
lor OS/2®

Tools and Utilities
Guide

Borland® C++
for OS/2®
Version 1.5

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1987, 1994 by Borland International. All rights reserved. All Borland product
names are trademarks or registered trademarks of Borland International, Inc. Other brand
and product names are trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95066-3249

PRINTED IN THE UNITED STATES OF AMERICA

1 EOR0294
9495969798-987654321
H1

Contents

Introduction 1 Compatibility with Microsoft's NMAKE ... 22

Chapter 1 TUNK: The Turbo linker 3
- Invoking TLINK 3

Using TLINK with Borland C++ modules 4
Initialization modules 5

A TLINK example 5
Invoking TLINK with BCC 6
File-name extensions on the TLINK command
line 6
Using response files 7
The TLINK configuration file 8

TLINK options 8
I a (application type) 9
I A (align pages) 9
IB (base address) 9
I c (case sensitivity) 9
IE (maximum errors) 9
IGm (Goodies) 9
IL (library search paths) 10
1m, Is, and Ix (map options) 10
IOc (chain fixups) 11
IS (stack size) 11
IT (output file type) 11
Iv (debugging information) 11
Iw (warning control) 12

Module definition reference 12
CODE statement 13

Using makefiles 23
Symbolic targets 23

Rules for symbolic targets 24
Explicit and implicit rules 24

Explicit rule syntax 24
Single targets with multiple rules 25

Implicit rule syntax 26
Explicit rules with implicit commands 26

Commands syntax 27
Command prefixes 27
Using@ 27
Using -num and - 27
Using & 28
Command operators 28
Debugging with temporary files 28

Using MAKE macros 29
Defining macros 29
Using a macro 30
String substitutions in macros 30
Default MAKE macros 31
Modifying default macros 31

Using MAKE directives 32
.autodepend 33
!error 33

Summing up error-checking controls 33
!if and other conditional directives 34
!include 35

DATA statement 13
DESCRIPTION statement 14
EXETYPE statement 14
EXPORTS statement 14

!message 35
.path.ext 36
. precious 36
.suffixes 36

IMPORTS statement 15 !undef 36
LIBRARY statement 16
NAME statement 16
SEGMENTS statement 16

Using macros in directives 37
Null macros 37

STACKSIZE statement 17 Chapter 3 TUB: The Turbo librarian 39
STUB statement 17 Why use object module libraries? 39

Chapter 2 Make: The program manager 19
MAKE basics ~ 19 '

The TLIB command line 40
The operation list 40

File and module names 41
BUILTINS.MAK 20
Using TOUCH.EXE 21
MAKE options 21

Setting options on as defaults 22

TLIB operations 41
Using response files 42
Setting the page size: The IP option 42

Advanced operation: The /C option 43 RC.EXE: The OS/2 resource compiler 51
Examples 43

Appendix A Error messages 53
Chapter 4 Import library tools 45 Message classes 53
IMPLIB: The import librarian 45 Fatal errors 53
IMPDEF: The module definitions file manager . 46 Errors 53

Classes in a DLL 47 Warnings 54
Functions in a DLL 47 Message listings 54

Chapter 5 Resource tools 49
Message explanations 55

BRCC.EXE: The resource compiler 50 Index 103
Examples 50

Tables

1.1 TLINK options 3 2.8 MAKE directives 32
2.1 MAKE options 21 2.9 Conditional operators 34
2.2 Command prefixes 27 3.1 TUB options 40
2.3 Command operators 28 3.2 TUB action symbols 41
2.4 Command line vs. makefile macros 30 4.1 IMPUB options 46
2.5 Default macros 31 5.1 BRCC (Borland resource compiler) 50
2.6 Other default macros 31 5.2 Resource Compiler options 52
2.7 File-name macro modifiers 32

iii

iv

Introduction

Introduction

Borland C++ comes with a host of powerful standalone utilities that you
can use with your Borland C++ files or other modules to ease your DOS
and Windows programming.

This manual describes IMPDEF, IMPLIB, MAKE, TLIB, and TLINK and
uses code and command-line examples to show how to use them. It also
describes the Borland and OS/2 resource compilers. The rest of the Borland
C++ utilities are documented in a text file called UTIL.DOC, which the
INSTALL utility places in the DOC subdirectory. The Borland C++ error
messages are listed and described in Appendix A.

Name Description

Documented in this book

TUNK
MAKE
TUB
IMPUB
IMPDEF
BRCC.EXE
RC.EXE

Turbo Linker (see Chapter 1)
Standalone program manager (see Chapter 2)
Turbo Librarian (see Chapter 3)
Generates an import library (see Chapter 4)
Creates a module definition file (see Chapter 4)
Borland Resource Compiler (see Chapter 5)
OS/2 Resource Compiler (See Chapter 5)

Documented in the online document UTlL.DOC

cpp
GREP
OBJXREF
TEMC
TOUCH
TRIGRAPH

Preprocessor
File-search utility
Object module cross-reference
Turbo Editor Macro Compiler
Updates file date and time
Character-conversion utility

2 Borland C++ for OS/2 Tools and Utilities Guide

Invoking TLINK

c H A p T E R 1

TLINK: The Turbo linker

This chapter explains the operation of Borland's command-line linker
TLINK. TLINK combines object modules and library modules to produce
.EXE files. When you invoke the command-line compiler BCC, TLINK is
invoked automatically unless you suppress the linking stage with the -c
compiler option. If you suppress the linking stage, you must invoke TLINK
manually, as described in the next section.

TLiNK options are The general syntax of a TLINK command line is
case-sensitive.

Table 1.1
TLiNK options

TLiNK options can
also be preceded by

a hyphen (-).

TLINK options objfiles, exefile, mapfile, libfiles, deffile

This syntax specifies that you supply file names in the given order, and that
you separate the file types with commas. You can invoke TLINK at the
command line by typing TLINK with or without parameters. TLINK
parameters are either options or file names.

Options let you control TLINK's output. For example, they let you specify
whether you want to produce an .EXE or a DLL file. TLINK options must
be immediately preceded by either a forward slash (I) or a hyphen (-).
When invoked without parameters, TLINK displays an option summary.
Table 1.1 briefly describes the TLINK options.

Option

lax

IA:dd

IB:xxxxxx

Ie

IEnn

What it does

Specifies application type, where
laa targets PM applications
lai targets full-screen character mode applications
lap targets PM-compatible character mode applications.

Specifies page alignment within .EXE file.

Specifies image base address (in hexadecimal).

Treats case as significant in symbols.

Specifies maximum errors before termination.

Chapter 1, TUNK: The Turbo linker 3

Using TLiNK with
Borland C++
modules

Table 1.1: TLiNK options (continued)

IGm Write mangled names in map file.

IL

1m

IOc

Is

15:xxxxxx

!Tox

Iv

Iwxxx
Ix

Specifies library search paths.

Creates map file with publics.

Directs TLiNK to use fixup-chaining optimization.

Creates detailed map of segments.

Specifies stack size (in hexadecimal).

Specifies target, where
!Toe means build an .EXE file.
!Tod means build a DLL.

Includes full symbolic debug information.

Enable or disable warnings (see page 12).
Doesn't create map file.

File names can be grouped into different file types:

_ objfiles specifies the .OBJ files you want linked into an .EXE or .DLL file.

_ exefile specifies the name you want for the resulting .EXE or .DLL file.

_ mapfile specifies the name you want for the link map file. If not given, the
map file name is the same as exefile.

_ libfiles specifies the library files you want to link with.

_ deffile specifies the module definition file containing linker information.

When you create an executable Borland C++ file using TLINK, you must
include the initialization module and libraries.

The general format for linking Borland C++ programs with TLINK is

TLINK options C02[D] myobjs, exename, [mapfile], [mylibs] [C2IC2MT] [082],
[deffile]

where

_ myobjs are the :OBJ files you want linked. You must specify the path if the
files are not in the current directory.

_ exename is the name you want given to the executable file.

(optional) _ mapfile is the name you want given to the map file.

(optional) _ mylibs are the library files you want included at link time. You must
specify the path if not in current directory, or use the IL option to specify
search paths.

_ deffile is the module definition file for a PM executable.

4 Borland C++ for OS/2 Tools and Utilities Guide

Initialization
modules

A TUNK example

Letting the
command-line

compiler, or the IDE
project manager take

care of linking is
easier. They both

provide correct
options and libraries.

Be sure to include paths for the startup code and libraries (or use the IL
option to specify a list of search paths for startup and library files).

The other file names on this general TLINK command line represent
Borland C++ files, as follows:

• C02 and C02D are the Borland initialization modules for programs or
DLLs. One of these must always be the first .OBJ file in the list.

• C2 is the Borland run-time library. C2MT is the multi-thread version .

.. 052 is the OS/2 import library. OS2.LIB provides access to the OS/2 API
functions.

C02.0BJ and C02D.OBJ are the application initialization modules for C
and C++ code. When your program is executed, this code is run first.
Failure to link in the correct initialization module usually results in a long
list of error messages telling you that certain identifiers are unresolved, or
that no stack has been created.

The initialization module must appear first in the object file list. The
initialization module arranges the order of the various segments of the
program. If it is not first, the program segments might not be placed in
memory properly, causing some frustrating program bugs.

Be sure you give an explicit name for the executable file name on the
TLINK command line. Otherwise, your program name will be something
like C02.EXE-probably not what you wanted.

See the Library Reference, Appendix A, for a summary of the libraries and
.OBJ files provided by Borland.

If you want to create an OS/2 application or DLL, you must link OS2.LIB to
provide access to the OS / 2 API functions.

To create a PM application executable, you might use this command line:

TLINK IToe Ie \BCOS2\lib\e02 prnappl prnapp2, prnapp, prnapp, \BCOS2\lib\e2
\BCOS2\lib\os2, prnapp.def

where

.. The /Toe option tells TLINK to generate PM executables.

II The Ie option tells TLINK to be case-sensitive during linking.

.. BCOS2\LIB\C02 is the standard PM initialization file and PMAPPI and
PMAPP2 are the module's object files. The .OBJ extension is assumed for
all three files.

Chapter 1, TLlNK: The Turbo linker 5

Invoking TUNK
with Bee

See Chapter 6,
"Command-line
compiler," in the

Users Guide for more
on BCC.

File-name
extensions on the
TUNK command
line

6

• PMAPP.EXE is the name of the target PM executable. The .EXE extension
is assumed.

• PMAPP.MAP is the name of the map file. The .MAP extension is
assumed.

• BCOS2\LIB\C2 is the OS/2 run-time library, and BCOS2\LIB\OS2 is the
import library that provides access to the OS/2 Applicat~on Program
Interface (API) functions.

• PMAPP.DEF is the module definition file used to specify additional link
options.

You can also use BCC, the standalone Borland C++ compiler, as a "front
end" to TLINK that invokes TLINK with the correct startup file, libraries,
and executable program name.

To do this, you give file names on the BCC command line with explicit .OBI
and .LIB extensions. For example, given the following BCC command line,

BCC main.abj subl.abj mylib.lib

BCC invokes TLINK with the files C02. OBI, C2.LIB, and OS2.LIB
(initialization module, run-time library, and OS/2 API import library).
TLINK will link these along with your own modules MAIN.OBI and
SUBl.OBJ, and your own library MYLIB.LIB, producing file MAIN.EXE.

If you are producing multi-threaded executables, invoke BCC like this:

BCC -sm main.abj subl.abj func3.abj

The -sm switch tells BCC to invoke TLINK with the multi-thread library
C2MT.LIB.

To use BCC for linking a PM DLL, invoke BCC like this:

BCC -sd FUNC1.OBJ FUNC2.0BJ FUNC3.0BJ

The -sd switch tells BCC to invoke TLINK with the DLL initialization
module C02D.OBJ.

When BCC invokes TLINK, it uses the Ie (case-sensitive link) option by
default.

If you don't specify an executable file name, TLINK derives the name of the
executable by appending .EXE or .DLL to the first object file name listed.

If no map file name is given, TLINK adds a .MAP extension to the .EXE file
name. If no libraries are included, none will be linked. If you don't specify a
module definition (.DEF) file and you have used the /Toe or /Tod option,
TLINK creates an application based on default settings.

Borland C++ for OS/2 Tools and Utilities Guide

Using response
files

TLINK assumes or appends these extensions to file names that have none:

• .OBJ for object files.
• .EXE for OS/2 executable files (when you use the /Toe option).

• .DLL for dynamic-link libraries (when you use the /Tad option).

• .MAP for map files.

• .LIB for library files.

• .DEF for module definition files.

All of the file names except object files are optional. So, for example,

TLINK myapp myapp2

links the files MYAPP.OBJ and MYAPP2.0BJ, creates an executable file
called MYAPP.EXE, creates a map file called MYAPP.MAP, links no
libraries, and uses no module definition file.

TLINK accepts its parameters not only from the command line, but also
from a response file (or any combination of the two).

A response file is a text file that contains the options and file names that
you would usually type after the name TLINK on your command line. This
saves you from having to type the full command line each time you link.

Unlike the command line, a response file can be continued onto several
lines of text. You can break a long list of object or library files into several
lines by ending one line with a plus character (+) and continuing the list on
the next line. When a plus occurs at the end of a line, but it immediately
follows one of the TLINK options that uses + to enable the option (such as
Iv+), the + is not treated as a line-continuation character.

You can also start each of the four components on separate lines: object
files, executable file, map file, libraries. When you do this, you must leave
out the comma used to separate components.

To illustrate these features, suppose that you rewrote the command line

TLINK Ie mainline wd In tx,fin,mfin,work\lib\eornrn work\lib\support

with the following response file, FINRESP:

Ie mainline wd+
In tx,fin
mfin
work\lib\eornrn work\lib\support

You would then enter your TLINK command as

TLINK @finresp

Chapter 1, TUNK: The Turbo linker 7

The TLiNK
configuration file

TLINK options

8

Note that you must precede the file name with the @ character to indicate
that the next name is a response file.

Alternatively, you could break your link command into multiple response
files. For example, you could break the previous command line into the
following two response files:

File name

LlSTOBJS

LlSTLIBS

Contents

mainlinet
wdt
In tx

lib\commt
lib\support

You would then enter the TLINK command as

tlink Ic @listobjs,fin,mfin,@listlibs

The command-line version of TLINK looks for a file called TLINK.CFG,
first in the current directory, then in the directory from which it was
loaded.

TLINK.CFG is a text file that contains a list of valid TLINK options. Unlike
a response file, TLINK.CFG can't list the groups of file names to be linked.

For example, the following TLINK.CFG file

ILc:\BCOS2\libic:\winapps\lib
Iv Is
IToe

tells TLINK to search the specified directories for libraries, include debug
information, cr~ate a detailed segment map, and produce an OS/2
program.

TLINK options can occur anywhere on the command line. The options
consist of a slash (I), a hyphen (-), followed by the option. Options are
case-sensitive.

If you have more than one option, spaces are not significant (1m Ie is the
same as 1m Ie), and you can have them appear in different places on the
command line. The following sections describe each of the options.

Borland C++ for OS/2 Tools and Utilities Guide

la (application
type)

IA (align pages)

18 (base address)

Ic (case
sensitivity)

IE (maximum
errors)

/Gm (Goodies)

The la option lets you specify one of three types of EXE images:

./aa targets windowing applications; that is, applications that run in and
use the Graphical User Interface (GUI) environment.

./ai targets full-screen, character-mode applications .

• lap targets character-mode applications that can be run in a window.

The I A option specifies page alignment for code and data within the
executable file. The syntax is

IA:dd

dd must be a decimal power of 2. For example, if you specify an alignment
value of IA:12, the pages of code and data are stored on 4096-byte
boundaries. OS/2 seeks' pages for loading based on this alignment value.
The default is IA:9, which means pages are aligned on 512-byte boundaries
within the executable file. Larger alignment values result in larger
executable files, but can improve demand load performance.

The 18 option specifies an image base address for an application. If this
option is used, internal fixups are removed from the image, and the
requested load address of the first object is set to the hexadecimal number
given with the option. All successive objects are aligned on 64K linear
address boundaries.

Using this option makes applications smaller on disk, and improves both
load-time and run-time performance, since the operating system no longer
has to apply internal fixups. Since OS/2 loads all.EXE images at 64K,
you're advised to link all.EXEs with 18:0x10000.

DLLs are loaded at arbitrary addresses, and should not be linked with the
18 option.

The Ie option forces the case to be significant in public and external
symbols.

The IE option lets you specify the maximum number of errors the linker
reports before terminating. lEO means report an infinite number of errors
(that is, as many as occur), and is the default.

The IGm option puts mangled names in a mapfile.

Chapter 1, TUNK: The Turbo linker 9

IL (library search
paths)

1m, Is, and Ix (map
options)

10

The IL option lets you specify a list of directories that TLINK searches for
libraries if an explicit path is not specified. TLINK searches the current
directory before those specified with the IL option. For example,

TLINK /Lc:\BCOS2\libic:\mylibs splash logo" ,utils .\logolib

With this command line, TLINK first searches the current directory for
UTILS.LIB, then searches C:\BCOS2\LIB and C:\MYLIBS. Because.\
LOGOLIB explicitly names the current directory, TLINK does not search
the libraries specified with the iL option to find LOGOLIB.LIB.

TLINK also searches for the C or C++ initialization module (C02.0B}, or
C02D.OBJ) on the specified library search path.

By default, TLINK always creates a map of the executable file. This default
map includes only the list of the segments in the program, the program
start address, and any warning or error messages produced during the link.
If you don't want to create a map, turn it off with the Ix option.

If you want to create a more complete map, the 1m option adds a list of
public symbols to the map file, sorted alphabetically as well as in increasing
address order. Many debuggers can use the list of public symbols, which let
you refer to symbolic addresses when you are debugging.

The Is option creates a map file with segments, public symbols and the
program start address just like the 1m option does, but also adds a detailed
segment map. For each segment in each module, this map includes the
address, length in bytes, class, segment name, group, module, and ACBP
information.

If the same segment appears in more than one module, each module will
appear as a separate line (for example, SYMB.C). Except for the ACBP field,
the information in the detailed segment map is self-explanatory.

The ACBP field encodes the A (alignment), C (combination), and B (big)
attributes into a set of four bit fields, as defined by Intel. TLINK uses only
three of the fields, the A, C, and B fields. The ACBP value m the map is
printed in hexadecimal: The following values of the fields must be OR' ed
together to arrive at the ACBP value printed.

Borland C++ for OS/2 Tools and Utilities Guide

IOc (chain fixups)

IS (stack size)

IT (output file
type)

Iv (debugging
information)

Field

The A field
(alignment)

The C field
(combination)

The B field
(big)

The P field

Value

00
20
40
60
80
AD
00
08

00
02

00
01

Description

An absolute segment.
A byte-aligned segment.
A word-aligned segment.
A paragraph-aligned segment.
A page-aligned segment.
An unnamed absolute portion of storage.

Cannot be combined.
A public combining segment.

Segment less than 64K.
Segment exactly 64K.

Segment is USE16.
Segment is USE32.

When you request a detailed map with the Is option, the list of public
symbols (if it appears) has public symbols flagged with "idle" if there are
no references to that symbol. For example, this fragment from the public
symbol section of a map file indicates that symbols Symboll and Symbol3
are not referenced by the image being linked:

0002:00000874 Idle Symbol1
0002:00000CE4 Symbol2
0002:000000E7 Idle Symbol3

The IOc option directs TLINK to use the fixup-chaining optimization. This
optimization collapses multiple fix-up records for the same address into
one fix-up record. Though this optimization causes slower link time, it
shrinks executable size and speeds up loading.

The IS option lets you set the application stack size, in hexadecimal. The
form is IS:xxxxxx, where xxxxxx is a hexadecimal string. Specifying stack
size with IS overrides any stack size setting in a module definition file.

The /T option specifies whether you are producing a program or DLL. /Toe
tells the linker to produce a .EXE image, and /Tod tells the linker to produce
a DLLimage.

The Iv option di~ects TLINK to include debugging information in the
executable file. If this option is found anywhere on the command line,
debugging information will be included in the executable file for all object
modules that contain debugging information. You can use the Iv+ and Iv-

Chapter 1, TLlNK: The Turbo linker 11

/w (warning
control)

options to selectively enable or disable inclusion of debugging information
on a module-by-module basis (but not on the same command line as Iv).
For example, the command

TLINK modl /Vt mod2 mod3 /v- mod4

includes debugging information for modules mod2 and mod3, but not for
modl and mod4. When Iv- is seen, debug information is turned off until Iv+
is seen.

The Iw option lets you control specific warnings emitted by TLINK. With
this switch you can either enable or disable select warnings. This switch can
be used in the following ways:

./wxxx or Iw+xxx enables warnings .

• /w-xxx disables warnings .

• /w! enables all warnings.

The value xxx can be one of the following:

• ent controls the "No entry point" warning.

• dup controls the "Duplicate symbol" warning for .OBJs.

• stk controls the "No stack" warning.

• def controls the "No .DEF file; using defaults" warning.

• imt controls the "Import does not match previous definition" warning.

• msk controls the "Multiple stack segments found" warning.

• bdl controls the "Using based linking for DLLs may cause the DLL to
malfunction" warning.

• srf controls the "Self-relative fixup overflowed" warning.

• dpl controls the "Duplicate symbol" warning for libraries.

By default ent, dup, stk, srf, and bdl are enabled, and the rest are disabled.

Module definition reference

12

This section describes each statement in a module definition file. The
module definition file provides information to the linker about the contents
and system requirements of a PM application. More specifically, it

• Names the application or dynamic-link library (DLL).

• Identifies the type of application.

• Lists imported functions and exported functions.

Borland C++ for OS/2 Tools and Utilities Guide

CODE statement

DATA statement

• Describes the code and data segment attributes, and lets you specify
attributes for additional code and data segments .

• Specifies the size of the stack.

II Provides for the inclusion of a stub program.

Note that the IMPDEF utility creates module definition files, and the
IMPLIB utility creates import libraries out of module definition files. See
Chapter 4, "Import library tools," for more information on these tools.

The CODE statement defines the default attributes of code segments. Code
segments can have any name, but must belong to segment classes whose
name ends in CODE. For example, valid segment class names are CODE or
MYCODE. The syntax is

CODE [PRELOAD I LOADONCALL)
[EXECUTEONLY I EXECUTEREAD)
[CONFORMING I NONCONFORMING)

PRELOAD means code is loaded when the calling program is loaded.
LOADONCALL (the default) means the code is loaded when called.

EXECUTEONL Y means a code segment can be executed only.
EXECUTEREAD (the default) means the code segment can be read and
executed.

CONFORMING means a code segment can be called from Ring 2 or Ring 3.
(This is also known as 80286 conforming.) NONCONFORMING (the
default) means the code segment is not 80286 conforming.

The DATA statement defines attributes of data segments.

The syntax of the DATA statement is

DATA [NONE I SINGLE I MULTIPLE)
[READONLY I READWRITE)
[PRELOAD I LOADONCALL)
[SHARED I NONSHARED)

NONE means no data segment is created. (This option is available only for
libraries.) SINGLE means a single data segment is created and shared by all
processes, and is the default for DLLs. MULTIPLE means a data segment is
created for each process, and is the default for programs.

READONL Y means the data segment can be read only. READWRITE (the
default) means the data segment can be read and written to.

Chapter 1, TLlNK: The Turbo linker 13

DESCRIPTION
statement

EXETYPE
statement

EXPORTS
statement

14

PRELOAD means the data segment is loaded when a module that uses it is
first loaded. LOADONCALL (the default) means the data segment is
loaded when it is first accessed.

SHARED (the default for DLLs) means one copy of the data segment is
shared among all processes. NONSHARED (the default for programs)
means a copy of the data segment is loaded for each process needing to use
the data segment.

The DESCRIPTION statement, which is optional, inserts text into the
application module. The DESCRIPTION statement is typically used to
embed author, date, or copyright information. The syntax is

DESCRIPTION 'Text'

Text specifies an ASCII string delimited with single quotes.

The EXETYPE statement specifies the default executable file (.EXE) header
type. The syntax is

EXETYPE [WINDOWAPI] I [WINDOWCOMPAT] I [NOTWINDOWCOMPAT]

WINDOW API specifies a PM executable, and is equivalent to the TLINK
option laa.

WINDOWCOMPAT specifies a PM-compatible character-mode executable,
and is equivalent to the TLINK option lap.

NOTWINDOWCOMPAT specifies a character-mode application that won't
run under PM. It is equivalent to the TLINK option laL

The EXPORTS statement defines the names and attributes of functions to be
exported. The EXPORTS keyword marks the beginning of the definitions. It
can be followed by any number of export definitions, each on a separate
line. The syntax is

EXPORTS
ExportName [Ordinal] [RESIDENTNAME] [Parameter]

ExportName specifies an ASCII string that defines the symbol to be
exported. It has the following form:

EntryName [=InternalNarne]

InternalName is the name used within the application to refer to this entry.
EntryName is the name listed in the executable file's entry table and is
externally visible.

Ordinal defines the function's ordinal value. It has the following form:

Borland C++ for OS/2 Tools and Utilities Guide

IMPORTS
statement

@ordinal

where ordinal is an integer value that specifies the function's ordinal value.

