InitApplication.

CPPOCFl creates the view window in its factory because the factory is in charge of
creating new documents on request. The code for the view window, as you'll see,
connects the new document to OLE by creating some ObjectComponents helper objects.
The factory calls this function to create the view window:

HWND CreateViewWindow(HWND hwndParent)
{

HWND hwnd = CreateWindow(VIEWCLASSNAME, "",
WS_CHILD I WS_CLIPCHILDREN I WS_CLIPSIBLINGS I WS_VISIBLE I WS_BORDER,
10, 10, 300, 300,
hwndParent, (HMENU)l, Hinstance, 0);

return hwnd;

CPPOCFl resizes and destroys the view window when the frame window receives
WM_SIZE and WM_ CLOSE messages.

void
MainWnd_OnSize (HWND hwnd, UINT /*state*/, int /*ex*/, int /*cy* /)
{

if (IsWindow(HwndView)) {
TRect rect;
GetClientRect(hwnd, &rect);
MoveWindow(HwndView, rect.left, rect.top, rect.right, rect.bottom, true);

332 ObjectWindows Programmer's Guide

void
MainWnd_OnClose(HWND hwnd)
{

if (IsWindow(HwndView))
DestroyWindow(HwndView);

DestroyWindow(hwnd);

The view window always fills the frame window's client area exactly. If the user opens
and closes documents or embeds objects, the changes show up in the view window.

Creating a TOcDocument and TOcView
If the user embeds several objects in the container's view window, they all become part
of a single compound document. If the container supports file I/0, then the user can
save and load different documents.

For every document the container opens or creates, it needs one view window and two
helper objects: TOcDocument and TOcView. The document helper manages the collection
of objects inserted in the document. The view helper connects the document to OLE.
More specifically, it implements interfaces that OLE can call to communicate with the
document. When OLE tells the view object that something noteworthy has occurred, the
view object sends a message to the view window. (The next two sections show how to
handle the messages.)

The sample CPPOCFl container declares two global pointers to hold the two helper
objects. (A program that opens more than one document at a time needs more than one
pair of variables.)

TOcDocument* OcDoc = O;
TOcView* OcView = O;

CPPOCFl creates and destroys the two helpers when it creates and destroys the view
window that displays the document.

bool
ViewWnd_OnCreate(HWND hwnd, CREATESTRUCT FAR* l*lpCreateStruct*I)
{

OcDoc =new TOcDocument(*OcApp);
OcView =new TOcView(*OcDoc);

II create document helper
II create view 'Connector

if (OcView)
OcView->SetupWindow(hwnd);

return true;

void
ViewWnd_OnDestroy(HWND l*hwnd*I)
{

II attach view to window

: II code to de-activate objects goes here (explained later)

if (OcView)
OcView->ReleaseObject();

OcDoc->Close();
II do not delete the view; it is a COM object
II release the server for each embedded object

Chapter 19, Creating an OLE container 333

delete OcDoc; II delete the document helper; it is not a COM object

The WM_ CREA TE message handler for the view window creates both helpers and then
calls Oc View->Setup Window. The Setup Window method tells the TOc View object where to
send event messages. In this case, it sends messages to hwnd, the view window. The
view window now receives WM_OCEVENT messages.

When the view window is destroyed, it makes three calls to dispose of the helper
objects. OcView->ReleaseObject signals that the view window is through with the
TOcView connector object. You shouldn't call delete for a TOcView object because the
OLE system might still need more information before it allows the view to shut down.
ReleaseObject tells the TOcView object that you don't need it any longer. The view
subsequently destroys itself as soon as all other OLE clients finish with it, as well; The
TOc View destructor is protected to prevent you from calling it directly.

(A container document only has other OLE clients if it registers support for being a link
source. In that case, other applications can create links to objects in the container's
document.)

The TOcDocument object, on the other hand, is not a connector object and so you can
destroy it with delete in the usual way. First, however, you should call Close to release
the server applications that OLE may have invoked to support each linked or embedded
object.

Handling WM_ OCEVENT
Because the TOcView::SetupWindow method bound the TOcView connector to the view
window, the connector sends its event notification messages to the window. All
ObjectComponents events are sent in the WM_OCEVENT message, so the view
,window procedure must respond to WM_OCEVENT.

long CALLBACK _export
ViewWndproc{HWND hwnd, uint message, WPARAM wParam, LPARAM lParam)
{

switch {message) {
: II other message crackers go here
HANDLE_MSG{hwnd, WM_OCEVENT, ViewWnd_OnOcEvent);

return DefWindowProc{hwnd, message, wParam, lParam);

The HANDLE_MSG message cracker macro for WM_OCEVENT is defined in the ocf/
ocfevx.h header. The same header also defines a another cracker for use in the
WM_OCEVENT message handler.

II Subdispatch OC_VIEWxxxx messages
long
ViewWnd_OnOcEvent{HWND hwnd, WPARAM wParam, LPARAM l*lParam*/)
{

switch {wParam) {

}

II insert an event cracker for each OC_VIEWxxxx message you want to handle
HANDLE_OCF{hwnd, OC_VIEWPARTINVALID, ViewWnd_OnOcViewPartinvalid);

334 Objec!Windows Programmer's Guide

return true;

The WM_OCEVENT message carries an event ID in its wParam, just as
WM_ COMMAND messages carry command IDs. OC_ VIEWP ARTINV ALID is one
possible event, indicating that it is time to repaint a linked or embedded object. The
HANDLE_OCF macro calls the handler you designate for each ObjectComponents
event, just as HANDLE_MSG calls the handler for for a window message.

CPPOCFl chooses to handle only the OC_ VIEWPARTINV ALID message. To handle
others, add one HANDLE_OCF macro for each event ID.

A list of all the ObjectComponents messages appears in Tables 18.5 and 18.6.

Handling selected view events
Each HANDLE_OCF macro calls a different handler function. In the example, the
handler function is called ViewWnd_OnOcViewPartlnvalid. ObjectComponents sends
this message to a container when one of the OLE data objects in its document needs to
be repainted.

bool
ViewWnd_OnOeViewPartinvalid(HWND hwnd, TOeChangeinfo far& ehangeinfo)
{

HDC de= GetDC(hwnd);
SetMapMode(de, MM_ANISOTROPIC);
SetWindoWOrg(de, 0, 0);
SetViewportOrg(de, 0, 0);
RECT reet = part.GetReet();
LPtoDP(de, (POINT*)&reet, 2);
InvalidateReet(hwnd, &reet, true);
ReleaseDC(hwnd, de);
return true;

The TOcPart parameter represents the object that needs painting. ObjectComponents
creates a TOcPart object for every linked or embedded object in a container document.
CPPOCFl handles this message by asking the part for its coordinates and invalidating
that part of its client area. The InvalidateRect command results in a WM_P AINT
message, and the ViewWnd_OnPaint procedure responds by drawing the document.

Painting the document
Painting a compound document requires two steps: drawing the container's own data
and drawing all the linked or embedded objects. Here's the basic frame for a paint
procedure:

void
ViewWnd_OnPaint(HWND hwnd)
{

PAINTSTRUCT ps;
HDC de= BeginPaint(hwnd, &ps);
II
II Do your regular painting here

Chapter 19, Creating an OLE container 335

II

II Now draw embedded objects
ViewWnd_PaintParts(hwnd, de, false);
EndPaint(hwnd, &ps);

The code for ViewWnd_PaintParts is the same in most applications.

bool
ViewWnd_PaintParts(HWND hwnd, HDC de, bool metafile)
{

II get logical coordinates of area to draw
TRect clientRect;
GetClientRect(hwnd, &clientRect);
TRect logicalRec~ = clientRect;
DPtoLP (de' (POINT*) &logicalRect' 2) ;

II loop through all the parts and draw each one
ViewData& viewData = GetViewData(hwnd);
for (TOcPartCollectioniter i(viewData.OcDoc->GetParts()); i; i++) (

TOcPart& part= *i.Current();
if (part.IsVisible(logicalRect)) {

TRect rect = part.GetRect();
part.Draw(dc, rect, clientRect, asDefault);
if (metafile)

continue;

II If an object is selected, draw whatever mark indicates that state
if (part.IsSelected()) (

II Draw some XOR rectangle around 'rect'

return true;

CPPOCFl is a very simple container. Because it holds only one embedded object at a
time, it doesn't really have to create a loop to handle painting multiple parts. If it
expanded to permit multiple objects, however, it would not have to change its paint
procedure.

The TOcPart class manages linked or embedded objects in a container document. The
TOcPart::Draw method asks the server to draw its object. The Draw method does not
need to be told the position of the object. The TOcPart object receives that information
when it is constructed, as you will see in "Handling selected application events."

The for loop creates an iterator object to enumerate all the parts in the document. The++
operator advances the iterator to point to successive parts. The expression *i.Current()
evaluates to a different part each time through the loop.

336 ObjectWindows Programmer's Guide

Activating and deactivating objects
After embedding an object into a compound document, the user might decide to edit the
object. In most containers, the user activates an object by double-clicking it. CPPOCFl
does not support activating objects, but the code to do it is straightforward. You
intercept WM_LBUTTONDBLCLK messages, check the mouse coordinates, and if they
fall on an object you activate it.

To enumerate the document's embedded and linked objects, use a for loop with a
TOcPartCollectioniter object, as the paint procedure does to draw all the parts. To find the
coordinates of an object, call TOcPart::GetRect. To activate a part, call TOcPart::Activate.

Before a container doses a compound document, it should always check tha.t no object is
activated. CPPOCFl includes this loop in the WM_DESTROY handler of its view
window:

for (TOcPartCollectioniter i(OcDoc->GetParts()); i; it+) {
TOcPart& p = *i.Current();
p.Activate(false);

Passing false to Activate terminates any editing session.

3. Programming the main window
The view window manages tasks related to a single document. It opens and doses the
document and draws it on the screen. The frame window manages tasks for the whole
application. It responds to menu commands, and it creates and destroys the view
window.

Creating the main window
When the application creates its main window, it must bind the window to its TOcApp
object. (The TOcApp object was created in the factory callback function.)

bool
MainWnd_OnCreate(HWND hwnd, CREATESTRUCT FAR* /*lpCreateStruct*/)
{

HwndMain = hwnd;
if (OcApp)

OcApp->SetupWindow(hwnd);
return true;

The TOcApp object sends messges about OLE events to the application's main window.
Setup Window tells the TOcApp where to direct its event notifications.

Handling WM_ OCEVENT
TOcApp sends event notifications in the WM_OCEVENT message. Like the view
window, the frame window also must handle WM_OCEVENT. The frame window
receives notification of events that concern the application as a whole, not just a
particular document. The frame window procedure sends WM_ OCEVENT messages to

C h a pt e r 1 9 , C r e at i n g a n 0 L E c o n t a i n e r 337

a handler that identifies the event and calls the appropriate handler routine. Both
routines closely resemble the corresponding code for the view window.

II Standard message-handler routine for ma1n window
long CALLBACK _export
MainWndProc(HWND hwnd, uint message, WPARAM wParam, LPARAM lParam)
{

switch (message) (
; II other message crackers go here
HANDLE_MSG(hwnd, WM_OCEVENT, MainWnd_OnOcEvent);

return.DefWindowProc(hwnd, message, wParam, lParam);

I I Subdispatch oc_ messages
long
MainWnd_OnOcEvent(HWND hwnd, WPARAM wParam, LPARAM l*lParam*/)
(

switch (wParam) {
HANDLE_OCF(hwnd, OC_VIEWTITLE, MainWnd_OnOcViewTitle);

}

return true;

Handling selected application events
The only ObjectComponents event that CPPOCFl handles in its main window is
OC_ VIEWTITLE. This message is sent when a server engaged in open editing wants to
use the container's title in its own window caption. The OLE user interface guidelines
require the server to show the source of the object it is editing.

canst char*
MainWnd_OnOcViewTitle(HWND l*hwnd*I)
{

return APPSTRING;

Because CPPOCFl always has only a single document, it returns the name of the
application as the title of its view. Because it always has only one view, it can handle the
OC_ VIEWTITLE event in the main window procedure. Most containers handle this
message in the view window and return the name of the application and the name of
the document combined in a single string.

Handling standard OLE menu commands
·An OLE container places OLE commands on its Edit menu. Table 19.3 describes the new
commands. It's not necessary to use all of them. CPPOCFl sµpports one, Insert Object.
This command lets users add new objects to the current document.

void
MainWnd_OnCommand(HWND hwnd, .int id, HWND l*hwndCtl *I, uint l*codeNotify* /)
{

switch (id) {
case CM_INSERTOBJECT:

338 ObjectWindows Programmer's Guide

try {
TOcinitinfo initinfo(OcView);
if (OcApp->Browse(initinfo)) {

TRect rect(30, 30, 100, 100);
new TOcPart(*OcDoc, initinfo, rect);

catch (TXBase& xbase) (

II begin initializing info structure
II show Insert Object dialog box
II only top and left are used
II add new object to document

MessageBox (Get Focus () , xbase. why () . c_str (I , "Exception caught", MB_OK) ;

break;
i
case CM_EXIT:

PostMessage(hwnd, WM_CLOSE, 0, 0);
break;

The code for inserting, dropping, or pasting an object into a document always begins
with a TOcinitinfo structure. TOcinitinfo holds information describing the object about to
be created: what container will receive it, whether to link or embed it, whether it already
exists or will be newly created, and if it exists, where the data resides and in what
format.

The constructor for TOcinitinfo receives a pointer to the view where you want the new
object to appear. The next command, OcApp->Browse, invokes the standard Insert Object
dialog box offering the user a choice of all the objects any server registered in the system
can create. When the user chooses one, the Browse command places more information in
initinfo.

The final step to insert a new OLE object is to create a TOcPart connector. TOcPart
implements all the OLE services that a linked or embedded object is required to provide.
It plugs into OLE, gets the data for the new object, adds itself to the list of parts in OcDoc,
and draws itself on the screen in the position given by TRect.

For examples showing how to implement other OLE Edit menu commands, look at the
source code for event handlers in OWL/OLEWINDO.CPP.

Building the program
To build the server, you need to include the right headers, use a supported memory
model, and link to the right libraries.

Including ObjectComponents headers
The following list shows the ObjectComponents headers for a container that does not
use ObjectWindows.

#include <ocflocapp.h>
#include <ocflocdoc.h>
#include <ocflocview.h>

II TOcRegistrar, TOcModule, TOcApp (application connector)
II TOcDocument (compound document manager)
II TOcView (document view connector)

C h a p t e r 1 9 , C re at i n g a n 0 L E c o n ta i n e r 339

#include <ocf/ocpart.h>
#include <ocf /ocfevx.h>

Compiling and linking

II TOcPart (linked/embedded object connector)
II WM_OCEVENT message crackers

ObjectComponents applications that do not use ObjectWindows can use either the
medium or large memory model. Link them With the OLE and ObjectComponents
libraries.

To build CPPOCFO, CPPOCFl, and CPPOCF2, move to the program's directory and
type this at the command prompt:

make MODEL=l

This command builds all three programs using the large memory model.

The make file that builds this example program refers to the OCFMAKE.GEN file. For
more information about using OCFMAKE.GEN in your own make files, see page 314.

340 ObjectWindows Programmer's Guide

Creating an OLE server
An OLE server is an application that creates and manages data objects for other
programs. This chapter explains how to take existing programs and tum them into
linking and embedding servers. It describes the steps required for adapting three kinds
of programs:

• An ObjectWindows application that uses the Doc/View model
• An ObjectWindows application that does not use the Doc/View model
• AC++ application that does not use ObjectWindows

In addition, this chapter covers these related topics:

• Registration tables
• DLL servers

The ObjectComponents Framework classes support servers as well as containers, and
new ObjectWindows classes make this support easily available. The easiest kind of
program to convert is one that uses ObjectWindows and the Doc/View model, but
ObjectComponents simplifies the task of writing a server application even without the
ObjectWindows framework.

OLE applications can also be automation servers. Chapter 21 shows how to automate an
application.

Turning a DocNiew application into an OLE server
Turning a Doc/View application into an OLE server requires only a few modifications,
and many of them are the same as the changes required to create a container. If you
have already modified your application according to the steps in Chapter 19, then much
of your server work is already done.

The following list describes the changes briefly. The sections that follow describe each
step in more detail.

Ch apter 2 O, Creating an 0 LE server 341

1 Connect your application, window, document, and view objects to OLE.

• Create a T App Dictionary object.

• Derive your application class from TOcModule as well as T Application.

• Derive frame window, document, and view classes from new OLE-enabled
classes.

2 Register the application.

• Build registration tables to describe the application and the types of documents it
produces.

• Create a registrar object and call its Run method.

3 Coordinate with the container to draw, load, and save your objects.

" Tell OLE when an object's appearance changes. A single function call
accomplishes this.

" Add commands to read and write embedded objects in compound documents.

4 Build the application.

• Include new ObjectWindows OLE headers at the beginning of your source code.

• Compile using the large memory model. Link with the OLE and
ObjectComponents libraries.

That's all you need to do. After performing these steps, your OLE server supports all the
following features:

• Source for linking • Source for embedding
• Source for drag and drop • In-place editing
• Registration • Compound document storage

To modify the default behavior ObjectComponents provides for common OLE options,
you can additionally override the default handlers for messages that ObjectComponents
sends. For a list of event messages, see Tables 18.5 and 18.6.

1. Connecting objects to OLE
Your application, window, document, and view objects need to make use of new OLE
enabled classes. The constructor for the application object expects to receive an
application dictionary object, so create that first.

Creating an application dictionary
An application dictionary tracks information for the currently active process. It is
particularly useful for DLLs. When several processes use a DLL concurrently, the DLL
must maintain multiple copies of the global, static, and dynamic variables that represent
its current state in each process. For example, the DLL version of ObjectWindows
maintains a dictionary that allows it to retrieve the T Application corresponding to the
currently active client process. If you convert an executable server to a DLL server, it
must also maintain a dictionary of the T Application objects representing each of its
container clients.

342 ObjectWindows Programmer's Guide

The DEFINE_APP _DICTIONARY macro provides a simple and unified way to create
the dictionary object for any type of application, whether it is a container, a server, a
DLL, or an EXE. Insert this statement with your other static variables:

DEFINE_APP_DICTIONARY(AppDictionary);

For any application linked to the static version of the DLL library, the macro simply
creates a reference to the application dictionary in ObjectWindows. For DLL servers
using the DLL version of ObjectWindows, however, it creates an instance of the
TAppDictionary class.

Note Name your dictionary object App Dictionary to take advantage of the factory templates
such as TOleDocViewFactory (as explained later in "Creating a registrar object").

Deriving the application object from TOcModule
The application object of an ObjectComponents program needs to derive from
TOcModule as well as T Application. TOcModule coordinates some basic housekeeping
chores related to registration and memory management. It also connects your
application to OLE. More specifically, TOcModule manages the connector object that
implements COM interfaces on behalf of an application.

If the declaration of your application object looks like this:

class TMyApp public TApplication
public:

TMyApp() TApplication(){};

};

Then change it to look like this:

class TMyApp : public TApplication, public TOcModule {
public: ·

TMyApp () : TApplication (: :AppReg["appname"], : :Module, &: :AppDictionary) {};

};

The constructor for the revised TMyApp class takes three parameters.

• A string naming the application

AppReg is the application's registration table, shown later in "2. Registering a linking
and embedding server." The expression ::AppReg["appname"] extracts a string that
was registered to describe the application.

• A pointer to the application module.

Module is a global variable of type TModule* defined by ObjectWindows.

• The address of the application dictionary.

AppDictionary is the application dictionary object explained in the previous section.

Chapter 20, Creating an OLE server 343

Inheriting from OLE classes
A server makes the same changes to its OLE classes that a container makes.
ObjectWindows wraps a great deal of power in its new window, document, and view
classes. To give an ObjectWindows program OLE capabilities, change its derived classes
to inherit from OLE classes.

Here are some examples:

II old declarations (without OLE)
class TMyDocument: public TDocument
,class TMyView: public TView
class TMyFrame: public TFrameWindow

II new declarations (with OLE)
class TMyDocument: public TOleDocument
class TMyView: public TOleView
class TMyFrame: public TOleFrame

I* declarations *I };

I* declarations *I };

I* declarations *I) ;

I* declarations *I };

I* declarations *I };

I* declarations *I) ;

For a complete list of new OLE classes and their non-OLE counterparts, consult Table
19.1 on page 305.

When you change to OLE classes, be sure that those methods in your classes which refer
to their direct base classes now use the OLE class names.

void TMyView: :Paint(TDC& de, BOOL erase, TRect& rect)
{

TOleView::Paint(dc, erase, rect);
II paint the view here

It is generally safer to allow the OLE classes to handle Windows events and Doc/View
notifications. This is particularly true for the Paint method and mouse message handlers
in classes derived from TOleView. TOleView::Paint knows how to paint the objects
embedded in your document. (Servers are often containers as well, and a server's object
might have other objects embedded in it.) Similarly, the mouse handlers of TOle View let
the user select, move, resize, and activate an OLE object embedded or linked in your
document. See Table 19.5 on page 322 for a list of standard message handlers that
provide OLE functionality.

2. Registering a linking and embedding server
To register your application with OLE, first create registration tables describing the
application and the kinds of documents it creates. The tables create structures that you
pass to the registrar object when you create it. Call the registrar's Run method to start
the application.

Building registration tables
databaseServers implement OLE objects that any container can use. Different servers
implement different types of objects. Every type of object a server creates must have a
globally unique identifier (GUID) and a unique string identifier. Every server must
record this information, along with other descriptive information, in the registration
database of the system where it runs. OLE reads the registry to determine which objects

344 ObjectWindows Programmer's Guide

are available, what their capabilities are, and how to invoke the application that creates
objects of each type.

ObjectComponents simplifies the task of registration. You call macros to build a table of
keys with associated values. ObjectComponents receives the table and automatically
performs all registration tasks.

Servers and containers use the same macros for registration, but servers must provide
more information than containers. Here are the commands to build the registration
tables for a typical server. This example comes from the STEP15.CPP and
STEP15DV.CPP file in the EXAMPLES\OWL \TUTORIAL directory of your compiler
installation.

REGISTRATION_FORMAT_BUFFER(lOO) II allow space for expanding macros

BEGIN_REGISTRATION(AppReg)
REGDATA (els id, " { 5E4BD32 0-8ABC-101B-A23B-CE4E85D07ED2}")
REGDATA(appname,

END_REGISTRATION
"DrawPad Server")

BEGIN_REGISTRATION(DocReg)
REGDATA (progid, "Draw Pad. Drawing .15")
REGDATA(description,"DrawPad (Step15--Server) Drawing")
REGDATA (menuname, "Drawing")
REGDATA(extension, "p15")
REGDATA(docfilter, "* .pl5" I
REGDOCFLAGS(dtAutoOpen I dtAutoDelete I dtUpdateDir I dtCreatePrompt I dtRegisterExt)
REGDATA(insertable, "")
REGDATA(verbO, "&Edit")
REG DATA (verbl, "&Open")
REGFORMAT(O, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
REGFORMAT(l, ocrMetafilePict, ocrContent, ocrMfPictlocrStaticMed, ocrGet)
REGFORMAT(2, ocrBitmap, ocrContent, ocrGDilocrStaticMed, ocrGet)
REGFORMAT(3, ocrDib,
REGFORMAT(4, ocrLinkSource,

END_REGISTRATION

ocrContent, ocrHGlobaliocrStaticMed, ocrGet)
ocrContent, ocrIStream, ocrGet)

The macros in the example build two structures. The first structure is named AppReg
and the second is DocReg. ObjectComponents uses lowercase strings such as progid and
clsid to name the standard keys to which you assign values. The values you assign are
strings, and they are sensitive to case. The order of keys within the registration table
doesn't matter. For more about the macros REGDATA, REGFORMAT, and
REGDOCFLAGS, see "Understanding registration macros" on page 309. The full set of
registration macros is described in the Object Windows Reference Guide.

The set of keys you place in a structure depends on what OLE capabilities you intend to
support and whether the structure holds application information or document
information. The macros in the example show the minimum amount of information a
server with one type of document should provide.

A server registers program and class ID strings (progid and clsid) for itself and for every
type of document it creates. The IDs must be absolutely unique so that OLE can

Chapter 20, Creating an OLE server 345

distinguish one application from another. The description strings appear on the Insert
Object dialog box where the user sees a list of objects available in the system.

Table 20.l briefly describes all the registration keys that can be used by a server that
supports linking and embedding. It shows which are optional and which required as
well as which belong in the application registration table and which in the document
registration table.database

Table 20.1 Keys a linking and embedding server registers

appname Yes Optional Short name for the application

els id Yes Optional Globally unique identifier (GUID); generated
automatically for the DocReg structure

description No Yes Descriptive string (up to 40 characters)

progid No Yes for link or Identifier for program or object type (unique
embed source string)

menuname No Yes Name of server object for container menu

extension No Optional Document file extension associated with server

docfilter No Yes if not
dtHidden

Wildcard file filter for File Open dialog box

docflags No Yes Options for running the File Open dialog box

debugger No Optional Command line for running debugger

debugprogid No Optional Name of debugging version (unique string)

debugdesc No Yes if using Description of debugging version
debugprogid

insertable No Yes for Indication that object can be embedded. If
embedding omitted, the document is only a link source

verbn No Yes An action the server can execute with the object

formatn No Yes A clipboard format the server can produce

aspectall No Optional Options for showing object in any aspect

aspectcontent No Optional Options for showing object's content aspect

aspectdocprint No Optional Options for showing object's docprint aspect

aspecticon No Optional Options for showing object's icon aspect

aspectthumbnail No Optional Options for showing object's thumbnail aspect

cmdline No Optional Arguments to place on server's command line

path No Optional Path to server file (defaults to current module
path)

permid No Optional Name string without version information

permname No Optional Descriptive string without version information

usage Optional Optional Support for concurrent clients

language Optional No Language for registered strings (defaults to
system's user language setting)

version Optional No Major and minor version numbers (defaults to
"110")

The table assumes that the server's documents support linking or embedding. For
documents that support neither, the server needs to register only docfiags and docfilter.

346 ObjectWindows Programmer's Guide

If the server is also a container or an automation servet, then you should also consult the
container table (Table 19.2) or the automation table (Table 21.1). Register all the keys that
are required in any of the tables that apply to your application.

For more information about individual registration keys, the values they hold, and the
macros used to register them, look for the keys by name in the Object Windows Reference
Guide.

The values assigned to keys can be translated to accommodate system language
settings. For more about localization, see the sections "Registering localized entries" on
page 373 and "Localizing symbol names" on page 397.

Place your registration structures in the source code files where you construct document
templates and implement your T Application-derived class. A server always creates only
one application registration table (called AppReg in the example). The server might
create several document registration tables, however, if it creates several different kinds
of documents (for example, text objects and chart objects). Each registration table needs
a unique progid value.

After creating registration tables, you must pass them to the appropriate object
constructors. The AppReg structure is passed to the TOcRegistrar constructor, as
described in the section "Creating a registrar object." Document registration tables are
passed to the document template constructor.

DEFINE_DOC_TEMPLATE_CLASS(TMyOleDocument, TMyOleView, MyTemplate);
MyTemplate myTpl(::DocReg);

databaseSome of the information in the document registration table is used only by the
document template. The document filter and document flags have to do with
documents, not with OLE. Previous versions of OWL passed the same information to
the document template as a series of separate parameters. The old method is still
supported for backward compatibility, but new programs, whether they use OLE or
not, should use the registration macros to supply document template parameters.

Some of the registration macros expand the values passed to them. The
REGISTRATION_FORMA T_BUFFER macro reserves memory needed temporarily for
the expansion. To determine how much buffer space you need, allow 10 bytes for each
REGFORMA T item plus the size of any string parameters you pass to the macros
REGSTA TUS, REGVERBOPT, REGICON, or REGFORMA T. (Registration macros are
described in the Object Windows Reference Guide.)

Creating a registrar object
Every ObjectComponents application needs a registrar object to manage all of its
registration tasks. In a linking and embedding application, the registrar is an object of
type TOcRegistrar. At the top of your source code file, declare a global variable holding a
pointer to the registrar.

static TPointer<TOcRegistrar> Registrar;

The TPointer template ensures that the TOcRegistrar instance is deleted when the
program ends.

Note Name this variable Registrar to take advantage of the factory callback template used in
the registrar's constructor.

Chapter 20, Creating an OLE server 347

The next step is to modify your OwlMain function to allocate a new TOcRegistrar object
and initialize the global pointer Registrar. The TOcRegistrar constructor expects three
parameters: the application's registration structure, the component's factory callback
and the command-line string that invoked that application. The registration structure is
created with the registration macros.

The factory callback is created with a class template. For a linking and embedding
ObjectWindows application that uses Doc/View, the template is called
TOleDoc View Factory. The third parameter, the command-line string, can be obtained
from the GetCmdLine method of T Application. The code in the factory template assumes
you have defined an application dictionary called App Dictionary and a TOcRegistrar*
called Registrar.

int OwlMain(int, char*[])
{

II Create Registrar object
::Registrar= new TOcRegistrar(::AppReg, TOleDocViewFactory<TMyApp>(),

TApplication::GetCmdLine());

After initializing the Registrar pointer, your OLE container application must invoke the
Run method of the registrar instead of TApplication::Run. TRegistrar::Run calls the factory
callback procedure (the one the second parameter points to) and causes the application
to create itself. The application enters its message loop, which is actually in the factory
callback. The following code shows a sample OwlMain before and after adding a
registrar object. Boldface type highlights changes.

Before:

II Non-OLE OwlMain
int
OwlMain(int l*argc*I, char* l*argv*I[])
{

return TMyApp() .Run();

After:

II New declaration of OwlMain
int
OwlMain(int l*argc*I, char* l*argv*I[])
(

::Registrar= new TOcRegistrar(::AppReg,
TOleDocViewFactory<TMyApp>(),
TApplication::GetCmdLine());

return ::Registrar->Run();

The last parameter of the TOcRegistrar constructor is the command line string that
invoked the application.

348 ObjectWindows Programmer's Guide

Processing the command line
When OLE invokes a server, it places an -Embedding switch on the command line to tell
the application why it has been invoked. The presence of the switch indicates that the
user did not launch the server directly. Usually a server responds by keeping its main
window hidden. The user interacts with the server through the container. If the
-Embedding switch is not present, the user has invoked the server as a standalone
application and the server shows itself in the normal way.

When you construct a TRegistrar object, it parses the command line for you and searches
for any OLE-related switches. It removes the switches as it processes them, so if you
examine your command line after creating TRegistrar you will never see them.

If you want to know what switches were found, call IsOptionSet. For example, this line
tests for the presence of a registration switch on the command line:

if (Registrar->IsOptionSet(amAnyRegOption))
return 0;

This is a common test in OwlMain. If the a command line switch such as -RegServer was
set, the application simply quits. By the tini.e the registrar object is constructed, any
registration action requested on the command line have already been performed.

Table 20.2 lists all the OLE-related command-line switches.

Table 20.2 Command-line switches that ObjectComponents recognizes

-RegServer Register all its information and quit. No

-UmegServer Remove all its entries from the system and quit. No

-NoRegValidate Run without confirming entries in the system database No

-Automation Register itself as single-use (one client only). Always
accompanied by -Embedding.

Yes

-Embedding Consider remaining hidden because it is running for a Yes
client, not for itself.

-Language Set the language for registration and type libraries No

-TypeLib Create and register a type library No

-Debug Enter a debugging session Yes

OLE places some of the switches on the program's command line. Anyone can set other
flags to make ObjectComponents perform specific tasks. An install program, for
example, might invoke the application it installs and pass it the -RegServer switch to
make the server register itself. Switches can begin with either a hyphen(-) or a slash(/).

Only a few of the switches call for any action from you. If a server or an automation
object sees the -Embedding or -Automation switch, it might decide to keep its main
window hidden. Usually ObjectComponents makes that decision for you. You can use
the -Debug switch as a signal to tum trace messages on and off, but responding to
-Debug is always optional. (OLE uses -Debug switch only if you register the debugprogid
key.)

ObjectComponents handles all the other switches for you. If the user calls a program
with the -UnregServer switch, ObjectComponents examines its registration tables and

Chapter 20, Creating an OLE server 349

erases all its entries from the registration database. If ObjectComponents finds a series of
switches on the command line, it processes them all. This example makes
ObjectComponents generate a type libary in the default language and then again in
Belgian French.

myapp -TypeLib -Language=80C -TypeLib

The number passed to -Language must be hexadecimal digits. The Win32 API defines
BOC as the locale ID for the Belgian dialect of the French language. For this command
line to have the desired effect, of course, myapp must supply Belgian French strings in its
XLAT resources. For more information about localization, see "Localizing symbol
names" on page 397.

The -RegServer flag optionally accepts a file name.

myapp -RegServer = MYAPP.REG

This causes ObjectComponents to create a registration data file in MYAPP.REG. The
new file contains all the application's registration data. If you distribute MYAPP.REG
with your program, users can merge the file directly into their own registration database
(using RegEdit). Without a file name, -RegServer writes all data directly to the system's
registration database.

For a description of the -TypeLib switch, see "Creating a type library" on page 405.

Note Only EXE servers have true command lines. OLE can't pass command line switches to a
DLL . ObjectComponents simulates passing a command line to a DLL server so that you
can use the same code either way. The registrar object always sets the right running
mode flags. For more about DLL servers, see "Making a DLL server" on page 374.

3. Drawing, loading, and saving objects
A server must coordinate with its client to process its objects when they need to be
painted or saved.

Telling clients when an object changes
Whenever the server makes any changes that alter the appearance of an object, the
server must tell OLE. OLE keeps a metafile representation with every linked or
embedded object so that even when the server is not active OLE can still draw the object
for the container. If the object changes, OLE must update the metafile. The server
notifies OLE of the change by calling TOleView::InvalidatePart. OLE, in tum, asks the
server to paint the revised object into a new metafile. ObjectComponents handles this
request by passing the metafile device context to the server's Paint procedure. You don't
need to write extra code for updating the metafile.

A good place to call InvalidatePart is in the handlers for the messages that
ObjectWindows sends to a view when its data changes:

bool TDrawView::VnRevert(bool /*clear*/) (
Invalidate(); //force full repaint
InvalidatePart(invView); //tell container about the change
return true;

350 ObjectWindows Programmer's Guide

invView is an enumeration value, defined by ObjectComponents, indicating that the
view is invalid and needs repainting.

Other view notification messages that signal the need for an update include
EV_ VN_APPEND, EV_ VN_MODIFY, and EV_ VN_DELETE.

Loading and saving the server's documents
When a server gives objects to containers, the containers assume the burden of storing
the objects in files and reading them back when necessary. If your server can also run
independently and load and save its own documents, it too should make use of the
compound file capabilities built into TOleDocument. For more about compound files, see
"Loading and saving compound documents" on page 312.

In its Open method, a server calls TOleDocument::Open. In its Commit method, a server
should call TOleDocument::Commit and TOleDocument::CommitTransactedStorage.

II document class declaration derived from TOleDocument
class _DOCVIEWCLASS TMyDocument : public TOleDocument {

11 declarations

II document class implementation
bool TMyDocument::Commit(bool force)

TOleDocument::Commit(force); II save linked and embedded objects
II code to save other document data

TOleDocument::CommitTransactedStorage(); II write to file if transacted mode

bool TDrawDocument::Open(int, const char far* path) {
TOleDocument::Open(); II load linked or embedded objects

II code to load other document data

Note By default, TOleDocument opens compound files in transacted mode. Transacted mode
saves changes in temporary storages until you call CommitTransactedStorage.

4. Building the server
To build the server application, include the OLE headers and link with the OLE
libraries.

Including OLE headers
The headers for a server are the same as the headers for a container. A server that uses
the Doc/View model and an MDI frame window needs the following headers:

#include <owlloledoc.h>
#include <owlloleview.h>
#include <owllolemdifr.h>

II replaces docview.h
II replaces docview.h
II replaces mdi.h

An SDI application includes oleframe.h instead of olemdifr.h.

Chapter 20, Creating an 0 LE server 351

Compiling and linking
Linking and embedding servers that use ObjectComponents and ObjectWindows
require the large memory model. Link them with the OLE and ObjectComponents
libraries.

The integrated development environment (IDE) chooses the right build options when
you ask for OLE support. To build any ObjectComponents program from the command
line, create a short makefile that includes the OWLOCFMK.GEN file found in the
EXAMPLES subdirectory.

EXERES = MYPROGRAM
OBJEXE = winmain.obj myprogram.obj
!include $(BCEXAMPLEDIR)\ocfmake.gen

EXERES and OBJEXE hold the name of the file to build and the names of the object files
to build it from. The last line includes the qwLOCFMK.GEN file. Name your file
MAKEFILE and type this at the command-line prompt:

make MODEL=l

MAKE, using instructions in OCFMAKE.GEN, will build a new makefile tailored to
your project. The new makefile is called WIN16Lxx.MAK.

For more information about OCFMAKE.GEN and the libraries needed for an
ObjectComponents program, see page 314.

Note The first time the server runs, the registrar object records its information in the
registration database. Be sure to run the server once before trying to use it with a
container.

Turning an ObjectWindows application into an OLE server
Turning a non-Doc/View ObjectWindows container.into an OLE server requires a few
modifications. This list describes them briefly. The sections that follow give more detail
for each one.

Register the server.

" Create an application dictionary object.
• Create the server's registration tables.
• Link the document registration structures in a list.
• Create the registrar and call its Run method.

2 Set up the client window.

3 Modify the application class.

• Derive it from TOcModule as well as T Application.
• Add the CreateOleObject method.

4 Build the application.

The following section expands on each step required to convert your ObjectWindows
container into an OLE server. The code excerpts are from the OWLOCF2.CPP sample in

352 ObjectWindows Programmer's Guid·e

the EXAMPLES/OWL/TUTORIAL/OLE directory. OWLOCF2 converts the
OWLOCFl sample from a container to a server.

1. Registering the server
To register the server you describe it in registration tables-one table for the application
and one for each type of document it creates. The document tables are put in a linked
list, and the registrar object processes the information in all the tables. The registrar also
needs an application dictionary object.

Creating an application dictionary
An application dictionary tracks information for the currently active process. It is
particularly useful for DLLs. When several processes use a DLL concurrently, the DLL
must maintain multiple copies of the global, static, and dynamic variables that represent
its current state in each process. For example, the DLL version of ObjectWindows
maintains a dictionary that allows it to retrieve the T Application corresponding to the
currently active client process. If you convert an executable server to a DLL server, it
must also maintain a dictionary of the T Application objects representing each of its
container clients.

The DEFINE_APP _DICTIONARY macro provides a simple and unified way to create
the dictionary object for any type of application, whether it is a container, a server, a
DLL, or an EXE. Insert this statement with your other static variables:

DEFINE_APP_DICTIONARY(AppDictionary);

For any application linked to the static version of the DLL library, the macro simply
creates a reference to the application dictionary in ObjectWindows. For DLL servers
using the DLL version of ObjectWindows, however, it creates an instance of the
TAppDictionary class.

It is important to name your dictionary object App Dictionary to take advantage of the
factory templates such as TOleFactory (as explained in the section "Creating the registrar
object").

Creating registration tables
Servers implement OLE objects that any container can link or embed in their own
documents. Different servers implement different types of objects. Every type of object a
server can create must have a 16-byte globally unique identifier (GUID) and a unique
string identifier. Every server must record this information, along with other descriptive
information, in the registration database of the system where it runs. OLE reads the
registry to determine what objects are available, what their capabilities are, and how to
invoke the application that creates objects of each type.

A server provides registration information to ObjectComponents using macros to build
registration tables: one table describing the application itself and one for each type of
OLE object the server creates. Here is the application registration table from OWLOCF2.

REGISTRATION_FORMAT_BUFFER(lOO)

II application registration table

Chapter 20, Creating an OLE server 353

BEGIN_REGISTRATION(AppReg)
REGDATA (clsid, "{B6B58B70-B9C3-101B-B3FF-86C8A0834EDE}")
REGDATA(description,"Scribble Pad Server")

END_REGISTRATION

The registration macros build a structure of items. Each item contains a key, such as clsid
or description, and a value assigned to the key. The order in which the keys appear does
not matter. In the example, AppReg is the name of the structure that holds the
information in this table.

Servers that create several types of objects must build a document registration table for
each type. (What the server creates as a document is presented through OLE as an
object.) If a spreadsheet application, for example, creates spreapsheet files and graph
files, and if both kinds of documents can be linked or embedded, then the application
registers two document types and creates two document registration tables.

The OWLOCF2 sample program creates one type of object, a scribbling pad, so it
requires one document registration table (shown here) in addition to the application
registration table.

II document registration table
BEGIN_REGISTRATION(DocReg)

REGDATA (progid, "Scribble. Document. 3")
REGDATA(description, "Scribble Pad Document")
REGDATA (debugger, "tdw")
REGDATA(debugprogid, "Scribble.Document.3.D")
REGDATA(debugdesc, "Scribble Pad Document (debug)")
REGDATA (menuname, "Scribble")
REGDATA (insertable, "")
REGDATA(extension, DocExt)
REGDATA(docfilter, "*. "DocExt)
REGDOCFLAGS(dtAutoDelete I dtupdateDir I dtCreatePrompt I dtRegisterExt)
REGDATA (verbO, "&Edit")
REGDATA(verbl, "&Open")
REGFORMAT(O, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
REGFORMAT(l, ocrMetafilePict, ocrContent, ocrMfPict, ocrGet)

END_REGISTRATION

The progid key is an identifier for this document type. The string must be unique so that
OLE can distinguish one object from another. The insertable key indicates that this type
of document should be listed in the Insert Object dialog box (see Figure 18.2 on
page 269). The description, menuname, and verb keys are all visible to the user during OLE
operations. The description appears in the Insert Object dialog box where the user sees a
list of objects available in the system. The menuname is used in the container's Edit menu
when composing the string that pops up the verb menu, which is where the verb strings
appear. The remaining registration items are used when the application opens a file or
uses the Clipboard.

For a list of the keys a server should register, see Table 20.1. For more information about
particular keys, see the Object Windows Reference Guide.

Place your registration structures in the source code file where you implement your
T Application-derived class. If you cut and paste registration tables from other programs,
be sure to modify at least the progid and clsid because these must identify your

354 ObjectWindows Programmer's Guide

application uniquely. (Use the GUIDGEN.EXE utility to generate new 16-byte clsid
identifiers.)

Creating the document list
The registration tables hold information about your application and its documents, but
they are static. They don't do anything with that information. To register the
information with the system, an application must pass the structures to an object that
know how to use them. That object is the registrar, which records any necessary
information in the system registration database.

