®

OhjectWindows

Programmer’s Guide

Boriand

* Advanced Programming ¢ Using ObjectComponents

ObjectWindows Programmer’s Guide » Command Enabling + Doc/View Model Borland

* Event Handling * Automation

Programmer’s Guide

Borland®
ObjectWindows®

k Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

CoPYRIGHT © 1991, 1994 Borland International. All rights reserved. All Borland products are trademarks or
registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.
1EOR1094

9495969798987 654 3 2
H1

Contents

Introduction 1
ObjectWindows documentation 1
Programmer’s Guide organization. 2
Typefaces and icons used in thisbook 3
Chapter 1
Overview of ObjectWindows 5
Working with class hierarchies. 5
Usingaclass. 5
Derivingnew classes 5
Mixing object behavior 6
Instantiating classes 6
Abstractclasses. 7
Inheritingmembers 7
Types of member functions. 8
Virtual functions 8
Nonvirtual functions 8
Pure virtual functions 9
Default placeholder functions 9
Objecttypology 9
Windoweclasses. 10
Windows 10
Framewindows 10
MDIwindows 10
Decorated windows 10
Dialogboxclasses 10
Common dialogboxes 10
Other dialogboxes. 11
Controlclasses 11
Standard Windows controls 11
Widgets 1
Gadgets 11
Decorations 11
Graphicsclasses. 12
DCclasses. 12
GDIobjects 13
Printingclasses 13
Module and application classes 13
Doc/Viewclasses. 13
Miscellaneous classes 14
Menus, 14
Clipboard 14
Chapter 2
Application and module objects 15
The minimum requirements 16
Including the headerfile. 16
Creatinganobject. 16

Calling the Run function. 16

Finding theobject 17
Creating the minimum application 17
Initializing applications 18
Constructing the application object. 18
Using WinMain and OwIMain 20
Calling initialization functions. 21
Initializing the application 21
Initializing each new instance 23
Initializing the main window. 23
Specifying the main window displa
Prods & e men indow PRI
Changing the main window 25
Application message handling 25
Extra message processing. 25
Idle processing 25
Closing applications 26
Changing closing behavior. 26
Closing the application26
Modifying CanClose. 26
Using control libraries 27
Using the Borland Custom Controls
Library. 27
Using the Microsoft 3-D Controls Library . . . 28
Chapter 3
Interface objects 29
Why interface objects? 30
What do interface objectsdo? 30
The generic interface object: TWindow 30
Creating interfaceobjects 31
When is a window handle valid? 31
Making interface elements visible. 31
Object properties. 32
Window properties 32
Destroying interface objects. 33
Destroying the interface element 33
Deleting the interface object 33
Parent and child interface elements 34
Child-window lists 34
Constructing child windows. 34
Creating child interface elements 35
Destroyingwindows 36
Automatic creation L 37
Manipulating child windows 37
Operating on all children: ForEach 37
Finding a specificchild 38
Working with the child list 38
Registering window classes. 38

Chapter 4

Event handling 39
Declaring response tables 40
Defining response tables.40
Defining response table entries. 41
Command message macros. 43
Windows message macros 45
Child ID notification message macros. 46
EV_CHILD_ NOTIFY 46
EV_CHILD_NOTIFY_ALL_ CODES 47
EV_CHILD_NOTIFY_AND_CODE 48
EV_CHILD_NOTIFY_AT_CHILD 48
Chapter 5
Command enabling 49
Handling command-enabling messages 49

Working with command-enabling objects . . . 51
ObjectWindows command-enabling objects . . 51
TCommandEnabler: The command-enabling

interface L. 51
Functions 52
Datamembers 53

Common command-enabling tasks 53
Enabling and disabling command items53
Changing menuitemtext. 55
Toggling command items. 56

Chapter 6

ObjectWindows exception handling 59

ObjectWindows exception hierarchy 59
WorkingwithTXBase 60

Constructing and destroying TXBase. 60
Cloning exception objects. 60
Throwing TXBase exceptions 61
Workingwith TXOwl 61
Constructing and destroying TXOwl 62
Cloning TXOwl and TXOwl-derived
exceptionobjects 62

Specialized ObjectWindows exception
ASSES. . . . 62

ObjectWindows exception-handling

MACTOS .+ . v v vt e e e et e it 63
Turning ObjectWindows exceptions on
andoff L. 64
Macroexpansion, 64
Chapter 7
Window objects 65

Using windowobjects 65

Constructing window objects

Constructing window objects with

virtualbases.

Setting creation attributes.
Overriding default attributes
Child-window attributes
Creating window interface elements
Layoutwindows
Layoutconstraints.
Defining constraints
Defining constraining relationships
Indeterminate constraints.
Using layoutwindows
Frame windows. PR
Constructing frame window objects
Constructing a new frame window
Constructing a frame window alias
Modifying frame windows.

Decorated frame windows
Constructing decorated frame window

objects

Adding decorations to decorated frame

windows.
MDIwindows.
MDI applications.
MDIWindowmenu
MDIchildwindows

MDI in ObjectWindows
Building MDI applications.
Creating an MDI frame window.

Adding behavior to an MDI client

window
Manipulating child windows
Creating MDI child windows.
Automatic child window creation
Manual child window creation

Chapter 8
Menu objects
Constructing menu objects

Modifying menu objects
Querying menuobjects.
Using system menu objects e
Using pop-up menuobjects.
Using menu objects with frame windows. . . .

Adding menu resources to frame windows. .

Using menu descriptors

Creating menu descriptors
Constructing menu descriptor objects. . . .
Creating menu groups in menu resources . .
Merging menus with menu descriptors. . . .

Chapter 9

Dialog box objects 97
Using dialog box objects. 97
Constructing a dialog box object. 98
Calling the constructor 98
Executing a dialogbox. 98
Modal dialogboxes 98
Modeless dialogboxes 99
Using autocreation with dialog boxes. 100
Managing dialogboxes 101
Handling errors executing dialog boxes . . .101
Closing the dialogbox. 102
Using a dialog box as your main window . . 102
Manipulating controls in dialog boxes 103
Communicating with controls 104
Associating interface objects with
controls L L 104
Controlobjects 105
Settingupcontrols 106
Using dialogboxes 106
Using input dialogboxes 107
Using common dialogboxes 107
Constructing common dialog boxes. 107
Executing common dialog boxes 108
Using color common dialog boxes. 109
Using font common dialog boxes 110
Using file open common dialog boxes. 111
Using file save common dialog boxes 112
Using find and replace common dialog
boxes 113
Constructing and creating find and replace
common dialogboxes. 113
Processing find-and-replace messages113
Handling a Find Next command 114
Using printer common dialog boxes. 115
Chapter 10
Doc/View objects 117
How documents and views work
together. 117
Documents. 119
Views. 119
Associating document and view classes . . . 120
Managing Doc/View 120
Document templates. 121
Designing document template classes. 121
Creating document registration tables 122
Creating template class instances 123
Modifying existing templates. 125
Using the document manager 125
Constructing the document manager 126
TDocManager event handling 127

iii

Creating a documentclass. 128
Constructing TDocument. 129
Adding functionality to documents. 129
Data access functions 129

Streamaccess 130
Streamlist..................... 130
Complexdataaccess. 130
Data access helper functions 131
Closingadocument. 131
Expanding document functionality. 132
Working with the document manager 132
Working withviews. 132

Creatingaviewclass. 134
Constructing TView. 134
Adding functionality to views. 134

TView virtual functions 135
Addingamenu. 135
Adding adisplaytoaview. 135
Adding pointers to interface objects. 135
Mixing TView with interface objects 136
Closingaview 136

Doc/View eventhandling. 136

Doc/View event handling in the
applicationobject 137
Doc/View event handling ina view 138
Handling predefined Doc/View events . . .138
Adding custom viewevents 138

Doc/View properties. 139
Property valuesand names 140
Accessing property information. 141

Getting and setting properties 141

Chapter 11

Control objects 143

Controlclasses. 143
What are control objects?. 144

Constructing and destroying control

objects. 144
Constructing control objects 144
Adding the control object pointer data
member 145
Calling control object constructors. 145
Changing control attributes. 146
Initializing thecontrol 146
Showingcontrols. 146
Destroying thecontrol 146

Communicating with control objects 147
Manipulating controls. 147
Responding tocontrols 147
Making a window act like a dialog box147

Using particular controls. 147
Using listboxcontrols. 148

Constructing listbox objects 148

Modifying listboxes. 148
Querying listboxes 149
Responding to listboxes 149
Usingstaticcontrols 150
Constructing static control objects. 150
Modifying staticcontrols 151
Querying staticcontrols. 151
Usingbuttoncontrols 151
Constructingbuttons 151
Responding tobuttons 152
Using check box and radio button
controls. 152
Constructing check boxes and radio
buttons. L. 153
Modifying selectionboxes 153
Querying selectionboxes 154
Using groupboxes 154
Constructing groupboxes 154
Groupingcontrols 154
Responding to groupboxes 155
Usingscrollbars 155
Constructing scrollbars. 155
Controlling the scroll barrange 155
Controlling scrollamounts 156
Querying scrollbars 156
Modifying scrollbars 156
Responding to scroll-bar messages 156
Avoiding thumb tracking messages . . . 157
Specializing scroll bar behavior 157
Using slidersand gauges 158
Usingeditcontrols 159
Constructing edit controls 159
Using the Clipboard and the Edit menu . . .160
Querying edit controls. 160
Modifying editcontrols 161
Using comboboxes. 162
Varieties of comboboxes 162
Choosing combo box types. 163
Constructing comboboxes 163
Modifying comboboxes 164
Querying comboboxes 164
Setting and reading control values. 164
Using transfer buffers 164
Defining the transfer buffer. 165
Listbox transfer 166
Combobox transfer 167
Defining the corresponding window or
dialogbox 167
Using transfer with a dialogbox. 168
Using transfer withawindow 168
Transferring thedata. 168
Transferring data toawindow. 168
Transferring data from a dialog box. 169
Transferring data from a window. 169

iv

Supporting transfer for customized

controls. 169
Chapter 12
Gadget and gadget window objects 171
Gadgets. 171
ClassTGadget 171
Constructing and destroying TGadget171
Identifyingagadget 172
Modifying and accessing gadget
appearance 173
Bounding thegadget. 173
Shrink wrapping agadget. 173
Setting gadgetsize 174
Matching gadget colors to system colors . . .174
TGadget public datamembers 174
Enabling and disabling a gadget. 174
Deriving from TGadget. 175
Initializing and cleaning up. 175
Painting the gadget. 175
Invalidating and updating the gadget. 176
Mouse eventsinagadget. 176
ObjectWindows gadgetclasses. 177
Class TSeparatorGadget 178
Class TTextGadget. 178
Constructing and destroyi
TTextGadget ymg 178
Accessing the gadgettext 178
Class TBitmapGadget. 179
Constructing and destroying
TBitmapGadget. 179
Selectinganewimage 179
Setting the system colors 179
Class TButtonGadget 180
Constructing and destroying
TButtonGadget 180
Accessing button gadget information. 181
Setting button gadgetstyle 181
Commandenabling 182
Setting the system colors 182
Class TControlGadget. 182
Constructing and destroying o
TControlGadget 182
Gadgetwindows 182
Constructing and destroying
TGadgetWindow 183
Creating a gadgetwindow 183
Inserting a gadget into a gadget window . . .183
Removing a gadget from a gadget
window 184
Setting window margins and layout -
direction 184
Laying outthegadgets 184
Notifying the window when a gadget
changessize. I 185

Shrink wrapping a gadget window 185
Accessingwindow font. 186
Capturing the mouse for a gadget. 186
Setting thehintmode 186
Idle action processing 187
Searching through the gadgets. 187
Deriving from TGadgetWindow. 187
Painting a gadgetwindow 187
Size and inner rectangle. 188
Layoutunits. 188
Message response functions 189
ObjectWindows gadget window classes . . . 189
Class TControlBar 189
Class TMessageBar. 190
Constructing and destroying
TMessageBar 190
Setting messagebartext. 190
Setting the hinttext 190
Class TStatusBar 191
Constructing and destroying TStatusBar. . .191
Inserting gadgets into a statusbar. 191
Displaying mode indicators 191
Spacing statusbar gadgets 192
Class TToolBox 192
Constructing and destroying TToolBox . . .192
Changing tool box dimensions. 193
Chapter 13
Printer objects 195
Creating a printerobject. 195
Creating a printoutobject 197
Printing window contents. 198
Printingadocument 199
Setting print parameters. 199
Countingpages. 199
Printingeachpage 200
Indicating furtherpages. 200
Other printout considerations 200
Choosing a different printer. 201
Chapter 14
Graphics objects 203
GDI class organization. 203
Changes to encapsulated GDI functions . . . 204
Working with device contexts 206
TDCclass 206
Constructing and destroying TDC 207
Device-context operators 207
Device-context functions 208
Selecting and restoring GDI objects 208
Drawing tool functions 209
Color and palette functions. 209

Drawing attribute functions 209
Viewport and window mapping
functions. 210
Coordinate functions. 210
Clip and update rectangle and region
functions. L L. 210
Metafile functions 210
Current position functions 210
Fontfunctions. 211
Path functions. 211
Outputfunctions 211
Object data members and functions 213
TPenclass. 213
ConstructingTPen. 213
AccessingTPen. 215
TBrushclass 215
ConstructingTBrush 215
AccessingTBrush 216
TFontclass 217
ConstructingTFont 217
AccessingTFont 218
TPaletteclass. 218
Constructing TPalette. 218
Accessing TPalette. 219
Member functions 219
Extending TPalette. 220
TBitmapclass 221
Constructing TBitmap. 221
Accessing TBitmap 222
Member functions 223
Extending TBitmap 224
TRegionclass 224
Constructing and destroying TRegion 224
AccessingTRegion. 226
Member functions 226
Operators 227
Tlconclass 229
Constructing TIcon 229
AccessingTlcon 230
TCursorclass. 231
Constructing TCursor. 231
Accessing TCursor. 232
TDibclass. 232
Constructing and destroying TDib 233
AccessingTDib. 234
Typeconversions. 234
Accessing internal structures 234
DIBinformation 235
Working in palette or RGBmode 235
Matching interface colors to system
colors. 237
ExtendingTDib 237

Chapter 15

Validator objects 239
The standard validator classes 239
Validatorbaseclass. 240
Filter validatorclass 240
Range validatorclass. 240
Lookup validator class. 240
String lookup validatorclass 241
Picture validatorclass 241
Using data validators. 242
Constructing an edit control object. 242
Constructing and-assigning validator
objects. 242
Overriding validator member functions . . . 243
Member function Valid 243
Member functionIsValid 243
Member function IsValidinput. 243
Member functionError 244
Chapter 16 ;
Visual Basic controls 245
Using VBX controls. 245
VBX controlclasses. 246
TVbxControlclass 246
TVbxControl constructors 247
Implicit and explicit construction 248
TVbxEventHandlerclass 249
Handling VBX control messages. 249
Eventresponsetable 249
Interpreting a controlevent. 250
Finding event information 251
Accessinga VBX control. 251
VBX control properties. 251
Finding property information 252
Getting control properties 252
Setting control properties. 253
VBX controlmethods 253
Chapter 17
ObjectWindows dynamic-link
libraries | 255
Writing DLL functions. 255
DLL entry and exit functions 256
LibMain 256
WEP 256
DllEntryPoint. 257
Exporting DLL functions 257
Importing (calling) DLL functions 257
Writing shared ObjectWindows classes. . . . 258
Defining shared classes 258

vi

The TModuleobject. 259
Using ObjectWindowsasaDLL 260
Callin%an ObjectWindows DLL from a
non-ObjectWindows application 260
Implicit and explicitloading. 261
Mixing static and dynamic-linked libraries. . 261
Chapter 18
Support for OLE in Borland C++ 263
What does ObjectComponents do? 263
Where should youstart?. 264
Writing applications. 264
Creating a new application 264
Converting an application into an OLE
container., 264
Converting application into a linking and
embeddingserver 265
Adding automation support 265
Other usefultopics. 265
Learning about ObjectComponents. 265
WhatisOLE? 266
Linking and embedding 266
Automation.o 267
What does OLE look like? 267
Insertinganobject. 268
Editing an objectinplace. 269
Activating, deactivating, and selecting an
oobject. ... L0270
Finding an object’sverbs 272
Linkinganobject. 273
Opening an object toeditit. 274
What is ObjectComponents? 275
OLE 2 features supported by
ObjectComponents 276
Using ObjectComponents 278
Overview of classes and messages 278
Linking and embedding classes 279
Connectorobjects. 279
Automation classes. 280
ObjectComponents messages. 281
Messagesand windows 283
New ObjectWindows OLE classes. 283
Exception handling in ObjectComponents. . .284
TXOle and OLE errorcodes. 285
Building an ObjectComponents
application 286
Distributing files with your application287
How ObjectComponents works 287
How ObjectComponents talks to OLE 287
How ObjectComponents talkstoyou 288
Linking and embedding connections. 288
Automation connections 291

ObjectComponents Programming Tools . . . 292
Utility programs 292
Where do Ilook for information? 293
Books. 293
OnlineHelp 294
Example programs. 294
Glossaryof OLEterms. 295
Chapter 19
Creating an OLE container 303
Turning a Doc/View application into an
OLEcontainer. 303
1. Connecting objects toOLE 304
Deriving the application object from
TOcModule 304
Inheriting from OLE classes 305
Creating an application dictionary 306
2. Registering a container 306
Building registration tables. 307
Understanding registration macros 309
Creating a registrar object. 310
3. Supporting OLE commands 31
Setting up the Edit menu and the
toolbar. 312
Loading and saving compound
documents. 312
4. Building the container. 313
Including OLEheaders 314
Compiling and linking 314
Turning an ObjectWindows application
intoan OLE container 315
1. Setting up the application. 316
Defining an application dictionary object . .316
Modifying your applicationclass 316
2. Registering a container 317
Creating registration tables. 317
Creating a registrar object. 318
3. Setting up the clientwindow. 319
Inheriting from OLE classes 320
Delaying the creation of the client }
window in SDI applications 320
Creating ObjectComponents view and
documentobjects. 321
4. Programming the user interface. 322
Handling OLE-related messages and
events, 322
Supporting menu merging 324
Updating the Editmenu 327
AssigningatoolbarID 328
5.Building a container. 328
Including OLEheaders 328
Compiling and linking 328
Turning a C++ application into an OLE
container 328

1. Registering a container
Building a registration table.
Creating the registrar object.
Creating a memory allocator

2. Creating a view window

Creating, resizing, and destroying the
view window

Creating a TOcDocument and TOcView . . .

Handling WM_OCEVENT
Handling selected view events
Painting the document.
Activating and deactivating objects
3. Programming the main window
Creating the main window
Handling WM_OCEVENT
Handling selected application events
Handling standard OLE menu
commands

Building the program

Including ObjectComponents headers

Compiling and linking.

Chapter 20
Creating an OLE server

Turning a Doc/View application into an
OLE server
1. Connecting objects to OLE
Creating an application dictionary.
Deriving the application object from

TOcModule
Inheriting from OLE classes.

2. Registering a linking and embedding
server
Building registration tables
Creating a registrar object
Processing the command line

3. Drawing, loading, and saving objects
Telling clients when an object changes

Loading and saving the server’s
documents

4. Building the server
Including OLE headers
Compiling and linking.

Turning an ObjectWindows application
into an OLE server

1. Registering the server
Creating an application dictionary.
Creating registration tables
Creating the document list
Creating the registrar object.

2. Setting up the client window

Creating helper objects for a document. . . .

3. Modifying the application class

Understanding the TRegLink document
]j.S .

L 358
4. Building theserver. 359
Including OLEheaders 359
Compiling and linking 359
Turning a C++ application into an OLE
SEIVEL . . . it 359
1. Creating a memory allocator. 360
2. Registering the application. 360
Building registration tables. 361
Creating the documentlist 361
Creating the registrar object 362
Writing the factory callback function 363
3. Creatingaviewwindow 366
Creating, resizing, and destroying the
viewwindow. L. 366
Creating a new server document 367
Handling WM_OCEVENT. 368
Handling selected view events. 369
Painting the document 369
4. Programming the main window 370
Creating the mainwindow. 370
Handling WM_OCEVENT. 370
Handling selected application events. 371
5.Building theserver. 371
Including ObjectComponents headers371
Compiling and linking 371
Understanding registration 372
Storing information in the registration
database 372
Registering localized entries 373
Registering custom entries 374
Makinga DLLserver. 374
Pros and consof DLL servers. 374
BuildingaDLLserver 375
Updating your document registration
fable e n SOSRET 375
Compilingand linking 377
DebuggingaDLLserver 377
Tools for DLLservers 379
Registering your DLL server. 379
Running your DLL server 379
Chapter 21
Automating an application 381
Steps to automating an application 381
1. Registering an automation server 382
Creating a registration table 382
Creating a registrar object. 385
2. Declaring automatable methods and
properties 385
Writing declaration macros. 386
Providing optional hooks for validation
andfiltering. 387

3. Defining external methods and properties .388

Writing definition macros. 389
Data type specifiers in an automation o
definition. 390
Exposing data for enumeration. 392
4. Building theserver.. 393
Including header files 394
Compiling and linking. 394
Enhancing automation server functions. . . . 394
Combining multiple C++ objects into a
single O]%E automatlon object 395
Telling OLE when the object goes away396
Localizing symbolnames. 397
Puttmg translations in the resource
seript 397
Marking translatable strings in the
sourcecode 398
Understanding how ObjectComponents v
uses XLAT resources. 399
Localizing registration strings 400
Exposing collections of objects. 400
Constructing and exposing a collection
cdass. 401
Implementing an iterator for the
collection. 402
Adding other members to the
collectionclass. 404
Creating atypelibrary 405
Chapter 22 ;
Creating an automation controller 407
Steps for building an automation
controller L oL 407
Including header ﬁles 408
Creating a TOleAllocator object 408
Declaring proxy classes. 408
Implementing proxy classes 410
Speafylng arguments in a proxy
method. L 411
Creating and using proxy objects 412
Compiling and linking 412
Enumerating automated collections 413
Declaring a proxy collectionclass. 413
Implementing the proxy collection class414
Declaring a collection property 415
Sending commands to the collection 415
Appendix A
Converting ObjectWindows code 417
Convertingyourcode 418
Converting to Borland C++4.5 418
OWLCVT conversions 419
OWLCVT command-line syntax 420

Backing up your old source files
HI?I‘{V to use OWLCVT from the command
€
How touse OWLCVT intheIDE
Conversion checklist.
Conversion procedures
Handling messages and events.
Removing DDVT functions.
Naming conventions
Adding an event response table
declaration
Adding an event response table
definition,
Adding event response table entries
Responding to command messages. . . .
Responding to child ID-based
IMESSAZES - « . v e
Responding to notification messages . . .
Responding to general messages
Event response table samples
Changing your window objects
Converting constructors
Calling Windows API functions
Changing headerfiles
Using the new header file locations
Using the new streamlined
ObjectWindows header files
ObjectWindows resources.
Compiling resources.
Menuresources.
Constructing virtual bases.
Downcasting virtual bases to derived

Moving from Object-based containers to
the BIDSlibrary.
Streaming
Removed insertion and extraction
operators. L.,
Implementing streaming
MDIclasses
Making the frameand client
Making a child window.
WB_MDICHILD
Relocated functions

Index

Replacing ActiveChild with

etActiveChild 441
MainWindow variable 441
Using a dialog as the main window 441
TApplication message processin,

fu};)llf:tions g .p. e g 442
GetModule function 443
DefXXXProc functions 443
Overriding. 444
Using DefWndProc for registered
MESSAZES. v 444
Paintfunction. 444
CloseWindow, ShutDownWindow, and
Destroy functions 445
ForEach and FirstThat functions. 445

TComboBoxData and TListBoxData classes. .446

TEditWindow and TFileWindow classes . . .446
Using the OLDFILEW example 447
Adding TEditSearch and TEditFile client

windows. oL 447

TSearchDialog and TFileDialog classes. 448

ActivationResponse function 448

Dispatch-handling functions. 448

DispatchAMessage function. 449
General messages. 449
The DefProc parameter 449
Command messages. 449

KBHandlerWnd 449

MAXPATH. 450

Style conventions 450
Changing WinMain to OwlMain. 450
Data typesandnames 451
Replacing MakeWindow with Create. 451
Replacing ExecDialog with Execute. 452
Getting the application and module

instance. 452
Defining WIN30, WIN31, and STRICT452
Troubleshooting. 452

OWLCVTerrorso o ii i e u 452

Compilerwarnings 453

Compilererrors 453

Run-timeerrors 454

8.2

8.3

8.4
9.1

9.2
94
9.5
9.6
9.7
10.1
10.2
10.3
104
111
112
11.3

114
115

Tables

Data member inheritance 7
ObjectWindows-encapsulated device

contexts. L. 12
GDIsupportclasses 13
Command message macros. 43
Messagemacros. 44
Sample message macros and function

NAMES. & vttt e 45
Child notification message macros 46
Specialized exceptionclasses 63
ObjectWindows exception-handling macro
eXpansion. 64
Window creation attributes. 67
Default window attributes 68
Default window attributes 71
Standard MDI child-window menu

behavior 83
TMenu constructors for creating menu

objects. L 85
TMenu constructors for modifying menu
objects. L 86
TMenu constructors for querying menu

objects. 87
TMenuDescr constructors. 93
ObjectWindows-encapsulated dialog

boxes L. 106
Common dialog box TData members. . . . 108
Common dialog box TData members. . . . 108
Color common dialog box TData data
members........... 109
Font common dialog box TData data

members 110
File open and save common dialog box

TData datamembers. 111
Printer common dialog box TData data
members 115
Document manager’s Filemenu. 120
Document creation mode flags. 123
Predefined Doc/View event handlers . . . 138
Doc/View property attributes 140
Controls and their ObjectWindows

classes. oL oL 143
TListBox member functions for modifying
listboxes 148
TListBox member functions for querying
listboxes 149
List box notification messages 149
TCheckBox member functions for

modifying selectionboxes. 153

11.6 TCheckBox member functions for

querying selectionboxes 154
11.7 Notification codes and TScrollBar

member functions. 157
11.8 Pure virtual functions in TSlider 158
11.9 TEdit member functions and Edit menu

commands 160
11.10 TEdit member functions for querying

editcontrols. 161
11.11 TEdit member functions for modifying

editcontrols. 161
11.12 Summary of combo box styles. 162
11.13 TComboBox member functions for

modifying comboboxes 164
11.14 TComboBox member functions for

querying comboboxes 164
11.15 Transfer buffer members for each type of

control 166
11.16 TListBoxData data members. 166
11.17 TListBoxData member functions 166
11.18 TComboBoxData data members 167
11.19 TComboBoxData member functions. 167
11.20 Transfer flag parameters 169
12.1 Hintmodeflags 186
17.1 Allowable library combinations. 261
18.1 How to add container support to an

existing application 264
18.2 How to add server support to an existing

application 265
18.3 Some ObjectComponents classes used for

linking and embedding. 279
184 Some ObjectComponents classes used for

automation 280
18.5 Application messages for TOcApp

cients L L 281
18.6 View messages for TOcView and

TOcRemViewclients 282
18.7 New classes in ObjectWindows for OLE

support 283
18.8 ObjectComponents exception classes 284
18.9 Libraries for building ObjectComponents

programs 286
18.10 Descriptions of the ObjectComponents

chaptersinthisbook 293
18.11 Online Help files with information about

ObjectComponentsand OLE 294
19.1 Non-OLE classes and the corresponding

classes thatadd OLE support 305

19.2 Keys a container registers to support
linking and embedding. 308

193

194

195

20.1

20.2

Commands an OLE container places on
itsEditmenu.
Libraries for building ObjectComponents
programs.
Standard message handlers providing
OLE functionality.
Keys a linking and embedding server
registers. oL
Command-line switches that
ObjectComponents recognizes

xi

21.1
21.2
21.3
22.1

222

Keys an automation server registers 384
Automationdatatypes. 391
Enumerable C++ types and the

automation types for exposing them. 393
Macros for implementing proxy object

member functions 411
Message response member functions and
eventresponsetables 427

82

10.1
18.1

Figures

TDialog inheritance. 7
The basic ObjectWindows application 18
First-instance and each-instance

initialization 22
Dialog box using the Borland Custom

Controls Library. 28
Dialog box using the Microsoft 3-D
ControlsLibrary. 28
Interface elements vs. interface objects 29
Window message processing. 42
Button gadgetstates 56
Example layout windows 70
Sample decorated frame window 79
Sample MDI application. 81
Menu descriptor application without

child windowsopen 91
Menu descriptor application with child
windowsopen. 91
Doc/View model diagram 118
The Edit menu in the sample program

SdiOle. 268

18.2 The Insert Object dialogbox. 269
18.3 A newly inserted object being edited in

place L 270
18.4 The same inserted object after being

medited L 270
18.5 The container’s restored user interface

after the object becomes inactive 271
18.6 The speed menu for a selected object. 272
18.7 The Insert Object dialog box just before

inserting a linked object. 273
18.8 The new verb list for the newly linked

object. L 274
189 An object opened forediting. 275
18.10 How applications interact with OLE

through ObjectComponents. 276
18.11 How the ObjectComponents connector

objectsarerelated 280
18.12 How objects in your application interact

with ObjectComponents 290

18.13 How TServedObject connects an
automated classtoOLE. 292

Introduction

- ObjectWindows 2.5 is the Borland C++ application framework for Windows 3.1,
Win32s, and Windows NT. ObjectWindows lets you build full-featured Windows
applications quickly and easily. ObjectWindows 2.5 provides the following features:

¢ Easy creation of OLE 2.0 applications, including containers, servers, and automated
applications, using the ObjectComponents Framework

¢ Doc/View classes for easy data abstraction and display
¢ Ease of portability between 16- and 32-bit platforms

¢ Automated message cracking ‘

* Robust exception and error handling

* Allows easy porting to other compilers and environments because it doesn’t use
proprietary compiler and language extensions

* Encapsulation of Windows GDI objects
¢ Printer and print preview classes

¢ Support for Visual Basic controls, including the only available support for using
Visual Basic controls in 32-bit environments

¢ Input validators

ObjectWindows documentation

The ObjectWindows 2.5 documentation set consists of the ObjectWindows Programmer’s
Guide (this manual), the Object Windows Reference Guide, and the ObjectWindows Tutorial.

The ObjectWindows Reference Guide presents a comprehensive, alphabetical listing and
description of all ObjectWindows classes, their member functions, data members, and
so on. The ObjectWindows Reference Guide should be your reference for specific technical
data about an ObjectWindows class or function.

The ObjectWindows Tutorial contains a tutorial on how to build a basic ObjectWindows
application utilizing many of the ObjectWindows library’s key features. If you're new to
ObjectWindows, or if there are features with which you're not familiar, you should

Introduction 1

follow the steps in the ObjectWindows Tutorial to learn how to program using
ObjectWindows.

Programmer’s Guide organization

The ObjectWindows Programmer’s Guide presents topics in a task-oriented fashion,
describing how to use functional groups of ObjectWindows classes to accomplish
various tasks. The manual is organized as follows:

This chapter, Introduction, introduces you to ObjectWindows 2.5 and directs you to
other chapters of the book for more information.

Chapter 1, “Overview of ObjectWindows,” presents a brief, nontechnical overview of
the ObjectWindows hierarchy.

Chapter 2, “Application and module objects,” describes application objects and the
application class TApplication.

- Chapter 3, “Interface objects,” discusses the use of interface objects in the
ObjectWindows 2.5 programming model. Interface objects are instances of classes
representing windows, dialog boxes, and controls; these classes are based on the class
TWindow.

Chapter 4, “Event handling,” explains response tables, the ObjectWindows 2.5 method
for event handling.

Chapter 5, “Command enabling,” describes the ObjectWindows 2.5 command-
enabling mechanism for enabling and disabling command items such as menu choices
and control bar buttons, setting menu item text, and checking and unchecking
command items.

Chapter 6, “ObjectWindows exception handling,” describes the ObjectWindows 2.5
exception-handling mechanism.

Chapter 7, “Window objects,” describes window objects, including how to use frame
windows, layout windows, decorated frame windows, and MDI windows.

Chapter 8, “Menu objects,” discusses the use of menu objects and the TMenu class.

Chapter 9, “Dialog box objects,” explains how to use dialog box objects (such as
TDialog and TDialog-derived objects) and also Windows common dialog boxes, which
are based on the TCommonDialog class.

Chapter 10, “Doc/View objects,” presents the ObjectWindows 2.5 Doc/ View
programming model, which uses the TDocument, TView, and TDocManager classes.

Chapter 11, “Control objects,” discusses the use of various controls, such as buttons, list
boxes, edit boxes, and so on.

Chapter 12, “Gadget and gadget window objects,” explains gadgets and gadget
windows, including control bars, status bars, button gadgets, and so on.

Chapter 13, “Printer objects,” describes how to use the printer and print preview
classes.

2 ObjectWindows Programmer’s Guide

Chapter 14, “Graphics objects,” presents the classes that encapsulate Windows GDL
Chapter 15, “Validator objects,” describes the use of input validators in edit controls.

Chapter 16, “Visual Basic controls,” discusses using Visual Basic controls and the
TVbxControl class in your ObjectWindows application.

Chapter 17, “ObjectWindows dynamic-link libraries,” explains the use of
ObjectWindows-encapsulated dynamic-link libraries (DLLs).

Chapter 18, “Support for OLE in Borland C++,” presents an overview of the
ObjectComponents encapsulation of OLE capabilities.

Chapter 19, “Creating an OLE container,” describes how to make a container
application whose compound documents can hold linked and embedded OLE objects.

Chapter 20, “Creating an OLE server,” describes how to make a server application that
creates data objects for containers to link or embed.

Chapter 21, “Automating an application,” describes what a program must do in order
to let other programs control it through automation.

Chapter 22, “Creating an automation controller,” describes the steps a program must
take in order to manipulate automation objects.

Appendix A, “Converting ObjectWindows code,” describes how to convert your
ObjectWindows 1.0 applications so they work properly in ObjectWindows 2.5.

Typefaces and icons used in this book

The following table shows the special typographic conventions used in this book.

Typeface Meaning

Boldface Boldface type indicates language keywords (such as char, switch, and begin) and
command-line options (such as —rn).

Italics Italic type indicates program variables and constants that appear in text. This
typeface is also used to emphasize certain words, such as new terms.

Monospace Monospace type represents text as it appears onscreen or in a program. It is also
used for anything you must type literally (such as TD32 to start up the 32-bit Turbo
Debugger).

Menu |Command This command sequence represents a choice from the menu bar followed by a menu
choice. For example, the command “File | Open” represents the Open command on
the File menu.

Note This icon indicates material you should take special notice of.

This manual also uses the following icons to indicate sections that pertain to specific
operating environments:

16-bit Windows 32-bit Windows

Introduction 3

4 ObjectWindows Programmer’s Guide

Overview of ObjectWindows

This chapter presents an overview of the ObjectWindows 2.5 hierarchy. It also describes
the basic groupings of the ObjectWindows 2.5 classes, explains how each class fits
together with the others, and refers you to specific chapters for more detailed
information about how to use each class. '

Working with class hierarchies

This section describes some of the basic properties of classes, focusing specifically on
ObjectWindows classes. It covers the following topics:

¢ What you can do with a class
¢ Inheriting members
* Types of member functions

Using a class

There are three basic things you can do with a class:

¢ Derive a new class from it
e Add its behavior to that of another class
¢ Create an instance of it (instantiate it)

Deriving new classes
To change or add behavior to a class, you derive a new class from it:

class TNewWindow : public TWindow
{
public:
TNewWindow(...);
/] ...
}i

Chapter 1, Overview of ObjectWindows 5

When you derive a new class, you can do three things:

¢ Add new data members
¢ Add new member functions
¢ QOverride inherited member functions

Adding new members lets you add to or change the functionality of the base class. You
can define a new constructor for your derived class to call the base classes’ constructors
and initialize any new data members you might have added.

Mixing object behavior

With ObjectWindows designed using multiple inheritance, you can derive new classes
that inherit the behavior of more than one class. Such “mixed” behavior is different from
the behavior you get from single inheritance derivation. Instead of inheriting the
behavior of the base class and being able to add to and change it, you're inheriting and
combining the behavior of several classes.

As with single inheritance derivation, you can add new members and override
inherited ones to change the behavior of your new class.

Instantiating classes

To use a class, you must create an instance of it. There are a number of ways you can
instantiate a class:

* You can use the standard declaration syntax. This is the same syntax you use to
declare any standard variable such as an int or char. In this example, app is initialized
by calling the TMyApplication constructor with no arguments:

TMyApplication app;

You can use this syntax only when the class has a default constructor or a constructor
in which all the parameters have default values.

* You can also use the standard declaration syntax along with arguments to call a
particular constructor. In this example, app is initialized by calling the TMyApplication
constructor with a char * argument:

TMyApplication app("AppName");

* You can use the new operator to allocate space for and instantiate an object. For
example:

TMyApplication *app;
app = new TMyApplication;

* You can also use the new operator along with arguments. In this example, app is
initialized by calling the TMyApplication constructor with a char * argument:

TMyApplication* app = new TMyApplication("AppName");

The constructors call the base class’ constructors and initialize any needed data
members. You can only instantiate classes that aren’t abstract; that is, classes that don’t
contain a pure virtual function.

6 ObjectWindows Programmer’s Guide

Abstract classes

Abstract classes, which are classes with pure virtual member functions that you must
override to provide some behavior, serve two main purposes. They provide a
conceptual framework to build other classes on and, on a practical level, they reduce
coding effort.

For example, the ObjectWindows THSlider and TV Slider classes could each be derived
directly from TScrollBar. Although one is vertical and the other horizontal, they have
similar functionality and responses. This commonality warrants creating an abstract
class called TSlider. THSlider and TVSlider are then derived from TSlider with the
addition of a few specialized member functions to draw the sliders differently.

You can’t create an instance of an abstract class. Its pure virtual member functions must
be overridden to make a useful instance. TSlider, for example, doesn’t know how to
paint itself or respond directly to mouse events.

If you wanted to create your own slider (for example, a circular slider), you might try
deriving your slider from TSlider or it might be easier to derive from THSlider or
TVSlider, depending on which best meets your needs. In any case, you add data
members and add or override member functions to add the desired functionality. If you
wanted to have diagonal sliders going both northwest-southeast and southwest-
northeast, you might want to create an intermediate abstract class called TAngledSlider.

Inheriting members

The following figure shows the inheritance of TInputDialog. As you can see,
TInputDialog is derived from TDialog, which is derived from TWindow, which is in turn
derived from TEventHandler and TStreamable. Inheritance lets you add more specialized
behavior as you move further along the hierarchy.

Figure 1.1 TDialog inheritance

TStreamable L[
>

j>
TEventHandler

TWindow |—>| TDialog [—>| TInputDialog

The following table shows the public data members of each class, including those
inherited from the TDialog and TWindow base classes:

Table 1.1 Data member inheritance

‘Status

HWindow HWindow HWindow
Title Title Title
Parent Parent Parent
Attr Attr Attr

Chapter 1, Overview of ObjectWindows 7

Table1.1 Data member inheritance (continued)

DefaultProc DefaultProc DefaultProc
Scroller Scroller Scroller
IsModal IsModal
Prompt
Buffer
BufferSize

TInputDialog inherits all the data members of TDialog and TWindow and adds the data
members it needs to be an input dialog box.

To fully understand what you can do with TInputDialog, you have to understand its
inheritance: a TInputDialog object is both a dialog box (I'Dialog) and a window
(TWindow). TDialog adds the concept of modality to the TWindow class. TInputDialog
extends that by adding the ability to store and retrieve user-input data.

Types of member functions

There are four (possibly overlapping) types of ObjectWindows member functions:

Virtual

Nonvirtual

Pure virtual
Default placeholder

Virtual functions

Virtual functions can be overridden in derived classes. They differ from pure virtual
functions in that they don’t have to be overridden in order to use the class. Virtual
functions provide you with polymorphism, which is the ability to provide a consistent
class interface, even when the functionality of your classes is quite different.

Nonvirtual functions

You should not override nonvirtual functions. Therefore, it’s important to make virtual
any member function that derived classes might need to override (an exception is the
event-handling functions defined in your response tables). For example,
TWindow::CanClose is virtual because derived classes should override it to verify
whether the window should close. On the other hand, TWindow::SetCaption is
nonvirtual because you usually don’t need to change the way a window’s caption is set.

The problem with overriding nonvirtual functions is that classes that are derived from
your derived class might try to use the overridden function. Unless the new derived
classes are explicitly aware that you have changed the functionality of the derived
function, this can lead to faulty return values and run-time errors.

8 ObjectWindows Programmer’s Guide

Pure virtual functions
You must override pure virtual functions in derived classes. Functions are marked as

pure virtual using the = 0 initializer. For example, here’s the declaration of
TSlider::PaintRuler:

virtual void PaintRuler (TDC& dc) = 0;

You must override all of an abstract class” pure virtual functions in a derived class
before you can create an instance of that derived class. In most cases, when using the
standard ObjectWindows classes, you won't find this to be much of a problem; most of
the ObjectWindows classes you might need to derive from are not abstract classes. In
lieu of pure virtual functions, many ObjectWindows classes use default placeholder
functions.

Default placeholder functions
Unlike pure virtual functions, default placeholder functions don't have to be
overridden. They offer minimal default actions or no actions at all. They serve as

placeholders, where you can place code in your derived classes. For example, here’s the
definition of TWindow::EvLButtonDbICIk:

inline void
TWindow: :EvLButtonDblClk (uint modKeys, TPoint &)
{

DefaultProcessing();

}

By default, EvLButtonDbIClk calls DefaultProcessing to perform the default message
processing for that message. In your own window class, you could override
EvLButtonDbICIk by defining it in your class’ response table. Your version of
EvLButtonDbIClk can provide some custom behavior you want to happen when the user
clicks the left mouse button. You can also continue to provide the base class’ default
processing by calling the base class’ version of the function.

Obiject typology

The ObjectWindows hierarchy has many different types of classes that you can use,
modify, or add to. You can separate what each class does into the following groups:

* Windows

* Dialog boxes

¢ Controls

* Graphics

¢ Printing

* Modules and applications

* Doc/View applications

¢ Miscellaneous Windows elements

Chapter 1, Overview of ObjectWindows 9

Window classes

An important part of any Windows application is, of course, the window.
ObjectWindows provides several different window classes for different types of
windows (not to be confused with the Windows “window class” registration types):

¢ Windows

e Frame windows
¢ MDIwindows
e Decorated windows

Chapter 7 describes the window classes in detail.

Windows

TWindow is the base class for all window classes. It represents the functionality common
to all windows, whether they are dialog boxes, controls, MDI windows, or so on.

Frame windows

TFrameWindow is derived from TWindow and adds the functionality of a frame window
that can hold other client windows.

MDI windows :
Multiple Document Interface (MDI) is the Windows standard for managing multiple
documents or windows in a single application. TMDIFrame, TMDIClient, and
TMDIChild provide support for MDI in ObjectWindows applications.

Decorated windows

Several classes, such as TLayoutWindow and TLayoutMetrics, work together to provide
support for decoration controls like tool bars, status bars, and message bars. Using
multiple inheritance, decoration support is added into frame windows and MDI frame
windows in TDecoratedFrame and TDecoratedMDIFrame.

Dialog box classes

TDialog is a derived class of TWindow. It’s used to create dialog boxes that handle a
variety of user interactions. Dialog boxes typically contain controls to get user input.
Dialog box classes are explained in detail in Chapter 9.

Common dialog boxes
In addition to specialized dialog boxes your own application might use,
ObjectWindows supports Windows’ common dialog boxes for:

¢ Choosing files (TFileOpenDialog, and TFileSaveDialog)
Choosing fonts (TChooseFontDialog)

Choosing colors (TChooseColorDialog)

Choosing printing options (TPrintDialog)

Searching and replacing text (TFindDialog, and TReplaceDialog)

10 ObjectWindows Programmer’s Guide

Other dialog boxes

ObjectWindows also provides additional dialog boxes that aren’t based on the

Windows common dialog boxes:

* Inputting text (TInputDialog)

¢ Aborting print jobs (TPrinterAbortDIg, used in conjunction with the TPrinter and
TPrintout classes)

Control classes

TControl is a class derived from TWindow to support behavior common to all controls.
ObjectWindows offers four types of controls:

¢ Standard Windows controls
* Widgets

* Gadgets

¢ Decorations

All these controls are discussed in depth in Chapter 11, except for gadgets, which are
discussed in Chapter 12.

Standard Windows controls

Standard Windows controls include list boxes, scroll bars, buttons, check boxes, radio
buttons, group boxes, edit controls, static controls, and combo boxes. Member functions
let you manipulate these controls.

Widgets

Unlike standard Windows controls, ObjectWindows widgets are specialized controls
written entirely in C++. The widgets ObjectWindows offers include horizontal and
vertical sliders (THSlider and TV Slider) and gauges (TGauge).

Gadgets

Gadgets are similar to standard Windows controls, in that they are used to gather input
from or convey information to the user. But gadgets are implemented differently from
controls. Unlike most other interface elements, gadgets are not windows: gadgets don’t

have window handles, they don’t receive events and messages, and they aren’t based on
TWindow.

Instead, gadgets must be contained in a gadget window. The gadget window controls
the presentation of the gadget, all message processing, and so on. The gadget receives its
commands and direction from the gadget window.

Decorations

Decorations are specialized child windows that let the user choose a command, provide
a place to give the user information, or somehow allow for specialized communication
with the user.

Chapter 1, Overview of ObjectWindows 11

* A control bar (I'ControlBar) lets you arrange a set of buttons on a bar attached to a
window as shortcuts to using menus (the SpeedBar in the Borland C++ IDE is an
example of this functionality).

¢ A tool box (TToolBox) lets you arrange a set of buttons on a floating palette.

* Message bars (TMessageBar) are bars, usually at the bottom of a window, where you
can display information to the user. For example, the Borland C++ IDE uses a
message bar to give you brief descriptions of what menu commands and SpeedBar
buttons do as you press them.

e Status bars (TStatusBar) are similar to message bars, but have room for more than one
piece of information. The status bar in the Borland C++ IDE shows your position in
the edit window, whether you're in insert or overtype mode, and error messages.

Graphics classes

Windows offers a powerful but complex graphics library called the Graphics Device
Interface (GDI). ObjectWindows encapsulates GDI to make it easier to use device
context (DC) classes (TDC) and GDI objects (TGDIObject).

See Chapter 14 for full details on these classes.

DC classes |

With GDI, instead of drawing directly on a device (like the screen or a printer), you
draw on a bitmap using a device context (DC). A device context is a collection of tools,
settings, and device information regarding a graphics device and its current drawing
state. This allows for a high degree of device independence when using GDI functions.
The following table lists the different types of DCs that ObjectWindows encapsulates.

Table1.2 ObjectWindows-encapsulated device contexts

ry
Metafile TMetaFileDC
Bitmap TDibDC
Printer TPrintDC
Window TWindowDC
Desktop TDesktopDC
Screen TScreenDC
Client TClientDC
Paint TPaintDC

12 ObjectWindows Programmer’s Guide

GDI objects

TGDIObject is a base class for several other classes that represent things you can use to
draw with and to control drawings. The following table lists these classes and other
ObjectWindows GDI support classes.

Table 1.3 GDI support classes

Type of GDI object ~ ObjectWindows GDI class

Pens TPen
Brushes TBrush

Fonts TFont
Palettes TPalette
Bitmaps TBitmap, TDib, TUIBitmap
Icons Tlcon
Cursors TCursor
Regions TRegion
Points TPoint

Size TSize
Rectangles TRect

Color specifiers TColor

RGB triple color TRgbTriple
RGB quad color TRgbQuad
Palette entries TPaletteEntry
Metafile TMetafilePict
Printing classes

TPrinter makes printing significantly easier by encapsulating the communications with
printer drivers. TPrintout encapsulates the task of printing a document. Chapter 13
discusses how to use the printing classes.

Module and application classes

A Windows application is responsible for initializing windows and ensuring that
messages Windows sends to it are sent to the proper window. ObjectWindows
encapsulates that behavior in TApplication. A DLL’s behavior is encapsulated in
TModule. For full details on module and application objects, see Chapter 2.

Doc/View classes

The Doc/View classes are a complete abstraction of a generic document-view model.
The base classes of the Doc/View model are TDocManager, TDocument, and TView. The
Doc/View model is a system in which data is contained in and accessed through a
document object, and displayed and manipulated through a view object. Any number
of views can be associated with a particular document type. You can use this to display
the same data in a number of different ways.

Chapter 1, Overview of ObjectWindows 13

For example, you can display a line both graphically (as a line in a window) and as sets
of numbers indicating the coordinates of the points that make up the line. This would
require one document that contains the data and two view classes: one view class to
display the line onscreen and another view class to display the coordinates of the points
in the line. You can also modify the data through the views so that, in this case, you
could change the data in the line by either drawing in the graphical display or by typing
in numbers to modify and add coordinates in the numerical display.

The Doc/View model is discussed in depth in Chapter 10.

Miscellaneous classes

Since Windows is so varied, not all the classes ObjectWindows provides fall into neat
categories. This section discusses those miscellaneous classes.

Menus

Menus can be static or you can modify them or even load whole new menus. TMenu
and its derived classes (TSystemMenu and TPopupMenu) let you easily manipulate
menus. Chapter 8 discusses the menu classes in more detail.

Clipboard

The Windows Clipboard is one of the main ways users share data between applications.
ObjectWindows’ TClipboard object lets you easily provide Clipboard support in your
applications. See Chapter 7 for details.

14 ObjectWindows Programmer’s Guide

Application and module objects

This chapter describes how to use application objects, including
¢ Deriving an application object from the TApplication class
* Creating an application object

¢ Opverriding base class functions in derived application objects to customize
application behavior

¢ Using the Borland Custom Control and Microsoft Control 3-D libraries, including
automatically subclassing custom controls as Microsoft Control 3-D controls

ObjectWindows encapsulates Windows applications and DLL modules using the
TApplication and TModule classes, respectively. TModule objects

¢ Encapsulate the initialization and closing functions of a Windows DLL

* Contain the hinstance and IpCmdLine parameters, which are equivalent to the
parameters of the same name that are passed to the WinMain function in a non-
ObjectWindows application (note that both WinMain and LibMain have these two
parameters in common)

TApplication objects build on the basic functionality provided by TModule. TApplication
and TApplication-derived objects

¢ Encapsulate the initialization, run-time management, and closing functions of a
Windows application

* Contain the values of the hPrevInstance and nCmdShow parameters, which are
equivalent to the parameters of the same name that are passed to the WinMain
function in a non-ObjectWindows application

The TApplication class is derived from the TModule class. You usually won't need to
create a TModule object yourself, unless you're working with a DLL. See Chapter 17 for
more information on using DLLs in an ObjectWindows application.

Chapter 2, Application and module objects 15

The minimum requirements

To use a TApplication object, you must first:

¢ Include the correct header file
¢ Create an application object
¢ (Call the application object’s Run function

Including the header file

TApplication is defined in the header file owl\applicat.h; you must include this header
file to use TApplication. Because TApplication is derived from TModule, owl\applicat.h
includes owl\module.h.

Creating an object

You can create a TApplication object using one of two constructors. The most commonly
used constructor is this:

TApplication(const char far* name);

This version of the TApplication constructor takes a string, which becomes the
application’s name. If you don’t specify a name, by default the constructor names it the
null string. TApplication uses this string as the application name.

The second version of the TApplication constructor lets you specify a number of
parameters corresponding to the parameters normally passed to the WinMain function:

TApplication(const char far* name;
HINSTANCE instance,
HINSTANCE previInstance,
const char far* cmdLine,
int cmdShow) ;

You can use this constructor to pass command parameters to the TApplication object.
This is discussed on page 20.

Calling the Run function

The most obvious thing that TApplication::Run function does is to start your application
running. But in doing so it performs a number of other very important tasks, including

¢ Initializing the application

¢ Creating and displaying the main window

* Running the application’s message loop »

Each of these tasks is discussed later in this chapter. For the purposes of creating the

basic ObjectWindows application, however, it is sufficient to know that Run is the
function you call to make your application go.

16 ObjectWindows Programmer’s Guide

Finding the object

You may need to access an application object from outside that object’s scope. For
example, you may need to call one of the application object’s member functions from a
function in a derived window class. But because the window object is not in the same
scope as the application object, you have no way of accessing the application object. In
this case, you must find the application object.

TApplication contains several member functions and data members you might need to
call from outside the scope your application object. To find these easily, the TWindow
class has a member function, GetApplication, that returns a pointer to the application
object. You can then use this pointer to call TApplication member functions and access
TApplication data members. The following listing shows a possible use of GetApplication.

void
TMyWindow: :Error ()
{
// display message box containing the application name
MessageBox ("An error occurred!",
GetApplication()->Name, MB_OK);
}

The TWindow class is discussed in Chapter 7.

Creating the minimum application

Here’s the smallest ObjectWindows application you can create. It includes the correct
header file, creates a TApplication object, and calls that object’s Run function.

#include <owl\applicat.h>

int

OwlMain(int argc, char* argv(])

(.
return TApplication("Wow!").Run();

}

This creates a Windows application with a main window with the caption “Wow!” You
can resize, move, minimize, maximize, and close this window. In a real application,
you’d derive a new class for the application to add more functionality. Notice that the
only function you have to call explicitly in this example is the Run function. Figure 2.1
shows how this application looks when it’s running.

Chapter 2, Application and module objects 17

Figure 2.1 The basic ObjectWindows application

Wow!

Initializing applications

Initializing an ObjectWindows application takes four steps:
¢ Constructing the application object

¢ Initializing the application

¢ Initializing each new instance

¢ Initializing the main window

Constructing the application object

When you construct a TApplication object, it calls its InitApplication, InitInstance, and
InitMainWindow member functions to start the application. You can override any of
those members to customize how your application initializes. Since the base
InitMainWindow function only creates a default window object with no way to
customize its functionality, you must override InitMainWindow to start creating an
application with the functionalty you want to create. To override a function in
TApplication you need to derive your own application class from TApplication.

The constructor for the TApplication-derived class TMyApplication shown in the
following examples takes the application name as its only argument; its default value is
zero, for no name. The application name is used for the default main window title and
in error messages. The application name is referenced by a char far * member of the
TModule base class called Name. You can set the application name one of two ways:

* Your application class’ constructor can explicitly call TApplication’s constructor,
passing the application name onto TApplication. The following example shows this
method:

18 ObjectWindows Programmer’s Guide

#include <owl\applicat.h>

class TMyApplication: public TApplication
{
public:
// This constructor initializes the base class constructor
TMyApplication(const char far* name = 0) : TApplication(name) {}

}i

e Override one of TApplication’s initialization functions, usually InitMainWindow, and
set the application name there. The following example shows this method:

#include <owl\applicat.h>

class TMyApplication: public TApplication
{
public:
// This constructor just uses the default base class constructor
TMyApplication(const char far* name = 0) {}
void InitMainWindow()
{

if (name)

Name = new char([strlen(name) + 1];
strcpy (Name, name);
}
}
}i

ObjectWindows applications don’t require an explicit WinMain function; the
ObjectWindows libraries provide one that performs error handling and exception
handling. You can perform any initialization you want in the OwlMain function, which
is called by the default WinMain function.

To construct an application object, create an instance of your application class in the
OwlMain function. The following example shows a simple application object’s definition
and instantiation:

#include <owl\applicat.h>

class TMyApplication: public TApplication
{
public:
TMyApplication(const char far* name = 0): TApplication(name) {}
}i

int
OwlMain(int argc, char* argv[])
{
return TMyApplication("Wow!").Run();
}

Chapter 2, Application and module objects 19

Using WinMain and OwlMain

ObjectWindows furnishes a default WinMain function that provides extensive error
checking and exception handling. This WinMain function sets up the application and
calls the OwlMain function. '

Although you can use your own WinMain by placing it in a source file, there’s little
reason to do so. Everything you would otherwise do in WinMain you can do in OwlMain
or in TApplication initialization member functions. The following example shows a
possible use of OwIMain in an application. OwlMain checks to see whether the user
specified any parameters on the application’s command line. If so, OwIMain creates the
application object using the first parameter as the application name. If not, OwlMain
creates the application object using Wow! as the application name.

#include <owl\applicat.h>
#include <string.h>

class TMyApplication: public TApplication
{
public:

TMyApplication(const char far* name = 0) : TApplication(name) {}
b

int
OwlMain(int argc, char* argv(])
{
char title[30];
if(argc >= 2)
strepy (title, argv(l]);
else
strcpy (title, "Wow!");
return TMyApplication(title).Run();
}
If you do decide to provide your own WinMain, T Application supports passing
traditional WinMain function parameters with another constructor. The following
example shows how to use that constructor to pass WinMain parameters to the
TApplication object:

#include <owl\applicat.h>

class TMyApplication : public TApplication

{

public:

TMyApplication (const char far* name,
HINSTANCE instance,
HINSTANCE prevInstance,
const char far* cmdLine,
int cmdShow)
: TApplication (name, instance, prevInstance, cmdline, cmdShow) {}

}i

int

20 ObjectWindows Programmer’s Guide

PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR 1lpszCmdLine, int nCmdShow)
{
return TMyApplication("MyApp", hInstance, hPrevInstance,
1pszCmdLine, nCmdShow).Run();
}

Calling initialization functions

TApplication contains three initialization functions:

¢ [InitApplication initializes the first instance of the application
* [nitInstance initializes each instance of the application
¢ InitMainWindow initializes the application’s main window

How these functions are called depends on whether this is the first instance of the
application. InitApplication is called only for the first instance of the application on the
system. InitInstance is the next function called for the first instance. It is the first function
called by additional instances. InitInstance calls InitMainWindow.

If the application is a 32-bit application, each instance appears to be the first instance of
the application, affecting this chain of execution. This is described in the next section.

Initializing the application

Users can run multiple copies of an application simultaneously. From the point of view
of a 16-bit application, first-instance initialization happens only when another copy of
the application is not currently running. Each-instance initialization happens every time
the user runs the application. If a user starts and closes your application, starts it again,
and so on, each instance is a first instance because the instances don’t run at the same
time.

In the case of 32-bit applications, each application runs in its own address space, with no
shared instance data, so that each instance appears as a first instance. Therefore every
time you start a 32-bit application, it performs both first-instance initialization and each-
instance initialization.

If the current instance is a first instance (indicated by the data member hPrevInstance

being set to zero), InitApplication is called. You can override InitApplication in your
derived application class; the default InitApplication has no functionality.

For example, you could use first-instance initialization to make the main window’s
caption indicate whether it’s the first instance. To do this,

1 Add a data member called WindowTitle in your derived application class.
2 In the application class’ constructor, set WindowTitle to “Additional Instance.”
3 Override InitApplication to set WindowTitle to “First Instance.”

If your application is the first instance of the application, InitApplication is called and
overwrites the value of WindowTitle that was set in the constructor. The following
example shows how the code might look:

#include <owl\applicat.h>
#include <owl\framewin.h>

Chapter 2, Application and module objects 21

#include <cstring.h>

class TTestApp : public TApplication
{
public:
TTestApp() : TApplication(“Instance Tester”), WindowTitle(”Additional Instance”) {}

protected: .
string WindowTitle;

void InitApplication() { WindowTitle = string(“First Instance”); }
void InitMainWindow() { SetMainWindow(new TFrameWindow (0, WindowTitle.c_str())); }

}i

int
OwlMain (int /* argc */, char* /* argv */[])
{
return TTestApp().Run();
}

Figure 2.2 shows a number of instances of this application open on the desktop. Note
that the first instance—the upper left one—has the title “First Instance,” while every
other instance has the title “Additional Instance.”

Figure 2.2 First-instance and each-instance initialization

litional Instance

Again, this application doesn’t function as you might expect when it’s built as a 32-bit
application. Because each instance of a 32-bit application perceives itself to be the first
instance of the application, multiple copies running at the same time would all have the
caption “First Instance.”

22 ObjectWindows Programmer’s Guide

Initializing each new instance

A user can run multiple instances (copies) of an application simultaneously. You can
override TApplication::InitInstance to perform any initialization you need to do for each
instance.

InitInstance calls InitMainWindow and then creates and shows the main window you set
up in InitMainWindow. If you override InitInstance, be sure your new InitInstance calls
TApplication::InitInstance. The following example shows how to use InitInstance to load
an accelerator table:

void
TTestApp::InitInstance()
{
TApplication::InitInstance();
HAccTable = LoadAccelerators (MAKEINTRESOURCE (MYACCELS)) ;
}

Initializing the main window

By default, TApplication::InitMainWindow creates a frame window with the same name
as the application object. This window isn’t very useful, because it can’t receive or
process any user input. You must override InitMainWindow to create a window object
that does process user input.

Normally, your InitMainWindow function creates a TFrameWindow or TFrameWindow-
derived object and calls the SetMainWindow function. SetMainWindow takes one
parameter, a pointer to a TFrameWindow object, and returns a pointer to the old main
window (if this is a new application that hasn'’t yet set up a main window, the return
value is zero). Chapter 7 describes window classes and objects in detail.

The following example shows a simple application that creates a TFrameWindow object
and makes it the main window:

#include <owl\applicat.h>
#include <owl\framewin.h>

class TMyApplication: public TApplication
{
public:
TMyApplication(): TApplication() {}
void InitMainWindow();
i

void

TMyApplication::InitMainWindow ()

{
// Just sets the main window with a basic TFrameWindow object
SetMainWindow (new TFrameWindow(0, "My First Main Window"));

}

int
OwlMain(int argc, char* argv(])

{

Chapter 2, Application and module objects 23

return TMyApplication("Wow!").Run();
} ‘

When you run this application, the caption bar is titled “My First Main Window,” and .
not “Wow!”. The application name passed in the TApplication constructor is used only
when you do not provide a main window. Once again, this example doesn’t do a lot;
there is still no provision for the frame window to process any user input. But once you
have derived a window class that does interact with the user, you use the same simple
method to display the window.

Specifying the main window display mode

You can change how your application’s main window is displayed by setting the
TApplication data member nCmdShow, which corresponds to the WinMain parameter
nCmdShow. You can set this variable as soon as the Run function begins, up until the
time you call TApplication::InitInstance. This effectively means you can set nCmdShow in
either the InitApplication or InitMainWindow function.

For example, suppose you want to display your window maximized whenever the user
runs the application. You could set nCmdShow in your InitMainWindow function:

#include <owl\applicat.h>
#include <owl\framewin.h>

class TMyApplication : public TApplication
{
public :
TMyApplication(char far *name) : TApplication(name) {}
void InitMainWindow();

}i

void
TMyApplication::InitMainWindow ()
{
// Sets the main window
SetMainWindow (new TFrameWindow(0, "Maximum Window"));

// Sets nCmdShow so that the window is maximized when it’s created
nCmdShow = SW_SHOWMAXIMIZED;
}

int
OwlMain (int argc, char* argv(])
{
return TMyApplication("Wow!").Run();

}

nCmdShow can be set to any value appropriate as a parameter to the ShowWindow
Windows function or the TWindow::Show member function, such as SW_HIDE,
SW_SHOWNORMAL, SW_NORMAL, and so on.

24 ObjectWindows Programmer’s Guide

Changing the main window

You can use the SetMainWindow function to change your main window during the
course of your application. SetMainWindow takes one parameter, a pointer to a
TFrameWindow object, and returns a pointer to the old main window (if this is a new
application that hasn’t yet set up a main window, the return value is zero). You can use
this pointer to keep the old main window in case you want to restore it. Alternatively,
you can use this pointer to delete the old main window object.

Application message handling

Once your application is initialized, the application object’s MessageLoop starts running.
MessageLoop is responsible for processing incoming messages from Windows. There are
two ways you can refine message processing in an ObjectWindows application:

¢ Extra message processing, by overriding default message handling functions
¢ Idle processing

Extra message processing

TApplication has member functions that provide the message-handling functionality for
any ObjectWindows application. These functions are MessageLoop, IdleAction,
PreProcessMenu, and ProcessAppMsg. See the ObjectWindows Reference Guide for more
information.

Idle processing

Idle processing lets your application take advantage of the idle time when there are no
messages waiting (including user input). If there are no waiting messages, MessageLoop
calls IdleAction.

To perform idle processing, override IdleAction to perform the actual idle processing.
Remember that idle processing takes place while the user isn’t doing anything.
Therefore, idle processing should be short-lasting. If you need to do anything that takes
longer than a few tenths of a second, you should split it up into several processes.

IdleAction’s parameter (idleCount) is a long specifying the number of times IdleAction
was called between messages. You can use idleCount to choose between low-priority
and high-priority idle processing. If idleCount reaches a high value, you know that a
long period without user input has passed, so it’s safe to perform low-priority idle
processing.

Return true from IdleAction to call IdleAction back sooner.

You should always call the base class IdleAction function in addition to performing your
own processing. If you're writing applications for Windows NT, you can also use
multiple threads for background processing.

Chapter 2, Application and module objects 25

Closing applications

Users usually close a Windows application by choosing File | Exit or pressing Alt+F4. It's
important, though, that the application be able to intercept such an attempt, to give the
user a chance to save any open files. TApplication lets you do that.

Changing closing behavior

TApplication and all window classes have or inherit a member function CanClose.
Whenever an application tries to shut down, it queries the main window’s and

- document manager’s CanClose function. (The exception to this is when dialog boxes are
cancelled by the user clicking the Cancel button or pressing Esc; in which case, the
dialog box is simply destroyed, bypassing the CanClose function.) If either of the
application object or the document manager has children, it calls the CanClose function
for each child. In turn, each child calls the CanClose function of each of their children if
any, and so on.

The CanClose function gives each object a chance to prepare to be shut down. It also
gives the object a chance to cancel the shutdown if necessary. When the object has
completed its clean-up procedure, its CanClose function should return true.

If any of the CanClose functions called returns false, the shut-down procedure is
cancelled.

Closing the application

The CanClose mechanism gives the application object, the main window, and any other
windows a chance to either prepare for closing or prevent the closing from taking place.
In the end, the application object approves the closing of the application. The normal
closing sequence looks like this:

1 Windows sends a WM_CLOSE message to the main window.

2 The main window object’s EvClose member function calls the application object’s
CanClose member function.

3 The application object’s CanClose member function calls the main window object’s
CanClose member function.

4 The main window and document manager objects call CanClose for each of their child
windows. The main window and document manager objects” CanClose functions
return true only if all child windows’ CanClose member functions return true.

5 If both the main window and document manager objects” CanClose functions return
true, the application object’s CanClose function returns true.

6 If the application object’s CanClose function returns true, the EvClose function shuts
down the main window and ends the application.

Modifying CanClose

CanClose should rarely return false. Instead, CanClose gives you a chance to perform any
actions necessary to return true. If you override CanClose in your derived application

26 ObjectWindows Programmer’s Guide

objects, the function should return false only if it’s unable to do something necessary for
orderly shutdown or if the user wants to keep the application running.

For example, suppose you are creating a text editor. A possible procedure to follow in
the CanClose member function would be to:

1 Check to see if the editor text had changed.

2 If so, prompt the user to ask whether the text should be saved before closing, using a
message box with Yes, No, and Cancel buttons.

3 Check the return value from the message box:
¢ If the user clicks Yes, save the file, then return true from the CanClose function.

¢ If the user clicks No, simply return true from the CanClose function without saving
the file.

o If the user clicks Cancel, indicating the user doesn’t want to close the application
yet, return false from the CanClose function without saving the file.

Using control libraries

TApplication has functions for loading the Borland Custom Controls Library
(BWCC.DLL for 16-bit applications and BWCC32.DLL for 32-bit applications) and the
Microsoft 3-D Controls Library (contained in the file CTL3DV2.DLL for 16-bit
applications and CTL3D32.DLL for 32-bit applications). These DLLs are widely used to
provide a standard look-and-feel for many applications.

Using the Borland Custom Controls Library

You can open and close the Borland Custom Controls Library using the function
TApplication::EnableBWCC. EnableBWCC takes one parameter, a bool, and returns a
void. When you pass true to EnableBWCC, the function loads the DLL if it's not already
loaded. When you pass false to EnableBWCC, the function unloads the DLL if it’s not
already unloaded.

You can find out if the Borland Custom Controls Library DLL is loaded by calling the
function TApplication::BWCCEnabled. BNCCEnabled takes no parameters. If the DLL is
loaded, BWCCEnabled returns true; if not, BWCCEnabled returns false.

Once the DLL is loaded, you can use all the regular functionality of Borland Custom
Controls Library. EnableBWCC automatically opens the correct library regardless of
whether you have a 16- or a 32-bit application.

Figure 2.3 shows an example of a dialog box using the Borland Custom Controls
Library.

Chapter 2, Application and module objects 27

Figure 23 Dialog box using the Borland Custom Controls Library

About Co mmnnr Drial(ng

Using the Microsoft 3-D Controls Library

You can load and unload the Microsoft 3-D Controls Library using the function

* TApplication::EnableCt13d. EnableCt13d takes one parameter, a bool, and returns a void.
When you pass true to EnableCtl3d, the function loads the DLL if it’s not already loaded.
When you pass false to EnableCtl3d, the function unloads the DLL if it’s not already
unloaded.

Figure 2.4 shows an example of a dialog box using the Microsoft 3-D Controls Library.

Figure 2.4 Dialog box using the Microsoft 3-D Controls 'Library

out Common Dialog Example

You can find out if the Microsoft 3-D Controls Library DLL is loaded by calling the
function TApplication::Cti3dEnabled. Ct13dEnabled takes no parameters. If the DLL is
loaded, Ctl3dEnabled returns true; if not, Ctl3dEnabled returns false.

To use the EnableCtl3d Autosubclass function, load the Microsoft 3-D Controls Library
DLL using EnableCt13d. EnableCti3d Autosubclass takes one parameter, a bool, and returns
a void. When you pass true to EnableCtI3d Autosubclass, autosubclassing is turned on.
When you pass false to EnableCtl3d Autosubclass, autosubclassing is turned off.

When autosubclassing is on, any non-ObjectWindows dialog boxes you create have a
3-D effect. You can turn autosubclassing off immediately after creating the dialog box; it
is not necessary to leave it on when displaying the dialog box.

28 ObjectWindows Programmer’s Guide

Chapter

Interface objects

Instances of C++ classes representing windows, dialog boxes, and controls are called
interface objects. This chapter discusses the general requirements and behavior of
interface objects and their relationship with the interface elements—the actual windows,
dialog boxes, and controls that appear onscreen.

The following figure illustrates the difference between interface objects and interface
elements:

Figure 3.1 Interface elements vs. interface objects

Interface object Interface element
Sample ObjectWindows Program @@
OWL Application
Call to
Windows creates
new HWND

»
>

Window interface

object

Notice how the interface object is actually inside the application object. The interface
object is an ObjectWindows class that is created and stored on the application’s heap or
stack, depending on how the object is allocated. The interface element, on the other
hand, is actually a part of Windows. It is the actual window displayed on the screen.

Chapter 3, Interface objects 29

The information in this chapter applies to all interface objects. This chapter also explains
the relationships between the different interface objects of an application, and describes
the mechanism that interface objects use to respond to Windows messages.

Why interface objects?

One of the greatest difficulties of Windows programming is that controlling interface
elements can be inconsistent and confusing. Sometimes you send a message to a

 window; other times you call a Windows API function. The conventions for similar
types of operations often differ when those operations are performed with different
kinds of elements.