When an application module or DLL module calls a function exported from
a DLL, the calling module can refer to the function by name or by ordinal
value. In terms of speed, referring to the function by ordinal is faster
because string comparisons are not required to locate the function. In terms
of memory allocation, exporting a function by ordinal (from the point of
view of that function's DLL) and importing/ calling a function by ordinal
(from the point of view of the calling module) is more efficient. When a
function is exported by ordinal, the name resides in the nonresident name
table. When a function is exported by name, the name resides in the
resident name table. The resident name table for a module is resident in
memory whenever the module is loaded; the nonresident name table isn't.

The RESIDENTNAME option lets you specify that the function's name
must be resident at all times. This is useful only when exporting by ordinal
(when the name wouldn't be resident by default).

Parameter is an optional integer value that specifies the number of words
the function expects to be passed as parameters.

The IMPORTS statement defines the names and attributes of functions to be
imported from DLLs. Instead of listing imported DLL functions in the
IMPORTS statement, you can either specify an import library for the DLL
in the TLINK command line, or-in the IDE-include the import library for
the DLL in the project.

The IMPORTS keyword marks the beginning of the definitions. It can be
followed by any number of import definitions, each on a separate line. The
syntax is

IMPORTS
[InternalName=jModuleName.Entry

InternalName is an ASCII string that specifies the unique name that the
application will use to call the function.

ModuleName specifies one or more uppercase ASCII characters that define
the name of the executable module that contains the function. The module
name must match the name of the executable file. For example, the file
SAMPLE.DLL has the module name SAMPLE.

Entry specifies the function to be imported. It can be either an ASCII string
that names the function, or an integer that gives the function's ordinal
value.

Chapter 1, TUNK: The Turbo linker 15

LIBRARY
statement

NAME statement

16

The LIBRARY statement defines the name of a DLL module. A module
definition file can contain either a NAME statement to indicate a program
or a LIBRARY statement to indicate a DLL, but not both..

Like a program's module name, a library's module name must match the
name of the executable file. For example, the library MYLIB.DLL has the
module name MYLIB. The syntax is

LIBRARY [LibraryName] [INITGLOBAL I INITINSTANCE]

LibraryName specifies an ASCII string that defines the name of the library
module. LibraryName is optional. If the parameter is not included, TLINK
uses the file-name part of the executable file (that is, the name with the
extension removed). If the module definition file includes neither a NAME
nor a LIBRARY statement, TLINK assumes a NAME statement without a
ModuleName parameter.

INITGLOBAL means that the library-initialization routine is called only
when the library module is first loaded into memory. INITINSTANCE
means the library-initialization routine is called each time a new process
makes use of the library.

The NAME statement defines the name of the application's executable
module. The module name identifies the module when exporting functions.
The syntax is

NAME ModuleName

ModuleName specifies one or more uppercase ASCII characters that define
the name of the executable module. The module name must match the
name of the executable file. For example, an application with the executable
file SAMPLE.EXE has the module name SAMPLE.

The ModuleName parameter is optional. If the parameter is not included,
TLINK assumes that the module name matches the file name of the
executable file. For example, if you do not specify a module name and the
executable file is named MYAPP.EXE, TLINK assumes that the module
name is MYAPP.

If the module definition file includes neither a NAME nor a LIBRARY
statement, TLINK assumes a NAME statement without a ModuleName
parameter.

Borland C++ for OS/2 Tools and Utilities Guide

SEGMENTS
statement

STACKSIZE
statement

STUB statement

The SEGMENTS statement defines the segment attributes of additional
code and data segments. The syntax is

SEGMENTS
SegmentName [CLASS 'ClassName'j [MinAllocj
[PRELOAD I LOADONCALLj
[SHARED I NONSHAREDj

SegmentName specifies a character string that names the new segment. It
can be any name, including the standard segment names _TEXT and
_DATA, which represent the standard code and data segments.

ClassName is an optional string that specifies the class name of the specified
segment. If no class name is specified, TLINK uses the class name CODE by
default.

MinAlloc is an optional integer value that specifies the minimum allocation
size for the segment. Currently, TLINK ignores this value.

PRELOAD means the segment is loaded immediately; LOADONCALL
means the segment is loaded when it is accessed or called. The Resource
Compiler might override the LOAD ON CALL option and preload segments
instead.

SHARED (the default for DLLs) means one copy of the data segment is
shared among all processes. NONSHARED (the default for programs)
means a copy of the data segment is loaded for each process needing to use
the data segment.

Default attributes for additional segments are the same as described
previously for CODE and DATA segments (depending on the type of
additional segment).

The STACKSIZE statement defines the number of bytes needed by the
application for its local stack. An application uses the local stack whenever
it makes function calls. Do not use the STACKSIZE statement for dynamic
link libraries. The syntax is

~TACKSIZE bytes

bytes is an integer value that specifies the stack size in bytes.

The STUB statement appends a DOS executable file specified by FileName to
the beginning of the module. The executable stub should display a warning
message and terminate if the user attempts to run the executable stub in the
wrong environment (running a PM application under DOS, for example).

Chapter 1, TLlNK: The Turbo linker 17

18

Borland C++ adds a built-in stub to the beginning of a PM application
unless a different stub is specified with the STUB statement. Therefore, you
should not use the STUB statement merely to include OS2STUB.EXE
because the linker will do this for you automatically.

The syntax is

STUB "FileName"

FileName specifies the name of the DOS executable file that will be
appended to the module. The name must have the DOS file name format.

If the file named by FileName is not in the current directory, TLINK searches
for the file in the directories specified by the PATH environment variable.

Borland C++ for OS/2 Tools and Utilities Guide

MAKE basics

c H A p T E R 2

Make: The program manager

MAKE.EXE is a command-line project-manager utility that helps you
quickly compile only those files in a project that have changed since the last
compilation. (MAKER is a real-mode version of MAKE.)

This chapter covers the following topics:

.. MAKE basics .. Using MAKE macros

.. Makefile contents .. Using MAKE directives

.. Using explicit and implicit rules

MAKE uses rules from a text file (MAKE FILE or MAKEFILE.MAK by
default) to determine which files to build and how to build them. For
example, you can get MAKE to compile an .EXE file if the date-time stamps
for the .CPP files that contain the code for the .EXE are more recent than the
.EXE itself. MAKE is very useful when you build a program from more
than one file because MAKE will recompile only the files that you modified
since the last compile.

Two types of rules (explicit and implicit) tell MAKE what files depend on
each other. MAKE then compares the date-time stamp of the files in a rule
and determines if it should execute a command (the commands usually tell
MAKE which files to recompile or link, but the commands can be nearly
any operating system command).

MAKE accepts * and The general syntax for MAKE is
? as wildcards.

To get command-line
help for MAKE, type

MAKE -?
orMAKE -h.

MAKE [options ... J [targets[sJJ

where options are MAKE options that control how MAKE works, and
targets are the names of the files in a makefile that you want MAKE to
build. Options are separated from MAKE by a single space. Options and
targets are also separated by spaces.

Chapter 2, Make: The program manager 19

To place MAKE
instructions in a file

other than
MAKEFILE, see the
section titled "MAKE

options."

BUlL TINS.MAK

20

If you type MAKE at the command prompt, MAKE performs the following
default tasks:

1. MAKE looks in the current directory for a file called BUILTINS.MAK
(this file contains rules MAKE always follows unless you use the-r
option). If it can't find the file in the current directory, it looks in the
directory where MAKE.EXE is stored. After loading BUILTINS.MAK,
MAKE looks for a file called MAKE FILE or MAKEFILE.MAK. If MAKE
can't find any of these files, it gives you an error message.

2. When MAKE finds a makefile, it tries to build only the first target file in
the makefile (although the first target can force other targets to be built).
MAKE checks the time and date of the dependent files for the first
target. If the dependent files are more recent than the target file, MAKE
executes the target commands, which update the target. See the section
called "Using makefiles" for more information on instructions in
makefiles.

3. If a dependent file for the first target appears as a target elsewhere in the
makefile, MAKE checks its dependencies and builds it before building
the first target. This chain reaction is called linked dependency.

4. If the MAKE build process fails, MAKE deletes the target file it was
building. To get MAKE to keep a target when a build fails, see the
.precious directive on page 36.

You can stop MAKE by using CtrltBreak or Ctr/tC.

BUlL TINS.MAK contains standard rules and macros that MAKE uses
before it uses a makefile (you can use the -r option to tell MAKE to ignore
BUILTINS.MAK). Use BUILTINS.MAK for instructions or macros you want
executed each time you use MAKE. Here's the default text of
BUlL TINS.MAK:

Borland Ctt - (C) Copyright 1992 by Borland International

CC = BCC
AS = TASM
RC = RC
.asm.obj:

$ (AS)
.e.exe:

$(CC)
.e.obj:

$(CC)
.epp.obj:

$(CC)

$ (AFLAGS) $&.asm

$ (CFLAGS) $&.e

$ (CFLAGS) Ie $&.e

$ (CPPFLAGS) Ie $&.epp

Borland C++ for OS/2 Tools and Utilities Guide

Using
TOUCH.EXE

You can use
wildcards * and? with

TOUCH.

Important!

MAKE options

Table 2.1: MAKE options

Option

-h or-?

-8

-Dmacro

[-D]macro=[string]

-I directory

-K

-N
-Umacro

-w
-ffilename

.re.res:
$(RC) $ (RFLAGS) /r $&

.SUFFIXES: .exe .obj .asm .e .res .re

Sometimes you'll want to force a target file to be recompiled or rebuilt even
though you haven't changed it. One way to do this is to use the TOUCH
utility. TOUCH changes the date and time of one or more files to the
current date and time, making it "newer" than the files that depend on it.

You can force MAKE to rebuild a target file by touching one of the files that
target depends on. To touch a file (or files), type the following at the
command prompt:

toueh filename [filename ... J

TOUCH updates the file's creation date and time.

Before you use TOUCH, make sure your system's internal clock is set
correctly. If it isn't, TOUCH and MAKE won't work properly.

Command-line options control MAKE behavior. Options are case-sensitive.
Type options with either a preceding - or /. For example, to use a file called
PRO}ECTA.MAK as the makefile, type MAKE -fPROJECTA.MAK (a space after-f
is optional). Many of the command-line options have equivalent directives
that are used in the makefile (see page 32 for more information on
directives).

Description

Displays MAKE options and shows defaults with a trailing plus sign.

Builds all targets regardless of file dates.

Defines macro as a single character, causing an expression !ifdef macro written in the makefile to
return true.

Defines macro as string. If string contains any spaces or tabs, enclose string in quotation marks. The
-0 is optional.

Searches for include files in the current directory first, then in directory.

Keeps temporary files that MAKE creates (MAKE usually deletes them). See also KEEP on page 22.

Executes MAKE like Microsofts NMAKE (see the section following this table for more information).

Undefines previous definitions of macro.

Writes the current specified non-string options to MAKE.EXE making them defaults.

Uses filename or filename.MAK instead of MAKEFILE (space after -f is optional).

Chapter 2, Make: The program manager 21

Table 2.1: MAKE options (continued) .

-a Checks dependencies of include files and nested include files associated with .OBJ files and updates
the .OBJ if the .H file changed. See also -c.

-c

-e

-i

-m

-n

-p

-q

-r

-s

Setting options on
as defaults

Caution!

Compatibility with
Microsoft's NMAKE

22

Caches autodependency information, which can improve MAKE's speed. Use with -a; don't use if
MAKE changes include files (such as using TOUCH from a makefile or creating header or include files
during the MAKE process).

Ignores a macro if its name is the same as an environment variable (MAKE uses the environment
variable instead of the macro).

Ignores the exit status of all programs run from MAKE and continues the build process.

Displays the date and time stamp of each file as MAKE processes it.

Prints the commands but doesn't actually perform them, which is helpful for debugging a makefile.

Displays all macro definitions and implicit rules before executing the makefile.

Returns 0 if the target is up-to-date and nonzero if is is not (for use with batch files).

Ignores any rules defined in BUILTINS.MAK.

Suppresses onscreen command display.

The -W option lets you set some MAKE options on as defaults so that each
time you use MAKE, those options are used. To set MAKE options, type

make -option[-] [-option] [-] ... -w

For example, you could type MAKE -m -W to always view file dates and times.
Type MAKE -m- -W to turn off the default option. When MAKE asks you to
write changes to MAKE.EXE,type Y.

The -Woption doesn't work when the DOS Share program is running. The
message Fatal: unable to open file MAKE. EXE is displayed. The -Woption
doesn't work with the following MAKE options:

_ -Dmacro _ -fjilename
_ -Dmacro=string _ -? or -h
_ -Usymbol _ -Idirectory

Use the -N option if you want to use makefiles that were originally created
for Microsoft's NMAKE. The following changes occur when you use -N:

• MAKE interprets the « operator like the && operator: temporary files
are used as response files, then deleted. To keep a file, either use the-K
command-line option or use KEEP in the makefile.

MAKE usually deletes temporary files it creates.

«TEMPFILE.TXT!
text

Borland C++ for OS/2 Tools and Utilities Guide

!KEEP

If you don't want to keep a temporary file, type NOKEEP or type only
the temporary file name. If you use NOKEEP with a temporary file, then
use the -K option with MAKE, MAKE deletes the temporary file.

• The $d macro is treated differently. Use !ifdef or !ifndef instead.

• Macros that return paths won't return the last \. For example, if $ «D)
normally returns C: \CPP\, the -N option makes it return C: \CPP.

• Unless there's a matching .suffixes directive, MAKE searches rules from
bottom to top of the makefile.

• The $* macro always expands to the target name instead of the
dependent in an implicit rule.

Using makefiles

Symbolic targets

A makefile is an ASCII file of instructions for MAKE.EXE. MAKE assumes
your makefile is called MAKE FILE or MAKEFILE.MAK unless you use the
-f option (see page 21).

MAKE either builds targets you specify at the MAKE command line or it
builds only the first target it finds in the makefile (to build more than one
target, see the section "Symbolic targets.") Makefiles can contain:

• Comments • Macros

• Explicit rules a Directives

• Implicit rules

A symbolic target forces MAKE to build multiple targets in a makefile (you
don't need to rely on linked dependencies). The dependency line lists all
the targets you want to build. You don't type any commands for a symbolic
target.

In the following make file, the symbolic target allFiles builds both FILEl.EXE
and FILE2.EXE.

allFiles: filel.exe file2.exe
filel.exe: filel.obj

bee filel. obj
file2.exe: file2.obj

bee file2.obj

#Note this target has no commands.

Chapter 2, Make: The program manager 23

Rules for symbolic
targets

Observe the following rules with symbolic targets:

• Symbolic targets don't need a command line.
• Give your symbolic target a unique name; it can't be the name of a file in

your current directory.

• Name symbolic targets according to the operating system rules for
naming files.

Explicit and implicit rules

Explicit rule
syntax

24

The explicit and implicit rules that instruct MAKE are generally defined as
follows:

• Explicit rules give MAKE instructions for specific files.

• Implicit rules give general instructions that MAKE follows when it can't
find an explicit rule.

Rules follow this general format:

Dependency line
Corrunands

The dependency line is different for explicit and implicit rules, but the
commands are the same (for information on linked dependencies see
page 20).

MAKE supports multiple rules for one target. You can add dependent files
after the first explicit rule, but only one should contain a command line. For
example,

Targetl: dependentl dep2 dep3 dep4 dep5
Targetl: dep6 dep7 dep8

bcc -c $**

Explicit rules are instructions to MAKE that specify exact file names. The
explicit rule names one or more targets followed by one or two colons. One
colon means one rule is written for the target; two colons mean that two or
more rules are written for the target.

Explicit rules follow this syntax:

Borland C++ for OS/2 Tools and Utilities Guide

Braces must be
included if you use

the paths parameter.

Single targets with
multiple rules

target [target ... 1: [: 1 [{path} 1 [dependent [s1 ... 1
[commands 1

• target The name and extension of the file to be updated (target
must be at the start of the line-no spaces or tabs are
allowed). One or more targets must be separated by spaces
or tabs. Don't use a target's name more than once in the
target position of an explicit rule in a makefile.

• path A list of directories, separated by semicolons and enclosed
in braces, that points to the dependent files.

• dependent The file (or files) whose date and time MAKE checks to see if
it is newer than target (dependent must be preceded by a
space). If a dependent file also appears in the makefile as a
target, MAKE updates or creates the target file before using
it as a dependent for another target.

• commands Any operating system command. Multiple commands are
allowed in a rule. Commands must be indented by at least
one space or tab (see the section on commands on page 27).

If the dependency or command continues on to the next line, use the
backslash (\) at the end of the line after a target or a dependent file name.
For example:

MYSOURCE.EXE: FILE1.OBJ\
FILE2.0BJ\
FILE3.0BJ

bcc filel.obj file2.obj file3.obj

A single target can have more than one explicit rule. You must use the
double colon:: after the target name to tell MAKE to expect multiple
explicit rules. The following example shows how one target can have
multiple rules and commands .

. cpp.obj:
bcc -c -ncobj $<

.asm.obj:
tasm /rnx $<, asmobj\\

mylib.lib :: fl.obj f2.obj
echo Adding C files
tlib mylib -+cobj\fl -+cobj\f2

Chapter 2, Make: The program manager 25

Implicit rule
syntax

Explicit rules with
implicit commands

See page 31 for
information on default

macros.

26

mylib.lib :: f3.obj f4.obj
echo Adding ASM files
tlib mylib -+asmobj\f3 -+asmobj\f4

An implicit rule starts with either a path or a period and implies a target
dependent file relationship. Its main components are file extensions
separated by periods. The first extension belongs to the dependent, the
second to the target.

If implicit dependents are out-of-date with respect to the target or if they
don't exist, MAKE executes the commands associated with the rule. MAKE
updates explicit dependents before it updates implicit dependents.

Implicit rules follow this basic syntax:

[{source_dirs}] . source_ext [{target_dirs}] . target_ext:
[commands]

• {source_dirs} The directory of the dependent files. Separate multiple
directories with a semicolon.

• .source_ext The dependent file-name extension.

• {target_dirs} The directory of the target (executable) files. Separate
multiple directories with a semicolon.

• .target_ext The target file-name extension. Macros are allowed here.

• : Marks the end of the dependency line.

• commands Any operating system command. Multiple commands are
allowed. Commands must be indented by one space or
tab (see the section on commands on page 27).

If two implicit rules match a target extension but no dependent exists,
MAKE uses the implicit rule whose dependent's extension appears first in
the .sUFFIXES list. See the ".suffixes" section on page 36.

A target in an explicit rule can get its command line from an implicit rule.
The following example shows an implicit rule and an explicit rule without
a command line .

. c.obj:
bcc -c $< #This command uses a macro $< described later.

myprog.obj: #This explicit rule uses the command: bec -c myprog.c

The implicit rule command tells MAKE to compile MYPROG.C (the macro
$< replaces the name myprog. obj with myprog. c).

Borland C++ for OS/2 Tools and Utilities Guide

Commands
syntax

Command prefixes

Table 2.2
Command prefixes

Using@

Using -num and -

Commands can be any operating system command, but they can also
include MAKE macros, directives, and special operators that operating
systems can't recognize (note that I can't be used in commands). Here are
some sample commands:

cd ..

bcc -c rnysource.c

COPY *.OBJ C:\PROJECTA

bcc -c $ (SOURCE) #Macros are explained later in the chapter.

Commands follow this general syntax:

[prefix ...] commands

Commands in both implicit and explicit rules can have prefixes that modify
how MAKE treats the commands. Table 2.2 lists the prefixes you can use in
makefiles; each prefix is explained in more detail following the table.

Option Description

@ Don't display command while it's being executed.

-num Stop processing commands in the makefile when the exit code returned from
command exceeds num. Normally, MAKE aborts if the exit code is nonzero. No
white space is allowed between - and num.

&

Continue processing commands in the makefile, regardless of the exit code
returned by them.

Expand either the macro $**, which represents all dependent files, or the macro
$?, which represents all dependent files stamped later than the target. Execute the
command once for each dependent file in the expanded macro.

The following command uses the modifier @, which prevents the
command from displaying onscreen when MAKE executes it.

diff.exe : diff.obj
@bcc dif f. obj

The -nurn and - modifiers control MAKE processing under error
conditions. You can choose to continue with the MAKE process if an error
occurs or only if the errors exceed a given number.

Chapter 2, Make: The program manager 27

Using &

Command
operators

Table 2.3
Command operators

Debugging with
temporary files

28

In the following example, MAKE continues processing if BCC isn't run
successfully:

target.exe : target.obj
target.obj : target.cpp

bee -c target.cpp

The & modifier issues a command once for each dependent file. It is
especially useful for commands that don't take a list of files as parameters.
For example,

copyall : filel.cpp file2.cpp
© $** c:\ternp

results in COpy being invoked twice as follows:
copy filel.cpp c:\ternp
copy file2.cpp c:\ternp

Without the & modifier, COpy would be called only once.

You can use any operating system command in a MAKE commands
section. MAKE uses the normal operators (such as +,-, and so on), but it
also has other operators you can use.

Operator

<

>

»

«

&&
delimiter

Description

Take the input for use by command from file rather than from standard input.

Send the output from command to file.

Append the output from command to file.

Create a temporary, inline file and use its contents as standard input to command.

Create a temporary file and insert its name in the makefile.

Any character other than # and \ used with « and && as a starting and ending
delimiter for a temporary file. Any characters on the same line and immediately
following the starting delimiter are ignored. The closing delimiter must be written on
a line by itself.

Temporary files can help you debug a command set by placing the actual
commands MAKE executes into the temporary file. Temporary file names
start at MAKEOOOO.@@@, where the 0000 increments for each temporary file
you keep. You must place delimiters after && and at the end of what you
want sent to the temporary file (! is a good delimiter).

The following example shows && instructing MAKE to create a file of the
input to TLINK.

Borland C++ for OS/2 Tools and Utilities Guide

prog.exe: A.obj B.obj
TLINK Ie &&-1

eOs.obj $**
prog.exe
prog.map
maths.lib es.lib

The response file created by && contains these instructions:

eOs.obj a.obj b.obj
prog.exe
prog.map
maths.lib es.lib

Using MAKE macros

Macros are case
sensitive: MACR01 is

different from
Macro1.

Defining macros

A MAKE macro is a string that is expanded (used) wherever the macro is
called in a makefile. Macros let you create template make files that you can
change to suit different projects. For example, to define a macro called
LIBNAME that represents the string "mylib.lib," type LIBNAME = mylib.lib.
When MAKE encounters the macro $ (LIBNAME), it uses the string mylib.lib.

If MAKE finds an undefined macro in a makefile, it looks for an operating
system environment variable of that name (usually defined with SET) and
uses its definition as the expansion text. For example, if you wrote $ (path)
in a makefile and never defined path, MAKE would use the text you
defined for PATH in your AUTOEXEC.BAT. (See the manuals for your
operating system for information on defining environment variables.)

The general syntax for defining a macro in a makefile is MacroName =
expansion_text.

II MacroName is case-sensitive and is limited to 512 characters.

II expansion_text is limited to 4096 characters consisting of alphanumeric
characters, punctuation, and white space.

Each macro must be on a separate line in a makefile. Macros are usually put
at the top of the makefile. If MAKE finds more than one definition for a
macroName, the new definition replaces the old one.

Macros can also be defined using the command-line option -0 (see page
21). More than one macro can be defined by separating them with spaces.
The following examples show macros defined at the command line:

Chapter 2, Make: The program manager 29

Table 2.4
Command line vs.

makefile macros

Using a macro

String
substitutions in
macros

30

make -Dsourcedir=c:\projecta
make command="bcc -c"
make command=bcc option=-c

The following differences in syntax exist between macros entered on the
command line and macros written in a makefile.

Syntax Makefile Command line

Spaces allowed before and after = Yes No

Space allowed before macroName No Yes

To use a macro in a makefile, type $ (MacroName) where MacroName is the
name of a defined macro. You can use braces {} and parentheses 0 to
enclose the MacroName.

MAKE expands macros at various times depending on where they appear
in the makefile:

a Nested macros are expanded when the outer macro is invoked.

a Macros in rules and directives are expanded when MAKE first looks at
the makefile.

a Macros in commands are expanded when the command is executed.

MAKE lets you temporarily substitute characters in a previously defined
macro. For example, if you defined a macro called SOURCE as SOURCE =

fl. cpp f2. cpp f3. cpp, you could substitute the characters .OBJ for the
characters .CPP by using $ (SOURCE: . CPP=. OBJ). The substitution doesn't
redefine the macro.

Rules for macro substitution:

a Syntax: $ (MacroName: original_text=new_text) .

a No whitespace before or after the colon.

a Characters in originaCtext must exactly match the characters in the macro
definition; this text is case-sensitive.

MAKE now lets you use macros within substitution macros. For example,

MYEXT=.C
SOURCE=fl.cpp f2.cpp f3.cpp
$ (SOURCE: .cpp=$(MYEXT)) #Changes fl.cpp to fl.C, etc.

Borland C++ for OS/2 Tools and Utilities Guide

Default MAKE
macros

MAKE contains several default macros you can use in your makefiles.
Table 2.5 lists the macro definition and what it expands to in explicit and
implicit rules.