In a Doc/View application, the registrar examines the list of document templates to find
each document registration structure. A non-Doc/View application doesn't have
document templates, so it uses TRegLink instead to create a linked list of all its document
registration tables.

static TRegLink* RegLinkHead;
TRegLink scribbleLink(: :DocReg, RegLinkHead);

RegLinkHead points to the first node of the linked list. scribbleLink is a node in the linked
list. The TRegLink constructor follows RegLinkHead to the end of the list and appends the
new node. Each node contains a pointer to a document registration structure. In
OWLOCF2, the list contains only one node because the server creates only one type of
document. The node points to DocReg.

OWLOCF2 declares RegLinkHead as a static variable because it is used in several parts of
the code, as the following sections explain.

Creating the registrar object
The registrar object registers and runs the application. Its constructor receives the
application registration structure and a pointer to the list of document registration
structures. In a linking and embedding application, the registrar is an object of type
TOcRegistrar. At the top of your source code file, declare a global variable holding a
pointer to the registrar.

static TPointer<TOcRegistrar> Registrar;

The TPointer template ensures that the TOcRegistrar instance is deleted when the
program ends.

Note Name this variable Registrar to take advantage of the factory callback template used in
the registrar's constructor.

Next, in OwlMain allocate a new TOcRegistrar object and initialize the global pointer
Registrar. The TOcRegistrar constructor has three required parameters: the application's
registration structure, the component's factory callback and the command-line string
that invoked that application.

An optional fourth parameter points to the beginning of the document registration list.
In a Doc/View application, this parameter defaults to the application's list of document
templates. Applications that do not use Doc/View should pass a TRegLink* pointing to
the list of document registration structures.

Chapter 20, Creating an OLE server 355

int
OwlMain(int l*argc*I, char* l*argv*I []I
(

try (
II construct a registrar object to register the application·
Registrar= new TOcRegistrar(::AppReg, II application registration structure

TOleFactory<TScribbleApp>(), II factory callback
TApplication: :GetCmdLine I I, I I app' s command line
::RegLinkHead); II pointer to doc registration structures

II did command line say to register only?
if (Registrar->IsOptionSet(amAnyRegOption))

return O;
return Registrar->Run();

catch (xmsg& xi (

II enter message loop in factory callback

: :MessageBox(O, x.why() .c_str(), "Scribble App Exception", MB_OK);

return -1;

TOleFactory is a template that creates a class with a factory callback function. For a
linking and embedding ObjectWindows application that does not use Doc/View, the
template is called TOleFactory. The code in the factory template assumes you have
defined an application dictionary called App Dictionary and a TOcRegistrar* called
Registrar.

When the registrar is created, it compares the information in the registration tables to
the application's entries in the system registration database and updates the database if
necessary. The Run method causes the registrar to call the factory callback which,
among other things, enters the application's message loop.

For information about what the register looks for on the command line that you pass it,
see "Processing the command line" on page 349.

2. Setting up the client window
ObjectComponents applications need to have a separate window for each document.
The document window derives from TOleFrame and usually is made to fill the client
area of a frame window. For a explanation of how the OWLOCF sample program uses a
client window, see "3. Setting up the client window" on page 319. Follow the
instructions there to add a client window if your application doesn't have one already.

Creating helper objects for a document
Each new document you open needs two helper objects from ObjectComponents:
TOcDocument and TOc View. Because you create a client window for each document, the
window's constructor is a good place to create the helpers. The
TOleWindow::CreateOcView function creates both at once.

In OWLOCF2, the client window is TScribbleWindow. Here is the declaration for the class
and its constructor:

356 ObjectWindows Programmer's Guide

class TScribbleWindow : public TOleWindow {
public:

TScribbleWindow(TWindow* parent, TOpenSaveDialog: :TData& fileData);
TScribbleWindow(TWindow* parent, TOpenSaveDialog: :TData& fileData, TRegLink* link);

The second constructor is new. It is useful when ObjectComponents passes you a
pointer to the registration information you provided for one of your document types
and asks you to create a document of that type. Here is the implementation of the new
constructor:

TScribbleWindow::TScribbleWindow(TWindow* parent, TOpenSaveDialog::TData& fileData,
TRegLink* link)

TOleWindow(parent, 0),
FileData(fileData)

II Create a TOcDocument object to hold the OLE parts that we create
II and a TOcRemView to provide OLE services
CreateOcView(link, true, 0);

The constructor receives a TRegLink pointer and passes it on to CreateOcView. The
pointer points to the document registration information for the type of document being
created. ObjectComponents passes the pointer to this constructor; you don't have to
keep track of it yourself.

Passing true to CreateOc View causes the function to create a TOcRem View helper instead
of a TOcView. The remote view object draws an OLE object within a container's
window. When a server is launched to help a client with a linked or embedded object, it
should create a remote view.

If your application supports more than one document type, you can choose to use a
different TOleWindow-derived class for each one. You must.then provide the additional
constructor for each class. Alternatively, you can use a single TOleWindow-derived class
that behaves differently depending on the TRegList pointer it receives.

3. Modifying the application class
ObjectComponents requires that the class you derive from T Application must also inherit
from TOcModule, as described in "Deriving the application object from TOcModule" on
page 343. In addition, the application object needs to implement a CreateOleObject
method with the following signature:

TUnknown* CreateOleObject(uint32 options, TRegList* link);

The purpose of the function is to create a server document for linking or embedding.
The server must create a client window and return a pointer of type TOcRem View*. Here
is how OWLOCF2 declares this procedure:

class TScribbleApp : public TApplication, public TOcModule {
public:

TScribbleApp();
TUnknown* CreateOleObject(uint32 options, TRegLink* link);

Ch apter 2 O, Crea Ii n g an 0 LE server 357

And here is how it implements the procedure:

TUnknown*
TScribbleApp::CreateOleObject(uint32 options, TRegLink* link)
{

if (!link) II factory creating an application only, no view required
link= &scribbleLink; II need to have a view for this app

TOleFrame* olefr = TYPESAFE_DOWNCAST(GetMainWindow(), TOleFrame);
CHECK(olefr);
FileData.FileName[OJ = O;
TScribbleWindow* client = new TScribbleWindow(

olefr->GetRemViewBucket(), FileData, link);
client->Create();
return client->GetOcRemView();

ObjectWindows uses the CreateOleObject method to inform your application when OLE
needs the server to create an object. The TRegLink* parameter indicates which object to
create.

Understanding the TReglink document list
This section explains the relationship between the document registration structure, the
document list, and the CreateOleObject method. A server builds a document registration
table for each type of object that it can serve. (The variable that holds the document
registration information is conventionally named DocReg.) The registration structure is
then passed to a TRegLink constructor, which appends the the structure to a linked list so
that all the document types can be registered.

OLE displays the description value for each document in the Insert Object dialog box
whenever the user asks to insert an object. (OLE also displays the description strings for
all the other available server document types.) When the user chooses to insert one of
your objects into a container application, OLE launches your server and places the
-Embedding switch on the command line. When the server loads, ObjectComponents
calls your CreateOleObject method, passing the address of the registration link that was
used to register the requested document type. The TRegList pointer lets you determine
which type of object was chosen. This matters primarily for servers that register more
than one document type.

The following code illustrates one possible implementation of the CreateOleObject
method for an application that serves more than one type of object:

II Create a appropriate client window and return its TOcRemView pointer
TUnknown*
TServerApp::CreateOleObject(uint32 options, TRegList* link)
{

if (link == &chartLink) (
II Create TOleChartWindow
II and return charWindow->GetOcRemView();

if (tpl == &worksheetLink) (
II Create TOleWorksheetWindow

358 ObjectWindows Programmer's Guide

II and return worksheetWindow->GetOcRemView();

return 0;

4. Building the server
To build the server application, include the OLE headers and link with the OLE
libraries.

Including OLE headers
ObjectWindows provides OLE-related classes, structures, macros, and symbols in
various header files. The following list shows the headers needed for an OLE container
using an SDI frame window.

#include <owlloleframe.h>
#include <owllolewindo.h>
#include <ocflocstorag.h>

An MDI application includes olemdifr.h instead of oleframe.h.

Compiling and linking
Linking and embedding servers that use ObjectComponents and ObjectWindows
must be compiled with the large memory model. They must be linked with the OLE and
ObjectComponents libraries. For help building a makefile, see "Compiling and linking"
onpage352.

Note The first time the server runs, the registrar object records its information in the
registration database. Be sure to run the server once before trying to use it with a
container.

Turning a C++ application into an OLE server
If you are writing a new program, consider using Object Windows to save yourself some
work. The ObjectWindows Library contains built-in code that automatically performs
some tasks common to all ObjectComponents programs. Programs that don't use
ObjectWindows must undertake these chores for themselves.

The following list briefly describes what you need to do to tum a C ++ application into
an ObjectComponents server. Many of the items in this list also appear on page 328 in
the list of changes for creating a container. If you have already turned your C++
application into a container, much of the server work is already done. The most
important differences concern the registration tables and the factory callback function.

The sections that follow explain each step in more detail.

Create a memory allocator object in WinMain.

2 Register the application.

Chapter 20, Creating an OLE server 359

• Build registration tables.
• Create a document list.
• ·Create a registrar object and call its Run function. ,
• Write a factory callback function to create the application or its documents on

demand.

3 Create a view window to display an open document.

• Create, resize, and destroy the. view window together with the main window.
• Create supporting objects fpr a new server document.
• Make the view window handle the WM_OCEVENT message.
• Write handlers for selected ObjectComponents view events.
• Paint the server's document in the view window.

4 Program the main window to handle OLE commands and events.

• When creating the main window, call TOcApp::SetupWindow.
• Make the main window handle the WM_OCEVENT message.
• Write handlers for selected ObjectComponents application events.

5 Build the application.

• Include ObjectComponents headers.
• Link to the ObjectComponents and OLE libraries.

The sections that follow illustrate each step using examples from the programs in the
EXAMPLES I OCF I CPPOCF directory. The source files titled CPPOCFO contain a
Windows application that does not support OLE. CPPOCFl turns the first program into
an OLE container. CPPOCF2 adds server capabilities. The code samples for this
discussion come from CPPOCF2. The CPPOCF2 server creates a simple timer display
for containers to embed. The timer display increments every second.

This chapter does not describe all the changes between CPPOCFl and CPPOCF2, only
those that pertain to OLE features.

1. Creating a memory allocator
A server adds this line to the beginning of its WinMain procedure:

TOleAllocator allocator(O); II use default memory allocator

The allocator's constructor initializes the OLE libraries and its destructor releases them
when the object goes out of scope. Passing 0 to the constructor tells it to let OLE use its
standard memory functions whenever allocating memory for this application.

2. Registering the application
CPPOCF2 supports basic server functions. It registers information about itself and its
document type, and it creates on demand an object to embed in other applications.

360 ObjectWindows Programmer's Guide

Building registration tables
A server uses the registration macros to build registration tables describing the
application and the documents it creates. The first table describes the server itself:

REGISTRATION_FORMAT_BUFFER(100)
BEGIN_REGISTRATION(AppReg)

REGDATA(clsid, "{BD5E4A81-A4EF-101B-B31B-0694B5E75735} ")
REGDATA(description, "Sample C Server")

END_REGISTRATION

The registration macros build a structure of type TRegList. The structure is stored in a
variable named AppReg. Each entry in the structure contains a key, such as clsid or
description, and a value assigned to the key. Internally, ObjectComponents finds the
values by searching for the keys. The order in which the keys appear does not matter.

The server creates a second registration table to describe the type of document it
produces. If a spreadsheet application, for example, creates spreadsheet files and graph
files, it registers two document types. CPPOCF2 creates only one kind of document, a
timer display. The registration structure for this document type is held in a variable
named DocReg, as the following code shows.

BEGIN_REGISTRATION(DocReg)
REGDATA(description, "Sample C Server Document")
REGDATA (progid, APP STRING". Document. l")
REGDATA (menuname, "CServer")
REGDATA (insertable, "")
REGDATA (verbO, "&Edit")
REGDATA (verbl, "&Open")
REGDATA(extension, "scd" I
REGDATA(docfilter, "*.scd")
REGDOCFLAGS(dtAutoDelete I dtUpdateDir I dtCreatePrompt I dtRegisterExt)
REGFORMAT(O, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
REGFORMAT(l, ocrMetafilePict, ocrContent, ocrMfPict, ocrGet)

END_REGISTRATION

The progid key is an identifier for this document type. The insertable key indicates that
this type of document should be listed in the Insert Object dialog box (see Figure 18.2 on
page 269). The description, menuname, and verb keys are all visible to the user during OLE
operations. The description appears in the Insert Object dialog box. The menuname is used
in the container's Edit menu when composing the string that pops up the verb menu,
which is where the verb strings appear.

The remaining registration items are used when the application opens a file or uses the
clipboard. For a list of keys a server should register, see Table 20.1. For descriptions of
individual keys, see the Object Windows Reference Guide.

Creating the document list
The registration tables hold information about your application and its documents, but
they are static. They don't do anything with that information. To register the
information in the system, an application must pass the structures to objects that know
how to use them. That object is the registrar, which records any necessary information in
the system registration database.

Chapter 20, Creating an OLE server 361

To accommodate servers with m~y document types, the registrar accepts a pointer to a
linked list of all the application's document registration structures. Each node in the list
is a TRegLink object. Each node contains a pointer to one document registration structure
and another pointer to the next node.

TRegLink *RegLinkHead = O;
TRegLink regDoc(DocReg, RegLinkHead);

RegLinkHead points to the first node of the linked list. regDoc is a node in the linked list.
The TRegLink constructor follows RegLinkHead to the end of the list and appends the
new node. Each node contains a pointer to a document registration structure. In
CPPOCF2, the list contains only one node because the server creates only one type of
document. The node points to DocReg.

CPPOCF2 declares RegLinkHead as a static variable because it is used in several parts of
the code, as the following sections explain.

Creating the registrar object
The registrar object records application information in the system registration database,
processes any OLE switches on the application's command line, and notifies OLE that
the server is running. CPPOCF2 declares a static pointer for the registrar object:

TOcRegistrar* OcRegistrar = O;

Create your registrar object as you initialize the application in WinMain. Instead of
entering a message loop, call the registrar's Run method. When Run returns, the
application is shutting down. Delete the registrar before you quit. The CPPOCF2
WinMain function shows all th~ steps.

WinMain(HINSTANCE hinstance, HINSTANCE hPrevinstance, char far* lpCmdLine, int nCmdShow)
{

Hinstance = hinstance;
try {

TOleAllocator allocator(O); II use default memory allocator

string cmdLine(lpCmdLine); II put app's command line in a C++ string

II construct the registrar
OcRegistrar =new TOcRegistrar(::AppReg,

ComponentFactory,
cmdLine,
: : RegLinkHead) ;

II application registration structure
II factory callback function
II application command line
II document registration structure list

II application initialization commands go here

if (OcRegistrar->IsOptionSet(amEmbedding))
nCmdShow = SW_HIDE;

II instance initialization commands go here

OcRegistrar->Run();
delete OcRegistrar;

362 ObjectWindows Programmer's Guide

II call factory asking app to create itself and run

catch (xmsg& x) {

MessageBox(GetFocus (I, x.why() . c_str (), "Exception caught", MB_OK);

return O;

The TOcRegistrar constructor takes four parameters:

• ::AppReg, is the application registration structure already built with the registration
macros (see the section "Building registration tables").

• ComponentFactory is a callback function and is described in the next section. The
callback is responsible for creating any of the application's OLE components,
including the application itself, as required. The callback also contains the
application's message loop.

• cmdLine is a string object holding the application's command line. The registrar
searches the command line for OLE-related switches such as -Automation or
-Embedding, and it sets internal running mode flags accordingly.

• ::RegLinkHead points to the linked list of documentation registration structures. (See
the preceding section "Creating the document list.")

During its initialization, the server checks whether it was invoked by OLE or directly by
the user. OLE launches the server when the user activates a linked or embedded object
that the server created. OLE sets the-Embedding switch on the server's command line
to indicate that the server is running only to support a client, not as a stand-alone
application. When the registrar discovers the -Embedding switch on the command line,
it sets an internal flag. The server tests for this flag by calling IsOptionSet. If OLE did
launch the application, the server will draw only in the container's window and it does
not need to display its own window. CPPOCF2 sets nCmdShow to SW _HIDE to prevent
subsequent initialization code from displaying the main window.

nCmdShow is the parameter Windows passes to WinMain indicating the initial state of
the application's main window. A well behaved Windows application passes the value
to ShowWindow immediately after creating the main window.

The TOcRegistrar::Run function causes the registrar to call the application's factory
callback. In this case, the callback executes the application's message loop and the
application runs.

Writing the factory callback function
The factory callback is a function you implement and pass to the registrar. When it is
time for the application to run, or when a container tries to insert one of the server's
objects, ObjectComponents invokes the callback function.

The factory callback decides what to do by reading the parameters it receives and
examining the running mode flags the registrar has set. The callback is called a factory
because it creates OLE component objects on request.

The requirement that every ObjectComponents application must supply a factory
callback function unifies the process of creating objects. Normally the process varies
depending on whether the application is a container or a server, whether it is
automated, whether it is running as a DLL or an executable program, and whether the

Chapter 20, Creating an OLE server 363

application was invoked by the user directly or by OLE. The factory callback makes it
possible to revise and run the application in a variety of ways without rewriting any
code. For more information about factory callbacks, look up "Factory Templates" in the
Object Windows Reference Guide.

A set of factory templates such as TOlefactory and TOleAutoFactory make it easy to
implement factories for ObjectWindows programs, but in a straight C++ program you
have to write the factory yourself.

Factory callback procedures can have any name you like, but they must follow this
prototype:

IUnknown* ComponentFactory(IUnknown* outer, uint32 options, uint32 id);

outer is used when aggregating OLE objects to make them function as a single unit. The
factory's return value is also used for aggregation. Because containers don't aggregate,
CPPOCFl ignores outer and returns 0.

options contains the bit flags that indicate the application's running mode. The registrar
object sets the flags when it processes the command line switches, before it calls the
factory callback. The factory tests the flags to find out what it should do. The possible
flags are defined by the TOcAppMode enumerated type, and they have names like
amRun and amShutdown.

id is an identifier that tells the factory what kind of object to create.

The factory's parameters can direct the factory to perform one of three actions:

• Initialize the application. The first time it runs, the factory creates a TOcModule object.
TOcModule connects the application to the OLE system by creating a TOcApp
connector object. The factory also handles aggregation in this phase.

• Run the application. If the amRun flag is set, the factory enters llhe message loop. If the
server is built as a DLL, then when OLE loads the server the registrar does not set the
amRun flag and the server should not run its own message loop.

• Create an object. The id parameter tells the factory what kind of object to create.
Because CPPOCF2 creates only one kind of object, it checks only whether id is greater
than 0. In applications that register multiple document templates, id points to the
template for the requested object.

The factory callback in CPPOCF2 refers to four global variables. One is OcRegistrar,
explained earlier. Another is OcApp.

TOcRegistrar* OcRegistrar = O;
TOcApp * OcApp = 0 ;

TOcApp is the connector object that implements OLE interfaces on behalf of the
application. One of the factory's jobs is to create the connector object when the
application starts and to destroy it when the application shuts down.

The other two global variables, OcDoc and OcRem View, are explained in the next section.

Here is the factory callback from CPPOCF2:

IUnknown*
ComponentFactory(IUnknown* outer, uint32 options, uint32 id)

364 ObjectWindows Programmer's Guide

IUnknown* ifc = O;

II start the application or shut it down
if (! OcApp I (

if (options & amShutdown) II no app to shutdown!
return 0;

OcRegistrar->CreateOcApp(options, OcApp);
else if (options & amShutdown) {
DestroyWindow(HwndMain);
return 0;

II aggregate if an outer pointer was passed
if (id== 0)

OcApp->SetOuter(outer);

II enter message loop if the run flag is set
if (options & amRun) (

if ((options & amEmbedding) == 0) (
HwndView = CreateViewWindow(HwndMain);

MSG msg;
II Standard Windows message loop
while (GetMessage(&msg, 0, 0, 0))

TranslateMessage(&msg);
DispatchMessage(&msg);

II create a document if the id parameter is non-zero
if (id) (

OcDoc =new TOcDocument(*OcApp);
HwndView = CreateViewWindow(HwndMain);
OcRemView =new TOcRemView(*OcDoc, &DocReg);
if (IsWindow(HwndView))

OcRemView->SetupWindow(HwndView);
ifc = OcRemView->SetOuter(outer);

return ifc;

The factory's outer parameter is 0 unless some other object is aggregating with the newly
created object. Aggregated objects are components that act together as a single unit.
Objects can form aggregations at run time; you do not need access to an object's source
code to aggregate with it. ObjectComponents supports aggregation by passing outer to
the application factory. If outer is non-zero, it points to the !Unknown interface of anther
object that wants the newly created object to subordinate itself. To allow aggregation,
the factory calls the SetOuter method on the object it is creating, either TOcApp or
TOcRem View. SetOuter returns a pointer to the object's own !Unknown interface. The
factory should return the same pointer, too.

Chapter 20, Creating an OLE server 365

Note TOcApp::SetOuter is only called when an application automates itself. CPPOCF2
includes the call anyway in case the application later becomes an automation server.

3. Creating a view window
ObjectComponents imposes one design requirement on servers: the server document
must have its own window, separate from the application's main window. To keep the
distinction clear, we'll call the main window the frame window, because it uses the
WS_THICKFRAME style and has a visible border on the screen. The second window
has no visible border. We'll call it the view window because that is where the application
displays its data. The view window always exactly fills the frame window's client area,
so from the user's point of view the frame window appears to be the only window.
ObjectComponents needs the view window, though, because it expects to send some
event messages to the application and some to the view.

In an SDI application like the CPPOCF2 sample program, the frame window controls
the view window. When the frame window receivesa WM_SIZE message, it moves the
view to keep it aligned with the frame's client area. When it receives WM_ CLOSE, it
destroys both itself and the view window.

In an MDI application, each child window creates its own view. The child window does
what the SDI frame does: creates and manages a view for the document it displays.

Creating, resizing, and destroying the view window
Before creating the view window, the application must first register a class for the view
window. CPPOCF2 registers both classes in InitApplication.

CPPOCF2 creates the view window in its factory because the factory is in charge of
creating new documents on request. The code for the view window, as you'll see,
connects the new document to OLE by creating some ObjectComponents helper objects.
The factory calls this function to create the view window:

HWND CreateViewWindow(HWND hwndParent)
{

HWND hwnd = CreateWindow(VIEWCLASSNAME,
WS_CHILD I WS_CLIPCHILDREN I WS_CLIPSIBLINGS WS_VISIBLE I WS_BORDER,
10, 10, 300, 300,
hwndParent, (HMENU)l, Hinstance, 0);

return hwnd;

CPPOCF2 resizes and destroys the view window when the frame window receives
WM_SIZE and WM_ CLOSE messages.

void
MainWnd_OnSize(HWND hwnd, UINT /*state*/, int /*ex*/, int /*cy*/)
{

if (IsWindow(HwndView))
TRect rect;
GetClientRect(hwnd, &rect);
MoveWindow(HwndView, rect.left, rect.top, rect.right, rect.bottom, true);

366 ObjectWindows Programmer's Guide

void
MainWnd_OnClose(HWND hwnd)
{

if (IsWindow(HwndView))
DestroyWindow(HwndView);

DestroyWindow(hwnd);

The view window always fills the frame window's client area exactly. If the user opens
and closes documents or embeds objects, the changes show up in the view window.

Creating a new server document
For every open document, the server needs to create two helper objects: TOcDocument
and TOcRem View. The document helper manages the collection of objects inserted in the
document. (It is possible for objects to be embedded within objects.) The view helper
connects the document to OLE. More specifically, it implements interfaces that OLE can
call to communicate with the document. When OLE tells the view object that something
noteworthy has occurred, the view object sends a message to the view window. (The
next two sections show how to handle the messages.)

The sample CPPOCF2 server creates the two helpers in its factory when asked to create
a new document.

OcDoc =new TOcDocurnent(*OcApp);
HwndView = CreateViewWindow(HwndMain);
OcRernView = new TOcRernView(*OcDoc, &DocReg);
if (IsWindow(HwndView))

OcRemView->SetupWindow(HwndView);

The Setup Window method tells the TOcRem View object where to send event messages. In
this case, it sends messages to HwndView, the view window. The view window now
receives WM_OCEVENT messages.

For each new document a server creates a TOcDocument, a TOcRem View, and a view
window. The same objects are deleted or released when the view window is destroyed:

void
ViewWnd_OnDestroy(HWND hwnd)
{

if (OcRemView)
OcRernView->ReleaseObject();

if (OcDoc) {
OcDoc->Close();
delete OcDoc;

II other document cleanup can go here

II do not delete a TOcRernView object

II release the servers for any embedded parts
II this is not a COM object, so you can delete it

if (IsWindow(HwndMain) I
PostMessage(HwndMain, WM_CLOSE, 0, 0);

C h a pt e r 2 0 , C r e at i n g an 0 L E s e r v e r 367

HwndView = 0;

When the view window is destroyed, it makes three calls to dispose of the helper
objects. OcRemView->ReleaseObject signals that the view window is through with the
TOcRemView connector object. You shouldn't call delete for a view object because the
OLE system might still need more information before it allows the view to shut down.
ReleaseObject decrements an internal reference count and dissociates the view from its
window. When all the clients of the view object have released it, the count reaches 0 and
the object destroys itself.

The TOcDocument view object, on the other hand, is not a connector object and so you
can destroy it with delete in the usual way. First, however, you should call Close to
release the server applications that OLE may have invoked to support objects
embedded in the server's document.

Because CPPOCF2 never opens more than one document at a time, it declares OcDoc
and OcRem View as static global pointers.

TOcDocument* OcDoc = O;
TOcRemView* OcRemView = O;

A server that supports concurrent clients with a single instance of the application, or one
that uses the multidocument interface (MDI), needs to create a different TOcDocument
and TOcRemView pair for each document window.

Note When launched to support an object in a container, servers create TOcRem View instead
of TOcView because they are painting in a remote window. For simplicity, CPPOCF2
always creates a remote view even when it is launched directly by the user. The only
penalty is extra overhead.

Handling WM_ OCEVENT
Because the TOcRem View::Setup Window method bound the OcRem View connector to the
view window, the connector sends its event notification messages to the window. All
ObjectComponents events are sent in the WM_OCEVENT message, so the view
window procedure must respond to WM_OCEVENT.

long CALLBACK _export
ViewWndProc(HWND hwnd, uint message, WPARAM wParam, LPARAM lParam)
{

switch (message) (
: II other message crackers go here
HANDLE_MSG(hwnd, WM_OCEVENT, ViewWnd_OnOcEvent);

return DefWindowProc(hwnd, message, wParam, lParam);

The HANDLE_MSG message cracker macro for WM_OCEVENT is defined in the ocf/
ocfevx.h header. The same header also defines a another cracker for use in the
WM_OCEVENT message handler.

II Subdispatch OC_VIEWxxxx messages
long
ViewWnd_OnOcEvent (HWND hwnd, WPARAM wParam, LPARAM l*lParam* /I ,

368 ObjectWindows Programmer's Guide

switch (wParam) {
II insert an event cracker for each OC_VIEWxxxx message you want to handle
HANDLE_OCF(hwnd, OC_VIEWCLOSE, ViewWnd_OnOcViewClose);

return true;

The WM_OCEVENT message carries an event ID in its wParam, just as
WM_ COMMAND messages carry command IDs. OC_ VIEWCLOSE is one possible
event, indicating that it is time to close this view. In applications that show only one
view per document, OC_ VIEWCLOSE also signals the close of the document. The
HANDLE_ OCF macro calls the handler you designate for each ObjectComponents
event, just as HANDLE_ MSG calls the handler for for a window message.

CPPOCF2 handles only the OC_ VIEWCLOSE message. To handle others, add one
HANDLE_OCF macro for each event ID. A list of all the ObjectComponents messages
appears in Tables 18.5 and 18.6.

Handling selected view events
Each HANDLE_OCF macro calls a different handler function. In the example, the
handler function is called ViewWnd_OnOcViewClose.

bool
ViewWnd_OnOcViewClose(HWND hwnd)
{

DestroyWindow(hwnd);
return true;

A server receives this message when a container closes the document that contains the
server's object. CPPOCF2 responds by closing the view window. The WM_DESTROY
handler also deletes or releases the helper objects associated with the server document.

Painting the document
No special code is required in the server's paint procedure. It always paints its
document the same way, whether or not it is painting an embedded object.

void
ViewWnd_OnPaint(HWND hwnd)
{

PAINTSTRUCT ps;
HDC de= BeginPaint(hwnd, &ps);
wsprintf (Buffer, "%u", Counter);
TextOut(dc, 0, 0, Buffer, lstrlen(Buffer));
EndPaint(hwnd, &ps);

When the view window is created, it starts off a timer. Every time the view receives a
WM_TIMER message, it increments the value in the global variable Counter and calls
InvalidateRect to make the view repaint itself. On each call, the paint procedure prints the
value of Counter.

Chapter 20, Creating an OLE server 369

4. Programming the main window
The view window manages tasks related to a single document. It opens and closes the
document and draws it on the screen. The frame window manages tasks for the whole
application. It responds to menu commands, and it creates and destroys the view
window.

Creating the main window
When the application creates its main window, it must bind the window to its TOcApp
object. (The TOcApp object was created in the factory callback function.)

bool
MainWnd_OnCreate(HWND hwnd, CREATESTRUCT FAR* l*lpCreateStruct*I)
{

if (OcApp)
OcApp->SetupWindow(hwnd);

HwndMain = hwnd;
return true;

The TOcApp object sends messges about OLE events to the application's main window.
Setup Window tells the TOcApp where to direct its event notifications.

Handling WM_ OCEVENT
Like the view window, the frame window also receives WM_OCEVENT messages. The
frame window receives notification of events that concern the application as a whole
and not just a particular document. The frame window procedure sends
WM_OCEVENT messages to a handler that identifies the event and calls the
appropriate handler routine. Both routines closely resemble the corresponding code for

· the view window.

II Standard message-handler routine for main window
long CALLBACK _export
MainWndProc(HWND hwnd, uint message, WPARAM wParam, LPARAM lParam)
{

switch (message) {
: II other message crackers go here
HANDLE_MSG(hwnd, WM_OCEVENT, MainWnd_OnOcEvent);

return DefWindowProc(hwnd, message, wParam, lParam);

II Subdispatch OC_ ... messages
long
MainWnd_OnOcEvent(HWND hwnd, WPARAM wParam, LPARAM l*lParam*I)
{

switch (wParam) {
HANDLE_OCF(hwnd, OC_APPSHUTDOWN, MainWnd_OnOcViewTitle);

370 0 bj ectWi n d ows Programmer's Guide

return true;

Handling selected application events
The only ObjectComponents event that CPPOCF2 can handle in its main window is
OC_APPSHUTDOWN. A server receives this message when the last linked or
embedded object closes down. If the server was launched by OLE, it can terminate. If
user launched the server directly, the server doesn't need to do anything.

const char*
MainWnd_OnOcAppShutDown(HWND hwnd)

if (OcRegistrar->IsOptionSet(amEmbedding))
DestroyWindow(hwnd);

The registrar sets the amEmbedding flag at startup if it finds the -Embedding switch on
the application's command line. OLE pass the -Embedding switch when it launches a
server to support a linked or embedded object.

5. Building the server
To build the server, you need to include the right headers, use a supported memory
model, and link to the right libraries.

Including ObjectComponents headers
The following list shows the headers needed for an ObjectComponents server that does
not use ObjectWindows.

#include <ocf/ocapp.h>
#include <ocf/ocreg.h>
#include <ocf/ocdoc.h>
#include <Ocf/ocview.h>
#include <ocf/ocpart.h>
#include <Ocf /ocremvie.h>
#include <ocf/ocfevx.h>

Compiling and linking

II TOcRegistrar, TOcModule, TOcApp (application connector)
II registration constants and app mode flags
II TOcDocument (compound document manager)
II TOcView (document view connector)
II TOcPart (linked/embedded object connector)
II TOcRemView (document remote view connector)
II WM_OCEVENT message crackers

ObjectComponents applications that do not use Object Windows work with either the
medium or large memory model. They must be linked with the OLE and
ObjectComponents libraries.

To build CPPOCFO, CPPOCFl, and CPPOCF2, move to the program's directory and
type this at the command prompt:

make MODEL=l

This command builds all three programs using the large memory model.

The make file that builds this example program refers to the OCFMAKE.GEN file. For
more information about using OCFMAKE.GEN in your own make files, see page 359.

Ch apter 2 O, Creating an 0 LE server 371

Note The first time the server runs, the registrar object records its information in the
registration database. Be sure to run the server once before trying to use it with a
container.

Understanding registration
This section explains how the registration macros work.

The BEGIN_REGISTRATION and END_REGISTRATION macros declare a structure to
hold registration keys and the values assigned to the keys. The macros that come in
between, such as REGDATA and REGFORMAT, each insert an item in the structure.
The main structure is of of type TRegList and each item in the structures is an entry of
type TRegitem. Each item contains a key and a value for that key.

struct TRegitem {
char* Key;
TLocaleString Value;

};

II standard registry key
II value you assign to the key

The two parameters passed to REGDATA are a key and a value. The macros make it
easy to add keys and values to the structure without having to manipulate TRegList and
TRegitem objects directly yourself. At run time, ObjectComponents scans the tables and
confirms that the information is stored accurately in the system registration database.

Storing information in the registration database
ObjectComponents copies information from the program's registration tables to the
system's registration database. The TOcRegistrar object takes care of this chore when it is
constructed. Every time a server constructs its TOcRegistrar object, ObjectComponents
confirms that the registration information is accurately recorded. ObjectComponents
compares the program's current progid, clsid, and executable path with the values
previously written in the registration database. Any discrepancy causes
ObjectComponents to reregister the entire program automatically.

Windows 3.1 stores the registration database in the REG.DAT file. Windows NT puts it
in the system registry, a facility managed privately by the operating system. In either
location, ObjectComponents follows the standard logical structure for recording
information about an OLE server. The registration tables shown in "Building
registration tables" on page 344 produce these entries:

\CLSID
(5E4BD321-8ABC-101B-A23B-CE4E85D07ED2} = Drawing Pad (Stepl5--Server)
Insertable =
AuxUserType =

2 = Drawing Pad 15
DataFormats =

GetSet =
4 =Link Source,l,4,1
3 = 8,1,1025,1
2 = 2,1,1040,l
1 = 3,1,1056,1

372 0 bjectWi n d ows Programme r's Guide

0 =Embed Source,l,8,1
verb =

1 = &Open,0,2
0 = &Edit,0,2

InprocHandler = ole2.dll
ProgID = DrawingPad.Document.15
LocalServer = C:\BC45\EXAMPLES\OWL\TUTORIAL\STEP15.EXE %1

\DrawingPad.Document.15 = Drawing Pad (Step15--Server)
Insertable =
shell =

open =
corn.":l.and = C:\BC45\EXAMPLES\OWL\T1JTOIZIAL\GTEP15.EXE %1

print =
command= C:\BC45\EXAMPLES\OWL\TUTORIAL\STEP15.EXE %1

protocol =
StdFileEditing =

server= C:\BC45\EXAMPLES\OWL\TUTORIAL\STEP15.EXE
verb =

1 = &Open
0 = &Edit

CLSID = {5E4BD321-8ABC-101B-A23B-CE4E85D07ED2}

To inspect the entries in your registration database, run RegEdit with the /v command
line option.

Note In 16-bit Windows, the registration database has a capacity of 64K. If the database fills
past its capacity, OLE behaves unpredicatably, and it might be necessary to erase the
your REG.DAT file. Then you need to reregister the OLE applications in your system.
You can register or unregister any ObjectComponents server by passing the -RegServer
or -UnregServer switch on its command line. Unregistering unused applications or
obsolete versions is a good way to converve space in the database.

To learn more about the registration database, search for the topic "Registration
Database" in the online Help file for 16-bit Windows programming (WIN31 WH.HLP).

Registering localized entries
The values assigned to registration parameters often need to be localized. The section
called "Localizing symbol names" on page 397 explains how to create XLAT resources
that contain translation tables for your OLE strings. Besides putting translations in your
resources, you must also mark the strings so that ObjectComponents can tell which ones
have localized versions.

REGDATA(description, "@myapp_description")

The@prefix tells ObjectComponents that the string myapp_description is an identifier for
an XLAT resource where the real description is stored in several languages. For more
information about localizing OLE strings, refer to the TLocaleString entry in the
Object Windows Reference Guide.

Ch apter 2 0, Crea Ii n g an 0 LE server 373

Registering custom entries
databaseThe REGDATA macro associates strings with keys. The registrar scans the list
of keys and, when needed, writes the associates strings in the system registration
database. The standard keys such as progid and clsid correspond to standard entries in
the database. If you want to register values for non-standard keys, use the
databaseREGITEM macro. The first parameter for REGITEM is the complete key exactly
as you would pass it to a function like RegOpenKey.

REG ITEM I "CLSID\ \<clsid> \\Conversion\ \Readable\ \Main", "FormatX, Formaty" I

As the example shows, the REGITEM arguments can contain embedded parameter
names enclosed in angle brackets. When ObjectComponents registers this item, it first
replaces the expression <clsid> with whatever value the registration block has assigned
to the clsid parameter.

For information about RegOpenKey, see the Help file for the Windows APL

Making a DLL server
Typically, linking and embedding servers are stand-alone executables that can be
launched directly by the user or invoked indirectly by an OLE container. You can also
implement an OLE server in a DLL. A server built as a DLL is sometimes called an in
process server because DLL code runs in the same process as its client. The terms EXE
server and server application refer specifically to a server implemented in an EXE.
ObjectComponents allows you to create both EXE and DLL servers. If you are using
ObjectWindows, converting from one to the other requires only two simple changes.

Note The discussion and instructions that follow apply to automation servers as well as
linking and embedding servers.

Pros and cons of DLL servers
The major advantage of DLL servers is performance. Because a DLL server lives in the
address space of the container,it loads and responds very fast. An EXE server, on the
other hand, is a separate process and requires some form of intertask communication to
interact with a container. OLE serializes intertask calls and marshals the function calls
with their parameters, packaging them into the proper format for the interprocess
protocol. (The protocol it uses is called LRPC, for Lightweight Remote Procedure Call.)
The process of serializing the drawing commands in a metafile is particularly slow, so
DLL servers substantially increase the speed of creating presentation data for linked and
embedded objects.

There are a few disadvantages to using a DLL server, however. While OLE supports
interaction between 16-bit and 32-bit executable applications, a 16-bit Windows
application cannot use a 32-bit DLL server and a Win32 application cannot use a 16-bit
DLL server. Also, DLLs do not have message queues. As a result, a DLL server cannot
easily perform a task in the background. ObjectWindows overcomes this limitation by
running a timer so that it can still call the IdleAction methods of objects derived from
T Application or TOleFrame. (ObjectWindows also uses the timer for internal processes

37 4 0 b j e ct Windows Pro g ram mer' s Guide

such as command-enabling for tool bars, deleting condemned windows, and resuming
thrown exceptions.)

Because a DLL server becomes part of the container's process, bugs in one can interfere
with the other, making DLL servers sometimes harder to debug.

DLL servers also present user interface dilemmas. For example, when a container
initiates an open edit session with a server, it doesn't matter to the user whether the
server is an EXE or a DLL; the user interface for open editing is the same either way. But
the lifetime of a DLL server is tied to the container that loads it. When the container
quits, the server DLL is unloaded. That can cause problems if the server's user interface
normally allows the user to edit serveral documents at once. If the user were to create a
new document while editing an embedded object, the user might want to continue
editing the new document even after the container quits, but then the server is no longer
in memory. This is a particular problem for MDI servers because the MDI interface
allows users to open multiple documents in a single session. Typically DLL servers do
not allow multi.document editing.

Finally, DLL servers have one other disadvantage. While OLE 2 provides a
compatibility layer to let OLE 2 servers interact with OLE 1 clients, the compatibility
layer works only for EXE servers. A DLL server cannot support an OLE 1 client.

Building a DLL server
Converting an ObjectWindows EXE server to a DLL server requires only a few
modifications. The following list describes them briefly. The sections that follow give
more detail for each one.

1 Update your document registration table.

2 Build the program with the DLL option enabled. Link to the DLL compatible
ObjectComponents and ObjectWindows Libraries.

Updating your document registration table
The document registration tables of DLL servers must contain the serverctx key with the
string value "Inproc." This allows ObjectComponents to register your application as a
DLL server with OLE. EXE servers do not need to use the serverctx key since
ObjectComponents defaults to EXE registration.

The following code illustrates the document registration structure of a DLL server. It
comes from the sample Tic Tac Toe program in EXAMPLES/OWL/OCF /TTT.

BEGIN_REGISTRATION(DocReg)
REGDATA (progid, "TicTacToeDll")
REGDATA (description, "TicTacToe DLL")
REGDATA (serverctx, "Inproc")
REGDATA(rnenuname, "TicTacToe Game")
REGDATA (insertable' " ")
REGDATA(extension, "TTT")
REGDATA(docfilter, "*. ttt")
REGDOCFLAGS(dtAutoDelete I dtUpdateDir I dtCreatePrornpt I dtRegisterExt)
REGDATA(verbO, "&Play")

Chapter 20, Creating an OLE server 375

REGFORMAT(O, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
REGFORMAT(l, ocrMetafilePict, ocrContent, ocrMfPict, ocrGet)

-END_REGISTRATION

You do not need to modify your application registration structure to convert your EXE
server to a DLL server. It's a good idea, however, to use different clsid and progid values,
especially if you intend to switch frequently from one type to the other. You cart test for
the BI_APP _DLL macro to declare a registration structure that works for both DLL and
EXE servers; the macro is only defined when you are building a DLL. The following
code shows a sample document registration which supplies two sets of progid and clsid
values.

REGISTRATION_FORMAT_BUFFER(l00)

II Application registration structure
BEGIN_REGISTRATION(AppReg)
#if defined(BI_APP_DLL)

REGDATA (clsid, " { 029442Bl-8BB5-101B-B3FF-04021C009402}")
REGDATA(progid, "TicTacToe.DllServer")

#else
REGDATA (clsid, " { 029442Cl-8BB5-101B-B3FF-04021C009402}")
REGDATA (progid, "TicTacToe .Application")

#endif
REGDATA(description, "TicTacToe Application") _

END_REGISTRATION

II Document registration structure
BEGIN_REGISTRATION(DocReg)
#if defined(BI_APP_DLL)

REGDATA (progid, "TicTacToeDll")
REGDATA(description, "TicTacToe DLL")
REGDATA (serverctx, "Inproc")

#else
REGDATA(progid, "TicTacToe.Game.1")
REGDATA(description,"TicTacToe Game")
REGDATA (debugger' "tdw')
REGDATA(debugprogid,"TicTacToe.Game.1.D")
REGDATA(debugdesc, "TicTacToe Game (debug)")

#endif
REGDATA (menuname, "TicTacToe Game")
REGDATA (insert able, " ")
REGDATA (extension, "TTT")
REGDATA(docfilter, "* .ttt")

I I DLL clsid
I I DLL progid

I I EXE clsid
II EXE progid

II Description

REGDOCFLAGS(dtAutoDelete I dtUpdateDir I dtCreatePrompt I dtRegisterExt)
REGDATA (verbO, "&Play")
REGFORMAT(O, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
REGFORMAT(l, ocrMetafilePict, ocrContent, ocrMfPict, ocrGet)

END_REGISTRATION

Notice that the debugger keys (debugger, debugprogid, and debugdesc) are not used when
building a DLL server. They are relevant only when your server is an executable that a
debugger can load. (To debug a DLL server, see "Debugging a DLL server").

