
lor OS/2®

Library Reference

Borland® C++
for OS/2®
Version 1.5

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1987, 1994 by Borland International. All rights reserved. All Borland product
names are trademarks or registered trademarks of Borland International, Inc. Other brand
and product names are trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95066-3249

PRINTED IN THE UNITED STATES OF AMERICA

1 EOR0294
9495969798-987654321
H1

Contents

Introduction 1 clock 27

Chapter 1 The main function 3
_close -.......... 28
close 28

Arguments to main 3 closedir 28
An example program 4 clreol 29
Wildcard arguments 5 clrscr ' 29

An example program 5
Using -p (Pascal calling conventions) 6
The value main returns 6
Passing file information to child processes 6
Pop-up screens 7
Multi-thread programs 7

_control87 30
cos, cosl 31
cosh, coshl 31
country 32
cprintf 33
cputs 33

Chapter 2 Run-time functions 9
Sample function entry 9

- abort 10

_creat 34
creat 34
creatnew 35

abs 11 creattemp 36

access 11 _crotl, _crotr 37

acos, acosl 12
alloca 13

cscanf 37
ctime 38

asctime 13 cwait 38

asin, asinl 14
assert 15

delline 40
difftime 40

atan, atanl 15
atan2, atan21 16
atexit 16

div 40
_dos_close 41
_dos_creat 41

atof, _atold 17
atoi 18

_dos_creatnew 42
_dos_findfirst 43

atol 18 _dos_findnext 44

_atolCl 19
_beginthread 19
bsearch 20

_dos_getdate, _dos_setdate, getdate, setdate ... 45
_dos_getdiskfree 46
_dos~etdrive, _dos_setdrive 46

cabs, cabsl 21
calloc 22

_dos_getfileattr, _dos_setfileattr 47
_dos_getftime, _dos_setftime 48

ceil, ceill 22
_c_exit 23
_cexit 23
cgets 23
chdir 24

_dos_gettime,_dos_settime 49
_dos_open 49
_dos_read 50
_dos_setdate 51
_dos_setdrive 51

_chdrive 24
_chmod 25
chmod 25

_dos_setfileattr 52
_dos_setftime 52
_dos_settime 52

chsize 26 _dos_write 52

_clear87 26
clearerr 27

dostounix 53
dup 53

dup2 54 fwrite 84
ecvt 54 gcvt 84
_end thread 55 getc 85
eof•..................... 55 getch 85
execl, execle, execlp, execlpe, execv, getchar 86
execve,execvp,execvpe 56 getche 86
_exit 58 getcurdir . 86
exit 58 getcwd 87
exp, expl 59 getdate 88
_expand 60 _getdcwd 88
fabs, fabsl 60 getdfree . 88
fclose 61 getdisk, setdisk 89
fcloseall 61 _getdrive 89
fcvt 61 getenv 90
fdopen 62 getftime, setftime 90
feof 63 getpass 91
ferror 63 getpid 92
fflush 64 gets 92
fgetc 64 gettext 92
fgetchar 65 gettextinfo . 93
fgetpos 65 gettime, settime 94
fgets 65 getverify 94
filelength 66 getw 95
fileno 66 gmtime 95
findfirst 67 gotoxy 96
findnext 68 _heapadd 97
floor, floorl 69 heapcheck 97
flushall 69 heapcheckfree 97
fmod, fmodl 70 heapchecknode 98
fnmerge 70 _heapchk 98
fnsplit 71 heapfillfree 99
fopen 72 _heapmin 99
_fpreset 73 _heapset 100
fprintf 74 heapwalk 100
fputc 74 _heapwalk 101
fputchar 74 highvideo 101
fputs 75 hypot, hypotl 101
fread 75 insline 102
free 76 isalnum 102
freopen 76 isalpha 103
frexp, frexpl 77 isascii . 103
fscanf 77 isatty 104
fseek 78 iscntrl 104
fsetpos 79 isdigit 105
_fsopen 79 is graph 105
fstat, stat 81 is lower 105
ftell 82 isprint 106
ftime 83 ispunct . 106
_fullpath 83 isspace 107

isupper 107 poly, polyl 139
isxdigit 107 _popen 139
itoa 108 pow, powl 140
kbhit 108 pow10, pow10l 141
labs 109 printf 141
ldexp,ldexpl 109 putc 148
ldiv 110 . putch 148
lfind 110 putchar 148
localeconv 111 putenv 149
localtime 113 puts 149
lock 114 puttext 150
locking 114 putw 151
log, logl 115 qsort 151
log10,loglOl 116 raise 152
longjmp 116 rand 153
lowvideo 117 random 153
_lrotl, _lrotr 118 randomize 153
lsearch 118 _read 154
lseek 119 read 154
Ito a 120 readdir 155
_makepath 120 realloc 155
maUoc 121 remove 156
_matherr, _matherrl : .. 122 rename 157
max 124 rewind 157
mblen 124 rewinddir 158
mbstowcs 125 rmdir 158
mbtowc 125 rmtmp 159
memccpy 126 _rotl, _rotr 159
memchr 126 _rtl_chmod 159
memcmp 127 _rtl_close 160
memcpy 128 _rtl_creat 161
memicmp 128 _rtl_heapwalk 161
memmove 128 _rtl_open 162
memset 129 _rtl_read 163
min 129 _rtl_ write 164
mkdir 130 scanf 165
mktemp 130 _searchenv 172
mktime 131 searchpath 173
modf, modfl 131 _searchstr 173
move text 132 setbuf 174
_msize 132 _setcursortype 175
normvideo 133 setdate 175
offsetof 133 setdisk .. 175
_open 134 setjmp 175
open 134 setlocale 176
opendir 135 setmode 179
_pclose 136 settime 180
perror 136 setvbuf 180
_pipe 138 setverify 181

iii

signal 182 strtoul 213
sin, sinl 185 strupr 213
sinh, sinhl 185 strxfrm 213
sleep 186 swab 215
sopen ' 186 system 215
spawnl, spawnle, spawnlp, spawnlpe, spawnv, tan, tanl '. " 216
spawnve, spawnvp, spawnvpe 188 tanh, tanhl 216
_splitpath 191 tell 217
sprintf 192 tempnam 217
sqrt, sqrtl 192 textattr 218
srand 193 textbackground 219
sscanf 193 textcolor 220
stackavail 194 textmode 222
stat 194 time 223
_status87 194 tmpfile 223
stime 195 tmpnam 223
stpcpy 195 toascii 224
strcat 196 _tolower 224
strchr 196 tolower 225
strcmp 197 _toupper 225
strcmpi 197 toupper 226
strcoll 198 _truncate, _ftruncate 226
strcpy " 198 tzset 227
strcspn 199 ultoa 228
_strdate 199 umask 228
strdup 199 ungetc 229
_strerror 200 ungetch 229
strerror 200 unixtodos 230
strftime 201 unlink 230
stricmp 203 unlock 231
strlen 203 utime 231
strlwr 204 va_arg,va_end,va_start 232
stmcat 204 vfprintf 233
stmcmp 205 vfscanf 234
stmcmpi 205 vprintf 234
strncpy 206 vscanf 235
strnicrnp 206 vsprintf 236
stmset 207 vsscanf 236
strpbrk 207 wait 237
strrchr 207 wcstombs 238
strrev 208 wctomb 238
strset 208 wherex 239
strspn 209 wherey 239
strstr 209 window 240
_strtime 209 _write 240
strtod, _strtold 210 write 240
strtok 211
strtol 211
_strtold 213

Chapter 3 Global variables 243
_argc ,' ... 243

iv

_argv 243 Public member functions ., 265
_ctype , 243 istream class 265
_daylight 244 Public constructor 265
_environ 244 Public member functions 265
errno, _doserrno, _sys_errlist, _sys_nerr 245 Protected member functions 267
fileinfo 247 istream withassign class 267
_floatconvert 247 Public constructor 267
_fmode 248 Public member functions ., 267
_new_handler 248 istrstream class 267
_osmajor, _osminor, _osversion 249 Public constructors 268
_threadid 249 of stream class 268
__ throwExceptionName, __ throw FileName, Public constructors 268
__ throw LineN umber 250 Public member functions ., 269
_timezone 250 ostream class 269
_tzname 250 Public constructor 269
_version 251 Public member functions ., 269
wscroll 251 ostream withassign class 270

Chapter 4 The C++ iostreams 253
conbuf class 253

Public constructor 253
Public member functions 253

constream class 255
Public constructor 255
Public member functions 255

filebuf class 255
Public constructors 256
Public data members 256
Public member functions 256

fstream class 257
Public constructors 258
Public member functions 258

fstreambase class 258
Public constructors 258
Public member functions 259

ifstream class 259

Public constructor 270
Public member functions 270

ostrstream class 270
Public constructors 270
Public member functions ., 271

streambuf class 271
Public constructors 271
Public member functions 272
Protected member functions 273

strstreambase class 274
Public constructors 274
Public member functions 274

strstreambuf class 274
Public constructors 275
Public member functions ., 275

strstream class 276
Public constructors 276
Public member function 276

Public constructors 259 Chapter 5 Persistent stream classes and
Public member functions 260 ma~~ 2n

ios class -" 260 The persistent streams class hierarchy 277
Public data members 260 fpbase class 278
Protected data members 261 Constructors 278
Public constructor 262 Public member functions ., 278
Protected constructor 262 ifpstream class 278
Public member functions 262 Public constructors 279
Protected member functions 264 Public member functions ., 279

iostream class 264 ipstream class 279
Public constructor 264 Public constructors 279

iostream_ withassign class 264 Public member functions ., 279
Public constructor 265 Protected constructors 281

v

Protected member functions 281
Friends 282

ofpstream class 282
Public constructors 282
Public member functions 283

opstream class 283
Public constructors and destructor 283
Public member functions 283
Protected constructors 285
Protected member functions 285
Friends 285

pstream class 286
Type definitions 286
Public constructors and destructor 286
Public member functions 286
Operators 287
Protected data members 287
Protected constructors 287
Protected member functions 288

TStreamableBase class 288
Type definitions 288
Public destructor 288
Public member functions 288

TStreamableClass class 289
Public constructor 289
Friends 290

TStreamer class 290
Public member functions 290
Protected constructors 290
Protected member functions 290

__ DELTA macro 291
DECLARE_STREAMABLE macro 291
DECLARE_STREAMABLE_FROM_BASE
macro 291
DECLARE_ABSTRACT_STREAMABLE
macro 292
DECLARE_STREAMER macro 292
DECLARE_STREAMER_FROM BASE macro . 292
DECLARE_ABSTRACT _STREAMER macro .. 292
DECLARE_CASTABLE macro 293
DECLARE_STREAMABLE_OPS macro 293
DECLARE_STREAMABLE_CTOR macro 293
IMPLEMENT_STREAMABLE macros 293
IMPLEMENT _STREAMABLE CLASS macro . 294
IMPLEMENT_STREAMABLE - CTOR macros . 294
IMPLEMENT_STREAMABLE=POINTER
macro 294
IMPLEMENT_ CASTABLE_ID macro 294
IMPLEMENT_CASTABLE macros 294

vi

IMPLEMENT_STREAMER macro 295
IMPLEMENT_ABSTRACT_STREAMABLE
macros 295
IMPLEMENT_STREAMABLE_FROM_BASE
macro 295

Chapter 6 The C++ container classes 297
Array containers 297
TMArrayAsVector template 297

Type definitions 297
Public constructors 298
Public member functions 298
Protected member functions 300
Operators 300

TMArrayAsVectorIterator template 301
Public constructors 301
Public member functions 301
Operators 301

TArrayAsVector template 302
Public constructors 302

TArrayAsVectorIterator template 302
Public constructors 302

TMIArrayAsVector template 302
Type definitions 302
Public constructors 303
Public member functions 303
Protected member functions 305
Operators 306

TMIArrayAsVectorIterator template 306
Public constructors 306
Public member functions 306
Operators 307

TIArrayAsVector template 307
Public constructors 307

TIArrayAsVectorIterator template 307
Public constructors 308

TMSArrayAsVector template 308
Public constructors 308

TMSArrayAsVectorIterator template 308
Public constructors 308

TSArray template 308
TSArrayAsVector template 309

Public constructors 309
TSArrayAsVectorIterator template 309

Public constructors 309
TSArrayIterator template 309
TISArrayAsVector template 309

Public constructors 310
TISArrayAsVectorIterator template 310

Public constructors 310 Public constructors 322
TMISArrayAsVector template 310 Binary tree containers 322

Public constructors 310 TBinarySearchTreelmp template 322
Association containers 310 Public member functions 322
TMDDAssociation template 310 Protected member functions 323

Public constructors 311 TBinarySearchTreeIteratorImp template 323
Public member functions 311 Public constructors 324
Operators 311 Public member functions 324

TDDAssociation template 312 Operators 324
Public constructors 312 TIBinarySearchTreelmp template 324

TMDIAssociation template 312 Public member functions 325
Public constructors 312 Protected member functions 325
Public member functions 313 TIBinarySearchTreeIteratorImp template 326
Operators 313 Public constructors 326

TDIAssociation template 313 Public member functions 326
Public constructors 313 Operators 326

TMIDAssociation template 314 Dequeue containers 327
Protected data members 314 TMDequeAsVector template 327
Public constructors 314 Type definitions 327
Public member functions 314 Public constructors 327
Operators 315 Public member functions 327

TIDAssociation template ; 315 Protected data members 329
Public constructors 315 Protected member functions 329

TMIIAssociation template 315 TMDequeAsVectorIterator template 329
Public constructors 316 Public constructors 329
Public member functions 316 Public member functions 329
Operators 316 Operators 330

TIIAssociation template 316 TDequeAsVector template 330
Public constructors 317 Public constructors 330

Bag containers 317 TDequeAsVectorIterator template 330
TMBagAsVector template 317 Public constructors 331

Type definitions 317 TMIDequeAsVector template 331
Public constructors 317 Type definitions 331
Public member functions 318 Public constructors 331

TMBagAsVectorIterator template 318 Public member functions 331
Public constructors 319 TMIDequeAsVectorIterator template 333

TBagAsVector template 319 Public constructors 333
Public constructors 319 TIDequeAsVector template 333

TBagAsVectorIterator template 319 Public constructors 333
Public constructors 319 TIDequeAsVectorIterator template 334

TMIBagAsVector template 319 Public constructors 334
Type definitions 320 TMDequeAsDoubleList template 334
Public constructors 320 Type definitions 334
Public member functions 320 Public member functions 334

TMIBagAs VectorIterator template 321 TMDequeAsDoubleListIterator template 336
Public constructors 321 Public constructors 336

TIBagAsVector template 322 TDequeAsDoubleList template 336
Public constructors 322 TDequeAsDoubleListIterator template 336

TIBagAsVectorIterator template 322 Public constructors 336

vii

TMIDequeAsDoubleList template 336 Operators 349
Type definitions 337 TDoubleListImp template 349
Public member functions 337 Public constructors 350

TMIDequeAsDoubleListlterator template 338 TDoubleListlteratorImp template 350
Public constructors 339 Public constructors 350

TIDequeAsDoubleList template 339 TMSDoubleListImp template 350
TIDequeAsDoubleListlterator template 339 Protected member functions 350

Public constructors 339 TMSDoubleListlteratorImp template 351
Dictionary containers 339 Public constructors 351
TMDictionaryAsHashTable template 339 TSDoubleListImp template 351

Protected data members 339 TSDoubleListlteratorImp template 351
Public constructors 340 Public constructors 351
Public member functions 340 TMIDoubleListImp template 352

TMDictionaryAsHashTablelterator template .. 340 Type definitions . 352
Public constructors 341 Public member functions 352
Public member functions 341 Protected member functions 353
Operators 341 TMIDoubleListlteratorImp template 354

TDictionaryAsHashTable template 341 Public constructors 354
Public constructors 342 Public member functions 354

TDictionaryAsHashTablelterator template 342 Operators 354
Public constructors 342 TIDoubleListImp template 354

TMIDictionaryAsHashTable template 342 TIDoubleListlteratorImp template 355
Public constructors 342 Public constructors 355
Public member functions 342 TMISDoubleListImp template 355

TMIDictionaryAsHashTablelterator template .343 Protected member functions 355
Public constructors 343 TMISDoubleListlteratorImp template 355
Public member functions 343 Public constructors 355
Operators 344 TISDoubleListImp template 356

TIDictionaryAsHashTable template 344 TISDoubleListlteratorImp template 356
Public constructors 344 Public constructors 356

TIDictionary AsHashTablelterator template ... 344 Hash table containers 356
Public constructors 345 TMHashTableImp template 356

TDictionary template 345 Public constructors and destructor 356
TDictionarylterator template 345 Public member functions 357

Public constructors- 345 TMHashTablelteratorImp template 357
Double list containers 345 Public constructors and destructor 357
TMDoubleListElement template 345 Public member functions ',' ... 358

Public data members 345 Operators 358
Public constructors 346 THashTableImp template 358
Operators 346 Public constructors 358

TMDoubleListImp template 346 THashTablelteratorImp template 359
Type definitions 346 Public constructors 359
Public constructors 347 TMIHashTableImp template 359
Public member functions 347 Public constructors 359
Protected data members 348 Public member functions 359
Protected member functions 348 TMIHashTablelteratorImp template 360

TMDoubleListlteratorImp template 348 Public constructors 360
Public constructors 348 Public member functions 360
Public inember functions 349 Operators 360

viii

TIHashTableImp template 361 TMQueueAsVectorIterator template 372
Public constructors 361 Public constructors 372

TIHashTableIteratorImp template 361 TQueueAsVector template 373
Public constructors 361 Public constructors 373

List containers 361 TQueueAsVectorIterator template 373
TMListElement template 361 Public constructors 373

Public data members 362 TMIQueueAsVector template 373
Public constructors 362 Public constructors 373
Operators 362 Public member functions 373

TMListImp template 362 TMIQueueAsVectorIterator template 374
Type definitions 362 Public constructors 375
Public constructors 363 TIQueueAsVector template 375
Public member functions 363 Public constructors 375
Protected data members 364 TIQueueAsVectorIterator template 375
Protected member functions 364 Public constructors 375

TMListIteratorImp template 364 TMQueueAsDoubleList template 375
Public constructors 364 Public member functions 376
Public member functions 365 TMQueueAsDoubleListIterator template 377
Operators 365 Public constructors 377

TListImp template 365 TQueueAsDoubleList template 377
TListIteratorImp template : 365 TQueueAsDoubleListIterator template 377

Public constructors 366 Public constructors 377
TMSListImp template 366 TMIQueueAsDoubleList template 377
TMSListIteratorImp template 366 Public member functions 378

Public constructors 366 TMIQueueAsDoubleListIterator template 379
TSListImp template 366 Public constructors 379
TSListIteratorImp template 366 TIQueueAsDoubleList template 379
TMIListImp template 367 TIQueueAsDoubleListIterator template 379

Type definitions 367 Public constructors 379
Public member functions 367 TQueue template 379
Protected member functions 368 TQueueIterator template 380

TMIListIteratorImp template 368 Set containers 380
Public constructors 368 TMSetAs Vector template 380
Public member functions 368 Public constructors 380
Operators 369 Public member functions 380

TIListImp template 369 TMSetAsVectorIterator template 380
TIListIteratorImp template 369 Public constructors 380

Public constructors 369 TSetAsVector template 381
TMISListImp template 369 Public constructors 381

Public member functions 370 TSetAsVectorIterator template 381
TMISListIteratorImp template 370 Public constructors 381

Public constructors 370 TMISetAsVector template 381
TISListImp template 370 Public constructors 381
TISListIteratorImp template 371 Public member functions 382

Public constructors 371 TMISetAsVectorIterator template 382
Queue containers 371 Public constructors 382
TMQueueAsVector template 371 TISetAsVector template 382

Public constructors 371 Public constructors 382
Public member functions 371 TISetAsVectorIterator template 382

ix

Public constructors 383 Operators 394
TSet template 383 TVectorImp template 394
TSetIterator template 383 Public constructors 395
Stack containers 383 TVectorIteratorImp template 395
TMStackAsVector template 383 Public constructors 395

Type definitions 383 TMCVectorImp template 395
Public constructors 383 Public constructors 396
Public member functions 384 Public member functions 396

TMStackAsVectorIterator template 385 Protected data members 396
Public constructors 385 TMCVectorIteratorImp template 397

TStackAsVector template 385 Public constructors 397
Public constructors 385 TCVectorImp template 397

TStackAsVectorIterator template 385 Public constructors 397
Public constructors 386 TCVectorIteratorImp template 398

TMIStackAsVector template 386 Public constructors 398
Type definitions 386 TMSVectorImp template 398
Public constructors 386 Public constructors 398
Public member functions 386 TMSVectorIteratorImp template 398

TMIStackAsVectorIterator template 387 Public constructors 399
Public constructors 388 TSVectorImp template 399

TIStackAsVector template 388 Public constructors 399
Public constructors 388 TSVectorIteratorImp template 399

TIStackAsVectorIterator template 388 Public constructors 400
Public constructors 388

TMStackAsList template ~ 388
TMIVectorImp template 400

Type definitions 400
TMStackAsListIterator template 389 Public constructors 400

Public constructors 389 Public member functions 400
TStackAsListtemplate 389 Operators 402
TStackAsListIterator template 389 TMIVectorIteratorImp template 402

Public constructors 389 Public constructors 402
TMIStackAsListtemplate 389 Public member functions 402
TMIStackAsListIterator template 390 Operators 403

Public constructors 390 TIVectorImp template 403
TIStackAsList template 390 Public constructors 403
TIStackAsListIterator template 390 TIVectorIteratorImp template 403

Public constructors 390 Public constructors 403
TStack template 390 TMICVectorImp template 404
TStackIterator template 391 Public constructors 404
Vector containers 391 Public member functions 404
TMVectorImp template 391 Protected member functions 404

Type definitions 391 TMICVectorIteratorImp template 404
Public constructors 391 Public constructors 405
Public member functions 391 TICVectorImp template 405
Operators 393 Public constructors 405
Protected data members 393 TICVectorIteratorImp template 405
Protected member functions 393 Public constructors 406

TMVectorIteratorImp template 393 TMISVectorImp template 406
Public constructors 394 Public constructors 406
Public member functions 394 TMISVectorIteratorImp template 406

x

Public constructors 406 Protected member functions 434
TISVectorImp template 407 Operators 434

Public constructors 407 TFileStatus structure 436
TISVectorIteratorImp template 407 TFile class 436

Public constructors 407 Public data members 436
TShouldDelete 408 Public constructors 437
TShouldDelete class 408 Public member functions 438

Public data members 408 string class 439
Public constructors 408 Type definitions . 439
Public member functions 408 Public constructors and destructor 440
Protected member functions 408 Public member functions 441

Chapter 7 The C++ mathematical classes 411
bcd 411

Public constructors 412
Friend functions 413

complex 414
Public constructors 414
Friend functions 414

Protected member functions 448
Operators 449
Related global operators and functions 451

TSubString class 452
Public member functions 452
Protected member functions 453
Operators 453

TCriticalSection class 454

Chapter 8 Class diagnostic macros 419
Default diagnostic macros 420
Extended diagnostic macros 421
Macro message output 423
Run-time macro control 424

Constructors and destructor 455
TCriticaISection::Lock class 455

Public constructors and destructor 455
TMutex class 455

Public constructors and destructor 456

Chapter 9 Run-time support 425
Operators 456

TMutex::Lock class 456
Bad_cast class 425 Public constructors 456
Bad_typeid class 425 Public member functions 457
set_new _handler function 425
set_terminate function 426

TSync class 457
Protected constructors 457

set_unexpected function 427
terminate function 427
Type_info class 428

Protected operators 458
TSync::Lock class 458

Public constructors and destructor 458
Public constructor 428 TThread class 458
Operators 428
Public member functions 428

Type definitions . 459
Protected constructors and destructor 460

unexpected function ; 429 Public member functions 460
xalloc class 429 Protected member functions 461

Public constructors 429
Public member functions 429

Protected operators 461
TThread::TThreadError class 461

xmsg class 430
Public constructor 430

Type definitions 461
Public member functions 462

Public member functions 430 TTime type definitions 462

Chapter 10 C++ utility classes 431
TDate class 431

Type definitions 431
Public constructors 432
Public member functions 432

TTime class 462
Public constructors 463
Public member functions 463
Protected member functions 464
Protected data members 464
Operators 465

xi

Appendix A Run-time library cross-reference 467 Interface routines 476
The run-time libraries 467 International locale API routines 476
Reasons to access the run-time library source Manipulation routines 476
code 469 Math routines 477
The Borland C++ header files 469 Memory routines 478
Library routines by category 472 Miscellaneous routines 478

C++ prototyped routines 472 Obsolete definitions 478
Classification routines 473 Process control routines 479
Conversion routines 473 Console I/O routines 480
Directory control routines 473 Time and date routines 480
Diagnostic routines 474 Variable argument list routines 480
Inline routines 474
Input/output routines 474 Index 481

xii

Tables

2.1 Locale monetary and numeric settings 111
4.1 The functions declared in constrea.h are not

available for PM applications 253

A.1 Obsolete global variables 478
A.2 Obsolete function names 479

xiii

Figures

5.1 Streamable class hierarchy 277

xiv

Introduction

Introduction

This manual contains definitions of the Borland C++ classes, nonprivate
class members, library routines, common variables, and common defined
types for windows programming.

If you'~e new to C or C++ programming, or if you're looking for informa
tion on the contents of the Borland C++ manuals, see the introduction in
the User's Guide.

Here is a summary of the chapters in this manual:

Chapter 1: The main function discusses arguments to main (including wild
card arguments), provides some example programs, and gives some
information on Pascal calling conventions and the value that main returns.

Chapter 2: Run-time functions is an alphabetical reference of all Borland
C++ library functions. Each entry gives syntax, portability information, an
operative description, and return values for the function, together with a
reference list of related functions and examples of how the functions are
used.

Chapter 3: Global variables defines and discusses Borland C++'s global
variables. You can use these to save yourself a great deal of programming
time on commonly needed variables (such as dates, time, error messages,
stack size, and so on).

Chapter 4: The C++ iostreams provides a description of the classes that
provide support for I/O in C++ programs.

Chapter 5: Persistent stream classes and macros describes the persistent
streams classes and macros.

Chapter 6: The C++ container classes is a description of the C++ objects
provided by Borland C++ to support data structures and data abstraction.

Chapter 7: The C++ mathematical classes is a description of C++
mathematics using bcd and complex classes.

Chapter 8: Class diagnostic macros describes the classes and macros that
support object diagnostics.

Chapter 9: Run-time support describes functions and classes that let you
control the way your program executes at run time in case the program
runs out of memory or encounters some exception.

2

Chapter 10: C++ utility classes describes the C++ date, string, and time
classes.

Appendix A: Run-time library cross-reference contains an overview of the
Borland C++ library routines and header files. The header files are listed
alphabetically, and the library routines are grouped according to the tasks
they commonly perform.

Borland C++ for OS/2 Library Reference

c H A p T E R 1

The main function

Every C and c++ program must have a main function; where you place it is
a matter of preference. Some programmers place main at the beginning of
the file, others at the end. Regardless of its location, the following points
about main always apply.

Arguments to main

Three parameters (arguments) are passed to main by the Borland C++
startup routine: argc, argv, and env.

tl argc, an integer, is the number of command-line arguments passed to
main.

EI argv is an array of pointers to strings (char *[D.

o argv[O] is the name of the program being run, exactly as the user typed
it on the command line.

o argv[l] points to the first string typed on the operating system
command line after the program name.

o argv[2] points to the second string typed after the program name.

o argv[argc-l] points to the last argument passed to main.
o argv[argc] contains NULL.

a env is also an array of pointers to strings. Each element of env[] holds a
string of the form ENWAR=val ue .

• ENVV AR is the name of an environment variable, such as PATH or
COMSPEC .

• value is the value to which ENVV AR is set, such as C: \APPS;C: \
TOOLS; (for PATH) or C:\DOS\COMMAND.COM for COMSPEC.

If you declare any of these parameters, you must declare them exactly in the
order given: argc, argv, env. For example, the following are all valid
declarations of main's arguments:

Chapter 1, The main function 3

Refer to the environ
entry in Chapter 3

and the putenv and
getenv entries in

Chapter 2 for more
information.

An example
program

4

int main ()
int main(int argc) 1* legal but very unlikely *1
int main(int argc, char * argv[])
int main(int argc, char * argv[], char * env[])]

The declaration int main (int argc) is legal, but it's very unlikely that you
would use argc in your program without also using the elements of argv.

The argument env is also available through the global variable environ.

argc and argv are also available via the global variables _argc and _argv.

Here is an example that demonstrates a simple way of using these
arguments passed to main:

1* Program ARGS.C *1
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[], char *env[]) {
int i;

printf("The value of argc is %d \n\n", argc);
printf("These are the %d command-line arguments passed to"

" main:\n\n", argc);

for (i = 0; i < argc; itt)
printf(" argv[%d]: %s\n", i, argv[i]);

printf("\nThe environment string(s) on this system are:\n\n");

for (i = 0; env[i] != NULL; itt)
printf(" env[%d]: %s\n", i, env[i]);

return 0;
}

Suppose you run ARGS.EXE at the OS/2 prompt with the following
command line:

C:> args first_arg "arg with blanks" 3 4 "last but one" stop!

Note that you can pass arguments with embedded blanks by surrounding
them with quotes, as shown by "argument with blanks" and "last but one"
in this example command line.

The output of ARGS.EXE (assuming that the environment variables are set
as shown here) would then be like this:

The value of argc is 7

These are the 7 command-line arguments passed to main:

argv[O]: args
argv[l]: first_arg

Borland C++ for OS/2 Library Reference

Wildcard
arguments

'An example
program

argv[2]: args with blanks
argv [3]: 3
argv[4] :
argv[S]: last but one
argv[6]: stop!

The environment string(s) on this system are:

env[O]: USER_INI=C:\OS2\OS2.INI
env[1]: SYSTEM_INI=C:\OS2\OS2SYS.INI
env[2]: OS2_SHELL=C:\OS2\CMD.EXE
env[3]: AUTOSTART=PROGRAMS,TASKLIST,FOLDERS
env[4]: RUNWORKPLACE=C:\OS2\PMSHELL.EXE
env[5]: COMSPEC=C:\OS2\CMD.EXE
env[6]: PATH=C:\OS2;C:\OS2\SYSTEM;C:\;C:\OS2\APPS;
env[7]: DPATH=C:\OS2;C:\OS2\SYSTEM;C:\;C:\OS2\APPS;
env[8]: PROMPT=$i[$p]
env[9]: HELP=C:\OS2\HELP;C:\OS2\HELP\TUTORIAL;
env [10]: GLOSSARY.=C: \OS2 \HELP\GLOSS;
env[11]: KEYS=ON
env[12]: BOOKSHELF=C:\OS2\BOOK;
env[13]: EPATH=C:\OS2\APPS

Command-line arguments containing wildcard characters can be expanded
to all the matching file names, much the same way DOS expands wildcards
when used with commands like COPY. All you have to do to get wildcard
expansion is to link your program with the WILDARGS.OBJ object file,
which is included with Borland C++.

Once WILDARGS.OBJ is linked into your program code, you can send
wildcard arguments of the type *.* to your main function. The argument
will be expanded (in the argv array) to all files matching the wildcard mask.
The maximum size of the argv array varies, depending on the amount of
memory available in your heap.

If no matching files are found, the argument is passed unchanged. (That is,
a string consisting of the wildcard mask is passed to main.)

Arguments enclosed in quotes (" ... ") are not expanded.

The following commands compile the file ARGS.C and link it with the
wildcard expansion module WILDARGS.OBJ, then run the resulting
executable file ARGS.EXE:

BCC ARGS.C WILDARGS.OBJ
ARGS C:\BORLANDC\INCLUDE*.H "*.C"

When you run ARGS.EXE, the first argument is expanded to the names of
all the *.H files in your Borland C++ INCLUDE directory. Note that the

Chapter 1, The main function 5

For more on TUB,
see the Users Guide.

expanded argument strings include the entire path. The argument *.C is not
expanded because it is enclosed in quotes.

In the IDE, simply specify a project file (from the project menu) that
contains the following lines:

ARGS
WILDARGS.OBJ

Then use the Run I Arguments option to set the command-line parameters.

If you prefer the wildcard expansion to be the default, modify your
standard C?LIB library files to have WILDARGS.OBJ linked automatically.
To accomplish that, remove SETARGV and INITARGS from the libraries
and add WILDARGS. The following commands invoke the Turbo librarian
(TLIB) to modify all the standard library files (assuming the current
directory contains the standard C and c++ libraries and WILDARGS.OBJ):

tlib c2 -setargv -initargs +wildargs
tlib c2mt -setargv -initargs +wildargs

Using -p (Pascal calling conventions)

If you compile your program using Pascal calling conventions (described in
detail in Chapter 2, "Language structure," in the Programmer's Guide), you
must remember to explicitly declare main as a C type. Do this with the
_ _ cdecl keyword, like this:

int __ cdecl main(int argc, chart argv[], chart envp[])

The value main returns

The value returned by main is the status code of the program: an int. If,
however, your program uses the routine exit (or _exit) to terminate, the
value returned by main is the argument passed to the call to exit (or to
_exit).

For example, if your program contains the call exit (1) the status is 1.

Passing file information to child processes

6

If your program uses the exec or spawn functions to create a new process,
the new process will normally inherit all of the open file handles created by

Borland C++ for OS/2 Library Reference

the original process. However, some information about these handles will
be lost, including the access mode used to open the file. For example, if
your program opens a file for read-only access in binary mode, and then
spawns a child process, the child process might corrupt the file by writing
to it, or by reading from it in text mode.

To allow child processes to inherit such information about open files, you
must link your program with the object file FILEINFO.OBJ. For example:
bee test.c \borlande\lib\fileinfo.obj

The file information is passed in the environment variable _C_FILE_INFO.
This variable contains encoded binary information, and your program
should not attempt to read or modify its value. The child program must
have been built with the C++ run-time library to inherit this information
correctly. Other programs can ignore _C_FILE_INFO, and will not inherit
file information.

Pop-up screens

POPUP.OBJ adds
about 800 bytes of

code to your
program.

When the run-time library encounters an unrecoverable error, or your
program uses the assert macro with a false condition, the library displays an
error message to the standard error file (normally the display screen) and
terminates the program. However, if your program uses a windowing
system such as Presentation Manager, or redirects standard error, these
error messages might be invisible or overwrite existing screen displays.
You can cause error messages to be displayed in a pop-up screen by
including the object file POPUP.OB} when you link your program. For
example: bee test.c \borlandelib\popup.obj

Multi-thread programs

See the online Help
example for

_beginthread to see
how to use these

functions and
_threadidin a

program.

OS/2 programs can create more than one thread of execution. OS/2
provides a DosCreateThread function for this purpose. However, the C++
run-time library C2.LIB does not support more than one thread. If your
program creates multiple threads, and these threads also use the C++ run
time library, you must use the C2MT. LIB library instead.

The C2MT.LIB library provides the function _begin thread function, which
you use to create threads. C2MT.LIB also provides the function _endthread,
which terminates threads, and a global variable _threadid. This global
variable points to a long integer that contains the current thread's
identification number (also known as the thread ID). The header file
stddef.h contains the declaration of _threadid.

Chapter 1, The main function 7

8

When you compile or link a program that uses multiple threads, you must
use the -sm compiler switch. For example:

bee -sm thread.e

Special care must be taken when using the signal function in a multi-thread
program. See the description of the signal function for more information.

See "The run-time libraries" section in Appendix A for information about
linking to the DLL version of the run-time library.

Borland C++ for OS/2 Library Reference

Programming
examples for each

function are available
in the online Help
system. You can

easily copy them from
Help and paste them

into your files.

c H A p T E R 2

Run-time functions

This chapter contains a detailed description of each function in the Borland
C++ library. The functions are listed in alphabetical order, although a few
of the routines are grouped by "family" (the exec ... and spawn ... functions,
for example) because they perform similar or related tasks.

Each function entry provides certain standard information. For instance,
the entry for free

• Tells you which header file(s) cont~ins the prototype for free.

• Summarizes what free does.

• Gives the syntax for calling free.
• Gives a detailed description of how free is implemented and how it

relates to the other memory-allocation routines.

• Lists other language compilers that include similar functions.

• Refers you to related Borland C++ functions.

The following sample library entry lists each entry section and describes
the information it contains. The alphabetical listings start on page 10.

Sample function entry header file name

Function

Syntax

The function is followed by the header file(s) containing the prototype for
function or definitions of constants, enumerated types, and so on used by
function.

Summary of what this function does.

function(modifier parameter[, .. . J);

This gives you the declaration syntax for function; parameter names are
italicized. The [, ... J indicates that other parameters and their modifiers can
follow.

Portability is indicated by marks (.) in the columns of the portability table.
A sample portability table is shown here:

Chapter 2, Run-time functions 9

Sample function entry

Remarks

Return value

See also

Example

abort

Function

Syntax

10

Each entry in the portability table is described in the following table. Any
additional restrictions are discussed in the Remarks section.

DOS

UNIX

Available for DOS.

Available under UNIX andbr POSIX.

Win 16 Compatible with 16-bit Windows programs running on Microsoft Windows 3.1, Windows
for Workgroups 3.1, and Windows for Workgroups 3.11.

Win 32 Available to 32-bit Windows programs running on Win32s 1.0, and Windows NT 3.1
applications.

ANSI C Defined by the ANSI C Standard.

ANSI C++ Included in the ANSI C++ proposal.

OS/2 Available for OS/2.

If more than one function is discussed and their portability features are
identical, only one row is used. Otherwise, each function is represented in a
separate row.

This section describes what function does, the parameters it takes, and any
details you need to use function and the related routines listed.

The value that function returns (if any) is given here. If function sets any
global variables, their values are also listed.

Routines related to function that you might want to read about are listed
here. If a routine name contains an ellipsis, it indicates that you should refer
to a family of functions (for example, exec ... refers to the entire family of
exec functions: execl, execle, execlp, execlpe, execv, execve, execvp, and execvpe).

The function examples have been moved into online Help so that you can
easily cut-and-paste them to your own applications.

stdlib.h

Abnormally terminates a program.

void abort (void) ;

Borland C++ for OS/2 Library Reference

Remarks

Return value

See also

abs

Function

Syntax

Remarks

Return value

See also

access

Function

Syntax

abort

abort causes an abnormal program termination by calling raise(SIGABRT). If
there is no signal handler for SIGABRT, then abort writes a termination
message ("Abnormal program termination") on stderr, then aborts the
program by a call to _exit with exit code 3.

abort returns the exit code 3 to the parent process or to the operating system
command processor.

assert, atexit, _exit, exit, raise, signal, spawn ...

stdlib.h

Returns the absolute value of an integer.

int abs (int x) i

abs returns the absolute value of the integer argument x. If abs is called
when stdlib.h has been included, it's treated as a macro that expands to
inline code.

If you want to use the abs function instead of the macro, include #undef abs
in your program, after the #include <stdlib.h>.

This function can be used with bcd and complex types.

The abs function returns an integer in the range of a to INT_MAX, with the
exception that an argument with the value INT_MIN is returned as
INT_MIN. The values for INT_MAX and INT_MIN are defined in header
file limits.h.

bcd, cabs, complex, Jabs, labs

io.h

Determines accessibility of a file.

int access(const char *filenarne, int arnode)i

Chapter 2, Run-time functions 11

•

access

Remarks

Return value

See also

access checks the file named by filename to determine if it exists, and
whether it can be read, written to, or executed.

The list of amode values is as follows:

06 Check for read and write permission
04 Check for read permission
02 Check for write permission
01 Execute (ignored)
00 Check for existence of file

.. Under DOS, OS/2, and Windows (16- and 32-bit) all existing files have read
access (amode equals 04), so 00 and 04 give the same result. Similarly, amode
values of 06 and 02 are equivalent because under OS/2 write access implies
read access.

If filename refers to a directory, access simply determines whether the
directory exists.

If the requested access is allowed, access returns 0; otherwise, it returns a
value of -I, and the global variable errno is set to one of the following
values:

EACCES
ENOENT

Permission denied
Path or file name not found

chmod, fstat, stat

aces, acesl math.h

Function

Syntax

Remarks

12

acos

acosl

Calculates the arc cosine.

double acos(double x);
long double acosl(long double x);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

acos returns the arc cosine of the input value. acosl is the long double
version; it takes a long double argument and returns a long double result.
Arguments to acos and acosl must be in the range -1 to I, or else acos and
acosl return NAN and set the global variable errno to

EDOM Domain error

Borland C++ for OS/2 Library Reference

Return value

See also

alloca

Function

Syntax

Remarks

Return value

See also

asctime

Function

aces, acesl

This function can be used with bcd and complex types.

acos and acosl of an argument between -1 and + 1 return a value in the range
a to pi. Error handling for these routines can be modified through the
functions _matherr and _matherrl.

asin, atan, atan2, bcd, complex, cos, _matherr, sin, tan

malloc.h

Allocates temporary stack space.

void *alloca(size_t size) i

alloca allocates size bytes on the stack; the allocated space is automatically
freed up when the calling function exits.

Because alloca modifies the stack pointer, do not place calls to alloca in an
expression that is an argument to a function.

The alloca function should not be used in the try-block of a C++ program. If
an exception is thrown any values placed on the stack by alloca will be
corrupted.

If the calling function does not contain any references to local variables in
the stack, the stack will not be restored correctly when the function exits,
resulting in a program crash. To ensure that the stack is restored correctly,
use the following code in the calling function:

char *Pi
char dummy [5] i

dummy [0] = 0 i

P = alloca(nbytes)i

If enough stack space is available, alloca returns a pointer to the allocated
stack area. Otherwise, it returns NULL.

malloc

time.h

Converts date and time to ASCII.

Chapter 2, Run-time functions 13

asctime

Syntax

Remarks

Return value

See also

asin, asinl

Function

Syntax

asin

asinl

Remarks

Return value

See also

14

char *asctime(const struct tm *tblock);

asctime converts a time stored as a structure in *tblock to a 26-character
string of the same form as the ctime string:

Sun Sep 16 01:03:52 1973\n\0

asctime returns a pointer to the character string containing the date and
time. This string is a static variable that is overwritten with each call to
asctime.

ctime, difftime, ftime, gmtime, localtime, mktime, strftime, stime, time, tzset

math.h

Calculates the arc sine.

double asin(double x) ;
long double asinl(long double x);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

asin of a real argument returns the arc sine of the input value. asinl is the
long double version; it takes a long double argument and returns a long
double result.

Real arguments to asin and asinl must be in the range -1 to 1, or else asin
and asinl return NAN and set the global variable errno to

EDOM Domain error

This function can be used with bcd and complex types.

asin and asinl of a real argument return a value in the range -pi/2 to pi/2.
Error handling for these functions can be modified through the functions
_matherr and _matherrl.

acos, atan, atan2, bcd, complex, cos, _matherr, sin, tan

Borland C++ for OS/2 Library Reference

assert

Function

Syntax

Remarks

Return value

See also

atan, atanl

Function

Syntax

Remarks

atan

atanl

assert

assert.h

Tests a condition and possibly aborts.

void assert (int test) i

assert is a macro that expands to an if statement; if test evaluates to zero,
assert prints a message on stderr and aborts the program (by calling abort).

assert displays this message:

Assertion failed: test, file filename, line linenum

The filename and linenum li.sted in the message are the source file name and
line number where the assert macro appears.

If you place the #define NDEBUG directive ("no debugging") in the source
code before the #include <assert .h> directive, the effect is to comment out
the assert statement.

None.

abort

math.h

Calculates the arc tangent.

double atan(double x) i

long double atanl(long double x) i

DDS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

atan calculates the arc tangent of the input value.

atanl is the long double version; it takes a long double argument and
returns a long double result. This function can be used with bcd and complex
types.

Chapter 2, Run-time functions 15

atan, atanl

Return value

See also

atan2, atan21

Function

Syntax

Remarks

Return value

See also

atexit

Function

Syntax

Remarks

16

atan2

atan21

atan and atanl of a real argument return a value in the range -pi/2 to pi/2.
Error handling for these functions can be modified through the functions
_matherr and _matherr!.

acos, asin, atan2, bcd, complex, cos, _matherr, sin, tan

math.h

Calculates the arc tangent of y / x.

double atan2(double y, double x) i

long double atan2l(long double y, long double x) i

DOS UNIX Win 16 Wi n 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

atan2 returns the arc tangent of y / x; it produces correct results even when
the resulting angle is near pi/2 or -pi/2 (x near 0). If both x and yare set to
0, the function sets the global variable errno to EDOM, indicating a domain
error.

atan21 is the long double version; it takes long double arguments and
returns a long double result.

atan2 and atan21 return a value in the range -pi to pi. Error handling for
these functions can be modified through the functions _matherr and
_matherr!.

acos, asin, atan, cos, _matherr, sin, tan

stdlib.h

Registers termination function.

int atexit(void (_USERENTRY * func) (void)) i

atexit registers the function pointed to by June as an exit function. Upon
normal termination of the program, exit calls June just before returning to
the operating system. June must be used with the _ USERENTRY calling
convention.

Borland C++ for OS/2 Library Reference

Return value

See also

ataf, _atald

Function

Syntax

Remarks

Return value

atot

_atold

atexit

Each call to atexit registers another exit function. Up to 32 functions can be
registered. They are executed on a last-in, first-out basis (that is, the last
function registered is the first to be executed).

atexit returns 0 on success and nonzero on failure (no space left to register
the function).

abort, _exit, exit, spawn ...

math.h

Converts a string to a floating-point number.

double atof(const char *s);
long double _atold(const char *s);

DOS UNIX Wi n 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

atof converts a string pointed to by s to double; this function recognizes the
character representation of a floating-point number, made up of the
following:

II An optional string of tabs and spaces
II An optional sign
II A string of digits and an optional decimal point (the digits can be on both

sides of the decimal point)
III An optional e or E followed by an optional signed integer

The characters must match this generic format:

[whitespace] [sign] [ddd] [.] [ddd] [e I E[sign]ddd]

atof also recognizes +INF and -INF for plus and minus infinity, and +NAN
and -NAN for Not-a-Number.

In this function, the first unrecognized character ends the conversion.

_atold is the long double version; it converts the string pointed to by s to a
long double.

strtod and _strtold are similar to atof and _atold; they provide better error
detection, and hence are preferred in some applications.

atof and _atold return the converted value of the input string.

Chapter 2, Run-time functions 17

•

atof, _atold

See also

atoi

Function

Syntax

Remarks

Return value

See also

atol

Function

Syntax

Remarks

18

If there is an overflow, atof(or _atold) returns plus or minus HUGE_VAL (or
LHUGE VAL), errno is set to ERANGE (Result out of range), and _matherr
(or _math err!) is not called.

atoi, atol, ecvt, fcvt, gcvt, scanf, strtod

stdlib.h

Converts a string to an integer.

int atoi(const char *s) i

atoi converts a string pointed to by s to int; atoi recognizes (in the following
order)

• An optional string of tabs and spaces
• An optional sign
• A string of digits

The characters must match this generic format:

[ws] [sn] [ddd]

In this function, the first unrecognized character ends the conversion. There
are no provisions for overflow in atoi (results are undefined).

atoi returns the converted value of the input string. If the string cannot be
converted to a number of the corresponding type (int), atoi returns o.
atof, atol, ecvt, fcvt, gcvt, scanf, strtod

stdlib.h

Converts a string to a long.

long atol(const char *s) i

atol converts the string pointed to by s to long. atol recognizes (in the
following order)

Borland C++ for OS/2 Library Reference

Return value

See also

atold

_beginthread

Function

Syntax

Remarks

• An optional string of tabs and spaces
• An optional sign
• A string of digits

The characters must match this generic format:

[ws] [sn] [ddd]

atel

In this function, the first unrecognized character ends the conversion. There
are no provisions for overflow in atal (results are undefined).

atal returns the converted value of the input string. If the string cannot be
converted to a number of the corresponding type (long), atal returns O.

ataf, atai, ecvt, fcvt, gcvt, scanf, strtad, strtaI, strtaul

See ataj.

process.h

Starts execution of a new thread.

int _beginthread(void (*start_address) (void *), unsigned stack_size, void *arglist)

The _begin thread function creates and starts a new thread. The thread starts
execution at start_address. The size of its stack in bytes is stack_size; the stack
is allocated by the operating system after the stack size is rounded up to the
next multiple of 4096. The thread is passed arglist as its only parameter; it
can be NULL, but must be present. The thread terminates by simply
returning, or by calling _endthread.

This function must be used instead of the operating system thread-creation
API function because _begin thread performs initialization required for
correct operation of the run-time library functions.

This function is available in C2MT.LIB, the multithread library; it is not in
C2.LIB, the single-thread library.

Chapter 2, Run-time functions 19

•

_beginthread

Return value

See also

bsearch

Function

Syntax

Remarks

20

_begin thread returns the thread 10 of the new thread. In the event of an
error, the function returns -1, and the global variable errno is set to one of
the following values:

EAGAIN
EINVAL

_endthread

Too many threads
Invalid request

Binary search of an array.

stdlib.h

void *bsearch(const void *key, const void *base, size_t nelem, size_t width,
int (_USERENTRY *fcmp) (const void *, const void *));

DOS

bsearch searches a table (array) of nelem elements in memory, and returns
the address of the first entry in the table that matches the search key. The
array must be in order. If no match is found, bsearch returns O. Note that
because this is a binary search, the first matching entry is not necessarily
the first entry in the table.

; The type size_t is defined in stddef.h header file.

• nelem gives the number of elements in the table.

• width specifies the number of bytes in each table entry.

The comparison routine fcmp must be used with the _ USERENTRY calling
convention.

fcmp is called with two arguments: eleml and elem2. Each argument points
to an item to be compared. The comparison function compares each of the
pointed-to items (*eleml and *elem2), and returns an integer based on the
results of the comparison.

For bsearch, the fcmp return value is

• < 0 if *eleml < *elem2

• == 0 if *eleml == *elem2

• > 0 if *eleml > *elem2

Borland C++ for OS/2 Library Reference

Return value

See also

bsearch

bsearch returns the address of the first entry in the table that matches the
search key. If no match is found, bsearch returns o.
lfind, lsearch, qsort

cabs, cabsl math.h

Function

Syntax

Remarks

cabs

cabsl

Calculates the absolute value of complex number.

double cabs(struct complex Z)i

long double cabsl(struct _complexl z) i

DOS UNIX Wi n 16 Win 32 ANSI C ANSI C++ OS/2

• • • • •
• • • •

cabs is a macro that calculates the absolute value of z, a complex number. z
is a structure with type complex. The structure is defined in math.h as

struct complex {
double x, Yi
}i

struct _complexl
long double x, Yi

}i

where x is the real part, and y is the imaginary part.

Calling cabs is equivalent to calling sqrt with the real and imaginary
components of z, as shown here:

sqrt(z.x * z.x + z.y * z.y)

cabsl is the long double version; it takes a structure with type _complexl as
an argument, and returns a long double result.

.. If you're using C++, you may also use the complex class defined in
complex.h, and use the function abs to get the absolute value of a complex
number.

Return value cabs (or cabsl) returns the absolute value of z, a double. On overflow, cabs (or
cabsl) returns HUGE_VAL (or _LHUGE_ VAL) and sets the global variable
errno to

ERANGE Result out of range

Chapter 2, Run-time functions 21

II

cabs, cabsl

See also

calloe

Function

Syntax

Remarks

Return value

See also

ceil, eeill

Function

Syntax

Remarks

Return value

See also

22

ceil

ceill

Error handling for these functions can be modified through the functions
_matherr and _matherrl.

abs, complex, errno (global variable),fabs, labs, _matherr

stdlib.h

Allocates main memory.

void *calloc(size_t nitems, size_t size);

calloc provides access to the C memory heap. The heap is available for
dynamic allocation of variable-sized blocks of memory. Many data
structures, such as trees and lists, naturally employ heap memory
alloca tion.

calloc allocates a block of size nitems x size. The block is cleared to O.

calloc returns a pointer to the newly allocated block. If not enough space
exists for the new block or if nitems or size is 0, calloc returns NULL.

free, maUoc, realloc

math.h

Rounds up.

double ceil (double x);
long double ceill(long double x);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

ceil finds the smallest integer not less than x. ceill is the long double version;
it takes a long double argument and returns a long double result.

These functions return the integer found as a double (ceil) or a long double
(ceill).

floor,fmod

Borland C++ for OS/2 Library Reference

c exit

Function

Syntax

Remarks

Return value

See also

cexit

Function

Syntax

Remarks

Return value

See also

cgets

Function

Syntax

Remarks

Performs _exit cleanup without terminating the program.

proceSS.h.

_c_exit performs the same cleanup as _exit, except that it does not terminate
the calling process.

None.

abort, atexit, _cexit, exec ... , _exit, exit, signal, spawn ...

process.h

Performs exit cleanup without terminating the program.

void _cexit(void)i

_cexit performs the same cleanup as exit, except that it does not close files or
terminate the calling process. Buffered output (waiting to be output) is
written, and any registered "exiffunctions" (posted with atexit) are called.

None.

abort, atexit, _c_exit, exec ... , _exit, exit, signal, spawn ...

conio.h

Reads a string from the console.

char *cgets(char *str)i

cgets reads a string of characters from the console, storing the string (and
the string length) in the location pointed to by str.

Chapter 2, Run-time functions 23

cgets

cgets reads characters until it encounters a carriage-return/linefeed
(CR/LF) combination, or until the maximum allowable number of char
acters have been read. If cgets reads a CR/LF combination, it replaces the
combination with a \0 (null character) before storing the string.