Table 2.5: Default macros

Macro Expands in implicit: Expands in explicit: Example

$* path\dependent file path\target file C:\PROJECTA\MYT ARGET

$< path\dependent file+ext path\target file+ext C:\PROJECTA\MYT ARGET.OBJ

$: path for dependents path for target C:\PROJECTA

$. dependent file+ext target file + ext MYSOURCE.C

$& dependent file target file MYSOURCE

$@ path\target file+ext path\target file+ext C:\PROJECTA\MYSOURCE.C

$** path\dependent file+ext all dependents file+ext FILE1.CPP FILE2.CPP FILE3.CPP

$? path\dependent file+ext old dependents FILE1.CPP

Table 2.6
Macro Expands to: Comment Other default macros

--MSDOS __ If running under DOS.

--MAKE __ Ox0370 MAKEs hex version number.

MAKE make MAKEs executable file name.

MAKEFLAGS options The options typed at the command line.

MAKEDIR directory Directory where MAKE.EXE is located.

Modifying default
macros

When the default macros listed in Table 2.5 don't give you the exact string
you want, macro modifiers let you extract parts of the string to suit your
purpose.

To modify a default macro, use this syntax:

$(MacroName [modifier])

Chapter 2, Make: The program manager 31

Table 2.7
File-name macro

modifiers

Table 2.7 lists macro modifiers and provides examples of their use.

Modifier Part of file name expanded

D Drive and directory

F Base and extension

B Base only

R Drive, directory, and base

Example

$«D)

$«F)

$«B)

$«R)

Result

C:\PROJECTA\

MYSOURCE.C

MYSOURCE

C:\PROJECTA\MYSOURCE

Using MAKE directives

32

Table 2.8
MAKE directives

MAKE directives resemble directives in languages such as C and Pascal,
and perform various control functions, such as displaying commands
onscreen before executing them. MAKE directives begin either with an
exclamation point or a period. Table 2.8 lists MAKE directives and their
corresponding command-line options (directives override command-line
options). Each directive is described in more detail following the table.

Directive

.autodepend

!elif

!else

!endif

!error

!if

!ifdef

!ifndef

Option

-a

. ignore -i

!include

!message

. noautodepend -a-

. nolgnore -i-

. nosilent -s-

.path.ext

Description

Turns on autodependency checking.

Acts like a C else if.

Acts like a C else.

Ends an !if, !ifdef, or !ifndef statement.

Stops MAKE and prints an error message.

Begins a conditional statement.

If defined that acts like a C ifdef, but with macros rather than
#define directives.

If not defined.

MAKE ignores the return value of acommand .

Specifies a file to include in the makefile.

Lets you print a message from a makefile.

Turns off autodependency checking .

Turns off .Ignore .

Displays commands before MAKE executes them .

Tells MAKE to search for files with the extension .ext in path
directories.

Borland C++ for OS/2 Tools and Utilities Guide

.autodepend

!error

Summing up error
checking controls

Table 2.8: MAKE directives (continued)

. precious

. silent

. suffixes

!undef

-s

Saves the target or targets even if the build fails .

Executes without printing the commands .

Determines the implicit rule for ambiguous dependencies .

Clears the definition of a macro.

Autodependencies occur in .OBJ files that have corresponding .CPP, .C, or
.ASM files. With .autodepend on, MAKE compares the dates and times of
all the files used to build the .OBJ. If the dates and times of the files used to
build the .OBJ are different from the date-time stamp of the.OBJ file, the
.OBJ file is recompiled. You can use .autodepend or -a in place of linked
dependencies (see page 20 for information on linked dependencies).

This is the syntax of the !error directive:

!error message

MAKE stops processing and prints the following string when it encounters
this directive:

Fatal makefile exit code: Error directive: message

Embed !error in conditional statements to abort processing and print an
error message, as shown in the following example:

! if ! $d(MYMACRO)
#if MYMACRO isn't defined
!error MYMACRO isn't defined
!endif

If MYMACRO in the example isn't defined, MAKE prints the following
message:

Fatal makefile 4: Error directive: MYMACRO isn't defined

Four different controls turn off error checking:

• The .ignore directive turns off error checking for a selected portion of the
makefile.

• The -i command-line option turns off error checking for the entire
makefile.

• The -num command operatoJ; which is entered as part of a rule, turns off
error checking for the related command if the exit code exceeds the
specified number.

Chapter 2, Make: The program manager 33

!if and other
conditional
directives

Table 2.9
Conditional operators

34

• The - command operator turns off error checking for the related
command regardless of the exit code.

The !if directive works like C if statements (see the Programmer's Guide if
you don't understand if statements). As shown here, the syntax of !if and
the other conditional directives resembles compiler conditionals:

!if condition !if condition !if condition

!endif !else !elif condition

!endif !endif

The following expressions are equivalent:

! ifdef macro and! if $d (macro)
! ifndef macro and! if ! $d (macro)

These rules apply to conditional directives:

! ifdef macro

!endif

• One !else directive is allowed between !if, lifdef, or !ifndef and !endif
directives.

• Multiple !elif directives are allowed between !if, !ifdef, or !ifndef and
!else directives and !endif.

• You can't split rules across conditional directives.

• You can nest conditional directives.

• Iif, !ifdef, and !ifndef must have matching !endif directives within the
same source file. .

The following information can be included between !if and !endif
directives:

• Macro definition • !include directive

• Explicit rule • !error directive

• Implicit rule • !undef directive

Condition in if statements represents a conditional expression consisting of
decimal, octal, or hexadecimal constants and the operators shown in
Table 2.9.

Operator Description Operator Description

Negation ?: Conditional expression

Bit complement Logical NOT

+ Addition » Right shift

Borland C++ for OS/2 Tools and Utilities Guide

!include

!message

Table 2.9: Conditional operators (continued)

Subtraction « Left shift

Multiplication & Bitwise AND

Division Bitwise OR

% Remainder II Bitwise XOR

&& Logical AND >= Greater than or equal*

Logical OR <= Less than or equal·

> Greater than Equality*

< Less than != Inequality*

·Operator also works with string expressions.

MAKE evaluates a conditional expression as either a simple 32-bit signed
integer or as a character string.

This directive is like the #include preprocessor directive for the C or c++
language-it lets you include the text of another file in the makefile:

!include filename

You can enclose filename in quotation marks ("") or angle brackets «» and
nest directives to unlimited depth, but writing duplicate !include directives
in a makefile isn't permitted-you'll get the error message cycle in the
include file.

Rules, commands, or directives must be complete within a single source
file; you can't start a command in an !include file, then finish it in the
makefile.

MAKE searches for !include files in the current directory unless you've
specified another directory with the -I option.

The !message directive lets you send messages to the screen from a
makefile. You can use these messages to help debug a make file that isn't
working the way you'd like it to. For example, if you're having trouble with
a macro definition, you could put this line in your makefile:

!message The macro is defined here as: $ (MacroName)

When MAKE interprets this line, it will print onscreen The macro is defined
here as: . CPP, if the macro expands to .CPP at that line. Using a series of
!message directives, you can debug your makefiles.

Chapter 2, Make: The program manager 35

.path.ext

.precious

.suffixes

36

The .path.ext directive tells MAKE where to look for files with a certain
extension. The following example tells MAKE to look for files with the .c
extension in C:\SOURCE or C:\CFILES and to look for files with the .obj
extension in C:\OBJS .

. path.c = C:\CSOURCEjC:\CFILES

.path.obj = C:\OBJS

If a MAKE build fails, MAKE deletes the target file. The .precious directive
prevents the file deletion, which is desired for certain kinds of targets such
as libraries. When a build fails to add a module to a library, you don't want
the library to be deleted.

The syntax for .precious is:

.precious: target [target] ... [target]

The .suffixes directive tells MAKE the order (by file extensions) for
building implicit rules.

The syntax of the .suffixes directive is:

.suffixes: .ext [.ext] [.ext] ... [.ext]

.ext represents the dependent file extension in implicit rules. For example,
you could include the line . suf fixes: . asm . c . cpp to tell MAKE to interpret
implicit rules beginning with the ones dependent on .ASM files, then.C
files, then .CPP files, regardless of what order they appear in the makefile.

The following example shows a makefile containing a .suffixes directive
that tells MAKE to look for a source file (MYPROG.EXE) first with an .ASM
extension, next with a .C extension, and finally with a .CPP extension. If
MAKE finds MYPROG.ASM, it builds MYPROG.OBJ from the assembler
file by calling TASM. MAKE then calls TLINK; otherwise, MAKE searches
for MYPROG.C to build the .OBJ file, and so on .

. suffixes: .asm .c .cpp

myprog.exe: myprog.obj
tlink myprog.obj

.cpp.obj:
bcc -P $<

.asm.obj:
tasm /rnx $<

.c.obj:
bcc -P- $<

Borland C++ for OS/2 Tools and Utilities Guide

!undef

Using macros in
directives

Caution!

Null macros

The syntax of the !undef directive is:

!undef MaeroName

!undef (undefine) clears the given macro, MacroName, causing an !ifdef
MacroName test to fail.

The macro $d is used with the !if conditional directive to perform some
processing if a specific macro is defined. The $d is followed by a macro
name, enclosed in parentheses or braces, as shown in the following
example.

! if $d (DEBUG)
bee -v fl.epp f2.epp
!else
bee -v- fl.epp f2.epp
!endif

#If DEBUG is defined,
#compile with debug information;
#otherwise (else)
#don't include debug information.

Don't use the $d macro when MAKE is invoked with the -N option.

An undefined macro causes an !ifdef MacroName test to return false; a null
macro returns true. A null macro is a macro defined with either spaces to
the right of the equal sign (=) or no characters to the right of the equal sign.
For example, the following line defines a null macro in a makefile:

NULLMACRO =

One of the following lines can define a null macro on the MAKE command
line:

NULLMACRO=""
or

-DNULLMACRO

Chapter 2, Make: The program manager 37

38 Borland C++ for OS/2 Tools and Utilities Guide

When it modifies an
existing library, TUB

always creates a
copy of the original
library with a .BAK

extension.

c H A p T E R

TLIB: The Turbo librarian

TLIB is a utility that manages libraries of individual.OBJ (object module)
files. A library is a convenient tool for dealing with a collection of object
mod ules as a single unit.

3

The libraries included with Borland C++ were built with TLIB. You can use
TLIB to build your own libraries, or to modify the Borland C++ libraries,
your own libraries, libraries furnished by other programmers, or
commercial libraries you've purchased. You can use TLIB to

• Create a new library from a group of object modules.

• Add object modules or other libraries to an existing library.

• Remove object modules from an existing library.

• Replace object modules from an existing library.

• Extract object modules from an existing library.

• List the contents of a new or existing library.

Although TLIB is not essential for creating executable programs with
Borland C++, it is a useful programming productivity tool. You will find
TLIB indispensable for large development projects. If you work with object
module libraries developed by others, you can use TLIB to maintain those
libraries when necessary.

Why use object module libraries?

When you program in C and C++, you often create a collection of useful
functions and classes. Because of C and C++'s modularity, you are likely to
split those functions into many separately compiled source files. You use
only a subset of functions from the entire collection in any particular
program. It can become quite tedious, however, to figure out exactly which
files you are using. On the other hand, if you always include all the source
files, your program becomes extremely large and unwieldy.

An object module library solves the problem of managing a collection of
functions and classes. When you link your program with a library, the

Chapter 3, TUB: The Turbo librarian 39

linker scans the library and automatically selects only those modules
needed for the current program.

The TLIB command line

To get a summary of
TUBs usage, just

type TLIB and press
Enter.

Table 3.1
TUB options

For TUB examples,
refer to the

"Examples" section
on page 43.

The operation list

40

The TLIB command line takes the following general form, where items
listed in square brackets ([like this]) are optional:

tlib [/C] [IE] [/Psize] libnarne [operations] [, listfile]

Option

libname

Ie

IPsize

operations

listfile

Description

The DOS path name of the library you want to create or manage. Every TUB com
mand must be given a libname. Wildcards are not allowed. TUB assumes an
extension of .UB if none is given. We recommend that you do not use an exten
sion other than .UB, since both BGG and BGs project-make facility require the
.UB extension in order to recognize library files. Note: If the named library does
not exist and there are add operations, TUB creates the library.

The case-sensitive flag. This option is not normally used; see page 43 for a
detailed explanation.

Sets the library page size to size; see page 42 for a detailed explanation.

The list of operations TUB performs. Operations can appear in any order. If you
only want to examine the contents of the library, don't give any operations.

The name of the file listing library contents. The listfile name (if given) must be
preceded by a comma. No listing is produced if you don't give a file name. The
listing is an alphabetical list of each module. The entry for each module contains
an alphabetical list of each public symbol defined in that module. The default
extension for the listfile is .LST. You can direct the listing to the screen by using
the listfile name GON, or to the printer by using the name PRN.

This section summarizes each of these command-line components; the
following sections provide details about using TLIB.

The operation list describes what actions you want TLIB to do. It consists of
a sequence of operations given one after the other. Each operation consists
of a one- or two-character action symbol followed by a file or module name.
You can put whitespace around either the action symbol or the file or
module name, but not in the middle of a two-character action or in a name.

You can put as many operations as you like on the command line, up to the
OS/2 CMD.EXE-imposed line-length limit of 256 characters. The order of
the operations is not important. TLIB always applies the operations in a
specific order:

Borland C++ for OS/2 Tools and Utilities Guide

File and module
names

TLIB operations

Table 3.2
TLiB action symbols

To create a library,
add modules to a

library that does not
yet exist.

1. All extract operations are done first.

2. All remove operations are done next.

3. All add operations are done last.

You can replace a module by first removing it, then adding the replacement
module.

TLIB finds the name of a module by taking the given file name and
stripping any drive, path, and extension information from it. (Typically,
drive, path, and extension are not given.)

Note that TLIB always assumes reasonable defaults. For example, to add a
module that has an .OBJ extension from the current directory, you need to
supply only the module name, not the path and .OBJ extension.

Wildcards are never allowed in file or module names.

TLIB recognizes three action symbols (-, +, *), which you can use singly or
combined in pairs for a total of five distinct operations. The order of the
characters is not important for operations that use a pair of characters. The
action symbols and what they do are listed here:

Action
symbol Name

+ Add

Remove

* Extract

Description

TLiB adds the named file to the library. If the file has no extension
given, TLiB assumes an extension of .OBJ. If the file is itself a library
(with a .LlB extension), then the operation adds all of the modules in
the named library to the target library.

If a module being added already exists, TLiB displays a message and
does not add the new module.

TLiB removes the named module from the library. If the module does
not exist in the library, TLiB displays a message.

A remove operation needs only a module name. TLiB lets you enter a
full path name with drive and extension included, but ignores every
thing except the module name.

TLiB creates the named file by copying the corresponding module from
the library to the file. If the module does not exist, TLiB displays a
message and does not create a file. If the named file already exists, it is
overwritten.

Chapter 3, TUB: The Turbo librarian 41

You can't directly
rename modules in a
library. To rename a
module, extract and

remove it, rename the
file just created, then

add it back into the
library.

Table 3.2: TUB action symbols (continued)

-* Extract & TUB copies the named module to the corresponding file name and
*- Remove then removes it from the library. This is just shorthand for an extract

followed by a remove operation.

-+
+-

Replace TUB replaces the named module with the corresponding file. This is
just shorthand for a remove followed by an add operation.

Using response files

See "Examples" on
page 43 for a sample

response file and a
TUB command line

incorporating it.

When you are dealing with a large number of operations, or if you find
yourself repeating certain sets of operations over and over, you will
probably want to start using response files. A response file is simply an
ASCII text file (which can be created with the Borland C++ editor) that
contains all or part of a TLIB command. Using response files, you can build
TLIB commands larger than would fit on one OS/2 command line.

To use a response file path name, specify @pathname at any position on the
TLIB command line.

• More than one line of text can make up a response file; you use the" and"
character (&) at the end of a line to indicate that another line follows.

• You don't need to put the entire TLIB command in the response file; the
file can provide a portion of the TLIB command line, and you can type in
the rest on the command line itself.

• You can use more than one response file in a single TLIB command line.

Setting the page size: The /P option

42

Every DOS library file contains a dictionary, which appears at the end of
the .LIB file, following all of the object modules. For each module in the
library, this dictionary contains a 16-bit address of that particular module
within the .LIB file; this address is given in terms of the library page size (it
defaults to 16 bytes).

The library page size determines the maximum combined size of all object
modules in the library-it cannot exceed 65,536 pages. The default (and
minimum) page size of 16 bytes allows a library of about 1 MB in size. To
create a larger library, the page size must be increased using the /P option;
the page size must be a power of 2, and it cannot be smaller than 16, or
larger than 32,768.

Borland C++ for OS/2 Tools and Utilities Guide

All modules in the library must start on a page boundary. For example, in a
library with a page size of 32 (the lowest possible page size higher than the
default 16), an average of 16 bytes will be lost per object module in
padding. If you attempt to create a library that is too large for the given
page size, TLIB will issue an error message and suggest that you use IP
with the next available higher page size.

Advanced operation: The Ie option

If you want to use the
library with other

linkers (or allow other
people to use the
library with other

linkers), for your own
protection you should
not use the Ie option.

Examples

When you add a module to a library, TLIB maintains a dictionary of all
public symbols defined in the modules of the library. All symbols in the
library must be distinct. If you try to add a module to the library that
would cause a duplicate symbol, TLIB displays a message and won't add
the module.

Normally, when TLIB checks for duplicate symbols in the library,
uppercase and lowercase letters are not considered as distinct. For example,
the symbols lookup and LOOKUP are treated as duplicates. Since C and C++
treat uppercase and lowercase letters as distinct, use the Ie option to add a
module to a library that includes a symbol differing only in case from one
already in the library. The Ie option tells TLIB to accept a module with
symbols in it that differ only in case from symbols already in the library.

It may seem odd that, without the Ie option, TLIB rejects symbols that
differ only in case, especially since C and C++ are case-sensitive languages.
The reason is that some linkers fail to distinguish between symbols in a
library that differ only in case. Such linkers treat stars, Stars, and STARS as
the same identifier. TLINK, on the other hand, has no p~oblem distinguish
ing uppercase and lowercase symbols, and it properly accepts a library con
taining symbols that differ only in case. In this example, then, Borland C++
would treat stars, Stars, and STARS as three separate identifiers. As long as
you use the library only with TLINK, you can use the TLIB Ie option
without any problems.

Here are some simple examples demonstrating the different things you can
do with TLIB:

Chapter 3, TUB: The Turbo librarian 43

44

• To create a library named MYLIB.LIB with modules X.OBJ, Y.OBJ, and
Z.OBJ, type

tlib rnylib +x +y +z

• To create the same library as in #1 and get a listing in MYLIB.LST too,
type

tlib rnylib +x +y +z, rnylib.lst

• To get a listing in CS.LST of an existing library CS.LIB, type

tlib es, es.lst

• To replace module X.OBJ with a new copy, add A.OBJ and delete Z.OBJ
from MYLIB.LIB, type

tlib rnylib -+x +a -z

• To extract module Y.OBJ from MYLIB.LIB and get a listing in
MYLIB.LST, type

tlib rnylib *y, rnylib.lst

• To create a new library named ALPHA, with modules A.OBJ, B.OBJ, ... ,
G.OBJ using a response file:

• First create a text file, ALPHA.RSP, with

+a.abj +b.abj +e.abj &
+d.abj +e.abj +f.abj &
+g.abj

• Then use the TLIB command, which produces a listing file named
ALPHA. LST:

tlib alpha @alpha.rsp, alpha. 1st

Borland e++ for OS/2 Tools and Utilities Guide

c H A p T E R 4

Import library tools

This chapter describes IMPLIB and IMPDEF. IMPLIB creates import
libraries, and IMPDEF creates module definition files (.DEF files). Import
libraries and module definition files provide information to the linker about
functions imported from dynamic-link libraries (DLLs).

Dynamic-link libraries are an important part of OS/2 programming. Using
DLL functions in your application is called importing DLL functions. There
are two ways to import a DLL function: you can use import libraries, or
you can use the IMPORTS section of module definition files.

When linking an OS/2 application, TLINK llses import libraries and
module definition files to know when a function is defined in and imported
from a DLL. Import libraries generally replace the IMPORTS section of
module definition files.

IMPLIB creates an import library for a DLL. IMPDEF creates a module
definition file that has an EXPORTS statement containing the name of each
exported function in a DLL. See the Programmer's Guide, Chapter 9, for an
explanation of module definition files.

IMPLIB: The import librarian

The IMPLIB utility creates import libraries. IMPLIB takes as input DLLs,
module definition files, or both, and produces an import library as output.

Import libraries contain records. Each record contains the name of a DLL,
and specifies where in the DLL the imported functions reside. These
records are bound to the application by TLINK or the IDE linker, and
provide OS/2 with the information necessary to resolve DLL function calls.
An import library can be substituted for part or all of the IMPORTS section
of a module definition file.

If you've created an OS/2 application, you've already used at least one
import library, OS2.LIB, the import library for the standard OS/2 DLLs.
These DLLs contain the OS/2 system calls. (OS2.LIB is linked automatically
when you build an OS/2 application in the IDE and when using BCC to

Chapter 4, Import library tools 45

See page 47 for
information on using
IMPDEF and IMPLIB

to customize an
import library for a

specific application.

Note that a DLL can
also have an

extension of .EXE or
.DRV, not just .DLL.

Table 4.1
IMPLIB options

You can use either a
hyphen or a slash to

precede IMPLIBs
options, but the
options must be

lowercase.

link. You have to explicitly link with OS2.LIB only if you're using TLINK to
link separately.)

An import library lists some or all of the e~ported functions for one or more
DLLs. IMP LIB creates an import library directly from DLLs or from module
definition files for DLLs (or a combination of the two).

To create an import library for a DLL, type

IMPLIB Options LibName [DefFiles ... I DLLs ...

where Options is an optional list of one or more IMP LIB options (see
Table 4.1), LibName (required) is the name for the new import library,
DefFiles is a list of one or more existing module definition files for one or
more DLLs, and DLLs is a list of one or more existing DLLs. You must
specify at least one DLL or module definition file.

Option What it does

-t Terse warnings.

-v Verbose warnings.

-w No warnings.

IMPDEF: The module definitions file manager

46

An import library
provides access to

the functions in a
Windows DLL. See

page 45 for more
details.

IMPDEF takes as input a DLL name, and produces as output a module
definition file with an export section containing the names of functions
exported by the DLL. The syntax is

IMPDEF DestName.DEF SourceName.DLL

This creates a module definition file named DestName.DEF from the file
SourceName.DLL. The module definition file would look something like
this:

LIBRARY FileName

DESCRIPTION 'Description'

EXPORTS
ExportFuncName @Ordinal

ExportFuncName @Ordinal

where FileName is the DLL's root file name, Description is the value of
the DESCRIPTION statement if the DLL was previously linked with
a module definition file that included a DESCRIPTION statement,

Borland C++ for OS/2 Tools and Utilities Guide

Classes in a DLL

Functions in a
DLL

ExportFuncName names an exported function, and Ordinal is that function's
ordinal value (an integer).

IMPDEF is useful for a DLL that uses C++ classes. If you use the _export
keyword when defining a class, all of the non-inline member functions and
static data members for that class are exported. It's easier to let IMPDEF
make a module definition file for you because it lists all the exported
functions, automatically including the member functions and static data
members.

Since the names of these functions are mangled, it would be tedious to list
them all in the EXPORTS section of a module definition file simply to create
an import library from the module definition file. If you use IMPDEF to
create the module definition file, it will include the ordinal value for each
exported function. If the exported name is mangled, IMPDEF will also
include that function's unmangled, original name as a comment following
the function entry. So, for instance, the module definition file created by
IMPDEF for a DLL that used C++ classes would look something like this:

LIBRARY FileName

DESCRIPTION 'Description'

EXPORTS
MangledExportFuncName @Ordinal ExportFuncName

MangledExportFuncName @Ordinal ExportFuncName

where FileName is the DLL's root file name, Description is the value of the
DESCRIPTION statement if the DLL was previously linked with a module
definition file that included a DESCRIPTION statement,
MangledExportFuncName provides the mangled name, Ordinal is that
function's ordinal value (an integer), and ExportFuncName gives the
function's original name.

IMPDEF creates an editable source file that lists all the exported functions
in the DLL. You can edit this .DEF file to contain only those functions that
you want to make available to a particular application, then run IMP LIB on
the edited .DEF file. This results in an import library that contains import
information for a specific subset of a DLL's export functions.

Suppose you're distributing a DLL that provides functions to be used by
several applications. Every export function in the DLL is defined with
_export. Now, if all the applications used all the DLL's exports, then you
could simply use IMP LIB to make one import library for the DLL. You
could deliver that import library with the DLL, and it would provide

Chapter 4, Import library tools 47

48

import information for all of the DLL's exports. The import library could be
linked to any application, thus eliminating the need for the particular
application to list every DLL function it uses in the IMPORTS section of its
module definition file.