376 ObjectWindows Programmer's Guide

Compiling and linking
ObjectWindows DLL servers must be compiled with the large memory model. They
must be linked with the OLE, ObjectComponents, and ObjectWindows libraries.

The integrated development environment (IDE) chooses the right build options for you
when you select Dynamic Library for Target Type and request OWL and OCF support
from the list of standard libraries. You may choose to link with the static or dynamic
versions of the standard libraries.

To build an ObjectWindows DLL server from the command line, create a short makefile
that includes the OWLOCFMK.GEN file found in the EXAMPLES subdirectory. Here,
for example, is the makefile that builds the sample program Tic Tac Toe:

MODELS=ld
SYSTEM = WIN16

DLLRES = ttt
OBJDLL = ttt.obj

!include $(BCEXAMPLEDIR)\owlocfmk.gen

DLLRES holds the base name of your resource file and the final DLL name. OBJDLL
holds the names of the object files from which to build the sample. Finally, your
makefile should include the OWLOCFMK.GEN file.

Name your file MAKEFILE and type this at the command-line prompt:

make MODEL=l

Make, using instructions in OWLOCFMK.GEN, builds a new makefile tailored to your
project. The command also runs the new makefile to build the program. If you change
the command to define MODEL as d, the above command will create a new makefile
and then build your DLL using the DLL version of the libraries instead of the large
model static libraries.

For more information about how to use OWLOCFMK.GEN, read the instructions at the
beginning of MAKEFILE.GEN, found in the examples directory.

Debugging a DLL server
The same general techniques used to debug DLLs apply to DLL servers. The steps that
follow describe one approach, using Turbo Debugger for Windows to set breakpoints in
a DLL server.

1 Build and register the DLL server.

• Build your server with debugging information.

• Register the server using the REGISTER.EXE utility (see page 292).

• Verify that the registration was successful by running RegEdit and looking for
your servers file types. (RegEdit is a registration editor included with Windows.)

2 Launch Turbo Debugger for Windows and load a container.

Chapter 20, Creating an OLE server 377

• Select the File I Open menu option and enter the container's name in the Program
Name field and click the OK button.

The debugger loads the container. If the c9ntainer was built without debugging
information, you may receive a warning. You can safely ignore it.

3 Load the server's debugging information.

• Select View I l\1-0du)_e from the debugger's main menu. This activates the dialog
titled "Load module source Or DLL symbols." (You can also activate the module
dialog by pressing F3.)

• Enter the full name of DLL server file in the DLL Name field.

• Select the Yes option in the Debug Startup field and click the Add DLL button. The
name of your DLL server (followed by ! !) appears as the selected entry in the DLLs
& Programs list. ·

• Click the Symbol Load button.

If you receive an error message indicating that the DLL is not loaded , press the
Escape key to return to the debugger's main menu and proc~ed to the next step.
Otherwise, skip the next step and proceed to step 5.

Note If you did not receive the error message that the DLL is not loaded, then your DLL
server was already in memory before the container activated it. This happens if
another container is currently running with one of your server's objects. More often,
however, it indicates that your server crashed or was improperly terminated in an
earlier session.

4 Run the container and insert one of your server's objects.

• Select the Run I Run menu option (or press F9) to start the container.

• Choose Insert Object from the container's Edit menu and insert your server's
object.

The debugger pops up as soon as OLE loads your DLL server.

5 Display the DLL source modules and set breakpoints.

• Choose View I Module from the container's main menu to see the names of the
source files used to build your server. The file names appear in Source Modules
list.

• Select source files by double-clicking the file names.

• Set breakpoints in your server.

• Choose the Run I Run menu option (or press F9) to return control to the container
application.

6 If you skipped step 4, insert one of your server's objects into the container now.

The debugger stops at the breakpoints set in your source files and allows you to step
through your server, inspect variables, and verify the logic of your code.

378 ObjectWindows Programmer's Guide

Tools for DLL servers
Before running your DLL server, you must record its registration information in the
system registration database. The Register tool does that for you. Another tool, DllRun,
gives you the option of running your DLL server at any time as a standalone
application, which is sometimes convenient for testing.

Registering your DLL server
The REGISTER.E)CE utility registers an ObjectComponents DLL server. On the
command line, pass Register the name of your server followed by the -RegServer
switch. Here is the command to register Tic Tac Toe:

register ttt.dll -RegServer

Even though the Register utility is a Windows application, not a DOS application, you
can invoke it from a Windows DOS box. This ability is useful in makefiles. (To invoke
other Windows programs from a DOS box command line, use the WinRun utility
described in UffiS.TXT.)

Register can also unregister your server. Umegistering removes all entries related to
your server from the registration database. It's good practice to unregister one version
before you register the next. To unregister, use the -UmegServer switch. This command
unregisters Tic Tac Toe:

register ttt.dll -UnregServer

Running your DLL server
The DLLRUN.EXE utility lets you load and run an ObjectComponents DLL server as
though it were a standalone executable program. The ability to run in executable mode
is useful for debugging. It also lets you give customers the choice of running your server
either way without having to distribute two versions of the same application.

On the command line, pass DllRun the progid of the server. This is the value assigned to
the progid key in the server's registration table. This command runs the Tic Tac Toe
server:

dllrun TicTacToeDll

DllRun launches the DLL server in the executable running mode. The running mode of
an ObjectComponents application is represented by a set of bit flags that you can test by
calling TOcModule::IsOptionSet. (Remember that the application object of a linking and
embedding program derives from both T Application and TOcModule.)

The running mode bit flags are defined in the TOcAppMode enum. amEmbedded is set
when the server is invoked by OLE, not by the user. amExeModule is set in an application
that was built as an EXE. amExeMode is set in an application that is running as a stand
alone executable, even if it was built as a DLL.

This code tests the flags to determine the server's running mode.

void
TMyApp: :TestMode{)
{

Chapter 20, Creating an OLE server 379

if (IsOptionSet(amExeMode)) II is server running as an EXE?
if (!IsOptionsSet(amExeModule)) II if so, was it built as an EXE?

I I the se.rver is a DLL running in EXE mode
} else {

II the server was built as an EXE
else {
II the server is a DLL running in a client's process

380 ObjectWindows Programmer's Guide

Automating an application
Automating a program means exposing its functions to other programs. Once a
program is automated, other programs can control it by issuing commands through
OLE. ObjectComponents is your interface to OLE automation. Through
ObjectComponents you can expose any C++ class to OLE, and you won't have to
restructure your existing classes to do it.

The process of automating an application is the same whether the application uses
Object Windows or not. The steps described in this chapter work for any C ++
application.

This chapter explains how to do the following things:

• Automate an application
• Expose enumerated values
• Install a hook to validate arguments in a command
• Combine multiple C++ objects into a single automated OLE object
• Invalidate an automation object when it is destroyed
• Use localized strings to match the controller's language setting
• Expose a collection of objects
• Create and register a type library

Automation servers can be built as DLLs using the same methods for making an in
process linking and embedding server. See "Making a DLL server" on page 374.

Steps to automating an application
These are the coding steps that make a program automatable. The sections that follow
explain each step in more detail.

1 Register the application.

• Create a registration table using registration macros.
• Create a registrar object and call its Run method.

Chapter 21, Automating an application 381

2 In a declaration table, declare the methods and properties you want to expose.

• Optionally, provide hook functions to record, filter, or undo commands and to
validate command arguments.

3 In a definition table, assign public names for the methods and properties you want to
expose.

4 Build the application.

• Include automation header files in your source code.
• Link to the OLE and ObjectComponents libraries.

Two other optional steps are sometimes useful:

• Provide a resource table of translated strings so that OLE can accommodate
whatever language setting the user has selected.

• Notify OLE when your object is destroyed. This is only a safety feature and is often
superfluous.

ObjectComponents lets OLE reach members of your classes through standard C ++
mechanisms. At run time, other programs can send commands for your program to
OLE.

A program that exposes itself to receive automation commands is called an automation
server. A program that sends commands for others to execute is called an automation
controller. (Chapter 21 explains how to make a controller.)

Many of the code examples in this chapter are based on the AutoCalc example program
installed in the EXAMPLES/OCF I AUTOCALC directory. AutoCalc draws a calculator
on the screen and lets the user click buttons to perform calculations. AutoCalc also
automates its classes so that a controller application can send commands to do the same
things a user does.

1. Registering an automation server
Registering an application means giving OLE information about what the application
can do. First you record the information in a registration table, and then you pass the
table to the constructor of a registrar object.

Creating a registration table
An automation server must set four pieces of information in the application's
registration table: its program ID, its class ID, a description of itself, and command-line
arguments for invoking the automation server.

BEGIN_REGISTRATION(AppReg)
REGDATA (clsid, " { 877B6200-7 627-101B-B87C-0000C057CE4E} ")
REGDATA (progid, "Calculator .Application")
REGDATA(appname, "AutoCalc"
REGDATA (description, "Automated Calculator 1. 2 Application")
REGDATA(cmdline, "/Automation")

END_REGISTRATION

382 ObjectWindows Programmer's Guide

The registration macros create a structure that this example names AppReg. The clsid
must be specially generated to ensure uniqueness. To learn how, refer to the entry for
the clsid registration key in the Object Windows Reference Guide. The progid for an
automation server conventionally has two parts, one naming the program
("Calculator") and one naming the type of object(" Application"). A period(".") is the
only permissible delimiter character in a progid.

A server that creates several different kinds of automatable objects must give each a
different progid, such as AppName.MySecondObject and AppName.MyThirdObject. You
need not, however, supply a different clsid for each kind of object, only for the first one.
ObjectComponents increments the first clsid for each subsequent object.

The progid is visible to users when they create your object in their automation scripts.
They also see the description string when OLE browses the system for available
automation objects.

For the final registration key, cmdline, an automation server should normally include the
-Automation switch. When an automation controller asks to create your object, OLE
invokes your application and places the cmdline value on the command line.

Although OLE conventions call for this switch, OLE itself pays no attention to it.
ObjectComponents uses it, though, to determine whether to invoke new instances of
your program for each new OLE client or whether a single instance should service all
clients. Normally you don't want several different clients sending commands to the
exact same object. The commands they send might interfere with each other.
ObjectComponents responds to the -Automation switch by making the application
support only one client per instance. (The -Automation switch overrides ocrMultipleUse
if you register that in your usage key.) If it makes sense for your automation server to
support simultaneous clients with a single instance, then register it as ocrMultipleUse
and omit-Automation from the cmdline string.

The -Automation switch directs the creation of an OLE factory, the facility that
ObjectComponents registers at run time for OLE to call when it wants to create
whatever the server produces. When the switch is present, ObjectComponents registers
the application class so that OLE can create an instance of the application.
ObjectComponents does not register the document factory. To make the application
single-use, ObjectComponents removes the factory after it creates the first instance of
the application.

The registration table in the example holds information about the application, so it is
called an application registration table. Using the same macros, an application can also
create document registration structures to describe the kinds of documents (or objects) that
the server produces. An automation server creates automated documents if it wants
controllers to embed the automated object before issuing commands. For more
information about application and document registration structures, see "Building
registration tables" on page 344.

Table 21.1 briefly describes all the registration keys that might be used by an automation
server. It shows which are optional and which required, as well as which belong in the

Chapter 21, Automating an application 383

application registration table (usually named AppReg),and which in the document
registration table (usually named DocReg).

Table 21.1 Keys an automation server registers

appname Yes Optional Short name for the application

els id Yes Optional Globally unique identifier (GUID); generated
automatically for the DocReg structure

description Yes Yes Descriptive string (up to 40 characters)

progid Yes Yes Name of program or object type (unique string)

extension No Optional Document file extension associated with server

docfilter No Yes if not
dtHidden

Wildcard file filter for File Open dialog box

docflags No Yes Options for running the File Open dialog box

typehelp No Optional Name of an .HLP file documenting supported
commands

helpdir No Optional Path to an ,HLP file documenting supported
commands (defaults to current module path)

debugger Optional Optional Command line for running debugger.

debugprogid Optional Optional Name of debugging version (unique string)

debugdesc Optional Optional Description of debugging version

cmdline Yes No Arguments to place on server's command line

path Optional No Path to server file (defaults to current module path)

permid Optional Optional Name string without version information

permname Optional Optional Descriptive string without version information

usage Optional Optional Support for concurrent clients

language Optional No Language for registered strings (defaults to system's
user language setting)

version Optional No Major and minor version numbers (defaults to "LO")

The table assumes that the server's documents support automation. For non-automated
document types, the server needs to register only docflags and docfilter.

If your server is also an OLE container or a linking and embedding server, then you
should also consult the container table (page 308) or the server table (page 346). Register
all the keys that are required in any of the tables that apply to your application.

For more info11mation about individual registration keys and the values they hold, see
the ObjectWindows Reference Guide.

An automation server that supports system language settings should localize the
description string it registers. (The progid must never be localized.) For more on
localization, skip ahead to "Localizing symbol names" on page 397.

The complete AppReg structure is later passed to the program's TRegistrar object and
written to the registry.

384 ObjectWindows Programmer's Guide

Creating a registrar object
An automation server needs a registrar object, just as linking and embedding
applications do. Applications that support only automation, however, without linking
and embedding, should create TRegistrar instead of TOcRegistrar. TRegistrar is the base
class for TOcRegistrar. TOcRegistrar extends TRegistrar by connecting the application to
the BOCOLE support library interfaces that support linking and embedding.

First, declare a static pointer to hold the TRegistrar*. Use the TPointer<> template to
ensure that the registrar object is properly deleted when the program ends.

TPointer<TRegistrar> Registrar; II initialized at WinMain or LibMain

In the main procedure (for AutoCalc, this is WinMain), you should create the registrar
object and call its Run method.

try {
: :Registrar=new TRegistrar(AppReg;TOcAutoFactory<TCalc>,string(cmdLine) ,hlnst);
if (! ::Registrar->IsOptionSet(amAnyRegOption))

: :Registrar->Run();
: : Registrar = 0;
return O;

catch (TXBase& x)

II deletes registrar by replacing pointer

::MessageBox(O, x.why().c_str(), "OLE Exception", MB_OK);

The first parameter of the TRegistrar constructor is the application registration structure,
conventionally named App Reg. The second parameter is a factory callback function. The
example uses a factory template to create the callback. For an automation server that
doesn't use ObjectWindows, the appropriate template is TOcAutoFactory. (For more
about factory callbacks and templates, see the ObjectWindows Reference Guide.)

The call to IsOptionSet determines whether the application was passed a command-line
switch asking the application to register itself in the system registration database and
then quit. If not, the application calls Run. The registrar then calls the factory callback,
where the message loop resides. When Run returns, the application has ended.

For more information about command-line switches, see Table 20.2.

2. Declaring automatable methods and properties
Automating a class requires building two tables, one in the class declaration and one in
the class implementation. The first table is called the automation declaration, and it
declares which members of the class a controller can reach. The second table is called the
automation definition, and it defines public names that a controller uses to reach each
exposed class member. This section tells how to build an automation declaration.

The automation declaration belongs inside the declaration of an automated class. It
begins with the macro DECLARE_AUTOCLASS and includes one entry for each class
member that you choose to expose. The macros add nested classes that
ObjectComponents instantiates to process commands received from OLE. They do not
alter the structure or size of the original class.

Chapter 21, Automating an application 385

This sample automation declaration exposes functions and data members of a C++ class
that mimics a calculator:

DECLARE_AUTOCLASS(TCalc)
AUTODATA (Accum,
AUTODATA (Opnd,
AUTODATA (Op,
AUTOFUNCO (Eval,
AUTOFUNCOV(Clear,
AUTOFUNCOV(Display,
AUTOFUNCOV(Quit,
AUTOFUNCl (Button,
AUTOFUNCO (Window,
AUTOFUNCl (LookAt,
AUTODATARO(MyArray,

Accum, long,
Opnd, long,
Op, short, AUTOVALIDATE(Val>=OP_NONE && Val<=OP_CLEAR))
Eval, TBool, I
Clear, I
Display, I
Quit, I
Button, TBool, TAutoString,)
GetWindow, TAutoObject<TCalcWindow>,
LookAtWindow, long, TAutoObject<const TCalcWindow>,)
Elem, TAutoObjectByVal<TMyArray>,)

The automated class is called TCalc. Each AUTOFUNC or AUTODATA macro exposes
one member of TCalc. Some of the TCalc member functions are Eval, Clear, Display, and
Quit. Its data members include Accum, Opnd, Op, and Elem. TCalc also has other
members that it chooses not to automate and so excludes from the declaration table.

No termination macro is needed for an automation declaration. The
END_AUTOCLASS macro that closes an automation definition is not used here. Also,
each line of the declaration ends with a closing parenthesis, not with punctuation.

Note The automation declaration should appear at the end of a class declaration because the
macros can modify the access specifier. If you put the declaration anywhere other than
the end, be sure to follow it immediately with an access specifier (public, protected, or
private).

Writing declaration macros
Each of the macros within an automation declaration describes a single method or
property that other programs can manipulate. The different macros expose different
kinds of class members. AUTOFUNCl, for example, exposes a member function that
takes one parameter. AUTOFUNC2V exposes a function that takes two parameters and
returns nothing (void). AUTOPROP exposes a property through Set and Get functions
that insert or retrieve a single value. AUTODATA exposes a data member that the
controller can read and modify directly. For a complete list of the macros, refer to the
table of Automation Declaration Macros in Chapter 5 of the Object Windows Reference
Guide.

The general form of the automation macros is this:

MACRONAME(InternalName, FunctionName, ReturnType, ArgumentType, Options I

Some of the macros don't use all five parameters. AUTOFUNCl V, for example, doesn't
have a ReturnType because the function has a void return. AUTOFUNCO doesn't have
any arguments, while AUTOFUNC2 has two different arguments. But whatever
parameters are relevant appear in the order shown.

InternalName is an identifier you assign to each automatable property or function. It is
used internally by ObjectComponents for keeping track of the members. The only other
place you ever use the internal name is in the corresponding entry of the class's

386 ObjectWindows Programmer's Guide

automation definition table. The internal name is a unique identifier for the member.
(The names used in source code are not necessarily unique. They can be overloaded, for
example.)

FunctionName is the name you use in your source code to refer to the same property or
function. FunctionName can be any expression that evaluates to a function call. The
expression must, however, be defined within the scope of the automated object.
ObjectComponents attempts to reach the function through the this pointer.

The internal and function names should be the same unless the function name is
overloaded or uses indirection. For example, suppose a class contains a data member
that points to another object:

TObject* MyObject;

To expose a function call like MyObject->MyFunction, you should supply an internal
name that does not use indirection. In this case, a good choice would be MyFunction.

AUTOFUNCOV(MyFunction, MyObject->MyFunction,)

If a function is overloaded, use the same function name for all versions but give each a
different internal name. ObjectComponents can distinguish the overloaded functions by
the return types and argument types in the parameters that follow.

The ReturnType and ArgumentType parameters can be any fundamental C type, such as
int or char, or a pointer to any fundamental type. Some pointers, however, require
special handling. If the data type is a string (type char*), declare it to be a T AutoString
instead. If the data type is a pointer or a reference to a C ++ object, then declare it using
the T AutoObject<> wrapper. The type substitutions help ObjectComponents convert
between C++ data types and the VARIANT union type that OLE uses. Pointers and
object references are hardest to convert because they refer to data that is not in the
variable itself. The T AutoString and T AutoObject classes provide type information for the
conversion so that ObjectComponents can pass the right information between server
and controller applications.

The TCalc example shows how to use T AutoObject. One of the functions TCalc exposes is
GetFunction, which returns a reference to a TCalcWindow object.

AUTOFUNCO (Window, GetWindow, TAutoObject<TCalcWindow>,)

When it declares TCalc Window as the return type, it makes use of the T AutoObject
template to create a smart, self-describing pointer to a TCalcWindow object.

Providing optional hooks for validation and filtering
The final parameter of every automation macro names a hook function to be called
whenever OLE calls the exposed class member. A hook is code that executes every time
anyone uses a particular class member. ObjectComponents supports hooks to record
commands, undo commands, validate command arguments, and override a
command's implementation. Hooks are always optional.

C h a p t e r 2 1 , A u to m at i n g a n a p p I i c at i o n 387

To install a hook, use one of these macros as the last parameter to any automation
declaration:

• AUTOINVOKE • AUTONOHOOK
• AUTORECORD • AUTOREPORT
• AUTOUNDO • AUTOVALIDATE

Each macro receives a single parameter containing code to execute. The form of the
required macro varies with its function.

To validate arguments, for example, the code should be a Boolean expression. The Op
data member of TCalc holds an integer that identifies an operation to perform, such as
addition or subtraction. The automation declaration installs a hook to be sure that Op is
not assigned a value outside the legal range of operator identifiers.

AUTODATA(Op, Op, short, AUTOVALIDATE(Val>=OP_NONE && Val<=OP_CLEAR))

AUTOV ALIDATE introduces the expression to execute for validation. Within the
validation expression, use the name Val to represent the value received from the
controller. When used to validate function arguments, AUTOVALIDATE uses the
names Argl, Arg2, Arg3, and so on.

Whenever any automation controller attempts to set a value in the Op data member,
ObjectComponents verifies that the new value falls within the range OP _NONE to
OP_ CLEAR. If passed an illegal value, ObjectComponents cancels the command and
sends OLE an error result.

The expression passed to AUTOV ALIDA TE can include function calls.

AUTODATA(Op, Op, short, AUTOVALIDATE(Val>=OP_NONE && NotTooBig(Val))

Now ObjectComponents calls NotTooBig whenever a controller attempts to modify Op.

bool NotTooBig(int Val) {
return (Val <= OP_CLEAR)

3. Defining external methods and properties
Besides declaring which of its members are automatable, an automated class must also
create a second table of macros to assign public symbols for referring to the exposed
methods and properties. The public symbols are what other applications see. They
become the controller's interface to an automated OLE object.

Behind the scenes, ObjectComponents links the public names to the C++ object or
objects that you create to implement the OLE object. The automation declaration table
identifies which class members to expose, and the automation definition table assigns
them names.

The automation definition belongs with the class implementation. It begins with the
DEFINE_AUTOCLASS macro and ends with END_AUTOCLASS. Here's the
automation definition for TCalc:

DEFINE_AUTOCLASS(TCalc)
EXPOSE~PROPRW(Opnd, TAutoLong, "Operand",

388 Objec!Windows Programmer's Guide

"@Operand_", HC_TCALC_OPERAND)

EXPOSE_PROPRW_ID (0, Ac cum, TAutoLong, " ! Accumulator", "@Accumulator_",
HC_TCALC_ACCUMULATOR)

EXPOSE_PROPRW I Op' CalcOps' "Op" '
EXPOSE_METHOD(Eval, TAutoBool, "!Evaluate",
EXPOSE_METHOD (Clear, TAutoVoid, "!Clear",
EXPOSE_METHOD (Display, TAutoVoid, "!Display",
EXPOSE_METHOD(Quit, TAutoVoid, "!Quit",
EXPOSE_METHOD(Button, TAutoBool, "!Button",

REQUIRED_ARG (TAutoString," ! Key")

"@Op_", HC_TCALC_OPERATOR)
"@Evaluate_", HC_TCALC_EVALUATE)
"@Clear_", HC_TCALC_CLEAR)
"@Display_", HC_TCALC_DISPLAY)
"@Quit_", HC_TCALC_QUIT)
"@Button_", HC_TCALC_BUTTON)

EXPOSE_PROPRO(Window,
EXPOSE_METHOD(LookAt,

TCalcWindow, "!Window", "@Window_", HC_TCALC_WINDOW)
TAutoLong, "!LookAtWindow", "@LookAtWindow_",

HC_TCALC_LOOKATWINDOW)
REQUIRED_ARG I TCalcWindow, " ! Window")

EXPOSE_ PRO PRO (My Array, TMyArray, "!Array", "@Array_", HC_TCALC_ARRAY)
EXPOSE_APPLICATION(TCalc, "!Application", "@Application_",

HC_TCALC_APPLICATION)
END_AUTOCLASS (TCalc, tfNormal, "TCalc", "@TCalc", HC_TCALC)

The EXPOSE_xxxx macros assign names to methods and properties.
EXPOSE_PROPRW defines a property that controllers can both read and write.
EXPOSE_PROPRO limits a controller's access so it can only read the property value.
REQUIRED _ARC assigns a name to a function argument.

For example, a controller invokes the LookAt function by using the name LookAtWindow,
and it calls the function's one parameter Window. The DEFINE_AUTOCLASS and
END _AUTOCLASS macros assign "TCalc" as the public name for objects of type TCalc.

Most of the strings in this automation definition begin with a symbol, either ! or @.

These symbols indicate that the AutoCalc application has in its resources translations for
each public symbol. Each command from an automation controller comes with a locale
ID indicating the language the controller is using. If the controller was written in
German, for example, it can pass the string "Auswerten" instead of "Evaluate," and
ObjectComponents correctly invokes the Eval function. For more about using
international strings, see "Localizing symbol names" later in this chapter.

Every item listed in the automation definition must already appear in the automation
declaration. For example, every function name you define with EXPOSE_METHOD
must have a corresponding AUTOFUNC declaration. Every EXPOSE_PROP must have
a corresponding AUTOPROP, AUTOFUNC, AUTOFLAG, or AUTODATA, depending
on how you implement the property.

Writing definition macros
The macros for exposing methods and properties have five parameters: the internal
name, the type of value returned, the external name, and a documentation string. The
optional fifth parameter allows you to associate a Help context ID with each member.

MACRONAME(InternalName, ReturnType, ExternalName, DocString, HelpContext I

• InternalName is the identifier string you assigned to the member in the automation
declaration.

Chapter 21, Automating an application 389

• ReturnType tells what automation data type the method returns or the property
holds. Automation data types are listed in the last column of Table 21.2 later in this
chapter.

• ExternalName is what automation controllers see. A user sending commands from a
controller refers to all properties and methods by their external names.

• DocString should explain to a user what the exposed property or method does. OLE
displays this string if the user asks for help with a particular automation command. If
you omit the document string, set the parameter to 0.

• HelpContext, the fifth parameter, is optional. It is a number that identifies a particular
section of a Windows Help file (.HLP). You can create a Help file that describes the
syntax and usage of all the members you expose. If you supply the context IDs for
each member in the class's automation definition, then an automation controller can
ask OLE to display the help screens for the user. A user writing an automation script,
for example, can browse at run time for the list of members your application exposes,
ask to see their document strings, and even ask to see a Help screen about each one.

If you provide a Help file for automation, you should be sure to register its name
with the typehelp key, described in Table 21.1.

For a complete list of the different EXPOSE macros, see the table of Automation
Definition Macros in Chapter 5 of the Object Windows Reference Guide.

When exposing a method that takes arguments, you also need to add to the definition a
macro describing each argument. Here is the prototype for a function that takes three
arguments, along with the macros needed to define the method for automation:

II member function declaration
long TCalculator: :AddNumbers(short Numl, short Num2 = 0, short Num3 = 0);

II later, this appears after DEFINE_AUTOCLASS(TCalculator)
EXPOSE_METHOD(AddNumbers, TAutoLong, "AddNumbers", "Sum up to 3 numbers", HC_ADDNUMBERS)

REQUIRED_ARG (TAutoShort, "Numl" I
OPTIONAL_ARG (TAutoShort, "Num2", "0")
OPTIONAL_ARG (TAutoShort, "Num3", "0")

The first argument, Numl, is required. The others are optional. All three are short
integers. When describing optional arguments, you need to supply a default value. In
the example, 0 is the default value for the two optional arguments.

OLE conventions suggest that each automation object should have a property
representing the application it belongs to. You can add this property to any automation
definition with the EXPOSE_APPLICATION macro.

EXPOSE_APPLICATION(TMyClass, "Application", "My Application", I

The class passed to EXPOSE_APPLICATION must be the same class passed to the
factory template, as shown in "Creating a registrar object" on page 385.

Data type specifiers in an automation definition
Most of the macros in an automation definition ask for a data type-the type of a
function's return value, of each function argument, or of a data member. The possible

390 0 b j e c I W i n d ow s P r o g r a m m e r ' s G u i d e

values for data types within an automation definition are not fundamental C types.
They can be any of the following:

• An enumeration value previously defined for automation. (This technique is
explained in the next section.)

• The name of an automated class (such as TCalc).

• Any of the predefined classes that ObjectComponents provides to represent intrinsic
C types. See Table 21.2.

The reason for exposing predefined classes rather than intrinsic C types is to make type
information available when browsing from the controller. For exposed classes,
ObjectComponents can extract type information using RTTI. The automation data types
in the following table are defined as structures that contain no data; they simply retrieve
a static value indicating a data type. The identifier values are the same identifiers that
OLE uses to distinguish the data types it supports. All the automation data types derive
from a base called TAutoVal, so they are polymorphic. In effect, ObjectComponents can
ask any value passed through automation to describe its own data type.

Table 21.2 lists all the automation data types and shows where to use them. Start with
the left column and find a type that your automated class uses in its arguments or its
return values. The other columns tell what data type to specify in the corresponding
entries of the automation declaration and definition.

Table 21.2 Automation data types

short short TAutoShort

unsigned short short or unsigned TAutoShort or TAutoLong

long long TAutoLong

unsigned long unsigned long TAutoLong (treated as signed long)

int int TAutoint

unsigned int int or long TAutolnt or TAutoLong

float float TAutoFloat

double double TAutoDouble

boo! (or int) TBool TAutoBool

TAutoDate I Auto Date TAutoDate

TAutoCurrency TAutoCurrency TAutoCurrency

char* TAutoString TAutoString

constchar* TAutoString TAutoString

char far* TAutoString TAutoString

const char far* TAutoString TAutoString

string string TAutoString

en um short or int TAutoShort, TAutoint, or user-defined
AUTOENUM

T* TAutoObject<T> T (class T must be automated)

T& TAutoObject<T> T (class T must be automated)

constT* TAutoObject<const T> T (class T must be automated)

C h a pt e r 2 1 , Au to m at i n g a n a p p I i c a I i o n 391

Table 21.2 Automation data types (continued)

constT& TAutoObject<const T> T (class T must be automated)

T* (retUrned) TAutoObjectDelete<T> (C++ object deleted if no refs)

T& (returned) TAutoOl;>jectDelete<T> (C ++ object deleted if no refs)

T(retumed) TAutoObjectByVal<T> T (T copied, deleted when refs==O)

void (no return) (use AUTOFUNCxV macros) TAutoVoid

short far* short far* TAutoShortRef

long far* long far* TAutoLongRef

float far* float far* TAutoFloatRef

double far* double far* TAutoDoubleRef

TAutoDate far* TAutoDate far* TAutoDateRef

TAutoCurrency far* TAutoCurrency far* TAutoCurrencyRef

Exposing data for enumeration
An automation server might also need to expose enumerated values. Use OLE
enumerations when you want to expose a set of internal data values and refer to them
with localizable strings. For ,example, AutoCalc defines the enumerated type operators
to represent different actions the calculator can perform with numbers.

enum operators
OP_NONE = 0,
OP_PLUS,
OP_MINUS,
OP_MULT,
OP_DIV,
OP_EQUALS,
OP_CLEAR,

J;

As the calculator receives input, it stores the pending mathematical operation in a
private data member called Op.

short Op;

Operations are identified by different OP _xxxx constants. The Eval method performs the
pending operation using the number just entered and the total in the calculator's
accumulator. AutoCalc exposes the Op data member to automation so that a controller
can enter operators directly. Here's the automation declaration:

AUTODATA(Op, Op, short, AUTOVALIDATE(Val>=OP_NONE && Val<=OP_CLEAR))

The automation declaration shows that the Op data member holds a short value, but the
symbols OP _PLUS and OP _MINUS are defined only within the server program. The
controller can't use them when it passes commands. Ideally the controller should be
able to use more readable strings such as /1 Add" and "Subtract" in scripts.

The place for declaring public symbols is the automation definition. Use the
DEFINE_AUTOENUM macro to begin a table defining symbols for the enumerated
values.

392 ObjectWindows Programmer's Guide

DEFINE_AUTOENUM(CalcOps, TAutoShort)
AUTOENUM ("Add" , OP _PLUS)

AUTOENUM("Subtract", OP_MINUS)

AUTOENUM ("Multiply", OP _MULTI
AUTOENUM ("Di vi de", OP _DIV)
AUTOENUM ("Equals" , OP _EQUALS I
AUTOENUM ("Clear", OP _CLEAR)

END_AUTOENUM(CalcOps, TAutoShort)

The AUTOENUM macro takes two parameters: an enumeration string and a constant
value. The enumeration string (which can be localized) is the external name exposed
through OLE for use by controllers.

The macros that begin and end the enumeration table assign the name CalcOps to this
enumerated type. They also associate the automated data type TAutoShort with this
enumeration because the enumerated values are all short ints.

Table 21.3 lists the C++ types that can be enumerated and the corresponding
automation types for exposing them.

Table 21.3 Enumerable C++ types and the automation types for exposing them

bool TAutoBool

double TAutoDouble

float TAutoFloat

int TAutolnt

long TAutoLong

short TAutoShort

canst char* TAutoString

Creating a table of enumerated values results in a new data type that you can use to
describe arguments and return values in an automation definition. Now that
ObjectComponents understands the CalcOps enumerated type, you can use the type to
define the Op property.

EXPOSE_PROPRW(Op, CalcOps, "Op"' "@Op_"' HC_TCALCOPERATOR)

This line says that Op is a read-write property holding a value of type CalcOps. When the
controller tries to place "Multiply" or "Divide" in the Ops property, ObjectComponents
correctly translates the string into the value defined as OP _MULT or OP _DIV.

4. Building the server
To build an automation server, you need to include the right headers and link to the
right libraries.

C h a pt e r 2 1 , A u t o m at i n g a n a p p I i c a I i o n 393

Including header files
An automated program needs to include the following headers:

#include <ocflautomacr.h>
#include <o~flocreg.h>

II definition and declaration macros
II TRegistrar class

The list is short because an automation server does not need many of the
ObjectComponents classes used for linking and embedding.

Compiling and linking
Automation servers and controllers must be compiled with the medium or large
memory model. (They run faster in medium model.) They must be linked with the OLE
and ObjectComponents libraries.

The IDE chooses the right build options for you when you ask for OLE support. To
build any ObjectComponents program from the command line, create a short makefile
that includes the OCFMAKE.GEN file found in the EXAMPLES subdirectory.

EXERES = MYPROGRAM
OBJEXE = winmain.obj myprogram.obj
!include $(BCEXAMPLEDIR)\ocfmake.gen

EXERES and OBJRES hold the name of the file to build and the names of the object files
to build it from. The last line includes the OCFMAKE.GEN file. Name your file
MAKEFILE and type this at the command line prompt:

make MODEL=l
/'

MAKE, using instructions in OCFMAKE.GEN, will build a new makefile tailored to
your project. The new makefile is called WIN16Lxx.MAK.

For more information about OCFMAKE.GEN and the libraries needed for an
ObjectComponents program, see "Building an ObjectComponents application" on
page 286.

Note The first time the server runs, the registrar object records its information in the
registration database. Be sure to run the server once before trying to use it with a
controller.

Enhancing automation server functions
The preceding sections have explained what additional code different kinds of
applications must provide in order to become automation servers. The remaining
sections explain ways to enhance a server's capabilities. Enhancements include:

• Combining several C ++ classes into one automation object
• Invalidating an automation object when it goes away.
• Localizing symbol names and registration entries
• Exposing collections of objects
• Making type libraries

394 0 b j e c I W i n d o w s P r o g r a m m e r ' s G u i d e

Combining multiple C++ objects into a single OLE automation object
The complete set of member functions and properties that belong to a single
automatable OLE object can in fact be implemented by a combination of C ++objects. An
automatable calendar, for example, might begin with a TCalendar class. But the
automatable OLE calendar object might need to expose some methods and properties
that don't happen to belong to the C++ TCalendar object. The background color, for
example, might be inherited from TCalendar's base class, and some of the input
functions might belong to separate control windows in the calendar's client area. In that
case, the automation declaration for TCalendar should delegate some tasks to other C ++
classes. To combine several C++ objects together into a single OLE object, add macros to
the automation definition table.

II these lines belong in the definition block that begins DEFINE_AUTOCLASS(TCalendar)
EXPOSE_INHERIT(TCalendarWindow, "CalendarWindow")
EXPOSE_DELEGATE(TWeekForwardButton, "WeekForward", GetWeekForwardButton(this))

Any exposed classes must also be automated. In other words, TCalendarWindow and
TWeekForwardButton must also have their own AUTOCLASS tables. By exposing both of
these classes in the TCalendar automation definition, you combine all the exposed
members from all three classes into a single symbol table. When OLE sends an
automation command to the calendar, ObjectComponents searches for the matching
class member in TCalendar, then in TCalendarWindow, and finally in
TWeekForwardButton.

The EXPOSE_DELEGATE macro takes as its third parameter a conversion function. In
order to reach members in the delegation class, ObjectComponents needs a pointer to an
object of that class. The conversion function has one parameter for receiving a this
pointer to the object where the definition table appears. The function must return a
pointer to the delegation object. Also, it must be a global function. For example, if
TCalendar has a data member that points to the Week Forward button, this might be the
conversion function.

TWeekForwardButton *GetWeekForwardButton I TCalendar* this I {
return(this->m_ForwardButton);

You don't need to provide a conversion function when exposing an inherited function
or property because in that case ObjectComponents can create its own templatized
conversion function to reach the base class.

Note Another way to coordu'.iate the actions of several automated objects within a single
application is to give one object access functions that return the other objects. For
example, the sample program AutoCalc automates five different classes, but no class
delegates to any other. When a controller asks for an object from the AutoCalc server, it
receives only the automated TCalc object. TCalc, however, has a property called Window
that holds a TCalcWindow object. TCalcWindow, in tum, has a property that holds the
collection of buttons. The collection object returns individual button objects. Without
properties or functions that return the other objects, the controller would never be able
to reach them. Be sure to add access functions if necessary.

To find out how a controller uses the access functions, see "Sending commands to the
collection" on page 415.

C h a p I e r 2 1 , A u Io m a I i n g a n a p p I i c at i o n 395

Telling OLE when the object goes away
If there is a chance that your program might delete its automated object while still
connected to a controller, then you need to tell OLE when the object is destroyed. This
precaution matters only if the logic of your program might cause the object to be
destroyed through nonautomated means while an OLE session is still in progress. If
OLE attempts to use an automation object whose underlying C ++ object has been
destroyed, it attempts to use an invalid pointer. A single function call prevents the error
by sending OLE an obituary to announce that the object no longer exists.

II place this line in the destructor of your automated class
::GetAppDescriptor()->InvalidateObject(this);

GetAppDescriptor is a global function returning a pointer the application's
T App Descriptor object. InvalidateObject is a TAppDescriptor method. It tells OLE the object
that was passed to the descriptor's constructor is now invalid.

Although the object's destructor is a good place to call InvalidateObject, you can call it
anywhere. If you do not own the class you are automating, it might not be possible to
modify the destructor. This works, too:

TMyAutoClass MyAutomatedObject;

::GetAppDescriptor()->InvalidateObject(MyAutomatedObject);
delete MyAutomatedObject;

The object pointer you pass to InvalidateObject must always represent the most derived
form of the object. In other words, if the pointer is polymorphic, it must point to the class
as it was created and not to any of its base classes. Calling InvalidateObject from the
object's own destructor is safe because in that case this always points to the most
derived class. If you call InvalidateObject from somewhere else, you might need the
global function MostDerived to ensure that you are invalidating the correct object.

appDesc->InvalidateObject(: :MostDerived(MyPolymorphObject, typeid(MyPolymorphObject)));

In the example, MyPolymorphObject is a pointer to a polymorphic object, so it might
point to a base class or to an object of any type derived from the base. MostDerived
converts the pointer, making it point to an object of the type furthest down the
hierarchy, the one furthest descended from the base.

Besides calling InvalidateObject, there are two other ways to be sure OLE knows when
the object is destroyed. One way is to derive the object's class from T Auto Base. The only
code in T AutoBase is a virtual destructor that calls InvalidateObject for you. This example
declares a class called TMyAutoClass. OLE always knows when any object of type
TMyAutoClass is destroyed.

class TMyAutoClass: public TAutoBase { I* declarations *I);

The other way is to put the AUTODETACH macro in the class's automation declaration
table. This works without having to change the class derivation, but it does add one byte
to the size of the class.

396 0 b j e c I W i n d o w s P r o g r a m m e r ' s G u i d e

Localizing symbol names
The symbols that appear in an automation definition become visible to other OLE
programs. Users writing scripts can see and use the symbols. The symbols become part
of the program's user interface. Programs intended to reach international audiences
need to translate the strings for different markets. For example, a property named
"Color" in English should be called "Couleur" in a French script, "Farbe" in a German
script, and "Colour" in a British one.

OLE does its best to help you out by passing a number that indicates the user's language
setting. This number is called a locale ID, or LCID. LCIDs are defined by OLE and the
Win32 APL They consist of two numbers, one identifying a language and one
identifying a subdialect within the language. When OLE passes an automation call into
an automated application, it also passes an LCID. The automation controller might
determine the LCID from the system settings at run time, or the person using the
controller might choose a locale.

An automated program is expected to examine the LCID and respond with
appropriately translated strings. ObjectComponents eases the burden by letting you
build a resource table to supply localized versions of any strings you use. When
handling automation calls, ObjectComponents automatically searches the table to find
strings that match whatever language the controller requests.

ObjectComponents searches first for a string with the correct language and dialect IDs.
Failing that, ObjectComponents searches for a match on primary language only,
ignoring dialect. If still no match is found, ObjectComponents simply uses the original,
untranslated string.

Localizing your symbols takes two steps.

1 Supply translations for your strings in your program's resources.
2 In your source code, mark the strings that have translations.

Putting translations in the resource script
To build a table of translations in your resource (.RC) file, use the XLAT resource type.