ObjectWindows alleviates much of this difficulty by providing objects that encapsulate
the interface elements. This insulates you from having to deal directly with Windows
and provides a more uniform interface for controlling interface elements.

What do interface objects do?

An interface object provides member functions for creating, initializing, managing, and
destroying its associated interface element. The member functions manage many of the
details of Windows programming for you.

Interface objects also encapsulate the data needed to communicate with the interface
element, such as handles and pointers to child and parent windows.

The relationship between an interface object and an interface element is similar to that
between a file on disk and a C++ stream object. The stream object only represents an
actual file on disk; you manipulate that file by manipulating the stream object. With
ObjectWindows, interface objects represent the interface elements that Windows itself
actually manages. You work with the object, and Windows takes care of maintaining the
Windows element.

The generic interface object: TWindow

ObjectWindows’ interface objects are all derived from TWindow, which defines behavior
common to all window, dialog box, and control objects. Classes like TFrameWindow,
TDialog, and TControl are derived from TWindow and refine TWindow'’s generic behavior
as needed.

As the common base class for all interface objects, TWindow provides uniform ways to:

* Maintain the relationship between interface objects and interface elements, including
creating and destroying the objects and elements

* Handle parent-child relationships between interface objects

* Register new Windows window classes

30 ObjectWindows Programmer’s Guide

Creating interface objects

Note

Setting up an interface object with its associated interface element requires two steps:

1 Calling one of the interface object constructors, which constructs the interface object
and sets its attributes.

2 Creating the interface element by telling Windows to create the interface object with a
new interface element:

¢ When creating most interface elements, you call the interface object’s Create
member function. Create also indirectly calls SetupWindow, which initializes the
interface object by creating an interface element, such as child windows.

* When creating a modal dialog box, you create the interface element by calling the
interface object’s Execute member function. See page 98 for more information on
modal dialog boxes.

The association between the interface object and the interface element is maintained by
the interface object’s HWindow data member, a handle to a window.

When is a window handle valid?

Normally under Windows, a newly created interface element receives a WM_CREATE
message from Windows, and responds to it by initializing itself. ObjectWindows
interface objects intercept the WM_CREATE message and call SetupWindow instead.
SetupWindow is where you want to perform your own initialization.

If part of the interface object’s initialization requires the interface element’s window
handle, you must perform that initialization after you call the base class” SetupWindow.
Prior to the time you call the base class’ SetupWindow, the window and its child
windows haven’t been created; HWindow isn’t valid and shouldn’t be used. You can
easily test the validity of HWindow: if it hasn’t been initialized, it is set to NULL.

Although it might seem odd that you can’t perform all initialization in the interface
object’s constructor, there’s a good reason: once an interface element is created, you
can’t change many of its characteristics. Therefore, a two-stage initialization is required:
before and after the interface element is created.

The interface object’s constructor is the place for initialization before the element is
created and SetupWindow is the place for initialization after the element is created. You
can think of SetupWindow as the second part of the constructor.

Making interface elements visible

Creating an object and its corresponding element doesn’t mean that you'll see
something on the screen. When Windows creates the interface element, Windows
checks to see if the element’s style includes WS_VISIBLE. If it does, Windows displays
the interface element; if it doesn't, the element is created but not displayed onscreen.

TWindow's constructor sets WS_VISIBLE, so most interface objects are visible by default.
But if your object loads a resource, that resource’s style depends on what is defined in its

Chapter 3, Interface objects 31

resource file. If WS_VISIBLE is turned on in the resource’s style, WS_VISIBLE is turned
on for the object. If WS_VISIBLE is not turned on in the resource’s style, WS_VISIBLE is
turned off in the object’s style. You can set WS_VISIBLE and other window styles in the
interface object in the Attr.Style data member.

For example, if you use TDialog to load a dialog resource that doesn’t have WS_VISIBLE
turned on, you must explicitly turn WS_VISIBLE before attempting to display the dialog
using Create.

You can find out whether an interface object is visible by calling IsWindowVisible.
IsWindowVisible returns true if the object is visible.

At any point after the interface element has been created, you can show or hide it by
calling its Show member function with a value of true or false, respectively.

Object properties

In addition to the attributes of its interface element, the interface object possesses certain
attributes as an ObjectWindows object. You can query and change these properties and
characteristics using the following functions:

o SetFlag sets the specified flag for the object.
® ClearFlag clears the specified flag for the object.
* IsFlagSet returns true if the specified flag is set, false if the specified flag is not set.

You can use the following flags with these functions:

» wfAlias indicates whether the object is an alias; see page 77.

wfAutoCreate indicates whether automatic creation is enabled for this object.
» wfFromResource indicates whether the interface element is loaded from a resource.

» wfShrinkToClient indicates whether the frame window should shrink to fit the size of
the client window.

* wfMainWindow indicates whether the window is the main window.
* wfPredefinedClass indicates whether the window is a predefined Windows class.

* wfTransfer indicates whether the window can use the data transfer mechanism. See
Chapter 11 for transfer mechanism information.

Window properties

TWindow also provides a couple of functions that let you change resources and
properties of the interface element. Because TWindow provides generic functionality for
a large variety of objects, it doesn’t provide very specific functions for resource and
property manipulation. High-level objects provide much more specific functionality.
But that specific functionality builds on and is in addition to the functionality provided
by TWindow:

* SetCaption sets the window caption to the string that you pass as a parameter.

32 ObjectWindows Programmer’s Guide

* GetWindowTextTitle returns a string containing the current window caption.

¢ SetCursor sets the cursor of the instance, identified by the TModule parameter, to the
cursor passed as a resource in the second parameter.

* You can set the accelerator table for a window by assigning the resource ID (which
can be a string or an integer) to Attr.AccelTable. For example, suppose you have an
accelerator table resource called MY_ACCELS. You would assign the resource to
Attr.AccelTable like this:

TMyWnd: : TMyWnd (const char* title)
{

Init(0, title);

Attr.AccelTable = MY_ACCELS; // AccelTable can be assigned
}

For more specific information on these functions, refer to the ObjectWindows Reference
Guide.

Destroying interface objects

Destroying interface objects is a two-step process:

¢ Destroying the interface element
¢ Deleting the interface object

You can destroy the interface element without deleting the interface object, if you need
to create and display the interface element again.

Destroying the interface element

Destroying the interface element is the responsibility of the interface object’s Destroy
member function. Destroy destroys the interface elements by calling the DestroyWindow
API function. When the interface element is destroyed, the interface object’s HWindow
data member is set to zero. Therefore, you can tell if an interface object is still associated
with a valid interface element by checking its HWindow.

When a user closes a window on the screen, the following things happen:
¢ Windows notifies the window.

¢ The window goes through the CanClose mechanism to verify that the window should
be closed. :

* If CanClose approves the closing of the window, the interface element is destroyed
and the interface object is deleted.

Deleting the interface object

If you destroy an interface element yourself so that you can redisplay the interface object
later, you must make sure that you delete the interface object when you're done with it.

Chapter 3, Interface objects 33

Because an interface object is nothing more than a regular C++ object, you can delete it
using the delete statement if you’ve dynamically allocated the object with new.

The following code illustrates how to destroy the interface element and the interface
object.

TWindow *window = new TWindow(0, "My Window");
/...

window->Destroy () ;
delete window;

Parent and child interface elements

In a Windows application, interface elements work together through parent-child links.
A parent window controls its child windows, and Windows keeps track of the links.
ObjectWindows maintains a parallel set of links between corresponding interface
objects.

A child window is an interface element that is managed by another interface element.
For example, list boxes are managed by the window or dialog box in which they appear.
They are displayed only when their parent windows are displayed. In turn, dialog
boxes are child windows managed by the windows that create them.

When you move or close the parent window, the child windows automatically close or
move with it. The ultimate parent of all child windows in an application is the main
window (there are a couple of exceptions: you can have windows and dialog boxes
without parents and all main windows are children of the Windows desktop).

Child-window lists

When you construct a child-window object, you specify its parent as a parameter to its
constructor. A child-window object keeps track of its parent through the Parent data
member. A parent keeps track of its child-window objects in a private data member
called ChildList. Each parent maintains its list of child windows automatically.

You can access an object’s child windows using the window iterator member functions
FirstThat and ForEach. See page 37 for more irformation on these functions.

Constructing child windows

As with all interface objects, child-window objects get created in two steps: constructing
the interface object and creating the interface element. If you construct child-window
objects in the constructor of the parent window, their interface elements are
automatically created when the parent is, assuming that automatic creation is enabled
for the child windows. By default, automatic creation is enabled for all ObjectWindows
objects based on TWindow, with the exception of TDialog. See page 37 for more
information on automatic creation.

34 ObjectWindows Programmer’s Guide

For example, the constructor for a window object derived from TWindow that contains
three button child windows would look like this:

TTestWindow: : TTestWindow (TWindow *parent, const char far *title)

{

Init (parent, title);

buttonl

button2

}

new TButton(this, ID_BUTTONL,
190, 270, 65, 20,
new TButton(this, ID_BUTTON2,
275, 270, 65, 20,
new TButton(this, ID_BUTTON3,

360, 270, 65, 20,

"Show",
false);
"Hide",
false);

"Transfer",

Note the use of the this pointer to link the child windows with their parent. Interface
object constructors automatically add themselves to their parents’ child window lists.
When an instance of TTestWindow is created, the three buttons are automatically

displayed in the window.

Creating child interface elements

If you don’t construct child-window objects in their parent window object’s constructor,
they won’t be automatically created and displayed when the parent is. You can then
create them yourself using Create or, in the case of modal dialog boxes, Execute. In this
context, creating means instantiating an interface element.

For example, suppose you have two buttons displayed when the main window is
created, one labeled Show and the other labeled Hide. When the user presses the Show
button, you want to display a third button labeled Transfer. When the user presses the
Hide button, you want to remove the Transfer button:

class TTestWindow :

{
public:

public TFrameWindow

TestWindow (TWindow *parent, const char far *title);

void

EvButtonl ()

{

if (!button3->HWindow)
button3->Create();

}

void

EvButton2 ()

{

if (button3->HWindow)
button3->Destroy();

}

void

Chapter 3, Interface objects 35

36

EvButton3 ()
{

MessageBeep(-1) ;
}

protected:
TButton *buttonl, *button2, *button3;

DECLARE_RESPONSE_TABLE (TTestWindow) ;
}i

DEFINE_RESPONSE_TABLEL (TTestWindow, TFrameWindow)
EV_COMMAND (ID_BUTTON1, EvButtonl),
EV_COMMAND (ID_BUTTON2, EvButton2),
EV_COMMAND (ID_BUTTON3, EvButton3),
END_RESPONSE_TABLE;

TTestWindow: : TTestWindow (TWindow *parent, const char far *title)
{
Init (parent, title);
buttonl = new TButton(this, ID_BUTTON1, "Show",
10, 10, 75, 25, false);
button2 = new TButton(this, ID_BUTTONZ2, "Hide",
95, 10, 75, 25, false);
button3 = new TButton(this, ID_BUTTON3, "Transfer",
180, 10, 75, 25, false);
button3->DisableAutoCreate();
}

The call to DisableAutoCreate in the constructor prevents the Transfer button from being
displayed when TTestWindow is created. The conditional tests in the EvButton1 and
EvButton2 functions work by testing the validity of the HWindow data member of the
button3 interface object; if the Transfer button is already being displayed, EvButtonl
doesn’t try to display it again, and EvButton2 doesn't try to destroy the Transfer button if
it isn’t being displayed.

Destroying windows

Destroying a parent window also destroys all of its child windows. You do not need to
explicitly destroy child windows or delete child window interface objects. The same is
true for the CanClose mechanism; CanClose for a parent window calls CanClose for all its
children. The parent’s CanClose returns true only if all its children return true for
CanClose.

When you destroy an object’s interface element, it enables automatic creation for all of
its children, regardless of whether automatic creation was on or off before. This way,
when you create the parent, all the children are restored in the state they were in before
their parent was destroyed. You can use this to destroy an interface element, and then
re-create it in the same state it was in when you destroyed it.

To prevent this, you must explicitly turn off automatic creation for any child objects you
don’t want to have created automatically.

ObjectWindows Programmer’s Guide

Automatic creation

When automatic creation is enabled for a child interface object before its parent is
created, the child is automatically created at the same time the parent is created. This is
true for all the parent object’s children.

To explicitly exclude a child window from the automatic create-and-show mechanism,
call the DisableAutoCreate member function in the child object’s constructor. To explicitly
add a child window (such as a dialog box, which would normally be excluded) to the
automatic create-and-show mechanism, call the EnableAutoCreate member function in
the child object’s constructor.

By default automatic creation is enabled for all ObjectWindows classes except for dialog
boxes.

Manipulating child windows

TWindow provides two iterator functions, ForEach and FirstThat, that let you perform
operations on either all the children in the parent’s child list or a single child at a time.
TWindow also provides a number of other functions that let you determine the number
of children in the child list, move through them one at a time, or move to the top or
bottom of the list.

Operating on all children: ForEach

You might want to perform some operation on each of a parent window’s child
windows. The iterator function ForEach takes a pointer to a function. The function can be
either a member function or a stand-alone function. The function should take a TWindow
* and a void * argument. ForEach calls the function once for each child. The child is
passed as the TWindow *. The void * defaults to 0. You can use the void * to pass any
arguments you want to your function.

After ForEach has called your function, you often need to be careful when dealing with
the child object. Although the object is passed as a TWindow *, it is actually usually a
descendant of TWindow. To make sure the child object is handled correctly, you should
use the DYNAMIC_CAST macro to cast the TWindow * to a TClass *, where TClass is
whatever type the child object is.

For example, suppose you want to check all the check box child windows in a parent
window:

void
CheckTheBox (TWindow* win, void*)
{
TCheckbox *cb = DYNAMIC_CAST (win, TCheckbox);
if(cb)
cb->Check() ;
}

void
TMDIFileWindow: : CheckAllBoxes ()
{

Chapter 3, Interface objects 37

ForEach (CheckTheBox) ;
}

If the class you're downcasting to (in this case from a TWindow to a TCheckbox) is
virtually derived from its base, you must use the DYNAMIC_CAST macro to make the
assignment. In this case, TCheckbox isn’t virtually derived from TWindow, making the
DYNAMIC_CAST macro superfluous in this case.

DYNAMIC_CAST returns 0 if the cast could not be performed. This is useful here,
because not all of the children are necessarily of type TCheckbox. If a child of type
TControlBar was encountered, the value of cb would be 0, thus assuring that you don’t
try to check a control bar.

Finding a specific child
You might also want to perform a function only on a specific child window. For

example, if you wanted to find the first check box that’s checked in a parent window
with several check boxes, you would use TWindow::FirstThat:

bool
IsThisBoxChecked (TWindow* cb, void*)
{
return cb ? (cb->GetCheck == BF_CHECKED) : false;
}

TCheckBox*
TMDIFileWindow: :GetFirstChecked ()
{
return FirstThat (IsThisBoxChecked);
}

Working with the child list

In addition to the iterator functions ForEach and FirstThat, TWindow prov1des a number
of functions that let you locate and manipulate a single child window:

* NumChildren returns an unsigned. This value indicates the total number of child
windows in the child list.

GetFirstChild returns a TWindow * that points to the first entry in the child list.
GetLastChild returns a TWindow * that points to the last entry in the child list.
Next returns a TWindow * that points to the next entry in the child list.

Previous returns a TWindow * that points to the prior entry in the child list.

Registering window classes

Whenever you create an interface element from an interface object using the Create or
Execute functions, the object checks to see if another object of the same type has
registered with Windows. If so, the element is created based on the existing Windows
registration class. If not, the object automatically registers itself, then is created based on
the class just registered. This removes the burden from the programmer of making sure
all window classes are registered before use.

38 ObjectWindows Programmer’s Guide

Chapter

Event handling

This chapter describes how to use ObjectWindows response tables. Response tables are
the method you use to handle all events in an ObjectWindows application. There are
four main steps to using ObjectWindows response tables:

1 Declare the response table

2 Define the response table

3 Define the response table entries

4 Declare and define the response member functions

To use any of the macros described in this chapter, the header file owl\eventhan.h must
be included. This file is already included by owl\module.h (which is included by owl\
applicat.h) and owl\window.h, so there is usually no need to explicitly include this file.

ObjectWindows response tables are a major improvement over other methods of
handling Windows events and messages, including switch statements (such as those in
standard C Windows programs) and schemes used in other types of application
frameworks. Unlike other methods of event handling, ObjectWindows response tables
provide:

¢ Automatic message “cracking” for predefined command messages, eliminating the
need for manually extracting the data encoded in the WPARAM and LPARAM
values.

¢ Compile-time error and type checking, which checks the event-handling function’s
return type and parameter types.

¢ Ability to have one function handle multiple messages.

¢ Support for multiple inheritance, enabling each derived class to build on top of the
base class or classes’ response tables.

¢ Portability across platforms by not relying on product-specific compiler extensions.

¢ Easy handling of command, registered, child ID notification, and custom messages,
using the predefined response table macros.

Chapter 4, Event handling 39

Declaring response tables

Because the response table is a member of an ObjectWindows class, you must declare
the response table when you define the class. ObjectWindows provides the
DECLARE_RESPONSE_TABLE macro to hide the actual template syntax that response
tables use.

The DECLARE_RESPONSE_TABLE macro takes a single argument, the name of the
class for which the response table is being declared. Add the macro at the end of your
class definition. For example, TMyFrame, derived from TFrameWindow, would be
defined like this:

class TMyFrame : public TFrameWindow

{

DECLARE_RESPONSE_TABLE (TMyFrame) ;
}i

It doesn’t matter what the access level is at the point where you declare the response
table. That is, it doesn’t matter if the declaration is in a position where it would public,
protected, or private. The DECLARE_RESPONSE_TABLE macro sets up its own access
levels when it’s expanded by the preprocessor. By the same token, you must make
certain that the DECLARE_RESPONSE_TABLE macro is the last element in your class
declaration; otherwise, any members declared after the macro will have unpredictable
access levels.

Defining response tables

Once you've declared a response table, you must define it. Response table definitions
must appear outside the class definition.

ObjectWindows provides the DEFINE_RESPONSE_TABLEX macro to help define
response tables. The value of X depends on your class’ inheritance, and is a number
equal to the number of immediate base classes your class has.
END_RESPONSE_TABLE ends the event response table definition.

To define your response table,

1 Begin the response table definition for your class using the
DEFINE_RESPONSE_TABLEX macro. DEFINE_RESPONSE_TABLEX takes X + 1

arguments:
¢ The name of the class you're defining the response table for
* The name of each immediate base class

2 Fill in the response table entries (see the next section for information on how to do
this step).

3 End the response table definition using the END_RESPONSE_TABLE macro.

For example, the response table definition for TMyFrame, derived from TFrameWindow,
would look like this:

40 ObjectWindows Programmer’s Guide

DEFINE_RESPONSE_TABLEL (TMyFrame, TFrameWindow)
EV_WM_LBUTTONDOWN,
EV_WM_LBUTTONUP,
EV_WM_MOUSEMOVE,
EV_WM_RBUTTONDOWN,
END_RESPONSE_TABLE;

You must always place a comma after each response table entry and a semicolon after
the END_RESPONSE_TABLE macro.

Defining response table entries

Response table entries associate a Windows event with a particular function. When a
window or control receives a message, it checks its response table to see if there is an
entry for that message. If there is, it passes the message on to that function. If not, it
passes the message up to its parent. If the parent is not the main window, it passes the
message up to its parent. Once the parent is the main window, it passes the message on
to the application object. If the application object doesn’t have a response entry for that
particular message, the message is handled by ObjectWindows default processing. This
is illustrated in Figure 4.1.

Chapter 4, Event handling 41

Figure 4.1 Window message processing

MS Windows

V

N

Get this pointer

V

StdWndProc

v ' v

Non-
commands
?

Response
Table
entry?

Response
Table
entry?

Call
default
proc%ssing

Is this

Receiver

window
?

omman
CmXxxx DefWindowProc

\/
Enable Command
Sender

Is this
Receiver
wingow

Disable Command
enabler
47 v v

P virtual |7 response table

42 ObjectWindows Programmer’s Guide

ObjectWindows provides a large number of macros for response table entries. These
include:

¢ Command message macros that let you handle command messages and route them
to a specified function.

¢ Standard Windows message macros for handling Windows messages.
¢ Registered messages (messages returned by RegisterWindowMessage).

¢ Child ID notification macros that let you handle child ID notification codes at the
child or the parent.

* Control notification macros that handle messages from specialized controls such as
buttons, combo boxes, edit controls, list boxes, and so on.

* Document manager message macros to notify the application that a document or
view has been created or destroyed and to notify views about events from the
document manager.

e VBX control notifications.

Command message macros

ObjectWindows provides a large number of macros, called command message macros, that
let you assign command messages to any function. The only requirement is that the
signature of the function you specify to handle a message must match the signature
required by the macro for that message. The different types of command message
macros and the corresponding function signatures are listed in Table 4.1:

Table4.1 Command message macros

EV_COMMAND(CMD, UserName) void UserName() Calls UserName when the
‘ CMD message is received.

EV_COMMAND_AND_ID(CMD, UserName) void UserName(WPARAM) Calls UserName when the
CMD message is received.
Passes the command’s ID
(WPARAM parameter) to
UserName.

EV_COMMAND_ENABLE(CMD, UserName) void UserName(TCommandEnabler&) Used to automatically enable
and disable command
controls such as menu items,
tool bar buttons, and so on.

Chapter 4, Event handling 43

There are other message macros that let you pass the raw, improcessed message on to
the event-handling function. These message macros handle any kind of generic message
and registered message.

Table 4.2

Mes

i

Sage macros

@ s

EV_MESSAGEMSG, UserName) LRESULT UserName(WPARAM, LPARAM) - Calls UserName when the user-
defined message MSG is received.
MSG is passed to UserName
without modification.

EV_REGISTERED(MSG, UserName) LRESULT UserName(WPARAM, LPARAM) Calls UserName when the
registered message MSG is
received. MSG is passed to
UserName without modification.

It is very important that you correctly match the function signature with the macro that
you use in the response table definition. For example, suppose you have the following
code:

class TMyFrame : public TFrameWindow

{
public: :
TMyFrame (TWindow* parent, const char* name) : TFrameWindow(parent, name) {}

protected:
void CmAdvise();

DECLARE_RESPONSE_TABLE (TMyFrame) ;
}i

DEFINE_RESPONSE_TABLE (TMyFrame, TFrameWindow)
EV_COMMAND_AND_ID(CM_ADVISE, CmAdvise),
END_RESPONSE_TABLE;

void

TMyFrame: :CmAdvise()

{

b |
This code produces a compile-time error because the EV_COMMAND_AND_ID macro
requires a function that returns void and takes a single WPARAM parameter. In this
example, the function correctly returns void, but incorrectly takes no parameters. To

make this code compile correctly, change the member declaration and function
definition of TMyFrame:CmAduvise to:

void TMyFrame::CmAdvise (WPARAM cmd) ;

44 ObjectWindows Programmer’s Guide

Windows message macros

ObjectWindows provides predefined macros for all standard Windows messages. You
can use these macros to handle standard Windows messages in one of your class’
member functions.

To find the name of the macro to handle a particular predefined message, preface the
message name with EV_. This macro passes the message on to a function with a
predefined name. To determine the function name, remove the WM_ from the message
name, add Ev to the remaining part of the message name, and convert the name to
lowercase with capital letters at word boundaries. Table 4.3 shows some examples.

Table 4.3 Sample message macros and function names

Message " Response table ma

WM_PAINT EV_WM_PAINT EvPaint
WM_LBUTTONDOWN EV_WM_LBUTTONDOWN EvLButtonDown
WM_MOVE EV_WM_MOVE EvMove

The advantage to using these message macros is that the message is automatically
“cracked,” that is, the parameters that are normally encoded in the LPARAM and
WPARAM parameters are broken out into their constituent parts and passed to the
event-handling function as individual parameters.

For example, the EV_WM_CTLCOLOR macro passes the cracked parameters to an
event-handling function with the following signature:

HBRUSH EvCtlColor (HDC hDCChild, HWND hWndChild, uint nCtrlType);

Message cracking provides for strict C++ compile-time type checking, and helps you
catch errors as you compile your code rather than at run time. It also helps when
migrating applications from 16-bit to 32-bit and vice versa. Chapter 3 in the
ObjectWindows Reference Guide lists each predefined message, its corresponding
response table macro, and the signature of the corresponding event-handling function.

To use a predefined Windows message macro:
1 Add the macro to your response table.

2 Add the appropriate member function with the correct name and signature to your
class.

3 Define the member function to handle the message however you want.

For example, suppose you wanted to perform some operation when your TMyFrame
window object received the WM_ERASEBKGND message. The code would look like
this:

class TMyFrame : public TFrameWindow {

public:
bool EvEraseBkgnd (HDC) ;

DECLARE_RESPONSE_TABLE (TMyFrame) ;
}i

Chapter 4, Event handling 45

DEFINE_RESPONSE_TABLE (TMyFrame, TFrameWindow)
EV_WM_ERASEBKGND,
END_RESPONSE_TABLE;

bool
TMyFrame: : EvEraseBkgnd (HDC. hdc)
{

}

Child ID notification message macros

The child ID notification message macros provide a number of different ways to handle
child ID notification messages. You can

¢ Handle notification codes from multiple children with a single function
* Pass all notification codes from a child to a response window
¢ Handle the notification code at the child

Use these macros to facilitate controlling and cdmmuru'cating with child controls. The
different types of child ID notification message macros are listed in the following table.

Table4.4 Child notification message macros

EV_CHILD_NOTIFY(ID, Code, UserName) void UserName() Dispatches the message and
notification code to the
member function UserName.

EV_CHILD_NOTIFY_AND_CODE(d, Code, void UserName(WPARAM code) Dispatches message Id with

UserName) the notification code Code to
the function UserNarme.

EV_CHILD_NOTIFY_ALL_CODES(Id, UserName) void UserName(WPARAM code) Dispatches message Id to the
function UserName,
regardless of the message’s
notification code.

EV_CHILD_NOTIFY_AT_CHILD(Code, void UserName() Dispatches the notification

UserName)

code Code to the child-object
member function UserName.

These macros provide different methods for handling child ID notification codes. There
are described in the next sections.

EV_CHILD_NOTIFY

If you want child ID notifications to be handled at the child’s parent window, use
EV_CHILD_NOTIFY, which passes the notification code as a parameter and lets
multiple child ID notifications be handled with a single function. This also prevents
having to handle each child’s notification message in separate response tables for each
control. Instead, each message is handled at the parent, enabhng, for example, a dialog
box to handle all its controls in its response table

46 ObjectWindows Programmer’s Guide

For example, suppose you have a dialog box called TTestDialog that has four buttons.
The buttons IDs are ID_BUTTON1, ID_BUTTONZ2, ID_BUTTONS, and ID_BUTTON4.
When the user clicks a button, you want a single function to handle the event, regardless
of which button was pressed. If the user double-clicks a button, you want a special
function to handle the event. The code would look like this:

class TTestDialog : public TDialog
{
public:
TTestDialog (TWindow* parent, TResId resId);

void HandleClick();

void HandleDblClickl(

void HandleDblClick2(
(
(

);
)
):
)

I

void HandleDblClick3
void HandleDblClick4

DECLARE_RESPONSE_TABLE (TTestDialog) ;
}i

DEFINE_RESPONSE_TABLEL (TTestDialog, TDialog)
EV_CHILD_NOTIFY (ID_BUTTON1, BN_CLICKED, HandleClick),
EV_CHILD_NOTIFY (ID_BUTTONZ2, BN_CLICKED, HandleClick),
EV_CHILD_NOTIFY(ID_BUTTON3, BN_CLICKED, HandleClick),
EV_CHILD_NOTIFY (ID_BUTTON4, BN_CLICKED, HandleClick),
EV_CHILD_NOTIFY(ID_BUTTON1, BN_DOUBLECLICKED, HandleDblClickl),
EV_CHILD_NOTIFY (ID_BUTTON2, BN_DOUBLECLICKED, HandleDblClick2),
EV_CHILD_NOTIFY(ID_BUTTON3, BN_DOUBLECLICKED, HandleDblClick3)

EV_CHILD_NOTIFY (ID_BUTTON4, BN_DOUBLECLICKED, HandleDblClick4),

END_RESPONSE_TABLE;

EV_CHILD_NOTIFY_ALL_CODES

If you want all notification codes from the child to be passed to the parent window, use
EV_CHILD_NOTIFY_ALL_CODES, the generic handler for child ID notifications. For
example, the sample program BUTTONX.CPP defines this response table:

i

DEFINE_RESPONSE_TABLEL (TTestWindow, TWindow)
EV_COMMAND (ID_BUTTON, HandleButtonMsg),
EV_COMMAND (ID_CHECKBOX, HandleCheckBoxMsg),
EV_CHILD_NOTIFY_ALL_CODES (ID_GROUPBOX, HandleGroupBoxMsg),
END_RESPONSE_TABLE;

This table handles button, check box, and group box messages. In this case, the parent
window (TTestWindow) gets all notification messages sent by the child
(ID_GROUPBOX). The EV_CHILD_NOTIFY_ALL_CODES macro uses the user-
defined function HandleGroupBoxMsg to process these messages. As a result, if the user
clicks the mouse on one of the group box radio buttons, a message box appears that tells
the user which button was selected.

Chapter 4, Event handling 47

EV_CHILD_NOTIFY_AND_CODE
You can use the macro EV_CHILD_NOTIFY_AND_CODE if you want the parent
window to handle more than one message using the same function. For example:

DEFINE_RESPONSE_TABLEL (TTestWindow, TWindow)
EV_CHILD_NOTIFY_AND_CODE (ID_GROUPBOX, SomeNotifyCode, HandleThisMessage),
EV_CHILD_NOTIFY_AND_CODE (ID_GROUPBOX, AnotherNotifyCode, HandleThisMessage),
END_RESPONSE_TABLE; /

. If your window has several different messages to handle and uses several different
functions to handle these messages, it’s better to use EV_CHILD_NOTIFY_AND_CODE
instead of EV_CHILD_NOTIFY because EV_CHILD_NOTIFY message-handling
function receives no parameters and therefore doesn’t know which message it’s
handling.

EV_CHILD_NOTIFY_AT CHILD
To handle child ID notifications at the child window, use
EV_CHILD_NOTIFY_AT_CHILD. The sample program NOTITEST.CPP contains the
following response table:

DEFINE_RESPONSE_TABLEL (TBeepButton, TButton)
EV_NOTIFY_AT_CHILD(BN_CLICKED, BnClicked),
END_RESPONSE_TABLE;

This response table uses the macro EV_NOTIFY_AT_CHILD to tell the child window
(TBeepButton) to handle the notification code (BN_CLICKED) using the function,
BnClicked.

48 ObjectWindows Programmer’s Guide

Chapter

Command enabling

This chapter discusses the ObjectWindows implementation of command enabling. Most
applications provide menu items and control bar or palette button gadgets to access the
application’s functionality. Some of the commands accessed by these controls are not
always available. The menu items and buttons that access these commands should
somehow indicate to the application’s user when the command isn’t available. These
menu items and button gadgets can also indicate an application state, such as the
current character format, whether a feature is turned on or off, and so on.

ObjectWindows provides a mechanism, known as command enabling, that you can use to
perform a number of important tasks. This chapter describes how to use
ObjectWindows command enabling to

* Turn menu choices and button gadgets on and off

® Set the state of toggled items such as checked menu items and control bar buttons
that can be clicked on and off

¢ Change the text of menu items

For information on menus, please see Chapter 8. For information on button gadgets,
such as control bar buttons or palette buttons, and gadget windows, such as control bars
and status bars, see Chapter 12.

Handling command-enabling messages

The basic idea behind ObjectWindows command enabling is that the decision to enable
or disable a function should be made by the object that handles the command.
ObjectWindows does this by sending the WM_COMMAND_ENABLE message
through the same command chain asa WM_COMMAND event. The event is then
received by the window that implements the functionality that you are enabling or
disabling. The command event chain is discussed in Chapter 4.

Chapter 5, Command enabling 49

50

When a WM_COMMAND_ENABLE message is sent depends on the type of command
item that is affected. TFrameWindow performs command enabling for menu items when
the user clicks a menu, spawning a WM_INITMENUPOPUP message. Gadget windows
perform command enabling for control bar buttons during the window’s idle
processing. ’

To handle command-enabling messages for a particular function,

1 Add a member function to the window class to handle the command-enabling
message. This function should return void and take a single parameter, a reference to
a TCommandEnabler object. The abstract base class TCommandEnabler is declared in
the ObjectWindows header file window.h.

2 Place the EV_COMMAND_ENABLE macro in the parent window’s response table.
This macro takes two parameters, the command identifier and the name of the
handler function.

Suppose you have a frame window class that handles a File | Save menu command that
uses the command identifier CM_FILESAVE. The class definition would look
something like this:

class T™MyFrame : public TFrameWindow
{
public:
TMyFrame (TWindow *parent = 0, char *title = 0)
: TFrameWindow (parent, title), IsDirty(false) {}

protected:
void CmFileSave();

DECLARE_RESPONSE_TABLE (TMyFrame) ;
bi

DEFINE_RESPONSE_TABLE (TMyFrame)
EV_COMMAND (CM_FILESAVE, CmFileSave),
END_RESPONSE_TABLE;

Suppose you don’t want the user to be able to access the File | Save command if the file
hasn’t been modified since it was opened or last saved. Adding a handler function and
response table macro to affect the CmFileSave function looks something like this:

class TMyFrame : public TFrameWindow
{
public:
TMyFrame (TWindow *parent = 0, char *title = 0)
: TFrameWindow (parent, title), IsDirty(false) {}

protected:
void CmFileSave();

// This is the command-enabling handler function.
void CeFileSave (TCommandEnabler& commandEnabler);

DECLARE_RESPONSE_TABLE (TMyFrame) ;

ObjectWindows Programmer’s Guide

}i

DEFINE_RESPONSE_TABLE (TMyFrame)
EV_COMMAND (CM_FILESAVE, CmFileSave),
EV_COMMAND_ENABLE (CM_FILESAVE, CeFileSave),
END_RESPONSE_TABLE;

Notice that the EV_COMMAND macro and the EV_COMMAND_ENABLE macro both
use the same command identifier. Often a single function can be accessed through
multiple means. For example, many applications let you open a file through a menu
item and also through a button on the control bar. Command enabling in
ObjectWindows lets you do command enabling for all means of accessing a function
through a single common identifier. The abstraction of command enabling through
command-enabling objects saves a great deal of time by removing the need to write
multiple command-enabling functions for each different command item.

Working with command-enabling objects

Once you have received a command-enabling message and the handler function has
been called, you can perform a number of actions using the command-enabling object
passed to the handler function. This section discusses the various types of
ObjectWindows command-enabling objects.

ObjectWindows command-enabling objects

ObjectWindows provides three predefined command-enabling objects:

¢ TCommandEnabler is the abstract base class for command-enabling objects. It’s
declared in the ObjectWindows header file window.h.

* TMenultemEnabler is the command-enabling class for menu items. This class enables
and disables menu items, sets check marks by menu items, and changes menu item
text. This class is declared in the ObjectWindows source file FRAMEWIN.CPP.

¢ TButtonGadgetEnabler is the command-enabling class for button gadgets. This class
enables and disables button gadgets and toggles boolean button gadgets. This class is
declared in the ObjectWindows source file BUTTONGA.CPP.

TCommandEnabler: The command-enabling interface

Although in your command-enabling functions you always manipulate an object
derived from TCommandEnabler as opposed to an actual TCommandEnabler object, in
practice it appears as if you are working with a TCommandEnabler object.
TCommandEnabler provides a consistent interface for the other command-enabling
classes, which implement the appropriate functionality for the type of command object
that each class services. Because you never create an instance of the TMenultemEnabler
and TButtonGadgetEnabler classes, they are declared in source files instead of header
files. You don’t need to be able to create one of these objects; instead you work with the

Chapter 5, Command enabling 51

basic TCommandEnabler interface, while your handler functions are ignorant of the
specific command tool that is being handled.

This section describes the TCommandEnabler function interface. There are two
approaches to the TCommandEnabler function interface:

e If you are using existing command-enabling classes, you need to be familiar with the
basic interface as implemented in the TCommandEnabler class.

e If you are deriving new command-enabling classes, you need to be familiar with the
actual implementation of functionality in the TCommandEnabler base class.

This section discusses both approaches and points out which aspects are relevant to
using existing classes and which are relevant to creating new classes.

Functions
TCommandEnabler has a number of member functions:

 Because TCommandEnabler is an abstract class, its constructor is of interest only when
you are deriving a new command-enabling class. The TCommandEnabler constructor
takes two parameters, a uint and an HWND. The uint is the command identifier. The
constructor initializes the Id data member with the value of the command identifier.
The HWND is the handle to the window that received the command-enabling
message. The constructor initializes HWndReceiver with the value of the HWND
parameter.

e Enable takes a single bool parameter and returns void. The bool parameter indicates
whether the command should be enabled or disabled; if it’s true, the command is
enabled, if it’s false, the command is disabled.

From the standpoint of deriving new classes, all that TCommandEnabler::Enable does is
perform initialization of data members in the base class. Any other actions required
for enabling or disabling a command item must be handled in the derived class. For
example, TMenultemEnabler performs all the work necessary to turn menu items on
or off. Derived classes’ Enable functions should always call TCommandEnabler::Enable.

o SetText takes a single parameter, a const char far*, and returns void. This function
sets the text of the command item to the string passed in the character array
parameter. SetText has no effect on button gadgets.

SetText is declared as a pure virtual; you must declare and define SetText in classes
derived from TCommandEnabler. Whatever steps are needed to implement this
functionality in your command item must be done in the derived SetText function. If,
as is the case in TButtonGadgetEnabler, there is no valid application for the SetText
function, you can simply implement it as an empty function.

o SetCheck takes a single int parameter and returns void. This function toggles the
command item on or off, depending on the value of the int parameter. This
parameter can be one of three enumerated values defined in the TCommandEnabler
class, Unchecked, Checked, or Indeterminate. Unchecked sets the state of the command
item to be unchecked, Checked sets the state of the command item to be checked, and
Indeterminate sets the command item to its indeterminate state. The nature of the
indeterminate state is defined by the command item:

52 ObjectWindows Programmer’s Guide

e For menu items, the indeterminate state is the same as unchecked.

¢ For button gadgets, the indeterminate state is an intermediate state between
checked and unchecked.

SetCheck is declared as a pure virtual; you must declare and define SetCheck in classes
derived from TCommandEnabler. Whatever steps are needed to implement this
functionality in your command item must be done in the derived SetCheck function.

* GetHandled takes no parameters and returns bool. This function returns true if the
command enabler has been handled by calling the Enable function. Otherwise, it
returns false.

o [sReceiver takes a single HWND parameter and returns a bool value. IsReceiver
returns true if the HWND parameter matches the receiver HWND passed into the
TCommandEnabler constructor and stored in HWndReceiver. Otherwise, it returns
false.

Data members
TCommandEnabler contains three data members:

* Idis the only public data member. This member contains the identifier for the
command. It is declared as a const uint and is initialized in the constructor. Once
initialized, it cannot be modified.

* HWndReceiver contains the handle of the window that implements the command.
This is a protected data member and cannot be directly accessed unless you are
deriving a class from TCommandEnabler. HWndReceiver can be accessed indirectly by
calling the IsReceiver function, which compares the value of the HWND parameter
passed in to the value of HWndReceiver.

* Handled indicates whether the command-enabling object has been dealt with. It is
initialized to false in the TCommandEnabler constructor and set to true in
TCommandEnabler::Enable. This is a protected data member and cannot be directly
accessed unless you are deriving a class from TCommandEnabler. Handled can be
accessed indirectly by calling the GetHandled function, which returns the value of
Handled.

Common command-enabling tasks

This section describes how to perform some of the more common tasks for which you'll
use command enabling, including

¢ Enabling and disabling command items
¢ Changing menu item text
¢ Toggling command items

Enabling and disabling command items

Enabling and disabling command items is as simple as calling the Enable function in
your handler function. You decide the criteria for enabling and disabling a particular

Chapter 5, Command enabling 53

item. For example, if a particular library is not available, you may want to disable any
commands that access that library. If your application handles files in a number of
different formats, you may want to disable commands that aren’t appropriate to the
current format.

To enable or disable a command,

1 Add the command-enabling handler function and response table macro to your
window class as described on page 49.

2 Define the handler function.

3 Inside the handler function, call the Enable member function of the command-
enabling object passed into the handler function. The Enable function takes a single
bool parameter. Call Enable with the value of the parameter as true to enable the
command, and with the value of the parameter as false to disable the command.

Here’s the earlier example class from page 50, but with a bool flag, IsDirty, added to tell
if the file has been modified since it was opened or last saved, and the CeFileSave
function added to enable and disable the File | Save command:

class TMyFrame : public TFrameWindow

{
public:
TMyFrame (TWindow *parent = 0, char *title = 0)
: TFrameWindow (parent, title), IsDirty(false) {}

protected:
bool IsDirty;

void CmFileSave();

// This is the command-enabling handler function.
. void CeFileSave(TCommandEnabler& commandEnabler);

DECLARE_RESPONSE_TABLE (TMyFrame) ;
bi

DEFINE_RESPONSE_TABLE (TMyFrame)
EV_COMMAND (CM_FILESAVE, CmFileSave),
EV_COMMAND_ENABLE (CM_FILESAVE, CeFileSave),
END_RESPONSE_TABLE;

void
TMyFrame: :CeFileSave (TCommandEnabler& ce)

{
ce.Enable(IsDirty);

}

CeFileSave checks the IsDirty flag. If IsDirty is false (the file has not been modified), then
disable the CmFileSave command by calling Enable, passing false as the parameter. If
IsDirty is true (the file has been modified), then enable the CmFileSave command,
passing true as the parameter. Because you want to call Enable with the true parameter
when IsDirty is true and vice versa, you can just pass IsDirty as the parameter to Enable.

54 ObjectWindows Programmer’s Guide

Note

This method of enabling and disabling a command works for both menu items and
button gadgets. In the preceding example, if you have both a control bar button and a
menu item that send the CM_FILESAVE command, both commands are implemented
in the CmFileSave function. Similarly, command enabling for the control bar button and
the menu item is implemented in the CeFileSave function.

Changing menu item text

Changing the text of a menu item is done with the SetText function. To change the text of
a menu item,

1 Add the command-enabling handler function and response table macro to your
window class as described on page 49.

2 Define the handler function.

3 In the handler function, call the SetText member function of the command-enabling
object passed into the handler function. SetText takes a single parameter, a const far
char*. This character array parameter should contain the new text for the menu item.
SetText returns void.

If you're setting the text for a menu item and turning on a check mark for that menu
item in the same function, you must call SetText before you call SetCheck. Reversing this
order removes the check mark. See page 56 for information on setting check marks for
menu items.

Suppose your application supports three different file formats, text, binary, and
encrypted. You want the File | Save menu item to reflect the format of the file being
saved. Here’s the example class from earlier on page 50, modified with an enum type,
TFormat, and a TFormat data member called Format:

class TMyFrame : public TFrameWindow
{
public:
TMyFrame (TWindow *parent = 0, char *title = 0);
enum TFormat {Text, Binary, Encrypted};

protected:
TFormat Format;

void CmFileSave();

// This is the command-enabling handler function.
void CeFileSave (TCommandEnabler& commandEnabler);

DECLARE_RESPONSE_TABLE (TMyFrame) ;
}i

DEFINE_RESPONSE_TABLE (TMyFrame)
EV_COMMAND (CM_FILESAVE, CmFileSave),
EV_COMMAND_ENABLE (CM_FILESAVE, CeFileSave),
END_RESPONSE_TABLE;

Chapter 5, Command enabling 55

void
TMyFrame: :CeFileSave (TCommandEnabler& ce)
{
switch(Format) {
case Text:
ce.SetText ("Save as text file");
break;
case Binary:
ce.SetText ("Save as binary file");
break;
case Encrypted:
ce.SetText ("Save as encrypted file");
break; '
default:
ce.SetText ("Save");

Toggling command items

You can use command item toggling to provide the users of your applications visual
cues about what functions are enabled, various application states, and so on. Anything
that can be presented in a boolean fashion, such as on and off, in and out, and so on, can
be represented by command item toggling.

There are two different types of toggling implemented in ObjectWindows, but both are
implemented the same way. You can turn check marks by menu items on and off. You
can also “check” and “uncheck” button gadgets so that the gadget stands out when it’s
off and is recessed and light when it’s on. There is also a third indeterminate state that
indicates when something is not checked or unchecked. The meaning of this state is
mostly up to you, but usually indicates a situation where the criteria for being enabled
or disabled is mixed. For example, many word processors have control bar buttons that
indicate the current text format, such as a button with a “B” on it to indicate bold text.
This button is unchecked when the current text format is not bold, and checked when
the format is bold. But if a block of text contains text, some of which is bold and some
not, the button is placed in its indeterminate state. Flgure 5.1 shows a button gadget in
each of the three states:

Figure 5.1 Button gadget states

Checked Unchecked Indeterminate

A variation of toggling button gadgets is that you can enable or disable an exclusive
button gadget. Exclusive button gadgets function just like radio buttons. In a group of
exclusive button gadgets only one button gadget can be on at a time. Enabling another
button gadget in the group disables the previously enabled button gadget.

To toggle a command item,

56 ObjectWindows Programmer’s Guide

Note

1 Add the command-enabling handler function and response table macro to your
window class as described on page 49.

2 Define the handler function.

3 Inside the handler function, call the SetCheck member function of the command-
enabling object passed into the handler function. The SetCheck function takes a single
int parameter. Call SetCheck with one of the enumerated values defined in
TCommandEnabler: Checked, Unchecked, or Indeterminate.

If you are turning on a check mark for a menu item and setting the text for that menu
item in the same function, you must call SetText before you call SetCheck. Reversing this
order removes the check mark. See page 56 for information on setting check marks for
menu items.

A common use for toggling command items is to let the user of your application specify
whether some feature should be active. For example, suppose your application provides
both a menu item and control bar button to access the CmFileSave function. Many
applications provide “fly-over” hints, short descriptions that appear in the status bar
when the pointer moves over a menu item or button gadget. You may want to let the
user turn these hints off. To provide this option to the user,

1 Add a new command identifier to your application, such as CM_TOGGLEHINTS.
2 Add a new menu, perhaps named Options, with a menu item Fly-over Hints.

3 You can also add a new button to your button bar (see Chapter 12 for information on
adding a new button gadget to your control bar).

4 Add a function to handle the CM_TOGGLEHINTS event and actually turn the hints
on and off.

5 Add a command-enabling function to check and uncheck the command items.

Here’s the example class from earlier on page 50, modified to use a decorated frame
window. The user can toggle hints by choosing the command item set up for this.

class TMyDecFrame : public TDecoratedFrame
{
public:
TMyDecFrame (TWindow *parent = 0, ‘char *title = 0, TWindow* client)
: TDecoratedFrame (parent, title, client), hintMode (true) {}

// Cb must be set by the application object during the InitMainWindow function.
TControlBar* Cb;

protected:
// hintMode indicates whether the hints are currently on or off.

bool HintMode;

// This is the function that actually turns the hints on and off.
void CmToggleHints();

// This is the command-enabling handler function.
void CeToggleHints (TCommandEnablers commandEnabler);

Chapter 5, Command enabling 57

DECLARE_RESPONSE_TABLE (TMyDecFrame) ;
}i

DEFINE_RESPONSE_TABLE (TMyDecFrame)
EV_COMMAND (CM_TOGGLEHINTS, (mToggleHints),
EV_COMMAND_ENABLE (CM_TOGGLEHINTS, CeToggleHints),
END_RESPONSE_TABLE;

void
TMyDecFrame: :CmToggleHints ()
{
~1if (HintMode)
Cb->SetHintMode (TGadgetWindow: : EnterHints) ;
else
Cb->SetHintMode (TGadgetWindow: :NoHints) ;
HintMode = !HintMode;
}

void
TMyDecFrame: :CeToggleHints (TCommandEnablers ce)

{
ce. SetChecked (HintMode) ;

}

Note that the control bar is set up by the application object in its InitMainWindow
function. The code for this is not shown here. For an explanation of application objects
and the InitMainWindow function see Chapter 2. For an explanation of button gadgets
and control bars, see Chapter 12. For a working example of command item toggling, see
the example EXAMPLES/OWL/OWLAPPS/MDIFILE. ‘

58 ObjectWindows Programmer’s Guide

Chapter

ObjectWindows exception handling

ObjectWindows provides a robust exception-handling mechanism for dealing with
exceptional situations. An exceptional situation is any situation that falls outside of your
application’s normal operating parameters. This can be something as innocuous as an
unexpected user response or something as serious as an invalid handle or memory
allocation failure. Exception handling provides a clean, efficient way to deal with these
and other conditions.

This chapter describes the ObjectWindows exception-handling encapsulation, including

¢ Exception class hierarchy
¢ Exception resource identifiers
¢ Code macros, which make it easy to turn exception handling off and on

You should be thoroughly familiar with C++ exception handling before reading this
chapter. C++ exception handling is described in Chapter 4 of the Borland C++
Programmer’s Guide.

ObjectWindows exception hierarchy

ObjectWindows provides a number of classes that can be thrown as exceptions. Based
on the TXBase and TXOwl classes, these exception classes can inform the user of the
existing exceptional state, prompt the user for a course of action, create new exception
objects, throw exceptions, and so on. There are four exception classes that are
implemented as independent classes:

* TXBase is the base class for all ObjectWindows and ObjectComponents exception
classes. TXBase is derived from the Borland C++ xmsg class. xmsg is described in
Chapter 4 of the Borland C++ Programmer’s Guide.

* TXOuwl is derived from TXBase. TXOwl is the base class for the ObjectWindows
exception classes.

Chapter 6, ObjectWindows exception handling 59

* TXCompatibility describes exceptions that occur when TModule::Status is non-zero.
This provides backwards compatibility between the ObjectWindows 1.0 method of
detecting exceptional situations and the ObjectWindows 2.x exception hierarchy.
TXCompatibility maps the value of TModule::Status to a resource string identifier.

* TXOutOfMemory describes an exception that occurs when an attempt to allocate
memory space for an object fails. This is analogous to the xalloc object thrown when
new fails to properly allocate memory.

Two other classes, TXOle and TXAuto, are derived from TXBase. These classes provide
exception handling for the ObjectComponents classes. They are described in the
ObjectWindows Reference Guide.

Working with TXBase

As the base class for the ObjectWindows exception classes, TXBase provides the basic
interface for working with ObjectWindows exceptions. TXBase can perform a number of
functions:

e It can construct itself, initializing its base xmsg object.
e It can clone itself, making a copy of the exception object.
¢ It can throw itself as an exception object.

Constructing and destroying TXBase
TXBase provides two public constructors:

TXBase (const string& msg);
TXBase (const TXBase& src);

-The first constructor initializes the xmsg base class with the value of the string parameter,
calling the xmsg constructor that takes a string parameter. The second creates a new
object that is a copy of the TXBase object passed in as a parameter.

Both constructors increment the TXBase data member InstanceCount. InstanceCount is a
static int, meaning there is only a single instance of the member no matter how many
actual TXBase or TXBase-derived objects exist in the application. The TXBase destructor
decrements InstanceCount. The destructor is declared virtual to allow easy overriding of
the destructor.

Because each new TXBase or TXBase-derived object increments InstanceCount, and each
deleted TXBase or TXBase-derived object decrements InstanceCount, the value of
InstanceCount reflects the total number of TXBase and TXBase-derived objects existing in
the application at the time. To access InstanceCount from outside a TXBase or TXBase-
derived class, qualify the name InstanceCount with a TXBase:: scope qualifier.

Cloning exception objects

TXBase contains a function called Clone. This function takes no parameters and returns a
TXBase*. Clone creates a copy of the current exception object by allocating a new TXBase
object with new and passing a dereferenced this pointer to the copy constructor.

TXBase*
TXBase::Clone()

60 ObjectWindows Programmer’s Guide

{

return new TXBase(*this);

}

It is important to note that any classes derived from TXBase must override this function
to use the proper constructor. For example, the TXOwl class, which is derived from
TXBase, implements the Clone function like this:

TXOwl*
TXOwl::Clone()
{

return new TXOwl (*this);
}

Throwing TXBase exceptions

Once you have a TXBase object, either by creating it or cloning it, you can throw the
object one of three ways.

¢ Use the throw keyword followed by the object name

TXBase xobj("Some exception...");
throw xobj;

¢ Use the ObjectWindows THROW macro, which corresponds to the C++ keyword
throw. See page 63 for an explanation of the ObjectWindows exception-handling
macros. The previous example would look like this:

TXBase xobj("Some exception...");
throw xobj;

¢ Call the exception object’s Throw function:

TXBase xobj("Some exception...");
xobj.Throw() ;

This method provides for strict type safety when you throw the exception. It also
provides a polymorphic interface when throwing the exception, so that the function
that catches a TXBase-derived exception object can treat the object as a TXBase,
regardless of what it actually is.

Working with TXOwi

As the base class for the ObjectWindows exception classes, TXOwl! provides the basic
interface for working with ObjectWindows exceptions. In addition to the functionality
provided in the TXBase class, TXOwl can perform a number of other functions.

* It can construct itself, initializing its base objects.

* It can clone itself, making a copy of the exception object.

* It can pass unhandled exceptions to the application object’s Error function or to the
global exception handler HandleGlobalException (HandleGlobalException is discussed
later).

Chapter 6, ObjectWindows exception handling 61

Constructing and destroying TXOwl
TXOwl has two constructors to provide flexibility in passing the exception message
string:

TXOwl (const string& str, unsigned resId = 0);
TXOwl (unsigned resId, TModule* module = ::Module);

The first constructor initializes the TXBase base object with the value of the string
parameter. The unsigned parameter is used as an error number.

The second constructor loads the string resource identified by resld and uses the string
to initialize TXBase. The TModule* identifies the module from which the resource should
be loaded. It defaults to the global current module pointer Module, meaning the resource
should be loaded from the current module or application.

The TXOwl destructor has no default functionality other than that inherited from
TXBase.

Cloning TXOwl and TXOwl-derived exception objects

TXOwl also contains the Clone function. This function takes no parameters and returns a
TXOuwl*. Clone creates a copy of the current exception object by allocating a new TXOw!
object with new and passing a dereferenced this pointer to the automatic copy
constructor.

TXOwl*
TXOwl::Clone()
{

return new TXOwl (*this);

}

It is important to note that any classes derived from TXOwl must override this function
to use the proper constructor. For example, the TXOutOfMemory class, which is derived
from TXOwl, implements the Clone function like this:

TXOwl*
TXOutOfMemory: :Clone ()
{
return new TXOutOfMemory (*this);
}

Note that the return type is still TXOwl*. This lets the ObjectWindows exception-
handling functions treat any exception object as a TXOwl object, in keeping with the
polymorphic nature of the ObjectWindows hierarchy. But also note that the return type
for TXOwl::Close differs from the TXBase::Clone function. That is because, while TXBase
provides the basic functionality for the ObjectWindows and ObjectComponents
exception classes, TXOwl provides the basic interface for the ObjectWindows exception
classes.

Specialized ObjectWindows exception classes

A number of regular ObjectWindows classes implement specialized exception classes,
all of which are based on TXOw! but are defined within the implementing class

62 ObjectWindows Programmer’s Guide

definition to provide name scoping. The following table describes these classes, along
with the unique functionality of each class. The various IDS_* resources mentioned in
the table, along with many others, are described in Chapter 2 of the ObjectWindows
Reference Guide.

Table 6.1 Specialized exception classes
Parent class Exﬁepﬁon class ~ Function

TApplication ~ TXInvalidMainWindow Initializes the exception message with the
IDS_INVALIDMAINWINDOW string resource. This object is
thrown when the MainWindow member of TApplication contains
either an invalid pointer or a pointer to an invalid window.

TModule TXInvalidModule Initializes the exception message with the
IDS_INVALIDMODULE string resource. This exception is
thrown in the TModule constructor when the module’s Hlnstance
is invalid.

TWindow TXWindow Initializes the exception message with the window title and with
a string resource passed to the TXWindow constructor. This
exception is thrown in situations where an error relating to a
window object has occurred.

TMenu TXMenu Initializes the exception message with a string resource passed to
the TXMenu constructor. By default this is the IDS_GDIFAILURE
string resource. This exception is thrown when a menu object’s
handle is invalid.

TValidator TXValidator Initializes the exception message with a string resource passed to
the TXValidator constructor. By default this is the
IDS_VALIDATORSYNTAX string resource. This exception is
thrown when a validator expression is corrupt or invalid.

TGdiBase TXGdi Initializes the exception message with a string resource passed to
the TXGdi constructor, along with the GDI object handle. By
default, the string resource is IDS_GDIFAILURE and the GDI
object handle is 0. This exception is thrown in numerous
situations when an error relating to a graphics object has
occurred.

TPrinter TXPrinter Initializes the exception messafe with a string resource passed to
the TXPrinter constructor. By default this is the :
IDS_PRINTERERROR string resource. This exception is thrown
when the printer’s device context is invalid.

ObjectWindows exception-handling macros

ObjectWindows provides a number of macros for implementing exception handling.
Although you can use the standard C++ keywords such as try, catch, throw, and so on,
the ObjectWindows macros enable you to turn exception handling on and off simply by
defining or not defining a single symbol. The macros provided are

TRY
THROW(x)
THROWX(X)
RETHROW
CATCH(>%)

These macros are explained later in this section.

Chapter 6, ObjectWindows exception handling 63

Turning ObiectWindbws exceptions on and off

The symbol that switches exception handling on and off in ObjectWindows applications
is NO_CPP_EXCEPTIONS. The value (or lack of value) assigned to
NO_CPP_EXCEPTIONS doesn’t matter. What matters is whether it is defined. If it’s not,
the exception-handling macros expand to implement exception handling. If it is defined,
the macros provide only the barest functionality by aborting the application when an
exception is thrown. The precise behaviors of the macros when exception handhng is
switched on and off is described later.

There are many different methods for defining NO_CPP_EXCEPTIONS. This list
doesn’t contain all the ways to define it, but makes a few suggestions.

* You can specify the -DNO_CPP_EXCEPTIONS option on the MAKE command line. This
defines the macro, but with no specific value.

¢ You can define a symbol using a graphical development environments such as the
Borland C++ IDE. Use the method provided in your graphical development to define
the NO_CPP_EXCEPTIONS symbol.

* You can define NO_CPP_EXCEPTIONS in your source code. This is a less desirable
method than the previous ones, mainly because if you're using some type of MAKE
or dependency-checking program for building your application, modifying the
source code modifies the time stamp on the file. You might or might not want the
time stamp to change.

Macro expansion

The exception-handling macros in ObjectWindows behave differently depending on
whether NO_CPP_EXCEPTIONS is defined. The following table explains how each
macro is expanded depending on the state of NO_CPP_EXCEPTIONS:

Table 6.2 ObjectWindows exception-handling macro expansion

TRY Expands to nothing, removing thetry ~ Expands to try, allowing the code in the try
statement. block to be tested for thrown exceptions.
THROW(x) Calls the abort function. Expands to throw(x), throwing the x object if
: the exceptional conditions are met.
THROWX(x) Calls the abort function. Expands to x.Throw(), calling the object xs

Throw function. This macro should only be used
with TXBase-derived classes.
RETHROW Expands to nothing, removing the Expands to throw. This macro should be used
throw statement. only inside of catch (or CATCH) clauses to
rethrow the caught exception.

CATCH(x) Expands to nothing, removing the Expands to catch x, catching exceptions thrown
catch statement. with objects of type x.

64 ObjectWindows Programmer’s Guide

Chapter

Window objects

ObjectWindows window objects provide an interface wrapper around windows,
making dealing with windows and their children and controls much easier.
ObjectWindows provides several different types of window objects:

¢ Layout windows (described starting on page 69)

¢ Frame windows (described starting on page 75)

* Decorated frame windows (described starting on page 78)
¢ MDI windows (described starting on page 80)

Another class of window objects, called gadget windows, is discussed in Chapter 12.

Using window objects

This section explains how to create, display, and fill window objects. It describes how to
perform the following tasks:

* Constructing window objects
* Setting creation attributes
¢ (reating window interface elements

The different types of windows discussed in this chapter—frame windows, layout
windows, decorated frame windows, and MDI windows—are all examples of window
objects. The information in this section applies to all the different types of window
objects. :

Constructing window objects

Window objects represent interface elements. The object is connected to the element
through a handle stored in the object’s HWindow data member. HWindow is inherited
from TWindow. When you construct a window object, its interface element doesn’t yet

Chapter 7, Window objects 65

exist. You must create it in a separate step. TWindow also has a constructor that you can
use in a DLL to create a window object for an interface element that already exists.

Constructing window objects with virtual bases

Several ObjectWindows classes use TWindow or TFrameWindow as a virtual base. These
classes are TDialog, TMDIFrame, TTinyCaption, TMDIChild, TDecoratedFrame,
TLayoutWindow, TClipboardViewer, TKeyboardModeTracker, and TFrameWindow. In C++,
virtual base classes are constructed first, which means that the derived class’ constructor
cannot specify default arguments for the base class constructor. There are two ways to
handle this problem:

* Explicitly construct your immediate base class or classes and any virtual base classes
when you construct your derived class.

* Use the virtual base’s default constructor. Both TWindow and TFrameWindow have a
default constructor. They also each have an Init function that lets you specify
parameters for the base class; call this Init function in the constructor of your derived
class to set any parameters you need in the base class.

Here’s a couple of examples showing how to construct a window object using the each
of the methods described above:

class TMyWin : public TFrameWindow
{
public:
// This constructor calls the base class constructors
TMyWin (TWindow *parent, char *title)
: TFrameWindow (parent, title),
TWindow (parent, title) {}
}

TMyWin *myWin = new TMyWin(GetMainWindow(), "Child window");

class TNewWin : virtual public TWindow

{
public:
TNewWin (TWindow *parent, char *title);

}

TNewWin: : TNewWin (TWindow *parent, char *title)

{

// This constructor uses the default base class constructors and calls Init
Init (parent, title, IDL_DEFAULT);

b

TNewWin *newWin = new TMyWin(GetMainWindow(), "Child window");

Setting creation attributes

A typical Windows application has many different types of windows: overlapped or
pop-up, bordered, scrollable, and captioned, to name a few. The different types are

66 ObjectWindows Programmer’s Guide

selected with style attributes. Style attributes, as well as a window’s title, are set during a
window object’s initialization and are used during the interface element’s creation.

A window object’s creation attributes, such as style and title, are stored in the object’s
Attr member, a TWindowAttr structure. Table 7.1 shows TWindowAttr's members.

Table 7.1 Window creation attributes

Member Type Descriptidﬁ g

Styie uint32 Style constant.

ExStyle uint32 Extended style constant.

X int The horizontal screen coordinate of the window’s upper-left corner.

Y int The vertical screen coordinate of the window’s upper-left corner.

w int The window’s initial width in screen coordinates.

H int The window’s initial height in screen coordinates.

Menu TResld ID of the window’s menu resource. You should not try to directly assign a
menu identifier to Attr.Menu! Use the AssignMenu function instead.

Id int Child window ID for communicating between a control and its parent. Id

should be unique for all child windows of the same parent. If the control is
defined in a resource, its Id should be the same as the resource ID. A window
should never have both Menu and Id set, since these members actually occupy
the same in the window’s HWND structure.

Param char far* Used by TMDIClient to hold information about the MDI frame and child
windows.
AccelTable TResld ID of the window’s accelerator table resource.

Overriding default attributes

Table 7.2 lists the default window creation attributes. You can override those defaultsin
a derived window class’ constructor by changing the values in the Attr structure. For
example:

TTestWindow: : TTestWindow (TWindow* parent, const char* title)
: TFrameWindow (parent, title),
TWindow (parent, title)

Attr.Style &= (WS_SYSMENU | WS_MAXIMIZEBOX);
Attr.Style [= WS_MINIMIZEBOX;

Attr.X = 100;
Attr.Y = 100;
Attr.W = 415;
Attr.H = 355;

}

Child-window attributes

You can set the attributes of a child window in the child window’s constructor or in the
code that creates the child window. When you change the attributes in the parent
window object’s constructor, you need to use a pointer to the child window object to get
access to its Attr member.

TTestWindow: : TTestWindow (TWindow* parent, const char* title)
: TWindow(parent, title)

Chapter 7, Window objects 67

TWindow helpWindow(this, "Help System");

helpWindow.Attr.Style |= WS_POPUPWINDOW | WS_CAPTION;
helpWindow.Attr.X = 100;
helpWindow.Attr.Y = 100;
helpWindow.Attr.W = 300;
helpWindow.Attr.H = 300;
helpWindow.SetCursor (0, IDC_HAND);
}

Table 7.2 shows some default values you might want to override for Attr members. A
default value of 0 means to use the Windows default value.

Table 7.2 Default window attributes

Style WS_CHILD | WS_VISIBLE A

0
0
0
0
H 0
0
0
0
0

Id
Param
AccelTable

Creating window interface elements

Once you've constructed a window object, you need to tell Windows to create the
associated interface element. Do this by calling the object’s Create member function:

window.Create();
Create does the folloWing things:
¢ Creates the interface element
¢ Sets HWindow to the handle of the interface element

e Sets members of Attr to the actual state of the interface element
(Style, ExStyle, X, Y, H, W)

* Calls SetupWindow

An application’s main window is automatically created by TA;laplication::InitInstance.
You don't need to call Create yourself to create the main window. See page 23 for more
information about main windows.

Two ObjectWindows exceptions can be thrown while creating a window object’s
interface element. You should therefore enclose calls to Create within a try/ catch block
to handle any memory or resource problems your application might encounter. Create

68 ObjectWindows Programmer’s Guide

throws a TXInvalidWindow exception when the window can’t be created. SetupWindow
throws TXInvalidChildWindow when a child window in the window can’t be created.
Both exceptions are usually caused by insufficient memory or other resources. Here is
an example of using exceptions to catch an error while creating a window object:

try
{
TWindow* window = new TMyWindow(this);
window->Create();
}
catch(TXOwl& exp)
{
MessageBox (exp.why.c_str(), "Window creation error");
throw (exp) ;
}

ObjectWindows exception objects are described in Chapter 6.

Layout windows

This section discusses layout windows. Layout windows are encapsulated in the class
TLayoutWindow, which is derived from TWindow. Along with TFrameWindow,
TLayoutWindow provides the basis for decorated frame windows and their ability to
arrange decorations in the frame area.

Layout windows are so named because they can lay out child windows in the layout
window’s client area. The children’s locations are determined relative to the layout
window or another child window (known as a sibling). The location of a child window
depends on that window’s layout metrics, which consist of a number of rules that
describe the window’s X and Y coordinates, its height, and its width. These rules are
usually based on a sibling window’s coordinates and, ultimately, on the size and
arrangement of the layout window. Figure 7.1 shows two shots of an example layout
window with a child window in the client area. In this example, the child’s layout
metrics specify that the child is to remain the same distance from each side of the layout
window. Notice how, in the first shot, the child window is rather small. Then, in the
second shot, the layout window has been enlarged. The child window, following its
layout constraints, got larger so that each of its edges stayed the same distance from the
edge of the layout window.

Chapter 7, Window objects 69

Figure 7.1 Example layout windows

I Layout - o anut

Layout metrics for a child window are contained in a class called TLayoutMetrics. A
layout metrics object consists of a number of layout constraints. Each layout constraint
describes a rule for finding a particular dimension, such as the X coordinate or the width
of the window. It takes four layout constraints to fully describe a layout metrics object.
Layout constraints are contained in a structure named TLayoutConstraints, but you
usually use one of the TLayoutConstraints-derived classes, such as TEdgeConstraint,
TEdgeOrWidthConstraint, or TEdgeOrHeightConstraint.

Layout constraints

Layout constraints specify a relationship between an edge or dimension of one window
and an edge or dimension of a sibling window or the parent layout window. This
relationship can be quite flexible. For example, you can set the width of a window to be
a percentage of the width of the parent window, so that whenever the parent is resized,
the child window is resized to take up the same relative window area. You can also set
the left edge of a window to be the same as the right edge of another child, so that when
the windows are moved around, they are tied together. You can even constrain a
window to occupy an absolute size and position in the client area.

The three types of constraints most often used are TEdgeConstraint,
TEdgeOrWidthConstraint, and TEdgeOrHeightConstraint. These structures constitute the
full set of constraints used in the TLayoutMetrics class. TEdgeOrWidthConstraint and
TEdgeOrHeightConstraint are derived from TEdgeConstraint. From the outside, these
three objects look almost the same. When this section discusses TEdgeConstraint, it is
referring to all three objects—TEdgeConstraint, TEdgeOrWidthConstraint, and
TEdgeOrHeightConstraint—unless the other two classes are explicitly excluded from the
statement. '

Defining constraints

The most basic way to define a constraining relationship (that is, setting up a
relationship between an edge or size of one window and an edge or size of another
window) is to use the Set function. The Set function is defined in the TEdgeConstraint
class and subsequently inherited by TEdgeOrWidthConstraint and
TEdgeOrHeightConstraint.

Here is the Set function declaration:

70 ObjectWindows Progr‘ammer’s Guide

void Set (TEdge edge, TRelationship rel,
TWindow* otherWin, TEdge otherEdge,
int value = 0);

where:

* edge specifies which part of the window you are constraining,. For this, there is the
enum TEdge, which has five possible values:

ImLeft specifies the left edge of the window.

ImTop specifies the top edge of the window.

ImRight specifies the right edge of the window.

ImBottom specifies the bottom edge of the window.

ImCenter specifies the center of the window. The object that owns the constraint,
such as TLayoutMetrics, decides whether this means the vertical center or the
horizontal center.

* You can also specify the window’s width or height as a constraint, but only with
TEdgeOrWidthConstraint and TEdgeOrHeightConstraint. For this, there is the enum
TWidthHeight. TWidthHeight has two possible values:

» ImWidth specifies that the width of the window should be constrained.
e [mHeight specifies that the height of the window should be constrained.

e rel specifies the relationship between the two edges:

Table 7.3 Default window attributes

ImAsls This dimension is constrained to its current value.
ImPercent This dimension is constrained to a percentage of the constraining edge’s size. This is usually
Of used with a constraining width or height.

ImAbove This dimension is constrained to a certain distance above its constraining edge.
ImLeftOf This dimension is constrained to a certain distance to the left of its constraining edge.
ImBelow This dimension is constrained to a certain distance below its constraining edge.
ImRightOf This dimension is constrained to a certain distance to the nght of its constraining edge.
ImSameAs This dimension is constrained to the same value as its constraining edge.

ImAbsolute This dimension is constrained to an absolute coordinate or size.

* otherWin specifies the window with which you are constraining your child window.
You must use the value ImParent when specifying the parent window. Otherwise,
pass a pointer to the TWindow or TWindow-derived object containing the other
window.

e otherEdge specifies the particular edge of otherWin with which you are constraining
your child window. otherEdge can have any of the same values that are allowed for
edge.

Chapter 7, Window objects 71

* value means different things, depending on the value of rel:

ImAsls value has no meaning and should be set to 0.

ImPercentOf value indicates what percent of the constraing measure the constrained measure
should be.