But let's say you want to give only a few of the DLL's exports to a particular
application. Ideally, you want a customized import library to be linked to
that application-an import library that provides import information only
for the subset of functions that the application will use. All of the other
export functions in the DLL will be hidden to that client application.

To create an import library that satisfies these conditions, run IMPDEF on
the compiled and linked DLL. IMPDEF produces a module definition file
that contains an EXPORT section listing all of the DLL's export functions.
You can edit that module definition file, removing EXPORTS section entries
for those functions you don't want in the customized import library. Once
you've removed the exports you don't want, run IMPLIB on the module
definition file. The result will be an import library that contains import
information for only those export functions listed in the EXPORTS section
of the module definition file.

Borland C++ for OS/2 Tools and Utilities Guide

c H A p T E R

Resource tools

This chapter describes the Borland resource tools.

- BRCC.EXE is the Borland resource compiler. It compiles resource script
files (.RC files) and produces the binary .RES file.

_ RC.EXE is the OS/2 resource compiler. It compiles .RC files, and links
.RES files to an executable.

5

Presentation Manager (PM) programs are easy to learn and use because
they provide a familiar and standard user interface for all applications. The
components of the user interface are known as resources. Resources are
defined external to your source code, then attached to the executable that
uses them.

Resources describe PM user-interface devices such as
For more information

on resources, see the - Menus
Resource VVorkshop _ Dialog boxes

Users Guide.
_ Pointers
_ Icons

II Bitmaps
_ Strings

_ Accelerator keys

These resources are joined with an executable file before the application is
run, but the application calls resources into memory only when needed,
minimizing memory usage.

Resource script (.RC) files are text files that describe the resources a
particular application will use. BRCC or RC uses the .RC file to compile the
resources into a binary format resource (.RES) file. RC then attaches the
.RES file, containing your resources, to your executable. Attaching .RES
files to the .EXE file is commonly called resource linking.

Chapter 5, Resource tools 49

BRCC.EXE: The resource compiler

Table 5.1
BRCC (Borland

resource compiler)

Examples

50

BRCC is a command-line version of Resource Workshop's resource
compiler. It accepts a resource script file (.RC) as input and produces a
resource object file (.RES) as output. BRCC uses the following command
line syntax:

BRCC [options] <filenarne>.RC

Table 5.1 lists all BRCC switches.

Switch

-d<name>[=<string>]

-fodilename>

-kpath>

-k<value>

-r

-v
-x

-? or-h

Description

Defines a preprocessor symbol.

Renames the output .RES file. (By default, BRCC creates the
output .RES file with the same name as the input .RC file.)

Adds one or more directories (separated by semicolons) to the
include search path.

Sets codepage to value.

This switch is ignored. It is included for compatibility with other
resource compilers.

Prints progress messages (verbose).

Deletes the current include path.

Displays switch help.

Like Resource Workshop's resource compiler, BRCC predefines common
resource-related PM constants such as WS_ VISIBLE and
BS_PUSHBUTTON. Also, two special compiler-related symbols are
defined: RC_INVOKED and WORKSHOP_INVOKED. These symbols can
be used in the source text in conjunction with conditional preprocessor
statements to control compilation. For example, the following construct can
greatly speed up compilation:

#ifndef WORKSHOP_INVOKED
#include los2.h"
#endif

The following example adds two directories to the include path and
produces a .RES file with the same name as the input .RC file.

bree -i<dirl>i<dir2> <filenarne>.RC

Borland C++ for OS/2 Tools and Utilities Guide

This example enables you to produce an output .RES file with a name
different from the input .RC file's.

bree -fo<filename>.RES <filename>.RC

RC.EXE: The OS/2 resource compiler

See Table 5.2 for a
description of the

Resource Compiler
options.

The PM resource compiler (RC.EXE) will both compile and link your
resources. Here is the syntax for invoking RC.EXE from the command line:

RC [options] ResoureeFile [ModuleFile]

For example, to compile MYAPP.RC file and add it to MYAPP.EXE, you
would give this command line:

re myapp

This simplest form only works if the resource file and the executable file
share the same name. If MYAPP.RC was instead named MYAPPRS.RC, you
would type

re myapprs myapp

To compile only the MYAPP.RC resource file (and not add the resulting
MYAPP.RES to MYAPP.EXE), use the -R option, like this:

re -r myapp

You would then have a MYAPP.RES file. To add MYAPP.RES to
MYAPP.EXE, type

re myapp.res

To mark a module as PM-compatible, but not add any resources to it,
simply invoke the Resource Compiler with the module name (note that the
file name must have one of these extensions: .EXE, .DLL, or .DRV). For
example,

re myapp.exe

The following table describes the Resource Compiler options. Note that
Resource Compiler options are not case sensitive (-e is the same as -E).
Also, options that take no arguments can be combined (for instance, -kpr is
legal).

Chapter 5, Resource tools 51

Table 5.2: Resource Compiler options

Option

-?

-d Symbol

-h

-i Path

-p

-r

52

What it does

Lists help on Resource Compiler options (also -H).

Defines Symbol for the preprocessor.

Lists help on Resource Compiler options (also - ?).

After searching the current directory for include files and resource files, RC searches the directory
named in Path. The -i option can be repeated if you want to specify more than one search path. Also
see the description for the -x option.

Packs resources; resources will not cross 64K boundaries.

Compiles the .RC file into a .RES file, but does not add it to an .EXE.

Borland C++ for OS/2 Tools and Utilities Guide

A p p E N D x A

Error messages

This appendix describes the error messages that can be generated by
Borland C++. The error messages in this appendix include messages that
can be generated by the compiler, the MAKE utility, the librarian (TLIB),
and the linker (TLINK). This appendix also lists the errors that you can
receive when you run your program (run-time errors).

Messages are listed in ASCII alphabetic order. Messages beginning with
symbols come first, then messages beginning with numbers, and then
messages beginning with letters of the alphabet. Messages that begin with
symbols are alphabetized by the first word in the message that follows the
symbols. For example, you might receive the following error message if
you incorrectly declared your function myJunc:

my_func must be declared with no parameters

To find this error message, look under the alphabetized listing of "must."

Message classes

Fatal errors

Errors

Messages fall into three categories: fatal errors, errors, and warnings.

Fatal errors can be generated by the compiler, the linker, and the MAKE
utility. Fatal errors cause the compilation to stop immediately; you must
take appropriate action to fix the error before you can resume compiling.

If the compiler or MAKE utility issues a fatal error, no .EXE file is created. If
the linker issues a fatal error, any .EXE file that might have been created by
the linker is deleted before the linker returns.

Errors can be generated by the compiler, the linker, the MAKE utility, and
the librarian. In addition, errors can be generated by your program at run
time.

Errors generated by the compiler indicate program syntax errors,
command-line errors, and disk or memory access errors. Compiler errors

Appendix A, Error messages 53

Warnings

don't cause the compilation to stop-the compiler completes the current
phase of the compilation and then stops and reports the errors
encountered. The compiler attempts to find as many real errors in the
source program as possible during each phase (preprocessing, parsing,
optimizing, and code-generating).

Errors generated by the linker don't cause the linker to delete the .EXE or
.MAP files. However, you shouldn't execute any .EXE file that was linked
with errors. Linker errors are treated like fatal errors if you're compiling
from the Integrated Development Environment (IDE).

The MAKE utility generates errors when there is a syntax or semantic error
in the source makefile. You must edit the makefile to fix these types of
errors.

Run-time errors are usually caused by logic errors in your program code. If
you receive a run-time error, you must fix the error in your source code and
recompile the program for the fix to take effect.

Warnings can be issued by the compiler, the linker, and the librarian.
Warnings do not prevent the compilation from finishing. However, they do
indicate conditions that are suspicious, even if the condition that caused the
warning is legitimate within the language. The compiler also produces
warnings if you use machine-dependent constructs in your source files.

Message listings

54

Messages are written with the message class first, followed by the source
file name and line number where the error was detected, and finally with
the text of the message itself.

Some messages include a symbol (such as a variable, file name, or module)
that is taken from your program. Symbols in the message explanations are
shown in italics to indicate that they're variable in nature.

Be aware that the compiler generates messages as they are detected.
Because C and C++ don't force any restrictions on placing statements on a
line of text, the true cause of the error might be one or more lines before or
after the line number mentioned in the error message.

Borland C++ for OS/2 Tools and Utilities Guide

Message explanations

')' missing in macro invocation MAKE error
A left parenthesis is required to invoke a macro.

(expected Compiler error
A left parenthesis was expected before a parameter list.

) expected Compiler error
A right parenthesis was expected at the end of a parameter list.

, expected Compiler error
A comma was expected in a list of declarations, initializations, or parameters.

: expected after private/protected/public Compiler error
When used to begin a private/protected/public section of a C++ class, these reserved words must be followed by a colon.

< expected Compiler error
The keyword template was not followed by a left angle bracket (<). Every template declaration must include the template
formal parameters enclosed within angle brackets (< >), immediately following the template keyword.

> expected Compiler error
A new-style cast (for example, dynamic_cast) is misSing a closing ">".

@ seen, expected a response-file name Librarian error
The response file is not given immediately after @.

{ expected Compiler error
A left brace ({) was expected at the start of a block or initialization.

} expected Compiler error
A right brace (}) was expected at the end of a block or initialization.

16-bit segments not supported in module module Linker error
16-bit segments aren't supported in 32-bit applications. Check to make sure that you haven't inadvertently compiled your 32-
bit application using the 16-bit compiler.

286/287 instructions not enabled Compiler error
Use the -2 command-line compiler option or the 80286 options from the OptionslCompilerlCode GenerationlAdvanced Code
Generation dialog box to enable 286/287 opcodes. The resulting code cannot be run on 8086- and 80SS-based machines.

32-bit record encountered Linker error
An object file that contains S0386 32-bit records was encountered, and the /3 option had not been used.

Abnormal program termination Run-time error
The program called abort because there wasn't enough memory to execute. This can happen as a result of memory
overwrites.

Access can only be changed to public or protected Compiler error
A C++ derived class can modify the access rights of a base class member, but only to public or protected. A base class
member cannot be made private.

Appendix A, Error messages 55

Added file filename does not begin correctly, ignored Librarian warning
The librarian has decided that the file being added is not an object module, so it will not try to add it to the library. The library
is created anyway.

Address of overloaded function function doesn't match type Compiler error
A variable or parameter is assigned/initialized with the address of an overloaded function, and the type of the
variable/parameter doesn't match any of the overloaded functions with the specified name.

Alias alias defined in module 'module' is redefined Linker warning
An ALIAS definition record specified a public symbol substitute that was already defined by another ALIAS. The second
public symbol substitute will be used. ALIAS records are generated by the assembler when the ALIAS directive is used.

module already in LIB, not changed! Librarian warning
An attempt to use the + action on the library has been made, but there is already an object with the same name in the library.
If an update of the module is desired, the action should be +-. The library has not been modified.

Ambiguity between function1 and function2 Compiler error
Both of the named overloaded functions could be used with the supplied parameters. This ambiguity is not allowed.

Ambiguous member name name Compiler error
A structure member name used in inline assembly must be unique. If it is defined in more than one structure all of the
definitions must agree in type and offset within the structures. The member name in this case is ambiguous. Use the syntax
(struct xxx) .yyyinstead.

Ambiguous operators need parentheses Compiler warning
This warning is displayed whenever two shift, relational, or bitwise-Boolean operators are used together without parentheses.
Also, an addition or subtraction operator that appears unparenthesized with a shift operator will produce this warning.
Programmers frequently confuse the precedence of these operators.

Ambiguous override of virtual base member base_function: derived_function Compiler error

56

This error message is issued when a virtual function that is defined in a virtual base class is overridden with different
functions having two derived classes in the same inheritance hierarchy. For example,

struct VB

virtual f();
};

struct A:virtual VB
{

virtual f();
};

struct B:virtual VB
virtual f();

};

struct D:A,B
{

} //errors here

The above code will be flagged with the following errors:

Error: Ambiguous override of virtual base member VB::f() :A::f()
Error: Ambiguous override of virtual base member VB::f() :B::f()

Borland C++ for OS/2 Tools and Utilities Guide

Array allocated using 'new' may not have an initializer Compiler error
When initializing a vector (array) of classes, you must use the default constructor (the constructor that has no arguments).

Array bounds missing] Compiler error
Your source file declared an array in which the array bounds were not terminated by a right bracket.

Array must have at least one element Compiler error
ANSI C and C++ require that an array be defined to have at least one element (objects of zero size are not allowed). An old
programming trick declares an array element of a structure to have zero size, then allocates the space actually needed with
mal/oc. You can still use this trick, but you must declare the array element to have (at least) one element if you are compiling
in strict ANSI mode. Declarations (as opposed to definitions) of arrays of unknown size are still allowed.

For example,

char ray[] i
char ray[O]i
extern char ray[] i

/* definition of unknown size -- illegal */
/* definition of 0 size -- illegal */
/* declaration of unknown size -- ok */

Array of references is not allowed Compiler error
It is illegal to have an array of references because pointers to references are not allowed and array names are coerced into
pointers.

Array size for 'delete' ignored Compiler warning
With the latest specification of C++, it is no longer necessary to specify the array size when deleting an array; to allow older
code to compile, Borland C++ ignores this construct and issues this warning.

Assembler stack overflow Compiler error
The assembler ran out of memory during compilation. Review the portion of code flagged by the error message to ensure
that it uses memory correctly.

Assembler statement too long Compiler error
Inline assembly statements cannot be longer than 480 bytes.

Assigning type to enumeration Compiler warning
Assigning an integer value to an enum type. This is an error in C++, but is reduced to a warning to give existing programs a
chance to work.

Assignment to 'this' not allowed, use X::operator new instead Compiler error
In early versions of C++, the only way to control allocation of a class of objects was to use the this parameter inside a
constructor. This practice is no longer allowed because a better, safer, and more general technique is to instead define a
member function operator new.

Attempt to export non-public symbol symbol Linker error
This error usually occurs when a .DEF file specifies an EXPORT for a symbol that you either forgot to define or misspelled.

Attempt to grant or reduce access to identifier Compiler error
A C++ derived class can modify the access rights of a base class member, but only by restoring it to the rights in the base
class. It cannot add or reduce access rights.

Attempting to return a reference to a local object Compiler error
In a function returning a reference type, you attempted to return a reference to a temporary object (perhaps the result of a
constructor or a function call). Because this object will disappear when the function returns, the reference will then be illegal.

Appendix A, Error messages 57

Attempting to return a reference to local variable identifier Compiler error
This C++ function returns a reference type, and you are trying to return a reference to a local (auto) variable. This is illegal
because the variable referred to disappears when the function exits. You can return a reference to any static or global
variable, or you can change the function to return a value instead.

Bad call of intrinsic function Compiler error
You have used an intrinsic function without supplying a prototype, or you supplied a prototype for an intrinsic function that
,was not what the compiler expected.

Bad character in parameters -> char Linker error
One of the following characters (or any control character other than horizontal tab, linefeed, carriage return, or Ctrl+l) was
encountered in the command line or in a response file:

"*<=>?[]I

Bad define directive syntax Compiler error
A macro definition starts or ends with the ## operator, or contains the # operator that is not followed by a macro argument
name.

Bad field list in debug information in module module Linker error
This is typically caused by bad debug information in the OBJ file. Borland Technical Support should be informed.

Bad file name filename Linker error
An invalid file name was passed to the linker.

Bad file name format in include directive Compiler error
Include file names must be surrounded by quotes ("FILENAME.H") or angle brackets «FILENAME.H». The file name was
missing the opening quote or angle bracket. If a macro was used, the resulting expansion text is incorrect; that is, it is not
surrounded by < > or" ".

Bad filename format in include statement MAKE error
Include file names must be surrounded by quotes or angle brackets. The file name was missing the opening quote or angle
bracket.

Bad file name format in line directive Compiler error
Line directive file names must be surrounded by quotes ("FILENAME.H") or angle brackets «FILENAME.H». The file name
was missing the opening quote or angle bracket. If a macro was used, the resulting expansion text is incorrect; that is, it is
not surrounded by quote marks.

Bad header in input LIB Librarian error
When adding object modules to an existing library, the librarian has determined that it has a bad library header. Rebuild the
library.

Bad ifdef directive syntax Compiler error
An #ifdef directive must contain a single identifier (and nothing else) as the body of the directive.

Bad LF _POINTER in module module Linker error
This is typically caused by bad debug information in the OBJ file. Borland Technical Support should be informed.

Bad macro output translator MAKE error
Invalid syntax for substitution within macros.

Bad object file filename near file offset offset Linker error
The linker has found a bad OBJ file. This is usually caused by a translator error.

58 Borland C++ for OS/2 Tools and Utilities Guide

Bad object file record Linker error
Bad object file file near file offset offset Linker error

An ill-formed object file was encountered. This is most commonly caused by naming a source file or by naming an object file
that was not completely built. This can occur if the machine was rebooted during a compile, or if a compiler did not delete its
output object file when a CtrltBreak was pressed.

Bad OMF record type type encountered in module module Librarian error
The librarian encountered a bad Object Module Format (OMF) record while reading through the object module. The librarian
has already read and verified the header records on the module, so this usually indicates that the object module has become
corrupt in some way and should be re-created.

Bad syntax for pure function definition Compiler error
Pure virtual functions are specified by appending "= 0" to the declaration. You wrote something similar, but not quite the
same.

Bad undef directive syntax Compiler error
An #undef directive must contain a single identifier (and nothing else) as the body of the directive.

Bad undef statement syntax MAKE error
An !undef statement must contain a single identifier and nothing else as the body of the statement.

Bad version number in parameter block Linker error
This error indicates an internal inconsistency in the IDE. If it occurs, exit and restart the IDE. This error does not occur in the
standalone version.

Base class class contains dynamically dispatchable functions Compiler error
Currently, dynamically dispatched virtual tables do not support the use of multiple inheritance. This error occurs because a
class that contains DDVT functions attempted to inherit DDVT functions from multiple parent classes.

Base class class is also a base' class of class Compiler warning
A class inherits from the same base class both directly and indirectly. It is best to avoid this non-portable construct in your
program code.

Base class class is included more than once Compiler error
A C++ class can be derived from any number of base classes, but can be directly derived from a given class only once.

Base class class is initialized more than once Compiler error
In a C++ class constructor, the list of initializations following the constructor header includes base class class more than
once.

Base initialization without a class name is now obsolete Compiler error
Early versions of C++ provided for initialization of a base class by following the constructor header with just the base class
constructor parameter list. It is now recommended that you include the base class name: this makes the code much clearer,
and is required when there are multiple base classes.

Old way:

derived: : derived (int i) (i, 10) { ... }

New way:

derived: : derived (int i) base(i, 10) { ... }

Appendix A, Error messages 59

Bit field cannot be static Compiler error
Only ordinary C++ class data members can be declared static, not bit fields.

Bit field too large Compiler error
This error occurs when you supply a bit field with more than 32 bits.

Bit fields must be signed or unsigned int Compiler error
In ANSI C, bit fields can only be signed or unsigned int (not char or long, for example).

Bit fields must be signed or unsigned int Compiler warning
In ANSI C, bit fields cannot be of type signed char or unsigned char. When not compiling in strict ANSI mode, the compiler
allows such constructs, but flags them with this warning.

Bit fields must contain at least one bit Compiler error
You cannot declare a named bit field to have 0 (or less than 0) bits. You can declare an unnamed bit field to have 0 bits; a
convention used to force alignment of the following bit field to a byte boundary (or word boundary, if you select VVord
Alignment). In C++, bit fields must have an integral type; this includes enumerations.

Bit fields must have integral type Compiler error
In C++, bit fields must have an integral type; this includes enumerations.

Body has already been defined for function function Compiler error
A function with this name and type was previously supplied a function body. A function body can be supplied only once.

Both return and return with a value used Compiler warning
The current function has return statements with and without values. This is legal in C, but is almost always an error. Possibly
a return statement was omitted from the end of the function.

Call of nonfunction Compiler error
The name being called is not declared as a function. This is commonly caused by incorrectly declaring the function or by
misspelling the function name.

Call to function function with no prototype Compiler warning
The "Prototypes required" warning was enabled and you called function function without first giving a prototype for it.

Call to undefined function function Compiler error
Your source file declared the current function to return some type other than void in C++ (or int in C), but the compiler
encountered a return with no value. This is usually some sort of error. int functions are exempt in C because in old versions
of C there was no void type to indicate functions that return nothing.

Cannot access an inactive scope IDE debugger error
You have tried to evaluate or inspect a variable local to a function that is currently not active. (This is an integrated debugger
expression evaluation message.)

virtual can only be used with member functions Compiler error
A data member has been declared with the virtual specifier. Only member functions can be declared virtual.

Can't grow LE/LIDATA record buffer Librarian error
Command-line error. See the out of memory reading LE/LIDATA record from object module message.

Can't inherit non-RTTI class from RTTI base class Compiler error
Can't inherit RTTI class from non-RTTI base class Compiler error

When virtual functions are present, the RTTI attribute of all base classes must match that of the derived class.

60 Borland C++ for OS/2 Tools and Utilities Guide

Cannot access an inactive scope Compiler error
You have tried to evaluate or inspect a variable local to a function that is currently not active. (This is an integrated debugger
expression evaluation message.)

Cannot add or subtract relocatable symbols Compiler error
The only arithmetic operation that can be performed on a relocatable symbol in an assembler operand is addition or
subtraction of a constant. Variables, procedures, functions, and labels are relocatable symbols. Assuming that Var is a
variable and Const is a constant, then the instructions

MOV AX,ConsttConst

and

MOV AX,VartConst

are valid, but MOV AX, VartVar is not.

Cannot allocate a reference Compiler error
An attempt to create a reference using the new operator has been made; this is illegal because references are not objects
and cannot be created through new.

identifier cannot be declared in an anonymous union Compiler error
The compiler found a declaration for a member function or static member in an anonymous union. Such unions can contain
data members only.

function1 cannot be distinguished from function2 Compiler error
The parameter type lists in the declarations of these two functions do not differ enough to tell them apart. Try changing the
order of parameters or the type of a parameter in one declaration.

Cannot generate function from template function template Compiler error
A call to a template function was found, but a matching template function cannot be generated from the function template.

Cannot call main from within the program Compiler error
C++ does not allow recursive calls of the function main.

Cannot call near class member function with a pointer of type type Compiler error
Member functions of near classes (classes are near by default) cannot be called using far or huge member pointers. This
also applies to calls using pointers to members. Either change the pointer to be __ near, or declare the class as _ jar.

Cannot cast from type1 to type2 Compiler error
A cast from type type1 to type type2 is not allowed. In C, a pointer can be cast to an integral type or to another pointer. An
integral type can be cast to any integral, floating, or pointer type. A floating type can be cast to an integral or floating type.
Structures and arrays cannot be cast to or from. You cannot cast from a void type.

C++ checks for user-defined conversions and constructors, and if one cannot be found, then the preceding rules apply
(except for pointers to class members). Among integral types, only a constant zero can be cast to a member pointer. A
member pointer can be cast to an integral type or to a similar member pointer. A similar member pointer points to a data
member if the original does, or to a function member if the original does; the qualifying class of the type being cast to must be
the same as or a base class of the original.

Cannot convert type1 to type2 Compiler error
An assignment, initialization, or expression requires the specified type conversion to be performed, but the conversion is not
legal.

Appendix A, Error messages 61

Cannot create instance of abstract class class Compiler error
Abstract classes-those with pure virtual functions-cannot be used directly, only derived from.

Cannot create pre-compiled header: code in header Compiler warning
One of the headers contained a non-inline function body.

Cannot create pre-compiled header: initialized data in header Compiler warning
One of the headers contained a global variable definition. In a C header, this message indicates that a global variable was
initialized. In C++ header, this message indicates that a variable was not declared "extern."

Cannot create pre-compiled header: header incomplete Compiler warning
The pre-compiled header ended in the middle of a declaration. This often happens when there is a missing "}" in a class
definition that is located in a header file.

Cannot create pre-compiled header: write failed Compiler warning
The compiler could not write to the pre-compiled header file. This is usually due to a full disk or a disk that is write protected.

Cannot define a pointer or reference to a reference Compiler error
It is illegal to have a pointer to a reference or a reference to a reference.

Cannot find class::class(class &) to copy a vector Compiler error
When a C++ class class1 contains a vector (array) of class class2, and you want to construct an object of type class1 from
another object of type class 1, there must be a constructor class2: : class2 (class2&) so that the elements of the vector
can be constructed. This constructor, called a copy constructor, takes just one parameter (a reference to its class).

Usually the compiler supplies a copy constructor automatically. However, if you have defined a constructor for class class2
that has a parameter of type class2& and has additional parameters with default values, the copy constructor cannot be
created by the compiler. (This is because class2 : : class2 (class2&) and class2: : class2 (class2& lint = 1)
cannot be distinguished.) You must redefine this constructor so that not all parameters have default values. You can then
define a copy constructor or let the compiler create one.

Cannot find class::operator=(class&) to copy a vector Compiler error
When a C++ class class1 contains a vector (array) of class class2, and you want to copy a class of type class1, there must
be an assignment operator class2: : operator= (class2&) so that the elements of the vector can be copied. Usually the
compiler supplies such an operator automatically. However, if you have defined an operator= for class class2, but not one
that takes a parameter of type class2&, the compiler will not supply it automatically-you must supply one.