#include "owl/locale. rh"

Left XLAT FRENCH "Gauche" GERMAN "Links" SPANISH "Izquierda" XEND

Right XLAT FRENCH "Droit" GERMAN DUTCH "Rechts" XEND

Center XLAT ENGLISH_UK FRENCH GERMAN "Centre" SPANISH "Centro" XEND

Help XLAT FRENCH "Aide" GERMAN "Hilfe" SPANISH "Ayuda" XEND

The locale.rh header file defines XLAT as a type of resource. XLAT and XEND are
delimiters for all the translations of a single string. The same header also defines macros
to represent various locale IDs. FRENCH, DUTCH, and ENGLISH_ UK, for example,
each represent a different LCID. UK is a subdialect of ENGLISH.

Each line in the localization table begins with a resource identifier. These examples use
the original string itself to identify the resource that holds its translations.

A localization table is not obliged to provide the same set of translations for each string.
For example, it is legal to provide FRENCH_FRANCE, FRENCH_BELGIUM, and

C h a p I e r 2 1 , A u Io m a Ii n g a n a p p I i c at i o n 397

SWEDISH for one string, but only FRENCH and ITALIAN for the next string. Also, if
several languages happen to use the same string, it is legal to write the string only once,
as in this example:

Center XLAT ENGLISH_UK FRENCH GERMAN "Centre" SPANISH "Centro" XEND

In British English, French, and German, "Center" is translated as "Centre." In Spanish, it
becomes "Centro." Writing "Centre" only once makes the .EXE file smaller.

Marking translatable strings in the source code
Composing a resource table is the first step, but ObjectComponents still needs to be told
when to use the table you have provided. In the automation definition, mark each
translatable string by prefixing it with an exclamation point.

EXPOSE_METHOD(Clear, TAutoVoid, "!Clear", "Clear accumulator", HC_TCALC_CLEAR)

This line from AutoCalc exposes a class method named Clear. Clear returns void. The
third parameter, !Clear, gives the external name that controllers see. The initial
exclamation point tells ObjectComponents to look in the program's executable file for a
localization resource whose identifier is the string Clear.

Clear XLAT GERMAN "Alles16schen" XEND

The exclamation point prefix also marks Clear as the language-neutral form of the string.
If an automation controller decides to use the locale ID GERMAN, then
ObjectComponents tells it that the exposed property is called AllesLOschen. If the
controller sets any other locale ID, it receives the neutral form, Clear.

Argument names as well as properties and methods can be localized.

EXPOSE_METHOD(Button, TAutoBool, "!Button", "Button push sequence", HC_TCALC_BUTTON)
REQUIRED_ARG(TAutoString, "!Key")

In determining what to call both the Button method and its one argument,
ObjectComponents will search the program's localization resources for Button and Key.

Button
Key

XLAT GERMAN "Schaltflache" XEND
XLAT GERMAN "Taste" XEND

The algorithm that searches for resources is not sensitive to case, and the current
implementation of 16-bit Windows does not allow the use of extended characters (such
as characters with diacritical marks) in resource names. The strings stored in a resource,
however, can use any characters and do preserve their case.

A problem arises in naming your resource if the string contains spaces. Resource
identifier strings cannot have spaces. Consider what happens if you try to localize the
description string for this property:

II illegal: no spaces allowed in resource identifiers
EXPOSE_PROPRW(Caption, TAutoString, "!Caption", "!Window Title", HC_TCALCWINDOW_TITLE)

It's a good idea to localize descriptions as well as property names, but "Window title" is
not a legal resource identifier. In cases like this, use@ instead of ! as the localization
prefix, and follow it with any legal identifier.

EXPOSE_PROPRW(Caption, TAutoString, "!Caption", "@Caption_",HC_TCALCWINDOW_TITLE)

398 0 b j e c I W i n d ow s P r o g r a m m e r ' s G u i d e

The @prefix tells ObjectComponents that the string is only a resource identifier and
should never be displayed no matter what locale the controller requests. To make the
distinction even clearer for programmers reading the code, strings used only as
identifiers conventionally end with an underscore, as in Caption_ .

To make "Window Title" the language-neutral string, do not assign it a locale ID in the
localization resource.

Caption_ XLAT "Window Title" GERMAN "Fenster-Aufschrift" XEND

Now a controller that requests any locale setting other than GERMAN is given the
string Window Title.

Besides ! and @, there is a third localization prefix: #. The# prefix must be followed by
digits that identify a localization resource by number.

EXPOSE_PROPRW(Caption, TAutoString, "!Caption", "#10047",HC_TCALCWINDOW_TITLE)

This example tells ObjectComponents to look for a resource numbered 10047. This is
how the resource should appear in the .RC file:

10047 XLAT "Window Title" GERMAN "Fenster-Aufschrift" XEND

Understanding how ObjectComponents uses XLAT resources
The external names in macros like EXPOSE_METHOD and EXPOSE_PROPRW are
wrapped in objects of type TLocaleString, a localizable substitute for char* strings. A
TLocaleString object contains code that searches a program's executable file for XLAT
resources. All access to the XLAT resources is performed by TLocaleString.

The TLocaleString class is defined in osl/locale.h. You don't need to refer to TLocaleString
directly. The macros and headers bring it in for you.

TLocaleString is very efficient. If the controller is working in the server's native language,
then TLocaleString realizes the strings in the source code already match the locale and it
doesn't waste any time reading resources.

Usually ObjectComponents determines the application's default language by reading
the system's locale ID at compile time and storing it in the compiled program. You can
override the default by including a line like this in your source code.

#include "olenls.h"
TLangid TLocaleString::NativeLangid=MAKELANGID(LANG_ENGLISH,SUBLANG_ENGLISH_US);

The olenls.h header holds national language support constants, including the
MAKELANGID macro and the language and dialect symbols.

When it must resort to resources, TLocaleString does everything it can to minimize the
time spent searching for translations. When it finds a string to match the current locale,
it caches the string in memory and never has to load it again. That means only the first
attempt to use each translated string incurs a performance hit. Subsequent requests are
satisfied quickly. Once in memory, the strings are stored in a hash table so no space is
wasted on duplicates. If TLocaleString fails to find a requested string, it remembers the
failure as well and won't try to find the same string a second time.

C h a p t e r 2 1 , A u t o m at i n g an a p p I i c at i o n 399

Localizing registration strings
The same localization mechanism works with strings your application registers. Some
strings, such as the progid, should not be localized, but the following list names
registration keys that can be localized.

• appname • formatn • typehelp
• debugdesc • menuname • verbn
• description • permname

The following excerpt from the AutoCalc registration tables shows where to put the
localization prefixes. The appname, description, and typehelp keys are localized.

BEGIN_REGISTRATION(AppReg)
REG DATA (els id, " { 877B6200-7 627-101B-B87C-000 0C057CE4E} ")
REGDATA(progid, APP _NAME ".Application")
REGDATA(appname, "@AppName")
REGDATA(description,
REGDATA(cmdline,
REGDATA(typehelp,

END_REGISTRATION

"@Desc")
"/Automation")
"@typehelp")

For information about particular registration keys, see the Object Windows Reference
Guide.

AutoCalc supplies translations for the appname, description, and typehelp strings in its
resource script. Here are two of them.

Desc XLAT "Automated Calculator 1. 0 Application"
GERMAN "Automatisierte Taschenrechner-Anwendung 1. 0"

XEND
typehelp XLAT "autocalc.hlp"

GERMAN "acalcger.hlp"
XEND

ObjectComponents determines the proper language for registration by examining the
system settings at run time, but it is possible to override the system setting with the
-Language command-line switch (see Table 20.2 on page 349).

Exposing collections of objects
ObjectComponents lets an automated object expose collections of various types as object
properties. The items in a collection can belong to an array, a linked list, or any other
structure that organizes sets of similar items. To expose a collection, you need to expose
methods for manipulating it. These methods typically include a counter to show the size
of the collection, an iterator to walk through the collection, and a random-access
function to retrieve specific items in the collection.

A collection object is an object that returns on request individual items from a set of
related items. It implements the methods that manipulate the items. In the AutoCalc
sample program, the buttons on the face of the calculator are a set of related, similar
objects. AutoCalc defines a new class, TCalcButtons, whose methods let a controller ask
for individual button objects. The buttons themselves are automated objects, so once a

400 ObjectWindows Programmer's Guide

controller receives a button it can send a push command or change the text the button
displays.

xposing collections for automation generally involves three steps.

• Exposing the collection as a property of the parent. How you do this depends on the
constructor of the class that manages the collection.

• Implementing an iterator in the collection class.

• Implementing other methods in the collection class.

Constructing and exposing a collection class
If you are converting an application to support automation, you are likely to find that it
does not already have a C ++class to act as a collection object. The items might be simple
values, structures, or even system objects represented by handles. You have to create a
new C++ class, and you have to expose the class in the parent's automation tables as a
property of the parent class. How you expose the collection in the parent's automation
declaration table depends on what information the parent passes the collection object to
construct it. This section considers several different possible constructors and shows the
macros for adding the collection as a property of its parent.

Instances of the collection class are constructed only when a controller requests it. The
collection object appears to the controller as a property of the parent class. In AutoCalc,
for example, when a controller asks for what is in the Buttons property,
ObjectComponents creates a TCalcButtons object on the fly. The constructor of a
collection object must accept a single argument passed from the parent to initialize itself.

Because TCalcButtons manages a collection of child windows, its parent passes the
handle of the parent window. The constructor looks like this:

TCalcButtons(HWND window) : HWnd(window) {}

For the handle to be passed to the constructor, the parent must add a line to its
automation declaration:

II from the automation declaration of the parent class
DECLARE_AUTOCLASS(TCalcWindow)

AUTODATARO(Buttons, hWnd, TAutoObjectByVal<TCalcButtons>,)

Buttons is assigned as the internal name of a read-only property whose value is
TCalcWindow::hWnd. For the data type of this property, the table specifies a new class
based on the collection class. TAutoObjectByVal<T> causes an instance of T to be
constructed that persists until all external references to that instance are released (when
the exposed object goes out of scope in the automation controller).

TCalcWindow must also expose the collection property in its automation definition:

II from the automation definition of the parent class
DEFINE_AUTOCLASS(TCalcWindow)

EXPOSE_PROPRO(Buttons, TCalcButtons, "!Buttons", "@Buttons_", HC_TCALCWINDOW_BUTTONS)

When a controller asks for what is stored in the read-only property called Buttons,
ObjectComponents creates a TCalcButtons object and passes hWnd to its constructor.

Chapter 21, Automating an application 401

Here are three examples showing other ways a parent class might expose a collection
object as one of its properties:

• Case 1: TParent::DocList points to the head of a linked list of TDocument objects. A
new class, TDocumentList, is created as the collection object. The constructor of
TDocumentList receives from its parent the head of the linked list:

TDocumentList(TDocument*);

The automation declaration of TParent exposes DocList as a read-only property, using
the collection class to assign it a type.

DECLARE_AUTOCLASS(TParent)
AUTODATARO(Documents, DocList, TAutoObjectByVal<TDocumentList>,)

The automation definition of TParent calls the collection Documents and says its type
is TDocumentList.

DEFINE_AUTOCLASS(TParent)
EXPOSE_PROPRO(Documents, TDocumentList, "Documents", "Doc Collection", 270)

• Case 2: TParent contains a list. It passes this to the collection object, TList, which
extracts list items by indirection through the parent's pointer. The constructor
receives the pointer.

TList(TParent* owner)

The automation declaration of TParent exposes this as a read-only property, using the
collection class to assign it a type.

DECLARE_AUTOCLASS(TParent)
AUTOTHIS(List, TAutoObjectByVal<TList>,)

The automation definition of TParent calls the collection List and says its type is TList.

DEFINE_AUTOCLASS(TParent)
EXPOSE_PROPRO(List, TList, "List", "List of items'', 240)

• Case 3: Elem is an array of integers, defined as short Elem[COUNT]. The collection
object is TMyArray, and the constructor receives from the parent a pointer to Elem.

TMyArray(short* array)

The automation declaration of TParent exposes Elem as a read-only property, using
the collection class to assign it a type.

DECLARE_AUTOCLASS(TParent)
AUTODATARO(MyArray, Elem, TAutoObjectByVal<TMyArray>,)

The automation definition of TParent calls the collection Array and says its type is
TMyArray.

DEFINE_AUTOCLASS(TParent)
EXPOSE_PROPRO (My Array, TMyArray, "Array", "Array as collection", 110)

Implementing an iterator for the collection
The collection class performs whatever actions you want a controller to be able to
perform with the collection. Common collection methods include Count and GetObject,

402 ObjectWindows Programmer's Guide

which return the number of items in the collection or individual items specified by
number. The only methods you need to implement, however, are the constructor and an
iterator. You have already seen the constructor. An iterator function walks through the
collection and returns successive items on each new call.

The easy way to define an iterator is with th~ AUTOITERATOR macro, which you add
to the declaration table of the collection object.

DECLARE_AUTOCLASS(TCalcButtons)
AUTOITERATOR(int Id, Id = IDC_FIRSTID+l, Id <= IDC_LASTID, Id++,

TAutoObjectByVal<TCalcButton>(: :GetDlgitem(This->HWnd,Id)))

The parameters to AUTOITERATOR define the algorithm for enumerating objects in
the collection. Each of the five macro arguments represents a code fragment, ordered as
in a for loop.

1 Declare state variables for keeping track of loop iterations. For example,

int Index;

2 Assign initial values to the state variables. For example,

Index = O;

3 Test a Boolean expression to decide whether to enter the loop. For example,

Index < This->Total

4 Modify state variables to prepare for the next iteration. For example,

Index++;

5 Retrieve one item from the collection. For example,

(This->Array) [Index];

Note that the server can return any data type for items-values or objects.

In the AUTOITERATOR parameters, do not use commas except inside parentheses.
Semicolons can separate multiple statements, but cannot be used to end a macro
argument. As in automated methods, This is defined to be the this pointer of the
enclosing C++ class (here, the collection itself).

AUTOITERATOR puts an iterator in the automation declaration table, but the iterator
member must still be exposed in the definition table. Use the EXPOSE_ITERATOR
macro.

EXPOSE_ITERATOR(TAutoShort, "Array Iterator", HC_ARRAY_ITERATOR)

EXPOSE_ITERATOR takes fewer parameters than other EXPOSE_xxxx macros do. No
internal or external names are supplied. A class can have only one iterator, and the
external name is always _NewEnum. The first parameter describes the type of the items
returned from the iterator.

The automation type describes the type of the items returned from the iterator, in the
same manner as a function return. The previous example iterates an array of short int
values, so its automation data type is T AutoShort. (For a list of all the automation data
types, see Table 21.2.) The second parameter is the documentation string describing the

Chapter 21, Automating an application 403

iterator property, and the third parameter, which is optional, identifies a context in an
.HLP file for more information about the iterator.

Note From the external side, a script controller sees the enumerator as a property with the
reserved name _NewEnum that returns an object supporting the standard OLE interface
IEnum VARIANT. This interface contains methods to perform iteration. A controller
makes use of an iterator in a loop like this one, which is written in Visual Basic for
Applications:

For Each Thing In Owner.Bunch ("Thing" is an arbitrary iterator name)
(can access methods and properties)
(loops through all items in collection)

Thing.Member
Next Thing

Note The AUTOITERATOR macro generates a nested class definition within the collection
class. For complex iterators, you can choose to code the iterator explicitly in C++. Here is
an example:

class Titerator : public TAutoiterator

};

public:
ThisClass* This;
I* declare state variables here as members *I
void Init() {/* loop initialization function body*/}
bool Test() {I* loop entry test function body *I)
void Step() {I* loop iteration function body;}
void Return(TAutoVal& v) {I* current element return: v = expr *I)
Titerator* Copy() {return new Titerator(*this) ;}
Titerator(ThisClass* obj, TServedObject& owner)

: This(obj), TAutoiterator(owner) {}
static TAutoiterator* Build(ObjectPtr obj, TServedObject& owner)
{return new Titerator((ThisClass*)obj, owner); }

friend class Titerator; II make iterator a friend of the surrounding collection class

Adding other members to the collection class
In addition to exposing an iterator, a collection class by convention exposes a Count
method to return the number of items in the collection, an Index method for random
access to members of the collection, and optionally, methods such as Add and Delete to
manage the collection externally. Here, for example, is the complete code for the
TCalcButtons collection class in AutoCalc:

class TCalcButtons { II class used only temporarily to expose collection
public:

TCalcButtons(HWND window) : HWnd(window) {}
short GetCount() { return IDC_LASTID - IDC_FIRSTID;
HWND GetButton(short i) {return ::GetDlgitem(HWnd, i + IDC_FIRSTID+l);}
HWND HWnd;

DECLARE_AUTOCLASS(TCalcButtons)
AUTOFUNCO (Count, GetCount, short,)
AUTOFUNCl (Item, GetButton, TAutoObjectByVal<TCalcButton>, short,

AUTOVALIDATE(Argl >= 0 && Argl < This->GetCount())

404 ObjectWindows Programmer's Guide

};

AUTOITERATOR(int Id, Id = IDC_FIRSTID+l, Id <= IDC_LASTID, Id++,
TAutoObjectByVal<TCalcButton>(::GetDlgitem(This->HWnd,Id)))

DEFINE_AUTOCLASS(TCalcButtons)
EXPOSE_PROPRO(Count, TAutoLong, "!Count", "@CountBu_", HC_TCALCBUTTONS_COUNT)
EXPOSE_ITERATOR(TCalcButton, "Button Iterator", HC_TCALCBUTTONS_ITERATOR)
EXPOSE_METHOD_ID(O, Item, TCalcButton, "!Item", "@ItemBu_", 0)

REQUIRED_ARG (TAutoShort, "!Index")
END_AUTOCLASS(TCalcButtons, tfNormal, "TButtonList", "@TCalcButtons", HC_TCALCBUTTONS)

Creating a type library
A type library is a binary file containing information about an automation server. The
information describes the objects, properties, and methods the server supports. It is used
by programming tools, such as automation controllers, that call the server. Controllers
can query the type library for documentation and help with specific objects. The location
of its type library is one of the pieces of information an automation server records in the
system's registration database.

ObjectComponents can create a type library for you from information in the server's
automation definitions. To make a type library, call the server and set the -TypeLib
switch on the command line.

myapp -TypeLib

This command causes ObjectComponents to create a new file, MY APP.OLB, in the same
directory as MYAPP.EXE. ObjectComponents also records the library's location in the
registration database.

The -TypeLib flag also accepts an optional path and file name.

myapp -TypeLib = data\mytyplib

ObjectComponents places MYTYPLIB.OLB in a subdirectory called DATA under the
directory where MYAPP.EXE resides.

You can also make ObjectComponents generate mutliple type libraries in different
languages with the -Language switch. This command produces two type libraries, one
in German and one in Italian.

myapp -Language=lO -TypeLib=italiano -Language=7 -TypeLib=deutsch

The number passed to -Language must be hexadecimal digits. The Win32 API defines
BOC as the locale ID for the Belgian dialect of the French language. For this command
line to have the effect you want, of course, myapp must supply Belgian French strings in
its XLAT resources.

For more information about localization, see "Localizing symbol names" on page 397.
For more about command line switches, see "Processing the command line" on
page349.

You can also create an .HLP file of online Help to accompany your type library. The
Help file documents all the commands the server exposes, explaining what arguments
they expect and how to use them. If you have a Help file, be sure to register it using the

Chapter 21, Automating an application 405

typehelp and helpdir registration keys (explained in the Object Windows Reference Guide).
Use the final parameter of the EXPOSE_xxxx macros in the automation definition table
to associate Help context IDs with each command. If the automation controller asks for
help on a command, OLE launches the Help file automatically.

406 ObjectWindows Programmer's Guide

Creating an automation controller
This chapter explains how to send commands to other applications through OLE.
Chapter 21 shows how to write an automation server, an application that exposes its
internal commands to OLE. An automation controller is an application that controls a
server's automated objects by sending commands to OLE for other programs to execute.

Writing an automation controller is easier than writing a container, a server, or an
automation object because sending commands doesn't require any user interface. You
don't need to create any windows or use the Clipboard or draw objects on the screen.

In order to send commands to an OLE object, the automation controller must know the
names of methods and properties the object's server exposes to OLE. Generally these
names come from the server's type library. The controller uses the names in creating
C++ proxy classes whose methods send commands to the server. It's possible to browse
through available automation objects at run time and discover what commands they
support, but to make use of commands discovered at run time usually requires a
scripting language.

Steps for building an automation controller
These are the coding steps required to make one program control another. The sections
that follow explain each step in more detail.

Include the automation header files in your source code.

2 Create an object of type TOleAllocator.

3 Define a proxy C++ class to represent each OLE object you want to automate. Derive
the classes from T AutoProxy.

4 Implement command methods in your proxy classes with simple automation
macros.

5 Construct the proxy objects and call their methods. ObjectComponents sends the
commands through OLE to the automation object.

Chapter 22, Creating an automation controller 407

6 Build the program using the medium or large memory model. Link to the OLE and
ObjectComponents libraries.

Including header files
An automation controller needs to include the following headers:

#include <ocf/autodefs.h>
#include <ocf/automacr.h>

The autodefs.h header defines automation classes such as T AutoProxy. The automacr.h
header defines the macros a controller uses to implement proxy class methods.

Creating a TOleAllocator object
Like automation servers, automation controllers must also create a TOleAllocator object
to initialize the OLE libraries and (optionally) to give OLE a memory allocation function.
To create a TOleAllocator object, add this line to your program.

TOleAllocator OleAlloc;

The constructor for TOleAllocator initializes the OLE libraries and its destructor releases
them. Create an object of type TOleAllocator before you begin OLE operations and be
sure the object is not destroyed until all OLE operations have ended. A good place to
create the TOleAllocator is at the beginning of WinMain or OwlMain.

Declaring proxy classes
A proxy class is a C++ stand-in for an automated OLE object. You create a proxy class
whose interface corresponds to that of the OLE object. By deriving the proxy class from
TAutoProxy, you connect it to ObjectComponents. When a TAutoProxy object is
constructed, it calls an OLE API to request the !Dispatch interface of the automated
object that the proxy represents. When you call a function of the proxy class, the proxy
sends the corresponding command to the automation server.

An automation controller declares one proxy class for every type of object it wants to
control. In simple cases, a single proxy class might be enough. Controlling a complex
application that creates several different kinds of automatable objects requires more
proxies. To control a spreadsheet, for example, you might need a proxy application
class, a proxy spreadsheet class, and a proxy cell class.

The easiest way to declare and implement proxy classes is with the AutoGen utility.
AutoGen reads the server's type library and generates C++ source code for the proxy
classes a controller needs to send any commands to the server. Simply compile the
generated code into your application, construct proxy objects when you need them, and
call their member functions to send commands.

As an example of a proxy class, here is the code that AutoGen generates for the
automated class TCalc in the AutoCalc sample program. The opening comment shows
descriptive information from AutoCalc's entries in the registration database including
the value of AutoCalc's version, clsid, and description registration keys. The comments for

408 ObjectWindows Programmer's Guide

individual members show the documentation strings that AutoCalc assigns to each
member in its automation definition table, the dispatch ID that ObjectComponents
assigned to identify each command, and whether the member is a function or a
property.

II TKIND_DISPATCH: TCalc 1.2 {877B6207-7627-101B-B87C-0000C057CE4E}\409
II Automated Calculator Class
class TCalc : public TAutoProxy {

};

public:
TCalc() : TAutoProxy(Ox409) {}
II Pending operand
long GetOperand(); // [id(l), prop r/w]
void SetOperand{long); 11 [id(l), prop rlwl
II Calculator accumulator
long GetAccumulator(); II [id(O), prop rlw]
void SetAccumulator(long); II [id(O), prop rlw]
II Pending operation
TAutoString GetOp(); II [id(3), prop rlw]
void SetOp(TAutoString); II, [id(3), prop rlwl
II Evaluate operand, op
TBool Evaluate(); II [id(4), method]
II Clear accumulator
void Clear(); II [id(S), method]
I I Update display
void Display(); II [id(6), method]
II Terminate calculator
void Quit(); II [id(7), method]
II Button push sequence
TBool Button(TAutoString Key); II [id(8), method]
II Calculator window
void GetWindow(TCalcWindow&); II [id(9), propget]
II Test of object as arg
long LookAtWindow(TCalcWindow& Window); II [id(lO), method]
II Array as collection
void GetArray(TCalcArray&); II [id(ll), propget]
II Application object
void GetApplication(TCalc&); II [id(12), propget]

The constructor of an automation proxy class must pass to its base class, T AutoProxy, a
number representing a locale setting. The locale tells what language the automation
controller uses when it sends commands to objects. In the example, the number is Ox409,
which is the locale ID for American English. AutoGen chooses this locale by reading the
system settings when it runs, but you are free to change it to whatever locale you prefer.

The function members of class TCalc each send a different command to the calculator
object. Read-write properties get two commands, one for getting the value and one for
setting it. GetOp and SetOp, for example, write and read the value representing the next
operation the calculator will perform. Other commands, such as Display and Quit, make
the calculator perform some action.

Chapter 22, Creating an automation controller 409

Implementing proxy classes
Simply declaring methods doesn't accomplish much, of course. You also have to
implement them. Each method must send a command through ObjectComponents to
the automated object. Here is part of the implementation code that AutoGen generates
for the TCalc proxy object. Every method simply calls the same three macros.

II TKIND_DISPATCH: TCalc 1.2 {877B6207-7627-101B-B87C-0000C057CE4E}\409 Automated
Calculator Class
TAutoString TCalc::GetOp()
{

}

AUTONAMESO ("Op")
AUTOARGSO ()
AUTOCALL_PROP_GET

void TCalc::SetOp(TAutoString val)
{

}

AUTONAMESO ("Op")
AUTOARGSO ()
AUTOCALL_PROP_SET(val)

TBool TCalc::Evaluate()
{

}

AUTONAMESO ("Evaluate")
AUTOARGSO ()
AUTOCALL_METHOD_RET

void TCalc :,: Clear ()
{

}

AUTONAMESO ("Clear")
AUTOARGSO ()
AUTOCALL_METHOD_VOID

void TCalc::Display()
{

}

AUTONAMESO ("Display")
AUTOARGSO ()
AUTOCALL_METHOD_VOID

' void TCalc: : Quit()
{

}

AUTONAMESO ("Quit")
AUTOARGSO ()
AUTOCALL_METHOD_VOID

void TCalc::GetWindow(TCalcWindow& obj)
{

}

AUTONAMESO ("Window")
AUTOARGSO ()
AUTOCALL_PROP_REF(obj)

410 Objec!Windows Programmer's Guide

The three macros supply all the code needed for each function. The first two macros,
AUTONAMES and AUTOARGS, specify what arguments you want to pass. They are
explained in more detail below. None of the methods in the example takes any
arguments. The AUTOCALL_xxxx macros tell whether the command is a function or a
property and what kind of value it returns. Table 22.1 lists all the AUTOCALL_xxxx
macros.

Table 22.1 Macros for implementing proxy object member functions

AUTOCALL_METHODn(id, arg ...)

AUTOCALL_METHODnV(id, arg ...)

AUTOCALL_METHODn_REF(id, prx, arg ...)

AUTOCALL_PROPGET(id)

AUTOCALL_PROPSET(id, arg)

AUTOCALL_PROPREF(id, obj)

Calls a method with n arguments that returns a value.

Calls a method with n arguments that returns void.

Calls a method with n arguments that returns a proxy
object.

Retrieves the value of a property.

Assigns a value to a property.

Retrieves the value of a property that contains an
object. (Objects must be passed by reference.)

Note When an automation command passes an object as a parameter or a return value, be
sure to pass by reference, not by assignment. For example, access functions for a
property implemented as an object should follow this form:

GetObjectX(X& obj);
SetObjectX(X& obj);

Passing objects by assignment makes it impossible to provide C++ type safety.

Specifying arguments in a proxy method
The first two macros in the implementation of a proxy method indicate what arguments
you intend to pass. The server can decide that some arguments to a method are optional.
You must pass all required arguments, and you can choose to pass any subset of the
optional arguments.

For example, a server might expose a method that takes ten arguments, of which five are
optional. Optional arguments have default values. Your controller might have a use for
only one of the optional arguments, always accepting the default values for the other
four. In that case, you can set up your proxy implementation so that you have to pass
only six arguments instead of ten.

The AUTONAMES macro lists any optional arguments that you do want to use. It lists
them by the names the server assigns to them. (AutoGen reads the names from the
server's type library for you.) If you intend to pass only one of five optional arguments,
then you list only one argument in AUTONAMES.

The first argument passed to an AUTONAMES macro always indentifies the
automation method that this proxy command invokes. The names of arguments come
after. If the automation server uses ObjectComponents, then the names used in
AUTON AMES come from the server's automation definition table. The function name
is the external name in an EXPOSE_METHOD macro, and the argument names come

C h a pt e r 2 2 , C re at i n g a n a u I o m at i o n c o n I r o 11 e r 411

from subsequent OPTIONAL_ARG macros. (See "Writing definition macros" on
page 389.)

The second parameter in a proxy method implementation, AUTOARGS, lists all the
arguments that the controller chooses to pass for this command. It tells what will be
pushed onto the command stack. AUTOARGS must always list all the required
arguments in order first. At the end of the list come any optional arguments from the
AUTONAMES macro. If there are five required arguments and the controller wants to
pass only one of five optional arguments, then the list in AUTOARGS includes six
arguments, the optional one last.

The names used for required arguments are just dummy names. Their position in the
list indicates which argument they represent. The names for optional arguments must
be the same names used in AUTONAMES. For optional arguments, the name itself is
what identifies a particular parameter.

Creating and using proxy objects
Through a proxy class you can talk to an OLE object, but first the object has to exist. The
T AutoProxy class defines a member function called Bind that asks OLE to create an
object. The parameter passed to Bind determines the type of object to create. The most
convenient identifier is usually a name the automation object has recorded in the
registration database. (The object's unique clsid number also works but is harder to
remember and write.) This is what an automation controller does to make OLE create a
calculator object:

TCalc calc; II create proxy object
calculator.Bind("Calc.Application"); II make OLE create real object

The string passed to Bind is what the automation server registered as its progid:

REGDATA (progid, "Cale .Application") II from server's registration table

The destructor for T Auto Proxy calls the Unbind method, so when calculator goes out of
scope, OLE destroys the actual calculator object.

While calculator remains in scope, the controller program issues commands by calling
methods on the proxy object. The commands in the following example add 1234 + 4321
and display the result in the calculator's window.

calc.Set0perand(l234);
calc. SetOp ("Add" I;
calc.Evaluate();
calc.Set0perand(4321);
calc.Button("+");
calc.Evaluate();
calc. Display (I ;

Compiling and linking
Automation servers and controllers must be compiled with the medium or large
memory model. (They run faster in medium model.) They must be linked with the OLE
and ObjectComponents libraries.

412 ObjectWi n dows Prag ram mer' s Guide

The integrated development environment (IDE) chooses the right build options for you
when you ask for OLE support. To build any ObjectComponents program from the
command line, create a short makefile that includes the OCFMAKE.GEN file found in
the EXAMPLES subdirectory.

EXERES = MYPROGRAM
OBJEXE = winmain.obj myprogram.obj
!include $(BCEXAMPLEDIR)\ocfmake.gen

EXERES and OBJRES hold the name of the file to build and the names of the object files
to build it from. The last line includes the OCFMAKE.GEN file. Name your file
MAKEFILE and type this at the command line prompt:

make MODEL=m

MAKE, using instructions in OCFMAKE.GEN, will build a new makefile tailored to
your project. The new makefile is called WIN16Mxx.MAK.

For more information about OCFMAKE.GEN and the libraries needed for an
ObjectComponents program, see page 314.

Enumerating automated collections
Many automated objects have properties that represent a set of related items-for
example, integers in an array, structures in a linked list, or a group of objects such as the
buttons on the face of the calculator. To expose a collection, the automation server must
implement a collection object with access functions. Chapter 21 explains how an
ObjectComponents server defines a C++ collection class to automate its collection (see
page 400). As OLE sees it, a collection object implements the standard IEnum VARIANT
interface. This section explains what a controller must do to use a collection object and
enumerate items in the server.

Enumerating a collection takes four steps:

1 Declaring a proxy class for the collection object
2 Implementing the proxy class for the collection object
3 Using the proxy class to declare a collection property
4 Using the proxy class to retrieve the collection and send it commands

Declaring a proxy collection class
A proxy collection class usually supplies member functions to find out how many items
are in the collection, to retrieve individual items randomly by their position in the list,
and to enumerate the items in the list sequentially. (On the server's side,
ObjectComponents calls this iterating. The controller uses the server's iterator to
enumerate the items.)

Here is the proxy class that AutoGen creates to enumerate the collection of calculator
buttons in AutoCalc. ·

II TKIND_DISPATCH: TButtonList 1.2 {877B6204-7627-101B-B87C-OOOOC057CE4E}\409
II Button Collection

C h a p I e r 2 2 , C re a ti n g a n a u Io m a Ii o n c o n I r o 11 e r 413

class TButtonList : public TAutoProxy {

};

public:
TButtonList() : TAutoProxy(Ox409) (}
II Button Count
long GetCount(); II [id(l), propget]
II Button Iterator
void Enumerate(TAutoEnumerator<TCalcButton>&); II [id(-4), propget]
II Button Collection Item
void Item(TCalcButton&, short Index); II [id(O), method]

The only thing here that wasn't in the previous proxy classes is the use of the
T Auto Enumerator template. T Auto Enumerator encapsulates the code for manipulating
the IEnum VARIANT interface of a collection object. The type you pass to the template is
the type of value the collection contains. In the example, TCalcButton is another proxy
class representing an automated button object in the server.

Implementing the proxy collection class
This is the code that AutoGen writes to implement the proxy collection class. Count and
Item are straightforward. The Enumerate method does several new things, however.

II TKIND_DISPATCH: TButtonList 1.2 {877B6204-7627-101B-B87C-0000C057CE4E}\409 Button
Collection
long TButtonList::GetCount()
{

}

AUTONAMESO ("Count")
AUTOARGSO ()
AUTOCALL_PROP_GET

void TButtonList::Enumerate(TAutoEnumerator<TCalcButton>& obj)
{

}

AUTONAMESO(DISPID_NEWENUM)
AUTOARGSO ()
AUTOCALL_PROP_REF(obj)

void TButtonList::Item(TCalcButton& obj, short Index)
{

}

AUTONAMESO ("Item")
AUTOARGSl(Index)
AUTOCALL_METHOD_REF(obj)

First, the parameter to the· Enumerate method is a reference to an object of the type that
the collection contains. On successive calls, Enumerate returns collection items through
this parameter. The data type for the parameter must use the TAutoEnumerator template.

Second, the method is identified to AUTONAMESO as DISPID_NEWENUM. This is a
predefined constant from oleauto.h representing the standard dispatch ID (which
happens to be -4) for an enumerating command. The AUTONAMESO macro accepts a
dispatch ID instead of a function name. (The other AUTONAMES macros, those that
expect argument names as well, require a name string for the function.)

414 ObjectWindows Programmer's Guide

Finally, an enumerator is a property of its object and it passes an object by value, so it the
enumerator implementation ends with the AUTOCALL_PROP _REF macro.

Declaring a collection property
TButtonsList is now fully defined as a proxy class for the server's collection object.
What's needed now is a way to ask the controller for the collection. In AutoCalc, the
collection of buttons is a property of the calculator's automated window object.

class TCalcWindow public TAutoProxy
public:

TCalcWindow() TAutoProxy(Ox409) (}
II Button Collection
void GetButtons(TButtonList&); II [id(S), propget]

The window class exposes the collection through a GetButtons command that returns
the value of the collection property. GetButtons needs the TButtonList class to declare its
parameter type.

Sending commands to the collection
This code from the sample program CallCalc sends the calculator commands that press
its buttons. In the code, window is the automated window object. TCalcButton is the
proxy class for individual buttons. TButtonList is the proxy object for the collection.

TButtonList buttons;
window.GetButtons(buttons);
TAutoEnumerator<TCalcButton> list;
buttons.Enumerate(list);
TCalcButton button;

II declare a collection object
II bind buttons to automated collection object
II create an enumerator of TCalcButton objects
II bind list to the server's iterator
II declare a button object

II list.Step advances to the next item in list
for (i = IDC_FIRSTBUTTON; list.Step(); it+) {

list.Object(button); II bind button to an automated button object
button.SetActivate(true); II press the calculator button

The buttons, list, and button variables are each created in one step and then bound to a
server object in another. Each of them is a proxy object for something the server created;
buttons, for example, is the proxy object for a collection of automated button objects. (See
page 401 for an explanation of the server's collection object.) Simply declaring a proxy
object, however, does not attach it to any particular automated object in the server. To be
able to send commands, a proxy object must be bound to something with an automation
interface (!Dispatch or IEnumVARIANT). Because the server defines the collection of
buttons as a property of the calculator's window, this command retrieves the collection
and connects it to the buttons proxy object:

window.GetButtons(buttons); II bind buttons to automated collection object

The two other lines where the comments indicate binding takes place similarly connect
list to the collection's iterator object and button to individual button objects in the
collection.

Chapter 22, Creating an automation controller 415

A simple assignment statement might seem more intuitive than the binding step, but
the only value that could be assigned in these cases is simply a pointer to an automation
interface. A pointer carries no type information; a pointer to a collection's !Dispatch
looks just like the pointer to a button's !Dispatch. Binding to an existing C++ object
preserves information about what kind of automation object it represents.

416 0 b j e c I Windows Programmer's Guide

Converting ObjectWindows code
ObjectWindows 2.5 is a powerful new implementation of the ObjectWindows class
library. This version delivers many of the features requested by ObjectWindows 1.0
users:

• Greater type safety

• ANSI C++ compliance

• Support for multiple inheritance

• Automated message cracking

• Broader encapsulations of the Windows API, including support for GDI

• Several new high-level objects, including encapsulations of toolbar and status line
functionality

• Transparent targeting of 16-bit and 32-bit applications for Windows NT, Win32s, and
Windows 3.1 from a single source code base

To facilitate these new features, there have been several changes to the ObjectWindows
class hierarchy. If you have developed applications using ObjectWindows 1.0, this
chapter helps you easily convert your existing code base over to ObjectWindows 2.5 so
that you can take advantage of the new functionality. In addition, we have provided a
utility called OWLCVT that automates the most common changes you may have to
make. You can use OWLCVT from the command-line for makefile-based development
or from within the IDE if you use project files.

Note The term ObjectWindows 1.0 refers to the l.Ox version of the ObjectWindows class
library, which was provided with the Borland C++ 3.1 and Application Frameworks
package and Turbo C++ for Windows 3.1.

The number of changes your code requires depends on which ObjectWindows 1.0
features you've used in your particular application. Although there are some changes
that must be made to any ObjectWindows 1.0 program, most changes need to be made
only if you've used a particular feature. Use the checklist provided in the "Conversion

Appendix A, Converting Objec!Windows code 417

checklist" section of this chapter to quickly determine which areas of your code are
affected.

This chapter is organized into four parts:

• The "Converting your code" section explains the use of the OWLCVT tool, including
command-line syntax, how to use it from the IDE, and how OWLCVT modifies your
code.

• The "Conversion checklist" section describes all the changes you might have to make
to your applications. Along with each description is a page reference telling you what
page to tum to for more information about the required change. This lets you read
about only those changes you need to make, and ignore those changes that don't
apply to your application.

• The "Conversion procedures" section contains detailed technical descriptions of all
the changes you might have to make to your applications.

• The "Troubleshooting" section lists a number of common problems you might
encounter while converting your code from ObjectWindows 1.0 to ObjectWindows
2.5.

Converting your code
There are several main steps you must go through to port your ObjectWindows 1.0 code
to work with the ObjectWindows 2.5 class library:

1 Make sure your code compiles properly with Borland C ++ 4.5. You don't need to be
able to link or execute your code; you just need to be able to compile without errors or
warnings.

2 Convert your code using the OWLCVT utility.

3 Make any manual conversions needed.

This section discusses these steps and the tools required to do them.

Converting to Borland C++ 4.5
Before attempting to convert your code, you must make sure it compiles correctly with
the Borland C++ 4.5 compiler. Changes to the draft ANSI C++ standard, including the
addition of three distinct char types and a new syntax for using the new and delete
operators to allocate arrays of objects, could cause your code not to compile. These
language changes, and how to fix the problems associated with them, are discussed in
the README.TXT file in the section titled "C/C++ Language Changes."

You must also make your code STRICT compliant. Windows 3.1 introduced support in
WlNDOWS.H for defining STRICT. This enables strict compiler error checking. Code
written with STRICT defined is easier to port across platforms and from 16- to 32-bit
Windows. You can find more information on making your code STRICT compliant in
Chapter 6 in the Borland C++ Programmer's Guide. ·

418 0 b j ectWi n d ows Programmer's Guide

You can use your existing project files, makefiles, configuration files, response files, and
so on, for the compiling process. Configuration files are files containing a number of
command-line compiler options. Response files are files containing both command-line
compiler options and file names. Configuration files and response files are discussed in
detail in Chapter 3 in the Borland C++ User's Guide. The only changes you need to make
to your files for this purpose are:

• Change the header file include paths. To properly define ObjectWindows LO classes
and ObjectWindows LO-compatible container classes, you need to make the
following changes:

• Change C: \BC31 \OWL \INCLUDE to C: \BC45\INCLUDE\OWLCVT

• Change C: \BC31 \CLASSLIB\INCLUDE to C: \BC45\INCLUDE\CLASSLIB\
OBSOLETE

• Change C:\BC31\INCLUDE to C:\BC45\INCLUDE

This assumes the existing paths in your ObjectWindows LO-compatible files use the
directory C: \BC31 \ as the root directory of your old Borland C ++ installation, and
that you've installed Borland C++ 4.5 in the directory C:\BC45. Change these names
to reflect the actual directories in which you have your compilers installed.

• Your include paths should be in this order:

• C: \BC45\INCLUDE\OWLCVT
• C: \BC45\INCLUDE\CLASSLIB\OBSOLETE
• C: \BC45\INCLUDE

• Because you only need to make sure your code compiles with Borland C++ 4.5, you
should remove all linking commands from your makefile or script:

• If you have explicit linking commands you can either delete them, comment them
out, or, if you're using MAKE, specify the appropriate .OBJ files as targets on the
MAKE command line.

• If you're using the compiler to automatically invoke the linker for you, add the -c
option (to suppress automatically invoking the linker) to your compiler
commands.

Note If you are using the IDE, select the CPP nodes of your application in the Project window
and select Build node from the Project window's SpeedMenu.

If you get any compiler errors or warning messages when you compile your code,
correct the problems and recompile. Once your code compiles cleanly, you are ready to
move on to converting your code to ObjectWindows 2.5.

OWLCVT conversions
OWLCVT is a command-line tool you can use to convert your existing ObjectWindows
LO code to use the new ObjectWindows 2.5 class libraries. It performs a number of
conversions on your ObjectWindows LO-compatible source and header files:

• Makes backup copies of any original source or header files that are modified by
OWLCVT. See the section "Backing up your old source files."