ImAbove value indicates how many units above the constraining edge the constrained edge
should be.

ImLeftOf value indicates how many units to the lef t of the constraining edge the constrained
edge should be.

ImBelow value indicates how many units below the constraining edge the constrained edge
should be.

ImRightOf value indicates how many units to the right of the constraining edge the constrained
edge should be.

ImSameAs value has no meaning and should be set to 0.

ImAbsolute wvalue is the absolute measure for the constrained edge:
When edge is ImLeft, ImRight, or sometimes ImCenter, value is the X coordinate for the
edge.
When edge is ImTop, ImBottom, or sometimes ImCenter, value is the Y coordinate for
the edge.
When edge is ImWidth or ImHeight, value represents the size of the constraint.

The owning object determines whether ImCenter represents an X or Y coordinate.
See page 70. .

* The meaning of value is also dependent on the value of Units. Units is a
TMeasurementUnits member of TLayoutConstraint. TMeasurementUnits is an enum
- that describes the type of unit represented by value. Units can be either ImPixels or
ImLayoutUnits. ImPixels indicates that value is meant to represent an absolute number
of physical pixels. ImLayoutUnits indicates that value is meant to represent a number
of logical units. These layout units are based on the size of the current font of the
layout window.

TEdgeConstraint also contains a number of functions that you can use to set up
predefined relationships. These correspond closely to the relationships you can specify
in the Set function. In fact, these functions call Set to define the constraining relationship.
You can use these functions to set up a majority of the constraint relationships you
define.

The following four functions work in a similar way:

void LeftOf (TWindow* sibling, int margin = 0);
void RightOf (TWindow* sibling, int margin = 0);
void Above (TWindow* sibling, int margin = 0);
void Below(TWindow* sibling, int margin = 0);

Each of these functions place the child window in a certain relationship with the
constraining window sibling. The edges are predefined, with the constrained edge being
the opposite of the function name and the constraining edge being the same as the
function name.

72 ObjectWindows Programmer’s Guide

For example, the LeftOf function places the child window to the left of sibling. This
means the constrained edge of the child window is ImRight and the constraining edge of
sibling is ImLeft.

You can set an edge of your child window to an absolute value with the Absolute
function:

void Absolute(TEdge edge, int value);

edge indicates which edge you want to constrain, and value has the same value as when
used in Set with the ImAbsolute relationship.

There are two other shortcut functions you can use:

void SameAs (TWindow* otherWin, TEdge edge);
void PercentOf (TWindow* otherWin, TEdge edge, int percent);

These two use the same edge for the constrained window and the constraining window;
that is, if you specify ImLeft for edge, the left edge of your child window is constrained to
the left edge of otherWin.

Defining constraining relationships

A single layout constraint is not enough to lay out a window. For example, specifying
that one window must be 10 pixels below another window doesn't tell you anything
about the width or height of the window, the location of the left or right borders, or the
location of the bottom border. It only tells you that one edge is located 10 pixels below
another window.

A combination of layout constraints can define fully a window’s location (there are
some exceptions, as discussed on page 74). The class TLayoutMetrics uses four layout
constraint structures—two TEdgeConstraint objects named X and Y, a
TEdgeOrWidthConstraint named Width, and a TEdgeOrHeightConstraint named Height.

TLayoutMetrics is a fairly simple class. The constructor takes no parameters. The only
thing it does is to set up each layout constraint member. For each layout constraint, the
constructor

® Zeroes out the value for the constraining window.
* Sets the constraint’s relationship to ImAsls.

® Sets units to ImLayoutUnits.

* Sets the value to 0.

The only difference is to MyEdge, which indicates to which edge of the window this
constraint applies. X is set to ImLeft, Y is set to ImTop, Width is set to ImWidth, and Height
is set to ImHeight.

Once you have constructed a TLayoutMetrics object, you need to set the layout
constraints for the window you want to lay out. You can use the functions described in
the preceding section for setting each layout constraint.

It is important to realize that the labels X, Y, Width, and Height are more labels of
convenience than strict rules on how the constraints should be used. X can represent the
X coordinate of the left edge, the right edge, or the center. You can combine this with the
Width constraint—which can be one of ImCenter, ImRight, or ImWidth—to completely

Chapter 7, Window objects 73

define the window’s X-axis location and width. Using all of the edge constraints is easy,
and is useful in situations where tiling is performed.

The simplest way is to assign an X coordinate to X and a width to width. But you could
also set the edge for X to ImCenter and the edge for Width to ImRight. So Width doesn’t
really represent a width, but the X-coordinate of the window’s right edge. If you know
the X-coordinate of the right edge and the center, it’s easy to calculate the X-coordinate
of the left edge.

To better understand how constraints work together to describe a window, try building
and running the example application LAYOUT in the directory EXAMPLES\OWL\
OWLAPI\LAYQUT. This application has a number of child windows in a layout
window. A dialog box you can access from the menu lets you change the constraints of
each of the windows and then see the results as the windows are laid out. Be careful,
though. If you specify a set of layout constraints that doesn’t fully describe a window,
the application will probably crash, or, if diagnostics are on, a check will occur. The
reason for this is discussed in the next section.

Indeterminate constraints

You must be careful about how you specify your layout constraints. The constraints
available in the TLayoutMetrics class give you the ability to fully describe a window. But
they do not guarantee that the constraints you use will fully describe a window. In cases
where the constraints do not fully describe a window, the most likely result is an
application crash.

Using layout windows

Once you've set up layout constraints, you're ready to create a layout window to
contain your child windows. Here’s the constructor for TLayoutWindow:

TLayoutWindow (TWindow* parent,
const char far* title = 0,
TModule* module = 0);

where:

e parent is the layout window’s parent window.

o title is the layout window’s title. This parameter defaults to a null string.

e module is passed to the TWindow base class constructor as the TModule parameter for
that constructor. This parameter defaults to 0.

After the layout window is constructed and displayed, there are a number of functions
you can call:

¢ The Layout function returns void and takes no parameters. This function tells the
layout window to look at all its child windows and lay them out again. You can call
this to force the window to recalculate the boundaries and locations of each child
window. You usually want to call Layout after you've moved a child window, resized
the layout window, or anything else that could affect the constraints of the child
windows. '

74 ObjectWindows Programmer’s Guide

Note that TLayoutWindow overrides the TWindow version of EvSize to call Layout
automatically whenever a WM_SIZE event is caught. If you override this function
yourself, you should be sure either to call the base class version of the function or call
Layout in your derived version.

* SetChildLayoutMetrics returns void and takes a TWindow & and a TLayoutMetrics & as
parameters. Use this function to associate a set of constraints contained in a
TLayoutMetrics object with a child window. Here is an example of creating a
TLayoutMetrics object and associating it with a child window:

TMyLayoutWindow: : TMyLayoutWindow (TWindow* parent, char far* title)
: TLayoutWindow(parent, title)

{
TWindow MyChildWindow(this);

TLayoutMetrics layoutMetrics;

layoutMetrics.X.Absolute (ImLeft, 10);
layoutMetrics.Y.Absolute (ImTop, 10);
layoutMetrics.Width.PercentOf (ImParent, lmWidth, 60);
layoutMetrics.Height .PercentOf (1mParent, lmHeight, 60);

SetChildLayoutMetrics (MyChildWindow, layoutMetrics);
}

Notice that the child window doesn’t need any special functionality to be associated
with a layout metrics object. The association is handled entirely by the layout
window itself. The child window doesn’t have to know anything about the
relationship.

¢ GetChildLayoutMetrics returns bool and takes a TWindow & and a TLayoutMetrics & as
parameters. This looks up the child window that is represented by the TWindow &. It
then places the current layout metrics associated with that child window into the
TLayoutMetrics object passed in. If GetChildLayoutMetrics doesn’t find a child window
that equals the window object passed in, it returns false.

* RemoveChildLayoutMetrics returns bool and takes a TWindow & for a parameter. This
looks up the child window that is represented by the TWindow &. It then removes the
child window and its associated layout metrics from the layout window’s child list. If
RemoveChildLayoutMetrics doesn’t find a child window that equals the window object
passed in, it returns false.

You must provide layout metrics for all child windows of a layout window. The layout
window assumes that all of its children have an associated layout metrics object.
Removing a child window from a layout window, or deleting the child window object
automatically removes the associated layout metrics object.

Frame windows

Frame windows (objects of class TFrameWindow) are specialized windows that support
a client window. Frame windows are the basis for MDI and SDI frame windows, MDI
child windows, and, along with TLayoutWindow, decorated frame windows.

Chapter 7, Window objects 75

Frame windows have an important role in ObjectWindows development: frame
windows manage application-wide tasks like menus and tool bars. Client windows
within the frame can be specialized to perform a single task. Changes you make to the
frame window (for example, adding tool bars and status bars) don’t affect the client
windows.

Constructing frame window objects

You can construct a frame window object using one of the two TFrameWindow
constructors. These two constructors let you create new frame window objects along
with new interface elements, and let you connect a new frame window object to an
existing interface element.

Constructing a new frame window

The first TFrameWindow constructor is used to create an entirely new frame window
object:

TFrameWindow (TWindow *parent,
const char far *title = 0,
TwWindow *clientWnd = 0,
bool shrinkToClient = false,
TModule *module = 0);

where:

¢ The first parameter is the window’s parent window object. Use zero if the window
you're creating is the main window (which doesn’t have a parent window object).
Otherwise, use a pointer to the parent window object. This is the only parameter that
you must provide.

* The second parameter is the window title. This is the string that appears in the
caption bar of the window. If you don't specify anything for the second parameter,
no title is displayed in the title bar.

¢ The third parameter lets you specify a client window for the frame window. If you
don’t specify anything for the third parameter, by default the constructor gets a zero,
meaning that there is no client window. Otherwise, pass a pointer to the client \
window object. ’

e The fourth parameter lets you specify whether the frame window should shrink to fit
the client window. If you don’t specify anything, by default the constructor gets false,
meaning that it should not fit the frame to the client window.

¢ The fifth parameter is passed to the base class constructor as the TModule parameter
for that constructor. This parameter defaults to 0.

Here are some examples of using this constructor:

void

TMyApplication::InitMainWindow ()

;)
// default is for no client window
SetMainWindow (new TFrameWindow(0, "Main Window"));

76 ObjectWindows Programmer’s Guide

}

void

TMyApplication::InitMainWindow()

{ .

// client window is TMyClientWindow

SetMainWindow (new TFrameWindow(0, "Main window with client",
new TMyClientWindow, true));

}

Constructing a frame window alias
The second TFrameWindow constructor is used to connect an existing interface element
to a new TFrameWindow object. This object is known as an alias for the existing window:

TFrameWindow (HWND hWnd, TModule *module);
where:

¢ The first parameter is the window handle of the existing interface element. This is the
window the TFrameWindow object controls.

* The second parameter is passed to the base class constructor as the TModule
parameter for that constructor. This parameter defaults to 0.

This is useful for creating window objects for existing windows. You can then
manipulate any window as if it was an ObjectWindows-created window. This is useful
in situations such as DLLs, when a non-ObjectWindows application calling into the DLL
passes in an HWND. You can then construct a TFrameWindow alias for the HWND and
proceed to call TFrameWindow member functions like normal.

The following example shows how to construct a TFrameWindow for an existing
interface element and use that window as the main window:

void

TMyApplication: :AddWindow (HWND hwnd)

{
TFrameWindow* frame = new TFrameWindow (hWnd) ;
TFrameWindow* tmp = SetMainWindow(frame);
ShowWindow (GetMainWindow () ->HWindow, SW_SHOW);
tmp->ShutDownWindow () ;

}

When you use the second constructor for TFrameWindow, it sets the flag wfAlias. You can
tell whether a window element was constructed from its window object or whether it’s
actually an alias by calling the function IsFlagSet with the wfAlias flag. For example,
suppose you don’t know whether the function AddWindow in the last example has
executed yet. If your main window is not an alias, AddWindow hasn't executed. If your
main window is an alias, AddWindow has executed:

void
TMyApplication::CheckAddExecute ()
{
if (GetMainWindow ()->IsFlagSet (wfAlias))
// MainWindow is an alias; AddWindow has executed

Chapter 7, Window objects 77

else
// MainWindow is not an alias; AddWindow has not executed

b

See page 32 for more information on windows object attributes.

Modifying frame windows

Many frame window attributes can be set after the object has been constructed. You can
change and query object attributes using the functions discussed on page 32. You can
also use the TWindow functions discussed on page 32. TFrameWindow provides an
additional set of functions for modifying frame windows:

* AssignMenu is typically used to set up a window’s menu before the interface element
has been created, such as in the InitMainWindow function or the wmdow object’s
constructor or SetupWindow function.

e SetMenu sets the window’s menu handle to the HMENU parameter passed in.

* SetMenuDescr sets the window’s menu description to the TMenuDescr parameter
passed in.

* GetMenuDescr returns the current menu description.

* MergeMenu merges the current menu description with the TMenuDescr parameter
passed in.

o RestoreMenu restores the window’s menu from Attr.Menu.

e Setlcon sets the icon in the module passed as the first parameter to the icon passed as
aresource in the second parameter.

For more specific information on these functions, refer to the ObjectWindows Reference
Guide.

Decorated frame windows

This section discusses decorated frame windows. Decorated frame windows are
encapsulated in TDecoratedFrame, which is derived from TFrameWindow and
TLayoutWindow. Decorated frame windows provide all the functionality of frame
windows and layout, but in addition provide:

* Support for adding controls (known as decorations) to the frame of the window

* Automatic adjustment of child windows to accommodate the placement of
decorations

Figure 7.2 shows a sample decorated frame window.

78 ObjectWindows Programmer’s Guide

Figure 7.2 Sample decorated frame window

Window

Constructing decorated frame window objects

TDecoratedFrame has only one constructor. Except for the fourth parameter, this
constructor looks nearly identical to the first TFrameWindow constructor described on
page 76.

TDecoratedFrame (TWindow* parent,
const char far* title,
TWindow* clientWnd,
bool trackMenuSelection = false,
TModule* module = 0);

where:

¢ The first parameter is the window’s parent window object. Use zero if the window
you're creating is the main window (which doesn’t have a parent window object).
Otherwise use a pointer to the parent window object. This is the only parameter that
you must provide.

¢ The second parameter is the window title. This string appears in the caption bar of
the window. If you don't specify anything for the second parameter, no title is
displayed in the title bar.

¢ The third parameter lets you specify a pointer to a client window for the frame
window. If you don’t specify anything for the third parameter, by default the
constructor gets a zero, meaning that there is no client window.

¢ The fourth parameter lets you specify whether menu commands should be tracked.
When tracking is on, the window tries to pass a string to the window’s status bar. The
string passed has the same resource name as the currently selected menu choice. You

Chapter 7, Window objects 79

should not turn on menu selection tracking unless you have a status bar in your
window. If you don't specify anything, by default the constructor gets false, meaning
that it should not track menu commands.

e The fifth parameter is passed to the base class constructor as the TModule parameter
for that constructor. This parameter defaults to 0.

Adding decorations to decorated frame windows

You can use the methods for modifying windows described on pages 32 and 78 to
modify the basic attributes of a decorated frame window. TDecoratedFrame provides the
extra ability to add decorations using the Insert member function.

To use the Insert member function, you must first construct a control to be inserted.
Valid controls include control bars (TControlBar), status bars (TStatusBar), button
gadgets (TButtonGadget), and any other control type based on TWindow.

Once you have constructed the control, use the Insert function to insert the control into
the decorated frame window. The Insert function takes two parameters: a reference to
the control and a location specifier. TDecoratedFrame provides the enum TLocation.
TLocation has four possible values: Top, Bottom, Left, and Right.

Suppose you want to construct a status bar to add to the bottom of your decorated
frame window. The code would look something like this:

TStatusBar* sb = new TStatusBar (0, TGadget::Recessed,
TStatusBar::CapsLock |
TStatusBar: :NumLock |
TStatusBar::0vertype) ;
TDecoratedFrame* frame = new TDecoratedFrame(0,
"Decorated Frame",
Ol
" true);

frame->Insert (*sb, TDecoratedFrame::Bottom);

MDI windows

Multiple-document interface, or MDI, windows are part of the MDI interface for

managing multiple windows or views in a single frame window. MDI lets the user

work with a number of child windows at the same time. Figure 7.3 shows a sample MDI
- application.

80 ObjectWindows Programmer’s Guide

Figure 7.3 Sample MDI appllcatlon

~ MDIFile Editor

CATMPASAINTOFC. TXT
his must be heaven, tonight | cross the line.
‘ou must be the angel | though | might never find.
| Was it you | heard singing, Oh while | was chasin' dreams.
| Driven by the wind, like the dust that blows around,
| And the rain fallin’ down, but | never know.
|| Got to be heaven, cause here's where the rainbow ends.

f this ain't the real thing, then it's close enough te pretend.
When that wind blows, when the night's about to fall.

Inif, {| You can hear the silence call, it's a certain sort of sound,
Gl Ml Like the rain fallin' down.

never could read no road map, I don't know what lhe weather might do.
ut when that rich wind whines and | see the dark star shine,
got a feeling there's no time to lose, no time to lose.

MDI applications

Certain components are present in every MDI application. Most evident is the main
window, called the MDI frame window. Within the frame window’s client area is the
MDI client window, which holds child windows called MDI child windows. When using
the Doc/View classes, the application can put views into MDI windows. See Chapter 10
for more information on the Doc/View classes.

MDI Window menu

An MDI application usually has a menu item labeled Window that controls the MDI
child windows. The Window menu usually has items like Tile, Cascade, Arrange, and
Close All. The name of each open MDI child window is automatically added to the end
of this menu, and the currently selected window is checked.

MDI child windows

MDI child windows have some characteristics of an overlapped window. An MDI child
window can be maximized to the full size of its MDI client window, or minimized to an
icon that sits inside the client window. MDI child windows never appear outside their
client or frame windows. Although MDI child windows can’t have menus attached to
them, they can have a TMenuDescr that the frame window uses as a menu when that
child is active. The caption of each MDI child window is often the name of the file
associated with that window; this behavior is optional and under your control.

MDI in ObjectWindows
ObjectWindows defines classes for each type of MDI window:

Chapter 7, Window objects 81

e TMDIFrame
o TMDIClient
o TMDIChild

In ObjectWindows, the MDI frame window owns the MDI client window, and the MDI
client window owns each of the MDI child windows.

TMDIFrame’s member functions manage the frame window and its menu.
ObjectWindows first passes commands to the focus window and then to its parent, so
the client window can process the frame window’s menu commands. Because
TMDIFrame doesn’t have much specialized behavior, you'll rarely have to derive your
own MDI frame window class; instead, just use an instance of TMDIFrame. Since
TMDIChild is derived from TFrameWindow, it can be a frame window with a client
window. Therefore, you can create specialized windows that serve as client windows in
a TMDIChild, or you can create specialized TMDIChild windows. The preferred style is
to use specialized clients with the standard TMDIChild class. The choice is yours, and
depends on your particular application.

Building MDI applications

Follow these steps to building an MDI application in ObjectWindows:

1 Create an MDI frame window
2 Add behavior to an MDI client window
3 Create MDI child windows

The ObjectWindows TMDIXxx classes handle the MDI-specific behavior for you, so you
can concentrate on the application-specific behavior you want.

Creating an MDI frame window

The MDI frame window is always an application’s main window, so you construct it in
the application object’s InitMainWindow member function. MDI frame windows differ
from other frame windows in the following ways:

* An MDI frame is always a main window, so it never has a parent. Therefore,
TMDIFrame’s constructor doesn’t take a pointer to a parent window object as a
parameter. ‘

¢ An MDI frame must have a menu, so TMDIFrame’s constructor takes a menu
resource identifier as a parameter. With non-MDI main frame windows, you'd call
AssignMenu to set the windows menu. TMDIFrame’s constructor makes the call for
you. Part of what TMDIFrame::AssignMenu does is search the menu for the child-
window menu, by searching for certain menu command IDs. If it finds a Window
menu, new child window titles are automatically added to the bottom of the menu.

A typical InitMainWindow for an MDI application looks like this:

void
TMDIApp: : InitMainWindow ()
(.
SetMainWindow (new TMDIFrame ("MDI App", ID_MENU, *new TMyMDIClient));

}

82 ObjectWindows Programmer’s Guide

The example creates an MDI frame window titled “MDI App” with a menu from the
ID_MENU resource. The ID_MENU menu should have a child-window menu. The
MDI client window is created from the TMyMDIClient class.

Adding behavior to an MDI client window

Since you usually use an instance of TMDIFrame as your MDI frame window, you need
to add application-wide behavior to your MDI client window class. The frame window
owns menus and tool bars but passes the commands they generate to the client window
and to the application. A common message-response function would respond to the
File | Open menu command to open another MDI child window.

Manipulating child windows

TMDIClient has several member functions for manipulating MDI child windows.
Commands from an MDI application’s child-window menu control the child windows.
TMDIClient automatically responds to those commands and performs the appropriate
action:

Table 7.4 Standard MDI child-window menu behavior

Acon MenucommandID TMDIClient member function
Cascade ~ CM_CASCADECHILDREN CmCascadeChildren
Tile CM_TILECHILDREN CmTileChildren

Tile Horizontally =~ CM_TILECHILDRENHORIZ CmTileChildrenHoriz

Arrange Icons CM_ARRANGEICONS CmArrangelcons

Close All CM_CLOSECHILDREN CmCloseChildren

The header file owl\mdi.h includes owl\mdi.rh for your applications. owl\mdi.rh is a
resource header file that defines the menu command IDs listed in Table 7.4. When you
design your menus in your resource script, be sure to include owl\mdi.rh to get those
IDs.

MDI child windows shouldn’t respond to any of the child-window menu commands.
The MDI client window takes care of them.

Creating MDI child windows
There are two ways to create MDI child windows: automatically in
TMDIClient::InitChild or manually elsewhere.

Automatic child window creation

TMDIClient defines the CmCreateChild message response function to respond to the
CM_CREATECHILD message. CrmCreateChild is commonly used to respond to an MDI
application’s File | New menu command. CmCreateChild calls CreateChild, which calls
InitChild to construct an MDI child window object, and finally calls that object’s Create
member function to create the MDI child window interface element.

Chapter 7, Window objects 83

If your MDI application uses CM_CREATECHILD as the command ID to create new
MDI child windows, then you should override InitChild in your MDI client window
class to construct MDI child window objects whenever the user chooses that command:

TMDIChild*
TMyMDIClient: :InitChild()
{
return new TMDIChild(*this, "MDI child window");

}

Since TMDIChild’s constructor takes a reference to its parent window object, and not a
pointer, you need to dereference the this pointer.

Manual child window creation
You don't have to construct MDI child window objects in InitChild. If you construct
them elsewhere, however, you must create their interface element yourself:

void
TMyMDIClient: :CmFileOpen ()
{ .
new TMDIChild(*this, "")->Create();
}

84 ObjectWindows Programmer’s Guide

Chapter

Menu objects

ObjectWindows menu objects encapsulate menu resources and provide an interface for
controlling and modifying the menu. Many applications use only a single menu
assigned to the main window during its initialization. Other applications might require
more complicated menu handling. ObjectWindows menu objects, encapsulated in the
TMenu, TSystemMenu, TPopupMenu, and the TMenuDescr classes, give you an easy way
to create and manipulate menus, from basic functionality to complex menu merging.

This chapter discusses the following tasks you can perform with menu objects:

Constructing menu objects

Modifying menu objects

Querying menu objects

Using system menu objects

Using pop-up menu objects

Using menu objects with frame windows

Constructing menu objects

TMenu has several constructors to create menu objects from existing windows or from
menu resources. After the menu is created, you can add, delete, or modify it using
TMenu member functions. Table 8.1 lists the constructors you can use to create menu
objects.

Table 8.1 TMenu constructors for creating menu objects

TMenu()4 Creéfes anempty mehu.

TMenu(HWND) Creates a menu object representing the window’s current menu.
TMenu(HMENU) Creates a menu object from an already-loaded menu.
TMenu(LPCVOID¥) Creates a menu object from a menu template in memory.

TMenu(HINSTANCE, TResID) Creates a menu object from a resource.

Chapter 8, Menu objects 85

Modifying menu objects

After you create a menu object, you can use TMenu member functions to modify it.
Table 8.2 lists the member functions you can call to modify menu objects.

Table 8.2 TMenu constructors for modifying menu objects

Adding menu items: "

AppendMenu(uint, uint, const char*) Adds a menu item to the end of the
menu.

AppendMenu(uint, uint, const TBitmapé&) Adds a bitmap as a menu item at the

' end of the menu.

InsertMenu(uint, uint, uint, const char®*) Adds a menu item to the menu after
the menu item of the given ID.

InsertMenu(uint, uint, uint, const TBitmapé&) Adds a bitmap as a menu item after

' the menu item of the given ID.

Modifying menu items:

ModifyMenu(uint, uint, uint, const char*) Changes the given menu item.

ModifyMenu(uint, uint, uint, const TBitmapé) Changes the given menu item to a
bitmap.

Enabling and disabling menu items:

EnableMenultem(uint, uint) Enables or disables the given menu
item.

Deleting and removing menu items:

DeleteMenu(uint, uint) ‘ Removes the menu item from the
menu it is part of. Deletes it if it's a
pop-up menu.

RemoveMenu(uint, uint) Removes the menu item from the
menu but not from memory.

Checking menu items:

CheckMenultem(uint, uint) Check or unchecks the menu item.

SetMenultemBitmaps(uint, uint, const TBitmap?*, const TBitmap*) ~ Specifies the bitmap to be displayed
when the given menu item is checked

and unchecked.
Displaying pop-up menus:
TrackPopupMenu(uint, int, int, int, HWND, TRect*) Disﬂl::lays the menu as a pop-up menu
TrackPopupMenu(uint, TPoint&, int, HWND, TRect*) at the given location on the specified

window.

After modifying the menu object, you should call the window object’s DrawMenuBar
member function to update the menu bar with the changes you've made.

Querying menu objects

TMenu has a number of member functions and member operators you can call to find
out information about the menu object and its menu. You might need to call one of the
query member functions before you call one of the modify member functions. For

86 ObjectWindows Programmer’s Guide

example, you need to call GetMenuCheckmarkDimensions before calling
SetMenultemBitmaps.

Table 8.3 lists the menu-object query member functions.

Table 8.3 TMenu constructors for querying menu objects

TMeny member function ~ Description
Querying the menu obj ect as a whole: '

operator uint() Returns the menu'’s handle as a uint.

operator HMENU() Returns the menu’s handle as an HMENU.

IsOK() Checks if the menu is OK (has a valid handle).

GetMenultemCount() Returns the number of items in the menu.

GetMenuCheckMarkDimensions(TSize&) ~ Gets the size of the bitmap used to display the check mark on
checked menu items.

Querying items in the menu:

GetMenultemID(int) Returns the ID of the menu item at the specified position.
GetMenuState(uint, uint) Returns the state flags of the specified menu item.
GetMenuString(uint, char®, int, uint) Gets the text of the given menu item.

GetSubMenu(int) Returns the handle of the menu at the given position.

Using system menu objects

ObjectWindows’ TSystemMenu class lets you modify a window’s System menu.
TSystemMenu is derived from TMenu and differs from it only in its constructor, which
takes a window handle and a bool flag. If the flag is true, the current System menu is
deleted and a menu object representing the unmodified menu that’s put in its place is
created. If the flag is false, the menu object represents the current System menu. By
default this flag is false.

You can use all the member functions inherited from TMenu to manipulate the System
menu. For example, the following example shows how to add an About menu choice to
the System menu.

void
TSysMenuFrame: : SetupWindow ()
{

TFrameWindow: : SetupWindow () ;

// Append about menu item to system menu.

TSystemMenu sysMenu (HWindow) ;

sysMenu. AppendMenu (MF_SEPARATOR, 0, (LPSTR)O0);

sysMenu.AppendMenu (MF_STRING, CM_ABOUT, "&About...");
}

Notice that the System menu is modified in the SetupWindow function of the window
object. The System menu should be modified before the window is created. It's usually
easiest to do this simply by overriding the base window class’ SetupWindow function.

' Chapter 8, Menu objects 87

Using pop-up menu objects

You can use TPopupMenu to create a pop-up menu that you can add to an existing menu
structure or pop up anywhere in the window. Like TSystemMenu, TPopupMenu is
derived from TMenu and differs from it only in its constructor, which creates an empty
pop-up menu. You can then add whatever menu items you like using the AppendMenu
function.

Once you've created a pop-up menu, you can use TrackPopupMenu to display it as a
“free-floating” menu. TrackPopupMenu creates a pop-up menu at a particular location in
your window. There are two forms of this function.

bool TrackPopupMenu(uint flags, int x, int y, int rsvd, HWND wnd, TRect* rect = 0);
bool TrackPopupMenu(uint flags, TPoint& point, int rsvd, HWND wnd, TRect* rect = 0);

where:

* flags specifies the relative location of the pop-up menu. It can be one of the following
values:

TPM_CENTERALIGN
¢ TMP_LEFTALIGN

¢ TPM_RIGHTALIGN
e TPM_LEFTBUTTON
e TPM_RIGHTBUTTON

* x and y specify the screen location of the pop-up menu. In the second form of
TrackPopupMenu, point does the same thing, combining x and y into a single TPoint
object. The menu is then created relative to this point, depending on the value of flags.

* rsvd is a reserved value and must be set to 0.
¢ wnd is the handle to the window that receives messages about the menu.
¢ rect defines the area that the user can click without dismissing the menu.

The following example shows a window class that displays a pop-up menu in response
to a right mouse button click.

class TPopupMenuFrame : public TFraemeWindow
{
public: :
TPopupMenuFrame (TWindow* parent, const char *name);

protected:
TPopupMenu PopupMenu;
void EvRButtonDown (uint modKeys, TPoint& point);

DECLARE_RESPONSE_TABLE (TPopupMenuFrame) ;
}i

DEFINE_RESPONSE_TABLEL (TSysMenuFrame, TFrameWindow)

EV_WM_RBUTTONDOWN,
END_RESPONSE_TABLE;

88 ObjectWindows Programmer’s Guide

TPopupMenuFrame: : TPopupMenuFrame (TWindow* parent, const char *name)
: TFrameWindow (parent, name)

{
PopupMenu . AppendMenu (MF_STRING, CM_FILENEW, "Create new file");
PopupMenu . AppendMenu (MF_STRING, CM_FILEOPEN, "Open file");
PopupMenu . AppendMenu (MF_STRING, CM_FILESAVE, "Save file");
PopupMenu . AppendMenu (MF_STRING, CM_FILESAVEAS, "Save file under new name");
PopupMenu . AppendMenu (MF_STRING, CM_PENSIZE, "Change pen size");
PopupMenu . AppendMenu (MF_STRING, CM_PENCOLOR, "Change pen color");
PopupMenu . AppendMenu (MF_STRING, CM_ABOUT, "&About...");
PopupMenu . AppendMenu (MF_STRING, CM_EXIT, "Exit Program");

}

void
TPopupMenuFrame: : EvRBut tonDown (uint /* modKeys */, TPoint& point)

{
PopupMenu . TrackPopupMenu (TPM_LEFTBUTTON, point, 0, HWindow);
}

Using menu objects with frame windows

ObjectWindows frame window objects (TFrameWindow and TFrameWindow-derived
classes) provide a number of functions that you can use to assign, change, and modify
menus. There are two ways to manipulate frame window menus:

* Directly assigning or changing the frame window’s main menu. This is typically how
you work with menus when you have a single menu that doesn’t use menu merging.

¢ Assigning and merging the frame window’s menu descriptor with that of client and
child windows. Menu descriptors are objects that divide the menu bar into functional
groups and permit easy merging and removal of pop-up menus.

These methods of using menu objects are described in the next sections.

Adding menu resources to frame windows

It was fairly common practice in ObjectWindows 1.0 to assign a menu resource directly
to the Attr.Menu member of a frame window; for example,

Attr.Menu = MENU_I1;

ObjectWindows no longer permits this type of assignment; you should instead use the
AssignMenu function. AssignMenu is defined in the TFrameWindow class, and is available
in any class derived from TFrameWindow, such as TMDIFrame, TMDIChild,
TDecoratedFrame, and TFloatingFrame.

The AssignMenu function takes a TResld for its only parameter and returns true if the
assignment operation was successful. AssignMenu is declared virtual, so you can
override it in your own TFrameWindow-derived classes. Here’s what the previous
example looks like when the AssignMenu function is used: :

AssignMenu (MENU_1) ;

Chapter 8, Menu objects 89

You can also change the menu after the frame window has been created. To change the
frame window’s menu, call the window object’s SetMenu function.

SetMenu (MENU_2) ;

Using menu descriptors

Managing menus—adding menus for child windows, merging menus, and so on—can
be a tedious and confusing chore. ObjectWindows simplifies menu management with
objects known as menu descriptors. Menu descriptors divide the menu bar into six
groups, which correspond to conventional ways of arranging functions on a menu bar:

File

Edit
Container
Object
Window
¢ Help

Organizing menus into functional groups makes it easy to insert a new menu into an
existing menu bar. For example, consider an MDI application, such as Step 11 of the
ObjectWindows tutorial in the ObjectWindows Tutorial manual. The frame and client
windows provide menus that let the user perform general application functions such as
opening files, managing windows, and so on. The child windows handle the menu
commands for functions specific to a particular drawing, such as setting the line width
and color.

In the tutorial, the menu stays the same, but menu items handled by the child windows
are grayed out when no child window is available to handle the command. Another
way to handle this would be to have the menu bar populated only with the menus
handled by the frame and client windows. Then, when a child window is opened, the
menus handled by the child window would be merged into the existing menu bar. The
figures below show how this looks to the user. Figure 8.1 shows the application with no
child windows open. Notice that there are only four pop-up menus on the menu bar.

90 ObjectWindows Programmer’s Guide

Figure 8.1 Menu descriptor application without child windows open

wing Péd‘

Figure 8.2 shows the application once one or more child windows have been opened.
Notice the extra pop-up menu labeled Tools. The Tools menu is merged into the main
menu bar only when there is a child window where the tools can be used.

Figure 8.2 Menu descriptor application with child windows open

e Edit Tools Window Hel

Documentl

Adding menu descriptors to an application is a simple process.

¢ Set the menu descriptor for the frame window’s menu bar by calling the frame
window’s SetMenuDescr function.

Chapter 8, Menu objects 91

* When creating a new child window, set the child’s menu descriptor by calling the
child’s SetMenuDescr function. Once the child window is created, ObjectWindows
automatically merges the menu from the child with the frame window’s menu bar
while the child is active. Note that different MDI child windows in the same
application can have different menu descriptors. This is useful when the child
windows contain different kinds of documents. ‘

Creating menu descriptors and using the menu descriptor handling functions is
described in the next sections.

Creating menu descriptors

The TMenuDescr class implements the ObjectWindows menu descriptor functionality.
Menu descriptors take a menu resource and place the separate pop-up menus in the
resource into six functional groups. The naming of the groups is arbitrary in that you are
not restricted to putting only menus of a certain functional type into a particular group.
However, the naming convention does reflect standard conventions of menu item
placement. These names are contained in the TGroup enum defined in the TMenuDescr
class:

e FileGroup
EditGroup
ContainerGroup
ObjectGroup
WindowGroup
* HelpGroup

These groups are arranged consecutively on the menu bar from left to right. When
another menu descriptor is merged with the existing menu bar, the new pop-up menus
are merged according to their groups. For example, consider the example show Figure
8.1 and Figure 8.2. The original three pop-up menus are placed in the following menu
groups:

¢ The File menu is placed in the FileGroup group.

® The Window menu is placed in the WindowGroup group.

¢ The Help menu is placed in the HelpGroup group.

When the child window is created, its pop-up menu, called Tools, is placed in the
EditGroup group. Then, when the menus are merged, the child window’s menu is
automatically placed between the File menu and the Window menu.

92 ObjectWindows Programmer’s Guide

Constructing menu descriptor objects

There are a number of different constructors for TMenuDescr. These are described in
Table 8.4.

Table 8.4 TMenuDescr constructors

Constructor ‘ Function
TMenuDescr(TResld id, Creates a menu descri fptor from the menu resource identified
TModule* module = :Module) Py id. The grouping of the pop-up menus are determined by

the occurrence of separators at the menu level (that is,
separators inside of a pop-up menu are disregarded for
grouping purposes) in the menu resource. This is discussed in
more detail in the next section.

TMenuDescr(TResld id, Creates a menu descriptor from the menu resource identified
i i i by id or hMenu. The separate pop-ups in the resource are then
1‘ntfg, l?lt % m.t Ci' placed in groups according t(? the vglues of fg, eg, cg, 0g, wg,
int og, int wg, int hg, and hg. The total of all the values of fg, eg, cg, 0g, wg, and hg
TModule* module = ::Module); should be equivalent to the number of pop-ups in the menu
resource. The g, eg, cg, 0g, wg, and hg parameters correspond to
TMenuDescr(HMENU hMenu the groups defined in the TMenuDescr::-TGroup enum.

int fg, int e, int cg, You can /place more than one pop-up in a single group, and

. . . you don't have to place a pop-up in every group. For example,

int og, int wg, int hg, suppose you have a menu resource with a File menu, a

TModule* module = :Module); ~ Window menu, and a Help menu, all contained in the menu
resource COMMANDS. You want to insert the File menu in
the FileGroup group, the Window menu in the WindowGroup
group, and the File menu in the FileGroup group. The
constructor would look something like this:

TMenuDescr md(COMMANDS, 1, 0, 0, 0, 1, 1);

TMenuDescr() Creates a default menu constructor without menu resources or
any group counts.

TMenuDescr(const TMenuDescr& original) Creates a copy of the menu descriptor object original.

Creating menu groups in menu resources

The TMenuDescr class provides two ways to set up the groups that your various pop-up
menus belong in:

* Explicitly numbering the menu resources in the TMenuDescr constructor
* Placing separators at the pop-up menu level in the menu resource

Earlier versions of ObjectWindows provided only the first method. The second method
is new in ObjectWindows 2.5 . This method is more flexible, eliminating the need to
modify the TMenuDescr constructor whenever you add or remove a pop-up menu in
your menu resource.

To set up groups in your menu resource, you need to put separators at the pop-up menu
level. This means placing the separators outside of pop-up definitions. These separators
have meaning only to the TMenuDescr constructor and don't cause any changes in the
appearance of your menu bar. Separators inside pop-up menus are treated normally,
that is, they appear in the pop-up menu as separator bars between menu choices.

The following example shows how a menu resource might be divided up into groups
using separators in the menu resource. The menu resource is divided up into the
requisite six groups, with four of the groups containing actual pop-up menus—the File

Chapter 8, Menu objects 93

menu, the Edit menu, the Window menu, and the Help menu. The other two groups are
empty.
IDM_COMMANDS MENU
{
POPUP "File"
{
MENUITEM "&New\aCtrl+N', CM_FILENEW
MENUITEM "&Open\aCtrl+0", CM_FILEOPEN
MENUITEM "&Save\aCtrl+S", CM_FILESAVE
MENUITEM "Save &as...", CM_FILESAVEAS
MENUITEM SEPARATOR
MENUITEM "&Print\aCtrl+P", CM_FILEPRINT
}
MENUITEM SEPARATOR
POPUP "&EQit"
{
MENUITEM "&Undo\aCtrl+Z", CM_EDITUNDO
MENUITEM Separator
MENUITEM "&Cut\aCtrl+X", CM_EDITCUT
MENUITEM "C&opy\aCtrl+C", CM_EDITCOPY
MENUITEM "&Paste\aCtrl+V", CM_EDITPASTE
MENUITEM "&Delete\aDel", CM_EDITDELETE
}
MENUITEM SEPARATOR
MENUITEM SEPARATOR
MENUITEM SEPARATOR
POPUP "&Window"
{
MENUITEM "&Cascade", CM_CASCADECHILDREN
MENUITEM "&Tile", CM_TILECHILDREN
MENUITEM "Arrange &Icons", CM_ARRANGEICONS
MENUITEM "C&lose All", CM_CLOSECHILDREN
MENUITEM "Add &View", CM_VIEWCREATE
}
MENUITEM SEPARATOR
POPUP "gHelp"
{
MENUITEM "&Rbout", CM_ABOUT
}
}

Merging menus with menu descriptors

To use menu descriptors for menu merging, you need to set your frame window’s menu
descriptor sometime before the creation of the window, usually during the
InitMainWindow function. Then whenever you wish to merge a child window’s menu or
menus with that of its parent, you set the child window’s menu descriptor before
creating the child. When child is created, its menu descriptor is automatically merged
with the parent.

You set a window’s menu descriptor using the SetMenuDescr function. SetMenuDescr is
inherited from TFrameWindow. It returns void and takes a const TMenuDescr reference

94 ObjectWindows Programmer’s Guide

as its only parameter. The following example shows how you might create and set the
menu descriptors for the examples shown in Figure 8.1 and Figure 8.2.

class TMenuDescrApp : public TApplication
{
public:
TMenuDescrApp (const char* name) : TApplication(name) {}

void InitMainWindow()

{
SetMainWindow (Frame = new TMDIFrame (Name, COMMANDS, *new TMenuDescrMDIClient));

Frame->SetMenuDescr (TMenuDescr (COMMANDS)) ;
}

protected:
TMDIFrame* Frame;
}i

void
TMenuDescrMDIClient : :CmAddMenul ()

{
TMDIChild *child = new TMDIChild(*this, "Child Window, 1", new TMenuDescrWindow, true);

child->SetMenuDescr (TMenuDescr (IDM_MENU1)) ;
child->Create();
}

Chapter 8, Menu objects 95

96 ObjectWindows Programmer’s Guide

Chapter

Dialog box objects

Dialog box objects are interface objects that encapsulate the behavior of dialog boxes.
The TDialog class supports the initialization, creation, and execution of all types of
dialog boxes. As with window objects derived from TWindow, you can derive
specialized dialog box objects from TDialog for each dialog box your application uses.

ObjectWindows also supplies classes that encapsulate Windows’ common dialog boxes.
Windows provides common dialog boxes as a way to let users choose file names, fonts,
colors, and so on.

This chapter covers the following topics:

* Using dialog box objects

¢ Using a dialog box as your main window
* Manipulating controls in dialog boxes

¢ Associating interface objects with controls
¢ Using common dialog boxes

Using dialog box objects

Using dialog box objects is a lot like using window objects. For simple dialog boxes that
appear for only a short period of time, you can control the dialog box in one member
function of the parent window. The dialog box object can be constructed, executed, and
destroyed in the member function.

Using a dialog box object requires the following steps:

¢ Constructing the object

¢ Executing the dialog box
¢ Closing the dialog box

® Destroying the object

Chapter 9, Dialog box objects 97

Constructing a dialog box obiéct

Dialog boxes are designed and created using a dialog box resource. You can use
Borland’s Resource Workshop or any other resource editor to create dialog box
resources and bind them to your application. The dialog box resource describes the
appearance and location of controls, such as buttons, list boxes, group boxes, and so on.
The dialog box resource isn't responsible for the behavior of the dialog box; that’s the
responsibility of the application.

Each dialog box resource has an identifier that enables a dialog box dbject to specify
which dialog box resource it uses. The identifier can be either a string or an integer. You
pass this identifier to the dialog box constructor to specify which resource the object
should use.

Calling the constructor

To construct a dialog box object, create it using a pointer to a parent window object and
a resource identifier (the resource identifier can be either string or integer based) as the
parameters to the constructor: ‘

TDialog dialogl(this, "DIALOG_1");

TDialog dialog2(this, IDD_MY_DIALOG);

The parent window is almost always this, since you normally construct dialog box
objects in a member function of a window object. If you don’t construct a dialog box
object in a window object, use the application’s main window as its parent, because that
is the only window object always present in an ObjectWindows application:

TDialog mySpecialDialog(GetApplication()->GetMainWindow(), IDD_DLG);

The exception to this is when you specify a dialog box object as a client window in a
TFrameWindow or TFrameWindow-based constructor. The constructor passes the dialog
box object to the TFrameWindow::Init function, which automatically sets the dialog box’s
parent. See page 102.

Executing a dialog box

Executing a dialog box is analogous to creating and displaying a window. However,
because dialog boxes are usually displayed for a shorter period of time, some of the
steps can be abbreviated. This depends on whether the dialog box is a modal or
modeless dialog box.

Modal dialog boxes

Most dialog boxes are modal. While a modal dialog box is displayed, the user can’t select
or use its parent window. The user must use the dialog box and close it before
proceeding. A modal dialog box, in effect, freezes the operation of the rest of the
application.

Use TDialog::Execute to execute a dialog box modally. When the user closes the dialog
box, Execute returns an integer value indicating how the user closed the dialog box. The
return value is the identifier of the control the user pressed, such as IDOK for the OK

98 ObjectWindows Programmer’s Guide

button or IDCANCEL for a Cancel button. If the dialog box object was dynamically
allocated, be sure to delete the object.

The following example assumes you have a dialog resource IDD_MY_DIALOG, and
that the dialog box has two buttons, an OK button that sends the identifier value IDOK
and a Cancel button that sends some other value:

if (TMyDialog(this, IDD_MY_DIALOG).Execute() == IDOK)
// User pressed OK

else
// User pressed Cancel

Only the object is deleted when it goes out of scope, not the dialog box resource. You can
create and delete any number of dialog boxes using only a single dialog box resource.

Modeless dialog boxes

Unlike a modal dialog box, you can continue to use other windows in your application
while a modeless dialog box is open. You can use a modeless dialog box to let the user
continue to perform actions, find information, and so on, while still using the dialog box.

Use TDialog::Create to execute a dialog box modelessly. When using Create to execute a
dialog box, you must explicitly make the dialog box visible by either specifying the
WS_VISIBLE flag for the resource style or using the ShowWindow function to force the
dialog box to display itself.

For example, suppose your resource script file looks something like this:

DIALOG_1 DIALOG 18, 18, 142, 44
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Dialog 1"

{
PUSHBUTTON "Button", IDOK, 58, 23, 25, 16

}
Now suppose that you try to create this dialog box modelessly using the following code:

TDialog dialogl(this, "DIALOG_1");
dialogl.Create();

This dialog box wouldn’t appear on your screen. To make it appear, you'd have to do
one of two things:

* Change the style of the dialog box to have the WS_VISIBLE flag set:
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU | WS_VISIBLE
* Add the ShowWindow function after the call to Create:

TDialog dialogl(this, "DIALOG_1");
dialogl.Create();
dialogl.ShowWindow (SW_SHOW) ;

Chapter 9, Dialog box objects 99

The TDialog::CmOk and TDialog::CmCancel functions close the dialog box and delete the
object. These functions handle the IDOK and IDCANCEL messages, usually sent by the
OK and Cancel buttons, in the TDialog response table. The CmOk function calls
CloseWindow to close down the modeless dialog box. The CmCancel function calls
Destroy with the IDCANCEL parameter. Both of these functions close the dialog box. If
you override either CmOk or CmCancel, you need to either call the base class CnOk or
CmCancel function in your overriding function or perform the closing and cleanup
operations yourself.

Alternately, you can create your dialog box object in the dialog box’s parent’s
constructor. This way, you create the dialog box object just once. Furthermore, any
changes made to the dialog box state, such as its location, active focus, and so on, are
kept the next time you open the dialog box.

Like any other child window, the dialog box object is automatically deleted when its
parent is destroyed. This way, if you close down the dialog box’s parent, the dialog box
object is automatically destroyed; you don’t need to explicitly delete the object.

In the following code fragment, a parent window constructor constructs a dialog box
object, and another function actually creates and displays the dialog box modelessly:

class TParentWindow : public TFrameWindow

{
public:
TParentWindow (TWindow* parent, const char* title);
void CmDOIT();

protected:
TDialog *dialog;
}i

void

TParentWindow: : CmDO_IT()

{
dialog = new TDialog(this, IDD_EMPLOYEE_INFO);
dialog->Create();

}

Using autocreation with dialog boxes

You can use autocreation to let ObjectWindows do the work of explicitly creating your
child dialog objects for you. By creating the objects in the constructor of a TWindow-
derived class and specifying the this pointer as the parent, the TWindow-derived class
builds a list of child windows. This also happens when the dialog box object is a data
member of the parent class. Then, when the TWindow-derived class is created, it
attempts to create all the children in its list that have the wfAutoCreate flag turned on.
This results in the children appearing onscreen at the same time as the parent window.

Turn on the wfAutoCreate flag using the function EnableAutoCreate. Turn off the
wfAutoCreate flag using the function DisableAutoCreate. ‘

100 ObjectWindows Programmer’s Guide

TWindow uses Create for autocreating its children. Thus any dialog boxes created with
autocreation are modeless dialog boxes.

Just as with regular modeless dialog boxes, if you're using autocreation to turn your
dialog boxes on, you must make your dialog box visible. But with autocreation you
must turn the WS_VISIBLE flag on in the resource file. You can’t use the ShowWindow
function to enable autocreation.

The following code shows how to enable autocreation for a dialog box:

class TMyFrame : public TFrameWindow
{
public:
TDialog *dialog;
TMyFrame (TWindow *, const char far *);
b

TMyFrame: : TMyFrame (TWindow *parent, const char far *title)

{
Init (parent, true);
dialog = new TDialog(this, "MYDIALOG");

// For the next line to work properly, the WS_VISIBLE attribute
// must be specified for the MYDIALOG resource.

dialog->EnableAutoCreate();
}

When you execute this application, the dialog box is automatically created for you. See
page 37 for more information on autocreation.

Managing dialog boxes

Dialog boxes differ from other child windows, such as windows and controls, in that
they are often displayed and destroyed many times during the life of their parent
windows but are rarely displayed or destroyed at the same time as their parents.
Usually, an application displays a dialog box in response to a menu selection, mouse
click, error condition, or other event.

Therefore, you must be sure to not repeatedly construct new dialog box objects without
deleting previous ones. Remember that when you construct a dialog box object in its
parent window object’s constructor or include the dialog box as a data member of the
parent window object, the dialog box object is inserted into the child-window list of the
parent and deleted when the parent is destroyed.

You can retrieve data from a dialog box at any time, as long as the dialog box object still
exists. You'll do this most often in the dialog box object’s CmOK member function,
which is called when the user presses the dialog box’s OK button.

Handling errors executing dialog boxes _
Like window objects, a dialog box object’s Create and Execute member functions can
throw the C++ exception TXWindow. This exception is usually thrown when the dialog

Chapter 9, Dialog box objects 101

box can’t be created, usually because the specified resource doesn’t exist or because of
insufficient memory.

You can rely on the global exception handler that ObjectWindows installs when your
application starts to catch TXWindow, or you can install your own exception handler. To
install your own exception handler, place a try/ catch block around the code you want
to protect. For example, if you want to know if your function DoStuff produces an error,
the code would look something like this:

try
{

DoStuff();
}

catch(TWindow: : TXWindowé& e)
{
// You can do whatever exception handling you like here.
MessageBox (0, e.why().c_str(),
"Error", MB_OK);
}

ObjectWindows exception handling is explained in more detail in Chapter 6.

Closing the dialog box

Every dialog box must have a way for the user to close it. For modal dialog boxes, this is
usually an OK or Cancel button, or both. TDialog has the event response functions CmOk
and CmCancel to respond to those buttons.

CmOk calls CloseWindow, which calls CanClose to see if it’s OK to close the dialog box. If
CanClose returns true, CloseWindow transfers the dialog’s data and closes the dialog box
by calling CloseWindow.

CmCancel calls Destroy, which closes the dialog box. No checking of CanClose is
performed, and no transfer is done.

To verify the input in a dialog box, you can override the dialog box object’s CanClose
member function. Also see the description of the TInputValidator classes in Chapter 15. If
you override CanClose, be sure to call the parent TWindow::CanClose function, which
handles calling CanClose for child windows.

Using a dialog box as your main window

To use a dialog box as your main window, it’s best to make the main window a frame
window that has your dialog box as a client window. To do this, derive an application
class from TApplication. Aside from a constructor, the only function necessary for this
purpose is InitMainWindow. In the InitMainWindow function, construct a frame window
object, specifying a dialog box as the client window. In the five-parameter
TFrameWindow constructor, pass a pointer to the client window as the third parameter.
Your code should look something like this:

102 ObjectWindows Programmer’s Guide

#include <owl\applicat.h>
#include <owl\framewin.h>
#include <owl\dialog.h>

class TMyApp : public TApplication
{
public:
TMyApp (char *title) : TApplication(title) {}
void InitMainWindow();

}i

void
TMyApp: : InitMainWindow()
{
SetMainWindow (new TFrameWindow (0, "My App",
new TDialog(0, "MYDIALOG"), true));
}

int
OwlMain (int argc, char* argv(])
{

return TMyApp ("My App").Run();

}

The TFrameWindow constructor turns autocreation on for the dialog box object that you
pass as a client, regardless of the state you pass it in. For more information on
autocreation for dialog boxes, see page 100.

You also must make sure the dialog box resource has certain attributes:

* Destroying your dialog object does not destroy the frame. You must destroy the
frame explicitly.

* You can no longer dynamically add resources directly to the dialog, because it isn’t
the main window. You must add the resources to the frame window. For example,
suppose you added an icon to your dialog using the SetIcon function. You now must
use the Setlcon function for your frame window.

* You can't specify the caption for your dialog in the resource itself anymore. Instead,
you must set the caption through the frame window.

* You must set the style of the dialog box as follows:
e Visible (WS_VISIBLE)
e Child window (WS_CHILD)

* No Minimize and Maximize buttons, drag bars, system menus, or any of the other
standard frame window attributes

Manipulating controls in dialog boxes

Almost all dialog boxes have (as child windows) controls such as edit controls, list
boxes, buttons, and so on. Those controls are created from the dialog box’s resource.

Chapter 9, Dialog box objects 103

There is a two-way communication between a dialog box object and its controls. In one
direction, the dialog box needs to manipulate its controls; for example, to fill a list box.
In the other direction, it needs to process and respond to the messages the controls
generate; for example, when the user selects an item from a list box. To learn about
responding to controls, see Chapter 3.

Chapter 11 describes using controls in more detail, and also discusses how to use
controls in windows instead of dialog boxes.

Communicating with controls

Windows defines a set of control messages that are sent from the application back to
Windows. For example, list-box messages include LB_GETTEXT, LB_GETCURSEL, and
LB_ADDSTRING. Control messages specify the specific control and pass along
information in wParam and [Param arguments. Each control in a dialog resource has an
identifier, which you use to specify the control to receive the message. To send a control
message, you can call SendDIgItemMessage. For example, the following member function
adds the specified string to the list box using the LB_ADDSTRING message:

void :
TTestDialog::FillListBox (const char far* string)
{
SendDlgItemMessage (ID_LISTBOX, LB_ADDSTRING, 0, (LPARAM)string);
)

It's rarely necessary to communicate with controls like this; ObjectWindows control
classes provide member functions to perform the same actions. This section discusses
the mechanisms used to perform this communication only to enhance your
understanding of the process. Although TListBox::AddString does basically the same
thing as this function and is easier to understand, this shows how you can use
SendDIgltemMessage to force actions.

Associating interface objects with controls

Because a dialog box is created from its resource, you don’t use C++ code to specify
what it looks like or the controls in it. Although this lets you create the dialog box
visually, it makes it harder to manipulate the controls from your application.
ObjectWindows lets you “connect” or associate controls in a dialog box with interface
objects. Associating controls with control objects lets you do two things:

* Provide specialized responses to messages. For example, you might want an edit
control that allows only digits to be entered, or you might want a button that changes
styles when it’s pressed.

¢ Use member functions and data members to manipulate the control. This is easier
and more object-oriented than using control messages.

104 ObjectWindows Programmer’s Guide

Control objects

To associate a control object with a control element, you can define a pointer to a control
object as a data member and construct a control object in the dialog box object’s
constructor. Control classes such as TButton have a constructor that takes a pointer to
the parent window object and the control’s resource identifier. In the following example,
TTestDialog’s constructor creates a TButton object from the resource ID_BUTTON:

TTestDialog: :TTestDialog (TWindow* parent, const char* resID)
: TDialog(parent, resID), TWindow(parent)

{
new TButton(thi

}

You can also define your own control class, derived from an existing control class (if you
want to provide specialized behavior). In the following example, TBeepButton is a
specialized TButton that overrides the default response to the BN_CLICKED notification
code. A TBeepButton object is associated with the ID_BUTTON button resource.

class TBeepButton : public TButton
{
public:
TBeepButton (TWindow* parent, int resId) : TButton(parent, resId) {}

void BNClicked(); // BN_CLICKED

DECLARE_RESPONSE_TABLE (TBeepButton) ;
}i

DEFINE_RESPONSE_TABLEL (TBeepButton, TButton)
EV_NOTIFY_AT_CHILD(BN_CLICKED, BNClicked),
END_RESPONSE_TABLE;

void
TBeepButton: :BNClicked()

{
MessageBeep(-1);

}

TBeepDialog: :TBeepDialog (TWindow* parent, const char* name)
: TDialog(parent, name), TWindow(parent)

{
button = new TBeepButton(this, ID_BUTTON);

}

Unlike setting up a window object, which requires two steps (construction and
creation), associating an interface object with an interface element requires only the
construction step. This is because the interface element already exists: it’s loaded from
the dialog box resource. You just have to tell the constructor which control from the
resource to use, using its resource identifier.

Chapter 9, Dialog box objects 105

Setting up controls

You can’t manipulate controls by, for example, adding strings to a list box or setting the
font of an edit control until the dialog box object’s SetupWindow member function
executes. Until TDialog::SetupWindow has called TWindow::SetupWindow, the dialog
box’s controls haven't been associated with the corresponding objects. Once they’re
associated, the objects” HWindow data members are valid for the controls.

In this example, the AddString function isn’t called until the base class SetupWindow
function is called:

class TDerivedDialog : public TDialog
{
public:
TDerivedDialog (TWindow* parent, TResId resId)
: TDialog(parent, resId), TWindow(parent)
{
listbox = new TListBox(this, IDD_LISTBOX);
}

protected:
TListBox* listbox;
}i

void
TDerivedDialog: : SetupWindow ()
{
TDialog: : SetupWindow () ;
listbox->AddString ("First entry");
}

Using dialog boxes

A Windows application often needs to prompt the user for file names, colors, or fonts.
ObjectWindows provides classes that make it easy to use dialog boxes, including
Windows’ common dialog boxes. The following table lists the different types of dialog
boxes and the ObjectWindows class that encapsulates each one.

Table 9.1 ObjectWindows-encapsulated dialog boxes

Color TChooseColorDialog
Font TChooseFontDialog
File open TFileOpenDialog
File save TFileSaveDialog
Find string TFindDialog

Input from user TInputDialog
Printer abort dialog TPrinterAbortDIg

106 ObjectWindows Programmer’s Guide

Table 9.1 ObjectWindows-encapsulated dialog boxes (continued)

Type ObjectWindows class
Printer control TPrintDialog
Replace string TReplaceDialog

Using input dialog boxes

Input dialog boxes are simple dialog boxes that prompt the user for a single line of text
input. You can run input dialog boxes as either modal or modeless dialog boxes, but
you'll usually run them modally. Input dialog box objects have a dialog box resource
associated with them, provided in the resource script file owl\inputdia.rc. Your
application’s .RC file must include owl\inputdia.rc.

When you construct an input dialog box object, you specify a pointer to the parent
window object, caption, prompt, and the text buffer and its size. The contents of the text
buffer is the default input text. When the user chooses OK or presses Enter, the line of
text entered is automatically transferred into the character array. Here’s an example:

char patientName([33] = "";
TInputDialog(this, "Patient name",

"Enter the patient's name:",
patientName, sizeof (patientName)).Execute();

In this example, patientName is a text buffer that gets filled with the user’s input when
the user chooses OK. It’s initialized to an empty string for the default text.

Using common dialog boxes

The common dialog boxes encapsulate the functionality of the Windows common
dialog boxes. These dialog boxes let the user choose colors, fonts, file names, find and
replace strings, print options, and more. You construct, execute, and destroy them
similarly. The material in this section describes the common tasks; the material in the
following sections describes the tasks specific to each type of common dialog box.

Constructing common dialog boxes

Each common dialog box class has a nested class called TData. TData contains some
common housekeeping members and data specific to each type of common dialog box.
For example, TChooseColorDialog::TData has members for the color being chosen and an
array for a set of custom colors. The following table lists the two members common to all
TData nested classes.

Chapter 9, Dialog box objects 107

Table9.2 Common dialog box TData members

og box-specific flags that control the appearance and
behavior of the dialog box. For example, CC_SHOWHELP is a flag that tells
the color selection common dialog box to display a Help button the user can
Ppress to get context-sensitive Help. Full information about the various flags is
available in the ObjectWindows Reference Guide.

Error uint32 This is an error code if an error occurred while processing a common dialog
box; it’s zero if no error occurred. Execute returns IDCANCEL both when the
user chose Cancel and when an error occurred, so you should check Error to
determine whether an error actually occurred.

Flags

Each common dialog box class has a constructor that takes a pointer to a parent window
object, a reference to that class’ TData nested class, and optional parameters for a custom
dialog box template, title string, and module pointer.

Here’s a sample fragment that constructs a common color selection dialog box:

TChooseColorDialog: :TData colors;

static TColor custColors[16] =

{
0x010101L, 0x101010L, 0x202020L, 0x303030L,
0x404040L, 0x505050L, 0x606060L, 0x707070L,
0x808080L, 0x909090L, 0xAOAOAOL, 0xBOBOBOL,
0xC0COCOL, 0xDODODOL, OxEOEOEOL, 0xFOFOFOL

}i

colors.CustColors = custColors;

colors.Flags = CC_RGBINIT;

colors.Color = TColor::Black;

if (TChooseColorDialog(this, colors).Execute() == IDOK)
SetColor (colors.Color);

Once the user has chosen a new color in the dialog box and pressed OK, that color is
placed in the Color member of the TData object.

Executing common dialog boxes

Once you've constructed the common dialog box object, you should execute it (for a
modal dialog box) or create it (for a modeless dialog box). The following table lists
whether each type of common dialog box must be modal or modeless.

Table 9.3 Common dialog box TData members

Color Modal Execute
Font Modal Execute
File open Modal Execute
File save Modal * Execute
Find Modeless Create

108 ObjectWindows Programmer’s Guide

Table9.3 Common dialog box TData members (continued)

Type Modal or modeless Run bycallmg .
Find/replace =~ Modeless Create o
Printer Modal Execute

You must check Execute’s return value to see whether the user chose OK or Cancel, or to
determine if an error occurred:

TChooseColorDialog::TData colors;
TChooseColorDialog colorDlg(this, colors);

if (colorDlg.Execute() == IDOK)
// OK: data.Color == the color the user chose
: // Some code here.
else if (data.Error)
// error occurred
: // Some code here.

MessageBox ("Error in color dialog box!", GetApplication()->Name,
MB_OK | MB_ICONSTOP);

Using color common dialog boxes

The color common dialog box lets you choose and create colors for use in your
application. For example, a paint application might use the color common dialog box to
choose the color of a paint bucket.

TChooseColorDialog::TData has several members you must initialize before constructing
the dialog box object:

Table 9.4 Color common dialog box TData data members

TData:me’m'ber} Type Descrip!

Color TColor The selected color. When you execute the dialog box, this specifies the
default color. When the user closes the dialog box, this specifies the
color the user chose.

CustColors TColor* A pointer to an array of sixteen custom colors. On input, it specifies the
default custom colors. On output, it specifies the custom colors the user
chose.

In the following example, a color common dialog box is used to set the window object’s
Color member, which is used elsewhere to paint the window. Note the use of the
TWindow::Invalidate member function to force the window to be repainted in the new
color.

void

TCommD1gWnd: : CmColor (

{
// use static to keep custom colors around between
// executions of the color common dialog box
static TColor custColors([16];

Chapter 9, Dialog box objects 109

TChooseColorDialog: :TData choose;

choose.Flags = CC_RGBINIT;
choose.Color = Color;
choose.CustColors = custColors;

1f(TChooseColorDialog(this, choose).Execute() == IDOK)
Color = choose.Color;
Invalidate();

}

For details about TData::Flags in the TChooseColorDialog class, see the ObjectWindows
Reference Guide.

Using font common dialog boxes

The font common dialog box lets you choose a font to use in your application, including
its typeface, size, style, and so on. For example, a word processor might use the font
common dialog box to choose the font for a paragraph.

TChooseFontDialog::TData has several members you must initialize before constructing
the dialog box object:

Table 9.5 Font common dialog box TData data members

— "
sy

i

DC HDC A handle to the device context of the printer whose fonts you want to
select, if you specify CF_PRINTERFONTS in Flags. Otherwise ignored.

LogFont LOGFONT Ahandle toa LOGFONT that specifies the font’s appearance. When you

execute the dialog box and specify the flag
CF_INITTOLOGFONTSTRUCT, the dialog box appears with the
specified font (or the closest possible match) as the default. When the
user closes the dialog box, LogFont is filled with the selections the user

made.

PointSize int “The point size of the selected font (in tenths of a point). On input, it sets
the size of the default font. On output, it returns the size the user
selected.

Color TColor The color of the selected font, if the CE_EFFECTS flag is set. On input, it
sets the color of the default font. On output, it holds the color the user
selected.

Style char far* Lets you specify the style of the dialog.

FontType uint16 A set of flags describing the styles of the selected font. Set only on
output.

SizeMin int Specifies the minimum and maximum

SizeMax int Point sizes (in tenths of a point) the user can select, if the CF_LIMITSIZE
flag is set.

In this example, a font common dialog box is used to set the window object’s Font
member, which is used elsewhere to paint text in the window. Note how a new font
object is constructed, using TFont.

void

TCommD1gWnd: : CmFont {)

110 ObjectWindows Programmer’s Guide

TChooseFontDialog: : TData FontData;

FontData.DC = 0;

FontData.Flags = CF_EFFECTS | CF_FORCEFONTEXIST | CF_SCREENFONTS;
FontData.Color = Color;

FontData.Style = 0;

FontData.FontType = SCREEN_FONTTYPE;

FontData.SizeMin = 0;
FontData.SizeMax = 0;

if (TChooseFontDialog(this, FontData).Execute() == IDOK) {
delete Font;
Color = FontData.Color;
Font = new TFont (&FontData.LogFont) ;

}
Invalidate();

Using file open common dialog boxes

The file open common dialog box serves as a consistent replacement for the many
different types of dialog boxes applications have used to open files.

TOpenSaveDialog::TData has several members you must initialize before constructing the
dialog box object. You can either initialize them by assigning values, or you can use
TOpenSaveDialog::TData’s constructor, which takes Flags, Filter, CustomFilter, InitialDir,
and DefExt (the most common) as parameters with default arguments of zero.

Table 9.6 File open and save common dialog box TData data members

TData member Type Description ‘ e

FileName char* The selected file name. On input, it specifies the default file name. On k
output, it contains the selected file name.

Filter char* The file name filters and filter patterns. Each filter and filter pattern is in
the form:

filter|filter pattern]|...

where filter is a text string that describes the filter and filter pattern is a
DOS wildcard file name. You can repeat filter and filter pattern for as
many filters as you need. You must separate them with | characters.

CustomFilter char* Lets you specify custom filters.

FilterIndex int - Specifies which of the filters specified in Filter should be displayed by
default.

InitialDir char* The directory to be displayed on opening the file dialog box. Use zero
for the current directory.

DefExt char* Default extension appended to FileName if the user doesn’t type an

extension. If DefExt is zero, no extension is appended.

Chapter 9, Dialog box objects 111

112

In this example, a file open common dialog box prompts the user for a file name. If an
error occurred (Execute returns IDCANCEL and Error returns nonzero), a message box
is displayed. ‘

void
TCommD1gWnd: ; CmFileOpen ()
{
TFileOpenDialog::TData FilenameData
(OFN_FILEMUSTEXIST | OFN_HIDEREADONLY | OFN_PATHMUSTEXIST,
"All Files (*.*)[*.*|Text Files (*.txt)|*.txtl|",

0’ n|I' ||~k||)l.
if (TFileOpenDialog(this, FilenameData).Execute() != IDOK) {
if (FilenameData.Errval) {
char msg[50];

wsprintf(msg, "GetOpenFileName returned Error #%1d", Errval);
MessageBox (msg, "WARNING", MB_OK | MB_ICONSTOP);
}
}
}

Using file save common dialog boxes

The file save common dialog box serves as a single, consistent repiacement for the many
different types of dialog boxes that applications have previously used to let users choose
file names.

TOpenSaveDialog::TData is used by both file open and file save common dialog boxes.

In the following example, a file save common dialog box prompts the user for a file
name to save under. The default directory is WINDOWS and the default extension is
.BMP. ; ‘

void
TCanvasWindow: :CmFileSaveAs ()
{

TOpenSaveDialog::TData data
(OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT,
"Bitmap Files (*.BMP)|*.bmp|",

01
"\windows",
"BMP") ;

if (TFileSaveDialog(this, data).Execute() == IDOK) {
// save data to file
ifstream is(FileData->FileName);

if (lis) :
MessageBox ("Unable to open file", "File Error", MB_OK | MB_ICONEXCLAMATION);
else
// Do file output

ObjectWindows Programmer’s Guide

Using find and replace common dialog boxes

The find and replace common dialog boxes let you search and optionally replace text in
your application’s data. These dialog boxes are flexible enough to be used for
documents or even databases. The simplest way to use the find and replace common
dialog boxes is to use the TEditSearch or TEditFile edit control classes; they implement an
edit control that you can search and replace text in. If your application is text-based, you
can also use the find and replace common dialog boxes manually.

Constructing anc creating find and replace common dialog boxes

Since the find and replace dialog boxes are modeless, you normally keep a pointer to
them as a data member in your parent window object. This makes it easy to
communicate with them.

The find and replace common dialog boxes are modeless. You should construct and
create them in response to a command (for example, a menu item Search | Find or
Search | Replace). This displays the dialog box and lets the user enter the search
information.

TFindReplaceDialog::TData has the standard Flags members, plus members for holding
the find and replace strings. See the ObjectWindows Reference Guide for more details
about Flags.

The following example shows the pointer to the find dialog box in the parent window
object and shows the command event response function that constructs and creates the
dialog box.

class TDatabaseWindow : public TFrameWindow

{

TFindReplaceDialog: :TData SearchData;
TFindReplaceDialog* SearchDialog;

}i

void
TDatabaseWindow: : CmEditFind()
{
// If the find dialog box isn't already
// constructed, construct and create it now
if (!SearchDialog) {
SearchData.Flags |= FR_DOWN; // default to searching down
SearchDialog = new TFindDialog(this, SearchData)
SearchDialog->Create() ;
}
}

Processing find-and-replace messages

Since the find and replace common dialog boxes are modeless, they communicate with
their parent window object by using a registered message FINDMSGSTRING. You must
write an event response function that responds to FINDMSGSTRING. That event

Chapter 9, Dialog box objects 113

response function takes two parameters—a WPARAM and an LPARAM—and returns
an LRESULT. The LPARAM parameter contains a pointer that you must pass to the
dialog box object’s UpdateData member function.

After calling UpdateData, you must check for the FR_DIALOGTERM flag. The common
dialog box code sets that flag when the user closes the modeless dialog box. Your event
response function should then zero the dialog box object pointer because it’s no longer
valid. You must construct and create the dialog box object again.