Cannot find default constructor to initialize array element of type class Compiler error
When declaring an array of a class that has constructors, you must either explicitly initialize every element of the array, or the
class must have a default constructor (it will be used to initialize the array elements that don't have explicit initializers). The
compiler will define a default constructor for a class unless you have defined any constructors for the class.

Cannot find default constructor to initialize base class class Compiler error
Whenever a C++ derived class class2 is constructed, each base class class1 must first be constructed. If the constructor for
class2 does not specify a constructor for class1 (as part of class2s header), there must be a constructor
classl: : classl () for the base class. This constructor without parameters is called the default constructor. The compiler
will supply a default constructor automatically unless you have defined any constructor for class class1; in that case, the
compiler will not supply the default constructor automatically-you must supply one.

Cannot find default constructor to initialize member identifier Compiler error

62

When a C++ class class 1 contains a member of class class2, and you want to construct an object of type class 1 but not from
another object of type class1, there must be a constructor class2 : : class2 () so that the member can be constructed.
This constructor without parameters is called the default constructor. The compiler supplies a default constructor

Borland C++ for OS/2 Tools and Utilities Guide

automatically unless you've defined a constructor for class class2. If you have, the compiler won't supply the default
constructor automatically-you must supply one.

Cannot find MAKE.EXE MAKE error
The MAKE command-line tool cannot be found. Be sure that MAKE.EXE is in either the current directory or in a directory
contained in your directory path.

Cannot generate function from template function template Compiler error
A call to a template function was found, but a matching template function cannot be generated from the function template.

Cannot have a non-inline function in a local class Compiler error
Cannot have a static data member in a local class Compiler error

All members of classes declared local to a function must be entirely defined in the class definition. This means that such local
classes cannot contain any static data members, and all of their member functions must have bodies defined within the class
definition.

Cannot initialize a class member here Compiler error
Individual members of structs, unions, and C++ classes cannot have initializers. A struct or union can be initialized as a
whole using initializers inside braces. A C++ class can be initialized only by the use of a constructor.

Cannot initialize type1 with type2 Compiler error
You are attempting to initialize an object of type type 1 with a value of type type2, which is not allowed. The rules for
initialization are essentially the same as for assignment.

Cannot modify a const object Compiler error
This indicates an illegal operation on an object declared to be const, such as an assignment to the object.

Cannot overload 'main' Compiler error
main is the only function that cannot be overloaded.

function cannot return a value Compiler error
A function with a return type void contains a return statement that returns a value; for example, an int.

identifier cannot start a parameter declaration Compiler error
An undefined 'identifier' was found at the start of an argument in a function declarator. This error usually occurs because the
wrong header file was used. If that isn't the cause, check to see if the type name is misspelled or if the type declaration is
missing.

Cannot take address of main Compiler error
In C++ it is illegal to take the address of the main function.

Cannot throw type - ambiguous base class base Compiler error
It is not legal to throw a class that contains more than one copy of a (nonvirtual) base class.

Cannot write a string option MAKE error
the -W MAKE option writes a character option to MAKE.EXE. If theres any string option (for example, -Dxxxx="MyJoo" or
-Uxxxxx), this error message is generated.

Case bypasses initialization of a local variable Compiler error
In C++ it is illegal to bypass the initialization of a local variable in any way. In this instance, there is a case label that can
transfer control past this local variable.

Case outside of switch Compiler error
The compiler encountered a case statement outside a switch statement. This is often caused by mismatched braces.

Appendix A, Error messages 63

Case statement missing : Compiler error
A case statement must have a constant expression followed by a colon. The expression in the case statement either is
missing a colon or has an extra symbol before the colon.

catch expected Compiler error
In a C++ program, a try block must be followed by at least one catch block.

Character constant must be one or two characters long
Character constants can be only one or two characters long.

Compiler error

Character constant too long MAKE error
A char constant in an expression is too long.

Circular dependency exists in makefile MAKE error
The makefile indicates that a file needs to be up-to-date before it can be built. Take, for example, the explicit rules:

filea: fileb
fileb: filec
filec: filea

This implies that filea depends on fileb, which depends on filec, and filec depends on filea. This is illegal because a file
cannot depend on itself, indirectly or directly.

Class class may not contain pure functions Compiler error
The class being declared cannot be abstract; it therefore cannot contain any pure functions.

Class member member declared outside its class Compiler error
C++ class member functions can be declared inside the class declaration only. Unlike nonmember functions, they cannot be
declared multiple times or at other locations.

Code has no effect Compiler warning
The compiler encountered a statement with operators that have no effect. For example, the statement

a + b;

has no effect on either variable. The operation is unnecessary and probably indicates a bug in your file.

Colon expected
Your implicit rule is missing a colon at the end .

. c.obj:

.c.obj
Correct
Incorrect

Command arguments too long
The arguments to a command were more than the 255-character limit imposed by the operating system.

Command syntax error
This message occurs if

• The first rule line of the makefile contained any leading whitespace.

• An implicit rule did not consist of .ext.ext:.

• An explicit rule did not contain a name before the: character.

• A macro definition did not contain a name before the = character.

MAKE error

MAKE error

MAKE error

64 Borland C++ for OS/2 Tools and Utilities Guide

Command too long MAKE error
This message is issued when the command line length exceeds MAKE's internal buffer (4096 bytes). The length of a
command has exceeded 512 characters. You might want to use a response file.

Compiler could not generate copy constructor for class class Compiler error
The compiler cannot generate a needed copy constructor due to language rules.

Compiler could not generate default constructor for class class Compiler error
The compiler cannot generate a needed default constructor due to language rules.

Compiler could not generate operator= for class class Compiler error
The compiler cannot generate a needed assignment operator due to language rules.

Compiler stack overflow Compiler error
The compiler ran out of memory during compilation. Review the portion of code flagged by the error message to ensure that
it uses memory correctly.

Compiler table limit exceeded Compiler error
One of the compilers internal tables overflowed. This usually means that the module being compiled contains too many
function bodies. Making more memory available to the compiler will not help with such a limitation; simplifying the file being
compiled is usually the only remedy.

Compound statement missing} Compiler error
The compiler reached the end of the source file and found no closing brace. This is often caused by mismatched braces.

Condition is always false
Condition is always true

Compiler warning
Compiler warning

The compiler encountered a comparison of values where the result is always true or false. For example:

void proc(unsigned x)
if (x >= 0) { 1* always 'true' *1
}

Conflicting type modifiers Compiler error
This occurs when a declaration is given that includes, for example, both near and far keywords on the same pointer. Only
one addressing modifier can be given for a single pointer, and only one language modifier (cdecl, pascal, or interrupt) can
be given for a function.

Constant expression required Compiler error
Arrays must be declared with constant size. This error is commonly caused by misspelling a #define constant.

Constant is long Compiler warning
The compiler encountered either a decimal constant greater than 32767 or an octal (or hexadecimal) constant greater than
65535 without a letter lor L following it. The constant is treated as a long.

Constant member member in class without constructors Compiler error
A class that contains constant members must have at least one user-defined constructor; otherwise, there would be no way
to initialize such members.

Constant member member is not initialized Compiler warning
This C++ class contains a constant member member, which does not have an initialization. Constant members can only be
initialized; they cannot be assigned to.

Appendix A, Error messages 65

Constant out of range in comparison Compiler warning
Your source file includes a comparison involving a constant subexpression that was outside the range allowed by the other
subexpression's type. For example, comparing an unsigned quantity to -1 makes no sense. To get an unsigned constant
greater than 2147483647 (in decimal), you should either cast the constant to unsigned or append a letter u or Uto the
constant.

When this message is issued, the compiler still generates code to do the comparison. If this code ends up always giving the
same result, such as comparing a char expression to 4000, the code still performs the test.

Constant variable variable must be initialized Compiler error
This Ctt object is declared const, but is not initialized. Since no value can be assigned to it, it must be initialized at the point
of declaration. .

Constructor cannot be declared const or volatile Compiler error
A constructor has been declared as const andbr volatile, and this is not allowed.

Constructor cannot have a return type specification Compiler error
C++ constructors have an implicit return type used by the compiler, but you cannot declare a return type or return a value.

Conversion may lose significant digits Compiler warning
For an assignment operator or some other circumstance, your source file requires a conversion from long or unsigned long
to int, or unsigned int type. Because int type and long type variables don't have the same size, this kind of conversion can
alter the behavior of a program.

Conversion operator cannot have a return type specification Compiler error
This Ctt type conversion member function specifies a return type different from the type itself. A declaration for conversion
function operator cannot specify any return type.

Conversion to type will fail for members of virtual base class Compiler error
This warning can occur when a member pointer (whose class contains virtual bases) is cast to another member-pointer type
and you use the -Vv option. This error indicates that if the member pointer being cast happens to point (at the time of the
cast) to a member of class, the conversion cannot be completed, and the result of the cast will be a NULL member pointer.

Could not allocate memory for per module data
The librarian has run out of memory.

Librarian error

Could not create list file filename Librarian error
The librarian could not create a list file for the library. This could be due to lack of disk space.

Could not find a match for argument(sj Compiler error
No Ctt function could be found with parameters matching the supplied arguments.

Could not find file filename Compiler error
The compiler is unable to find the file supplied on the command line.

Could not get procedure address from DLL filename Linker error
The linker was not able to get a procedure from the specified DLL. Check to make sure that you have the correct DLL
version.

Could not load DLL filename Linker error
The linker was not able to load the specified DLL. Check to make sure the DLL is on your path.

Could not write output Librarian error
The librarian could not write the output file.

66 Borland C++ for OS/2 Tools and Utilities Guide

filename couldn't be created, original won't be changed Librarian warning
An attempt has been made to extract an object ('*' action) but the librarian cannot create the object file to extract the module
into. Either the object already exists and is read only, or the disk is full.

Couldn't get LE/LIDATA record buffer Librarian error
Command-line error. See the Out of memory reading LE/LIDATA record from object module message.

Couldn't get procedure address from dll dll Linker error
The linker wasn't able to get a procedure from the specified DLL. Check to make sure you have the correct version of the
DLL.

Couldn't load dll dil Linker error
The linker wasn't able to load the specified DLL. Check to make sure the DLL is on your path.

Cycle in include files: filename MAKE error
This error message is issued if a makefile includes itself in the make script.

Debug information enabled, but no debug information found in OBJs Linker warning
No part of the application was compiled with debug information, but you requested that debug information be turned on in the
link. The image will be written without any debug information section.

Debug information in module module will be ignored Linker warning
Object files compiled with debug information now have a version record. The major version of this record is higher than what
TLiNK currently supports and TLiNK did not generate debug information for the module in question.

Declaration does not specify a tag or an identifier Compiler error
This declaration doesn't declare anything. This might be a struct or union without a tag or a variable in the declaration. C++
requires that something be declared.

Declaration is not allowed here Compiler error
Declarations cannot be used as the control statement for while, for, do, if, or switch statements.

Declaration missing; Compiler error
Your source file contained a declaration that was not followed by a semicolon.

Declaration syntax error Compiler error
Your source file contained a declaration that was missing some symbol or had some extra symbol added to it.

Declaration terminated incorrectly Compiler error
A declaration has an extra or incorrect termination symbol, such as a semicolon placed after a function body. A C++ member
function declared in a class with a semicolon between the header and the opening left brace also generates this error.

Declaration was expected Compiler error
A declaration was expected here but not found. This is usually caused by a missing delimiter such as a comma, semicolon,
right parenthesis, or right brace.

Declare operator delete (void*) or (void*, size_t) Compiler error
Declare the operator delete with a single void* parameter or with a second parameter of type size_t.1t you use the second
version, it will be used in preference to the first version. The global operator delete can be declared using the single
parameter form only.

Appendix A, Error messages 67

Declare operator delete[] (void*) or (void*, size_t)
Declare the operator delete with one of the following:

Compiler error

• A single void* parameter

• A second parameter of type sizeJ

If you use the second version, it will be used in preference to the first version. The global operator delete can be declared
using the single-parameter form only.

Declare type type prior to use in prototype Compiler warning
When a function prototype refers to a structure type that has not previously been declared, the declaration inside the
prototype is not the same as a declaration outside the prototype. For example,

int func(struct s *pSli
struct s { /* ... */ }i

Because there is no struct s in scope at the prototype for func, the type of parameter ps is a pointer to undefined struct s,
and is not the same as the struct s that is later declared. This results in warning and error messages about incompatible
types, which would be mysterious without this warning message. To fix the problem, you can move the declaration for struct
s ahead of any prototype that references it, or add the incomplete type declaration struct s i ahead of any prototype that
references struct s. If the function parameter is a struct, rather than a pointer to struct, the incomplete declaration is not
sufficient; you must then place the struct declaration ahead of the prototype.

Default argument value redeclared Compiler error
When a parameter of a ett function is declared to have a default value, this value can't be changed, redeclared, or omitted
in any other declaration for the same function.

Default argument value redeclared for parameter parameter Compiler error
When a parameter of a ett function is declared to have a default value, this value cannot be changed, redeclared, or
omitted in any other declaration for the same function.

Default expression may not use local variables Compiler error
A default argument expression is not allowed to use any local variables or other parameters.

Default outside of switch Compiler error
The compiler encountered a default statement outside a switch statement. This is most commonly caused by mismatched
braces.

Default value missing Compiler error
When a ett function declares a parameter with a default value, all of the following parameters must also have default
values. In this declaration, a parameter with a default value was followed by a parameter without a default value.

Default value missing following parameter parameter Compiler error
All parameters following the first parameter with a default value must also have defaults specified.

Define directive needs an identifier Compiler error
The first non-whitespace character after a #define must be an identifier. The compiler found some other character.

symbol defined in module module is duplicated in module module Linker error or warning

68

There is a conflict between two symbols (either public or communal). This usually means that a symbol is defined in two
modules. An error occurs if both are encountered in the .OBJ file(s), because TLiNK doesn't know which is valid. A warning
results if TLiNK finds one of the duplicated symbols in a library and finds the other in an .OBJ file; in this case, TLiNK uses
the one in the .OBJ file.

Borland C++ for OS/2 Tools and Utilities Guide

Delete array size missing]
The array specifier in an operator is missing a right bracket.

Destructor cannot be declared const or volatile
A destructor has been declared as const andbr volatile, and this is not allowed.

Destructor cannot have a return type specification
It is illegal to specify the return type for a destructor.

Compiler error

Compiler error

Compiler error

Destructor for class is not accessible Compiler error
The destructor for this C++ class is protected or private, and cannot be accessed here to destroy the class. If a class
destructor is private, the class cannot be destroyed, and thus can never be used. This is probably an error. A protected
destructor can be accessed only from derived classes. This is a useful way to ensure that no instance of a base class is ever
created, but only classes derived from it.

Destructor for class required in conditional expression Compiler error
If the compiler must create a temporary local variable in a conditional expression, it has no good place to call the destructor,"
because the variable might or might not have been initialized. The temporary variable can be explicitly created, as with
classname (val, val), or implicitly created by some other code. Recast your code to eliminate this temporary value.

Destructor name must match the class name Compiler error
In a C++ class, the tilde (ow) introduces a declaration for the class destructor. The name of the destructor must be the same as
the class name. In your source file, the tilde (ow) preceded some other name.

Divide error Run-time error
You've tried to divide an integer by zero. You can trap this error with the signal function. Otherwise, Borland C++ calls abort
and your program terminates.

Division by zero Compiler error
Your source file contained a division or remainder operator in a constant expression with a zero divisor.

Division by zero Compiler warning
A division or remainder operator expression had a literal zero as a divisor.

Division by zero MAKE error
A division or remainder operator in an !if statement has a zero divisor.

do statement must have while Compiler error
Your source file contained a do statement that was missing the closing while keyword.

do-while statement missing (Compiler error
In a do statement, the compiler found no left parenthesis after the while keyword.

do-while statement missing) Compiler error
In a do statement, the compiler found no right parenthesis after the test expression.

do-while statement missing; Compiler error
In a do statement test expression, the compiler found no semicolon after the right parenthesis.

filename does not exist - don't know how to make it MAKE error
There is a nonexistent file name in the build sequence, and no rule exists that would allow the file name to be built.

DOS error, ax = number Linker error
This error occurs if a DOS call returned an unexpected error. The ax value printed is the resulting error code. This could
indicate a TLiNK internal error or a DOS error. The only DOS calls TLiNK makes in which this error could occur are read,
write, seek, and close.

Appendix A, Error messages 69

DOSSEG directive ignored in module Linker warning
This warning indicates that the DOSSEG directive is no longer supported by the linker.

Duplicate case Compiler error
Each case of a switch statement must have a unique constant expression value.

filename (linenum): Duplicate external name in exports Linker warning
Two export functions listed in the EXPORTS section of a module definition file defined the same external name. For example:

EXPORTS
AnyProc=MyProc1
AnyProc=MyProc2

Duplicate file file in list, not added! Librarian error
When building a library module, you specified an object file more that once.

Duplicate handler for type1, already had type2 Compiler error
Its illegal to specify two handlers for the same type.

filename (linenum): Duplicate internal name in exports Linker warning
Two export functions listed in the EXPORTS section of the module definition file defined the same internal name. For
example:

EXPORTS
AnyProc1 =MyProc
AnyProc2=MyProc

filename (linenum): Duplicate internal name in imports Linker warning
Two import functions listed in the IMPORTS section of the module definition file defined the same internal name. For
example:

IMPORTS
AnyProc=MyMod1.MyProc1
AnyProc=MyMod2. MyProc2

Duplicate ordinal for exports: string (ordvaI1) and string (ordval2) Linker error
Two exports have been found for the same symbol, but with differing ordinal values. You must use the same ordinal value or
remove one of the exports.

Empty LEDATA record in module module Linker warning
This warning can happen if the translator emits a data record containing data. If this should happen, report the occurrence to
the translator vendor; there should be no bad side effects from the record.

Enum syntax error Compiler error
An enum declaration did not contain a properly formed list of identifiers.

Error changing file buffer size Librarian error
The librarian is attempting to adjust the size of a buffer used while reading or writing a file, but there is not enough memory. It
is likely that quite a bit of system memory will have to be freed up to resolve this error.

Error directive: message Compiler error
The text of the #error directive being processed in the source file is displayed.

Error directive: message MAKE error
MAKE has processed an #error directive in the source file, and the text of the directive is displayed in the message.

70 Borland C++ for OS/2 Tools and Utilities Guide

Error opening filename Librarian error
librarian cannot open the specified file for some reason.

Error opening filename for output Librarian error
librarian cannot open the specified file for output. This is usually due to lack of disk space for the target library, or a listing file.
This error occurs when the target file exists but is marked as a read-only file.

Error renaming filename to filename Librarian error
The librarian builds a library into a temporary file and then renames the temporary file to the target library file name. If there is
an error, usually due to lack of disk space, this message is posted.

Error writing output file Compiler error
An operating system error that prevents Borland C++ from writing an .OBJ, .EXE, or temporary file. Check the output
directory and make sure that this is a valid directory. Also check that there is enough free disk space.

__ except or __ finally expected following __ try Compiler error
In C, a __ try block must be followed by an __ exceptor __ finally handler block.

Exception handling not enabled Compiler error
A 'try' block was found with the exception handling disabled.

Exception handling variabJe may not be used here Compiler error
An attempt has been made to use one of the exception handling values that are restricted to particular exception handling
constructs, such as GetExceptionCodeO.

Exception specification not allowed here Compiler error
Function pointer type declarations are not allowed to contain exception specifications.

Export symbol is already imported Linker error
You have attempted to export a symbol that you are also importing.

Export symbol is duplicated Linker warning
This warning occurs if two different symbols with the same name are exported by the use of _export. The linker cannot
determine which definition it should export, and therefore uses the first symbol.

Expression expected Compiler error
An expression was expected here, but the current symbol cannot begin an expression. This message can occur where the
controlling expression of an if or while clause is expected or where a variable is being initialized. It is often due to an
accidentally inserted or deleted symbol in the source code.

Expression of scalar type expected Compiler error
The not (!), increment (++), and decrement (- -) operators require an expression of scalar type. Only types char, short, int,
long, enum, float, double, long double, and pointer types are allowed.

Expression syntax Compiler error
This is a catchall error message when the compiler parses an expression and encounters a serious error. This is most
commonly caused by two consecutive operators, mismatched or missing parentheses, or a missing semicolon on the
previous statement.

Expression syntax error in !if statement MAKE error
The expression in an !if statement is badly formed-it contains a mismatched parenthesis, an extra or missing operator, or a
missing or extra constant.

reason - extended dictionary not created Librarian warning
The librarian could not produce the extended dictionary because of the reason given in the warning message.

Appendix A, Error messages 71

Extended dictionary not found in library library, extended dictionaries ignored Linker warning
The IE option for TLiNK requires that all libraries in the link have extended dictionaries. When a library without an extended
dictionary is encountered during a link operation in which the IE option is specified, the linker abandons extended dictionary
processing and proceeds to link with a default link.

Extern variable cannot be initialized Compiler error
The storage class extern applied to a variable means that the variable is being declared but not defined here-n'o storage is
being allocated for it. Therefore, you can't initialize the variable as part of the declaration.

Extra argument in template class name template Compiler error
A template class name specified too many actual values for its formal parameters.

Extra parameter in call Compiler error
A call to a function, via a pointer defined with a prototype, had too many arguments given.

Extra parameter in call to function Compiler error
A call to the named function (which was defined with a prototype) had too many arguments given in the call.

Failed read from filename Linker error
An OS/2 error occurred while TLiNK read the module definition file. This usually means that a premature end-of-file occurred.

Failed write to filename Linker error
The Linker was unable to write to the file.

_ Jar16 may only be used with _ -pascal or __ cdecl Compiler error
When you use __ far16 to make calls to functions or reference data in a 16-bit DLL, such functions and data can be modified
only by _-pascal or __ cdecl.}]

Far COMDEFs are not supported Linker error
TLiNK does not support far COMDEFs. Compile without the -Fc option, or remove comdef usage from the 16-bit code you are
using.

File must contain at least one external declaration Compiler error
This compilation unit was logically empty, containing no external declarations. ANSI C and C++ require that something be
declared in the compilation unit.

Filename too long Compiler error
The file name given in an #include directive was too long for the compiler to process. Path names must be no longer than
260 characters.

File name too long MAKE error
The path name in an !include directive overflowed MAKE's internal buffer (512 bytes).

filename file not found Librarian error
The IDE creates the library by first removing the existing library and then rebuilding. If any objects do not exist, the library is
considered incomplete and TLiB generates this error. If the IDE reports that an object does not exist, either the source
module has not been compiled or there were errors during compilation. Rebuilding your project should resolve the problem or
indicate where the errors have occurred.

Fixup to zero length segment in module module Linker error

72

A reference has been made past the end of an image segment. This reference would end up accessing an invalid address,
and has been flagged as an error.

Borland C++ for OS/2 Tools and Utilities Guide

Fixup overflow at address, target = address Linker warning
These messages indicate an incorrect data or code reference in an object file that TLINK must fix up at link time.

The cause is often a mismatch of memory models. A near call to a function in a different code segment is the most likely
cause. These errors can also result if you generate a near call to a data variable or a data reference to a function. In either
case the symbol named as the target in the error message is the referenced variable or function. The reference is in the
named module, so look in the source file of that module for the offending reference.

In an assembly language program, a fixup overflow frequently occurs if you have declared an external variable within a
segment definition, but this variable actually exists in a different segment.

If this technique does not identify the cause of the failure, or if you are programming in assembly language or in a high-level
language other than Borland C++, there might be other possible causes for this message. Even in Borland C++, this
message could be generated if you are using different segment or group names than the default values for a given memory
model.

Fixup to zero length segment in module module Linker error
This error usually occurs if you make a reference to a segment that doesn't contain any data. If the segment isn't grouped
with other segments, the result is a zero-length physical segment, which cannot exist. The linker therefore cannot make a
reference to it.

Floating point error: Divide by O.
Floating point error: Domain.
Floating point error: Overflow.

These fatal errors result from a floating-point operation for which the result is not finite.

II "Divide by 0" means the result is +INF or-INF exactly, such as 1.0/0.0.

II "Domain" means the result is NAN (not a number).

Run-time error
Run-time error
Run-time error

II "Overflow" means the result is +INF (infinity) or -INF with complete loss of precision, such as assigning 1 e200*1 e200
to a double.

Floating point error: Partial loss of precision. Run-time error
Floating point error: Underflow. Run-time error

These exceptions are masked by default, and the error messages do not occur. Underflows are converted to zero and losses
of precision are ignored. They can be unmasked by calling _controI87.

Floating point error: Stack fault. Run-time error
The floating-point stack has been overrun. This error does not normally occur and might be due to assembly code using too
many registers or to a misdeclaration of a floating-point function.

These floating-point errors can be avoided by masking the exception so that it doesn't occur, or by catching the exception
with signal. See the functions _ control87 and signal for details.

for statement missing (Compiler error
In a for statement, the compiler found no left parenthesis after the for keyword.

for statement missing) Compiler error
In a for statement, the compiler found no right parenthesis after the control expressions.

for statement missing; Compiler error
In a for statement, the compiler found no semicolon after one of the expressions.