Before cgets is called, set str[O] to the maximum length of the string to be
read. On return, str[l] is set to the number of characters actually read. The
characters read start at str[2] and end with a null character. Thus, str must
be at least str[O] plus 2 bytes long.

• This function should not be used in PM applications.

Return value On success, cgets returns a pointer to str[2].

See also cputs, fgets, getch, getche, gets

chdir dir.h

Function Changes current directory.

Syntax int chdir(const char *path);

Remarks chdir causes the directory specified by path to become the current working
directory. path must specify an existing directory.

Return value

See also

chdrive

Function

24

A drive can also be specified in the path argument, such as

chdir ("a: \ \Be")

but this changes only the current directory on that drive; it doesn't change
the active drive.

Only the current process is affected.

Upon successful completion, chdir returns a value of O. Otherwise, it returns
a value of -1, and the global variable errno is set to

ENOENT Path or file name not found

getcurdir, getcwd, getdisk, mkdir, rmdir, setdisk, system

Sets current disk drive.

direct.h

Borland C++ for OS/2 Library Reference

Syntax

Remarks

Return value

See also

chmod

chmod

Function

Syntax

Remarks

_chdrive

int _chdrive(int drive);

_chdrive sets the current drive to the one associated with drive: 1 for A,
2 for B, 3 for C, and so on.

Only the current process is affected.

_chdrive returns 0 if the current drive was changed successfully; otherwise,
it returns -1.

_dos _setdrive

dos.h, io.h

Obsolete function. See _rtCchmod.

sys\stat.h

Changes file access mode.

int chmod(const char *path, int arnode);

chmod sets the file-access permissions of the file given by path according to
the mask given by amode. path points to a string.

amode can contain one or both of the symbolic constants S_IWRITE and
S_IREAD (defined in sys\stat.h).

Value of amode

SJWRITE
SJREAD
SJREADISJWRITE

Access permission

Permission to write
Permission to read
Permission to read and write

-.. Write permission implies read permission.

This function will fail (EACCES) if the file is currently open in any process.

Chapter 2, Run-time functions 25

•

chmod

Return value

See also

chsize

Function

Syntax

Remarks

Return value

See also

clear87

Function

Syntax

26

Upon successfully changing the file access mode, chmod returns O. Other
wise, chmod returns a value of -l.

In the event of an error, the global variable errno is set to one of the
following values:

EACCES
ENOENT

Permission denied
Path or file name not found

access, _rtCchmod, fstat, open, sopen, stat

Changes the file size.

int chsize(int handle, long size);

io.h

chsize changes the size of the file associated with handle. It can truncate or
extend the file, depending on the value of size compared to the file's original
size.

The mode in which you open the file must allow writing.

If chsize extends the file, it will append null characters (\0). If it truncates
the file, all data beyond the new end-of-file indicator is lost.

On success, chsize returns O. On failure, it returns -1 and the global variable
errno is set to one of the following values:

EACCES
EBADF
ENOSPC

Permission denied
Bad file number
No space left on device

close,creat, open, truncate, _rtCcreat

Clears floating-point status word.

unsigned int _clearS7 (void);

float.h

Borland C++ for OS/2 Library Reference

Remarks

Return value

See also

clearerr

Function

Syntax

Remarks

Return value

See also

clock

Function

Syntax

Remarks

_clearS7

_clearS7 clears the floating-point status word, which is a combination of the
80x87 status word and other conditions detected by the 80x87 exception
handler.

The bits in the value returned indicate the floating-point status before it
was cleared. For information on the status word, refer to the constants
defined in floa t.h.

_controlS7, Jpreset, _statusS7

stdio.h

Resets error indication.

void clearerr(FILE *strearn) i

DOS I UNIX I Win 16 Win 32 ANSI C ANSI C++ OS/2 II
• I • I • • • • •

" clearerr resets the named stream's error and end-of-file indicators to o. Once
the error indicator is set, stream operations continue to return error status
until a call is made to clearerr or rewind. The end-of-file indicator is reset
with each input operation.

None.

eof feof ferror, perror, rewind

Determines processor time.

clock_t clock(void)i

time.h

clock can be used to determine the time interval between two events. To
determine the time in seconds, the value returned by clock should be
divided by the value of the macro CLK_TCK.

Chapter 2, Run-time functions 27

•

clock

Return value

See also

close

The clock function returns the processor time elapsed since the beginning of
the program invocation. If the processor time is not available, or its value
cannot be represented, the function returns the value -1.

time

io.h

Obsolete function. See _rtl_close.

close io.h

Function Closes a file.

Syntax int closelint handle);

Remarks close closes the file associated with handle, a file handle obtained from a
_rtCcreat, creat, creatnew, creattemp, dup, dup2, _rtCopen, or open call.

.. The function does not write a Ctr/-Z character at the end of the file. If you
want to terminate the file with a Ctr/-Z, you must explicitly output one.

Return value Upon successful completion, close returns O. Otherwise, the function returns
a value of-l.

See also

closedir

Function

Syntax

28

close fais if handle is not the handle of a valid, open file, and the global
variable errno is set to

EBADF Bad file number

chsize, creat, creatnew, dup,jclose, open, _rtl_close, sopen

dirent.h

Closes a directory stream.

int closedirlDIR *dirp);

Borland C++ for OS/2 Library Reference

closedir

Remarks On UNIX platforms, closedir is available on POSIX-compliant systems.

The closedir function closes the directory stream dirp, which must have been
opened by a previous call to opendir. After the stream is closed, dirp no
longer points to a valid directory stream.

Return value If clOsedir is successful, it returns O. Otherwise, closedir returns -1 and sets
the global variable errno to

EBADF The dirp argument does not point to a valid open directory
stream

See also errno (global variable), opendir, readdir, rewinddir

clreol conio.h

Function Clears to end of line in text window.

Syntax void clreol (void) i

Remarks clreol clears all characters from the cursor position to the end of the line
within the current text window, without moving the cursor.

-.. This function should not be used in PM applications.

Return value None.

See also clrscr, delline, window

clrscr conio.h

Function Clears the text-mode window.

Syntax void clrscr (void) i

Chapter 2, Run-time functions 29

•

clrscr

Remarks clrscr clears the current text window and places the cursor in the upper
left-hand corner (at position 1,1).

.. This function should not be used in PM applications.

Return value None.

See also clreol, delline, window

_ control87 float.h

Function Manipulates the floating-point control word.

Syntax unsigned int _contro187 (unsigned int newcw, unsigned int mask);

Remarks _control87 retrieves or changes the floating-point control word.

Return value

See also

30

The floating-point contI:ol word is an unsigned int that, bit by bit, specifies
certain modes in the floating-point package; namely, the precision, infinity,
and rounding modes. Changing these modes lets you mask or unmask
floating-point exceptions.

_control87 matches the bits in mask to the bits in newcw. If a mask bit equals
1, the corresponding bit in newcw contains the new value for the same bit in
the floating-point control word, and _control87 sets that bit in the control
word to the new value.

Here's a simple illustration:

Original control word: 0100 0011 0110 0011

mask: 1000 0001 0100 1111
newcw: 1110 1001 0000 0101

Changing bits: 1 xxx xxxI xOxx 0101

If mask equals 0, _control87 returns the floating-point control word without
altering it.

Thebits in the value returned reflect the new floating-point control word.
For a complete definition of the bits returned by _controIS7, see the header
file float.h.

_clear87, Jpreset, signal, _status87

Borland C++ for OS/2 Library Reference

cos, cos I

Function

Syntax

cos

cosl

Remarks

Return value

See also

cosh, coshl

Function

Syntax

Remarks

Return value

cosh

coshl

cos, cosl

Calculates the cosine of a value.

math.h.

double cos (double xl;
long double cosl(long double xl;

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

cos computes the cosine of the input value. The angle is specified in radians.

cosl is the long double version; it takes a long double argument and returns
a long double result.

This function can be used with bcd and complex types.

cos of a real argument returns a value in the range -1 to 1. Error handling
for these functions can be modified through _matherr (or _matherrl).

acos, asin, atan, atan2, bcd, complex, _matherr, sin, tan

math.h

Calculates the hyperbolic cosine of a va}ue.

double cosh(double xl;
long double coshl(long double xl;

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

cosh computes the hyperbolic cosine, (eX + e-X)/2. coshl is the long double
version; it takes a long double argument and returns a long double result.

This function can be used with bcd and complex types.

cosh returns the hyperbolic cosine of the argument.

When the correct value would create an overflow, these functions return
the value HUGE_VAL (cosh) or _LHUGE_ VAL (cosh I) with the appropriate
sign, and the global variable errno is set to ERANGE. Error handling for

Chapter 2, Run-time functions 31

cosh, coshl

See also

country

Function

Syntax

Remarks

The country function
is not affected by

set/ocale.

32

these functions can be modified through the functions _matherr and
_matherrl.

acos, asin, atan, atan2, bcd, complex, cos, _matherr, sin, sinh, tan, tanh

Returns country-dependent information.

struct COUNTRY *country(int xcode, struct COUNTRY *cp);

dos.h

country specifies how certain country-dependent data (such as dates, times,
and currency) will be formatted. The values set by this function depend on
the operating system version being used.

The COUNTRY structure pointed to by cp is filled with the country
dependent information of the current country (if xcode is set to zero), or the
country given by xcode.

The structure COUNTRY is defined as follows:

struct COUNTRY {

};

int co_date;
char co_curr[5];
char co_thsep[2J;
char co_desep[2];
char co_dtsep[2J;
char co_tmsep[2];
char co_currstyle;
char co_digits;
char co_time;
long co_case;
char co_dasep[2];
char co_fill[lO];

The date format in co_date is

/* date format */
/* currency symbol */
/* thousands separator */
/* decimal separator */
/* date separator */
/* time separator */
/* currency style */
/* significant digits in currency */
/* time format */
/* NOT USED ON OS/2 */
/* data separator */
/* filler * /

• a for the U.S. style of month, day, year .

• 1 for the European style of day, month, year .

• 2 for the Japanese style of year, month, day.

Currency display style is given by co _currstyle as follows:

Borland C++ for OS/2 Library Reference

country

• a for the currency symbol to precede the value with no spaces between
the symbol and the number.

111 for the currency symbol to follow the value with no spaces between the
number and the symbol.

Return value

II 2 for the currency symbol to precede the value with a space after the
symbol.

II 3 for the currency symbol to follow the number with a space before the
symbol.

On success, country returns the pointer argument cp. On error, it returns
NULL.

cprintf conio.h

Function

Syntax

Remarks

See printf for details
on format specifiers.

Writes formatted output to the screen.

int cprintf(const char *format[, argument, ... J);

cprintf accepts a series of arguments, applies to each a format specifier
contained in the format string pointed to by format, and outputs the
formatted data directly to the current text window on the screen. There
must be the same number of format specifiers as arguments ..

Unlike fprintj and printf, cprintf does not translate linefeed characters (\n)
into carriage-return/linefeed character pairs (\r\n). Tab characters
(specified by \ t) are not expanded into spaces.

_ This function should not be used in PM applications.

Return value cprintj returns the number of characters output.

See also fprintf, printf, putch, sprintf, vprintj

cputs conio.h

Function Writes a string to the screen.

Syntax int cputs(const char *str);

Chapter 2, Run-time functions 33

II

cputs

Remarks cputs writes the null-terminated string str to the current text window. It
does not append a newline character.

Unlike puts~ cputs does not translate linefeed characters (\n) into carriage
return/linefeed character pairs (\r\n).

-.. This function should not be used in PM applications.

Return value cputs returns the last character printed.

See also cgets, fputs, putch, puts

creat io.h

creat

Function

Syntax

Remarks

34

Obsolete function. See _rtCcreat.

io.h

Creates a new file or overwrites an existing one.

int creat(const char *path, int amode);

creat creates a new file or prepares to rewrite an existing file given by path.
amode applies only to newly created files.

A file created with creat is always created in the translation mode specified
by the global variable Jmode (a_TEXT or a_BINARY).

If the file exists and thewrite attribute is set, creat truncates the file to a
length of 0 bytes, leaving the file attributes unchanged. If the existing file
has the read-only attribute set, the creat call fails and the file remains
unchanged.

The creat call examines only the S_IWRITE bit of the access-mode word
amode. If that bit is 1, the file can be written to. If the bit is 0, the file is
marked as read-only. All other operating system attributes are set to o.
amode can be one of the following (defined in sys\stat.h):

Borland C++ for OS/2 Library Reference

creat

Value of amode

SJWRITE
SJREAD
SJREADISJWRITE

Access permission

Permission to write
Permission to read
Permission to read and write

.. Write permission implies read permission.

Return value Upon successful completion, creat returns the new file handle, a non
negative integer; otherwise, it returns -1.

See also

In the event of error, the global variable errno is set to one of the following:

EACCES
EMFILE
ENOENT

Permission denied
Too many open files
Path or file name not found

chmod, chsize, close, creatnew, creattemp, dup, dup2, Jrnode (global variable),
fopen, open, _rtCcreat, sopen, write

creatnew io.h

Function

Syntax

Remarks

Return value

Creates a new file.

int creatnew(const char *path, int mode) ;

creatnew is identical to _rtCcreat with one exception: If the file exists,
creatnew returns an error and leaves the file untouched.

The mode argument to creatnew can be zero or an OR-combination of any
one of the following constants (defined in dos.h):

FA_HIDDEN Hidden file
FA_RDONL Y Read-only attribute
FA_SYSTEM System file

Upon successful completion, creatnew returns the new file handle, a non
negative integer; otherwise, it returns -l.

In the event of error, the global variable errno is set to one of the following
values:

EACCES
EEXIST

Permission denied
File already exists

Chapter 2, Run-time functions 35

creatnew

See also

creattemp

Function

Syntax

Remarks

Remember that a
backs lash in path

requires '\\'.

Return value

See also

36

EMFILE
ENOENT

Too many open files
Path or file name not found

close, _rtCcreat, creat, creattemp, _dos_creatnew, dup, Jmode (global variable),
open

Creates a unique file in the directory associated with the path name.

int creattemp(char *path, int attrib);

A file created with creattemp is always created in the translation mode
specified by the global variable Jmode (a_TEXT or a_BINARY).

io.h

path is a path name ending with a backslash (\). A unique file name is
selected in the directory given by path. The newly created file name is
stored in the path string supplied. path should be long enough to hold the
resulting file name. The file is not automatically deleted when the program
terminates.

creattemp accepts attrib, an OS/2 attribute word. Upon successful file
creation, the file pointer is set to the beginning of the file. The file is opened
for both reading and writing.

The attrib argument to creattemp can be zero or an OR-combination of any
one of the following constants (defined in dos.h):

FA_HIDDEN Hidden file
FA_RDONLY Read-only attribute
FA_SYSTEM System file

Upon successful completion, the new file handle, a nonnegative integer, is
returned; otherwise, -1 is returned.

In the event of error, the global variable errno is set to one of the following
values:

EACCES
EMFILE
ENOENT

Permission denied
Too many open files
Path or file name not found

close, _rtCcreat, creat, creatnew, dup, Jmode (global variable), open

Borland C++ for OS/2 Library Reference

_crotl, _crotr

_crotl, _crQtr stdlib.h

Function Rotates an unsigned char left or right.

Syntax unsigned char _crotl(unsigned char val, int count) i

unsigned char _crotr(unsigned char val, int count) i

Remarks _crotl rotates the given val to the left count bits. _crotr rotates the given val to
the right count bits.

Return value

See also

cscanf

Function

Syntax

Remarks

See scanffor details
on format specifiers.

The argument val is an unsigned char, or its equivalent in decimal or hexa
decimal form.

The functions return the rotated val .

• _crotl returns the value of val left-rotated count bits .
• _crotr returns the value of val right-rotated count bits.

_lrotl, _lrotr, _rotl, _rotr

conio.h

Scans and formats input from the console.

int cscanf(char *format[, address, ... J)i

cscanf scans a series of input fields one character at a time, reading directly
from the console. Then each field is formatted according to a format
specifier passed to cscanf in the format string pointed to by format. Finally,
cscanf stores the formatted input at an address passed to it as an argument
following format, and echoes the input directly to the screen. There must be
the same number of format specifiers and addresses as there are input
fields.

cscanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely for a
number of reasons. See scanf for a discussion of possible causes.

-.. This function should not be used in PM applications.

Chapter 2, Run-time functions 37

cscanf

Return value

See also

ctime

Function

Syntax

Remarks

Return value

See also

cwait

Function

Syntax

38

cscanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If no fields were stored, the return value is O.

If cscanf attempts to read at end-of-file, the return value is EOF.

fscanf, getche, scanf, sscanf

Converts date and time to a string.

char *ctirne(const tirne_t *tirne);

time.h

ctime converts a time value pointed to by time (the value returned by the
function time) into a 26-character string in the following form, terminating
with a newline character and a null character:

Mon Nov 21 11:31:54 1983\n\O

All the fields have constant width.

The global long variable _timezone contains the difference in seconds
between GMT and local standard time (in PST, _timezone is 8x60x60). The
global variable _daylight is nonzero if and only if the standard U.S. daylight
saving time conversion should be applied. These variables are set by the
tzset function, not by the user program directly.

ctime returns a pointer to the character string containing the date and time.
The return value points to static data that is overwritten with each call to
ctime.

asctime, _daylight (global variable), dijftime,ftime, getdate, gmtime, localtime,
settime, time, _timezone (global variable), tzset

process.h

Waits for child process to terminate.

int cwait(int *statloc, int pid, int action);

Borland C++ for OS/2 Library Reference

Remarks

Return value

cwait

The cwait function waits for a child process to terminate. The process ID of
the child to wait for is pid. If statloc is not NULL, it points to the location
where cwait will store the termination status. The action specifies whether to
wait for the process alone, or for the process and all of its children.

If the child process terminated normally (by calling exit, or returning from
main), the termination status word is defined as follows:

Bits 0-7 Zero.

Bits 8-15 The least significant byte of the return code from the child
process. This is the value that is passed to exit, or is returned
from main. If the child process simply exited from main with
out returning a value, this value will be unpredictable.

If the child process terminated abnormally, the termination status word is
defined as follows:

Bits 0-7 Termination information about the child:

1 Critical error abort.
2 Execution fault, protection exception.
3 External termination signal.

Bits 8-15 Zero.

If pid is 0, cwait waits for any child process to terminate. Otherwise, pid
specifies the process ID of the process to wait for; this value must have been
obtained by an earlier call to an asynchronous spawn function.

The acceptable values for action are WAIT_CHILD, which waits for the
specified child only, and WAIT_GRANDCHILD, which waits for the
specified child and all of its children. These two values are defined in
process.h. ,

When cwait returns after a normal child process termination, it returns the
process ID of the child.

When cwait returns after an abnormal child termination, it returns -1 to the
parent and sets errno to EINTR (the child process terminated abnormally).

If cwait returns without a child process completion, it returns a -1 value
and sets errno to one of the following values:

Chapter 2, Run-time functions 39

•

cwait

ECHILD
EINVAL

No child exists or the pid value is bad
A bad action value was specified

See also spawn, wait

delline conio.h

Function Deletes line in text window.

Syntax void delline (void) i

Remarks delline deletes the line containing the cursor and moves all lines below it
one line up. delline operates within the currently active text window.

-.. This function should not be used in PM applications.

Return value None.

See also dreol, drscr, insline, window

difftime time.h

Function Computes the difference between two times.

Syntax double difftime (time_t time2, time_t timel) i

II DOS UNIX I Win 16 Win 32 I ANSI C ANSI C++ I OS/2 II
II • • I • • I • • 1 • JI

Remarks difftime calculates the elapsed time in seconds, from timel to time2.

Return value difftime returns the result of its calculation as a double.

See also asctime, ctime, _daylight (global variable), gmtime, localtime, time, _timezone
(global variable)

div stdlib.h

'Function Divides two integers, returning quotient and remainder.

Syntax div_t div(int numer, int denom) i

40 Borland C++ for OS/2 Library Reference

Remarks

Return value

See also

dos close - -

Function

Syntax

Remarks

Return value

See also

dos creat - -
Function

Syntax

div

div divides two integers and returns both the quotient and the remainder as II
a div _t type. numer and denom are the numerator and denominator,
respectively. The div _t type is a structure of integers defined (with typedef)
in stdlib.h as follows:

typedef struct
int quot;
int rem;

div_t;

/* quotient */
/* remainder */

div returns a structure whose elements are quot (the quotient) and rem (the
remainder).

ldiv

Closes a file.

unsigned _dos_close (int handle};

_dos_close closes the file associated with handle. handle is a file handle
obtained from a _dos_creat, _dos_creatnew, or _dos_open call.

dos.h

Upon successful completion, _dos_close returns O. Otherwise, it returns the
operating system error code and the global variable errno is set to

EBADF Bad file number

dos.h, io.h

Creates a new file or overwrites an existing one.

unsigned _dos_creat(const char *path,int attrib,int *handlep};

Chapter 2, Run-time functions 41

Remarks

Return value

_dos_creat opens the file specified by path. The file is always opened in
binary mode. Upon successful file creation, the file pointer is set to the
beginning of the file. _dos_creat stores the file handle in the location pointed
to by handlep. The file is opened for both reading and writing.

If the file already exists, its size is reset to O. (This is essentially the same as
deleting the file and creating a new file with the same name.)

FA_RDONL Y Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

The attrib argument is an ORed combination of one or more of the
following constants (defined in dos.h):

_A_NORMAL Normal file
_A_RDONLY Read-only file
_A_HIDDEN Hidden file
_A_SYSTEM System file

Upon successful completion, _dos_creat returns O. If an error occurs,
_dos_creat returns the operating system error code.

In the event of error, the global variable errno is set to one of the following
values:

EACCES
EMFILE
ENOENT

Permission denied
Too many open files
Path or file name not found

See also chsize, close, creat, creatnel1!, creattemp, _rtCchmod, _rtCclose

dos creatnew dos.h - -

Function Creates a new file.

Syntax unsigned _dos_creatnew(const char *path, int attrib, int *handlep);

Remarks _dos_creatnew creates and opens the new file path. The file is given the
access permission attrib, an operating-system attribute word. The file is
always opened in binary mode. Upon successful file creation, the file
handle is stored in the location pointed to by handlep, and the file pointer is

42 Borland C++ for OS/2 Library Reference

Return value

set to the beginning of the file. The file is opened for both reading and
writing.

If the file already exists, _dos_creatnew returns an error and leaves the file
untouched.

The attrib argument to _dos_creatnew is an OR combination of one or more
of the following constants (defined in dos.h):

_A_NORMAL Normal file
_A_RDONL Y Read-only file
_A_HIDDEN Hidden file
_A_SYSTEM System file

Upon successful completion, _dos_creatnew returns o. Otherwise, it returns
the operating system error code, and the global variable errno is set to one
of the following:

EACCES
EEXIST
EMFILE
ENOENT

Permission denied
File already exists
Too many open files
Path or file name not found

dos findfirst dos.h - -

Function Searches a disk directory.

Syntax unsigned _dos_findfirst(const char *pathnarne, int attrib,
struct find_t *ffblk);

Remarks _dosJindfirst begins a search of a disk directory.

pathname is a string with an optional drive specifier, path, and file name of
the file to be found. The file name portion can contain wildcard match
characters (such as? or *). If a matching file is found, the find_t structure
pointed to by ffblk is filled with the file-directory information.

attrib is an operating system file-attribute word used in selecting eligible
files for the search. attrib is an OR combination of one or more of the
following constants (defined in dos.h):

Chapter 2, Run-time functions 43

_ dos jindfirst

Return value

_A_NORMAL
_A_RDONLY
_A_HIDDEN
_A_SYSTEM
_A_VOLID
_A_SUBDIR
_A_ARCH

Normal file
Read-only attribute
Hidden file
System file
Volume label
Directory
Archive

For more detailed information about these attributes, refer to your
operating system reference manuals.

Note that wr _time and wr _date contain bit fields for referring to the file's
date and time. The structure of these fields was established by the operat
ing system.

wr_time:
Bits 0-4

Bits 5-10
Bits 11-15

wr_date:
Bits 0-4
Bits 5-8
Bits 9-15

The result of seconds divided by 2 (for example, 10
here means 20 seconds)
Minutes
Hours

Day
Month
Years since 1980 (for example, 9 here means 1989)

_dosJindfirst returns 0 on successfully finding a file matching the search
pathname. When no more files can be found, or if there is some error in the
file name, the operating system error code is returned, and the global
variable errno is set to

ENOENT Path or file name not found

See also _dosJindnext

dos findnext dos.h - -
Function Continues _dosJindfirst search.

Syntax unsigned _dos_findnext(struct find_t *ffblk) i

Remarks _dosJindnext is used to fetch subsequent files that match the pathname given
in _dosJindfirst. ffblk is the same block filled in by the _dosJindfirst call. This

44 Borland c++ for OS/2 Library Reference

Return value

See also

_ dos jindnext

block contains necessary information for continuing the search. One file
name for each call to _dosJindnext is returned until no more files are found
in the directory matching the pathname.

_dosJindnext returns a on successfully finding a file matching the search
pathname. When no more files can be found, or if there is some error in the
file name, the operating system error code is returned, and the global
variable errno is set to

ENOENT

_dos Jindfirst

Path or file name not found

_dos_getdate, _dos_setdate, getdate, setdate dos.h

Function

Syntax

Remarks

Gets and sets system date.

void _dos_getdate(struct dosdate_t *datep);
unsigned _dos_setdate(struct dosdate_t *datep);
void getdate(struct date *datep);
void setdate(struct date *datep);

getdate fills in the date structure (pointed to by datep) with the system's
current date. setdate sets the system date (month, day, and year) to that in
the date structure pointed to by datep.

The date structure is defined as follows:

struct date {
int da-year;
char da_day;
char da_mon;

};

/* current year */
/* day of the month */
/* month (1 = Jan) */

_dos-$etdate fills in the dosdate_t structure (pointed to by datep) with the
system's current date.

The dosdate_t structure is defined as follows:

struct dosdate_t {
unsigned char day; /* 1-31 */
unsigned char month; /* 1-12 */
unsigned int year; /* 1980 - 2099 */
unsigned char dayofweek; /* 0 - 6 (O=Sunday) */

};

Chapter 2, Run-time functions 45

_dos_getdate, _dos_setdate, getdate, setdate

Return value

See also

Function

Syntax

Remarks

Return value

Function

Syntax

46

_dos...,getdate, getdate, and setdate do not return a value.

If the date is set successfully, _dos_setdate returns O. Otherwise, it returns a
nonzero value and the global variable errno is set to

EINV AL Invalid date

ctime, gettime, settime

dos.h

Gets disk free space.

unsigned _dos_getdiskfree(unsigned char drive, struct diskfree_t *dtable);

_dos...,getdiskfree accepts a drive specifier in drive (0 for default, 1 for A, 2 for
B, and so on) and fills in the diskfree_t structure pointed to by dtable with
disk characteristics.

The diskfree _t structure is defined as follows:

struct diskfree_t {
unsigned avail_clusters; /* available clusters */
unsigned total_clusters; /* total clusters */
unsigned bytes-per_sector; /* bytes per sector */
unsigned sectors-per_cluster; /* sectors per cluster */

};

_dos...,getdiskfree returns 0 if successful. Otherwise, it returns a nonzero value
and the global variable errno is set to

EINVAL Invalid drive specified

dos.h

Gets and sets the current drive number.

void _dos_getdrive(unsigned *drivep);
void _dos_setdrive(unsigned drivep, unsigned *ndrives);

Borland C++ for OS/2 Library Reference

Remarks

Return value

See also

Function

Syntax

Remarks

Return value

_dos-$etdrive gets the current drive number.

_dos_setdrive sets the current drive and stores the total number of drives at
the location pointed to by ndrives.

The drive numbers at the location pointed to by drivep are as follows: 1 for
A, 2 for B, 3 for C, and so on.

Only the current process is affected.

None. Use _dos-$etdrive to verify that the current drive was changed
successfully.

getcwd

Changes file access mode.

int _dos_getfileattr(const char *path, unsigned *attribp);
int _dos_setfileattr(const char *path, unsigned attrib);

dos.h

_dos-$etfileattr fetches the file attributes for the file path. The attributes are
stored at the location pointed to by attribp.

_dos_setfileattr sets the file attributes for the file path to the value attrib. This
function will fail (EACCES) if the file is currently open in any process. The
file attributes can be an OR combination of the following symbolic
constants (defined in dos.h):

_A_RDONLY
_A_HIDDEN
_A_SYSTEM
_A_VOLID
_A_SUBDIR
_A_ARCH
_A_NORMAL

Read-only attribute
Hidden file
System file
Volume label
Directory
Archive
Normal file (no attribute bits set)

Upon successful completion, _dos-$etfileattr and _dos_setfileattr return o.
Otherwise, these functions return the operating system error code, and the
global variable errno is set to

ENOENT Path or file name not found

Chapter 2, Run-time functions 47

See also

Function

Syntax

Remarks

Return value

See also

48

chmod, stat

Gets and sets file date and time.

unsigned _dos_getftime(int handle, unsigned *datep, unsigned *timep);
unsigned _dos_setftime(int handle, unsigned date, unsigned time);

dos.h

_dos-$etftime retrieves the file time and date for the disk file associated with
the open handle. The file must have been previously opened using
_dos_open, _dos_creat, or _dos_creatnew. _dos-$eiftime stores the date and
time at the locations pointed to by datep and timep.

_dos_seiftime sets the file's new date and time values as specified by date and
time. The file must be open for writing; an EACCES error will occur if the
file is open for read-only access.

Note that the date and time values contain bit fields for referring to the file's
date and time. The structure of these fields was established by the operat
ing system.

Date:
Bits 0-4
Bits 5-8
Bits 9-15

Time:
Bits 0-4

Bits 5-10
Bits 11-15

Day
Month
Years since 1980 (for example, 9 here means 1989)

The result of seconds divided by 2 (for example, 10 here
means 20 seconds)
Minutes
Hours

_dos-$eiftime and _dos_seiftime return 0 on success.

In the event of an error return, the operating system error code is returned
and the global variable errno is set to one of the following values:

EACCES
EBADF

fstat, stat

Permission denied
Bad file number

Borland C++ for OS/2 Library Reference

Function

Syntax

Remarks

Return value

See also

Function

Syntax

Remarks

Gets and sets system time.

void _dos_gettime(struct dostime_t *timep);
unsigned _dos_settime(struct dostime_t *timep);

dos.h

_dos-$ettime fills in the dostime_t structure pointed to by timep with the sys
tem's current time.

_dos_settime sets the system time to the values in the dostime_t structure
pointed to by timep.

The dostime_t structure is defined as follows:

1* hours 0-23 *1
1* minutes 0-59 *1
1* seconds 0-59 *1

struct dostime_t {
unsigned char hour;
unsigned char minute;
unsigned char second;
unsigned char hsecond; 1* hundredths of seconds 0-99 *1

};

_dos-$ettime does not return a value.

If _dos_settime is successful, it returns O. Otherwise, it returns the operating
system error code, and the global variable errno is set to:

EINVAL Invalid time

_dos-$etdate, _dos_setdate, _dos_settime, stime, time

fcntl.h, share.h, dos.h

Opens a file for reading or writing.

unsigned _dos_open (const char *filename, unsigned of lags , int *handlep);

_dos_open opens the file specified by filename, then prepares it for reading or
writing, as determined by the value of oflags. The file is always opened in
binary mode. _dos_open stores the file handle at the location pointed to by
handlep.

Chapter 2, Run-time functions 49

•

These symbolic
constants are defined
in fcntl.h and share.h.

Return value

See also

dos read - -

Function

50

oflags uses the flags from the following two lists. Only one flag from the
first list can be used (and one must be used); the remaining flags can be
used in any logical combination.

List 1 : Read/write flags
o _RDONL Y Open for reading.
0_ WRONL Y Open for writing.
o _RDWR Open for reading and writing.

The following additional values can be included in oflags (using an OR
operation):

List 2: Other access flags
O_NOINHERIT
SH_COMPAT
SH_DENYRW
SH_DENWR
SH_DENYRD
SH_DENYNO

The file is not passed to child programs.
Identical to SH_DENYNO.
Only the current handle can have access to the file.
Allow only reads from any other open to the file.
Allow only writes from any other open to the file.
Allow other shared opens to the file.

Only one of the SH_DENYxx values can be included in a single _dos_open.
These file-sharing attributes are in addition to any locking performed on
the files.

The maximum number of simultaneously open files is defined by
HANDLE_MAX.

On successful completion, _dos_open returns 0, and stores the file handle at
the location pointed to by handlep. The file pointer, which marks the current
position in the file, is set to the beginning of the file.

On error,_dos_open returns the operating system error code. The global
variable errno is set to one of the following:

EACCES
EINVACC
EMFILE
ENOENT

Permission denied
Invalid access code
Too many open files
Path or file not found

open,_rtCread, sopen

Reads from file.

io.h, dos.h

Borland C++ for OS/2 Library Reference

Syntax

Remarks

Return value

See also

dos setdate - -

dos setdrive - -

unsigned _dos_read(int handle, void *buf, unsigned len, unsigned *nread);

_dos_read reads len bytes from the file associated with handle into buf The
actual number of bytes read is stored at the location pointed to by nread;
when an error occurs, or the end-of-file is encountered, this number might
be less than len.

_dos_read does not remove carriage returns because it treats all files as
binary files.

handle is a file handle obtained from a _dos_creat, _dos_creatnew, or _dos_open
call.

On disk files, _dos_read begins reading at the current file pointer. When the
reading is complete, the function increments the file pointer by the number
of bytes read. On devices, the bytes are read directly from the device.

The maxim~m number of bytes that _dos_read can read is DINT_MAX -1,
because DINT_MAX is the same as -1, the error return indicator.
UINT_MAX is defined in limits.h.

On successful completion, _dos_read returns O. Otherwise, the function
returns the DOS error code and sets the global variable errno.

EACCES
EBADF

Permission denied
Bad file number

_rtl_open, read, _rtCwrite

See _dos-$etdate.

Chapter 2, Run-time functions 51

•

des setfileattr - -

des setftime - -

des settime - -

des write - -
Function

Syntax

Remarks

Return value

See also

52

See _dos-$etfileattr.

See _dos -$ettime.

des.h

Writes to a file.

unsigned _dos_write (int handle, canst void *buf, unsigned len, unsigned *nwritten);

_dos_write writes len bytes from the buffer pointed to by the pointer buf to
the file associated with handle. _dos_write does not translate a linefeed
character (LF) to a CR/LF pair because it treats all files as binary data.

The actual number of bytes written is stored at the location pointed to by
nwritten. If the number of bytes actually written is less than that requested,
the condition should be considered an error and probably indicates a full
disk. For disk files, writing always proceeds from the current file pointer.
On devices, bytes are directly sent to the device.

On successful completion, _dos_write returns o. Otherwise, it returns the
operating system error code and the global variable errno is set to one of the
following values:

EACCES
EBADF

Permission denied
Bad file number

Borland C++ for OS/2 Library Reference

dostounix

Function

Syntax

Remarks

Return value

See also

dup

Function

Syntax

Remarks

Return value

dostounix

dos.h

Converts date and time to UNIX time format.

long dostounix(struct date *d, struct time *t)·;

dostounix converts a date and time as returned from getdate and gettime into
UNIX time format. d points to a date structure, and t points to a time
structure containing valid date and time information.

The date and time must not be earlier than or equal to Jan 11980 00:00:00.

UNIX version of current date and time parameters: number of seconds
since 00:00:00 on January I, 1970 (GMT).

getdate, gettime, unixtodos

io.h

Duplicates a file handle.

int dup(int handle);

OS/2

dup creates a new file handle that has the following in common with the
original file handle:

II Same open file or device

.. Same file pointer (that is, changing the file pointer of one changes the
other)

II Same access mode (read, write, read/write)

handle is a file handle obtained from a _rtCcreat, creat, _rtCopen, open, dup,
or dup2 call.

Upon successful completion, dup returns the new file handle, a nonnegative
integer; otherwise, dup returns -l.

In the event of error, the global variable errno is set to one of the following
values:

Chapter 2, Run-time functions 53

II

dup

See also

dup2

Function

Syntax

Remarks

Return value

See also

ecvt

Function

Syntax

54

EBADF
EMFILE

Bad file number
Too many open files

_rtCclose, close, _rtCcreat, creat, creatnew, creattemp, dup2,Jopen, _rtCopen,
open

io.h

Duplicates a file handle (oldhandle) onto an existing file handle (newhandle).

int dup2(int oldhandle, int newhandle};

dup2 creates a new file handle that has the following in common with the
original file handle:

• Same open file or device

• Same file pointer (that is, changing the file pointer of one changes the
other)

• Same access mode (read, write, read/write)

dup2 creates a new handle with the value of newhandle. If the file associated
with newhandle is open when dup2 is called, the file is closed.

newhandle and oldhandle are file handles obtained from a creat, open, dup, or
dup2 call.

dup2 returns 0 on successful completion, -1 otherwise.

In the event of error, the global variable errno is set to one of the following
values:

EBADF
EMFILE

Bad file number
Too many open files

_rtCclose, close, _rtCcreat, creat, creatnew, creattemp, dup,Jopen, _rtCopen, open

stdlib.h

Converts a floating-point number to a string.

char *ecvt(double value, int ndig, int *dec, int *sign};

Borland C++ for OS/2 Library Reference

Remarks

Return value

See also

_endthread

Function

Syntax

Remarks

Return value

See also

eot

Function

Syntax

ecvt

eevt converts value to a null-terminated string of ndig digits, starting with
the leftmost significant digit, and returns a pointer to the string. The II
position of the decimal point relative to the beginning of the string is stored
indirectly through dec (a negative value for dec means that the decimal lies
to the left of the returned digits). There is no decimal point in the string
itself. If the sign of value is negative, the word pointed to by sign is nonzero;
otherwise, it's O. The low-order digit is rounded.

The return value of eevt points to static data for the string of digits whose
content is overwritten by each call to eevt and fevt.

fevt, gevt, sprintf

process.h

Terminates execution of a thread.

void _endthread(void) i

The _endthread function terminates the currently executing thread. The
thread must have been started by an earlier call to _beginthread.

This function is available in C2MT.LIB, the multithread library; it is not in
C2.LIB, the single-thread library.

The function does not return a value.

_begin thread

io.h

Checks for end-of-file.

int eof(int handle) i

Chapter 2, Run-time functions 55

eat

Remarks

Return value

See also

eof determines whether the file associated with handle has reached end-of
file.

If the current position is end-of-file, eo! returns the value 1; otherwise, it
returns O. A return value of -1 indicates an error; the global variable errno is
set to

EBADF Bad file number

clearerr, feof, ferror, perror

exeel, exeele, exeelp, exeelpe, exeev, exeeve, exeevp, exeevpe proeess.h

Function

Syntax

Remarks

56

Loads and runs other programs.

int execl(char *path, char *argO *argl , "'1 *argn , NULL);
int execle(char *path, char *argO , *argl , "'1 *argn , NULL , char **env);

int execlp(char *path, char *argOI*argl , "'1 *argn , NULL);
int execlpe(char *path, char *argO , *argl , "'1 *argn , NULL , char **env);

int execv(char *path, char *argv[]);
int execve(char *path, char *argv[] 1 char **env);

int execvp(char *path, char *argv[]);
int execvpe(char *path, char *argv[] 1 char **env);

The functions in the exec ... family load and run (execute) other programs,
known as child processes. When an exec ... call succeeds, the child process
overlays the parent process. There must be sufficient memory available for
loading and executing the child process.

path is the file name of the called child process. The exec ... functions search
for path using the standard search algorithm:

• If no explicit extension is given, the functions search for the file as given.
If the file is not found, they add .EXE and search again. If not found, they
add .CMD and search again. If still not found, they add .BA T and search
once more. The command processor (CMD.EXE) is used to run the
executable file .

• If an explicit extension or a period is given, the functions search for the
file exactly as given.

Borland C++ for OS/2 Library Reference

execl, execle, execlp, execlpe, execv, execve, execvp, execvpe

The suffixes I, v, p, and e added to the exec ... "family name" specify that the
named function operates with certain capabilities .

• I specifies that the argument pointers (argO, argl, ... , argn) are passed as
separate arguments. Typically, the I suffix is used when you know in
advance the number of arguments to be passed. II

III V specifies that the argument pointers (argv[OJ ... , arg[nl) are passed as an
array of pointers. Typically, the v suffix is used when a variable number
of arguments is to be passed.

• p specifies that the function searches for the file in those directories
specified by the PATH environment variable (without the p suffix, the
function searches only the current working directory). If the path parame
ter does not contain an explicit directory, the function searches first the
current directory, then the directories set with the PATH environment
variable.

II e specifies that the argument env can be passed to the child process,
letting you alter the environment for the child process. Without the e
suffix, child processes inherit the environment of the parent process.

Each function in the exec ... family must have one of the two argument
specifying suffixes (either I or v). The path search and environment
inheritance suffixes (p and e) are optional; for example,

• execl is an exec ... function that takes separate arguments, searches only
the root or current directory for the child, and passes on the parent's
environment to the child.

• execvpe is an exec ... function that takes an array of argument pointers,
incorporates PATH in its search for the child process, and accepts the env
argument for altering the child's environment.

The exec ... functions must pass at least one argument to the child process
(argO or argv[OJ); this argument is, by convention, a copy of path. (Using a
different value for this Oth argument won't produce an error.)

When the I suffix is used, argO usually points to path, and argl, ... , argn
point to character strings that form the new list of arguments. A mandatory
null following argn marks the end of the list.

When the e suffix is used, you pass a list of new environment settings
through the argument env. This environment argument is an array of
character pointers. Each element points to a null-terminated character
string of the form

envvar = value

where envvar is the name of an environment variable, and value is the string
value to which envvar is set. The last element in env is null. When env is

Chapter 2, Run-time functions 57

execl, execle, execlp, execlpe, execv, execve, execvp, execvpe

Return value

See also

exit

Function

Syntax

Remarks

Return value

See also

exit

Function

Syntax

58

null, the child inherits the parents' environment settings. When an exec ...
function call is made, any open files remain open in the child process.

If successful, the exec ... functions do not return. On error, the exec ...
functions return -I, and the global variable errno is set to one of the
following values:

EACCES
EMFILE
ENOENT
ENOEXEC
ENOMEM

Permission denied
Too many open files
Path or file name not found
Exec format error
Not enough memory

abort, atexit, _exit, exit, Jpreset, searchpath, spawn ... , system

stdlib.h

Terminates program.

void _exit (int status);

_exit terminates execution without closing any files, flushing any output, or
calling any exit functions.

The calling process uses status as the exit status of the process. Typically a
value of 0 is used to indicate a normal exit, and a nonzero value indicates
some error.

None.

abort, atexit, exec ... , exit, spawn ...

stdlib.h

Terminates program.

void exit(int status);

Borland C++ for OS/2 Library Reference

Remarks

Return value

See also

exp, expl

Function

Syntax

Remarks

Return value

exp

exp/

exit

exit terminates the calling process. Before termination, all files are closed,
buffered output (waiting to be output) is written, and any registered "exit
functions" (posted with atexit) are called.

status is provided for the calling process as the exit status of the process.
Typically a value of 0 is used to indicate a normal exit, and a nonzero value •
indicates some error. It can be, but is not required, to be set with one of the
following:

EXIT_FAILURE

EXIT_SUCCESS

Abnormal program termination; signal to operating
system that program has terminated with an error
Normal program termination

None.

abort, atexit, exec ... , _exit, signal, spawn ...

math.h

Calculates the exponential e to the x.

double exp(double x);
long double expl(long double x);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

exp calculates the exponential function eX.

expl is the long double version; it takes a long double argument and returns
a long double result.

This function can be used with bed and complex types.

exp returns eX.

Sometimes the arguments passed to these functions produce results that
overflow or are incalculable. When the correct value overflows, exp returns
the value HUGE_VAL and expl returns _LHUGE_ V AL. Results of exces
sively large magnitude cause the global variable errno to be set to

ERANGE Result out of range
On underflow, these functions return 0.0, and the global variable errno is
not changed. Error handling for these functions can be modified through
the functions _matherr and _matherrl.

Chapter 2, Run-time functions 59

exp, expl

See also

_expand

Function

Syntax

Remarks

Return value

See also

tabs, tabsl

Function

Syntax

Remarks

Return value

See also

60

tabs

tabsl

Jrexp, ldexp, log, loglO, _matherr, pow, powlO, sqrt

malloc.h

Grows or shrinks a heap block in place.

void *_expand(void *block, size_t size);

This function attempts to change the size of an allocated memory block
without moving the block's location in the heap. The data in the block are
not changed, up to the smaller of the old and new sizes of the block. The
block must have been allocated earlier with malloc, calloc, or realloc, and
must not have been freed.

If _expand is able to resize the block without moving it, _expand returns a
pointer to the block, whose address is unchanged. If _expand is unsuccess
ful, it returns a NULL pointer and does not modify or resize the block.

calloc, malloc, realloc

math.h

Returns the absolute value of a floating-point number.

double fabs(double x);
long double fabsl(long double x);

DOS UNIX Wi n 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

Jabs calculates the absolute value of x, a double. Jabsl is the long double
version; it takes a long double argument and returns a long double result.

Jabs and Jabsl return the absolute value of x.

abs, cabs, labs

Borland C++ for OS/2 Library Reference

fclose

Function

Syntax

Remarks

Return value

See also

fcloseall

Function

Syntax

Remarks

Return value

See also

fcvt

Function

Syntax

fclose

stdio.h

Closes a stream.

int fclose(FILE *strearn) i

fclose closes the named stream. All buffers associated with the stream are
flushed before closing. System-allocated buffers are freed upon closing.
Buffers assigned with setbuf or setvbuf are not automatically freed. (But if
setvbuf is passed null for the buffer pointer, it will free it upon close.)

fclose returns 0 on success. It returns EOF if any errors were detected.

close, fcloseall, fdopen, !flush, flushall, fopen, freopen

stdio.h

Closes open streams.

int fcloseall(void) i

ANSI C++ OS/2

fcloseall closes all open streams except stdin, stdout, stdprn, stderr, and
stdaux. stdprn and stdaux streams are not available on OS/2.

fcloseall returns the total number of streams it closed. It returns EOF if any
errors were detected.

fclose, fdopen, flushall, fopen, freopen

stdlib.h

Converts a floating-point number to a string.

char *fcvt(double value, int ndig, int *dec, int *sign) i

Chapter 2, Run-time functions 61

fcvt

Remarks

Return value

See also

fdopen

Function

Syntax

Remarks

62

fcvt converts value to a null-terminated string digit, starting with the
leftmost significant digit, with ndig digits to the right of the decimal point.
fcvt then returns a pointer to the string. The position of the decimal point
relative to the beginning of the string is stored indirectly through dec (a
negative value for dec means to the left of the returned digits). There is no
decimal point in the string itself. If the sign of value is negative, the word
pointed to by sign is nonzero; otherwise, it is O.

The correct digit has been rounded for the number of digits to the right of
the decimal point specified by ndig.

The return value of fcvt points to static data whose content is overwritten
by each call to fcvt and ecvt.

ecvt, gcvt, sprintJ

stdio.h

Associates a stream with a file handle.

FILE *fdopen(int handle, char *type)i

fdapen associates a stream with a file handle obtained from creat, dup, dup2,
or apen. The type of stream must match the mode of the open handle.

The type string used in a call to fdapen is one of the following values:

Value Description

w

a

r+

w+

a+

Open for reading only.

Create for writing.

Append; open for writing at end-of-file, or create for writing if the file does not exist.

Open an existing file for update (reading and writing).

Create a new file for update.

Open for append; open (or create if the file does not exist) for update at the end of
the file.

Borland C++ far OS/2 Library Reference

Return value

See also

feof

Function

Syntax

Remarks

Return value

See also

ferror

Function

Syntax

fdopen

To specify that a given file is being opened or created in text mode, append
a t to the value of the type string (rt, w+t, and so on); similarly, to specify
binary mode, append a b to the type string (wb, a+b, and so on).

If a t or b is not given in the type string, the mode is governed by the global
variable Jmode. If Jmode is set to a_BINARY, files will be opened in binary
mode. If Jmode is set to a_TEXT, they will be opened in text mode. These
0_ ... constants are defined in fcntl.h.

When a file is opened for update, both input and output can be done on the
resulting stream. However, output cannot be directly followed by input
without an interveningfseek or rewind, and input cannot be directly
followed by output without an interveningfseek, rewind, or an input that
encounters end-of-file.

On successful completion, fdopen returns a pointer to the newly opened
stream. In the event of error, it returns NULL.

fdose, fopen, jreopen, open

stdio.h

Detects end-of-file on a stream.

int feof(FILE *strearn);

feof is a macro that tests the given stream for an end-of-file indicator. Once
the indicator is set, read operations on the file return the indicator until
rewind is called, or the file is closed.

The end-of-file indicator is reset with each input operation.

feof returns nonzero if an end-of-file indicator was detected on the last input
operation on the named stream, and a if end-of-file has not been reached.

dearerr, eof, ferror, perror

stdio.h

Detects errors on stream.

int ferror(FILE *strearn);

Chapter 2, Run-time functions 63

ferror

Remarks

Return value

See also

fflush

Function

Syntax

Remarks

Return value

See also

fgetc

Function

Syntax

Remarks

Return value

See also

64

ferror is a macro that tests the given stream for a read or write error. If the
stream's error indicator has been set, it remains set until dearerr or rewind is
called, or until the stream is closed.

ferror returns nonzero if an error was detected on the named stream.

dearerr, eof, feof, fopen, gets, perror

stdio.h

Flushes a stream.

int fflush(FILE *stream);

If the given stream has buffered output, !flush writes the output for stream
to the associated file.

Th~stream remains open after !flush has executed.fflush has no effect on an
unbuffered stream.

!flush returns a on success. It returns EOF if any errors were detected.

fcZose, flushall, setbuf, setvbuf

stdio.h

Gets character from stream.

int fgetc(FILE *stream);

fgetc returns the next character on the named input stream.

On success,fgetc returns the character read, after converting it to an int
without sign extension. On end-of-file or error, it returns EOF.

fgetchar, fputc, getc, getch, getchar, getche, ungetc, ungetch

Borland C++ for OS/2 Library Reference

fgetchar

Function

Syntax

Remarks

Return value

See also

fgetpos

Function

Syntax

Remarks

Return value

See also

fgets

Function

Syntax

fgetchar

stdio.h

Gets character from stdin.

int fgetchar(void);

jgetchar returns the next character from stdin. It is defined as jgetc(stdin).

On success, jgetchar returns the character read, after converting it to an int
without sign extension. On end-of-file or error, it returns EOF.

jgetc, jputchar, jreopen, getchar

stdio.h

Gets the current file pointer.

int fgetpos(FILE *stream, fpos_t *pos);

jgetpos stores the position of the file pointer associated with the given
stream in the location pointed to by pos. The exact value is unimportant; its
value is opaque except as a parameter to subsequent jsetpos calls.

On success, jgetpos returns O. On failure, it returns a nonzero value and sets
the global variable errno to

EBADF
EINVAL

jseek, jsetpos, jtell, tell

Bad file number
Invalid number

Gets a string from a stream.

char *fgets(char *s, int n, FILE *stream);

stdio.h

Chapter 2, Run-time functions 65

fgets

Remarks

Return value

See also

filelength

Function

Syntax

Remarks

Return value

See also

fileno

Function

Syntax

Remarks

66

fgets reads characters from stream into the string s. The function stops
reading when it reads either n - 1 characters or a newline character, which
ever comes first. fgets retains the newline character at the end of s. A null
byte is appended to s to mark the end of the string.

On success, fgets returns the string pointed to by s; it returns NULL on
end-of-file or error.

cgets, fputs, gets

Gets file size in bytes.

long filelength(int handle);

filelength returns the length (in bytes) of the file associated with handle.

io.h

On success, filelength returns a long value, the file length in bytes. On error,
it returns -1 and the global variable errno is set to

EBADF Bad file number

fopen, lseek, open

Gets file handle.

int fileno(FILE *strearn);

stdio.h

fileno is a macro that returns the file handle for the given stream. If stream
has more than one handle, fileno returns the handle assigned to the stream
when it was first opened.

Borland C++ for OS/2 Library Reference

Return value

See also

findfirst

Function

Syntax

Remarks

fileno returns the integer file handle associated with stream.

jdopen,jopen,jfeopen

fileno

dir.h

Searches a disk directory.

int findfirst(const char *pathname, struct ffblk *ffblk, int attrib);

findfirst begins a search of a disk directory for files specified by attributes or
wildcards.

pathname is a string with an optional drive specifier, path, and file name of
the file to be found. Only the file name portion can contain wildcard match
characters (such as ? or *). If a matching file is found, the ffblk structure is
filled with the file-directory information.

The format of the structure ffblk is as follows:

struct ffblk {
long ff_reserved;
long ff_fsize;
unsigned long ff_attrib;
unsigned short ff_ftime;
unsigned short ff_fdate;
char ff_name[256];
};

/* file size */
/* attribute found */
/* file tiI[le */
/* file date */
/* found file name */

attrib is a file-attribute byte used in selecting eligible files for the search.
attrib should be selected from the following constants defined in dos.h:

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file
FA_DIREC Directory

A combination of constants can be ORed together.

For more detailed information about these attributes, refer to your operat
ing system reference manuals.