As long as the FR_DIALOGTERM flag wasn't set, you can process the
FINDMSGSTRING message by performing the actual search. This can be as simple as an
edit control object’s Search member function or as complicated as triggering a search of a
Paradox or dBASE table.

In this example, EvFindMsg is an event response function for a registered message.
EvFindMsg calls UpdateData and then checks the FR_DIALOGTERM flag. If it wasn't set,
EvFindMsg calls another member function to perform the search.

DEFINE_RESPONSE_TABLEI (TDatabaseWindow, TFrameWindow)

- EV_REGISTERED (FINDMSGSTRING, EvFindMsg),
END_RESPONSE_TABLE;

LRESULT TDatabaseWindow: : EvFindMsg (WPARAM, LPARAM 1Param)
{
if (SearchDialog) {
SearchDialog->UpdateData (1Param) ;
// is the dialog box closing?
if (SearchData.Flags & FR_DIALOGTERM) {
SearchDialog = 0;
SearchCmd = 0;
} else
DoSearch();
}
return 0;

}

Handling a Find Next command

The find and replace common dialog boxes have a Find Next button that users can use
while the dialog boxes are visible. Most applications also support a Find Next command
from the Search menu, so users can find the next occurrence in one step instead of
having to open the find dialog box and click the Find Next button. TFindDialog and
TReplaceDialog make it easy for you to offer the same functionality.

Setting the FR_FINDNEXT flag has the same effect as clicking the Find Next button:

void
TDatabaseWindow: : CmEditFindNext ()
{
SearchDialog->UpdateData() ;
SearchData.Flags |= FR_FINDNEXT;
DoSearch();
}

114 ObjectWindows Programmer’s Guide

Using printer common dialog boxes

There are two printer common dialog boxes. The print job dialog box lets you choose
what to print, where to print it, the print quality, the number of copies, and so on. The
print setup dialog box lets you choose among the installed printers on the system, the
page orientation, and paper size and source.

TPrintDialog::TData’s members let you control the appearance and behavior of the
printer common dialog boxes:

Table 9.7 Printer common dialog box TData data members

TData member Type Description : Lo i

FromPage int The first page of output, if the PD_PAGENUMS flag is specified. On
input, it specifies the default first page. On output, it specifies the first
page the user chose.

ToPage int The last page of output, if the PD_PAGENUMS flag is specified. On

input, it specifies the default last page number. On output, it specifies
the last page number the user chose.

MinPage int The fewest number of pages the user can choose.
MaxPage int The largest number of pages the user can choose.
Copies int The number of copies to print. On input, the default number of copies.

On output, the number of copies the user actually chose.

In the following example, CmFilePrint executes a standard print job common dialog box
and uses the information in TPrintDialog::TData to determine what to print.
CmFilePrintSetup adds a flag to bring up the print setup dialog box automatically.

void
TCanvas::CmFilePrint ()
{
if (TPrintDialog(this, data).Execute() == IDOK)
// Use TPrinter and TPrintout to print the drawing
}

void

TCanvas: :CmFilePrintSetup()

{
static TPrintDialog::TData data;
data.Flags |= PD_PRINTSETUP;

~if (TPrintDialog(this, data, 0).Execute() == IDOK)
// Print

Chapter 9, Dialog box objects 115

116 ObjectWindows Programmer’s Guide

Doc/View objects

ObjectWindows provides a flexible and powerful way to contain and manipulate data:
the Doc/View model. The Doc/View model consists of three parts:

¢ Document objects, which can contain many different types of data and provide
methods to access that data.

 View objects, which form an interface between a document object and the user
interface and control how the data is displayed and how the user can interact with
the data.

¢ An application-wide document manager that maintains and coordinates document
objects and the corresponding view objects.

How documents and views work together

This section describes the basic concept of the Doc/View model. If you're already
familiar with these concepts or if you want more technical information, refer to the
programming sections beginning on page 121.

The Doc/View model frees the programmer and the user from worrying about what
type of data a file contains and how that data is presented on the screen. Doc/View
associates data file types with a document class and a view class. The document
manager keeps a list of associations between document classes and view classes. Each

“association is called a document template (note that document templates are not related to
C++ templates).

A document class handles data storage and manipulation. It contains the information
that is displayed on the screen. A document object controls changes to the data and
when and how the data is transferred to persistent storage (such as the hard drive, RAM
disk, and so on).

When the user opens a document, whether by creating a new document or opening an
existing document, the document is displayed using an associated view class. The view

Chapter 10, Doc/View objects 117

class manages how the data is displayed and how the user interacts with the data
onscreen. In effect, the view forms an interface between the display window and the
document. Some document types might have only one associated view class; others
might have several. Each different view type can be used to let the user interact with the
data in a different way.

Table 10.1 illustrates the interaction between the document manager, a document class,
and the document’s associated views:

Figure 10.1 Doc/View model diagram

File menu

List view

Property view Dump view

{
E

This figure shows a file document object from the TFileDocument class, along with some
associated views. The TFileDocument class is shown in the DOCVIEWX example. This
example is in the directory \BC45\EXAMPLES\OWL\OWLAPI\DOCVIEW, where
BC45 is the directory in which you installed Borland C++ 4.5.

118 ObjectWindows Programmer’s Guide

Documents

The traditional concept of a document and the Doc/View concept of a document differ
in several important ways. The traditional concept of a document is generally like that
of a word-processing file. It consists of text mixed with the occasional graphic, along
with embedded commands to assist the word-processing program in formatting the
document.

A Doc/View document differs quite significantly from the traditional concept of a
document:

¢ The first distinction is between the contents of the two types of documents. Whereas
the traditional document is mostly text with a few other bits of data, a Doc/View
document can contain literally any type of data, such as text, graphics, sounds,
multimedia files, and even other documents.

* The next distinction is in terms of presentation. Whereas the format of the traditional
document is usually designed with the document’s presentation in mind, a Doc/
View document is completely independent of how it is displayed.

¢ The last distinction is that a document from a particular word-processing program is
generally dependent on the format demanded by that program; documents are
usually portable between different word-processing programs only after a tedious
porting process. The intention of Doc/View documents is to let data be easily ported
between different applications, even applications whose basic functions are highly
divergent.

The basic functionality for a document object is provided in the ObjectWindows class
TDocument. A more in-depth discussion of TDocument and how to use it as a basis for
your own document classes is presented later in this chapter on page 128.

Views

View objects enable document objects to present themselves to the world. Without a
view object, you can’t see or manipulate the document. But when you pair a document
with a view object into a document template, you've got a functional piece of data and
code that provides a graphic representation of the data stored in the document and a
way to interact with and change that data.

The separation between the document and view also permits flexibility in when and
how the data in document is modified. Although the data is manipulated through the
view, the view only relays those changes on to the document. It is then up to the
document to determine whether to change the data in the document (known as
committing the changes) or discarding the changes (known as reverting back to the
document). :

Another advantage of using view objects instead of some sort of fixed-display method
(such as a word-processing program) is that view objects offer the programmer and the
user a number of different ways to display and manipulate the same document.
Although you might need to provide only one view for a document type, you might
also want to provide three or four views.

Chapter 10, Doc/View objects 119

For example, suppose you create a document class to store graphic information, such as
a picture or drawing. For a basic product, you might want to provide only one type of
view, such as a view that draws the picture in a window and then lets the user “paint”
and modify the picture. For a more advanced version, you might want to provide extra
views; for example, the drawing could be displayed as a color separation, as a
hexadecimal file, or even as a series of equations if the drawing was mathematically
generated. To access these other views, users choose the type of view desired when they
open the document. In all these scenarios, the document itself never changes.

The basic functionality for a view is provided in the ObjectWindows class TView. A
more in-depth discussion of TView and how to use it as a basis for your own view
classes is presented on page 134.

Associating document and view classes

A document class is associated with its view class (or classes) by a document template.
Document templates are created in two steps:

1 Define a template class by associating a document class with a view class.
2 Instantiate a template from a defined class.

The difference between these two steps is important. After you've defined a template
class, you can create any number of instances of that template class. Each template
associates only a document class and a view class. Each instance has a name, a default
file extension, directory, flags, and file filters. Thus you could provide a single template
class that associates a document with a view. You could then provide a number of
different instances of that template class, where each instance handles files in a different
default directory, with different extensions, and so on, still using the same document
and view classes.

Managing Doc/View

The document manager maintains the list of template instances used in your application
and the list of current documents. Every application that uses Doc/View documents
must have a document manager, but each application can have only one document
manager at a time.

The document manager brings the Doc/View model together: document classes, view
classes, and templates. The document manager provides a default File menu and
default handling for each of the choices on the File menu:

Document manager’s File menu

.

Table 10.1

New Creates a new document.

Open... Opens an existing document.

Save Saves the current document.

As... Saves the current document with a new name.

Revert ToSaved Reverts changes to the last document saved.

120 ObjectWindows Programmer’s Guide

Table 10.1 Document manager’s File menu (continued)

Closes the current document.

Quits the application, prompts to save documents.

Once you've written your document and view classes, defined any necessary templates,
and made instances of the required templates, all you still need to do is to create your
document manager. When the document manager is created, it sets up its list of
template instances and (if specified in the constructor) sets up its menu. Then whenever
it receives one of the events that it handles, it performs the command specified for that
event. The example on page 193 shows how to set up document manager for an
application.

Document templates

Document templates join together document classes and view classes by creating a new
class. The document manager maintains a list of document templates that it uses when
creating a new Doc/ View instance. This section explains how to create and use
document templates, including

Designing document template classes

Creating document registration tables

Creating instances of document template classes
Modifying existing document template classes

Designing document template classes

You create a document template class using the DEFINE_DOC_TEMPLATE_CLASS
macro. This macro takes three arguments:

¢ Document class
e View class
¢ Template class name

The document class should be the document class you want to use for data containment.
The view class should be the view class you want to use to display the data contained in
the document class. The template class name should be indicative of the function of the
template. It cannot be a C++ keyword (such as int, switch, and so on) or the name of any
other type in the application.

For example, suppose you've two document classes—one called TPlotDocument, which
contains graphics data, and another called TDataDocument, which contains numerical
data. Now suppose you have four view classes, two for each document class. For
TPlotDocument, you have TPlotView, which displays the data in a TPlotDocument object
as a drawing, and THexView, which displays the data in a TPlotDocument object as
arrays of hexadecimal numbers. For TDataDocument, you have TSpreadView, which
displays the data in a TDataDocument object much like a spreadsheet, and TCalcView,

Chapter 10, Doc/View objects 121

which displays the data in a TDataDocument object after performing a series of
calculations on the data.

To associate the document classes with their views, you would use the
DEFINE_DOC_TEMPLATE_CLASS macro. The code would look something like this:

DEFINE_DOC_TEMPLATE_CLASS (TPlotDocument, TPlotView, TPlotTemplate);
DEFINE_DOC_TEMPLATE_CLASS (TPlotDocument, THexView, THexTemplate);
DEFINE_DOC_TEMPLATE_CLASS (TDataDocument, TSpreadView, TSpreadTemplate);
DEFINE_DOC_TEMPLATE_CLASS (TDataDocument, TCalcView, TCalcTemplate);

As you can see from the first line, the existing document class TPlotDocument and the
existing view class TPlotView are brought together and associated in a new class called
TPlotTemplate. The same thing happens in all the other lines, so that you have four new
classes, TPlotTemplate, THexTemplate, TSpreadTemplate, and TCalcTemplate. The next
section describes how to use these new classes you've created.

Creating document registration tables

Once you've defined a template class, you can create any number of instances of that
class. You can use template class instances to provide different descriptions of a
template, search for different default file names, look in different default directories, and
so on. Each of these attributes of a template class instance is affected by the document
registration table passed to the template class constructor.

Document regjistration tables let you specify the various attributes and place them in a
single object. The object type is TRegList, although in normal cirsumstances, you
shouldn’t ever have to access this object directly. To create a registration table,

1 You always start a registration table definition with the BEGIN_REGISTRATION
macro. This macro takes a single parameter, the name of the registration object. This
name can be whatever you want it to be, although it should be somewhat descriptive
of the particular template instance you want to create with it.

2 Once you've started the table you need to register a number of data items in the table.
You can place these items in the table using the REGDATA macro. REGDATA takes
two parameters. The first is a key that identifies the type of data, while the second is a
string containing the actual data. The key should be a string composed of
alphanumeric characters; you don’t need to place quotes around this value. The
actual data string can be any legal string; you do need to place quotes around this
value. Also, you don’t need to use commas or semicolons after the macros. There are
three data items you need to enter in the table for an instance of a document template:

1 The description value should be a short text description of the template class. It
should be indicative of the type of data handled by the document class and how
that data is displayed by the view class.

2 The extension value should indicate the default file extension for documents of this
type.

3 The docfilter value should indicate the file name masks that should be apphed to
documents when searching through file names.

122 ObjectWindows Programmer’s Guide

3 You also need to register a number of flags describing how this document type is to
be opened or created. These document flags can be registered with the
REGDOCFLAGS macro. REGDOCFLAGS takes a single parameter, the flags
themselves. The flags specified can be one or more of the following:

Table 10.2 Document creation mode flags

Flag Function

dtAutoDelete Close and delete the document object when the last view is closed.
dtNoAutoView Do not automatically create a default view.

dtSingleView Allow only one view per document.

dtAutoOpen Open a document upon creation.

dtHidden Hide template from list of user selections.

4 Once you've registered the necessary data items and the document mode flags, you
can end the table definition with the END_REGISTRATION macro. This macro takes
no parameters. You don’t need to append a semicolon at the end of the line either.

The code below shows a sample registration table declaration. The resulting registration
table is called ListReg, applies to a document template class described as a Line List,
which has the default extension PTS, the default file-name mask *.pts, is set to be
automatically deleted when the last view on the document is closed, and is hidden from
the list of documents available to the user.

BEGIN_REGISTRATION (ListReg)
REGDATA (description, "Line List")
REGDATA (extension, ".PTS")
REGDATA (docfilter, "*.pts")
REGDOCFLAGS (dtAutoDelete | dtHidden)
END_REGISTRATION

Creating template class instances

Once you've created a document template class and a registration table, you're ready to
create an actual instance of the template class. An instance of a document template class
serves as an entry in the document manager’s list of possible document and view
combination that can be opened. Once this is in place, you can open documents of the
type defined in the document template class and display the document in the specified
view.

The signature of a template class constructor is always the same:
TplName name (TRegList& regTable);

where:

* TpIName is the name you gave the template class when defining it.

¢ name is the name you want to give this instance (this name isn’t very useful until you
want to revise an existing template class instance).

* regTable is a registration table created using the BEGIN/END_REGISTRATION
macros.

Chapter 10, Doc/View objects 123

For example, suppose you've got the following template class definition:
" DEFINE_DOC_TEMPLATE_CLASS (TPlotDocument, TPlotView, TPlotTemplate);
Now suppose you want to create three instances of this template class:

® One instance should have the description “Approved plots”, for document files with
the extension .PLT. You want to allow only a single view of the document and to
automatically delete the document when the view is closed.

¢ Another instance should have the description “In progress”, for document files with
the extension .PLT. You want to automatically delete the document when the last
view is closed.

¢ Another instance should have the description “Proposals”, for document files with
the extensions .PLT or .TMP (but with the default extension of .PLT). You want to
keep this template hidden until the user has entered a password, and delete the
document object when the last view is closed.

The code for creating these instances would look something like this:

BEGIN_REGISTRATION (aReg)
REGDATA (description, "Approved plots"
REGDATA (docfilter, "*,PLT",
REGDATA (extension, "PLT",
REGDOCFLAGS (dtSingleView | dtAutoDelete)
END_REGISTRATION

TPlotTemplate atpl(aReg);

BEGIN_REGISTRATION (bReg)
REGDATA (description, "In progress",
REGDATA (docfilter, "* PLT",
REGDATA (extension, "PLT",
REGDOCFLAGS (dtAutoDelete) ;
END_REGISTRATION

TPlotTemplate btpl (bReg);

BEGIN_REGISTRATION (cReg)
REGDATA (description, "Proposals",
REGDATA (docfilter, "*,PLT; *.TMP",
REGDATA (extension, "PLT",
REGDOCFLAGS (dtHidden | dtAutoDelete);
END_REGISTRATION

TPlotTemplate *ctpl = new TPlotTemplate(cReg);

Just as in any other class, you can create both static and dynamic instances of a
document template.

124 ObjectWindows Programmer’s Guide

Modifying existing templates

Once you've created an instance of a template class, you usually don’t need to modify
the template object. However, you might occasionally want to modify the properties
with which you constructed the template. You can do this using these access functions:

¢ Use the GetFileFilter and SetFileFilter functions to get and set the string used to fllter
file names in the current directory.

* Use the GetDescription and SetDescription functions to get and set the text description
of the template class.

* Use the GetDirectory and SetDirectory functions to get and set the default directory.

¢ Use the GetDefaultExt and SetDefaultExt functions to get and set the default file
extension.

e Use the GetFlags, IsFlagSet, SetFlag, and ClearFlag functions to get and set the flag
settings.

Using the document manager

The document manager, an instance of TDocManager or a TDocManager-derived class,
performs a number of tasks:

¢ Manages the list of current documents and registered templates

e Handles the standard File menu command events CM_FILENEW, CM_FILEOPEN,
CM_FILESAVE, CM_FILESAVEAS, CM_FILECLOSE, and optionally
CM_FILEREVERT

® Provides the file selection interface

To support the Doc/View model, a document manager must be attached to the
application. This is done by creating an instance of TDocManager and making it the
document manager for your application. The following code shows an example of how
to attach a document manager to your application:

class TMyApp : public TApplication
{
public:
TMyApp () : TApplication() {}

void InitMainWindow() {

SetDocManager (new TDocManager (dmMDI | dmMenu));

}i

You can set the document manager to a new object using the SetDocManager function.
SetDocManager takes a TDocManager & and returns void.

Chapter 10, Doc/View objects 125

The document manager’s public data and functions can be accessed through the
document’s GetDocManager function. GetDocManager takes no parameters and returns a
TDocManager &. The document manager provides the following functions for creating
documents and views:

¢ CreateAnyDoc presents all the visible templates, whereas the TDocTemplate member
function CreateDoc presents only its own template.

* CreateAnyView filters the template list for those views that support the current
document and presents a list of the view names, whereas the TDocTemplate member
function CreateView directly constructs the view specified by the document template
class.

Specialized document managers can be used to support other needs. For example, an
OLE 2.0 server needs to support class factories that create documents and views
through interfaces that are not their own. If the server is invoked with the embedded
command-line flags, it doesn’t bring up its own user interface and can attach a
document manager that replaces the interface with the appropriate OLE support.

Constructing the document manager

The constructor for TDocManager takes a single parameter that’s used to set the mode of
the document manager. You can open the document manager in one of two modes:

¢ Insingle-document interface (SDI) mode, you can have only a single document open
at any time. If you open a new document while another document is already open,
the document manager attempts to close the first document and replace it with the
new document.

¢ In multiple-document interface (MDI) mode, you can have a number of documents
and views open at the same time. Each view is contained in its own client window.
Furthermore, each document can be a single document type presented by the same
view class, a single document presented with different views, or even entirely
different document types.

To open the document manager in SDI mode, call the constructor with the dmSDI
parameter. To open the document manager in MDI mode, call the constructor with the
dmMDI parameter.

There are three other parameters you can also specify:

* dmMenu sioecifies that the document manager should install its own File menu,
which provides the standard document manager File menu and its corresponding
commands.

¢ dmSaveEnabled enables the Save command on the File menu even if the document has
not been modified.

¢ dmNoRevert disables the Revert command on the File menu.

Once you've constructed the document manager you cannot change the mode. The
following example shows how to open the document manager in either SDI or MDI
mode. It uses command-line arguments to let the user specify whether the document
manager should open in SDI or MDI mode.

126 ObjectWindows Programmer’s Guide

class TMyApp : public TApplication
{
public:
TMyApp () : TApplication() {}
void InitMainWindow();
int DocMode;

}i

void
TMyApp: : InitMainWindow ()
{
switch ((_argc > 1 && _argvi{ij{0]}=="-
{
case 's': DocMode = dmSDI; break; // command line: -s
case 'm': DocMode = dmMDI; break; // command line: -m
default : DocMode = dmMDI; break; // no command line
}

ron a1 ra

?_argv(1){i] : (char)0) | ('8'"'s'}))

SetDocManager (new TDocManager (DocMode | dmMenu)) ;
i

Thus, if the user starts the application with the -s option, the document manager opens
in SDI mode. If the user starts the application with the -m option or with no option at all,
the document manager opens in MDI mode.

TDocManager event handling

If you specify the dmMenu parameter when you construct your TDocManager object, the
document manager handles certain events on behalf of the documents. It does this by
using a response table to process standard menu commands. These menu commands
are provided by the document manager even when no documents are opened and
regardless of whether you explicitly add the resources to your application. The File
menu is also provided by the document manager.

The events that the document manager handles are

CM_FILECLOSE
CM_FILENEW
CM_FILEOPEN
CM_FILEREVERT
CM_FILESAVE
CM_FILESAVEAS
CM_VIEWCREATE

In some instances, you might want to handle these events yourself. Because the
document manager’s event table is the last to be searched, you can handle these events
at the view, frame, or application level. Another option is to construct the document
manager without the dmMenu parameter. You must then provide functions to handle
these events, generally through the application object or your interface object.

You can still call the document manager’s functions through the DocManager member of
the application object. For example, suppose you want to perform some action before

Chapter 10, Doc/View objects 127

opening a file. Providing the function through your window class TMyWindow might
look something like this:

class TMyApp : public TApplication
{
public:
TMyApp () : TApplication() {}
void InitMainWindow();
int DocMode;
I

void ‘
TMyApp: : InitMainWindow()
{ .
// Don't specify dmMenu when constructing TDocManager
SetDocManager(new TDocManager (dmMDI)) ;

}i

class T™yWindow : public TDecoratedMDIFrame
{
public:
TMyWindow () ;
void CmFileOpen();

// You also need to provide the other event handlers provided by the document manager.

DECLARE_RESPONSE_TABLE (TMyWindow) ;
}i

DEFINE_RESPONSE_TABLEL (TMyWindow, TDecoratedMDIFrame)
EV_COMMAND (CM_FILEOPEN, CmFileOpen),

END_RESPONSE_TABLE;

void
‘TMyWindow: :CmFileOpen ()
{
// Do your extra work here.
GetApplication()->GetDocManager ()->CmFileOpen();
}

Creating a document class

The primary function of a document class is to provide callbacks for requested data
changes in a view, to handle user actions as relayed through associated views, and to tell
associated views when data has been updated. TDocument provides the framework for
this functionality. The programmer needs only to add the parts needed for a specific
application of the document model.

128 ObjectWindows Programmer’s Guide

Constructing TDocument

TDocument is an abstract base class that cannot be directly instantiated. Therefore you
implement document classes by deriving them from TDocument.

You must call TDocument’s constructor when constructing a TDocument-derived class.
The TDocument constructor takes only one parameter, a TDocument * that points to the
parent document of the new document. If the document has no parent, you can either
pass a 0 or pass no parameters; the default value for this parameter is 0.

Adding functionality to documents

As a standard procedure, you should avoid overriding TDocument functions that aren’t
declared virtual. The document manager addresses all TDocument-derived objects as if
they were actually TDocument objects. If you override a nonvirtual function, it isn’t
called when the document manager calls that function. Instead, the document manager
calls the TDocument version of the function. But if you override a virtual function, the
document manager correctly calls your class’ version of the function.

The following functions are declared virtual in TDocument:

~TDocument InStream

OutStream Open
Close Commit
Revert RootDocument

SetDocPath SetTitle
GetProperty IsDirty
IsOpen CanClose
AttachStream DetachStream

You can override these functions to provide your own custom interpretation of the
function. But when you do override a virtual function, you should be sure to find out
what the base class function does. Where the base class performs some sort of essential
function, you should call the base class version of the function from your own function;
the base class versions of many functions perform a check of the document’s hierarchy,
including checking or notifying any child documents, all views, any open streams, and
SO on.

Data access functions

TDocument provides a number of functions for data access. You can access data as a
simple serial stream or in whatever way you design into your derived classes. The
following sections describe the helper functions you can use to control when the
document attempts data access operations.

Chapter 10, Doc/View objects 129

Stream access

TDocument provides two functions, InStream and OutStream, that return pointers to a
TInStream and a TOutStream, respectively. The TDocument versions of these function
both return a 0, because the functions actually perform no actions. To provide stream
access for your document class you must override these functions, construct the
appropriate stream class, and return a pointer to the stream object.

TInStream and TOutStream are abstract stream classes, derived from TStream and istream
or ostream, respectively. TStream provides a minimal functionality to connect the stream
to a document. istream and ostream are standard C++ iostreams. You must derive
document-specific stream classes from TInStream and TOutStream. The TInStream and
TOutStream classes are documented in the ObjectWindows Reference Guide. Here, though,
is a simple description of the InStream and OutStream member functions. Both InStream
and OutStream take two parameters in their constructors:

XXXStream(int mode, LPCSTR strmId = 0);

where XXX is either In or Out, mode is a stream opening mode identical to the opern_mode
flags used for istream and ostream, and strmld is a pointer to an existing stream object.
Passing a valid pointer to an existing stream object in strmld causes that stream to be
used as the document’s stream object. Otherwise, the object opens a new stream object.

There are also two stream-access functions called AttachStream and DetachStream. Both -
of these functions take a reference to an existing (that is, already constructed and open)
TStream-derived object. AttachStream adds the TStream-derived object to the document’s
list of stream objects, making it available for access. DetachStream searches the
document’s list of stream objects and deletes the TStream-derived object passed to it.
Both of these functions have protected access and thus can be called only from inside the
document object.

Stream list

Each document maintains a list of open streams that is updated as streams are added
and deleted. This list is headed by the TDocument data StreamList. StreamList is a TStream
* that points to the first stream in the list. If there are no streams in the list, StreamList is 0.
Each TStream object in the list has a member named NextStream, which points to the next
stream in the stream list.

When a new stream is opened in a document object or an existing stream is attached to
the object, it is added to the document’s stream list. When an existing stream is closed in
a document object or detached from the object, it is removed from the document’s
stream list.

Complex data access

Streams can provide only simple serial access to data. In cases where a document
contains multimedia files, database tables, or other complex data, you probably want
more sophisticated access methods. For this purpose, TDocument uses two more access
functions, Open and Close, which you can override to define your own opening and
closing behavior.

The TDocument version of Open performs no actions; it always returns true. You can
write your own version of Open to work however you want. There are no restrictions

\

130 ObjectWindows Programmer’s Guide

placed on how you define opening a document. You can make it as simple as you like or
as complex as necessary. Open lets you open a document and keep it open, instead of
opening the document only on demand from one of the document’s stream objects.

The TDocument version of Close provides a little more functionality than does Open. It
checks any existing children of your document and tries to close them before closing
your document. If you provide your own Close, the first thing you should do in that
function is call the TDocument version of Close to ensure that all children have been
closed before you close the parent document. Other than this one restriction, you are
free to define the implementation of the Close function. Just as with Open, Close lets you
close a document when you want it closed, as opposed to permitting the document’s
stream objects to close the document.

Data access helper functions

TDocument also provides a number of functions that you can use to help protect your
data:

IsDirty first checks to see whether the document itself is “dirty” (that is, modified but
not updated) by checking the state of the data member DirtyFlag. It then checks whether
any child documents are dirty, then whether any views are dirty. IsDirty returns true if
any children or views are dirty.

IsOpen checks to see whether the document is held open or has any streams in its stream
list. If the document is not open, IsOpen returns false. Otherwise, IsOpen returns true.

Commit commits any changes to your data to storage. Once you've called Commit, you
cannot back out of any changes made. The TDocument version of this function checks
any child documents and commits them to their changes. If any child document returns
false, the Commit is aborted and returns false. All child documents must return true
before the Commit function commits its own data. After all child documents have
returned true, Commit flushes all the views for operations that might have taken place
since the document last checked the views. Data in the document is updated according
to the changes in the views and then saved. Commit then returns true.

Revert performs the opposite function from Commit. Instead of updating changes and
saving the data, Revert clears any changes that have been made since the last time the
data was committed. Revert also polls any child documents and aborts if any of the
children return false. If all operations are successful, Revert returns true.

Closing a document

Like most other objects, TDocument provides functions that let you safely close and
destroy the object.

~TDocument does a lot of cleanup. First it destroys its children and closes all open
streams and other resources. Then, in order, it detaches its attached template, closes all
associated views, deletes its stream list, and removes itself from its parent’s list of
children if the document has a parent or, if it doesn’t have a parent, removes itself from
the document manager’s document list.

Chapter 10, Doc/View objects 131

In addition to a destructor, TDocument also provides a CanClose function to make sure
that it’s OK to close. CanClose first checks whether all its children can close. If any child
returns false, CanClose returns false and aborts. If all child documents return true,
CanClose calls the document manager function FlushDoc, which checks to see if the
document is dirty. If the document is clean, FlushDoc and CanClose return true. If the
document is dirty, FlushDoc opens a message box that prompts the user to either save
the data, discard any changes, or cancel the close operation.

Expanding document functionality

The functions described in this section include most of what you need to know to make
a functioning document class. It is up to you to expand the functionality of your
document class. Your class needs special functions for manipulating data,
understanding and acting on the information obtained from the user through the
document’s associated view, and so on. All this functionality goes into your TDocument-
derived class.

Because the Doc/View model is so flexible, there are no requirements or rules as to how
you should approach this task. A document can handle almost any type of data because
the Doc/View data-handling mechanism is a primitive framework, intended to be
extended by derived classes. The base classes provided in ObjectWindows provide the
functionality to support your extensions to the Doc/View model.

Working with the document manager

TDocument provides two functions for accessing the document manager,
GetDocManager and SetDocManager. GetDocManager returns a pointer to the current
document manager. You can then use this pointer to access the data dnd function
members of the document manager. SetDocManager lets you assign the document to a
different document manager. All other document manager functionality is contained in
the document manager itself.

Working with views

TDocument provides two functions for working with views, NotifyViews and
QueryViews. Both functions take three parameters, an int corresponding to an event, a
long item, and a TView *. The meaning of the long item is dependent on the event and is
essentially a parameter to the event. The TView * lets you exclude a view from your
query or notification by passing a pointer to that view to the function. These two
functions are your primary means of communicating information between your
document and its views.

Both functions call views through the views’ response tables. The general-purpose
macro used for ObjectWindows notification events is EV_OWLNOTIFY. The response
functions for EV_OWLNOTIFY events have the following signature:

bool FnName(long);

The long item used in the NotifyViews or QueryViews function call is used for the long
parameter for the response function.

132 ObjectWindows Programmer’s Guide

You can use NotifyViews to notify your child documents, their associated views, and the
associated views of your root document of a change in data, an update, or any other
event that might need to be reflected onscreen. The meaning of the event and the
accompanying item passed as a parameter to the event are implementation defined.

NotifyViews first calls all the document’s child documents” NotifyViews functions, which
are called with the same parameters. Once all the children have been called, NotifyViews
passes the event and item to all of the document’s associated views. NotifyViews returns
abool. If any child document or associated view returns false, NotifyViews returns false.
Otherwise NotifyViews returns true.

QueryViews sends an event and accompanying parameter just like NotifyyViews. The
difference is that, whereas NotifyViews returns true when any child or view returns true,
QueryViews returns a pointer to the first view that returns true. This lets you find a view
that meets some condition and then perform some action on that view. If no views
return true, QueryViews returns 0.

Another difference between NotifyViews and QueryViews is that NotifyViews always
sends the event and its parameter to all children and associated views, whereas
QueryViews stops at the first view that returns true.

For example, suppose you have a document class that contains graphics data in a
bitmap. You want to know which of your associated views is displaying a certain area of
the current bitmap. You can define an event such as WM_CHECKRECT. Then you can
set up a TRect structure containing the coordinates of the rectangle you want to check
for. The excerpted code for this would look something like this:

DEFINE_RESPONSE_TABLEL (TMyView, TView)
EV_OWLNOTIFY (WM_CHECKREST, EvCheckRest),
END_RESPONSE_TABLE;

void)

MyDocClass: :Function()

{
// Set up a TRect * with the coordinates you want to send.
TRect *rect = new TRect (100, 100, 300, 300);

// QueryViews
TView *view = QueryViews (WM_CHECKRECT, (long) rect);

// Clear all changes from the view
1f (view)
view->Clear();

}

// The view response function gets the pointer to the rectangle
// as the long parameter to its response function.
bool
TMyView: : EvCheckRest (long item)
{
TRect *rect = (TRect *) item;

Chapter 10, Doc/View objects 133

// Check to see if rect is equal to this view's.
if (*rect == this->rect) :

return true;
else

return false;

}

You can also set up your own event macros to handle view notifications. See page 136.

Creating a view class

‘The user almost never interacts directly with a document. Instead the user works with
an interface object, such as a window, a dialog box, or whatever type of display is
appropriate for the data being presented and the method in which it is presented. But
this interface object doesn’t stand on its own. A window knows nothing about the data
it displays, the document that contains that data, or about how the user can manipulate
and change the data. All this functionality is handled by the view object.

A view forms an interface between an interface object (which can only do what it’s told
to do) and a document (which doesn’t know how to tell the interface object what to do).
The view’s job is to bridge the gap between the two objects, reading the data from the
document object and telling the interface object how to display that data.

This section discusses how to write a view class to work with your document classes.

Constructing TView

You cannot directly create an instance of TView. TView contains a number of pure
virtual functions and placeholder functions whose functionality must be provided in
any derived classes. But you must call the TView constructor when you are constructing
your TView-derived object. The TView constructor takes one parameter, a reference to
the view’s associated document. You must provide a valid reference to a TDocument-
derived object.

Adding functionality to views

TView contains some pure virtual functions that you must provide in every new view
class. It also contains a few placeholder functions that have no base class functionality.
You need to provide new versions of these functions if you plan to use them for
anything.

Much like TDocument, you should not override a TView function unless that function is
a virtual. When functions in TDocument call functions in your view, they address the
view object as a TView. If you override a nonvirtual function and the document calls that
function, the document actually calls the TView version of that function, rendering your
function useless in that context.

134 ObjectWindows Programmer’s Guide

TView virtual functions

The following functions are declared virtual so you can override them to provide some
useful functionality. But most are not declared as pure virtuals; you are not required to
override them to construct a view. Instead, you need to override these functions only if
you plan to view them.

GetViewName returns the static name of the view. This function is declared as a pure
virtual function; you must provide a definition of this function in your view class.

GetWindow returns a TWindow * that should reference the view’s associated interface
object if it has one; otherwise, GetWindow returns 0.

SetDocTitle sets the view window’s caption. It should be set to call the SetDocTitle
function in the interface object.

Adding a menu

TView contains the TMenuDescr * data member ViewMenu. You can assign any existing
TMenuDescr object to this member. The menu should normally be set up in the view’s
constructor. This menu is then merged with the frame window’s menu when the view is
activated.

Adding a display to a view

TView itself makes no provision for displaying data—it has no pointer to a window, no
graphics functions, no text display functions, and no keyboard handling. You need to
provide this functionality in your derived classes; you can use one of the following
methods to do so:

¢ Add a pointer to an interface object in your derived view class.
* Mix in the functionality of an interface object with that of TView when deriving your
new view class.

Each of these methods has its advantages and drawbacks, which are discussed in the
following sections. You should weigh the pros and cons of each approach before
deciding how to build your view class.

Adding pointers to interface objects

To add a pointer to an interface object to your TView-derived class, add the member to
the new class and instantiate the object in the view class’ constructor. Access to the
interface object’s data and function members is through the pointer.

The advantage of this method is that it lets you easily attach and detach different
interface objects. It also lets you use different types of interface objects by making the
pointer a pointer to a common base class of the different objects you might want to use.
For example, you can use most kinds of interface objects by making the pointer a
TWindow *.

The disadvantage of this method is that event handling must go through either the
interface object or the application first. This basically forces you to either use a derived
interface object class to add your own event-handling functions that make reference to

Chapter 10, Doc/View objects 135

the view object, or handle the events through the application object. Either way, you
decrease your flexibility in handling events.

Mixing TView with interface objects

Mixing TView or a TView-derived object with an interface object class gives you the
ability to display data from a document, and makes that ability integral with handling
the flow of data to and from the document object. To mix a view class with an interface
object class is a fairly straightforward task, but one that must be undertaken with care.

To derive your new class, define the class based on your base view class (TView or a
TView-derived class) and the selected interface object. The new constructor should call
the constructors for both base classes, and initialize any data that needs to be set up. Ata
bare minimum, the new class must define any functions that are declared pure virtual
in the base classes. It should also define functions for whatever specialized screen
activities it needs to perform, and define event-handling functions to communicate with
both the interface element and the document object.

The advantage of this approach is that the resulting view is highly integrated. Event
handling is performed in a central location, reducing the need for event handling at the
application level. Control of the interface elements does not go through a pointer but is
also integrated into the new view class.

However, if you use this approach, you lose the flexibility you have with a pointer. You
cannot quickly detach and attach new interface objects; the interface object is an organic
part of the whole view object. You also cannot exchange different types of objects by
using a base pointer to a different interface object classes. Your new view class is locked
into a single type of interface element.

Closing a view

Like most other objects, TView provides functions that let you safely close and destroy
the object.

~TView does fairly little. It calls its associated document’s DetachView function, thus
removing itself from the document’s list of views.

TView also provides a CanClose function, which calls its associated document’s CanClose
function. Therefore the view’s ability to close depends on the document’s ability to
close.

Docl\rlew event handling

You should normally handle Doc/View events through both the application object and
your view’s interface element. You can either control the view’s display through a
pointer to an interface object or mix the functionality of the interface object with a view
class (see page 135 for details on constructing an interface element).

You can find more information about event handling and response tables in an
ObjectWindows application in Chapter 4.

136 ObjectWindows Programmer’s Guide

Doc/View event handling in the application object

The application object generally handles only a few events, indicating when a document
or a view has been created or destroyed. The dnCreate event is posted whenever a view
or document is created. The dnClose event is posted whenever a view or document is
closed.

To set up response table entries for these events, add the EV_OWLDOCUMENT and
EV_OWLVIEW macros to your response table:

e Use the EV_OWLDOCUMENT macro to check for:

* The dnCreate event when a new document object is created. The standard name
used for the handler function is EvNewDocument. EvNewDocument takes a
reference to the new TDocument-derived object and returns void.

* The dnClose event when a document object is about to be closed. The standard
name used for the handler function is EvCloseDocument. EvCloseDocument takes a
reference to the TDocument-derived object that is being closed and returns void.

The response table entries and function declarations for these two macros would look
like this:
DEFINE_RESPONSE_TABLEL (MyDVApp, TApplication)

EV_OWLDOCUMENT (dnCreate, EvNewDocument),
EV_OWLDOCUMENT (dnClose, EvCloseDocument),

END_RESPONSE_TABLE;

void EvNewDocument (TDocument& document);
void EvCloseDocument (TDocument& document);

e Use the EV_OWLVIEW macro to check for:

e The dnCreate event when a new view object is constructed. The standard name
used for the handler function is EvNewView. EvNewView takes a reference to the
new TView-derived object and returns void.

If the view contains a window interface element, either by inheritance or through a
pointer, the interface element typically has not been created when the view is
constructed. You can then modify the interface element’s creation attributes before
actually calling the Create function.

e The dnClose event when a view object is destroyed. The standard name used for
the handler function is EvCloseView. EvCloseView takes a reference to the TView-
derived object that is being destroyed and returns void.

The response table entries and function declarations for these two macros would look
like this:
DEFINE_RESPONSE_TABLEL (MyDVApp, Tapplication)

EV_OWLVIEW(dnCreate, EvNewView),
EV_OWLVIEW(dnClose, EvCloseView),

Chapter 10, Doc/View objects 137

Table 10.3

R : . ; e i Sl = G
EV_VN_VIEWOPENED vnViewOpened = VnViewOpened(TView *) Indicates that a new view has been constructed.

END_RESPONSE_TABLE;

void EvNewView(TView &view); -
void EvCloseView(TView &view);

Doc/View event handling in a view

The header file docview.h provides a number of response table macros for predefined
events, along with the handler function names and type checking for the function
declarations. You can also define your own events and functions to handle those events
using the NOTIFY_SIG and VN_DEFINE macros.

Handling predefined Doc/View events

There are a number of predefined Doc/View events. Each event has a corresponding
response table macro and handler function signature defined. Note that the Doc/View
model doesn’t provide versions of these functions. You must declare the functions in
your view class and provide the appropriate functionality for each function.

Predefined Doc/View event handlers

- o -

EV_VN_VIEWCLOSED wvnViewClosed =~ VnViewClosed(TView *) Indicates that a view is about to be destroyed.

EV_VN_DOCOPENED vnDocOpened VnDocOpened(int) Indicates that a new document has been
opened.

EV_VN_DOCCLOSED wvnDocClosed VnDocClosed(int) Indicates that a document has been closed.

EV_VN_COMMIT ovnCommit VnCommit(bool) Indicates that changes made to the data in the

view should be committed to the document.

EV_VN_REVERT vnRevert VnRevert(bool) Indicates that changes made to the data in the

view should be discarded and the data should
be restored from the document.

EV_VN_ISDIRTY vnlsDirty VnlsDirty(void) Should return true if changes have been made -

to the data in the view and not yet committed to
the document, otherwise returns false.

EV_VN_ISWINDOW onlsWindow VnlsWindow(HWND) Should return true if the HWND parameter is

the same as that of the view’s display window.

All the event-handling functions used for these messages return bool.

Adding custom view events

You can use the VN_DEFINE and NOTIFY_SIG macros to post your own custom view
events and to define corresponding response table macros and event-handling
functions. This section describes how to define an event and set up the event-handling
function and response table macro for that event.

First you must define the name of the event you want to handle. By convention, this
name should begin with the letters vn followed by the event name. A custom view event
should be defined as a const int greater than the value vnCustomBase. You can define
your event values as being vnCustomBase plus some offset value. For example, suppose
you are defining an event called vnPenChange. The code would look something like this:

138 ObjectWindows Programmer’s Guide

const int vnPenChange = vnCustomBase + 1;

Next use the NOTIFY_SIG macro to specify the signature of the event-handling
function. The NOTIFY_SIG macro takes two,parameters, the first being the event name
and the second being the exact parameter type to be passed to the function. The size of
this parameter can be no larger than type long; if the object being passed is larger than a
long, you must pass it by pointer. For example, suppose for the vnPenChange event, you
want to pass a TPen object to the event-handling function. Because a TPen object is quite
a bit larger than a long, you must pass the object by pointer. The macro would look

something like this:
NOTIFY_SIG(vnPenChange, TPen *)

Now you need to define the response table macro for your event. By convention, the
macro name uses the event name, in all uppercase letters, preceded by EV_VIN_. Use the
#define macro to define the macro name. Use the VN_DEFINE macro to define the
macro itself. This macro takes three parameters:

¢ Event name

¢ Event-handling function name (by convention, the same as the event name preceded
by Vn instead of the vn used for the event name)

* Size of the parameter for the event-handling function; this can have four different
values:

void

int (size of an int parameter depends on the platform)

long (32-bit integer or far pointer)

pointer (size of a pointer parameter depends on the memory model)

You should specify the value that most closely corresponds to the event-handling
function’s parameter type.

The definition of the response table macro for the vnPenChange event would look
something like this:

#define EV_VN_PENCHANGE \
VN_define (vnPenChange, VnPenChange, pointer)

Note that the third parameter of the VN_DEFINE macro in this case is pointer. This
indicates the size of the value passed to the event-handling function.

Doc/View properties

Every document and view object contains a list of properties, along with functions you
can use to query and change those properties. The properties contain information about
the object and its capabilities. When the document manager creates or destroys a
document or view object, it sends a notification event to the application. The application
can query the object’s properties to determine how to proceed. Views can also access the
properties of their associated document.

Chapter 10, Doc/View objects 139

Property values and names

TDocument and TView each have some general properties. These properties are available
in any classes derived from TDocument and TView. These properties are indexed by a list
of enumerated values. The first property for every TDocument- and TView-derived class
should be PrevProperty. The last value in the property list should be NextProperty. These
two values delimit the property list of every document and view object; they ensure that
your property list starts at the correct value and doesn’t overstep another property’s
value, and allows derived classes to ensure that their property lists start at a suitable
value. PrevProperty should be set to the value of the most direct base class’

NextProperty — 1.

For example, a property list for a class derived from TDocument might look something
like this:

enum
{

PrevProperty = TDocument::NextProperty—l,
Size,

StorageSize,

NextProperty,

}i

Note the use of the scope operator (::) when setting PrevProperty. This ensures that you
set PrevProperty to the correct value for NextProperty.

Property names are usually contained in an array of strings, with the position of each
name in the array corresponding to its enumerated property index. But, when adding
properties to a derived class, you can store and access the strings in whatever style you
want. Because you have to write the functions to access the properties, complicated
storage schemes aren’t recommended. A property name should be a simple description
of the property.

Property attributes are likewise usually contained in an array, this time an array on ints.
Again, you can handle this however you like. But the usual practice is to have the
attributes for a property contained in an array corresponding to the value of its property
index. The attributes indicate how the property can be accessed:

Table 10.4 Doc/View property attributes
e s R s

pfGetText Property accessible as text format.

pfGetBinary ~ Property accessible as native non-text format.
pfConstant Property cannot be changed once the object is created.
pfSettable Property settable, must supply native format.
pfUnknown Property defined but unavailable in this object.

pfHidden Property should be hidden from normal browse (don’t
let the user see its name or value).

pfUserDef Property has been user-defined at run time.

140 ObjectWindows Programmer’s Guide

Accessing property information

There are a number of functions provided in both TDocument and TView for accessing
Doc/View object property information. All of these functions are declared virtual.
Because the property access functions are virtual, the function in the most derived class
gets called first, and can override properties defined in a base class. It’s the
responsibility of each class to implement property access and to resolve its property
names.

You normally access a property by its index number. Use the FindProperty function with
the property name. FindProperty takes a char * parameter and searches the property list
for a property with the same name. It returns an int, which is used as the property index
for succeeding calls.

You can also use the PropertyName function to find the property name frpm the index.
PropertyName takes an int parameter and returns a char * containing the name of the
property.

You can get the attributes of a property using the PropertyFlags function. This function
takes an int parameter, which should be the index of the desired property, and returns
an int. You can determine whether a flag is set by using the & operator. For example, to

determine whether you can get a property value in text form, you should check to see
whether the pfGetText flag is set:

if (doc->PropertyFlags() & pfGetText)
{

// Get property as text....
}

Getting and setting properties
You can use the GetProperty and SetProperty functions to query and modify the values of
a Doc/View object’s properties.

The GetProperty function lets you find out the value of a property:
int GetProperty(int index, void far* dest, int textlen = 0);
where:

* index is the property index.

* dest is used by GetProperty to contain the property data.

¢ textlen indicates the size of the memory array pointed to by dest. If textlen is 0, the
property data is returned in binary form; otherwise the data is returned in text form.
Data can be returned in binary form only if the pfGetBinary attribute is set; it can be
returned in text form only if the pfGetText attribute is set. To get or set the binary data
of properties, the data type and the semantics must be known by the caller.

The SetProperty function lets you set the value of a property:
bool SetProperty(int index, const void far* src)
where:

* index is the property index.

Chapter 10, Doc/View objects 141

e src contains the data to which the property should be set; src must be in-the correct
native format for the property.

A derived class that duplicates property names should provide the same behavior and
data type.

142 ObjectWindows Programmer’s Guide

Chapter

Control objects

Windows provides a number of controls, which are standard user-interface elements
with specialized behavior. ObjectWindows provides several custom controls; it also
provides interface objects for controls so you can use them in your applications.
Interface objects for controls are called control objects.

To learn more about interface objects, see Chapter 3. This chapter covers the following
topics:

¢ Tasks common to all control objects
¢ Constructing and destroying control objects
¢ Communicating with control objects

¢ Using each of the different control objects

* Setting and reading control values

Control classes

The following table lists all the control classes ObjectWindows provides.
Table 11.1

Controls and their ObjectWindows classes

name Des
Standard Windows controls: ‘
List box TListBox A list of items to choose from.
Scroll bar TScrollBar A scroll bar (like those in scrolling windows and list boxes) with direction
; arrows and an elevator thumb.
Button TButton A button with an associated text label.

Check box TCheckBox A button consisting of a box that can be checked (on) or unchecked (off),
with an associated text label.

Radiobutton TRadioButton A button that can be checked (on) or unchecked (off), usually in mutually
exclusive groups.

Group box TGroupBox A static rectangle with optional text in the upper-left corner.

Chapter 11, Control objects 143

Table 11.1 Controls and their ObjectWindows classes (continued)

Edit control TEdit A field for the user to type text in.

Static control ~ TStatic Visible text the user can’t change.

Combo box TComboBox A combined list box and edit or static control.
Custom ObjectWindows controls:

Slider THSliderand ~ Horizontal and vertical controls that let the user choose from an upper
TVSlider and lower range (similar to scroll bars).
Gauge TGauge Static controls that display a range of process completion.

Control object example programs can be found in EXAMPLES\OWL\OWLAPI and
EXAMPLES\OWL\OWLAPPS.

What are control objects?

To Windows, controls are just specialized windows. In ObjectWindows, TControl is
derived from TWindow. Control objects and window objects are similar in how they
behave as child windows, and in how you create and destroy them. Standard controls
differ from other windows, however, in that Windows handles their event messages
and is responsible for painting them. Custom ObjectWindows controls handle these
tasks themselves because the ObjectWindows control classes contain the code needed to
paint the controls and handle events. :

In many cases, you can directly use instances of the classes listed in the previous table.
However, sometimes you might need to create derived classes for specialized behavior.
For example, you might derive a specialized list box class from TListBox called
TFontListBox that holds the names of all the fonts available to your application and
automatically displays them when you create an instance of the class.

Constructing and destroying control objects

Regardless of the type of control object you're using, there are several tasks you need to
perform for each:

¢ Constructing the control object
¢ Showing the control
¢ Destroying the control

Constructing control objects

Constructing a control object is no different from constructing any other child window.
Generally, the parent window’s constructor calls the constructors of all its child
windows. Notifications are described in Chapter 3. Controls communicate with parent
windows in special ways (called notifications) in addition to the usual links between
parent and child.

To construct and initialize a control object:

144 ObjectWindows Programmer’s Guide

1 Add a control object pointer data member to the parent window.
2 Call the control object’s constructor.

3 Change any control attributes.

4 Initialize the control in SetupWindow.

Each of these steps is described in the following sections.

Adding the control object pointer data member

Often when you construct a control in a window, you want to keep a pointer to the
control in a window object data member. This is for convenience in accessing the
control’s member functions. Here’s a fragment of a parent window object with the
declaration for a pointer to a button control object:

class TMyWindow : public TWindow

{
TButton *OkButton;

i
Controls that you rarely manipulate, like static text and group boxes, don’t need these

pointer data members. The following example constructs a group box without a data
member and a button with a data member (OkButton):

TMyWindow: : TMyWindow (TWindow *parent, const char far *title)
: TWindow (parent, title)
{
new TGroupBox (this, ID_GROUPBOX, "Group box", 10, 10, 100, 100);
OkButton = new TButton(this, IDOK, "OK", 10, 200, 50, 50, true);
}

Calling control object constructors
Some control object constructors are passed parameters that specify characteristics of
the control object. These parameters include

¢ A pointer to the parent window object

* A resource identifier

¢ The x-coordinate of the upper-left corner
e The y-coordinate of the upper-left corner
¢ The width

* The height

¢ Optional module pointer

For example, one of TListBox’s constructors is declared as follows:

TListBox (TWindow *parent, int resourceld,
int x, int y, int w, int h,
TModule* module = 0);

There are also constructors for associating a control object with an interface element (for
example a dialog box) created from a resource definition:

TListBox (TWindow* parent, int resourceld, TModule* module = 0);

Chapter 11, Control objects 145

Changing control attributes

All control objects get the default window styles WS_CHILD, WS_VISIBLE,
WS_GROUP, and WS_TABSTOP. If you want to change a control’s style, you
manipulate its Attr.Style, as described in Chapter 7. Each control type also has other
styles that define its particular properties.

Each control object inherits certain window styles from its base classes. You should
rarely assign a value to Attr.Style. Instead, you should use the bitwise assignment
operators (|=and &=) to “mask” in or out the window style you want. For example:

// Mask in the WS_BORDER window style
Attr.Style |= WS_BORDER;

// Mask out the WS_VSCROLL style
Attr.Style &= ~WS_VSCROLL;

Using the bitwise assignment operators helps ensure that you don’t inadvertently
remove a style.

Initializing the control

A control object’s interface element is automatically created by the SetupWindow
member function inherited by the parent window object. Make sure that when you
derive new window classes, you call the base class” SetupWindow member function
before attempting to manipulate its controls (for example, by calling control object
member functions, sending messages to those controls, and so on).

You must not initialize controls in their parent window object’s constructor. At that
time, the controls’ interface elements haven’t yet been created.

Here’s a typical SetupWindow function:

void
TMyWindow: : SetupWindow ()
{
TWindow: : SetupWindow () ; // Lets TWindow create any child controls

listl->AddString("Item 1");

listl->AddString("Item 2");
}

Showing controls

It's not necessary to call the Windows function Show to display controls. Controls are
child windows, and Windows automatically displays and repaints them along with the
parent window. You can use Show, however, to hide or reveal controls on demand.

Destroying the control

Destroying controls is the parent window’s responsibility. The control’s interface
element is automatically destroyed along with the parent window when the user closes

146 ObjectWindows Programmer’s Guide

the window or application. The parent window’s destructor automatically destroys its
child window objects (including child control objects).

Communicating with control objects

Communication between a window object and its control objects is similar in some
ways to the communication between a dialog box object and its controls. Like a dialog
box, a window needs a mechanism for manipulating its controls and for responding to
control events, such as a list box selection.

Manipulating controls

One way dialog boxes manipulate their controls is by sending them messages using
member functions inherited from TWindow (see Chapter 7), with a control message like
LB_ADDSTRING. Control objects greatly simplify this process by providing member
functions that send control messages for you. TListBox::AddString, for example, takes a
string as its parameter and adds it to the list box by calling the list box object’s
HandleMessage member function: -

int

TListBox::AddString (const char far* str)

{
return (int)HandleMessage (LB_ADDSTRING, 0, (LPARAM)str);

}

This example shows how you can call the control objects’ member functions via a
pointer:

ListBox1->AddString("Atlantic City"); //where ListBox1 is a TListBox *

Responding to controls

When a user interacts with a control, Windows sends various control messages. To learn
how to respond to control messages, see Chapter 3.

Making a window act like a dialog box

A dialog box lets the user use the Tab key to cycle through all of the dialog box’s
controls. It also lets the user use the arrow keys to select radio buttons in a group box. To
emulate this keyboard interface for windows with controls, call EnableKBHandler in the
window object’s constructor.

Using particular controls

Each type of control operates somewhat differently from the others. In this section,
you'll find specific information on how to use the objects for each of the standard
Windows controls and the custom controls supplied with ObjectWindows.

Chapter 11, Control objects 147

Using list box controls

Using a list box is the simplest way to ask the user to pick something from a list. The
TListBox class encapsulates list boxes. TListBox defines member functions for:

Creating list boxes
Modifying the list of items
Inquiring about the list of items

Constructing list box objects

Finding out which item the user selected

One of TListBox’s constructors takes seven parameters: a parent window, a resource
identifier, the control’s x, y, h, and w dimensions, and an module pointer:

TListBox (TWindow *parent,
int resourceld,
int x, int y, int w, int h,
TModule* module = 0);

TListBox gets the default control styles (WS_CHILD, WS_VISIBLE, WS_GROUP, and
WS_TABSTOP; see page 146) and adds LBS_STANDARD, which is a combination of
LBS_NOTIFY (to receive notification messages), WS_VSCROLL (to have a vertical scroll
bar), LBS_SORT (to sort the list items alphabetically), and WS_BORDER (to have a
border). If you want a different list box style, you can modify Attr.Style in the list box
object’s constructor or in its parent’s constructor. For example, for a list box that doesn’t

sort its items, use the following code:

listbox = new TListBox(this, ID_LISTBOX, 20, 20, 340, 100);

listbox->Attr.Style &= ~LBS_SORT;

Modifying list boxes

After you create a list box, you need to fill it with list items {which must be strings).
Later, you can add, insert, or remove items or clear the listcompletely. The following
table summarizes the member functions you use to perform these actions.

Table 11.2 TListBox member functions for modifying list boxes

ClearList
DirectoryList

AddString

InsertString

DeleteString

SetSellndex, SetSel, or SetSelString
SetSelStrings, SetSellndexes, or SetSelltemRange
SetTopIndex

SetTabStops

SetHorizontalExtent

SetColumnWidth

148 ObjectWindows Programmer’s Guide

Delete every item.

Put file names in the list.

Add an item.

Insert an item.

Delete an item.

Select an item.

Select multiple items.

Scroll the list box so the specified item is visible.
Set tab stopé for multicolumn list boxes.

Set number of pixels by which the list box can scroll
horizontally.

Set width of all columns in multicolumn list boxes.

Table 11.2 TListBox member functions for modifying list boxes (continued)

‘Member function ~ Description e e

SetCaretIndex ~ Setindex of the currently focused item.

SetltemData Set a uint32 value to be associated with the specified
index.

SetltemHeight Set the height of item at the specified index or height of
all items.

Querying list boxes
There are several member functions you can call to find out information about the list
box or its item list. The following table summarizes the list box query member functions.

Table 11.3 TListBox member functions for querying list boxes

Member functions Description

GetCount Number of items in the list.

FindString or FindExactString Find string index.

GetToplndex Index of the item at the top of the list box.
GetCaretIndex Index of the currently focused item.
GetHorizontalExtent Number of pixels the list box can scroll horizontally.
GetltemData uint32 data set by SetltemData.
GetltemHeight Height, in pixels, of the specified item.
GetltemRect Rectangle used to display the specified item.
GetSelCount Number of selected items (either 0 or 1).
GetSellndex or GetSel Index of the selected item.

GetSelString Selected item.

GetSelStrings or GetSellndexes Selected items.

GetString Item at a particular index.

GetStringLen Length of a particular item.

Responding to list boxes

The member functions for modifying and querying list boxes let you set values or find
out the status of the control at any given time. To know what a user is doing to a list box
at run time, however, you have to respond to notification messages from the control.

There are only a few things a user can do with a list box: scroll through the list, click an
item, and double-click an item. When the user does one of these things, Windows sends
a list box notification message to the list box’s parent window. Normally, you define
notification-response member functions in the parent window object to handle
notifications for each of the parent’s controls.

The following table summarizes the most common list box notifications:

Table 11.4 List box notification messages

EV_LBN_SELCHANGE An item has been selected with a single mouse click.
EV_LBN_DBLCLK An item has been selected with a double mouse click.

Chapter 11, Control objects 149

Table 11.4 List box notification messages (continued)

EVLBNSELéAN EL - ’Tk'he user has Eieseecxted an item.
EV_LBN_SETFOCUS The user has given the list box the focus by clicking or double-clicking
an item, or by using Tab. Precedes LBN_SELCHANGE notification.
EV_LBN_KILLFOCUS The user has removed the focus from the list box by clicking another
' control or pressing Tab.

Here’s a sample parent window object member function to handle an
LBN_SELCHANGE notification:

DEFINE_RESPONSE_TABLEL (TLBoxWindow, TFrameWindow)
EV_LBN_SELCHANGE (ID_LISTBOX, EvListBoxSelChange),
END_RESPONSE_TABLE;

void
TLBoxWindow: : EvListBoxSelChange ()
{
int index = ListBox->GetSelIndex();
if (ListBox->GetStringLen(index) < 10) {
char string[10];
ListBox->GetSelString (string, sizeof (string));
MessageBox (string, "You selected:", MB_OK);
}
}

Using static controls

Static controls are usually unchanging units of text or simple graphics. The user doesn’t
interact with static controls, although your application can change the static control’s
text. See EXAMPLES\OWL\OWLAPI\STATIC for an example showing static controls.

Constructing static control objects

Because the user never interacts directly with a static control, the application doesn’t
receive control-notification messages from static controls. Therefore, you can construct
most static controls with —1 as the control ID. However, if you want to use
TWindow::SendDIgltemMessage to manipulate the static control, you need a unique ID.

One of TStatic’s constructors is declared as follows:

TStatic(TWindow* parent,
int resourceld,
const char far* title,
int x, int y, int w, int h,
UINT textLen = 0,
TModule* module = 0);

It takes the seven parameters commonly found in this form of a control object
constructor (a parent window, a resource ID, the control’s x, y, k, and w dimensions, and
an optional module pointer), and two parameters specific to static controls: the text

150 ObjectWindows Programmer’s Guide

_ string the static control displays and its maximum length (including the terminating
NULL). A typical call to construct a static control looks like this:

new TStatic(this, -1, "Sample &Text", 170, 20, 200, 24);

If you want to be able to change the static control’s text, you need to assign the control
object to a data member in the parent window object so you can call the static control
object’s member function. If the static control’s text doesn’t need to change, you don't
need a data member.

TStatic gets the default control styles (WS_CHILD, WS_VISIBLE, WS_GROUP, and
WS_TABSTOP; see page 146), adds SS_LEFT (to left-align the text), and removes the
WS_TABSTOP style (to prevent the user from selecting the control using Tab). To
change the style, modify Attr.Style in the static control object’s constructor. For example,
the following code centers the control’s text:

Attr.Style = (Attr.Style & ~SS_LEFT) | SS_CENTER;

To indicate a mnemonic for a nearby control, you can underline one or more characters
in the static control’s text string. To do this, insert an ampersand & in the string
immediately preceding the character you want underlined. For example, to underline
the T in Text, use &Text. If you want to use an ampersand in the string, use the static style
SS_NOPREFIX.

Modifying static controls

TStatic has two member functions for altering the text of a static control: SetText sets the
text to the passed string, and Clear erases the text. You can’t change the text of static
controls created with the SS_SIMPLE style.

Querying static controls
TStatic::GetTextLen returns the length of the static control’s text. To get the text itself, use
TStatic::GetText.

Using button controls

Buttons (sometimes called push buttons or command buttons) perform a task each time
the button is pressed. There are two kinds of buttons: default buttons and non-default
buttons. A default button, distinguished by the button style BS_DEFPUSHBUTTON,
has a bold border that indicates the default user response. Nondefault buttons have the
button style BS_PUSHBUTTON.

See EXAMPLES\OWL\OWLAPI\BWCC for an example of button controls.

Constructing buttons

One of TButton’s constructors takes the seven parameters commonly found in a control
object constructor (a parent window, a resource identifier, the control’s x, y, h, and w
dimensions, and an optional module pointer), plus a text string that specifies the
button’s label, and a bool flag that indicates whether the button should be a default
button. Here’s the constructor declaration:

Chapter 11, Control objects 151

TButton(TWindow *parent,
int resourceld,
const char far *text,
int X, int Y, int W, int H,
bool isDefault = false,
TModule *module = 0);

A typical button would be constructed like this:

btn = new TButton(this, ID_BUTTON, "DO_IT!", 38, 48, 316, 24, true);

Responding to buttons

When the user clicks a button, the button’s parent window receives a notification
message. If the parent window object intercepts the message, it can respond to these
events by displaying a dialog box, saving a file, and so on.

To intercept and respond to button messages, define a command response member
function for the button. The following example uses ID ID_BUTTON to handle the
response to the user clicking the button:

DEFINE_RESPONSE_TABLEL (TTestWindow, TFrameWindow)
EV_COMMAND (ID_BUTTON, HandleButtonMsg),
END_RESPONSE_TABLE;

void
TTestWindow: : HandleButtonMsg ()
{

// Button was pressed

}

Using check box and radio button controls

A check box generally presents the user with a two-state option. The user can check or
uncheck the control, or leave it as is. In a group of check boxes, any or all might be
checked. For example, you might use a check box to enable or disable the use of sound
in your application.

Radio buttons, on the other hand, are used for selecting one of several mutually exclusive
options. For example, you might use radio buttons to choose between a number of
sounds in your application.

TCheckBox is derived from TButton and represents check boxes. Since radio buttons
share some behavior with check boxes, TRadioButton is derived from TCheckBox.

Check boxes and radio buttons are sometimes collectively referred to as selection boxes.
While displayed on the screen, a selection box is either checked or unchecked. When the
user clicks a selection box, it’s an event, generating a Windows notification. As with
other controls, the selection box’s parent window usually intercepts and acts on these
notifications.

See EXAMPLES\OWL\OWLAPI\BUTTON for radio button and check box control
examples.

152 ObjectWindows Programmer’s Guide

Constructing check boxes and radio buttons

TCheckBox and TRadioButton each have a constructor that takes the seven parameters
commonly found in a control object constructor (a parent window, a resource identifier,
the control’s x, y, h, and w dimensions, and an optional module pointer). They also take
a text string and a pointer to a group box object that groups the selection boxes. If the
group box object pointer is zero, the selection box isn’t part of a group box. Here are one
each of their constructors:

TCheckBox (TWindow *parent,
int resourceld,
const char far *title,
int x, int y, int w, int h,
TGroupBox *group = 0,
TModule *module = 0);

TRadioButton (TWindow *parent,
int resourceld,
const char far *title,
int x, int y, int w, int h,
TGroupBox *group = 0,
TModule *module = 0);

The following listing shows some typical constructor calls for selection boxes.

CheckBox = new TCheckBox(this, ID_CHECKBOX, "Check Box Text", 158, 12, 150, 26);
GroupBox = new TGroupBox (this, ID_GROUPBOX, "Group Box", 158, 102, 176, 108);

RButtonl = new TRadioButton(this, ID_RBUTTON1, "Radio Button 1",
174, 128, 138, 24, GroupBox);

RButton2 = new TRadioButton(this, ID_RBUTTON2, "Radio Button 2",
174, 162, 138, 24, GroupBox);

Check boxes by default have the BS_AUTOCHECKBOX style, which means that
Windows handles a click on the check box by toggling the check box. Without
BS_AUTOCHECKBOX, you’d have to set the check box’s state manually. Radio buttons
by default have the BS_AUTORADIOBUTTON style, which means that Windows
handles a click on the radio button by checking the radio button and unchecking the
other radio buttons in the group. Without BS_AUTORADIOBUTTON, you’d have to
intercept the radio button’s notification messages and do this work yourself.

1

Modifying selection boxes

Checking and unchecking a selection box seems like a job for the application user, not
your application. But in some cases, your application needs control over a selection
box’s state. For example, if the user opens a text file, you might want to automatically
check a check box labeled “Save as ANSI text.” TCheckBox defines several member
functions for modifying a check box’s state:

Table 11.5 TCheckBox member functions for modifying selection boxes
fMé\mber function ‘ Description

Check or SetCheck (BE_CHECKED) Check

Uncheck or SetCheck (BF_UNCHECKED) Uncheck

Chapter 11, Control objects 153

Table 11.5 TCheckBox member functions for modifying selectlon boxes (continued)

Memberfunctlon . ~Desmphon

Toggle ’ Toggle

SetState Highlight

SetStyle Change the button’s style

When you use these member functions with radio buttons, ObjectWindows ensures that
only one radio button per group is checked, as long as the buttons are assigned to a

group.

Querying selection boxes

Querying a selection box is one way to find out and respond to its state. Radio buttons
have two states: checked (BF_CHECKED) and unchecked (BF_UNCHECKED). Check
boxes can have an additional (and optional) third state: grayed (BF_GRAYED). The
following table summarizes the selection-box query member functions.

Table 11.6 TCheckBox member functions for querylng selectlon boxes

Member function Descnphon

GetCheck Return the check state.
GetState Return the check, highlight, or focus state.

Using group boxes

In its simplest form, a group box is a labeled static rectangle that visually groups other
controls.

Constructing group boxes

TGroupBox has a constructor that takes the seven parameters commonly found in a
control object constructor (a parent window, a resource identifier, the control’s x, y, i,
and w dimensions, and an optional module pointer), and also takes a text string
parameter to label the group:

TGroupBox (TWindow *parent,
int resourceld,
const char far *text,
int X, int Y, int W, int H,
TModule *module = 0);

Grouping controls

Usually a group box visually associates a group of other controls; however, it can also
logically associate a group of selection boxes (check boxes and radio buttons). This
logical group performs the automatic unchecking (BS_AUTOCHECKBOX,
BS_AUTORADIOBUTTON) discussed on page 153.

To add a selection box to a group box, pass a pointer to the group box object in the
selection box’s constructor call.

154 ObjectWindows Programmer’s Guide

Responding to group boxes

When an event occurs that might change the group box’s selections (for example, when
a user clicks a button or the application calls Check), Windows sends a notification
message to the group box’s parent window. The parent window can intercept the
message for the group box as a whole, rather than responding to the individual selection
boxes in the group box. To find out which control in the group was affected, you can
read the current status of each control.

Using scroll bars

Scroll bars are the primary mechanism for changing the user’s view of an application
window, a list box, or a combo box. However, you might want a separate scroll bar to
perform a specialized task, such as controlling the temperature on a thermostat or the
color in a drawing program. Use T'ScrollBar objects when you need a separate,
customizable scroll bar.

See EXAMPLES\OWLANOWLAPI\SCROLLER for a scroll bar control example.

Constructing scroll bars

TScrollBar has a constructor that takes the seven parameters commonly found in a
control object constructor (a parent window, a resource identifier, the control’s x, y, h,
and w dimensions, and an optional module pointer), and also takes a bool flag
parameter that specifies whether the scroll bar is horizontal. Here’s a TScrollBar
constructor declaration:

TScrollBar (TWindow *parent,
int resourceld,
int x, int y, int w, int h,
bool isHScrollBar,
TModule *module = 0);

If you specify a height of zero for a horizontal scroll bar or a width of zero for a vertical
scroll bar, Windows gives it a standard height and width. This code creates a standard-
height horizontal scroll bar:

new TScrollBar(this, ID_THERMOMETER, 100, 150, 180, 0, true);

TScrollBar’s constructor constructs scroll bars with the style SBS_HORZ for horizontal
scroll bars and SBS_VERT for vertical scroll bars. You can specify additional styles, such
as SBS_TOPALIGN, by changing the scroll bar object’s Attr.Style.

Controlling the scroll bar range

One attribute of a scroll bar is its range, which is the set of all possible thumb positions.
The thumb is the scroll bar’s sliding box that the user drags or scrolls. Each position is
associated with an integer. The parent window uses this integer, the position, to set and
query the scroll bar. By default, a scroll bar object’s range is 1 to 100.

The thumb’s minimum position (at the top of a vertical scroll bar and the left of a
horizontal scroll bar) corresponds to position 1, and the thumb’s maximum position
corresponds to position 100. Use SetRange to set the range differently.

Chapter 11, Control objects 155

Controlling scroll amounts

A scroll bar has two other important attributes: its line magnitude and page magnitude.
The line magnitude, initialized to 1, is the distance, in range units, the thumb moves
when the user clicks the scroll bar’s arrows. The page magnitude, initialized to 10, is the
distance, also in range units, the thumb moves when the user clicks the scrolling area.
You can change these values by changing the TScrollBar data members LineMagnitude
and PageMagnitude.

Querying scroll bars
TScrollBar has two member functions for querying scroll bars:

* GetRange gets the upper and lower ranges.
¢ GetPosition gets the current thumb position.