Friends must be functions or classes Compiler error
A friend of a C++ class must be a function or another class.

Appendix A, Error messages 73

Function call missing) Compiler error
The function call argument list had some sort of syntax error, such as a missing or mismatched right parenthesis.

Function calls not supported Compiler error
In integrated debugger expression evaluation, calls to functions (including implicit conversion functions, constructors, destruc
tors, overloaded operators, and inline functions) are not supported.

Function function cannot be static Compiler error
Only ordinary member functions and the operators new and delete can be declared static. Constructors, destructors, and '
other operators must not be static.

Function defined inline after use as extern Compiler error
Functions cannot become inline after they have already been used. Either move the inline definition forward in the file or
delete it entirely.

Function definition cannot be a typedef'ed declaration Compiler error
In ANSI C a function body cannot be defined using a typedef with a function Type.

Function function should have a prototype Compiler error
A function was called with no prototype in scope.

In C, int faa () ; is not a prototype, but int faa (int) ; is, and so is int faa (void) ;. In C++, int faa () ; is a
prototype, and is the same as int faa (void) ;. In C, prototypes are recommended for all functions. In C++, prototypes
are required for all functions. In all cases, a function definition (a function header with its body) serves as a prototype if it
appears before any other mention of the function.

Function should return a value Compiler warning
This function was declared (perhaps implicitly) to return a value. A return statement was found without a return value or the
end of the function was reached without a return statement being found. Either return a value or declare the function as
void.

Functions function1 and function2 both use the same dispatch number Compiler error
This error is the result of a dynamically dispatched virtual table (DDVT) problem. When you override a dynamically
dispatchable function in a derived class, use the same dispatch index. Each function within the same class hierarchy must
use a different dispatch index.

Functions cannot return arrays or functions Compiler error
A function cannot return an array or a function. Only pointers or references to arrays or functions can be returned.

Functions containing reserved word are not expanded inline Compiler warning
Functions containing any of the reserved words do, for, while, goto, switch, break, continue, and case cannot be
expanded inline, even when specified as inline. The function is still perfectly legal, but will be treated as an ordinary static
(not global) function.

Functions containing local destructors are not expanded inline in function function Compiler warning
Youve created an inline function for which Borland C++ turns off inlining. You can ignore this warning if you like; the function
will be generated out of line.

Functions may not be part of a struct or union Compiler error
This C struct or union field was declared to be of type function rather than pointer to function. Functions as fields are
allowed only in C++.

Functions with exception specifications are not expanded inline
Check your inline code for lines containing exception specifications.

74

Compiler warning

Borland C++ for OS/2 Tools and Utilities Guide

Functions with taking class-by-value argument(s) are not expanded inline Compiler warning
When exception handling is enabled, functions that take class arguments by value cannot be expanded inline (Note that
functions taking class parameters by reference are not subject to this restriction.)

General error Linker error
General error in library file filename in module module near module file offset Oxyyyyyyyy. Linker error
General error in module module near module file offset Oxyyyyyyyy Linker error

The linker gives as much information as possible about what processing was happening at the time of the unknown fatal
error. Call Borland Technical Support with information about .OBJ or .L1B files.

General error
General error in module module_name

The linker encountered an internal error. The circumstances of this error should be reported to Borland Technical Support.

Global anonymous union not static Compiler error
In C++, a global anonymous union at the file level must be static.

Goto bypasses initialization of a local variable Compiler error
In C++ it is illegal to bypass the initialization of a local variable in any way. You'll get this error when there is a goto that tries
to transfer control past this local variable.

Goto into an exception handler is not allowed Compiler error
Its illegal to jump into a try block or an exception handler that's attached to a try block.

Goto statement missing label Compiler error
The goto keyword must be followed by an identifier.

Handler for type1 hidden by previous handler for type2 Compiler warning
This warning is issued when a handler for a type 0 that is derived from type B is specified after a handler for B, since the
handler for 0 will never be invoked.

specifier has already been included Compiler error
This type specifier occurs more than once in this declaration. Delete or change one of the occurrences.

Hexadecimal value contains more than 3 digits Compiler warning
Under older versions of C, a hexadecimal escape sequence could contain no more than three digits. The ANSI standard
allows any number of digits to appear as long as the value fits in a byte. This warning results when you have a long
hexadecimal escape sequence with many leading zero digits (such as ''\x00045''). Older versions of C would interpret such a
string differently.

function1 hides virtual function function2 Compiler warning
A virtual function in a base class is usually overridden by a declaration in a derived class. In this case, a declaration with the
same name but different argument types makes the virtual functions inaccessible to further derived classes.

Identifier expected Compiler error
An identifier was expected here, but not found. In C, this error occurs in a list of parameters in an old-style function header,
after the reserved words struct or union when the braces are not present, and as the name of a member in a structure or
union (except for bit fields of width 0). In C++, an identifier is also expected in a list of base classes from which another class
is derived, following a double colon (::), and after the reserved word operator when no operator symbol is present.

Identifier identifier cannot have a type qualifier Compiler error
A C++ qualifier class::identifiercannot be applied here. A qualifier is not allowed on typedef names, on function declarations
(except definitions at the file level), on local variables or parameters of functions, or on a class member except to use its own
class as a qualifier (which is redundant but legal).

Appendix A, Error messages 75

If statement missing (Compiler error
In an if statement, the compiler found no left parenthesis after the if keyword.

If statement missing) Compiler error
In an if statement, the compiler found no right parenthesis after the test expression.

If statement too long
Ifdef statement too long
Ifndef statement too long

MAKE error
MAKE error
MAKE error

An If, Ifdef, or Ifndef statement has exceeded 4096 characters.

Ignored module, path is too long Librarian warning
The path to a specified .OBJ or .LlB file is greater than 252 characters. The max path to a file for librarian is 252 characters.

lII·formed pragma Compiler warning
A pragma does not match one of the pragmas expected by the Borland C++ compiler.

Illegal ACBP byte in SEGDEF
This is usually a translator error.

Linker error

Illegal character character (Ox value) Compiler error
The compiler encountered some invalid character in the input file. The hexadecimal value of the offending character is
printed. This can also be caused by extra parameters passed to a function macro.

Illegal character in constant expression expression MAKE error
MAKE encountered a character not allowed in a constant expression. If the character is a letter, this probably indicates a
misspelled identifier.

Illegal component to GRPDEF Linker error
This is usually a translator error.

Illegal initialization Compiler error
In C, initializations must be either a constant expression, or else the address of a global extern or static variable plus or
minus a constant.

Illegal local public in module Linker warning
The message occurs when the linker sees an LPUBDEF record with an offset of zero for a VIRDEF that resides in an overlay
segment. This can happen if you are trying to use structured exception support in an application that uses overlays.

Illegal octal digit Compiler error
An octal constant containing a digit of 8 or 9 was found.

Illegal parameter to __ ernie _ Compiler error
You supplied an argument to __ emiL_ that is not a constant or an address.

Illegal pointer subtraction Compiler error
This is caused by attempting to subtract a pointer from a non pointer.

Illegal structure operation Compiler error
In C or C++, structures can be used with dot (.), address-of (&), or assignment (=) operators, or can be passed to or from
functions as parameters. In C or C++, structures can also be used with overloaded operators. The compiler encountered a
structure being used with some other operator.

Illegal to take address of bit field Compiler error
It is not legal to take the address of a bit field, although you can take the address of other kinds of fields.

76 Borland C++ for OS/2 Tools and Utilities Guide

Illegal type of entry point Linker error
Only entry points that target a segment index are supported.

Illegal use of floating point Compiler error
Floating-point operands are not allowed in shift, bitwise Boolean, indirection (*), or certain other operators. The compiler
found a floating-point operand with one of these prohibited operators.

Illegal use of member pointer Compiler error
Pointers to class members can be used only with assignment, comparison, the .*, ->*, ?:, &&, and II operators, or passed as
arguments to functions. The compiler has encountered a member pointer being used with a different operator.

Illegal use of pointer Compiler error
Pointers can be used only with addition, subtraction, assignment, comparison, indirection (*) or arrow (-» operators. Your
source file used a pointer with some other operator.

Image base address must be a multiple of Ox10000 Linker error
Based images, the base address must be a multiple of Ox1 0000.

Implicit conversion of type1 to type2 not allowed Compiler error
When a member function of a class is called using a pointer to a derived class, the pointer value must be implicitly convert.ed
to point to the appropriate base class. In this case, such an implicit conversion is illegal.

Import record does not match previous definition Linker warning
This warning usually occurs if an IMPDEF record appears in an import library at the same time as the import in question is
imported from a .DEF file. If the description of the imports differ in internal name or ordinal, this warning appears, and the first
definition is used. This warning can be controlled with the -w switch.

Import symbol in module module clashes with prior module Linker error
An import symbol can appear only once in a library file. A module that is being added to the library contains an import that is
already in a module of the library and it cannot be added again.

Improper use of typedef identifier Compiler error
Your source file used a typedef symbol where a variable should appear in an expression. Check for the declaration of the
symbol and possible misspellings.

Include files nested too deep Compiler error
When the compiler detects that header files are nested more than 1,000 levels deep, it assumes that the header file is
recursive, and stops compilation with this (fatal) error.

filename (Iinenum): Incompatible attribute
TLiNK encountered incompatible segment attributes in a CODE or DATA statement. For instance, both PRELOAD and

: LOADONCALL can't be attributes for the same segment.

Incompatible type conversion
The cast requested can't be done. Check the types.

Incorrect command·line argument: argument
You've used incorrect command-line arguments.

Incorrect command·line option: option
The compiler did not recognize the command-line parameter as legal.

Incorrect configuration file option: option
The compiler did not recognize the configuration file parameter as legal; check for a preceding hyphen (-).

Appendix A, Error messages

Compiler error

MAKE error

Compiler error

Compiler error

77

Incorrect number format Compiler error '
The compiler encountered a decimal point in a hexadecimal number.

Incorrect use of default Compiler error
The compiler found no colon after the default keyword in a case statement.

Initialization is only partially bracketed Compiler warning
When structures are initialized, nested pairs of braces can be used to mark the initialization of each member of the structure.
Bracketing the members ensures that your idea and the compiler's idea of the initializations are the same. The compiler
issues this warning when the brackets are not equally matched.

Initializing enumeration with type Compiler warning
You're trying to initialize an enum variable to a different type. For example,

enum count { zero, one, two} x = 2;

results in this warning, because 2 is of type int, not type enum count. It is better programming practice to use an enum
identifier instead of a literal integer when assigning to or initializing enum types.

This is an error, but is reduced to a warning to give existing programs a chance to work.

Inline assembly not allowed Compiler error
Your source file contains inline assembly-language statements and you're trying to compile it from within the integrated
environment. You must use BCC to compile source files that contain inline assembly.

'Inline assembly not allowed in inline and template functions Compiler error
The compiler cannot handleinline assembly statements in a C++ inline or template function. You could eliminate the inline
assembly code or, in case of an inline function, make this a macro or remove the inline storage class.

int and string types compared MAKE error
You have tried to compare an integer operand with a string operand in an !if or !elif expression.

name in the (non)resident name table is too long Linker error
OS/2 limits the length of names in the resident and non-resident name tables to 127 characters. Names of this length may
not be exported.

Internal linker error errorcode Linker error
An error occurred in the internal logic of TLiNK. This error shouldn't occur in practice, but is listed here for completeness in
the event that a more specific error isn't generated. If this error persists, write down the errorcode number and contact
Borland Technical Support.

Invalid combination of opcode and operands Compiler error
The built-in assembler does not accept this combination of operands. Possible causes are the following:

• There are too many or too few operands for this assembler opcode .

• The number of operands is correct, but their types or order do not match the opcode; for example DEC 1, MOV AX, or
MOV 1,AX. Try prefacing the operands with type overrides; for example MOV AX, WORD PTR foo.

Invalid exe filename: filename
The exe filename had an incorrect extension, such as .OBJ, .MAP, .LlB, .DEF, or .RES.

Invalid extended dictionary in library library: extended dictionaries ignored
The extended dictionary in the library is invalid. Run TLiB IE on the library.

Linker error

Linker warning

78 Borland C++ for OS/2 Tools and Utilities Guide

Invalid indirection Compiler error
The indirection operator (*) requires a non-void pointer as the operand.

Invalid macro argument separator Compiler error
In a macro definition, arguments must be separated by commas. The compiler encountered some other character after an
argument name.

Invalid map filename: filename Linker error
The map filename had an incorrect extension, such as .OBJ, .EXE, .DLL, .L1B, .DEF, or .RES.

Invalid page size value ignored Librarian warning
Invalid page size is given. The page size must be a power of 2, and it cannot be smaller than 16 or larger than 32,768.

Invalid pointer addition Compiler error
Your source file attempted to add two pointers together.

Invalid register combination (e.g. [BP+BX]) Compiler error
The built-in assembler detected an illegal combination of registers in an instruction. Valid index register combinations are
[BX], [BP], [SI], [01], [BX+SI], [BX+OI], [BP+SI], and [BP+OI]. Other index register combinations (such as [AX], [BP+BX],
and [SI+DX]) are not allowed.

Local variables (variables declared in procedures and functions) are usually allocated on the stack and accessed via the BP
register. The assembler automatically adds [BP] in references to such variables, so even though a construct like Local[EBX]
(where Local is a local variable) appears valid, it is not, because the final operand would become Local[BP+EBX].

Invalid target->lTtarget Linker error
The command-line linker found an invalid target. Valid targets are 'w' and 'd'.

Invalid template argument list Compiler error
In a template declaration, the keyword template must be followed by a list of formal arguments enclosed within the < and>
delimiters; an illegal template argument list was found.

Invalid template qualified name template::name Compiler error
When defining a template class member, the actual arguments in the template class name that is used as the left operand for
the :: operator must match the formal arguments of the template class. For exa,mple:

template <class T> class X
{

void f () i

}i

template <class T> void X<T>: :f() {}

The following would be illegal:

template <class T> void x<int>: :f() {}

Invalid use of dot Compiler error
An identifier must immediately follow a period operator (.).

Invalid use of template template Compiler error
Outside of a template definition, it is illegal to use a template class name without specifying its actual arguments. For
example, you can use vector<int> but not vector.

Appendix A, Error messages 79

Irreducible expression tree Compiler error
This is a sign of some form of compiler error. An expression on the indicated line of the source file has caused the code
generator to be unable to generate code. The offending expression should be avoided. Notify Borland Technical Support if
the compiler encounters this error.

base is an indirect virtual base class of class Compiler error
A pointer to a C++ member of the given virtual base class cannot be created; an attempt has been made to create such a
pointer (either directly or through a cast).

identifier is assigned a value that is never used Compiler warning
The variable appears in an assignment, but is never used anywhere else in the function just ending. The warning is indicated
only when the compiler encounters the closing brace.

identifier is declared as both external and static Compiler warning
This identifier appeared in a declaration that implicitly or explicitly marked it as global or external, and also in a static
declaration. The identifier is taken as static. You should review all declarations-for this identifier.

identifier is declared but never used Compiler warning
Your source file declared the named variable as part of the block just ending, but the variable was never used. The warning is
indicated when the compiler encounters the closing brace of the compound statement or function. The declaration of the
variable occurs at the beginning of the compound statement or function.

identifier is not a member of struct Compiler error
You are trying to reference identifier as a member of struct, but it is not a member. Check your declarations.

identifier is not a non-static data member and can't be initialized here Compiler error
Only data members can be initialized in the initializers of a constructor. This message means that the list includes a static
member or function member.

identifier is not a parameter Compiler error
In the parameter declaration section of an old-style function definition, identifier is declared but is not listed as a parameter.
Either remove the declaration or add identifier as a parameter.

type is not a polymorphic class type Compiler error
A dynamic_cast was used with a pointer to a class that was compiled with the -RT compiler option disabled.

base is not a public base class of class Compiler error
The right operand of a .*, ->*, or ::operator was not a pointer to a member of a class that is either identical to or an
unambiguous accessible base class of the left operand's class type.

filename is not a valid library Linker warning
This error occurs if a file that wasn't a valid library module was passed to the linker in the library section.

member is not a valid template type member Compiler error
A member of a template with some actual arguments that depend on the formal arguments of an enclosing template was
found not to be a member of the specified template in a particular instance.

member is not accessible Compiler error

80

You are trying to reference C++ class member member, but it is private or protected and cannot be referenced from this
function. This sometimes happens when attempting to call one accessible overloaded member function (or constructor), but
the arguments match an inaccessible function. The check for overload resolution is always made before checking for
accessibility. If this is the problem, try an explicit cast of one or more parameters to select the desired accessible function.

Borland C++ for OS/2 Tools and Utilities Guide

function is obsolete Compiler warning
The compiler generates this warning message when it encounters a function that is obsolete. Functions marked by this error
message will be removed from the next version of the product.

Iterated data block too large in module name Linker error
The linker encountered an iterated data block which was too large to expand. This can happen with assembler code where
arrays of large static data structures are defined. To prevent this, declare the static block by using DB and DUP, using the
size of the structure.

Last parameter of operator must have type int Compiler error
When a postfix operator++ or operator- - is declared, the last parameter must be declared with Ule type int.

Library too large, please restart with library page size size Librarian error
The library being created could not be built with the current library page size.

Linkage speCification not allowed Compiler error
Linkage specifications such as extern "C" are allowed only at the file level. Move this function declaration out to the file level.

Linker name conflict for function Compiler error
When the mangled name of a C++ inline function or a virtual table is too long and has to be truncated (this happens most
often with templates), and the truncated name matches a previously generated function or virtual table, this error is issued by
the compiler. The problem can be fixed by changing the name of the class or function, or by compiling with the -Vs option.

Linker stack overflow Linker error
The linker uses a recursive procedure for marking modules to be included in an executable image from libraries. This
procedure can cause stack overflows in extreme circumstances. If you get this error message, remove some modules from
libraries, include them with the object files in the link, and try again.

Lvalue required Compiler error
The left hand side of an assignment operator must be an addressable expression. These include numeric or pointer
variables, structure field references or indirection through a pointer, or a subscripted array element.

Macro argument syntax error Compiler error
An argument in a macro definition must be an identifier. The compiler encountered some non-identifier character where an
argument was expected.

Macro expansion too long Compiler error
A macro cannot expand to more than 4,096 characters.

Macro expansion too long MAKE error
A macro cannot expand to more than 4,096 characters. This error often occurs if a macro recursively expands itself. A macro
cannot legally expand to itself.

Macro substitute text string is too long
Macro replace text string is too long

The macro substitution or replacement text string overflowed MAKE's internal buffer of 512 bytes.

MAKE error
MAKE error

main must have a return type of int Compiler error
In C++, function main has special requirements, one of which is that it cannot be declared with any return type other than int.

Matching base class function for function has different dispatch number. Compiler error
If a DDVT function is declared in a derived class, the matching base class function must have the same dispatch number as
the derived function.

Matching base class function for function is not dynamic Compiler error
If a DDVT function is declared in a derived class, the matching base class function must also be dynamic.

Appendix A, Error messages 81

Maximum precision used for member pointer type type Compiler warning
When you use the -Vmd option, the compiler has to use the most general (and the least efficient) representation for that
member pointer type when it is declared and its class hasn't been fully defined. This can cause less efficient code to be
generated (and make the member pointer type unnecessarily large), and can also cause problems with separate compilation.

Member member cannot be used without an object Compiler error
This means that the user has written class: : member where member is an ordinary (nonstatic) member, and there is no
class to associate with that member. For example, it is legal to write obj . class: : member, but not to write
class: :member.

Member function must be called or its address taken Compiler error
When a member function is used in an expression, either it must be called or its address must be taken using the & operator.
In this case, a member function has been used in an illegal context.

Member member has the same name as its class Compiler error
A static data member, enumerator, member of an anonymous union, or nested type cannot have the same name as its class.
Only a member function or a nonstatic member can have a name that is identical to its class.

Member identifier expected Compiler error
The name of a structure or C++ class member was expected here, but not found. The right side of a dot (.) or arrow (-»
operator must be the name of a member in the structure or class on the left of the operator.

Member is ambiguous: member1 and member2 Compiler error
You must qualify the member reference with the appropriate base class name. In C++ class class, member member can be
found in more than one base class, and was not qualified to indicate which was meant. This happens only in multiple
inheritance, where the member name in each base class is not hidden by the same member name in a derived class on the
same path. The C++ language rules require that this test for ambiguity be made before checking for access rights (private,
protected, public). It is therefore possible to get this message even though only one (or none) of the members can be
accessed.

Member member is initialized more than once Compiler error
In a C++ class constructor, the list of initializations following the constructor header includes the same member name more
than once.

Member pOinter required on right side of .* or ->* Compiler error
The right side of a C++ dot-star (.*) or an arrow-star (->*) operator must be declared as a pointer to a member of the class
specified by the left side of the operator. In this case, the right side is not a member pointer.

Memory full listing truncated! Librarian warning
The librarian has run out of memory creating a library listing file. A list file will be created but is not complete.

Memory reference expected Compiler error
The built-in assembler requires a memory reference. Most likely you have forgotten to put square brackets around an index
register operand; for example, MOV AX,BX+SI instead of MOV AX,[BX+SI].

Misplaced break Compiler error
The compiler encountered a break statement outside a switch or looping construct.

Misplaced continue Compiler error
The compiler encountered a continue statement outside a looping construct.

Misplaced decimal point Compiler error
The compiler encountered a decimal point in a floating-point constant as part of the exponent.

82 Borland C++ for OS/2 Tools and Utilities Guide

Misplaced elif directive Compiler error
The compiler encountered an #elif directive without any matching #if, #ifdef, or #ifndef directive.

Misplaced elif statement MAKE error
An !elif directive is missing a matching !if directive.

Misplaced else Compiler error
The compiler encountered an else statement without a matching if statement. An extra else statement could cause this
message, but it could also be caused by an extra semicolon, missing braces, or some syntax error in a previous if statement.

Misplaced else directive Compiler error
The compiler encountered an #else directive without any matching #if, #ifdef, or #ifndef directive.

Misplaced else statement MAKE error
An !else directive does not have a matching !if directive.

Misplaced endif directive Compiler error
The compiler encountered an #endif directive without a matching #if, #ifdef, or #ifndef directive.

Misplaced end if statement MAKE error
An !endif directive does have a matching !if directive.

Mixed common types in module module. Cannot mix COMDEFs and VIRDEFs. Linker error
You cannot mix both COMDEFs and VIRDEFs. This should only occur if you are using assembler code, and are explicitly
creating a common segment, along with virtual segments. Remove one or the other.

Mixing pointers to different 'char' types Compiler warning
You converted a signed char pointer to an unsigned char pointer, or vice versa, without using an explicit cast. (Strictly
speaking, this is incorrect, but it is often harmless.)

Multiple base classes require explicit class names Compiler error
In a C++ class constructor, each base class constructor call in the constructor header must include the base class name
when there is more than one immediate base class.

Multiple declaration for identifier Compiler error
This identifier was improperly declared more than once. This might be caused by conflicting declarations such as int a i
double ai, by a function declared two different ways, by a label repeated in the same function, or by some declaration
repeated other than an extern function or a simple variable (in C).

Multiple entry points defined Linker error
More than one entry point was defined for the application. You can only have one entry point.

Multiple stack segments found. The most recent one will be used. Linker warning
This warning occurs when two stack segments of different names are defined in the object modules. The startup code
defines a stack segment for the application. The warning can be controlled with the -w switch.

identifier must be a member function Compiler error
Most C++ operator functions can be members of classes or ordinary nonmember functions, but certain ones are required to
be members of classes. These are operator =, operator ->, operator 0, and type conversions. This operator function is not
a member function but should be.

Appendix A, Error messages 83

identifier must be a member function or have a parameter of class type Compiler error
Most C++ operator functions must have an implicit or explicit parameter of class type. This operator function was declared
outside a class and does not have an explicit parameter of class type.

identifier must be a previously defined class or struct Compiler error
You are attempting to declare identifier to be a base class, but either it is not a class or it has not yet been fully defined.
Correct the name or rearrange the declarations.

identifier must be a previously defined enumeration tag Compiler error
This declaration is attempting to reference identifier as the tag of an enum type, but it has not been so declared. Correct the
name, or rearrange the declarations.

identifier must be declared with no parameters Compiler error
This C++ operator function was incorrectly declared with parameters.

operator must be declared with one or no parameters Compiler error
When operator++ or operator - - is declared as a member function, it must be declared to take either no parameters (for
the prefix version of the operator) or one parameter of type int (for the postfix version).

operator must be declared with one or two parameters Compiler error
When operator++ or operator - - is declared as a nonmember function, it must be declared to take either one parameter
(for the prefix version of the operator) or two parameters (for the postfix version).

identifier must be declared with one parameter Compiler error
This C++ operator function was incorrectly declared with more than one parameter.

identifier must be declared with two parameters Compiler error
This C++ operator function was incorrectly declared with other than two parameters.

Must take address of a memory location Compiler error
Your source file used the address-of operator (&) with an expression that cannot be used that way; for example, a register
variable (in C).