Appendix A, Converting ObjectWindows code 419

• Changes the event-handling mechanism from DDVTs to event response tables. See
page424.

• Changes calls to the TWindowsObject/TWindow hierarchy to calls to the TWindow/
TFrameWindow hierarchy. See page 431.

• Preserves calls to native Windows API functions. See page 432.

• Includes the appropriate header files for ObjectWindows 2.5 source. See page 433.

• Includes the appropriate header files for ObjectWindows 2.5 resources. See page 434.

• Replaces calls to DefWndProc, DefC.ommandProc, DefC.hildProc, and DefNotificationProc
with a call to the function DefaultProcessing. See page 443.

OWLCVT also inserts comments in your code when it encounters a questionable
construct that you might need to modify. You should look for these messages in your
converted source files.

OWLCVT command-line syntax
The command-line syntax for OWLCVT is:

OWLCVT [options] filel [file2 [file3 [...] J J

where filen is one or more ObjectWindows 1.0 source code files and options is one or
more command-line compiler options. OWLCVT accepts all regular command-line
compiler (BCC.EXE) options. This lets you use any of your old command scripts,
makefiles, configuration files, and so on when converting. Only a few of these options
have any functional effect on OWLCVT itself, but some options cause macros to be
defined in the Borland C++ header files, so you should continue to use the same option
sets for converting your files that you used to compile them.

Backing up your old source files
When you run OWLCVT, it makes a directory called OWLBACK in your current
directory. It then makes a copy of your original source file and any local headers and
places these in the OWLBACK directory. When OWLCVT has finished converting your
files, the modified source files are in your current directory. If, for some reason, the
converted files don't function correctly, are corrupted, or are otherwise unsatisfactory,
you can easily restore your original files by copying them from the OWLBACK
directory. If you run OWLCVT again, and it finds a copy of a file already in the
OWLBACK directory, it leaves the copy that's already in the directory and does not
overwrite it.

How to use OWLCVT from the command line
To convert your code from the command line using OWLCVT, follow these steps:

1 Copy the file that contains the compiler options you used for your ObjectWindows
1.0 compilations, such as your makefile, configuration file, response file, and so on, to
anew file.

420 ObjectWindows Programmer's Guide

2 Make the following changes to the new file:

• If you haven't already changed the header-file include paths when converting to
Borland C++ 4.5, change the include path as follows:

• Change C:\BC31\0WL \INCLUDE to C:\BC45\INCLUDE\OWLCVT (for
ObjectWindows LO-compatible header files)

• Change C: \BC31 \CLASSLIB\INCLUDE to C: \BC45\INCLUDE\CLASSLIB\
OBSOLETE (for Object-based container class header files)

• Change C: \BC31 \INCLUDE to C: \BC45\INCLUDE (for standard header files)

This assumes the existing paths in your ObjectWindows LO-compatible files use the
directory C: \BC31 as the root directory of your old Borland C ++ installation, and that
you have installed Borland C ++ 4.5 in the directory C: \BC45. Change these names to
reflect the actual directories in which you have your compilers installed.

Warning! If you use any header files that duplicate the names of Borland header files, you must
place the directory containing these files in your header file include path before the
Borland include directories. You must do this even if the files are in the current
directory and you use the #include ''filename.h" syntax to include these files.

• If you're using a makefile, batch file, or any type of command script:

• Remove all commands except for C++ compilations, including linking, resource
compiling and binding, and so on. For example, suppose you have the following
batch file:

BCC -WS -c -ml -w MYAPP.CPP
RC -r -iC:\BC31\0WL\INCLUDE -iC:\BC31\INCLUDE MYAPP.RC
TLINK /Tw /c /C COWL MYAPP, MYAPP, , @MAKEOOOO.$$$, MYAPP.DEF

This assumes that your existing files refer to a compiler in the directory C: \BC31.
Change this to reflect the actual directory in which you have your old compiler
installed. After removing all commands except for C++ compilations, this file
would look like this:

BCC -WS -c -ml -w MYAPP.CPP

• Convert the compilation commands into OWLCVT commands. For example,
suppose you had converted the batch file in the previous step. After converting the
compilation command into an OWLCVT command, this file would look like this:

OWLCVT -WS -c -ml -w MYAPP.CPP

3 Run the appropriate command-line tool. For example, if you're using a batch file, run
the batch file; if you're using a makefile, run MAKE, and so on. If you're using a
configuration file or response file from the command line, run OWLCVT just like you
would the compiler. For example, if you had the file configuration file
MYCONVRT.CFG, and you wanted to convert the file MYFILE.CPP, the OWLCVT
command line would look like this:

OWLCVT +MYCONVRT.CFG MYFILE.CPP

4 Once all your files have been processed by OWLCVT, you should check whether any
further modifications are necessary. These changes are discussed in the next section.

Appendix A, Converting ObjectWindows code 421

5 Once you have made any manual changes necessary, build your project using the
Borland C++ 4.5 tools. You also need to restore resource-compilation commands in
your makefile. Note that RC.EXE has been replaced in Borland C++ 4.5 with
BRC.EXE, the Borland Resource Compiler. Explicit calls to TLINK also need to be
restored and updated to use new startup code and libraries supplied by Borland C++
4.5.

How to use OWLCVT in the IDE
To convert your code from the IDE using OWLCVT, follow these steps:

1 Load your project file into the IDE by using Project I Open project. The IDE will
automatically make the necessary library changes in TargetExpert for your
conversion to OWL 2.5.

2 If you haven't already changed the header-file include paths when converting to
Borland C++ 4.5, make the following changes under Options I Project I Directories:

• Change C: \BC31 \OWL \INCLUDE to C: \BC45\INCLUDE\OWLCVT (for
ObjectWindows LO-compatible header files)

• Change C: \BC31 \CLASSLIB\INCLUDE to C: \BC45\INCLUDE\CLASSLIB\
OBSOLETE (for Object-based container class header files)

• Change C: \BC31 \INCLUDE to C: \BC45\INCLUDE (for standard header files)

This assumes the existing paths in your ObjectWindows LO-compatible files use the
directory C: \BC31 as the root directory of your old Borland C ++ installation, and that
you have installed Borland C ++ 4.5 in the directory C: \BC45. Change these names to
reflect the actual directories in which you have your compilers installed.

Warning! If you use any header files that duplicate the names of Borland header files, you must
place the directory containing these files in your header file include path before the
Borland include directories. You must do this even if the files are in the current
directory and you use the #include ''filename.h" syntax to include these files.

3 Select the CPP nodes of your application in the Project window, click your right
mouse button, and select Special I OWL Convert from the Project window's
Speed.Menu. The IDE automatically passes the command-line options from your
project to OWLCVT along with the file names of your selected nodes. If OWL
Convert does not appear under Special on the Project window's Speed.Menu, you
must install it under Options I Tools.

4 Once all your files have been processed by OWLCVT, you should check whether any
further modifications are necessary. These changes are discussed in the next section.

' 5 Once you have made any manual changes necessary, build your project using the
Borland C ++ 4.5 tools.

Conversion checklist
This section presents a number of conversions that you might need to make to your
existing ObjectWindows 1.0 code after running OWLCVT. Most of these conversions

422 ObjectWindows Programmer's Guide

are necessary only if you use a particular feature of ObjectWindows 1.0. OWLCVT also
performs a number of conversions automatically (see page 419). The following
conversions need to be done manually, but only if you use that particular feature or
class:

• Constructing virtual bases: A number of classes have been modified in
ObjectWindows 2.5 to use virtual base classes. See page 435.

• Downcasting virtual bases to derived types: To downcast a virtual base class pointer
to a derived class (for example, passing a TWindow *in place of a TFrameWindow *),
use the TYPESAFE_OOWNCAST macro. See page 435.

• Moving from Object-based containers to the BIDS library: The Object-based
container class library,isn't used in ObjectWindows 2.5. See page 436.

• Streaming: There have been a number of changes to the streams library. See
page437.

• MDI classes: There are a number of changes you need to make when using the
TMDIFrame and TMDIClient classes. See page 438.

• Main Window variable: You should no longer set the variable
TApplication::MainWindow. Instead you should use the SetMainWindow function. See
page441.

• Using a dialog as the main window: There are a number of changes you need to
make if you're using a dialog as your main window. See page 441.

• TApplication message processing functions: The ProcessDlgMsg, ProcessAccels, and
ProcessMDIAccels functions have been removed from the TApplication class. See
page442.

• Paint function: The declaration for the TWindow member function Paint has changed.
See pc;i.ge 444.

• CloseWindow, ShutDownWindow, and Destroy functions: The declarations for
these TWindow member functions has changed. See page 445.

• ForEach and FirstThat functions: The declarations for the TWindow member
functions For Each and FirstThat have changed. See page 445.

• TComboBoxData and TListBoxData classes: Some data members of TListBoxData
and TComboBoxData classes have changed type. See page 446.

• TEditWindow and TFileWindow classes: TEditWindow and TFileWindow have been
replaced by TEditSearch and TEditFile. See page 446.

• TSearchDialog and TFileDialog classes: The TSearchDialog and TFileDialog classes
have been replaced by the TReplaceDialog or TFindDialog and the TFileOpenDialog
classes. See page 448.

• ActivationResponse function: The ActivationResponse function has been removed
from the TWindow and TWindowsObject classes. Examples of how to attain the same
functionality in ObjectWindows 2.5 are given on page 448.

Appendix A, Converting ObjectWiridows code 423

• BeforeDispatchHandler and AfterDispatchHandler functions: The.
BeforeDispatchHandler and AfterDispatchHandler functions have been removed from
Object Windows. Examples of how to attain the same functionality in Object Windows
2.5 are given on page 448.

• DispatchAMessage function: The DispatchAMessage function has been removed
from ObjectWindows. See page 449.

• KBHandlerWnd data member: The KBHandlerWnd data member has been
removed from the T Application class. See page 449.

• MAXP ATH: MAXP A 1H is no longer defined in any Object Windows header files. It
is now defined only in the header file dir.h. See page 450.

• Style conventions: ObjectWindows 2.5 uses somewhat different style conventions
from ObjectWindows 1.0. Although your application should compile fine without
these stylistic changes, you should make these changes anyway to ensure easy
compatibility with your future ObjectWindows 2.5 code. See page 450.

Conversion procedures
This section contains detailed technical descriptions of the procedures outlined in the
two previous sections.

Handling messages and events
DDVTs (dynamic dispatch virtual tables), which ObjectWindows 1.0 uses to handle
application events, have some limitations, especially with multiple inheritance and
32-bit environments. ObjectWindows 2.5 replaces DDVTs with event response tables,
which offer the following advantages over DDVTs:

• Full support for multiple inheritance of window classes

• Automated message cracking

• Compile-time type checking of all event-handling functions and cracked message
parameters

• Compatibility between 16-bit and 32-bit environments

• Easier use of user-defined and run-time-defined messages

• Ability to dispatch two or more messages to a single event-handling function

• Full compliance with the draft ANSI C++ standard

OWLCVT automatically converts your existing DDVTs into ObjectWindows 2.5
response tables. OWLCVT does not maintain your symbolic constants, and instead
converts them to their numeric values. For example, suppose you have the following
DDVT declaration:

virtual void CMTest(TMessage& Msg) = [CM_FIRST + CM_TEST];

424 Objec!Windows Programmer's Guide

When OWLCVT converts thls, it uses the numeric value of the defined CM_ TEST:

DEFINE_RESPONSE_TABLEl(TMyWindow, TFrameWindow)
EV_COMMAND(lOl, CMTest)'

END_RESPONSE_TABLE;

The following sections describe how to convert DDVTs to response tables manually.
However, it is not recommended that you try to do this task manually, especially for a
large application.

Note The following sections only describe how to convert your existing ObjectWindows
DDVTs. Response tables offer more features you'll probably want to take advantage of.
For complete details about event response tables, see Chapter 4.

Creating event response tables consists of four steps, which the following sections
describe:

1 Removing DDVT functions
2 Adding an event response table declaration
3 Adding an event response table definition
4 Adding event response table entries

Removing DDVT functions
You should first remove the DDVT function declarations from your window class
definition. You need to remove the DDVT dispatch index (for example, CM_FIRST +
CM_SENDTEXT), since the member function definition doesn't use it. The second part
of the dispatch index is used when you define your response table. You can also remove
the virtual keyword because event response tables don't require event response
functions to be virtual.

Here are some DDVT function declarations and their event response table equivalents:

virtual void CMSendText(TMessage &Msg) = [CM_FIRST + CM_SENDTEXT];

virtual void CMEmpinput(TMessage &Msg) = [CM_FIRST + CM_EMPINPUT];

virtual void HandleListBoxMsg(TMessage &Msg) = [ID_FIRST + ID_LISTBOX];

virtual void WMinitMenu(RTMessage) = [WM_FIRST + WM_INlTMENU];

virtual void BNClicked(RTMessage Msg) =[NF _FIRST+ BN_CLICKED];

void CmSendText();

void CmEmpinput();

void HandleListBoxMsg(uint);

void EvinitMenu(WP ARAM);

void BNClicked();

Each predefined Windows message has a specific message-handling function associated
with it. In addition, each function has a specific signature that you must use when
writing your own code for handling these messages. The Windows messages and their
corresponding function names and signatures are listed in Chapter 3 of the
Object Windows Reference Guide.

If you use custom Windows messages, the function name is up to you. You specify the
function name using one of the response table macros described in Table 22.2. The
function signature depends on which macro you use. See the ObjectWindows Reference
Guide for more information.

Appendix A, Converting ObjectWindows code 425

Naming conventions
You should name ObjectWindows 2.5 event-handling functions by prefixing the name
of the function with two letters taken from the message type (such WM, EV, CM, and so
on). The first letter should be uppercase and the second letter should be lowercase; don't
use two uppercase letters. For example, CM Command becomes CmCommand. The
predefined ObjectWindows message-handling functions are all named according to this
style.

OWLCVT converts ObjectWindows-1.0 style function names to the ObjectWindows 2.5
style. If you make a call to the base class version of a function, however, OWLCVT does
not convert that call. You need to convert these calls manually. For example, suppose
your ObjectWindows 1.0 application has a class called TMyWindow that has a function
WMSize that calls the TWindowsObject::WMSize function. OWLCVT converts the
TMyWindow::WMSize function name to TMyWindow::EvSize and the base class name
from TWindowsObject to TWindow, but it doesn't convert the call to the base class
WMSize function. You need to convert this name to EvSize manually.

Adding an event response table declaration
The next step is to add an event response table declaration after the last declaration in
your window class. For example:

class TMyWindow: public TFrameWindow
{

DECLARE_RESPONSE_TABLE(TMyWindow);
};

DECLARE_RESPONSE_TABLE is a macro that takes the name of the class as its
parameter. See Chapter 4 for more details about event response table declarations.

Adding an event response table definition
In conjunction with the DECLARE_RESPONSE_TABLE macro, you need to add an
event response table definition in the source file (not a header file) where you define the
members of your window class. You also need to add event response table entries,
which the following sections discuss. Here's a sample event response table definition:

II NOTE: Response tables should be defined in global scope.
DEFINE_RESPONSE_TABLEl(TMyWindow, TFrameWindow)

II event response table entries

END_RESPONSE_TABLE;

DEFINE_RESPONSE_TABLEX is a macro that takes the name of the window class and
its immediate base classes as its parameters. The Xis based on the number of base
classes your class has. END_RESPONSE_TABLE is a macro that ends the event
response table definition. See Chapter 4 for more information about defining event
response tables.

426 ObjectWindows Programmer's Guide

Adding event response table entries
In ObjectWindows 1.0, the dispatch index you used in a message response member
function's declaration determined what kind of message the function responded to. For
example, the CM_FIRST constant identified command response member functions.

ObjectWindows 2.5's event response tables offer all of ObjectWindows l.O's dispatch
types and several more. Table 22.2 lists the ObjectWindows 1.0 dispatch types and their
ObjectWindows 2.5 event response table equivalents. See the following sections for
information specific to each dispatch type.

Table 22.2 Message response member functions and event response tables

Type.Qf message
response.functiol)

Command message

Child ID-based message

Notify-based message

Windows messages

VersiQnl.O
constant

CM_FIRST

ID_FIRST

NF_FIRST

WM_FIRST

Responding to command messages

Versioll. ~.S respQ~e
table e.ftl:ry
EV_COMMAND

EV _GIILD_NOTIFY_ALL_CODES

EV_NOTIFY_AT_CHILD

EV _MESSAGE and EV_ WM_XXX

Command messages are those for which Windows sends a WM_ COMMAND message
from a menu or accelerator. In ObjectWindows 1.0, you'd declare a member function
using the sum of CM_FIRST and the menu or accelerator resource ID; ObjectWindows
intercepted the WM_ COMMAND message and called the message response member
function with the matching ID.

In ObjectWindows 2.5, you do the same thing, but you use event response tables instead
of DDVTs. Here's an example:

II ObjectWindows 1.0 member function declaration
virtual void CMSendText(TMessage &Msg) = [CM_FIRST + CM_SENDTEXT];

II ObjectWindows 2.5 event response table entry and member function
EV_COMMAND(CM_SENDTEXT, CmSendText),
void CmSendText();

Responding to child ID-based messages
Child ID-based message response member functions handle all the messages coming
from a control that ObjectWindows passed along to the control's parent window. In
ObjectWindows 1.0, the control notification code was passed in the TMessage.LP.Hi
member, which the message response member function had to check for, usually with a
switch statement.

ObjectWindows 2.5 supports the same kind of dispatching with the
EV _CHILD_NOTIFY_ALL_CODES event response table entry; all the notification
codes are passed to a single member function. Here's an example:

II ObjectWindows 1.0 member function declaration
virtual void HandleListBoxMsg(TMessage &Msg) = [ID_FIRST + ID_LISTBOX]

II ObjectWindows 2.5 event response table entry and function definition

Appendix A, Converting ObjectWindows code 427

EV_CHILD_NOTIFY_ALL_CODES(ID_LISTBOX, HandleListBoxMsg),
void HandleListBoxMsg(uint);

ObjectWindows 2.5 also supports dispatching specific notification codes to specific
member functions, something ObjectWindows 1.0 doesn't support. Use the
EV _CHILD_NOTIFY event response table entry for such dispatching. Here's an
example:

EV_CHILD_NOTIFY(ID_BUTTON, HandleButtonClick, BN_CLICKED),
void HandleButtonClick();

Since you often need to respond to Windows control notification codes, Object Windows
defines macros to more easily handle button, combo box, edit control, and list box
notification codes. Here's an example that simplifies the LBN_DBLCLK notification
code:

EV_LBN_DBLCLK(ID_LISTBOX, HandleListBoxMsg),
void HandleListBoxMsg(uint);

Note Child ID-based messages are actually command messages that include a notification
code. For command buttons, the notification code is zero, which makes it look like a
menu command message. The recommended way of responding to button presses is
with command message response functions rather than child ID-based message
response functions. For example, an OK button is usually a child window to a dialog
box. When the user clicks it, the button passes a message that can be handled like a
command message. You can handle the button message like this:

EV_COMMAND(IDOK, CmOk),

Responding to notification messages
Notification messages are like child ID-based messages but instead of being handled by
the parent window, they're handled by the control itself. Notification messages are best
for creating specialized control classes.

ObjectWindows 1.0 and 2.5 both dispatch notification messages to specific member
functions, as this example shows:

II ObjectWindows 1.0 member function declaration
virtual void ENChange(TMessage &Msg) = [NF_FIRST + EN_CHANGE]

II ObjectWindows 2.5 event response table entry and function definition
EV_NOTIFY_AT_CHILD(EN_CHANGE, ENChange),
void FNameChange();

Responding to general messages
You can also respond to messages that aren't command messages, child ID-based
messages, or notification messages.

ObjectWindows 1.0 and 2.5 dispatch Windows messages to specific member functions.
Notice that the ObjectWindows 2.5 naming convention for Windows messages is to use
the prefix Ev with a mixed-case version of the Windows message constant:

II ObjectWindows 1.0 member function declaration
virtual void WMCtlColor(TMessage &Msg) = [WM_FIRST + WM_CTLCOLOR]

428 ObjectWindows Programmer's Guide

II ObjectWindows 2.5 event response table entry
EV_MESSAGE(WM_CTLCOLOR, EvCtlColor),

As with child ID-based messages, ObjectWindows defines macros to make it easy to
respond to Windows messages. Here's an example that uses the predefined macro for
the WM_CTLCOLOR message:

II ObjectWindows 2.5 event response table entry
EV_WM_CTLCOLOR

Using the predefined macros assumes you name your event response function using the
Ev naming convention.

Another good reason to use the predefined macros is that ObjectWindows
automatically "cracks" the parameters that are normally passed in the LPARAM and
WPARAM parameters.

For example, using EV_ WM_ CTLCOLOR assumes that you have an event response
member function declared like this:

HBRUSH EvCtlColor(HDC hDCChild, HWND hWndChild, uint nCtrlType);

Message cracking provides for strict C ++ compile-time type checking, which helps you
catch errors as you compile your code rather than at run time. See Chapter 4 for more
details about the predefined message macros.

Event response table samples
Here are several ObjectWindows 1.0 window class declarations and their
ObjectWindows 2.5 equivalents: ·

ObjectWindows 1.0:

class TMyWindow: public TWindow
{

protected:
virtual void WMCtlColor(TMessage &Msg) = [WM_FIRST t WM_CTLCOLOR];
virtual void WMPaint(TMessage &Msg) = [WM_FIRST t WM_PAINT];
virtual void CMSendText(TMessage &Msg) [CM_FIRST t CM_SENDTEXT];
virtual void CMEmpinput(TMessage &Msg) = [CM_FIRST t CM_EMPINPUT];

};

ObjectWindows 2.5:

class TMyWindow: public TFrameWindow
{

protected:
LPARAM EvMyMessage(WPARAM, LPARAM);
void EvPaint();
void CmSendText();
void CmEmpinput();

DECLARE_RESPONSE_TABLE(TMyWindow);

Appendix A, Converting Objec!Windows code 429

};

DEFINE_RESPONSE_TABLEl(TMyWindow, TFrameWindow)
EV_MESSAGE(WM_MYMESSAGE, EvMyMessage),
EV_WM_PAINT,
EV_COMMAND(CM_SENDTEXT,CmSendText),
EV_COMMAND(CM_EMPINPUT, CmEmpinput),

END_RESPONSE_TABLE;

ObjectWindows 1.0:

class TMyDialog: public TDialog
{

protected:
virtual void HandleListBoxMsg(TMessage &Msg) [ID_FIRST + ID_LISTBOX];

};

ObjectWindows 2.5:

class TMyDialog: public TDialog
{

protected:
void HandleListBoxMsg(uint);

DECLARE_RESPONSE_TABLE(TMyDialog);
};

DEFINE_RESPONSE_TABLE (TMyDialog, TDialog)
EV_CHILD_NOTIFY_ALL_CODES(ID_LISTBOX, HandleListBoxMsg),

END_RESPONSE_TABLE;

ObjectWindows 1.0:

class TMyButton: public TButton
{

protected:
virtual void BNClicked(TMessage &Msg) [NF_FIRST + BN_CLICKED];

};

ObjectWindows 2.5:

class TMyButton: public TButton
{

protected:
void BNClicked ();

DECLARE_RESPONSE_TABLE(TMyButton);
};

DEFINE_RESPONSE_TABLE(TMyButton, TButton)
EV_NOTIFY_AT_CHILD(BN_CLICKED, BNClicked),

END_RESPONSE_TABLE;

430 ObjectWindows Programmer's Guide

Changing your window objects
Object Windows 1.0 had two classes for "generic" windows: TWindowsObject and
TWindow. TWindowsObject was an abstract class; it provided the basic behavior for all
windows, dialog boxes, and other interface elements, but an instance of TWindowsObject
wasn't very useful by itself. TWindow, on the other hand, served as the class you used
for all types of windows. Unfortunately, that meant that even simple child TWindow
objects had functionality and code they didn't use.

ObjectWindows 2.5 offers two new classes: TWindow and TFrameWindow. TWindow is
similar to TWindowsObject in ObjectWindows 1.0, except that it's not abstract. You can
use instances of TWindow in ObjectWindows 2.5 for child windows. TFrameWindow
objects serve as overlapped or popup main windows; they maintain a client window,
and are inherited by TMDIFrame for MDI support and TDecoratedFrame for decoration
support (like tool bars and status bars).

Converting constructors
OWLCVT performs a search and replace operation on your source files, replacing all
occurrences of TWindow with TFrameWindow, and all occurrences of TWindowsObject
with TWindow. However, this modification isn't sufficient because the TFrameWindow
constructor does not always take the same parameters as the old TWindow constructor.
There were two constructors for the ObjectWindows 1.0 TWindow class:

TWindow(PTWindowsObject, LPSTR, PTModule = NULL);
TWindow(HWND, PTModule =NULL);

OWLCVT converts the TWindow name to TFrameWindow. But after this conversion,
neither of these constructors corresponds directly to the available TFrameWindow
constructors:

TFrameWindow(TWindow *parent,
const char far *title = 0,
TWindow *clientWnd = 0,
bool shrinkToClient = false,
TModule *module= O);

TFrameWindow(HWND hWnd, TModule *module = 0);

However, the two most common usages of the TWindow constructor in ObjectWindows
1.0 were as follows:

II First TWindow constructor, PTModule parameter set to its default value.
TWindow (AParent, "Title" I ;

II Second TWindow constructor, PTModule parameter set to its default value.
TWindow(AParent);

OWLCVT converts these calls to:

TFrameWindow (parent, "Title") ;
TFrameWindow(parent);

These calls compile correctly. The first call sets the last three parameters of the five
parameter TFrameWindow constructor to their respective defaults. The second call sets
the second parameter of the two-parameter TFrameWindow constructor to its default.

Appendix A, Converting ObjectWindows code 431

You shouldn't have to make any further changes unless you determine you need to
specify a value for any of the other parameters.

If your ObjectWindows 1.0 code specifies a value for the PTModule parameter, the
conversion of your constructor as done by OWLCVT might not correspond to a valid
TFrameWindow constructor. For example, the TWindow constructors might look
something like this:

TWindow(AParent, ptModule);
TWindow(AParent, "Title", ptModule);

The converted code would look like this:

TFrameWindow(parent, ptModule);
TFrameWindow(parent, "Title", ptModule);

The second call compiles and functions correctly. To make the first call compile
correctly, you can remove the ptModule variable entirely, as shown here:

TFrameWindow(parent, "Title");

This way, the final three parameters of the five-parameter constructor take on their
default values. You can also fill in default values for the third and fourth parameters:

TFrameWindow(parent, "Title", 0, false, ptModule);

Refer to the Object Windows Reference Guide section on the TFrameWindow class to learn
more about the TFrameWindow constructors and their parameters.

Calling Windows API functions
ObjectWindows 2.5 encapsulates much more of the Windows API than ObjectWindows
1.0. The advantage of this is that ObjectWindows takes care of passing common
parameters, such as window handles, to the API functions. But because some
ObjectWindows 2.5 member functions have the same names as Windows API functions,
you might get compile-time errors like this:

Extra parameter in call to TClass::MessageBox(const char far*, const char far*, unsigned
int)

The easiest way to get your code to work is to use the :: scope resolution operator. For
example, suppose you made the following call to the Windows API function MessageBox
in your ObjectWindows 1.0 application:

void
TMyWindow::CMAddRecord()
{

MessageBox(HWindow, "All fields must be filled in", "Input Error", MB_OK);

You can force this function to call the Windows API function with ObjectWindows 2.5
by adding the :: scope resolution operator:

432 0 b j e ct W i n d ow s P r o g r a m m e r' s G u i d e

void
TMyWindow::CMAddRecord()
{

: :MessageBox(HWindow, "All fields must be filled in", "Input Error", MB_OK);

You can also use the encapsulated API function TWindow::MessageBox:

void
TMyWindow: :CMAddRecord()
(

MessageBox("All fields must be filled in", "Input Error", MB_OK);

The advantage of using the encapsulated ObjectWindows equivalent is that you do not
have to pass window parameters explicitly. These are handled by the TWindow member
functions inherited by the class you're using to make the call. OWLCVT automatically
prefixes any calls to Windows API functions with the :: scope resolution operator.

Changing header files
You need to make these two changes to the way you include some header files in your
code:

• Use the new header file locations
• Use the new streamlined ObjectWindows header files

Using the new header file locations
Borland C++ 4.5 places all header files under the INCLUDE directory. ObjectWindows
header files are now in the INCLUDEOWL directory. The header files for the container
class library and run-time library are also under the INCLUDE directory.

In versions of Borland C ++prior to 4.5, you might have set your include directories path
to something like C:BORLANDC\INCLUDE; C:BORLANDC\OWL \INCLUDE;
C:BORLANDC\CLASSLIB\INCLUDE. In Borland C++ 4.5, all you need is
C:BORLANDC\INCLUDE. In your code, instead of including header files with
directives like #include <appl icat. h>, you now include Object Windows or class library
header files like #include <owl \applicat.h> or #include <classlib\arrays. h>. All of the
ObjectWindows source code and sample applications use this approach.

You can also include resource script files and resource header files this way. For
example, to include the resource header and resource script files for TPrinter, the
#include statement would look like this:

#include <owl\printer.rh>
#include <owl\printer.rc>

Using the new streamlined ObjectWindows header files
ObjectWindows 2.5 header files contain fewer class declarations than their
ObjectWindows 1.0 counterparts. Since fewer classes are declared in each file, you
probably have to explicitly include more header files. For example, in ObjectWindows
1.0, including owl.h caused several classes to be defined, including TWindowsObject,

Appendix A, Converting ObjectWindows code 433

TWindow, TMDIFrame, TMDIClient, and TDialog. The functionality of including owl.h
can be achieved by including applica.t.h, framewin.h, dialog.h, mdi.h, scroller.h, and
dc.h.

Note The header file owl\owlpch.h includes all_the ObjectWindows header files, which can
be useful for creating an ObjectWindows precompiled header file. For example, the
following fragment creates a precompiled header file using owl\owlpch.h:

#pragma hdrfile "OWLPCH.CSM"
#include <owl\owlpch.h>
#pragma hdrstop

The advantage of using precompiled head.er files is that they provide a great increase in
compilation speed, reducing the time it takes to process header files by up to 90%. For
more fuformation on precompiled headers, see Chapter 6 in the Borland C++
Programmer's Guide.

ObjectWindows resources
ObjectWindows 1.0 combined the_ resources and identifiers used by several classes into
only a few files. If your application used the resources of one class, you also got the
resources for a number of other classes, regardless of whether you used them.
ObjectWindows 2.5 provides one resource script file and one resource header file per
class (a resource header file contains all the identifiers for the resources defined in the
resource script file) for each class that requires resources.

This prevents including resources or header files unnecessarily. The names of the
resource script and header files parallel the corresponding header file names. For
example, the TPrinter class is defined in the header file printer.h. The resource IDs for
the TPrinter class are contained in the file printer.rh. The resources used by the TPrinter
class are contained in the file PRINTER.RC.

Compiling resources
When compiling your resources, you should be sure you modify the header file include
path for the resource compiler. The ObjectWindows 1.0 header file include path usually
included the directories C: \BC31 \INCLUDE, C: \BC31 \OWL \INCLUDE, and C: \
BC31\CLASSLIB\INCLUDE. For Borland C++ 4.5, this path should be changed to
search C: \BC45\INCLUDE and OWL prefixed on the file name, as shown on page 433.

This assumes the existing paths in your ObjectWindows LO-compatible files use the
directory C: \BC31 as the root directory of your old Borland C ++ installation, and that
you have installed Borland C ++ 4.5 in the directory C: \BC45. Change these names to
reflect the actual directories in which you have your compilers installed.

To bring in the resources for an ObjectWindows class, just include the appropriate
resource file from your own resource script file. For example, to add the resources for
the TPrinter class, you would add the following line to your own .RC file:

#include <owl\printer.rc>

434 ObjectWindows Programmer's Guide

Menu resources
When using menu resources in your code, you might need to change the way menus are
assigned to your frame window objects. ObjectWindows 1.0 let you directly assign a
menu to a frame window object by setting the Menu member of the object's Attr
structure equal to a particular resource ID. For example:

Attr.Menu = MENU_l;

ObjectWindows 2.5 doesn't permit this type of assignment. Instead, you should use the
TFrameWindow::AssignMenu function. The previous line of code looks like this using the
AssignMenu function:

AssignMenu(MENU_l);

Constructing virtual bases
A number of classes that took nonvirtual base classes in ObjectWindows 1.0 are derived
from virtual base classes in ObjectWindows 2.5. For the purposes of porting, the classes
that are affected by this are classes that use TWindow and TFrameWindow as virtual
bases: TDialog, TMDIFrame, TFrameWindow, TMDIChild, TDecoratedFrame,
TLayoutWindow, TClipboardViewer, TKeyboardModeTracker, and TTinyCaption. In C++,
virtual base classes are constructed first, which means that the derived class' constructor
cannot specify default arguments for the base class constructor. You can find a number
of ways to properly initialize virtual bases on page 65.

Downcasting virtual bases to derived types
A fairly common practice in ObjectWindows 1.0 code is to cast a TWindowsObject
pointer to a derived type. The TWindow base class (the ObjectWindows 2.5 equivalent of
TWindowsObject; see page 431) is a virtual base in many of the standard ObjectWindows
2.5 classes; however the C++ language doesn't let you downcast a virtual base class
pointer to a derived class. To convert this type of construct to ObjectWindows 2.5, you
must use the TYPESAFE_DOWNCAST macro. The TYPESAFE_DOWNCAST macro
takes two parameters. The first parameter is the data type you want to downcast to. The
second parameter is the class instance you want to downcast.

For example, the following code downcasts the TWindowsObject object pointer Parent to
a TWindow:

void
TMyChildWindow::MyFunc()
{

II Parent is actually a TWindowsObject object.
I (TWindow *)Parent) ->AssignMenu I "NewMenu");

You might try to convert this code like this, simply converting the TWindow class to a
TFrameWindow class:

Appendix A, Converting ObjectWindows code 435

void
TMyChildWindow: :MyFunc()
{ I l error on next line

II Parent is actually a TWindow object.
((TFrameWindow *) Parent)->AssignMenu ("NewMenu");

However, in ObjectWindows 2.5, Parent's type is a TWindow *(it was a TWindowsObject
*),which is a virtual base of TFrameWindow. Attempting to downcast this results in a
compile-time error. The correct way to convert this using the TYPESAFE_DOWNCAST
macro is shown here:

void
TMyChildWindow: :MyFunc ()
{

TFrameWindow* frame = TYPESAFE_DOWNCAST(TFrameWindow*,Parent);
if (frame)

frame->AssignMenu ("NewMenu") ;

Here's the syntax for the TYPESAFE_DOWNCAST macro:

type TYPESAFE_DOWNCAST(type, object)

where:

• type is the data type to which you want to cast the object.
• object is the object you want to cast.

If the conversion is successful, TYPESAFE_DOWNCAST returns object as a type data
object. If the conversion fails, the result of the TYPESAFE_OOWNCAST macro is 0. You
should perform error checking when using the TYPESAFE_DOWNCAST macro.

Moving from Object-based containers to the BIDS library
In ObjectWindows 1.0, the TWindowsObject class was derived from the class Object from
the container class library. In ObjectWindows 2.5, the templatized BIDS container class
library is used in place of the Object-based container class library. The BIDS library
provides quicker execution times and much greater code flexibility. The BIDS
templatized container classes are described in Chapter 1 of the Borland C++ Class
Libraries Guide. This change affects code that places the TWindow class (the
ObjeetWindows 2.5 equivalent of TWindowsObject; see page 431) in Object-based
containers and cod~ that calls Object member functions such as IsA, NameOf, and the
isXXX member functions such as isEmpty, isfull, isSortable, and so on.

Code that places the TWindow class in Object-based containers should be converted to
use the BIDS templatized container classes. Otherwise, to put your own TWindow
classes into Object-based containers, you would have to:

• Multiply derive your class from Object as well as its ObjectWindows base class.

436 ObjectWindows Programmer's Guide

• Implement castability for your class; see the README.TXT file for information on
this procedure.

• If implementing castability (which is strongly recommended), use the
TYPESAFE_DOWNCAST macro to downcast the Objects from the container back to
your TWindow-derived class.

Streaming
There have been some minor changes to the stream class library. There have also been
substantial changes in how streaming is implemented for ObjectWindows 2.5 classes,
although existing code should continue to work correctly with only minor
modifications.

Removed insertion and extraction operators
These operators no longer exist:

opstream &operator <<(opstream &, TStreamableBase *);
ipstream &operator >>(ipstream &, void*&);

If you were calling this<< operator, you can use the following call instead:

opstream.WriteObjectPtr((TStreamableBase *) p);

This >> operator was removed because it had no real functionality.

Implementing streaming
The Borland C ++ 4.5 container class library dramatically simplifies the process of setting
up your classes for streaming. The process uses the macros DECLARE_STREAMABLE
and IMPLEMENT_STREAMABLEX.

The DECLARE_STREAMABLE macro can be used in a class derived from
TStreamableBase (as most of the ObjectWindows classes are). It takes three parameters:

• Streaming class modifier, such as _OWLCLASS (these macros are discussed in the
Object Windows Reference Guide)

• The class name

• Version number

Note that, though you are not required to provide a value for the first parameter, you
must provide a space for it. For example:

class TMyClass : public TStreamableBase
{

DECLARE_STREAMABLE(, TMyClass, l);
};

The version number you use is up to you. Some streaming functions emit the version
number during certain operations. You must put the DECLARE_STREAMABLE macro
in your class definition in order to use streaming functionality with your
ObjectWindows classes.

Appendix A, Converting ObjectWindows code 437

After declaring your class streamable with the DECLARE_STREAMABLE macro, you
need to specify the IMPLEMENT_STREAMABLEX macro. This macro performs a
number of steps that let you stream your class, including creating an extraction operator
for your class:

ipstream & operator >>(ipstream &, TMyClass * &);

For the IMPLEMENT_STREAMABLEX macro, you must determine X to figure out
which macro you should use. To do this, count the number o~ immediate base classes
for your class plus the number of virtual base classes you want to stream. This number
determines which macro you use. For example, suppose the class TMyClass is derived
from TFrameWindow, which inherits TWindow virtually. In that case, you would use the
IMPLEMENT_STREAMABLE2 macro.

You also need to provide Read and Write functions for your class. For example:

void
MyClass: :Write(opstream &)
{

II Whatever functionality you require ...

void*
MyClass: :Read(ipstream &, unsigned long I
{

II Whatever functionality you require ...

For more information on the DECLARE_STREAMABLE and
IMPLEMENT_STREAMABLEX macros, and on streaming classes in general, see
Chapter 2 in the Borland C++ Class Libraries Guide.

MDI classes
TWindow in ObjectWindows 1.0 contained all the necessary support required to be an
MDI child. This made it easy to create MDI applications, but caused MDI support code
to be included even when your application didn't use it. ObjectWindows 2.5 provides
three distinct MDI classes: TMDIFrame, TMDIClient, and TMDIChild. Now your
application includes MDI support code only when using MDI classes.

In ObjectWindows 1.0, a typical MDI application worked like this:

• An instance of a specialized TMDIFrame class served as the application's main
window.

• Instances of specialized TWindow classes, inserted into the frame window, served as
MDI child windows.

ObjectWindows 2.5 is similar:

• An instance of a TMDIFrame class serves as the application's main window.

• An instance of TMDIClient serves as the MDI client window.

438 ObjectWindows Programmer's Guide

• Instances of the TMDIChild class, inserted into the client window, serve as MDI child
windows.

There are a couple of examples that use the MDI features, named MFILEAPP and
MDITEST. These examples are located in the EXAMPLES\ OWL \MFILEAPP and
EXAMPLES\ OWL \MDITEST directories of your Borland C++ installation,
respectively.

Making the frame and client
In ObjectWindows 1.0, a typical way to use TMDIFrame was deriving a class from
TMDIFrame, and instantiating an instance of that class in T Application::InitMain Window.
In ObjectWindows 2.5, you can simply assign a stock TMDIFrame to be the main
window. The default TMDIClient& parameter for the TMDIFrame constructor creates a
default TMDIClient object. If you need some type of specialized TMDIClient, you can
create the TMDIClient and pass it to the TMDIFrame constructor yourself. Using a class
derived from MDIFrame is fine for porting your code, but your new Object Windows 2.5
applications shouldn't need to use a specialized TMDIFrame.

The following code shows how MDI clients and children were typically handled in
ObjectWindows 1.0:

class TMyMDIFrame : public TMDIFrame
{

public:
TMyMDIFrame(LPSTR title, LPSTR menuName);

};

void
TMyApp::InitMainWindow()
{

SetMainWindow (new TMyMDIFrame ("Main Window", "MENU_l")) ;

In ObjectWindows 2.5, this code would look like this:

void
TMyApp: : Ini tMainWindow ()
{

SetMainWindow (new TMDIFrame ("Main Window", "MENU_l")) ;

If you wanted to specify a custom MDI client window, you would only have to modify
the code slightly:

class TMyMDIClient : public TMDIClient
{

public:
TMyMDIClient () ;

};

void
TMyApp: : Ini tMainWindow ()
{

Appendix A, Converting ObjectWindows code 439

SetMainWindow(new TMDIFrame ("Main Window", "MENU_l", *new TMyMDIClient)) ;

The reason the TMDIFrame constructor takes a reference to a TMDIClient instead of a
pointer is to prevent you from constructing a TMDIFrame with a 0 pointer to an
MD/Client. Using a reference parameter provides greater safety because it requires you
to provide an actual object.

Making a child window
In ObjectWindows 1.0, a child window was typically created as follows:

. / .

void
TMyMDIFrame::MakeNewChild()
{

PTWindow* newMDIChild =new TMyChild(this, "new child");
GetApplication () ->MakeWindow (newMDIChild) ;

In ObjectWindows 2.5, this function should be a member of the TMDIClient-based class:

void
TMyMDIClient::MakeNewChild()
{

(new TMyMDIChild(*this, "new child"))->Create();

You must use TMDIChild or a TMDIChild-derived class for MDI children. Notice the
*this passed as the first parameter to the TMDIChild constructor. Again, MDI children
must have a TMDIClient as a parent, so their constructors take a reference to TMDIClient
instead of a pointer.

WB MDICHILD
The WB _MDICHILD flag is no longer defined. It was used to tell ifa TWindow class was
really an MDI child, and for a TMDIFrame to tell which of its children were really MDI
children, and which were not (for example, a toolbar would not be implemented as an
MDI child). In ObjectWindows 2.5, there is a TMDIChild class, and its parent is always a
TMDIClient. Because all MDI children are derived from TMDIChild and are children of
the TMDIClient, and toolbars and the like are children of a TDecoratedMDIFrame, there is
no need for this flag anymore.