Modifying scroll bars
Modifying scroll bars is usually done by the user, but your application can also modify a
scroll bar directly:

o SetRange sets the scrolling range.
o SetPosition sets the thumb position.
® DeltaPos moves the thumb position.

Responding to scroll-bar messages

When the user moves a scroll bar’s thumb or clicks the scroll arrows, Windows sends a
scroll bar notification message to the parent window. If you want your window to
respond to scrolling events, respond to the notification messages.

Scroll bar notification messages are slightly different from other control notification
messages. They're based on the WM_HSCROLL and WM_VSCROLL messages, rather
than WM_COMMAND command messages. Therefore, to respond to scroll bar
notification messages, you need to define EvHScroll or EvVScroll event response
functions, depending on whether the scroll bar is horizontal or vertical:

class TTestWindow : public TFrameWindow
{
public:
TTestWindow (TWindow* parent, const char* title);
virtual void SetupWindow();

void EvHScroll (UINT code, UINT pos, HWND wnd);

DECLARE_RESPONSE_TABLE (TTestWindow) ;
};

DEFINE_RESPONSE_TABLEL (TTestWindow, TFrameWindow)

EV_WM_HSCROLL,
END_RESPONSE_TABLE;

156 ObjectWindows Programmer’s Guide

Usually, you respond to all the scroll bar notification messages by retrieving the current
thumb position and taking appropriate action. In that case, you can ignore the
notification code:

void
TTestWindow: :EvHScroll (UINT code, UINT pos, HWND wnd)

{
TFrameWindow: :EvHScroll(); // perform default WM_HSCROLL processing

int newPos = ScrollBar->GetPosition();
// do some processing with newPos

}

Avoiding thumb tracking messages

You might not want to respond to the scroll bar notification messages while the user is
dragging the scroll bar’s thumb, because the user is usually dragging the thumb quickly,
generating many notification messages. It's more efficient to wait until the user has
stopped moving the thumb, and then respond. To do this, screen out the notification
messages that have the SB_THUMBTRACK code.

Specializing scroll bar behavior

You might want a scroll bar object respond to its own notification messages. TWindow
has built-in support for dispatching scroll bar notification messages back to the scroll
bar. TWindow::EvHScroll or TWindow::EvVScroll execute the appropriate TScrollBar
member function based on the notification code. For example:

class TSpecializedScrollBar : public TScrollBar

{
public:
virtual void SBTop();
}i

void
TSpecializedScrollBar: :SBTop ()
{
TScrollBar::SBTop() ;
: :sndPlaySound ("AT-TOP.WAV", SND_ASYNC); // play sound
}

Be sure to call the base member functions first. They correctly update the scroll bar to its
new position.

The following table associates notification messages with the corresponding TScrollBar
member function:

Table 11.7 Notification codes and TScrollBar member functions

Notification message TScrollBar member function
SB_LINEUP SBLinelp

SB_LINEDOWN SBLineDown

SB_PAGEUP SBPagellp

SB_PAGEDOWN SBPageDown

Chapter 11, Control objects 157

Table 11.7 Notification codes and TScrollBar member functions (continued)

1B,

'SB_THUMBPOSITION ~ SBThumbPosition
SB_THUMBTRACK SBThumbTrack
SB_TOP SBTop
SB_BOTTOM SBBottom

Using sliders and gauges

Sliders are specialized scrollers used for nonscrolling position information. The abstract
base class TSlider is derived from the TScrollBar class. Like other control constructors, the
TSlider constructor takes the seven parameters commonly found in a control object
constructor (a parent window, a resource identifier, the control’s x, y, h, and w
dimensions, and an optional module pointer), and also takes a TResId object, which is a
bitmap resource identifier. The bitmap is displayed as the thumb knob for the slider.
Here’s the TSlider constructor:

THSlider (TWindow* parent,
int id,
int X, int Y, int W, int H,
TResId thumbResId = IDB_HSLIDERTHUMB,
TModule* module = 0);

To implement a class based on TSlider, you must implement a number of functions
which are declared as pure virtual functions in TSlider:

Table 11.8 Pure virtual functions in TSlider

A on i ‘ ; i | I . .
 Determines whether a pbiﬁt in inside the thumb or any other “hot” area of the slider.
NotifyParent Notifies the slider’s parent of a scroll event.
PaintRuler Paints the ruler.
PaintSlot Paints the slot that the thumb rides over.
PointToPos Converts a point inside the slider to a slider position.
PosToPoint Converts a slider position to a point inside the slider.

SetupThumbRgn Sets up the thumb region. By default, this is a simple rectangle.
SlideThumb Slides the thumb and does the required blitting and painting.

Two classes derived from TSlider, THSlider and TV Slider, implement vertical and
horizontal slider versions. Both THSlider and TV Slider have only one constructor. These
constructors resemble the TSlider constructor, with the exception that each has a default
value for the thumb knob bitmap:

THSlider (TWindow* parent,
int id,
int X, int Y, int W, int H,
TResId thumbResId = IDB_HSLIDERTHUMB,
TModule* module = 0);

158 ObjectWindows Programmer’s Guide

TVSlider (TWindow* parent,
int id,
int X, int Y, int W, int H,
TResId thumbResId = IDB_VSLIDERTHUMB,
TModule* module = 0);

Gauges are controls that display duration or other information about an ongoing
process. Class TGauge implements gauges, and is derived from class TControl. The
TGauge constructor looks like this:

TGauge (TWindow* parent,
const char far* title,
int 1id,
int X, int Y, int W, int H,
bool isHorizontal = true,
int margin = 0,
TModule *module = 0);

The TGauge constructor has the normal control constructor parameters (a parent
window, a resource identifier, the control’s x, y, h, and w dimensions, and an optional
module pointer). The isHorizontal parameter determines whether you get a horizontal or
vertical gauge. If isHorizontal is true, the gauge is displayed horizontally. If isHorizontal is
false, the gauge is displayed vertically. The default is horizontal. Horizontal gauges are
usually used to display process information, and vertical gauges are usually used to
display analog information.

The margin parameter determines the size of the gauge’s margin.
See EXAMPLES\OWL\NOWLAPI\SLIDER for slider and gauge control examples.

Using edit controls

Edit controls are interactive static controls. They’re rectangular areas that can be filled
with text, modified, and cleared by the user or application. Edit controls are very useful
as fields for data entry screens. They support the following operations:

¢ User text input

* Dynamic display of text (by the application)

* Cutting, copying, and pasting to the Clipboard
* Multiline editing (good for text editors)

See EXAMPLES\OWL\OWLAPI\VALIDATE for an edit controls example.

Constructing edit controls

One of TEdit’s constructors takes parameters for an initial text string, maximum string
length (including the terminating NULL), and a bool flag specifying whether or not it's
a multiline edit control (in addition to the parent window, resource identifier, and
placement coordinates). This TEdit constructor is declared as follows:

TEdit (TWindow *parent,
int resourceld,
const char far *text,
int x, int y, int w, int h,

Chapter 11, Control objects 159

UINT textLen,
bool multiline = false,
TModule *module = 0);

By default, the edit control has the styles ES_LEFT (for left-aligned text),
ES_AUTOHSCROLL (for automatic horizontal scrolling), and WS_BORDER (for a
visible border surrounding the edit control). Multiline edit controls get the additional
styles ES_ MULTILINE (specifies a multiline edit control), ES_AUTOVSCROLL
(automatic vertical scrolling), WS_VSCROLL (vertical scroll bar), and WS_HSCROLL

(horizontal scroll bar).
The following are typical edit control constructor calls, one for a single-line control, the
other multiline:

Editl = new TEdit (this, ID_EDIT1, "Default Text", 20, 50, 150, 30, MAX_TEXTLEN, false);

Edit2 = new TEdit(this, ID_EDIT2, "", 260, 50, 150, 30, MAX_TEXTLEN, true);

Using the Clipboard and the Edit menu

You can directly transfer text between an «dit control object and the Windows
Clipboard using TEdit member functions. You probably want to give users access to
these member functions by giving your window an Edit menu.

Edit control objects have built-in responses to menu items like Edit | Copy and Edit |
Undo. TEdit has command response member functions, such as CmEditCopy and
CmEditUndo, which ObjectWindows invokes in response to users choosing items from
the parent window’s Edit menu.

The table below shows the Clipboard and editing member functions and the menu
commands that invoke them.

Copy CM_EDITCOPY Copy text to Clipboard.
Cut CM_EDITCUT Cut text to Clipboard.
Undo CM_EDITUNDO Undo last edit.

Paste . CM_EDITPASTE Paste text from Clipboard.
DeleteSelection CM_EDITDELETE Delete selected text.

Clear CM_EDITCLEAR Clear entire edit control.

To add an editing menu to a window that contains edit control objects, define a menu
resource for the window using the menu commands listed above. You don’t need to
write any new member functions.

Querying edit controls

Often, you want to query an edit control to store the entry for later use. TEdit has a
number of querying member functions. Many of the edit control query and
modification member functions return, or require you to specify, a line number or a
character’s position in a line. All of these indexes start at zero. In other words, the first

160 ObjectWindows Programmer’s Guide

line is line zero and the first character of a line is character zero. The following table

summarizes TEdit's query member functions.

Table 11.10 TEdit member functions for querylng edit controls

‘Member function Descnptlon :

IsModlﬁed Find out if text has changed.
GetText Retrieve all text.

GetLine Retrieve a line.

GetNumLines Get number of lines.
GetLineLength Get length of a given line.
GetSelection Get index of selected text.
GetSubText Get a range of characters.
GetLinelndex Count characters before a line.
GetLineFromPos Find the line containing an index.
GetRect Get formatting rectangle.
GetHandle Get memory handle.
GetFirstVisibleLine Get index of first visible line.
GetPasswordChar Get character used in passwords.
GetWordBreakProc Get word-breaking procedure.
CanlUndo Find out if edit can be undone.

Text that spans lines in a multiline edit control contains two extra characters for each
line break: a carriage return (“\r’) and a line feed (‘\n’). TEdit’s member functions retain
the text’s formatting when they return text from a multiline edit control. When you
insert this text back into an edit control, paste it from the Clipboard, write it to a file, or
print it to a printer, the line breaks appear as they did in the edit control. When you use
query member functions to get a specified number of characters, be sure to account for
the two extra characters in a line break.

Modifying edit controls

Many uses of edit controls require that your application explicitly substitute, insert,
clear, or select text. TEdit supports those operations, plus the ability to force the edit
control to scroll.

Table 11.11 TEdit member functlons for modlfylng ed|t controls

berfunction Descri
Clear Deleteall text.
DeleteSelection Delete selected text.
DeleteSubText Delete a range of characters.
DeleteLine Delete a line of text.
Insert Insert text.
Paste Paste text from Clipboard.
SetText Replace all text.
SetSelection Select a range of text.
Scroll Scroll text.

Chapter 11, Control objects 161

Table 11.11 TEdit member functions for modifying edit controls (continued)
yE TR
i e
ClearModify Clear the modified flag.
Search Search for text.
SetRect or SetRectNP Set formatting rectangle.
FormatLines Turn on or off soft line breaks.
SetTabStops Set tab stops.
SetHandle Set local memory handle.
SetPasswordChar Set password character.
SetReadOnly Make the edit control read-only.
SetWordBreakProc Set word-breaking procedure.
EmptyUndoBuffer Empty undo buffer.
Using combo boxes

A combo box control is a combination of two other controls: a list box and an edit or
static control. It serves the same purpose as a list box—it lets the user choose one text
item from a scrollable list of text items by clicking the item with the mouse. The edit
control, grafted to the top of the list box, provides another selection mechanism,
allowing users to type the text of the desired item. If the list box area of the combo box is
displayed, the desired item is automatically selected. TComboBox is derived from
TListBox and inherits its member functions for modifying, querying, and selecting list
items. In addition, TComboBox provides member functions for manipulating the list part
of the combo box, which, in some types of combo boxes, can drop down on request.

See EXAMPLES\OWL\OWLAPINCOMBOBOX for a combo box control example.

Varieties of combo boxes

There are three types of combo boxes: simple, drop down, and drop down list. All
combo boxes show their edit area at all times, but some can show and hide their list box
areas. The following table summarizes the properties of each type of combo box.

Table 11.12 Summary of combo box styles

e

Simple No No
Drop down Yes No
Drop down list Yes Yes

From a user’s perspective, these are the distinctions between the different styles of
combo boxes:

* A simple combo box cannot hide its list box area. Its edit area behaves just like an edit
control; the user can enter and edit text, and the text doesn’t need to match one of the
items in the list. If the text does match, the corresponding list item is selected.

¢ A drop down combo box behaves like a simple combo box, with one exception. In its
initial state, its list area isn’t displayed. It appears when the user clicks on the icon to

162 ObjectWindows Programmer’s Guide

the right of the edit area. When drop down combo boxes aren’t being used, they take
up less space than a simple combo box or a list box.

¢ The list area of a drop down list combo box behaves like the list area of a drop down
combo box—it appears only when needed. The two combo box types differ in the
behavior of their edit areas. Whereas drop down edit areas behave like regular edit
controls, drop down list edit areas are limited to displaying only the text from one of
their list items. When the edit text matches the item text, no more characters can be
entered.

Choosing combo box types

Drop down list combo boxes are useful in cases where no other selection is acceptable
besides those listed in the list area. For example, when choosing a printer, you can only
choose a printer accessible from your system.

On the other hand, drop down combo boxes can accept entries other than those found in
the list. A typical use of drop down combo boxes is selecting disk files for opening or
saving. The user can either search through directories to find the appropriate file in the
list, or type the full path name and file name in the edit area, regardless of whether the
file name appears in the list area.

Constructing combo boxes

TComboBox has two constructors. The first constructor takes the seven parameters
commonly found in a control object constructor (a parent window, a resource identifier,
the control’s x, y, h, and w dimensions, and an optional module pointer), and also style
and maximum text length parameters. This constructor is declared like this:

TComboBox (TWindow *parent,
int resourceld,
int x, int y, int w, int h,
uint32 style,
uintl6 textLen,
TModule *module = 0);

All combo boxes have the styles WS_CHILD, WS_VISIBLE, WS_GROUP,
WS_TABSTOP, CBS_SORT (to sort the list items), CBS_AUTOHSCROLL (to let the user
enter more text than fits in the visible edit area), and WS_VSCROLL (vertical scroll bar).
The style parameter you supply is one of the Windows combo box styles CBS_SIMPLE,
CBS_DROPDOWN, or CBS_DROPDOWNLIST. The text length specifies the maximum
number of characters allowed in the edit area.

The second TComboBox constructor lets you create an ObjectWindows object that serves
as an alias for an existing combo box. This constructor looks like this:

TComboBox (TWindow* parent,
int resourceld,
UINT textLen = 0,
TModule* module = 0);

The following lines show a typical combo box constructor call, constructing a drop
down list combo box with an unsorted list:

Chapter 11, Control objects 163

Combol = new TComboBox(this, ID_COMBOL, 190, 30, 150, 100, CBS_SIMPLE, 20);
Combol->Attr.Style &= ~CBS_SORT;

Modifying combo boxes
TComboBox defines several member functions for modifying a combo box’s list and edit
areas. The following table summarizes these member functions.

Because TComboBox is derived from TListBox, you can also use TListBox member
functions to manipulate a combo box’s list area. ‘

Table 11.13 TComboBox member functions for modifying combo boxes

SetTex

eplace all text in e ét area.
SetEditSel Select text in the edit area.
Clear Delete all text in the edit area.
ShowList or ShowList(true) Show the list area. »
HideList or ShowList(false) Hide the list area.
SetExtendedUI Set the extended combo box UL
Querying combo boxes

TComboBox adds several member functions to those inherited from TListBox for
querying the contents of a combo box’s edit and list areas. The following table
summarizes these member functions.

Table 11.14 TComboBox member functions for querying combo boxes

i

e

GetTextLen f Get len, of rtext in ed}t area.

GetText Retrieve all text in edit area.

‘GetEditSel Get indexes of selected text in edit area.
GetDroppedControlRect Get rectangle of dropped-down list.
GetDroppedState Determine if list area is visible.

GetExtendedUl . Determine if combo box has extended UL

Setting and reading control values

To manage complex dialog boxes or windows with many child-window controls, you
might create a derived class to store and retrieve the state of the dialog box or window
controls. The state of a control includes the text of an edit control, the position of a scroll
bar, and whether a radio button is checked.

Using transfer buffers

As an alternative to creating a derived class, you can use a structure to represent the
state of the dialog box’s or window’s controls. This structure is called a transfer buffer

164 ObjectWindows Programmer’s Guide

because control states are transferred to the buffer from the controls and to the controls
from the buffer.

For example, your application can bring up a modal dialog box and, after the user closes
it, extract information from the transfer buffer about the state of each control. Then, if
the user brings up the dialog box again, you can transfer the control states from the
transfer buffer. In addition, you can set the initial state of each control based on the
transfer buffer. You can also explicitly transfer data in either direction at any time, such
as to reset the states of the controls to their previous values. A window or modeless
dialog box with controls can also use the transfer mechanism to set or retrieve state
information at any time.

The transfer mechanism requires the use of ObjectWindows objects to represent the
controls for which you’d like to transfer data. To use the transfer mechanism, you have
to do three things:

¢ Define the transfer buffer, with an instance variable for each control for which you
want to transfer data.

¢ Define the corresponding window or dialog box.

e Transfer the data.

Defining the transfer buffer

The transfer buffer is a structure with one member for each control participating in the
transfer. These members are known as instance variables. A window or dialog box can
also have controls with no states to transfer. For example, by default, buttons, group
boxes, and static controls don’t participate in transfer. The type of the control
determines the type of member needed in the transfer buffer.

To define a transfer buffer, define an instance variable for each participating control in
the dialog box or window. It isn’t necessary to define an instance variable for every
control, only for those controls you want to transfer values to and from. The transfer
buffer stores one of each type of control, except buttons, group boxes, and static
controls. For example:

struct TSampleTransferStruct

{
char editCtl[sizeOfEditCtl]; // edit control

uintl6 checkBox; // check box
uintl6 radioButton; // radio button
TListBoxData listBox; // list box
TComboBoxData comboBox; // combo box

TScrollBarData scrollBar; // scroll bar
b

Chapter 11, Control objects 165

Each type of control has different information to store. The followmg table explains the
transfer buffer for each of ObjectWindows’ controls.

Table 11.15 Transfer buffer members for each type of control

char auy * Acharacter arra}; ; to the maxim éngth oftext
allowed, plus the terminating NULL. By default, static
controls don’t {)artlapate in transfer, but you can

explicitly enable them.

Edit char array A character array up to the maximum length of text
allowed, plus the terminating NULL

List box TListBoxData An instance of the TListBoxData class; TListBoxData has

several members for holding the list box strings, item
data, and the selected indexes.

Combo box TComboBoxData An instance of the TComboBoxData class;
TComboBoxData has several members for holding the
combo box list area strings, item data, the selection
index, and the contents of the edit area.

Check box or radio button ~ uint16 BF_CHECKED, BF_UNCHECKED, or BFE_GRAYED,
indicating the selection box state.
Scroll bar TScrollBarData An instance of TScrollBarData; TScrollBarData has three

int members: LowValue to hold the minimum range;
HighValue to hold the maximum range; and Position to
hold the current thumb position.

List box transfer

Because list boxes need to transfer several pieces of information (strings, item data, and
selection indexes), the transfer buffer uses a class called TListBoxData. TListBoxData has
several data members to hold the list box information:

Table 11.16 TListBoxData data members

LR

'ItemDatas .

TLImt32Arruy Contains the 1tem data umt32 for each 1tem in the llst box.
Sellndices TIntArray* Contains the indexes of each selected string (in a multiple-
selection list box).
Strings TStringArray* Contains all the strings in the list box.

TListBoxData also has member functions to manipulate the list box data:

Table 11.17 TListBoxData member functions

 AddltemData " Adds item data to the ItemDatas rra. o

AddString Adds a string to the Strings array, and optionally selects it.

AddStringltem Adds a string to the Strings array, optionally selects it, and adds item data to the
ItemDatas array.

GetSelString Get the selected string at the given index.

GetSelStringLength Returns the length of the selected string at the given index.

ResetSelections Removes all selections from the Sellndices array.

166 ObjectWindows Programmer’s Guide

Table 11.17 TListBoxData member functions (continued)
‘Member function Description

Select Selects the string at the given index.
SelectString Selects the given string.
Combo box transfer

Combo boxes need to transfer several pieces of information (strings, item data, selected
item, and the index of the selected item). The transfer buffer for combo boxes is a class
called TComboBoxData. TComboBoxData has several data members to hold the combo
box information:

Table 11.18 TComboBoxData data members

D ta member Type Descnptlon

ItemDatas TUint32Array* Contains the item data uint32 for each item in the list box
Selection char* Contains the selected string.

Strings TStringArray* Contains all the strings in the list box.

TComboBoxData also has several member functions to mampulate the combo box
information:

Table 11.19 TComboBoxData member functions

AddStr g ‘ - ‘Addsa string to the St'ring‘s”érre‘ly, and opﬁéﬁaﬂy selects it.

AddStringltem Adds a string to the Strings array, optionally selects it, and adds item data to the
ItemDatas array.

Clear Clears all data.

GetltemDatas Returns a reference to ItemDatas.

GetSelCount Returns number of selected items.

GetSelection Returns a reference to the current selection.

GetSellndex Returns the index of the current selection.

GetSelString Places a copy of the current selection into a character buffer.

GetSelStringLength Returns the length of the currently selected string.

GetStrings Returns a reference to the entire array of strings in the combobox.

ResetSelections Sets the current selection to a null string and sets the index to CB_ERR.

Select Sets a string in Strings to be the current selection, based on an index parameter.

SelectString Sets a string in Strings to be the current selection, based on matching a const char
far* parameter.

Defining the corresponding window or dialog box

A window or dialog box that uses the transfer mechanism must construct its
participating control objects in the exact order in which the corresponding transfer
buffer members are defined. To enable transfer for a window or dialog box object, call
SetTransferBuffer and pass a pointer to the transfer buffer.

Chapter 11, Control objects 167

Using transfer with a dialog box

Because dialog boxes get their definitions and the definitions of their controls from
resources, you should construct control objects using the constructors that take resource
IDs. For example:

struct TTransferBuffer

{
char edit[30];
TListBoxData listBox;
TScrollBarData scrollBar;

}

TTransferDialog: :TTransferDialog (TWindow* parent, int resId)
: TDialog(parent, resId),
TWindow (parent)
{
new TEdit (this, ID_EDIT, 30);
new TListBox(this, ID_LISTBOX);
new TScrollBar(this, ID_SCROLLBAR);

SetTransferBuffer (&TTransferBuffer);

}

Control objects you construct like this automatically have transfer enabled (except for
button, group box, and static control objects). To explicitly exclude a control from the
transfer mechanism, call its DisableTransfer member function after constructing it.

Using transfer with a window

Controls constructed in a window have transfer disabled by default. To enable transfer,
call the control object’s EnableTransfer member function:

ListBox = new TListBox(this, ID_LISTBOX, 20, 20, 340, 100);
ListBox->EnableTransfer();

Transferring the data

In most cases, transferring data to or from a window is automatic, but you can also
explicitly transfer data at any time.

Transferring data to a window

Transfer to a window happens automatically when you construct a window object. The
constructor calls SetupWindow to create an interface element to represent the window
object; it then calls TransferData to load any data from the transfer buffer. The window
object’s SetupWindow calls SetupWindow for each of its child windows as well, so each of
the child windows has a chance to transfer its data. Because the parent window sets up
its child windows in the order it constructed them, the data in the transfer buffer must
appear in that same order.

168 ObjectWindows Programmer’s Guide

Transferring data from a dialog box

When a modal dialog box receives a command message with a control ID of IDOK, it
automatically transfers data from the controls into the transfer buffer. Usually this
message indicates that the user chose OK to close the dialog box, so the dialog box
automatically updates its transfer buffer. Then, if you execute the dialog box again, it
transfers from the transfer buffer to the controls.

Transferring data from a window

You can explicitly transfer data in either direction at any time. For example, you might
want to transfer data out of controls in a window or modeless dialog box. Or you might
want to reset the state of the controls using the data in the transfer buffer in response to
the user clicking a Reset or Revert button.

Use the TransferData member function in either case, passing the tdSetData enumeration
to transfer from the transfer buffer to the controls or tdGetData to transfer from the
controls to the transfer buffer. For example, you might want to call TransferData in the
CloseWindow member function of a window object:

void

TMyWindow: : CloseWindow ()

{
TransferData (tdGetData);
TWindow: :CloseWindow() ;

}

Supporting transfer for customized controls

You might want to modify the way a particular control transfers its data, or to include a
new control you define in the transfer mechanism. In either case, all you need to do is to
write a Transfer member function for your control object. See the following table to
interpret the meaning of the transfer flag parameter.

Table 11.20 Transfer flag parameters

tdGetData Copy data from the control to the location specified by the supplied pointer.
Return the number of bytes transferred.

tdSetData Copy the data from the transfer buffer at the supplied pointer to the control.
Return the number of bytes transferred.

tdSizeData Return the number of bytes that would be transferred.

Chapter 11, Control objects 169

170 ObjectWindows Programmer’s Guide

Chapter

Gadget and gadget window objects

This chapter discusses the use of gadgets and gadget windows. In function, gadgets are
similar to controls, in that they are used to gather input from or convey information to
the user. But gadgets are implemented differently from controls. Unlike most other
interface elements, gadgets are not windows: gadgets don’t have window handles, they
don’t receive events and messages, and they aren’t based on TWindow.

Instead, gadgets must be contained in a gadget window that controls the presentation of
the gadget, all message processing, and so on. The gadget receives its commands and
direction from the gadget window.

This chapter discusses the various kinds of gadgets implemented in ObjectWindows. It
then describes the different kinds of gadget windows available for use with the gadgets.

Gadgets

This section discusses a number of gadgets. It begins with a discussion of TGadget, the
base class for ObjectWindows gadgets. It then discusses the other gadget classes,
TSeparatorGadget, TBitmapGadget, TControlGadget, TTextGadget, and TButtonGadget.

Class TGadget

All gadgets are based on the TGadget class. The TGadget class contains the basic
functionality required by all gadgets, including controlling the gadget’s borders and
border style, setting the size of the gadget, enabling and disabling the gadget, and so on.

Constructing and destroying TGadget
Here is the TGadget constructor:

TGadget (int id = 0, TBorderStyle style = None);

Chapter 12, Gadget and gadget window objects 171

where:

¢ idis an arbitrary value as the ID number for the gadget. You can use the ID to identify
a particular gadget in a gadget window. Other uses for the gadget ID are discussed in
the next section.

e style is an enum TBorderStyle. There are five possible values for style:
¢ None makes the gadget with no border style; that is, it has no visible borders.

* Plain makes the gadget borders visible as lines, much like the border of a window
frame.

¢ Raised makes the gadget look as if it is raised up from the gadget window.
¢ Recessed makes the gadget look as if it is recessed into the gadget window.
® Embossed makes the gadget border look as if it has an embossed ridge as a border.

The TGadget destructor is declared virtual. The only thing it does is to remove the
gadget from its gadget window if that window is still valid.

Identifying a gadget

You can identify a gadget by using the GetId function to access its identifier. GetId takes
no parameters and returns an int that is the gadget identifier. The identifier comes from
the value passed in as the first parameter of the TGadget constructor.

There are a number of uses for the gadget identifier:

* You can use the identifier to identify a particular gadget. If you have a large number
of gadgets in a gadget window, the easiest way to determine which gadget is which
is to use the gadget identifier.

* You can set the identifier to the desired event identifier when the gadget is used to
generate a command. For example, a button gadget used to open a file usually has
the identifier CM_FILEOPEN.

* You can set the identifier to a string identifier if you want display a text string in a
message bar or status bar when the gadget is pressed. For example, suppose you
have a string identifier named IDS_MYSTRING that describes your gadget. You can
set the gadget identifier to IDS_MYSTRING. Then, assuming your window has a
message or status bar and you’ve turned menu tracking on, the string
IDS_MYSTRING is displayed in the message or status bar whenever you press the
gadget IDS_MYSTRING.

The last two techniques are often combined. Suppose you have a command identifier

CM_FILEOPEN for the File Open menu command. You can also give the gadget the

identifier CM_FILEOPEN. Then when you press the gadget, the gadget window posts

the CM_FILEOPEN event. Then if you have a string with the resource identifier

CM_FILEOPEN, that string is displayed in the message or status bar when you press

the gadget. You can see an illustration of this technique in Step 10 of the ObjectWindows
- Tutorial manual.

172 ObjectWindows Programmer’s Guide

Modifying and accessing gadget appearance
You can modify and check the margin width, border width, and border style of a gadget
using the following functions:

void SetBorders (TBorders& borders);
TBorders &GetBorders();

void SetMargins(TMargins& margins);
TMargins &GetMargins();

void SetBorderStyle(TBorderStyle style);
TBorderStyle GetBorderStyle();

The border is the outermost boundary of a gadget. The TBorders structure used with the
SetBorders and GetBorders functions has four data members. These unsigned data
members, Left, Right, Top, and Bottom, contain the width of the respective borders of the
gadget.

The margin is the area between the border of the gadget and the inner rectangle of the
gadget. The TMargins structure used with the SetMargins and GetMargins functions has
four data members. These int data members, Left, Right, Top, and Bottom, contain the
width of the respective margins of the gadget.

The TBorderStyle enum used with the SetBorderStyle and GetBorderStyle functions is the
same one used with the TGadget constructor. The various border style effects are
achieved by painting the sides of the gadget borders and margins differently for each

style.
Bounding the gadget

The gadget’s bounding rectangle is the entire area occupied by a gadget. It is contained
in a TRect structure and is composed of the relative X and Y coordinates of the upper-left
and lower-right corners of the gadget in the gadget window. The gadget window uses
the bounding rectangle of the gadget to place the gadget. The gadget’s bounding
rectangle is also important in determining when the user has clicked the gadget.

To find and set the bounding rectangle of a gadget, use the following functions:

TRect &GetBounds();
virtual void SetBounds(TRect& rect);

Note that SetBounds is declared virtual. The default SetBounds updates only the
bounding rectangle data. A derived class can override SetBounds to monitor changes
and update the gadget’s internal state.

Shrink wrapping a gadget

You can use the SetShrinkWrap function to specify whether you want the gadget
window to “shrink wrap” a gadget. When shrink wrapping is on for an axis, the overall
size required for the gadget is calculated automatically based on the border size, margin
size, and inner rectangle. This saves you from having to calculate the bounds size of the
gadget manually.

You can turn shrink wrapping on and off independently for the width and height of the
gadget:

void SetShrinkWrap(bool shrinkWrapWidth, bool shrinkWrapHeight);

Chapter 12, Gadget and gadget window objects 173

where:

e shrinkWrapWidth turns horizontal shrink wrapping on or off, depending on whether
true or false is passed in.

* shrinkWrapHeight turns vertical shrink wrapping on or off, depending on whether
true or false is passed in.

Setting gadget size

The gadget’s size is the size of the bounding rectangle of the gadget. The size differs
from the bounding rectangle in that it is independent of the position of the gadget. Thus,
you can adjust the size of the gadget without changing the location of the gadget.

You can set the desired size of a gadget using the SetSize function:
void SetSize(TSize& size);

You can get use the GetDesiredSize function to get the size the gadget would like to be:
virtual void GetDesiredSize(TSize& size);

Even if you've set the desired size of the gadget with the SetSize function, you should
still call the GetDesiredSize function to get the gadget’s desired size. Gadget windows can
change the desired size of a gadget during the layout process.

Matching gadget colors to system colors
To make your interface consistent with your application user’s system, you should
implement the SysColorChange function. The gadget window calls the SysColorChange

function of each gadget contained in the window when the window receives a
WM_SYSCOLORCHANGE message, which has this syntax:

virtual void SysColorChange();

The default version of SysColorChange does nothing. If you want your gadgets to follow
changes in system colors, you should implement this function. You should make sure to
delete and reallocate any resources that are dependent on system color settings.

TGadget public data members
There are two public data members in TGadget; both are bools:

bool Clip;
bool WideAsPossible;

The value of Clip indicates whether a clipping rectangle should be applied before
painting the gadget.

The value of WideAsPossible indicates whether the gadget should be expanded to fit the
available room in the window. This is useful for such things as a text gadget in a
message bar.

Enabling and disabling a gadget

You can enable and disable a gadget using the following functions:

174 ObjectWindows Programmer’s Guide

virtual void SetEnabled(bool);
bool GetEnabled();

Changing the state of a gadget using the default SetEnabled function causes the gadget’s
bounding rectangle to be invalidated, but not erased. A derived class can override
SetEnabled to modify this behavior.

If your gadget generates a command, you should implement the CommandEnable
function:

virtual void CommandEnable();

The default version of CommandEnable does nothing. A derived class can override this
function to provide command enabling. The gadget should send a
WM_COMMAND_ENABLE message to the gadget window’s parent with a command-
enabler object representing the gadget.

For example, here’s how the CommandEnable function might be implemented:

void
TMyGadget : : CommandEnable ()
{
Window->Parent->HandleMessage (WM_COMMAND_ENABLE,
0,
(LPARAM) &TMyGadgetEnabler (*Window->Parent, this));
}

Deriving from TGadget

TGadget provides a number of protected access functions that you can use when
deriving a gadget class from TGadget.

Initializing and cleaning up
TGadget provides a couple virtual functions that give a gadget a chance to initialize or
clean up:

virtual void Inserted();
virtual void Removed();

Inserted is called after inserting a gadget into a gadget window. Removed is called before
removing the gadget from its gadget window. The default versions of these function do
nothing.

Painting the gadget
The TGadget class provides two different paint functions: PaintBorder and Paint.

The PaintBorder function paints the border of the gadget. This virtual function takes a
single parameter, a TDC &, and returns void. PaintBorder implements the standard
border styles. If you want to create a new border style, you need to override this
function and provide the functionality for the new style. If you want to continue to
provide the standard border styles, you should also call the TGadget version of this
function. PaintBorder is called by the Paint function.

Chapter 12, Gadget and gadget window objects 175

The Paint function is similar to the TWindow function Paint. This function takes a single
parameter, a TDC &, and returns void. Paint is declared virtual. TGadget's PaintGadgets
function calls each gadget’s Paint function when painting the gadget window. The
default Paint function only calls the PaintBorder function. To paint the inner rectangle of
the gadget’s bounding rectangle, you should override this function to provide the
necessary functionality.

If you're painting the gadget yourself in the Paint function, you often need to find the
area inside the borders and margins of the gadget. This area is called the inner rectangle.
You can find the inner rectangle using the GetInnerRect function:

void GetInnerRect (TRect& rect);

GetInnerRect places the coordinates of the inner rectangle into the TRect reference passed
into it.

Invalidating and updating the gadget
Just like a window, a gadget can be invalidated. TGadget provides two functions to
invalidate the gadget:

void Invalidate(bool erase = true); .
void InvalidateRect (const TRect& rect, bool erase = true);

These functions are similar to the TWindow functions InvalidateRect and Invalidate.
InvalidateRect looks and functions much like its Windows API version, except that it
omits its HWND parameters. Invalidate invalidates the entire bounding rectangle of the
gadget. Invalidate takes a single parameter, a bool indicating whether the invalid area
should be erased when it’s updated. By default, this parameter is true. So to erase the
entire area of your gadget, you need only call Invalidate, either specifying true or nothing
at all for its parameter.

A related function is the Update function, which attempts to force an immediate update
of the gadget. It is similar to the Windows API UpdateWindow function.

void Update();

Mouse events in a gadget

You can track mouse events that happen inside and outside of a gadget. This happens
through a number of “pseudo-event handlers” in the TGadget class. These functions
look much like standard ObjectWindows event-handling functions, except that the
names of the functions are not prefixed with Ev.

Gadgets don’t have response tables like other ObjectWindows classes. This is because a
gadget is not actually a window. All of a gadget’s communication with the outside is
handled through the gadget window. When a mouse event takes place in the gadget
window, the window tries to determine which gadget is affected by the event. To find
out if an event took place inside a particular gadget, you can call the PtIn function:

virtual bool PtIn(TPoint& point);

The default behavior for this function is to return true if point is within the gadget’s
bounding rectangle. You could override this function if you were designing an oddly
shaped gadget.

176 ObjectWindows Programmer’s Guide

When the mouse enters the bounding rectangle of a gadget, the gadget window calls the
function MouseEnter. This function looks like this:

virtual void MouseEnter (uint modKeys, TPoint& point);

modKeys contains virtual key information identical to that passed-in in the standard
ObjectWindows EvMouseMove function. This indicates whether various virtual keys are
pressed. This parameter can be any combination of the following values:
MK_CONTROL, MK_LBUTTON, MK_MBUTTON, MK_RBUTTON, or MK_SHIFT.
See the ObjectWindows Reference Guide for a full explanation of these flags. point tells the
gadget where the mouse entered the gadget.

Once the gadget window calls the gadget’s MouseEnter function to inform the gadget
that the mouse has entered the gadget’s area, the gadget captures mouse movements by
calling the gadget window’s GadgetSetCapture to guarantee that the gadget’s MouseLeave
function is called.

Once the mouse leaves the gadget bounds, the gadget window calls MouseLeave. This
function looks like this:

virtual void MouseLeave (uint modKeys, TPoint& point);

There are also a couple of functions to detect left mouse button clicks, LButtonDown and
LButtonUp. The default behavior for LButtonDown is to capture the mouse if the bool
flag TrackMouse is set. The default behavior for LButtonlp is to release the mouse if the
bool flag TrackMouse is set. By default TrackMouse is not set.

virtual void LButtonDown(uint modKeys, TPointé& point);
virtual void LButtonUp(uint modKeys, TPoint& point);

When the mouse is moved inside the bounding rectangle of a gadget while mouse
movements are being captured by the gadget window, the window calls the gadget’s
MouseMove function. This function looks like this:

virtual void MouseMove (uint modKeys, TPoint& point);

Like with MouseEnter, modKeys contains virtual key information. point tells the gadget
where the mouse stopped moving.

ObjectWindows gadget classes

ObjectWindows provides a number of classes derived from TGadget. These gadgets
provide versatile and easy-to-use decorations and new ways to communicate with the
user of your application. The gadget classes included in ObjectWindows are:

TSeparatorGadget
TTextGadget
TButtonGadget
TControlGadget
TBitmapGadget

These gadgets are discussed in the following sections.

Chapter 12, Gadget and gadget window objects 177

Class TSeparatorGadget

TSeparatorGadget is a very simple gadget. Its only function is to take up space in a gadget
window. You can use it when laying other gadgets out in a window to provide a margin
of space between gadgets that would otherwise be placed border-to-border in the
window. ‘

The TSeparatorGadget constructor looks like this:
TSeparatorGadget (int size = 6);

The separator disables itself and turns off shrink wrapping. The size parameter is used
for both the width and the height of the gadget. This lets you use the separator gadget
for both vertical and horizontal spacing.

- Class TTextGadget

TTextGadget is used to display text information in a gadget window. You can specify the
number of characters you want to be able to display in the gadget. You can also specify
how the text should be aligned in the text gadget.

Constructing and destroying TTextGadget
Here is the constructor for TTextGadget:

TTextGadget (int id = 0,
TBorderStyle style = Recessed,
TAlign alignment = Left,
uint numChars = 10,
const char* text = 0);

where:
id is the gadget identifier.
* styleis the gadget border style.

¢ glign specifies how text should be aligned in the gadget. There are three possible
values for the enum TAlign: Left, Center, and Right.

¢ numChars specifies the number of characters to be displayed in the gadget. This
parameter determines the width of the gadget. The gadget calculates the required
gadget width by multiplying the number of characters by the maximum character
width of the current font. The height of the gadget is based on the maximum
character height of the current font, plus space for the margin and border.

* textis a default message to be displayed in the gadget.
~TTextGadget automatically deletes the storage for the gadget’s text string.

Accessing the gadget text
You can get and set the text in the gadget using the GetText and SetText functions.

GetText takes no parameters and returns a const char *. You shouldn’t attempt to
modify the gadget text through the use of the returned pointer.

178 ObjectWindows Programmer’s Guide

The SetText function takes a const char * and returns void. The gadget makes a copy of
the text and stores it internally.

Class TBitmapGadget

TBitmapGadget is a simple gadget that can display an array of bitmap images, one at a
time. You should store the bitmaps as an array. To do this, the bitmaps should be drawn
side by side in a single bitmap resource. The bitmaps should each be the same width.

Constructing and destroying TBitmapGadget
Here is the constructor for TBitmapGadget:
TBitmapGadget (TResId bmpResId,
int id,
TBorderStyle style,
int numImages,
int startImage);

where:

® bmResld is the resource identifier for the bitmap resource.
¢ id is the gadget identifier.

¢ style is the gadget border style.

* numlmages is the total number of images contained in the bitmap. The gadget figures
the width of each single bitmap in the resource by dividing the width of the resource
bitmap by numlmages.

For example, suppose you pass a bitmap resource to the TBitmapGadget constructor
that is 400 pixels wide by 200 pixels high, and you specify numlmages as 4. The
constructor would divide the bitmap resource into four separate bitmaps, each one
100 pixels wide by 200 pixels high.

¢ startImage specifies which bitmap in the array should be initially displayed in the
gadget.

~TBitmapGadget deletes the storage for the bitmap images.

Selecting a new image
You can change the image being displayed in the gadget with the SelectImage function:

int SelectImage(int imageNum, bool immediate);

The imageNum parameter is the array index of the image you want displayed in the
gadget. Specifying true for immediate causes the gadget to update the display
immediately. Otherwise, the area is invalidated and updated when the next
WM_PAINT message is received.

Setting the system colors
TBitmapGadget implements the SysColorChange function so that the bitmaps track the
system colors. It deletes the bitmap array, calls the MapUIColors function on the bitmap

Chapter 12, Gadget and gadget window objects 179

resource, then re-creates the array. For more information on the MapUIColors function,
see page 237. :

Class TButtonGadget

Button gadgets are the only type of gadget included in ObjectWindows that the user
interacts with directly. Control gadgets, which are discussed in the next section, also
provide a gadget that receives input from the user, but it does so through a control class.
The gadget in that case only acts as an intermediary between the control and gadget
window.

There are three normal button gadget states: up, down, and indeterminate. In addition
the button can be highlighted when pressed in all three states.

There are two basic type of button gadgets, command gadgets and setting gadgets.
Setting gadgets can be exclusive (like a radio button) or non-exclusive (like a check box).
Commands can only be in the “up” state. Settings can be in all three states.

A button gadget is pressed when the left mouse button is pressed while the cursor
position is inside the gadget’s bounding rectangle. The gadget is highlighted when
pressed.

Once the gadget has been pressed, it then captures the mouse’s movements. When the
mouse moves outside of the gadget’s bounding rectangle without the left mouse button
being released, highlighting is canceled but mouse movements are still captured by the
gadget. The gadget is highlighted again when the mouse comes back into the gadget’s
bounding rectangle without the left mouse button being released.

When the left mouse button is released, mouse movements are no longer captured. If
the cursor position is inside the bounding rectangle when the button is released, the
gadget identifier is posted as a command message by the gadget window.

Constructing and destroying TButtonGadget
Here is the TButtonGadget constructor:
TButtonGadget (TResId bmpResId,

int id,

TType type = Command,

bool enabled = false,

TState state = Up,

bool repeat = false);

where:

¢ bmpResld is the resource identifier for the bitmap to be displayed in the button. The
size of the bitmap determines the size of the gadget, because shrink wrapping is
turned on.

¢ id is the gadget identifier. This is also the command that is posted when the gadget is
pressed.

e type specifies the type of the gadget. The TType enum has three possible values:
o Command specifies that the gadget is a command.

180 ObjectWindows Programmer’s Guide

* Exclusive specifies that the gadget is an exclusive setting button. Exclusive button
gadgets that are adjacent to each other work together. You can set up exclusive
groups by inserting other gadgets, such as separator gadgets or text gadgets, on
either side of the group.

* NonExclusive specifies that the gadget is a nonexclusive setting button.

* enabled specifies whether the button gadget is enabled or not when it is first created. If
the corresponding command is enabled when the gadget is created, the button is
automatically enabled.

e state is the default state of the button gadget. The enum TState can have three values:
Up, Down, or Indeterminate.

¢ repeat indicates whether the button repeats when held down. If repeat is true, the
button repeats when it is clicked and held.

The ~TButtonGadget function deletes the bitmap resources and, if the resource
information is contained in a string, deletes the storage for the string.

Accessing button gadget information

There are a number of functions you can use to access a button gadget. These functions
let you set the state of the gadget to any valid TState value, get the state of the button
gadget, and get the button gadget type.

You can set the button gadget’s state with the SetButtonState function:
void SetButtonState(TState);

You can find the button gadget’s current state using the GetButtonState function:
TState GetButtonState();

You can find out what type of button a gadget is using the GetButtonType function:
TType GetButtonType();

Setting button gadget style

You can modify the appearance of a button gadget using the following functions:
* You can turn corner notching on and off using the SetNotchCorners function:
void SetNotchCorners(bool notchCorners=true);

¢ You can turn antialiasing of the button bevels on and off using the SetAntialiasEdges
function:

void SetAntialiasEdges(bool anti=true);

* You can change the style of the button shadow using the SetShadowStyle function.
There are two options for the shadow style, using the enum TShadowStyle,
SingleShadow and DoubleShadow:

void SetShadowStyle(TShadowStyle style=DoubleShadow) ;

Chapter 12, Gadget and gadget window objects 181

Command enabling
TButtonGadget overrides the TGadget function CommandEnable. It is implemented to
initiate a WM_COMMAND_ENABLE message for the gadget.

Here is the signature of the TButtonGadget::CommandEnable function:

void CommandEnable();

Setting the system colors

TButtonGadget implements the SysColorChange function so that the gadget’s bitmaps
track the system colors. It rebuilds the gadget using the system colors. If the system
colors have changed, these changes are reflected in the new button gadget. This is not set

up to automatically track the system colors; that is, it is not necessarily call in response to
a WM_SYSCOLORCHANGE event.

Class TControlGadget

The TControlGadget is a fairly simple class that serves as an interface between a regular
Windows control (such as a button, edit box, list box, and so on) and a gadget window.
This lets you use a standard Windows control in a gadget window, like a control bar,
status bar, and so on.

Constructing and destroying TControlGadget

Here’s the constructor for TControlGadget:
TControlGadget (TWindow& control, TBorderStyle style = None);
where:

e control is a reference to an ObjectWindows window object. This object should be a
valid constructed control object.

e styleis the gadget border style:

The ~TControlGadget function destroys the control interface element, then deletes the
storage for the control object.

Gadget windows

Gadget windows are based on the class TGadgetWindow, which is derived from
TWindow. Gadget windows are designed to hold a number of gadgets, lay them out, and
display them in another window.

Gadget window provide a great deal of the functionality of the gadgets they contain.
Because gadgets are not actually windows, they can’t post or receive events, or directly
interact with windows, or call Windows function for themselves. Anything that a
gadget needs to be done must be done through the gadget window.

A gadget has little or no control over where it is laid out in the gadget window. The
gadget window is responsible for placing and laying out all the gadgets it contains.
Gadgets are generally laid in a line, either vertically or horizontally.

182 ObjectWindows Programmer’s Guide

Gadget windows generally do not stand on their own, but instead are usually contained
in another window. The most common parent window for a gadget window is a
decorated frame window, such as TDecoratedFrame or TDecoratedMDIFrame, although
the class TToolBox usually uses a TFloatingFrame.

Constructing and destroying TGadgetWindow
Here is the constructor for TGadgetWindow:

TGadgetWindow (TWindow* parent = 0,
TTileDirection direction = Horizontal,
TFont* font = new TGadgetWindowFont,
TModule* module = 0);

where:
* parent is a pointer to the parent window object.

* direction is an enum TTileDirection. There are two possible values for direction:
Horizontal or Vertical.

font is a pointer to a TFont object. This contains the font for the gadget window. By
default, this is set to TGadgetWindowFont, which is a variable-width sans-serif font,
usually Helvetica.

* module is passed as the TModule parameter for the TWindow base constructor. This
parameter defaults to 0.

The ~TGadgetWindow function deletes each of the gadgets contained in the gadget
window. It then deletes the font object.

Creating a gadget window

TGadgetWindow overrides the default TWindow member function Create. The
TGadgetWindow version of this function chooses the initial size based on a number of
criteria:

Whether shrink wrapping was requested by any of the gadgets in the window
The size of the gadgets contained in the window

The direction of tiling in the gadget window

Whether the gadget window has a border, and the size of that border

The Create function determines the proper size of the window based on these factors,
sets the window size attributes, then calls the base TWindow::Create to actually create the
window interface element.

Inserting a gadget into a gadget window
For a gadget window to be useful, it needs to contain some gadgets. To place a gadget
into the gadget window, use the Insert function:

virtual void Insert(TGadget& gadget,
TPlacement placement = After,
TGadget* sibling = 0);

Chapter 12, Gadget and gadget window objects 183

where:
* guadget is a reference to the gadget to be inserted into the gadget window.

* placement indicates where the gadget should be inserted. The enum TPlacement can
have two values, Before and After. If a sibling gadget is specified by the sibling
. parameter, the gadget is inserted Before or After the sibling, depending on the value of
placement. If sibling is 0, the gadget is placed at the beginning of the gadgets in the
window if placement is Before, and at the end of the gadgets if placement is After.
¢ sibling is a pointer to a sibling gadget.

If the gadget window has already been created, you need to call LayoutSession after
calling Insert. Any gadget you insert will not appear in the window until the window
has been laid out.

Removing a gadget from a gadget window
To remove a gadget from your gadget window, use the Remove function:

virtual TGadget* Remove(TGadget& gadget);
where gadget is a reference to the gadget you want to remove from the window.

This function removes gadget from the gadget window. The gadget is returned as a
TGadget *. The gadget object is not deleted. Remove returns 0 if the gadget is not in the
window.

As with the Insert function, if the gadget window has already been created, you need to
call LayoutSession after calling Remove. Any gadget you remove will not disappear from
the window until the window has been laid out.

Setting window margins and layout direction
You can change the margins and the layout direction either before the window is
created or afterwards. To do this, use the SetMargins and SetDirection functions:

void SetMargins(TMargins& margins);
virtual void SetDirection(TTileDirection direction);

Both of these functions set the appropriate data members, then call the function
LayoutSession, which is described in the next section.

You can find out in which direction the gadgets are laid out by calling the GetDzrectlon
function:

TTileDirection GetDirection() const;

Laying out the gadgets
To lay out a gadget window, call the LayoutSession function.

virtual void LayoutSession();

The default behavior of the LayoutSession function is to check to see if the window
interface element is already created. If not, the function returns without taking any
further action; the window is laid out automatically when the window element is

184 ObjectWindows Programmer’s Guide

created. But if the window element has already been created, LayoutSession tiles the
gadgets and then invalidates the modified area of the gadget window.

A layout session is typically initiated by a change in margins, inserting or removing
gadgets, or a gadget or gadget window changing size.
The actual work of tiling the gadgets is left to the function TileGadgets:

virtual TRect TileGadgets();

TileGadgets determines the space needed for each gadget and lays each gadget out in
turn. It returns a TRect containing the area of the gadget window that was modified by
laying out the gadgets.

TileGadgets calls the function PositionGadget. This lets derived classes adjust the spacing
between gadgets to help in implementing a custom layout scheme.

virtual void PositionGadget (TGadget* previous, TGadget* next, TPointé& point);

This function takes the gadgets pointed to by previous and next, figures the required
spacing between the gadgets, then fills in point. If you're tiling horizontally, then the
relevant measure is contained in point.x. If you're tiling vertically, then the relevant
measure is contained in point.y.

Notifying the window when a gadget changes size
When a gadget changes size, it should call the GadgetChangedSize function for its gadget
window. Here’s the signature for this function:

void GadgetChangedSize (TGadget& gadget);

gadget is a reference to the gadget that changed size. The default version of this function
simply initiates a layout session.

Shrink wrapping a gadget window

You can specify whether you want the gadget window to “shrink wrap” a gadget using
the SetShrinkWrap function. Shrink wrapping for a gadget window has a slightly
different meaning than for a gadget. When a gadget window is shrink wrapped for an
axis, the axis’ size is calculated automatically based on the desired sizes of the gadgets
laid out on that axis.

You can turn shrink wrapping on and off independently for the width and height of the
gadget window:

void SetShrinkWrap(bool shrinkWrapWidth, bool shrinkWrapHeight);
where:

e shrinkWrapWidth turns horizontal shrink wrapping on or off, depending on whether
true or false is passed in.

e shrinkWrapHeight turns vertical shrink wrapping on or off, depending on whether
true or false is passed in.

Chapter 12, Gadget and gadget window objects 185

Accessing window font
“You can find out the current font and font size using the GetFont and GetFontHeight
functions:

TFont& GetFont();
uint GetFontHeight () const;

Capturing the mouse for a gadget

A gadget is always notified when the left mouse button is pressed down within its
bounding rectangle. After the button is pressed, you need to capture the mouse if you
want to send notification of mouse movements. You can do this using the
GadgetSetCapture and GadgetReleaseCapture functions:

bool GadgetSetCapture (TGadgeté& gadget);
void GadgetReleaseCapture(TGadget& gadget);

The gadget parameter for both functions indicates for which gadget the window should
set or release the capture. The bool returned by GadgetSetCapture indicates whether the
capture was successful.

These functions are usually called by a gadget in the window through the gadget’s
Window pointer to its gadget window.

Setting the hint mode

The hint mode of a gadget dictates when hints about the gadget are displayed by the
gadget window’s parent. You can set the hint mode for a gadget using the SetHintMode
function:

void SetHintMode (THintMode hintMode);

The enum THintMode has three possible values:
Table 12.1 Hint mode flags

PressHints Hints are displayed when the gadget is pressed until the button is released.
EnterHints Hints are displayed when the mouse passes over the gadget; that is, when the mouse
enters the gadget.

You can find the current hint mode using the GetHintMode function:
THintMode GetHintMode();

Another function, the SetHintCommand function, determines when a hint is displayed:
void SetHintCommand(int id);

This function is usually called by a gadget through the gadget’s Window pointer to its
gadget window, but the gadget window could also call it. Essentially, SetHintCommand
simulates a menu choice, making pressing the gadget the equivalent of selecting a menu
choice.

186 ObjectWindows Programmer’s Guide

For SetHintCommand to work properly with the standard ObjectWindows classes, a
number of things must be in place:

¢ The decorated frame window parent of the gadget window must have a message or
status bar.

¢ Hints must be on in the frame window.

* There must be a string resource with the same identifier as the gadget; that is, if the
gadget identifier is CM_MYGADGET, you must also have a string resource defined
as CM_MYGADGET.

Idle action processing

Gadget windows have default idle action processing. The IdleAction function attempts
to enable each gadget contained in the window by calling each gadget’s CommandEnable
function. The function then returns false.

bool IdleAction(long idleCount);

Searching through the gadgets
Use one of the following functions to search through the gadgets contained in a gadget
window:

TGadget* FirstGadget () const;

TGadget* NextGadget (TGadget& gadget) const;
TGadget* GadgetFromPoint (TPoint& point) const;
TGadget* GadgetWithId(int id) const;

* FirstGadget returns a pointer to the first gadget in the window’s gadget list.

* NextGadget returns a pointer to the next gadget in the window’s gadget list. If the
current gadget is the last gadget in the window, NextGadget returns 0.

¢ GadgetFromPoint returns a pointer to the gadget that the point point is in. If point is not
in a gadget, GadgetFromPoint returns 0.

* GadgetWithld returns a pointer to the gadget with the gadget identifier id. If no gadget
in the window has that gadget identifier, GadgetWithld returns 0.

Deriving from TGadgetWindow

You can derive from TGadgetWindow to make your own specialized gadget window.
TGadgetWindow provides a number of protected access functions that you can use when
deriving a gadget class from TGadgetWindow.

Painting a gadget window
Just as with regular windows, TGadgetWindow implements the Paint function:

void Paint (TDC& dc, bool erase, TRect& rect);

Chapter 12, Gadget and gadget window objects 187

This implementation of the Paint function selects the window’s font into the device
context and calls the function PaintGadgets:

virtual void PaintGadgets(TDC& dc, bool erase, TRect& rect);

PaintGadgets iterates through the gadgets in the window and asks each one to draw
itself. Override PaintGadgets to implement a custom look for your window, such as
separator lines, a raised look, and so on.

Size and inner rectangle

Use the GetDesiredSize and GetInnerRect functions to find the overall desired size (that is,
the size needed to accommodate the borders, margins, and the widest or highest gadget)
and the size and location of the window’s inner rectangle.

virtual void GetDesiredSize(TSize& size);

If shrink wrapping was requested for the window, GetDesiredSize calculates the size the
window needs to be to accommodate the borders, margins, and the widest or highest
gadget. If shrink wrapping was not requested, GetDesiredSize uses the current width and
height. The results are then placed into size.

virtual void GetInnerRect (TRect& rect);

GetInnerRect calculates the area inside the borders and margins of the window. The
results are then placed into rect.

You can override GetDesiredSize and GetInnerRect to leave extra room for a custom look
for your window. If you override either one of these functions, you probably also need
to override the other.

Layout units
You can use three different units of measurement in a gadget window:

* Pixels, which are based on a single screen pixel

* Layout units, which are logical units defined by dividing the window font “em” into
8 vertical and 8 horizontal segments.

¢ Border units are based on the thickness of a window frame. This is usually equivalent
to one pixel, but it could be greater at higher screen resolutions.

It is usually better to use layout units; because they are based on the font size, you don't
have to worry about scaling your measures when you change window size or system
metrics.

If you need to convert layout units to pixels, use the LayoutUnitsToPixels function:
int LayoutUnitsToPixels(int units);

where units is the layout unit measure you want to convert to pixels.
LayoutUnitsToPixels returns the pixel equivalent of units.

You can also convert a TMargins object to actual pixel measurements using the
GetMargins function:

188 ObjectWindows Programmer’s Guide

void GetMargins(TMargins& margins,
int& left,
int& right,
int& top,
int& bottom);

where:

¢ margins is the object containing the measurements you want to convert. The
measurements contained in margins can be in pixels, layout units, or border units.

* left, right, top, and bottom are the results of the conversion are placed.

Message response functions
TGadgetWindow catches the following events:

WM_CTLCOLOR
WM_LBUTTONDOWN
WM_LBUTTONUP
WM_MOUSEMOVE
WM_SIZE
WM_SYSCOLORCHANGE

It also implements the corresponding event-handling functions.

ObjectWindows gadget window classes

ObjectWindows provides a number of classes derived from TGadgetWindow. These
windows provide a number of ways to display and lay out gadgets. The gadget window
classes included in ObjectWindows are:

TControlBar
TMessageBar
TStatusBar
TToolBox

These classes are discussed in the following sections.

Class TControlBar

The class TControlBar implements a control bar similar to the “tool bar” or “control bar”
found along the top of the window of many popular applications. You can place any
type of gadget in a control bar.

Here’s the constructor for TControlBar:

TControlBar (TWindow* parent = 0,
TTileDirection direction = Horizontal,
TFont* font = new TGadgetWindowFont,
TModule* module = 0);

Chapter 12, Gadget and gadget window objects 189

where:
® parent is a pointer to the control bar’s parent window.

¢ direction is an enum TTileDirection. There are two possible values for direction:
Horizontal or Vertical.

* fontisa pointer to a TFont object. This contains the font for the gadget window. By
default, this is set to TGadgetWindowFont, which is a variable-width sans—senf font,
usually Helvetica.

* module is passed as the TModule parameter for the TWindow base constructor. This
parameter defaults to 0.

Class TMessageBar

The TMessageBar class implements a message bar with no border and one text gadget as
wide as the window. It positions itself horizontally across the bottom of its parent
window.

Constructing and destroying TMessageBar
Here’s the constructor for TMessageBar:

TMessageBar (TWindow* parent = 0,
TFont* font = new TGadgetWindowFont,
TModule* module = 0);

where:
* parent is a pointer to the control bar’s parent window.

e font is a pointer to a TFont object. This contains the font for the gadget window. By
default, this is set to TGadget WindowFont, which is a variable-width sans-serif font,
usually Helvetica.

* module is passed as the TModule parameter for the TWindow base constructor. This
parameter defaults to 0.

The ~TMessageBar function deletes the object’s text storage.

Setting message bar text
Use the SetText function to set the text for the message bar text gadget:

void SetText (const char* text);

This function causes the string text to be displayed in the message bar.

Setting the hint text

Use the SetHintText function to set the menu or command item hint text to be dlsplayed
in a raised field over the message bar:

virtual void SetHintText (const char* text);

If you pass text as 0, the hint text is cleared.

190 ObjectWindows Programmer’s Guide

Class TStatusBar

TStatusBar is similar to TMessageBar. The difference is that status bars have more options
than a plain message bar, such as multiple text gadgets and reserved space for keyboard
mode indicators such as Caps Lock, Insert or Overwrite, and so on.

Constructing and destroying TStatusBar
Here’s the constructor for TStatusBar:

TStatusBar (TWindow* parent = 0,
TGadget : : TBorderStyle borderStyle = TGadget::Recessed,
uint modeIndicators = 0,
TFont* font = new TGadgetWindowFont,
TModule* module = 0);

where:
* parent is a pointer to the parent window object.
¢ styleis an enum TBorderStyle.

* modelndicators indicates which keyboard modes can be displayed in the status bar. A
defined enum type called TModelndicator provides the following valid values for this
parameter:

ExtendSelection
CapsLock
NumLock
ScrollLock
Overtype

® RecordingMacro

These values can be ORed together to indicate multiple keyboard mode indicators.
* font is a pointer to a TFont object that contains the font for the gadget window.

* module is passed as the TModule parameter for the TWindow base constructor. This
parameter defaults to 0.

Inserting gadgets into a status bar
TStatusBar overrides the default Insert function. By default, the TStatusBar version adds
the new gadget after the existing text gadgets but before the mode indicator gadgets.

You can place a gadget next to an existing gadget in the status bar by passing a pointer
to the existing gadget in the Insert function as the new gadget’s sibling. You can’t insert a
gadget beyond the mode indicators, however.

Displaying mode indicators

For a particular mode indicator to appear on the status bar, you must have specified the
mode when the status bar was constructed. But once the mode indicator is on the status
bar, it is up to you to make any changes in the indicator. TStatusBar provides a number
of functions to modify the mode indicators.

Chapter 12, Gadget and gadget window objects 191

You can change the status of a mode indicator to any valid arbitrary state with the
SetModelndicator function:

void SetModeIndicator (TModeIndicator indicator, bool state);
where:

* indicator is the mode indicator you want to set. This can be any value from the enum
TModelndicator used in the constructor.

* state is the state to which you want to set the mode indicator.
You can also toggle a mode indicator with the ToggleModelndicator function:
void ToggleModeIndicator (TModeIndicator indicator);

where indicator is the mode indicator you want to toggle. This can be any value from the
enum TModelndicator used in the constructor.

Spacing status bar gadgets
You can vary the spacing between mode indicator gadgets on the status bar using the
SetSpacing function:

void SetSpacing(TSpacing& spacing);

where spacing is a reference to a TSpacing object. TSpacing is a struct defined in the
TStatusBar class. It has two data members, a TMargins::TUnits member named Units and
an int named Value. The TSpacing constructor sets Units to TMargins::LayoutUnits and
Value to 0.

The TSpacing struct lets you specify a unit of measurement and a number of units in a
single object. When you pass this object into the SetSpacing command, the spacing
between mode indicator gadgets is set to Value Units. You need to lay out the status bar
before any changes take effect.

Class TToolBox

TToolBox differs from the other ObjectWindows gadget window classes discussed so far
in that it doesn’t arrange its gadgets in a single line. Instead, it arranges them in a matrix.
The columns of the matrix are all the same width (as wide as the widest gadget) and the
rows of the matrix are all the same height (as high as the highest gadget). The gadgets
are arranged so that the borders overlap and are hidden under the tool box’s border.

TToolBox can be created as a client window in a TFloatingFrame to produce a palette-type
tool box. For an example of this, see the PAINT example in the directory EXAMPLES\
OWL\OWLAPPS\PAINT.

Constructing and destroying TToolBox
Here's the constructor for TToolBox:

TToolBox (TWindow* parent,
int numColumns = 2,
int numRows = AS_MANY_AS_NEEDED,

192 ObjectWindows Programmer’s Guide

TTileDirection direction = Horizontal,
TModule* module = 0);

where:

parent is a pointer to the parent window object.
numColumns is the number of columns in the tool box.
numRows is the number of rows in the tool box.

direction is an enum TTileDirection. There are two possible values for direction:
Horizontal or Vertical. If direction is Horizontal, the gadgets are tiled starting at the
upper left corner and moving from left to right, going down one row as each row is
filled. If direction is Vertical, the gadgets are tiled starting at the upper left corner and
moving down, going right one column as each column is filled.

module is passed as the TModule parameter for the TWindow base constructor. This
parameter defaults to 0.

You can specify the constant AS_MANY_AS_NEEDED for either numColumns or
numRows, but not both. When you specify AS_ MANY_AS_NEEDED for either
parameter, the toolbox figures out how many divisions are needed based on the
opposite dimension. For example, if you have 20 gadgets and you requested 4 columns,
you would get 5 rows.

Changing tool box dimensions
You can switch the dimensions of your tool box using the SetDirection function:

virtual void SetDirection(TTileDirection direction);

where direction is an enum TTileDirection. There are two possible values for direction:
Horizontal or Vertical.

If direction is not equal to the current direction for the tool box, the tool box switches its
rows and columns count. For example, suppose you have a tool box that has three
columns and five rows, and is laid out vertically. If you call SetDirection and set direction
to Horizontal, the tool box switches rows and columns, giving it five columns and three
TOWS.

Chapter 12, Gadget and gadget window objects 193

194 ObjectWindows Programmer’s Guide

Printer objects

This chapter describes ObjectWindows classes that help you complete the following
printing tasks:

¢ Creating a printer object

¢ Creating a printout object

¢ Printing window contents

® Printing a document

¢ Choosing and configuring a printer

Two ObjectWindows classes make these tasks easier:

¢ TPrinter encapsulates printer behavior and access to the printer drivers. It brings up a
dialog box that lets the user select the desired printer and set the current settings for
printing.

* TPrintout encapsulates the actual printout. Its relationship to the printer is similar to
TWindow’s relationship to the screen. Drawing on the screen happens in the Paint
member function of the TWindow object, whereas writing to the printer happens in
the PrintPage member function of the TPrintout object. To print something on the

printer, the application passes an instance of TPrintout to an instance of TPrinter’s
Print member function.

Creating a printer object

The easiest way to create a printer object is to declare a TPrinter* within your window
object that other objects in the program can use for their printing needs.

Chapter 13, Printer objects 195

class MyWindow: public TFrameWindow
{

protected:
TPrinter* Printer;

i
To make the printer available, make Printer point to an instance of TPrinter. This can be
done in the constructor:

MyWindow: :MyWindow (TWindow* parent, char *title)
{

Printer = new TPrinter;

}
You should also eliminate the printer object in the destructor:

MyWindow: : ~MyWindow ()
{

delete Printer;

}

Here’s how it’s done in the PRINTING.CPP example from directory OWLAPI\
PRINTING:

class TRulerWin : public TFrameWindow

{

protected:
TPrinter* Printer;
}i

TRulerWin: :TRulerWin (TWindow* parent, const char* title, TModule* module)
: TFrameWindow (parent, title, 0, false, module), TWindow(parent, title, module)

{

Printer = new TPrinter;

}

For most applications, this is sufficient. The application’s main window initializes a
printer object that uses the default printer specified in WIN.INL In some cases, however,
you might have applications that use different printers from different windows
simultaneously. In that case, construct a printer object in the constructors of each of the
appropriate windows, then change the printer device for one or more of the printers. If
the program uses different printers but not at the same time, it’s probably best to use the
same printer object and select different printers as needed.

Although you might be tempted to override the TPrinter constructor to use a printer
other than the system default, the recommended procedure is to always use the default
constructor, then change the device associated with the object (see page 201).

196 ObjectWindows Programmer’s Guide

Creating a printout object

Creating a printout object is similar to writing a Paint member function for a window
object: you use Windows’ graphics functions to generate the image you want on a
device context. The window object’s display context manages interactions with the
screen device; the printout object’s device context insulates you from the printer device
in much the same way. Windows graphics functions are explained in Chapter 14.

To create a printout object,

* Derive a new object type from TPrintout that overrides the PrintPage member
function. In very simple cases, that’s all you need to do. See the ObjectWindows
Reference Guide for a description of the TPrintout class.

¢ If the document has more than one page, you must also override the HasPage
member function. It must return non-zero while there is another page to be printed.
The current page number is passed as a parameter to PrintPage.

The printout object has fields that hold the size of the page and a device context that is
already initialized to render to the printer. The printer object sets those values by calling
the printout object’s SetPrintParams member function. You should use the printout
object’s device context in any calls to Windows graphics functions.

Here is the class TWindowPrintout, derived from TPrintout, from the example program
PRINTING.CPP:

class TWindowPrintout : public TPrintout
{
public:
TWindowPrintout (const char* title, TWindow* window);

void GetDialogInfo(int& minPage, int& maxPage,

int& selFromPage, int& selToPage);
void PrintPage(int page, TRect& rect, unsigned flags);
void SetBanding(bool b) {Banding = b;}
bool HasPage(int pageNumber) {return pageNumber == 1;}

protected:
TWindow* Window;
bool Scale;
b

GetDialogInfo retrieves page-range information from a dialog box if page selection is
possible. Since there is only one page, GetDialogInfo for TWindowPrintout looks like this:

void
TWindowPrintout::GetDialogInfo(int& minPage, int& maxPage,
int& selFromPage, int& selToPage)
{
minPage = 0;
maxPage = 0;
selFromPage = selToPage = 0;

}

Chapter 13, Printer objects 197

PrintPage must be overridden to print the contents of each page, band (if banding is
enabled), or window. PrintPage for TWindowPrintout looks like this:

void
TWindowPrintout::PrintPage(int, TRect& rect, unsigned)
{
// Conditionally scale the DC to the window so the printout
// will resemble the window
int prevMode;
TSize oldVExt, oldWExt;
if (Scale) {
prevMode = DC->SetMapMode (MM_ISOTROPIC) ;
TRect windowSize = Window->GetClientRect () ;
DC->SetViewportExt (PageSize, &ol1dVExt);
DC->SetWindowExt (windowSize.Size (), &oldWEXt);
DC->IntersectClipRect (windowSize) ;
DC->DPtoLP(rect, 2);
}

// Call the window to paint itself
Window->Paint (*DC, false, rect);

// Restore changes made to the DC
if (Scale) {
DC->SetWindowExt (01dWEXE) ;
DC->SetViewportExt (oldVExt) ;
DC->SetMapMode (prevMode) ;
}
}

SetBanding is called with banding enabled:
printout.SetBanding(true);

HasPage is called after every page is printed, and by default returns false, which means
only one page will be printed. This function must be overridden to return true while
pages remain in multipage documents.

Printing window contents

The simplest kind of printout to generate is a copy of a window, because windows don’t
have multiple pages, and window objects already know how to draw themselves on a
device context.