Need an identifier to declare Compiler error
In this context, an identifier was expected to complete the declaration. This might be a typedef with no name, or an extra
semicolon at file level. In C++, it might be a class name improperly used as another kind of identifier.

'new' and 'delete' not supported IDE debugger error
The integrated debugger does not support the evaluation of 'new' and 'delete'.

No : following the? Compiler error
The question mark (?) and colon (:) operators do not match in this expression. The colon might have been omitted, or
parentheses might be improperly nested or missing.

No automatic data segment Linker warning
No group named DGROUP was found. Because Borland's initialization files define DGROUP, you will only see this error if
you don't link with an initialization file and your program doesn't define DGROUP.

No base class to initialize Compiler error
This C++ class constructor is trying to implicitly call a base class constructor, but this class was declared with no base
classes. Check your declarations.

No closing quote MAKE error
There is no closing quote for a string expression in a !if or !elif expression.

84 Borland C++ for OS/2 Tools and Utilities Guide

No declaration for function function Compiler warning
You called a function without first declaring that function. In C, you can declare a function without presenting a prototype, as
in int func () ; .In C++, every function declaration is also a prototype; this example is equivalent to int func (void) i.
The declaration can be either classic or modern (prototype) style.

No .DEF file; using defaults
This warning occurs when you do not specify a .DEF file for the link. It can be controlled by the -w switch.

No file name ending Compiler error
The file name in an #include statement was missing the correct closing quote or angle bracket.

No filename ending MAKE error
The file name in an !include statement is missing the correct closing quote or angle bracket.

No file names given Compiler error
The command line of the Borland C++ command-line compiler (BCC) contained no file names. You must specify a source file
name.

No internal name for IMPORT in .DEF file Linker error
The .DEF file has a semantic error. You probably forgot to put the internal name for an import before the module name. For
example:

IMPORTS
foo.l

The proper syntax is:

IMPORTS
_foo=ffiydll.l

No macro before =
You must give a macro a name before you can assign it a value.

No match found for wildcard expression
There are no files matching the wildcard expression for MAKE to expand. For example, if you write

prog.exe: *.obj

MAKE sends this error message if there are no files with the extension .OBJ in the current directory.

MAKE error

MAKE error

No module definition file,specified; using defaults Linker warning
This warning occurs when you do not specify a .DEF file for the link.

No output file specified Linker error
No EXE or DLL file was specified. Because the linker defaults to the first .OBJ name, this error is usually caused because no
object object files were included.

No program starting address defined Linker warning .
This warning means that no module defined the initial starting address of the program. This is probably caused by forgetting
to link in the initialization module COx.OBJ.

No stack Linker warning
This warning is issued if no stack segment is defined in any of the object files or in any of the libraries included in the link.
This is a normal message for the tiny memory model in Borland C++, or for any application program that will be converted to
a .COM file. Except for DLLs, this indicates an error.

Appendix A, Error messages 85

If a Borland C++ program produces this message for any but the tiny memory model, make sure you are using the correct
COx startup object files.

Not enough memory for command-line buffer
This error occurs when TLiB runs out of memory.

Librarian warning

Not setting protected DLL flag Linker warning
The linker found a protected DLL comment record in an OBJ, and the you asked to link an EXE rather than a DLL.

No terminator specified for in-line file operator MAKE error
The makefile contains either the && or « command-line operators to start an inline file, but the file is not terminated.

No type information IDE debugger error
The integrated debugger has no type information for this variable. Ensure that you've compiled the module with debug
information.

Non-ANSI Keyword Used: keyword Compiler warning
A non-ANSI keyword (such as _ Jastcall) was used when strict ANSI conformance was requested via the -A option.

Non-const function function called for const object Compiler warning
A non-const member function was called for a const object. This is an error, but was reduced to a warning to give existing
programs a chance to work.

Non-virtual function function declared pure Compiler error
Only virtual functions can be declared pure, because derived classes must be able to override them.

Non-volatile function function called for volatile object Compiler warning
In C++, a class member function was called for a volatile object of the class type, but the function was not declared with
volatile following the function header. Only a volatile member function can be called for a volatile object.

Nonportable pointer comparison Compiler warning
Your source file compared a pointer to a nonpointer other than the constant zero. You should use a cast to suppress this
warning if the comparison is proper.

Nonportable pointer conversion Compiler error
An implicit conversion between a pOinter and an integral type is required, but the types are not the same size. This cannot be
done without an explicit cast. This conversion might not make any sense, so be sure this is what you want to do.

Nonportable pointer conversion Compiler warning
A nonzero integral value is used in a context where a pointer is needed or where an integral value is needed; the sizes of the
integral type and pointer are the same. Use an explicit cast if this is what you really meant to do.

Nonresident Name Table is greater than 64K Linker warning
The maximum size of the Nonresident name table is 64K (in accordance with the industry-wide executable specification
standard). The linker continues with the link but ignores any subsequent Nonresident names encountered during linking.

Nontype template argument must be of scalar type Compiler error
A nontype formal template argument must have scalar type; it can have an integral, enumeration, or pointer type.

filename not a MAKE MAKE error
The file you specified with the -Wand the MAKE.EXE in the path is not a valid MAKE.EXE.

Not a valid expression format type IDE debugger error

86

You used an invalid format specifier following an expression in the integrated debugger. A valid format specifier is a repeat
value (optional) followed by one of the following format specifiers: c, d, f[n], h, m, p, r, s, or x.

Borland C++ for OS/2 Tools and Utilities Guide

Not an allowed type Compiler error
Your source file declared some sort of forbidden type; for example, a function returning a function or array.

Not enough memory MAKE error
All your working storage has been exhausted.

Not enough memory to run application Linker error
There is not enough memory to run TLINK. Try reducing the size of any RAM disk or disk cache currently active. If you're
running real mode, try using the MAKE -S option, or removing TSRs and network drivers.

\module not found in library Librarian warning
An attempt to perform either a '_' or ,*' on a library has been made and the indicated object does not exist in the library.

Numeric constant too large Compiler error
String and character escape sequences larger than hexadecimal \XFF or octal \377 cannot be generated. Two-byte character
constants can be specified by using a second backslash. For example, \XOD\XOA represents a two-byte constant. A numeric
literal following an escape sequence should be broken up like this:

printf("\xOD" "12345");

This prints a carriage return followed by 12345.

Object module filename is invalid Librarian error
The librarian could not understand the header record of the object module being added to the library and has assumed that it
is an invalid module.

Objects of type type cannot be initialized with {} Compiler error
Ordinary C structures can be initialized with a set of values inside braces. C++ classes can be initialized with constructors
only if the class has constructors, private members, functions, or base classes that are virtual.

Old debug information in module module will be ignored Linker warning
Debug information in the .OBJ file is incompatible with this linker, and it will be ignored.

Only «KEEP or «NOKEEP MAKE error
You have specified something besides KEEP or NOKEEP when closing a temporary inline file.

Only member functions may be 'canst' or 'volatile' Compiler error
Something other than a class member function has been declared const and/or volatile.

Only one of a set of overloaded functions can be "e" Compiler error
C++ functions are by default overloaded, and the compiler assigns a new name to each function. If you want to override the
compilers assigning a new name by declaring the function extern "C", you can do this for only one of a set of functions with
the same name. (Otherwise the linker would find more than one global function with the same name.)

Operand of delete must be non-const pointer Compiler error
It is illegal to delete a constant pointer value using operator delete.

Operator [] missing] Compiler error
The C++ operator[] was declared as operator [. You must add the missing 1 or otherwise fix the declaration.

Operator -> must return a pointer or a class Compiler error
The C++ operator-> function must be declared to either return a class or a pointer to a class (or struct or union). In either
case, it must be something to which the -> operator can be applied.

Operator delete must return void Compiler error
This C++ overloaded operator delete was declared in some other way.

Appendix A, Error messages 87

Operator delete[] must return void Compiler error
This C++ overloaded operator delete was declared in some other way. Declare the delete with one of the following:

• A single void* parameter

• A second parameter of type size_t

If you use the second version, it will be used in preference to the first version. The global operator delete can be declared
using the single-parameter form only.

Operator must be declared as function Compiler error
An overloaded operator was declared with something other than function type.

Operator new must have an initial parameter of type size_t Compiler error
Operator new can be declared with an arbitrary number of parameters, but it must always have at least one parameter that
specifies the amount of space to allocate.

Operator new[] must have an initial parameter of type size_t Compiler error
Operator new can be declared with an arbitrary number of parameters. It must always have at least one parameter that
specifies the amount of space to allocate.

Operator new must return an object of type void * Compiler error
The C++ overloaded operator new was declared another way.

Operator new[] must return an object of type void * Compiler error
This C++ overloaded operator new was declared another way.

Operators may not have default argument values Compiler error
It is illegal for overloaded operators to have default argument values.

Out of memory Compiler error
The total working storage is exhausted. Compile the file on a machine with more memory.

Out of memory Librarian error
For any number of reasons, the librarian or Borland C++ ran out of memory while building the library. For many specific
cases a more detailed message is reported, leaving "Out of memory" to be the basic catchall for general low-memory
situations.

If you get this message because the public symbol tables have grown too large, you must free up memory. For the command
line this could involve removing TSR's or device drivers using real mode memory. In the IDE, some additional memory can be
gained by closing editors.

Out of memory Linker error
The linker has run out of dynamically allocated memory needed during the link process. This usually means that too many
modules, externals, groups, or segments have been defined by the object files being linked together.

Out of memory at library library: extended dictionaries ignored Linker warning
The linker ran out of memory allocating space to cache the extended dictionaries. The linker will ignore extended dictionaries
and proceed with the link.

Out of memory creating extended dictionary Librarian error
The librarian has run out of memory creating an extended dictionary for a library. The library is created but will not have an
extended dictionary.

Out of memory for block block Linker error

88

This error should not occur. If it does, call Borland Technical Support and give them the text of the message, including the
block name.

Borland C++ for OS/2 Tools and Utilities Guide

Out of memory reading LE/LIDATA record from object module Librarian error
The librarian is attempting to read a record of data from the object module, but it cannot get a large enough block of memory.
If the module that is being added has a large data segment or segments, it is possible that adding the module before any
other modules might resolve the problem. By adding the module first, there will be memory available for holding public
symbol and module lists later.

Out of space allocating per module debug struct Librarian error
The librarian ran out of memory while allocating space for the debug information associated with a particular object module.
Removing debugging information from some modules being added to the library might resolve the problem.

Output device is full Librarian error
Usually this error means that no space is left on the disk.

Overload is now unnecessary and obsolete Compiler warning
Early versions of C++ required the reserved word overload to mark overloaded function names. C++ now uses a "type-safe
linkage" scheme, whereby all functions are assumed overloaded unless marked otherwise. The use of overload should be
discontinued.

Overloadable operator expected Compiler error
Almost all C++ operators can be overloaded. The only ones that can't be overloaded are the field-selection dot (.), dot-star
(.*), double colon (::), and conditional expression (?:). The preprocessor operators (# and ##) are not C or C++ language
operators and thus cannot be overloaded. Other nonoperator punctuation, such as a semicolon (;) cannot be overloaded.

Overloaded function name ambiguous in this context Compiler error
The only time an overloaded function name can be used without actually calling the function is when a variable or parameter
of an appropriate type is initialized or assigned. This error was issued because an overloaded function name has been used
in some other context.

Overloaded function resolution not supported IDE debugger error
The only time an overloaded function name can be used without actually calling the function is when a variable or parameter
if a appropriate type is initialized or assigned. In this case, an overloaded function name has been used in some other
context.

Overloaded prefix 'operator operator used as a postfix operator Compiler warning
It is now possible to overload both the prefix and postfix versions of the ++ and - - operators. To allow older code to compile,
Borland C++ uses the prefix operator and issues this warning whenever only the prefix operator is overloaded, but is used in
a postfix context.

Parameter names are used only with a function body Compiler error
When declaring a function (not defining it with a function body), you must use either empty parentheses or a function
prototype. A list of parameter names only is not allowed.

Example declarations include:

int func(); II declaration without prototype--OK
int func(int, int); II declaration with prototype--OK
int func(int i, int j); II parameter names in prototype--OK
int func(i, j); II parameter names only--illegal

Parameter number missing name Compiler error
In a function definition header, this parameter consisted only of a type specifier number with no parameter name. This is not
legal in C. (It is allowed in C++, but theres no way to refer to the parameter in the function.)

Appendix A, Error messages 89

Parameter parameter is never used Compiler warning
The named parameter, declared in the function, was never used in the body of the function. This might or might not be an
error and is often caused by misspelling the parameter. This warning can also occur if the identifier is redeclared as an
automatic (local) variable in the body of the function. The parameter is masked by the automatic variable and remains
unused.

path - path is too long Librarian error
This error occurs when the length of any of the library file or module file's path is greater than 64.

Physical and virtual device drivers not supported Linker error

Pointer to structure required on left side of -> or ->* Compiler error
Nothing but a pointer is allowed on the left side of the arrow (-» in C or C++. In C++ a ->* operator is allowed.

Possible reference to undefined extern xxxx::i in module module Linker warning
Static data member has been declared but not defined in your application.

Possible use of identifier before definition Compiler warning
Your source file used the named variable in an expression before it was assigned a value. The compiler uses a simple scan
of the program to determine this condition. If the use of a variable occurs physically before any assignment, this warning will
be generated. Of course, the actual flow of the program might assign the value before the program uses it.

Possibly incorrect assignment Compiler warning
This warning is generated when the compiler encounters an assignment operator as the main operator of a conditional
expression (that is, as part of an if, while or do-while statement). More often than not, this is a typographical error for the
equality operator. If you want to suppress this warning, enclose the assignment in parentheses and compare the whole thing
to zero explicitly. Thus,

if (a = b) ...

should be rewritten as

if ((a = b) != 0)

Public symbol in module module1 clashes with prior module module2 Librarian error
A public symbol can appear only once in a library file. A module that is being added to the library contains a public symbol
that is already in a module of the library and cannot be added. The command-line message reports the module2 name.

Public symbol in module filename clashes with prior module Librarian error
A public symbol can appear only once in a library file. A module that is being added to the library contains a public symbol
that is already in a module of the library and cannot be added.

Public symbol sym defined in both mo'dule mod1 and mod2 Librarian warning
This warning occurs when two .OBJ files in the .OBJ file list both define the same public symbol. The first public symbol will
override the second public symbol. This warning can be controlled with the -wdup switch.

Record kind num found, expected theadr or Iheadr in module filename Librarian error
The librarian could not understand the header record of the object module being added to the library and has assumed that it
is an invalid module.

Record length len exceeds available buffer in module module Librarian error

90

This error occurs when the record length len exceeds the available buffer to load the buffer in module module. This occurs
when librarian runs out of dynamic memory.

Borland C++ for OS/2 Tools and Utilities Guide

record type type found, expected theadr or Iheadr in module
The librarian encountered an unexpected type type instead of the expected THEADR or LHEADER record in module module.

Redefinition of macro is not identical Compiler warning
Your source file redefined the named macro using text that was not exactly the same as the first definition of the macro. The
new text replaces the old.

Redefinition of target filename MAKE error
The named file occurs on the left side of more than one explicit rule.

Reference initialized with type1, needs Ivalue of type type2 Compiler error
A reference variable or parameter that is not declared constant must be initialized with an Ivalue of the appropriate type. This
error was issued either because the initializer wasn't an Ivalue or because its type didn't match the reference being initialized.

Reference member member in class without constructors Compiler error
A class that contains reference members must have at least one user-defined constructor; otherwise, there would be no way
to ever initialize such members.

Reference member member initialized with a non-reference parameter Compiler error
An attempt has been made to bind a reference member to a parameter in a constructor. Because the parameter object
ceases to exist the moment the constructor returns, the reference member is then left referring to an undefined object. (This
is a common mistake that causes crashes and erratic program behavior.)

Reference member member is not initialized Compiler error
References must always be initialized. A class member of reference type must have an initializer provided in all constructors
for that class. This means that you cannot depend on the compiler to generate constructors for such a class, because it has
no way of knowing how to initialize the references.

Reference member member needs a temporary for initialization Compiler error
You provided an initial value for a reference type that was not an Ivalue of the referenced type. This requires the compiler to
create a temporary for the initialization. Because there is no obvious place to store this temporary, the initialization is illegal.

Reference variable variable must be initialized Compiler error
This C++ object is declared as a reference but is not initialized. All references must be initialized at their point of declaration.

Register allocation failure Compiler error
This is a sign of some form of compiler error. Some expression in the indicated function was so complicated that the code
generator could not generate code for it. Try to simplify the offending function. Notify Borland Technical Support if the
compiler encounters this error.

Repeat count needs an Ivalue IDE debugger error
The expression before the comma in the Watch or Evaluate window must be a manipulable region of storage. For example,
expressions like these are not valid:

i++,10d
x = y, 10m

Resident Name Table is greater than 64K Linker warning
The maximum size of the Resident name table is 64K (in accordance with the industry-wide executable specification
standard). The linker continues with the link but ignores any subsequent Resident names encountered during linking.

Restarting compile using assembly Compiler warning
The compiler encountered an ASM with an accompanying -8 command-line option or #pragma inline statement. The
compile restarts using assembly language capabilities.

Appendix A, Error messages 91

Results are safe in file filename Librarian warning
The librarian has successfully built the library into a temporary file, but cannot rename the file to the desired library name.
The temporary file will not be removed (so that the library can be preserved).

Rule line too long MAKE error
An implicit or explicit rule was longer than 4,096 characters.

Segment segment is in two groups: group1 and group2 Linker warning
The linker found conflicting claims by the two named groups. Usually, this happens only in assembly language programs. It
means that two modules assigned the segment to two different groups.

Self relative fixup overflowed in module module Linker warning
This message appears if a self-relative reference (usually a call) is made from one physical segment to another. It usually
happens only when employing assembler code, but can occur if you use the segment-naming options in the compiler. If the
reference is from one code segment to another, you are safe. If, however, the reference is from a code segment to a data
segment, you have probably made a mistake in some assembler code.

Side effects are not allowed IDE debugger error
Side effects such as assignments, ++, or - are not allowed in the debugger watch window. A common error is to use "x = y"
(not allowed) instead of "x == y" to test the equality of "x" and "y."

Size of identifier is unknown or zero Compiler error
This identifier was used in a context where its size was needed. For example, a struct tag might only be declared (with the
struct not defined yet), or an extern array might be declared without a size. If so, it's illegal to have references to such an
item (like sizeof) or to dereference a pointer to this type. Rearrange your declaration so that the size of identifier is available.

Size of the type is unknown or zero Compiler error
This type was used in a context where its size was needed. For example, a struct tag might only be declared (with the struct
not defined yet). If so, its illegal to have references to such an item (like sizeof) or to dereference a pointer to this type.
Rearrange your declarations so that the size of this type is available.

sizeof may not be applied to a bit field Compiler error
sizeof returns the size of a data object in bytes, which does not apply to a bit field.

sizeof may not be applied to a function Compiler error
sizeof can be applied only to data objects, not functions. You can request the size of a pointer to a function.

identifier specifies multiple or duplicate access Compiler error
A base class can be declared public or private, but not both. This access specifier can appear no more than once for a base
class.

Stack overflow Run-time error

92

The default stack size for Borland C++ programs is 45056 bytes. This should be enough for most programs, but those which
execute recursive functions or store a great deal of local data can overflow the stack. You will get this message only if you
have stack checking enabled. If you do get this message, you can try increasing the stack size or decreasing your program's
dependence on the stack. Change the stack size by using -S:xxxxTLlNK option.

To decrease the amount of local data used by a function, look at the example below. The variable buffer has been declared
static and does not consume stack space like list does.

void anyfunction(void) {
static int buffer[2000];
int list[2000];

/* resides in the data segment */
/* resides on the stack */

Borland C++ for OS/2 Tools and Utilities Guide

There are two disadvantages to declaring local variables as static.

1. It now takes permanent space away from global variables and the heap. This is usually only a minor disadvantage.

2. The function can no longer be reentrant. If the function is called recursively or asynchronously and it is important that each
call to the function have its own unique copy of the variable, you cannot make it static. This is because every time the
function is called, it will use the same exact memory space for the variable, rather than allocating new space for it on each
call. You could have a sharing problem if the function is trying to execute from within itself (recursively) or at the same time
as itself (asynchronously). For most OS/2 programs this is not a problem.

Statement missing; Compiler error
The compiler encountered an expression statement without a semicolon following it.

Storage class class is not allowed here Compiler error
The given storage class is not allowed here. Probably two storage classes were specified, and only one can be given.

String type not allowed with this operand MAKE error
You have tried to use an operand that is not allowed for comparing string types. Valid operands are ==, !=, <, >, <=, and >=.

Structure passed by value Compiler warning
A structure was passed by value as an argument to a function without a prototype. It is a frequent programming mistake to
leave an address-of operator (&) off a structure when passing it as an argument. Because structures can be passed by value,
this omission is acceptable. This warning provides a way for the compiler to warn you of this mistake.

Structure required on left side of . or . * Compiler error
The left side of a dot (.) operator (or C++ dot-star operator) must evaluate to a structure type. In this case it did not.

Style of function definition is now obsolete Compiler warning
In C++, this old C style of function definition is illegal:

int func(pl, p2)
int pl, p2;
{ ... }

Subscripting missing] Compiler error
The compiler encountered a subscripting expression that was miSSing its closing bracket. This could be caused by a missing
or extra operator, or by mismatched parentheses.

Superfluous & with function Compiler warning
An address-of operator (&) is not needed with function name; any such operators are discarded.

Suspicious pointer conversion Compiler warning
The compiler encountered some conversion of a pointer that caused the pointer to point to a different type. You should use a
cast to suppress this warning if the conversion is proper.

Switch selection expression must be of integral type Compiler error
The selection expression in parentheses in a switch statement must evaluate to an integral type (char, short, int, long,
enum). You might be able to use an explicit cast to satisfy this requirement.

Switch statement missing (Compiler error
In a switch statement, the compiler found no left parenthesis after the switch keyword.

Switch statement missing) Compiler error
In a switch statement, the compiler found no right parenthesis after the test expression.

Appendix A, Error messages 93

Table limit exceeded Linker error
One of linkers internal tables overflowed. This usually means that the programs being linked have exceeded the linker's
capacity for public symbols, external symbols, or for logical segment definitions. Each instance of a distinct segment name in
an object file counts as a logical segment; if two object files define this segment, then this results in two logical segments.

Target index of FIXUP is 0 in module module Linker error
This is a translator error.

Template argument must be a constant expression Compiler error
A non-type actual template class argument must be a constant expression (of the appropriate type); this includes constant
integral expressions, and addresses of objects or functions with external linkage or members.

Template class nesting too deep: 'class' Compiler error
The compiler imposes a certain limit on the level of template class nesting; this limit is usually exceeded only through a
recursive template class dependency. When this nesting limit is exceeded, the compiler issues this error message for all of
the nested template classes, which usually makes it easy to spot the recursion. This is always followed by the fatal error Out
of memory.

For example, consider the following set of template classes:

template<class T> class A
{

friend class B<T*>;
};

template<class T> class B
{

friend class A<T>;
};

A<int> x;

This code will be flagged with the following errors:

Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Fatal: Out of memory

'B<int * * * * *>'
'A<int * * * *>'
'B<int * * * *>'
'A<int * * *>'
'B<int * * *>'
'A<int * *>'
'B<int * *>'
'A<int *>'
'B<int *>'
'A<int>'

Template function argument argument not used in argument types Compiler error
The given argument was not used in the argument list of the function. The argument list of a template function must use all of
the template formal arguments; otherwise, there is no way to generate a template function instance based on actual
argument types.

Template functions may only have type-arguments Compiler error

94

A function template was declared with a non-type argument. This is not allowed with a template function because there is no
way to specify the value when calling it.

Borland C++ for OS/2 Tools and Utilities Guide

Templates can only be declared at file level Compiler error
Templates cannot be declared inside classes or functions; they are allowed only in the global scope (file level).

Templates must be classes or functions Compiler error
The declaration in a template declaration must specify either a class type or a function.

Temporary used to initialize identifier Compiler warning
Temporary used for parameter number in call to function Compiler warning
Temporary used for parameter number Compiler warning
Temporary used for parameter parameter Compiler warning

In C++, a variable or parameter of reference type must be assigned a reference to an object of the same type. If the types do
not match, the actual value is assigned to a temporary of the correct type, and the address of the temporary is assigned to
the reference variable or parameter. The warning means that the reference variable or parameter does not refer to what you
expect, but to a temporary variable, otherwise unused.

In the following example, function f requires a reference to an int, and c is a char:

f (int&) i
char Ci

f (c) i

Instead of calling fwith the address of c, the compiler generates code equivalent to the C++ source code:

int x = c, f (X) i

Terminated by user
You canceled the link or Ctrl+Breakwas pressed.

Linker error

The ', .. ' handler must be last Compiler error
In a list of catch handlers, if the ' .. .' handler is present, it must be the last handler in the list (that is, it cannot be followed by
any more catch handlers).

The combinations '+*' or '*+' are not allowed Librarian error
It is not legal to add and extract an object module from a library in one action. The action probably desired is a '+-'.