Chapter 2, Run-time functions 67

findfirst

Return value

See also

findnext

Function

Syntax

Remarks

68

Note thatffJtime andffJdate contain bit fields for referring to the current
date and time. The structure of these fields was established by the operat
ing system. Both are 16-bit structures divided into three fields.

ff_ftime:
Bits 0 to 4 The result of seconds divided by 2 (for example, 10 here

means 20 seconds)
Bits 5 to 10
Bits 11 to 15

ff_fdate:
Bits 0-4
Bits 5-8
Bits 9-15

Minutes
Hours

Day
Month
Years since 1980 (for example, 9 here means 1989)

The structure ftime declared in io.h uses time and date bit fields similar in
structure toffJtime, andffJdate.

findfirst returns 0 on successfully finding a file matching the search
pathname. When no more files can be found, or if there is some error in the
file name, -1 is returned, and the global variable errno is set to

ENOENT Path or file name not found

and _doserrno is set to one of the following values:

ENMFILE No more files
ENOENT Path or file name not found

findnext, geiftime, seiftime

dir.h

Continues findfirst search.

int findnext(struct ffblk *ffblk);

findnext is used to fetch subsequent files that match the pathname given in
findfirst. ffblk is the same block filled in by the findfirst call. This block
contains necessary information for continuing the search. One file name for
each call to findnext will be returned until no more files are found in the
directory matching the pathname.

Borland C++ for OS/2 Library Reference

Return value

See also

floor, floorl

Function

Syntax

Remarks

Return value

See also

flushall

Function

Syntax

Remarks

floor

floor!

findnext

findnext returns a on successfully finding a file matching the search
pathname. When no more files can be found, or if there is some error in the
file name, -1 is returned, and the global variable errno is set to

ENOENT Path or file name not found

and _doserrno is set to one of the following values:

No more files ENMFILE
ENOENT Path or file name not found

findfirst

Rounds down.

double floor(double xl;
long double floorl(long double xl;

DOS UNIX Win 16 Win 32 ANSI C ANSI C++

• • • • • •
• • •

math.h

OS/2

•
•

floor finds the largest integer not greater than x. floor! is the long double
version; it takes a long double argument and returns a lo~g double result.

floor returns the integer found as a double. floor! returns the integer found
as a long double.

ceil,fmod

stdio.h

Flushes all streams.

int flushall(voidl;

flushall clears all buffers associated with open input streams, and writes all
buffers associated with open output streams to their respective files. Any

Chapter 2, Run-time functions 69

flushall

Return value

See also

fmod, fmodl

Function

Syntax

Remarks

Return value

See also

fnmerge

Function

Syntax

Remarks

70

(mod

(modI

read operation followingfLushall reads new data into the buffers from the
input files. Streams stay open after fLushall executes.

fLushall returns an integer, the number of open input and output streams.

fdose, fdoseall, !flush

math.h

Calculates x modulo y, the remainder of x/yo

double frnod(double x, double Y) i
long double frnodl(long double x, long double Y)i

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

fmod calculates x modulo y (the remainder f, where x = ay + f for some
integer a and 0 ~f < y). fmodl is the long double version; it takes long
double arguments and returns a long double result.

fmod andftnodl return the remainderf, where x = ay + f(as described).
Where y = O,fmod andfmodl return O.

ceil, floor, modf

Builds a path from component parts.

dir.h

void fnrnerge(char *path, const char *drive, const char *dir, const char *narne,
canst char *ext)i

fnmerge makes a path name from its components. The new path name is

X:\DIR\SUBDIR\NAME.EXT

where

drive X:

Borland C++ for OS/2 Library Reference

Return value

See also

fnsplit

Function

Syntax

Remarks

fnmerge

dir \DIR\SUBDIR\
name NAME

ext . EXT

fnmerge assumes there is enough space in path for the constructed path
name. The maximum constructed length is MAXP A TH. MAXP ATH is
defined in dir.h.

fnmerge andfnsplit are invertible; if you split a given path withfnsplit, then
merge the resultant components with fnmerge, you end up with path.

None.

fnsplit

Splits a full path name into its components.

int fnsplit(const char *path, char *drive, char *dir, char *name, char *ext);

DOS I UNIX Wi n 16 I Wi n 32 I ANSI C I ANSI c++ I OS/2 JI
• I I I I I • II

fnsplit takes a file's full path name (path) as a string in the form

X:\DIR\SUBDIR\NAME.EXT

dir.h

and splits path into its four components. It then stores those components in
the strings pointed to by drive, dir, name, and ext. All five components must
be passed, but any of them can be a null, which means the corresponding
component will be parsed but not stored. If any path component is null,
that component corresponds to a non-NULL, empty string.

The maximum sizes for these strings are given by the constants MAXDRIVE,

MAXDIR, MAXPATH, MAXFILE, and MAXEXT (defined in dir.h), and each size
includes space for the null character.

Constant

MAXPATH
MAXDRIVE
MAXDIR
MAXFILE
MAX EXT

Max

260
3

256
256
256

String

path
drive; includes colon (:)
dir, includes leading and trailing backslashes (\)
name
ext, includes leading dot (.)

fnsplit assumes that there is enough space to store each non-null
component.

Chapter 2, Run-time functions 71

fnsplit

Return value

See also

fopen

Function

Syntax

Remarks

72

When fnsplit splits path, it treats the punctuation as follows:

II drive includes the colon (C:, A:, and so on).

11 dir includes the leading and trailing backslashes (\ BC\include \,
\source\, and so on).

II name includes the file name.

II ext includes the dot preceding the extension (.C, .EXE, and so on).

fnmerge and fnsplit are invertible; if you split a given path with fnsplit, then
merge the resultant components with fnmerge, you end up with path.

fnsplit returns an integer (composed of five flags, defined in dir.h)
indicating which of the full path name components were present in path.
These flags and the components they represent are

EXTENSION
FILENAME
DIRECTORY
DRIVE
WILDCARDS

fnmerge

Opens a stream.

An extension
A file name
A directory (and possibly subdirectories)
A drive specification (see dir.h)
Wildcards (* or ?)

FILE *fopen(const char *filename, const char *mode);

stdio.h

fopen opens the file named by filename and associates a stream with it. fopen
returns a pointer to be used to identify the stream in subsequent
operations.

The mode string used in calls to fopen is one of the following values:

Value Description

w

a

r+

Open for reading only.

Create for writing. If a file by that name already exists, it will be overwritten.

Append; open for writing at end of file, or create for writing if the file does not exist.

Open an existing file for update (reading and writing).

Borland C++ for OS/2 Library Reference

Return value

See also

_fpreset

Function

Syntax

Remarks

Return value

See also

fopen

w+ Create a new file for update (reading and writing). If a file by that name already
exists, it will be overwritten.

a+ Open for append; open for update at the end of the file, or create if the file does not
exist.

To specify that a given file is being opened or created in text mode, append
a t to the mode string (rt, w+t, and so on). Similarly, to specify binary mode,
append a b to the mode string (wb, a+b, and so on).fopen also allows the t or
b to be inserted between the letter and the + character in the mode string;
for example, rt+ is equivalent to r+t.

If a t or b is not given in the mode string, the mode is governed by the global
variable Jmode. If Jmode is set to O_BINARY, files are opened in binary
mode. If Jmode is set to O_TEXT, they are opened in text mode. These 0_ ...
constants are defined in fcntl.h.

When a file is opened for update, both input and output can be done on the
resulting stream. However, output cannot be followed directly by input
without an interveningfseek or rewind, and input cannot be directly
followed by output without an interveningfseek, rewind, or an input that
encounters end-of-file.

On successful completion, fopen returns a pointer to the newly opened
stream. In the event of error, it returns NULL.

creat, dup, fdose, fdopen ferror, Jmode (global variable), fread, jreopen, fseek,
jwrite, open, rewind, setbuf, setmode

float.h

Reinitializes floating-point math package.

void _fpreset(void);

Jpreset reinitializes the floating-point math package. This function is
usually used in conjunction with system or the exec ... or spawn ... functions.
It is also used to recover from floating-point errors before calling longjmp.

None.

_dear87, _control87, _status87

Chapter 2, Run-time functions 73

fprintf

fprintf

Function

Syntax

Remarks

See printf for details
on format specifiers.

Return value

See also

fputc

Function

Syntax

Remarks

Return value

See also

fputchar

Function

Syntax

74

stdio.h

Writes formatted output to a stream.

int fprintf(FILE *stream, const char *format[, argument, ., .J);

fprintj accepts a series of arguments, applies to each a format specifier
contained in the format string pointed to by format, and outputs the
formatted data to a stream. There must be the same number of format
specifiers as arguments.

fprintj returns the number of bytes output. In the event of error, it returns
EOF.

cprintJ, fscanf, printf, putc, sprintf

Puts a character on a stream.

int fputc(int c, FILE *stream);

fputc outputs character c to the named stream.

On success,fputc returns the character c. On error, it returns EOF.

fgetc, putc

Outputs a character on stdout.

int fputchar(int c);

stdio.h

stdio.h

Borland C++ for OS/2 Library Reference

fputchar

Remarks fputchar outputs character c to stdout. fputchar(c) is the same as
fputc(c, stdout).

.. This function should not be used in PM applications.

Return value On success,fputchar returns the character c. On error, it returns EOF.

See also fgetchar,jreopen, putchar

fputs stdio.h

Function Outputs a string on a stream.

Syntax int fputs(const char *s, FILE *strearn)i

Remarks fputs copies the null-terminated string s to the given output stream; it does
not append a newline character, and the terminating null character is not
copied.

Return value On successful completion,fputs returns a non-negative value. Otherwise, it
returns a value of EOF.

See also fgets, gets, puts

.,
fread stdio.h

Function

Syntax

Remarks

Return value

See also

Reads data from a stream.

size_t fread(void *ptr, size_t size, size_t n, FILE *strearn) i

fread reads n items of data, each of length size bytes, from the given input
stream into a block pointed to by ptr.

The total number of bytes read is (n x size).

On successful completion, jread returns the number of items (not bytes)
actually read. It returns a short count (possibly 0) on end-of-file or error.

fopen, jwrite, prinif, read

Chapter 2, Run-time functions 75

free

free

Function

Syntax

Remarks

Return value

See also

freopen

Function

Syntax

Remarks

76

stdlib.h

Frees allocated block.

void free(void *block);

free deallocates a memory block allocated by a previous call to calloc, malloc,
or realloc.

None.

calloc, malloc, realloc, strdup

stdio.h

Associates a new file with an open stream.

FILE *freopen(const char *filename, const char *mode, FILE *stream);

freopen substitutes the named file in place of the open stream. It closes
stream, regardless of whether the open succeeds. freopen is useful for
changing the file attached to stdin, stdout, or stderr.

The mode string used in calls to fopen is one of the following values:

Value Description

Open for reading only.

w Create for writing.

a Append; open for writing at end-of-file, or create for writing if the file does not exist.

f+ Open an existing file for update (reading and writing).

w+ Create a new file for update.

a+ Open for append; open (or create if the file does not exist) for update at the end of
the file.

To specify that a given file is being opened or created in text mode, append
a t to the mode string (rt, w+t, and so on); similarly, to specify binary mode,
append a b to the mode string (wb, a+b, and so on).

Borland C++ for OS/2 Library Reference

Return value

See also

frexp, frexpl

Function

Syntax

Remarks

Return value

See also

fscanf

Function

Syntax

frexp

frexp/

freopen

If a t or b is not given in the mode string, the mode is governed by the global
variable Jmode. If Jmode is set to a_BINARY, files are opened in binary
mode. If Jmode is set to a_TEXT, they are opened in text mode. These 0_ ...
constants are defined in fcntl.h.

When a file is opened for update, both input and output can be done on the
resulting stream. However, output cannot be directly followed by input
without an interveningfseek or rewind, and input cannot be directly
followed by output without an interveningfseek, rewind, or an input that
encounters end-of-file.

On successful completion, freopen returns the argument stream. In the event
of error, it returns NULL.

fcZose, fdopen, fopen, open, setmode

math.h

Splits a number into mantissa and exponent.

double frexp(double x, int *exponent);
long double frexpl(long double x, int *exponent);

DDS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

frexp calculates the mantissa m (a double greater than or equal to 0.5 and
less than 1) and the integer value n, such that x (the original double value)
equals m x 2n. frexp stores n in the integer that exponent points to.

frexpl is the long double version; it takes a long double argument for x and
returns a long double result.

frexp and frexpl return the mantissa m. Error handling for these routines can
be modified through the functions _matherr and _matherrl.

exp, Idexp, _matherr

stdio.h

Scans and formats input from a stream.

int fscanf(FILE *stream, const char *format[, address, ... J);

Chapter 2, Run-time functions 77

fscanf

Remarks

See scanffor details
on format specifiers.

Return value

See also

fseek

Function

Syntax

Remarks

78

II DOS UNIX Win 16 I Win 32 I ANSI C I ANSI C++ I OS/2 II

\I I I I I • II

fscanf scans a series of input fields, one character at a time, reading from a
stream. Then each field is formatted according to a format specifier passed
to fscanf in the format string pointed to by format. Finally, fscanf stores the
formatted input at an address passed to it as an argument following format.
The number of format specifiers and addresses must be the same as the
number of input fields.

fscanf can stop scanning a particular field before it reaches the normal end
of-field character (whitespace), or it can terminate entirely for a number of
reasons. See scanf for a discussion of possible causes.

fscanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored.

If fscanf attempts to read at end-of-file, the return value is EOF. If no fields
were stored, the return value is O.

atof, cscanf, fprintf, printf, scanf, sscanf, vfscanf, vscanf, vsscanf

stdio.h

Repositions a file pointer on a stream.

int fseek(FILE *strearn, long offset, int whence);

fseek sets the file pointer associated with stream to a new position that is
offset bytes from the file location given by whence. For text mode streams,
offset should be 0 or a value returned by ftell.

whence must be one of the values 0, I, or 2, which represent three symbolic
constants (defined in stdio.h) as follows:

Constant

SEEK_SET
SEEK_CUR
SEEK_END

whence

o
1
2

File location

File beginning
Current file pointer position
End-of-file

BorlandC++ for OS/2 Library Reference

Return value

See also

fsetpos

Function

Syntax

Remarks

Return value

See also

_fsopen

Function

Syntax

fseek

fseek discards any character pushed back using ungetc. fseek is used with
stream I/O; for file handle I/O, use lseek.

After fseek, the next operation on an update file can be either input or
output.

fseek returns 0 if the pointer is successfully moved and nonzero on failure.

In the event of an error return, the global variable errno is set to one of the
following values:

EBADF Bad file pointer
EINV AL Invalid argument
ESPIPE Illegal seek on device

fgetpos, fopen, fsetpos, ftell, lseek, rewind, setbuf, tell

stdio.h

Positions the file pointer of a stream.

int fsetpas(FILE *stream, canst fpas_t *pas) i

fsetpos sets the file pointer associated with stream to a new position. The
new position is the value obtained by a previous call to fgetpos on that
stream. It also clears the end-of-file indicator on the file that stream points to
and undoes any effects of ungetc on that file. After a call to fsetpos, the next
operation on the file can be input or output.

On success, fsetpos returns O. On failure, it returns a nonzero value and also
sets the global variable errno to a nonzero value.

fgetpos, fseek, ftell

stdio.h, share.h

Opens a stream with file sharing.

FILE *_fsapen(const char *filename, canst char *made, intshflag) i

Chapter 2, Run-time functions 79

jsopen

Remarks

80

Jsopen opens the file named by filename and associates a stream with it.
Jsopen returns a pointer that is used to identify the stream in subsequent
operations.

The mode string used in calls to Jsopen is one of the following values:

Mode Description

Open for reading only.

w Create for writing. If a file by that name already exists, it will be overwritten.

a Append; open for writing at end of file, or create for writing if the file does not exist.

r+ Open an existing file for update (reading and writing).

w+ Create a new file for update (reading and writing). If a file by that name already
exists, it will be overwritten.

a+ Open for append; open for update at the end of the file, or create if the file does not
exist.

To specify that a given file is being opened or created in text mode, append
a t to the mode string (rt, w+t, and so on). Similarly, to specify binary mode,
append a b to the mode string ('lOb, a+b, and so on). Jsopen also allows the t
or b to be inserted between the letter and the + character in the mode string;
for example, rt+ is equivalent to r+t.

If a t or b is not given in the mode string, the mode is governed by the global
variable Jmode. If Jmode is set to a_BINARY, files are opened in binary
mode. If Jmode is set to a_TEXT, they are opened in text mode. These 0_ ...
constants are defined in fcntl.h.

When a file is opened for update, both input and output can be done on the
resulting stream. However, output cannot be followed directly by input
without an interveningfseek or rewind, and input cannot be directly
followed by output without an interveningfseek, rewind, or an input that
encounters end-of-file.

shflag specifies the type of file-sharing allowed on the file filename. Symbolic
constants for shflag are defined in share.h.

Value of shflag

SH_COMPAT
SH_DENYRW
SH_DENYWR

Description

Sets compatibility mode
Denies read/write access
Denies write access

Borland C++ for OS/2 Library Reference

Return value

See also

fstat, stat

Function

Syntax

Remarks

SH_DENYRD
SH_DENYNONE
SH_DENYNO

Denies read access
Permits read/write access
Permits read/write access

jsopen

On successful completion, Jsopen returns a pointer to the newly opened
stream. In the event of error, it returns NULL.

creat, _dos_open, dup,fclose,fdopen,ferror, Jmode (global variable),fopen,
fread, freopen, fseek, jwrite, open, rewind, setbuf, setmode, sopen

Gets open file information.

int fstat(int handle, struct stat *statbuf);
int stat(char *path, struct stat *statbuf);

sys\stat.h

fstat stores information in the stat structure about the file or directory
associated with handle.

stat stores information about a given file or directory in the stat structure.
The name of the file is path.

statbufpoints to the stat structure (defined in sys\stat.h). That structure
contains the following fields:

st_mode Bit mask giving information about the file's mode

st_dev Drive number of disk containing the file, or file handle if the
file is on a device

st_rdev Same as st_dev

st_nlink Set to the integer constant 1

st_size Size of the file in bytes

st_atime Most recent time the file was modified

st_mtime Same as st_atime

st_ctime Same as st_atime

The stat structure contains three more fields not mentioned here. They
contain values that are meaningful only in UNIX.

Chapter 2, Run-time functions 81

fstat, stat

Return value

See also

ftell

Function

Syntax

Remarks

Return value

See also

82

The st_mode bit mask that gives information about the mode of the open file
includes the following bits:

One of the following bits will be set:

S_IFCHR If handle refers to a device.
S_IFREG If an ordinary file is referred to by handle.

One or both of the following bits will be set:

S_IWRITE If user has permission to write to file.
S_IREAD If user has permission to read to file.

fstat and stat return 0 if they successfully retrieved the information about
the open file. On error (failure to get the information), these functions
return -1 and set the global variable errno to

EBADF Bad file handle

access, chmod

stdio.h

Returns the current file pointer.

long int ftell(FILE *streamji

ftell returns the current file pointer for stream. The offset is measured in
bytes from the beginning of the file (if the file is binary). The value returned
by ftell can be used in a subsequent call to fseek.

ftell returns the current file pointer position on success. It returns -1L on
error and sets the global variable errno to a positive value.

In the event of an error return, the global variable errno is set to one of the
following values:

EBADF Bad file pointer
ESPIPE Illegal seek on device

fgetpos, fseek, fsetpos, lseek, rewind, tell

Borland C++ fot OS/2 Library Reference

ftime

Function

Syntax

Remarks

ftime

sys\timeb.h

Stores current time in timeb structure.

void ftime(struct timeb *buf)

On UNIX platforms, ftime is available only on System V systems.

ftime determines the current time and fills in the fields in the timeb structure
pointed to by buf The timeb structure contains four fields: time, millitm,
_timezone, and dstflag:

struct timeb {

}i

long time i

short millitm i

short _timezone i

short dstflag i

• time provides the time in seconds since 00:00:00 Greenwich mean time
(GMT), January I, 1970.

• millitm is the fractional part of a second in milliseconds.

• _timezone is the difference in minutes between GMT and the local time.
This value is computed going west from GMT. ftime gets this field from
the global variable _timezone, which is set by tzset.

• dsiflag is used to indicate whether daylight saving time will be taken into
account during time calculations.

.. ftime calls tzset. Therefore, it isn't necessary to call tzset explicitly when you
useftime.

Return value None.

See also asctime, ctime, gmtime, localtime, stime, time, tzset

_fullpath stdlib.h

Function Converts a path name from relative to absolute.

Syntax char * _fullpath(char *buffer, const char *path, int buflen) i

Chapter 2, Run-time functions 83

jullpath

Remarks

Return value

See also

fwrite

Function

Syntax

Remarks

Return value

See also

gcvt

Function

Syntax

84

Jullpath converts the relative path name in path to an absolute path name
that is stored in the array of characters pointed to by buffer. The maximum
number of characters that can be stored at buffer is bufLen. The function
returns NULL if the buffer isn't big enough to store the absolute path name,
or if the path contains an invalid drive letter.

If buffer is NULL, Jullpath allocates a buffer of up to _MAX_P A TH charac
ters. This buffer should be freed using free when it is no longer needed.
_MAX_PATH is defined in stdlib.h

If successful, the Jullpath function returns a pointer to the buffer containing
the absolute path name. Otherwise, it returns NULL.

_makepath, _splitpath

stdio.h

Writes to a stream.

size_t fwrite(const void *ptr, size_t size, size_t n, FILE *strearn)i

jwrite appends n items of data, each of length size bytes, to the given output
file. The data written begins at ptr. The total number of bytes written is (n x
size). ptr in the declarations is a pointer to any object.

On successful completion,jwrite returns the number of items (not bytes)
actually written. It ret~rns a short count on error.

fopen, fread

stdlib.h

Converts floating-point number to a string.

char *gcvt(double value, int ndec, char *buf)i

Borland C++ for OS/2 Library Reference

gcvt

Remarks gcvt converts value to a null-terminated ASCII string and stores the string in
buf It produces ndec significant digits in FORTRAN F format, if possible;
otherwise, it returns the value in the printfE format (ready for printing). It
might suppress trailing zeros.

Return value

See also

gcvt returns the address of the string pointed to by buf

ecvt, fcvt, sprintf

getc stdio.h II
Function

Syntax

Gets character from stream.

int getc(FILE *strearn) i

Il DOS I UNIX Wi n 16 I Wi n 32 I

Il • I 1 j
ANSI C I ANSI c++ I OS/2

I I

Remarks getc is a macro that returns the next character on the given input stream and
increments the stream's file pointer to point to the next character.

Return value On success, getc returns the character read, after converting it to an int
without sign extension. On end-of-file or error, it returns EOP.

See also fgetc, getch, getchar, getche, gets, putc, putchar, ungetc

getch conio.h

Function Gets character from keyboard, does not echo to screen.

Syntax int getch (void) i

Remarks getch reads a single character directly from the keyboard, without echoing
to the screen.

-.. This function should not be used in PM applications.

Return value getch returns the character read from the keyboard.

See also cgets, cscanf,fgetc, getc, getchar, getche, getpass, kbhit, putch, ungetch

Chapter 2, Run-time functions 85

getchar

getchar stdio.h

Function Gets character from stdin.

Syntax int get char (void) i

Remarks getchar is a macro that returns the next character on the named input stream
stdin. It is defined to be getc(stdin).

Return value On success, getchar returns the character read, after converting it to an int
without sign extension. On end-of-file or error, it returns EOF. .

See also fgetc, fgetchar, freopen, getc, getch, getche, gets, putc, putchar, scanf, ungetc

getche conio.h

Function Gets character from the keyboard, echoes to screen.

Syntax int getche (void) i

Remarks getche reads a single character from the keyboard and echoes it to the
current text window.

.. This function should not be used in PM applications.

Return value getche returns the character read from the keyboard.

See also cgets, cscanf, fgetc, getc, getch, getchar, kbhit, putch, ungetch

getcurdir dir.h

Function Gets current directory for specified drive.

Syntax int getcurdir(int drive, char *directory) i

86 Borland C++ for OS/2 Library Reference

Remarks

Return value

See also

getcwd

Function

Syntax

Remarks

Return value

See also

getcurdir

getcurdir gets the name of the current working directory for the drive
indicated by drive. drive specifies a drive number (0 for default, 1 for A, and
so on). directory points to an area of memory of length MAXDIR where the
null-terminated directory name will be placed. The name does not contain
the drive specification and does not begin with a backslash.

getcurdir returns 0 on success or -1 in the event of error.

chdir, getcwd, getdisk, mkdir, rmdir

dir,h.

Gets current working directory.

char *getcwd(char *buf, int buflen);

getcwd gets the full path name (including the drive) of the current working
directory, up to buflen bytes long and stores it in buj. If the full path name
length (including the null character) is longer than buflen bytes, an error
occurs.

If buf is NULL, a buffer buflen bytes long is allocated for you with malloc.
You can later free the allocated buffer by passing the return value of getcwd
to the function free.

getcwd returns the following values:

.. If buf is not NULL on input, getcwd returns buf on success, NULL on
error .

.. If buf is NULL on input, getcwd returns a pointer to the allocated buffer.

In the event of an error return, the global variable errno is set to one of the
following values:

ENODEV
ENOMEM
ERANGE

No such device
Not enough memory to allocate a buffer (buf is NULL)
Directory name longer than buflen (bufis not NULL)

chdir, getcurdir, -$etdcwd, getdisk, mkdir, rmdir

Chapter 2, Run-time functions 87

_getdcwd

getdate

_getdcwd

Function

Syntax

Remarks

Return value

See also

getdfree

Function

Syntax

Remarks

88

See _dos~etdate on page 45.

direct.h

Gets current directory for specified drive.

char * _getdcwd(int drive, char *buffer, int buflen);

~etdcwd gets the full path name of the working directory of the specified
drive (including the drive name), up to buflen bytes long, and stores it in
buffer. If the full path name length (including the null character) is longer
than buflen, an error occurs. The drive is 0 for the default drive, l=A, 2=B,
and so on.

If buffer is NULL, ~etdcwd allocates a buffer at least buflen bytes long. You
can later free the allocated buffer by passing the ~etdcwd return value to
the free function.

If successful, ~etdcwd returns a pointer to the buffer containing the current
directory for the specified drive. Otherwise it returns NULL, and sets the
global variable errno to one of the following values:

ENOMEM Not enough memory to allocate a buffer (buffer is NULL)
ERANGE Directory name longer than buflen (buffer is not NULL)

chdir, getcwd, ~etdrive, mkdir, rmdir

dos.h

Gets disk free space.

void getdfree(unsigned char drive, struct dfree *dtable);

getdfree accepts a drive specifier in drive (0 for default, 1 for A, and so on)
and fills the dfree structure pointed to by dtable with disk attributes.

Borland C++ for OS/2 Library Reference

Return value

The dfree structure is defined as follows:

struct dfree {
unsigned df_availi
unsigned df_totali
unsigned df_bseci
unsigneddf_scluSi

}i

/* available clusters */
/* total clusters */
/* bytes per sector */
/* sectors per cluster */

getdfree returns no value. In the event of an error, df_sclus in the dfree
structure is set to (unsigned)-1.

getdfree

getdisk, setdisk dir.h

Function Gets or sets the current drive number.

Syntax int getdisk (void) i

Remarks

Return value

See also

_getdrive

Function

Syntax

Remarks

int setdisk(int drive) i

getdisk gets the current drive number. It returns an integer: a for A, 1 for B, 2
for C, and so on. setdisk sets the current drive to the one associated with
drive: a for A, 1 for B, 2 for C, and so on.

Only the current process is affected.

getdisk returns the current drive number. setdisk returns the total number of
drives available.

getcurdir, getcwd

direct.h

Gets current drive number.

int _getdrive(void) i

-ISetdrive gets the current drive number. It returns an integer: 1 for A, 2 for
B, 3 for C, and so on.

Chapter 2, Run-time functions 89

•

_getdrive

Return value

See also

getenv

Function

Syntax

Remarks

~etdrive returns the current drive number.

_dos~etdrive, _dos_setdrive, ~etdcwd

Gets a string from environment.

char *getenv(const char *narne)i

DOS I UNIX Win 16 I Win 32 I ANSI C I ANSI C++ I OS/2 JI
• I I I I I • II

stdlib.h

getenv returns the value of a specified variable. On DOS and OS/2, name
must be uppercase. On other systems, name can be either uppercase or low
ercase. name must not include the equal sign (=). If the specified
environment variable does not exist, getenv returns a NULL pointer.

To delete the variable from the environment, use getenv (11 name= 11) •

.. Environment entries must not be changed directly. If you want to change
an environment value, you must use putenv.

Return value On success, getenv returns the value associated with name. If the specified
name is not defined in the environment, getenv returns a NULL pointer.

See also _environ (global variable), putenv

getftime, setftime io.h

Function

Syntax

Remarks

90

Gets and sets the file date and time.

int getftirne(int handle, struct ftirne *ftirnep) i

int setftirne(int handle, struct ftirne *ftirnep) i

DOS I UNIX Wi n 16 I Wi n 32 I ANSI C I ANSI C++ I OS/2 JI
I I I I I II

getftime retrieves the file time and date for the disk file associated with the
open handle. The ftime structure pointed to by ftimep is filled in with the
file's time and date.

setftime sets the file date and time of the disk file associated with the open
handle to the date and time in theftime structure pointed to by ftimep. The
file must not be written to after the setftime call or the changed information

Borland e++ for OS/2 Library Reference

getftime, setftime

will be lost. The file must be open for writing; an EACCES error will occur
if the file is open for read-only access.

Return value

The ftime structure is defined as follows:

struct ftime {
unsigned ft_tsec: 5;
unsigned ft_min: 6;
unsigned ft_hour: 5;
unsigned ft_day: 5;
unsigned ft_month: 4;
unsigned ft-year: 7;
};

/* two seconds */
/* minutes */
/* hours */
/* days */
/* months */
/* year - 1980*/

geiftime and seiftime return 0 on success. .

In the event of an error return, -1 is returned and the global variable errno
is set to one of the following values:

EACCES
EBADF
EINVFNC

See also !flush, open

Permission denied
Bad file number
Invalid function number

getpass conio.h

Function Reads a password.

Syntax char *getpass(const char *prompt);

Remarks getpass reads a password from the system console, after prompting with the
null-terminated string prompt and disabling the echo. A pointer is returned
to a null-terminated string of up to eight characters (not counting the null
character).

.. This function should not be used in PM applications.

Return value The return value is a pointer to a static string, which is overwritten with
each call.

See also getch

Chapter 2, Run-time functions 91

I

getpid

getpid

Function

Syntax

Remarks

Return value

gets

Function

Syntax

Remarks

process.h

Gets the process ID of a program.

unsigned getpid(void)

This function returns the current process ID-an integer that uniquely
identifies the process.

getpid returns the identification number of the current process.

stdio.h

Gets a string from stdin.

char *gets(char *s) i

gets collects a string of characters terminated by a new line from the
standard input stream stdin and puts it into s. The new line is replaced by a
null character ('\0') in s.

gets allows input strings to contain certain whitespace characters (spaces,
tabs). gets returns when it encounters a new line; everything up to the new
line is copied into s.

.. This function should not be used in PM applications.

Return value On success, gets returns the string argument s; it returns NULL on end-of
file or error.

See also cgets, jerror, jgets, jopen, jputs, fread, jreopen, getc, puts, scanj

gettext conio.h

Function Copies text from text mode screen to memory.

Syntax int gettext(int left, int top, int right, int bottom, void *destin) i

92 Borland C++ for OS/2 Library Reference

gettext '

Remarks

OS/2

gettext stores the contents of an onscreen text rectangle defined by left, top,
right, and bottom into the area of memory pointed to by destin.

All coordinates are absolute screen coordinates, not window-relative. The
upper left corner is (1,1).

gettext reads the contents of the rectangle into memory sequentially from
left to right and top to bottom.

Each position onscreen takes 2 bytes of memory: The first byte is the
character in the cell, and the second is the cell's video attribute. The space
required for a rectangle w columns wide by h rows high is defined as

bytes = (h rows) x (w columns) x 2

-.. This function should not be used in PM applications.

Return value gettext returns 1 if the operation succeeds. It returns 0 if it fails (for example,
if you gave coordinates outside the range of the current screen mode).

See also movetext, puttext

gettextinfo conio.h

Function Gets text mode video information.

Syntax void gettextinfo(struct text_info *r);

II DOS I UNIX I Win 16 I Win 32 ANSI C I ANSI C++ I OS/2

II • I I I I I

Remarks gettextinfo fills in the text _info structure pointed to by r with the current text
video information.

The text_info structure is defined in conio.h as follows:

Chapter 2, Run-time functions

struct text_info {
unsigned char winleft;
unsigned char wintop;
unsigned char winright;
unsigned char winbottom;
unsigned char attribute;
unsigned char normattr;
unsigned char currmode;
unsigned char screenheight;

/* left window coordinate */
/* top window coordinate */
/* right window coordinate */
/* bottom window coordinate */
/* text attribute */
/* normal attribute */
/* BW40, BW80, C40, C80, or C4350 */
/* text screen's height */

93

•

gettextinfo

}i

unsigned char screenwidth;
unsigned char curXi
unsigned char cury;

1* text screen's width *1
1* x-coordinate in current window *1
1* y-coordinate in current window *1

.. This function should not be used in PM applications.

Return value gettextinfo returns nothing; the results are returned in the structure pointed
to by r.

See also textattr, textbackground, textcolor, textmode, wherex, wherey, window

gettime, settime dos.h

Function

Syntax

Remarks

Return value

See also

getverify

Function

Syntax

94

gettime

settime

Gets and sets the system time.

void gettime(struct time *timep)i
void settime(struct time *timep);

DOS UNIX Win 16 Win 32

• • •
• •

ANSI C ANSI C++ OS/2

•
•

gettime fills in the time structure pointed to by timep with the system's
current time.

settime sets the system time to the values in the time structure pointed to by
timep.

The time structure is defined as follows:

struct time {

}i

unsigned char ti_min;
unsigned char ti_houri
unsigned char ti_hund;
unsigned'char ti_sec;

None.

1* minutes *1
1* hours *1
1* hundredths of seconds *1
1* seconds *1

_dos~ettime, _dos_settime, getdate, setdate, stime, time

Returns the state of the operating system verify flag.

int getverify(void);

dos.h

Borland C++ for OS/2 Library Reference

Remarks

Return value

See also

getw

Function

Syntax

Remarks

Return value

See also

gmtime

Function

Syntax

Remarks

getverify

getverify gets the current state of the verify flag.

The verify flag controls output to the disk. When verify is off, writes are not
verified; when verify is on, all disk writes are verified to ensure proper
writing of the data.

getverify returns the current state of the verify flag, either 0 (off) or 1 (on).

setverify

stdio.h

Gets integer from stream.

int getw(FILE *stream);

getw returns the next integer in the named input stream. It assumes no
special alignment in the file.

getw should not be used when the stream is opened in text mode.

getw returns the next integer on the input stream. On end-of-file or error,
getw returns EOF. Because EOF is a legitimate value for getw to return, feof
or ferror should be used to detect end-of-file or error.

putw

time.h

Converts date and time to Greenwich mean time (GMT).

struct tm *gmtime(const time_t *timer);

OS/2

gmtime accepts the address of a value returned by time and returns a
pointer to the structure of type tm containing the time elements. gmtime
converts directly to GMT.

Chapter 2, Run-time functions 95

•

gmtime

The global long variable _timezane should be set to the difference in seconds
between GMT and local standard time (in PST, _timezane is 8x60x60). The
global variable _daylight should be set to nonzero anly if the standard U.S.
daylight saving time conversion should be applied.

This is the tm structure declaration from the time.h header file:

struct tm {

};

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tmJear;
int tm_wday;
int tmJday;
int tm_isdst;

/* Seconds */
/* Minutes */
/ * Hour (0 - 23) * /
/* Day of month (1 - 31) */
/* Month (0 - 11) */
/* Year (calendar year minus 1900) */
/* Weekday (0 - 6; Sunday is 0) */
/* Day of year (0 -365) */
/* Nonzero if daylight saving time is in effect. */

These quantities give the time on a 24-hour clock, day of month (1 to 31),
month (0 to 11), weekday (Sunday equals 0), year -1900, day of year (0 to
365), and a flag that is nonzero if daylight saving time is in effect.

Return value gmtime returns a pointer to the structure containing the time elements. This
structure is a static that is overwritten with each call.

See also asctime, ctime,jtime, lacaltime, stime, time, tzset

gotoxy conio.h

Function Positions cursor in text window.

Syntax void gotoxy (int X, int y) i

Remarks gataxy moves the cursor to the given position in the current text window. If
the coordinates are in any way invalid, the call to gataxy is ignored. An
example of this is a call to gataxy(40,30), when (35,25) is the bottom right
position in the window.

Neither argument to gataxy can be zero.

... This function should not be used in PM applications.

Return value None.

96 Borland C++ for OS/2 Library Reference

See also

_heapadd

Function

Syntax

Remarks

Return value

See also

heapcheck

Function

Syntax

Remarks

Return value

heapcheckfree

Function

gataxy

wherex, wherey, window

malloc.h

Add a block to the h~ap.

int _heapadd(void *block, size_t size) i

This function adds a new block of memory to the heap. The block must not
have been previously allocated from the heap. _heapadd is typically used to
add large static data areas to the heap.

_heapadd returns 0 if it is successful, and -1 if it is unsuccessful.

free, malloe

Checks and verifies the heap.

int heapcheck(void) i

alloc.h

heapeheek walks through the heap and examines each block, checking its
pointers, size, and other critical attributes.

The return value is less than 0 for an error and greater than 0 for success.
The return values and their meaning are as follows:

_HEAPCORRUPT
_HEAPEMPTY
_HEAPOK

Heap has been corrupted
No heap
Heap is verified

Checks the free blocks on the heap for a constant value.

alloc.h

Chapter 2, Run-time functions 97

II

heapcheckfree

Syntax

Return value

int heapcheckfree(unsigned int fillvalue) i

The return value is less then a for an error and greater than a for success.
The return values and their meaning are as follows:

_BADVALUE
_HEAPCORRUPT
_HEAPEMPTY
_HEAPOK

A value other than the fill value was found
Heap has been corrupted
No heap
Heap is accurate

heapchecknode alloc.h

Function

Syntax

Remarks

Return value

_heapchk

Function

Syntax

98

Checks and verifies a single node on the heap.

int heapchecknode(void *node)i

If a node has been freed and heapchecknode is called with a pointer to the
freed block, heapchecknode can return _BADNODE rather than the expected
_FREE ENTRY. This is because adjacent free blocks on the heap are merged,
and the block in question no longer exists.

One of the following values:

_BADNODE
_FREE ENTRY
_HEAPCORRUPT
_HEAPEMPTY
_USEDENTRY

Node could not be found
Node is a free block
Heap has been corrupted
No heap
Node is a used block

Checks and verifies the heap.

int _heapchk(void)i

malloc.h

Borland C++ for OS/2 Library Reference

Remarks

Return value

See also

heapfillfree

Function

Syntax

Return value

_heapmin

Function

Syntax

Remarks

_heapchk

ANSI C ANSI c++

_heapchk walks through the heap and examines each block, checking its
pointers, size, and other critical attributes.

One of the following values:

_HEAPBADNODE A corrupted heap block has been found
_HEAPEMPTY No heap exists
_HEAPOK The heap appears to be uncorrupted

_heapset, _rtCheapwalk

Fills the free blocks on the heap with a constant value.

int heapfillfree(unsigned int fillvalue) i

One of the following values:

_HEAPCORRUPT
_HEAPEMPTY
_HEAPOK

Heap has been corrupted
No heap
Heap is accurate

Release unused heap areas.

int _heapmin(void)i

Win 32 ANSI C

alloc.h

malloc.h

The _heapmin function returns unused areas of the heap to the operating
system. This allows blocks that have been allocated and then freed to be
used by other processes. Due to fragmentation of the heap,_heapmin might

Chapter 2, Run-time functions 99

_heapmin

Return value

See also

_heapset

Function

Syntax

Remarks

Return value,

See also

heapwalk

Function

Syntax

Remarks

100

not always be able to return unused memory to the operating system; this
is not an error.

_heapmin returns a if it is successful, or -1 if an error occurs.

free, malloe

Fills the free blocks on the heap with a constant value.

int _heapset(unsigned int fillvalue) i

malloc.h

_heapset checks the heap for consistency using the same methods as
_heapehk. It then fills each free block in the heap with the value contained in
the least significant byte of fillvalue. This function can be used to find heap
related problems. It does not guarantee that subsequently allocated blocks
will be filled with the specified value.

One of the following values:

_HEAPOK The heap appears to be uncorrupted
_HEAPEMPTY No heap exists
_HEAPBADNODE A corrupted heap block has been found

_heapehk, _rtl_heapwalk

alloc.h

heap walk is used to "walk" through the heap, node by node.

int heapwalk(struct heapinfo *hi) i

heapwalk assumes the heap is correct. Use heapeheek to verify the heap before
using heapwalk. _HEAPOK is returned with the last block on the heap.
_HEAPEND will be returned on the next call to heapwalk.

heapwalk receives a pointer to a structure of type heapinfo (declared in
alloc.h). For the first call to heapwalk, set the hLptr field to null. heapwalk

Borland C++ for OS/2 Library Reference

heapwalk

Return value

returns with hi.ptr containing the address of the first block. hi.size holds
the size of the block in bytes. hi.in_use is a flag that's set if the block is
currently in use.

One of the following values:

_HEAPEMPTY
_HEAPEND
_HEAPOK

No heap
End of the heap has been reached
Heapinfo block contains valid data

See also _rtCheapwalk

_heapwalk malloc.h iii
Remarks Obsolete function. See _rtCheapwalk.

highvideo conio.h

Function Selects high-intensity characters.

Syntax void highvideo(void)i

Remarks highvideo selects high-intensity characters by setting the high-intensity bit of
the currently selected foreground color.

This function does not affect any characters currently onscreen, but does
affect those displayed by functions (such as cprintj) that perform direct
video, text mode output after highvideo is called.

... This function should not be used in PM applications.

Return value None.

See also cprintf, cputs, gettextinfo, lowvideo, normvideo, textattr, textcolor

hypot, hypotl math.h

Function Calculates hypotenuse of a right triangle.

Syntax double hypot(double X, double y) i

long double hypotl(long double X, long double y)i

Chapter 2, Run-time functions 101

hypot, hypotl

Remarks

Return value

hypot

hypotl

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • •
• • • •

hypot calculates the value z where

z2 = x2 + y2 and z >= a
This is equivalent to the length of the hypotenuse of a right triangle, if the
lengths of the two sides are x and y.

hypotl is the long double version; it takes long double arguments and
returns a long double result.

On success, these functions return z, a double (hypot) or a long double
(hypotl). On error (such as an overflow), they set the global variable errno to

ERANGE Result out of range

and return the value HUGE_ VAL (hypot) or _LHUGE_ VAL (hypotl). Error
handling for these routines can be modified through the functions _matherr
and _matherrl.

insline conio.h

Function Inserts a blank line in the text window.

Syntax void insline (void) ;

Remarks insline inserts an empty line in the text window at the cursor position using
the current text background color. All lines below the empty one move
down one line, and the bottom line scrolls off the bottom of the window.

- This function should not be used in PM applications.

Return value None.

See also cIreol, delline, window

isalnum ctype.h

Function Tests for an alphanumeric character.

1 02 Borland C++ for OS/2 Library Reference

Syntax

Remarks

Return value

isalpha

Function

Syntax

Remarks

Return value

isascii

Function

Syntax

Remarks

isalnum

int isalnum(int e)i

OS/2

isalnum is a macro that classifies ASCII-coded integer values by table
lookup. The macro is affected by the current locale's LC_CTYPE category.
For the default C locale, c is a letter (A to Z or a to z) or a digit (0 to 9).

You can make this macro available as a function by undefining (#undef) it.

It is a predicate returning nonzero for true and 0 for false. isalnum returns
nonzero if c is a letter or a digit.

ctype.h

Classifies an alphabetical character.

int isalpha(int e)i

isalpha is a macro that classifies ASCII-coded integer values by table lookup.
The macro is affected by the current locale's LC_CTYPE category. For the
default C locale, c is a letter (A to Z or a to z).

You can make this macro available as a function by undefining (#undef) it.

isalpha returns nonzero if c is a letter.

ctype.h

Character classification macro.

int isaseii(int e)i

DOS I UNIX I Win 16 I Win 32 I ANSI C 1 ANSI C++ 1 OS/2

• I • I I I 1 I
isascii is a macro that classifies ASCII-coded integer values by table lookup.
It is a predicate returning nonzero for true and 0 for false.

isascii is defined on all integer values.

Chapter 2, Run-time functions 103

isascii

Return value

isatty

Function

Syntax

Remarks

Return value

iscntrl

Function

Syntax

Remarks

Return value

104

isascii returns nonzero if the low order byte of c is in the range 0 to 127
(OxOO-Ox7F) .

io.h

Checks for devi<;e type.

int isatty(int handle);

isatty determines whether handle is associated with anyone of the following
character devices:

.A terminal

.A console

.A printer
• A serial port

If the device is one of the four character devices listed above, isatty returns
a nonzero integer. If it is not such a device, isatty returns O.

ctype.h

Tests for a control character.

int iscntrl(int c);

iscntrl is a macro that classifies ASCII-coded integer values by table lookup.
The macro is affected by the current locale's LC_CTYPE category. For the
default C locale, c is a delete character or control character (Ox7F or OxOO to
Ox1F).

You can make this macro available as a function by undefining (#undef) it.

iscntrl returns nonzero if c is a delete character or ordinary control
character.

Borland C++ for OS/2 Library Reference

isdigit

Function

Syntax

Remarks

Return value

isgraph

Function

Syntax

Remarks

Return value

islower

Function

Syntax

isdigit

ctype.h

Tests for decimal-digit character.

int isdigit(int c);

isdigit is a macro that classifies ASCII-coded integer values by table lookup.
The macro is affected by the current locale's LC_CTYPE category. For the
default C locale, c is a digit (0 to 9).

You can make this macro available as a function by undefining (#undef) it.

isdigit returns nonzero if c is a digit.

ctype.h

Tests for printing character.

int isgraph(int c);

isgraph is a macro that classifies ASCII-coded integer values by table
lookup. The macro is affected by the current locale's LC_CTYPE category.
For the default C locale, c is a printing character except blank space (' ').

You can make this macro available as a function by undefining (#undef) it.

isgraph returns nonzero if c is a printing character.

ctype.h

Tests for lowercase character.

int islower(int c);

Chapter 2, Run-time functions 105

islower

Remarks

Return value

isprint

Function

Syntax

Remarks

Return value

ispunct

Function

Syntax

Remarks

Return value

106

islower is a macro that classifies ASCII-coded integer values by table
lookup. The macro is affected by the current locale's LC_CTYPE category.
For the default C locale, c is a lowercase letter (a to z).

You can make this macro available as a function by undefining (#undef) it.

islower returns nonzero if c is a lowercase letter.

ctype.h

Tests for printing character.

int isprint(int c);

isprint is a macro that classifies ASCII-coded integer values by table lookup.
The macro is affected by the current locale's LC_CTYPE category. For the
default C locale, c is a printing character including the blank space (' ').

You can make this macro available as a function by undefining (#undef) it.

isprint returns nonzero if c is a printing character.

ctype.h

Tests for punctuation character.

int ispunct(int C)i

ispunct is a macro that classifies ASCII-coded integer values by table
lookup. The macro is affected by the current locale's LC_CTYPE category.
For the default C locale, c is any printing character that is neither an alpha
numeric nor a blank space (' ').

You can make this macro available as a function by undefining (#undef) it.

ispunct returns nonzero if c is a punctuation character.

Borland C++ for OS/2 Library Reference

isspace

Function

Syntax

Remarks

Return value

is upper

Function

Syntax

Remarks

Return value

isxdigit

Function

Syntax

isspace

ctype.h

Tests for space character.

int isspaee(int e) i

isspace is a macro that classifies ASCII-coded integer values by table lookup.
The macro is affected by the current locale's LC_CTYPE category.

You can make this macro available as a function by undefining (#undef) it.

isspace returns nonzero if c is a space, tab, carriage return, new line, vertical
tab, formfeed (Ox09 to OxOD, Ox20), or any other locale-defined space
character.

ctype.h

Tests for uppercase character.

int isupper(int e)i

is upper is a macro that classifies ASCII-coded integer values by table
lookup. The macro is affected by the current locale's LC_CTYPE category.
For the default C locale, c is an uppercase letter (A to Z).

You can make this macro available as a function by undefining (#undef) it.

is upper returns nonzero if c is an uppercase letter.

ctype.h

Tests for hexadecimal character.

int isxdigit(int e)i

Chapter 2, Run-time functions 107

isxdigit

Remarks

Return value

itoa

Function

Syntax

Remarks

isxdigit is a macro that classifies ASCII-coded integer values by table
lookup. The macro is affected by the current locale's LC_CTYPE category.

You can make this macro available as a function by undefining (#undef) it.

isxdigit returns nonzero if c is a hexadecimal digit (0 to 9, A to F, a to f) or
any other hexadecimal digit defined by the locale.

stdlib.h

Converts an integer to a string.

char *itoa(int value, char *string, int radix) i

itoa converts value to a null-terminated string and stores the result in string.
With itoa, value is an integer.

radix specifies the base to be used in converting value; it must be between 2
and 36, inclusive. If value is negative and radix is 10, the first character of
string is the minus sign (-).

.. The space allocated for string must be large enough to hold the returned
string, including the terminating null character (\0). itoa can return up to 33
bytes.

Return value itoa returns a pointer to string.

See also Uoa, ultoa

kbhit conio.h

Function Checks for currently available keystrokes.

Syntax int kbhit (void) i

1 08 Borland C++ for OS/2 Library Reference

Remarks kbhit checks to see if a keystroke is currently available. Any available
keystrokes can be retrieved with getch or getche.

_ This function should not be used in PM applications.

Return value If a keystroke is available, kbhit returns a nonzero value. Otherwise, it
returns O.

See also getch, getche

kbhit

labs math.h

Function Gives long absolute value.

Syntax long labs (long int x);

Remarks labs computes the absolute value of the parameter x.

Return value labs returns the absolute value of x.

See also abs, cabs, Jabs

Idexp, Idexpl math.h

Function Calculates x x 2exP.

Syntax double ldexp(double x, int exp);

Remarks

Return value

See also

/dexp

/dexp/

long double ldexpl(long double x, int exp);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • I •
• • • •

ldexp calculates the double value x x 2exP.

expl is the long double version; it takes a long double argument for x and
returns a long double result.

On success, ldexp (or ldexpl) returns the value it calculated, x x 2exP. Error
handling for these routines can be modified through the functions _matherr
and _matherrl.

exp, frexp, modJ

Chapter 2, Run-time functions 109

II

Idiv

Idiv

Function

Syntax

Remarks

Return value

See also

Ifind

Function

Syntax

Remarks

Return value

110

stdlib.h

Divides two longs, returning quotient and remainder.

ldiv_t ldiv(long int numer, long int denom);

ldiv divides two longs and returns both the quotient and the remainder as
an ldiv_t type. numer and denam are the numerator and denominator,
respectively. The ldiv_t type is a structure of longs defined in stdlib.h as
follows:

typedef struct {
long int quot;
long int rem;
} ldiv_t;

/* quotient */
/* remainder */

ldiv returns a structure whose elements are quat (the quotient) and rem (the
remainder).

div

stdlib.h

Performs a linear search.

void *lfind(const void *key, const void *base, size_t *num, size_t width,
int (_USERENTRY *fcmp) (const void *, const void *));

lfind makes a linear search for the value of key in an array of sequential
records. It uses a user-defined comparison routine fcmp. The fcmp function
must be used with the _USERENTRY calling convention.

The array is described as having *num records that are width bytes wide,
and begins at the memory location pointed to by base.

lfind returns the address of the first entry in the table that matches the
search key. If no match is found, lfind returns NULL. The comparison
routine must return a if *eleml == *elem2, and nonzero otherwise (eleml and
elem2 are its two parameters).

Borland C++ for OS/2 Library Reference

See also

localeconv

Function

Syntax

Remarks

Ifind

bsearch, lsearch, qsort

locale.h

Queries the locale for numeric format.

struct lconv *localeconv(void)i

This function provides information about the monetary and other numeric
formats for the current locale. The information is stored in a struct lconv
type. The structure can only be modified by the setlocale. Subsequent calls to
localeconv will update the lconv structure.

The lconv structure is defined in locale.h. It contains the following fields:

Table 2.1: Locale monetary and numeric settings

Field

char *decimaLpoint,

char *thousands_sep;

char *grouping;

char *inlcurr_symbol;

char *currency_symbol;

char *mon_decimaLpoint;

char *mon_thousands_sep;

char *mon_grouping;

char *positive_sign;

char *negative_sign;

char inlfrac_digits;

char frac_digits;

char p_csJJrecedes;

Chapter 2, Run-time functions

Application

Decimal point used in nonmonetary formats. This can never be an empty string.

Separator used to group digits to the left of the decimal point. Not used with monetary
quantities.

Size of each group of digits. Not used with monetary quantities. See the value listing table
below.

International monetary symbol in the current locale. The symbol format is specified in the ISO
4217 Codes for the Representation of Currency and Funds.

Local monetary symbol for the current locale.

Decimal point used to format monetary quantities.

Separator used to group digits to the left of the decimal point for monetary quantities.

Size of each group of digits used in monetary quantities. See the value listing table below.

String indicating nonnegative monetary quantities.

String indicating negative monetary quantities.

Number of digits after the decimal point that are to be displayed in an internationally formatted
monetary quantity.

Number of digits after the decimal point that are to be displayed in a formatted monetary
quantity.

Set to 1 if currency-symbol precedes a nonnegative formatted monetary quantity. If
currency_symbol is after the quantity, it is set to O.

111

•

localeconv

Table 2.1: Locale monetary and numeric settings (continued)

char p_sep_by_space; Set to 1 if currency_symbol is to be separated from the nonnegative formatted monetary
quantity by a space. Set to 0 if there is no space separation.

char n_csJJrecedes;

char p_signJJosn;

char n_signJJosn;

112

Set to 1 if currency_symbol precedes a negative formatted monetary quantity. If
currency_symbol is after the quantity, set to O.