To create a window printout object, construct a window printout object and pass it a
title string and a pointer to the window you want printed:

TiWindowPrintout printout ("Ruler Test", this);

Often, you'll want a window to create a printout of itself in response to a menu
command. Here is the message response member function that responds to the print
command in PRINTING.CPP:

198 ObjectWindows Programmer’s Guide

void
TRulerWin::CmFilePrint () // Execute File:Print command
{
if (Printer) {
TWindowPrintout printout("Ruler Test", this);
printout.SetBanding(true);
Printer->Print (this, printout, true);
}
}

This member function calls the printer object’s Print member function, which passes a
pointer to the parent window and a pointer to the printout object, and specifies whether
or not a printer dialog box should be displayed.

TWindowPrintout prints itself by calling your window object’s Paint member function
(within TWindowPrintout::PrintPage), but with a printer device context instead of a
display context.

Printing a document

Windows sees a printout as a series of pages, so your printout object must turn a
document into a series of page images for Windows to print. Just as you use window
objects to paint images for Windows to display on the screen, you use printout objects to
paint images on the printer.

Your printout object needs to be able to do these things:

® Set print parameters

¢ Calculate the total number of pages
® Draw each page on a device context
¢ Indicate if there are more pages

Setting print parameters

To enable the document to paginate itself, the printer object (derived from class TPrinter)
calls two of the printout object’s member functions: SetPrintParams and then
GetDialogInfo.

The SetPrintParams function initializes page-size and device-context variables in the
printout object. It can also calculate any information needed to produce an efficient
printout of individual pages. For example, SetPrintParams can calculate how many lines
of text in the selected font can fit within the print area (using Windows API
GetTextMetrics). If you override SetPrintParams, be sure to call the inherited member
function, which sets the printout object’s page-size and device-context defaults.

Counting pages

After calling SetPrintParams, the printer object calls GetDialogInfo, which retrieves user
page-range information from the printer dialog box. It can also be used to calculate the
total number of pages based on page-size information calculated by SetPrintParams.

Chapter 13, Printer objects 199

Printing each page

After the printer object has given the document a chance to paginate itself, it calls the
printout object’s PrintPage member function for each page to be printed. The process of
printing out just the part of the document that belongs on the given page is similar to
deciding which portion gets drawn on a scrolling window.

When you write PrintPage member functions, keep these two issues in mind:

* Device independence. Make sure your code doesn’t make assumptions about scale,
aspect ratio, or colors. Those properties can vary between different video and
printing devices, so you should remove any device dependencies from your code.

¢ Device capabilities. Although most video devices support all GDI operations, some
printers do not. For example, many print devices, such as plotters, do not accept
bitmaps at all. Others support only certain operations. When performing complex
output tasks, your code should call the Windows API function GetDeviceCaps, which
returns important information about the capabilities of a given output device.

Indicating further pages

Printout objects have one last duty: to indicate to the printer object whether there are
printable pages beyond a given page. The HasPage member function takes a page
number as a parameter and returns a Boolean value indicating whether further pages
exist. By default, HasPage returns true for the first page only. To print multiple pages,
your printout object needs to override HasPage to return true if the document has more
pages to print and false if the parameter passed is the last page.

Be sure that HasPage returns false at some point. If HasPage always returns true, prmtmg
goes into an endless loop.

Other printout considerations

Printout objects have several other member functions you can override as needed.
BeginPrinting and EndPrinting are called before and after any documents are printed,
respectively. If you need special setup code, you can put it in BeginPrinting and undo it
in EndPrinting.

Printing of pages takes place sequentially. That is, the printer calls PrintPage for each
page in sequence. Before the first call to PrintPage, however, the printer object calls
BeginDocument, passing the numbers of the first and last pages it prints. If your
document needs to prepare to begin printing at a page other than the first, you should
override BeginDocument. The corresponding member function, EndDocument, is called
after the last page prints.

If multiple copies are printed, the multiple BeginDocument / EndDocument pairs can be
called between BeginPrinting and EndPrinting.

200 ObjectWindows Programmer’s Guide

Choosing a different printer

You can associate the printer objects in your applications with any printer device
installed in Windows. By default, TPrinter uses the Windows default printer, as
specified in the [devices] section of the WIN.INI file.

There are two ways to specify an alternate printer: directly (in code) and through a user
dialog box. :

By far the most common way to assign a different printer is to bring up a dialog box that
lets you choose from a list of installed printer devices. TPrinter does this automatically
when you call its Setup member function. Setup displays a dialog box based on
TPrinterDialog.

One of the buttons in the printer dialog box lets the user change the printer’s
configuration. The Setup button brings up a configuration dialog box defined in the
printer’s device driver. Your application has no control over the appearance or function
of the driver’s configuration dialog box.

In some cases, you might want to assign a specific printer device to your printer object,
without user input. TPrinter has a SetPrinter member function that does just that.
SetPrinter takes three strings as parameters: a device name, a driver name, and a port
name.

Chapter 13, Printer objects 201

202‘ ObjectWindows Programmer’s Guide

Graphics objects

This chapter discusses the ObjectWindows encapsulation of the Windows GDIL.
ObjectWindows makes it easier to use GDI graphics objects and functions because it
simplifies how you create and manipulate GDI objects. From simple objects such as
pens and brushes to more complex objects such as fonts and bitmaps, the GDI
encapsulation of the ObjectWindows library provides a simple, consistent model for
graphical programming in Windows.

GDI class organization

There are a number of ObjectWindows classes used to encapsulate GDI functionality.
Most are derived from the TGdiObject class. TGdiObject provides the common
functionality for all ObjectWindows GDI classes.

TGdiObject is the abstract base class for ObjectWindows GDI objects. It provides a base
destructor, an HGDIOBJ conversion operator, and the base GetObject function. It also
provides orphan control for true GDI objects (that is, objects derived from TGdiObject;
other GDI objects, such as TRegion, TIcon, and TDib, which are derived from TGdiBase,
are known as pseudo-GDI objects).

The other classes in the ObjectWindows GDI encapsulation are:

* TDC s the root class for encapsulating ObjectWindows GDI device contexts. You can
create a TDC object directly or—for more specialized behavior—you can use derived
classes.

* TPen contains the functionality of Windows pen objects. You can construct a pen
object from scratch or from an existing pen handle, pen object, or logical pen
(LOGPEN) structure.

* TBrush contains the functionality of Windows brush objects. You can construct a
custom brush, creating a solid, styled, or patterned brush, or you can use an existing
brush handle, brush object, or logical brush (LOGBRUSH) structure.

Chapter 14, Graphics objects 203

* TFont lets you easily use Windows fonts. You can construct a font with custom
specifications, or from an existing font handle, font object, or logical font (LOGFONT)
structure.

* TPalette encapsulates a GDI palette. You can construct a new palette or use existing
palettes from various color table types that are used by DIBs.

¢ TBitmap contains Windows bitmaps. You can construct a bitmap from many sources,
including files, bitmap handles, application resources, and more.

* TRegion defines a region in a window. You can construct a region in numerous
shapes, including rectangles, ellipses, and polygons. TRegion is a pseudo-GDI object;
itisn’t derived from TGdiObject.

* Tlcon encapsulates Windows icons. You can construct an icon from a resource or
explicit information. TIcon is a pseudo-GDI object.

¢ TCursor encapsulates the Windows cursor. You can construct a cursor from a
resource or explicit information. '

e TDib encapsulates the device-independent bitmap (DIB) class. DIBs have no
Windows handle; instead they are just a structure containing format and palette
information and a collection of bits (pixels). This class provides a convenient way to

- work with DIBs like any other GDI object. A DIB is what is really inside a .BMP file,
in bitmap resources, and what is put on the Clipboard as a DIB. TDib is a pseudo-GDI
object.

Changes to encapsulated GDI functions

Note

Many of the functions in the ObjectWindows GDI classes might look familiar to you;
this is because many of them have the same names and very nearly, if not exactly, the
same function signature as regular Windows API functions. Because the
ObjectWindows GDI classes replicate the functionality of so many Windows objects,
there was no need to alter the existing terminology. Therefore, function names and
signatures have been deliberately kept as close as possible to what you are used to in the
standard Windows GDI functions.

Some improvements, however, have been made to the functions. These improvements,
many of which are discussed in this section, include such things as cracking packed
return values and using ObjectWindows objects in place of Windows-defined
structures.

None of these changes are hard and fast rules; just because a function can somehow be
converted doesn’t mean it necessarily has been. But if you see an ObjectWindows
function with the same name as a Windows API function that looks a little different, one
of the following reasons should explain the change to you:

¢ API functions that take an object handle as a parameter often omit the handle in the
ObjectWindows version. The TGdiObject base object maintains a handle to each
object. The ObjectWindows version then uses that handle when passing the call on to
Windows. For example, when selecting an object in a device context, you would
normally use the SelectObject API function, as shown here:

204 ObjectWindows Programmer’s Guide

void
SelectPen (HDC& hdc, HPEN& hpen)
{
HPEN hpen0Ol1d;
hpen0ld = SelectObject (hdc, hpen);

// Do something with the new pen.

// Now select the old pen again.
SelectObject (hdc, hpenOld);
}

The ObjectWindows version of this function is encapsulated in the TDC class, which
is derived from TGdiObject. The following example shows how the previous function
would appear in a member function of a TDC-derived class. Notice the difference
between the two calls to SelectObject:

void
SelectPen(TDC& dc, TPEN& pen)

{
dc.SelectObject (pen);

// Do something with the new pen.

// Now select the old pen again.
dc.RestorePen();

}

ObjectWindows GDI functions usually substitute an ObjectWindows type in place of
a Windows type:

* Windows API functions use individual parameters to specify x and y coordinate
values; ObjectWindows GDI functions use TPoint objects.

» Windows API functions use RECT structures to specify a rectangular area;
ObjectWindows GDI functions use TRect objects.

¢ Windows API functions use RGN structures to specify a region; ObjectWindows
GDI functions use TRegion objects.

¢ Windows API functions take HLOCAL or HGLOBAL parameters to pass an
object that doesn’t have a predefined Windows structure; ObjectWindows GDI
functions use references to ObjectWindows objects.

Some Windows functions return a uint32 with data encoded in it. The uint32 must
then must be cracked to get the data from it. The ObjectWindows versions of these
functions take a reference to some appropriate object as a parameter. The function
then places the data into the object, relieving the programmer from the responsibility
of cracking the value. These functions usually return a bool, indicating whether the
function call was successful.

Chapter 14, Graphics objects 205

For example, the Windows version of SetViewportOrg returns a uint32, with the old
value for the viewport origin contained in it. The ObjectWindows version of
SetViewportOrg takes a TPoint reference in place of the two ints the Windows version
takes as parameters. It also takes a second parameter, a TPoint *, in which the old
viewport origins are placed.

Working with device contexts

When working with the Windows GDI, you use a device context to access all devices,
from windows to printers to plotters. The device context is a structure maintained by
GDI that contains essential information about the device with which you are working,
such as the default foreground and background colors, font, palette, and so on.
ObjectWindows encapsulates device-context information in a number of device context
classes, all of which are based on the TDC class.

TDC contains most of the device-context functionality you might require. The other DC-
related classes are derived from TDC or TDC-derived classes. These derived classes only
specialize the functionality of the TDC class and apply it to a discrete set of operations.
Here is a description of each of the device-context classes:

® TDC is the root class for all GDI device contexts for ObjectWindows; it can be
instantiated itself or specialized subclasses can be used to get specific behavior.

* TWindowDC provides access to the entire area owned by a window; this is the base
for any device context class that releases its handle when done.

e TScreenDC provides direct access to the screen bitmap using a device context for
window handle 0, which is for the whole screen with no clipping.

* TDesktopDC provides access to the desktop window’s client area, which is the screen
behind all other windows.

® TClientDC provides access to the client area owned by a window.

o TPaintDC wraps BeginPaint and EndPaint calls for use in an WM_PAINT response
function.

¢ TMetaFileDC provides a device context with a metafile loaded for use.
* TCreatedDC lets you create a device context for a specified device.

* TIC lets you create an information context for a specified device.

* TMemoryDC provides access to a memory device context.

* TDibDC provides access to DIBs using the DIB.DRV driver.

* TPrintDC provides access to a printer device context.

TDC class

Although the specialized device-context classes provide extra functionality tailored to
each class’ specific purpose, the TDC class provides most of each class’ functionality.
This section discusses this base functionality.

206 ObjectWindows Programmer’s Guide

Because of the large number of functions contained in TDC, this section doesn’t discuss
every function in detail. Instead, areas of functionality contained in the TDC class are
described, with ObjectWindows-specific functions and the most important API-like
functions discussed in detail; the other functions are described in the ObjectWindows
Reference Guide. In particular, many of the TDC functions look much like Windows API
functions and are therefore described only briefly in this section. You can find general
information on the difference between the Windows API functions and the
ObjectWindows versions of those functions on page 204.

Constructing and destroying TDC

TDC provides one public constructor and one public destructor. The public constructor
takes an HDC, a handle to a device context. Essentially this means that you must have
an existing device context before constructing a TDC object. Usually you don’t construct
a TDC directly, even though you can. Instead you usually use a TDC object when
passing some device context as a function parameter or a pointer to a TDC to point to
some device context contained in either a TDC or TDC-derived object.

~TDC restores all the default objects in the device context and discards the objects.

TDC also provides two protected constructors for use by derived classes. The first is a
default constructor so that derived classes don’t have to explicitly call TDC’s
constructor. The second takes an HDC and a TAutoDelete flag. TAutoDelete is an enum
that can be NoAutoDelete or AutoDelete. The TAutoDelete parameter is used to initialize
the ShouldDelete member, which is inherited from TGdiObject (the public TDC
constructor initializes this to NoAutoDelete).

Device-context operators

TDC provides one conversion operator, HDC, that lets you return the handle to the
device context of your particular TDC or TDC-derived object. This operator is most
often invoked implicitly. When you use a TDC object where you would normally use an
HDC, such as in a function call or the like, the compiler tries to find a way to cast the
object to the required type. Thus it uses the HDC conversion operator even though it is
not explicitly called.

For example, suppose you want to create a device context in memory that is compatible
with the device associated with a TDC object. You can use the CreateCompatibleDC
Windows API function to create the new device context from your existing TDC object:

HDC
GetCompatDC (TDC& dc, TWindows& window)
{

HDC compatDC;

1f (! (compatDC = CreateCompatibleDC(dc))) {
window.MessageBox ("Couldn't create compatible device context!", "Failure",
MB_OK | MB_ICONEXCLAMATION) ;
return NULL;
} else return compatDC;

}

Chapter 14, Graphics objects 207

Notice that CreateCompatibleDC takes a single parameter, an HDC. Thus the function
parameter dc is implicitly cast to an HDC in the CreateCompatibleDC call.

Device-context functions
The functions in this section are used to access information about the device context
itself. They are equivalent to the Windows API functions of the same names.

You can save and restore a device context much like normal using the functions SaveDC
and RestoreDC. The following code sample shows how these functions might be used.
Notice that RestoreDC'’s single parameter uses a default value instead of specifying the
int parameter:

void
TMyDC: : SomeFunc (TDC& dc, int xI, int yl1, int x2, int y2)
{

dc.SaveDC() ;

dc.SetMapMode (MM_LOENGLISH) ;

dc.Rectangle(x1l, -y1, %2, -y2);
dc.RestoreDC() ;
}

You can also reset a device context to the settings contained in a DEVMODE structure
using the ResetDC function. The only parameter ResetDC takes is a reference to a
DEVMODE structure.

You can use the GetDeviceCaps function to retrieve device-specific information about a
given display device. This function takes one parameter, an int index to the type of
information to retrieve from the device context. The possible values for this parameter
are the same as for the Windows API function.

You can use the GetDCOrg function to locate the current device context’s logical
coordinates within the display device’s absolute physical coordinates. This function
takes a reference to a TPoint structure and returns a bool. The bool indicates whether
the function call was successful, and the TPoint object contains the coordinates of the
device context’s translation origin.

Selecting and restoring GDI objects

You can use the SelectObject function to place a GDI object into a device context. There
are four versions of the SelectObject function; all of them return void, but each takes
different parameters. The version you should use depends on the type of object you are
selecting into the device context. The different versions are:

SelectObject (const TBrush& brush);

SelectObject (const TPen& pen);

SelectObject (const TFont& font);

SelectObject (const TPalette& palette, bool forceBG=false);

In addition, TMemoryDC lets you select a bitmap.

Graphics objects that you can select into a device context normally exist as logical
objects, which contain the information required for the creation of the object. The
graphics objects are connected to the logical objects through a Windows handle. When

208 ObjectWindows Programmer’s Guide

the graphics object is selected into the device context, a physical tool (created using the
attributes contained in the logical pen) is created inside the device context.

You can also select a stock object using the function SelectStockObject. SelectStockObject
takes one parameter, an int that is equivalent to the parameter used to call the API
function GetStockObject. Essentially the SelectStockObject function takes the place of two
calls: a call to GetStockObject to actually get a stock object, then a call to SelectObject to
place the stock object into the device context.

TDC provides functions to restore original objects in a device context. There are
normally four versions of this function, RestoreBrush, RestorePen, RestoreFont, and
RestorePalette. A fifth, RestoreTextBrush, exists only for 32-bit applications. The
RestoreObjects function calls all four functions (or five, under 32 bits), and restores all
original objects in the device context. All of these functions return void and take no
parameters.

Drawing tool functions

GetBrushOrg takes one parameter, a reference to a TPoint object. It places the coordinates
of the brush origin into the TPoint object. GetBrushOrg returns true if the operation was
successful.

SetBrushOrg takes two parameters, a reference to a TPoint object and a TPoint *. This sets
the device context’s brush origin to the x and y values in the first TPoint object. If you
don’t specify a value for the second parameter, it defaults to 0. If you do pass a pointer
to a TPoint object as the second parameter, TDC::SetBrushOrg places the old values for
the brush origin into the x and y members of the object. The return value indicates
whether the operation was successful.

Color and palette functions

TDC provides a number of functions you can use to manipulate the colors and palette of
a device context.

GetNearestColor RealizePalette
GetSystemPaletteEntries SetSystemPaletteUse
GetSystemPaletteUs UpdateColorse

Drawing attribute functions

Use drawing attribute functions to set the device context’s drawing mode. All of these
functions are analogous to the API functions of the same names, except that the HDC
parameter is omitted in each.

GetBkColor SetBkColor
GetBkMode SetBkMode
GetPolyFillMode SetPolyFillMode
GetROP2 SetROP2 -
GetStretchBltMode SetStretchBltMode
GetTextColor SetTextColor

Chapter 14, Graphics objects 209

Another function, SetMiterLimit, is available only for 32-bit applications.

Viewport and window mapping functions
Use these functions to set the viewport and window mapping modes:

GetMapMode GetViewportExt
GetViewportExt OffsetWindowOrg
GetViewportOrg ScaleViewportExt
GetViewportOrg ScaleWindowExt
GetWindowExt SetMapMode
GetWindowExt SetViewportExt
GetWindowOrg SetViewportOrg
GetWindowOrg SetWindowExt

OffsetViewportOrg SetWindowOrg

The following viewport and window mapping functions are available only for 32-bit
applications:

ModifyWorldTransform SetWorldTransform

Coordinate functions
Coordinate functions convert logical coordinates to physical coordinates and vice versa:

DPtoLP LPtoDP

Clip and update rectangle and region functions
Use clip and update rectangle and region functions to set up and retrieve simple or
complex areas in a device context’s clipping region: '

ExcludeClipRect OffsetClipRgn
ExcludeUpdateRgn PtVisible
GetBoundsRect RectVisible
GetClipBox SelectClipRgn
GetClipRgn SetBoundsRect
IntersectClipRect

Metafile functions

Use the metafile functions to access metafiles:
EnumMetaFile PlayMetaFileRecord
PlayMetaFile

Current position functions
Use these functions to move to the current point in the device context. Three versions of
MoveTo are provided:

* MoveTo(int x, int y) moves the pen to the point x, y.

210 ObjectWindows Programmer’s Guide

® MoveTo(TPoint &point) moves the pen to the point point.x, point.y.
* MoveTo(TPoint &point, TPoint &oldPoint) moves the pen to the point point.x, point.y
and places the old location of the pen into oldPoint.

GetCurrentPosition takes a reference to a TPoint object. It places the coordinates of the
current position into the TPoint object and returns true if the function call was
successful.

Font functions

Use TDC's font functions to access and manipulate fonts:
EnumFontFamilies GetCharWidth

EnumFonts GetFontData
GetAspectRatioFilter SetMapperFlags
GetCharABCWidths

Path functions

Path functions are available only to 32-bit applications. The TDC path functions are the
same as the Win32 versions, with the exception that the TDC versions don’t take a HDC
parameter.

BeginPath PathToRegion
CloseFigure SelectClipPath
EndPath StrokeAndFillPath
FillPath StrokePath
FlattenPath WidenPath
Output functions

TDC provides a great variety of output functions for all different kinds of objects that a
standard device context can handle, including:

Icons
Rectangles
Regions
Shapes
Bitmaps
Text

Nearly all of these functions provide a number of versions: one version that provides
functionality nearly identical to that of the corresponding API function (with the
exception of omitting the HDC parameter) and alternate versions that use TPoint, TRect,
TRegion, and other ObjectWindows data encapsulations to make the calls more concise
and easier to understand. These functions are discussed in further detail in the
ObjectWindows Reference Guide.

¢ Current position

GetCurrentPosition MoveTo

Chapter 14, Graphics objects 211

e Icons
Drawlcon
® Rectangles

DrawFocusRect
FrameRect
InvertRect

® Regions

FillRgn
InvertRgn
e Shapes

Arc

Ellipse
LineTo
Polygon
PolyPolygon
RoundRect

FillRect
TextRect

FrameRgn
PaintRgn

Chord
LineDDA
Pie
Polyline
Rectangle

¢ Bitmaps and blitting

BitBlt

FloodFill

GetPixel

ScrollDC
SetDIBitsToDevice
StretchBlt

e Text
DrawText

GrayString
TextOut

ExtFloodFill
GetDIBits
PatBlt
SetDIBits
SetPixel
StretchDIBits

ExtTextOut
TabbedTextOut

The following functions are available for 32-bit applications only:

® Shapes

AngleArc
PolyBezier
PolyBezierTo

MaskBIt

PolyDraw
PolylineTo
PolyPolyline

¢ Bitmaps and blitting

PlgBlt

212 ObjectWindows Programmer’s Guide

Object data members and functions

These data members and functions are used to administer the device context object
itself. The functions and data members discussed in this section are protected and can
be accessed only by a TDC-derived class.

e ShouldDelete indicates whether the object should delete its handle to the device
context when the destructor is invoked.

e Handle contains the actual handle of the device context.

e OrgBrush, OrgPen, OrgFont, and OrgPalette are the handles to the original objects
when the device context was created; OrgTextBrush is also present in 32-bit
applications.

® CheckValid throws an exception if the device context object is not valid.

e Init sets the OrgBrush, OrgPen, OrgFont, and OrgPalette when the object is created; if
you're creating a TDC-derived class without explicitly calling a TDC constructor, you
should call the TDC::Init first in your constructor.

* GetHDC returns an HDC using Handle.

* GetAttributeHDC, like GetHDC, returns an HDC using Handle; if you're creating an
object with more than one device context, you should override this function and not
GetHDC to provide the proper return.OWLFastWindowFrame draws a frame that is
often used for window borders. This function uses the undocumented Windows API
function FastWindowFrame if available, or PatBIt if not.

TPen class

The TPen class encapsulates a logical pen. It contains a color for the pen’s “ink”
(encapsulated in a TColor object), a pen width, and the pen style.

Constructing TPen

You can construct a TPen either directly, specifying the color, width, and style of the
pen, or indirectly, by specifying a TPen & or pointer to a LOGPEN structure. Directly
constructing a pen creates a new object with the specified attributes. Here is the
constructor for directly constructing a pen:

TPen (TColor color, int width=1, int style=PS_SOLID);

The style parameter can be one of the following values: PS_SOLID, PS_DASH, PS_DOT,
PS_DASHDOT, PS_ DASHDOTDOT, PS_NULL, or PS_INSIDEFRAME. These values
are discussed in the ObjectWindows Reference Guide.

Indirectly creating a pen creates a new object, but copies the attributes of the object
passed to it into the new pen object. Here are the constructors for indirectly creating a
pen:

TPen{const LOGPEN far* logPen);
TPen(const TPen&);

Chapter 14, Graphics objects 213

You can also create a new TPen object from an existing HPEN handle:
TPen (HPEN handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

Two other constructors are available only for 32-bit applications. You can use these
constructors to create cosmetic or geometric pens:

TPen (uint32 penStyle,
uint32 width,
const TBrush& brush,
uint32 styleCount,
LPDWORD style);

TPen (uint32 penStyle,
uint32 width,
const LOGBRUSH& logBrush,
uint32 styleCount,
LPDWORD style);

where:

* penStyle is a combination of type, style, end cap, and join of the pen, where:
* Type is either PS_GEOMETRIC or PS_COSMETIC.
e Style can be any one of the following values:

PS_ALTERNATE PS_DASH
PS_DASHDOT PS_DASHDOTDOT

PS_DOT PS_INSIDEFRAME
PS_NULL PS_SOLID
PS_USERSTYLE "
¢ End cap is specified only for geometric pens, and can be one of the following
values:
PS_ENDCAP_FLAT PS_ENDCAP_ROUND

PS_ENDCAP_SQUARE
e Join is specified only for geometric pens, and can be one of the following values:

PS_JOIN_BEVEL PS_JOIN_MITER
PS_JOIN_ROUND
* width is the pen width.
* brush or logBrush is a reference to an existing TBrush or LOGBRUSH object.

o styleCount is the size (in uint32s) of the style array; styleCount should be 0 unless the
pen style is PS_USERSTYLE.

e style is a pointer to an array of uint32s that specifies the pattern of the pen; style
should be NULL unless the pen style is PS_USERSTYLE.

214 - ObjectWindows Programmer’s Guide

Accessing TPen

You can access TPen through an HPEN or as a LOGPEN structure. To get an HPEN
from a TPen object, use the HPEN operator with the TPen object as the parameter. The
HPEN operator is almost never explicitly invoked:

HPEN
GetHPen (TPen& pen)
{

return pen;

}

This code automatically invokes the HPEN conversion operator to cast the TPen object
to the correct type.

To convert a TPen object to a LOGPEN structure, use the GetObject function:

bool

GetLogPen (LOGPEN far& logPen)

{
TPen pen(TColor::LtMagenta, 10);
return pen.GetObject (logPen) ;

}

The following example shows how to use a pen with a TDC to draw a line:

void
TPenDemo: :DrawLine (TDC& dc, const TPoint& point, TColor& color)
{

TPen BrushPen(color, PenSize);

dc.SelectObject (BrushPen) ;

dc.LineTo(point);

}

TBrush class

The TBrush class encapsulates a logical brush. It contains a color for the brush’s ink
(encapsulated in a TColor object), a brush width, and, depending on how the brush is
constructed, the brush style, pattern, or bitmap.

Constructing TBrush

You can construct a TBrush either directly, specifying the color, width, and style of the
brush, or indirectly, by specifying a TBrush & or pointer to a LOGBRUSH structure.
Directly constructing a brush creates a new object with the specified attributes. Here are
the constructors for directly constructing a brush:

TBrush (TColor color);
TBrush(TColor color, int style);
TBrush(const TBitmap& pattern);
TBrush(const TDib& pattern);

The first constructor creates a solid brush with the color contained in color.

Chapter 14, Graphics objects 215

The second constructofcreates a hatched brush with the color contained in color and the
hatch style contained in style. style can be one of the following values:

HS_BDIAGONAL HS_CROSS
HS_DIAGCROSS HS_FDIAGONAL
HS_HORIZONTAL HS_VERTICAL

The third and fourth constructors create a brush from the bitmap or DIB passed as a
parameter. The width of the brush depends on the size of the bitmap or DIB.

Indirectly creating a brush creates a new object, but copies the attributes of the object
passed to it into the new brush object. Here are the constructors for indirectly creating a
brush:

TBrush (const LOGBRUSH far* logBrush);
TBrush(const TBrushé& src);

You can also create a new TBrush object from an existing HBRUSH handle:
TBrush (HBRUSH handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

Accessing TBrush

You can access TBrush through an HBRUSH or as a LOGBRUSH structure. To get an
HBRUSH from a TBrush object, use the HBRUSH operator with the TBrush object as the
parameter. The HBRUSH operator is almost never explicitly invoked:

HBRUSH
GetHBrush (TBrush& brush)
{

return brush;
}

This code automatically invokes the HBRUSH conversion operator to cast the TBrush
object to the correct type.

To convert a TBrush object to a LOGBRUSH structure, use the GetObject function:

bool

GetLogBrush (LOGBRUSH far& logBrush)

{
TBrush brush(TColor::LtCyan, HS_DIAGCROSS);
return brush.GetObject (logBrush);

}

To reset the origin of a brush object, use the UnrealizeObject function. UnrealizeObject
resets the brush’s origin and returns nonzero if successful.

The following code shows how to use a brush to paint a rectangle in a window:

void
TMyWindow: :PaintRect (TDC& dc, TPoint& p, TSize& size)
{

216 ObjectWindows Programmer’s Guide

TBrush brush(TColor(5,5,5));
dc.SelectObject (brush);
dc.Rectangle(p, size);
dc.RestoreBrush() ;

TFont class

The TFont class lets you easily create and use Windows fonts in your applications. The
TFont class encapsulates all attributes of a logical font.

Constructing TFont

You can construct a TFont either directly, specifying all the attributes of the font in the
constructor, or indirectly, by specifying a TFont & or pointer to a LOGFONT structure.
Directly constructing a pen creates a new object with the specified attributes. Here are
the constructors for directly constructing a font:

TFont (const char far* facename=0,
int height=0, int width=0, int escapement=0,
int orientation=0, int weight=FW_NORMAL,

uint8
uint8
uint8
uint8
uint8
uint8
uint8

pitchAndFamily=DEFAULT_PITCH|FF_DONTCARE,
italic=false, uint8 underline=false,
strikeout=false,

charSet=1,
outputPrecision=0UT_DEFAULT_PRECIS,
clipPrecision=CLIP_DEFAULT_PRECIS,
quality=DEFAULT_QUALITY);

TFont (int height, int width, int escapement=0,
int orientation=0,
int weight=FW_NORMAL,

uint8
uint$
uint8
uint8
uint8
uint8
uint8
const

italic=false, uint8 underline=false,
strikeout=false,

charSet=1,
outputPrecision=0UT_DEFAULT_PRECIS,
clipPrecision=CLIP_DEFAULT_PRECIS,
quality=DEFAULT _QUALITY,
pitchAndFamily=DEFAULT_PITCH|FF_DONTCARE,
char far* facename=0);

The first constructor lets you conveniently plug in the most commonly used attributes
for a font (such as name, height, width, and so on) and let the other attributes (which
generally have the same value time after time) take their default values. The second
constructor has the parameters in the same order as the CreateFont Windows API call so
you can easily cut and paste from existing Windows code.

Indirectly creating a font creates a new object, but copies the attributes of the object
passed to it into the new font object. Here are the constructors for indirectly creating a

font:

Chapter 14, Graphics objects 217

TFont (const LOGFONT far* logFont) ;
'TFont (const TFont&);

You can also create a new TFont object from an existing HFONT handle:
TFont (HFONT handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

Accessing TFont

You can access TFont through an HFONT or as a LOGFONT structure. To get an
HFONT from a TFont object, use the HFONT operator with the TFont object as the
parameter. The HFONT operator is almost never explicitly invoked:

HFONT
GetHFont (TFont& font)
{

return font;

)

This code automatically invokes the HFONT conversion operator to cast the TFont
object to the correct type.

To convert a TFont object to a LOGFONT structure, use the GetObject function:

bool

GetLogFont (LOGFONT far& logFont)

{
TFont font ("Times Roman", 20, 8);
return font.GetObject (logFont);

}

TPalette class

The TPalette class encapsulates a Windows color palette that can be used with bitmaps
and DIBs. TPalette lets you adjust the color table, match individual colors, move a palette
to the Clipboard, and more.

Constructing TPalette

You can construct a TPalette object either directly, passing an array of color values to the
constructor, or indirectly, by specifying a TPalette &, a pointer to a LOGPALETTE
structure, a pointer to a bitmap header, and so on. Directly constructing a palette creates
anew object with the specified attributes. Here is the constructor for directly
constructing a palette:

TPalette(const PALETTEENTRY far* entries, int count);

entries is an array of PALETTEENTRY objects. Each PALETTEENTRY object contains a
color value specified by three separate values, one each of red, green, and blue, plus a

218 ObjectWindows Programmer’s Guide

flags variable for the entry. count specifies the number of values contained in the entries
array.

Indirectly creating a palette creates a new object, but copies the attributes of the object
passed to it into the new palette object. Here are the constructors for indirectly creating a
palette:

TPalette(const TClipboard&);

TPalette(const TPalette& palette);

TPalette(const LOGPALETTE far* logPalette);
TPalette(const BITMAPINFO far* info, uint flags=0);
TPalette(const BITMAPCOREINFO far* core, uint flags=0);
TPalette(const TDib& dib, uint flags=0);

Each of these constructors copies the color values contained in the object passed into the
constructor into the new object. The objects passed to the constructor are not necessarily
palettes themselves; many of them are objects that use palettes and contain a palette
themselves. In these cases, the TPalette constructor extracts the palette from the object
and copies it into the new palette object.

You can also create a new TPalette object from an existing HPALETTE handle:
TPalette (HPALETTE handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

Accessing TPalette

You can access TPalette through an HPALETTE or as a LOGPALETTE structure. To get
an HPALETTE from a TPalette object, use the HPALETTE operator with the TPalette
object as the parameter. The HPALETTE operator is almost never explicitly invoked:

HPALETTE
GetHPalette (TPalette& palette)
{

return palette;

}

This code automatically invokes the HPALETTE conversion operator to cast the TPalette
object to the correct type.

The GetObject function for TPalette functions the same way the Windows API call
GetObject does when passed a handle to a palette: it places the number of entries in the
color table into the uint16 reference passed to it as a parameter. TPalette::GetObject
returns true if successful.

Member functions
TPalette also encapsulates a number of standard API calls for manipulating palettes:

* You can match a color with an entry in a palette using the GetNearestPalettelndex
function. This function takes a single parameter (a TColor object) and returns the
index number of the closest match in the palette’s color table.

Chapter 14, Graphics objects 219

® GetNumEntries takes no parameters and returns the number of entries in the palette’s
color table.

* You can get the values for a range of entries in the palette’s color table using the
GetPaletteEntries function. TPalette::GetPaletteEntries functions just like the Windows
API call GetPaletteEntries, except that TPalette:: GetPaletteEntrzes omits the HPALETTE
parameter.

* You can set the values for a range of entries in the palette’s color table using the
SetPaletteEntries function. TPalette::SetPaletteEntries functions just like the Windows
API call SetPaletteEntries, except that TPalette::SetPaletteEntries omits the HPALETTE
parameter.

 The GetPaletteEntry and SetPaletteEntry functions work much like GetPaletteEntries
and SetPaletteEntries, except that they work on a single palette entry at a time. Both
functions take two parameters, the index number of a palette entry and a reference to
a PALETTEENTRY object. GetPaletteEntry places the color value of the desired
palette entry into the PALETTEENTRY object. SetPaletteEntry sets the palette entry
indicated by the index to the value of the PALETTEENTRY object.

* You can use the ResizePalette function to resize a palette ResizePalette takes a uint
parameter, which specifies the number of entries in the resized palette ResizePalette
functions exactly like the Windows API ResizePalette call.

* The AnimatePalette function lets you replace entries in the palette’s color table.
AnimatePalette takes three parameters, two UINTs and a pointer to an array of
PALETTEENTRY objects. The first uint specifies the first entry in the palette to be
replaced. The second uint specifies the number of entries to be replaced. The entries
indicated by these two UINTs are replaced by the values contained in the array of
PALETTEENTRYsS.

* You can also use the UnrealizeObject function for your palette objects. UnrealizeObject
matches the palette to the current system palette. UnrealizeObject takes no parameters
- and functions just like the Windows API call.

* You can move a palette to the Clipboard using the ToClipboard function. ToClipboard
takes a reference to a TClipboard object as a parameter. Because the ToClipboard
function actually removes the object from your application, you should usually use a
TPalette constructor to create a temporary object:

TClipboard clipBoard;
TPalette (tmpPalette).ToClipboard(clipBoard);

Extending TPalette

TPalette contains two protected-access functions, both called Create. The two functions
differ in that one takes BITMAPINFO * as its first parameter and the other takes a
BITMAPCOREINFO * as its first parameter. These functions are called from the TPalette
constructors that take a BITMAPINFO *, a BITMAPCOREINFO *, or a TDib &. The
BITMAPINFO * and BITMAPCOREINFO * constructors call the corresponding Create
functions. The TDib & constructor extracts a BITMAPCOREINFO * or a BITMAPINFO *
from its TDib object and calls the appropriate Create function.

220 ObjectWindows Programmer’s Guide

Both Create functions take a uint for their second parameter. This parameter is
equivalent to the peFlags member of the PALETTEENTRY structure and should be
passed either as a 0 or with values compatible with peFlags: PC_EXPLICIT,
PC_NOCOLLAPSE, and PC_RESERVED. A palette entry must have the
PC_RESERVED flag set to use that entry with the AnimatePalette function.

The Create functions create a LOGPALETTE using the color table from the bitmap
header passed as its parameter. You can use Create for 2-, 16-, and 256-color bitmaps. It
fails for all other types, including 24-bit DIBs. It then uses the LOGPALETTE to create
the HPALETTE.

TBitmap class

The TBitmap class encapsulates a Windows device-dependent bitmap, providing a
number of different constructors, plus member functions to manipulate and access the
bitmap.

Constructing TBitmap

You can construct a TBitmap object either directly or indirectly. Using direct
construction, you can specify the bitmap’s width, height, and so on. Using indirect
construction, you can specify an existing bitmap object, pointer to a BITMAP structure, a
metafile, a TDC device context, and more.

Here is the constructor for directly constructing a bitmap object:
TBitmap (int width, int height, uint8 planes=1, uint8 count=1, void* bits=0);

width and height specify the width and height in pixels of the bitmap. planes specifies the
number of color planes in the bitmap. count specifies the number of bits per pixel. Either
plane or count must be 1. bits is an array containing the bits to be copied into the bitmap.
bits can be 0, in which case the bitmap is left uninitialized.

You can create bitmap objects from existing bitmaps, either encapsulated in a TBitmap
object or contained in a BITMAP structure.

TBitmap (const TBitmap& bitmap);
TBitmap (const BITMAP far* bitmap);

TBitmap provides two constructors you can use to create bitmap objects that are
compatible with a given device context. The first constructor creates an uninitialized
bitmap of the size height by width. Specifying true for the discardable parameter makes
the bitmap discardable. A bitmap should never be discarded if it is the currently
selected object in a device context.

TBitmap(const TDC& Dc, int width, int height, bool discardable = false);

The second constructor creates a bitmap compatible with the device represented by the
device context from a DIB. The usage parameter should be CBM_INIT for 16-bit
applications. CBM_INIT indicates that the bitmap should be initialized with the bits
contained in the DIB object. If you don’t specify CBM_INIT, the bitmap is created, but is
left empty. CBM_INIT is the default.

Chapter 14, Graphics objects 221

32-bit applications can also specify CBM_CREATEDIB. The CBM_CREATEDIB flag

indicates that the color format of the new bitmap should be compatible with the color
format contained in the DIB’s BITMAPINFO structure. If the CBM_CREATEDIB flag
isn’t specified, the bitmap is assumed to be compatible with the given device context.

TBitmap(const TDC& Dc, const TDib& dib, uint32 usage);

You can also create bitmaps from the Windows Clipboard, from a metafile, or from a
DIB object. To create a bitmap from the Clipboard, you only need to pass a reference to a
TClipboard object to the constructor. The constructor gets the handle of the bitmap in the
Clipboard and constructs a bitmap object from the handle:

TBitmap (const TClipboard& clipboard);

To create a bitmap from a metafile, you need to pass a TMetaFilePict &, a TPalette &, and
a TSize &. The constructor initializes a device-compatible bitmap (based on the palette)
and plays the metafile into the bitmap:

TBitmap (const TMetaFilePict& metaFile, TPalette& palette, const TSize& size); -

To create a bitmap from a device-independent bitmap, you need to pass a TDib & to the
constructor. You can also specify an optional palette. The constructor creates a device
context and renders the DIB into a device-compatible bitmap:

TBitmap(const TDib& dib, const TPalette* palette = 0);

You can create a bitmap object by loading it from a module. This constructor takes two
parameters, first the HINSTANCE of the module containing the bitmap and second the
resource ID of the bitmap you want to load:

TBitmap (HINSTANCE, TResId);
You can also create a new TBitmap object from an existing HBITMAP handle:
TBitmap (HBITMAP handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

Accessing TBitmap

You can access TBitmap through an HBITMAP or as a BITMAP structure. To get an
HBITMAP from a TBitmap object, use the HBITMAP operator with the TBitmap object as
the parameter. The HBITMAP operator is almost never explicitly invoked:

HBITMAP
GetHBitmap (TBitmap &bitmap)
{

return bitmap;

}

This code automatically invokes the HBITMAP conversion operator to cast the TBitmap
object to the correct type.

To convert a TBitmap object to a BITMAP structure, use the GetObject function:

222 ObjectWindows Programmer’s Guide

bool
GetBitmap (BITMAP far& dest)
{
TBitmap bitmap(200, 100);
return bitmap.GetObject (dest);
}

The GetObject function fills out only the width, height, and color format information of
the BITMAP structure. You can get the actual bitmap bits with the GetBitmapBits
function.

Member functions
TBitmap also encapsulates a number of standard API calls for manipulating palettes:

* You can get the same information as you get from GetObject, except one item at a
time, using the following functions. Each function returns a characteristic of the
bitmap object:

int width();

int Height();
uint8 Planes();
uint8 BitsPixel();

¢ The GetBitmapDimension and SetBitmapDimension functions let you find out and
change the dimensions of the bitmap. GetBitmapDimension, which takes a reference to
a TSize object as its only parameter, places the size of the bitmap into the TSize object.
SetBitmapDimension can take two parameters, the first a reference to a TSize object
containing the new size for the bitmap and a pointer to a TSize, in which the function
places the old size of the bitmap. You don’t have to pass the second parameter to
SetBitmapDimension. Both functions return true if the operation was successful.

The GetBitmapDimension and SetBitmapDimension functions don't actually affect the
size of the bitmap in pixels. Instead they modify only the physical size of the bitmap,
which is often used by programs when printing or displaying bitmaps. This lets you
adjust the size of the bitmap depending on the size of the physical screen.

¢ The GetBitmapBits and SetBitmapBits functions let you query and change the bits in a
bitmap. Both functions take two parameters: a uint32 and a void *. The uint32
specifies the size of the array in bytes, and the void * points to an array. GetBitmapBits
fills the array with bits from the bitmap, up to the number of bytes specified by the
uint32 parameter. SetBitmapBits copies the array into the bitmap, copying over the
number of bytes specified in the uint32 parameter.

* You can move a bitmap to the Clipboard using the ToClipboard function. ToClipboard
takes a reference to a TClipboard object as a parameter. Because the ToClipboard
function actually removes the object from your application, you should usually use a
TBitmap constructor to create a temporary object:

TClipboard clipBoard;
TBitmap (tmpBitmap).ToClipboard(clipBoard);

Chapter 14, Graphics objects 223

Extending TBitmap

TBitmap has three functions that have protected access: a constructor and two functions
called Create.

The constructor is a default constructor. You can use it when constructing a derived
class to prevent having to explicitly call the base class constructor. If you use the default
constructor, you need to initialize the bitmap properly in your own constructor.

The first Create function takes a reference to a TBitmap object as a parameter. Essentially,
this function copies the passed TBitmap object over to itself.

The second Create function takes references to a TDib object and to a TPalette object.
Create creates a device context compatible with the TPalette and renders the DIB into a
device-compatible bitmap.

TRegion class

Use the TRegion class to define a region in a device context. You can perform a number
of operations on a device context, such as painting, filling, inverting, and so on, using
the region as a stencil. You can also use the TRegion class to define a region for your own
custom operations.

Constructing and destroying TRegion

Regions come in many shapes and sizes, from simple rectangles and rectangles with
rounded corners to elaborate polygonal shapes. You can determine the shape of your
region by the constructor used. You can also indirectly construct a region from a handle
to a region or an existing TRegion object.

TRegion provides a default constructor that produces an empty rectangular region. You
can use the function SetRectRgn to initialize an empty TRegion object. For example,
suppose you derive a class from TRegion. In the constructor for your derived class, call
SetRectRgn to initialize the region. This prevents you from having to call TRegion’s
constructor explicitly:

class TMyRegion : public TRegion
{
public:
TMyRegion (TRect& rect);

}i

TMyRegion: : TMyRegion (TRect& rect)

{
// Initialize the TRegion base with rect.
SetRectRgn(rect); .

}

You can directly create a TRegion from a number of different sources. To create a simple.
rectangular region, use the following constructor:

224 ObjectWindows Programmer’s Guide

TRegion(const TRect& rect);
This creates a rectangular region from the logical coordinates in the TRect object.
To create a rectangular region with rounded corners, use the following constructor:
TRegion(const TRect& rect, const TSize& corner);

This creates a rectangular region from the logical coordinates in the TRect object, then
rounds the corners into an ellipse. The height and width of the ellipse used is defined by
the values in the TSize object.

To create an elliptical region, use the following constructor:
TRegion(const TRect& e, TEllipse);

This creates an elliptical region bounded by the logical coordinates contained in the
TRect structure. TEllipse is an enumerated value with only one possible value, Ellipse. A
call to this constructor looks something like this:

TRect rect (20, 20, 80, 60);
TRegion rgn(rect, TRegion::Ellipse);

To create regions with an irregular polygonal shape, use the following constructor:
TRegion(const TPoint* points, int count, int fillMode);

points is an array of TPoint objects. Each TPoint contains the logical coordinates of a
vertex of the polygon. count indicates the number of points in the points array. fillMode
indicates how the region should be filled; this can be either ALTERNATE or WINDING.
There is another constructor that you can use to create regions consisting of multiple
irregular polygonal shapes:

TRegion(const TPoint* points,
const int* polyCounts,
int count,
int fillMode);

As in the other polygonal region constructor, points is an array of TPoint objects. But for
this constructor, points contains the vertex points of a number of polygons. polyCounts
indicates the number of points in the points array for each polygon. count indicates the
total number of polygons in the region and the number of members in the polyCount
array. fillMode indicates how the region should be filled; this can be either ALTERNATE
or WINDING.

For example, suppose you're constructing a region that encompasses two triangular
areas. Each triangle would consist of three points. Therefore points would have six
members, three for each triangle. polyPoints would have two members, one for each
triangle. Each member of polyPoints would have the value three, indicating the number
of points in the points array that belongs to each polygon. count would have the value
two, indicating that the region consists of two polygons.

You can create a TRegion from an existing HRGN:
TRegion (HRGN handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

Chapter 14, Graphics objects 225

You can also create a new TRegion object from an existing TRegion object:
TRegion (const TRegion& region);

~TRegion deletes the region and its storage space.

Accessing TRegion

You can access and modify TRegion objects directly through an HRGN handle or
through a number of member functions and operators. To get an HRGN from a TRegion
object, use the HRGN operator with the TRegion object as the parameter. The HRGN
operator is almost never explicitly invoked:

HRGN
TMyBitmap: :GetHRgn ()
{

return *this;

}

This code automaticafly invokes the HRGN conversion operator to cast the TRegion
object to the correct type.

Member functions

TRegion provides a number of member functions to get information from the TRegion
object, including whether a point is contained in or touches the region:

* You can use the SetRectRgn function to reset the object’s region to a rectangular
region:

void SetRectRgn(const TRect& rect);

This sets the TRegion’s area to the logical coordinates contained in the TRect object
passed as a parameter to the SefRectRgn function. The region is set to a rectangular
region regardless of the shape that it previously had.

* You can use the Contains function to find out whether a point is contained in a region:
bool Contains(const TPoint& point);

point contains the coordinates of the point in question. Contains returns true if point is
within the region and false if not.

* You can use the Touches function to find out whether any part of a rectangle is
contained in a region:

bool Touches(const TRecté& rect);

rect contains the coordinates of the rectangle in question. Touches returns true if any
part of rect is within the region and false if not.

* You can use the GetRgnBox functions to get the coordinates of the boundmg rectangle
of a region:

int GetRgnBox(TRect& box);
TRect GetRgnBox();

226 ObjectWindows Prongrammer’s Guide

The bounding rectangle is the smallest possible rectangle that encloses all of the area
contained in the region. The first version of this function takes a reference to a TRect
object as a parameter. The function places the coordinates of the bounding rectangle
in the TRect object. The return value indicates the complexity of the region, and can
be either SIMPLEREGION (region has no overlapping borders), COMPLEXREGION
(region has overlapping borders), or NULLREGION (region is empty). If the function
fails, the return value is ERROR.

The second version of GetRgnBox takes no parameters and returns a TRect, which
contains the coordinates of the bounding rectangle. The second version of this
function doesn’t indicate the complexity of the region.

Operators

TRegion has a large number of operators. These operators can be used to query and
modify the values of a region. They aren’t necessarily restricted to working with other
regions; many of them let you add and subtract rectangles and other units to and from
the region.

TRegion provides two Boolean test operators, == and !=. These operators work to
compare two regions. If two regions are equivalent, the == operator returns true, and
the != operator returns false. If two regions aren’t equivalent, the == operator returns
false, and the != operator returns true. You can use these operators much as you do their
equivalents for ints, chars, and so on.

For example, suppose you want to test whether two regions are identical, and, if they’re
not, perform an operation on them. The code would look something like this:

TRegion rgnl;
TRegion rgn2;

// Initialize regionms...

if(rgnl !'= rgn2) {
// Perform your operations here

.
TRegion also provides a number of assignment operators that you can use to change the
region:

* The = operator lets you assign one region to another. For example, the statement rgnl

= rgn2 sets the contents of rgn1 to the contents of rgn2, regardless of the contexts of
rgnl prior to the assignment.

¢ The += operator lets you move a region by an offset contained in a TSize object. This
operation is analogous to numerical addition: just add the offset to each point in the
region. The region retains all of its properties, except that the coordinates defining the
_region are shifted by the values contained in the cx and cy members of the TSize
object:

e If cx is positive, the region is shifted cx pixels to the right.
e If cx is negative, the region is shifted cx pixels to the left.

Chapter 14, Graphics objects 227

e If cy is positive, the region is shifted cy pixels down.
e If cy is negative, the region is shifted cy pixels up.

For example, suppose you want to move a region to the right 50 pixels and up 20
pixels. The code would look something like this:

TRegion rgn;
// Initialize region...

TSize size(50, -20);
rgn += size;

// Continue working with new region.

® The —= operator, when used with a TSize object, does essentially the opposite of the
+= operator; that is, it subtracts the offset from each point in the region. For example,
suppose you have the same code as in the previous example, except that instead of
using the += operator, it uses the —= operator. This would offset the region in exactly
the opposite way from the += operator, 50 pixels to the left and down 20 pixels.

¢ The —= operator, when used with a TRegion object, behaves differently from when it
is used with a TSize object. To demonstrate how the —= operator works when used
with TRegion, consider the following code:

TRegion rgnl, rgn2;
rgnl -= rgn2;

After execution of this code, rgnl contains all the area it contained originally, minus
any parts of that area shared by rgn2. Thus any point that is contained in rgn2 is not
contained in rgn1 after this code has executed. This is analogous to subtraction:
subtract the area defined by rgn2 from rgn1.

® The &= operator can be used with both TRegion objects and TRect objects (before any
operations are performed, the TRect is converted to a TRegion using the constructor
TRegion::TRegion(TRect &)). To demonstrate how the &= operator works, consider the
following code:

TRegion rgnl, rgn2;
rgnl &= rgn2;

After execution of this code, rgn1 contains all the area it originally shared with rgn2;
that is, areas that were common to both regions before the execution of the &=
statement. This is a logical AND operation: only the areas that are part of both rgn1
AND rgn2 become part of the new region.

¢ The | = operator can be used with both TRegion objects and TRect objects (before any
operations are performed, the TRect is converted to a TRegion using the constructor
TRegion::TRegion(TRect &)). To demonstrate how the | = operator works, consider the
following code:

TRegion rgnl, rgn2;
rgnl |= rgn2;

228 ObjectWindows Programmer’s Guide

After execution of this code, rgnl contains all the area it originally contained, plus all
the area contained in rgn2; that is, it contains all of both regions. This is a logical OR
operation: areas that are part of either rgn1 OR rgn2 become part of the new region.

* The "= operator can be used with both TRegion objects and TRect objects (before any
operations are performed, the TRect is converted to a TRegion using the constructor
TRegion::TRegion(TRect &)). To demonstrate how the /= operator works, consider the
following code:

TRegion rgnl, rgn2;
rgnl “= rgn2;

After execution of this code, rgnl contains only that area it originally contained but
did not share with rgn2, plus all the area originally contained in rgn2 that was not
shared with rgn1. This operator combines both areas and removes the overlapping
sections. This is a logical XOR (exclusive OR) operation: areas that are part of either
rgn1 OR rgn2 but not of both become part of the new region.

Tlcon class

The TIcon class encapsulates an icon handle and constructors for instantiating the Tlcon
object. You can use the Tlcon class to construct an icon from a resource or explicit info.

Constructing Ticon

You can construct a TIcon in a number of ways: from an existing Tlcon object, from a
resource in the current application, from a resource in another module, or explicitly
from size and data information.

You can create icon objects from an existing icon encapsulated in a Tlcon object:
TIcon (HINSTANCE instance, const TIcon& icon);

instance can be any module instance. For example, you could get the instance of a DLL
and get an icon from that instance:

TModule iconLib("MYICONS.DLL");
TIcon icon(iconLib, "MYICON");

Note the implicit conversion of the TModule iconLib into an HINSTANCE in the call to
the Tlcon constructor.

You can create a Tlcon object from an icon resource in any module:
TIcon (HINSTANCE instance, TResId resId);

In this case, instance should be the HINSTANCE of the module from which you want to
get the icon, and resld is the resource ID of the particular icon you want to get. Passing in
0 for instance gives you access to built-in Windows icons.

You can also load an icon from a file:

TIcon (HINSTANCE instance, char far* filename, int index);

Chapter 14, Graphics objects 229

In this case, instance should be the instance of the current module, filename is the name of
the file containing the icon, and index is the index of the icon to be retrieved.

You can also create a new icon:

TIcon(HINSTANCE instance,
TSize& size,
int planes,
int bitsPixel,
void far* andBits,
void far* xorBits);

In this case, instance should be the instance of the current module, size indicates the size
of the icon, planes indicates the number of color planes, bitsPixel indicates the number of
bits per pixel, andBits points to an array containing the AND mask of the icon, and
xorBits points to an array containing the XOR mask of the icon. The andBits array must
specify a monochrome mask. The xorBits array can be a monochrome or device-
dependent color bitmap.

You can also create a new Tlcon object from an existing HICON handle:
TIcon(HICON handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

There are two other constructors that are available only for 32-bit applications:

TIcon(const void* resBits, uint32 resSize);
TIcon(const ICONINFO* iconInfo);

The first constructor takes two parameters: resBits is a pointer to a buffer containing the
icon data bits (usually obtained from a call to LookuplconldFromDirectory or LoadResource
functions) and resSize indicates the number of bits in the resBits buffer.

The second constructor takes a single parameter, an ICONINFO structure. The
constructor creates an icon from the information in the ICONINFO structure. The flcon
member of the ICONINFO structure must be true, indicating that the ICONINFO
structure contains an icon.

~Tlcon deletes the icon and its storage space.

Accessing Ticon

You can access Tlcon through an HICON. To get an HICON from a Tlcon object, use the
HICON operator with the TIcon object as the parameter. The HICON operator is almost
never explicitly invoked:

HICON

TMyIcon::GetHIcon()

{ .
return *this;

}

This code automatically invokes the HICON conversion operator to cast the Tlcon object
to the correct type.

230 ObjectWindows Programmer’s Guide

The other access function in Tlcon, called Getlconlnfo, is available for 32-bit applications
only. GetlconInfo takes as its only parameter a pointer to a ICONINFO structure. The
function fills out the ICONINFO structure and returns true if the operation was
successful. For example, suppose you create an icon object, then want to extract the icon
data into an ICONINFO structure. The code would look something like this:

ICONINFO iconInfo;

// Load stock icon - Exclamation
TIcon icon(0, IDI_EXCLAMATION);

icon.GetIconInfe(&iconInfo);

TCursor class

The TCursor class encapsulates a cursor handle and constructors for instantiating the
TCursor object. You can use the TCursor class to construct a cursor from a resource or
explicit information.

Constructing TCursor

You can construct a TCursor in a number of ways: from an existing TCursor object, from
a resource in the current application, from a resource in another application, or explicitly
from size and data information.

You can create cursor objects from an existing cursor encapsulated in a TCursor object:
TCursor (HINSTANCE instance, const TCursor& cursor);

instance in this case should be the instance of the current application. TCursor does not
encapsulate the application instance because TCursors know nothing about application
objects. It is usually easiest to access the current application instance in a window or
other interface object.

TCursor (HINSTANCE instance, TResId resld);
TCursor (HINSTANCE instance,

const TPointé& hotSpot,

TSize& size,

void far* andBits,
void far* xorBits);

You can also create a new TCursor object from an existing HCURSOR handle:
TCursor (HCURSOR handle, TAutoDelete autoDelete = NoAutoDelete) ;

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message.

There are two other constructors that are available only for 32-bit applications:

TCursor (const void* resBits, uint32 resSize);
TCursor (const ICONINFO* iconInfo);

Chapter 14, Graphics objects 231

The first constructor takes two parameters: resBits is a pointer to a buffer containing the
cursor data bits (usually obtained from a call to LookuplconldFromDirectory or
LoadResource functions) and resSize indicates the number of bits in the resBits buffer.

The second constructor takes a single parameter, an ICONINFO structure. The
constructor creates an icon from the information in the ICONINFO structure. The flcon
member of the ICONINFO structure must be false, indicating that the ICONINFO
structure contains an cursor.

~TCursor deletes the cursor. If the deletion fails, the destructor throws an exception.

Accessing TCursor

You can access TCursor through an HCURSOR. To get an HCURSOR from a TCursor
object, use the HCURSOR operator with the TCursor object as the parameter. The
HCURSOR operator is almost never explicitly invoked:

HCURSOR
TMyCursor: :GetHCursor ()
{

return *this;

}

This code automatically invokes the HCURSOR conversion operator to cast the TCursor
object to the correct type. ‘

The other access function in TCursor, called Getlconlnfo, is available for 32-bit
applications only. Getlconlnfo takes as its only parameter a pointer to a ICONINFO
structure. The function fills out the ICONINFO structure and returns true if the
operation was successful. For example, suppose you create an cursor object, then want
to extract the cursor data into an ICONINFO structure. The code would look something
like this:

ICONINFO cursorInfo;

// Load stock cursor - slashed circle
TCursor cursor (NULL, IDC_NO);

cursor.GetIconInfo (&cursorInfo);

TDib class

A device-independent bitmap, or DIB, has no GDI handle like a regular bitmap,
although it does have a global handle. Instead, it is just a structure containing format
and palette information and a collection of bits (pixels). The TDib class provides a
convenient way to work with DIBs like any other GDI object. The memory for the DIB is
in one chunk allocated with the Windows GlobalAlloc functions, so that it can be passed
to the Clipboard, an OLE server or client, and others outside of its instantiating
application.

232 ObjectWindows Programmer’s Guide

Constructing and destroying TDib

You can construct a TDib object either directly or indirectly. Using direct construction,
you can specify the bitmap’s width, height, and so on. Using indirect construction, you
can specify an existing bitmap object, pointer to a BITMAP structure, a metafile, a TDC
device context, and more.

Here is the constructor for directly constructing a TDib object:
TDib (int width, int height, int nColors, uintl6 mode=DIB_RGB_COLORS);

width and height specify the width and height in pixels of the DIB. nColors specifies the
number of colors actually used in the DIB. mode can be either DIB_RGB_COLORS or
DIB_PAL_COLORS. DIB_RGB_COLORS indicates that the color table consists of literal
RGB values. DIB_PAL_COLORS indicates that the color table consists of an array of 16-
bit indices into the currently realized logical palette.

You can create a TDib object by loading it from an executable application module. This
constructor takes two parameters: the first is the HINSTANCE of the module containing
the bitmap and the second is the resource ID of the bitmap you want to load:

TDib (HINSTANCE instance, TResId resld);

To create a TDib object from the Clipboard, pass a reference to a TClipboard object to the
constructor. The constructor gets the handle of the bitmap in the Clipboard and
constructs a bitmap object from the handle.

TDib(const TClipboards& clipboard);

You can load a DIB from a file (typically a .BMP file) into a TDib object by specifying the
name as the only parameter of the constructor:

TDib(const char* name);

You can also construct a TDib object given a TBitmap object and a TPalette object. If no
palette is give, this constructor uses the focus window’s currently realized palette.

TDib(const TBitmap& bitmap, const TPalette* pal = 0);

You can create a DIB object from an existing DIB object:
TDib({const TDib& dib);

You can also create a new TDib object from an existing HGLOBAL handle:
TDib (HGLOBAL handle, TAutoDelete autoDelete = NoAutoDelete);

This constructor is used to obtain an ObjectWindows object as an alias to a regular
Windows handle received in a message. Because an HGLOBAL handle can point to
many different kinds of objects, you must ensure that the HGLOBAL you use in this
constructor is actually the handle to a device-independent bitmap. If you pass a handle
to another type of object, the constructor throws an exception.

If ShouldDelete is true, ~TDib frees the resource and unlocks and frees the chunk of
global memory as needed.

Chapter 14, Graphics objects 233

~ Accessing TDib

TDib provides a number of different types of functions for accessing the encapsulated
DIB.

Type conversions

The type conversion functions for TDib let you access TDib in the most convenient
manner for the operation you want to perform.

You can use the HANDLE conversion operator to access TDib through a HANDLE. To
get a HANDLE from a TDib object, use the HANDLE operator with the TDib object as
the parameter. The HANDLE operator is almost never explicitly invoked:

HANDLE
TMyDib: :GetHandle()
{

return *this;

}

This code automatically invokes the HANDLE conversion operator to cast the TDib
object to the correct type.

You can also convert a TDib object to three other bitmap types. You can use the
following operators to convert a TDib to any one of three types: BITMAPINFO *,
BITMAPINFOHEADER *, or TRgbQuad *. You can use the result wherever that type is
normally used:

operator BITMAPINFO far*();
operator BITMAPINFOHEADER far*();
operator TRgbQuad far*();

Accessing internal structures

The functions in this section give you access to the DIB’s internal data structures. These
three functions return the DIB’s equivalent bitmap types as pointers to BITMAPINFO,
BITMAPINFOHEADER, and TRgbQuad objects:

BITMAPINFO far* GetInfo();
BITMAPINFOHEADER far* GetInfoHeader();
TRgbQuad far* GetColors();

The following function returns a pointer to an array of WORDs containing the color
indices for the DIB:

uintl6 far* GetIndices();

This function returns a pointer to an array containing the bits that make up the actual
DIB image:

void HUGE* GetBits();
~ Clipboard

You can move a DIB to the Clipboard using the ToClipboard function. ToClipboard takes a
reference to a TClipboard object as a parameter. Because the ToClipboard function actually

234 ObjectWindows Programmer’s Guide

removes the object from your application, you should usually use a TDib constructor to
create a temporary object:

TClipboard clipBoard;
TDib (ID_BITMAP) .ToClipboard (clipBoard);

DIB information
The TDib class provides a number of accessor functions that you can use to query a TDib
object and get information about the DIB contained in the object:

¢ To find out whether the object is valid, call the IsOK function. The IsOK takes no
parameters. It returns true if the object is valid and false if not.

¢ The IsPM function takes no parameters. This function returns true when the DIBis a -
Presentation Manager-compatible bitmap.

o The Width and Height functions return the bitmap’s width and height respectively, in
pixel units.

* The Size function returns the bitmap’s width and height in pixel units, but contained
in a T'Size object.

® The NumColors function returns the number of colors used in the bitmap.

o StartScan is provided for compatibility with older code. This function always
returns 0.

* NumScans is provided for compatibility with older code. This functions returns the
height of the DIB in pixels.

® The Usage function indicates what mode the DIB is in. This value is either
DIB_RGB_COLORS or DIB_PAL_COLORS.

¢ The WriteFile function writes the DIB object to disk. This function takes a single
parameter, a const char*. This should point to the name of the file in which you want
to save the bitmap.

Working in palette or RGB mode

A DIB can hold color values in two ways. In palette mode, the DIB’s color table contains
indices into a palette. The color values don’t themselves indicate any particular color.
The indices must be cross-referenced to the corresponding palette entry in the currently
realized palette. In RGB mode, each entry in the DIB’s color table represents an actual
RGB color value.

You can switch from RGB to palette mode using these functions:

bool ChangeModeToPal (const TPalette& pal);
bool ChangeModeToRGB(const TPalette& pal);

When you switch to palette mode using ChangeModetoPal, the TPalette & parameter is
used as the DIB'’s palette. Each color used in the DIB is mapped to the palette and
converted to a palette index. When you switch to RGB mode using ChangeModetoRGB,
the TPalette & parameter is used to convert the current palette indices to their RGB
equivalents contained in the palette.

Chapter 14, Graphics objects 235

If you're working in RGB mode, you can use the following functions to access and
modify the DIB’s color table:

* Retrieve any entry in the DIB’s color table using the GetColor function. This function
takes a single parameter, an int indicating the index of the color table entry. GetColor
returns a TColor object.

. 'Change any entry in the DIB’s color table using the SetColor function. This function
takes two parameters, an int indicating the index of the color table entry you want to
change and a TColor containing the value to which you want to change the entry.

* Match a TColor object to a color table entry by using the FindColor function. FindColor
takes a single parameter, a TColor object. FindColor searches through the DIB’s color
table until it finds an exact match for the TColor object. If it fails to find a match,
FindColor returns —1.

* Substitute one color for a color that currently exists in the DIB’s color table using the
MapColor function. This function takes three parameters, a TColor object containing
the color to be replaced, a TColor object containing the new color to be placed in the
color table, and a bool that indicates whether all occurrences of the second color
should be replaced. If the third parameter is true, all color table entries that are equal
to the first parameter are replaced by the second. If the third parameter is false, only
the first color table entry that is equal to the first parameter is replaced. By default, the
third parameter is false. The return value of this function indicates the total number
of palette entries that were replaced.

For example, suppose you wanted to replace all occurrences of white in your DIB
with light gray. The code would look something like this:

myDib->MapColor (TColor: :LtGray, TColor::White, true);

If you're working in palette mode, you can use the following functions to access and
modify the DIB’s color table:

* Retrieve the palette index of any color table entry using the GetIndex function. This
function takes a single parameter, an int indicating the index of the color table entry.
GetIndex returns a uint16 containing the palette index.

* Change any entry in the DIB’s color table using the SetIndex function. This function
takes two parameters, an int indicating the index of the color table entry you want to
change and a uint16 containing the palette index to which you want to change the

entry.

* Match a palette index to a color table entry by using the FindIndex function. FindIndex
takes a single parameter, a uint16. FindIndex searches through the DIB’s color table
until it finds a match for the uint16. If it fails to find a match, FindIndex returns —1.

¢ Substitute one color for a color that currently exists in the DIB’s color table using the
MapIndex function. This function takes three parameters, a uint16 indicating the index
to be replaced, a uint16 indicating the new palette index to be placed in the color
table, and a bool that indicates whether all occurrences of the second color should be
replaced. If the third parameter is true, all color table entries that are equal to the first
parameter are replaced by the second. If the third parameter is false, only the first
color table entry that is equal to the first parameter is replaced. By default, the third

236 ObjectWindows Programmer’s Guide

parameter is false. The return value of this function indicates the total number of
palette entries that were replaced.

Matching interface colors to system colors

DIBs are often used to enhance and decorate a user interface. To make your interface
consistent with your application user’s system, you should use the MapUIColors
function, which replaces standard interface colors with the user’s own system colors.
Here is the syntax for MapUIColors:

void MapUIColors(uint mapColors, TColor* bkColor = 0);

The mapColors parameter should be an OR’ed combination of five flags: TDib::MapFace,
TDib::MapText, TDib::MapShadow, TDib::MapHighlight, and TDib::MapFrame. Each of
these values causes a different color substitution to take place:

This flag Replaces... With...

TDib:MapText TColor::Black COLOR_BTNTEXT
TDib::MapFace TColor::LtGray COLOR_BTNFACE
TDib::MapFace TColor::Gray COLOR_BTNSHADOW
TDib::MapFace TColor::White COLOR_BTNHIGHLIGHT

TDib:MapFrame TColor::LtMagenta = COLOR_WINDOWFRAME

The bkColor parameter, if specified, causes the color TColor::LtYellow to be replaced by
the color bkColor.

Because MapUIColors searches for and replaces TColor table entries, this function is
useful only with a DIB in RGB mode. Furthermore, because it replaces particular colors,
you must design your interface using the standard system colors; for example, your
button text should be black (TColor::Black), button faces should be light gray
(TColor::LtGray), and so on. This should be fairly simple, since these are specifically
designed so that they are equivalent to the standard default colors for each interface
element.

You should also call the MapUIColors function before you modify any of the colors
modified by MapUIColors. If you don’t do this, MapUIColors won't be able to find the
attribute color for which it is searching, and that part of the interface won’t match the
system colors.

Extending TDib
TDib provides a number of protected functions that are accessible only from within
TDib and TDib-derived classes. You can also access TDib’s control data:

* Infois a pointer to a BITMAPINFO or BITMAPCOREINFO structure, which contains
the attributes, color table, and other information about the DIB.

* Bitsis a void pointer that points to an area of memory containing the actual graphical
data for the DIB.

* NumClrs is a long containing the actual number of colors used in the DIB; note that
this isn’t the number of colors possible, but the number actually used.

Chapter 14, Graphics objects 237

* Wis an int indicating the width of the DIB in pixels.
¢ His an int indicating the height of the DIB in pixels.

® Mode is a uint16 indicating whether the DIB is in RGB mode (DIB_RGB_COLORS) or
palette mode (DIB_PAL_COLORS).

¢ IsCoreis a bool; it is true if the Info pointer points to a BITMAPCOREINFO structure
and false if it doesn’t.

o [sResHandle indicates whether the DIB was loaded as a resource and therefore
whether Handle is a resource handle.

You can use the InfoFromHandle function to fill out the structure pointed to by Info.
InfoFromHandle extracts information from Handle and fills out the attributes of the Info
structure. InfoFromHandle takes no parameters and has no return value.

The Read function reads a Windows 3.0- or Presentation Manager-compatible DIB from
a file referenced by a TFile object. When loading, Read checks the DIB’s header,
attributes, palette, and bitmap. Presentation Manager-compatible DIBs are converted to
Windows DIBs on the fly. This function returns true if the DIB was read in correctly.

You can use the LoadResource function to load a DIB from an application or DLL module.
This function takes two parameters, an HINSTANCE indicating the application or DLL
module from which you want to load the DIB and a TResId indicating the particular
resource within that module you want to retrieve. LoadResource returns true if the
operation was successful.