Relocated functions
The following child-handling functions of the TMDIFrame class have been moved to the
TMDIClient class:

Arrangekons
CloseChildren
CMCascadeChildren
CMCreateChild
CMTileChildren
InitChild

CascadeChildren
CMArrangekons
CMCloseChildren
CMinitChild
CreateChild
TileChildren

440 ObjectWindows Programmer's Guide

Code that used or overrode these functions should be changed to reference the
TMDIClient instance, or be moved to a descendent of the TMDIClient class.

The names of the menu command handlers use the ObjectWindows 2.5 style, that is,
CMinitChild is now CmlnitChild.

Replacing ActiveChild with GetActiveChild
In ObjectWindows 1.0, you could find the active MDI child by using the PTWindow data
member, ActiveChild, of the TMDIFrame object. In ObjectWindows 2.5, you should use
the GetActiveChild member function in the TMDIClient class.

MainWindow variable
You should no longer set the variable TApplication::MainWindow. Instead you should
use the SetMain Window function. SetMain Window takes one parameter, a TFrameWindow
*,and returns a pointer to the old main window. If this is a new application, that is, one
that has not set up a main window yet, the return value is 0.

Suppose your existing code looks something like this:

void
Ini tMainWindow ()
{

MainWindow = new TFrameWindow (0, "This window", new TWindow);
MainWindow->AssignMenu ("COMMANDS") ;

In ObjectWindows 1.0, this was a fairly common way of setting up your main window
at the beginning of your application's execution. In ObjectWindows 2.5, class data
members are either protected or private, preventing you from directly setting the value
of the data members. The previous code would look something like this:

void
Ini tMainWindow ()
{

SetMainWindow(new TFrameWindow(O, "This window", new TWindow));
MainWindow->AssignMenu ("COMMANDS") ;

Using a dialog as the main window
Because the SetMain Window function expects a TFrameWindow * as a parameter, it is no
longer possible to directly pass a TDialog or TDialog-derived object as the main window.
To use a TDialog object as the main window, make a dialog window a client in a
TFrameWindow. Then pass that TFrameWindow as the parameter to SetMainWindow. The
CALC example, in the EXAMPLES\OWL \CALC directory of your Borland C++
installation, illustrates how to use a TDialog-derived class as a client window in a
TFrameWindow object.

Appendix A, Converting ObjectWindows code 441

For example, suppose you had constructed a class derived from TDialog called
TMyDialog, and wanted to use it as the main window. The code would look something
like this:

SetMainWindow(new TFrameWindow(O, 'My MainWindow", new TMyDialog, true));

There are a number of other changes you need to make if you're using a dialog as your
main window:

• Destroying your dialog object does not destroy the frame. You must destroy the
frame explicitly. . ,•

• You can no longer dynamically add resources directly to the dialog, because it isn't
the main window. You must add the resources to the frame window. For example,
suppose you added an icon to your dialog using the Setlcon function. You now must
use the Setlcon function for your frame window.

• You can't just specify the caption for your dialog in the resource itself anymore.
Instead you must set the caption through the frame window.

• You must set the style of the dialog box as follows:

• Visible (WS_ VISIBLE)

• Child window (WS_CHILD)

• It shouldn't have Minimize and Maximize buttons, drag bars, system menus, or
any of the other standard frame window attributes

See page 102 for more information.

TApplication message processing functions
. The ProcessDlgMsg, ProcessAccels, andProcessMDIAccels functions have been removed

from the T Application class. Message processing is now done by calling T Application's
virtual ProcessAppMsg function, which calls the virtual TWindow::PreProcessMsg
function of the window receiving the message (and up the chain of parents) until
someone preprocesses the message, or until there are no more parents. At that point, it
checks the applications accelerator table, and finally, if the message has not been
handled, dispatches it to the window. This change greatly simplifies and automates the
message processing procedure.

You might have ObjectWindows 1.0 code in which ProcessAppMsg is overridden to
change the order in which it called the other processing functions. For example, the
ObjectWindows 1.0 CALC example did this. This code isn't likely to be necessary in
ObjectWindows 2.5; if you need to, however, you can override PreProcessMsg of the
TWindow object or one of its parent windows.

You might also have ObjectWindows 1.0 code that extends ProcessAccels to process
across multiple accelerator tables for different windows. This is best modified by
assigning an accelerator table to each window, so that the window processes it
automatically. You can also have each TWindow or TWindow-derived class override its
PreProcessMsg function to handle its own accelerator table.

442 ObjectWindows Programmer's Guide

GetModule function
The GetModule function has been removed from the TWindowsObject class. In most
cases, you can simply replace a call to GetModule with a call to get GetApplication. For
example, suppose you have the following code in your ObjectWindows 1.0 application:

GetModule()->ExecDialog(new TDialog(this, "DIALOG_l"));

You can convert this to ObjectWindows 2.5 by changing GetModule to GetApplication:

GetApplication()->ExecDialog(new TDialog(this, "DIALOG_l"));

Although ObjectWindows 2.5 provides ExecDialog for compatibility reasons, the
recommended method of doing this would be to use the Execute command directly from
the instantiated class. So the code above would become:

TDialog(this, "DIALOG_l") .Execute();

This change is discussed in more detail on page 452.

The exception to this is when the TWindow descendent doesn't have a TApplication or
TApplication-derived object defined for it (such as a DLL that isn't being used by an
ObjectWindows application) and you need to use a member function of TModule. In this
case, use the module object you construct for the DLL in your LibMain function. For
example:

II Declare a global TModule pointer.
TModule *dllModule;

int FAR PASCAL
LibMain(...)
{

II Assign a value to dllModule here.
dllModule = new TModule ("My module", instance, cmdLine);

void
MyFunc()
{

TWindow *parentAlias;

II Use the GetParentObject function with dllModule.
parentAlias = dllModule->GetParentObject(HWnd);

See DLLHELLO.CPP, located in the EXAMPLES\ OWL \MISC directory of your
Borland C++ installation, for a detailed example.

DefXXXProc functions
The TWindowsObject member functions DefCommandProc, DefChildProc,
DefNotificationProc, and DefWndProc have been removed from TWindow (the
ObjectWindows 2.5 equivalent of TWindowsObject; see page 431) and effectively

Appendix A, Converting ObjectWindows code 443

replaced with the single function DefaultProcessing. 1his greatly simplifies message
processing. To invoke default processing, just call your base class version of the event
handler you are overriding, or call DefaultProcessing.

Overriding
In general, it's best to handle one command or child ID notification per function. But
sometimes it can be useful to handle multiple messages with one function. If you were
overriding DefCommandProc or DefChildProc for this purpose, there are two main ways
to port this code: · ·

• Override the EvCommand function and do the message handling there. The CALC
example, in the EXAMPLES\OWL \CALC directory of your Borland C++
installation, illustrates how to do this. 1his isn't technically default processing
because EvConimand is called before a event handler is looked for.

• Override DefWindowProc and catch the commands there. DefWindowProc is called if
an event handler was not found. .
Code that overrides DefWndProc also overrides DefWindowProc. Code that overrides
DefNotificationProc must be ported to handle each notification at the child with a
separate member function, using the EV _NOTIFY_AT_CHILD macro.

Using DefWndProc for registered messages
If you were overriding DefWndProc to handle registered Windows messages (messages
returned by RegisterWindowMessage), you don't need to do that in ObjectWindows 2.5.
See the description of the EV _REGISTERED macro on page 43.

Paint function
The declaration for the TWindow member function Paint has changed from:

virtual .void Paint(HDC, PAINTSTRUCT _FAR&);

to:

virtual void Paint(TDC&, bool, TRect &);

TDC is part of the ObjectWindows 2.5 GDI encapsulation of the Windows API. You can
use the TDC parameter in the same way that you used HOC. There is an operator
HDC() defined for the TDC class that converts a TDC to an HOC. The bool and TRect&
correspond directly to the fErase and rcPaint members of the P AINTSTRUCT type. The
data members are initialized in the TWindow::EvPaint function, which is called by the
default processing functions when a WM_P AINT message is received. The Ev Paint
function in tum calls the Paint function.

For example, suppose your ObjectWindows 1.0 code contained the following function
declaration:

void
TWindow::Paint(HDC hdc, PAINTSTRUCT& ps)
{

444 ObjectWindows Programmer's Guide

II Much code here ...

You would change this in ObjectWindows 2.5 like this:

void
Paint(TDC& tdc, bool erase, TRect& rect)
{

II Much code here ...

CloseWindow, ShutDownWindow, and Destroy functions
The declarations for these TWindow member functions have changed. The versions of
these functions that took no parameters have been modified to an int. However, these
functions also provide a default value for the int parameter, so your existing code
should compile and run without modification.

ForEach and FirstThat functions
The ForEach and FirstThat functions are used to iterate through the children of a window
object. To use them, you pass a pointer to an iterator function as the first parameter of
the For Each and FirstThat function. This iterator function can be a normal function or a
class member function. In ObjectWindows 1.0, the ForEach and FirstThat functions
passed the iterator functions a void* for their first parameter. The iterator functions
then had to cast this void * to a TWindow *. Although this works if the correct parameter
type is passed, it doesn't provide for type checking. In ObjectWindows 2.5, these
functions take a TWindow * directly:

Sample iterator functions for the ForEach function:

void Mylterator(void *,void*) void Mylterator(TWindow *,void*)

void TMyClass::Mylterator(void *, void *) void TMyClass::Mylterator(TWindow *,void *)

Sample iterator functions for the FirstThat function:

bool Mylterator(void *,void*) void Mylterator(TWindow *,void*)

bool TMyClass::Mylterator(void *,void*) void TMyClass::Mylterator(TWindow *,void*)

The functions are still used in the same way:

void
TMyWindow: : SomeMyFunc ()
{

ForEach(Myiterator, 0);
ForEach(&TMyClass::Myiterator, 0);

Appendix A, Converting ObjectWindows code 445

TComboBoxData and TListBoxData classes
In ObjectWindows 1.0, the TListBoxData class, the transfer structure for TListBox, had the·
following two data members:

PArray Strings;
PArray SelStrings;

These members were pointers to Object-based Arrays, and held instances of the Object
based String class. These instances were the strings in the list box and the selected
strings (mostly used for multi-select listboxes). Because of the move from the Object
based class library to the template-based BIDS libraries, and the introduction of a string
class by the ANSI committee, the implementation of these data members has been
changed for ObjectWindows 2.5 to the following:

TStringArray ~Strings;
TStringArray *SelStrings;

TStringArray uses a BIDS array class to hold an array of string objects.

A similar change exists with TComboBoxData: the Strings data member is a TStringArray
pointer instead of an Array pointer.

Though the new ANSI string class provides many new operators and functions, it
doesn't provide a const char* operator like the Object-based class did. It instead has a
c_str member function that must be used to get the data out of the class. This requires
modifications to code that relied on the const char * operator of the Object-based String
class. You must also use a TStringArray where you were previously using an Object
based Array class to get data out of a TListBoxData structure.

For example, using ObjectWindows 1.0, suppose you have just done a transfer and are
getting a const char* to the first selected string. Assume Dialog Transfer is a pointer to the
transfer buffer and ListBoxData is a pointer to a TListBoxData inside of it.

Array& selStrings = *(DialagTransfer->ListBaxData->SelStrings);
canst char *sel = (canst char*) (String &)selStrings[O];

In ObjectWindows 2.5 this becomes:

TStringArray& selStrings = *(DialagTransfer->ListBaxData->SelStrings);
canst char *sel = selStrings[OJ .c_str();

TEditWindow and TFileWindow classes
The ObjectWindows 1.0 TEditWindow and TFileWindow classes have been removed from
ObjectWindows and functionally replaced by TEditSearch and TEditFile, which are
derived from the TEdit control class. The TEditSearch and TEditFile classes aren't full
frame windows with menus like the previous classes, but instead are used to add editor
functionality to TFrameWindow or TMDIChild windows.

There are two methods you can use to replace instances of TFileWindow or TEditWindow
in your code: using the TFileWindow and TEditWindow classes defined in the
OLDFILEW example program or adding TEditSearch and TEditFile classes as client
windows in TFrameWindow or TMDIChild windows.

446 ObjectWindows Programmer's Guide

Using the OLDFILEW example
The TEditWindow and TFileWindow classes have been implemented in the example
programs EDITWND and FILEWND. You can find these examples in the EXAMPLES\
OWL \OLDFILEW directory of your Borland C++ installation. The TEditWindow and
TFileWindow classes defined in these examples can be used in much the same way as the
original ObjectWindows 1.0 TEditWindow and TFileWindow classes. To add these classes
to your programs, copy the source to your source directory for your application. If
you're using just the TEditWindow class, you only need the files EDITWND.CPP and
EDITWND.H. Because the TFileWindow class is based on the TEditWindow class, you
also need the files FILEWND.CPP and FILEWND.H if you're using the TFileWindow
class. Your source files that reference these classes need to include the appropriate
header files.

Although this method works for converting your code, it's recommended that you write
new code using the ObjectWindows 2.5 method of using TEditSearch and TEditFile client
windows in TFrameWindow or TMDIChild windows.

Adding TEditSearch and TEditFile client windows
You can attain the functionality of the TEditWindow and TFileWindow classes by
instantiating a TFrameWindow or TMDIChild and specifying a TEditFile or TEditSearch
object as a client window. Both the TFrameWindow and TMDIChild classes have a
constructor that takes a TWindow pointer as its third parameter. It then uses the
TWindow or TWindow-derived object as a client window. To specify a TEditFile or
TEditSearch object as a client to one of these classes, construct the TEditFile or TEditSearch
object and pass a pointer to the object to the constructor.

The following lines of code are from the FILEAPP example, located in the
EXAMPLESOWLFILEAPP directory of your Borland C++ installation. They illustrate
how to open a TEditFile client window in a TFrameWindow window.

void
TFileApp::InitMainWindow()
{

SetMainWindow(new TFrameWindow(O, Name, new TEditFile));

The following lines of code are from the MFILEAPP example, located in the
EXAMPLESOWLMFILEAPP directory of your Borland C++ installation. They illustrate
how to open a TEditFile client window in a TFrameWindow window.

void
TMDIFileApp::CrnFileNew()
{

TMDIChild child(*Client, "",new TEditFile(O, 0, 0));

Appendix A, Converting ObjectWindows code 447

-TSearchDialog and TFileDialog clas$es
The TSearchDialog and TFileDialog classes have been removed from ObjectWindows.
Use the TReplaceDialog or TFindDialog class in place of TSearchDialog and the
TFileOpenDialog class in place of the TFileDialog class. Th~se new classes are based on the
class TCommonDialog, which encapsulates the base functionality of the Windows
common dialogs. '

ActivationResponse function
The ActivationResponse function has been removed from the TWindow and
TWindowsObject classes. Determining when a window has been activated can be done
by catching the appropriate message, like WM_MDIACTIV ATE, WM_ACTN ATE, or
WM_SETFOCUS as appropriate. You can find an example of using WM_ACTIV ATE to
determine when a window is active in the SCRNSA VE example, which is located in the
EXAMPLES\ OWL \SCRNSA VE directory of your Borland C ++ installation. You can
find an example of using WM_SETFOCUS in the BSCRLAPP example, which is located
in the EXAMPLES\OWL \BSCRLAPP directory of your Borland C++ installation.

Dispatch-handling functions
The BeforeDispatchHandler and AfterDispatchHandler functions have been removed from:
ObjectWindows. You can obtain similar functionality by overriding WindowProc for a
TWindow-derived class. The procedure for doing this is:

Overload the WindowProc function in your derived class.

2 In your WindowProc function, do some processing before calling the default
TBaseClass:: Window Proc.

3 Call TBaseClass::WindowProc.

4 Save the return value from TBaseClass:: Window Proc.

5 Do some processing after TBaseClass::WindowProc has executed.

6 Return the saved return value when you exit your WindowProc.

For example:

LRESULT
TMyWindow::WindowProc(uint msg, WPARAM wParam, LPARAM lParam)
{

II Do whatever 'before' processing you want here.
BeforeHandling ();

LRESULT ret = TFrameWindow::WindowProc(message, wParam, lParam);

II Do whatever 'after' processing you want here.
AfterHandling();

return ret;

448 ObjectWindows Programmer's Guide

DispatchAMessage function
DispatchAMessage has been removed from ObjectWindows. Messages should be sent to
the Windows API with the ObjectWindows 2.5 SendMessage encapsulation.

General messages
For sending general window messages (anything other than messages that are part of
WM_ COMMAND, such as WM_FIRST + XXX messages), code would be converted as
follows:

1,1 Before
DispatchAMessage(WM_MESSAGE, ATMessage, &TWindow::DefWndProc)
II After
SendMessage(WM_MESSAGE, ATMessage.WParam, ATMessage.LParam);

I I Before
SomeOtherWindow->DispatchAMessage(WM_FIRST + WM_MESSAGE, ATMessage, &TWindow: :DefWndProc);
I I After
SomeOtherWindow->SendMessage(WM_MESSAGE, ATMessage.WParam, ATMessage.LParam);

The Def Proc parameter
DispatchAMessage took a pointer to a function as its last parameter. DispatchAMessage
called this function if a DDVT entry was not found for the message. When an
ObjectWindows 2.5 window receives a message and doesn't find a handler for it, it
automatically invokes the proper default handling. See page 443 for more information
on default message handling.

Command messages
There are a number of different kinds of command messages you might need to convert.
Menu command messages of the form CM_FIRST + XXX are converted as follows:

I I Before
OtherWin->DispatchAMessage(CM_FIRST + CM_MENUID,ATMessage, &TWindow: :DefCommandProc);
II After
OtherWin->SendMessage(WM_COMMAND, CM_MENUID, ATMessage.LParam);

In ObjectWindows 2.5, command messages sent this way go directly to the specified
window, not to the focus window.

Child ID notifications of the form ID _FIRST + XXX are converted as follows:

I I Before
OtherWin->DispatchAMessage(ID_FIRST + ID_CHILDID,ATMessage, &TWindow::DefChildProc);
II After
OtherWin->SendMessage(WM_COMMAND, ID_CHILID, ATMessage.LParam);

KBHandlerWnd
The KBHandlerWnd data member has been removed from the TApplication class.
Keyboard handling is implemented through the virtual TWindow member function
PreProcessMsg.

A p p e n d i x A , C o n v e r I i n g 0 b j e c I W i n d ow s c o d e 449

MAXPATH
In ObjectWindows 1.0, MAXPATH was defined in the header file filewnd.h. In
ObjectWindows 2.5, it no longer is. MAXPATH is defined in the header file dir.h, so if
you use the MAXPATH define you should now include the standard header file dir.h.

Style conventions
ObjectWindows 2.5 uses somewhat different style conventions from ObjectWindows
1.0. Although your application should compile fine without these stylistic changes, you
should make these changes anyway to ensure easy compatibility with your future
ObjectWindows code.

Changing WinMain to OwlMain
In ObjectWindows 1.0, you used the WinMain function to create an instance of a
T Application class and call its Run member function. In ObjectWindows 2.5, you do this
in the function OwlMain. ObjectWindows 2.5 provides a default WinMain that performs
error handling and exception handling. The default WinMain function calls the OwlMain
function. If you were ~oing any initialization in WinMain, you should move it to
OwlMain and remove your WinMain function.

OwlMain differs from WinMain in its signature. Whereas WinMain takes a number of
Windows-specific arguments, OwlMain takes an int and a char ** and returns an int
just like the main function in a traditional C or C ++ program.

You still need to derive your own application class from T Application to override
InitMain Window and Initlnstance. T Application's constructor no longer requires you to
specify the instance handles, command line, and main window show flag; the hidden
WinMain function provides those values (you can optionally specify the name).

Here's an example of using the OwlMain function:

class TMyApp: public TApplication
{

};

public:
TMyApp(char far *name): TApplication(name) {}
void InitMainWindow();

void
TMyApp::InitMainWindow()
{

int
OwlMain(int argc, char* argv[J)
{

return TMyApp ("Wow! "I . Run (I ;

450 ObjectWindows Programmer's Guide

Data types and names
ObjectWindows 2.5 functions use Windows-style names, such as LPSTR, PWORD, and
HANDLE, only when there is a direct connection between that member and something
in the Windows APL An example is the connection between a event-handling function
and the Windows message it handles. ObjectWindows 2.5 also avoids using Windows
style types such as PTWindowsObject and RTMessage wherever possible, and instead
uses C++ type names, such as char far*, unsigned short*, and const void*. This helps
to abstract the ObjectWindows conventions from the Windows API, and ease porting
problems to other platforms in the future.

Also, function parameters in ObjectWindows 1.0 were usually named ASomething; that
is, the name was prefixed with a capital A, the first letter of the name was capitalized,
and the rest of the name was in lowercase. ObjectWindows 2.5 uses a lowercase name
without the capital-A prefix.

For example, the ObjectWindows 1.0 TWindow constructor looked like this:

TWindow(PTWindowsObject AParent, LPSTR ATitle, ...);

The ObjectWindows 2.5 TFrameWindow constructor (the equivalent of the
ObjectWindows 1.0 TWindow constructor; see page 431) looks like this:

TFrameWindow(TWindow *parent, const char *title, ...) ;

Notice that the types PTWindowsObject and LPSTR have been changed to TWindow *
and const char*, and the parameter names AParent and ATitle have been changed to
parent and title.

OWLCVT performs these conversions for you. But unless you're careful, this can cause
problems, because the conversion affects only the first instance of a variable declared on
a line. For example, suppose you have the following declaration:

PTEdit ptEditl, ptEdit2, ptEdit3, ptEdit4;

After conversion, this line would look like this:

TEdit _FAR * ptEditl, ptEdit2, ptEdit3, ptEdit4;

Thus, instead of being pointers to TEdit controls, ptEdit2, ptEdit3, and ptEdit4 are actual
TEdit instances. You can correct this problem by changing the line so that each instance
of the pointer type occurs on a separate line:

PTEdit ptEditl;
PTEdit ptEdit2;
PTEdit ptEdit3;
PTEdit ptEdit4;

Alternatively, you can correct the line after OWLCVT has run, adding the * operator to
each variable name:

TEdit _FAR * ptEditl, * ptEdit2, * ptEdit3, * ptEdit4;

Replacing MakeWindow with Create
ObjectWindows 2.5 uses the TWindow::Create function to create a window instead of the
TModule::MakeWindow function used in ObjectWindows 1.0. Although the Create
function existed in ObjectWindows 1.0, Make Window provided a safer way to create a

Appendix A, Converting ObjectWindows code 451

window, because it performed a certain amount of error checking before calling Create
that calling Create alone did not. But Object Windows 2.5 makes use ofC ++ exceptions to
catch such errors without using the explicit error-handling code that Make Window
contains. You are not required to use Create in place of Make Window; MakeWindow still
exists and can be used as before without changing code, but it is considered obsolete,
and will probably be removed from future versions of the ObjectWindows class library.

Replacing ExecDialog with Execute
ObjectWindows 2.5 uses the TDialog::Execute function instead of the TModule::ExecDialog
function commonly used in ObjectWindows 1.0, for the same reasons given for using
Create instead of Make Window in the previous section. As with TModule::MakeWindow,
TModule::ExecDialog still exists and can be used as before, but is considered obsolete, and
will probably be removed from future versions of the ObjectWindows class library. For
example:

(new TDialog (MainWindow, "DIALOG_l" I)->Execute I I;

Getting the application and module instance
The application and module instance has been encapsulated in the ObjectWindows 2.5
library manager. This allows the easy manipulation of Borland- and user-defined DLLs.
To facilitate this change, you should replace calls to the GetApplication()->hlnstance
function with a call to .GetLiblnstance. For example, suppose you have the following
code:

Cursor = LoadCursor(GetApplication()->hinstance, "ThisCursor");

You can convert this like this:

Cursor= LoadCursor(GetLibinstance(IDL_APPLICATION), "ThisCursor");

Defining WIN30, WIN31, and STRICT
You do not need to define WIN30, WIN31, or STRICT as long as you include owldefs.h
(or a file that includes owldefs.h, such as owl.h) before you include windows.h. The
owldefs.h header file defines STRICT and includes windows.h for you. But if you
include windows.h before including owldefs.h, you need to define STRICT. Also, you
can only target Windows 3.1 or above with ObjectWindows 2.5.

Troubleshooting
This section lists a number of common problems you might encounter while converting
your code from ObjectWindows 1.0 to ObjectWindows 2.5.

OWLCVT errors
This section describes some common warning and error messages you might encounter
when running OWLCVT on your ObjectWindows 1.0 code. Some of these messages are
displayed onscreen as OWLCVT processes your code, and others are placed as
comments in your converted files.

452 0 b j e c I W i n d o w s P r o g r a m m e r ' s G u i d e

• Unrecognized DDVT value
OWLCVT doesn't have a specific translation for some DDVT value. In this case, it
inserts a generic value that you can search for and replace manually.

• Cannot create backup file
OWLCVT creates backup copies of all the source and header files that it modifies and
places them in the directory OWLBACK. When you get this warning, OWLCVT
could not create the backup files for some reason.

• Redeclaration of var
This is equivalent to a compiler error telling you that you have redeclared the data
item var.

Compiler warnings
Here are some common warnings you might encounter when running your converted
ObjectWindows 1.0 code through the Borland C++ 4.5 compiler:

• Paint hides function
• ShutDown Window hides function
• Close Window hides function
• Destroy Window hides function
• IdleAction hides function

For each of these functions, you might get a warning similar to this:

Paint(HDC, PAINTSTRUCT &) hides virtual Paint(void *, void*)

This can be ignored: the (void*, void*) functions were part of the Borland mechanism
for providing compatibility between Windows 3.0 and 3.1. These functions were never
used.

Compiler errors
Here are some common errors you might encounter when running your converted
ObjectWindows 1.0 code through the Borland C++ 4.5 compiler:

• Type LPSTR or type X must be a struct or class name:: GetClassName
OWLCVT converts calls to the Windows API by preceding the call with a:: operator.
If you use the name of an API function in some context other than calling a Windows
API function, like overriding the GetClassName member function of TWindow,
OWLCVT might add a :: operator there as well (though there are some cases it knows
to ignore). This might cause the compiler to generate an error. You can fix this error
by removing the :: operator that was added by OWLCVT.

• Cannot convert'TWindow *'to 'TClass *'
This is caused because TWindow is used in Object Windows 2.5 as a virtual base. You
cannot directly downcast a TWindow or TWindow pointer to a class that is virtually
derived from TWindow. To fix this error, use the TYPESAFE_DOWNCAST macro.
For more information, see page 435.

Appendix A, Converting ObjectWindows code 453

• Cannot cast from 'Base *' to' Derived *'
Use the TYPESAFE_DOWNCAST macro to cast the Base pointer to a Derived
pointer. This is essentially the same error as the previous one. For more information,
see page 435.

• Cannot convert 'int*' to 'TScrollerBase *'
You need to include the scroller.h header file. In ObjectWindows 1.0, this was done
by owl.h, but the header file directories and layout have changed for ObjectWindows
2.5. This is discussed on page 433.

Run-time errors
Here are some common errors you might encounter when running an application
compiled from converted ObjectWindows 1.0 code:

• Paint not getting called.
The declaration for the Paint function has changed. You need to change your Paint
function to match the TWindow member function Paint. See page 444.

• BeforeDispatchHandler, AfterDispatchHandler not being called.
See page 448.

• FirstThat or ForEach not working.
It is important to stay typesafe when using multiple inheritence and virtual base
class, as Object Windows 2.5 does. When multiple and virtual inheritence are used,
the address of contained objects is not always the same as that of the objects they are
inside. For example, in ObjectWindows 1.0, suppose you have a pointer to a TDialog,
and you want to get a pointer to its base class, TWindowsObject. The following code
would work in ObjectWindows 1.0, although it isn't typesafe because the conversion
was done through a void pointer:

TDialog *dialog_pointer;
void *void_pointer;
WindowsObject *winObj_pointer;

void_pointer = (void *) dialog_pointer;
winObj_pointer = (TWindowsObject*) void_pointer;

In ObjectWindows 2.5, this wouldn't work You would have to make the conversion
type safe:

TWindow* window_pointer = (TWindow *) dialog_pointer;

When the compiler knows it is converting a TDialog pointer to point to a virtual base,
it adjusts the value of the pointer approprfately. This kind of unsafe typecasting
might exist in ObjectWindows 1.0 code without breaking the code. Hereis an
example of this, in which IsChild determines if a void * passed in is currently a child
window by using FirstThat:

bool
TMyWindow: :IsChild(void * child)
{

if (FirstThat(Test, child))

454 ObjectWindows Programmer's Guide

return true;
else return false;

where the Test function is:

bool
Test(void * winChild, void* child)
(

return winChild == child;

Assuming IsChild was called with a pointer to a TDialog object, this code wouldn't
compile correctly. After changing to passing a TWindow *,things work fine. When
you convert this to ObjectWindows 2.5, the Test function takes a TWindow *,not a
void*. This fails because when IsChild was called with a pointer to a TDialog, it was
converted to a void*. The test function then compares this to TWindow *in a unsafe
way. But the function won't work because when it was called, it was passed a TDialog
*.Even though the TDialog was a child, its pointer value didn't match any of the
TWindow pointers in the child list.

• MDI application does not have any menu items enabled.
Make sure that you use the ObjectWindows 2.5 mdi.rh include file. This file contains
the constants for standard items in the MDI menu, such as
CM_CASCADECHILDREN. In particular, don't use the definitions from the
ObjectWindows 1.0 owlrc.h include file.

Appendix A, Converting ObjectWindows code 455

456 ObjectWindows Programmer's Guide

Symbols
! localization prefix 398

automation tables 389
!= operator 227
#localization prefix 399
&= operator 228
+= operator (TRegion) 227
- (hyphen), command-line

options 349
I (slash), command-line

options 349
-=operator (TRegion) 228
=operator 227
== operator 227
@ localization prefix 398

automation tables 389
registration tables 373

A= operator (TRegion) 229
I= operator 228

Numerics
3-D controls, dialog boxes as 28

A
About command (common) 87
Above member function

TEdgeConstraint 72
Absolute member function

TEdgeConstraint 73
abstract classes 7
accessing

button gadget
information 181

data 129-131, 134
document and view

properties 141
document manager 132
gadget appearance 173
gadget windows' font 186
internal TDib structures 234
TBitmap 222
TBrush 216
TCursor 232
TFont 218
Tlcon 230
TPalette 219
TPen 215
TRegion 226
VBX controls 251

Index
activating (objects)

defined 295
user interface for 271

activation rectangle 271
ActivationResponse member

function
TWindowsObject 448

ActiveChild member function
TMDIFrame 441

adding
See also creating
behavior to MDI client

windows 83
event response table

declarations 426
event response table

definitions 426
event response table

entries 427
menus to views 135
TEditFile client windows 447
TEditSearch client

windows 447
Addltem member function

TVbxControl 254
AddRef method

(IUnknown) 300
AddString member function

TListBox 147
AddUserFormatName member

function
TOleFrame 309

AddWindow member function
TFrameWindow 77

After enum 184
AfterDispatchHandler member

function
TWindowsObject 448

aggregation 288
automation and 366
defined 295
factory callbacks 364, 365

aliases, frame windows 77
amEmbedding flag 371
amxxxx constants 364, 379
AngleArc member function

TDC 212
AnimatePalette member function

TPalette 220, 221
ANSI C ++ standard

changes to 418
API 204

App Dictionary variable 343
AppExpert 294
applicat.h 16
application classes 13
application dictionary

containers
Doc/View 306
ObjectWindows 316

naming variable 316
servers -

Doc/View 342
ObjectWindows 353

application instance, getting 452
application objects 15

accessing 17
attaching document

manager 125
closing 26-27
constructing 20
containers

Doc/View 304
ObjectWindows 316

CreateOleObject
method 317, 357

creating 16, 17, 18-19
default, overriding 18
deriving from

TOcModule 304
handling events 137
initializing 18, 21-24

first instances 21
naming 16, 18
processing incoming

messages 25
servers

Doc/View 343
ObjectWindows 357

untitled 18
application registration

structures 308
application running mode 364,

379
testing 379

applications 27
See also application objects
multiple-document interface

See MDI applications
single-document interface See

SDI applications
text-based

find-and-replace
operations 113

appname key 308, 384, 400

Index 457

Arc member function
TDC 212

Argx variables 388
AS_MANY_AS_NEEDED

macro 193
assignment statements

menu resources 89
proxy classes 411, 416

AssignMenu member function
TFrameWindow 78, 89, 435

associating, window objects
with interface elements 65, 68

AttachStream member function
TDocument 130

Attr data member
TFrameWindow 89, 435
TWindow 67

Attr structure 67
attributes

dialog boxes 103
window creation 66-68

overriding 67
AUTOARGS macro 411, 412
AutoCalc example 294, 382

automation declaration 386
automation definition 388
collections 401, 404
enum values 392
localizing

command names 398
registration 400

multiple objects, coordination
of 395

proxy classes for 408
read-only property 401
registration tables 382
WinMain 385
XLAT resources 400

AUTOCALL_PROP _REF
macro 415

AUTOCALL xxxx macros
table of 4ll

Jutocreating dialog
boxes 100-101

AUTODATA macros 386, 389
autodefs.h 408
AUTODETACH macro 396
AUTOENUMmacro 392
AUTOFLAG macro 389
AUTOFUNC macros 386, 389
AutoGen utility 292, 408

source code 295
AUTOINVOKE macro 388
AUTOITERATORmacro 403
automacr.h 408
automatable members 388

declaring 385

automated application See
automation server

automated object 295
See also automation server

automatic MDI child
windows 83

-Automation option 349
automation

command objects 291
defined 267, 296
ObjectComponents

implementation 291
RTTI required 391
supporting in

applications 265
automation classes

defined in autodefs.h 408
table of 280

automation commands
arguments, exposing 390
data type specifiers 390
Help context IDs for 390
hooks for 387
localizing names 397
naming 390
validating arguments 387

automation controllers 407-416
CallCalc example 294
compiling and

linking 412-413
creating allocator 408
declaring proxies 408-409,

415
defined 296, 407
enumerating

collections 413-416
header files 408
initializing OLE libraries 408
localizing 397, 409
passing

objects by value 415
parameters 411-412

sending commands 407, 415
steps for creating 407

automation declaration
tables 385-388

See also automation tables
AutoCalc example 386
automation definition tables,

vs. 385, 389
macros for 386
no terminating macro 386

automation definition
tables 388-393

See also automation tables
AutoCalc example 388

458 ObjectWindows Programmer's Guide

automation declaration tables,
vs. 385, 389

data type specifiers 390-392
delegation in 395
marking localized strings 398

automation iterator See iterator
automation macros

automacr.h, defined in 408
declaration tables

AUTODATA 386
AUTODETACH 396
AUTOFUNC 386
AUTOITERATOR 403
AUTOPROP 386
DECLARE AUTOCLASS

385 -
definition tables 389-390

AUTOENUM 392
DEFINE_AUTOCLASS

388
DEFINE_AUTOENUM

392
END_AUTOCLASS 386,

388
END AUTOENUM 392
EXPOSE_ APPLICATION

390
EXPOSE DELEGATE 395
EXPOSE-INHERIT 395
EXPOSE-ITERATOR 403
EXPOSE-METHOD 411
EXPOSE-xxxx 389
OPTIONAL ARG 411
REQUIRED _::-ARG 389

hooks 388
proxy classes

AUTOARGS 411
AUTOCALL PROP REF

415 - -
AUTOCALL xxxx 411
AUTONAMES 411

automation objects
coordinating in one

server 395
invalidating 396

-Automation option 383
automation proxy classes See

proxy classes
automation servers

aggregating 366
AutoCalc example 294, 382
collections,

automating 400-405
command arguments,

exposing 390
compiling and linking 394
coordinating multiple

automated objects 395

data type specifiers 390
declaring automatable

members 385
defined 296
defining automatable

members 388
delegating to C ++ objects 395
DLL servers, as 374
documentation strings 390
enum values, automating 392
factory templates 385
header files 394
invalidating automated

objects 396
localizing command

names 397
naming commands 390
read-only properties

(example) 401
receiving commands 407
registrar objects 385
registration 382
registration keys, table of 383
single-use recommended 383
steps for creating 381
type libraries 405
WinMain 385

automation tables 291
See also automation

declaration tables,
automation definition tables

localizing 389
AUTONAMES macro 411
AUTONAMES macros 411
AUTONAMESO macro 414
AUTONOHOOK macro 388
AUTOPROP macros 386, 389
AUTORECORD macro 388
AUTOREPORT macro 388
autosubclassing 28
AUTOUNDO macro 388
AUTOVALIDATE macro 388

B
backing up your old source

files 420
base classes, function calls 129
Before enum 184
BeforeDispatchHandler member

function
TWindowsObject 448

BEGIN_ REGISTRATION
macro 122,310,372

BeginDocument member
function

TPrintout 200

BeginPath member function
TDC 211

BeginPrinting member function
TPrintout 200

Below member function
TEdgeConstraint 72

BI_APP _DLL macro 376
Bind member function

TAutoProxy 412
BitBlt member function

TDC 212
BITMAP structure

convert TBitmap class to 222
BITMAPINFO operator

TDib 234
BITMAPINFOHEADER

operator, TDib 234
BitsPixel member function

TBitmap 223
BOCOLE support library 275,

288
custom interfaces 288
defined 296
source code for 288

BOCOLE.DLL 275
Borland C++ OLE support See

ObjectComponents Framework
Borland Custom Controls

Library 27
Bottom enum 80
bounding a gadget 173
brush origin

getting 209
setting 209

building MDI applications 82-84
buttons, dialog boxes,

processing 102, 114
BWCC.DLL 27
BWCC32.DLL 27
BWCCEnabled member function

TApplication 27

c
C ++ applications

converting to OLE
servers 359-371

C++ containers
documents, creating 333
examples 329
handlers

view events 335
WM OCEVENT 334

header files 339
memory allocator for 331
registrar object 330
registration 329

steps for creating 328
view windows 332
WinMain 330

C++ servers
client windows 366
compiling and linking 371
document lists 361
documents

creating 367
painting 369

examples 360
factory callbacks 363
header files 371
initializing OLE 360
main window, managing 370
memory allocator 360
message loop 363
multiple document types 368
registrar object 362
registration 360
steps for creating 359
view windows 366
WinMain 362
WM_OCEVENT

handlers 368, 370
CallCalc example 294, 415
Cancel button, processing 102
CanClose member function

TApplication 26-27
TDocument 132
TWindow 102

CapsLock enum 191
captions, main windows 21
capturing mouse

movements 186
castability 437
CATCH macro 64
catching exceptions 102
change notifications

from Doc/View servers 350
ChangeModeToPal member

function, TDib 235
ChangeModeToRGB member

function, TDib 235
changing

applications, closing
behavior 26

display modes, main
windows 25

document templates 125
encapsulated GDI

functions 204
frame windows 78
header files 433
menu item text 55
menu objects 86

Checked enum 52, 57

Index 459

CheckValid member function
TDC 213

child ID notification macros 46
child ID-based messages 428

responding to 427
child interface elements 34
child windows

attributes 67
dialog boxes vs. 101
layout metrics 70
lists 34
MDI applications 81, 83

creating 83-84
ChildList interface object data

member 34
Chord member function

TDC 212
class hierarchies 5, 9
classes

See also specific Borland C ++
class

abstract 7
application 13
control 11
derived 15,18,105
deriving new 5
dialog box 10
document 117, 120, 128-134

processing events 132
document template 121-122
exceptions 59, 62-63
graphics 12
instantiating 6
MDI 438
module 13
nested 107
printing 13
shared 258
string 446
template 120

constructing 123
instantiation 122, 123-124

types of member
-functions 8-9

VEX control 246
view 117, 120, 134-136
window 10

ClearFlag member function
TDocTemplate 125

client windows
See also view windows
containers 319
creating in SDI

applications 320
dialog boxes and 98
in OWLOCF2 example 356
MDI applications 83

required for
ObjectComponents 319

servers 356, 366
clients (OLE) See automation

controllers, containers
Clip data member

TGadget 174
clip rectangle functions 210
clip region functions 210
Clipboard formats

registering 309
Clone member function

TXBase 60
TXOwl 62

cloning exception objects 60, 62
Close member function

TDocument 130
TOcDocument 334,. 368

CloseFigure member function
TDC 211

CloseWindow member function
TDialog 100, 102
TWindow 445

closing
application objects 15, 26-27
dialog boxes 100, 102
documents 131-132
view objects 136

clsid key 308, 309, 384, 412
for multiple documents 383

CM_CREATECHILD 83
CM_EDITCONVERT 312
CM_EDITINSERTOBJECT 312,

327
CM_EDITLINKS 312
CM_EDITOBJECT 312, 327
CM_EDITP ASTELINK 312
CM_EDITP ASTESPECIAL 312
CmCancel member function

TDialog 100, 102
CmCreateChild member

function
TMDIClient 83

cmdline key 383, 384
CmOk member function

TDialog 100, 102
collections

iterating in servers
See also iterators

collection classes
AutoCalc example 404
creating for automation 401

collection iterator See iterator
collection objects

defined 400
members, optional 404

460 ObjectWindows Programmer's Guide

collections
automating 400-405
enumerating in controllers

enumerator object 414
steps for enumerating 413

examples ·
AutoCalc server 401
CallCalc controller 415

color common dialog boxes 109
Color data member

TData 109, 110
colors 109

fonts 110
replacing

gadget colors with system
colors 174, 179, 182

standard interface colors
with system colors 237

COM object 296
See also Component Object

Model
combining automated C++

objects 395
combo boxes 162
command enabling 49-58

See also menu commands
checking receiver 53
enabler interface 51
messages 49-51
toggles 52, 56

command messages 449
macros 43
responding to 427

CommandEnable member
function

TButtonGadget 182
TGadget 175
TGadgetWindow 187

command-enabling
objects 51-53

changing text 55
constructing 52
disabling 52, 53-55
setting text 52, 55

command-line options (OLE)
combining 349
DLL servers and 350
initial character 349
processing in servers 349
registering 383
table of 349

commands
automation See automation

commands
menu See menu commands

Commit member function
TDocument 131
TOleDocument 312

CommitTransactedStorage
member function

TOleDocument 313
common dialog boxes 10, 97,

107-115
color 109
constructing 107-108
error handling 108
executing 108
file open 111
file save 112
find and replace 113-114
flags 108
font llQclll
modality 108
printer 115

compilation
automation controllers 412
containers

C++ 340
Doc/View 313
ObjectWindows 328

servers
automation 394
C++ 371
DLL 377
Doc/View 352
ObjectWindows 359

compiler errors 453
compiler warnings 453
Component Object Model

(COM), defined 296
compound documents

defined 296
Doc/View container, in 312

compound files 312
defined 296
dtAutoOpen flag needed 313
transacted mode 313

configuration files
conversion and 419, 421

connector objects 288
automation 291
communication with 289
defined 296
interaction with user

classes 290
constraints, layout

windows 70-74
constructing

command-enabling
objects 52

decorated frame window
objects 79

device context objects 207
document manager 126-127
document objects 129
exceptions 60
frame window aliases 77
frame window objects 76
menu objects 85
template classes 123
view objects 134
virtual bases 435
window objects 65-66

constructors
TApplication 16, 18
TBitmap 221
TBrush 215
TCommandEnabler 52
TControlBar 189
TCursor 231
TDC 207
TDialog 98
TDib 233
TDocManager 126
TDocument 129
TFont 217
TFrameWindow 66, 76, 77
TGadget 171
TGadgetWindow 183
Tlcon 229
TMenu 85
TMenuDescr 93
TMessageBar 190
TPalette 218
TPen 213
TPrinter 196
TRegion 224
TStatusBar 191
TToolBox 192
TVbxControl 247
TView 134
TWindow 66
TXBase 60
TXOwl 62