Set to 1 if currency_symbol is to be separated from the negative formatted monetary quantity
by a space. Set to 0 if there is no space separation.

Indicate where to position the positive sign in a nonnegative formatted monetary quantity.

Indicate where to position the positive sign in a negative formatted monetary quantity.

Any of the above strings (except decimatpoint) that is empty"" is not
supported in the current locale. The nonstring char elements are nonnega
tive numbers. Any nonstring char element that is set to CHAR_MAX·
indicates that the element is not supported in the current locale.

The grouping and mon-$rouping elements are set and interpreted as follows:

Value

any other integer

Meaning

No further grouping is to be performed.

The previous element is to be used repeatedly for the remainder
of the digits.

Indicates how many digits make up the current group. The next
element is read to determine the size of the next group of digits
before the current group.

The p_sign-posn and n_sign-posn elements are set and interpreted as
follows:

Value

o

2

3

4

Meaning

Use parentheses to surround the quantity and currency_symbol

Sign string precedes the quantity and currency_symbol.

Sign string succeeds the quantity and currency_symbol.

Sign string immediately precedes the quantity and
currency_symbol.

Sign string immediately succeeds the quantity and
currency_symbol.

Borland C++ for OS/2 Library Reference

Return value

See also

localtime

Function

Syntax

Remarks

Return value

localeconv

Returns a pointer to the filled-in structure of type struct leonv. The values in
the structure will change whenever setloeale modifies the LC_MONET ARY
or LC_NUMERIC categories.

setloeale

time.h

Converts date and time to a structure.

struct tm *localtime(const time_t *timer);

loealtime accepts the address of a value returned by time and returns a II
pointer to the structure of type tm containing the time elements. It corrects
for the time zone and possible daylight saving time.

The global long variable timezone contains the difference in seconds
between GMT and local standard time (in PST, timezone is 8x60x60). The
global variable daylight contains nonzero only if the standard U.s. daylight
saving time conversion should be applied. These values are set by tzset, not
by the user program directly.

This is the tm structure declaration from the time.h header file:

struct tm {

};

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm-year;
int tm_wday;
int tm-yday;
int tm_isdst;

These quantities give the time on a 24-hour clock, day of month (1 to 31),
month (0 to II), weekday (Sunday equals 0), year -1900, day of year (0 to
365), and a flag that is nonzero if daylight saving time is in effect.

loealtime returns a pointer to the structure containing the time elements.
This structure is a static that is overwritten with each call. If the local time
cannot be represented, loealtime returns NULL.

Chapter 2, Run-time functions 113

localtime

See also

lock

Function

Syntax

Remarks

Return value

See also

locking

Function

Syntax

Remarks

114

asctime, ctime, jtime, gmtime, stime, time, tzset

io.h

Sets file-sharing locks.

int lock(int handle, long offset, long length);

lock provides an interface to the operating system file-sharing mechanism.
A lock can be placed on arbitrary, nonoverlapping regions of any file.

lock returns 0 on success. On error, lock returns -1 and sets the global
variable errno to

EACCES Locking violation

locking, open, sopen, unlock

io.h, sys\locking.h

Sets or resets file-sharing locks.

int locking(int handle, int crnd, long length);

locking provides an interface to the operating system file-sharing
mechanism. The file to be locked or unlocked is the open file specified by
handle. The region to be locked or unlocked starts at the current file
position, and is length bytes long.

Locks can be placed on arbitrary, nonoverlapping regions of any file. A
program attempting to read or write into a locked region will retry the
operation three times. If all three retries fail, the call fails with an error.

The cmd values (defined in sys \locking.h) specify the action to be taken:
LK_LOCK Lock the region. If the lock is unsuccessful, try once a

second for 10 seconds before giving up.

LK_RLCK Same as LK_LOCK, except that on OS/2 other
processes are allowed shared (read-only) access.

Borland C++ for OS/2 Library Reference

Return value

See also

10g,logl

Function

Syntax

Remarks

Return value

log

logl

locking

LK_NBLCK Lock the region. If the lock if unsuccessful, give up
immediately.

LK_NBRLCK Same as LK_NBLCK, except that on OS/2, other
processes are allowed shared (read-only) access.

LK_ UNLCK Unlock the region, which must have been previously
locked.

On successful operations, locking returns O. Otherwise, it returns -1, and the
global variable errno is set to one of the following values:

File already locked or unlocked
Bad file number

EACCES
EBADF
EDEADLOCK File cannot be locked after 10 retries (cmd is LK_LOCK

orLK_RLCK)
EINVAL Invalid cmd

Jsopen, lock, open, sopen, unlock

math.h

Calculates the natural logarithm of x.

double log(double X)i

long double logl(long double X)i

DOS UNIX Wi n 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

log calculates the natural logarithm of x.

logl is the long double version; it takes a long double argument and returns
a long double result.

This function can be used with bcd and complex types.

On success, log and logl return the value calculated, In(x).

If the argument x passed to these functions is real and less than 0, the
global variable errno is set to

EDOM Domain error

If x is 0, the functions return the value negative HUGE_VAL (log) or
negative _LHUGE_ VAL (logl), and set errno to ERANGE. Error handling for

Chapter 2, Run-time functions 115

II

10g,logl

these routines can be modified through the functions _matherr and
_matherrl.

See also bcd, complex, exp, log10, sqrt

log10, log101 math.h

Function Calculates log lO(X).

Syntax double loglO (double xl i

Remarks

Return value

See also

longjmp

Function

Syntax

116

/og10

/og101

long double loglOl(long double xl i

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

log10 calculates the base 10 logarithm of x.

log101 is the long double version; it takes a long double argument and
returns a long double result.

This function can be used with bcd and complex types.

On success, log10 (or log10l) returns the value calculated, [oglO(X).

If the argument x passed to these functions is real and less than 0, the
global variable errno is set to

EDaM Domain error

If x is 0, these functions return the value negative HUGE_VAL (log10) or
LHUGE VAL (loglOl). Error handling for these routines can be modified
through the functions _matherr and _matherrl.

bcd, complex, exp, log

setjmp.h

Performs nonlocal goto.

void longjmp(jmp_buf jmpb, int retvalli

Borland C++ for OS/2 Library Reference

Remarks

Return value

See also

lowvideo

Function

Syntax

Remarks

longjmp

A call to longjmp restores the task state captured by the last call to setjmp
with the argument jmpb. It then returns in such a way that setjmp appears to
have returned with the value retval.

A task state includes:

• no segment registers are saved

• register variables (EBX, EDI, ESI)

• stack pointer (ESP)

• frame base pointer (EBP)

• flags are not saved

A task state is complete enough that setjmp and longjmp can be used to
implement co-routines.

setjmp must be called before longjmp. The routine that called setjmp and set •
up jmpb must still be active and cannot have returned before the longjmp is
called. If this happens, the results are unpredictable.

longjmp cannot pass the value 0; if 0 is passed in retval, longjmp will
substitute l.

You can not use longjmp to switch between different threads in a
multithread process. That is, do not jump to a jmp_buf that was saved by a
setjmp call in a different thread.

None.

setjmp, signal

conio.h

Selects low-intensity characters.

void lowvideo(void);

low video selects low-intensity characters by clearing the high-intensity bit of
the currently selected foreground color.

This function does not affect any characters currently onscreen. It affects
only those characters displayed by functions that perform text mode, direct
console output after this function is called.

Chapter 2, Run-time functions 117

lowvideo

-.. This function should not be used in PM applications.

Return value None.

See also highvideo, normvideo, textattr, textcolor

_Irotl, _Irotr stdlib.h

Function Rotates an unsigned long integer value to the left or right.

Syntax unsigned long _IratI (unsigned long val, int count)i
unsigned long _lrotr(unsigned long val, int count)i

Remarks _lrotI rotates the given val to the left count bits. _lrotr rotates the given val to
the right count bits.

Return value The functions return the rotated integer:

See also

Isearch

Function

Syntax

Remarks

118

.. _lrotI returns the value of val left-rotated count bits.

• _lrotr returns the value of val right-rotated count bits.

Performs a linear search.

void *lsearch(const void *key, void *base, size_t *nurn, size_t width,
int (_USERENTRY *fcrnp) (const void *, const void *))i

stdlib.h

lsearch searches a table for information. Because this is a linear search, the
table entries do not need to be sorted before a call to lsearch. If the item that
key points to is not in the table, lsearch appends that item to the table.

• base points to the base (Oth element) of the search table.

• num points to an integer containing the number of entries in the table.

• width contains the number of bytes in each entry .

.. key points to the item to be searched for (the search key).

Borland C++ for OS/2 Library Reference

Return value

See also

Iseek

Function

Syntax

Remarks

Return value

Isearch

The function fcmp must be used with the _ USERENTRY calling convention.

The argument fcmp points to a user-written comparison routine, that
compares two items and returns a value based on the comparison.

To search the table, lsearch makes repeated calls to the routine whose
address is passed in fcmp.

On each call to the comparison routine, lsearch passes two arguments: key, a
pointer to the item being searched for, and elem, a pointer to the element of
base being compared.

fcmp is free to interpret the search key and the table entries in any way.

lsearch returns the address of the first entry in the table that matches the
search key.

If the search key is not identical to *elem,fcmp returns a nonzero integer. If
the search key is identical to *elem, fcmp returns O. •

bsearch, lfind, qsort

io.h

Moves file pointer.

long lseek(int handle, long offset, int fromwhere)i

lseek sets the file pointer associated with handle to a new position offset bytes
beyond the file location given by fromwhere. fromwhere must be one of the
following symbolic constants (defined in io.h):

from where

SEEK_CUR
SEEK_END
SEEK_SET

File location

Current file pointer position
End-at-tile
File beginning

lseek returns the offset of the pointer's new position measured in bytes from
the file beginning. lseek returns -lL on error, and the global variable errno is
set to one of the following values:

Chapter 2, Run-time functions 119

Iseek

See also

Itoa

Function

Syntax

Remarks

EBADF
EINVAL
ESPIPE

Bad file handle
Invalid argument
Illegal seek on device

On devices incapable of seeking (such as terminals and printers), the return
value is undefined.

filelength, fseek, ftell, getc, open, sopen, ungetc, _rtCwrite, write

stdlib.h

Converts a long to a string.

char *ltoa(long value, char *string, int radix);

OS/2

ltoa converts value to a null-terminated string and stores the result in string.
value is a long integer.

radix specifies the base to be used in converting value; it must be between 2
and 36, inclusive. If value is negative and radix is 10, the first character of
string is the minus sign (-).

.. The space allocated for string must be large enough to hold the returned
string, including the terminating null character (\0). ltoa can return up to 33
bytes.

Return value ltoa returns a pointer to string.

See also itoa, ultoa

_makepath stdlib.h

Function Builds a path from component parts.

Syntax void _rnakepath(char *path, const char *drive, const char *dir,
const char *narne, const char *ext);

Remarks _makepath makes a path name from its components. The new path name is

X:\DIR\SUBDIR\NAME.EXT

120 Borland C++ for OS/2 Library Reference

Return value

See also

malice

Function

Syntax

Remarks

_makepath

where

drive x:
dir \DIR\SUBDIR\
name NAME

ext .EXT

If drive is empty or NULL, no drive is inserted in the path name. If it is
missing a trailing colon (:), a colon is inserted in the path name.

If dir is empty or NULL, no directory is inserted in the path name. If it is
missing a trailing slash (\ or I), a backslash is inserted in the path name.

If name is empty or NULL, no file name is inserted in the path name.

If ext is empty or NULL, no extension is inserted in the path name. If it is
missing a leading period (.), a period is inserted in the path name.

_makepath assumes there is enough space in path for the constructed path
name. The maximum constructed length is _MAX_PATH. _MAX_PATH is
defined in stdlib.h.

_makepath and _splitpath are invertible; if you split a given path with
_splitpath, then merge the resultant components with _makepath, you end up
with path.

None.

Jullpath, _splitpath

stdlib.h

Allocates main memory.

void *malloc(size_t size) ;

UNIX Wi n 16

malloe allocates a block of size bytes from the memory heap. It allows a
program to allocate memory explicitly as it's needed, and in the exact
amounts needed.

The heap is used for dynamic allocation of variable-sized blocks of
memory. Many data structures, for example, trees, and lists, naturally
employ heap memory allocation.

Chapter 2, Run-time functions 121

II

malloe

Return value

See also

On success, malloc returns a pointer to the newly allocated block of
memory. If not enough space exists for the new block, it returns NULL. The
contents of the block are left unchanged. If the argument size == 0, malloc
returns NULL.

calloc, free, realloc

_ matherr, _ matherrl math.h

Function

Syntax

Remarks

122

User-modifiable math error handler.

int _matherr(struct _exception *el;
int _matherrl(struct _exceptionl *el;

_matherr is called when an error is generated by the math library.

_matherrl is the long double version; it is called when an error is generated
by the long double math functions.

_matherr and _matherrl each serve as a user hook (a function that can be
customized by the user) that you can replace by writing your own math
error handling routine. The example shows a user-defined _matherr
implementation.

_matherr and _matherrl are useful for trapping domain and range errors
caused by the math functions. They do not trap floating-point exceptions,
such as division by zero. See signal for information on trapping such errors.

You can define your own _matherr or _matherrl routine to be a custom error
handler (such as one that catches and resolves certain types of errors); this
customized function overrides the default version in the C library. The
customized _matherr or _matherrl should return 0 if it fails to resolve the
error, or nonzero if the error is resolved. If nonzero is returned, no error
message is printed and the global variable errno is not changed.

Here are the _exception and _exceptionl structures (defined in math.h):

struct _exception {
int type;
char *name;
double argl, arg2, retval;

}i

struct _exceptionl {

Borland C++ for OS/2 Library Reference

_matherr, _matherrl

};

int type;
char *name;
long double argl, arg2, retval;

The members of the _exception and _exceptionl structures are shown in the
following table:

Member What it is (or represents)

type The type of mathematical error that occurred; an enum type defined in the typedef
_mexcep (see definition after this list).

name A pointer to a null-terminated string holding the name of the math library function
that resulted in an error.

arg1,
arg2

_ The arguments (passed to the function that name points to) caused the error;
if only one argument was passed to the function, it is stored in arg1.

retval The default return value for _matherr (or _matherr~; you can modify this value.

The typedef _mexcep, also defined in math.h, enumerates the following
symbolic constants representing possible mathematical errors:

Symbolic
constant

DOMAIN

SING

OVERFLOW

UNDERFLOW

Mathematical error

Argument was not in domain of function, such as log(-1).

Argument would result in a singularity, such as pow(O, -2).

Argument would produce a function result greater than DBL_MAX (or
LDBL_MAX), such as exp(1000).

Argument would produce a function result less than DBL_MIN (or
LDBL_MIN), such as exp(-1000).

TLOSS Argument would produce function result with total loss of significant digits,
such as sin(10e70).

The macros DBL_MAX, DBL_MIN, LDBL_MAX, and LDBL_MIN are
defined in float.h.

The source code to the default _matherr and _matherrl is on the Borland C++
distribution disks.

The UNIX-style _matherr and _matherrl default behavior (printing a
message and terminating) is not ANSI compatible. If you want a UNIX
style version of these routines, use MA THERR.C and MATHERRL.C
provided on the Borland C++ distribution disks.

Chapter 2, Run-time functions 123

II

_matherr, _matherrl

Return value

max

Function

Syntax

Remarks

Return value

See also

mblen

Function

Syntax

Remarks

124

The default return value for _matherr and _matherrl is 1 if the error is
UNDERFLOW or TLOSS, 0 otherwise. _matherr and _matherrl can also
modify e -> retval, which propagates back to the original caller.

When _matherr and _matherrl return 0 (not able to resolve the error), the
global variable errno is set to 0 and an error message is printed.

When _matherr and _matherrl return nonzero (able to resolve the error), the
global variable errno is not set and no messages are printed.

stdlib.h

Returns the larger of two values.

(type) max(a, b);
template <class T> T max(Ttl, T t2); II c++ template function

The C macro and the C++ template function compare two values and
return the larger of the two. Both arguments and the routine declaration
must be of the same type.

max returns the larger of two values.

min

Determines the length of a multibyte character.

int mblen(const char *s, size_t n);

stdlib.h

If s is not null, mblen determines the number of bytes in the multibyte char
acter pointed to by s. The maximum number of bytes examined is specified
byn.

The behavior of mblen is affected by the setting of LC_CTYPE category of
the current locale.

Borland C++ for OS/2 Library Reference

Return value

See also

mbstowcs

Function

Syntax

Remarks

Return value

See also

mbtowc

Function

Syntax

Remarks

mblen

If s is null, mblen returns a nonzero value if multibyte characters have
state-dependent encodings. Otherwise, mblen returns O.

If s is not null, mblen returns 0 if s points to the null character, and -1 if the
next n bytes do not comprise a valid multibyte character; the number of
bytes that comprise a valid multibyte character ..

mbstowcs, mbtowc, setlocale

stdlib.h

Converts a multibyte string to a wchar _t array.

size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

II DOS UNIX I Win 16 I Win 32 ANSI C I ANSI C++ I OS/2

"
"

• • I • • I • I •

" The function converts the multibyte string s into the array pointed to by
pwcs. No more than n values are stored in the array. If an invalid multibyte
sequence is encountered, mbstowcs returns (size_t) -l.

The pwcs array will not be terminated with a zero value if mbstowcs
returns n.

The behavior of mbstowcs is affected by the setting of LC_CTYPE category
of the current locale.

If an invalid multibyte sequence is encountered, mbstowcs returns (size_t)
-1. Otherwise, the function returns the number of array elements modified,
not including the terminating code, if any.

mblen, mbtowc, setlocale

stdlib.h

Converts a multibyte character to wchar _t code.

int mbtowc(wchar_t *pwc, const char *s, size_t n);

If s is not null, mbtowc determines the number of bytes that comprise the
multibyte character pointed to by s. Next, mbtowc determines the value of

Chapter 2, Run-time functions 125·

mbtowc

Return value

See also

memccpy

Function

Syntax

Remarks

Return value

See also

memchr

Function

Syntax

126

the type wchar_t that corresponds to that multibyte character. If there is a
successful match between wchar_t and the multibyte character, and pwc is
not null, the wchar_t value is stored in the array pointed to by pwc. At most
n characters are examined.

When s points to an invalid multibyte character,-l is returned. When s
points to the null character, 0 is returned. Otherwise, mbtowc returns the
number of bytes that comprise the converted multibyte character.

The return value never exceeds MB_CUR_MAX or the value of n.

The behavior of mbtowc is affected by the setting of LC_CTYPE category of
the current locale.

mblen, mbstowcs, setlocale

mem.h

Copies a block of n bytes.

void *memccpy(void *dest, const void *src, int c, size_t n);

memccpy is available on UNIX System V systems.

memccpy copies a block of n bytes from src to dest. The copying stops as
soon as either of the following occurs:

• The character c is first copied into dest .

• n bytes have been copied into dest.

memccpy returns a pointer to the byte in dest immediately following c, if c
was copied; otherwise, memccpy returns NULL.

memcpy, memmove, memset

mem.h

Searches n bytes for character c.

void *memchr(const void *s, int c, size_t n); 1* Conly *1

Borland C++ for OS/2 Library Reference

Remarks

const void *memchr(const void *s, int c, size_t n);
void *memchr(void *s, int c, size_t n);

memchr is available on UNIX System V systems.

memchr

/ / Ctt only
/ / Ctt only

memchr searches the first n bytes of the block pointed to by 8 for character c.

Return value On success, memchr returns a pointer to the first occurrence of c in 8;
otherwise, it returns NULL.

memcmp

Function

Syntax

Remarks

Return value

_ If you are using the intrinsic version of these functions, the case of n=O will
return NULL.

Compares two blocks for a length of exactly n bytes.

mem.h

l
int memcmp(const void *sl, const void *s2, size_t n);

memcmp is available on UNIX System V systems.

memcmp compares the first n bytes of the blocks 81 and 82 as unsigned
chars.

Because it compares bytes as unsigned chars, memcmp returns a value that
is

• < 0 if 81 is less than 82

• = 0 if 81 is the same as 82

• > 0 if 81 is greater than 82

For example,

memcmp("\xFF", "\x7F", 1)

returns a value greater than O.

.. If you are using the intrinsic version of these functions, the case of n=O will
return NULL.

See also memicmp

Chapter 2, Run-time functions 127

memcpy

memcpy

Function

Syntax

Remarks

Return value

See also

memicmp

Function

Syntax

Remarks

Return value

See also

memmove

Function

128

mem.h

Copies a block of n bytes.

void *rnerncpy(void *dest, const void *src, size_t n)i

memcpy is available on UNIX System V systems.

memcpy copies a block of n bytes from 5rc to de5t. If 5rc and de5t overlap, the
behavior of memcpy is undefined.

memcpy returns de5t.

memccpy, memmove, mem5et

Compares n bytes of two character arrays, ignoring case.

int rnernicrnp(const void *sl, const void *s2, size_t n) i

memicmp is available on UNIX System V systems.

memicmp compares the first n bytes of the blocks 51 and 52, ignoring
character case (upper or lower).

memicmp returns a value that is

• < a if 51 is less than 52

• = a if 51 is the same as 52

• > a if 51 is greater than 52

memcmp

Copies a block of n bytes.

mem.h

mem.h

Borland C++ for OS/2 Library Reference

Syntax

Remarks

Return value

See also

memset

Function

Syntax

Remarks

Return value

See also

min

Function

Syntax

Remarks

Return value

See also

memmove

void *mernmove(void *dest, const void *src, size_t n);

memmove copies a block of n bytes from src to dest. Even when the source
and destination blocks overlap, bytes in the overlapping locations are
copied correctly.

memmove returns dest.

memccpy, memcpy

Sets n bytes of a block of memory to byte c.

void *memset(void *s, int c, size_t n);

memset sets the first n bytes of the array s to the character c.

memset returns s.

memccpy, memcpy

Returns the smaller of two values.

(type) min (a, b);
template <class T> T min(Ttl, T t2); II ett template function

mem.h

stdlib.h

The C macro and the C++ template function compare two values and
return the smaller of the two. Both arguments and the routine declaration
must be of the same type.

min returns the smaller of two values.

max

Chapter 2, Run-time functions 129

•

mkdir

mkdir

Function

Syntax

Remarks

Return value

See also

mktemp

Function

Syntax

Remarks

Return value

130

dir.h

Crea tes a directory.

int mkdir(const char *path)i

mkdir is available on UNIX, though it then takes an additional parameter.

mkdir creates a new directory from the given path name path.

mkdir returns the value a if the new directory was created.

A return value of -1 indicates an error, and the global variable errno is set to
one of the following values:

EACCES
ENOENT

Permission denied
No such file or directory

chdir, getcurdir, getcwd, rmdir

Makes a unique file name.

char *mktemp(char *template)i

dir.h

mktemp replaces the string pointed to by template with a unique file name
and returns template.

template should be a null-terminated string with six trailing Xs. These Xs
are replaced with a unique collection of letters plus a period, so that there
are two letters, a period, and three suffix letters in the new file name.

Starting with AA.AAA, the new file name is assigned by looking up the
name on the disk and avoiding pre-existing names of the same format.

If template is well-formed, mktemp returns the address of the template string.
Otherwise, it returns null.

Borland C++ for OS/2 Library Reference

mktime

Function

Syntax

Remarks

Return value

See also

modf, modfl

Function

Syntax

Remarks

Return value

See also

modf

modf!

mktime

time.h

Converts time to calendar format.

time_t mktime(struct tm *t) i

Converts the time in the structure pointed to by t into a calendar time with
the same format used by the time function. The original values of the fields
tm_sec, tm_min, tm_hour, tm_mday, and tm_mon are not restricted to the
ranges described in the tm structure. If the fields are not in their proper
ranges, they are adjusted. Values for fields tm_wday and tm-yday are
computed after the other fields have been adjusted. If the calendar time
cannot be represented, mktime returns -l.

The allowable range of calendar times is Jan 1 1970 00:00:00 to Jan 19 2038
03:14:07.

See Remarks.

localtime, strftime, time

Splits a double or long double into integer and fractional parts.

double modf(double XI double *ipart) i
long double modfl(long double XI long double *ipart)i

DOS UNIX Win 16 Wi n 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

math.h

modfbreaks the double x into two parts: the integer and the fraction. modf
stores the integer in ipart and returns the fraction.

modfl is the long double version; it takes long double arguments and
returns a long double result.

modf and modfl return the fractional part of x.

jmod,ldexp

Chapter 2, Run-time functions 131

II

movetext

movetext

Function

Syntax

Remarks

conio.h

Copies text onscreen from one rectangle to another.

int movetext(int left, int top, int right, int bottom, int destleft, int desttop)i

movetext copies the contents of the onscreen rectangle defined by left, top,
right, and bottom to a new rectangle of the same dimensions. The new
rectangle's upper left corner is position (destleft, desttop).

All coordinates are absolute screen coordinates. Rectangles that overlap are
moved correctly.

movetext is a text mode function performing direct video output.

-.. This function should not be used in PM applications.

Return value movetext returns nonzero if the operation succeeded. If the operation failed
(for example, if you gave coordinates outside the range of the current
screen mode), movetext returns O.

See also gettext, puttext

msize malloc.h

Function Returns the size of a heap block.

Syntax size_t _msize (void *block) i

Remarks _msize returns the size of the allocated heap block whose address is block.
The block must have been allocated with malloc, calloc, or realloc. The
returned size can be larger than the number of bytes originally requested
when the block was allocated.

Return value _msize returns the size of the block in bytes.

See also malloc, free, realloc

132 Borland C++ for OS/2 Library Reference

normvideo

normvideo conio.h

Function Selects normal-intensity characters.

Syntax void normvideo(void) i

Remarks normvideo selects normal characters by returning the text attribute
(foreground and background) to the value it had when the program
started.

This function does not affect any characters currently on the screen, only
those displayed by functions (such as cprintj) performing direct console
output functions after n'ormvideo is called.

.. This function should not be used in PM applications.

Return value None.

See also highvideo, lowvideo, textattr, textcolor

stddef.h I offsetof

Function

Syntax

Remarks

Return value

Gets the byte offset to a structure member.

size_t offsetof (struct_type, struct_member) i

offsetof is available only as a macro. The argument struct_type is a struct
type. struct_member is any element of the struct that can be accessed
through the member selection operators or pointers.

If struct_member is a bit field, the result is undefined.

See also Chapter 2 in the Programmer's Guide for a discussion of the sizeof
operator, memory allocation and alignment of structures.

offsetof returns the number of bytes from the start of the structure to the
start of the named structure member.

Chapter 2, Run-time functions 133

Remarks

open

Function

Syntax

Remarks

These symbolic
constants are defined

in fcntl.h.

134

fcntl.h, share.h, dos.h

Obsolete function. See _rtCopen.

fcntl.h, io.h

Opens a file for reading or writing.

int open(const char *path, int access [, unsigned mode));

open opens the file specified by path, then prepares it for reading and/or
writing as determined by the value of access.

To create a file in a particular mode, you can either assign to the global
variable Jmode or call open with the O_CREAT and O_TRUNC options
ORed with the translation mode desired. For example, the call

open("XMP",O_CREATlo_TRUNClo_BINARY,S_IREAD)

creates a binary-mode, read-only file named XMP, truncating its length to 0
bytes if it already existed.

For open, access is constructed by bitwise ~Ring flags from the following
two lists. Only one flag from the first list can be used (and one must be
used); the remaining flags can be used in any logical combination.

List 1: Read/write flags
O_RDONLY Open for reading only.
O_WRONLY Open for writing only.
o _RDWR Open for reading and writing.

List 2: Other access flags
O_NDELAY Not used; for UNIX compatibility.
o _APPEND If set, the file pointer will be set to the end of the file

prior to each write.
0_ CREAT If the file exists, this flag has no effect. If the file does

not exist, the file is created, and the bits of mode are
used to set the file attribute bits as inchmod.

O_TRUNC If the file exists, its length is truncated to O. The file
attributes remain unchanged.

O_EXCL Used only with O_CREAT. If the file already exists,
an error is returned.

Borland C++ for OS/2 Library Reference

Return value

See also

opendir

Function

Syntax

Remarks

a_BINARY Can be given to explicitly open the file in binary
mode.

open

a_TEXT Can be given to explicitly open the file in text mode.

If neither a_BINARY nor a_TEXT is given, the file is opened in the
translation mode set by the global variable Jmode.

If the O_CREAT flag is used in constructing access, you need to supply the
mode argument to open from the following symbolic constants defined in
sys \stat.h.

Value of mode

SJWRITE
SJREAD
SJREADISJWRITE

Access permission

Permission to write
Permission to read
Permission to read and write

On successful completion, open returns a nonnegative integer (the file
handle). The file pointer, which marks the current position in the file, is set
to the beginning of the file. On error, open returns -1 and the global variable
errno is set to one of the following values:

EACCES
EINVACC
EMFILE
ENOENT

Permission denied
Invalid access code
Too many open files
No such file or directory

chmod, chsize, close, creat, creatnew, creattemp, dup, dup2, fdopen, filelength,
fopen, freopen, getftime, lseek, lock, _rtCopen, read, sopen, _rtl_creat, _rtCwrite,
write

dirent.h

Opens a directory stream for reading.

DIR *opendir(char *dirname);

opendir is available on POSIX-compliant UNIX systems.

The opendir function opens a directory stream for reading. The name of the
directory to read is dirname. The stream is set to read the first entry in the
directory.

Chapter 2, Run-time functions 135

I

opendir

Return value

See also

Function

Syntax

Remarks

Return value

See also

perror

Function

Syntax

136

A directory stream is represented by the DIR structure, defined in dirent.h.
This structure contains no user-accessible fields. Multiple directory streams
can be opened and read simultaneously. Directory entries can be created or
deleted while a directory stream is being read.

Use the readdir function to read successive entries from a directory stream.
Use the closedir function to remove a directory stream when it is no longer
needed.

If successful, opendir returns a pointer to a directory stream that can be used
in calls to readdir, rewinddir, and closedir. If the directory cannot be opened,
opendir returns NULL and sets the global variable errno to

ENOENT
ENOMEM

The directory does not exist
Not enough memory to allocate a DIR object

closedir, readdir, rewinddir

Waits for piped command to complete.

int -pclose(FILE * stream);

This function is not available in Win32s programs.

stdio.h

_pclose closes a pipe stream created by a previous call to -popen, and then
waits for the associated child command to complete.

If it is successful, -pclose returns the termination status of the child
command. This is the same value as the termination status returned by
cwait, except that the high and low order bytes of the low word are
swapped. If -pclose is unsuccessful, it returns -1.

-pipe, _popen

stdio.h

Prints a system error message.

void perror(const char *s);

Borland C++ for OS/2 Library Reference

Remarks

perror

perror prints to the stderr stream (normally the console) the system error
message for the last library routine that set errno.

First the argument s is printed, then a colon, then the message corre
sponding to the current value of the global variable errno, and finally a
newline. The convention is to pass the file name of the program as the
argument string.

The arr~y of error message strings is accessed through the global variable
_sys_errlist. The global variable errno can be used as an index into the array
to find the string corresponding to the error number. None of the strings
include a newline character.

The global variable _sys_nerr contains the number of entries in the array.

Refer to errno, _sys_errlist, and _sys_nerr in Chapter 3 for more information.

The following messages are generated by perror:

Arg list too big
Attempted to remove
current

directory
Bad address
Bad file number
Block device required
Broken pipe
Cross-device link
Error 0
Exec format error
Executable file in use
File already exists
File too large
Illegal seek
Inappropriate I/O control

operation
Input/output error
Interrupted function call
Invalid access code
Invalid argument
Invalid data
Invalid environment
Invalid format

Invalid function number
Invalid memory block
address
Is a directory
Math argument
Memory arena trashed
N arne too long
No child processes
No more files
No space left on device
No such device
No such device or address
No such file or directory
No such process
Not a directory
Not enough memory
Not same device
Operation not permitted
Path not found
Permission denied
Possible deadlock
Read-only file system
Resource busy

Chapter 2, Run-time functions 137

11

perror

Return value -..

See also

Function

Syntax

Remarks

Return value

138

Resource temporarily
unavailable

Result too large

Too many links
Too many open files
Too many open files

This function should not be used in PM applications.

None.

clearerr, eof, Jreopen, _strerror, strerror

Creates a read/write pipe.

int -pipe(int *handles, unsigned int size, int mode);

This function is not available in Win32s programs.

fcntl.h, io.h

The -pipe function creates an anonymous pipe that can be used to pass
information between processes. The pipe is opened for both reading and
writing. Like a disk file, a pipe can be read from and written to, but it does
not have a name or permanent storage associated with it; data written to
and from the pipe exist only in a memory buffer managed by the operating
system.

The read handle is returned to handles[O], and the write handle is returned
to handles[l]. The program can use these handles in subsequent calls to read,
write, dup, dup2, or close. When all pipe handles are closed, the pipe is
destroyed.

The size of the internal pipe buffer is size. A recommended minimum value
is 512 bytes.

The translation mode is specified by mode, as follows:

a_BINARY The pipe is opened in binary mode
a_TEXT The pipe is opened in text mode

If mode is zero, the translation mode is determined by the external variable
Jmode.

On successful completion, -pipe returns 0 and returns the pipe handles to
handles[O] and handles[l]. Otherwise it returns -1 and sets errno to one of the
following values:

Borland C++ for OS/2 Library Reference

See also

poly, polyl

Function

Syntax

Remarks

Return value

Function

Syntax

Remarks

poly

polyl

EMFILE
ENOMEM

-pclose, ...,popen .

Too many open files
Out of memory

Generates a polynomial from arguments.

double poly(double x, int degree, double coeffs[])i
long double polyl(long double x, int degree, long double coeffs[]) i

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • •
• • • •

-pipe

math.h

poly generates a polynomial in x, of degree degree, with coefficients coeffsIO],
coeffs[1], ... , coeffs[degree]. For example, if n = 4, the generated polynomial is

coeffs[4]x4 + coeffs[3]x3 + coejjs[2]x2 + coeffs[1]x + coeffs[O]

polyl is the long double version; it takes long double arguments and returns
a long double result.

poly and polyl return the value of the polynomial as evaluated for the
givenx.

stdio.h

Creates a command processor pipe.

FILE *-popen (const char *command, const char *rnode)i

OS/2

This function is not available in Win32s programs.

The ...,popen function creates a pipe to the command processor. The
command processor is executed asynchronously, and is passed the
command line in command. The mode string specifies whether the pipe is
connected to the command processor's standard input or output, and
whether the pipe is to be opened in binary or text mode.

The mode string can take one of the following values:

Chapter 2, Run-time functions 139

II

-popen

Return value

See also

pow, powl

Function

Syntax

Remarks

Return value

140

pow

powl

Value Description

rt Read child command's standard output (text).

rb Read child command's standard output (binary).

wt Write to child commands standard input (text).

wb Write to child commands standard input (binary).

The terminating t or b is optional; if missing, the translation mode is
determined by the external variable Jmode.

Use the -pclose function to close the pipe and obtain the return code of the
command.

If _popen is successful it returns a FILE pointer that can be used to read the
standard output of the command, or to write to the standard input of the
command, depending on the mode string. If -popen is unsuccessful, it
returns NULL.

-pclose, -pipe

math.h

Calculates x to the power of y.

double pow(double X, double Y)i

long double powl(long double X, double Y) i

DOS UNIX Win.16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

pow calculates xY•

pawl is the long double version; it takes long double arguments and returns
a long double result.

This function can be used with bcd and complex types.

On success, pow and pawl return the value calculated, xY•

Sometimes the arguments passed to these functions produce results that
overflow or are incalculable. When the correct value would overflow, the
functions return the value HUGE_VAL (pow) or _LHUGE_ VAL (pawl).

Borland C++ for OS/2 Library Reference

See also

pow10, pow101

Function

Syntax

Remarks

Return value

See also

printf

Function

Syntax

pow10

pow101

pow, powl

Results of excessively large magnitude can cause the global variable errno
to be set to

ERANGE Result out of range

If the argument x passed to pow or pawl is real and less than 0, and y is not a
whole number, or you call pow(0, 0), the global variable errno is set to

EDOM Domain error

Error handling for these functions can be modified through the functions
_matherr and _matherrl.

bcd, complex, exp, powlO, sqrt

math.h

Calculates 10 to the power of p.

double powlO(int p);
long double powlOl(int p);

DOS UNIX Wi n 16 Win 32 ANSI C ANSI C++ OS/2

• • • • •
• • • •

powlO computes lOP.

On success, powlO returns the value calculated, lOP.

The result is actually calculated to long double accuracy. All arguments are
valid, although some can cause an underflow or overflow.

pawl is the long double version; it returns a long double result.

exp, pow

stdio.h

Writes formatted output to stdout.

int printf(const char *format[, argument, ... J);

Chapter 2, Run-time functions 141

II

printf

Remarks printj accepts a series of arguments, applies to each a format specifier
contained in the format string given by format, and outputs the formatted
data to stdout. There must be the same number of format specifiers as
arguments.

.. The specifiers Nand F (discussed below) are provided only to ease porting
code that was previously written for segmen'ted architectures. In the OS/2
32-bit flat memory model, near and far pointers are not used.

.. This function should not be used in PM applications.

The format string The format string, present in each of the .. . printf function calls, controls
how each function will convert, format, and print its arguments. There must
be enough arguments for the format; if not, the results will be unpredictable and
possibly disastrous. Excess arguments (more than required by the format) are
ignored.

Optional format
string components

142

The format string is a character string that contains two types of objects
plain characters and conversion specifications:

• Plain characters are copied verbatim to the output stream.

• Conversion specifications fetch arguments from the argument list and
apply formatting to them.

Format specifiers

.. . printj format specifiers have the following form:

% [fla~s] [width] [.prec] [FINlhllIL] type

Each format specifier begins with the percent character (%). After the %
come the following, in this order:

• An optional sequence of flag characters, [flags]

• An optional width specifier, [width]

• An optional precision specifier, [. prec]

• An optional input-size modifier, [F I Nih III L]

• The conversion-type character, [type]

These are the general aspects of output formatting controlled by the
optional characters, specifiers, and modifiers in the format string:

Character
or specifier

Flags

What it controls or specifies

Output justification, numeric signs, decimal points, trailing zeros, octal and hex
prefixes

Borland C++ for OS/2 Library Reference

The specifiers Nand F
are provided only for

ease of code portability.

... printf
conversion-type

characters

Type
character

Numerics

d
i
a
u

x
X

e

g

E

G

Characters

c

s

%

Width

Precision

Size

printf

Minimum number of characters to print, padding with blanks or zeros

Maximum number of characters to print; for integers, minimum number of
digits to print

Override default size of argument:

N = near pointer
F = far pointer
h = short int
I = long
L = long double

The following table lists the .. . print! conversion-type characters, the type of
input argument accepted by each, and in what format the output appears.

The information in this table of type characters is based on the assumption
that no flag characters, width specifiers, precision specifiers, or input-size
modifiers were included in the format specifiers. To see how the addition of
the optional characters and specifiers affects the .. . print! output, refer to the
tables following this one.

Input argument

Integer
Integer
Integer
Integer

Integer
Integer

Floating-point

Floating-point

Floating-paint

Floating-point

Floating-paint

Character

String painter

None

Format of output

signed decimal int.
signed decimal int.
unsigned octal int.
unsigned decimal int.

unsigned hexadecimal int (with a, b, c, d, e, f).
unsigned hexadecimal int (with A, B, C, 0, E, F).

signed value of the form [-]dddd.dddd.

signed value of the form [-]d.dddd or e [+/-]ddd.

signed value in either e or f form, based on given value and precision.

Trailing zeros and the decimal point are printed only if necessary.

Same as e, but with E for exponent.

Same as g, but with E for exponent if e format used.

Single character.

Prints characters until a null-terminator is pressed or precision is reached.

The % character is printed.

Chapter 2, Run-time functions 143

II

printf

Pointers

n

p

Pointer to int

Pointer

Stores (in the location pointed to by the input argument) a count of the
characters written so far.

Prints the argument as a pointer. Eight hexadecimal digits in format xxxxxxxx.

Conventions Certain conventions accompany some of these specifications. The decimal
point character used in the output is determined by the current locale's
LC_NUMERIC category. The conventions are summarized in the following
table:

Characters

e or E

Conventions

The argument is converted to match the style [-j d.ddd ... e[+/-jddd, where

• One digit precedes the decimal point.
• The number of digits after the decimal point is equal to the precision.
• The exponent always contains at least two digits.

The argument is converted to decimal notation in the style [-j ddd.ddd ... , where
the number of digits after the decimal point is equal to the precision (if a nonzero
precision was given).

g or G The argument is printed in style e, E or f, with the preciSion specifying the
number of significant digits. Trailing zeros are removed from the result, and a
decimal point appears only if necessary.

Characters Conventions

The argument is printed in style e or f (with some restraints) if g is the
conversion character, and in style E if the character is G. Style e is used only if
the exponent that results from the conversion is either greater than the precision
or less than -4.

x or X For x conversions, the letters a, b, c, d, e, and f appear in the output; for X
conversions, the letters A, B, C, D, E, and F appear.

-.. Infinite floating-point numbers are printed as +INF and -INF. An IEEE
Not-a-Number is printed as +NAN or -NAN.

Flag characters The flag characters are minus (-), plus (+), sharp (#), and blank O. They can
appear in any order and combination.

144 Borland C++ for OS/2 Library Reference

printf

Flag What it specifies

Left-justifies the result, pads on the right with blanks. If not given, it right-justifies the
result, pads on the left with zeros or blanks.

+ Signed conversion results always begin with a plus (+) or minus (-) sign.

blank If value is nonnegative, the output begins with a blank instead of a plus; negative
values still begin with a minus.

Specifies that arg is to be converted using an "alternate form." See the following table.

.. Plus (+) takes precedence over blank 0 if both are given.

Alternate forms If the # flag is used with a conversion character, it has the following effect
on the argument (arg) being converted:

Conversion
character

c,s,d,i,u

o
x or X

e, E, or f

g or G

How # affects arg

No effect.

a is prepended to a nonzero argo

Ox (or OX) is prepended to argo

The result always contains a decimal point even if no digits follow the point.
Normally, a decimal point appears in these results only if a digit follows it.

Same as e and E, with the addition that trailing zeros are not removed.
--

Width specifiers The width specifier sets the minimum field width for an output value.

Width is specified in one of two ways: directly, through a decimal digit
string, or indirectly, through an asterisk (*). If you use an asterisk for the
width specifier, the next argument in the call (which must be an int)
specifies the minimum output field width.

In no case does a nonexistent or small field width cause truncation of a
field. If the result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result.

Width
specifier

n

Chapter 2, Run-time functions

How output width is affected

At least n characters are printed. If the output value has less than n characters,
the output is padded with blanks (right-padded if - flag given, left-padded
otherwise).

145

•

printf

On At least n characters are printed. If the output value has less than n characters, it
is filled on the left with zeros.

The argument list supplies the width specifier, which must precede the actual
argument being formatted.

Precision specifiers A precision specification always begins with a period (.) to separate it from
any preceding width specifier. Then, like width, precision is specified either
directly through a decimal digit string, or indirectly through an asterisk (*).
If you use an asterisk for the precision specifier, the next argument in the
call (treated as an int) specifies the precision.

146

If you use asterisks for the width or the precision, or for both, the width
argument must immediately follow the specifiers, followed by the precision
argument, then the argument for the data to be converted.

Precision
specifier

(none given)

.0

.n

How output precision is affected

Precision set to default:

default = 1 for d, i, 0, U, x, X types
default = 6 for e, E, ftypes
default = all significant digits for g, G types
default = print to first null character for s types; no effect on ctypes

For d, i, 0, U, x types, precision set to default; for e, E, ftypes, no decimal point
is printed.

n characters or n decimal places are printed. If the output value has more than
n characters, the output might be truncated or rounded. (Whether this happens
depends on the type character.)

The argument list supplies the precision specifier, which must precede the
actual argument being formatted.

... If an explicit precision of zero is specified, and the format specifier for the
field is one of the integer formats (that is, d, i, 0, U, x), and the value to be
printed is 0, no numeric characters will be output for that field (that is, the
field will be blank).

Conversion
character

d
i
o
u
x
X

How preCision specification (.n) affects conversion

.n specifies that at least n digits are
printed. If the input argument has less
than n digits, the output value is left
padded with zeros. If the input argument
has more than n digits, the output value
is not truncated.

Borland CH for OS/2 Library Reference

Input-size modifier

The specifiers Nand F
are provided only for

ease of code portability.

The specifiers Nand F
are provided only for

ease of code portability.

Return value

See also

e .n specifies that n characters are printed
E after the decimal point, and the last digit
f printed is rounded.

g .n specifies that at most n significant
G digits are printed.

c .n has no effect on the output.

s .n specifies that no more than n characters
are printed.

The input-size modifier character (F, N, h, I, or L) gives the size of the
subsequent input argument:

F = far pointer
N = near pointer
h = short int
1 = long
L = long double

printf

The input-size modifiers (F, N, h,I, and L) affect how the' ... printjfunctions
interpret the data type of the corresponding input argument argo F and N
apply only to input args that are pointers (%p, %s, and %n). h, L, and L
apply to input args that are numeric (integers and floating-point).

h,I, and L override the default size of the numeric data input arguments: 1
and L apply to integer (d, i, 0, u, x, X) and floating-point (e, E,f, g, and G)
types, while h applies to integer types only. Neither h nor 1 affect character
(c, s) or pointer (p, n) types.

Input-size
modifier·

F

N

How arg is interpreted

arg is read as a far pointer.

arg is read as a near pointer. N cannot be used with any conversion in huge
model.

h arg is interpreted as a short int for d, i, 0, u, x, or X.

arg is interpreted as a long int for d, i, 0, u, x, or X; arg is interpreted as a
double for e, E, f, g, or G.

L arg is interpreted as a long double for e, E, !, g, or G.

printj returns the number of bytes output. In the event of error, printj
returns EOF.

cprintf, ecvt,fprintf, fread, freopen, fscanf, putc, puts, putw, scanf, sprintf, vprintf,
vsprintj

Chapter 2, Run-time functions 147

II

putc

pute

Function

Syntax

Remarks

Return value

See also

puteh

Function

Syntax

Remarks

Return value

See also

putehar

Function

Syntax

Remarks

148

stdio.h

Outputs a character to a stream.

int pute(int e, FILE *stream) i

putc is a macro that outputs the character c to the stream given by stream.

On success, putc returns the character printed, c. On error, putc returns EOF.

fprintf, fputc, fputchar, fputs, fwrite, getc, getchar, printf, putch, putchar, putw,
vprintj

eonio.h

Ou tpu ts character to screen.

int puteh(int e) i

putch outputs the character c to the current text window. It is a text mode
function performing direct video output to the console. putch does not
translate linefeed characters (\n) into carriage-return/linefeed pairs.

.. This function should not be used in PM applications.

On success, putch returns the character printed, c. On error, it returns EOF.

cprintf, cputs, getch, getche, putc, putchar

stdio.h

Outputs character on stdout.

int putehar(int e)i

, putchar(c) is a macro defined to be putc(c, stdout).

Borland C++ for OS/2 Library Reference

Return value

See also

putenv

Function

Syntax

Remarks

Return value

See also

puts

Function

Syntax

putchar

On success, putchar returns the character c. On error, putchar returns EOF.

fputchar, getc, getchar, printf, putc, putch, puts, putw, jreopen, vprintj

stdlib.h

Adds string to current environment.

int putenv(const char *name);

putenv accepts the string name and adds it to the environment of the current
process. For example,

putenv("PATH=C: \ \BC");

putenv can also be used to modify an existing name. On DOS and OS/2,
name must be uppercase. On other systems, name can be either uppercase or
lowercase. name must not include the equal sign (=). You can set a variable
to an empty value by specifying an empty string on the right side of the 1='

sign. This effectively removes the environment variable. Environment
variables created by putenv can be lower or upper case.

putenv can be used only to modify the current program's environment.
Once the program ends, the old environmentis restored. The environment
of the current process is passed to child processes, including any changes
made by putenv.

Note that the string given to putenv must be static or global. Unpredictable
results will occur if a local or dynamic string given to putenv is used after
the string memory is released.

On success, putenv returns 0; on failure, -l.

getenv

Outputs a string to stdout.

int puts(const char *s);

stdio.h

Chapter 2, Run-time functions 149

II

puts

II DOS I UNIX Win 16 I Win 32 I ANSI C ANSI C++ I OS/2

Il • I • • I • I • I •

Remarks puts copies the null-terminated string s to the standard output stream
stdout and appends a newline character.

.. This function should not be used in PM applications.

Return value On successful completion, puts returns a nonnegative value. Otherwise, it
returns a value of EOF.

See also cputs, fputs, gets, printf, putchar, freopen

puttext conio.h

Function Copies text from memory to the text mode screen.

Syntax int puttext(int left, int top, int right, int bottom, void *source)i

DOS UNIX I Win 16 I Win 32 ANSI C I ANSI C++ I OS/2 II
• I I • I I • II

Remarks puttext writes the contents of the memory area pointed to by source out to
the onscreen rectangle defined by left, top, right, and bottom.

All coordinates are absolute screen coordinates, not window-relative. The
upper left corner is (1,1).

puttext places the contents of a memory area into the defined rectangle
sequentially from left to right and top to bottom.

Each position onscreen takes 2 bytes of memory: The first byte is the
character in the cell, and the second is the cell's video attribute. The space
required for a rectangle w columns wide by h rows high is defined as

bytes = (h rows) x (w columns) x 2

.. This function should not be used in PM applications.

Return value puttext returns a nonzero value if the operation succeeds; it returns 0 if it
fails (for example, if you gave coordinates outside the range of the current
screen mode).

See also gettext, movetext, window

150 Borland C++ for OS/2 Library Reference

putw

Function

Syntax

Remarks

Return value

See also

qsort

Function

Syntax

Remarks

putw

stdio.h

Puts an integer on a stream.

int putw(int w, FILE *strearn);

putw outputs the integer w to the given stream. putw neither expects nor
causes special alignment in the file.

On success, putw returns the integer w. On error, putw returns EOF. Because
EOF is a legitimate integer, use ferror to detect errors with putw.

getw, printj

stdlib.h

Sorts using the quicksort algorithm.

void qsort(void *base, size_t nelern, size_t width,
int (_USERENTRY *fcrnp) (const void *, const void *));

qsort is an implementation of the "median of three" variant of the quicksort
algorithm. qsort sorts the entries in a table by repeatedly calling the user
defined comparison function pointed to by fcmp.

• base points to the base (Oth element) of the table to be sorted.

• nelem is the number of entries in the table.

• width is the size of each entry in the table, in bytes.

fcmp, the comparison function, must be used with the _ USERENTRY calling
convention.

fcmp accepts two arguments, eleml and elem2, each a pointer to an entry in
the table. The comparison function compares each of the pointed-to items
(*eleml and *elem2), and returns an integer based on the result of the
comparison.

• *eleml < *elem2 fcmp returns an integer < 0

Chapter 2, Run-time functions 151

I

qsort

Return value

See also

raise

Function

Syntax

Remarks

Return value

See also

152

• *eleml == *elem2 fcmp returns a
• *eleml > *elem2 fcmp returns an integer> a
In the comparison, the less-than symbol «) means the left element should
appear before the right element in the final, sorted sequence. Similarly, the
greater-than (» symbol means the left element should appear after the
right element in the final, sorted sequence.

None.

bsearch, lsearch

signal.h

Sends a software signal to the executing program.

int raise(int sig) i

raise sends a signal of type sig to the program. If the program has installed a
signal handler for the signal type specified by sig, that handler will be
executed. If no handler has been installed, the default action for that signal
type will be taken.

The signal types currently defined in signal.h are noted here:

Signal

SIGABRT
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM
SIGUSR1
SIGUSR2
SIGUSR3
SIGBREAK

Description

Abnormal termination
Bad floating-point operation
Illegal instruction
Ctr/-C interrupt
Invalid access to storage
Request for program termination
User-defined signal
User-defined signal
User-defined signal
Ctr/-Break interrupt

SIGABRT isn't generated by Borland C++ during normal operation.
However, it can be generated by abort, raise, or unhandled exceptions.

raise returns a if successful, nonzero otherwise.

abort, signal

Bor/and c++ for OS/2 Library Reference

rand

Function

Syntax

Remarks

Return value

See also

random

Function

Syntax

Remarks

Return value

See also

randomize

Function

Syntax

Remarks

rand

stdlib.h

Random number generator.

int rand(void);

UNIX Win 16

rand uses a multiplicative congruential random number generator with
period 232 to return successive pseudorandom numbers in the range from 0
to RAND_MAX. The symbolic constant RAND _MAX is defined in stdlib.h.

rand returns the generated pseudorandom number.

random, randomize, srand

stdlib.h

Random number generator.

int random(int num);

random returns a random number between 0 and (num-l). random(num) is a
macro defined in stdlib.h. Both num and the random number returned are
integers.

random returns a number between 0 and (num-l).

rand, randomize, srand

Initializes random number generator.

void randomize (void) ;

stdlib.h, time.h

randomize initializes the random number generator with a random value.

Chapter 2, Run-time functions 153

randomize

Return value

See also

Remarks

read

Function

Syntax

Remarks

Return value

See also

154

None.

rand, random, srand

io.h, dos.h

Obsolete function. See _rtl_read.

io.h

Reads from file.

int read(int handle, void *buf, unsigned len);

read attempts to read len bytes from the file associated with handle into the
buffer pointed to by buf

For a file opened in text mode, read removes carriage returns and reports
end-of-file when it reaches a etrl-I.