The constructor constructor is not allowed Compiler error
Constructors of the form X::(X) are not allowed. The correct way to write a copy constructor is X::(const X&).

The value for identifier is not within the range of an int Compiler error
All enumerators must have values that can be represented as an integer. You attempted to assign a value that is out of the
range of an integer. In C++ if you need a constant of this value, use a const integer.

'this' can be used only within a member function Compiler error
In C++, this is a reserved word that can be used only within class member functions.

This initialization is only partly bracketed Compiler warning
When structures are initialized, braces can be used to mark the initialization of each member of the structure. If a member
itself is an array or structure, nested pairs of braces can be used. When some of the optional braces are omitted, the
compiler issues this warning.

Too few arguments in template class name template Compiler error
A template class name was missing actual values for some of its formal parameters.

Too few parameters in call Compiler error
A call to a function with a prototype (via a function pointer) had too few arguments. Prototypes require that all parameters be
given.

Appendix A, Error messages 95

Too few parameters in call to function Compiler error
A call to the named function (declared using a prototype) had too few arguments.

Too many commas on command-line Linker error
An invalid entry in the command-line was found.

Too many decimal points Compiler error
The compiler encountered a floating-point constant with more than one decimal point.

Too many default cases Compiler error
The compiler encountered more than one default statement in a single switch.

Too many error or warning messages Compiler error
A maximum of 255 errors and warnings can be set before the compiler stops.

Too many errors Linker error
The linker encountered more errors than the -E switch will permit.

Too many exponents Compiler error
The compiler encountered more than one exponent in a floating-point constant.

Too many initializers Compiler error
The compiler encountered more initializers than were allowed by the declaration being initialized.

Too many LNAMEs Linker error
TLiNK has a limit of 256 LNAMES in a single .OBJ file.

Too many rules for target target MAKE error
MAKE can't determine which rules to follow when building a target because you've created too many rules for the target. For
example, the following makefile generates this error message:

abe.exe : a.obj
bee -e a.e

abe.exe : b.obj

abe.exe : e.obj
bee -e b.e e.e

Too many segments Linker error
TLiNK has a limit of 256 SEGDEFs in a single .OBJ file.

Too many storage classes in declaration Compiler error
A declaration can never have more than one storage class.

Too many suffixes in ,SUFFIXES list MAKE error
The limit of 255 allowable suffixes in the suffixes list has been exceeded.

Too many types in declaration Compiler error
A declaration can never have more than one of the basic types: char, int, float, double, struct, union, enum, or
typedef-name.

Too much global data defined in file Compiler error
The sum of the global data declarations exceeds 64K bytes. Check the declarations for any array that might be too large.
Also consider reorganizing the program or using far variables if all the declarations are needed.

96 Borland C++ for OS/2 Tools and Utilities Guide

Two consecutive dots Compiler error
Because an ellipsis contains three dots (...), and a decimal point or member selection operator uses one dot (.), two
consecutive dots cannot legally occur in a C program.

Two operands must evaluate to the same type Compiler error
The types of the expressions on both sides of the colon in the conditional expression operator (1:) must be the same, except
for the usual conversions like char to int, or float to double, or void* to a particular pointer. In this expression, the two sides
evaluate to different types that are not automatically converted. This might be an error or you might merely need to cast one
side to the type of the other.

Type type is not a defined class with virtual functions Compiler error
A dynamic_cast was used with a pointer to a class type that is either undefined or doesn't have any virtual member functions.

Note on type-mismatch errors: When compiling C++ programs, the following type-mismatch error messages are always
preceded by another message that explains the exact reason for the type mismatch; this is usually "Cannot convert type 1 to
type2' but the mismatch could also be due to many other reasons.

Type type may not be defined here Compiler error
Classes and enumerations may not be defined in certain places. For example, the return type specification of a function. The
class or enum definition must be moved into a separate type declaration. '

Type mismatch in default argument value Compiler error
Type mismatch in default value for parameter parameter Compiler error

The default parameter value given could not be converted to the type of the parameter. The first message is used when the
parameter was not given a name. See the previous note on type-mismatch errors.

Type mismatch in parameter number Compiler error
The function called, via a function pointer, was declared with a prototype; the given parameter number (counting left to right
from 1) could not be converted to the declared parameter type. See the previous note on type-mismatch errors.

Type mismatch in parameter number in call to function Compiler error
Your source file declared the named function with a prototype, and the given parameter number (counting left to right from 1)
could not be converted to the declared parameter type. See the previous note on type-mismatch errors.

Type mismatch in parameter parameter Compiler error
Your source file declared the function called via a function pointer with a prototype, and the named parameter could not be
converted to the declared parameter type. See the previous note on type-mismatch errors.

Type mismatch in parameter parameter in call to function Compiler error
Your source file declared the named function with a prototype, and the named parameter could not be converted to the
declared parameter type. See entry for Type mismatch in parameter parameter and the previous note on type-mismatch
errors.

Type mismatch in parameter parameter in template class name template Compiler error
Type mismatch in parameter number in template class name template Compiler error

The actual template argument value supplied for the given parameter did not exactly match the formal template parameter
type. See the previous note on type-mismatch errors.

Type mismatch in redeclaration of identifier Compiler error
Your source file redeclared with a different type than was originally declared. This can occur if a function is called and
subsequently declared to return something other than an integer. If this has happened, you must declare the function before
the first call to it. See the previous note on type-mismatch errors.

Appendix A, Error messages 97

Type name expected Compiler error
One of these errors has occurred:

• In declaring a file-level variable or a struct field, neither a type name nor a storage class was given.

• In declaring a typedef, no type for the name was supplied.

• In declaring a destructor for a C++ class, the destructor name was not a type name (it must be the same name as its
class).

• In supplying a C++ base class name, the name was not the name of a class.

Type qualifier identifier must be a struct or class name Compiler error
The C++ qualifier in the construction qual: : identifier is not the name of a struct or class.

Unable to create output file filename Compiler error
The work disk is full or write-protected or the output directory does not exist. If the disk is full, try deleting unneeded files and
restarting the compilation. If the disk is write-protected, move the source files to a writable disk and restart the compilation.

Unable to create turboc.$ln Compiler error
The compiler cannot create the temporary file TURBOC.$LN because it cannot access the disk or the disk is full.

Unable to execute command: command MAKE error
A command failed to execute; this might be because the command file could not be found or was misspelled, because there
was no disk space left in the specified swap directory, because the swap directory does not exist, or (less likely) because the
command itself exists but has been corrupted.

Unable to execute command command Compiler error
TLiNK or TASM cannot be found, or possibly the disk is bad.

Unable to open file filename MAKE error
Unable to open filename Linker error

This occurs if the named file does not exist or is misspelled.

Unable to open include file filename Compiler error
The compiler could not find the named file. This error can also be caused if an #include file included itself, or if you do not
have FILES set in CONFIG.SYS on your root directory (try FILES=2 0). Check whether the named file exists.

Unable to open filename for output Librarian error
The librarian cannot open the specified file for output. This is usually due to lack of disk space for the target library,or a listing
file. Additionally this error will occur if the target file exists but is marked as a read-only file.

Unable to open include file filename MAKE error
MAKE could not find the named file. This error can also be caused if an !include file included itself, or if you do not have
FILES set in CONFIG.SYS on your root directory (try FILES=20). Check whether the named file exists.

Unable to open input file filename Compiler error
This error occurs if the source file cannot be found. Check the spelling of the name and whether the file is on the proper disk
or directory.

Unable to open makefile MAKE error

98

The current directory does not contain a file named MAKEFILE or MAKEFILE.MAK, or it does not contain the file you
specified with -f.

Borland C++ for OS/2 Tools and Utilities Guide

Unable to process debug information, disable tasm /zi option Linker error
This happens when you compile .C or .CPP code with debug information, generating assembler output, and then run T ASM
on the result with the /zi option. Do not use the /zi option. The compiler already put out the appropriate debug information.

Unable to redirect input or output MAKE error
MAKE was unable to open the temporary files necessary to redirect input or output. If you are on a network, make sure you
have rights to the current directory.

unable to rename filename to filename Librarian error
The librarian builds a library into a temporary file and then renames the temporary file to the target library file name. If there is
an error, usually due to lack of disk space, this message will be posted.

Undefined alias symbol symbol Linker error
An ALIAS definition record was encountered which specified a substitute public symbol for an external reference. The public
symbol was never found. ALIAS records are generated by the assembler when the ALIAS directive is used.

Undefined label identifier Compiler error
The named label has a goto in the function, but no label definition.

Undefined structure identifier Compiler warning
The named structure was used in the source file, probably on a pointer to a structure, but had no definition in the source file.
This is probably caused by a misspelled structure name or a missing declaration.

Undefined structure structure Compiler error
Your source file used the named structure on some line before where the error is indicated (probably on a pointer to a
structure) but had no definition for the structure. This is probably caused by a misspelled structure name or a missing
declaration.

Undefined symbol identifier Compiler error
The named identifier has no declaration. This could be caused by a misspelling either at this point or at the declaration. This
could also be caused if there was an error in the declaration of the identifier.

Unexpected} Compiler error
An extra right brace was encountered where none was expected. Check for a missing {.

Unexpected char X in command line Librarian error
The librarian encountered a syntactical error while parsing the command line.

Unexpected end of file MAKE error
The end of the makefile was reached without a temporary inline file having been closed.

Unexpected end of file in comment started on line number CompilerMAKE error
The source file ended in the middle of a comment. This is normally caused by a missing close of comment (*/).

Unexpected end of file in conditional started on line line number MAKE error
The source file ended before the compiler (or MAKE) encountered an !endif. The !endif was either missing or misspelled.

Union cannot be a base type Compiler error
A union cannot be used as a base type for another class type.

Union cannot have a base type Compiler error
A union cannot be derived from any other class.

Appendix A, Error messages 99

Union member member is of type class with constructor Compiler error
Union member member is of type class with destructor Compiler error
Union member member is of type class with operator= Compiler error

A union cannot contain members that are of type class with user-defined constructors, destructors, or operator=.

Unions cannot have virtual member functions Compiler error
A union cannot have virtual functions as its members.

Unknown assembler instruction Compiler warning
The compiler encountered an inline assembly statement.

Unknown command line switch Xignored Librarian warning
A forward slash character (I) was encountered on the command line or in a response file without being followed by one of the
allowed options.

Unknown Goodie Linker error
An unsupported option was supplied to the command-line linker. See the documentation for currently supported Goodies
(options).

Unknown language, must be C or C++
In the CH construction

extern "name" type func (/ * ... * /) i

Compiler error

the name given in quotes must be "c" or "CH"; other language names are not recognized. For example, you can declare an
external Pascal function without having the compiler rename it like this:

extern "e" int pascal func(/* ... */)i

A CH (possibly overloaded) function can be declared Pascal and allow the usual compiler renaming (to allow overloading)
like this:

extern int pascal func(/* ... */) i

Unknown option -> option Linker error
A forward slash character (I), hyphen (-), or DOS switch character was encountered on the command line or in a response
file without being followed by one of the allowed options. You might have used the wrong case to specify an option.

Unknown preprocessor directive: identifier Compiler error
The compiler encpuntered a # character at the beginning of a line, and the name following was not a legal directive name or
the rest of the directive was not well formed.

Unknown preprocessor statement MAKE error
A ! character was encountered at the beginning of a line, and the statement name following was not error, undef, if, elif,
include, else, end if, ifdef, or ifndef.

Unreachable code Compiler warning
A break, continue, goto or return statement was not followed by a label or the end of a loop or function. The compiler
checks while, do and for loops with a constant test condition, and attempts to recognize loops that cannot fall through.

Unresolved external name referenced from module module Linker error
This is the actual text of the message for "Undefined symbol sym in module module."

Unsupported option string Linker error
You have specified an invalid option to the linker.

100 Borland C++ for OS/2 Tools and Utilities Guide

Unterminated string or character constant Compiler error
The compiler found no terminating quote after the beginning of a string or character constant.

Use '> >' for nested templates instead of '»' Compiler warning
Whitespace is required to separate the closing U>" in a nested template name, but since it is a common mistake to leave out
the space, the compiler accepts a U»" with this warning.

Use. or -> to call function Compiler error
You tried to call a member function without giving an object.

Use. or -> to call member, or & to take its address Compiler error
A reference to a nonstatic class member without an object was encountered. Such a member must be used with an object, or
its address must be taken with the & operator.

Use :: to take the address of a member function Compiler error
If f is a member function of class c, you take its address with the syntax &c::f. Note the use of the class type name, rather
than the name of an object, and the :: separating the class name from the function name. (Member function pointers are not
true pointer types, and do not refer to any particular instance of a class.)

Use Ie with TLiNK to obtain debug information from library Librarian warning
The library was built with an extended dictionary and also includes debugging information. TLiNK will not extract debugging
information if it links using an extended dictionary, so to obtain debugging information in an executable from this library, the
linker must be told to ignore the extended dictionary using the Ie switch. Note: The IDE linker does not support extended
dictionaries; therefore no settings need to be altered in the IDE.

Use of : and :: dependents for target target MAKE error
You have tried to use the target in both single and multiple description blocks (using both the: and :: operators). Examples:

filea: fileb
filea:: filec

Use qualified name to access nested type type Compiler warning
In older versions of the C++ specification, typedef and tag names declared inside classes were directly visible in the global
scope. With the latest specification of C++, these names must be prefixed with a class:: qualifier if they are to be used
outside their class' scope. To allow older code to compile, whenever such a name is uniquely defined in one single class,
Borland C++ allows its usage without class:: and issues this warning.

Using based linking for Dlls may cause the Dll to malfunction
This warning occurs if you use the 18 switch when linking a DLL. In almost every case, this is an error that will prevent the
application from running. This warning can be controlled with the -w switch.

Value of type void is not allowed Compiler error
A value of type void is really not a value at all, and thus cannot appear in any context where an actual value is required.
Such contexts include the right side of an assignment, an argument of a function, and the controlling expression of an if, for,
or while statement.

Variable variable has been optimized. IDE debugger error
You have tried to inspect, watch, or otherwise access a variable that the optimizer removed. This variable is never assigned a
value and has no stack location.

Variable identifier is initialized more than once Compiler error
This variable has more than one initialization. It is legal to declare a file level variable more than once, but it can have only
one initialization (even if two are the same).

Appendix A, Error messages 101

Constant variable variable must be initialized Compiler error
This C++ object is declared const, but is not initialized. Because no value can be assigned to it, it must be initialized at the
point of declaration.

VIRDEF name conflict for function Compiler error
The compiler must truncate mangled names to a certain length because of a name length limit that is imposed by the linker.
This truncation might (in rare cases) cause two names to mangle to the same linker name. If these names happen to both be
VIRDEF names, the compiler issues this error message. The simplest workaround for this problem is to change the name of
function so that the conflict is avoided.

'virtual' can only be used with member functions Compiler error
A data member has been declared with the virtual specifier; only member functions can be declared virtual.

Virtual function function1 conflicts with base class base Compiler error
The compiler encountered a virtual function that has the same argument types as a function in its base class, but the two
functions have different return types. This is illegal.

Virtual specified more than once Compiler error
The C++ reserved word virtual can appear only once in a member function declaration.

void & is not a valid type Compiler error
A reference always refers to an object, but an object cannot have the type void. Thus the type void is not allowed.

Void functions may not return a value Compiler warning
Your source file declared the current function as returning void, but the compiler encountered a return statement with a
value. The value of the return statement will be ignored.

function was previously declared with the language language Compiler error
Only one language can be used with extern for a given function. This function has been declared with different languages in
different locations in the same module.

While statement missing (Compiler error
In a while statement, the compiler found no left parenthesis after the while keyword.

While statement missing) Compiler error
In a while statement, the compiler found no right parenthesis after the test expression.

This occurs if TLiNK could not write all of the data it attempted to write. This is almost certainly caused by the disk being full.

Write error on file filename MAKE error
MAKE couldn't open or write to the file specified in the makefile. Check to ensure that there's enough space left on your disk,
and that you have write access to the disk.

Wrong number of arguments in call of macro mac Compiler error
Your source file called the named macro with an incorrect number of arguments.

102 Borland C++ for OS/2 Tools and Utilities Guide

Index

- + and + - (TLIB action symbols) 42
-* and *- (TLIB action symbols) 41
$* MAKE macro

compatibilty with NMAKE 23
-? MAKE option 21
-? RC help option 52
* (TUB action symbol) 41
+ (TUB action symbol) 41
- (TLIB action symbol) 41
& MAKE command option 27
@ MAKE command option 27
$d MAKE macro

compatibility with NMAKE 23

A
-a MAKE option 22, 33
/ A TLINK option (align pages) 9
/a TUNK option (application type) 9
ACBP field 10
add (TLIB action symbol) 41
address, base 9
attributes 10
.autodepend MAKE directive 32, 33

B
-B MAKE option 21
/B TLINK option (base address) 9
base address 9
big attribute 10
BRC (resource tool driver) 49,52
BRCC (Borland resource compiler) 49, 50

invoking 50
BUILTINS.MAK

described 20
text of 20

c
-c MAKE option 22
/C TLIB option (case sensitivity) 40,43
/ c TUNK option (case sensitivity) 9

Index

case sensitivity
TUB option 40, 43
TUNK 9

classes, DLLs and 47
combining attribute 10
command-line compiler, TLINK and 6
commands (MAKE)

rules for 27
compiling resources 50

D
-D MAKE option 21
-d RC option (define symbol) 52
date-time stamp

changing 21
debugging

map files 10
TLINKand 11

DLLs See also import libraries
classes and 47
export functions, hiding 48
import libraries and 46, 47
mangled names and 47

dynamic link libraries See DLLs

E
-e MAKE option 22
/E TLINK option (maximum errors) 9
/Oc TLINK option (chain fixups) 11
/S TUNK option (stack size) 11
!elif MAKE directive 32, 34
!else MAKE directive 32, 34
!endif MAKE directive 32, 34
environment variables

MAKE and 22
!error MAKE directive 32

described 33
error messages 55-102

defined 53
fatal 53

errors See also warnings
.EXE files, debugging information 11

103

explicit rules See MAKE, explicit rules
extensions, file, supplied by TLINK 7
extract and remove (TLIB action) 41

F
-f MAKE option 21
files

G

changing date-time stamp of 21
extensions 7
response 7, 41

/ G TLINK option (goodies) 9

H
-h MAKE option 21
-h RC option (help on options) 52

-I MAKE option 21
-i MAKE option 22
-i RC option (include files) 52
!if MAKE directive 32, 34
!ifdef MAKE directive 32, 34
!ifndef MAKE directive 32, 34
.ignore MAKE directive 32
IMPDEF (module definition files), IMPLIB and 46
IMPLIB (import librarian) 45-46

defined 45
IMPDEF and 46
input to 45
switches 46
warnings 46

implicit rules See MAKE, implicit rules
import librarian See IMPLIB
import libraries 45, 45-46, See also DLLs

customizing 46
include files

Resource Compiler and 52
!include MAKE directive 32

described 35
initialization modules, used with TLINK 4, 5
invoking TLINK (linker) 3

104

K
-K MAKE option 21
KEEP MAKE option 22

L
lib name (TLIB option) 40
libraries

object files 39
creating 41

page size 42
TLINKand 4

library contents 40
linked dependency

defined 20
listfile (TLIB option) 40

M
-m MAKE option 22
macros

MAKE and 29
MAKE

auto dependency option 22
building all targets 21
building targets 23
BUILTINS.MAK 20

ignoring rule in 22
BUILTINS.MAK description 20
cache autodependency option 22
command-line help for 19
command-line operators 28

&& (create temp file) 28
command modifiers 27

@ (inhibit output) 27
& (macro expansion) 28
- (process error codes) 28

command operators
list of 28

command prefixes 27
commands

rules for 27
commands for 25
compatibility with NMAKE 21
components

:: (multiple explicit rules) 25
conditional operators 34
debugging 28

Borland C++ for OS/2 Tools and Utilities Guide

default rules 20
default tasks for 20
defining macros for 21
definition of 19
description of 19
directives 32

conditional rules for 34
!error 33
!include 35
list of 32
!message 35
.path.ext 36
.precious MAKE directive 36
.suffixes 36
!undef 36
using macros in 37

environment variables and 22
error checking controls 33
errors 53
expanded text and 29
explicit rules 24

multiple 25
syntax 24
without commands 26

files
displaying date-time stamp of 22

forcing a build 21
ignoring program exit status option 22
implicit rules 24

sytax 26
use with explicit rules 26

instructions for 23
KEEP option 22
linked dependency

defined 20
macro names

parentheses and 30
macros

Index

$d (test macro) 37
command-line versus makefile 30
default (modifying) 31
default macros described 31
defining 29
definition 29
expanding 29
file-name 31

modifiers
list of 32

modifying 31
null 37
string substitution in 30
substitution in 30
syntax 29
using 30

MAKE FILE and 19
makefiles

creating 23
make files with different names 21
NMAKE compatibility and 22
NOKEEP option 22
null macros 37
onscreen display (turning off) 22
options

setting as defaults 22
options help 19
program exit status and 22
rules

format of 24
ignoring option 22

Share and 22
stopping 20
suppressing onscreen display 22
symbolic targets 23

rules for 24
syntax of 19
targets

multiple 23
targets and 23
temporary files

debugging with 28
keeping 21, 22

TOUCH.EXE and 21
turning on options as defaults 21
undefining macros 21
using makefiles with 21

MAKE directives 32-37
conditionals 34

MAKE options
getting help 21
list of 21
-N (NMAKE compatibility) 22
using 21

105

MAKE FILE
using 23

makefiles See MAKE, makefiles
commands in 25, 27
debugging 28
implicit rules and 26
KEEP option 22
line continuation in 25
NOKEEP option 22
specifying 21

MAKEREXE
defined 19

mangled names, DLLs and 47
map files

debugging 10
generated by TUNK 10

!message MAKE directive 32
described 35

module definition files 45
module definition files (.DEF)

example of 46, 47
IMPDEF and 46

module names, TUB 41

N
-N MAKE option 21
-n MAKE option 22
NMAKE (Microsoft)

using MAKE instead 21
.noautodepend MAKE directive 32
.nolgnore MAKE directive 32
NOKEEP MAKE option 22
.nosilent MAKE directive 32

o
.OBJ files (object files)

libraries
advantages of using 39
creating 41
TLIB and 39

object library contents 40
operations, precedence 40
operations (TUB option) 40

p
-p MAKE option 22

106

-p RC option (pack resources) 52
IP TLIB option (page size) 42
page size (libraries) 42
pages, aligning 9
.path.ext MAKE directive 32

described 36
precedence, TUB commands 40
.precious MAKE directive 33

described 36

Q
-q MAKE option 22

R
-r MAKE option 22

BUILTINS.MAK and 20
-r RC option (compile .Re to .RES) 52
RC49
RC (resource compiler) 51
RC_INVOKED 50
.RC files 49
remove (TUB action) 41
replace (TUB action) 42
.RES files 49
Resource Compiler

include files 52
options 52

help 52
syntax 51

resource script (.RC) files 49
resources 49

compiling 50
response files

defined 7
MAKE and 29
TLIB 42
TLINKand 7

s
-s MAKE option 22
segments, map of

ACBP field and 10
TLINKand 10

Share (DOS)
MAKE and 22

.silent MAKE directive 33

Borland C++ for OS/2 Tools and Utilities Guide

source files, separately compiled 39
standalone utilities 1
startup code (TLINK) 5
.suffixes MAKE directive 33

described 36
syntax

T

Resource Compiler 51
TLIB 40
TLINK 3

IT TLINK option (output file type) 11
TLIB

errors 53
TLIB (librarian)

action symbols 40-42
capabilities 39
examples 43
module names 41
operations 40, 41

precedence 40
options

case sensitivity (I c) 40, 43
IE 40
libname 40
operations 40
page size (lP) 42
using 40

response files, using 42
syntax 40

TLINK
errors 53

TLINK (linker)
ACBP field and 10
command-line compiler and 6
debugging information 11
executable file map generated by 10
initialization modules 5
invoking 3
options 8

Index

align pages (I A) 9
application type (I a) 9
base address (lB) 9
case sensitivity (I c) 9
chain fixups (lOc) 11

debugging information (Iv) 11
file-extension 7
goodies (lG) 9
map files (1m)

debugging 10
public symbols in 10
segments in 10

maximum errors (IE) 9
output file type (IT) 11
Is (map files) 10
stack size (IS) 11
Iv (debugging information) 11
Iw (warning control) 12
warning control (lw) 12
Ix (map files) 10

response files 7
example 8

starting 3
startup code 5
syntax 3
warning control 12

TOUCH.EXE
described 21

u
-U MAKE option 21
!undef MAKE directive 33

described 36
utilities

standalone 1

V
Iv TLINK option (debugging information) 11

w
-W MAKE option 21

setting defaults with 22
Iw TLINK option (warning control) 12
warning control, TLINK and 12
warning messages 55-102

defined 54
warnings See also errors

IMPLIB 46
WORKSHOP_INVOKED 50

107

Borland
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Canada,
Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, New Zealand, Singapore,
Spain, Sweden, Taiwan, and United Kingdom' Part # BCP1415WW21773 • BOR 7003