You can use the LoadFile function to load a DIB from a file. This function takes one
parameter, a char * that points to a string containing the name of the file containing the
DIB. LoadFile returns true if the operation was successful.

238 ObjectWindows Programmer’s Guide

Chapter

Validator objects

ObjectWindows provides several ways you can associate validator objects with the edit
control objects to validate the information a user types into an edit control. Using
validator objects makes it easy to add data validation to existing ObjectWindows
applications or to change the way a field validates its data.

This chapter discusses three topics related to data validation:

¢ Using the standard validator classes
* Using data validator objects
¢ Writing your own validator objects

At any time, you can validate the contents of any edit control by calling that object’s
CanClose member function, which in turn calls the appropriate validator object.
ObjectWindows validator classes also interact at the keystroke and gain/lose focus
level.

The standard validator classes

The ObjectWindows standard validator classes automate data validation.
ObjectWindows defines six validator classes in validate.h:

TValidator, a base class from which all other validator classes are derived.
TFilterValidator, a filter validator class.

TRangeValidator, a numeric-range validator class based on TFilterValidator.
TLookupValidator, a lookup validator base class.

TStringLookupValidator, a string lookup validator class based on TLookupValidator.
TPXPictureValidator, a picture validator class that validates a string based on a given
pattern or “picture.”

The following sections briefly describe each of the standard validator classes.

Chapter 15, Validator objects 239

Validator base class

The abstract class TValidator is the base class from which all validator classes are
derived. TValidator is a validator for which all input is valid: member functions IsValid
and IsValidInput always return true, and Error does nothing. Derived classes should
override IsValid, IsValidlnput, and Error to define which values are valid and when
errors should be reported. Use TValidator as a starting point for your own validator
classes if none of the other validator classes are appropriate starting points.

Filter validator class

TFilterValidator is a simple validator that checks input as the user enters it. The filter
validator constructor takes one parameter, a set of valid characters:

TFilterValidator (const TCharSeté& validChars);
TCharSet is defined in bitset.h.

TFilterValidator overrides IsValidInput to return true only if all characters in the current
input string are contained in the set of characters passed to the constructor. The edit
control inserts characters only if IsValidInput returns true, so there is no need to override
IsValid: because the characters made it through the input filter, the complete string is
valid by definition. Descendants of TFilterValidator, such as TRangeValidator, can
combine filtering of input with other checks on the completed string.

Range validator class

TRangeValidator is a range validator derived from TFilterValidator. It accepts only
numbers and adds range checking on the final result. The constructor takes two
parameters that define the minimum and maximum valid values:

TRangeValidator(long min, long max);

The range validator constructs itself as a filter validator that accepts only the digits 0
through 9 and the plus and minus characters. The inherited IsValidInput, therefore,
ensures that only numbers filter through. TRangeValidator then overrides IsValid to
return true only if the entered numbers are a valid integer within the range defined in
the constructor. The Error member function displays a message box indicating that the
entered value is out of range.

Lookup validator class

TLookupValidator is an abstract class that compares entered values with a list of
acceptable values to determine validity. TLookupValidator introduces the virtual member
function Lookup. By default, Lookup returns true. Derived classes should override Lookup
to compare the parameter with a list of items, returning true if a match is found.

TLookupValidator overrides IsValid to return true only if Lookup returns true. In derived
classes you should not override IsValid; you should instead override Lookup.
TStringLookupValidator class is an instance class based on TLookupValidator.

240 ObjectWindows Programmer’s Guide

String lookup validator class

TStringLookupValidator is a working example of a lookup validator; it compares the
string passed from the edit control with the items in a string list. If the passed-in string
occurs in the list, IsValid returns true. The constructor takes only one parameter, the list
of valid strings:

TStringLookupValidator (TSortedStringArray* strings);
TSortedStringArray is defined as
typedef TSArrayAsVector<string> TSortedStringArray;

To use a different string list after constructing the string lookup validator, use member
function NewStringList, which disposes of the old list and installs the new list.

TStringLookupValidator overrides Lookup and Error. Lookup returns true if the passed-in
string is in the list. Error displays a message box indicating that the string is not in the
list.

Picture validator class

Picture validators compare the string entered by the user with a “picture” or template
that describes the format of valid input. The pictures used are compatible with those
used by Borland’s Paradox relational database to control user input. Constructing a
picture validator requires two parameters: a string holding the template image and a
Boolean value indicating whether to automatically fill-in the picture with literal
characters:

TPXPictureValidator(const char far* pic, bool autoFill=false);

TPXPictureValidator overrides Error, IsValid, and IsValidInput, and adds a new member
function, Picture. Error displays a message box indicating what format the string should
have. IsValid returns true only if the function Picture returns true; thus you can derive
new kinds of picture validators by overriding only the Picture member function.
IsValidInput checks characters as the user enters them, allowing only those characters
permitted by the picture format, and optionally filling in literal characters from the
picture format.

Here is an example of a picture validator that is being constructed to accept social
security numbers:

edit->SetValidator (new TPXPictureValidator ("###-##-####"));

Picture syntax is fully described under TPXPictureValidator member function Picture in
the ObjectWindows Reference Guide.

The Picture member function tries to format the given input string according to the
picture format and returns a value indicating the degree of its success. The following
code lists those return values:

// TPXPictureValidator result type
enum TPicResult

{
prComplete,

Chapter 15, Validator objects 241

princomplete,

prEmpty,

prError,

prSyntax,

prAmbiguous,

prIncompNoFill
}i

Using data validators

To use data validator objects, you must first construct an edit control object and then
construct a validator object and assign it to the edit control. From this point on, you

“don’t need to interact with the validator object directly. The edit control knows when to
call validator member functions at the appropriate times.

Constructing an edit control object

Edit controls objects are instances of the TEdit class. Here is an example of how to
construct an edit control:

TEdit* edit;
edit = new TEdit(this, 101, sizeof (transfer.NameEdit));

For more information on TEdit and using edit controls, see Chapter 11.

Constructing and assigning validator objects

Because validator objects aren’t interface objects, their constructors require only enough
information to establish the validation criteria. For example, a numeric-range validator
object requires only two parameters: the minimum and maximum values in the valid
range.

Every edit control object has a data member that can point to a validator object. This
pointer’s declaration looks like this: ‘

TValidator *Validator

If Validator doesn’t point to a validator object, the edit control behaves as described in
Chapter 11. You assign a validator by calling the edit control object’s SetValidator
member function. The edit control automatically checks with the validator object when
processing key events and when called on to validate itself.

The following code shows the construction of a validator and its assignment to an edit
control. In this case, a filter validator that allows only alphabetic characters is used.

edit->SetValidator (new TFilterValidator("A-Za-z. "));

A complete example showing the use of the standard validators can be found in
OWLAPI\VALIDATE.

242 ObjectWindows Programmer’s Guide

Overriding validator member functions

Although the standard validator objects should satisfy most of your data validation
needs, you can also modify the standard validators or write your own validation
objects. If you decide to do this, you should be familiar with the following list of
member functions inherited from the base class TValidator; in addition to understanding
the function of each member function, you should also know how edit controls use
them and how to override them if necessary.

Valid
IsValid
IsValidlnput
Error

Member function Valid

Member function Valid is called by the associated edit-control object to verify that the
data entered is valid. Much like the CanClose member functions of interface objects, Valid
is a Boolean function that returns true only if the string passed to it is valid data. One
responsibility of an edit control’s CanClose member function is calling the validator
object’s Valid member function, passing the edit control’s current text.

When using validators with edit controls, you shouldn’t need to call or override the
validator’s Valid member function; the inherited version of Valid will suffice. By default,
Valid returns true if the member function IsValid returns true; otherwise, it calls Error to
notify the user of the error and then returns false.

Member function IsValid

The virtual member function IsValid is called by Valid, which passes IsValid the text
string to be validated. IsValid returns true if the string represents valid data. IsValid does
the actual data validation, so if you create your own validator objects, you'll probably
override IsValid.

- Note that you don’t call IsValid directly. Use Valid to call IsValid, because Valid calls Error
to alert the user if IsValid returns false. This separates the validation role from the error-
reporting role.

Member function IsValidinput

When an edit control object recognizes a keystroke event intended for it, it calls its
validator’s IsValidlnput member function to ensure that the entered character is a valid
entry. By default, IsValidlnput member functions always return true, meaning that all
keystrokes are acceptable, but some derived validators override IsValidInput to filter out
unwanted keystrokes.

For example, range validators, which are used for numeric input, return true from
IsValidInput only for numeric digits and the characters’+" and ‘.

Chapter 15, Validator objects 243

IsValidInput takes two parameters:
virtual bool IsValidInput(char far* str, bool suppressFill);

The first parameter, str, points to the current input text being validated. The second
parameter is a Boolean value indicating whether the validator should apply filling or
padding to the input string before attempting to validate it. TPXPictureValidator is the
only standard validator object that uses the second parameter.

Member function Error

Virtual member function Error alerts the user that the contents of the edit control don't
pass the validation check. The standard validator objects generally present a simple
message box notifying the user that the contents of the input are invalid and describing
what proper input would be.

For example, the Error member function for a range validator object creates a message
box indicating that the value in the edit control is not between the indicated minimum
and maximum values.

Although most descendant validator objects override Error, you should never call it
directly. Valid calls Error for you if IsValid returns false, which is the only time Error
needs to be called.

- 244 ObjectWindows Programmer’s Guide

Chapter

Visual Basic controls

ObjectWindows lets you use Visual Basic (VBX) 1.0-compatible controls in your
Windows applications as easily as you use standard Windows or ObjectWindows
controls.

VBX controls offer a wide range of functionality that is not provided in standard
Windows controls. There are numerous public domain and commercial packages of
VBX controls that can be used to provide a more polished and useful user interface.

This chapter describes how to design an application that uses VBX controls, describes
the TVbxControl and TVbxEventHandler classes, explains how to receive messages from a
VBX control, and shows how to get and set the properties of a control.

. Using VBX controls

To use VBX controls in your ObjectWindows application, follow this process:

¢ In your OwlMain function, call the function VBXInit before you call the Run function
of your application object. Call the function VBXTerm after you call the Run function
of your application object. VBXInit takes the application instance as a parameter.
VBXTerm takes no parameters. Your OwlMain function might look something like
this:
int
OwlMain(int argc, char* argv([])

{
VBXInit (_hInstance);

return TApplication("Wow!").Run();

VBXTerm() ;
}

Chapter 16, Visual Basic controls 245

These functions initialize and close each instance’s host environment necessary for
using VBX controls.

Derive a class mixing your base interface class with TVbxEventHandler. Your base
interface class is whatever class you want to display the control in. If you're using the
control in a dialog box, you need to mix in TDialog. The code would look something
like this:

class MyVbxDialog : public TDialog, public TVbxEventHandler

{

public:
MyVbxDialog(TWindow *parent, char *name)
: TDialog(parent, name), TWindow(parent, name) {}

DECLARE_RESPONSE_TABLE (MyVbxDialog) ;
}i ‘

Build a response table for the parent, including all relevant events from your control.
Use the EV_VBXEVENTNAME macro to set up the response for each control event.
Response tables are described in greater detail in Chapter 4.

Create the control’s parent. You can either construct the control when you create the
parent or allow the parent to construct the control itself, depending on how the
control is being used. This is discussed in further detail on page 248.

- VBX control classes

ObjectWindows provides two classes for use in designing an interface for VBX controls.
These classes are TVbxControl and TVbxEventHandler.

TVbxControl class

TVbxControl provides the actual interface to the control by letting you:

Construct a VBX control object
Get and change control properties

Find the number of control properties and convert property names to and from
property indices

Find the number of control events and convert event names to and from event indices

Call the Visual Basic 1.0 standard control methods Addltem, Move, Refresh, and
Removeltem

Get the handle to the control element using the TVbxControl member function
GetHCTL

TVbxControl is derived from the class TControl, which is derived from TWindow. Thus,
TVbxControl acts much the same as any other interface element based on TWindow.

246 ObjectWindows Programmer’s Guide

TVbxControl constructors
TVbxControl has two constructors. The first constructor lets you dynamically construct a
VBX control by specifying a VBX control file name (for example, SWITCH.VBX), control
ID, control class, control title, location, and size:
TVbxControl (TWindow *parent,
int id,
const char far *FileName,
const char far *ClassName,
const char far *title,
int x, int vy,
int w, int h,
TModule *module = 0);

where:
® parent is a pointer to the control’s parent.

¢ id is the control’s ID, which is used when defining the parent’s response table; this
usually looks much like a resource ID.

¢ FileName is the name of the file that contains the VBX control, including a path name
if necessary.

* ClassName is the class name of the control; a given VBX control file might contain a
number of separate controls, each of which is identified by a unique class name
(usually found in the control reference guide of third-party VBX control libraries).

e title is the control’s title or caption.

¢ xand y are the coordinates within the parent object at which you want the control
placed.

¢ wand h are the control’s width and the height.

* module is passed to the TControl base constructor as the TModule parameter for that
constructor; it defaults to 0.

The second constructor lets you set a TVbxControl object using a VBX control that has
been defined in the application’s resource file:

TVbxControl (TWindow *parent,
int resId,
TModule *module = 0);

where:
* parent is a pointer to the control’s parent.
e resld is the resource ID of the VBX control in the resource file.

* module is passed to the TControl base constructor as the TModule parameter for that
constructor; it defaults to 0.

Chapter 16, Visual Basic controls 247

Implicit and explicit construction

You can construct VBX controls either explicitly or implicitly. You explicitly construct an
object when you call one of the constructors. You implicitly construct an object when
you do not call one of the constructors and allow the control to be instantiated and
created by its parent.

Explicit construction involves calling either constructor of a VBX control object. This is
normally done in the parent’s constructor so that the VBX control is constructed and
ready when the parent window is created. You can also wait to construct the control
until it’s needed; for example, you might want to do this if you had room for only one
control. In this case, you could let the user choose a menu choice or press a button. Then,
depending what the user does, you would instantiate an object and display it in an
existing interface element.

The following code demonstrates explicit construction using both of the TVbxControl
constructors in the constructor of a dialog box object:

class TTestDialog : public TDialog, public TVbxEventHandler
{
public:
TTestDialog (TWindow *parent, char *name)
: TDialog(parent, name), TWindow(parent, name)
{ .
new TVbxControl (this, IDCONTROLI1);
new TVbxControl (this, IDCONTROL2,
"SWITCH.VBX", "BiSwitch",
"&Program VBX Control"
16, 70, 200, 50);
}

DECLARE_RESPONSE_TABLE (TTestDialog) ;
}i

Implicit construction takes place when you design your interface element outside of
your application source code, such as in Resource Workshop. You can use Resource
Workshop to add VBX controls to dialog boxes and other interface elements. Then when
you instantiate the parent object, the children, such as edit boxes, list boxes, buttons, and
VBX controls, are automatically created along with the parent. The following code
demonstrates how the code for this might look. It's important to note, however, that
what you don’t see in the following code is a VBX control. Instead, the VBX control is
included in the dialog resource DIALOG_1. When DIALOG_1 is loaded and created,
the VBX control is automatically created.

class TTestDialog : public TDialog, public TVbxEventHandler
{
public:
TTestDialog (TWindow *parent, char *name)
: TDialog(parent, name), TWindow(parent, name) {}
DECLARE_RESPONSE_TABLE (TTestDialog) ;
}i

void
TTestWindow: : CmAbout ()

248 ObjectWindows Programmer’s Guide

{
TTestDialog (this, "DIALOG_1").Execute();
}

TVbxEventHandler class

The TVbxEventHandler class is quite small and, for the most part, of little interest to most
programmers. What it does is very important, though. Without the functionality
contained in TVbxEventHandler, you could not communicate with your VBX controls.
The event-handling programming model is described in greater detail in the following
sections; this section explains only the part that TVbxEventHandler plays in the process.

TVbxEventHandler consists of a single function and a one-message response table. The
function is called EvVbxDispatch, and it is the event-handling routine for a message
called WM_VBXFIREEVENT. EvVbxDispatch receives the WM_VBXFIREEVENT
message, converts the uncracked message to a VBXEVENT structure, and dispatches a
new message, which is handled by the control’s parent. Because the parent object is
necessarily derived from TVbxEventHandler, this means that the parent calls back to
itself with a different message. The new message is much easier to handle and
understand. This is the message that is handled by the WM_VBXEVENTNAME macro
described in the next section.

Handling VBX control messages

You must handle VBX control messages through the control’s parent object. For the
parent object to be able to handle these messages, it must be derived from the class
TVbxEventHandler. To accomplish this, you can mix whatever interface object class you
want to use to contain the VBX control (for example, TDialog, TFrameWindow, or classes
you might have derived from ObjectWindows interface classes) with the
TVbxEventHandler class.

Event response table

Once you've derived your new class, you need to build a response table for it. The
response table for this class looks like a normal response table; you still need to handle
all the regular command messages and events you normally do. The only addition is the
EV_VBXEVENTNAME macro to handle the new class of messages from your VBX
controls.

The EV_VBXEVENTNAME macro takes three parameters:
EV_VBXEVENTNAME (ID, Event, EvHandler)
where:

¢ IDis the control ID. You can find this ID either as the second parameter to both
constructors or as the resource ID in the resource file.

e Event is a string identifying the event name. This is dependent on the control and can
be one of the standard VBX event names or a custom event name. You can find this

Chapter 16, Visual Basic controls 249

event name by looking in the control reference guide if the control is from a third-
party VBX control library.

o FEvHandler is the handler function for this event and control. The EvHandler function
has the signature:

void EvHandler (VBXEVENT FAR *event);

When a message is received from a VBX control by its parent, it dispatches the message
to the handler function that corresponds to the correct control and event. When it calls
the function, it passes it a pointer to a VBXEVENT structure. This structure is discussed
in more detail in the next section.

Interpreting a control event

Once a VBX control event has taken place and the event-handling function has been
called, the function needs to deal with the VBXEVENT structure received as a
parameter. This structure looks like this:

struct VBXEVENT
{
HCTL hCtl;
HWND hWnd;
int nID;
int iEvent;
LPCSTR lpszEvent;
int cParams;
LPVOID lpParams;
}i

where:

hCtl is the handle of the sending VBX control (not a window handle).

hWnd is the handle of the control window.

nID is the ID of the VBX control.

iEvent is the event index.

IpszEvent is the event name.

cParams is the number of parameters for this event.

IpParams is a pointer to an array containing pointers to the parameter values for this
event.

To understand this structure, you need to understand how a VBX control event works.
The first three members are straightforward: they let you identify the sending control.
The next two members are also fairly simple; each event that a VBX control can send has
both an event index, represented here by iEvent, and an event name, represented here
by IpszEvent.

The next two members, which store the parameters passed with the event, are more
complex. cParams contains the total number of parameters available for this event.
IpParams is an array of pointers to the event’s parameters (like any other array, IpParam
is indexed from 0 to cParams —1). These two members are more complicated than the
previous members because there is no inherent indication of the type or meaning of
each parameter. If the control is from a third-party VBX control library, you can look in

250 ObjectWindows Programmer’s Guide

the control reference guide to find this information. Otherwise, you'll need to get the
information from the designer of the control (or to have designed the control yourself).

Finding event information

The standard way to interpret the information returned by an event is to refer to the
documentation for the VBX control. Failing that, TVbxControl provides a number of
methods for obtaining information about an event.

You can find the total number of events that a control can send by using the TVbxControl
member function GetNumEvents. This returns an int that gives the total number of
events. These events are indexed from 0 to the return value of GetNumEvents —1.

You can find the name of any event in this range by calling the TVbxControl member
function GetEventName. GetEventName takes one parameter, an int index number, and
returns a string containing the name of the event.

Conversely, you can find the index of an event by calling the TVbxControl member
function GetEventIndex. GetEventIndex takes one parameter, a string containing the event
name, and returns the corresponding int event index.

Accessing a VBX control

There are two ways you can directly access a VBX control. The first way is to get and set
the properties of the control. A control has a fixed number of properties you can set to
affect the look or behavior of the control. The other way is to call the control’s methods.
A control’s methods are similar to member functions in a class and are actually accessed
through member functions in the TVbxControl class. You can use these methods to call
into the object and cause an action to take place.

VBX control properties

Every VBX control has a number of properties. Control properties affect the look and
behavior of the control; for example, the colors used in various parts of the control, the
size and location of the control, the control’s caption, and so on. Changing these
properties is usually your main way to manipulate a VBX control.

Each control’s properties should be fully documented in the control reference guide of
third-party VBX control libraries. If the control is not a third-party control or part of a
commercial control package, then you need to consult the control’s designer for any
limits or special meanings to the control’s properties. Many properties often function
only as an index to a property. An example of this might be background patterns: 0
could mean plain, 1 could mean cross-hatched, 2 could mean black, and so on. Without
the proper documentation or information, it can be quite difficult to use a control’s
properties.

Chapter 16, Visual Basic controls 251

Finding property information \

The standard way to get information about a control’s properties is to refer to the
documentation for the VBX control. Failing that, TVbxControl provides a number of
methods for obtaining information about a control’s properties.

You can find the total number of properties for a control by calling the TVbxControl
member function GetNumProps, which returns an int that gives the total number of
properties. These properties are indexed from 0 to the return value of GetNumProps 1.

You can find the name of any property in this range by calling the TVbxControl member
function GetPropName. GetPropName takes one parameter, an int index number, and
returns a string containing the name of the property.

Conversely, you can find the index of an property by calling the TVbxControl member
function GetPropIndex. GetPropIndex takes one parameter, a string containing the
property name, and returns the corresponding int property index.

Getting control properties

You can get the value of a control property using either its name or its index number.
Although using the index is somewhat more efficient (because there’s no need to look
up a string), using the property name is usually more intuitive. You can use either
method, depending on your preference.

TVbxControl provides the function GetProp to get the properties of a control. GetProp is
overloaded to allow getting properties using the index or name of the property. Each of
these versions is further overloaded to allow getting a number of different types of
properties:

// get properties by index

bool GetProp(int propIndex, int& value, int arrayIndex = -1);
bool GetProp(int propIndex, long& value, int arrayIndex = -1);
bool GetProp(int propIndex, HPIC& value, int arrayIndex = -1);
bool GetProp(int propIndex, float& value, int arrayIndex = -1);
bool GetProp(int propIndex, string& value, int arrayIndex = -1);

/1 get properties by name

bool GetProp(const char far* name, int& value, int arrayIndex = -1);
bool GetProp(const char far* name, long& value, int arrayIndex = -1);
bool GetProp(const char far* name, HPIC& value, int arrayIndex = -1);
bool GetProp(const char far* name, float& value, int arrayIndex = -1);
bool GetProp(const char far* name, string& value, int arrayIndex = -1);

In the versions where the first parameter is an int, you specify the property by passing
in the property index. In the versions where the first parameter is a char *, you specify
the property by passing in the property name.

Instead of returning the value property as the return value of the GetProp function, the
second parameter of the function is a reference to the property’s data type. Create an
object of the same type as the property and pass a reference to the object in the GetProp
function. When GetProp returns, the object contains the current value of the property.

The third parameter is the index of an array property, which you should supply if
required by your control. You can find whether you need to supply this parameter and

252 ObjectWindows Programmer’s Guide

the required values by consulting the documentation for your VBX control. The function
ignores this parameter if it is —1.

Setting control properties

As when you get control properties, you set the value of control property using either
their name or their index number. Although using the index is somewhat more efficient
(because there’s no need to look up a string), using the property name is usually more
intuitive. You can use either method, depending on your preference.

TVbxControl provides the function SetProp to set the properties of a control. SetProp is
overloaded to allow setting properties using the index or name of the property. Each of
these versions is further overloaded to allow setting a number of different types of
properties:

// set properties by index

bool SetProp(int propIndex, int value, int arrayIndex = -1);

bool SetProp(int propIndex, long value, int arrayIndex = -1);

bool SetProp(int propIndex, HPIC value, int arrayIndex = -1);

bool SetProp(int propIndex, float value, int arrayIndex = -1);

bool SetProp(int propIndex, const string& value, int arrayIndex = -1);
bool SetProp(int propIndex, const char far* value, int arrayIndex = -1);

// set properties by name

bool SetProp(const char far* name, int value, int arrayIndex = -1);

bool SetProp(const char far* name, long value, int arrayIndex = -1);

bool SetProp(const char far* name, HPIC value, int arrayIndex = -1);

bool SetProp(const char far* name, float value, int arrayIndex = -1);

bool SetProp(const char far* name, const string& value, int arrayIndex = -1);
bool SetProp(const char far* name, const char far* value, int arrayIndex = -1);

In the versions where the first parameter is an int, you specify the property by passing
in the property index. In the versions where the first parameter is a char *, you specify
the property by passing in the property name.

The second parameter is the value to which the property should be set.

The third parameter is the index of an array property, which you should supply if
required by your control. You can find whether you need to supply this parameter and
the required values by consulting the documentation for your VBX control. The function
ignores this parameter if it is —1.

Although there are five different data types you can pass in to GetProp, SetProp provides
for six different data types. This is because the last two versions use both a char * and the
ANSI string class to represent a string. This provides you with more flexibility when
you're passing a character string into a control. In the GetProp version, casting is
provided to allow a char * to function effectively as a string object.

VBX control methods

Methods are functions contained in each VBX control that you can use to call into the
control and cause an action to take place. TVbxControl provides compatibility with the
methods contained in Visual Basic 1.0-compatible controls:

Chapter 16, Visual Basic controls 253

Move(int x, int y, int w, int h);
Refresh();

AddItem(int index, const char far *item);
RemovelItem(int index);

where:

¢ The Move function moves the control to the coordinates x, y and resizes the control to
w pixels wide by h pixels high.

® The Refresh function refreshes the control’s display area.

¢ The Addltem function adds the item item to the control’s list of items and gives the
new item the index number index.

o The Removeltem function removes the item with the index number index.

254 “ObjectWindows Programmer’s Guide

Chapter

ObjectWindows dynamic-link
libraries

A dynamic-link library (DLL) is a library of functions, data, and resources whose
references are resolved at run time rather than at compile time.

Applications that use code from static-linked libraries attach copies of that code at link
time. Applications that use code from DLLs share that code with all other applications
using the DLL, therefore reducing application size. For example, you might want to
define complex windowing behavior, shared by a group of your applications, in an
ObjectWindows DLL.

This chapter describes how to write and use ObjectWindows DLLs.

Writing DLL functions

When you write DLL functions that will be called from an application, keep these things
in mind:

" (Calls to 16-bit DLL functions should be made far calls. Similarly, pointers that are
specified as parameters and return values should be made far pointers. You need to
do this because a 16-bit DLL has different code and data segments than the calling
application. (This isn't necessary for 32-bit DLLs.) Use the _FAR macro to make your
code portable between platforms.

¢ Static data defined in a 16-bit DLL is global to all calling applications because 16-bit
DLLs have one data segment that all 16-bit DLL instances share. Global data set by
one caller can be accessed by another. If you need data to be private for a given caller
of a 16-bit DLL, you need to dynamically allocate and manage the data yourself on a
per-task basis. For 32-bit DLLs, static data is private for each process.

Chapter 17, ObjectWindows dynamic-link libraries 255

DLL entry and exit functions

Windows requires that two functions be defined in every DLL: an entry function and an
exit function. For 16-bit DLLs, the entry function is called LibMain and the exit function
is called WEP (Windows Exit Procedure). LibMain is called by Windows for the first
application that calls the DLL, and WEP is called by Windows for the last application
that uses the DLL.

For 32-bit DLLs, DIIEntryPoint serves as both the entry and exit functions. DIIEntryPoint
is called each time the DLL is loaded or unloaded, each time a process attaches to or
detaches from the DLL, and each time a thread within a process is created or destroyed.

Windows calls the entry procedure (LibMain or DIIEntryPoint) once, when the library is
first loaded. The entry procedure initializes the DLL; this initialization depends almost
entirely on the particular DLL’s function, but might include the following tasks:

¢ Unlocking the data segment with UnlockData, if it has been declared as MOVEABLE
* Setting up global variables for the DLL, if it uses any

There is no need to initialize the heap because the DLL startup code (CODx.OBJ)
initializes the local heap automatically. The following sections describe the DLL entry
and exit functions for 16- and 32-bit applications.

LibMain
The 16-bit DLL entry procedure, LibMain, is defined as follows:
int FAR PASCAL LibMain(HINSTANCE hInstance,
uintl6 wDataSeg,

uintl6 cbHeapSize,
LPSTR 1pCmdLine)

The parameters are described as follows:
¢ hinstance is the instance handle of the DLL.
* wDataSeg is the value of the data segment (DS) register.

* cbHeapSize is the size of the local heap specified in the module definition file for the
DLL.

¢ IpCmdLine is a far pointer to the command line specified when the DLL was loaded.
This is almost always null, because typically DLLs are loaded automatically without
parameters. It is possible, however, to supply a command line to a DLL when it is
loaded explicitly.

The return value for LibMain is either 1 (successful initialization) or 0 (unsuccessful
initialization). Windows unloads the DLL from memory if 0 is returned.

WEP

WEP is the exit procedure of a DLL. Windows calls it prior to unloading the DLL. This
function isn’t necessary in a DLL (because the Borland C++ run-time libraries provide a
default one), but can be supplied by the DLL writer to perform any cleanup before the

256 ObjectWindows Programmer’s Guide

DLL is unloaded from memory. Often the application has terminated by the time WEP
is called, so valid options are limited.

Under Borland C++, WEP doesn’t need to be exported. Here is the WEP prototype:
int FAR PASCAL WEP (int nParameter);

nParameter is either WEP_SYSTEMEXIT, which means Windows is shutting down, or
WEP_FREE_DLL, which means just this DLL is unloading. WEP returns 1 to indicate
success. Windows currently doesn’t use this return value.

DIIEntryPoint
The 32-bit DLL entry point, DIIEntryPoint, is defined as follows:

bool WINAPI D1lEntryPoint (HINSTANCE hInstDl1l, uint32 fdwReason, LPVOID lpvReserved);
The parameters are described as follows:
 hinstDIl is the DLL instance handle.
* fdwReason is a flag that describes why the DLL is being called (either a process or

thread). The flags can take the following values:

e DLL_PROCESS_ATTACH
o DLL_THREAD ATTACH
e DLL_THREAD DETACH
o DLL_PROCESS DETACH

¢ IpvReserved specifies further aspects of the DLL initialization and cleanup based on
the value of fdwReason.

Exporting DLL functions

After writing your DLL functions, you must export the functions that you want to be
available to a calling application. There are two steps involved: compiling your DLL
functions as exportable functions and exporting them. You can do this in the following
ways:

* If you flag a function with the _export keyword, it's compiled as exportable and is
then exported.

* If you add the _export keyword to a class declaration, the entire class (data and
function members) is compiled as exportable and is exported.

¢ If you don't flag a function with _export, use the appropriate compiler switch or IDE
setting to compile functions as exportable. Then list the function in the module
definition (.DEF) file EXPORTS section.

Importing (calling) DLL functions

You call a DLL function from an application just as you would call a function defined in
the application itself. However, you must import the DLL functions that your
application calls.

Chapter 17, ObjectWindows dynamic-link libraries 257

To import a DLL function, you can

* Add an IMPORTS section to the calling application’s module definition (.DEF) file
and list the DLL function as an import.

¢ Link an import library that contains import information for the DLL function to the
calling application. (Use IMPLIB to make the import library).

¢ Explicitly load the DLL using LoadLibrary and obtain function addresses using
GetProcAddress.

When your application executes, the files for the called DLLs must be in the current
directory, on the path, or in the Windows or Windows system directory; otherwise your
application won't be able to find the DLL files and won't load.

Writing shared ObjectWindows classes

Note

A class instance in a DLL can be shared among multiple applications. For example, you
can share code that defines a dialog box by defining a shared dialog class in a DLL. To
share a class, you need to export the class from the DLL and import the class into your
application.

Defining shared classes

To define shared classes, you need to

¢ Conditionally declare your class as either _export or _import.
® Pass a TModule* parameter to the window constructors (in some situations).

If you declare a shared class in an include file that is included by both the DLL and an
application using the DLL, the class must be declared _export when compiling the DLL
and _import when compiling the application. You can do this by defining a group of
macros, one of which is conditionally set to _export when building the DLL and to
_import when using the DLL. For example,

#if defined(BUILDEXAMPLEDLL)
#define _EXAMPLECLASS __export
#elif defined (USEEXAMPLEDLL)
#define _EXAMPLECLASS __import
#else
#define _EXAMPLECLASS
#endif

class _EXAMPLECLASS TColorControl : public TControl
{

public:
}i

By defining BUILDEXAMPLEDLL (on the command line, for example) when you are
building the DLL, you cause _[EXAMPLECLASS to expand to _export. This causes the
class to be exported and shared by applications using the DLL.

258 ObjectWindows Programmer’s Guide

By defining USEEXAMPLEDLL when you're building the application that will use the
DLL, you cause _EXAMPLECLASS to expand to _import. The application will know
what type of object it will import.

The TModule object

An instance of the TModule class serves as the object-oriented interface for an
ObjectWindows DLL. TModule member functions provide support for window and
memory management, and process errors. See the ObjectWindows Reference Guide for a
complete TModule class description.

The following code example shows the declaration and initialization of a TModule
object. This example is conditionalized so that either 16-bit (LibMain) or 32-bit
(DIIEntryPoint) DLLs can use the same source file.

static TModule *ResMod;

#if defined(__WIN32__)
bool WINAPI
D11EntryPoint (HINSTANCE instance, uint32 /*flag*/, LPVOID)
felse // !defined(__WIN32__)
int
FAR PASCAL
LibMain (HINSTANCE instance,
uintl6 /*wDataSeg*/,
uintl6 /*cbHeapSize*/,
char far* /*cmdLine*/)
#endif
{
// We're using the DLL and want to use the DLL's resources
//
if (!ResMod) ;
ResMod = new TModule (0, instance);
return true;

}

Within the entry point function, the TModule object ResMod is initialized with the
instance handle of the DLL. If the module isnt loaded an exception is thrown.

If your DLL requires additional initialization and cleanup, you can perform this
processing in your LibMain, DIIEntryPoint, or WEP functions. A better method, though,
is to derive a TModule class, define data members for data global to your DLL within the
class, and perform the required initialization and cleanup in its constructor and
destructor.

After you've compiled and linked your DLL, use IMPLIB to generate an import library
for your DLL. This import library will list all exported member functions from your
shared classes as well as any ordinary functions you've exported.

Chapter 17, ObjectWindows dynamic-link libraries 259

Using ObjectWindows as a DLL

To enable your ObjectWindows applications to share a single copy of the
ObjectWindows library, you can dynamically link them to the Ob]ecthdows DLL. To
do this, you'll need to be sure of the following:

* When compiling, define the macro _OWLDLL on the compiler command line or in
the IDE.

¢ Instead of specifying the static link ObjectWindows library when linking (that is,
OWLWS.LIB, OWLWM.LIB, OWLWL.LIB, or OWLWF.LIB), specify the
ObjectWindows DLL import library (OWLWILLIB for 16-bit applications, or
OWLWELLIB for 32-bit applications).

Calling an ObjectWindows DLL from a
non-ObjectWindows application

When a child window is created in an ObjectWindows DLL, and the parent window is
created in an ObjectWindows application, the ObjectWindows support framework for
communication between the parent and child windows is in place. But you can also
prepare your DLL for use by non-ObjectWindows applications.

When a child window is created in an ObjectWindows DLL and the parent window is
created by a non-ObjectWindows application, the parent-child relationship must be
simulated in the ObjectWindows DLL. This is done by constructing an alias window
object in the ObjectWindows DLL that is associated with the parent window whose
handle is specified on a DLL call.

In the following code, the exported function CreateDLLWindow is in an ObjectWindows
DLL. The function will work for both ObjectWindows and non-ObjectWindows
applications.

bool far _export
CreateDLLWindow (HWND parentHWnd)
{
TWindow* parentAlias = GetWindowPtr (parentHwnd); // check if an OWL window

if (!parentAlias)
parentAlias = new TWindow(parentHWnd); // if not, make an alias

TWindow* window = new TWindow(parentAlias, "Hello from a DLL!");

window->Attr.Style |= WS_POPUPWINDOW | WS_CAPTION | WS_THICKFRAME
| WS_MINIMIZEBOX | WS_MAXIMIZEBOX;

window->Attr.X = 100; window->Attr.Y = 100;

window->Attr.W = 300; window->Attr.H = 300;

return window->Create();

)

CreateDLLWindow determines if it has been passed a non-ObjectWindows window
handle by the call to GetWindowPtr, which returns 0 when passed a non-ObjectWindows

260 Ob]ectWindows'Progranuneﬂs Guide

window handle. If it is a non-ObjectWindows window handle, an alias parent TWindow
object is constructed to serve as the parent window.

Implicit and explicit loading

Implicit loading is done when you use a .DEF or import library to link your application.
The DLL is loaded by Windows when the application using the DLL is loaded.

Explicit loading is used to load DLLs at run time, and requires the use of the Windows
API functions LoadLibrary to load the DLL and GetProcAddress to return DLL function
addresses.

Mixing static and dynamic-linked libraries

The ObjectWindows libraries are built using the BIDS (container class) libraries, which
in turn are built using the C run-time library.

If you link with the DLL version of the ObjectWindows libraries, you must link with the
DLL version of the BIDS and run-time libraries. You do this by defining the _OWLDLL
macro. This isn’t the only combination of static and dynamic-linked libraries you can
use: each line in the table below lists an allowable combination of static and dynamic-
linked libraries.

Table 17.1 Allowable library combinations

OWL, BIDS, RTL (none)

OWL, BIDS RTL

OWL BIDS, RTL
(none) OWL, BIDS, RTL

Chapter 17, ObjectWindows dynamic-link libraries 261

262 ObjectWindows Programmer’s Guide

Support for OLE in Borland C++

This section of the ObjectWindows Programmer’s Guide describes ObjectComponents, a
set of classes for creating OLE 2 applications in C++. This introductory chapter answers
these questions:

What does ObjectComponents do?

What is OLE?

What does OLE look like?

What is ObjectComponents?

How does ObjectComponents work?

What documentation and tools help with using ObjectComponents?
What do all the terms mean?

Subsequent chapters show how to create different kinds of programs using
ObjectComponents.

What does ObjectComponents do?

ObjectComponents makes OLE programming easy. It supports all the following OLE 2

capabilities:

¢ Linking ¢ Embedding

¢ In-place editing ¢ Drag-and-drop operations

* OLE Clipboard operations ¢ Compound document storage
¢ Automation servers and controllers ¢ DLL servers

* Localization * Registration

These features are described in more detail in “OLE 2 features supported by
ObjectComponents” on page 276.

Chapter 18, Support for OLE in Borland C++ 263

Using ObjectComponents confers these other benefits as well:

* An easy upgrade path to linking and embedding for existing C++ applications,
especially if they use ObjectWindows

* Easy automation of existing C++ applications, whether or not they use
ObjectWindows

¢ Default implementations of standard OLE 2 user interface elements, such as the
Insert Object and Paste Link dialog boxes

¢ The ability to create OLE 2 applications with AppExpert, which generates and
understands the new OLE classes

¢ Compatibility with other OLE applications, including OLE 1 applications, whether or
not they were built with Borland tools

¢ Virtually no operating overhead imposed on ObjectWindows applications that
choose not to use OLE

Where should you start?

That depends on what you want to know and what application you want to create. This
section lists things you might want to do and tells you where to find the information
you need.

Writing applications

The right starting place depends on whether you are creating a new application or
adapting an existing one.

Creating a new application

You can generate a complete OLE application almost instantly using AppExpert.
AppExpert fully supports all the new features of ObjectComponents. To start an OLE
application from scratch, simply choose Project | AppExpert from the IDE menu. For
more information about AppExpert, consult the User’s Guide.

The programs AppExpert creates use the ObjectWindows Library. If you are new to
ObjectWindows, begin with the ObjectWindows Tutorial book.

Converting an application into an OLE container

Where you should start depends on whether your application uses ObjectWindows,
and if so, whether it uses the Doc/View model.

Table 18.1 How to add container support to an existing application

g
page 303

264 ObjectWindows Programmer’s Guide

Table 18.1

8
o

How to add container support to an existing application (continued)

umjng an ObjéétWin ows applicahon into an OLE
container” on page 315

No No “Turning a C++ application into an OLE container” on
page 328

Converting an application into a linking and embedding server

Where you should start depends on whether your application uses ObjectWindows,
and if so, whether it uses the Doc/View model.

Table 18.2 How to add server support to an existing application

“Turnin: ga Doc / View appli
page 341

Yes No “Turning an ObjectWindows application into an OLE server”
on page 352

No No “Turning a C++ application into an OLE server” on page 359

Adding automation support
The process of adding automation support to an existing application is the same
regardless of whether the application uses ObjectWindows or the Doc/View model. For

help creating an automation server, a controller, or a type library, turn to the indicated
section. ,

¢ Automation server: “Automating an application” on page 381
¢ Automation client: “Creating an automation controller” on page 407
¢ Type library: “Creating a type library” on page 405

Other useful topics

Here are some topics common to different kinds of OLE applications. For help with
them, turn to the indicated section.

DLL server: “Making a DLL server” on page 374

Localization: “Localizing symbol names” on page 397

Registration: “Building registration tables” on page 344

Compiling and linking: “Building an ObjectComponents application” on page 286
Exception handling: “Exception handling in ObjectComponents” on page 284

Learning about ObjectComponents

The tasks listed in this section help you find your way around ObjectComponents.
¢ Understanding OLE

For an introduction to OLE, see the following section, “What is OLE?” For
illustrations showing how common OLE interactions look onscreen, see “What does
OLE look like?” on page 267.

Chapter 18, Support for OLE in Borland C++ 265

* Surveying the new classes
For tables summarizing new classes and messages in ObjectComponents and
ObjectWindows, see “Using ObjectComponents” on page 278.

¢ Understanding how ObjectComponents works
“How ObjectComponents works” on page 287 explains how ObjectComponents
classes mediate between OLE and your own C++ classes.

¢ Finding example programs ‘
Brief description of some of the sample ObjectComponents programs in Borland C++
appear in “Example programs” on page 294.

¢ Finding the right documentation
All the parts of the documentation that describe ObjectComponents are listed in
“Books” on page 293 and “Online Help” on page 294.

¢ Understanding terms
For definitions of terms used in the documentation, see the “Glossary of OLE terms”
on page 295. Skimming the glossary is also a good way to introduce yourself to the
features of ObjectComponents.

What is OLE?

OLE, which stands for object linking and embedding, is an operating system extension
that lets applications achieve a high degree of integration. OLE defines a set of standard
interfaces so that any OLE program can interact with any other OLE program. No
program needs to have any built-in knowledge of its possible partners.

Programmers implement OLE applications by creating objects that conform to the
Component Object Model (COM). COM is the specification that defines what an OLE
object is. COM objects support interfaces, composed of functions for other objects to call.
OLE defines a number of standard interfaces. COM objects intended for public access
expose their interfaces in a registration database. Interfaces have unique identifiers to
distiguish them.

ObjectComponents encapsulates the COM specification for creating objects and
provides default implementations of the interfaces used for two common OLE tasks:
linking and embedding, and automation. Linking and embedding lets one application
incorporate live data from other OLE applications in its documents. Automation lets one
application issue commands to control another application.

Linking and embedding

Linking and embedding refer to the transfer of data from one program to another. The first
program, the server, sends its data to the second program, the container. For example,
cells from a spreadsheet can be dropped into a word processing document. Of course
you don’t need OLE to pass data from one Windows program to another. Youcando |
that much with just the Clipboard. The difference between OLE and the Clipboard is
that in OLE the receiving program doesn’t have to know anything at all about the
format of the data in the object. Any OLE server application can give its data to any OLE

266 ObjectWindows Programmer’s Guide

container application. Thanks to OLE, the container doesn’t care whether the object it
receives is a metafile, a bitmap, or ASCII text. The server passes whatever data it uses
internally and the container accepts it. Furthermore, the object remains dynamic even
after being transplanted. When the container wants to display, modify, or save the
object, it calls OLE to do it. OLE, working behind the scenes, calls the server to execute
the user’s command. The object belongs to the container’s document, but OLE maintains
a live connection back to the server. The user can continue to edit the object using all of
the server’s tools. As a result, the user can combine objects from different servers into a
single document without losing the ability to update and modify any object as the
document evolves.

Automation

Automation happens when one program issues commands to another. If you write a
calculator program, for example, you might allow other programs to issue commands
like these:

Press the nine button.

Press the plus button.

Press the six button.

Press the equals button.

Tell me what's in the Total window.

These are commands a person might normally issue through the calculator’s user
interface. With automation, the calculator exposes its internal functions to other
programs. The calculator becomes an automation object, and programs that send
commands to it are automation controllers. OLE defines standard interfaces that let a
controller ask any installed server to create one of its objects. OLE also makes it possible
for the controller to browse through a list of automated commands the server supports
and execute them.

What does OLE look like?

The linking and embedding features of OLE include a standard user interface for
performing common operations such as placing OLE objects in container documents
and activating them once they are linked or embedded. The OLE standards cover menu
commands, dialog boxes, tool bars, drag and drop support, and painting conventions,
so that the user interface for OLE operations is consistent across applications. Together,
ObjectComponents and ObjectWindows execute most of the interface tasks for you.

Understanding OLE programming can be difficult without a clear grasp of the interface
you are trying to create. The following sections present pictures of a container showing
what happens onscreen at each step in a common sequence of OLE operations. The user
runs a container, inserts objects from several OLE servers into the document, edits an

Chapter 18, Support for OLE in Borland C++ 267

object, and saves the document. The descriptions of these steps introduce the following

OLE features:

¢ Insert Object command ® Paste Special command
* Embedding * Linking

¢ Object verbs ¢ Selecting an object

¢ Activating an object ¢ Open editing

¢ In-place editing ¢ Menu merging

¢ Tool bar negotiation

Inserting an object

The first illustration shows the example program called SdiOle, which is an OLE
container using the single-document interface (SDI) and written with ObjectWindows
and ObjectComponents. The source code for SdiOle is in EXAMPLES/OWL/OCEF/
SDIOLE.

The SdiOle Edit menu contains five standard OLE commands that most containers
possess: Paste Special, Paste Link, Insert Object, Links, and Object. Most of these are
disabled in the illustration because the Clipboard is empty and nothing has been linked
or embedded in the open SdiOle document.

ObjectWindows implements all five of the standard commands for you if you like, but a
container does not have to use them all. This section explains only the Insert Object and
Object commands. For a brief summary of all the commands, see Table 19.3 on page 312.

Figure 18.1 The Edit menu in the sample program SdiOle

(:tmx Th
CtrisC
Paste Cirl+y
Paste Special...
Paste Link

Delete

Del
Insert Object...

Links...
Object

Figure 18.2 shows the Insert Object dialog box. Like the common dialog boxes in
Windows for opening files and choosing fonts, the Insert Object dialog box is a standard
resource implemented by the system. For consistency, it is best to use the standard

268 ObjectWindows Programmer’s Guide

dialog boxes unless your application has some unusual requirement that the standard
dialog box does not meet.

The box under Object Type lists all the kinds of objects available in the system.
Whenever a server installs itself, it tells the system what objects it can create. The system
keeps this information in its registration database. The Insert Object dialog box queries
the database and shows all the types that OLE can create for you using the available
server applications.

In the illustration, the user has chosen to insert a Quattro Pro spreadsheet. The Result
box at the bottom of the dialog box explains what will happen if the user clicks OK now.
Because the Create New button is selected, clicking OK will embed a new, empty
spreadsheet object into the user’s open document. Figure 18.3 shows the result. (The
Create from File button is explained later.)

Figure 18.2 The Insert Object dialog box

Insert Object
Object Type:

- Ole 2.0 In-Place Server Outline
@ Create New: Ole 2.0 Server Sample Outline
OleTest Srtest 2.0 Sh.
O Create from File: Pat::keasge rtes ape
Paintbrush Picture
|Paradox Table
Quattro Pro 6.0 Graph
Quattio Pro € 0 Hotchook ..

= [Display As Icon

Result
Inserts a new Quattro Pro 6.0 Notebook object into your

y document.

Editing an object in place

In Figure 18.3 the SdiOle application window is barely recognizable. Only from the title
bar at the top of the window can you be sure this is the same application. The menu bar
has changed—it has many more drop-down menus than it did in Figure 18.1. The Block,
Notebook, Graphics, Tools, and Help menus are all new. There are three button bars
now instead of one, and none of them is the same as the original one.

All the new window elements come from Quattro Pro, the server application that
created the active object. Quattro Pro has taken over the SdiOle window and is
displaying its own menus and tool bars. All the Quattro Pro menu and tool bar
commands can be executed right here in SdiOle. The feature of OLE that lets a server
take over a container’s main window is called in-place editing. It lets the user edit the
object in its place, without switching back and forth between different windows. The
programming task that makes this possible is called menu merging, combining menus
from two programs in one menu bar.

Chapter 18, Support for OLE in Borland C++ 269

Figure 18.3 A newly inserted object being edited in place

" SdiOle Application - CAEXAMPLE.DFL (Quatiro Pro 6.0 - Notebook]
e Edit View Block Notebook Graphics Tools ndow Help

s e R’

Figure 18.4 shows what the object looks like after it is edited. The user entered labels and
numbers into notebook cells and created a small spreadsheet. Although many programs
let you paste data from other programs into your documents, without OLE you cannot
continue to edit the objects after they are transferred.

Figure 18.4 The same inserted object after being edited

" SdiOlc Application - CAEXAMPLE.DFL (Quattro Pro 6.0~ Notebook]
4 m

22021 4062508

T804 551047
127575677 965
1514 2362238
73229] 29,539,250
13518 3,307 912

The user who entered the data shown in Figure 18.4 clearly had access to Quattro Pro
tools. SdiOle is a very simple application and knows nothing about columns and rows
or fonts and shading. But even though the Quattro Pro server created and formatted the
object, that data in the object belongs to the container. When the user chooses File | Save
from the SdiOle menu bar, what gets written is an SdiOle document, not a Quattro Pro
document. With the help of ObjectComponents and the OLE system, SdiOle marks an
area in its own file to store the data for the embedded object. When the user chooses

270 ObjectWindows Programmer’s Guide

File | Load to reload the same document, the spreadsheet cells will still be there. If the
user tries to edit the object again, OLE invokes Quattro Pro to take over the SdiOle
window once more. The object remains associated with the application that created it
even though the object is stored in a foreign file.

When OLE places the data for an object directly into the container’s document as it has
the data for this spreadsheet, the object is said to be embedded. Besides embedding, OLE
also links objects to container documents, as you'll see in Figure 18.7.

Activating, deactivating, and selecting an object

In Figures 18.3 and 18.4, the embedded object is outlined by a thick gray rectangle. The
presence of this rectangle indicates that the object is active. The activation rectangle
appears when you double-click the object. Usually activating an object initiates an
editing session, but the server decides whether to follow that convention. For example,
embedded sound objects might play when activated. In most cases, only one object can
be active at a time.

The activation rectangle in Figure 18.4 has eight small black boxes spaced evenly around
it. They are called grapples. The user can resize the object by clicking a grapple and
dragging the mouse. Also, the user can move the object by clicking anywhere else on the
activation rectangle and dragging. ObjectWindows uses the TUIHandle class to draw
rectangles and grapples around objects.

Figure 18.5 shows what happens in the container window when the user clicks the
mouse button outside the activated object. The activation rectangle goes away. The
object is now inactive. Deactivating an object tells OLE that you are through editing. The
server relinquishes its place, and the container’s window returns to normal. The only
commands on the menu bar are the ones SdiOle put there. The tool bar and window
caption are back to normal, as well.

Figure 18.5 The container’s restored user interface after the object becomes inactive

"SdiOle Application - CAEXAMPLE.DFL

[1990 Census |

062,608 |
551,947
3665298 12,757 3,677,985
0350795 11,514 2,369,959
29,760,021 79,299 29 839,950
3,294,394 | 13518| 3,307,912

Chapter 18, Support for OLE in Borland C++ 271

You can select an inactive object without activating it. When you press the mouse button
over an inactive object, the container draws a thin black rectangle to show that you have
selected it. The selection rectangle is visible in Figure 18.6. Like the activation rectangle,
it has grapples. The user can move and resize a selected ob]ect just like an active object.

Finding an object’s verbs

When an object is selected, like the one in Figure 18.6, the container modifies its menus
to offer a choice of whatever actions the object’s server can do with the object. OLE calls
these actions verbs. Conventionally, the container displays available verbs in two places:
on its Edit menu and on a SpeedMenu. The SpeedMenu in Figure 18.6 popped up when
the user right-clicked the object. The first three commands on the SpeedMenu are
always Cut, Copy, and Delete. The fourth item, Notebook Object, changes depending on
the object selected. When an object from Paradox is inserted, for example, the fourth
item becomes Paradox 5 Object.

The smaller cascading menu lists the particular verbs that the server supports. Quattro
Pro has only two verbs. It can edit an object or open an object. The Edit verb initiates an
in-place editing session, as shown in Figure 18.3. The Open verb inititates an open
editing session, as shown in Figure 18.9.

The final item, Convert, is the same for all objects. It invokes another standard OLE
dialog box that lets the user convert an object from one server’s data format to another.
The Convert command is useful when, for example, you have Paradox installed on your
machine, but someone gives you a compound document with an embedded object from
some other database application. If Paradox knows how to convert data from the other
database, then the Convert command binds the foreign database object to Paradox.

Figure 18.6 The speed menu for a selected object

i Sd»OIc Appllcatmn C\EXAMF‘LE DFL

Edit View Window I

[1990 census " h

22,021 4,062,608
550,043 1004 6514
5665.228] 12,757 3,677,965
2390120 o CuiX

29,760,021
CTYE Copy Ctrl+C
3.294,3%4 Delete Del

Notebook Object

Edit

Figure 18.8 shows where verbs appear on the Edit menu. When no object is selected, the
last command on the Edit menu is disabled and says simply Object, as you see in Figure

272 ObjectWindows Programmer’s Guide

18.1. When an object is selected, the Object command changes to describe the selected
object. In the example, Object changes to Notebook Object.

Linking an object

By default, the Insert Object command creates a brand new empty object, like the one in
Figure 18.3, and embeds it. Instead of embedding an object, you can choose to link it.

When OLE links an object, it does not store the object’s data in the container’s document.
It stores only the name of the server file where the data is stored (along with the location
of the data within the file and a snapshot of the object as it appears onscreen. The
snapshot is usually a metafile.) The container doesn't receive a copy of the object; it
receives a pointer to the object. OLE still draws the object in the container’s document,
just as though it was embedded, but the container doesn’t own the data.

If the server document that holds the data for the linked object is deleted, then the user
can no longer activate and edit the linked object. On the other hand, if the data in the
server document is updated, then the updates appear automatically in all the container
documents that have been linked to the same object. If several documents embed the
same object, then they are creating copies, and changes made in one document have no
effect on the copies in other documents.

Figure 18.7 shows what happens if you select the Create From File button in the Insert
Object dialog box. Instead of creating a new empty object, you choose a file with existing
data and OLE invokes the server that created the file. You can embed data from the file,
but in Figure 18.7 the user has checked the Link box, so when the user clicks OK, OLE
does not copy data from CHECKS.DB into the server’s document. It creates a link that
refers back to the data stored in the original file.

Figure 18.7 The Insert Object dialog box just before inserting a linked object

Insert Object

O Create New: File: Paradox For Windows 5.0

@ Create from File: c:\pdoxwin\examples\checks.db l

[Display As Icon

Result
Inserts a picture of the file contents into your document.
@ _’@ The picture will be linked to the file so that changes to the
file will be reflected in your document.

The text in the Result box at the bottom of the dialog box explains what will happen
when the user clicks OK. You can see the result in Figure 18.8. The EXAMPLE.DFL
document now contains two OLE objects—the embedded Quattro Pro spreadsheet and
the linked Paradox table.

Neither of the two objects is active. The spreadsheet is inactive and the database table is
selected. Because the database table is linked, ObjectWindows draws the selection
rectangle with a dashed line. Compare the selection rectangle in Figure 18.8 to the one
for an embedded object in Figure 18.6.

Chapter 18, Support for OLE in Borland C++ 273

Figure 18.8 The new verb list for the newly linked object

=] SdiOle Application AMPLE.DFL.
GHE View Window .
Cut Crl+X
Copy Ctrl+C s
Paste Crlsy
Paste Special...
Paste Link
Delete Del 040,
Insert Object... 550,043 1,904 551,947
Links... 665,228 12,797, 3,677.985
Paradox 5 Object 2,350,729 11,5914 2,362,239
- . Open 28,760,021 79,2291 29,839,250

= 3,294,394 13,618, 3,307,912

1990 Census

Opening an object to edit it

The Edit menu in Figure 18.8 shows the verbs for the selected Paradox table. Edit and
Open are the two most common verbs, and Quattro Pro and Paradox both use them.
Choosing the Open verb produces the screen shown in Figure 18.9. The same table is
visible in two windows—the container window where it is linked and the server
window where it is being edited. When finished editing in the server window, the user
chooses File | Close and returns to the container. Any changes made during the editing
session automatically appear in the container window afterward.

Contrast this editing session with the in-place editing in Figure 18.3. In this session, the
container window remains unchanged. The SdiOle window has only its own
commands and its own tool bar. The editing takes place in a separate window that OLE
opened just for this session. Returning to the server to edit is called open editing. Some
servers support only open editing, not in-place editing.

274 ObjectWindows Programmer’s Guide

Figure 18.9 An object opened for editing

This series of illustrations shows the most common linking and embedding operations.
The user links or embeds an object, selects it, activates it, edits it in place or open, and
saves the compound document complete with its OLE object. The examples show how
to link and embed objects with the Insert Object dialog box, but there are other ways as
well. The Paste, Paste Special, and Paste Link commands can all create OLE objects from
data on the Clipboard. You can also link or embed objects by dragging them from one
applicaton and dropping them on another.

What is ObjectComponents?

Microsoft’s OLE 2 operating system extensions require the programmer to implement a
variety of interfaces depending on the tasks an application undertakes. Borland has
developed an OLE engine, already used in several of its commercial applications, that
simplifies the programmer’s job by implementing a smaller set of high-level interfaces
on top of OLE. The engine resides in a library called BOCOLE.DLL. The BOCOLE
support library provides default implementations for many standard OLE interfaces.

C++ programmers can make use of the OLE support in BOCOLE.DLL through a set of
new classes collectively called the ObjectComponents Framework (OCF). Instead of
implementing OLE-style interfaces, you create objects from the ObjectComponents
classes and call their methods. Your own classes can gain OLE capabilities simply by
inheriting from the ObjectComponents classes. ObjectComponents translates between
C++and OLE.

Figure 18.10 shows how the layers of Borland’s OLE support fit together.

Chapter 18, Support for OLE in Borland C++ 275

Figure 18.10 How applications interact with OLE through ObjectComponents

o i

ObjectWindows C++
Application Application

i - S

The ObjectComponents classes implement OLE-style interfaces for talking to the
BOCOLE support library. Your programs reach OLE by calling methods from
ObjectComponents classes. When OLE sends information to you, ObjectComponents
sends messages to your application using the standard Windows message mechanisms.
The ObjectComponents classes also contain default implementations for all the OLE
messages. You can override the default event handlers selectively to modify your
application’s responses.

ObjectComponents is not part of the ObjectWindows Library. That means C++
programs that don’t use ObjectWindows can still take full advantage of
ObjectComponents for linking, embedding, and automation. But ObjectWindows can
simplify your work even more. ObjectWindows 2.5 introduces new classes such as
TOleWindow and TOleDocument that inherit from ObjectComponents classes to bring
OLE support into Borland’s C++ application framework. An ObjectWindows
application that uses the Doc/View model doesn’t need to use ObjectComponents
directly at all. A few simple changes to your Doc/View program will have you linking
and embedding almost instantly. Programs that don’t use the Doc/View model can do
the same thing with just a little more work.

The chapters that follow explain step by step how to modify your code to create
containers, servers, automation objects, and controllers.

OLE 2 features supported by ObjectComponents

The following list summarizes the OLE 2 capabilities that ObjectComponents gives your
applications. The descriptions assume you are using ObjectWindows, as well. All the
same features are available through ObjectComponents without ObjectWindows, but
then you have to code explicitly some things that ObjectWindows does by default.

276 ObjectWindows Programmer’s Guide

Linking and embedding: To embed data from one application in the document of
another, ObjectComponents gives you classes to represent the data in the object and
an image of the data for drawing on the screen. The data must be separable from its
graphical representation because in OLE transactions they are sometimes handled by
different programs. When the container asks the server for an object to embed, the
server must provide data and a view of the data. The server can also be asked to edit
the object even after it is embedded and to read or write the object to and from the
container’s document file. The ObjectComponents classes handle both sides of these
negotiations for you.

Clipboard operations: The default event handlers for the ObjectComponents

“messages handle cutting and pasting for you. If you add to your menus standard
commands such as Insert Object and Paste Link, ObjectComponents will implement
them for you.

Drag and drop operations: The default event handlers for ObjectComponents
messages help you here, too. If the user drops an OLE object on your container’s
window, ObjectComponents inserts it in your document. If the user double-clicks the
embedded object, ObjectComponents activates it. If the user drags the object,
ObjectComponents moves it.

Standard OLE 2 user interface: OLE defines standard user interface features and
asks OLE programmers to comply with them. Built into ObjectComponents are

- dialog boxes for commands like Insert Object, Paste Special, and Paste Link; a pop-up
menu that appears whenever the user right-clicks an embedded object; and an item
on the container’s Edit menu that always shows the verbs (server commands)
available for the active object. ObjectComponents even arranges to modify the
container’s window if the server takes over the container’s tool bar, status bar, and
menus for in-place editing.

Compound files: A new ObjectComponents class (TOcStorage) encapsulates file
input and output to compound files. If you convert an ObjectWindows Doc/View
application into an ObjectComponents container, the document writes itself to
compound files automatically, creating storages and substorages within the file as
needed. (Instructions for the conversion appear in Chapter 19.)

EXE and DLL servers: ObjectComponents lets you construct your OLE server as
either a standalone executable program or as an in-process DLL server. DLL servers
respond to clients more quickly because a DLL is not a separate process. OLE doesn’t
have to serialize calls or marshall parameters to communicate between a DLL server
and its client. See “Making a DLL server” on page 374 for more information.

Automation: ObjectComponents permits C++ classes to be automated without
structural changes to the classes themselves. It accomplishes this with nested classes
that have direct access to the existing class members. These nested classes instantiate
small command objects that reach the members through standard C++ mechanisms,
avoiding the use of restrictive, non-portable stack manipulations. The command
objects support hooks for undoing, recording, and filtering automation commands. A
program can even send itself automation commands using standard C++ code.
Chapters 21 and 22 describe automation programming.

Chapter 18, Support for OLE in Borland C++ 277

¢ Type libraries: A type library describes for OLE all the classes, methods, properties,
and data members available for controlling an automated application. Once you
create an automation server (following the steps in Chapter 21), you can ask
ObjectComponents to build and register the type library for you. Instructions for
creating a type library are on page 405.

* Registration: OLE requires applications to register themselves with the system by
providing a unique identifier string. For servers, this string and much other
information besides must be recorded in the system’s registration database as part of
the program’s installation process. With ObjectComponents, all you have to do is list
all the information in one place using macros. Every time your server starts up,
ObjectComponents confirms that the database accurately reflects the server’s status.
When necessary, ObjectComponents records or updates registration entries
automatically. For more about registration, see “2. Registering a container” on
page 306.

¢ Localization: OLE servers need to speak the language of their client programs. If an
automation server is marketed in several countries, it needs to recognize commands
sent in each different language. A linking and embedding server registers strings that
describe its objects to the user, and those too should be available in multiple
languages in order to accommodate whatever language the user might request. If
you provide translations for your strings, ObjectComponents uses the right strings at
the right time. Add your translations to the program’s resources and mark the
original strings as localized when you register them. At run time, ObjectComponents
quickly and efficiently retrieves translations to match whatever language OLE
requests. For more about localization, see “Registering localized entries” on page 373.

Using ObjectComponents

This section includes information to help you use ObjectComponents. It surveys the
classes and messages in ObjectComponents, as well as new classes in ObjectWindows
that help you take advantage of ObjectComponents. It also explains how
ObjectComponents uses C++ exception handling, how to build an ObjectComponents
application, and what files to distribute with your application.

Overview of classes and messages

The following tables introduce the ObjectComponents classes and messages you are
likely to use most often. Subsequent chapters describe their use in more detail.

278 ObjectWindows Programmer’s Guide

Linking and embedding classes
The classes in Table 18.3 support linking and embedding, but if your program uses
ObjectWindows you won’t need to work directly with most of them.

Table 18.3 Some ObjectComponents classes used for linking and embedding

Class : Déééﬁption ' -]

TOcApp Connects containers and servers to OLE. It implements COM interfaces for the
application.

TOcDocument Represents a compound document. It holds parts (embedded objects).

TOcModule A mix-in class for deriving the application object in a linking and embedding program.
It coordinates some basic housekeeping chores related to registration and memory
management.

TOcPart Represents an embedded or linked object in a document.

TOcRegistrar Records application information in the system registration database and tells OLE

when the application starts and stops. Also creates the TOcApp object and responds
when OLE wants a server to make something.

TOcRemView Represents a remote view for a server document. The server creates a remote view for
every object it donates to a container. The remote view is drawn in the container’s
window.

TOcView Responsible for displaying a part. A container needs a view for every part it embeds.

Although ObjectComponents includes classes for documents and views, it does not
require applications to use the ObjectWindows Doc/View model. If you do use the
Doc/View model, the new TOleDocument and TOleView classes make OLE
programming even easier. ObjectWindows is not required, however. Any C++ program
can use the ObjectComponents Framework. The chapters that follow address all types
of applications.

Connector objects

A few of the ObjectComponents classes actually implement COM interfaces. (COM
stands for Component Object Model. COM is the standard that defines what an OLE
object is.) Most of the supported interfaces are not standard OLE interfaces; they are
custom interfaces that communicate with OLE through the BOCOLE support library.
But like any COM object they do implement IUnknown (by deriving from TUnknown, as
shown in Figure 18.11).

The classes that define COM objects for linking and embedding are TOcApp, TOcView,
TOcRemView, and TOcPart. These classes are special because they connect your
application to OLE. They are called connector objects. An ObjectComponents application
must create connector objects in order to interact with other OLE applications.

Because they are COM objects, connector objects have one peculiarity: their destructors
are protected so you cannot call delete to destroy them. Readers familiar with OLE will
recognize that the connector objects have internal reference counts that track the
number of clients using them. Often you are not the only user of your own connectors.
For example, when a server creates a TOcRemView to paint an object in a container’s
window, the container becomes a client of the same object. The server must not destroy
the view object until the container is through with it, otherwise OLE could end up
attempting to address functions that no longer exist in memory.

Chapter 18, Support for OLE in Borland C++ 279

. The Component Object Model decrees that an object must maintain an internal
reference count. When an object provides anyone a pointer to one of its interfaces, the
object also increments its own reference count. When the client finishes with the pointer,
it calls Release and the object decrements its reference count. As long as the count is
greater than zero, the object must not be destroyed When the count reaches 0, the object
destroys itself.

ObjectComponents shields you from the details of reference counting. You never have
to increment or decrement a reference count. You cannot delete COM objects, however,
because the delete command pays no attention to the reference count. Instead, call the
connector’s ReleaseObject method.

Figure 18.11 How the ObjectComponents connector objects are related

TUnknown

TOcView

‘TOcRemView

Nonvirtual inheritance Virtual inheritance

Automation classes
Table 18.4 describes some of the classes that appear in automation programs.

Table 18.4 Some ObjectComponents classes used for automation

TAutoBase Simplifies clean-up chores when an automated object is destroyed. Make it the base
class for your automated classes if you want that help.

TAutoProxy The base class for an automation controller’s proxy objects. Controllers create C++
proxy objects to represent the OLE objects they want to manipulate. The proxy objects
become connected to OLE when they derive from TAutoProxy.

TOleAllocator Initializes the OLE libraries and, optionally, passes OLE a custom memory allocator for
managing any memory the system allocates on the program’s behalf.

TRegistrar Records application information in the system registration database and tells OLE when
the application starts and stops.

There are more automation classes than the table shows, but many of them are internal
to the ObjectComponents implementation. Most of the work in automating an existing
application is done with macros. Automating a class means writing two tables of
macros, one in the class declaration and one in the class implementation. The macros
describe the methods you choose to expose. Within the parent class they create nested

280 ObjectWindows Programmer’s Guide

classes, one for each command. ObjectComponents knows how to make a nested object
execute the method it exposes, and the nested class calls members of the parent class
directly.

The connector objects that ObjectComponents creates to implement COM interfaces for
an automation program are considered internal. ObjectComponents makes them for
you when they are needed.

ObjectComponents messages

When ObjectComponents needs to tell an application about signals and events that
come from OLE, it sends a message through the normal Windows message queues. The
message it sends is WM_OCEVENT. The value in the message’s wParam identifies a
particular event. Only applications that support linking and embedding receive
WM_OCEVENT messages. (They are sent by the application’s TOcApp, TOcView, and
TOcRemView objects. Automation applications that don’t support linking and
embedding have no need for any of these objects.)

Simple ObjectWindows applications don’t need to process any of the events because the
new OLE classes have default event handlers that make reasonable responses for you.
To modify the default behavior, add event handlers to your ObjectWindows program.
For more information about handling events in ObjectWindows, see Chapter 4. If you
are programming without ObjectWindows, handle WM_OCEVENT in your window
procedure.

The events are divided into two groups. Those that concern the application as a whole
are listed in Table 18.5. Those that call for a response from a particular document are
addressed to the view window. They are listed in Table 18.6.

Table 18.5 Application messages for TOcApp clients

OC_APPDIALOGHELP Container Asks the container to show Help for one of the
standard OLE dialog boxes where the user has just
clicked the Help button.

OC_APPBORDERSPACEREQ Container Asks the container whether it can give the server
border space in its frame window.

OC_APPBORDERSPACESET Container Asks the container to rearrange its client area
windows to make room for server tools.

OC_APPCREATECOMP Server (and Asks the application to create a new component for

container acting embedding in another application.
as link source)

OC_APPFRAMERECT Container Requests client area coordinates for the inner
rectangle of the program’s main window.

OC_APPINSMENUS Container Asks the container to merge its menu into the
server’s.

OC_APPMENUS Container Asks the container to install the merged menu bar.

OC_APPPROCESSMSG Container Asks the container to process accelerators and other
messages from the server’s message queue.

OC_APPRESTOREUI Container Tells the container to restore its normal menu,
window titles, and borders because in-place editing
has ended.

Chapter 18, Support for OLE in Borland C++ 281

Table 18.5 Application messages for TOcApp clients (continued)

OC_APPSHUTDOWN server Tells the rver when its last embedded object

closes down. If the server has nothing else to do, it
can terminate.

OC_APPSTATUSTEXT Container Passes text for the status bar from the server to the
container.

A view is the image of an object as it appears onscreen. When an OLE server gives an
object to a container, the object contains data. The server also provides a view of the data
so OLE can draw the object onscreen. Sometimes the word view also refers to the
window where the container draws a compound document with all its embedded parts.
Each object has its own small view, and the container has a single larger view of the
whole document with all its embedded objects.