The file handle handle is obtained from a creat, open, dup, or dup2 call.

On disk files, read begins reading at the current file pointer. When the
reading is complete, it increments the file pointer by the number of bytes
read. On devices, the bytes are read directly from the device.

The maximum number of bytes that read can read is DINT_MAX -I,
because DINT_MAX is the same as -I, the error return indicator.
DINT_MAX is defined in limits.h.

On successful completion, read returns an integer indicating the number of
bytes placed in the buffer. If the file was opened in text mode, read does not
count carriage returns or etrl-Z characters in the number of bytes read.

On end-of-file, read returns o. On error, read returns -1 and sets the global
variable errno to one of the following values:

EACCES
EBADF

Permission denied
Bad file number

open, _rtCread, write

Borland C++ for OS/2 Library Reference

readdir

Function

Syntax

Remarks

Return value

See also

realloc

Function

readdir

dirent.h

Reads the current entry from a directory stream.

struct dirent *readdir(OIR *dirp);

readdir is available on POSIX-compliant UNIX systems.

The readdir function reads the current directory entry in the directory
stream pointed to by dirp. The directory stream is advanced to the next
entry.

The readdir function returns a pointer to a dirent structure that is overwrit
ten by each call to the function on the same directory stream. The structure
is not overwritten by a readdir call on a different directory stream.

The dirent structure corresponds to a single directory entry. It is defined in .
dirent.h, and contains (in addition to other non-accessible members) the
following member:

char d_name[];

where d_name is an array of characters containing the null-terminated file
name for the current directory entry. The size of the array is indeterminate;
use strlen to determine the length of the file name.

All valid directory entries ar'e returned, including subdirectories, "." and
",," entries, system files, hidden files, and volume labels. Unused or deleted
directory entries are skipped.

A directory entry can be created or deleted while a directory stream is
being read, but readdir might or might not return the affected directory
entry. Rewinding the directory with rewinddir or reopening it with opendir
ensures that readdir will reflect the current state of the directory.

If successful, readdir returns a pointer to the current directory entry for the
directory stream. If the end of the directory has been reached, or dirp does
not refer to an open directory stream, readdir returns NULL.

closedir, opendir, rewinddir

stdlib.h

Reallocates main memory.

Chapter 2, Run-time functions 155

realloc

Syntax

Remarks

Return value

See also

remove

Function

Syntax

Remarks

void *realloc(void *block, size_t size);

realloc attempts to shrink or expand the previously allocated block to size
bytes. If size is zero, the memory block is freed and NULL is returned. The
block argument points to a memory block previously obtained by calling
malloc, calloc, or realloc. If block is a NULL pointer, realloc works just like
malloc.

realloc adjusts the size of the allocated block to size, copying the contents to
a new location if necessary.

realloc returns the address of the reallocated block, which can be different
than the address of the original block. If the block cannot be reallocated,
realloc returns NULL.

If the value of size is 0, the memory block is freed and realloc returns NULL.

calloc, free, malloc

stdio.h

Removes a file.

int remove(const char *filename);

remove deletes the file specified by filename. It is a macro that simply
translates its call to a call to unlink. If your file is open, be sure to close it
before removing it.

This function will fail (EACCES) if the file is currently open in any process.

_ The filename string can include a full path.

Return value On successful completion, remove returns O. On error, it returns -I, and the
global variable errno is set to one of the following values:

See also

156

EACCES
ENOENT

unlink

Permission denied
No such file or directory

Borland C++ for OS/2 Library Reference

rename

Function

Syntax

Remarks

Return value

rewind

Function

Syntax

Remarks

Return value

See also

rename

stdio.h

Renames a file.

int renarne(const char *oldnarne, const char *newnarne) i

rename changes the name of a file from oldname to newname. If a drive
specifier is given in newname, the specifier must be the same as that given in
oldname.

Directories in oldname and newname need not be the same, so rename can be
used to move a file from one directory to another. Wildcards are not
allowed.

On successfully renaming the file, rename returns O. In the event of error, -1
is returned, and the global variable errno is set to one of the following
values:

EACCES Permission denied: filename already exists or has an
invalid path, or is open

ENOENT No such file or directory
ENOTSAM Not same device

stdio.h

Repositions a file pointer to the beginning of a stream.

void rewind(FILE *strearn) i

rewind(stream) is equivalent to fseek(stream, OL, SEEK_SET), except that
rewind clears the end-of-file and error indicators, while fseek clears the end
of-file indicator only.

After rewind, the next operation on an update file can be either input or
output.

None.

fopen, fseek, ftell

Chapter 2, Run-time functions 157

I

rewinddir

rewinddir

Function

Syntax

Remarks

Return value

See also

rmdir

Function

Syntax

Remarks

Return value

See also

158

dirent.h

Resets a directory stream to the first entry.

void rewinddir(DIR *dirp);

rewinddir is available on POSIX-compliant UNIX systems.

The rewinddir function repositions the directory stream dirp at the first entry
in the directory. It also ensures that the directory stream accurately reflects
any directory entries that might have been created or deleted since the last
opendir or rewinddir on that directory stream.

None.

closedir, opendir, readdir

Removes a directory.

int rrndir(const char *path);

rmdir deletes the directory whose path is given by path. The directory
named by path

• Must be empty
• Must not be the current working directory
• Must not be the root directory

dir.h

rmdir returns 0 if the directory is successfully deleted. A return value of -1
indicates an error, and the global variable errno is set to one of the following
values:

EACCES Permission denied
ENOENT Path or file function not found

chdir, getcurdir, getcwd, mkdir

Borland c++ for OS/2 Library Reference

rmtmp

Function

Syntax

Remarks

Return value

rotl, rotr - -
Function

Syntax

Remarks

Return value

See also

Function

Syntax

rmtmp

stdio.h

Removes temporary files.

int rrntrnp (void) ;

The rmtmp function closes and deletes all open temporary file streams,
which were previously created with tmpfile. The current directory must the
same as when the files were created, or the files will not be deleted.

rmtmp returns the total number of temporary files it closed and deleted.

Bit-rotates an unsigned short integer value to the left or right.

unsigned short _rotl(unsigned short value, int count);
unsigned short _rotr(unsigned short value, int count);

_rotl rotates the given value to the left count bits.

_rotr rotates the given value to the right count bits.

The functions return the rotated integer:

• _rotl returns the value of value left-rotated count bits .

• _rotr returns the value of value right-rotated count bits.

_crotl, _crotr, _lrotl, _lrotr

Gets or sets file attributes.

int _rtl_chrnod(const char *path, int func [, int attrib]);

stdlib.h

dos.h, io.h

Chapter 2, Run-time functions 159

I

Remarks

Return value

_rtl_chmod can either fetch or set file attributes. HJunc is 0, _rtl_chmod
returns the current attributes for the file. If Junc is 1, the attribute is set to
attrib.

This function will fail (EACCES) if the file is currently open in any process.

attrib can be one of the following symbolic constants (defined in dos.h):

FA_RDONLY
FA_HIDDEN
FA_SYSTEM
FA_LABEL
FA_DIREC
FA_ARCH

Read-only attribute
Hidden file
System file
Volume label
Directory
Archive

Upon successful completion, _rtCchmod returns the file attribute word;
otherwise, it returns a value of-1.

In the event of an error, the global variable errno is set to one of the
following:

EACCES
ENOENT

Permission denied
Path or file name not found

See also chmod, _rtCcreat

rtl close io.h

Function Closes a file.

Syntax int _rtl_close(int handle);

Remarks _rtCclose closes the file associated with handle, a file handle obtained from a
_rtCcreat, creat, creatnew, creattemp, dup, dup2, _rtCopen, or open call.

.. The function does not write a Ctrl-Z character at the end of the file. If you
want to terminate the file with a Clr/-Z, you must explicitly output one.

Return value Upon successful completion, _rtCclose returns o. Otherwise, the function
returns a value of -1.

_rtCclose fails if handle is not the handle of a valid, open file, and the global
variable errno is set to

EBADF Bad file number

160 Borland C++ for OS/2 Library Reference

See also

rtl creat

Function

Syntax

Remarks

Return value

_rtLclose

chsize, close, creatnew, dup, jclose, _rtCcreat, _rtCopen, sopen

dos.h, io.h

Creates a new file or overwrites an existing one.

int _rtl_creat(const char *path, int attrib) i

_rtCcreat opens the file specified by path. The file is always opened in
binary mode. Upon successful file creation, the file pointer is set to the
beginning of the file. The file is opened for both reading and writing.

If the file already exists, its size is reset to O. (This is essentially the same as
deleting the file and creating a new file with the same name.)

The attrib argument is an ORed combination of one or more of the
following constants (defined in dos.h):

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Upon successful completion, _rtCcreat returns the new file handle, a non
negative integer; otherwise, it returns -1.

In the event of error, the global variable errno is set to one of the following
values:

EACCES
EMFILE
ENOENT

Permission denied
Too many open files
Path or file name not found

See also chsize, close, creat, creatnew, creattemp, _rtCchmod, _rtCclose

_rtl_heapwalk malloc.h

Function Inspects the heap, node by node.

Syntax int _rtl_heapwalk (_HEAPINFO *hi) i

Chapter 2, Run-time functions 161

I

Remarks

Return value

Function

Syntax

Remarks

162

_rtCheapwalk assumes the heap is correct. Use _heapchk to verify the heap
before using _rtCheapwalk. _HEAPOK is returned with the last block on the
heap. _HEAPEND will be returned on the next call to _rtCheapwalk.

_rtCheapwalk receives a pointer to a structure of type _HEAPINFO (declared
in malloc.h).

For the first call to _rtCheapwalk, set the hi.-Jlentry field to NULL.
_rtCheapwalk returns with hi.-Jlentry containing the address of the first
block.

hi._size holds the size of the block in bytes.

hi._useflag is a flag that is set to _USEDENTRY if the block is currently in
use. If the block is free, hi._useflag is set to _FREEENTRY.

One of the following values:

_HEAPBADNODE A corrupted heap block has been found
_HEAPBADPTR The _pentry field does not point to a valid heap

block
No heap exists _HEAPEMPTY

_HEAPEND
_HEAPOK

The end of the heap has been reached
The _heapinfo block contains valid information
about the next heap block

fcntl.h, share.h, io.h

Opens an existing file for reading or writing.

int _rtl_open(const char *filenarne, int oflags)i

_rtCopen opens the file specified by filename, then prepares it for reading or
writing, as determined by the value of oflags. The file is always opened in
binary mode.

oflags uses the flags from the following two lists. Only one flag from the
first list can be used (and one must be used); the remaining flags can be
used in any logical combination.

List 1: Read/write flags
O_RDONLY Open for reading.
0_ WRONL Y Open for writing.

Borland C++ for OS/2 Library Reference

These symbolic
constants are defined
in fcntl.h and share.h.

Return value

See also

rtl read

Function

Syntax

Remarks

o _RDWR Open for reading and writing.

The following additional values can be included in oflags (using an OR
operation):

List 2: Other access flags
The file is not passed to child programs.
Identical to SH_DENYNO.

O_NOINHERIT
SH_COMPAT
SH_DENYRW
SH_DENWR
SH_DENYRD
SH_DENYNO

Only the current handle can have access to the file.
Allow only reads from any other open to the file.
Allow only writes from any other open to the file.
Allow other shared opens to the file.

Only one of the SH_DENY xx values can be included in a single _rtCopen.
These file-sharing attributes are in addition to any locking performed on
the files.

The maximum number of simultaneously open files is defined by
HANDLE_MAX.

On successful completion, _rtCopen returns a nonnegative integer (the file
handle). The file pointer, which marks the current position in the file, is set
to the beginning of the file.

On error, _rtCopen returns -1. The global variable errno is set to one of the
following:

EACCES
EINVACC
EMFILE
ENOENT

Permission denied
Invalid access code
Too many open files
Path or file not found

open, _rtCread, sopen

Reads from file.

int _rtl_read(int handle, void *buf, unsigned len);

io.h, dos.h

_rtCread attempts to read len bytes from the file associated with handle into
the buffer pointed to by buf

Chapter 2, Run-time functions 163

Return value

See also

Function

Syntax

Remarks

164

When a file is opened in text mode, _rtCread does not remove carriage
returns.

The argument handle is a file handle obtained from a creat, open, dup, or dup2
c~L .

On disk files _rtCread begins reading at the current file pointer. When the
reading is complete, the function increments the file pointer by the number
of bytes read. On devices, the bytes are read directly from the device.

The maximum number of bytes that _rtf_read can read is UINT_MAX -1,
because UINT_MAX is the same as -1, the error return indicator.
UINT_MAX is defined in limits.h.

On successful completion, _rtf_read returns a positive integer indicating the
number of bytes placed in the buffer. On end-of-file, _rtf_read returns zero.
On error, it returns -1, and the global variable errno is set to one of the
following values:

EACCES
EBADF

Permission denied
Bad file number

read, _rtf_open, _rtf_write

Writes to a file.

int _rtl_write(int handle, void *buf, unsigned len);

io.h

_rtCwrite attempts to write len bytes from the buffer pointed to by buf to the
file associated with handle. The maximum number of bytes that _rtCwrite
can write is UINT_MAX -1, because UINT_MAX is the same as -1, which is
the error return indicator for _rtCwrite. UINT_MAX is defined in limits.h.
_rtCwrite does not translate a linefeed character (LF) to a CR/LF pair
because all its files are binary files.

If the number of bytes actually written is less than that requested, the
condition should be considered an error and probably indicates a full disk.

For disk files, writing always proceeds from the current file pointer. On
devices, bytes are directly sent to the device.

Borland C++ for OS/2 Library Reference

Return value

See also

scanf

Function

Syntax

Remarks

For files opened with the 0 _APPEND option, the file pointer is not
positioned to EOF by _rtl_write before writing the data.

_rtl_write returns the number of bytes written. In case of error, _rtl_write
returns -1 and sets the global variable errno to one of the following values:

EACCES
EBADF

Permission denied
Bad file number

lseek, _rtCread, write

Scans and formats input from the stdin stream.

int scanf(const char *forrnat[, address, ... J);

stdio.h

scanf scans a series of input fields, one character at a time, reading from the
stdin stream. Then each field is formatted according ,to a format specifier
passed to scanf in the format string pointed to by format. Finally, scanf stores
the formatted input at an address passed to it as an argument following
format. There must be the same number of format specifiers and addresses
as there are input fields.

The specifiers Nand F (discussed below) are provided only to ease porting
code that was previously written for segmented architectures. In the OS/2 .• _
32-bit flat memory model, near and far pointers are not used.

This function should not be used in PM applications.

The format string The format string present in scanf and the related functions cscanf, fscanf,
sscanf, vscanf, vfscanf, and vsscanf controls how each function scans,
converts, and stores its input fields. There must be enough address arguments
for the given format specifiers; if not, the results will be unpredictable and possibly
disastrous. Excess address arguments (more than required by the format)
are ignored.

_ scanf often leads to unexpected results if you diverge from an expected
pattern. You need to remember to teach scanfhow to synchronize at the end
of a line. The combination of gets or fgets followed by sscanf is safe and easy,
and therefore preferred.

The format string is a character string that contains three types of objects:
whitespace characters, non-whitespace characters, and format specifiers.

Chapter 2, Run-time functions 165

scanf

Optional format
string components

The specifiers Nand
F are provided only

for ease of code
portability.

166

• The whitespace characters are blank, tab (\t) or newline (\n). If a . .. scan!
function encounters a whitespace character in the format string, it will
read, but not store, all consecutive whitespace characters up to the next
non-whitespace character in the input.

• The non-whitespace characters are all other ASCII characters except the
percent sign (%). If a ... scan! function encounters a non-whitespace
character in the format string, it will read, but not store, a matching non
whitespace character.

• The format specifiers direct the ... scan! functions to read and convert
characters from the input field into specific types of values, then store
them in the locations given by the address arguments.

Trailing whitespace is left unread (including a newline), unless explicitly
matched in the format string.

Format specifiers

... scan! format specifiers have the following form:

% [*] [width] [FIN] [hllIL] type_character

Each format specifier begins with the percent character (%). After the %
come the following, in this order:

• An optional assignment-suppression character, [*]

• An optional width specifier, [width]

• An optional pointer size modifier, [F IN]

• An optional argument-type modifier, [h III L]

• The type character

These are the general aspects of input formatting controlled by the optional
characters and specifiers in the ... scan! format string:

Character
or specifier

width

size

argument
type

What it controls or specifies

Suppresses assignment of the next input field.

Maximum number of characters to read; fewer characters might be read if
the ... scanffunction encounters a whitespace or unconvertible character.

Overrides default size of address argument:

N = near pointer
F = far pointer

Overrides default type of address argument:

h = short int

Borland C++ for OS/2 Library Reference

... scanf type
characters

Type
character

Numerics

d
D

o
o

u

u

x
X

e,E

f

g, G

Characters

s

c

%

scant

I = long int (if the type character specifies an integer conversion)
I = double (if the type character specifies a floating-point conversion)
L = long double (valid only with floating-point conversions)

The following table lists the ... scan! type characters, the type of input
expected by each, and in what format the input will be stored.

The information in this table is based on the assumption that no optional
characters, specifiers, or modifiers (*, width, or size) were included in the
forma t specifier.

To see how the addition of the optional elements affects the ... scan! input,
refer to the tables following this one.

Expected input

Decimal integer
Decimal integer

Octal integer
Octal integer

Decimal, octal, or
hexadecimal integer
Decimal, octal, or
hexadecimal integer

Unsigned decimal
integer
Unsigned decimal
integer

Hexadecimal integer
Hexadecimal integer

Floating point

Floating point

Floating point

Character string

Character

% character

Type of argument

Pointer to int (int * arg).
Pointer to long (long *arg).

Pointer to int (int * arg).
Pointer to long (long * arg).

Pointer to int (int * arg).

Pointer to long (long * arg).

Pointer to unsigned int (unsigned int * arg).

Pointer to unsigned long (unsigned long * arg).

Pointer to int (int * arg).
Pointer to int (int * arg).

Pointer to float (float * arg).

Pointer to float (float * arg).

Pointer to float (float * arg).

Pointer to array of characters (char arg[!J.

Pointer to character (char *arg) if a field width Wis given along with the c
type character (such as %5c).

Pointer to array of W characters (char arg[ltVJ).

No conversion done; % is stored.

Chapter 2, Run-time functions 167

I

scant

Type
character Expected input Type of argument

Pointers

168

n

p Hexadecimal form
XXXXXXXX

Pointer to int (int *arg). The number of characters read successfully up to %n
is stored in this int.

Pointer to an object.

Input fields Anyone of the following is an input field:

• All characters up to (but not including) the next whitespace character

• All characters up to the first one that cannot be converted under the
current format specifier (such as an 8 or 9 under octal format)

• Up to n characters, where n is the specified field width

Conventions Certain conventions accompany some of these format specifiers. The
decimal-point character used in the output is determined by the current
locale's LC_NUMERIC category. The conventions are summarized here.

%c conversion
This specification reads the next character, including a whitespace charac
ter. To skip one whitespace character and read the next non-whitespace
character, use %ls.

% Wc conversion (W = width specification)
The address argument is a pointer to an array of characters; the array
consists of Welements (char arg[W]).

%s conversion
The address argument is a pointer to an array of characters (char arg[]).

The array size must be at least (n+ 1) bytes, where n equals the length of
string s (in characters). A space or newline terminates the input field; the
terminator is not scanned or stored. A null-terminator is automatically
appended to the string and stored as the last element in the array.

%[search_setJ conversion
The set of characters surrounded by square brackets can be substituted for
the s-type character. The address argument is a pointer to an array of
characters (char arg[]).

These square brackets surround a set of characters that define a search set of
possible characters making up the string (the input field).

If the first character in the brackets is a caret (/\), the search set is inverted to
include all ASCII characters except those between the square brackets.

Borland C++ for OS/2 Library Reference

scant

(Normally, a caret will be included in the inverted search set unless
explicitly listed somewhere after the first caret.)

The input field is a string not delimited by whitespace scan! reads the
corresponding input field up to the first character it reaches that does not
appear in the search set (or in the inverted search set). Two examples of this
type of conversion are

% [abed] Searches for any of the characters a, b, c, and d in the input
field.

% ["abed] Searches for any characters except a, b, c, and d in the input
field.

You can also use a range facility shortcut to define a range of characters
(numerals or letters) in the search set. For example, to catch all decimal
digits, you could define the search set by using % [0123456789], or you could
use the shortcut to define the same search set by using % [0 - 9] .

To catch alphanumeric characters, use the following shortcuts:

% [A-Z] Catches all uppercase letters.
% [0-9A-Za-z] Catches all decimal digits and all letters (uppercase and

lowercase).
% [A-FT-Z] Catches all uppercase letters from A through F and from

Tthrough Z.

The rules covering these search set ranges are straightforward:

• The character prior to the hyphen (-) must be lexically less than the one
after it.

.. The hyphen must not be the first nor the last character in the set. (If it is
first or last, it is considered to be the hyphen character, not a range
definer.)

• The characters on either side of the hyphen must be the ends of the range
and not part of some other range.

Here are some examples where the hyphen just means the hyphen
character, not a range between two ends:

Chapter 2, Run-time functions

%[-+*/l
%[z-a]

%[+0-9-A-Z]

%[+0-9A-Z-]

%["-0-9+A-Z]

The four arithmetic operations.
The characters 2, -, and a.
The characters + and - and the ranges 0-9 and A-Z.
Also the characters + and - and the ranges 0-9 and A-Z.
All characters except + and - and those in the ranges 0-9
andA-Z.

169

•

scanf

INF = INFinity; NAN =
Not-A-Number

Assignment
suppression

character

%e, %E. %f, %g, and %G (floating-point) conversions
Floating-point numbers in the input field must conform to the following
generic format:

[+/-] ddddddddd [.] dddd [E I e] [+/-] ddd

where [item] indicates that item is optional, and ddd represents decimal,
octal, or hexadecimal digits.

In addition, +INF, -INF, +NAN, and-NAN are recognized as floating
point numbers. Note that the sign and capitalization are required.

%d, %i, %0, %x, %D, %1, %0, %X, %c, %n conversions
A pointer to unsigned character, unsigned integer, or unsigned long can be
used in any conversion where a pointer to a character, integer, or long is
allowed.

The assignment-suppression character is an asterisk (*); it is not to be
confused with the C indirection (pointer) operator (also an asterisk).

If the asterisk follows the percent sign (%) in a format specifier, the next
input field will be scanned but not assigned to the next address argument.
The suppressed input data is assumed to be of the type specified by the
type character that follows the asterisk character.

The success of literal matches and suppressed assignments is not directly
determinable.

Width specifiers The width specifier (n), a decimal integer, controls the maximum number of
characters that will be read from the current input field.

170

If the input field contains fewer than n characters, ... scan! reads all the
characters in the field, then proceeds with the next field and format
specifier.

If a whitespace or nonconvertible character occurs before width characters
are read, the characters up to that character are read, converted, and stored,
then the function attends to the next format specifier.

A nonconvertible character is one that cannot be converted according to the
given format (such as an 8 or 9 when the format is octal, or a J or K when
the format is hexadecimal or decimal).

Width
specifier

n

How width of stored input is affected

Up to n characters are read, converted, and stored in the current address
argument.

Borland C++ for OS/2 Library Reference

Input-size and
argument-type

modifiers

The specifiers Nand
F are provided only

for ease of code
portability.

When scanf stops
scanning

scant

The input-size modifiers (N and F) and argument-type modifiers (h, I, and
L) affect how the ... scan! functions interpret the corresponding address
argument argifl.

F and N override the default or declared size of argo

h, I, and L indicate which type (version) of the following input data is to be
used (h = short, 1 = long, L = long double). The input data will be converted
to the specified version, and the arg for that input data should point to an
object of the corresponding size (short object for %h, long or double object
for %1, and long double object for %L).

Modifier

F

N

h

How conversion is affected

Overrides default or declared size; arg interpreted as far pointer.

Overrides default or declared size; arg interpreted as near pointer. Cannot be
used with any conversion in huge model.

For d, i, 0, u, x types, convert input to short int, store in short object.

For 0, /, 0, U, Xtypes, no effect.

For e, f, C, s, n, p types, no effect.

For d, i, 0, u, x types, convert input to long int, store in long object.

For e, f, 9 types, convert input to double, store in double object.

For 0, /, 0, U, X types, no effect.

For c, s, n, p types, no effect.

L For e, f, 9 types, convert input to a long double, store in long double object. L
has no effect on other formats.

scan! might stop scanning a particular field before reaching the normal
field-end character (whitespace), or might terminate entirely, for a variety
of reasons.

scan! stops scanning and storing the current field and proceed to the next
input field if any of the following occurs:

II An assignment-suppression character (*) appears after the percent
character in the format specifier; the current input field is scanned but
not stored.

II width characters have been read (width = width specification, a positive
decimal integer in the format specifier).

, E3 The next character read cannot be converted under the current format
(for example, an A when the format is decimal).

II The next character in the input field does not appear in the search set (or
does appear in an inverted search set).

Chapter 2, Run-time functions 171

•

scanf

Return value

See also

searchenv

Function

Syntax

Remarks

172

When scanf stops scanning the current input field for one of these reasons,
the next character is assumed to be unread and to be the first character of
the following input field, or the first character in a subsequent read
operation on the input.

scanf will terminate under the following circumstances:

• The next character in the input field conflicts with a corresponding non
whitespace character in the format string.

• The next character in the input field is EOF.

• The format string has been exhausted.

If a character sequence that is not part of a format specifier occurs in the
format string, it must match the current sequence of characters in the input
field; scanfwill scan but not store the matched characters. When a
conflicting character occurs, it remains in the input field as if it were never
read.

scanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If scanf attempts to.read at end-of-file, the return value is EOF. If no
fields were stored, the return value is O.

atof, cscanf, fscanf, freopen, getc, printj, sscanf, vfscanf, vscanf, vsscanf

stdlib.h

Searches an environment path for a file.

void _searchenv(const char *file, canst char *varname, char *buf) i

_searchenv attempts to locate file, searching along the path specified by the
operating system environment variable varname. Typical environment
variables that contain paths are PATH, LIB, and INCLUDE.

_searchenv searches for the file in the current directory of the current drive
first. If the file is not found there, the environment variable varname is
fetched, and each directory in the path it specifies is searched in turn until
the file is found, or the path is exhausted.

When the file is located, the full path name is stored in the buffer pointed to
by buf This string can be used in a call to access the file (for example, with
fopen or exec .. .). The buffer is assumed to be large enough to store any

Borland C++ for OS/2 Library Reference

Return value

See also

search path

Function

Syntax

Remarks

Return value

See also

searchstr

Function

Syntax

_searchenv

possible file name. If the file cannot be successfully located, an empty string
(consisting of only a null character) will be stored at buf

None.

_dosJindfirst, _dosJindnext, exec ... , spawn ... , system

dir.h

Searches the operating system path for a file.

char *searchpath(const char *file)i

searchpath attempts to locate file, searching along the operating system path,
which is the PATH= ... string in the environment. A pointer to the complete
path-name string is returned as the function value.

searchpath searches for the file in the current directory of the current drive
first. If the file is not found there, the PATH environment variable is
fetched, and each directory in the path is searched in turn until the file is
found, or the path is exhausted.

When the file is located, a string is returned containing the full path name.
This string can be used in a call to access the file (for example, with fopen or
exec .. .).

The string returned is located in a static buffer and is overwritten on each
subsequent call to searchpath.

searchpath returns a pointer to a file name string if the file is successfully
located; otherwise, searchpath returns null.

exec ... ,findfirst,findnext, spawn ... , system

stdlib.h

Searches a list of directories for a file.

void _searchstr(const char *file, const char *ipath, char *buf) i

Chapter 2, Run-time functions 173

•

_searchstr

Remarks

Return value

See also

setbuf

Function

Syntax

Remarks

174

_searchstr attempt to locate file, searching along the path specified by the
string ipath.

_searchstr searches for the file in the current directory of the current drive
first. If the file is not found there, each directory in ipath is searched in turn
until the file is found, or the path is exhausted. The directories in ipath must
be separated by semicolons.

When the file is located, the full path name is stored in the buffer pointed
by by buf. This string can be used in a call to access the file (for example,
withfopen or exec ...). The buffer is assumed to be large enough to store any
possible file name. The constant _MAX_P ATH, defined in stdlib.h, is the
size of the largest file name. If the file cannot be successfully located, an
empty string (consisting of only a null character) will be stored at buf.

None.

_searchenv

stdio.h

Assigns buffering to a strea:rp..

void setbuf(FILE *stream, char *buf);

DOS UNIX Win 16 Win 32 I ANSI C I ANSI C++ I OS/2

• • • • I • I • I •

setbuf causes the buffer bufto be used for I/O buffering instead of an
automatically allocated buffer. It is used after stream has been opened.

If buf is null, I/O will be unbuffered; otherwise, it will be fully buffered.
The buffer must be BUFSIZ bytes long (specified in stdio.h).

stdin and stdout are unbuffered if they are not redirected; otherwise, they
are fully buffered. setbuf can be used to change the buffering style used.

Unbuffered means that characters written to a stream are immediately
output to the file or device, while buffered means that the characters are
accumulated and written as a block.

setbuf produces unpredictable results unless it is called immediately after
opening stream or after a call to fseek. Calling setbuf after stream has been
unbuffered is legal and will not cause problems.

Borland C++ for OS/2 Library Reference

setbuf

A common cause for error is to allocate the buffer as an automatic (local)
variable and then fail to close the file before returning from the function
where the buffer was declared.

Return value None.

See also !flush, fopen, fseek, setvbuf

_setcursortype conio.h

Function Selects cursor appearance.

Syntax void _setcursortype(int cur_t);

Remarks Sets the cursor type to

_NOCURSOR
_NORMALCURSOR
_SOLIDCURSOR

Turns off the cursor
Normal underscore cursor
Solid block cursor

-.. This function should not be used in PM applications.

Return value None.

setdate

setdisk

setjmp

Function

Syntax

See _dos-$etdate on page 45.

See getdisk.

Sets up for nonlocal goto.

int setjrnp(jrnp_buf jrnpb);

Chapter 2, Run-time functions

setjmp.h

175

setdisk

Remarks

Return value

See also

setlocale

Function

Syntax

Remarks

Future releases of
Borland C++ will

increase the number
of locales supported.

176

setjmp captures the complete task state in jmpb and returns O.

A later call to longjmp with jmpb restores the captured task state and returns
in such a way that setjmp appears to have returned with the value val.

A task state includes:

• no segment registers are saved

• register variables (EBX, EDI, ESI)

.. stack pointer (ESP)

• frame base pointer (EBP)

• flags are not saved

setjmp must be called before longjmp. The routine that calls setjmp and sets
up jmpb must still be active and cannot have returned before the longjmp is
called. If it has returned, the results are unpredictable.

setjmp is useful for dealing with errors and exceptions encountered in a
low-level subroutine of a program.

setjmp returns 0 when it is initially called. If the return is from a call to
longjmp, setjmp returns a nonzero value (as in the example).

longjmp, signal

locale.h

Selects or queries a locale.

char *setlocale(int category, const char *locale);

Borland C++ supports the following locales at present:

Module

de_DE
fr_FR
en_GB
en_US

Locale supported

German
French
English (Great Britain)
English (United States)

Borland C++ for OS/2 Library Reference

The LOCALE.BLL file
is installed in BCOS2\

BIN directory.

For each locale, the following character sets are supported:

DOS437
DOS850
WIN1252

English
Multilingual (La tin I)
Windows, Multilingual

setlocale

For a description of DOS character sets, see MS-DOS User's Guide and
Reference. See also MS Windows 3.1 Programmer's Reference, Volume 4 for a
discussion of the WIN1252 character set.

The possible values for the category argument are as follows:

Value

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MONETARY

LC_NUMERIC

Description

Affects all the following categories.

Affects strcol/ and strxfrm.

Affects single-byte character handling functions. The mbstowcs and mbtowc
functions are not affected.

Affects monetary formatting by the localeconvfunction. .

Affects the decimal point of non-monetary data formatting. This includes the
printffamily of functions, and the information returned by localeconv.

Affects strftime.

The locale argument is a pointer to the name of the locale or named locale
category. Passing a NULL pointer returns the current locale in effect.
Passing a pointer that points to a null string requests setlocale to look for
environment variables to determine which locale to set. The locale names
are case sensitive.

If you specify a locale other than the default C locale, setlocale tries to access
the locale library file named LOCALE.BLL to obtain the locale data. This
file is located using the following strategies:

1. Searching the directory where the application's executable resides.

2. Searching in the current default directory.

3. Accessing the lip ATH" environment variable and searching in each of
the specified directories.

If the locale library is not found, set locale terminates.

When set locale is unable to honor a locale request, the preexisting locale in
effect is unchanged and a null pointer is returned.

If the locale argument is a NULL pointer, the locale string for the category is
returned. If category is LC_ALL, a complete locale string is returned. The
structure of the complete locale string consists of the names of all the

Chapter 2, Run-time functions 177

•

setlocale

Seethe
Programmers Guide,

Chapter 5, for
information about
defining options.

178

categories in the current locale concatenated and separated by semicolons.
This string can be used as the locale parameter when calling setlocale with
LC_ALL. This will reinstate all the locale categories that are named in the
complete locale string, and allows saving and restoring of locale states. If
the complete locale string is used with a single category, for example,
LC_TIME, only that category will be restored from the locale string.

ANSI C states that if an empty string "" is used as the locale parameter an
implementation defined locale is used. setlocale has been implemented to
look for corresponding environment variables in this instance as POSIX
suggests.

If the environment variable LC_ALL exists, the category will be set
according to this variable. If the variable does not exist, the environment
variable that has the same name as the requested category is looked for and
the category is set accordingly.

If none of the above are satisfied, the environment variable named LANG is
used. Otherwise, setlocale fails and returns a NULL pointer.

To take advantage of dynamically loadable locales in your application,
define __ USELOCALES __ for each module. If __ USELOCALES __ is not
defined, all locale-sensitive functions and macros will work only with the
default C locale.

If a NULL pointer is used as the argument for the locale parameter, setlocale
returns a string that specifies the current locale in effect. If the category
parameter specifies a single category, such as LC_COLLATE, the string
pointed to will be the name of that category. If LC_ALL is used as the
category parameter then the string pointed to will be a full locale string that
will indicate the name of each category in effect.

localenameptr = setlocale(LC_COLLATE, NULL) i

if (localenameptr)
printf("%s\n", localenameptr) i

The output here will be one of the module names together with the
specified code page. For example, the output could be fr_FR.DOS850@dbase.

localenameptr = setlocale(LC_ALL, NULL) i

if (localenameptr)
printf ("%s \n", localenameptr) i

An example of the output here could be the following:

Borland C++ for OS/2 Library Reference

The default collation
is named dbase.

Therefore, whether
you specify dbase or

nothing at all, you get
the same collation.

However, dbase
might not be the
default in future

releases.

Return value

See also

setmode

Function

fr_FR.DOS850@dbase;fr_FR.DOS850;fr_FR.DOS850;fr_FR.DOS850;
fr_FR.DOS850;fr_FR.DOS850;;

setlocale

Each category in this full string is delimited by a semicolon. This string can
be copied and saved by an application and then used again to restore the
same locale categories at another time. Each delimited name corresponds to
the locale category constants defined in locale.h. Therefore, the first name is
the name of the LC_COLLATE category, the second is the LC_CTYPE
category, and so on. Any other categories named in the locale.h header file
are reserved for future implementation.

Here are some examples of setting locales by using setlocale:

Set all default categories for the specified French locale:
setlocale(LC_ALL, "fr_FR.DOS850");

Set French locale to named collation dbase:
setlocale(LC_COLLATE, "fr_FR.DOS850@dbase"

When a category is loaded from the locale library, the default category is
the one that will be loaded unless a modifier name is used. For example:

setlocale(LC_COLLATE, "fr_FR.DOS850")

causes the default LC_COLLATE category to be loaded. It might or might
not have a specific name.

setlocale(LC_COLLATE, "fr_FR.DOS850@dbase")

specifies that the LC_ COLLATE category named dbase to be loaded. This
might or might not be the default.

setlocale updates the lconv locale structure when a request has been fulfilled.

When an application exits, any allocated memory used for the locale object
is deallocated.

If selection is successful, setlocale returns a pointer to a string that is associ- •
ated with the selected category (or possibly all categories) for the new
locale.

On failure, a NULL pointer is returned and the locale is unchanged. All
other possible returns are discussed in the Remarks section above.

localeconv

fcntl.h

Sets mode of an open file.

Chapter 2, Run-time functions 179

setmode

Syntax

Remarks

Return value

See also

settime

int setrnode(int handle, int arnode);

setmode sets the mode of the open file associated with handle to either binary
or text. The argument amode must have a value of either O_BINARY or
O_TEXT, never both. (These symbolic constants are defined in fcntl.h.)

setmode returns the previous translation mode if successful. On error it
returns -1 and sets the global variable errno to

EINV AL Invalid argument

ereat, open, _rtCereat, _rtCopen

See gettime on page 94.

setvbuf stdio.h

Function Assigns buffering to a stream.

Syntax int setvbuf(FILE *strearn, char *buf, int type, size_t size);

Remarks setvbuf causes the buffer buf to be used for I/O buffering instead of an
automatically allocated buffer. It is used after the given stream is opened.

180

If buf is null, a buffer will be allocated using malloe; the buffer will use size
as the amount allocated. The buffer will be automatically freed on close.
The size parameter specifies the buffer size and must be greater than zero.

.. The parameter size is limited by the constant UINT_MAX as defined in
limits.h.

stdin and stdout are unbuffered if they are not redirected; otherwise, they
are fully buffered. Unbuffered means that characters written to a stream are
immediately output to the file or device, while buffered means that the
characters are accumulated and written as a block.

The type parameter is one of the following:

Borland C++ for OS/2 Library Reference

Return value

See also

setverify

Function

Syntax

Remarks

Return value

See also

__ IOFBF

__ IOLBF

__ IONBF

setvbuf

The file is fully buffered. When a buffer is empty, the next
input operation will attempt to fill the entire buffer. On
output, the buffer will be completely filled before any data is
written to the file.

The file is line buffered. When a buffer is empty, the next input
operation will still attempt to fill the entire buffer. On output,
however, the buffer will be flushed whenever a newline
character is written to the file.

The file is unbuffered. The buf and size parameters are
ignored. Each input operation will read directly from the
file, and each output operation will immediately write the
data to the file.

A common cause for error is to allocate the buffer as an automatic (local)
variable and then fail to close the file before returning from the function
where the buffer was declared.

setvbuf returns a on success. It returns nonzero if an invalid value is given
for type or size, or if there is not enough space to allocate a buffer.

!flush, fopen, setbuf

dos.h

Sets the state of the verify flag in the operating system.

void setverify(int value);

OS/2

setverify sets the current state of the verify flag to value,which can be either
a (off) or 1 (on).

The verify flag controls output to the disk. When verify is off, writes are not
verified; when verify is on, all disk writes are verified to ensure proper
writing of the data.

None.

getverify

Chapter 2, Run-time functions 181

•

signal

signal

Function

Syntax

Remarks

182

signal.h

Specifies signal-handling actions.

void (_USERENTRY *signal(int sig, void (_USERENTRY *func)
(int sig [, int subcode]))) (int) i

signal determines how receipt of signal number sig will subsequently be
treated. You can install a user-specified handler routine (specified by the
argument June) or use one of the two predefined handlers, SIG_DFL and
SIG_IGN, in signal.h. The function June must be used with the
_ USERENTRY calling convention.

Function pointer

SIG_DFL
SIG_ERR
SIGJGN

Description

Terminates the program
Indicates an error return from signal
Ignore this type signal

The signal types and their defaults are as follows:

Signal type

SIGBREAK

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

SIGUSR1,
SIGUSR2,
SIGUSR3

Description

Control-Break interrupt. Keyboard must be in raw mode. Default
action is to terminate the program.

Abnormal termination. Default action is equivalent to printing
Abnormal program termination to stderr and calling
_exit(3).

Arithmetic error caused by division by 0, invalid operation, and
the like. Default action is program termination.

Illegal operation. Default action is program termination.

Ctrl-C interrupt. Default action is program termination.

Illegal storage access. Default action is program termination.

Request for program termination. Default action is program
termination.

User-defined signals that can be generated only
by calling raise. Default action is to ignore
the signal.

signal.h defines a type called sig_atomic_t, the largest integer type the
processor can load or store atomically in the presence of asynchronous

Borland C++ for OS/2 Library Reference

signal

interrupts (for the 8086 family, this is a 16-bit word; for 80386 and higher
number processors, it is a 32-bit word-a Borland C++ integer).

When a signal is generated by the raise function or by an external event, the
following two things happen:

• If a user-specified handler has been installed for the signal, the action for
that signal type is set to SIG_DFL.

• The user-specified function is called with the signal type as the
parameter.

User-specified handler functions can terminate by a return or by a call to
abort, _exit, exit, or longjmp. If your handler function is expected to continue
to receive and handle more signals, you must have the handler function call
signal again.

Borland C++ implements an extension to ANSI C when the signal type is
SIGFPE, SIGSEGV, or SIGILL. The user-specified handler function is called
with one or two extra parameters. If SIGFPE, SIGSEGV, or SIGILL has been
raised as the result of an explicit call to the raise function, the user-specified
handler is called with one extra parameter, an integer specifying that the
handler is being explicitly invoked. The explicit activation values for
SIGFPE, SIGSEGV and SIGILL are as follows (see declarations in float.h):

Signal

SIGFPE
SIGSEGV
SIGILL

Meaning

FPE_EXPLICITGEN
SEGV _EXPLICITGEN
ILL_EXPLICITGEN

If SIGFPE is raised because of a floating-point exception, or SIGSEGV,
SIGILL, or the integer-related variants of SIGFPE signals
(FPE_INTOVFLOW or FPE_INTDIVO) are raised as the result of a processor •
exception, the user handler is called with one of SIGFPE, SIGSEGV, or
SIGILL exception type (see float.h for all these types). This first parameter is
the usual ANSI signal type.

The following SIGFPE-type signals can occur (or be generated). They
correspond to the exceptions that the 8087 family is capable of detecting, as
well as the "INTEGER DIVIDE BY ZERO" and the "INTERRUPT ON
OVERFLOW" on the main CPU. (The declarations for these are in float.h.)

SIGFPE Signal

FPEJNTOVFLOW
FPEJNTDIVO
FPEJNVALID

Chapter 2, Run-time functions

Meaning

INTO executed with OF flag set
Integer divide by zero
Invalid operation

183

signal

184

FPE_ZERODIVIDE
FPE_OVERFLOW
FPE_UNDERFLOW
FPEJNEXACT
FPE_EXPLICITGEN
FPE_STACKFAULT

Division by zero
Numeric overflow
Numeric underflow
Precision
User program executed raise(SIGFPE)
Floating-point stack overflow or underflow

.. The FPE_INTOVFLOW and FPE_INTDIVO signals are generated by integer
operations, and the others are generated by floating-point operations.
Whether the floating-point exceptions are generated depends on the
coprocessor control word, which can be modified with _controI87.
Denormal exceptions are handled by Borland C++ and not passed to a
signal handler.

The following SIGSEGV -type signals can occur:

SEGV_BOUND
SEGV _EXPLICITGEN
SEGV _ACCESS
SEGV_STACK

Bound constraint exception
raise(SIGSEGV) was executed
Access violation
Unable to grow stack

Borland C++ doesn't generate bound instructions that can generate
SEGV _BOUND-type signals, but they can be used in inline code and
separately compiled assembler routines that are linked in.

The following SIGILL-type signals can occur:

ILL_EXECUTION
ILL_EXPLICITGEN
ILL_PRIVILEGED

Illegal operation attempted
raise(SIGILL) was executed
Attempted execution of privileged instruction

When the signal type is SIGFPE, SIGSEGV, or SIGILL, a return from a
signal handler is generally not advisable if the state of the 8087 is corrupt,
the results of an integer division are wrong, an operation that shouldn't
have overflowed did, a bound instruction failed, or an illegal operation was
attempted. The only time a return is reasonable is when the handler alters
the registers so that a reasonable return context exists or the signal type in
dicates that the signal was generated explicitly (for example,
FPE_EXPLICITGEN, SEGV _EXPLICITGEN, or ILL_EXPLICITGEN).
Generally in this case you would print an error message and terminate the
program using _exit, exit, or abort. If a return is executed under any other
conditions, the program's action will probably be unpredictable upon
resuming.
Special care must be taken when using the signal function in a multithread
program. The SIGINT, SIGTERM, and SIGBREAK signals can be used only
by the main thread (thread one) in a non-PM application. When one of
these signals occurs, the currently executing thread is suspended, and

Borland C++ for OS/2 Library Reference

Return value

See also

sin, sinl

Function

Syntax

Remarks

Return value

See also

sinh, sinhl

Function

Syntax

sin

sinl

sinh

sinhl

signal

control transfers to the signal handler (if any) set up by thread one. Other
signals can be handled by any thread. A signal handler should not use C++
run-time library functions, because a semaphore deadlock might occur.
Instead, the handler should simply set a flag or post a semaphore, and
return immediately.

If the call succeeds, signal returns a pointer to the previous handler routine
for the specified signal type. If the call fails, signal returns SIC_ERR, and the
external variable errno is set to EINV AL.

abort, _controIS7, exit, longjmp, raise, setjmp

math.h

Calculates sine.

double sin (double x);
long double sinl(long double x);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • •
• • • •

sin computes the sine of the input value. Angles are specified in radians.

sinl is the long double version; it takes a long double argument and returns
a long double result. Error handling for these functions can be modified
through the functions _matherr and _matherrl.

This function can be used with bcd and complex types.

sin and sinl return the sine of the input value.

acos, asin, atan, atan2, bcd, complex, cos, tan

Calculates hyperbolic sine.

double sinh(double x) ;
long double sinhl(long double x);

DOS UNIX Win 16 Wi n 32 ANSI C ANSI C++ OS/2

• • • • • I

• • • •

math.h

Chapter 2, Run-time functions 185

I

sinh, sinhl

Remarks

Return value

See also

sleep

Function

Syntax

Remarks

Return value

sopen

Function

Syntax

Remarks

186

sinh computes the hyperbolic sine, (eX - e-X)/2.

sinl is the long double version; it takes a long double argument and returns
a long double result. Error handling for sinh and sinhl can be modified
through the functions _matherr and _matherr!.

This function can be used with bcd and complex types.

sinh and sinhl return the hyperbolic sine of x.

When the correct value overflows; these functions return the value
HUGE_VAL (sinh) or _LHUGE_ VAL (sinhl) of appropriate sign. Also, the
global variable errno is set to ERANGE.

acos, asin, atan, atan2, bcd, complex, cos, cosh, sin, tan, tanh

dos.h

Suspends execution for an interval (seconds).

void sleep(unsigned seconds);

With a call to sleep, the current program is suspended from execution for
the number of seconds specified by the argument seconds. The interval is
accurate only to the nearest hundredth of a second or to the accuracy of the
operating system clock, whichever is less accurate.

sleep might return before the specified time period elapses if a signal occurs.

None.

fcntl.h, sys\stat.h, share.h, io.h

Opens a shared file.

int sopen(char *path, int access, int shflag[, int mode]);

sopen opens the file given by path and prepares it for shared reading or
writing, as determined by access, shflag, and mode.

Borland C++ for OS/2 Library Reference

sopen

For sopen, access is constructed by ~Ring flags bitwise from the following
two lists. Only one flag from the first list can be used; the remaining flags
can be used in any logical combination.

List 1: Read/write flags
o _RDONL Y Open for reading only.
O_WRONLY Open for writing only.
o _RDWR Open for reading and writing.

List 2: Other access flags
O_NDELAY Not used; for UNIX compatibility.
o _APPEND If set, the file pointer is set to the end of the file prior

to each write.
O_CREAT If the file exists, this flag has no effect. If the file does

not exist, the file is created, and the bits of mode are
used to set the file attribute bits as in chmod.

O_TRUNC If the file exists, its length is truncated to O. The file
attributes remain unchanged.

O_EXCL Used only with O_CREAT. If the file already exists,
an error is returned.

o _BINARY This flag can be given to explicitly open the file in
binary mode.

O_TEXT This flag can be given to explicitly open the file in
text mode.

o _NOINHERIT The file is not passed to child programs.

These 0_ ... symbolic constants are defined in fcntl.h.

If neither O_BINARY nor O_TEXT is given, the file is opened in the transla
tion mode set by the global variable Jmode.

If the O_CREAT flag is used in constructing access, you need to supply the
mode argument to sopen·from the following symbolic constants defined in
sys \stat.h.

Value of mode

S-,WRITE
SJREAD
SJREADISJWRITE

Access permission

Permission to write
Permission to read
Permission to read/write

shflag specifies the type of file-sharing allowed on the file path. Symbolic
constants for shflag are defined in share.h.

Value of shflag

SH_COMPAT
SH_DENYRW

Chapter 2, Run-time functions

What it does

Identical to SH_DENYNONE
Denies read/write access.

187

•

sopen

Return value

See also

SH_DENYWR
SH_DENYRD
SH_DENYNONE
SH_DENYNO

Denies write access.
Denies read access.
Permits read/write access.
Permits read/write access.

On successful completion, sopen returns a nonnegative integer (the file
handle), and the file pointer (that marks the current position in the file) is
set to the beginning of the file. On error, it returns -1, and the global
variable errno is set to

EACCES
EINVACC
EMFILE
ENOENT

Permission denied
Invalid access code
Too many open files
Path or file function not found

chmod, close, creat, lock, lseek, _rtCopen, open, unlock, umask

spawnl, spawn Ie, spawnlp, spawnlpe, spawnv, spawnve, spawnvp,
spawnvpe process.h, stdio.h

Function

Syntax

The last string must
be NULL in functions
spawnle, spawnlpe,

spawnv, spawnve,
spawnvp, and

spawnvpe.

Remarks

188

Creates and runs child processes.

int spawnl(int mode, char *path, char *argO, argl, ... , argn, NULL);
int spawnle(int mode, char '*path, char *argO, argl, ... , argn, NULL, char *envp[]);
int spawnlp(int mode, char *path, char *argO, argl, ... , argn, NULL);
int spawnlpe(int mode, char *path, char *argO, argl, ... , argn, NULL,

char *envp[]);
int spawnv(int mode, char *path, char *argv[]);
int spawnve(int mode, char *path, char *argv[], char *envp[]);
int spawnvp(int mode, char *path, char *argv[]);
int spawnvpe(int mode, char *path, char *argv[], char *envp[]);

The functions in the spawn ... family create child processes that run
(execute) their own files. There must be sufficient memory available for
loading and executing a child process.

The value of mode determines what action the calling function (the parent
process) takes after the spawn ... call. The possible values of mode are

Puts parent process "on hold" until child process
completes execution.

Borland C++ for OS/2 Library Reference

spawnl, spawnle, spawnlp, spawnlpe, spawnv, spawnve, spawnvp, spawnvpe

P_NOWAIT

P_NOWAITO

P_DETACH

Continues to run parent process while child process
runs. The child process ID is returned, so that the
parent can wait for completion using cwait or wait.

Identical to P _NOW AIT except that the child process
ID isn't saved by the operating system, so the parent
process can't wait for it using cwait or wait.

Identical to P _NOW AlTO, except that the child
process is executed in the background with no access
to the keyboard or the display.

P _OVERLAY Overlays child process in memory location formerly
occupied by parent. Same as an exec ... call.

path is the file name of the called child process. The spawn ... function calls
search for path using the standard operating system search algorithm:

• If no explicit extension is given, the functions search for the file as given.
If the file is not found, they add .EXE and search again. If not found, they
add .CMD and search again. If still not found, they add .BAT and search
once more. The command processor (CMD.EXE) is used to run the
executable file.

• If an extension is given, they search only for the exact file name.

• If only a period is given, they search only for the file name with no
extension.

• If path does not contain an explicit directory, spawn ... functions that have
the p suffix search the current directory, then the directories set with the
operating system PATH environment variable.

The suffixes p, 1, and v, and e added to the spawn ... "family name" specify
that the named function operates with certain capabilities.

p The function searches for the file in those directories specified by the I
PATH environment variable. Without the p suffix, the function
searches only the current working directory.

The argument pointers argO, argl, ... , argn are passed as separate
arguments. Typically, the 1 suffix is used when you know in advance
the number of arguments to be passed.

v The argument pointers argv[O}, ... , arg[n} are passed as an array of
pointers. Typically, the v suffix is used when a variable number of
arguments is to be passed.

e The argument envp can be passed to the child process, letting you
alter the environment for the child process. Without the e suffix,
child processes inherit the environment of the parent process.

Chapter 2, Run-time functions 189

spawnl, spawnle, spawnlp, spawnlpe, spawnv, spawnve, spawnvp, spawnvpe

Return value

190

Each function in the spawn ... family must have one of the two argument
specifying suffixes (either I or v). The path search and environment
inheritance suffixes (p and e) are optional.

For example,

• spawnl takes separate arguments, searches only the current directory for
the child, and passes on the parent's environment to the child .

• spawnvpe takes an array of argument pointers, incorporates PATH in its
search for the child process, and accepts the envp argument for altering
the child's environment.

The spawn ... functions must pass at least one argument to the child process
(argO or argv[O}). This argument is, by convention, a copy of path. (Using a
different value for this oth argument won't produce an error.) If you want to
pass an empty argument list to the child process, then argO or argv[O} must
be NULL.

When the I suffix is used, argO usually points to path, and argl, .. '" argn
point to character strings that form the new list of arguments. A mandatory
null following argn marks the end of the list.