ContainerGroup enum 92
containers

See also C++ containers, Doc/
View containers, OWL
containers

creating 264
defined 297
Edit menu (illustration) 268,

274
examples

CPPOCFl 329
MdiOle 295
OWLOCFl 316
SdiOle 295

moving from Object-based to
BIDS library 436

part objects in 299
registration keys 308
registration tables 307
servers and 347, 356
user interface 305
verbs 272

Contains member function
TRegion 226

control bars 189
control classes 11

derived 105
names 143

control elements, associating
control objects with 105

control objects 143
associating with control

elements 105
control values 164
controllers See automation

controllers
controls 11, 143, 147

See also resources
as gadgets 182
buttons 151

constructing 151
responding to 152

changing attributes 146
check boxes 152

constructing 153
modifying 153
querying 154

class names 143
combo boxes 162, 164

choosing 163
constructing 163
querying 164
varieties of 162

communicating with 147
constructing 144
constructor parameters 145
default style 146, 148, 151
destroying 146
dialog boxes 103-106

setting up 106
edit controls 113, 159

Clipboard 160
constructing 159
edit menu 160
modifying 161
querying 160

gauges 158, 159
group boxes 154

constructing 154
responding to 155

grouping 154
initializing 144, 146
instance variables 165

defining 165

Index 461

interface objects and 104-106
list boxes 148

constructing 148
modifying 148
querying 149
responding to 149

manipulating 147
messages 104
pointer to 145
radio buttons 152

constructing 153
scroll bars 155

constructing 155
controlling 155
modifying 156
querying 156
range 155
responding to 156
thumb tracking 157

showing 146
sliders 158
static 150

constructing 150
modifying 151
querying 151

transfer buffers 164
combo boxes 167
defining 165
dialog boxes 168
list boxes 166
windows and 167

transfer mechanism 165
TransferData 169
values, setting and

reading 164
conventions, style 450
conversion

checklist 422
configuration files 419, 421
makefiles 419, 421
operators 215, 216, 218, 219,

222,226,230,232,234
procedures 424
response files 419, 421

Convert command 272, 312
See also Edit menu

converting 418,420,432
DefChildProc 443
DefCommandProc 443
DefNotificationProc 443
DefWndProc 443
from DDVTs to event

response tables 424
MDI classes 438
Object-based containers to

BIDS library 436
ObjectWindows 1.0 code to

ObjectWindows 2.0 417

replacing
ActiveChild with

GetActiveChild 441
ExecDialog with

Execute 452
Make Window with

Create 451
STRICT define and 418
TWindowsObject to

TWindow 431
window constructors 431
WinMain to OwlMain 450

coordinate functions 210
coordinates (screen)

pop-up menus 88
Copies data member

TData 115
CPPOCFl example 329

creating documents 333
OC_ VIEWP ARTINV ALID

event 335
painting parts 335
registration table 330
view windows, code for 332
WinMain 330

CPPOCF2 example 360
documents, creating 368
event handlers

OC_APPSHUTDOWN
371

OC VlEWCLOSE 369
factory-callback 364
main window, hiding 363
messageloop 363
registration tables 361
view windows,

managing 366
WinMain 362

Create interface object
function 31

Create member function
TBitmap 224
TDialog 99, 101
TGadgetWindow 183
TPalette 220
TWindow 68, 101, 183,451

CreateAnyDoc member function
TDocManager 126

CreateAnyView member
function, TDocManager 126

CreateOcView member function
TOleWindow 321, 357

creating
TOcRem View 357

CreateOleObject member
function

application object 357

462 0 b j e c I W i n d ow s P r o g r a m m e r ' s G u i d e

document list, and 358
multiple document

types 358
creating

See also adding; constructing
application objects 16, 17,

18-19
child interface elements 35
common dialog

boxes 107-108
dialog boxes 98

as client window 98
as main window 102-103
automatically 100-101
multiple 100

document classes 128
document registration

tables 122-123
document templates 120
interface objects 31
MDI child windows 83-84
MDI frame windows 82
menu descriptors 92, 93
printer objects 195-196
template class

instances 123-124
view classes 134
window interface

elements 68
CTL3D32.DLL 27
Ctl3dEnabled member function

TA.pplication 28
CTL3DV2.DLL 27
current documents, viewing 120
current position functions 210
CustColors data member

TData 109
custom control libraries 27-28
custom controls 143
CustornFilter data member

TData 111

D
data 117

accessing 129-131, 134
clearing changes 131
protecting 131
retrieving 101
saving changes 131
viewing 132,134, 135

data items, registering 122
data members, inheritance 7
data type specifiers

derived from TAutoVal 391
table of 391

data validation 239-244

databases 113, 130
DC data member

TData 110
DDVTs, converting 424
-Debug option 349
debugdesc key 376, 384, 400
debugger key 376, 384
debugging

DLL servers 377-378, 379
registration keys for 376

debugprogid key 376, 384
-Debug switch and 349

declarations
See also automation

declarations
document registration

tables 123
proxies 408-409,415
proxy collection classes 413
response tables 40

DECLARE_AUTOCLASS
macro 385

DECLARE_RESPONSE_TABLE
macro 40

DECLARE_STREAMABLE
macro 437

declaring
automatable members 385

decorated frame windows 78-80
See also frame windows
constructing 79
decorating 80

decorated windows 10
decorations 11
default directories 111
default placeholder functions 9
default printers 196
DefChildProc function

converting 443
DefCommandProc function

converting 443
DefExt data member

TData 111
DEFlNE_APP _DICTIONARY

macro 306,343,353
DEFlNE_AUTOCLASS

macro 388
DEFlNE_AUTOENUM

macro 392
DEFINE_DOC_TEMPLATE

_CLASSmacro 121
DEFlNE_RESPONSE_TABLE

macro 40
defining automatable

members 388

defining regions in device
contexts 224

definitions
automation See automation

definition tables
OLE terms 295

DefNotificationProc function
converting 443

DefWndProc function
converting 443

delegation
automated C ++ objects,

in 395
deleting

See also destroying
dialog boxes 99, 100, 101

automatically 100
interface objects 33
parent windows 100

derived classes 5
applications 15, 18
controls 105
TXBase 61
TXOwl 62

deriving from
TGadgetWindow 187

description key 308, 309, 358,
384,400

localization
recommended 384

designing document template
classes 121-122

Destroy member function
TDialog 100, 102
TWindow 445

destroying
See also deleting
device context objects 207
exceptions 60, 62
interface elements 33
interface objects 33
windows 36

destructors
TDib 233
TDocument 131
TGadget 172
TGadgetWindow 183
TMessageBar 190
TRegion 224
TXBase 60
TXOwl 62

DetachStream member function
TDocument 130

device contexts 206
brush origin 209
classes 12
color functions 209

constructing 207
coordinate functions 210
current position

functions 210
destroying 207
drawing attribute

functions 209
font functions 211
functions 208
metafile functions 210
object data members and

functions 213
operators 207
output functions 211
palette functions 209
path functions 211
resetting 208
restoring 208
retrieving information

about 208
saving 208
TClientDC class 206
TCreatedDC class 206
TDC class 206
TDesktopDC class 206
TDibDC class 206
TIC class 206
TMemoryDC class 206
TMetaFileDC class 206
TPaintDC class 206
TPrintDC class 206
TScreenDC class 206
TWindowDC class 206
viewport mapping

functions 210
window mapping

functions 210
dialog box classes 10
dialog box objects 97
dialog boxes

as the main window 441
attributes 103
child windows vs. 101
closing 100, 102
common See common dialog

boxes
constructing 98

as client window 98
as main window 102-103
automatically 100-101
multiple 100

controls 103-106
Convert 272
customizing 97, 100
deleting 99, 100, 101

automatically 100
displaying 99, 101
encapsulating 97, 106

Index 463

error handling 101
executing 98-101
Insert Object 268, 273
modal 98, 107, 108

closing 102
modeless 99, 101, 108, 113
parent windows and 98, 100
resource IDs 98, 104
responding to messages 104,

113
retrieving data 101
simple 107
subclassing as 3-D controls 28
temporary 97
verifying input 102

DIB information 235
dictionary See application

dictionary
direct mode 313
directories, setting default 111
directory key 308
DisableAutoCreate member

function, TWindow 100
disabling

command-enabling
objects 52, 53-55

exceptions 64
disabling a gadget 174
dispatch IDs 291, 414
DispatchAMessage member

function, TWindowsObject 449
DISPID _NEWENUM

constant 414
display modes

main windows 24-25
displaying dialog boxes 99, 101
DLL servers 374-380

client compatibility 375
command-line options

and 350
compiling and linking 377
debugging 377-378, 379
defined 297
EXE servers vs. 374, 376
idle processing in 374
incompatibility between

16-bit and 32-bit 374
loading and running 379
MDI interface disallowed 375
registering 293, 375, 379
registration tables 376
running as executables 379

codefor 295
sfeps for creating 375
tools for programming 379

DllEntryPoint function 256, 257

DllRun utility 292, 295, 379
DLLs 255, 260

32-bit entry function 256
application dictionaries

and 342, 353
classes and 258
DllEntryPoint 256, 257
encapsulating 15
entry and exit functions 256
_export keyword 257
export macros 258
exporting functions 257
function calls and 255
_import keyword 258
import macros 258
importing functions 257
LibMain 256
loading 261
mixing with static

libraries 261
multiple processes and 342,

353
non- 260
opening predefined 27-28
_ OWLDLL macro 260
shared classes and 258
start-up code 256
static data and 255
TModule and 258, 259
WEP 256
writing 255

dmMDI constant 126
dmMenu constant 126
dmNoRevert constant 126
dmSaveEnabled constant 126
dmSDI constant 126
Doc/View applications

converting to OLE
servers 341-352

Doc/View containers
application dictionary 306
compiling 314
compound documents,

managing 312
Edit menu support 311
example 304
header files 314
OwlMain 310
registrar object 310
registration 306
steps for creating 303

Doc/View model 117, 120-121,
136-142

handling events 136-139
predefined macros 138

Doc/View objects 117
setting properties 139-142

464 ObjectWindows Programmer's Guide

Doc/View servers
compiling and linking 352
factory callback 348
header files 351
loading and saving

objects 351
OLE classes 344
OwlMain 348
registrar object 347
registration 344
sending change

notifications 350
steps for creating 341

docfilter key 308, 384
docflags key 308, 384
document classes 117, 120,

128-134
accessing data 129-131
implementing 129, 132
processing events 132
protecting data 131

document lists 358
servers

C++ 361
ObjectWindows 355

document manager 117, 120-121
accessing 132
attaching to

documents 125-126
constructing 126-127
Doc/View instances and 121
handling evenfs 127-128
MDI applications 126, 127
OLE applications 126
SDI applications 126, 127

document objects 119
attaching document

manager 125-126
clearing data changes 131
closing 131-132
committing data 131
constructing 129
flags,documenttype 123
opening 117
setting properties 139-142
viewing current 120
viewing data 132, 134, 135

document objects
(ObjectComponents)

deleting 334
document registration

structures 308
TRegList 355

document registration tables
CPPOCF2 example 361
passing to document

template 347

document string 390
document templates 117,

121-125
changing 125
class instances,

creating 123-124
creating 120
designing classes 121-122
in non-Doc/View

applications 355
modifying 125
registration tables 122-123,

347
servers and 355, 358, 361

documentation (printing
conventions) 3

documents 119
creating

C ++ containers 333
C++ servers 367
ObjectWindows

servers 356
defined 297

docview.h 138
DoubleShadow enum 181
downcasting virtual bases to

derived types 435
DPtoLP member function

TDC 210
Draw member function

TOcPart 336
DrawFocusRect member

function
TDC 212

Draw Icon member function
TDC 212

drawing
attribute functions 209
tool functions 209

DrawMenuBar member function
TWindow 86

DrawText member function
TDC 212

dtAutoDelete constant 123
dtAutoOpen constant 123
dtAutoOpen flag 313
dtHidden constant 123, 384
dtNoAutoView constant 123
dtSingleView constant 123
dynamic-link libraries See DLLs

E
each-instant initialization 21, 23
edit controls 159, 242

as dialog boxes 113
linking to validators 242

Edit Links command 312
Edit menu (OLE)

commands 268
Doc/View containers 311
Object command 272
Object Windows

containers 327
verbs 272, 27 4

Edit verb 272
EditGroup enum 92
editing (OLE)

See also activating
in-place 269
open 274

Ellipse member function
TDC 212

embedded objects
defined 297

-Embedding option 349
embedding

See also linking and
embedding

user interface for 268, 271
-Embedding option 358, 363

amEmbedding flag, and 371
Enable member function

TCommandEnabler 52, 54
EnableAutoCreate member

function
TWindow 100

EnableBWCC member function
TApplication 27

EnableCtl3d member function
TApplication 28

EnableCtl3dAutosubclass
member function

TApplication 28
enabling a gadget 174
enabling command-enabling

objects 51, 53-55
encapsulation

dialog boxes 97, 106
DLLs 15
GDI functions 204
Windows applications 15

END_AUTOCLASS macro 386,
388

END_AUTOENUM macro 392
END_REGISTRATION

macro 372
END_ RESPONSE_ TABLE

macro 40
EndDocument member function

TPrintout 200
EndPath member function

TDC 211

EndPrinting member function
TPrintout 200

enumerating
automated collections 402,

413
automated values 392
data types specifiers for 393

EnumFontFamilies member
function

TDC 211
EnumFonts member function

TDC 211
EnumMetaFile member function

TDC 210
Error member function

TData 108
TValidator 244

errors 452
Common dialog boxes 108
compiler 453
dialog boxes 101
run-time 454

EV COMMAND macro 43
EV =COMMAND_AND_ID

macro 43
EV _COMMAND_ENABLE

macro 43,50
EV _LBN_DBLCLK macro 428
EV MESSAGE macro 44
EV =OWLNOTIFY macro 132
EV REGISTERED macro 44
EV=VBXEVENTNAME

macro 246, 249
Ev ActivateApp member

function
TOleFrame 322

Ev AppBorderSpaceSet
TOleFrame method 328

Ev AppBorderSpaceSet member
function

TOleFrame 312
EvCommand member function

TOleWindow 323
EvCommandEnable member

function
TOleWindow 323

EvDropFiles member function
TOleWindow 323

event handlers, overriding in
OLE programs 322

event response functions 114
event response tables 424
eventhan.h 39
events 39-48

application objects 137
Doc/View models 136-139

Index 465

document manager 127-128
handling 424
notification macros 132
view objects 135, 136, 138

customizing 138-139
events handlers 39
EvLButtonDblClk member

function
TOleWindow 322

EvLButtonDown member
function

TOleWindow 322
EvLButtonUp member function

TOleWindow 322
EvMdiActivate member function

TOleWindow 322
EvMouseActivate member

function
TOleWindow 322

EvMouseMove member function
TOleWindow 322

EvPaint member function
TOleWindow 323

EvRButtonDown member
function

TOleWindow 322
EvSetCursor member function

TOleWindow 322
EvSetFocus member function

TOleWindow 322
EvSize member function

TLayoutWindow 75
TOleWindow 322

EvTimer member function
TOleFrame 322

EvVbxDispatch member
function

TVbxEventHandler 249
example programs

See also AppExpert
automation controllers

CallCalc 415
automation servers

AutoCalc 382
ObjectComponents 294

examples
containers

Doc/View 304
MdiOle 295

localization
AutoCalc 398
Localize 294

servers
DLL 375
ObjectWindows 375

exception classes 59, 62-63

exception objects 60-61
cloning 60, 62

exceptions 59-64
catching TXWindow 102
constructing 60
destroying 60
disabling 64
macros 61,63-64
message strings 62
throwing 61

ExcludeClipRect member
function

TDC 210
ExcludeUpdateRgn member

function
TDC 210

EXE servers 374
defined 297
DLL servers vs. 374

ExecDialog member function
TDialog 452

Execute interface object
function 31

Execute member function
TDialog 98, 101, 109, 452

executing
common dialog boxes 108
dialog boxes 98-101

_export keyword 257
export macros 258
exporting functions 257
EXPOSE_APPLICATION

macro 390
EXPOSE_DELEGATE

macro 395
EXPOSE_INHEm:T macro 395
EXPOSE_ITERATORmacro 403
EXPOSE_METHOD macro 389,

411
EXPOSE_PROP macros 389
EXPOSE_xxxx macros 389
extending TBitmap 224
extending TPalette 220
ExtendSelection enum 191
extension key 308, 384
ExtFloodFill member function

TDC 212
extra message processing 25
extraction operators 437
ExtTextOut member function

TDC 212

F
factories 300

automation 383

466 ObjectWindows Programmer's Guide

factory callbacks 290, 331
actions performed 364
example code 364
prototype 364
servers

C++ 363
Doc/View 348

user-defined 364
factory templates

automation servers 385
calling CreateOleObject 357
linking and embedding

servers
C++ 364
Doc/View 348
ObjectWindows without

Doc/View 356
TOcAutoFactory 385
TOleDocViewFactory 348
TOleFactory 356

File menu (common)
document manager 120, 126

filenames
default, specifying 111
selecting 112

file open common dialog
boxes 111

file save common dialog
boxes 112

FileGroup enum 92
FileName data member

TData 111
files

filtering 111, 125
linking and embedding

from 273
opening 111
saving 112

FillPath member function
TDC 211

FillRect member function
TDC 212

FillRgn member function
TDC 212

Filter data member
TData 111

Filterlndex data member
TData 111

filters 111, 125
find and replace common dialog

boxes 113-114
Find Next button,

processing 114
Find Next command

(common) 114

find-and-replace
operations 113-114

finding next occurrence 114
handling messages 113

FindColor member function
TDib 236

Findlndex member function
TDib 236

FINDMSGSTRING message 113
FindProperty member function

TDocument 141
TView 141

FirstGadget member function
TGadgetWindow 187

first-instance initialization 21
FirstThat interface object

function 34,37
FirstThat member function

TWindowsObject 445
flags

common dialog boxes 108,
114

Doc/View properties 141
documenttype 123
find-and-replace

operations 114
fonts 110
frame windows 77
menus 88
WB_MDICHILD 440

Flags data member
TData 113

Flags member function
TData 108

FlattenPath member function
TDC 211

FloodFill member function
TDC 212

FlushDoc member function
TDocManager 132

font common dialog
boxes 110-111

fontfunctions 211
fonts 110
FontType data member

TData 110
ForEach interface object

function 34,37
For Each member function

TWindowsObject 445
formatn key 308, 400
FR_DIALOGTERM flag 114
FR_FINDNEXT flag 114

frame windows 10, 75-78
See also decorated frame

windows
aliases 77
C++ servers 366, 370
changing 78
closing 26
constructing 76-78
creating 23
hiding server's 363
MDI applications 82
menu objects 89-95
shrinking 7 6
specifying client window 76,

80
FrameRect member function

TDC 212
FrameRgn member function

TDC 212
free-floating menus 88
FromPage data member

TData 115
function calls

base classes 129
functions

See also member functions
ActivationResponse 448
AfterDispatchHandler 448
BeforeDispatchHandler 448
CloseWindow 445
Create 451
Destroy 445
DispatchAMessage 449
event response 114
ExecDialog 452
Execute 452
FirstThat 445
font 211
ForEach 445
GetModule 443
MakeWindow 451
metafile 210
output 211
Paint 444
path 211
ShutDownWindow 445
TApplication message

processing 442
update 210
update region 210
VBXInit 245
VBXTerm 245
window mapping 210

G
gadget windows 182

accessing font 186
capturing mouse movements

for gadgets 186
classes 189
constructing 183
control bars 189
converting 188
creating 183
deriving from

TGadgetWindow 187
desired size 188
displaying mode

indicators 191
idle action processing 187
inner rectangle 188
inserting gadgets 183
laying out gadgets 184
layout units

border 188
layout 188
pixels 188

message bars 190
message response

functions 189
notifying when gadgets

change size 185
objects 171
painting 187
positioning gadgets 185
removing gadgets 184
searching through

gadgets 187
setting
· hint mode 186

layout direction 184
window margins 184

shrink wrapping 185
status bars 191
tiling gadgets 185
tool boxes 192

GadgetChangedSize member
function

TGadgetWindow 185
GadgetFromPoint member

function
TGadgetWindow 187

GadgetReleaseCapture member
function

TGadgetWindow 186
gadgets 11

accessing
appearance 173
button gadget

information 181

Index 467

associating
events 172
strings 172

border style 173
border width 173
bounding rectangle 173
button state 180
capturing mouse

movements 186
classes 177
cleaning up 175
clipping rectangle 174
command buttons 180
command enabling 182.
controls as gadgets 182
comer notching 181
creating button gadgets 180
.deriving from TGadget 175
disabling 174
displaying

bitmaps 179
text 178

enabling 174
expand to fit available

room 174
identifiers

event 172
gadget 172
string 172

identifying 172
initialli:ing 175
inserting

into gadget windows 183
into status bars 191

invalidating 176
laying out in gadget

windows 184
margin width 173
matching colors to system

colors 174, 179, 182
modifying appearance 173
mouse events 176
painting 175

in gadget windows 188
pressing button gadgets 180
removing from gadget

windows 184
searching in gadget

windows 187
separating gadgets in a

window 178
setting

border style 173
border widths 173
button gadget style 181
buttons 180
margins 173

shrink wrapping 173

sizing 174
TGadget base class 1.71
tiling 185
updating 176

GadgetSetCapture member
function

TGadget .177
TGadgetWindow 186

GadgetWithld member function
TGadgetWindow 187

GDI objects 13
base class 203
device contexts 206
restoring 208
selecting 208
selecting stock objects 209
support classes 13

general messages 449
responding to 428

generating
automation proxy classes 408

generic messages 44
get IX logical coordinates as

absolute physical
coordinates 208

GetActiveChild member
function

TMDIFrame 441
GetAppDescriptor global

functiort 396
GetApplication member function

TDocManager 443
TWindow 17, 443

GetAspectRatioFilter member
function

TDC 211
GetAttributeHOC member

function.
TIX 213

GetBitmapBits member {unction
TBitmap 223

GetBitmapDimension member
function

TBitmap 223
GetBits member function

TDib 234
GetBkColor member function

TIX 210
GefBkMode member function

TIX 210
GetBorders member function

TGadget 173
GetBorderStyle member function

TGadget 173
GetBounds member function

TGadget 173

468 ObjectWindows Programmer's Guide

GetBoundsRect member
function, TIX 210

· GetButtonState member function
TButtonGadget 181

GetButtonType member function
TButtonGadget 181

GetCharABCWidths member
function, TIX 211

GetCharWidth member function
TDC 211

GetChildLayoutMetrics member
function, TLayoutWindow 75

GetClipBox member function
TDC 210

GetClipRgn member function
TDC 210

GetColor member function
TDib 236

GetColors member function
TDib 234

GetCurrentPosition member
function, TDC 211,212

GetOCOrg member function
TIX 208

GetDefaultExt member function
TDocTemplate 125

GetDescription member function
TDocTemplate 125

GetDesiredSize member function
TGadget 174
TGadgetWindow 188

GetDeviceCaps member
function, TDC 208

GetDialoglnfo member function
TPrintout 199

GetDIBits member function
TDC 212

GetDirection member function
TGadgetWindow 184

GetDirectory member function
TDocTemplate 125

GetDocManager member
function,.TDocument 126, 132

GetEnabled member function
TGadget 175

GetEventlndex member function
TVbxControl 251 .

GetEventName member
function, TVbxControl 251

GetFileFilter member function
TDocTemplate 125

GetFlags member function
TDocTemplate 125

GetFont member function
TGadgetWindow 186

GetFontData member function
TDC 211

GetFontHeight member function
TGadgetWindow 186

GetHandled member function
TCommandEnabler 53

GetHDC member function
TDC 213

GetHintMode member function
TGadgetWindow 186

Getlconlnfo member function
TCursor 232
Ticon 231

Getld member function
TGadget 172

Getlndex member function
TDib 236

Getlndices member function
TDib 234

Getlnfo member function
TDib 234

GetinfoHeader member function
TDib 234

GetinnerRect member function
TGadget 176
TGadgetWindow 188

GetMapMode member function
TDC 210

GetMargins member function
TGadget 173
TGadgetWindow 188

GetMenuDescr member function
TFrameWindow 78

GetModule member function
TWindowsObject 443

GetNearestColor member
function, TDC 209

GetN earestPaletteindex member
function, TPalette 219

GetNumEntries member
function, TPalette 220

GetNumEvents member
function, TVbxControl 251

GetNumProps member function
TVbxControl 252

GetObject member function
TBitmap 222, 223
TBrush 216
TFont 218
TPalette 219
TPen 215

GetPaletteEntries member
function, TPalette 220

GetPaletteEntry member
function, TPalette 220

GetPixel member function
TDC 212

GetPolyFillMode member
function, TDC 210

GetProcAddress function 258
GetProp member function

TVbxControl 252
GetPropindex member function

TVbxControl 252
GetPropName member function

TVbxControl 252
GetRect member function

TOcPart 335
GetRgnBox member function

TRegion 226
GetROP2 member function

TDC 210
GetStretchBltMode member

function, TDC 210
GetSystemPaletteEntries

member function, TDC 209
GetSystemPaletteUse member

function, TDC 209
GetText member function

TTextGadget 178
GetTextColor member function

TDC 210
getting

application instance 452
brush origin 209
module instance 452

GetViewName member function
TView 135

GetViewportExt member
function, TDC 210

GetViewportOrg member
function, TDC 210

GetWindow member function
TView 135

GetWindowExt member
function, TDC 210

GetWindowOrg member
function, TDC 210

global functions
GetAppDescriptor 396
MostDerived 396

globally unique identifer See
GUID

glossary of OLE terms 295
graphics, bitmaps 133
graphics classes 12
graphics objects

base class 203
grapples 271

defined 301

GrayString member function
TDC 212

grouping pop-up menus 93
GUID (globally unique

identifier)
defined 297

GUID (globally unique
indentifier)

generating 293, 295
GuidGen utility 293

source code 295

H
Handle data member

TDC 213
HANDLE operator

TDib 234
HANDLE_MSG macro 334
HANDLE_OCF macro 335
Handled data member

TCommandEnabler 53
handles, window 31
handling

messages and events 424
VBX control messages 249

HasNextPage member function
TPrintout 197

HasPage member function
TPrintout 200

HBITMAP operator
TBitmap 222

HBRUSH operator
TBrush 216

HCURSOR operator
TCursor 232

HDC (TDC) device-context
operator 207

header files 433
automation controllers 408
containers

C++ 339
Doc/View 314
ObjectWindows 328

directories 433
servers

automation 394
C++ 371
Doc/View 351
ObjectWindows 359

Height member function
TBitmap 223
TDib 235

Help (online),
ObjectComponents and
OLE 294

Index 469

Help files,
automation commands,

for 390
for type libraries 405

helpdir key 384, 406
HelpGroup enum 92
HFONT operator

TFont 218
HICON operator

Treon 230
hiding server windows 363
high-priority idle processing 25
hlnstance parameter 15
hooks

automation commands 387
Horizontal enum 183, 193
HP ALETTE operator

TPalette 219
HPEN operator

TPen 215
hPrevinstance data member

TApplication 21
hPrevinstance parameter 15
HRGN operator

TRegion 226
HWindow data member

TDialog 106
HWindow interface object data

member 31
HWndReceiver data member

TCommandEnabler 53

IBContainer (BOCOLE
interface) 288

IBDocument (BOCOLE
interface) 288

ICONINFO
convert TCursor object to 232
convert Treon object to 231

icons, conventions,
documentation 3

Id data member
TCommandEnabler 53

IDCANCEL message 99, 100
identifying a gadget 172
!Dispatch interface 291, 408

defined 298
idle processing (messages) 25
IdleAction

in DLL servers 374
IdleAction member function

TApplication 25
TGadgetWindow 187

IOOK message 98, 100

IDW _TOOLBAR identifier 312
IEnum VARIANT interface 291,

404, 413, 414
IMPLEMENT_STREAMABLE

macro 437
implementing streaming 437
import macros 258
importing functions 257
inactive state

user interface for 271
include path

conversions 419, 421, 422, 433
indeterminate constraints

(windows) 74
Indeterminate enum 52, 57
inheritance

data members 7
OLE classes 344

Init member function
TDC 213
TFrameWindow 66
TWindow 66

InitApplication member function
TApplication 18, 21

InitChild member function
TMDIClient 83

InitialDir data member
TData 111

initialization
application objects 18, 21-24

each instance 21, 23
first instances 21

main windows 21, 23-24
initializing OLE libraries 331
initilizing OLE libraries

in C++ containers 331
Initinstance member function

TApplication 18, 23, 320
InitMain Window member

function
TApplication 18, 82, 102, 320

in-place editing
defined 298
user interface for 269

in-process servers See DLL
servers

input
common dialog boxes

and 115
dialog boxes 99, 102

verifying 102
filtering 243
processing user 23, 25
unexpected user 59

input dialog boxes 107
input validators 239

470 0 b j e ct W i n d ow s P r o g r a m m e r ' s G u i d e

inputdia.rc 107
Insert member function

TDecoratedFrame 80
TGadgetWindow 183
TStatusBar 191

Insert Object command 312
user interface for 273

Insert Object dialog box 268
description key, and 358
linking 273
registration database,

and 269
insertable key 361
Inserted member function

TGadget 175
inserting

gadgets into gadget
windows 183

gadgets into status bars 191
OLE objects 268

insertion operators 437
instance variable 165
InstanceCount data member

TXBase 60
instantiation

applications 19, 21, 23
classes 6
template classes 122, 123-124

InStream member function
TDocument 130

integrated development
environment See IDE

interface elements
associating with window

objects 65, 68
destroying 33
making visible 31
parent and child 34
properties 32

interface objects 29, 30
associating with

controls 104-106
creating 31
deleting 33
destroying 33
document views 135-136
members

ChildList 34
Create 31
Execute 31
FirstThat 34, 37
ForEach 34, 37
HWindow 31
IsWindowVisible 32
Parent 34
SetupWindow 31
Show 32

pointers 135
properties 32

interfaces (COM) 287
automation 291
defined 298

interfaces (OLE)
BOCOLE support library 296

IntersectClipRect member
function,TlJC 210

intializing OLE libraries
in C ++ servers 360

Invalidate member function
TGadget 176
TWindow 109

InvalidateObject member
function, TApp Descriptor 396

InvalidatePart member function
TOleView 350

InvalidateRect member function
TGadget 176

invalidating automation
objects 396

invalidating gadgets 176
InvertRect member function

TJ)C 212
InvertRgn member function

TDC 212
Invoke command object

method 291
IsDirty member function

TDocument 131
IsFlagSet member function

TDocTemplate 125
TFrameWindow 77

IsOK member function
TDib 235

lsOpen member function
TDocument 131

IsOptionSet member function
TOcModule 379
TRegistrar 363

IsPM member function
TDib 235

IsReceiver member function
TCommandEnabler 53

Is Valid member function
TV alidator 243

IsValidlnput member function
TValidator 243

IsWindowVisible interface
object function 32

iterators
NewEnum name 403

automation declaration 403
automation definitions 403
user-implemented 404

ITypelnfo interface 291
ITypeLib interface 291
!Unknown interface 288

K

aggregation and 295, 365
defined 298
part of COM 296

KBHandlerWnd data member
TApplication 449

keys See registration keys
keystrokes, validating 243

L
language key 384
-Language option 349, 350, 400
laying out gadgets 184
layout constraints

(windows) 70-74
layout direction 184
Layout member function

TLayoutWindow 74
layout metrics (child

windows) 70
layout units 188

converting 188
layout windows 69-75

creating 74
definingconstraints 70,73,74

LayoutSession member function
TGadgetWindow 184

LayoutUnitsToPixels member
function

TGadgetWindow 188
LButtonDown member function

TGadget 177
LButtonUp member function

TGadget 177
LCIDs See locale IDs
Leftenum 80
LeftOf member function

TEdgeConstraint 72
LibMain function 256

parameters 15
libraries

custom control 27-28
dynamic-link See DLLs
OLE, initializing 360

See also BOCOLE support
library

servers and 352, 377
LineDDA member function

TDC 212
Line To member function

TJ)C 212

link source 330, 334
defined 299

linked objects
defined 298

linking (OLE objects)
user interface for 273

linking and embedding
defined 266
from files 273
how ObjectComponents

implements 288
list boxes 148
lists, automating See collections
lmBottom enum 71
lmCenter enum 71
lmHeight enum 71
lmLayoutUnits enum 72
lmLeft enum 71
lmPixels enum 72
lmRight enum 71
lmTop enum 71
lm Width enum 71
LoadLibrary function 258
locale IDs 350, 397

overriding system
default 400

locale.h 399
locale.rh 397
localization 397-400

See also language key
automation controllers 409
automation servers 397
automation tables 389
defined 299
examples, AutoCalc 398, 400
language-neutral strings 398
Localize example 294
prefixes (!, @, #) 398
registration keys 400
registration tables 373
string retrieval algorithm 399
TLocaleString 399
XLAT resources 397

localization tables See XLAT
resources

Localize example 294
LOGBRUSH structure

convert TBrush class to 216
LogFont data member

TData 110
LOGFONT structure

convert TFont class to 218
logical coordinates

get as absolute physical
coordinates 208

LOGPEN structure
convert TPen class to. 215

Index 471

low-priority idle processing 25
LP ARAM parameter 429
lpCmdLine parameter 15
LPtoDP member function

TDC 210

M
MacroGen utility 293
macros 260

See also automation macros,
message cracker macros,
registration macros; specific
macro

application dictionary 306,
353

child ID notification 46
command message 43
document flags 123
document registration

tables 122
document templates 121
events 132
exceptic;ms 61, 63-64
export 258
generating new 293
generic messages 44
import 258
MAKELANGID 399
registered messages 44
registration, data items 122

main windows
captions 21
closing 26
dialog boxes as 102-103, 441
display modes 24-25

changing 25
initializing 21, 23-24

Main Window variable 441
makefiles

conversion and 419, 421
ObjectComponents 286

MAKELANGID macro 399
MakeWindow member function

TWindow 451
making the frame and client 439
manipulating

child windows 37
MDI child windows 83

manual MDI child window
creation 84

MapColor member function
TDib 236

Maplndex member function
TDib 237

MapUIColors member function
TBitmapGadget 180
TDib 237

MaskBlt member function ·
TDC 213

matching gadget colors to system
colors 174, 179, 182

maximizing windows 24
MaxPage data member

TData 115
MAXP Alli macro 450
MDI applications 81-84

building 82-84
converting to servers 351, 359
document manager 126, 127

MDI classes 438
MDI interface

DLL servers disallow 375
MDI windows 10, 80-84

child 81, 83-84
client .83
frame 82

MdiOle example 295
member functions 8-9

overriding
TDocument 129
TView 134, 135

memory allocator
C++ containers 331
C ++ servers 360

memory models
automation controllers 412
servers

automation 394
C++ 371
DLL 377
ObjectWindows 352

menu bars 90
updating 86

menu commands
See also command enabling
responding to 113

menu descriptors 90-95
adding separators 93
creating .92, 93
grouping pop-up menus 93
merging menus 94

menu merging 94
menu descriptors used

for 325
Object Windows

container 324
user interface for 269

menu objects 85
adding menu descriptors 90,

91-92, 93
changing 86

472 ObjectWindows Programmer's Guide

constructing 85
frame windows 89-95
pop-up menus 88-89, 93
retrieving information 86-87
system 87

mertu resources 89, 92, 435
·adding separators 93
STEPlO.RC example 325

menuname key 361, 400
menus 14

assigning to a frame
window 435

free-floating 88
merging 94
view objects 135

MergeMenu member function
TFrameWindow 78

merging menus See menu
merging

message bars 190
message cracker macros

HANDLE_MSG 334
HANDLE_OCF 335

message cracking 45
ObjectComponents

messages 334
message loops

C ++ servers 363
factory callbacks 364
ObjectComponents

applications, in 331
message queues

DLL servers 374
MessageLoop member function

TApplication 25
message-processing

functions 442
messages

See also Windows messages
child ID-based 427, 428
child windows 83
command 43,427,449
command-enabling 49-51
control notification codes 428
dialog boxes

handling find-and
replace 113

responding to 104, 113
exceptions 62
general 428, 449
generic 44
handling 424
idle processing 25
notification 428
ObjectComponents

events 289
registered 44.

sending to controls 104
using DefWndProc for

registered 444
window layouts 75
Windows applications 25
WM_COMMAND_ENABLE

182
WM_SYSCOLORCHANGE

182
metafile functions 210
Microsoft 3-D Controls

Library 27, 28
autosubclassing 28

MinPage data member
TData 115

mixing object behavior 6
modal dialog boxes 98, 107

as common 108
closing 102

modeless dialog boxes 99
as common 108, 113
creating 101

modes
application running 364
compound file I/O 313

modifying gadget
appearance 173

See also changing
ModifyWorldTransform

member function
TDC 210

module classes 13
module instance

getting 452
module.h 16
MostDerived global

function 396
mouse clicks

handling in
ObjectComponents 323

mouse event handlers
overriding for OLE 322

mouse events in a gadget 176
MouseEnter member function

TGadget 177
MouseLeave member function

TGadget 177
MouseMove member function

TGadget 177
Move member function

TVbxControl 254
MoveTo member function

TDC 210,212
moving from Object-based

containers to BIDS library 436

multimedia files 130
multiple document types

servers
C++ 368
non-Doc/View 358
ObjectWindows 357

multiple printers 196
multiple-document interface

applications See MDI
applications

N
naming applications 16, 18
nCmdShow data member

TApplication 24
nCmdShow parameter 15, 24
nCmdShow variable 363
nested classes 107
_NewEnum iterator name 403
NextGadget member function

TGadgetWindow 187
NextProperty property 140
NO _CPP _EXCEPTIONS

macro 64
NoHints enum 186
non-Doc/View servers See

ObjectWindows servers
non-ObjectWindows servers See

C++ servers
nonvirtual functions 8
-NoRegValidate option 349
notification messages

responding to 428
servers 350

NOTIFY_SIG macro 138
notifying gadgets window 185
NotifyViews member function

TDocument 132, 133
NumColors member function

TDib 235
NumLock enum 191
NumScans member function

TDib 235

0
Object command (OLE) 272, 312
object data members and

functions 213
object handle 204
Object Linking and Embedding

See OLE

ObjectComponents Framework
applications

See also containers, servers,
controllers

creating 264
interaction with 276

automation
implementation 291

BOCOLE support library 275
capabilities 263
client windows required 319
creating .REG files with 350
defined 275-276, 299
documentation 293
example programs 294
getting started 264, 265
glossary of terms 295
handling Windows

events 322
internal operation of 287
message cracking 334
messages 289
ObjectWindows Library,

and 276
RTTI required 315
tools for programming 292

ObjectGroup enum 92
objects 6

See also specific object
command-enabling 51-53

disabling 52, 53-55
exception 60-61
exceptions 62
view 119-120

objects (COM) 296
objects (embedded) 297
objects (linked) 298
objects (OLE)

activating 271, 337
converting format 272
creating See factory callbacks
editing in place 269
inserting 268,338
linking 273
loading and saving

with Doc/View 350
selecting 271
verbs 272

objects, automated See
automation servers

ObjectWindows applications
converting to OLE

servers 352-359
ObjectWindows containers

See also Doc/View containers
application dictionary 316
application object 316

Ind ex 473

client windows 319
compiling and linking 328
CreateOleObject,

implementing 317
documents, creating 321
header files 328
menu merging 324
OLE classes for 320
OwlMain 319
registrar object 318
registration 317
steps for creating 315
tool bar 328
user interface

programming 322
ObjectWindows Library

defined 299
ObjectComponents

Framework, and 276
OLE classes 305
OLE support See

ObjectComponents
Framework

ObjectWindows servers
See also Doc/View servers
application dictionary 353
application object 357
client windows 356
compiling and linking 359
document lists 355
documents

creating 356
helperobjects for 356
registering 355

examples
OWLOCF2 352
Tic Tac Toe 375

header files 359
OwlMain 355
registrar objects 355
registration 353
steps for creating 352

OC_APPSHUTDOWN 371
OC_ VIEWCLOSE 369
OC_ VIEWP ARTINV AUD 335
OCF See ObjectComponents

Framework
ocfevx.h 368
OCFMAKE.GEN 371
ocrEmbedSouice format 309
ocrLinkSource format 309
ocrMetafilePict format 309
ocrMultipleUse constant 383
OffsetClipRgn member function

TDC 210
OffsetViewportOrg member

function, TDC 210

OffsetWindowOrg member
function, TDC 210

ofTransacted file mode 313
OKbutton, processing 102
OLB file extension 301
OLE

compound files 313
defined 266, 299
dialog boxes 268
documentation 293
file modes 313
glossary of terms 295
interfaces 287
support in Borland C ++ See

ObjectComponents
Framework

support library See BOCOLE
support library

user interface See user
interface (OLE)

OLE applications
See also containers, servers,

controllers
document manager 126

OLE classes
containers

Doc/View 305
ObjectWindows 320

inheritance 305,344
servers

Doc/View 344
ObjectWindows 356

OLE clients See automation
controllers, containers

OLE libraries, initializing 331,
360

OLE objects 344
automating 415

OLE servers See automation
servers, C ++ servers, Doc/
View servers, ObjectWindows
servers

oleframe.h 351
olemdifr.h 351
OLETOOLS (for IDE) 293
open editing

defined 299
user interface for 27 4

Open member function
TDocument 130
TOleDocument 312

Open verb 272, 27 4
opening documents 117
opening files

common dialog boxes
and 111

opening predefined DLLs 27-28

47 4 0 b j e c I Windows Program mer' s Gu id e

operators
!= (TRegion) 227
&= (TRegion) 228
+= (TRegion) 227
-= (TRegion) 228
= (TRegion) 227
== (TRegion) 227
A= (TRegion) 229
I = (TRegion) 228