Table 18.6 View messages for TOcView and TOcRemView clients

T i
el SR aanb L SR - e
OC_VIEWATTACHWINDO! Server Asks server window to attach to its own frame

window or container's window.
OC_VIEWBORDERSPACEREQ Container Asks whether server can have space for a tool bar
‘ within the view of an embedded object.

OC_VIEWBORDERSPACESET Container Asks container to rearrange its windows so the server
can show its tool bar within an embedded object.

OC_VIEWCLIPDATA Server Asks server to provide clipboard data in a particular
format.

OC_VIEWCLOSE Server Asks server to close its document.

OC_VIEWDRAG Server Asks server to provide visual feedback as the user
drags its embedded object.

OC_VIEWDROP Container Tells container an object has been dropped on its
window and asks it to create a TOcPart.

OC_VIEWGETPALETTE Server Asks server for the color palette it uses to draw an
object.

OC_VIEWGETSCALE Container Asks container to give scaling information.

OC_VIEWGETSITERECT Container Asks container for the site rectangle that a part
occupies.

OC_VIEWINSMENUS Server Asks server to insert its menus in a composite menu
bar.

OC_VIEWLOADPART Server Asks server to load an embedded object stored in the
container’s data file.

OC_VIEWOPENDOC Server Asks server to open a document with the specified
path.

OC_VIEWPAINT Server Asks server to draw or redraw an object ata
particular position in a given device context.

OC_VIEWPARTINVALID Container Tells container that one of its embedded objects needs
to be redrawn.

OC_VIEWPARTSIZE Server Asks server the initial size of its view in pixels.

OC_VIEWSAVEPART Server Asks server to write the data for an object into the
container’s file.

OC_VIEWSCROLL Container Asks container to scroll its view window.

282 ObjectWindows Programmer’s Guide

Table 18.6 View messages for TOcView and TOcRemView clients (continued)

Reaplent ‘Description

OC_VIEWSETSCALE ‘ Sefvér Asks server t‘o‘hyandle'sca]jng.

OC_VIEWSETSITERECT Container Asks container to set the site rectangle.

OC_VIEWSHOWTOOLS Server Asks server to display its tool bar in container’s
window.

OC_VIEWTITLE Container Asks container for the caption in its frame window.

Most of the events in Tables 18.5 and 18.6 are sent only to a server or to a container. A
single application receives both kinds of messages if it chooses to support both container
and server capabilities.

Messages and windows

Because the view and part objects expect to send notification messages to a particular
document, every ObjectComponents application is expected to create a new window for
each open document. Document windows should not be frame windows; they should
be client windows that exactly fill the client area of a parent frame window. In an SDI
application, the parent is the application’s main frame window. In an MDI application,
the parent is an MDI child frame. ObjectWindows programs should use TOleWindow for
client windows. Many ObjectWindows applications, including all those that use the
Doc/View model, already possess client windows. For help implementing client
windows with ObjectWindows, see “3. Setting up the client window” on page 319. To
implement client windows in a C++ program, see “3. Creating a view window” on
page 366.

New ObjectWindows OLE classes

Another set of new classes integrates ObjectWindows with ObjectComponents.
Internally, the new ObjectWindows classes use the the ObjectComponents classes to
connect with OLE for you. Depending on the complexity of your ObjectWindows
application, you might not need to interact directly with ObjectComponents at all. Table
18.7 briefly summarizes the most important new ObjectWindows classes.

Table 18.7 New classes in ObjectWindows for OLE support

: Description

TOleFrame TDecoratedFrame Provides OLE user interface support for the main
window of an SDI application.

TOleMDIFrame TMDIFrame and Provides OLE user interface support for the main

TOleFrame window of an MDI application.

TOleWindow TWindow Used as the client of a frame window, provides
support for embedding objects in a compound
document.

TStorageDocument TDocument Adds the ability to work with OLE’s compound
file structure. It is the natural class to choose for
compound documents with embedded objects.

TOleDocument TStorageDocument ~ Implements the Document half of an OLE-

enabled Doc/View pair.

Chapter 18, Support for OLE in Borland C++ 283

Table 18.7 New classes in ObjectWindows for OLE support (continued)

“TOleView p
(For information about Doc/ View pairs see
Chapter 10.)
TOleFactory<> TOleFactoryBase Implements the function OLE calls when an
TOleDocViewFactory<> application should create an object.
TOleAutoFactory<>
TOleDocViewAutoFactory<>
TAutoFactory<>
TOcAutoFactory <>

The ObjectWindows OLE classes create ObjectComponents objects for you as needed.
For example, whenever a container or a server creates a compound document, it also
creates a a TOcView (or TOcRemView) object to implement the interfaces that tie a
document to OLE. TOleView::CreateOcView does that for you. Furthermore, when the
new TOcView object sends event messages to the view window, TOleView processes
them for you with handlers like EvOcViewSavePart and EvOcViewInsMenus. The default
event handlers manage much of the OLE user interface for you.

Exception handling in ObjectComponents

ObjectWindows 2.5 modifies the hierarchy of exception classes. TXBase is the new base
class for all exception classes. TXOwl derives from it, as do the new exception classes
summarized in Table 18.8. '

Table 18.8 ObjectComponents exception classes

TXAuto Exceptior that occur during automation

TXObjComp Exceptions that occur during ObjectComponents linking and embedding operations
TXOle Exceptions that occur while processing OLE API commands

TXRegistry Exceptions that occur while using the system registration database

Because the exception classes all derive from TXBase, a general-purpose catch statement
often takes a TXBase& as a parameter. The catch statement in the following example
receives any exception thrown by ObjectWindows or ObjectComponents:
int
OwlMain(int /*argc*/, char* /*argv*/ [])
{
try {
Registrar = new TOcRegistrar (AppReg, TOleFactory<TMyApp>(),
TApplication::GetCmdLine());
return Registrar->Run(); .
}
catch (TXBase& x) {
::MessageBox (0, x.why().c_str(), "Exception", MB_OK);
} E

284 ObjectWindows Programmer’s Guide

return -1;

}

TXOle and OLE error codes

Most of the OLE API functions pass back a return value of type HRESULT (or the nearly
identical SCODE). The return value indicates whether the call was successful, and it can
also encode other status information. When a public member function of an
ObjectComponents class results in a call to an OLE interface and the interface call fails,
then ObjectComponents turns the OLE return result into a C++ exception object of type
TXOle. This allows you to handle OLE error codes via the standard C++ try and catch
constructs.

The TXOle class defines a variable, Stat, which holds the return value passed back from
from a failed OLE API call. Therefore, a catch statement taking a TXOle& as a parameter
has access to the OLE error code. The following code shows an example of a routine
where the error value is simply returned back to the caller. This is useful if the function
is called from an application that cannot handle C++ exceptions.

HRESULT
TMyAppDescriptor: :CheckTypeLib(TLangId lang, const char far* file)

{
HRESULT stat = HR_NOERROR;

// Create OCF classes and invoke OCF methods to perform operation
try {
TOleCreateList typeList(new TTypeLibrary(*this, lang), file);

: :

catch(TX0le& x) { // Catch OLE exception

stat = ResultFromScode (x.Stat); // Create HRESULT from SCODE
}
return stat; // Return OLE error code

}

The previous example uses the ResultFromScode macro to cast an SCODE to an
HRESULT. The OLE headers define various other macros that allow you to break down,
assemble, and convert the various components of the value returned from an OLE API
call. For more information, search for the topic “Error Handling Functions and Macros”
in OLE.HLP.

If ObjectComponents catches a TXOle exception internally, it displays a dialog box
showing the OLE return code. If the OLE_ERR.DLL library is present,
ObjectComponents attempts to translate the error code into a string for the dialog box.
Otherwise it displays just the numerical code.

OLE documents the codes only in the header files where they are defined. To make
what information there is more accessible, the DOCS/OLE_ERR.TXT file extracts
information from that header and presents the codes in numerical order. Also, the
source code for the error message DLL is in SOURCE/OCTOOLS/OLE_ERR.

Chapter 18, Support for OLE in Borland C++ 285

Building an ObjectComponents application

All ObjectComponents applications require exception handling and RTTI. Do not set
any compiler options that disable these features.

Linking and embedding applications must use the large memory model. Automation
applications can use the medium model as well (and they run faster in medium model).

The integrated development environment (IDE) sets the appropriate compiler and
linker options for you automatically when you select OCF in the TargetExpert.

To build any ObjectComponents program from the command line, create a short
makefile that includes the OWLOCFMK.GEN found in the EXAMPLES subdirectory. If
your application does not use ObjectWindows, include the OCFMAKE.GEN instead.
Here, for example, is the makefile that builds the AutoCalc sample program:

EXERES = MYPROGRAM

OBJEXE = winmain.obj autocalc.obj
HLP = MYPROGRAM

linclude $(BCEXAMPLEDIR)\ocfmake.gen

EXERES and OBJRES hold the name of the file to build and the names of the object files
to build it from. HLP is optional. Use it if your project includes an online Help file.
Finally, your makefile should include OWLOCFMK.GEN or OCFMAKE.GEN.

Name your file MAKEFILE and type this at the command line prompt:

make MODEL=1

MAKE, using instructions in the included file, will build a new makefile tailored to your
project. The new makefile is called WIN16Lxx.MAK. The final two digits of the name
tell whether the makefile uses diagnostic or debugging versions of the libraries. 01
indicates a debugging version, 10 a diagnostic version, and 11 means both kinds of
information are included. The same command also then runs the new makefile and
builds the program. If you change the command to define MODEL as d, the new
makefile is WIN16Dxx.MAK and it builds the program as a DLL.

For more information about how to use OCFMAKE.GEN and OWLOCFMK.GEN, read
the instructions at the beginning of MAKEFILE.GEN, found in the same directory.

Table 18.9 shows the libraries an ObjectComponents program links with.

Table 18.9 Libraries for building ObjectComponents prdgrams

. . . jectComponen
OWLWM.LIB OWLWL.LIB OWLWLLIB ObjectWindows

BIDSM.LIB BIDSL.LIB BIDSLLIB Class libraries
OLE2W16.LIB OLE2W16.LIB OLE2W16.LIB OLE system DLLs
IMPORT.LIB IMPORT.LIB IMPORT.LIB Windows system DLLs
MATHWM.LIB MATHWL.LIB Math support
CWM.LIB CWL.LIB CRTLDLL.LIB C run-time libraries

The ObjectComponents library must be linked first, before the ObjectWindows library.

286 ObjectWindows Programmer’s Guide

Distributing files with your application

When you distribute your application, you need to distribute along with it some
libraries that ObjectComponents requires. Your installation program should install the
files for the user, being careful not to replace any more current versions the user might
already have.

The following files are part of OLE 2 and should be distributed with any 16-bit OLE
application, whether it uses ObjectComponents or not.

compobj.dll ole2conv.dll ole2disp.dll
ole2.dll ole2nls.dll ole2prox.dll
storage.dll typelib.dll stdole.tlb
ole2.reg

All these files belong in the user’s WINDOWS/SYSTEM directory. Microsoft requires
that if you distribute any of the files, you must distribute all of them. Call RegEdit to
merge OLE2.REG with the user’s registration database. (The RegEdit registration editor
comes with Windows.) Double-clicking OLE2 REG in the File Manager accomplishes
the same thing.

Any program that uses ObjectComponents should also distribute BOCOLE.DLL.

In addition, if your program uses the DLL version of OWL, of the container class
libraries, or of the run-time library, you should distribute those as well.

How ObjectComponents works

The information in this section is not essential for using ObjectComponents, only for
understanding what goes on behind the scenes when you create ObjectComponents
connector objects.

The essential function of ObjectComponents is to connect you with OLE.
ObjectComponents is an intermediate layer standing between OLE on one side and
your C++ code on the other.

How ObjectComponents talks to OLE

Fundamentally, all OLE interaction of any sort requires the implementation of standard
OLE interfaces, such as IUnknown and IDispatch, as defined by the Component Object
Model (COM).

An interface is just a set of related function prototypes forming a pure base class. Every
OLE object that implements the same interface can choose to implement the prescribed
functions in its own way. All that matters is that the interface functions always accept
the same parameters and always produce the same results. This makes it possible for
any OLE object to call any standard function in any other OLE object that supports the
interface.

Chapter 18, Support for OLE in Borland C++ 287

Every OLE object must implement the IUnknown interface. One of the three functions in
the IUnknown interface is QueryInterface. This common function implemented on all
OLE objects lets you ask whether the object supports other interfaces that you want to
use, such as automation interfaces or data transfer interfaces. This makes it possible for
any OLE object to determine at run time what any other OLE object can do.

OLE defines a large number of standard interfaces that are notoriously tedious to
implement. Borland’s BOCOLE support library defines an alternate set of custom COM
interfaces that collectively provide an alternative interface to OLE programming, one
conceived at a higher level of abstraction. Client objects of the support library must still
implement I[Unknown, as all COM objects must, but instead of other standard OLE
interfaces such as IDataObject and IMoniker, they implement interfaces defined by
BOCOLE. The support library acts as an agent translating commands received through
its custom interfaces into standard OLE. All the custom interfaces commands are carried
out for you using standard OLE interfaces.

The custom interfaces in the BOCOLE support library have names like IBContainer and
IBDocument. You'll see them used if you look in the ObjectComponents source code.
Because the support library is an internal tool and subject to change, its interfaces are not
documented. The complete library source code, however, comes with Borland C++, so
you can refer to it if you need to track the OLE interactions minutely. You can also
modify and rebuild the support library, just as you can the Ob]ecthdows Library, if
that suits your purposes.

How ObjectComponents talks to you

Some of the ObjectComponents classes define COM objects. These objects derive from
TUnknown, an ObjectComponents base class that implements the IUnknown interface
and handles details of aggregation (a way of combining several objects into a single
functional unit). They also mix in other base classes that 1mp1ement interfaces from the
BOCOLE support library.

The ObjectComponents objects that implement COM interfaces are called connector
objects, because they connect your application to OLE. TOcPart, for example, is the
connector object that implements the interfaces a container must support for each OLE
object (part) that is placed in its document. To embed an object in your document, you
take information ObjectComponents gets from the Clipboard, a drop message, or the
Insert Object dialog box, and you pass the information to the TOcPart constructor.
Among other things, the constructor (indirectly) calls a BOCOLE function to create an
embedded OLE object. TOcPart holds the pointer to that object, queries it for interfaces,
and stores the coordinates of the site where the part should be drawn. When you want
the part to do something, you call TOcPart methods such as Activate and Save.

Linking and embedding connections

A linking and embedding application always creates a TOcApp object (usually it is
created for you). TOcApp is a connector object that implements interfaces every linking
and embedding application needs. Another connector object that all linking and
embedding applications create is the view object, either TOcView for a container or
TOcRemView for a server. You create one view object for each document you open. A

288 ObjectWindows Programmer’s Guide

view object is associated with the window where the document is drawn. The only other
connector object used for linking and embedding is TOcPart, which containers create for
each object deposited in their documents.

Of course communication through a connector object is not just one way. When you call
methods on a connector object, the object calls through to OLE, but sometimes OLE
needs to call you. For example, if when user chooses Insert Object and asks for an object
from a server, OLE must invoke the server and ask it to create an object. The connector
objects cannot, of course, call your functions the same way you can call theirs because
they don’t know anything about your code. When a connector object needs to
communicate a request or a notification from OLE to you, it sends WM_OCEVENT
message to one of your windows. TOcApp sends its messages to your frame window.
The view and part objects send messages to the client window where you draw your
document.

Communication from you to OLE happens through function calls to connector objects.
Communication from OLE to you happens through messages from connector objects to
your windows. Figure 18.12 diagrams these interactions.

Chapter 18, Support for OLE in Borland C++ 289

Per
application

Per
document

Figure 18.12 How objects in your application interact with ObjectComponents

290 ObjectWindows Programmer’s Guide

through inheritance

User Objects ObjectComponents Objects
TApplication Callsthrough 9
TOcApp* : TUnknown
TOcModule
. TOcApp
Messages to
ThyApp HWND
TDecoratedFrame 7 Calls through
t3
TOleFrame Sy
 Messages to TUnknown
HWND
TWindow | TOcView —O
) TOcRemView O
heams -
Toetinor Calls through (server only)
TOleView TOcView*
TMyView
Calls through Refers to part 9
TOcDocument* collection
TOleDocument ~ f=—=========| TOcDocument [===—=====8= TUnknown
TMyDocument TOcPart ®
, (container only) | (")
—() BOCOLE interface 9 [Unknown interface Object created """"'". Interactions

The objects on the left side are instances of the ObjectWindows classes you normally
create: an application, a frame window, a document, and a view. In applications that do
not use the Doc/View model or do not use ObjectWindows, different classes fulfill the
same functions. You always have a frame window and a document window, for
example. The flow of interaction is the same in every ObjectComponents application.

The objects on the right side are the helpers from ObjectComponents that connect
corresponding parts of your application to OLE.

The initial wiring between you and ObjectComponents is established the first time the
registrar object calls your factory callback function. The TOcApp object is bound to a
window in TOleFrame::SetupWindow, or in the WM_CREATE handler of your main
window.

Automation connections

Applications that support automation but not linking and embedding use a different set
of objects. The central function of the automation layer in OLE is to pass arguments from
the controller to the server, an operation with no user interface. The COM interfaces for
automation are buried deeper in the implementation of ObjectCcmponents than the
linking and embedding interfaces.

To support automation, ObjectComponents must identify exposed commands and
arguments, attach type information to them, transfer values to and from the stack of
VARIANT unions that OLE uses to pass values, and invoke your C++ functions when a
controller sends a command. Once you set up the tables that describe what you want to
expose, there is little in the automation process to customize or override. You never
directly create or manipulate the connector objects for automation; ObjectComponents
does it for you.

Advanced users who enjoy reading source code might like to know that TServedObject is
the class that implements IDispatch and ITypelnfo, that TTypeLibrary implements
ITypeLib, and that TAutolterator implements IEnumVARIANT. Of these, only
TAutolterator is exposed as a public part of ObjectComponents. The others are
considered internal implementation.

To automate a class, ObjectComponents asks you to build two descriptive tables from
macros. A declaration table goes with the class declaration and declares which members
are accessible to OLE. A definition table goes with the class implementation and assigns
public names for controllers to use when invoking your functions. The automation
macros also create nested classes within the automated parent, one for each exposed
function or data member. The nested classes have an Invoke method that calls your
function. Because the nested classes are friends of the surrounding class they have
direct access to it through normal C++ mechanisms.

TServedObject is the connector that receives IDispatch commands from OLE and
translates them into the appropriate Invoke calls. TServedObject finds the information it
needs to do this in an object of type TAutoClass, which holds the symbol information
from the automation tables. TServedObject receives dispatch IDs, looks them up in
TAutoClass, uses the information it finds to extract arguments from the stack of
VARIANT unions passed by OLE. Finally it calls Invoke on the appropriate nested
command object. Figure 18.13 diagrams the interaction of TServedObject with TAutoClass
and your automated class.

Chapter 18, Support for OLE in Borland C++ 291

Figure 18.13 How TServedObiject connects an automated class to OLE

5 = s i

TUnknown

TServedObject

“TOcApp Implements automation
interface

TAutoClass

Holds automation
table information

ObjectComponents Programming Tools

The most powerful tool in Borland C++ to help you with ObjectComponents
programming is AppExpert. AppExpert generates a complete basic application
according to your specification. It fully supports both linking and embedding and
automation. Use it to create containers, servers, and automation servers. ClassExpert
helps you modify the generated code to make it do what you need.

The TargetExpert in the integrated development environment (IDE) also supports
ObjectComponents. Click the option for OCF and it automatically sets the right build
options.

Utility programs

Borland C++ 4.5 comes with some new utility programs that simplify common OLE
programming chores. Some of them solve problems that other chapters explain in more
detail.

AutoGen: Generates proxy classes for an automation controller. Scans the type library
of an automated application and writes the source code for classes a controller uses to
send commands automation commands.

DIIRun: Launches a DLL server in executable mode. Any DLL server written with
ObjectComponents can also run as a standalone application if you invoke it with
DIIRun. Running in executable mode sometimes makes it easier to debug the DLL. It
also makes it possible to distribute a single program that your users can run either as an
in-process server or as an independent application.

\

292 ObjectWindows Programmer’s Guide

GuidGen: Generates globally unique identifiers for use in registering applications.
Every server must have an absolutely unique ID. Containers need them in order to be
link sources.

MacroGen: Generates automation macros for exposing functions with any number of
arguments. The ObjectComponents headers declare versions of the macros for functions
with up to four arguments. MacroGen saves you from having to revise the macros by
hand to accommodate more arguments.

Register: Registers or unregisters any ObjectComponents EXE or DLL. Usually the
applications register themselves if necessary when they run, or in response to
command-line switches. Developers, however, sometimes need to register and
unregister different versions of an application over and over. Register is especially
useful for DLLs because you can’t pass command-line switches to a DLL.

WinRun: A background program that makes it possible to launch Windows programs
from the command line prompt in a DOS box. WinRun makes it possible to run GUI
programs (such as Register) from a make file.

The source code for all the utilities but WINRUN is in the OCTOOLS directory.

You might find it helpful to install these tools in the integrated development
environment (IDE). For more information, open the EXAMPLES\IDEAIDEHOOK\
IDEHOOKU.IDE file and read the instructions in OLETOOLS.CPP.

Where do | look for information?
You can find information about programming with ObjectComponents in this book, in
other books, in the online Help, and in the directories of sample programs.

Throughout the documentation, OLE refers to OLE 2.0 unless version 1 is indicated
explicitly.

Books

The chapters that follow describe how to build programs that perform all these
functions.

Table 18.10 Descriptions of the ObjectComponents chapters in this book

’ Support for OLE in Borland C++ Overview of ObjectCompon 1t

Creating an OLE container How to build an application that receives OLE objects
in its documents

Creating an OLE server How to build an application that creates OLE objects
for containers to use

Automating an application How to build an application that other programs can
control

Creating an automation controller =~ How to build an application that controls other
applications

Chapter 18, Support for OLE in Borland C++ 293

For complete reference material covering all the new OLE-related classes and macros in
ObjectComponents andObjectWindows, see the Object Windows Reference Guide.

The ObjectComponents material in this book and in the ObjectWindows Reference Guide is
also in the online Help for Borland C++.

The ObjectWindows Tutorial develops a sample application from scratch. The later steps
use add OLE container, server, and automation capabilities. -

Online Help

In addition, Borland C++ includes three online Help files covering the OLE API. For the
most part, ObjectComponents makes knowledge of OLE interfaces unnecessary, but if
you want to understand more about how ObjectComponents works, or if your
application requires advanced programming at the OLE interface level, then you might

find these files useful.

Table 18.11 Online Help files with information about ObjectComponents and OLE

Help file Topic e ; ;

OCFHLP ObjectComponents chapters from the ObjectWindows Programmer’s Guide
and the ObjectWindows Reference Guide ,

OWLHLP Reference material for new OLE-enabled classes in ObjectWindows

OLE.HLP OLE system overviews and reference

Example programs

One of the best ways to learn about programming is to study working code. AppExpert
is a good place to start. Use it to generate the code for servers, containers, automation
servers, and DLL servers. In addition, Borland C++ comes with a variety of sample
programs that show off ObjectComponents. Some of them are described in this list.
EXAMPLES/OCEF: ObjectComponents without ObjectWindows

e AutoCalc: An automation server; draws a calculator onscreen and lets a controller
click the buttons

¢ CallCalc: An automation controller to manipulate the calculator in AutoCalc

® CppOcf: Three-step linking and embedding tutorial that starts with a simple C++
program, turns it into a container, and then into a server

* Localize: Pulls translated strings from XLAT resources to reflect language settings

» RegTest: Registers, validates the registration, and unregisters an
ObjectComponents application

EXAMPLES/OWL/TUTORIAL: ObjectWindows tutorial examples

® OwlOcf: Three-step linking and embedding tutorial that starts with a simple
ObjectComponents program, turns it into a container, and then into a server.

® Stepl4 - Step17: The final steps of the tutorial application described in
ObjectWindows Tutorial; shows how to be a linking and embedding container or

294 ObjectWindows Programmer’s Guide

server, how to be an automation server or controller, and how to support both
automation and linking and embedding at the same time

EXAMPLES/OWL/OCEF: ObjectComponents with ObjectWindows

¢ MdiOle: A multidocument interface application with container capabilities
e SdiOle: A single document interface application with container capabilities
¢ Tic Tac Toe: A linking and embedding server

SOURCE/OCTOOLS: source code for programming utilities

* AutoGen: Scans a type library and generates proxy classes for an automation
controller

e DIIRun: Runs a DLL server in executable mode
* GuidGen: Generates globally unique identifiers (GUIDs)
¢ Register: Registers or unregisters a server (EXE or DLL)

Glossary of OLE terms

The definitions in this list explain common terms in OLE programming. Read it for an
introduction to important programming topics, or refer to it for clarification as you read
other ObjectComponents chapters.

The definitions of advanced concepts assume you already know something about OLE
and its standard interfaces. For more information about OLE, refer to the three OLE
online Help files.

* Activate: the user activates a linked or embedded object by double-clicking it.
Activating an object causes the server to execute the object’s primary verb. For
document-style objects, the primary verb is generally initiates an editing session,
either in-place or open. For other objects, such as movies and sounds, the primary
verb is usually Play. Activating is not the same as selecting; see the entry for Select.

* Aggregation: a way of combining several OLE objects to make them function as a
single bigger object. Objects are aggregated at run time. You can aggregate with
objects that you did not design. An object aggregates to delegate commands or to
inherit and override the functionality of other objects.

Aggregation is an advanced programming technique. In order for aggregated objects
to act as a unit, all the aggregated objects must delegate any QueryInterface call they
receive to the primary object, usually called the outer object. The outer object begins
an aggregation by passing its own IUnknown pointer. The second object remembers
the outer IUnknown pointer and routes all requests for an interface to the outer object.
If the outer object does not support a requested interface, it forwards the request to
the first in what might be a chain of aggregated objects. A client can reach all the
interfaces supported by any of the auxiliary objects through the [Unknown of the
outer object.

* Automated object or application: an OLE object that publishes commands other
applications can send it. An automation server creates automated objects. The

Chapter 18, Support for OLE in Borland C++ 295

automated object can be the application itself or something that the application
creates.

* Automation: the ability of an application to define a set of commands for other
applications to invoke.

* Automation controller: an application that invokes commands to control automated
objects or applications. A controller is sometimes called an automation client.

* Automation server: an application that exposes some of its own internal function
calls as a set of commands that other programs can invoke. An automation object is
what the server creates for other programs to control.

* BOCOLE support library: a DLL of OLE implementation utility interfaces that
ObjectComponents calls internally. The support library implements a number of
custom OLE interfaces designed by Borland. The BOCOLE.DLL file should be
distributed with any ObjectComponents program. Its custom interfaces are
considered internal and so are not documented. The source code for the BOCOLE
support library, however, is included with Borland C++.

¢ COM object: An object whose architecture conforms to the Component Object
Model, a Microsoft specification that forms the basis of the OLE system. Briefly
stated, the characteristics of COM objects are

* They communicate through predefined interfaces.

* They all support the IUnknown interface, and IUnknown includes the QuerylInterface
method for getting other optional interfaces.

* They keep a reference count of their clients and delete themselves if the count
reaches zero.

Only COM objects can communicate with OLE. Some of the classes in
ObjectComponents are COM objects (see Connector object). ObjectComponents shields
you from the details of interface methods, interface pointers, and reference counters.
It connects you to OLE using familiar C++ and Windows programming models such
as inheritance and messages.

¢ Compound document: a document that contains OLE objects brought in from other
applications. A compound document might contain pieces of information from a
spreadsheet, a database, and a word processor, all in one document that the user
loads or saves with a single command. The objects from other applications are either
linked or embedded in the container’s document.

¢ Compound file: a single disk file that the operating system divides into independent
compartments called storages. In effect, each storage has its own file I/O pointer so
you can read, write, rewrite, and erase data in any one storage without needing to
maintain offsets to other storages in the same file. Compound files are useful for
storing compound documents because you can create a new storage for each linked
or embedded object. OLE extends the file system by implementing interfaces to
support compound files.

¢ Connector object: an ObjectComponents class that communicates with OLE for you.
Connector objects connect parts of your application to OLE. TOcApp, for example,
performs OLE functions for the application. TOcView performs OLE functions for
one view of a document. TOcPart performs OLE functions for a linked or embedded

296 ObjectWindows Programmer’s Guide

object. The connector objects are partners that work together with corresporiding
parts of your application. You call their methods and they send you messages.
Connectors are Component Object Model objects and implement COM interfaces.
(Not all ObjectComponents classes are connectors.)

Container: an application that permits OLE to embed or link objects from other
applications into its own documents. Containers are also called clients of the servers
that give them objects.

DLL server: a server whose code is in a dynamic-link library rather than an
executable file. The advantage of a DLL server is speed. When OLE invokes an .EXE
server to support an embedded object, it has to create a a separate process and
marshall data to pass it between the two applications. A DLL, on the other hand, is
part of the same system task as its client, so OLE calls from a container to a DLL
server run much more quickly. See “Making a DLL server” on page 374.

Document: this word has two different meanings for programmers. First, a
document is a set of data that an application loads in response to File | Open. A
document can be a spreadsheet, or a bitmap, or a letter, or any other set of data that
an application treats as a whole.

Sometimes it is useful to distinguish between the data in a document and the
appearance of the data onscreen. A spreadsheet, for example, might be able to
display a single set of data as either a table of numbers or a chart. One document can
be displayed different ways. In such cases, document refers only to the data, and each
possible representation of the document is called a view.

ObjectWindows programmers are familiar with an application architecture called the
Doc/View model that separates the code for managing document data from the code
for displaying the data. ObjectComponents also has a document class and view
classes, but they are not part of the ObjectWindows Doc/View model. The document
class keeps track of the objects embedded in a document and the view classes draw
the objects onscreen.

Embedded object: data from a server application deposited by OLE in a container’s
document. OLE lets the user paste, drag, or insert objects into a container. If during
these actions the user chooses to create an embedded object, then all the data in the
object is copied to the container’s document. When the user loads or saves the
document, the data for the embedded object is written to the file along with the
container’s own native data.

Contrast embedded objects with linked objects, where the the data for the OLE object
is stored in another application and the container receives only a reference to the
object’s file.

EXE server: aserver application compiled and linked into an executable file. A server
can also be built as a library; see DLL server.

GUID: globally unique identifier, a 16-byte value. OLE uses GUIDs to identify
applications, the objects they produce, and the interfaces that objects implement. For
linking and embedding, OLE needs GUIDs to match embedded objects to their
servers even after the user transfers a compound document from system to system. If
two servers had the same ID, OLE might accidentally invoke the wrong one. Each

Chapter 18, Support for OLE in Borland C++ 297

server and object type must have an absolutely unique ID. Tools such as GUIDGEN
create the ID for you. For more information, see the clsid entry in the ObjectWindows
Reference Guide.

¢ IDispatch interface: the OLE interface that all automated objects implement. With
the four methods of the IDispatch interface, you can ask any automated object for
information about its automated commands, look up the identifiers for particular
commands, or invoke any command. For more information, see the OLE.HLP Help
file.

* In-place editing: editing an OLE object in the container’s window. During in-place
editing, the container lets the server display its own menus and tool bars in the
container’s window. The purpose of in-place editing is to let the user edit any object
in a document without leaving the document’s window. In-place editing is illustrated
in Figure 18.3 on page 270. Contrast Open editing.

¢ In-process server: same as DLL server.

* Interface: a set of function prototypes, usually declared as an abstract base class. OLE
objects are able to communicate with each other because they implement standard
interfaces, sets of functions that the system defines. The system defines only what
functions an interface contains; it does not implement the functions. Each object
implements the functions for itself. The interfaces are defined in the OLE system
headers such as compobj.h and ole2.h. The OLE system communicates with
applications and objects by calling the functions it assumes each one has
implemented. For more about the OLE interface model, see the entry for Component
Object Model (COM). For examples of standard OLE interfaces, see IDispatch and
IUnknown.

Besides the standard interfaces, an object can define and implement its own custom
interfaces. Of course the system can’t call functions from custom interfaces because it
doesn’t know they exist, but other applications that know about the custom interface
can use it. Internally, ObjectComponents works through a set of Borland custom
interfaces. See BOCOLE support library.

ObjectComponents shields you from having to understand or implement particular
interfaces. Advanced users who want to manipulate interfaces directly or mix in their
own custom interfaces are free to do so.

¢ IUnknown interface: the root interface that all OLE objects and interfaces must
implement. With the three methods of the IUnknown interface, you can ask any object
for a pointer to another interface it might also support, and you can adjust the object’s
reference count. For more information, see the OLE.HLP Help file.

¢ Linked object: an object that appears in a container document but whose data really
resides in another file. When dragging or pasting an object into a container, the user
can choose to create a link to the object instead of embedding it. The container does
not receive or store the linked object’s data in its own document. Instead, it receives
only a string identifying the location of the actual data, which can be in a file.

Several containers can link to the same object. In that case, all the containers receive
the same string pointing to the same object. If the data in the original object changes,
then the changes are reflected automatically in all the documents that link to it. If the

298 ObjectWindows Programmer’s Guide

user embeds one object in several containers, then each container has its own copy of
the object’s data and changes in one copy do not affect the other copies.

Link source: the document that a link refers to, the source for the data in a linked
object. Usually the link source is a server document, but it is not uncommon for
containers to export link source data so that other applications can link to objects
embedded or linked in the container’s document. For information on becoming a link
source, see the entry for REGFORMAT in the ObjectWindows Reference Guide.

Localization: adapting an application to display strings in the user’s language,
whatever that might be. OLE servers need to speak the language of their client
programs. If an automation server is marketed in several countries, it needs to
recognize commands sent in each different language. A linking and embedding
server registers strings that describe its objects to the user, and those too should be
available in multiple languages in order to accommodate whatever language the user
might request. ObjectComponents lets you place translations for all your strings in
your resource file as XLAT resources. ObjectComponents chooses the right string at
the right time.

ObjectComponents Framework: a set of C++ classes from Borland International that
encapsulate linking and embedding functions as well as automation functions.
Internally the ObjectComponents classes implement standard and custom OLE
interfaces. With ObjectComponents you write for OLE using familiar programming
models such as inheritance and window messages instead of implementing COM
interfaces.

ObjectWindows Library: a set of C++ classes from Borland International that
encapsulate standard Windows programming functions such as managing windows
and dialog boxes. The current version of ObjectWindows introduces some new
classes, such as TOleWindow and TOleView, that use ObjectComponents classes to
acquire OLE capabilities. The new classes make it very easy to add OLE support to
existing ObjectWindows applications.

OLE: object linking and embedding, an extension to the Windows system. (In newer
versions of Windows, OLE is an integral part of the system , not an extension.) The
new commands that OLE implements and the interfaces it defines add many new
features to the system, including linking and embedding, automation, and
compound file I/O.

OLE interface: see Interface.

Open editing: editing an OLE object in the server’s own window. Open editing
happens when the user executes the Open verb. During open editing, the server’s
window opens up in front of the container’s window. When the user finishes editing
the object, the server window disappears and the modifications become visible back
in the container window. Open editing is illustrated in Figure 18.J on page 275.
Contrast In-place editing.

Part: an object linked or embedded in a compound document. An ObjectComponents
container creates an object of class TOcPart to represent each object linked or
embedded in its document.

Chapter 18, Support for OLE in Borland C++ 299

Part is the container’s word for an object created by a server. In the server’s code, the
same object is created as a normal server document. ObjectComponents presents the
document to OLE as an OLE object. The container, when it receives the OLE object,
creates a TOcPart. When the part needs to be painted, the part object communicates
through OLE with the server’s view object.

¢ Reference counting: a way of remembering how many clients an object has. Every
section of code that requires the object to exist calls the object’s AddRef method to
increment the reference count. When the client code is done, it calls the object’s
Release method to decrement the reference count. If a Release call causes the count to
reach 0, then the object is allowed to destroy itself.

Every OLE object has AddRef and Release methods because they are part of the
IUnknown interface. Knowing who is a client and when to call AddRef or Release is
sometimes complicated. ObjectComponents manages reference counting for you.
Only advanced users will find any need to call AddRef or Release directly.

¢ Registrar object: an object of type TRegistrar or TOcRegistrar. Every
ObjectComponents application needs a registrar object. The registrar processes the
application’s command line, sets running mode flags, verifies the application’s
entries in the system registration database, and calls the application’s factory function
to launch the application.

* Registration: giving information about the application to the system. OLE programs
perform two different kinds of registration. When an application is first installed,
ObjectComponents writes information from the application’s registration tables into
the system registration database. This information is static and needs to be recorded
only once. The registrar object performs this task.

Subsequently whenever the user launches the application, ObjectComponents tells
OLE that the application is running and it registers a factory for each type of
document the application can produce. When the application ends,
ObjectComponents unregisters the factories. The TOcApp or TRegistrar object
performs this task.

* Registration database: see System registration database.

¢ Registration table: a table built with registration macros and containing information
about an application or about the types of documents an application creates. The
macros create a structure of type TRegList. The registrar object reads the registration
structure and copies any necessary information to the system registration database.

* Remote view: the view of its own object a server draws in a container’s window.
When an ObjectComponents server is launched to manage an object linked or
embedded in a container’s document, the server creates a TOcRemView object and a
TOcDocument object. The view object draws in the container’s window. The
document object loads and saves the object’s data.

300 ObjectWindows Programmer’s Guide

Select: the user selects an object by clicking it once. The selected object does not
become active and cannot be edited. Conventionally a container indicates that an
object is selected by drawing a rectangle with grapples around the object. (Grapples
are small handles for moving the rectangle.) The container might permit the user to
select several objects at once to move or delete as a group, but usually only one object
per child window can be active at a time.

Server: an application that creates objects for other applications to use. In this
documentation, server usually refers to either a linking and embedding server or an
automation server. A linking and embedding server creates data objects that
containers can paste, drop, or insert into their own compound documents. An
automation server creates objects that other applications can manipulate by sending
commands for the object to execute. (A single application can choose to create both
kinds of objects. It is even possible to link and embed automated objects.)

System registration database: a structured repository of information about
applications installed on a particular computer. In 16-bit Windows, the database is
kept in the REG.DAT file. In 32-bit Windows, the database is called the system registry
and resides in private system files. Applications record their information during
installation. The information includes identifiers for the application and its
documents, descriptions of the application and its documents, the path to the
application file, the default extension of the application’s document files, and other
details that help the OLE system associate servers with their objects.

Type library: a file describing the commands an automation controller supports.
Creating a type library is the standard way for an automation server to publish the
programming interface it implements. The type library tells what objects the server
creates and describes the objects’ properties and methods. Type information is read
by compilers and interpreters that process automation commands. Some applications
also allow the user to browse the type information.

Any ObjectComponents automation server generates a type library if you invoke it
with the -TypeLib command line switch. Type libraries conventionally use the .TLB
or .OLB extension. An automation server registers the location of its type library
during installation.

Verb: a command that a linking and embedding server can execute with its objects.
The server tells the container what verbs it supports and the container displays the
verb strings on its own Edit menu. To execute a verb, the user selects an object and
then chooses a verb from the menu. The container updates the verb menu each time
the user selects a new object.

The server can support any verbs it chooses. Most servers support the Edit and Open
verbs for in-place or open editing. Depending on the kind of data it owns, a server
might choose to offer other verbs such as Play and Rewind.

View: the graphical representation of data. The term is used to distinguish between
the way the data is painted and the data itself, usually called the document. A single
word processor document, for example, might have three different views: a page
layout view, a draft view without fancy fonts, and a print preview view.

Chapter 18, Support for OLE in Borland C++ 301

In ObjectComponents, containers create views to draw their compound documents.

Servers also create views to draw the objects they create. Both create a TOcDocument
object to manage the data and a view object, either TOcView or TOcRemView, to draw
the document.

In ObjectWindows, Doc/View refers to a particular application architecture supported
by the framework that also treats data and its representation in separate classes.

302 ObjectWindows Programmer’s Guide

Chapter

Creating an OLE container

An OLE container is an application that can store in its own documents data objects
taken from other applications. A container can link objects or embed them in its
documents. A program that creates objects to be linked or embedded is called a server.

This chapter explains how to take existing programs and turn them into OLE containers.
It describes the steps required for adapting three different kinds of programs:

e An ObjectWindows application that uses the Doc/View model
¢ An ObjectWindows application that does not use the Doc/View model
¢ A C++ application that does not use ObjectWindows

The first case turns out to be very simple. The last case, relying entirely on the
ObjectComponents Framework, requires the most new code, but it is still substantially
easier than programming directly to OLE.

Turning a Doc/View application into an OLE container

Turning a Doc/View application into an OLE container requires only a few
modifications. The following list describes the changes briefly. Subsequent sections give
more detail for each one.

1 Connect your application, window, document, and view objects to OLE.
® Derive your application class from TOcModule as well as TApplication.

e Derive frame window, document, and view classes from new OLE-enabled
classes.

* Create a TAppDictionary object.
2 Register the‘application.

« Using macros, build registration tables to describe your application.
¢ Create a registrar object and call its Run method.

Chapter 19, Creating an OLE container 303

3. Support OLE commands.

¢ Setup your Edit menu and tool bar using the appropnate predefined identifiers to
support standard OLE commands.

¢ Make your Open and Save commands read and write embedded objects in your
compound documents.

4 Build the container application.
¢ Include new ObjectWindows OLE headers at the beginning of your source code.

¢ Compile the program using the large memory model. Link to the OLE and
ObjectComponents libraries.

That’s all you need to do. By following these steps, you can create an OLE container that
supports all the following features:

¢ Linking ¢ Embedding
® OLE clipboard operations * Drag and drop operations
¢ In-place editing ¢ Tool bar and menu merging

¢ Compound document storage

You also get standard OLE 2 user interface features, such as ob]ect verbs on the Edit
menu, the Insert Object dialog box, and a pop-up menu that appears when the user

right-clicks an embedded object.

ObjectComponents provides default behavior for all these common OLE features.
Should you want to modify the default behavior, you can additionally choose to
override the default event handlers for messages that ObjectComponents sends. For a
list of the event messages, see Tabies 18.5 and 18.6.

The code examples in this section are based on the STEP14.CPP and STEP14DV.CPP
sample programs in EXAMPLES/OWL/TUTORIAL. Look there for a complete
working program that incorporates all the prescribed steps.

1. Connecting objects to OLE

Your application, window, document, and view objects need to make use of new OLE-
enabled classes. The constructor for the application object expects to receive an
application dictionary object, so create that first.

Deriving the application object from TOcModule

The application object of an ObjectComponents program needs to derive from
TOcModule as well as TApplication. TOcModule coordinates some basic housekeeping
chores related to registration and memory management. It also connects your
application to OLE. More specifically, TOcModule manages the connector object that
implements COM interfaces on behalf of an application.

304 ObjectWindows Programmer’s Guide

If the declaration of your application object looks like this:

class TMyApp : public TApplication {
public:
TMyApp () : TApplication()({};
i
Then change it to look like this:

class TMyApp : public TApplication, public TOcModule {
public:

b
The constructor for the revised TMyApp class takes three parameters.
* A string naming the application

AppReg is the application’s registration table, shown later in “Building registration
tables.” The expression ::AppReg[“appname”] extracts a string that was registered as
the application’s name.

¢ A pointer to the application module.
Module is a global variable of type TModule* defined by ObjectWindows.
¢ The address of the application dictionary.
AppDictionary is the application dictionary object explained in the previous section.

Inheriting from OLE classes

ObjectWindows includes classes that let windows, documents, and views interact with
the ObjectComponents classes. The ObjectWindows OLE classes include default
implementations for most normal OLE operations. To adapt an existing ObjectWindows
program to OLE, change its derived classes so they inherit from the OLE classes. Table
19.1 shows which OLE class replaces each of the non-OLE classes.

Table 19.1 Non-OLE classes and the corresponding classes that add OLE support
‘Non-OLEclass 'OLEclass
' TOleFréﬁle .

 TFrameWindow
TMDIFrame TOleMDIFrame
TDecoratedFrame TOleFrame
TDecoratedMDIFrame TOleMDIFrame
TWindow TOleWindow
TDocument TOleDocument
TView TOleView
"TFileDocument TOleDocument

The TOleFrame and TOleMDIFrame classes both derive from decorated window classes.
The OLE 2 user interface requires containers to handle tool bars and status bars. Even if

Chapter 19, Creating an OLE container 305

the container has no decorations, servers might need to display their own in the
container’s window. The OLE window classes handle those negotiations for you.

Wherever your existing OWL prdgram uses a non-OLE class, replace it with an OLE
class, as shown here. Boldface type highlights the change.

Before

// pre-OLE declaration of a window class
class TMyFrame: public TFrameWindow { /* declarations */);

After
// new declaration of the same window class
class TMyFrame: public TOleFrame { /* declarations */);

Note If the implementation of your class makes direct calls to its base class, be sure to change
the base class calls, as well. Response tables also refer to the base class and need to be
* updated.

Creating an application dictionary

An application dictionary tracks information for the currently active process. It is
particularly useful for DLLs. When several processes use a DLL concurrently, the DLL
must maintain multiple copies of the global, static, and dynamic variables that represent
its current state in each process. For example, the DLL version of ObjectWindows
maintains a dictionary that allows it to retrieve the TApplication corresponding to the
currently active client process. If you convert an executable server to a DLL server, your
application too must maintain a dictionary of the TApplication objects representing each
of its container clients. If your DLL uses the DLL version of ObjectWindows, then your
DLL needs its own dictionary and cannot use the one in ObjectWindows.

The DEFINE_APP_DICTIONARY macro provides a simple and unified way to create
the application object for any application, whether it is a container or a server, a DLL or
. an EXE. Insert this statement with your other static variables:

DEFINE_APP_DICTIONARY (AppDictionary);

For any application linked to the static version of the DLL, the macro simply creates a
reference to the application dictionary in ObjectWindows. For DLL servers using the
DLL version of ObjectWindows, however, it creates an instance of the TAppDictionary
class.

Note Name your dictionary object AppDictionary to take advantage of the factory templates
such as TOleDocViewFactory (as explained in the section, “Creating a registrar object”).

2. Registering a container

To register your application with OLE, create registration tables describing the
application and the kinds of documents it creates. Create a registrar object to process the
information in the tables.

306 ObjectWindows Programmer’s Guide

Note

Building registration tables

OLE requires programs to identify themselves by registering unique identifiers and
names. OLE also needs to know what Clipboard formats a program supports. Doc/
View applications also register their document file extensions and document flags. To
accommodate the many new items an application might need to register, in
ObjectWindows 2.5 you use macros to build structures to hold the items. Then you can
pass the structure to the object that needs the information. The advantage of this method
lies in the structure’s flexibility. It can hold as many or as few items as you need.

Previous versions of ObjectWindows passed some of the same information in
parameters. Old code still works unchanged, but passing information in registration
structures is the recommended method for all new applications.

A Doc/View OLE container fills one registration structure with information about the
application and then creates another to describe each of its Doc/View pairs. The
structure with application information is passed to the TOcRegistrar constructor, as
you'll see in the next section. Document registration structures are passed to the
document template constructor.

Here are the commands to register a typical container:

REGISTRATION_FORMAT_BUFFER(100) // allow extra space for expanding macros

BEGIN_REGISTRATION (AppReg) // information for the TOcRegistrar constructor
REGDATA (clsid, "{383882A1-8ABC-101B-A23B-CE4E85D07ED2} ")
REGDATA (appname, "DrawPad Container")

END_REGISTRATION

BEGIN_REGISTRATION (DocReg) // information for the document template
REGDATA (progid, "DrawPad.Document .14")
REGDATA (description, "Drawing Pad (Stepl4--Container)")
REGDATA (extension, "pl4")
REGDATA (docfilter, "*.pld")
REGDOCFLAGS (dtAutoOpen | dtAutoDelete | dtUpdateDir | dtCreatePrompt | dtRegisterExt)
REGFORMAT (0, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
REGFORMAT (1, ocrMetafilePict, ocrContent, ocrMfPict]|ocrStaticMed, ocrGet)
REGFORMAT (2, ocrBitmap, ocrContent, ocrGDI|ocrStaticMed, ocrGet)
REGFORMAT (3, ocrDib, ocrContent, ocrHGlobal|ocrStaticMed, ocrGet)
REGFORMAT (4, ocrLinkSource, ocrContent, ocrIStream, ocrGet)
END_REGISTRATION

The registration macros build structures of type TRegList. Each entry in a registration
structure contains a key, such as clsid or progid, and a value assigned to the key.
Internally ObjectComponents finds the values by searching for the keys. The order in
which the keys appear does not matter.

Insert the registration macros after your declaration of the application dictionary. Since
the value of the clsid key must be a unique number identifying your application, it is
recommended that you generated a new value using the GUIDGEN.EXE utility. (The
ObjectWindows Reference Guide entry for clsid explains other ways to generate an
identifer.) Of course, modify the value of the description key to describe your container.

Chapter 19, Creating an OLE container 307

The example builds two structures, one named AppReg and one named DocReg. AppReg
is an application registration structure and DocReg is a document registration structure. Both
structures are built alike, but each contains a different set of keys and values. The keys in
an application registration structure describe attributes of the application. A document
registration structure describes the type of document an application can create. A
document’s attributes include the data formats that it can exchange with the clipboard,
its file extensions, and its document type name.

The set of keys you place in a structure depends on what OLE capabilities you intend to
support. The macros in the example show the minimum amount of information a
container should provide.

Table 19.2 briefly describes all the registration keys that a container can use. It shows
which are optional and which required as well as which belong in the application
registration table and which in the document registration table.

Table 19.2 Keys a contamer reglsters to support linking and embeddmg

§? Description L
appname No Ashortname for the apphcatlon ’
clsid Optional Globally unique identifier (GUID); generated
automatically for the DocReg structure.
description No Yes Descriptive string (up to 40 characters)
progid No Yesforalink Identifier for program or document type (unique
source string)
extension No Optional Document file extension associated with server
docfilter No Yes Wildcard file filter for File Open dialog box
docflags No Yes Options for running the File Open dialog box
formatn No Yes A clipboard format the container supports
directory No Optional Default directory for storing document files
permid No Optional Name string without version information
permname No Optional Descriptive string without version information
version Optional No Major and minor version numbers (defaults to “1.0”)

The table shows what is required for container documents that let other containers link
to their embedded objects. For documents that do not support linking to embedded
objects, the container needs to register only docflags and docfilter.

If your container is also a linking and embedding server or an automation server, then
you should also consult the server table on page 346 or the automation table on
page 384. Register all the keys required in any tables that apply to your application.

For more information about registration tables, see “Understanding registration” on
page 372. For more information about individual registration keys and the values they
hold, see the ObjectWindows Reference Guide.

The values assigned to keys can be translated to accommodate system language
settings. For more about localization, see the section “Registering localized entries” on
page 373 and “Localizing symbol names” on page 397.

308 ObjectWindows Programmer’s Guide

Understanding registration macros

The first macro in the example, REGISTRATION_FORMAT_BUFEFER, sets the size of a
buffer needed temporarily as the macros that follow are expanded. For more about
about determining the buffer size, see page 347.

The REGDATA, REGFORMAT, and REGDOCFLAGS macros place items in the
registration structure. All the registration macros are documented in the ObjectWindows
Reference Guide.

REGDATA's first parameter is a key and the second is a value to associate with the key.
In the example, the AppReg structure begins by assigning a value to the key clsid. The
clsid is a globally unique identifier (GUID) specifying the application. The application’s
progid is a text string that serves the same purpose. The description key briefly describes
the application (Drawing Pad (Step14—Container)). Of these three keys, only the
description value is visible to users. (Users also see the progid if the application is
automated; see Chapter 21, “Automating an application.”) The document structure
registers its own progid and description. Although each document type also needs its own
unique clsid, if you omit it ObjectComponents supplies it for you by incrementing the
application’s clsid.

REGFORMAT entries list the data formats that the container can place on the Clipboard.
The first parameter sets a priority order for the formats you use. 0 marks the format that
renders data with the best fidelity, and higher numbers indicate lower fidelity. The
second parameter represents a data format. The other parameters tell what presentation
aspect of the format you use, what medium you use to transfer the data, and whether
you can supply and receive Clipboard data in that format. All the data formats you
specify with REGFORMAT are registered with the Windows Clipboard for you.

Even a simple container is usually capable of placing OLE objects on the Clipboard. If
the user selects a linked or embedded object from the container’s document and wants
to transfer it through the Clipboard to another container, then the first container needs
to act as a server by supporting at least the ocrEmbedSource or ocrLinkSource formats. Any
application that registers either of these formats must also register ocrMetafilePict. The
usual case is to register the five formats shown in the example. ObjectComponents
automatically handles OLE objects in any of the standard formats for you. All you have
to do is register the ones you want to support.

To register user-defined formats, replace the data format parameter with a string
naming your format.

REGFORMAT (3, "MyOwnFormat", ocrContent, ocrIStorage, ocrGet)

If you register any custom Clipboard formats, you must also provide OLE with strings
to describe your format in dialog boxes. Call AddUserFormatName, a method on classes
derived from TOleFrame, to supply the descriptions.

For more information, see REGFORMAT in the ObjectWindows Reference Guide.

REGDOCFLAGS adds to the registration structure an entry containing flags for a
document template. The flags set options for running the File Open common dialog box.

After creating registration tables, you must pass them to the appropriate object
constructors. The AppReg structure is passed to the TOcRegistrar constructor, as

Chapter 19, Creating an OLE container 309

described in “Creating a registrar object.” In a Doc/View application, document
registration tables are passed to the document template constructor.

DEFINE_DOC_TEMPLATE_CLASS (TMyOleDocument, TMyOleView, MyTemplate);
MyTemplate myTpl (DocReg) ;

A program that uses several document templates should create a different registration
table for each template. Each registration table must start with the
BEGIN_REGISTRATION macro and have a different name, for example DocReg1 and
DocReg?2. :

All the information that normally gets passed to a document template constructor can
be placed in a registration structure using REGFORMAT, REGDOCFLAGS, and
REGDATA. Previous versions of OWL passed the same information to the document
template as a series of separate parameters. The old method is still supported for
backward compatibility, but new programs, whether they use OLE or not, should use
the registration macros to supply document template parameters.

Creating a registrar object

Every ObjectComponents application needs a registrar object to manage its registration
tasks. In a linking and embedding application, the registrar is an object of type
TOcRegistrar. At the top of your source code file, declare a global variable holding a
pointer to the registrar.

static TPointer<TOcRegistrar> Registrar;

The TPointer template ensures that the TOcRegistrar instance is deleted when the
program ends.

Note Name the variable Registrar to take advantage of the factory callback template used in
the registrar’s constructor.

The next step is to modify your OwlMain function to allocate a new TOcRegistrar object
and initialize the global pointer Registrar. The TOcRegistrar constructor expects three
parameters: the application’s registration structure, the component’s factory callback
and the command line string that invoked that application.

¢ The registration structure you create with the registration macros.
* The factory callback you create with a template class.

For a linking and embedding ObjectWindows application that uses Doc/View, the
template class is called TOleDocViewFactory. The code in the factory template
assumes you have defined an application dictionary called AppDictionary and a
TOcRegistrar* called Registrar.

* The command line string can come from the GetCmdLine method of TApplication.
int
OwlMain(int /*argc*/, char* /*argv*/ [])
{
try {
// Create Registrar object

Registrar = new TOcRegistrar(::AppReg, TOleDocViewFactory<TMyApp>(),
TApplication: :GetCmdLine());

310 ObjectWindows Programmer’s Guide

return Registrar->Run();
}
catch (xmsg&k x) {
::MessageBox (0, x.why().c_str(), "Exception", MB_OK);
}
return -1;

}

After initializing the Registrar pointer, your OLE container application must invoke the
Run method of the registrar instead of TApplication::Run. For OLE containers, the
registrar’s Run simply invokes the application object’s Run to create the application’s
windows and process messages. However, using the registrar method makes your
application OLE server-ready. The following code shows a sample OwlMain before and
after the addition of a registrar object. Boldface type highlights the changes.

Before:

// Non-OLE OwlMain
int
OwlMain(int /*argc*/, char* /*argv*/[])
{
return TMyApp().Run();
}
After adding the registrar object:
int
OwlMain(int /*argc*/, char* /*argv*/[])
{

::Registrar = new TOcRegistrar(::AppReg,
TOleDocViewFactory<TMyApp> (),
TApplication::GetCmdLine());

return ::Registrar->Run();

}

The last parameter of the TOcRegistrar constructor is the command line string that
invokes the application. The registrar object processes the command line by searching
for switches, such as -Embedding or -Automation, that OLE may have placed there.
ObjectComponents takes whatever action the switches call for and then removes them.
If for some reason you need to test the OLE switches, be sure to do it before constructing
the registrar. If you have no use for the OLE switches, wait until after constructing the
registrar before parsing the command line. For more information about command line
switches, see “Processing the command line” on page 349.

3. Supporting OLE commands

A container needs to place some standard OLE commands on its Edit menu.
ObjectWindows implements the commands for you. A container also needs to let
ObjectComponents read and write any linked or embedded objects when loading or
saving documents.

Chapter 19, Creating an OLE container 311

Setting up the Edit menu and the tool bar

An OLE container places OLE commands on its Edit menu. Table 19.3 describes the
standard OLE commands. It’s not necessary to use all of them, but every container
should support at least Insert Object, to let the user add new objects to the current
document, and Edit Object, to let the user activate the currently selected object. The
TOleView class has default implementations for all the commands. It invokes standard
dialog boxes where necessary and processes the user’s response. All you have to do is
add the commands to the Edit menu for each view you derive from TOleView.

Table 19.3 Commands an OLE container places on its Edit menu

Paste Speciai CM_EDfTPASTESPECiAL Lets the user choose from available formats for pastmé

an object from the Clipboard.

Paste Link CM_EDITPASTELINK Creates a link in the current document to the object on
the Clipboard.

Insert Object CM_EDITINSERTOBJECT Lets the user create a new object by choosing from a
list of available types.

Edit Links CM_EDITLINKS Lets the user manually update the list of linked items
in the current document.

Convert CM_EDITCONVERT Lets the user convert objects from one type to another.

Object CM_EDITOBJECT Reserves a space on the menu for the server’s verbs

(actions the server can take with the container’s object).

If your OLE container has a tool bar, assign it the predefined identifier IDW_TOOLBAR.
ObjectComponents must be able to find the container’s tool bar if a server asks to
display its own tool bar in the container’s window. If ObjectComponents can identify
the old tool bar, it temporarily replaces it with a new one taken from the server. For
ObjectComponents to identify the container’s tool bar, the container must use the
IDW_TOOLBAR as its window ID, as shown here.

TControlBar *cb = new TControlBar (parent);
cb->Attr.Id = IDW_TOOLBAR; // use this identifier

The TOleFrame::EvAppBorderSpaceSet method uses the IDW_TOOLBAR for its default
implementation. A container can provide its own implementation to handle more
complex situations, such as merging with multiple tool bars.

Loading and saving compound documents

When the user pastes or drops an OLE object into a container, the object becomes data in
the container’s document. The container must store and load the object along with the
rest of the document whenever the user chooses Save or Open from the File menu. The
new Commit and Open methods of TOleDocument perform this chore for you. All you
have to do is add calls to the base class in your own implementation of Open and
Commit. The code that reads and writes your document’s native data remains
unchanged.

Because TOleDocument is derived from TStorageDocument rather than TFileDocument, it
always creates compound files. Compound files are a feature of OLE 2 used to organize
the contents of a disk file into separate compartments . You can ask to read or write from
any compartment in the file without worrying about where on the disk the

312 ObjectWindows Programmer’s Guide

Note

compartment begins or ends. OLE calls the compartments storages. The storages in a file
can be ordered hierarchically, just like directories and subdirectories. Any storage
compartment can contain other sub-storages.

Compound files are good for storing compound documents. When you call Open or
Commit, ObjectComponents automatically creates storages in your file to hold whatever
objects the document contains. All the document’s native data is saved in the file’s root
storage. Your existing file data structure remains intact, isolated in a separate
compartment. The following code shows how load compound documents.

// document class declaration derived from TOleDocument
class _DOCVIEWCLASS TMyDocument : public TOleDocument {
// declarations

}

// document class implementation

bool
TDrawDocument : :Open (int mode, const char far* path) {

TOleDocument: :Open(mode, path); // load any embedded objects
: // code to load other document data
}
The TOleDocument::Open command does not actually copy the data for all the objects
into memory. ObjectComponents is smart enough to load the data for particular objects
only when the user activates them.

The next code shows how to save compound documents.

bool

TMyDocument : : Commit (bool force) {
TOleDocument : :Commit (force) ; // save the embedded objects
: // code to save other document data
TOleDocument: :CommitTransactedStorage(); // commit if in transacted mode

}

By default, TOleDocument opens compound files in transacted mode. Transacted mode
saves changes in a temporary buffer and merges them with the file only after an explicit
command. A revert command discards any uncommitted changes. Commit buffers a
new transaction. CommitTransactedStorage merges all pending transactions.

The opposite of transacted mode is direct mode. Direct mode eliminates buffers and
makes each change take effect immediately. To alter the default mode, override
TOleDocument::PreOpen. Omit the ofTransacted flag to specify direct mode.

In order for compound file I/O to work correctly, you need to include the dtAutoOpen
flag when you register docflags in the document registration table.

4. Building the container

To build the container, include the right headers, compile with a supported memory
model, and link to the ObjectComponents and OLE libraries.

Chapter 19, Creating an OLE container 313

Including OLE headers :

An ObjectComponents program needs the classes, structures, macros, and symbols
defined in the header files for the ObjectWindows OLE classes. The following list shows
the headers needed for an OLE container that uses the Doc/View model and an MDI

frame window.
#include <owl/oledoc.h> // replaces docview.h
#include <owl/oleview.h> // replaces docview.h

#include <owl/olemdifr.h> // replaces mdi.h

An SDI application includes oleframe.h instead of olemdifr.h.

Compiling and linking
Containers that use ObjectComponents and ObjectWindows require the large memory
model. Link them with the OLE and ObjectComponents libraries.

The integrated development environment (IDE) chooses the right build options when
you ask for OLE support. To build any ObjectComponents program from the command
line, create a short makefile that includes the OWLOCFMK.GEN file found in the
EXAMPLES subdirectory. Here, for example, is the makefile that builds the AutoCalc
sample program:

EXERES = MYPROGRAM

OBJEXE = winmain.obj autocalc.obj

HLP = MYPROGRAM

linclude $(BCEXAMPLEDIR)\owlocfmk.gen

EXERES and OBJEXE hold the name of the file to build and the names of the object files
to build it from. HLP is an optional online Help file. Finally, your makefile should
include the OWLOCFMK.GEN file.

Name your file MAKEFILE and type this at the command line prompt:
make MODEL=1

Make, using instructions in OWLOCFMK.GEN, builds a new makefile tailored to your
project. The new makefile is called WIN16Lxx.MAK. The final two digits of the name
tell whether the makefile builds diagnostic or debugging versions of the libraries. 01
indicates a debugging version, 10 a diagnostic version, and 11 means both kinds of
information are included. The same command then runs the new makefile and builds
the program. If you change the command to define MODEL as d, the new makefile is
WIN16Dxx.MAK and it builds the program as a DLL.

For more information about how to use OWLOCFMK.GEN, read the instructions at the
beginning of MAKEFILE.GEN, found in the EXAMPLES directory.

Table 19.4 shows the libraries an ObjectComponents program links with.
Table 19.4 L|branes for bmldlng ObjectComponents programs

OCFWL.LIB OCFWILLIB - ObjectComponents
OWLWL.LIB OWLWLLIB ObjectWindows
BIDSL.LIB BIDSIL.LIB Class libraries

314 ObjectWindows Programmer’s Guide

Table 19.4 Libraries for building ObjectComponents programs (continued)

L

'OLE2W16.LIB OLE2W16.LIB OLE system DLLs
IMPORT.LIB IMPORT.LIB Windows system DLLs
MATHWL.LIB Math support
CWL.LIB CRTLDLL.LIB C run-time libraries

The ObjectComponents library must be linked first, before the ObjectWindows library.
Also, ObjectComponents requires RTTI and exception handling. Do not use compiler
command line options that disable these features.

Turning an ObjectWindows application into an OLE container

Turning an ObjectWindows application into an OLE container requires a few
modifications. This list describes them briefly. The sections that follow give more detail
for each one.

1 Set up the application.

* Define an application dictionary object.

* Modify your application object and implement a new method for it.
2 Register the application.

» Use registration macros to describe your container.
e Create a TOcRegistrar object to register and run the application.

3 Set up the client window.

* Use a client window if you have an SDI application and use client windows in
your MDI child windows if you have an MDI application.

® Derive your frame window and client window from the new ObjectWindows
OLE classes.

¢ Create your frame and client in two steps if you have an SDI application.

* Create a pair of ObjectComponents objects for each document the application
opens.

4 Program the user interface.

¢ If you override handlers for certain windows messages, be sure to call the handler
in the base class.

e Set up your menu resource to support menu sharing,.

e Place standard OLE commands on the Edit menu.

e If you have a tool bar, assign it the standard predefined identifier.
5 Build the application.

¢ Include new ObjectWindows OLE headers.
s Compile and link the application.

Chapter 19, Creating an OLE container 315

By following these steps, you give your ObjectWindows application the following

features:

* Linking * Embedding

* OLE clipboard operations * Drag and drop operations

¢ In-place editing ¢ Tool bar and menu merging
¢ Compound document storage ¢ OLE 2 user interface

The following sections expand on each step required to convert your ObjectWindows
application into an OLE 2 container. The code excerpts are from the OWLOCFO0.CPP
sample in the EXAMPLES/OWL/TUTORIAL/OLE directory. The OWLOCFO0.CPP
sample is based on the STEP10.CPP sample used in the ObjectWindows Tutorial. It does
not support OLE. OWLOCF1.CPP modifies the first program to create an OLE
container.

1. Setting up the application

This section describes the changes needed to set up the application for
ObjectComponents. The application needs an application dictionary, and the object you
derive from TApplication must also derive from TOcModule.

Defining an application dictionary object

When a DLL is used by more than one application or process, it must maintain multiple
copies of the global, static, and dynamic variables that represent its current state in each
process. For example, the DLL version of ObjectWindows maintains a dictionary that
allows it to retrieve the TApplication object which corresponds to the current active
process. If you turn your application into a DLL server, the application must also
maintain a dictionary of the TApplication objects created as each new client attaches to
the DLL. The DEFINE_APP_DICTIONARY macro provides a simple and unified
method for creating an application dictionary object. Insert the following statement
with your other static variable declarations.

DEFINE_APP_DICTIONARY (AppDictionary);

The DEFINE_APP_DICTIONARY macro correctly defines the AppDictionary variable
regardless of how the application is built. In applications using the static version of
ObjectWindows, it simply creates a reference to the existing ObjectWindows application
dictionary. For DLL-servers using the DLL version of ObjectWindows, however, the
macro declares a instance of the TAppDictionary class. It is important to use the name
AppDictionary when creating your application dictionary object. This allows you to take
advantage of the factory template classes for implementing a factory callback function
(see “Creating a registrar object”).

Modifying your application class

ObjectWindows provides the mix-in class TOcModule for applications that support
linking and embedding. Change your application object so it derives from both
TApplication and TOcModule as shown in the following example:

// Non-OLE application
class TScribbleApp : public TApplication { /* declarations */ };

316 ObjectWindows Programmer’s Guide

// New declaration of same class
class TScribbleApp : public TApplication, public TOcModule { /* declarations */ };

The TOcModule object coordinates basic housekeeping chores related to registration and
memory management. It also connects your application object to OLE.

Your TApplication-derived class must provide a CreateOleObject method with the
following signature:

TUnknown* CreateOleObject (uint32 options, TDocTemplate* tpl);

The method is used by the factory template class. Because containers don’t create OLE
objects, a container can implement CreateOleObject by simply returning 0. As the next
chapter explains, servers have more work to do to implement CreateOleObject.

//
// non-OLE application class
/!
class TScribbleApp : public TApplication {
public:
TScribbleApp() : TApplication("Scribble Pad") {}
protected:
InitMainWindow() ;
i
//
// New declaration of same class
//
class TScribbleApp : public TApplication, public TOcModule {
public:
TScribbleApp() : TApplication(::AppReg["description"]){}
TUnknown* CreateOleObject (uint32, TDocTemplate*){ return 0; }
protected:

InitMainWindow() ;

2. Registering a container

To register an application, you build registration tables with macros. Then you pass the
tables to a registrar object to process the information they contain.

Creating registration tables

OLE requires programs to identify themselves by registering unique identifiers and
names. ObjectWindows offers macros that let you build a structure to hold registration
information. The structure can then be used when creating the application’s instance of
TOcRegistrar. Here are the commands to create a simple container registration structure:

Chapter 19, Creating an OLE container 317

REGISTRATION_FORMAT_BUFFER(100) // create buffer for expanding macros

BEGIN_REGISTRATION (AppReg)
REGDATA (clsid, “{9BOBBE60-B6BD-101B-B3FF-86C8A0834EDE}")
REGDATA (description, "Scribble Pad Container")
END_REGISTRATION

The first macro, REGISTRATION_FORMAT_BUFFER, sets the size of a buffer needed
temporarily as the macros that are expanded. The REGDATA macro places items in the
registration structure, AppReg. Each item in AppReg is a smaller structure that contains a
key, such as clsid or progid, and a value assigned to the key. The values you assign are
case-sensitive strings. The order of keys within the registration table does not matter.

Insert the registration macros after your declaration of the application dictionary. Since
the value of the clsid key must be a unique number identifying your application, it is
recommended that you generated a new value using the GUIDGEN.EXE utility. (The
ObjectWindows Reference Guide entry for clsid explains other ways to generate an
identifer.) Of course, modify the value of the description key to describe your container.

The AppReg structure built in the sample code is an application registration structure. A
container may also build one or more document registration structures. Both structures are
built alike, but each contains a different set of keys and values. The keys in an
application registration structure describe attributes of the application. A document
registration structure describes the type of document an application can create. A
document’s attributes include the data formats that it can exchange with the clipboard,
its file extensions, and its document type name. The OWLOCF1 sample application
does not create any document registration structures.

For a list of all the registration keys that a container can use, refer to Table 19.2.

Creating a registrar object
Every ObjectComponents application needs to create a registrar object to manage all of

its registration tasks. Insert the following line after the #include statements in your main
.CPP file.

static TPointer<TOcRegistrar> Registrar;

The TOcRegistrar instance is created in your OwlMain function. Declaring the pointer of’
type TPointer<TOcRegistrar> instead of TOcRegistrar* ensures that the TOcRegistrar
instance isdeleted. ‘

Note Name the variable Registrar to take advantage of the TOleFactory template for
implementing a factory callback.

The next step is to modify your OwlMain function to allocate a new TOcRegistrar object
to initialize the global pointer Registrar. The TOcRegistrar constructor requires three
parameters: the application’s registration structure, the component’s factory callback
and the command line string that invoked that application.

¢ The registration structure you create with the registration macros (see the preceding
section “Creating registration tables”).

¢ The factory callback you create with an ObjectWindows factory template.

318 ObjectWindows Programmer’s Guide

You can write your own callback function from scratch if you prefer, but the
templates are much easier to use. For a l<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>