When the e suffix is used, you pass a list of new environment settings
through the argument envp. This environment argument is an array of
character pointers. Each element points to a null-terminated character
string of the form

envvar = value

where envvar is the name of an environment variable, and value is the string
value to which envvar is set. The last element in envp[J is null. When envp is
null, the child inherits the parents' environment settings.

The combined length of argO + argl + ... + argn (or of argv[O) + argv[l} + ...
+ argv[n}), including space characters that separate the arguments, must be
< 256 bytes. Null-terminators are not counted.

When a spawn ... function call is made, any open files remain open in the
child process.

On a successful execution, the spawn ... functions where mode is P _WAIT
return the child process' exit status (0 for a normal termination). If the child
specifically calls exit with a nonzero argument, its exit status can be set to a
nonzero value. If mode is P _NOWAIT or P _NOW AlTO, the spawn
functions return the process 10 of the child process. This 10 can be passed
to cwait.

On error, the spawn ... functions return -I, and the global variable errno is
set to one of the following:

Borland C++ for OS/2 Library Reference

See also

_splitpath

Function

Syntax

Remarks

spawnl, spawnle, spawnlp, spawnlpe, spawnv, spawnve, spawnvp, spawnvpe

EINVAL
ENOENT
ENOEXEC
ENOMEM

Invalid argument
Path or file name not found
Exec format error
Not enough memory

abort, atexit, cwait, _exit, exit, exec. '" Jpreset, searchpath, system, wait

Splits a full path name into its components.

stdlib.h

void _splitpath(const char *path, char *drive, char *dir, char *narne, char *ext);

II
DOS I UNIX I Wi n 16 Win 32 I ANSI C ANSI C++ OS/2 II

II • I I • • I • II

_splitpath takes a file's full path name (path) as a string in the form

X:\DIR\SUBDIR\NAME.EXT

and splits path into its four components. It then stores those components in
the strings pointed 'to by drive, dir, name, and ext. (All five components must
be passed, but any of them can be a null, which means the corresponding
component will be parsed but not stored.) The maximum sizes for these
strings are given by the constants _MAX_DRIVE _MAX_DIR _MAX_PATH
_MAX_FNAME and _MAX_EXT) (defined in stdlib.h), and each size
includes space for the null-terminator. These constants are defined in
stdlib.h.

Constant

_MAX_PATH
_MAX_DRIVE
_MAX_DIR
_MAXJNAME
_MAX_EXT

String

path
drive; includes colon (:)
dir; includes leading and trailing backslashes (\)
name
ext, includes leading dot (.)

_splitpath assumes that there is enough space to store each non-null
component.

When _splitpath splits path, it treats the punctuation as follows:

• drive includes the colon (C:, A:, and so on).

• dir includes the leading and trailing backslashes
(\BC\include \, \source \, and so on).

• name includes the file name.

Chapter 2, Run-time functions 191

I

_splitpath

Return value

See also

sprintf

Function

Syntax

Remarks

See printf for details
on format specifiers.

Return value

See also

sqrt, sqrtl

Function

Syntax

Remarks

192

sqrt

sqrtl

• ext includes the dot preceding the extension (.C, .EXE, and so on).

_makepath and _splitpath are invertible; if you split a given path with
_splitpath, then merge the resultant components with _makepath, you end up
with path.

None.

Jullpath, _makepath

stdio.h

Writes formatted output to a string.

int sprintf(char *buffer, const char *format[, argument, ... J);

sprintj accepts a series of arguments, applies to each a format specifier
contained in the format string pointed to by format, and outputs the
formatted data to a string.

sprintj applies the first format specifier to the first argument, the second to
the second, and so on. There must be the same number of format specifiers
as arguments.

sprintj returns the number of bytes output. sprintf does not include the
terminating null byte in the count. In the event of error, sprintf returns EOF.

fprintj, printj

math.h

Calculates the positive square root.

double sqrt(double x);
long double sqrtl(long double x);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • •
• • • •

sqrt calculates the positive square root of the argument x.

Borland C++ for OS/2 Library Reference

Return value

See also

srand

Function

Syntax

Remarks

Return value

See also

sscanf

Function

Syntax

Remarks

See scanf for details on
format specifiers.

sqrt, sqrtl

sqrtl is the long double version; it takes a long double argument and returns
a long double result. Error handling for these functions can be modified
through the functions _matherr and _matherrl.

This function can be used with bcd and complex types.

On success, sqrt and sqrtl return the value calculated, the square root of x. If
x is real and positive, the result is positive. If x is real and negative, the
global variable errno is set to

EDaM Domain error

bcd, complex, exp, log, pow

Initializes random number generator.

void srand(unsigned seed);

stdlib.h

The random number generator is reinitialized by calling srand with an
argument value of 1. It can be set to a new starting point by calling srand
with a given seed number.

None.

rand, random, randomize

Scans and formats input from a string.

stdio.h I
int sscanf(const char *buffer, const char *format[, address, ... J);

sscanf scans a series of input fields, one character at a time, reading from a
string. Then each field is formatted according to a format specifier passed
to sscanf in the format string pointed to by format. Finally, sscanf stores the
formatted input at an address passed to it as an argument followingformat.

Chapter 2, Run-time functions 193

sscanf

There must be the same number of format specifiers and addresses as there
are input fields.

sscanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely, for a
number of reasons. See scanf for a discussion of possible causes.

.. This function should not be used in PM applications.

Return value sscanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If no fields were stored, the return value is O.

If sscanf attempts to read at end-of-string, the return value is EOF.

See also fscanf, scanf

stackavail malloc.h

Function Gets the amount of available stack memory.

Syntax size_t stackavail (void) ;

Remarks stackavail returns the number of bytes available on the stack. This is the
amount of dynamic memory that alloca can access.

Return value stackavail returns a size_t value indicating the number of bytes available.

See also alloca

stat

_status87

Function

Syntax

194

See fstat.

Gets floating-point status.

unsigned int _status87 (void) ;

float.h

Borland C++ for OS/2 Library Reference

Remarks

Return value

stime

Function

Syntax

Remarks

Return value

See also

stpcpy

Function

Syntax

Remarks

Return value

See also

_status87

_status87 gets the floating-point status word, which is a combination of the
80x87 status word and other conditions detected by the 80x87 exception
handler.

The bits in the return value give the floating-point status. See float.h for a
complete definition of the bits returned by _status87.

time.h

Sets system date and time.

int stime(time_t *tp)i

stime sets the system time and date. tp points to the value of the time as
measured in seconds from 00:00:00 GMT, January I, 1970.

stime returns a value of o.
asetime, jtime, gettime, gmtime, loealtime, time, tzset

string.h

Copies one string into another.

char *stpcpy(char *dest, canst char *src)i

UNIX Win 16

stpepy copies the string sre to dest, stopping after the terminating null
character of sre has been reached.

stpepy returns dest + strlen(sre).

strepy

Chapter 2, Run-time functions 195

•

strcat

strcat

Function

Syntax

Remarks

Return value

strchr

Function

Syntax

Remarks

Return value

See also

196

string.h

Appends one string to another.

char *strcat(char *dest, const char *src)i

strcat appends a copy of src to the end of dest. The length of the resulting
string is strlen(dest) + strlen(src).

strcat returns a pointer to the concatenated strings.

Scans a string for the first occurrence of a given character.

char *strchr(const char *8, int C)i

const char *strchr(const char *s, int c) i

char *strchr(char *s, int C)i

string.h

1* Conly *1

I I Ctt only
I I Ctt only

strchr scans a string in the forward direction, looking for a specific
character. strchr finds the first occurrence of the character c in the string s.
The null-terminator is considered to be part of the string, so that, for
example,

strchr(strs,O)

returns a pointer to the terminating null character of the string strs.

strchr returns a pointer to the first occurrence of the character c in s; if c does
not occur in s, strchr returns null.

strcspn, strrchr

Borland C++ for OS/2 Library Reference

strcmp

Function

Syntax

Remarks

Return value

See also

strcmpi

Function

Syntax

Remarks

Return value

strchr

string.h

. Compares one string to another.

int strcrnp(canst char *sl, canst char *s2);

strcmp performs an unsigned comparison of sl to s2, starting with the first
character in each string and continuing with subsequent characters until
the corresponding characters differ or until the end of the strings is
reached.

strcmp returns a value that is

• < 0 if sl is less than 52

• == 0 if sl is the same as s2

• > 0 if sl is greater than s2

strcmpi, strcoll, stricmp, strncmp, strncmpi, strnicmp

Compares one string to another, without case sensitivity.

int strcrnpi(canst char *sl, canst char *s2);

strcmpi performs an unsigned comparison of sl to s2, without case
sensitivity (same as stricmp-implemented as a macro).

string.h

It returns a value « 0, 0, or > 0) based on the result of comparing sl (or part
of it) to s2 (or part of it).

The routine strcmpi is the same as stricmp. strcmpi is implemented through a
macro in string.h and translates calls from strcmpi to stricmp. Therefore, to
use strcmpi, you must include the header file string.h for the macro to be
available. This macro is provided for compatibility with other C compilers.

strcmpi returns an int value that is

Chapter 2, Run-time functions 197

I

strcmpi

See also

strcoll

Function

Syntax

Remarks

Return value

See also

strcpy

Function

Syntax

Remarks

Return value

See also

198

• < 0 if sl is less than s2

• == 0 if sl is the same as s2

• > 0 if sl is greater than s2

strcmp, strcoll, stricmp, strncmp, strncmpi, strnicmp

string.h

Compares two strings.

int strcoll(char *s1, char *s2);

strcoll compares the string pointed to by sl to the string pointed to by s2,
according to the current locale's LC_COLLATE category.

strcoll returns a value that is

• < 0 if sl is less than s2

• == 0 if sl is the same as s2

• > 0 if sl is greater than s2

strcmp, strcmpi, stricmp, strncmp, strncmpi, strnicmp, strxfrm

string.h

Copies one string into another.

char *strcpy(char *dest, const char *src);

DOS

Copies string src to dest, stopping after the terminating null character has
been moved.

strcpy returns dest.

stpcpy

Borland C++ for OS/2 Library Reference

strcspn

Function

Syntax

Remarks

Return value

See also

strdate

Function

Syntax

Remarks

Return value

See also

strdup

Function

Syntax

strcspn

string.h

Scans a string for the initial segment not containing any subset of a given
set of characters.

size_t strcspn(canst char *sl, canst char *s2);

The strcspn functions search s2 until anyone of the characters contained in
s1 is found. The number of characters which were read in s2 is the return
value. The string termination character is not counted. Neither string is
altered during the search.

strcspn returns the length of the initial segment of string 51 that consists
entirely of characters not from string s2.

strchr, strrchr

time.h

Converts current date to string.

char *_strdate(char *buf);

_strdate converts the current date to a string, storing the string in the buffer
buj. The buffer must be at least 9 characters long.

The string has the form MM/DD/YY where MM, DD, and YY are all two-digit
numbers representing the month, day, and year. The string is terminated by
a null character.

_strdate returns buf, the address of the date string.

asctime, ctime, localtime, strftime, _strtime, time

Copies a string into a newly created location.

char *strdup(canst char *s);

string.h

Chapter 2, Run-time functions 199

I

strdup

Remarks

Return value

See also

strerror

Function

Syntax

Remarks

Return value

See also

strerror

Function

Syntax

200

strdup makes a duplicate of string s, obtaining space with a call to malloe.
The allocated space is (strlen(s) + 1) bytes long. The user is responsible for
freeing the space allocated by strdup when it is no longer needed.

strdup returns a pointer to the storage location containing the duplicated
string, or returns null if space could not be allocated.

free

string.h

Builds a customized error message.

char *_strerror(const char *s);

_strerror lets you generate customized error messages; it returns a pointer
to a null-terminated string containing an error message .

• If s is null, the return value points to the most recent error message .

• If s is not null, the return value contains s (your customized error
message), a colon, a space, the most-recently generated system error
message, and a new line. s should be 94 characters or less.

_strerror returns a pointer to a constructed error string. The error message
string is constructed in a static buffer that is overwritten with each call to
_strerror.

perror, strerror

string.h

Returns a pointer to an error message string.

char *strerror(int errnum);

Borland C++ for OS/2 Library Reference

Remarks

Return value

See also

strftime

Function

Syntax

Remarks

strerror takes an int parameter errnum, an error number, and returns a
pointer to an error message string associated with errnUnl.

strerror

strerror returns a pointer to a constructed error string. The error message
string is constructed in a static buffer that is overwritten with each call to
strerror.

perror, _strerror

time.h

Formats time for output.

size_t strftime(char *s, size_t maxsize, canst char *fmt, canst struct tm *t)i

strftime formats the time in the argument t into the array pointed to by the
argument s according to the fmt specifications. The format string consists of
zero or more directives and ordinary characters. Like printf, a directive
consists of the % character followed by a character that determines the
substitution that is to take place. All ordinary characters are copied
unchanged. No more than maxsize characters are placed in s.

The time is formatted according to the current locale's LC_TIME category.

The following table describes the ANSI-defined format specifiers.

Format specifier

%%
%a
%A
%b
%8
%c
%d
%H
%1
%j
%m
%M
%p
%8

Substitutes

Character %
Abbreviated weekday name
Full weekday name
Abbreviated month name
Full month name
Date and time
Two-digit day of the month (01 to 31)
Two-digit hour (00 to 23)
Two-digit hour (01 to 12)
Three-digit day of the year (001 to 366)
Two-digit month as a decimal number (1 -12)
Two-digit minute (00 to 59)
AM or PM
Two-digit second (00 to 59)

Chapter 2, Run-time functions 201

•

strftime

You must define
USELOCALES

In order to use these
descriptors.

You must define
USELOCALES

In order to use these
descriptors.

202

%U

%w
%W

%x
%X
%y
%y
%Z

Two-digit week number where Sunday is the first day of the week (00
to 52)
Weekday where 0 is Sunday (0 to 6)
Two-digit week number where Monday is the first day of the week (00
to 52)
Date
Time
Two-digit year without century (00 to 99)
Year with century
Time zone name, or no characters if no time zone

In addition to the ANSI C-defined format descriptors, the following
POSIX-defined descriptors are also supported. Each format specifier begins
with the percent character (%).

Format specifier

%C
%D
%e

%h
%n
%r
%t
%T
%u

Substitutes

Century as a decimal number (00-99). For example, 1992 => 19
Date in the format mm/dd/yy
Day of the month as a decimal number in a two-digit field with leading
space (1-31)
A synonym for %b
Newline character
12-hour time (01-12) format with am/pm string i.e. U%I:%M:%S %p"
Tab character
24-hour time (00-23) in the format uHH:MM:SS"
Weekday as a decimal number (1 Monday - 7 Sunday)

In addition to these descriptors, strftime also supports the descriptor modi
fiers as defined by POSIX on the following descriptors:

Descriptor modifier Substitutes

%Od
%Oe
%OH
%01
%Om
%OM
%OS
%Ou
%OU
%Ow
%OW
%Oy

Day of the month using alternate numeric symbols
Day of the month using alternate numeric symbols
Hour (24 hour) using alternate numeric symbols
Hour (12 hour) using alternate numeric symbols
Month using alternate numeric symbols
Minutes using alternate numeric symbols
Seconds using alternate numeric symbols
Weekday as a number using alternate numeric symbols
Week number of the year using alternate numeric symbols
Weekday as number using alternate numeric symbols
Week number of the year using alternate numeric symbols
Year (offset from %C) using alternate numeric symbols

%0 modifier - when this modifier is used before any of the above sup
ported numeric format descriptors, for example %Od, the numeric value is

Borland C++ for OS/2 Library Reference

Return value

See also

stricmp

Function

Syntax

Remarks

Return value

See also

strlen

Function

Syntax

stritime

converted to the corresponding ordinal string, if it exists. If an ordinal
string does not exist then the basic format descriptor is used unmodified.

For example, on 8/20/88 a %d format descriptor would produce 20 but
%Od on the same day would produce 20th.

strftime returns the number of characters placed into s. If the number of
characters required is greater than maxsize, strftime returns O.

localtime, mktime, time

string.h

Compares one string to another, without case sensitivity.

int stricmp(canst char *sl, canst char *s2);

stricmp performs an unsigned comparison of sl to s2, starting with the first
character in each string and continuing with subsequent characters until
the corresponding characters differ or until the end of the strings is
reached. The comparison is not case sensitive.

It returns a value « 0, 0, or > 0) based on the result of comparing sl (or part
of it) to s2 (or part of it).

The routines stricmp and strc.mpi are the same; strcmpi is implemented
through a macro in string.h that translates calls from strcmpi to stricmp.
Therefore, in order to use strcmpi, you must include the header file string.h
for the macro to be available.

stricmp returns an int value that is

II < 0 if sl is less than s2

• == 0 if sl is the same as s2

• > 0 if sl is greater than s2

strcmp, strcmpi, strcoll, strncmp, strncmpi, strnicmp

Calculates the length of a string.

size_t strlen(canst char *s);

string.h

Chapter 2, Run-time functions 203

•

strlen

Remarks

Return value

strlwr

Function

Syntax

Remarks

Return value

See also

strncat

Function

Syntax

Remarks

Return value

204

strlen calculates the length of s.

strlen returns the number of characters in s, not counting the null
terminating character.

Converts uppercase letters in a string to lowercase.

char *strlwr(char *s) i

string.h

strlwr converts uppercase letters in string s to lowercase according to the
current locale's LC_CTYPE category. For the C locale, the conversion is
from uppercase letters (A to Z) to lowercase letters (a to z). No other charac
ters are changed.

strlwr returns a pointer to the string s.

strupr

Appends a portion of one string to another.

string.h

char *strncat(char *dest, canst char *src, size_t maxlen)i

strncat copies at most maxlen characters of src to the end of dest and then
appends a null character. The maximum length of the resulting string is
strlen(dest) + maxlen.

strncat returns dest.

Borland C++ for OS/2 Library Reference

strncmp

Function

Syntax

Remarks

Return value

See also

strncmpi

Function

Syntax

Remarks

strncmp

string.h

Compares a portion of one string to a portion of another.

int strncmp(canst char *sl, canst char *s2, size_t maxlen);

strncmp makes the same unsigned comparison as strcmp, but looks at no
more than maxlen characters. It starts with the first character in each string
and continues with subsequent characters until the corresponding charac
ters differ or until it has examined maxlen characters.

strncmp returns an int value based on the result of comparing sl (or part of
it) to s2 (or part of it):

• < 0 if sl is less than s2

.. == 0 if sl is the same as s2

• > 0 if sl is greater than s2

strcmp, strcoll, stricmp, strncmpi, strnicmp

string.h

Compares a portion of one string to a portion of another, without case
sensitivity.

int strncmpi(canst char *sl, canst char *s2, size_t n);

strncmpi performs a signed comparison of sl to s2, for a maximum length of
n bytes, starting with the first character in each string and continuing with
subsequent characters until the corresponding characters differ or until n
characters have been examined. The comparison is not case sensitive.
(strncmpi is the same as strnicmp-implemented as a macro). It returns a
value « 0, 0, or > 0) based on the result of comparing sl (or part of it) to s2
(or part of it).

The routines strnicmp and strncmpi are the same; strncmpi is implemented
through a macro in string.h that translates calls from strncmpi to strnicmp.

Chapter 2, Run-time functions 205

strncmpi

Return value

strncpy

Function

Syntax

Remarks

Return value

strnicmp

Function

Syntax

Remarks

Return value

206

Therefore, in order to use strncmpi, you must include the header file
string.h for the macro to be available. This macro is provided for compati
bility with other C compilers.

strncmpi returns an int value that is

• < 0 if sl is less than s2
• == 0 if sl is the same as s2
• > 0 if sl is greater than s2

string.h

Copies a given number of bytes from one string into another, truncating or
padding as necessary.

char *strncpy(char *dest, const char *src, size_t rnaxlen)i

strncpy copies up to maxlen characters from src into dest, truncating or null
padding dest. The target string, dest, might not be null-terminated if the
length of src is maxlen or more.

strncpy returns dest.

string.h

Compares a portion of one string to a portion of another, without case
sensi ti vi ty.

int strnicrnp(const char *sl, const char *s2, size_t rnaxlen)i

strnicmp performs a signed comparison of sl to s2, for a maximum length of
maxlen bytes, starting with the first character in each string and continuing
with subsequent characters until the corresponding characters differ or
until the end of the strings is reached. The comparison is not case sensitive.

It returns a value « 0, 0, or > 0) based on the result of comparing sl (or part
of it) to s2 (or part of it).

strnicmp returns an int value that is

Borland C++ for OS/2 Library Reference

strnset

Function

Syntax

Remarks

Return value

strpbrk

Function

Syntax

Remarks

Return value

strrchr

Function

Syntax

strnicmp

• < 0 if sl is less than s2

• == 0 if sl is the same as s2

• > 0 if sl is greater than s2

string.h

Sets a specified number of characters in a string to a given character.

char *strnset (char *s, int ch, size_t n);

strnset copies the character ch into the first n bytes of the string s. If
n > strlen(s), then strlen(s) replaces n. It stops when n characters have been
set, or when a null character is found.

strnset returns s.

string.h

Scans a string for the first occurrence of any character from a given set.

char *strpbrk(const char *s1, const char *s2);

const char *strpbrk(const char *s1, const char *s2);
char *strpbrk(char *s1, const char *s2);

/* Conly */

// c++ only
// c++ only

strpbrk scans a string, sl, for the first occurrence of any character appearing
in s2.

strpbrk returns a pointer to the first occurrence of any of the characters in s2.
If none of the s2 characters occur in sl, strpbrk returns nulL

·string.h

Scans a string for the last occurrence of a given character.

char *strrchr(const char *s, int c); /* Conly */

Chapter 2, Run-time functions 207

strrchr

Remarks

Return value

See also

strrev

Function

Syntax

Remarks

Return value

strset

Function

Syntax

Remarks

Return value

See also

208

const char *strrchr(const char *s, int c);
char *strrchr(char *s, int c);

II c++ only
II c++ only

strrchr scans a string in the reverse direction, looking for a specific
character. strrchr finds the last occurrence of the character c in the string s.
The null-terminator is considered to be part of the string.

strrchr returns a pointer to the last occurrence of the character c. If c does
not occur in s, strrchr returns null.

strcspn, strchr

string.h

Reverses a string.

char *strrev(char *s);

strrev changes all characters in a string to reverse order, except the
terminating null character. (For example, it would change string\O to
gnirts\O.)

strrev returns a pointer to the reversed string.

string.h

Sets all characters in a string to a given character.

char *strset(char *s, int ch);

strset sets all characters in the string s to the character ch. It quits when the
terminating null character is found.

strset returns s.

setmem

Borland C++ for OS/2 Library Reference

strspn

Function

Syntax

Remarks

Return value

strstr

Function

Syntax

Remarks

Return value

strtime

Function

Syntax

Remarks

Scans a string for the first segment that is a subset of a given set of
characters.

size_t strspn(const char *sl, const char *s2);

strspn finds the initial segment of string sl that consists entirely of
characters from string 52.

strspn

string.h

5tr5pn returns the length of the initial segment of sl that consists entirely of
characters from 52.

Scans a string for the occurrence of a given substring.

char *strstr(const char *sl, const char *s2);

const char *strstr(const char *sl, const char *s2);
char *strstr(char *sl, const char *s2);

5tr5tr scans sl for the first occurrence of the substring 52.

string.h

/* Conly */

/ / Ctt only
/ / Ctt only

5tr5tr returns a pointer to the element in 51, where 52 begins (points to 52 in
51). If s2 does not occur in sl, str5tr returns null.

time.h.

Converts current time to string.

char *_strtime(char *buf);

_strtime converts the current time to a string, storing the string in the buffer
buf. The buffer must be at least 9 characters long.

Chapter 2, Run-time functions 209

_strtime

The string has the following form:

HH:MM:SS

where HH, MM, and 55 are all two-digit numbers representing the hour,
minute, and second, respectively. The string is terminated by a null
character.

Return value _strtime returns buf, the address of the time string.

See also asctime, ctime, localtime, strftime, _strdate, time

strtod, _strtold stdlib.h

Function Convert a string to a double or long double value.

Syntax double strtod(const char *s, char **endptr);

Remarks

210

strtod

_strtold

long double _strtold(const char *s, char **endptr);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

strtod converts a character string, s, to a double value. s is a sequence of
characters that can be interpreted as a double value; the characters must
rna tch this generic format:

[ws] [sn] [ddd] [.] [ddd] [frnt[sn]ddd]

where

[ws] = optional whitespace
[sn] = optional sign (+ or-)
[ddd] = optional digits
[fint] = optional e or E
[.] = optional decimal point

strtod also recognizes +INF and -INF for plus and minus infinity, and
+NAN and -NAN for Not-a-Number.

For example, here are some character strings that strtod can convert to
double:

+ 1231.1981 e-1
502.85E2
+ 2010.952

strtod stops reading the stringat the first character that cannot be
interpreted as an appropriate part of a double value.

Borland C++ for OS/2 Library Reference

Return value

See also

strtak

Function

Syntax

Remarks

Return value

strtal

Function

Syntax

strtod, _strtold

If endptr is not null, strtod sets *endptr to point to the character that stopped
the scan (*endptr = &stopper). endptr is useful for error detection.

_strtold is the long double version; it converts a string to a long double
value.

These functions return the value of s as a double (strtod) or a long double
CstrtoId). In case of overflow, they return plus or minus HUGE_VAL
(strtod) or _LHUGE_ VAL Cstrtold).

a to!

string.h

Searches one string for tokens, which are separated by delimiters defined in
a second string.

char *strtak(char *sl, canst char *s2);

strtok considers the string s1 to consist of a sequence of zero or more text
tokens, separated by spans of one or more characters from the separator
string s2.

The first call to strtok returns a pointer to the first character of the first token
in s1 and writes a null character into s1 immediately following the returned
token. Subsequent calls with null for the first argument will work through
the string s1 in this way, until no tokens remain.

The separator string, s2, can be different from call to call.

strtok returns a pointer to the token found in s1. A NULL pointer is
returned when there are no more tokens.

Converts a string to a long value.

lang strtal(canst char *s, char **endptr, int radix);

stdlib.h

Chapter 2, Run-time functions 211

•

strtol

Remarks

Return value

See also

212

strtol converts a character string, s, to a long integer value. s is a sequence of
characters that can be interpreted as a long value; the characters must
rna tch this generic format:

[ws] [sn] [0] [x] [ddd]

where

[ws] = optional whitespace
[sn] = optional sign (+ or -)
[0] = optional zero (0)
[x] = optional x or X
[ddd] = optional digits

strtol stops reading the string at the first character it doesn't recognize.

If radix is between 2 and 36, the long integer is expressed in base radix. If
radix is 0, the first few characters of s determine the base of the value being
converted.

First Second
character character String interpreted as

0 1-7 Octal
0 xor X Hexadecimal

1-9 Decimal

If radix is 1, it is considered to be an invalid value. If radix is less than 0 or
greater than 36, it is considered to be an invalid value.

Any invalid value for radix causes the result to be 0 and sets the next
character pointer *endptr to the starting string pointer.

If the value in s is meant to be interpreted as octal, any character other than
o to 7 will be unrecognized.

If the value in s is meant to be interpreted as decimal, any character other
than 0 to 9 will be unrecognized.

If the value in s is meant to be interpreted as a number in any other base,
then only the numerals and letters used to represent numbers in that base
will be recognized. (For example, if radix equals 5, only 0 to 4 will be
recognized; if radix equals 20, only 0 to 9 and A to J will be recognized.)

If endptr is not null, strtol sets *endptr to point to the character that stopped
the scan (*endptr = &stopper).

strtol returns the value of the converted string, or 0 on error.

atoi, atol, strtoul

Borland eft for OS/2 Library Reference

strtold

strtoul

Function

Syntax

Remarks

Return value

See also

strupr

Function

Syntax

Remarks

Return value

See also

strxfrm

Function

strtoul

See strtod.

stdlib.h

Converts a string to an unsigned long in the given radix.

unsigned long strtoul(const char *s, char **endptr, int radix);

strtoul operates the same as strtol, except that it converts a string str to an
unsigned long value (where strtol converts to a long). Refer to the entry for
strtol for more information.

strtoul returns the converted value, an unsigned long, or 0 on error.

atol, strtol

string.h

Converts lowercase letters in a string to uppercase.

char *strupr(char *s);

strupr converts lowercase letters in string s to uppercase according to the
current locale's LC_CTYPE category. For the default C locale, the
conversion is from lowercase letters (a to z) to uppercase letters (A to Z). No
other characters are changed.

strupr returns s.

strlwr

string.h

Transforms a portion of a string to a specified collation.

Chapter 2, Run-time functions 213

I

strxfrm

Syntax

Remarks

Return value

See also

214

size_t strxfrm(char *target, const char *source, size_t n)i

strxfrm transforms the string pointed to by source into the string target for
no more than n characters. The transformation is such that if the strcmp
function is applied to the resulting strings, its return corresponds with the
return values of the strcoll function.

No more than n characters, including the terminating null character, are
copied to target.

strxfrm transforms a character string into a special string according to the
current locale's LC_COLLATE category. The special string that is built can
be compared with another of the same type, byte for byte, to achieve a
locale-correct collation result. These special strings, which can be thought
of as keys or tokenized strings, are not compatible across the different
locales.

The tokens in the tokenized strings are built from the collation weights
used by strcoll from the active locale's collation tables.

Processing stops only after all levels have been processed for the character
string or the length of the tokenized string is equal to the maxlen
parameter.

All redundant tokens are removed from each level's set of tokens.

The tokenized string buffer must be large enough to contain the resulting
tokenized string. The length of this buffer depends on the size of the
character string, the number of collation levels, the rules for each level and
whether there are any special characters in the character string. Certain
special characters can cause extra character processing of the string
resulting in more space requirements. For example, the French character
II a/' will take double the space for itself because in some locales, it expands
to two collation weights at each level. Substrings that have substitutions
will also cause extra space requirements.

There is no safe formula to determine the required string buffer size, but at
least (levels * string length) are required.

Number of characters copied not including the terminating null character.
If the value returned is greater than or equal to n, the content of target is
indeterminate.

strcmp, strcoll, strncpy

Borland C++ for OS/2 Library Reference

swab

Function

Syntax

Remarks

Return value

system

Function

Syntax

Remarks

Return value

swab

stdlib.h

Swaps bytes.

void swab(char *frorn, char *to, int nbytes);

swab copies nbytes bytes from the from string to the to string. Adjacent even
and odd-byte positions are swapped. This is useful for moving data from
one machine to another machine with a different byte order. nbytes should
be even.

None.

stdlib.h

Issue an operating system command. ,

int systern(const char *cornrnand);

system invokes the operating system command processor to execute an op
erating system command, batch file, or other program named by the string
command, from inside an executing C program.

To be located and executed, the program must be in the current directory or
in one of the directories listed in the PATH string in the environment.

The COMSPEC environment variable is used to find the command
processor program file, so that file need not be in the current directory.

If command is a NULL pointer, system returns nonzero if a command proces
sor is available.

If command is not a NULL pointer, system returns 0 if the command
processor was successfully started.

If an error occurred, a -1 is returned and errno is set to one of the following:

ENOENT Path or file function not found
ENOEXEC Exec format error
ENOMEM Not enough memory

Chapter 2, Run-time functions 215

•

system

See also

tan, tanl

Function

Syntax

Remarks

Return value

See also

tanh, tanhl

Function

Syntax

Remarks

Return value

216

tan

tanl

tanh

tanhl

exec ... , Jpreset, searchpath, spawn ...

math.h

Calculates the tangent.

double tan(double x);
long double tanl(long double x);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

tan calculates the tangent. Angles are specified in radians.

tanl is the long double version; it takes a long double argument and returns
a long double result. Error handling for these routines can be modified
through the functions _matherr and _matherr!.

This function can be used with bcd and complex types.

tan and tanl return the tangent of x, sin(x)/ cos(x).

acos, as in, atan, atan2, bcd, complex, cos, sin

Calculates the hyperbolic tangent.

double tanh(double x);
long double tanhl(long double x);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

tanh computes the hyperbolic tangent, sinh(x) / cosh(x).

math.h

tanhl is the long double version; it takes a long double argument and
returns a long double result. Error handling for these functions can be
modified through the functions _matherr and _matherrl. .

This function can be used with bcd and complex types.

tanh and tanhl return the hyperbolic tangent of x.

Borland C++ for OS/2 Library Reference

See also

tell

Function

Syntax

Remarks

Return value

See also

tempnam

Function

Syntax

Remarks

tanh, tanhl

bcd, complex, cos, cosh, sin, sinh, tan

io.h

Gets the current position of a file pointer.

long tell(int handle) i

tell gets the current position of the file pointer associated with handle and
expresses it as the number of bytes from the beginning of the file.

tell returns the current file pointer position. A return of -1 (long) indicates
an error, and the global variable errno is set to

EBADF Bad file number

fgetpos, fseek, ftell, lseek

Creates a unique file name in specified directory.

char *tempnam(char *dir, char *prefix)

II DOS UNIX Win 16 I Win 32 ANSI C I ANSI C++ I
II • • • I • I I

stdio.h

OS/2 II
• II

The tempnam function creates a unique file name in arbitrary directories.
The unique file is not actually created; tempnam only verifies that it does not
currently exist. It attempts to use the following directories, in the order
shown, when creating the file name:

• The directory specified by the TMP environment variable.

• The dir argument to tempnam.
• The P _tmpdir definition in stdio.h. If you edit stdio.h and change this

definition, tempnam will not use the new definition.

• The current working directory.

If any of these directories is NULL, or undefined, or does not exist, it is
skipped.

Chapter 2, Run-time functions 217

tempnam

The prefix argument specifies the first part of the file name; it cannot be
longer than 5 characters, and cannot contain a period (.). A unique file
name is created by concatenating the directory name, the prefix, and 6
unique characters. Space for the resulting file name is allocated with malloe;
when this file name is no longer needed, the caller should call free to free it.

-. If you do create a temporary file using the name constructed by tempnam, it
is your responsibility to delete the file name (for example, with a call to
remove). It is not deleted automatically. (tmpfile does delete the file name.)

Return value If tempnam is successful, it returns a pointer to the unique temporary file
name, which the caller can pass to free when it is no longer needed.
Otherwise, if tempnam cannot create a unique file name, it returns NULL.

See also mktemp, tmpfile, tmpnam

textattr conio.h

Function Sets text attributes.

Syntax void textattr (int newattr) i

Remarks textattr lets you set both the foreground and background colors in a single
call. (Normally, you set the attributes with texteolor and textbaekground.)

218

This function does not affect any characters currently onscreen; it affects
only those characters displayed by functions (such as eprintf) performing
text mode, direct video output after this function is called.

The color information is encoded in the newattr parameter as follows:

7 6 5 4 I 3 2 1 0

IBlblblbl fl fl fl fl
I

In this 8-bit newattr parameter,

• fff! is the 4-bit foreground color (0 to 15) .

• bbb is the 3-bit background color (0 to 7).

Borland C++ forOSI2 Library Reference

textattr

• B is the blink-enable bit.

If the blink-enable bit is on, the character blinks. This can be accomplished
by adding the constant BLINK to the attribute.

If you use the symbolic color constants defined in conio.h for creating text
attributes with textattr, note the following limitations on the color you
select for the background:

m You can select only one of the first eight colors for the background.

a You must shift the selected background color left by 4 bits to move it into
the correct bit positions.

These symbolic constants are listed in the following table:

Symbolic
constant

BLACK
BLUE
GREEN
CYAN
RED
MAGENTA
BROWN
LlGHTGRAY
DARKGRAY
LlGHTBLUE
LlGHTGREEN
LlGHTCYAN
LlGHTRED
LlGHTMAGENTA
YELLOW
WHITE
BLINK

Numeric
value

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

128

Foreground or
background?

Both
Both
Both
Both
Both
Both
Both
Both
Foreground only
Foreground only
Foreground only
Foreground only
Foreground only
Foreground only
Foreground only
Foreground only
Foreground only

_ This function should not be used in PM applications.

Return value None.

See also gettextinfo, highvideo, lowvideo, normvideo, textbackground, textcolor

textbackground conio.h

Function Selects new text background color.

Syntax void textbackground(int newcolor};

Chapter 2, Run-time functions 219

I

textbackground

Remarks textbackground selects the background color. This function works for
functions that produce output in text mode directly to the screen. newcolor
selects the new background color. You can set newcolor to an integer from 0
to 7, or to one of the symbolic constants defined in conio.h. If you use
symbolic constants, you must include conio.h.

Once you have called textbackground, all subsequent functions using direct
video output (such as cprintj) will use newcolor. textbackground does not
affect any characters currently onscreen.

The following table lists the symbolic constants and the numeric values of
the allowable colors:

Symbolic constant

BLACK
BLUE
GREEN
CYAN
RED
MAGENTA
BROWN
LlGHTGRAY

Numeric value

o
1
2
3
4
5
6
7

.. This function should not be us~d in PM applications.

Return value None.

See also gettextinfo, textattr, textcolor

textcolor conio.h

Function Selects new character color in text mode.

Syntax void textcolor(int newcolor)i

II DOS UNIX I Win 16 Win 32 I ANSI C ANSI C++ OS/2 II
II • I • I • JI

Remarks textcolor selects the foreground character color. This function works for the
console output functions. newcolor selects the new foreground color: You
can set newcolor to an integer as given in the table below, or to one of the

220 Borland C++ for OS/2 Library Reference

textcolor

symbolic constants defined in conio.h. If you use symbolic constants, you
must include conio.h.

Once you have called textcolor, all subsequent functions using direct video
output (such as cprintj) will use newcolor. textcolor does not affect any
characters currently onscreen.

The following table lists the allowable colors (as symbolic constants) and
their numeric values:

Symbolic constant

BLACK
BLUE
GREEN
CYAN
RED
MAGENTA
BROWN
LlGHTGRAY
DARKGRAY
LlGHTBLUE
LlGHTGREEN
LlGHTCYAN
LlGHTRED
LlGHTMAGENTA
YELLOW
WHITE
BLINK

Numeric value

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

128

You can make the characters blink by adding 128 to the foreground color.
The predefined constant BLINK exists for this purpose; for example,

textcolor(CYAN + BLINK);

.. Some monitors do not recognize the intensity signal used to create the eight
"light" colors (8-15). On such monitors, the light colors are displayed as
their "dark" equivalents (0-7). Also, systems that do not display in color I
can treat these numbers as shades of one color, special patterns, or special
attributes (such as underlined, bold, italics, and so on). Exactly what you'll
see on such systems depends on your hardware.

.. This function should not be used in PM applications.

Return value None.

See also gettextinfo, highvideo, lowvideo, normvideo, textattr, textbackground

Chapter 2, Run-time functions 221

textmode

textmode

Function

Syntax

Remarks

conio.h

Puts screen in text mode.

void textrnode(int newrnode) i

textmode selects a specific text mode.

You can give the text mode (the argument newmode) by using a symbolic
constant from the enumeration type text_modes (defined in conio.h).

The most commonly used text_modes type constants and the modes they
specify are given in the following table. Some additional values are defined
in conio.h.

Symbolic
constant

LASTMODE
BW40
C40
BW80
C80
MONO
C4350

Text mode

Previous text mode
Black and white, 40 columns
Color, 40 columns
Black and white, 80 columns
Color, 80 columns
Monochrome, 80 columns
EGA 43-line and VGA 50-line modes

When textmode is called, the current window is reset to the entire screen,
and the current text attributes are reset to normal, corresponding to a call to
normvideo.

Specifying LASTMODE to textmode causes the most recently selected text
mode to be reselected.

textmode should be used only when the screen or window is in text mode
(presumably to change to a different text mode). This is the only context in
which textmode should be used.

.. This function should not be used in PM applications.

Return value None.

See also gettextinfo, window

222 Borland C++ for OS/2 Library Reference

time

Function

Syntax

Remarks

Return value

See also

tmpfile

Function

Syntax

Remarks

Return value

See also

tmpnam

Function

Syntax

Gets time of day.
/' -t,tptdt' c; .. 1""3

tirne_t tirne(tirne_t *tirner)i

time

time.h

time gives the current time, in seconds, elapsed since 00:00:00 GMT, January
I, 1970, and stores that value in the location pointed to by timer, provided
that timer is not a NULL pointer.

time returns the elapsed time in seconds, as described.

asctime, ctime, difftime, jtime, gettime, gmtime, localtime, settime, stime, tzset

stdio.h

Opens a "scratch" file in binary mode.

FILE *trnpfile(void) i

tmpfile creates a temporary binary file and opens it for update (w + b). The
file is automatically removed when it's closed or when your program
terminates.

tmpfile returns a pointer to the stream of the temporary file created. If the
file can't be created, tmpfile returns NULL.

jopen, tmpnam

stdio.h

Creates a unique file name.

char *trnpnarn(char *s) i

Chapter 2, Run-time functions 223

I

tmpnam

Remarks tmpnam creates a unique file name, which can safely be used as the name of
a temporary file. tmpnam generates a different string each time you call it,
up to TMP _MAX times. TMP _MAX is defined in stdio.h as 65,535.

The parameter to tmpnam, s, is either null or a pointer to an array of at least
L_tmpnam characters. L_tmpnam is defined in stdio.h. If s is NULL, tmpnam
leaves the generated temporary file name in an internal static object and
returns a pointer to that object. If s is not NULL, tmpnam places its result in
the pointed-to array, which must be at least L_tmpnam characters long, and
returns s.

.. If you do create such a temporary file with tmpnam, it is your responsibility
to delete the file name (for example, with a call to remove). It is not deleted
automatically. (tmpfile does delete the file name.)

Return value If s is null, tmpnam returns a pointer to an internal static object. Otherwise,
tmpnam returns s.

See also tmpfile

toascii ctype.h

Function Translates characters to ASCII format.

Syntax int toascii (int c);

Remarks toascii is a macro that converts the integer c to ASCII by clearing all but the
lower 7 bits; this gives a value in the range a to 127.

Return value toascii returns the converted value of c.

tolower ctype.h

Function Translates characters to lowercase.

Syntax int _tolower (int ch);

224 Borland C++ for OS/2 Library Reference

Remarks

Return value

tolower

Function

Syntax

Remarks

Return value

_toupper

Function

Syntax

Remarks

Return value

Jolower

_to lower is a macro that does the same conversion as to lower, except that it
should be used only when ch is known to be uppercase (A-Z).

To use _tolower, you must include ctype.h.

_tolower returns the converted value of ch if it is uppercase; otherwise, the
result is undefined.

ctype.h

Translates characters to lowercase.

int tolower(int Ch)i

tolower is a function that converts an integer ch (in the range EOF to 255) to
its lowercase value. The function is affected by the current locale's
LC_CTYPE category. For the default C locale, ch is converted to a lowercase
letter (a to z, if it was uppercase, A to Z). All others are left unchanged.

tolower returns the converted value of ch if it is uppercase; it returns all
others unchanged.

ctype.h

Translates characters to uppercase.

int _toupper(int Ch)i

_toupper is a macro that does the same conversion as to upper, except that it
should be used only when ch is known to be lowercase letter (a to z).

To use _to upper, you must include ctype.h.

_toupper returns the converted value of ch if it is lowercase; otherwise, the
result is undefined.

Chapter 2, Run-time functions 225

toupper

toupper

Function

Syntax

Remarks

Return value

ctype.h

Translates characters to uppercase.

int toupper(int ch);

toupper is a function that converts an integer ch (in the range EOF to 255) to
its uppercase value. The function is affected by the current locale's
LC_CTYPE category. For the default C locale, ch is converted to an upper
case letter (A to Z; if it was lowercase, a to z). All others are left unchanged.

toupper returns the converted value of ch if it is lowercase; it returns all
others unchanged.

_truncate, _ftruncate sys\types.h, io.h

Function

Syntax

Remarks

Return value

See also

226

Changes the file size.

int _ftruncate(int handle, off_t size);
int _truncate(const char *path, off_t size);

DOS UNIX

_truncate changes the size of the file referred to by path. Jtruncate changes
the size of the file referred to by handle, which must be opened for writing.
These functions can truncate or extend the file, depending on the value of
size compared to the file's original size. If the file is being extended, these
functions will append null characters (\0). If the file is being truncated, all
data beyond the new end-of-file is lost.

These functions return 0 on success. On error, they return -1 and set errno
to one of the following values:

EACCES
EADF
EINVAL
ENOENT

chsize

Permission denied
Bad file handle (Jtruncate only)
size is negative
File does not exist Ctruncate only)

Borland C++ for OS/2 Library Reference

tzset

Function

Syntax

Remarks

Return value

tzset

time.h

Sets value of global variables _daylight, _timezone, and _tzname.

void tzset(void)

tzset is available on XENIX systems.

tzset sets the _daylight, _timezone, and _tzname global variables based on the
environment variable TZ. The library functions ftime and localtime use these
global variables to adjust Greenwich Mean Time (GMT) to the local time
zone. The format of the TZ environment string is:

TZ = zzz[+/-]d[d] [Ill]

where zzz is a three-character string representing the name of the current
time zone. All three characters are required. For example, the string "PST"
could be used to represent pacific standard time.

[+/-]d[d] is a required field containing an optionally signed number with 1
or more digits. This number is the local time zone's difference from GMT in
hours. Positive numbers adjust westward from GMT. Negative numbers
adjust eastward from GMT. For example, the number 5 = EST, +8 = PST,
and -1 = continental Europe. This number is used in the calculation of the
global variable _timezone. _timezone is the difference in seconds between
GMT and the local time zone. -

III is an optional three-character field that represents the local time zone
daylight saving time. For example, the string "PDT" could be used to
represent pacific daylight saving time. If this field is present, it causes the
global variable _daylight to be set nonzero. If this field is absent, _daylight is
set to zero.

If the TZ environment string isn't present or isn't in the preceding form, a m
default TZ = "EST5EDT" is presumed for the purposes of assigning values •
to the global variables _daylight, _timezone, and _tzname.

The global variable _tzname[O] points to a three-character string with the
value of the time-zone name from the TZ environment string. _tzname[l]
points to a three-character string with the value of the daylight saving
time-zone name from the TZ environment string. If no daylight saving
name is present, _tzname[l] points to a null string.

None.

Chapter 2, Run-time functions 227

tzset

See also asctime, ctime, jtime, gmtime, localtime, stime, time

ultoa stdlib.h

Function Converts an unsigned long to a string.

Syntax char *ultoa(unsigned long value, char *string, int radix);

Remarks ultoa converts value to a null-terminated string and stores the result in
string. value is an unsigned long.

radix specifies the base to be used in converting value; it must be between 2
and 36, inclusive. ultoa performs no overflow checking, and if value is
negative and radix equals 10, it does not set the minus sign.

.. The space allocated for string must be large enough to hold the returned
string, including the terminating null character (\0)'. ultoa can return up to
33 bytes.

Return value ultoa returns string.

See also itoa, ltoa

umask io.h

Function Sets file read/write permission mask.

Syntax unsigned umask(unsigned mode);

Remarks The umask function sets the access permission mask used by open and creat.

228

Bits that are set in mode will be cleared in the access permission of files
subsequently created by open and creat.

The mode can have one of the following values, defined in sys \stat.h:

Borland C++ for OS/2 Library Reference

Return value

See also

ungetc

Function

Syntax

Remarks

Return value

See also

ungetch

Function

Syntax

Remarks

Value of mode

SJWRITE
SJREAD
SJREADISJWRITE

Access permission

Permission to write
Permission to read
Permission to read and write

The previous value of the mask. There is no error return.

creat, open

Pushes a character back into input stream.

int ungetc(int c, FILE *stream);

umask

stdio.h

ungetc pushes the character c back onto the named input stream, which
must be open for reading. This character will be returned on the next call to
getc or fread for that stream. One character can be pushed back in all
situations. A second call to ungetc without a call to getc will force the
previous character to be forgotten. A call to !flush, fseek, fsetpos, or rewind
erases all memory of any pushed-back characters.

On success, ungetc returns the character pushed back; it returns EOF if the
operation fails.

fgetc, getc, getchar

conio.h

Pushes a character back to the keyboard buffer.

int ungetch(int ch);

OS/2

ungetch pushes the character ch back to the console, causing ch to be the
next character read. The ungetch function fails if it is called more than once
before the next read.

Chapter 2, Run-time functions 229

II

ungetch

Return value ungetch returns the character ch if it is successful. A return value of EOF
indica tes an error.

.. This function should not be used in PM applications.

See also getch, getche

unixtodos dos.h

Function Converts date and time from UNIX to DOS format.

Syntax void unixtodos(long time, struct date *d, struct time *t) i

Remarks unixtodos converts the UNIX-format time given in time to DOS format and
fills in the date and time structures pointed to by d and t.

Return value

See also

unlink

Function

Syntax

Remarks

time must not represent a calendar time earlier than Jan. I, 198000:00:00.

None.

dostounix

Deletes a file.

int unlink(const char *filename)i

io.h

unlink deletes a file specified by filename. Any drive, path, and file name can
be used as a filename. Wildcards are not allowed.

Read-only files cannot be deleted by this call. To remove read-only files,
first use chmod or _rtCchmod to change the read-only attribute.

This function will fail (EACCES) if the file is currently open in any process.

.. If your file is open, be sure to close it before unlinking it.

Return value On successful completion, unlink returns o. On error, it returns -1 and the
global variable errno is set to one of the following values:

230 Borland C++ for OS/2 Library Reference

See also

unlock

Function

Syntax

Remarks

Return value

See also

utime

Function

Syntax

Remarks

EACCES
ENOENT

chmod, remove

Permission denied
Path or file name not found

Releases file-sharing locks.

int unlock(int handle, long offset, long length) i

unlink

io.h

unlock provides an interface to the operating system file-sharing
mechanism. unlock removes a lock previously placed with a call to lock. To
avoid error, all locks must be removed before a file is closed. A program
must release all locks before completing.

unlock returns a on success, -Ion error.

lock, locking, sopen

utime.h

Sets file time and date.

int utime(char *path, struct utimbuf *timeS)i

utime sets the modification time for the file path. The modification time is
contained in the utimbuf structure pointed to by times. This structure is
defined in utime.h, and has the following format:

struct utimbuf {
time_t actimei
time_t modtimei
}i

/* access time */
/* modification time */

The FAT file system supports only a modification time; therefore, on FAT
file systems utime ignores actime and uses only mod time to set the file's
modification time.

If times is NULL, the file's modification time is set to the current time.

Chapter 2, Run-time functions 231

utime

Return value

See also

Function

Syntax

Remarks

232

utime returns 0 if it is successful. Otherwise, it returns -I, and the global
variable errno is set to one of the following:

EACCES
EMFILE
ENOENT

Permission denied
Too many open files
Path or file name not found

setftime, stat, time

Implement a variable argument list.

void va_start (va_list ap, lastfix);
type va_arg(va_list ap, type);
void va_end(va_list ap);

. stdarg.h

Some C functions, such as vfprintj and vprintj, take variable argument lists
in addition to taking a number of fixed (known) parameters. The va_arg,
va_end, and va_start macros provide a portable way to access these
argument lists. They are used for stepping through a list of arguments
when the called function does not know the number and types of the
arguments being passed.

The header file stdarg.h declares one type (vB_list) and three macros
(va_start, va_arg, and va_end).

• vB_list This array holds information needed by va_arg and va_end. When
a called function takes a variable argument list, it declares a variable ap of
type vB_list.

• va_start: This routine (implemented as a macro) sets ap to point to the
first of the variable arguments being passed to the function. va_start must
be used before the first call to va_arg or va_end.

• va_start takes two parameters: ap and lastfix. (ap is explained under va_list
in the preceding paragraph; lastfix is the name of the last fixed parameter
being passed to the called function.)

• va_arg: This routine (also implemented as a macro) expands to an
expression that has the same type and value as the next argument being
passed (one of the variable arguments). The variable ap to va_arg should
be the same ap that va_start initialized.

Borland C++ for OS/2 Library Reference

Return value

See also

vfprintf

Function

Syntax

Remarks

See printffor details
on format specifiers.

Return value

·Seealso

Because of default promotions, you can't use char, unsigned char, or
float types with va_argo

The first time va_arg is used, it returns the first argument in the list. Each
successive time va_arg is used, it returns the next argument in the list. It
does this by first dereferencing ap, and then incrementing ap to point to
the following item. va_arg uses the type to both perform the dereference
and to locate the following item. Each successive time va_arg is invoked,
it modifies ap to point to the next argument in the list.

• va_end: This macro helps the called function perform a normal return.
va_end might modify ap in such a way that it cannot be used unless
va_starUs recalled. va_end should be called after va_arg has read all the
arguments; failure to do so might cause strange, undefined behavior in
your program.

va_start and va_end return no values; va_arg returns the current argument in
the list (the one that ap is pointing to).

v ... prinif, v ... scanf

stdio.h

Writes formatted output to a stream.

int vfprintf(FILE *strearn, canst char *farrnat, va_list arglist);

The v ... prinif functions are known as alternate entry points for the .. . printf
functions. They behave exactly like their .. . printf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vfprinif accepts a pointer to a series of arguments, applies to each argument II
a format specifier contained in the format string pointed to by format, and
outputs the formatted data to a stream. There must be the same number of
format specifiers as arguments.

vfprintf returns the number of bytes output. In the event of error, vfprintf
returns EOF.

Chapter 2, Run-time functions 233

vfscanf

vfseanf

Function

Syntax

Remarks

See scanf for details
on format specifiers.

Return value

See also

vprintf

Function

Syntax

Remarks

234

stdio.h

Scans and formats input from a stream.

int vfscanf(FILE *stream, const char *format, va_list arglist);

The v ... seanf functions are known as alternate entry points for the ... sean!
functions. They behave exactly like their .. . seanf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vfseanf scans a series of input fields, one character at a time, reading from a
stream. Then each field is formatted according to a format specifier passed
to vfseanf in the format string pointed to by format. Finally, vfseanf stores the
formatted input at an address passed to it as an argument followingformat.
There must be the same number of format specifiers and addresses as there
are input fields.

vfseanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely, for a
number of reasons. See seanf for a discussion of possible causes.

vfseanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If no fields were stored, the return value is O.