HRGN (TRegion) 226
OPTIONAL_ARG macro 411
OrgBrush data member

TDC 213
OrgFont data member

TDC 213
OrgPalette data member

TDC 213
OrgPen data member

TDC 213
OrgTextBrush data member

TDC 213
outer IUnknown pointer See

aggregation
output

common dialog boxes
and 115

outputfunctions 211
OutStream member function

TDocument 130
overriding

child window attributes 67
window creation

attributes 67
virtualfunctions 129

Overtype enum 191
OWLCVT 419
_OWLDLL macro 260
OWLFastWindowFrame

member function, TDC 213
OwlMain

containers
Doc/View 310
ObjectWindows 319

servers
Doc/View 348
ObjectWindows 355

OwlMain function 19-20
OWLOCFl example

container 316
registration table 318

OWLOCF2 example server 352
client windows 356
registration tables 353

OWLOCFMK.GEN 352

p
paginating printouts 199
Paint member function

TGadget 176
TGadgetWindow 187
TWindow 195, 199, 444

PaintBorder member function
TGadget 175

PaintGadgets member function
TGadgetWindow 188

painting
gadget windows 187
gadgets 175
server documents

C++ 369
Doc/View 350

PaintRgn member function
TDC 212

palette mode 235
Paradox, linking tables from 273
parameters

LibMain function 15
parent interface elements 34
Parent interface object data

member 34
parent windows

destroying 100
dialog boxes and 98, 100

parts 288
defined 299
enumerating 336
painting 335

Paste command See Edit menu
Paste Link command 312
Paste Link command See Edit

menu
Paste Special command 312
Paste Special command See Edit

menu
PatBlt member function

TDC 212
path functions 211
pathkey 384
PathToRegion member function

TDC 211
PercentOf member function

TEdgeConstraint 73
permid key 308, 384
permname key 308, 384, 400
physical coordinates

get logical coordinates as 208
Pie member function

TDC 212
Planes member function

TBitmap 223

PlayMetaFile member function
TDC 210

PlayMetaFileRecord member
function

TDC 210
PlgBlt member function

TDC 213
point size, setting 110
pointers

applications 17
interface objects 135

PointSize data member
TData 110

PolyBezier member function
TDC 212

PolyBezierTo member function
TDC 212

PolyDraw member function
TDC 212

Polygon member function
TDC 212

Polyline member function
TDC 212

PolylineTo member function
TDC 212

Poly Polygon member function
TDC 212

PolyPolyline member function
TDC 212

pop-up menus 88-89, 93
PositionGadget member function

TGadgetWindow 185
predefined Doc/View event

handlers 138
PreOpen member function

TOleDocument 313
PressHints enum 186
PrevProperty property 140
print job dialog box 115
Print member function

TPrinter 199
print setup dialog box 115
printer common dialog

boxes 115
printer devices 201
printer objects 195-201

creating 195-196
overriding system

default 196
selecting printer devices 201

printers
configuring 201
default 196

overriding 196
multiple 196
selecting 196

printing 115, 195
documents 199-200
window contents 198

printing classes 13
printing conventions

(documentation) 3
printout objects

constructing 197
indicating further pages 200
paginating 199
printing 199, 200
summary 199
window contents 198, 199

constructing 198
PrintPage member function

TPrintout 195, 197, 200
processing user input 23, 25

dialog boxes and 99, 102
processing Windows

messages 25
progidkey 308,309,384

automation servers 383
controller binds with 412
localization not possible 384

program controllers See
automation controllers

project files, conversion and 422
prompts 107
properties

automated collections as 413,
415

documents 139-142
exposing automated 389
interface elements 32
interface objects 32
macros for controllers 411
read-only automated 401
template 125
view objects 139-142

PropertyFlags member function
TDocument 141
TView 141

PropertyName member function
TDocument 141

protecting data 131
prototypes, factory callback 364
proxy classes 408-412

See also automation
controllers

assignment and 411, 416
collections, for 413
constructors 409
declaring 408-409
defined 408
derived from

TAutoProxy 409
example 408

Index 475

generating 292
generating automatically 408
implementing 410-412
specifying arguments 411

proxy objects
creating 412
declaring 415

pseudo-GD! objects 203
Ptin member function

TGadget 176
PtVisible member function

TDC 210
pure virtual functions 9

Q

Quattro Pro
inserting objects from 269

Queryinterface, IUnknown 288
aggregating, used in 295

QueryViews member function
TDocument 132, 133

R
RealizePalette member function

TDC 209
recording automation

commands 387
RecordingMacro enum 191
Rectangle member function

TDC 212
RectVisible member function

TDC 210
reference counting

defined 300
part of COM 296

Refresh member function ·
TVbxControl 254

.REG files, creating 350
REG.DAT 301, 372
REGDATA macro 122, 309, 372,

374
regDoc variable 362 .
REGOOCFLAGS macro 123, 309
RegEdit utility 350

viewing registration
database 373

REGFORMAT macro 309
Register utility 293, 379

source code 295
registered messages

macros·44
using DefWndProc for 444

registering
See also unregistering
Clipboard formats 309

codefor 295
DLL servers 293, 295
.REG files 350
servers 352
terminating application

after 385
registrar objects 347-348, 355,

361
defined 300 '
containers

C++ 330
ObjectWindows 318

creating 310
naming variable 310
servers

automation 385
C++ 362
Doc/View 347
ObjectWindows 355

registration
command-line options 383
containers

C++ 329
Doc/View 306
ObjectWindows 317

defined 300
localizing keys 400
RegTest example 294
servers

automation 382
C++ 360
DLL 375
Doc/View 344
keys, table of 346
ObjectWindows 353

registration database 361,
372-374

See also servers
Insert Object dialog box 269
keys 345,372
recording information 372
viewing 373

registration keys
appname 308, 384,400
clsid 383, 412
cmdline 383 ,
debugging keys 376
description 358
helpdir 406
insertable 361
menuname 361
progid 383, 412
serverctx 375
tables

automation servers 383
containers 308
linking and embedding

servers 346

476 Objec!Wi n d ows Programmer's Guide

localizable 400
typehelp 390, 406
usage 383
user-defined 374

registration macros 309-310,
372-374

BEGIN_REGISTRATION 310
, 372

END_REGISTRATION 372
REGDATA 309, 372, 374
REGDOCFLAGS 309
REGFORMAT 309
REGISTRATION FORMAT

_BUFFER 309, 347
REGITEM 374

registration tables
buffer expansion 347
building 310
condionalizing for DLL

servers 376
containers 307
CPPOCF2 example 361
creating 372
defined 300
document 122-123
example 353
servers

automation 382
C++ 361
Doc/View 344
ObjectWindows 353

REGISTRATION_FORMAT
_BUFFER macro 309, 347

REGITEMmacro 374
RegLinkHead variable 355
-RegServer option 349, 350
RegTest example 294
Release member function

IUnknown interface 300
ReleaseObject member function

TOcRem View 368
TOcView 334

remote views
See also TOcRem View
C++ servers 367
creating 357
defined 300
releasing 368

Remove member function
TGadgetWindow 184

RemoveChildLayoutMetrics
member function

TLayoutWindow 75
Removed member function

TGadget 175
Removeltem member function

TVbxControl 254

removing gadgets from gadget
windows 184

replace standard interface colors
with system colors 174, 179,
182,237

replacing text 113
REQUIRED_ARG macro 389
reset a device context 208
reset origin of a brush object 216
ResetDC member function

TDC 208
ResizePalette member function

TPalette 220
resource IDs 98, 104
resource scripts

XLAT resources 397
resources 434
responding to

child ID-based messages 427
command messages 427
generalmessages 428
menu selections 113
messages 104, 113
notification messages 428

response files
conversion and 419, 421

response tables 39
command-enabling

messages 50
declaring 40
defining 40,41
example 40
macros 40

child ID notification 46
command message 43
generic messages 44
message cracking and 45
registered messages 44
Windows messages 45

view objects 132, 138
restore a device context 208
RestoreBrush member function

TDC 209
RestoreDC member function

TDC 208
RestoreFont member function

TDC 209
RestoreMenu member function

TFrameWindow 78
RestoreObjects member function

TDC 209
RestorePalette member function

TDC 209
RestorePen member function

TDC 209
RestoreTextBrush member

function, TDC 209

restoring GDI objects 208
result string 269, 273
RETHROW macro 64
retrieve information about a

device context 208
Revert member function

TDocument 131
RGBmode 235
Right enum 80
RightOf member function

TEdgeConstraint 72
RoundRect member function

TDC 212
RTTI

automation, type
checking 391

required for
ObjectComponents 315

Run member function
TApplication 16
TOcRegistrar 362, 363
TRegistrar 311, 385

running DLL servers 293
running mode, application 364,

379
testing 379

run-time errors 454
run-time management

(applications) 15

s
SameAs member function

TEdgeConstraint 73
SaveDC member function

TDC 208
saving device contexts 208
saving files 112
ScaleViewportExt member

function
TDC 210

Scale Window Ext member
function

TDC 210
scope resolution operator 432
screen coordinates

pop-up menus 88
scroll bars 155
ScrollDC member function

TDC 212
ScrollLock enum 191
SDI applications

converting to servers 351, 359
document manager 126, 127

SdiOle example 268, 295

searches
find-and-replace

operations 113-114
finding next

occurrence 114
handling messages 113

searching through gadgets in
gadget windows 187

SelectClipPath member function
TDC 211

SelectClipRgn member function
TDC 210

SelectEmbedded member
function, TOleWindow 324

Selectimage member function
TBitmapGadget 179

selecting objects
defined 301
GDI 208
inactive 272
stock 209
user interface for 271

selection rectangle 272
dashed for links 273

SelectObject member function
TDC 208

SelectStockObject member
function, TDC 209

SendDlgitemMessage member
function, TDialog 104

separators (menu objects) 93
server applications See servers
serverctx key 375
servers

DLL See DLL servers
EXE 297
registering 352
verbs 272

servers (linking and embedding)
See also C++ servers, Doc/

View servers,
ObjectWindows servers

containers and 347, 356
creating 265
examples

Step15 344
Tic Tac Toe 295

multiple documents and 357
registration keys, table of 346

servers (OLE)
See also automation servers,

servers (linking and
embedding)

as standalone application 349
defined 301
DLL 374-380

Ind ex 477

Set member function
TEdgeConstraint 70, 72

SetAntialiasEdges member
· function, TButtonGadget 181
SetBitmapBits member function

TBitmap 223
SetBitmapDimension member

function, TBitmap 223
SetBkColor member function

TDC 210.
SetBkMode member function

TOC 210
SetBorders member function

TGadget 173
SetBorderStyle member function

TGadget 173
SetBounds member function

TGadget 173
SetBoundsRect member function

TDC 210
SetButtonState member function

TButtonGadget 181
SetCheck member function

TCommandEnabler 52, 57
SetChildLayoutMetrics member

function, TLayoutWindow 75
SetColor member function

TDib 236
SetDefaultExt member function

TDocTemplate 125
SetDescription member function

TDocTemplate 125
SetDIBits member function

TDC 212
SetDIBitsToDevice member

function, TDC 212
SetDirection member function

TGadgetWindow 184
TToolBox 193

SetDirectory member function
TDocTemplate 125

SetDocManager member
function

TApplication 125
TDocument 132

SetDocTitle member function
TView 135

SetEnabled member function
TGadget 175

SetFileFilter member function
TDocTemplate 125

SetFlag member function
TDocTemplate 125

SetHintCommand member
function, TGadgetWindow 186

SetHintMode member function
TGadgetWindow 186

SetHintText member function
TMessageBar 190

Setlcon member function
TFrameWindow 78

Setlndex member function
TDib 236

SetMain Window member
function, TApplication 23, 25

SetMapMode member function
TDC 210

SetMapperFlags member
function, TDC 211

SetMargins member function
TGadget 173
TGadgetWindow 184

SetMenu member function
TFrameWindow 78

SetMenuDescr member function
TFrameWindow 78,94

SetMiterLimit member function
TDC 210

SetModelndicator member
function, TStatusBar 192

SetNotchComers member
function, TButtonGadget 181

SetOuter member function
TOcApp 365
TOcRem View 365

SetPaletteEntries member
function, TPalette 220

SetPaletteEntry member function
TPalette 220

SetPixel member function
TOC 212

SetPolyFillMode member
function, TDC 210

SetPrinter member function
TPrinter 201

SetPrintParams member function
TPrintout 199

SetProp member function
TVbxControl 253

SetRectRgn member function
TRegion 226

SetROP2 member function
TDC 210

SetShadowStyle member
function, TButtonGadget 181

SetShrinkWrap member function
TGadget 173
TGadgetWindow 185

SetSize member function
TGadget 174

478 ObjectWindows Programmer's Guide ..

SetSpacing member function
TStatusBar 192

SetStretchBltMode member
function, TDC 210

SetSystemPaletteUse member
function

TDC 209
SetText member function

TCommandEnabler 52, 55
TMessageBar 190
TTextGadget 179

SetTextColor member function
TDC 210

setting
brµsh origin 209
hintmode 186
hint text 190
layout direction 184
message bar text 190
window margins 184

Setup member function
TPrinter 201

Setup Window interface object
function 31

Setup Window member function
TDialog 106
TOcApp 370
TOcRem View 367
TOcView 334
TOleFrame 290
TWindow 145, 146

SetValidator member function
TEdit 242

SetViewportExt member
function, TDC 210

SetViewportOrg member
function, TDC 210

SetWindowExt member function
TDC 210

SetWindowOrg member
function, TDC 210

SetWorldTransform member
function, TDC 210

shared classes 258
ShouldDelete data member

TDC 213
Show interface object

function 32 ·
ShowWindow member function

TWindow 99, 101
shrink wrapping

gadget windows 185
gadgets 173

shrinking frame windows 76
' ShutDownWindow member

function, TWirldow 445

simple dialog boxes 107
single-document interface

applications See SDI
applications

SingleShadow enum 181
Size member function

TDib 235
SizeMax data member

TData 110
SizeMin data member

TData 110
sizing a gadget 174
spacing status bar gadgets 192
SpeedMenu, verbs on 272
standard Windows controls 11
StartScan member function

TDib 235
static controls

constructing 151
default style 151

status bars 191
STEPlO.RC 325
stock objects 209
storages 296, 313
stream class library 437
streaming 437

implementing 437
streams

document classes and 130
StretchBlt member function

TDC 212
StretchDIBits member function

TDC 212
STRICT, defining 418, 452
string class 446
strings

exceptions 62
localizing See localization

StrokeAndFillPath member
function, TDC 211

StrokePath member function
TDC 211

structures
VBXEVENT 249, 250

style conventions 450
Style data member

TData 110
styles, window 32
support library See BOCOLE

support library
switches See command-line

options
switching to

palette mode 235
RGBmode 235

symbol names, localizing See
localization

SysColorChange member
function

TBitmapGadget 180
TButtonGadget 182
TGadget 174

System menu, generating 87
system registration database See

registration database
system registry See registration

database

T
TabbedTextOut member

function, TDC 212
tables, registration

defined 300
T App Descriptor class 396

members
InvalidateObject 396

TApplication class 15
building objects 16-18
calling members 17, 21
closing 26-27
constructors 16, 18

passing WinMain
parameters 20

creating MDI applications 82
creating the main window 68
getting the application

instance 452
header file 16
initializing 18, 21-24

firstinstances 21
instantiation 19, 21, 23
members

BWCCEnabled 27
CanClose 26-27
Ctl3dEnabled 28
EnableBWCC 27
EnableCtl3d 28
EnableCtl3dAutosubclass

28
hPrevlnstance 21
IdleAction 25
InitApplication 18, 21
Initlnstance 18,23,320
InitMainWindow 18, 82,

102,320
KBHandlerWnd 449
MessageLoop 25
nCmdShow 24
Run 16
SetDocManager 125
SetMainWindow 23, 25

message processing
functions 442

overriding members 18, 23
passing command parameters

to 20
pointers to objects 17

TAutoBase class 396
TAutoBool data type

specifier 391
T AutoClass class 291
TAutoCurrencyRef data type

specifier 392
TAutoDateRef data type

specifier 392
TAutoDouble data type

specifier 391
TAutoDoubleRef data type

specifier 392
T AutoFloat data type

specifier 391
TAutoFloatRef data type

specifier 392
TAutolnt data type specifier 391
TAutolterator class 291
TAutoLong data type

specifier 391
TAutoLongRef data type

specifier 392
TAutoObjeet template 387, 391
TAutoObjectByVal

template 392, 401
TAutoObjectDelete template 392
TAutoProxy class 408

See also proxy classes
base for proxy classes 409
instances, creating 412
members

Bind 412
Unbind 412

TAutoShort data type
specifier 391,393

TAutoShortRef data type
specifier 392

TAutoString data type
specifier 387,391

TAutoVal class 391
TAutoVoid data type

specifier 392
TBitmap class 221

accessing 222
constructing 221
convert to BITMAP 222
extending 224
members

BitsPixel 223
Create 224

Index 479

GetBitmapBits 223
GetBitmapDiinension 223
GetObject 222, 223 .
HBITMAP operator 222
Height 223
Planes 223
SetBitmapBits 223
SetBitmapDimension 223
ToClipboard 223
Width 223

TBitmapGadget class 179
constructing 179
destroying 179
members ·

MapUIColors 180
Selectimage 179
SysColorChange 180

selecting a new image 179
TBool 391
TBorders structure 173
TBorderStyle enum 173
TBrush class 215

accessing 216
constructing 215
convert to LOGBRUSH

structure 216
members

GetObject 216
HBRUSH operator 216
UnrealizeObject 216

reset origin of brush
object 216

TButton class 152
TButtonGadget class 80, 180

accessing button gadget
information 181

command enabling 182
constructing 180
corner notching 181
destroying 181
members

CommandEnable 182
GetButtonState 181
GetButtonType 181
SetAntialiasEdges 181
SetButtonState 181
SetNotchComers 181
SetShadowStyle 181
SysColorChailge 182

setting button gadget
style 181

TButtonGadgetEnabler class 51
TCalc example class 386
TCheckBox class 152
TChooseFontDialog class

TData structure 110
TClientDC class 206
TCombo6ox class 162

TCommandEnabler class 50, 51
constructors 52
enums 52,57
members

Enable 52, 54
GetHandled 53
Handled 53
HWndReceiver 53
Id 53
IsReceiver 53
SetCheck 52, 57
SetText 52, 55

TControl class 144, 246
TControlBar class 80, 189

constructing 189
TControlGadget class 182

constructing 182
destroying 182

TCreatedDC class 206
TCursor class 231

accessing 232
constructing 231
convert to ICONINFO 232
members

Getlconlnfo 232
HCURSOR operator 232

TData nested class 107, 112
constructing dialog

boxes 109, 110, 111,115
members

Error 108
Flags 108, 113

TDC class 206
constructors 207
destructor 207
members

AngleArc 212
Arc 212
BeginPath 211
BitBlt 212
CheckValid 213
Chord 212
CloseFigure 211
DPtoLP 210
DrawFocusRect 212
Drawlcon 212
DrawText 212
Ellipse 212
EndPath 211
EnumFontFamilies 211
EnumFonts 211
EnumMetaFile 210
ExcludeClipRect 210
ExcludeUpdateRgn 210
ExtFloodFill 212
ExtTextOut 212
FillPath 211
FillRect 212

480 ObjectWindows Programmer's G.uide

FillRgn 212
FlattenPath 211
FloodFill 212
FrameRect 212
FrameRgn 212 ·
GetAspectRatjoFilter 211
GetAttributeHDC 213
GetBkColor 210
GetBkMode 210
GetBoundsRect 210
GetCharABCWidths 211
GetCharWidth 211
GetClipBox 210
GetClipRgn 210
GetCurrentPosition 211,

212
GetDCOrg 208 .
GetDeviceCaps 208
GetDIBits 212
GetFontData 211
GetHDC 213
GetMapMode 210
GetNearestColor 209
GetPixel 212
GetPolyFillMode 210
GetROP2 210
GetStretchBltMode 210
GetSystemPaletteEntries

209
GetSystemPaletteUse 209
GetTextColor 210
GetViewportExt 210
GetViewportOrg 210
GetWindowExt 210
GetWindowOrg 210
GrayString 212
Handle 213
HOC operator 207
Init 213
IntersectClipRect 210
InvertRect 212
InvertRgn 212
LineDDA 212
LineTo 212
LPtoDP 210
MaskBlt 213
ModifyWorldTransform

210
MoveTo 210, 212
OffsetClipRgn 210
OffsetViewportOrg 210
OffsetWindowOrg 210
OrgBrush 213
OrgFont 213
OrgPalette 213
OrgPen 213 .
OrgTextBrush 213
OWLFastWindowFrame

213
PaintRgn 212

PatBlt 212
PathToRegion 211
Pie 212
PlayMetaFile 210
PlayMetaFileRecord 210
PlgBlt 213
Po1yBezier 212
PolyBezierTo 212
PolyDraw 212
Polygon 212
Polyline 212
PolylineTo 212
PolyPolygon 212
PolyPolyline 212
PtVisible 210
RealizePalette 209
Rectangle 212
RectVisible 210
ResetDC 208
RestoreBrush 209
RestoreDC 208
RestoreFont 209
RestoreObjects 209
RestorePalette 209
RestorePen 209
RestoreTextBrush 209
RoundRect 212
SaveOC 208
ScaleViewportExt 210
ScaleWincfowExt 210
ScrollOC 212
SelectClipPath 211
SelectClipRgn 210
SelectObject 208
SelectStockObject 209
SetBkColor 210
SetBkMode 210
SetBoundsRect 210
SetDIBits 212
SetDIBitsToDevice 212
SetMapMode 210
SetMapperFlags 211
SetMiterLimit 210
SetPixel 212
SetPolyFillMode 210
SetROP2 210
SetStretchBltMode 210
SetSystemPaletteUse 209
SetTextColor 210
SetViewportExt 210
SetViewportOrg 210
SetWindowExt 210
SetWindowOrg 210
SetWorldTransform 210
ShouldDelete 213
StretchBlt 212
StretchDIBits 212
StrokeAndFillPath 211
StrokePath 211

TabbedTextOut 212
TextOut 212
TextRect 212
UpdateColors 209
WidenPath 211

TDecoratedFrame class 78, 305
constructing 79
decorating 80
members

Insert 80
TDecoratedMDlFrame class 305
TDesktopDC class 206
TDialog class 97

constructors 98
members

CloseWindow 100, 102
CmCancel 100, 102
CmOk 100, 102
Create 99, 101
Destroy 100, 102
ExecDialog 452
Execute 98, 101, 109, 452
HWindow 106
SendDlgltemMessage 104
SetupWindow 106
UpdateData 114

overriding members 100, 102
TDib class 232

accessing internal
structures 234

constructing 233
destroying 233
DIB information 235
members

BITMAPINFO
operator 234

BITMAPINFOHEADER
operator 234

ChangeModeToPal 235
ChangeModeToRGB 235
FindColor 236
Find.Index 236
GetBits 234
GetColor 236
GetColors 234
Getlndex 236
Getlndices 234
Getlnfo 234
GetlnfoHeader 234
HANDLE operator 234
Height 235
IsOK 235
IsPM 235
MapColor 236
Maplndex 237
MapUIColors 237
NumColors 235
NumScans 235

SetColor 236
Setlndex 236
Size 235
StartScan 235
ToCli:eboard 235
TRgbQuad *operator 234
Usage 235
Width 235
WriteFile 235

type conversions 234
TDibDC class 206
TDocManager class 125

constructors 126
handlingevents 127
members

CreateAnyDoc 126
CreateAnyView 126
FlushDoc 132
GetApplication 443

TDocTemplate class
members

ClearFlag 125
GetDefatiltExt 125
GetDescription 125
GetDirectory 125
GetFileFilter 125
GetFlags 125
IsFlagSet 125
SetDefaultExt 125
SetDescription 125
SetDirectory 125
SetFileFilter 125
SetFlag 125

TDocument class 305
constructors 129
destructor 131
members

AttachStream 130
CanClose 132
Close 130
Commit 131
DetachStream 130
FindProperty 141
GetDocManager 126, 132
InStream 130
IsDirty 131
IsOpen 131
NofifyViews 132, 133
Open 130
OutStream 130
PropertyFlags 141
PropertyName 141
QueryViews 132, 133
Revert 131
SetDocManager 132

overriding members 129
protecting data 131

TEdge enum 71

Index 481

TEdgeConstraint class 70
members

Above 72
Absolute 73
Below 72
LeftOf 72
PercentOf 73
RightOf 72
SameAs 73
Set 70, 72

TEdgeOrHeightConstraint
class 70

TEdgeOrWidthConstraint
class 70

TEditclass
members

SetValidator 242
TEditFile class 113, 446

adding client windows 447
TEditSearch class 113, 446

adding client windows 447
TEditWindow class 446
template classes 120

constructing 123
instantiation 122, 123-124

templates
document 117, 121-125

changing 125
creating 120
designing classes 121-122
registration tables 122-123

properties, setting 125
temporary dialog boxes 97
text, replacing 113
text-based applications

find-and-replace
operations 113

TextOutmemberfunction
TDC 212

TextRect member function
TDC 212

TFileDialog class 448
TFileDocument class 305
TFileOpenDialog class 448
TFileWindow class 446
TFindDialog class 114, 448
TFindReplaceDialog

TData structure 113
TFloatingFrame class 192
TFont class 217

accessing 218
constructing 217
convert to LOGFONT

structure 218
members

GetObject 218
HFONT operator 218

TFontListBox class 144
TFrameWindow class 75, 305,

431
changing frame windows 78
constructing 66,76,77
constructing dialog boxes 98
members

AddWindow 77
AssignMenu 78, 89, 435
Attr 89, 435
GetMenuDescr 78
Init 66
IsFlagSet 77
MergeMenu 78
RestoreMenu 78
Setlcon 78
SetMenu 78
SetMenuDescr 78, 94

TGadget class 171
cleaning up 175
constructing 171
derived classes 177
deriving from 175
destroying 172
initializing 175
members

Clip 174
CommandEnable 175
GadgetSetCapture 177
GetBorders 173
GetBorderStyle 173
GetBounds 173
GetDesiredSize 174
GetEnabled 175
Getld 172
GetlnnerRect 176
GetMargins 173
Inserted 175
Invalidate 176
InvalidateRect 176
LButtonDown 177
LButtonUp 177
MouseEnter 177
MouseLeave 177
MouseMove 177
Paint 176
PaintBorder 175
Ptln 176
Removed 175
SetBorders 173
SetBorderStyle 173
SetBounds 173
SetEnabled 175
SetMargins 173
SetShrinkWrap 173
SetSize 174
SysColorChange 174
TrackMouse 177

482 ObjectWindows Programmer's Guide

Update 176
WideAsPossible 174

mouse events 176
painting 175
TBorders structure 173
TMargins structure 173

TGadgetWindow class 182
capturing mouse movements

for gadgets 186
constructing 183
converting 188
creating 183
derived classes 189
deriving from 187
destroying 183
determining size 183
idle action processing 187
layout units 188
members

CommandEnable 187
Create 183
FirstGadget 187
GadgetChangedSize 18-5
GadgetFromPoint 187
GadgetReleaseCapture 186
GadgetSetCapture 186
GadgetWithld 187
GetDesiredSize 188
GetDirection 184
GetFont 186
GetFontHeight 186
GetHintMode 186
GetlnnerRect 188
GetMargins 188
IdleAction 187
Insert 183
LayoutSession 184
LayoutUnitsToPixels 188
NextGadget 187
Paint 187
PaintGadgets 188
PositionGadget 185
Remove 184
SetDirection 184
SetHintCommand 186
SetHintMode 186
SetMargins 184
SetShrinkWrap 185
TileGadgets 185

message response
functions 189

painting 187
shrink wrapping 185

TGauge class 159
TGdiObject class 203
TGroup enum 92
THintMode enum 186

this pointer 98
dialog boxes 100

This variable 403
throw keyword 61
THROW macro 61, 64
Throw member function

TXBase 61
throwing exceptions 61
THROWX macro 64
THSlider class 158
TIC class 206
Tic Tac Toe example 295, 375

registering DLL server 379
Tlcon class 229

accessing 230
constructing 229
convert to ICONINFO 231
members

Getlconlnfo 231
HICON operator 230

TileGadgets member function
TGadgetWindow 185

timers, DLL servers 374
TinputDialog class 107
TinStream class 130
TLayoutMetrics class 70
TLayoutWindow class 69

constructing 7 4
defining constraints 70, 73, 74
members

EvSize 75
GetChildLayoutMetrics 75
Layout 74
RemoveChildLayout-

Metrics 75
SetChildLayoutMetrics 75

TLB file extension 301
TListBox class 144, 145

members
AddString 147

TListBoxData class 166
TLocaleString class 399
TLocation enum 80
TLookupValidator class 240
TMargins structure 173
TMDIChild class 82, 439
TMDIClient class 439

creating MDI child
windows 83-84

manipulating MDI child
windows 83

members
CmCreateChild 83
InitChild 83

TMDIFrame class 82, 305, 439
members

ActiveChild 441
GetActiveChild 441

TMeasurementUnits enum 72
TMemoryDC class 206
TMenu class 85

constructors 85
TMenuDescr class 85, 92, 325

constructors 93
grouping pop-up menus 93
merging menus 94

TMenultemEnabler class 51
TMessageBar class 190

constructing 190
destroying 190
members

SetHintText 190
SetText 190

setting
hint text 190
message bar text 190

TMetaFileDC class 206
TModeindicator enum 191
TModule class 15, 258, 259

getting the module
instance 452

TOcApp class
binding to window 290
connector object 288
created in factories 364
members

SetOuter 365
SetupWindow 370

TOcAppMode enum 364, 379
TOcAutoFactory template 385
TOcDocument class 300, 333

members
Close 334,368

ToClipboard member function
TBitmap 223
TDib 235
TPalette 220

TOcModule class 317
base for application

object 304
members

IsOptionSet 379
TOcPart class 299

See also parts
connector object 288
getting coordinates from 335
members

Draw 336
GetRect 335

TOcRegistrar class 300
See also registrar objects
members

constructor 307, 310, 331,
363

Run 362, 363
TRegistrar vs. 385

TOcRem View class 300, 302
See also remote views
created by

TOleWindow::Create
OcView 357

members
ReleaseObject 368
SetOuter 365
SetupWindow 367

servers 367
non-embedded 368

TOcView class 302, 321, 333
See also views
members

ReleaseObject 334
SetupWindow 334

ToggleModeindicator member
function, TStatusBar 192

toggles, command-enabling
objects 52, 56

TOleAllocator class
See also memory allocator
automation controllers 408

TOleDocument class 305
compound documents

and 312
members

Commit 312, 313
CommitTransactedStorage

313
Open 312,313
PreOpen 313

transacted mode, default 313
TOleDocViewFactory

template 306, 310, 348
TOleFactory template 318, 356
TOleFrame 305
TOleFrame class 305, 320

members
AddUserFormatName 309
Ev AppBorderSpaceSet

312,328
OLE event handlers 322
SetupWindow 290

TOleMDIFrame class 305, 320
members

OLE event handlers 322
TOleView class 305, 312

members
InvalidatePart 350

Index 483

TOleWindow class 305
members

constructor 321
CreateOcView 321
OLE event handlers, table

of 322
SelectEmbedded 324

tool bars
merging 312
ObjectWindows containers,

in 328
standard identifier for 312

tool boxes 192
Topenum 80
ToPage data member

TData 115
TOpenSaveDialog class

TData structure 111, 112
Touches member function

TRegion 226
TOutStream class 130
TPaintDC class 206
TPalette class 218

accessing 219
constructing 218
extending 220
extract number of table

entries 219
members

AnimatePalette 220, 221
Create 220
GetN earestPalettelndex

219
GetNumEntries 220
GetObject 219
GetPaletteEntries 220
GetPaletteEntry 220
HP ALETTE operator 219
ResizePalette 220
SetPaletteEntries 220
SetPaletteEntry 220
ToClipboard 220
UmealizeObject 220

TPen class 213
accessing 215
constructing 213
convert to LOGPEN

structure 215
members

GetObject 215
HPEN operator 215

TPlacement en um 184
TPopupMenu class 85, 88

members
TrackPopupMenu 88

TPrintDC class 206
TPrintDialog class

TData structure 115

TPrinter class 195
constructor 196
members

Print 199
SetPrinter 201
Setup 201

TPrinterDialog class 201
TPrintout class 195, 197

members
BeginDocument 200
BeginPrinting 200
EndDocument 200
EndPrinting 200
GetDialogliifo 199
HasNextPage 197
HasPage 200
PrintPage 195, 197, 200
SetPrintParams 199

TPXPictureValidator class 241
TrackMouse data member

TGadget 177
TrackPopupMenu member

function
TPopupMenu 88

TRangeValidator class 240
transacted mode 313
transfer buffers 164
TransferData class 169
translating

logical coordinates to physical
coordinates 210

physical coordinates to logical
coordinates 210

TRect structure 133
TRegion class 224

accessing 226
constructing 224
destroying 224
members

!= operator 227
&= operator 228
+= operator 227
-= operator 228
= operator 227
== operator 227
A= operator 229
I= operator 228
Contains 226
GetRgnBox 226
HRGN operator 226
SetRectRgn 226
Touches 226

TRegistrar class 300
See also registrar objects
members

constructor 385
Run 311, 385

TOcRegistar vs. 385

484 ObjectWindows Programmer's Guide

TRegltem class
in registration structures 372

TRegLink class
See also document lists
C++ servers, in 362
CreateOleObject, in 358
explained 358
TOleWindow::CreateOcView,

and 357
TRegList class 122

built in registration table 300
in registration structures 372

TReplaceDialog class 114, 448
TRgbQuad * (TDib) operator 234
troubleshooting 452
TRY macro 64
TScreenDC class 206
TSearchDialog class 448
TSeparatorGadget class 178
TServedObject 291
TServedObject class

automation connector
object 291

TShadowStyle enum 181
TSlider class 158
TSpacing structure 192
TStatic class 150
TStatusBar class 80, 191

constructing 191
displaying mode

indicators 191
inserting gadgets 191
members

Insert 191
SetModelndicator 192
SetSpacing 192
ToggleModelndicator 192

spacing gadgets 192
TStorageDocument class 312
TStringLookup Validator

class 241
TSystemMenu class 85, 87
TTextGadget class 178

accessing text 178
constructing 178
destroying 178
members·

GetText 178
SetText 179

TTileDirection enum 183,.193
TToolBar class

changing tool box
dimensions 193

TToolBox class 192
constructing 192
members

SetDirection 193

TTypeLibrary interface 291
TUIHandle class 271
TUnknown class 288
Turbo Debugger for Windows

debugging DLL servers 377
turning off

command-enabling
objects 52, 53-55

exceptions 64
TValidator class 240

members
Error 244
IsValid 243
IsValidlnput 243
Valid 243

TVbxControl class 246
constructors 247
members

Addltem 254
GetEventlndex 251
GetEventName 251
GetNumEvents 251
GetNumProps 252
GetProp 252
GetProplndex 252
GetPropName 252
Move 254
Refresh 254
Removeltem 254
SetProp 253

TVbxEventHandler class 246,
249

members
EvVbxDispatch 249

mixing with interface
classes 246

TView class 305
adding menus to views 135
closing views 136
constructors 134
displaying data 135-136
handling events 135, 136
members

FindProperty 141
GetViewName 135
GetWindow 135
PropertyFlags 141
SetDocTitle 135

overriding members 134, 135
TVSlider class 158
TWidthHeight enum 71
TWindow class 144, 305, 431

as generic interface object 30
child-window attributes 67
constructing 66
converting from

TWindowsObject 431
creating interface elements 68

creating the main window 68
members

Attr 67
CanClose 102
CloseWindow 445
Create 68, 101, 183, 451
Destroy 445
DisableAutoCreate 100
DrawMenuBar 86
EnableAutoCreate 100
GetApplication 17, 443
Init 66
Invalidate 109
MakeWindow 451
Paint 195, 199, 444
SetupWindow 145, 146
ShowWindow 99, 101
ShutDown Window 445

TWindow Attr structure 67
TWindowDC class 206
TWindowsObject class

converting to TWindow 431
members

AfterDispatchHandler 448
BeforeDispatchHandler

448
DispatchAMessage 449
FirstThat 445
ForEach 445
GetModule 443

TXAuto class 60
TXBase class 59, 60-61

constructing 60
deriving from 61
destructor 60
members

Clone 60
InstanceCount 60
Throw 61

TXCompatibility class 60
TXGdi class 63
TXInvalidMain Window class 63
TXInvalidModule class 63
TXMenu class 63
TXOle class 60
TXOutOfMemory class 60, 62
TXOwl class 59, 61

constructing 62
deriving from 62
destructor 62
members

Clone 62
TXPrinter class 63
TXValidator class 63
TXWindow class 63
TXWindow exception 102
type libraries 405-406

AutoGen, used by 408

browsing example 295
controller, used by 408
defined 301
file extensions 301
Help files, and 405

type substitution 205
typehelp key 384, 390, 400, 406
-TypeLib option 301, 349, 405
typographic conventions 3

u
Unbind member function

TAutoProxy 412
Unchecked enum 52, 57
undoing automation

commands 387
unexpected user responses 59
universally unique identifier See

GUID
UmealizeObject member

function
TBrush 216
TPalette 220

umegistering
OLE applications 349
with Register utility 379

-UmegServer option 349
untitled applications 18
Update member function

TGadget 176
update rectangle functions 210
update region functions 210
UpdateColors member function

TDC 209
UpdateData member function

TDialog 114
updating a gadget 176
updating menu bars 86
usage key 383, 384
Usage member function

TDib 235
user input 107

processing 23,25
dialog boxes and 99, 102

unexpected 59
user interfaces
user interfaces (OLE)

See also interface objects
activating 271
Convert command 272
described 267-275
DLL servers and 375
inactive objects 271
in-place editing 269
linking 273

Index 485

ObjectWindows
container 322

open editing 274
overriding event

handlers 322
selecting 271
verbs 272

utility programs
ObjectComponents 292

UUID (universally unique
identifer) See GUID

v
Val variable 388
Valid member function

TValidator 243
validating automation

arguments 387
validators 239, 242

abstract 240
constructing 242
error handling 244
filter 240
linking to edit controls 242
lookup 240
overriding member

functions 243
picture 241
range 240
standard 239
string lookup 241
TFilterValidator 240
TLookupValidator class 240
TPXPicture Validator

class 241
TRangeValidator class 240
TStringLookup Validator

class 241
TValidator class 240

variables
DLLs and multiple

processes 342,353
MainWindow 441

VARIANT unions 291, 387
VBX controls 245

accessing 251
classes 246
control methods 253
eventhandling 246
event response table 249
finding event

information 251
finding property

information 252
getting control properties 252
handling messages 249

implicit and explicit
construction 248

interpreting a control
event 250

properties 251
VBXEVENT structure 249, 250
VBXlnit function 245
VBXTerm function 245
verbn key 400
verbs (OLE)

defined 301
Quattro Pro 272
user interface for 272

version key 308, 384
Vertical enum 183, 193
view classes 117, 120, 134-136

accessing data 134
implementing 134
interface objects and 135-136

view events, handling 335
view objects 119-120

adding menus 135
closing 136
constructing 134
displaying data 135-136
handling events 135, 136,

138-139
releasing 334
response tables 132, 138
setting properties 139-142

view windows
See also client windows
binding to TOcView

object 334
C ++ containers 332
C ++ servers 366
CPPOCFl example 332

viewport mapping functions 210
views 132

defined 301
ViewWnd_PaintFarts

procedure 336
virtual bases

constructing 435
downcasting to derived

types 435
virtual functions 8

document classes 129
overriding 129
view classes 134-135

VN_DEFINE macro 138

w
warnings, compiler 453
WB_MDICHILD flag 440
WEP function 256

486 ObjectWindows Programmer's Guide

wfAlias flag 77
wfAutoCreate flag 100
WideAsPossible data member

TGadget 174
WidenPath member function

TDC 211
widgets 11
Width member function

TBitmap 223
TDib 235

\NIN30,defining 452
WIN31, defining 452
window classes 10

base class 10
window constructors

converting 431
window handles 31
window mapping functions 210
window margins 184
window objects 65

constructing 65-66
constructing dialog boxes 98
creating main windows 68
creation attributes 66-68

overriding 67
decorated frame

windows 78-80
constructing 79
decorating 80

defining constraints 74
frame windows 75-78

constructing 76-78
menu objects 89-95

interface elements and 65, 68
layout windows 69-75

defining constraints 70, 73
MDI windows 80-84
style attributes 32

WindowGroup enum 92
windows 10

See also window objects
child 34, 67, 70, 101

MDI applications 81, 83
creating 83-84

client 98
MDI applications 83

contents, printing 198
decorated 10
destroying 36
main See main windows
maximizing 24
MDI 10
parent 100

dialog boxes and 98, 100
Windows applications 27

32-bit executables 21
initializing 21

closing 15, 26-27
colors, setting 109
controls 11
creating 16
encapsulating 15
instantiation 19, 21, 23
messages 25
naming 16, 18
opening files 111
printing data 115
replacing text 113
running 16, 17

multiple copies 21, 23
saving files 112
searching for text 113
setting fonts 110

Windows messages 41, 45
ObjectComponents

applications, in 322
Windows NT applications 25
WinMain

automation servers 385
C ++ containers 330
C ++ servers 362

WinMain function
calling 19
constructing applications 20
parameters 15, 24

passing 20
WinRun utility 293
WM ACTIV ATEAPP 322
WM-COMMAND 323
WM=COMMAND_ENABLE

event 49
WM_COMMAND_ENABLE

message 49-50, 182
WM_COMMANDENABLE 323
WM DROPFILES 323
WM)NITMENUPOPUP

message 50
WM LBUTTONDBLCLK 322
WM-LBUTTONOOWN 322
WM - LBUTTONUP 322
WM-MDIACTIVATE 322
WM - MOUSEACTIV ATE 322
WM-MOUSEMOVE 322
WM - OCEVENT 289, 334

c++ servers, in 370
containers

C++ 334
ObjectWindows 322

sent by application and view
connectors 281

servers, C++ 368
WM PAINT 323
WM-RBUTTONOOWN 322
WM=SETCURSOR 322

WM_SETFOCUS 322
WM SIZE 322
WM=SIZE message 75, 322
WM_SYSCOLORCHANGE

message 182
WM TIMER 322
WM= VBXFIREEVENT

macro 249
word-processing programs

view objects vs. 119
working with device

contexts 206
WP ARAM parameter 429
WriteFile member function

TDib 235
WS_ VISIBLE flag 99, 101
WS_ VISIBLE style 31

x
XEND resource delimiter 397
XLAT resources 299, 350, 397

AutoCalc example 400
explained 399

xmsg class, initializing 60

Index 487

488 ObjectWindows Programmer's Guide