If vfseanf attempts to read at end-of-file, the return value is EOF.

fseanf, seanf, va_arg, va_end, va_start

Writes formatted output to stdout.

int vprintf(const char *format, va_list arglist);

stdarg.h

The v ... printffunctions are known as alternate entry points for the ... printj
functions. They behave exactly like their .. . printf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

Borland C++ for OS/2 Library Reference

See printf for details
on format specifiers.

Return value

See also

vscanf

Function

Syntax

Remarks

..

See scanf for details
on format specifiers.

vprintf

vprintj accepts a pointer to a series of arguments, applies to each a format
specifier contained in the format string pointed to by format, and outputs
the formatted data to stdout. There must be the same number of format
specifiers as arguments .

This function should not be used in PM applications.
vprint returns the number of bytes output. In the event of error, vprint
returns EOP.

freopen, printf, va_arg, va_end, va_start

stdarg.h

Scans and formats input from stdin.

int vscanf(const char *format, va_list arglist);

The v ... scanf functions are known as alternate entry points for the .. . scanf
functions. They behave exactly like their .. . scanf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vscanf scans a series of input fields, one character at a time, reading from
stdin. Then each field is formatted according to a format specifier passed to
vscanf in the format string pointed to by format. Finally, vscanf stores the
formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there
are input fields.

vscanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely, for a
number of reasons. See scanf for a discussion of PC?ssible causes.

.. This function should not be used in PM applications.

Return value vscanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If no fields were stored, the return value is O.

If vscanf attempts to read at end-of-file, the return value is EOF.

See also freopen, fscanf, scanf, va_arg, va_end, va_start

Chapter 2, Run·time functions 235

III

vsprintf

vsprintf

Function

Syntax

Remarks

See printt for details
on format specifiers.

Return value

See also

vsscanf

Function

Syntax

Remarks

See scant for details
on format specifiers.

236

stdarg.h

Writes formatted output to a string.

int vsprintf(char *buffer, canst char *farmat, va_list arglist);

The v ... printf functions are known as alternate entry points for the .. . printf
functions. They behave exactly like their .. . printj counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vsprintf accepts a pointer to a series of arguments, applies to each a format
specifier contained in the format string pointed to by format, and outputs
the formatted data to a string. There must be the same number of format
specifiers as arguments.

vsprintf returns the number of bytes output. In the event of error, vsprintf
returns EOP.

printf, va_arg, va_end, va_start

stdarg.h

Scans and formats input from a stream.

int vsscanf(canst char *buffer, canst char *farmat, va_list arglist);

The v ... scanf functions are known as alternate entry points for the .. . scanf
functions. They behave exactly like their .. . scanf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vsscanf scans a series of input fields, one character at a time, reading from a
stream. Then each field is formatted according to a format specifier passed
to vsscanf in the format string pointed to by format. Finally, vsscanf stores the
formatted input at an address passed to it as an argument followingformat.
There must be the same number of format specifiers and addresses as there
are input fields.

vsscanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely, for a
number of reasons. See scanf for a discussion of possible causes.

Borland C++ for OS/2 Library Reference

Return value

See also

wait

Function

Syntax

Remarks

Return value

vsscanf

vsseanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If no fields were stored, the return value is O.

If vsseanf attempts to read at end-of-string, the return value is EOF.

fseanf, seanf, sseanf, va_arg, va_end, va_start, vfseanf

process.h

Waits for one or more child processes to terminate.

int wait(int *statloc);

DOS UNIX Win 16 Win 32 ANSI C I ANSI C++ OS/2

• I •

The wait function waits for one or more child processes to terminate. The
child processes must be those created by the calling program; wait cannot
wait for grandchildren (processes spawned by child processes). If statlae is
not NULL, it points to location where wait will store the termination status.

If the child process terminated normally (by calling exit, or returning from
main), the termination status word is defined as follows:

Bits 0-7 Zero.

Bits 8-15 The least significant byte of the return code from the child
process. This is the value that is passed to exit, or is returned
from main. If the child process simply exited from main with
out returning a value, this value will be unpredictable.

If the child process terminated abnormally, the termination status word is
defined as follows:

Bits 0-7 Termination information about the child:

1 Critical error abort.
2 Execution fault, protection exception.
3 External termination signal.

Bits 8-15 Zero.

When wait returns after a normal child process termination it returns the
process ID of the child.

When wait returns after an abnormal child termination it returns -1 to the
parent and sets errna to EINTR.

Chapter 2, Run-time functions 237

II

wait

See also

wcstombs

Function

Syntax

Remarks

Return value

wctomb

Function

Syntax

Remarks

238

If wait returns without a child process completion it returns a -1 value and
sets errno to

ECHILD No child process exists

cwait, spawn

stdlib.h

Converts a wchar_t array into a multibyte string.

size_t wcstambs(char *s, canst wchar_t *pwcs, size_t n) i

wcstombs converts the type wchar_t elements contained in pwcs into a
multibyte character string s. The process terminates if either a null character
or an invalid multibyte character is encountered.

No more than n bytes are modified. If n number of bytes are processed
before a null character is reached, the array s is not null terminated.

The behavior of wcstombs is affected by the setting of LC_CTYPE category
of the current locale.

If an invalid multibyte character is encountered, wcstombs returns (size_t)
-1. Otherwise, the function returns the number of bytes modified, not
including the terminating code, if any.

stdlib.h

Converts wchar_t code to a multibyte character.

int wctamb(ehar *s, wehar_t we) i

If s is not null, wctomb determines the number of bytes needed to represent
the multibyte character corresponding to wc (including any change in shift
state). The multibyte character is stored in s. At most MB_CUR_MAX
characters are stored. If the value of wc is zero, wctomb is left in the initial
state.

Borland C++ for OS/2 Library Reference

Return value

wctomb

The behavior of wctomb is affected by the setting of LC_ CTYPE category of
the current locale.

If s is a NULL pointer, wctomb returns a nonzero value if multibyte
character encodings do have state-dependent encodings, and a zero value if
they do not.

If s is not a NULL pointer, wctomb returns -1 if the wc value does not
represent a valid multibyte character. Otherwise, wctomb returns the
number of bytes that are contained in the multibyte character correspond
ing to wc. In no case will the return value be greater than the value of
MB_CUR_MAX macro.

wherex conio.h

Function Gives horizontal cursor position within window.

Syntax int wherex(void);

Remarks wherex returns the x-coordinate of the current cursor position (within the
current text window).

.. This function should not be used in PM applications.

Return value wherex returns an integer in the range 1 to the number of columns in the
current video mode.

See also gettextinfo, gotoxy, wherey

wherey conio.h

Function

Syntax

Gives vertical cursor position within window.

int wherey(void);

Remarks wherey returns the y-coordinate of the current cursor position (within the
current text window).

.. This function should not be used in PM applications.

Chapter 2, Run-time functions 239

wherey

Return value

See also

window

Function

Syntax

Remarks

wherey returns an integer in the range 1 to the number of rows in the
current video mode.

gettextinfa, gataxy, wherex

conio.h

Defines active text mode window.

void window(int left, int top, int right, int bottom) i

window defines a text window onscreen. If the coordinates are in any way
invalid, the call to window is ignored.

left and top are the screen coordinates of the upper left corner of the
window. right and bottom are the screen coordinates of the lower right
corner.

The minimum size of the text window is one column by one line. The
default window is full screen, with the coordinates:

1,1,C,R

where C is the number of columns in the current video mode, and R is the
number of rows.

_ This function should not be used in PM applications.

Return value None.

See also cIreal, cIrscr, delline, gettextinfa, gataxy, ins line, puttext, textmade

write io.h

Remarks Obsolete function. See _rtCwrite on page 164.

write io.h

Function Writes to a file.

Syntax int write (int handle, void *buf, unsigned len) i

240 Borland C++ for OS/2 Library Reference

Remarks

Return value

See also

write

write writes a buffer of data to the file or device named by the given handle.
handle is a file handle obtained from a creat, open, dup, or dup2 call.

This function attempts to write len bytes from the buffer pointed to by buf
to the file associated with handle. Except when write is used to write to a text
file, the number of bytes written to the file will be no more than the number
requested. The maximum number of bytes that write can write is
UINT_MAX -I, because UINT_MAX is the same as -I, which is the error
return indicator for write. On text files, when write sees a linefeed (LF)
character, it outputs a CR/LF pair. UINT_MAX is defined in limits.h.

If the number of bytes actually written is less than that requested, the
condition should be considered an error and probably indicates a full disk.
For disks or disk files, writing always proceeds from the current file
pointer. For devices, bytes are sent directly to the device. For files opened
with the 0 _APPEND option, the file pointer is positioned to EOF by write
before writing the data.

write returns the number of bytes written. A write to a text file does not
count generated carriage returns. In case of error, write returns -1 and sets
the global variable errno to one of the following values:

EACCES
EBADF

Permission denied
Bad file number

creat, lseek, open, read, _rtl_write

Chapter 2, Run-time functions 241

242 Borland C++ for OS/2 Library Reference

Function

Syntax

Remarks

Function

Syntax

Remarks

Function

Syntax

c H A p T E R 3

Global variables

Borland C++ provides you with predefined global variables for many
common needs, such as dates, times, command-line arguments, and so on.
This chapter defines and describes them.

dos.h

Keeps a count of command-line arguments.

extern int _argc;

_argc has the value of argc passed to main when the program starts.

dos.h

An array of pointers to command-line arguments.

extern char **_argv;

_argv points to an array containing the original command-line arguments
(the elements of argv[]) passed to main when the program starts.

ctype.h

An array of character attribute information.

extern char _ctype[];

Chapter 3, Global variables 243

Remarks

_daylight

Function

Syntax

Remarks

See also

environ

Function

Syntax

Remarks

244

_ctype is an array of character attribute information indexed by ASCII value
+ 1. Each entry is a set of bits describing the character.

This array is used only by routines affected by the C locale, such as isdigit,
isprint, and so on.

time.h

Indicates whether daylight saving time adjustments will be made.

extern int _daylight;

_daylight is used by the time and date functions. It is set by the tzset, jtime,
and localtime functions to 1 for daylight saving time, 0 for standard time.

_timezone

dos.h

Accesses the operating system environment variables.

extern char ** _environ;

_environ is an array of pointers to strings; it is used to access and alter the
operating system environment variables. Each string is of the form

envvar = varvalue

where envvar is the name of an environment variable (such as PATH), and
varvalue is the string value to which envvar is set (such as c: \BIN i c: \DOS).
The string varvalue can be empty.

When a program begins execution, the operating system environment set
tings are passed directly to the program. Note that en v, the third argument
to main, is equal to the initial setting of _environ.

Borland C++ for OS/2 Library Reference

See also

_environ

The _environ array can be accessed by getenv; however, the putenv function
is the only routine that should be used to add, change or delete the _environ
array entries. This is because modification can resize and relocate the
process environment array, but _environ is automatically adjusted so that it
always points to the array.

getenv, putenv

errno, _doserrno, _sys_errlist, _sys_nerr dos.h, errno.h

Function

Syntax

Remarks

Enable perror to print error messages.

extern int _doserrnOi
extern int errnOi
extern char **_sys_errlisti
extern int _sys_nerri

errno, _sys_errlist, and _sys_nerr are used by perror to print error messages
when certain library routines fail to accomplish their appointed tasks.
_doserrno is a variable that maps many operating-system error codes to
errno; however, perror does not use _doserrno directly. See the header files
winbase.h and winerror.h for the list of operating-system errors.

II errno: When an error in a math or system call occurs, errno is set to indi
cate the type of error. Sometimes errno and _doserrno are equivalent. At
other times, errno does not contain the actual operating system error
code, which is contained in _doserrno instead. Still other errors might
occur that set only errno, not _doserrno.

II _doserrno: When an operating-system call results in an error, _doserrno is
set to the actual operating-system error code. errno is a parallel error
variable inherited from UNIX.

lI_sys_errlist: To provide more control over message formatting, the array
of message strings is provided in _sys_errlist. You can use errno as an
index into the array to find the string corresponding to the error number.
The string does not include any newline character.

lI_sys_nerr: This variable is defined as the number of error message strings
in _sys_errlist.

The following table gives mnemonics and their meanings for the values
stored in _sys_errlist. The list is alphabetically ordered for easier reading.
For the numerical ordering, see the header file errno.h.

Chapter 3, Global variables 245

246

Mnemonic

E2BIG
EACCES
EBADF
ECHILD
ECONTR
ECURDIR
EDEADLOCK
EDOM
EEXIST
EFAULT
EINTR
EINVACC
EINVAL
EINVDAT
EINVDRV
EINVENV
EINVFMT
EINVFNC
EINVMEM
EIO
EMFILE
ENAMETOOLONG
ENFILE
ENMFILE
ENODEV
ENOENT
ENOEXEC
ENOFILE
ENOMEM
ENOPATH
ENOS PC
ENOTSAM
ENXIO
EPERM
EPIPE
ERANGE
EROFS
ESPIPE
EXDEV
EZERO

Meaning

Arg list too long
Permission denied
Bad file number
No child process
Memory blocks destroyed
Attempt to remove CurDir
Locking violation
Math argument
File already exists
Unknown error
Interrupted function call
Invalid access code
Invalid argument
Invalid data
Invalid drive specified
Invalid environment
Invalid format
Invalid function number
Invalid memory block address
Input/Output error
Too many open files
File name too long
Too many open files
No more files
No such device
No such file or directory
Exec format error
File not found
Not enough core
Path not found
No space left on device
Not same device
No such device or address
Operation not permitted
Broken pipe
Result too large
Read-only file system
Illegal seek
Cross-device link
Error a

Borland C++ for OS/2 Library Reference

fileinfo

Function

Syntax

Remarks

jileinfo

stdlib.h

Passes file information to a child process.

extern int _fileinfo;

The value of Jileinfo determines whether information about open files is
passed to a child process. By default, the value of Jileinfo is O. If Jileinfo has
a nonzero value, file information is passed to child processes.

Alternatively, child processes can inherit such information about open files
by linking your program with the object file FILEINFO.OBJ. For example:

bee test.e \BCOS2\lib\fileinfo.obj

The file information is passed in the environment variable _C_FILE_INFO.
This variable contains encoded binary information, and your program
should not attempt to read or modify its value. The child program must
have been built with the C++ run-time library to inherit this information
correctly. Other programs can ignore _C_FILE_INFO, and will not inherit
file information.

floatconvert stdio.h

Function Links the floating-point formats.

Syntax extern int _floateonvert;

Remarks Floating-point output requires linking of conversion routines used by
printf, scanf, and any variants of these functions. To reduce executable size,
the floating-point formats are not automatically linked. However, this
linkage is done automatically whenever your program uses a mathematical
routine or the address is taken of some floating-point number. If neither of
these actions occur the missing floating-point formats can result in a run
time error.

Chapter 3, Global variables 247

jmode

fmode

Function

Syntax

Remarks

new handler - -
Function

Syntax

Remarks

248

fcntl.h

Determines default file-translation mode.

extern int _frnode;

Jmode determines in which mode (text or binary) files will be opened and
translated. The value of Jmode is a_TEXT by default, which specifies that
files will be read in text mode. If Jmode is set to a_BINARY, the files are
opened and read in binary mode. (O_TEXT and a_BINARY are defined in
fcntl.h.)

In text mode, carriage-return/linefeed (CR/LF) combinations are translated
to a single linefeed character (LF) on input. an output, the reverse is true:
LF characters are translated to CR/LF combinations.

In binary mode, no such translation occurs.

You can override the default mode as set by Jmode by specifying a t (for
text mode) or b (for binary mode) in the argument type in the library
functions fopen, jdopen, and freopen. Also, in the function open, the argument
access can include either a_BINARY or a_TEXT, which will explicitly
define the file being opened (given by the open pathname argument) to be in
either binary or text mode.

Traps new allocation miscues.

typedef void (*pvf) ();
pvf _new_handler;

As an alternative, you can set using the function set_new_handler, like this:

pvf set_new_handler(pvf p);

_new_handler contains a pointer to a function that takes no arguments and
returns void. If operator newO is unable to allocate the space required, it
will call the function pointed to by _new _handler; if that function returns it
will try the allocation again. By default, the function pointed to by

Borland C++ for OS/2 Library Reference

_new_handler terminates the application. The application can replace this
handler, however, with a function that can try to free up some space. This is
done by assigning directly to _new _handler or by calling the function
set_new_handler, which returns a pointer to the former handler.

_new_handler is provided primarily for compatibility with C++ version 1.2.
In most cases this functionality can be better provided by overloading
operator newO.

_osmajor, _osminor, _osversion dos.h

Function

Syntax

Remarks

threadid

Function

Syntax

Remarks

Contain the major and minor operating-system version numbers.

extern unsigned char _osmajor;
extern unsigned char _osminor;
extern unsigned _osversion;

The major and minor version numbers are available individually through
_osmajor and _osminor. _osmajor is the major version number, and _osminor
is the minor/version number. For example, if you are running OS/2 version
2.0, _osmajor will be 3 and _osminor will be 20.

_osversion is functionally identical to _version. See the discussion of _version.

stddef.h

Pointer to thread ID.

extern long _threadid;

_threadid is a long integer that contains the ID of the currently executing
thread. It is implemented as a macro, and should be declared only by
including stddef.h.

Chapter 3, Global variables 249

__ throwExceptionName, __ throwFileName, __ throwLineNumber

__ throwExceptionName, __ throwFileName, __ throwLineNumber except.h

Function

Syntax

Remarks

timezone

Function

Syntax

Remarks

See also

tzname

Function

Syntax

250

Generates information about a thrown exception.

extern char * __ throwExceptionName;
extern char * __ throwFileName;
extern char * __ throwLineNumber;

Use these global variables to get the name and location of a thrown
exception. The output for each of the variables is a printable character
string.

To get the file name and line number for a thrown exception with
__ throwFileName and _ _ throwLineNumber, you must compile the module
with the -xp compiler option.

time.h

Contains difference in seconds between local time and GMT.

extern long _timezone;

_timezone is used by the time-and-date functions.

This variable is calculated by then tzset function; it is assigned a long value
that is the difference, in seconds, between the current local time and
Greenwich mean time.

_daylight

time.h

Array of pointers to time-zone names.

extern char * _tzname[2J

Borland C++ for OS/2 Library Reference

Remarks

version.

Function

Syntax

Remarks

wscroll

Function

Syntax

Remarks

_tzname

The global variable _tzname is an array of pointers to strings containing
abbreviations for time-zone names. _tzname[O] points to a three-character
string with the value of the time-zone name from the TZ environment
string. The global variable _tzname[l] points to a three-character string with
the value of the daylight-saving time-zone name from the TZ environment
string. If no daylight saving name is present, _tzname[l] points to a null
string.

dos.h

Contains the operating-system version number.

extern unsigned _version;

DOS

_version contains the operating-system version number, with the major
version number in the high byte and the minor version number in the low
byte. For a 32-bit application, this layout of the version number is in the

. low word. For OS/2 ve!sion 2.0, _version has the value 20 (twenty).

conio.h

Enables or disables scrolling in console 1/ a functions.

extern int _wscroll

_wscroll is a console I/O flag. Its default value is 1. If you set _wscroll to 0,
scrolling is disabled. This can be useful for drawing along the edges of a
window without having your screen scroll.

Chapter 3, Global variables 251

252 Borland C++ for OS/2 Library Reference

Online help provides
sample programs for

many iostream
classes.

Table 4.1
The functions

declared in
constrea.h are not

available for PM
applications.

conbuf class

conbuf is not
available for PM.

Constructor

clreol

clrscr

c H A p T E R 4

The C++ iostreams

The stream class library in C++ consists of several classes distributed in two
separate hierarchical trees. See the Programmer's Guide, Chapter 6, for an
illustration of the class hierarchies. This reference presents some of the
most useful details of these classes, in alphabetical order. The following
cross-reference table tells which classes belong to which header files.

Header file Classes

conbuf, constream constrea.h
iostream.h ios, iostream, iostream_withassign, istream, istream_withassign,

ostream, ostream_withassign, streambuf
filebuf, fstream, fstreambase, ifstream, of stream fstream.h

strstrea.h istrstream, ostrstream, strstream, strstreambase, strstreambuf

constrea.h

Specializes streambuf to handle console output.

Public constructor

conbuf ()

Makes an unattached conbuf

Public member functions

void clreol ()

Clears to end of line in text window.

void clrscr ()

Clears the defined screen.

Chapter 4, The C++ iostreams 253

conbuf class

delline

gotoxy

highvideo

insline

lowvideo

normvideo

overflow

setcursortype

textattr

textbackground

textcolor

textmode

wherex

wherey

window

254

void delline ()

Deletes a line in the window.

void gotoxy(int x, int y)

Positions the cursor in the window at the specified location.

void highvideo()

Selects high-intensity characters.

void ins line ()

Inserts a blank line.

void lowvideo()

Selects low-intensity characters.

void normvideo()

Selects normal-intensity characters.

virtual int overflow(int = EOF)

Flushes the conbuf to its destination.

void setcursortype(int cur_type)

Selects the cursor appearance.

void textattr(int newattribute)

Selects cursor appearance.

void textbackground(int newcolor)

Selects the text background color.

void textcolor(int newcolor)

Selects character color in text mode.

static void textmode(int newmode)

Puts the screen in text mode.

int wherex ()

Gets the horizontal cursor position.

int wherey ()

Gets the vertical cursor position.

void window(int left, int top, int right, int bottom)

Borland C++ for OS/2 Library Reference

constream class

Defines the active window.

constream class constrea.h

constream is not
available for PM.

Constructor

clrscr

rdbuf

textmode

window

filebuf class

Provides console output streams. This class is derived from ostream.

Public constructor

constream ()

Provides an unattached output stream to the console.

Public member functions

void clrscr ()

Clears the screen.

conbuf *rdbuf ()

Returns a pointer to this constream's assigned conbuf.

void textmode(int newmode)

Puts the screen in text mode.

void window(int left, int top, int right, int bottom)

Defines the active window.

fstream.h

Specializes streambuf to use files for input and output of characters. The
filebuf class manages buffer allocation and deletion, and seeking within a
file. This class also permits unbuffered file I/O by using the appropriate
constructor or the member functionfilebuf::setbuf By default, files are
opened in openprot mode to allow reading and writing. See page 261 for a
list of file-opening modes.

The filebuf class only provides basic services for file I/O. Input and output
to a filebuf can only be done with the low-level functions provided by
streambuf Higher level classes provide formatting services.

Chapter 4, The C++ iostreams 255

filebuf class

Constructor

Constructor

openprot

attach

close

fd

256

Public constructors

filebuf () ;

Makes a filebuf that isn't attached to a file.

filebuf(int fd);

Makes a filebuf attached to a file as specified by file descriptor fd.

filebuf(int fd, char *buf, int n);

Makes a filebuf attached to a file specified by the file descriptor fd, and uses
buf as the storage area. The size of buf is sufficient to store n bytes. If buf is
NULL or n is non-positive, the filebuf is unbuffered.

Public data members

static const int openprot

The default file protection. The exact value of openprot should not be of
interest to the user. Its purpose is to set the file permissions to read and
write.

Public member functions

filebuf* attach(int fd)

Connects this closed filebuf to a file specified by the file descriptor fd. If the
file buffer is already open, attach fails and returns NULL. Otherwise, the file
buffer is connected to fd.

filebuf* close ()

Flushes and closes the file. Generally, it is not necessary to make an explicit
call to close at your program's end because proper file closing is ensured by
the filebuf destructor. An explicit call to close is useful when you want to
disconnect the filebuf from your program.

Returns a on error, for example, if the file was already closed. Otherwise,
the function returns a reference to the filebuf (the this pointer).

int fd()

Returns the file descriptor or EOF.

int is_open();

Borland C++ for OS/2 Library Reference

open

overflow

seekoff

setbuf

sync

underflow

fstream class

filebuf class

Returns nonzero if the file is open.

filebuf* open(const char *filename, int mode,
int prot = filebuf::openprot);

Opens the file specified by filename and connects to it. The file-opening
mode is specified by mode.

virtual int overflow(int c = EOF);

Flushes a buffer to its destination. Every derived class should define the
actions to be taken.

virtual streampos seekoff(streamoff offset, dir ios::seek_dir, int mode);

Moves the file get/put pointer an offset number of bytes. The pointer is
moved in the direction specified by dir relative to the current position. mode
can specify read (ios::in), write (ios::out), or both. If mode is ios::in, the get
pointer is adjusted. If mode is ios: :out, the put pointer is adjusted.

If successful, the seekoff function returns a streampos-type value that
indicates the new file pointer position.

The function can fail if the file does not support repositioning or you
request an illegal pointer repositioning, for example, beyond the end of the
file. On failure, seekoff returns EOF. The file pointer position is undefined.

virtual streambuf* setbuf(char *buf, int len);

Allocates buf of size len for use by the filebuf If buf is NULL or len is a non
positive value, the filebuf is unbuffered.

On success, setbuf returns a pointer to the filebuf A failure occurs if the file
is open and a buffer has been allocated. On failure, setbuf returns NULL
and no changes are made to the buffering status.

virtual int sync();

Establishes consistency between internal data structures and the external
stream representation.

virtual int underflow();

Makes input available. This is called when no more data exists in the input
buffer. Every derived class should define the actions to be taken.

fstream.h

This stream class, derived from fstreambase and iostream, provides for
simultaneous input and output on afilebuf

Chapter 4, The C++ iostreams 257

fstream class

Constructor

Constructor

Constructor

Constructor

open

rdbuf

Public constructors

fstream() ;

Makes an fstream that isn't attached to a file.

fstream(const char *name, int mode, int prot = filebuf::openprot);

Makes an fstream, opens a file with access as specified by mode, and
connects to it. See page 261 for access options provided by ios::open_mode.

fstream(int fd);

Makes an fstream and connects to an open-file descriptor specified by fd.

fstream(int fd, char *buf, int n);

Makes a fstream attached to a file specified by the file descriptor fd, and uses
buf as the storage area. The size of buf is sufficient to store n bytes. If buf is
NULL or n is non-positive, the fstream is unbuffered.

Public member functions

void open(const char *name, int mode, int prot = filebuf: :openprot);

Opens a file specified by name for an fstream. The file-opening mode is
specified by the variable mode.

filebuf* rdbuf();

Returns the filebuf used.

fstreambase class fstream.h

Constructor

Constructor

258

This stream class, derived from ios, provides operations common to file
streams. It serves as a base forfstream, ijstream, and of stream.

Public constructors

fstreambase();

Makes an fstreambase that isn't attached to a file.

fstreambase(const char *name, int mode, int = filebuf::openprot);

Borland C++ for OS/2 Library Reference

Constructor

Constructor

attach

close

open

rdbuf

setbuf

ifstream class

Constructor

Constructor

fstreambase class

Makes anfstreambase, opens a file specified by name in mode specified by
mode, and connects to it.

fstreambase(int fd);

Makes an fstreambase and connects to an open-file descriptor specified by fd.

fstreambase(int fd, char *buf, int len);

Makes an fstreambase connected to an open-file descriptor specified by fd.
The buffer is specified by buf and the buffer size is len.

Public member functions

void attach(int fd);

Connects to an open-file descriptor.

void close();

Closes the associated filebuf and file.

void open(const char *name, int mode, int prot = filebuf::openprot);

Opens a file for an fstreambase. The file-opening mode is specified by mode.

filebuf* rdbuf();

Returns the filebuf used.

void setbuf(char *buf, int len);

Reserves an area of memory pointed to by buf. The area is sufficiently large
to store len number of bytes.

fstream.h

This stream class, derived from fs tream base and istream, provides input
operations on a filebuf.

Public constructors

ifstream () ;

Makes an ifstream that isn't attached to a file.

ifstream(const char *name, int mode = ios::in,
int prot = filebuf::openprot);

Chapter 4, The C++ iostreams 259

ifstream class

Constructor

Constructor

open

rdbuf

ios class

260

Makes an ifstream, opens a file for input in protected mode, and connects to
it. By default, the file is not created if it does not already exist.

ifstream(int fd);

Makes an ifstream and connects to an open-file descriptor fd.

ifstream(int fd, char *buf, int buf_len);

Makes an ifstream connected to an open file. The file is specified by its
descriptor, fd. The ifstream uses the buffer specified by buf of length buf_1en.

Public member functions

void open(const char *name, int mode, int prot filebuf: :openprot);

Opens a file for an ifstream.

filebuf* rdbuf();

Returns the filebuf used.

iostream.h

Provides operations common to both input and output. Its derived classes
(istream, ostream, iostream) specialize I/O with high-level formatting
operations. The ios class is a base for istream, ostream, fstreambase, and
strstreambase.

Public data members

The following three constants are used as the second parameter of the self
function:

static const long adjustfield; / / left I right I internal
static const long basefield; / / dec I oct I hex
static const long floatfield; / / scientific I fixed

Stream seek direction:

enum seek_dir { beg=O, cur=l, end=2 };

Borland C++ for OS/2 Library Reference

ios class

Stream operation mode. These can be logically ORed:

enum open_mode
app,

} ;

ate,
in,
out,
binary,
trunc,

nocreate,
noreplace,

Append data-always write at end of file.
Seek to end of file upon original open.
Open for input (default for ifstreams).
Open for output (default for afstreams).
Open file in binary mode.
Discard contents if file exists (default if out is specified
and neither ate nor app is specified).
If file does not exist, open fails.
If file exists, open for output fails unless ate or app is set.

Format flags used with flags, setf, and unseif member functions:

enum {

} ;

skipws,
left,
right,
internal,
dec,
oct,
hex,
showbase,
showpoint,
uppercase,
showpos,
scientific,

fixed,
unitbuf,
stdio,

Skip whitespace on input.
Left-adjust output.
Right-adjust output.
Pad after sign or base indicator.
Decimal conversion.
Octal conversion.
Hexadecimal conversion.
Show base indicator on output.
Show decimal point for floating-point output.
Uppercase hex output.
Show' +' with positive integers.
Suffix floating-point numbers with exponential (E)
notation on output.
Use fixed decimal point for floating-point numbers.
Flush all streams after insertion.
Flush stdout, stderr after insertion.

Protected data members

streambuf
int
long
int

Chapter 4, The C++ iostreams

*bp;
x_fill ;
x_flags;
x-precision;

/ / The associated streambuf
/ / Padding character of output
/ / Formatting flag bits
/ / Floating-point precision on output

261

ios class

Constructor

Constructor

bad

bitalloc

clear

eof

fail

fill

fill

flags

262

int
ostream
int

state;
*x_tie;
x_width;

Public constructor

ios(streambuf *);

/ / Current state of the streambuf
/ / The tied ostream, if any
/ / Field width on output

Associates a given streambuf with the stream.

Protected constructor

ios ();

Constructs an ios object that has no corresponding streambuf

Public member functions

int bad();

Nonzero if error occurred.

static long bitalloc();

Acquires a new flag bit set. The return value can be used to set, clear, and
test the flag. This is for user-defined formatting flags.

void clear(int = 0);

Sets the stream state to the given value.

int eof();

Nonzero on end of file.

int fail () ;

Nonzero if an operation failed.

char fill ()

Returns the current fill character.

char fi 11 (char) ;

Resets the fill character; returns the previous character.

long flags () ;

Returns the current format flags.

Borland C++ for OS/2 Library Reference

flags

good

precision

precision

rdbuf

rdstate

setf

setf

tie

tie

unsetf

ios class

long flags(long);

Sets the format flags to be identical to the given long; returns previous
flags. Use fiags(O) to set the default format.

int good();

Nonzero if no state bits were set (that is, no errors appeared).

int precision();

Returns the current floating-point precision.

int precision(int);

Sets the floating-point precision; returns previous setting.

streambuf* rdbuf();

Returns a pointer to this stream's assigned streambuf.

int rdstate();

long setf(long);

Sets the flags corresponding to those marked in the given long; returns
previous settings.

long setf(long _setbits, long _field);

The bits corresponding to those marked in Jield are cleared, and then reset
to be those marked in _setbits.

static void sync_with_stdio();

Mixes stdio files and iostreams. This should not be used for new code.

ostream* tie();

Returns the tied stream, or NULL if there is none. Tied streams are those
that are connected such that when one is used, the other is affected. For
example, cin and cout are tied; when cin is used, it flushes cout first.

ostream* tie(ostream *out);

Ties another stream to the output stream out and returns the previously
tied stream. If the stream was not previously tied, tie returns NULL.

When an input stream has characters to be consumed, or if an output
stream needs more characters, the tied stream is first flushed automatically.
By default, cin, cerr and clog are tied to cout.

long unsetf(long f);

Chapter 4, The C++ iostreams 263

ios class

width

width

xalloc

init

setstate

iostream class

Constructor

Clears the bits corresponding to f and returns a long that represents the
previous settings.

int width()i

Returns the current width setting.

int width(int) i

Sets the width as given; returns the previous width.

static int xalloc() i

Returns an array index of previously unused words that can be used as
user-defined formatting flags.

Protected member functions

void init(strearnbuf *) i

Provides the actual initialization.

void setstate(int)i

Sets all status bits.

iostream.h

This class, derived from istream and ostream, is a mixture of its base classes,
allowing both input and output on a stream. It is a base for fstream and
strstream.

Public constructor

iostrearn(strearnbuf *)i

Associates a given streambuf with the stream.

iostream_withassign class iostream.h

This class is an iostream with an added assignment operator.

264 Borland C++ for OS/2 Library Reference

Constructor

istream class

Constructor

gcount

get

get

iostream_withassign class

Public constructor

iostream_withassign() ;

Default constructor (calls iostream's constructor).

Public member functions

None (although the = operator is overloaded).

iostream.h

Provides formatted and unformatted input from a streambuf The »
operator is overloaded for all fundamental types, as explained in the
narrative at the beginning of the chapter. This ios class is a base for ifstream,
iostream, istrstream, and istream_withassign.

Public constructor

istream(streambuf *);

Associates a given streambuf with the stream.

Public member functions

int gcount();

Returns the number of characters last extracted.

int get();

Extracts the next character or EOF.

istream& get (char *buf, int len, char delim = '\n');
istream& get (signed char *buf, int len, char delim = '\n');
istream& get (unsigned char *buf, int len, char delim = '\n');

Extracts characters and stores them in buf until the delimiter, specified by
delim, or end-of-file is encountered, or until (len -1) bytes have been read. A
terminating null is always placed in the output string; the delimiter never
is. The delimiter remains in the stream. Fails only if no characters were
extracted.

Chapter 4, The C++ iostreams 265

istream class

get

get

getline

ignore

ipfx

peek

putback

read

seekg

seekg

266

The get function fails if it encounters the end of file before any characters
are stored. On failure, get sets ios::failbit.

istream& get (char &Ch)i
istream& get (signed char &ch) i

istream& get (unsigned char &ch) i

Extracts a single character into the ch reference.

istream& get (streambuf &sbuf, char delim = '\n')i

Extracts characters into the given sbuf reference until de lim is encountered.

istream& getline(char *buf, int len, char)i
istream& getline(signed char *buf, int len, char delim = '\n') i
istream& getline(unsigned char *buf, int len, char delim = '\n') i

Same as get, except the delimiter is also extracted. Generally, the specified
delim is not copied to buf. However, if the delimiter is encountered exactly
when len characters have been extracted, delim is not extracted.

istream& ignore(int n = 1, int delim = EOF)i

Causes up to n characters in the input stream to be skipped; stops if delim is
encountered.

istream& ipfx(int n = Q)i

The ipfx function is called by input functions prior to fetching from an input
stream. Functions that perform formatted input call ipfx(O); unformatted
input functions call ipfx(l). '

int peek () i

Returns next char without extraction.

istream& putback(char) i

Pushes back a character into the stream.

istream& read(char*, int)i
istream& read(signed char*; int)i
istream& read(unsigned char*, int) i

Extracts a given number of characters into an array. Use gcount for the
number of characters actually extracted if an error occurred.

istream& seekg(streampos pOS)i

Moves to an absolute position in the input stream.

istream& seekg(streamoff offset, seek_dir dir) i

Borland C++ for OS/2 Library Reference

tellg

eatwhite

istream class

Moves offset number of bytes relative to the current position for the input
stream. The offset is in the direction specified by dir following the
definition: enum seek_dir {beg, cur, end};

Use ostream::seekp for positioning in an output stream.

Use seekpos or seekoff for positioning in a stream buffer.

strearnpos tellg();

Returns the current stream position. On failure, tellg returns a negative
number.

Use ostream::tellp to find the position in an output stream.

Protected member functions

void eatwhite();

Extract consecutive whitespace.

istream_withassign class iostream.h

This class is an istream with an added assignment operator.

Public constructor

Constructor istrearn_withassign();

Default constructor (calls istream's constructor).

Public member functions

None (although the = operator is overloaded).

istrstream class strstrea.h

Provides input operations on a strstreambuf This class is derived from
strstreambase and istream.

Chapter 4, The C++ iostreams 267

istrstream class

Constructor

Constructor

of stream class

Constructor

Constructor

Constructor

Constructor

268

Public constructors

istrstream(char *);
istrstream(signed char *);
istrstream(unsigned char *);

Each of the constructors above makes an istrstream with a specified string (a
null character is never extracted). See "The three char types" in Chapter 1
of the Programmer's Guide for a discussion of character types.

istrstream(char *str, int n);
istrsteam(signed char *str, int);
istrstream(unsigned char *str, int);

Each of the three constructors above makes an istrstream using up to n bytes
of str. See "The three char types" in Chapter 1 of the Programmer's Guide for
a discussion of character types.

fstream.h

Provides input operations on a filebuf. This class is derived from fstreambase
and ostream.

Public constructors

ofstream() ;

Makes an ofstream that isn't attached to a file.

ofstream(const char *name, int mode = ios: :out,
int prot = filebuf: :openprot);

Makes an ofstream, opens a file, and connects to it.

ofstream(int fd);

Makes an ofstream and connects to an open-file descriptor specified by fd.

ofstream(int fd, char *buf, int len);

Makes an ofstream connected to an open-file descriptor specified by fd. The
buffer specified by buf of len is used by the of stream.

Borland C++ for OS/2 Library Reference

open

rdbuf

ostream class

Constructor

flush

opfx

osfx

put

of stream class

Public member functions

void open(const char *name, int mode = ios: :out,
int prot = filebuf: :openprot);

Opens a file for an of stream.

filebuf* rdbuf();

Returns the filebuf used.

iostream.h

Provides formatted and unformatted output to a streambuf The «operator
is overloaded for all fundamental types. This ios-based class is a base for
constream, iostream, ofstreilm, ostrstream, and ostream_withassign.

Public constructor

ostream(streambuf *);

Associates a given streambufwith the stream.

Public member functions

ostream& flush();

Flushes the stream.

int opfx();

The opfx function is called by output functions prior to inserting to an
output stream. opfx returns a if the ostream has a nonzero error state.
Otherwise, opfx returns a nonzero value.

void osfx () ;

The osfx function performs post output operations. If ios::unitbufis on, opfx
flushes the ostream. On failure, opfx sets ios::
failbit.

ostream& put (unsigned char ch);
ostream& put (char ch) i

ostream& put (signed char ch);

Inserts the character.

Chapter 4, The C++ iostreams 269

ostream class

seekp

seekp

tellp

write

ostrearn& seekp(strearnpos);

Moves to an absolute position (as returned from tellp).

ostrearn& seekp(strearnoff, seek_dir);

Moves to a position relative to the current position, following the
definition: enum seek_dir {beg, cur, end};

strearnpos tellp();

Returns the current stream position.

ostrearn& write(const signed char*, int n);
ostrearn& write(const unsigned char*, int n);
ostrearn& write(const char*, int n);

Inserts n characters (nulls included).

ostream_withassign class iostream.h

This class is an ostream with an added assignment operator.

Public constructor

Constructor ostrearn_withassign();

Default constructor (calls ostream's constructor).

Public member functions

None (although the = operator is overloaded).

ostrstream class strstrea.h

Constructor

270

Provides output operations on a strstreambuf This class is derived from
strstreambase and ostream.

Public 'constructors

ostrstrearn () ;

Borland C++ for OS/2 Library Reference

Constructor

pcount

str

Makes a dynamic ostrstream.

ostrstream(char *buf, int len, int mode = ios::out);
ostrstream(signed char *buf, int len, int mode = ios::out);
ostrstream(unsigned char *buf, int len, int mode = ios::out);

ostrstream class

Each of the three constructors above makes a ostrstream with a specified
len-byte buffer. If the file-opening mode is ios::app or ios::ate, the get/put
pointer is positioned at the null character of the string. See uThe three char
types" in Chapter 1 of the Programmer's Guide for a discussion of character
types.

Public member functions

int pcount();

Returns the number of bytes currently stored in the buffer.

char *str();

Returns and freezes the buffer. You must deallocate it if it was dynamic.

streambuf class iostream.h

Constructor

Constructor

This is a base class for all other buffering classes. It provides a buffer
interface between your data and storage areas such as memory or physical
devices. The buffers created by streambuf are referred to as get, put, and
reserve areas. The contents are accessed and manipulated by pointers that
point between characters.

Buffering actions performed by streambuf are rather primitive. Normally,
applications gain access to buffers and buffering functions through a
pointer to streambuf that is set by ios. Class ios provides a pointer to
streambuf that provides a transparent access to buffer services for high-level
classes. The high-level classes provide I/O formatting.

Public constructors

streambuf();

Creates an empty buffer object.

streambuf(char *buf, int size);

Chapter 4, The C++ iostreams 271

streambuf class

ouCwaiting

sbumpc

seekoff

seekpos

setbuf

sgetc

sgetn

snextc

sputbackc

sputc

sputn

272

Constructs an empty buffer buf and sets up a reserve area for size number of
bytes.

Public member functions

int in_avail();

Returns the number of characters remaining in the input buffer.

int out_waiting();

Returns the number of characters remaining in the output buffer.

int sbumpc();

Returns the current character from the input buffer, then advances.

virtual streampos seekoff(streamoff/ ios::seek_dir/
int = (ios::in I ios::out);

Moves the get and/or put pointer (the third argument determines which
one or both) relative to the current position.

virtual streampos seekpos(streampos/ int = (ios::in I ios: :out));

Moves the get or put pointer to an absolute position.

virtual streambuf* setbuf(char */ int);

Connects to a given buffer.

int sgetc();

Peeks at the next character in the input buffer.

int sgetn(char*/ int n);

Gets the next n characters from the input buffer.

int snextc();

Advances to and returns the next character from the input buffer.

int sputbackc(char);

Returns a character to input.

int sputc (int) ;

Puts one character into the output buffer.

int sputn(const char*/ int n);

Puts n characters into the output buffer.

Borland C++ for OS/2 Library Reference

stossc

allocate

base

bien

eback

ebuf

egptr

epptr

gbump

gptr

pbase

pbump

pptr

void stossc();

Advances to the next character in the input buffer.

Protected member functions

int allocate () ;

Sets up a buffer area.

char *base();

Returns the start of the buffer area.

int blen () ;

Returns the length of the buffer area.

char *eback();

Returns the base of the putback section of the get area.

char *ebuf () ;

Returns the end + 1 of the buffer area.

char *egptr();

Returns the end + 1 of the get area.

char *epptr();

Returns the end + 1 of the put area.

void gbump(int);

Advances the get pointer.

char *gptr();

Returns the next location in the get area.

char *pbase();

Returns the start of the put area.

void pbump(int);

Advances the put pointer.

char *pptr();

Returns the next location in the put area.

Chapter 4, The C++ iostreams

streambuf class

273

streambuf class

setb void setb(char *, char *, int = 0);

Sets the buffer area.

setg void setg(char *, char *, char *);

Initializes the get pointers.

setp void setp(char *, char *);

Initializes the put pointers.

unbuffered void unbuffered(int);

Sets the buffering state.

unbuffered int unbuffered();

Returns nonzero if not buffered.

strstreambase class strstrea.h

Constructor

Constructor

rdbuf

Specializes ios to string streams. This class is entirely protected except for
the member function strstreambase::rdbuf This class is a base for strstream,
istrstream, and ostrstream.

Public constructors

strstreambase() ;

Makes an empty strstreambase.

strstreambase(char *, int, char *start);

Makes an strstreambase with a specified buffer and starting position.

Public member functions

strstreambuf * rdbuf();

Returns a pointer to the strstreambuf associated with this object.

strstreambuf class strstrea.h

Specializes streambuf for in-memory formatting.

274 Borland C++ for OS/2 Library Reference

Constructor

Constructor

Constructor

Constructor

doallocate

freeze

overflow

seekoff

s"etbuf

str

strstreambuf class

Public constructors

strstreambuf();

Makes a dynamic strstreambuf Memory will be dynamically allocated as
needed.

strstreambuf(void * (*) (long), void (*) (void *));

Makes a dynamic buffer with specified allocation and free functions.

strstreambuf(int n);

Makes a dynamic strstreambuf, initially allocating a buffer of at least n bytes.

strstreambuf(char*, int, char *strt = 0);
strstreambuf(signed char *, int, signed char *strt = 0);
strstreambuf(unsigned char *, int, unsigned char *strt = 0);

Each of the three constructors above makes a static strstreambufwith a
specified buffer. If strt is not null, it delimits the buffer. See "The three char
types" in Chapter 1 of the Programmer's Guide for a discussion of character
types.

Public member functions

virtual int doallocate();

Performs low-level buffer allocation.

void freeze(int = 1);

If the input parameter is nonzero, disallows storing any characters in the
buffer. Unfreeze by passing a zero.

virtual int overflow(int);

Flushes a buffer to its destination. Every derived class should define the
actions to be taken.

virtual streampos seekoff(streamoff, ios::seek_dir, int);

Nloves the pointer relative to the current position.

virtual streambuf* setbuf(char*, int);

Specifies the buffer to use.

char *str();

Returns a pointer to the buffer and freezes it.

Chapter 4, The C++ iostreams 275

strstreambuf class

sync

underflow

strstream class

Constructor

Constructor

str

276

virtual int sync();

Establishes consistency between internal data structures and the external
stream representation.

virtual int underflow();

Makes input available. This is called when a character is requested and the
strstreambuf is empty. Every derived class should define the actions to be
taken.

strstrea.h

Provides for simultaneous input and output on a strstreambuf This class is
derived from strstreambase and iostream.

Public constructors

strstream() ;

Makes a dynamic strstream.

strstream(char *buf, int sz, int mode);
strstream(signed char *buf,int sz, int mode);
strstream(unsigned char *buf, int sz, int mode);

Each of the three constructors above makes a strstream with a specified sz
byte buffer. If mode is ios::app or ios::ate, the get/put pointer is positioned at
the null character of the string. See "The three char types" in Chapter 1 of
the Programmer's Guide for a discussion of character types.

Public member function

char *str () ;

Returns and freezes the buffer. The user must deallocate it if it was
dynamic.

Borland C++ for OS/2 Library Reference

For a discussion on
how to use the

persistent streams
library, see Chapter 7

in the Programmers
Guide.

c H A p T E R

Persistent stream classes and
macros

5

Borland support for persistent streams consists of a class hierarc,hy and
macros to help you develop streamable objects. This chapter is a reference
for these classes and macros. It alphabetically lists and describes all the
public classes that support persistent objects. The class descriptions are
followed by descriptions of the __ DELTA macro and the streaming
macros. The streaming macros are provided to simplify the declaration and
definition of streamable classes.

The persistent streams class hierarchy

Figure 5.1
Stream able class

hierarchy

The persistent streams class hierarchy is shown in the following figure:

Chapter 5, Persistent stream classes and macros 277

fpbase class

fpbase class

Constructor

attach

close

open

rdbuf

setbuf

ifpstream class

278

objstm.h

Provides the basic operations common to all object file stream I/O.

Constructors

fpbase()i
fpbase(const char *name, int omode, int prot = filebuf: :openprot)i
fpbase(int f)i
fpbase(int f, char *b, int len)i

Creates a buffered fpbase object. You can set the size and location of the
buffer with the len and b arguments. You can open a file and attach it to the
stream by specifying the name, mode, and protection (prot) arguments, or
by using the file descriptor, f

Public member functions

void attach(int f)i

Attaches the file with descriptor f to this stream if possible. Sets ios::state
accordingly.

void close();

Closes the stream and associated file.

void open(const char *name, int mode, int prot = filebuf::openprot);

Opens the named file in the given mode (app, ate, in, out, binary, trunc,
nocreate, noreplace) and protection. The opened file is attached to this
stream.

filebuf * rdbuf();

Returns a pointer to the current file buffer.

void setbuf(char *buf, int len);

Sets the location the buffer to buf and the buffer size to len.

objstrm.h

Provides the base class for reading (extracting) streamable objects from file
streams.

Borland C++ for OS/2 Library Reference

Constructor

open

rdbuf

ipstream class

Constructor

find

freadBytes

Public constructors

ifpstream() i
ifpstream(const char *name, int mode = ios::in,

int prot = filebuf::openprot) i
ifpstream(int f)i
ifpstream(int f, char *b, int len) i

ifpstream class

Creates a buffered ifpstream object. You can set the size and location of the
buffer with the len and b arguments. You can open a file and attach it to the
stream by specifying the name, mode, and protection arguments, or via the
file descriptor, f

Public member functions

void open(const char *name, int mode = ios::in,
int prot = filebuf::openprot) i

Opens the named file in the given mode (app, ate, in, out, binary, trunc,
nocreate, or noreplace) and protection. The default mode is in (input) with
openprot protection. The opened file is attached to this stream.

filebuf * rdbuf()i

Returns a pointer to the current file buffer.

objstrm.h

Provides the base class for reading (extracting) streamable objects.

Public constructors

ipstream(streambuf *buf)i

Creates a buffered ipstream with the given buffer. The state is set to O.

Public member functions

TStreamableBase * find(P_id_type Id)i

Returns a pointer to the object corresponding to Id.

void freadBytes(void *data, size_t sz)i

Chapter 5, Persistent stream classes and macros 279

ipstream class

freadString

getVersion

read Byte

read Bytes

readString

readWord

readWord16

readWord32

registerObject

280

Reads into the supplied buffer (data) the number of bytes specified by S2.

char *freadString();

Reads a string from the stream. Determines the length of the string and
allocates a character array of the appropriate length. Reads the string into
this array and returns a pointer to the string. The caller is expected to free
the allocated memory block.

char *freadString(char *buf, unsigned rnaxLen);

Reads a string from the stream into the supplied buffer (bu/). If the length of
the string is greater than maxLen-l, reads nothing. Otherwise reads the
string into the buffer and appends a null terminating byte.

uint32 getVersion() const;

Returns the object version number.

uint8 readByte();

Returns the byte at the current stream position.

void readBytes(void *data, size_t sz);

Reads S2 bytes from current stream position, and writes them to data.

char * readString();
char * readString(char *buf, unsigned rnaxLen);

readStringO allocates a buffer large enough to contain the string at the
current stream position. Reads the string from the stream into the buffer.
The caller must free the buffer.

readString(char *buf, unsigned maxLen) reads the string at the current stream
position into the buffer specified by but If the length of the string is greater
than maxLen-l, reads nothing. Otherwise reads the string into the buffer
and appends a null terminating byte.

uint32 readWord();

Returns the word at the current stream position.

uint16 readWord16();

Returns the 16-bit word at the current stream position.

uint32 readWord32();

Returns the 32-bit word at the current stream position.

void registerObject(TStrearnableBase * adr);

Registers the object pointed to by adr.

Borland C++ for OS/2 Library Reference

seekg

tellg

Constructor

read Data

read Prefix

read Suffix

readVersion

ipstream class

ipstream& seekg(streampos pos);
ipstream& seekg(streamoff off, ios::seek_dir);

The first form moves the stream position to the absolute position given by
pas. The second form moves to a position relative to the current position by
an offset off (+ or -) starting at ios::seek_dir. ios::seek_dir can be set to beg
(start of stream), cur (current stream position), or end (end of stream).

streampos tellg();

Returns the (absolute) current stream position.

Protected constructors

ipstream () ;

The protected form of the constructor does not initialize the buffer pointer
bp. Use init to set the buffer and state.

Protected member functions

void * readData(const ObjectBuilder * ,TStreamableBase *& mem);

Invokes the appropriate read function to read from the stream to the object
pointed to by memo If mem is 0, the appropriate build function is called first.

See also: TStreamableClass, and the read and build member functions of each
streamable class

const ObjectBuilder * readPrefix();

Returns the TStreamableClass object corresponding to the class name stored
at the current position.

void readSuffix();

Reads and checks the object's suffix.

See also: ipstream::readPrefix

void readVersion();

Reads the version number of the input stream.

Chapter 5, Persistent stream classes and macros 281

ipstream class

Operator »

Friends

friend ipstream& operator » (ipstream& PS, signed char & ch);
friend ipstream& operator » (ipstream& PS, unsigned char & ch);
friend ipstream& operator » (ipstream& PS, signed short & sh);
friend ipstream& operator » (lpstream& PS, unsigned short & sh);
friend ipstream& operator » (ipstream& PS, signed int & i);
friend ipstream& operator » (ipstream& PS, unsigned int & i);
friend ipstream& operator » (ipstream& PS, signed long & 1);
friend ipstream& operator » (ipstream& PS, unsigned long & 1);
friend ipstream& operator » (ipstream& PS, float & f);
friend ipstream& operator » (ipstream& PS, double & d);
friend ipstream& operator » (ipstream& PS, long double & d);
friend ipstream& operator » (ipstream& PS, TStreamableBase t);
friend ipstream& operator » (ipstream& PS, void *t);

Extracts (reads) from the ipstream ps, to the given argument. A reference to
the stream is returned,letting you chain» operations in the usual way.
The data type of the argument determines how the read is performed. For
example, reading a signed char is implemented using readByte.

of pst ream class objstrm.h

Constructor

282

Provides the base class for writing (inserting) streamable objects to file
streams.

Public constructors

ofpstream() ;
ofpstream(const char *name , int mode = 109: :out ,

int prot = filebuf::openprot);
ofpstream(int f);
ofpstream(int f, char *b , int len);

Creates a buffered ofpstream object. You can set the size and address of the
buffer with the len and b arguments. A file can be opened and attached to
the stream by specifying the name, mode, and protection arguments, or by
using the file descriptor, f

Borland C++ for OS/2 Library Reference

open

rdbuf

opstream class

Constructor

Destructor

findObject

findVB

flush

fwriteBytes

of pst ream class

Public member functions

void open(char *name, int mode = ios::out, int prot = filebuf::openprot);

Opens the named file in the given mode (app, ate, in, out, binary, trunc,
nocreate, or noreplace) and protection. The default mode is out (output) with
openprot protection. The opened file is attached to this stream.

filebuf * rdbuf();

Returns the current file buffer.

objstrm.h

Provides the base class for writing (inserting) streamable objects.

Public constructors and destructor

opstream(streambuf *buf);

This constructor creates a buffered opstream with the given buffer. The state
is set to o.
-opstream () ;

Destroys the opstream object.

See also: pstream: :init

Public member functions

P_id_type findObject(TStreamableBase *adr);

Returns the type ID for the object pointed to by adr.

p_id_type findVB(TStreamableBase *adr);

Returns a pointer to the virtual base.

opstream& flush();

Flushes the stream.

void fwriteBytes(canst void *data, size_t sz);

Writes the specified number of bytes (sz) from the supplied buffer (data) to
the stream.

Chapter 5, Persistent stream classes and macros 283

opstream class

fwriteString

registerObject

registerVB

seekp

tellp

write Byte

write Bytes

writeObject

writeString

writeWord

writeWord16

writeWord32

284

void fwriteString(const char *str)i

Writes the specified character string (str) to the stream.

void registerObject(TStreamableBase *adr) i

Registers the class of the object pointed to by adr.

void registerVB(TStreamableBase *adr)i

Registers a virtual base class.

opstream& seekp(streampos pOS)i

opstream& seekp(streamoff off,ios: :seek_dir)i

The first form moves the stream's current position to the absolute position
given by pos. The second form moves to a position relative to the current
position by an offset off(+ or -) starting at ios::seek_dir. ios::seek_dir can be set
to beg (start of stream), cur (current stream position), or end (end of stream).

streampos tellp() i

Returns the (absolute) current stream position.

void writeByte(uint8 Ch)i

Writes the byte ch to the stream.

void writeBytes(const void *data, size_t SZ)i

Writes sz bytes from data buffer to the stream.

void writeObject(const TStreamableBase *t, int iSPrt = 0,
Moduleld mid = GetModuleld())i

Writes the object that is pointed to by t to the output stream. The isPtr
indicates whether the object was allocated from the heap.

void writeString(const char *str)i

Writes str to the stream.

void writeWord(uint32 us) i

Writes the 32-bit word us to the stream.

void writeWord16 (uint16 us) i

Writes the 16-bit word us to the stream.

void writeWord32 (uint32 us) i

Writes the 32-bit word us to the stream.

Borland C++ for OS/2 Library Reference

Constructor

writeData

write Prefix

writeSuffix

Operator «

opstream class

Protected constructors

opstream() ;

This protected form of the constructor does not initialize the buffer pointer
bp. Use init to set the buffer and state.

Protected member functions

void writeData(TStreamableBase *t);

Writes data to the stream by calling the appropriate class's write member
function for the object being written.

See also: TStreamableBase and the write functions in the streamable classes

void writePrefix(const TStreamableBase *t);

Writes the class name prefix to the stream. The «operator uses this
function to write a prefix and suffix around the data written with writeData.
The prefix/suffix is used to ensure type-safe stream I/O.

See also: ipstream:readPrefix

void writeSuffix(const TStreamableBase *t);

Writes the class name suffix to the stream. The « operator uses this
function to write a prefix and suffix around the data written with writeData.
The prefix/suffix is used to ensure type-safe stream I/O.

See also: ipstream:readPrefix

Friends

friend opstream& operator « (opstream& PS, signed char ch);
friend opstream& operator « (opstream& PS, unsigned char ch);
friend opstream& operator « (opstream& PS, signed short sh);
friend opstream& operator « (opstream& PS, unsigned short sh);
friend opstream& operator « (opstream& PS, signed int i);
friend opstream& operator « (opstream& PS, unsigned int i);
friend opstream& operator « (opstream& PS, signed long 1);
friend opstream& operator « (opstream& PS, unsigned long 1) ;
friend opstream& operator « (opstream& PS, float f);
friend opstream& operator « (opstream& PS, double d);
friend opstream& operator « (opstream& PS, long double d) ;
friend opstream& operator « (opstream& PS, TStreamableBase& t);

Chapter 5, Persistent stream classes and macros 285

opstream class

pstream class

PointerTypes

Constructor

Destructor

bad

clear

eof

fail

good

286

Inserts (writes) the given argument to the given ipstream object. The data
type of the argument determines the form of write operation employed.

pstream is the base class for handling streamable objects.

Type definitions

enum PainterTypes{ptNull, ptIndexed, ptObject};

Enumerates object pointer types.

Public constructors and destructor

pstream(streambuf *buf);

objstrm.h

This constructor creates a buffered pstream with the given buffer. The state
is set to o.
virtual -pstream();

Destroys the pstream object.

Public member functions

int bad() canst;

Returns nonzero if an error occurred.

vaid clear(int aState = 0);

Set the stream state to the given value (defaults to 0).

int eaf() canst;

Returns nonzero after end of stream.

int fail() canst;

Returns nonzero if a stream operation failed.

int gaad() canst;

Borland C++ for OS/2 Library Reference

rdbuf

rdstate

Operator void *()

Operator! ()

bp

state

Constructor

pstream class

Returns nonzero if no state bits are set (that is, if no errors occurred).

streambuf * rdbuf() canst;

Returns a pointer to this stream's assigned buffer.

See also: pstream::pb

int rdstate() canst;

Returns the current state value.

Operators

operator void *() canst;

Converts to a void pointer.

See also: pstream::fail

int operator ! () canst;

The NOT operator. Returns a if the operation has failed (that is, if
pstream::fail returned nonzero); otherwise, returns nonzero.

See also: pstream::fail

Protected data members

streambuf *bp;

Pointer to the stream buffer.

int state;

Format state flags. Use rdstate to access the current state.

See also: pstream::rdstate

Protected constructors

pstream() ;

This form of the constructor does not initialize the buffer pointer bp. Use
init and setstate to set the buffer and state.

Chapter 5, Persistent stream classes and macros 287

pstream class

init

setstate

Protected member functions

void init(streambuf *sbp);

Initializes the stream: sets state to a and bp to sbp.

void setstate(int b);

Updates the state data member with state 1= (b & OxFF).

TStreamableBase class objstrm.h

Typejd

Destructor

CastablelD

288

class TStreamableBase

Classes that inherit from TStreamableBase are known as streamable classes,
meaning their objects can be written to and read from streams. If you want
to develop your own streamable classes, you should make sure that
TStreamableBase is somewhere in their ancestry. Using an existing
streamable class as a base, of course, is an obvious way of achieving this.
Use multiple inheritance to derive a class from TStreamableBase if your class
must a~so fit into an existing class hierarchy.

Type definitions

typedef canst char *Type_id;

Describes type identifiers.

Public destructor

virtual -TStreamableBase() {};

Destroys the TStreamableBase object.

Public member functions

virtual Type_id CastableID() canst = 0;

Available only when the library is build without RTTI.

Provides support for typesafe downcasting. Returns a string containing the
type name.

Borland C++ for OS/2 Library Reference

FindBase

MostDerived

virtual void *FindBase(Type_id id) const;

Available only when the library is build without RTTI.

Returns a pointer to the base class.

virtual void *MostDerived() const = 0;

Available only when the library is build without RTTI.

Returns a void pointer to the actual streamed object.

TStreamableBase class

TStreamableClass class streambl.h

Constructor

Used by the private database class and pstream in streamable class
registration.

Public constructor

TStreamableClass(const char *n, BUILDER b, int d=NoDelta,
ModuleId mid = GetModuleId());

Creates a TStreamableClass object with the given name (n) and the given
builder function (b), then registers the type. Each streamable class, for
example TClassname, has a build member function of type BUILDER. For
type-safe object-stream I/O, the stream manager needs to access the names
and the type information for each class. To ensure that the appropriate
functions are linked into any application using the stream manager, you
must provide a reference such as:

TStreamableClass RegClassNamei

where TClassName is the name of the class for which objects need to be
streamed. (Note that RegClassName is a single identifier.) This not only
registers TClassName (telling the stream manager which build function to
use), it also automatically registers any dependent classes. You can register
a class more than once without any harm or overhead.

Invoke this function to provide raw memory of the correct size into which
an object of the specified class can be read. Because the build procedure
invokes a special constructor for the class, all virtual table pointers are
initialized correctly.

Chapter 5, Persistent stream classes and macros 289

TStreamableClass class

The DELTA macro
is-provided only for

backward
compatibility and

should not be used in
new code.

The distance, in bytes, between the base of the streamable object and the
beginning of the TStreamableBase component of the object is d. Calculate d
by using the __ DELTA macro. For example,

TStrearnableClass RegTClassNarne = TStrearnableClass(ITClassNarne",
TClassNarne::build, __ DELTA(TClassNarne)) i

See also: TStreamableBase, ipstream, opstream

Friends

The classes opstream and ipstream are friends of TStreamableClass.

TStreamer class objstrm.h

GetObject

Constructor

Read

StreamableName

290

class TStreamer

Base class for all streamable objects.

Public member functions

TStreamableBase *GetObject() canst

Returns the address of the TStreamableBase component of the streamable
object.

Protected constructors

TStreamer(TStreamableBase *abj)

Constructs the TStreamer object, and initializes the streamable object
pointer.

Protected member functions

virtual void *Read(ipstream&, uint32) canst = 0;

This pure virtual member function must be redefined for every streamable
class. It must read the necessary data members for the streamable class
from the supplied ipstream.

virtual canst char *StreamableName() canst = 0;

Borland C++ for OS/2 Library Reference

Write

TStreamer class

This pure virtual member function must be redefined for every streamable
class. StreamableName returns the name of the streamable class, which is
used by the stream manager to register the streamable class. The name
returned must be a O-terminated string.

virtual void Write(opstrearn&) canst = 0;

This pure virtual function must be redefined for every streamable class. It
must write the necessary streamable class data members to the supplied
opstream object. Write is usually implemented by calling the base class's
Write (if any), and then inserting any additional data members for the
derived class.

DELTA macro streambl.h

Provided only for
backward

compatibility and
should not be used in

new code.

#define __ DELTA(d) (FP_OFF((TStrearnable *) (d *)1)-1)

Calculates the distance, in bytes, between the base of the streamable object
and the beginning of the TStreamableBase component of the object.

DECLARE STREAMABLE macro objstrm.h

DECLARE_STREAMABLE(exp, cls, ver)

The DECLARE_STREAMABLE macro is used within a class definition to
add the members that are needed for streaming. Because it contains access
specifiers, it should be followed by an access specifier or be used at the end
of the class definition. The first parameter should be a macro, which in turn
should conditionally expand to either _ _ import or _ _ export, depending on
whether or not the class is to be imported or exported from a DLL. The
second parameter is the streamable class name. The third parameter is the
object version number.

See also: Chapter 8 in the Programmer's Guide

DECLARE STREAMABLE FROM BASE macro - -- objstrm.h

DECLARE_STREAMABLE_FROM_BASE(exp, cls, ver)

DECLARE_STREAMABLE_FROM_BASE is used in the same way as
DECLARE_STREAMABLE; it should be used when the class being defined
can be written and read using Read and Write functions defined in its base
class without change. This usually occurs when a derived class overriaes

Chapter 5, Persistent stream classes and macros 291

virtual functions in its base or provides different constructors, but does not
add any data members. (If you used DECLARE_STREAMABLE in this
situation, you would have to write Read and Write functions that merely
called the base's Read and Write functions. Using
DECLARE_STREAMABLE_FROM_BASE prevents this~)

DECLARE_ABSTRACT_STREAMABLE macro objstrm.h

DECLARE_ABSTRACT_STREAMABLE(exp, cis, ver)

This macro is used in an abstract class. DECLARE_STREAMABLE doesn't
work with an abstract class because an abstract class can never be
instantiated, and the code that attempts to instantiate the object (Build)
causes compiler errors.

DECLARE STREAMER macro objstrm.h

DECLARE_STREAMER (exp, cis, ver)

This macro defines a nested class within your streamable class; it contains
the core of the streaming code. DECLARE_STREAMER declares the Read
and Write function declarations, whose definitions you must provide, and
the Build function that calls the TStreamableClass constructor. See
DECLARE_STREAMABLE for an explanation of the parameters.

DECLARE STREAMER FROM BASE macro objstrm.h - --
DECLARE_STREAMER_FROM_BASE(exp, cis, base)

This macro is used by DECLARE_STREAMABLE_FROM_BASE. It declares
a nested Streamer class without the Read and Write functions. See
DECLARE_STREAMABLE for a description of the parameters.

DECLARE_ABSTRACT_STREAMER macro objstrm.h

292

define DECLARE_ABSTRACT_STREAMER(exp, cis, ver)

This macro is used by DECLARE_ABSTRACT_STREAMABLE. It declares a
nested Streamer class without the Build function. See
DECLARE_STREAMABLE for an explanation of the parameters.

Borland C++ for OS/2 Library Reference

DECLARE_CASTABLE macro

DECLARE CASTABLE macro objstrm.h

DECLARE_CAST ABLE

This macro provides declarations that provide a rudimentary typesafe
downcast mechanism. This is useful for compilers that don't support run
time type information.

DECLARE STREAMABLE OPS macro - - objstrm.h

DECLARE_STREAMABLE_OPS(cls)

Declares the inserters and extractors. For template classes,
DECLARE_STREAMABLE_OPS must use class< ... > as the macro
argument; other DECLAREs take only the class name.

DECLARE STREAMABLE CTOR macro - - objstrm.h

DECLARE_STREAMABLE_CTOR(cls)

Declares the constructor called by the Streamer::Build function.

IMPLEMENT STREAMABLE macros objstrm.h

IMPLEMENT_STREAMABLE(cls)
IMPLEMENT_STREAMABLE1(cls, basel)
IMPLEMENT_STREAMABLE2(cls, basel, base2)
IMPLEMENT_STREAMABLE3(cls, basel, base2, base3)
IMPLEMENT_STREAMABLE4(cls, basel, base2, base3, base4)
IMPLEMENT_STREAMABLE5(cls, baseL base2, base3, base4, base5)

The IMPLEMENT_STREAMABLE macros generate the registration object
for the class via IMPLEMENT_STREAMABLE_CLASS, and generate the
various member functions that are needed for a streamable class via
IMPLEMENT_ABSTRACT_STREAMABLE.

IMPLEMENT_STREAMABLE is used when the class has no base classes
other than TStreamableBase. Its only parameter is the name of the class.
The numbered versions (IMPLEMENT_STREAMABLEl,
IMPLEMENT_STREAMABLE2, and so on) are for classes that have bases.

Chapter 5, Persistent stream classes and macros 293

IMPLEMENT_STREAMABLE macros

Each base class, including all virtual bases, must be listed in the
IMPLEMENT_STREAMABLE macro invocation.

The individual components comprising these macros can be used
separately for special situations, such for as custom constructors.

IMPLEMENT_STREAMABLE_CLASS macro objstrm.h

IMPLEMENT_STREAMABLE_CLASS(cls)

Constructs a TStreamableClass class instance.

IMPLEMENT STREAMABLE CTOR macros objstrm.h - -

IMPLEMENT_STREAMABLE_CTOR(cls)
IMPLEMENT_STREAMABLE_CTOR1(cls, basel)
IMPLEMENT_STREAMABLE_CTOR2(cls, basel, base2)
IMPLEMENT_STREAMABLE_CTOR3(cls, basel, base2, base3)
IMPLEMENT_STREAMABLE_CTOR4(cls, basel, base2, base3, base4)
IMPLEMENT_STREAMABLE_CTORS(cls, basel, base2, base3, base4, baseS)

Defines the constructor called by the Build function. All base classes must
be listed in the appropriate macro.

IMPLEMENT STREAMABLE POINTER macro objstrm.h - -

IMPLEMENT_STREAMABLE_POINTER(cls)

Creates the instance pointer extraction operator (»).

IMPLEMENT CASTABLE 10 macro - - objstrm.h

IMPLEMENT_CASTABLE_ID(cls)

Sets the typesafe downcast identifier.

IMPLEMENT CASTABLE macros objstrm.h

IMPLEMENT_CASTABLE(cls)

294 Borland C++ for OS/2 Library Reference

IMPLEMENT_CASTABLE macros

IMPLEMENT_CASTABLE1{ cls)
IMPLEMENT_CASTABLE2{ cls)
IMPLEMENT_CASTABLE3{ cls)
IMPLEMENT_CASTABLE4{ cls)
IMPLEMENT_CASTABLE5{ cls)

These macros implement code that supports the typesafe downcast
mechanism.

IMPLEMENT STREAMER macro objstrm.h

IMPLEMENT_STREAMER { cls

Defines the Streamer constructor.

IMPLEMENT_ABSTRACT _STREAMABLE macros objstrm.h

IMPLEMENT_ABSTRACT_STREAMABLE{ cls)
IMPLEMENT_ABSTRACT_STREAMABLE1(cls)
IMPLEMENT_ABSTRACT_STREAMABLE2(cls)
IMPLEMENT_ABSTRACT_STREAMABLE3{ cls)
IMPLEMENT_ABSTRACT_STREAMABLE4{ cls)
IMPLEMENT_ABSTRACT_STREAMABLE5{ cls)

This macro expands to IMPLEMENT_STREAMER (which defines the
Streamer constructor), IMPLEMENT_STREAMABLE_CTOR (which defines
the TStreamableClass constructor), and
IMPLEMENT_STREAMABLE_POINTER (which defines the instance
pointer extraction operator).

IMPLEMENT STREAMABLE FROM BASE macro - -- objstrm.h

IMPLEMENT_STREAMABLE_FROM_BASE{ cls, basel

This macro expands to IMPLEMENT_STREAMABLE_CLASS (which
constructs a TStreamableClass instance),
IMPLEMENT_STREAMABLE_CTORI (which defines a one base class
constructor that is called by Build), and
IMPLEMENT_STREAMABLE_POINTER (which defines the instance
pointer extraction operator).

Chapter 5, Persistent stream classes and macros 295

296 Borland C++ for OS/2 Library Reference

See Chapter 7 in the
Programmers Guide

for information on
using containers.

c H A p T E R 6

The C++ container classes

This chapter is a reference guide to the Borland C++ container classes. Each
container class belongs to one of the following groups, which are listed here
with their associated header-file names.

• Array (arrays.h) • Hash table (hashimp.h)

• Association (assoc.h) • List (listimp.h)

• Bag (bags.h) • Queue (queues.h)

• Binary tree (binimp.h) • Set (sets.h)

• Dequeue (deques.h) • Stack (stacks.h)

• Dictionary (dict.h) • Vector (vectimp.h)

• Double-linked list (dlistimp.h)

TMArrayAsVector template arrays.h

CondFunc

IterFunc

template <class T, class Alloc> class TMArrayAsVectori

TMArrayAs Vector implements a managed array of objects of type T, using a
vector as the underlying implementation. It requires an operator == for
type T. The memory manager Alloc provides class-specific new and delete
operators.

Type definitions

typedef int (*CondFunc) (canst T &, void *) i

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *) i

Function type used as a parameter to the ForEach member function.

Chapter 6, The C++ container classes 297

Array containers

Constructor

Add

AddAt

ArraySize

BoundBase

Destroy

Detach

Find

298

Public constructors

TMArrayAsVectar(int upper, int lawer = 0, int delta = 0)

Creates an array with an upper bound of upper, a lower bound of lower, and
a growth delta of delta.

Public member functions

int Add (canst T& t)

Adds a T object at the next available index at the end of an array. Adding
an element beyond the upper bound leads to an overflow condition. If
overflow occurs and delta is nonzero, the array is expanded (by sufficient
multiples of delta bytes) to accommodate the addition. If delta is zero, Add
fails. Add returns 0 if it couldn't add the object.

int AddAt(canst T& t, int lac)

Adds a T object at the specified index. If that index is occupied, it moves the
object up to make room for the added object. If lac is beyond the upper
bound, the array is expanded if delta (see the constructor) is nonzero. If delta
is zero, attempting to AddAt beyond the upper bound gives an error.

unsigned ArraySize() canst;

Returns the current number of cells allocated.

int BaundBase(unsigned lac) canst;

Boundbase adjust vectors, which are zero-based, to arrays, which aren't
zero-based. See Zero Base.

int Destray(int i)

Removes the object at the given index. The object will be destroyed.

int Destray(canst T& t)

Removes the given object and destroys it.

int Detach (int lac)

int Detach(canst T& t)

The first version removes the object at lac; the second version removes the
first object that compares equal to the specified object.
See also: TShouldDelete::ownsElements

int Find(canst T& t) canst;

Borland C++ for OS/2 Library Reference

FirstThat

Flush

For Each

Array containers

Finds the specified object and returns the object's index; otherwise returns
INT_MAX.

T *FirstThat(CondFunc cond, void *args) const;

Returns a pointer to the first object in the array that satisfies a given
condition. You supply a test-function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: LastThat

void Flush ();

Removes all elements from the array without destroying the array.

See also: Detach

void ForEach(IterFunc iter, void *args)

ForEach executes the given function iter for each element in the array. The
args argument lets you pass arbitrary data to this function.

GetltemslnContainer unsigned GetItemslnContainer () const;

Grow

HasMember

InsertEntry

IsEmpty

IsFull

LastThat

Returns the number of items in the array, as distinguished from ArraySize,
which returns the size of the array.

void Grow (int loc)

Increases the size of the array, in either direction, so that Zoe is a valid index.

int HasMember(const T& t) const;

Returns 1 if the given object is found in the array; otherwise returns O.

void InsertEntry(int loc)

Creates an object and inserts it at Zoe, moving entries above Zoe up by one.

int IsEmpty() const;

Returns 1 if the array contains no elements; otherwise returns O.

int IsFull() const;

Returns 1 if the array is full; otherwise returns o. The array is full if delta is
not equal to 0 and if the number of items in the container equals the value
returned by ArraySize.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the array that satisfies a given
condition. You supply a test function pointer cond that returns true for a

Chapter 6, The C++ container classes 299

Array containers

LowerBound

Reallocate

RemoveEntry

Set Data

UpperBound

ZeroBase

ItemAt

operator [1

300

certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: FirstThat, ForEach

int LowerBound() const;

Returns the array's lowerbound.

int Reallocate (unsigned sz, unsigned offset = 0)

If delta (see the constructor) is zero, reallocate returns O. Otherwise, reallocate
tries to create a new array of size S2 (adjusted upwards to the nearest
multiple of delta). The existing array is copied to the expanded array and
then deleted. In an array of pointers, the entries are zeroed for each unused
element. In an array of objects, the default constructor is invoked for each
unused element. offset is the location in the new vector where the first
element of the old vector should be copied. This is needed when the array
has to be extended downward.

void RernoveEntry(int loc)

Removes element at the loc index into the array, and reduces the array by
one element. Elements from index (loc + 1) upward are copied to positions
loc, (loc + 1), and so on. The original element at loc is lost.

void SetData(int loc, const T& t)

The given t replaces the existing element at the index loco

int UpperBound() const;

Returns the array's current upperbound.

unsigned ZeroBase(int loc) const;

Returns the location relative to lowerbound (loc -lowerbound).

Protected member functions

T IternAt(int i) const;

Returns a copy of the object stored at location i.

Operators

T& operator [] (int loc

T& operator [] (int loc const;

Borland C++ for OS/2 Library Reference

Array containers

Returns a reference to the element at the location specified by lac. the
non-canst version resizes the array if it's necessary to make lac a valid
index. The canst version throws an exception in the debugging version on
an attempt to index out of bounds.

TMArray AsVectorlterator template arrays.h

Constructor

Current

Restart

operator ++

operator int

template <class T, class Alloc> class TMArrayAsVectorIteratori

Implements an iterator object to traverse TMArrayAsVector objects.

Public constructors

TMArrayAsVectorIterator(const TMArrayAsVector<T,Alloc> & a)

Creates an iterator object to traverse TMArrayAsVector objects.

Public member functions

const T& Current() i

Returns the current object.

void Restart() i
void Restart (unsigned start, unsigned stop) i

Restarts iteration from the beginning, or over the specified range.

Operators

const T& operator ++(int)i

Moves to the next object, and returns the object that was current before the
move (post-increment).

const T& operator ++() i

Moves to the next object, and returns the object that was current after the
move (pre-increment).

operator int(). consti

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to a if nothing remains in the iterator.

Chapter 6, The C++ container classes 301

Array containers

TArrayAsVector template arrays.h

Constructor

template <class T> class TArrayAsVectori

T ArrayAs Vector implements an array of objects of type T, using a vector as
the underlying implementation. TStandardAllocator is used to manage
memory. See TMArrayAsVector on page 297 for members.

Public constructors

TArrayAsVector(int upper, int lower = 0, int delta = 0) :

Creates an array with an upper bound of upper, a lower bound of [ower, and
a growth delta of delta.

TArray AsVectorlterator template arrays.h

Constructor

template <class T> class TArrayAsVectorlteratori

Implements an iterator object to traverse TArrayAsVector objects. See
TMArrayAsVectorIterator on page 301 for members.

Public constructors

TArrayAsVectorlterator(const TArrayAsVector<T> & a)

Creates an iterator object to traverse TArrayAsVector objects.

TMIArrayAsVector template arrays.h

CondFunc

302

template <class T, class Alloc> class TMIArrayAsVectori

Implements a managed, indirect array of objects of type T, using a vector as
the underlying implementation.

Type definitions

typedef int (*CondFunc) (const T&, void *) i

Function type used as a parameter to FirstThat and LastThat member
functions.

Borland C++ for OS/2 Library Reference

IterFunc

Constructor

Add

AddAt

ArraySize

Destroy

Detach

Array containers

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public constructors

TMIArrayAsVector(int upper, int lower = 0, int delta = 0);

Creates an indirect array with an upper bound of upper, a lower bound of
lower, and a growth delta of delta.

Public member functions

int Add (T *t);

Adds a pointer to a T object at the next available index at the end of an
array. Adding an element beyond the upper bound leads to an overflow
condition. If overflow occurs and delta is nonzero, the array is expanded (by
sufficient multiples of delta bytes) to accommodate the addition. If delta is
zero, Add fails. Add returns 0 if the object couldn't be added.

int AddAt(T *t, int loc);

Adds a pointer to a T object at the specified index. If that index is occupied,
it moves the object up to make room for the added object. If lac is beyond
the upper bound, the array is expanded if delta (see the constructor) is
nonzero. If delta is zero, attempting to AddAt beyond the upper bound
returns O. Otherwise it returns 1.

unsigned ArraySize() const;

Returns the current number of cells allocated.

int Destroy (int i);

Removes the object at the given index. The object will be deleted.

int Destroy (T *t);

Removes the object pointed to by t and deletes it.

int Detach(int loc, DeleteType dt = NoDelete);
int Detach(T *t, DeleteType dt = NoDelete);

The first version removes the object pointer at lac; the second version
removes the specified pointer. The value of dt and the current ownership
setting determine whether the object itself will be deleted. DeleteType is
defined in the base class TShouldDelete as enurn { NoDelete, DefDelete,

Chapter 6, The C++ container classes 303

Array containers

Find

FirstThat

Flush

ForEach

Delete }. The default value of dt, NoDelete, means that the object will not be
deleted regardless of ownership. With dt set to Delete, the object will be
deleted regardless of ownership. If dt is set to DefDelete, the object will be
deleted only if the array owns its elements.

See also: TShouldDelete::ownsElements

int Find(const T *t) const;

Finds the first specified object pointer and returns the index. Returns
INT_MAX not found.

T *FirstThat(CondFunc cond, void *args) const;

Returns a pointer to the first element in the array that satisfies a given
condition. You supply a test-function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the container meets the condition.

See also: LastThat

void Flush(DeleteType dt = DefDelete)

Removes all elements from the array without destroying the array. The
value of dt determines whether the elements themselves are destroyed. By
default, the ownership status of the array determines their fate, as
explained in the Detach member function. You can also set dt to Delete and
NoDelete.

See also: Detach

void ForEach(IterFunc iter, void *args)

ForEach executes the given function iter for each element in the container.
The args argument lets you pass arbitrary data to this function.

GetltemslnContainer unsigned GetItemsInContainer () const;

Returns the number of items in the array.

HasMember

IsEmpty

IsFu11

LastThat

304

int HasMember(const T& t) const;

Returns 1 if the given object is found in the array; otherwise returns O.

int IsEmpty() const;

Returns 1 if the array contains no elements; otherwise returns O.

int IsFull() const;

Returns 1 if the array is full; otherwise returns o.
T *LastThat(CondFunc cond, void *args) const;

Borland C++ for OS/2 Library Reference

LowerBound

UpperBound

BoundBase

Grow

InsertEntry

ItemAt

Reallocate

RemoveEntry

Array containers

Returns a pointer to the last element in the array that satisfies a given
condition. You supply a test function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the container meets the condition.

See also: FirstThat, ForEach

int LowerBound() consti

Returns the array's lowerbound.

int UpperBound() consti

Returns the array's current upperbound.

Protected member functions

int BoundBase(unsigned lac) consti

Boundbase adjusts vectors, which are zero-based, to arrays, which aren't
zero-based. See ZeroBase.

void Grow(int lac)

Increases the size of the array, in either direction, so that loc is a valid index.

void InsertEntry(int lac)

Creates an object and inserts it at loco

T ItemAt(int i) consti

Returns a copy of the object stored at location i.

int Reallocate (unsigned sz, unsigned offset = 0

If delta (see the constructor) is zero, reallocate returns O. Otherwise, reallocate
tries to create a new array of size S2 (adjusted upward to the nearest
multiple of delta). The existing array is copied to the expanded array and
then deleted. In an array of pointers the entries are zeroed. In an array of
objects the default constructor is invoked for each unused element. offset is
the location in the new vector where the first element of the old vector
should be copied. This is needed when the array has to be extended
downward.

void RemoveEntry(int lac)

Removes element at loc, and reduces the array by one element. Elements
from index (loc + 1) upward are copied to positions loc, (loc + 1), and so on.
The original element at loc is lost.

Chapter 6, The C++ container classes 305

Array containers

SetData

SqueezeEntry

Zero Base

operator []

void SetData(int loc, const T& t)

The given t replaces the existing element at the index loco

void SqueezeEntry(unsigned loc)

Removes element at loc, and reduces the array by one element. Elements
from index (loc + 1) upward are copied to positions loc, (loc + 1), and so on.
The original element at loc is lost.

unsigned ZeroBase(int loc) const;

Returns the location relative to lowerbound (loc -lowerbound).

Operators

T * & operator [J (int loc)
T * & operator [J (int loc) const;

Returns a reference to the element at the location specified by loco the
non-const version resizes the array if it's necessary to make loc a valid
index. The const throws an exception in the debugging version on an
attempt to index out of bounds.

TMIArray AsVectorlterator template arrays.h

Constructor

Current

Restart

306

template <class T, class Alloc> class TMIArrayAsVectorIterator;

Implements an iterator object to traverse TMIArrayAsVector objects. Based
on TMVectorIteratorlmp.

Public constructors

TMIArrayAsVectorIterator(const TMIArrayAsVector<T,Alloc> &a)

Creates an iterator object to traverse TMArrayAsVector objects.

Public member functions

T *Current();

Returns a pointer to the current object.

void Restart();

Borland C++ for OS/2 Library Reference

operator ++

Array containers

void Restart (unsigned start, unsigned stop) i

Restarts iteration from the beginning, or over the specified range.

Operators

const T& operator ++(int)i

Moves to the next object, and returns the object that was current before the
move (post-increment).

const T& operator ++() i

Moves to the next object, and returns the object that was current after the
move (pre-increment).

TIArrayAsVector template arrays.h

Constructor

template <class T> class TIArrayAsVectori

Implements an indirect array of objects of type T, using a vector as the
underlying implementation. TStandardAllocator is used to manage memory.
See TMIArrayAs Vector on page 302 for members.

Public constructors

TIArrayAsVector(int upper, int lower = 0, int delta = 0)

Creates an array with an upper bound of upper, a lower bound of lower, and
a growth delta of delta.

TIArray AsVectorlterator template arrays.h

template <class T> class TIArrayAsVectorIteratori

Implements an iterator object to traverse TIArrayAsVector objects. Uses
TStandardAllocator for memory management. See TMIArrayAsVectorIterator
on page 306 for member functions and operators.

Chapter 6, The C++ container classes 307

Array containers

Public constructors

Constructor TIArrayAsVectorIterator(const TIArrayAsVector<T> &a) :
TMIArrayAsVectorIterator<T,TStandardAllocator> (a)

Creates an iterator object to traverse TIArrayAsVector objects.

TMSArrayAsVector template arrays.h

Constructor

template <class T, class Alloc> class TMSArrayAsVectori

Implements a sorted array of objects of type T, using a vector as the
underlying implementation. With the exception of the AddAt member
function, TMSArrayAsVector inherits its member functions and operators
from TMArrayAs Vector. See TMArrayAs Vector on page 297 for members.

Public constructors

TMSArrayAsVector(int upper, int lower = 0, int delta = 0)

Creates an array with an upper bound of upper, a lower bound of [ower, and
a growth delta of delta. It requires a < operator for type T.

TMSArray AsVectorlterator template arrays.h

Constructor

template <class T, class Alloc> class TMSArrayAsVectorIteratori

Implements an iterator object to traverse TMSArrayAsVector objects. See
TMArrayAsVectorIterator on page 301 for members.

Public constructors

TMSArrayAsVectorIterator(const TMSArrayAsVector<T> & a)

Creates an iterator object to traverse TSArrayAs Vector objects.

TSArray template arrays.h

A simplified name for TSArrayAsVector.

308 Borland C++ for OS/2 Library Reference

Array containers

TSArrayAsVector template arrays.h

Constructor

template <class T> class TSArrayAsVectori

Implements a sorted array of objects of type T, using a vector as the
underlying implementation. With the exception of the AddAt member
function, TSArrayAs Vector inherits its member functions and operators
from TMArrayAsVector. See TMArrayAsVector on page 297 for members.

Public constructors

TSArrayAsVector(int upper, int lower = 0, int delta = 0)

Creates an array with an upper bound of upper, a lower bound of lower, and
a growth delta of delta. It requires a < operator for type T.

TSArray AsVectorlterator template arrays.h

Constructor

template <class T> class TSArrayAsVectorlteratori

Implements an iterator object to traverse TSArrayAsVector objects. See
TMArrayAsVectorIterator on page 301 for members.

Public constructors

TSArrayAsVectorlterator(canst TSArrayAsVector<T> & a) :

Creates an iterator object to traverse TSArrayAsVector objects.

TSArraylterator template arrays.h

A simplified name for TSArrayAsVectorIterator.

TISArrayAsVector template arrays.h

template <class T> class TISArrayAsVectori

Implements an indirect sorted array of objects of type T, using a vector as
the underlying implementation. See TMIArrayAsVector on page 302 for
members.

Chapter 6, The C++ container classes 309

Array containers

Constructor

Public constructors

TISArrayAsVector(int upper, int lower = 0, int delta = 0)

Creates an indirect array with an upper bound of upper, a lower bound of
lower, and a growth delta of delta.

TISArray AsVectorlterator template arrays.h

, Constructor

template <class T> class TISArrayAsVectorIteratori

Implements an iterator object to traverse TISArrayAsVector objects. See
TMArrayAsVectorIterator on page 301 for members.

Public constructors

TISArrayAsVectorIterator(const TISArrayAsVector<T> &a)

Creates an iterator object to traverse TISArrayAsVector objects.

TMISArrayAsVector template arrays.h

Constructor

template <class T, class Alloc> class TMISArrayAsVectori

Implements a managed, indirect sorted array of objects of type T, using a
vector as the underlying implementation. See TMIArrayAs Vector on page
302 for members.

Public constructors

TMISArrayAsVector(int upper, int lower = 0, int delta = 0)

Creates an indirect array with an upper bound of upper, a lower bound of
lower, and a growth delta of delta.

TMDDAssociation template assoc.h

template <class K, class V, class A> class TMDDAssociationi

310 Borland C++ for OS/2 Library Reference

Constructor

Constructor

DeleteElements

HashValue

Key

Value

operator ==

Association containers

Implements a managed association, binding a direct key (K) with a direct
value (V) . Assumes that K has a Hash Value member function, or that a
global function with one of the following prototypes exists:

unsigned HashValue(K);
unsigned HashValue(K &);
unsigned HashValue(canst K &);

K also must have a valid == operator. Class A represents the user-supplied
storage manager.

Public constructors

TMDDAssaciatian()

The default constructor.

TMDDAssaciatian(canst K &k, canst V &v)

Constructs an object that associates a copy of key object k with a copy of
value object v.

Public member functions

void DeleteElernents()

The dictionary containing the associations determines whether pointed-to
objects should be deleted, and if so, calls DeleteElements for each of the
associations it holds.

unsigned HashValue()

Returns the hash value for the key.

canst K& Key ()

Returns KeyData.

canst V& Value() canst;

Returns ValueData.

Operators

Tests equality between keys.

Chapter 6, The C++ container classes 311

Association containers

TDDAssociation template assoc.h

Constructor

Constructor

template <class K,class v> class TDDAssociationi

Standard association (direct key, direct value). Implements an association,
binding a direct key (K) with a direct value (V). Assumes that K has a
HashValue member function, or that a global function with the following
prototype exists:

unsigned HashValue(K &)i

K also must have a valid == operator. See TMDDAssociation on page 310 for
members.

Public constructors

TDDAssociation ()

The default constructor.

TDDAssociation(const K &k, const V &v)

Constructs an object that associates key object k with value object v.

TMDIAssociation template assoc.h

Constructor

Constructor

312

template <class K, class V, class A> class TMDIAssociationi

Implements a managed association, binding a direct key (K) with a indirect
value (V) . Assumes that K has a Hash Value member function, or that a
global function with the following prototype exists:

unsigned HashValue(K &) i

K also must have a valid == operator. Class A represents the user-supplied
storage manager.

Public constructors

TMDIAssociation()

The default constructor.

TMDIAssociation(const K& k, V * v)

Constructs an object that associates key object k with value object v.

Borland C++ for OS/2 Library Reference

HashValue

Key

Value

operator ==

Public member functions

unsigned HashValue()

Returns the hash value for the key.

const K& Key ()

Returns the key.

const V * Value()

Returns a pointer to the data.

Operators

int operator == (const TMDDAssociation<K,V,A> & a)

Tests the equality between keys.

Association containers

TDIAssociation template assoc.h

Constructor

Constructor

template <class K,class V> class TDIAssociation;

Implements an association, binding a direct key (K) with a indirect value
(V). Assumes that K has a HashValue member function, or that a global
function with the following prototype exists:

unsigned HashValue(K &);

K also must have a valid == operator. See TMDIAssociation on page 312 for
members.

Public constructors

TDIAssociation()

The default constructor.

TDIAssociation(const K& k, V * v)

Constructs an object that associates key object k with value object v.

unsigned HashValue(int& i) { return i; }
TDIAssociation<int, int> assoc(3, new int(4)) /* Create an association */
TDictionaryAsHashTable<TDIAssociation<int, int> > dict; /* Creates a

dictionary */

Chapter 6, The C++ container classes 313

Association containers

dict.Add(assoc); /* Copies assoc into the dictionary */
dict.OwnsElernents(); /* Tell diet that it should delete pointed-to objects */
dict.Flush; /* Deletes the int created by new in the first line */

TMIDAssociation template assoc.h

KeyData

ValueData

Constructor

Constructor

DeleteElements

HashValue

314

template <class K, class V, class A> class TMIDAssociation;

Implements a managed association, binding an indirect key (K) with a
direct value (V) . Assumes that K has a Hash Value member function, or that
a global function with the following prototype exists:

unsigned HashValue(K &)i

K also must have a valid == operator. Class A represents the user-supplied
storage manager.

Protected data members

K KeyData;

The key class passed into the template by the user.

V ValueDatai

The value class passed into the template by the user.

Public constructors

TMIDAssociation()

The default constructor.

TMIDAssociation(K *k, const V& v

Constructs an object that associates key object k with value object v.

Public member functions

void DeleteElements()

The dictionary containing the associations determines whether pointed-to
objects should be deleted, and if so, calls DeleteElements for each of the
associations it holds.

unsigned HashValue()

Borland C++ for OS/2 Library Reference

Key

Value

operator ==

Returns the hash value for the key.

cons t K * Key ()

Returns a pointer to the key.

const V& Value() const;

Returns a copy of the data.

Operators

int operator == (const TMIDAssociation<K,V,A> & a)

Tests the equality between keys.

Association containers

TIDAssociation template assoc.h

Constructor

Constructor

template <class K, class v> class TIDAssociation;

Implements an association, binding an indirect key (K) with a direct value
(V) . Assumes that K has a HashValue member function, or that a global
function with the following prototype exists:

unsigned HashValue(K &);

K also must have a valid == operator. See TMIDAssociation on page 314 for
members.

Public constructors

TIDAssociation()

The default constructor.

TIDAssociation(K * k, const V& v

Constructs an object that associates key object *k with value object v.

TMIlAssociation template assoc.h

template <class K, class V, class A> class TMIIAssociation;

Implements a managed association, binding an indirect key (K) with an
indirect value (V) . Assumes that K has a HashValue member function, or
that a global function with the following prototype exists:

Chapter 6, The C++ container classes 315

Association containers

Constructor

Constructor

DeleteElements

HashValue

Key

Value

operator ==

unsigned HashValue(K &);

K also must have a valid == operator. Class A represents the user-supplied
storage manager.

Public constructors

TMIIAssociation()

The default constructor.

TMIIAssociation(K * k, V * v

Constructs an object that associates key object *k with value object *v.

Public member functions

void DeleteElements()

The dictionary containing the associations determines whether pointed-to
objects should be deleted, and if so, calls DeleteElements for each of the
associations it holds.

unsigned HashValue()

Returns the hash value for the key.

const K * Key()

Returns a pointer to the key.

const V * Value()

Returns a pointer to the data.

Operators

int operator == (const TMIIAssociation<K,V,A> & a)

Tests equality between keys.

TIlAssociation template assoc.h

316

template <class K,class V> class TIIAssociation;

Standard association (indirect key, indirect value). Implements an
association, binding an indirect key (K) with an indirect value (V) .

Borland C++ for OS/2 Library Reference

Constructor

Constructor

Association containers

Assumes that K has a HashValue member function, or that a global function
with the following prototype exists:

unsigned HashValue(K &);

K also must have a valid == operator. See TMIIAssociation on page 315 for
members.

Public constructors

TIIAssociation()

The default constructor.

TIIAssociation(K *k, V * v)

Constructs an object that associates key object *k with value object *v.

TMBagAsVector template bags.h

CondFunc

lterFunc

Constructor

template '<class T, class Alloc> class TMBagAsVector;

Implements a managed bag of objects of type T, using a vector as the
underlying implementation. Bags, unlike sets, can contain duplicate objects.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public constructors

TMBagAsVector(unsigned sz = DEFAULT_BAG_SIZE

Constructs a managed, empty bag. S2 represents the number of items the
bag can hold.

Chapter 6, The C++ container classes 317

Bag containers

Add

Detach

Find

Flush

ForEach

Public member functions

int Add (canst T& t)

Adds the given object to the bag.

int Detach(canst T& t);
Removes the specified object.

See also: TShouldDelete::ownsElements

T* Find(canst T& t) canst;

Returns a pointer to the given object if found; otherwise returns O.

vaid Flush ()

Removes all the elements from the bag without destroying the bag.

See also: Detach

vaid FarEach(IterFunc iter, vaid *args)

ForEach executes the given function iter for each element in the bag. The
args argument lets you pass arbitrary data to this function.

GetltemslnContainer int GetItemslnCantainer () canst;

HasMember

IsEmpty

IsFuil

Returns the number of objects in the bag.

int HasMember(canst T& t) canst;

Returns 1 if the given object is found; otherwise returnsO.

int isEmpty() canst;

Returns 1 if the bag is empty; otherwise returns O.

int isFull() canst;

Returns O.

TMBagAs Vectorlterator template bags.h

318

template <class T,class Allac> class TMBagAsVectarlteratarj

Implements an iterator object to traverse TMBagAsVector objects. See
TMArrayAsVectorIterator on page 301 for members.

Borland C++ for OS/2 Library Reference

Constructor

Public constructors

TMBagAsVectorIterator(const TMBagAsVector<T,Alloc> & b)

Constructs an object that iterates on TMBagAsVector objects.

Bag containers

TBagAsVector template bags.h

Constructor

template <class T> class TBagAsVector;

Implements a bag of objects of type T, using a vector as the underlying
implementation. TStandardAllocator is used to manage memory. See
TMBagAs Vector on page 317 for members.

Public constructors

TBagAsVector(unsigned sz = DEFAULT_BAG_SIZE)

Constructs an empty bag. S2 represents the number of items the bag can
hold.

TBagAsVectorlterator template bags.h

Constructor

template <class T> class TBagAsVectorIterator;

Implements an iterator object to traverse TBagAs Vector objects.
TStandardAllocator is used to manage memory. See TMArrayAsVectorIterator
on page 301 for members.

Public constructors

TBagAsVectarIteratar(canst TBagAsVector<T> & b)

Constructs an object that iterates on TBagAsVector objects.

TMIBagAsVector template bags.h

template <class T, class Alloc> class TMIBagAsVector;

Implements a managed bag of pointers to objects of type T, using a vector
as the underlying implementation.

Chapter 6, The C++ container classes 319

Bag containers

CondFunc

IterFunc

Constructor

Add

Detach

Find

FirstThat

Flush

320

Type definitions

typedef intO (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public constructors

TMIBagAsVector(unsigned sz = DEFAULT_BAG_SIZE)

Constructs an empty, managed, indirect bag. sz represents the initial
number of slots allocated.

Public member functions

int Add (T *t)

Adds the given object pointer to the bag.

int Detach(T it, DeleteType dt = NoDelete

Removes the specified object pointer. The value of dt and the current
ownership setting determine whether the object itself will be deleted.
DeleteType is defined in the base class TShouldDelete as enum {,NoDelete,
DefDelete, Delete }. The default value of dt, NoDelete, means that the object
will not be deleted regardless of ownership. With dt set to Delete, the object
will be deleted regardless of ownership. If dt is set to DefDelete, the object
will only be deleted if the bag owns its elements.

See also: TShouldDelete::ownsElements

T *Find(T *t) const;

Returns a pointer to the object if found; otherwise returns O.

T *FirstThat(CondFunc cond, void *args) const;

See: TMBagAsVector::FirstThat

void Flush(TShouldDelete: : DeleteType dt = TShouldDelete: :DefDelete

Removes all the elements from the bag without destroying the bag. The
value of dt determines whether the elements themselves are destroyed. By

Borland C++ for OS/2 Library Reference

ForEach

Bag containers

default, the ownership status of the bag determines their fate, as explained
in the Detach member function. You can also set dt to Delete and NoDelete.

See also: Detach

void ForEach(IterFunc iter, void *args)

ForEach executes the given function iter for each element in the bag. The
args argument lets you pass arbitrary data to this function.

GetitemslnContainer int GetItemsInContainer () const;

HasMember

IsEmpty

IsFull

LastThat

Returns the number of objects in the bag.

int HasMember(const T& t) const;

Returns 1 if the given object is found; otherwise returns O.

int isEmpty() const;

Returns 1 if the bag is empty; otherwise returns O.

int isFull() const;

Returns O.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the bag that satisfies a given
condition. You supply a test function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

TMIBagAsVectorlterator template bags.h

Constructor

template <class T, class Alloc> class TMIBagAsVectorIterator;

Implements an iterator object to traverse TMIBagAsVector objects. See
TMArrayAsVectorIterator on page 301 for members.

Public constructors

TMIBagAsVectorIterator(const TMIBagAsVector<T,Alloc> & s)

Constructs an object that iterates on TMIBagAsVector objects.

Chapter 6, The C++ container classes 321

Bag containers

TIBagAsVector template bags.h

Constructor

template <class T> class TIBagAsVectori

Implements a bag of pointers to objects of type T, using a vector as the
underlying implementation. TStandardAllocator is used to manage memory.
See TMIBagAs Vector on page 319 for members.

Public constructors

TIBagAsVector(unsigned sz = DEFAULT_BAG_SIZE)

Constructs an empty, managed, indirect bag. sz represents the initial
number of slots allocated.

TI BagAs Vectorlterator template bags.h

Constructor

template <class T> classTIBagAsVectorIteratori

Implements an iterator object to traverse TIBagAsVector objects.
TStandardAllocator is used to manage memory. See TMArrayAsVectorIterator
on page 301 for members.

Public constructors

TIBagAsVectorIterator(const TIBagAsVector<T> & s)

Constructs an object that iterates on TMIBagAsVector objects.

TBinarySearchTreelmp template binimp.h

Add

322

template <class T> class TBinarySearchTreeImpi

Implements an unbalanced binary tree. Class T must have < and ==
operators, and must have a default constructor.

Public member functions

int Add (const T& t)

Creates a new binary-tree node and inserts a copy of object t into it.

Borland C++ for OS/2 Library Reference

Detach

Find

Flush

ForEach

int Detach (const T& t)

Removes the node containing item t from the tree.

T * Find(const T& t) const;

Returns a pointer to the node containing item t.

void Flush();

Removes all items from the tree.

Binary tree containers

void ForEach(IterFunc iter, void * args, IteratorOrder order = InOrder)

Creates an internal iterator that executes the given function iter for each
item in the container. The args argument lets you pass arbitrary data to this
function.

GetltemslnContainer unsigned GetItemslnContainer () ;

Parent::lsEmpty

EqualTo

LessThan

DeleteNode

Returns the number of items in the tree.

int IsEmpty () i

Returns 1 if the tree is empty; otherwise returns O.

Protected member functions

virtual int EqualTo(BinNode *nl, BinNode *n2)

Tests the equality between two nodes.

virtual int LessThan(BinNode *nl, BinNode *n2)

Tests if node nl is less than node n2.

virtual void DeleteNode(BinNode *node, int del)

Deletes node. The second parameter is ignored.

TBinarySearchTreelteratorlmp template binimp.h

template <class T> class TBinarySearchTreelteratorlmpi

Implements an iterator that traverses TBinarySearchTreelmp objects.

Chapter 6, The C++ container classes 323

Binary tree containers

Constructor

Current

Restart

operator int

operator ++

Public constructors

TBinarySearchTreelteratorlmp(TBinarySearchTreelmp<T>& tree,
TBinarySearchTreeBase: : IteratorOrder
order = TBinarySearchTreeBase::lnOrder

Constructs an iterator object that traverses a TBinarySearchTreelmp
container.

Public member functions

const T& Current() const;

Returns the current object.

void Restart ()

Restarts iteration from the beginning of the tree.

Operators

operator int() const;

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

const T& operator ++ (int)

Moves to the next object in the tree, and returns the object that was current
before the move (post-increment).

const T& operator ++ ()

Moves to the next object, and returns the object that was current after the
move (pre-increment).

TIBinarySearchTreelmp template binimp.h

324

template <class T> class TIBinarySearchTreelmp;

Implements an indirect unbalanced binary tree. Class T must have < and ==
operators, and must have a default constructor.

Borland C++ for OS/2 Library Reference

Add

Detach

Find

Flush

ForEach

Binary tree containers

Public member functions

int Add (T * t)

Creates a new binary-tree node and inserts a pointer to object t into the tree.

int Detach (T * t, int del = 0)

Removes the node containing item t from the tree. The item is deleted if del
is 1.

T * Find(T * t) const;

Returns a pointer to the node containing *t.

void Flush(int del=O);

Removes all items from the tree. The are deleted if del is 1. If del is 0 the
items are not deleted.

void ForEach(IterFunc iter, void * args, IteratorOrder order = InOrder

Creates an internal iterator that executes the given function iter for each
item in the container. The args argument lets you pass arbitrary data to this
function.

GetltemslnContainer unsigned GetItemsInContainer () ;

Parent::lsEmpty

EqualTo

LessThan

DeleteNode

Returns the number of items in the tree.

int IsEmpty () ;

Returns 1 if the tree is empty; otherwise returns O.

Protected member functions

virtual int EqualTo(BinNode *nl, BinNode *n2)

Tests the equality between two nodes.

virtual int LessThan(BinNode *nl, BinNode *n2)

Tests if node nl is less than node n2.

virtual void DeleteNode(BinNode *node, int del)

Deletes node. The second parameter is ignored.

Chapter 6, The CH container classes 325

Binary tree containers

TIBinarySearchTreelteratorlmp template binimp.h

Constructor

Current

Restart

operator int

operator ++

326

template <class T> class TIBinarySearchTreelteratorlmp;

Implements an iterator that traverses TIBinarySearchTreelmp objects.

Public constructors

TIBinarySearchTreelteratorlmp(TIBinarySearchTreelmp<T>& tree,
TBinarySearchTreeBase::lteratorOrder order =
TBinarySearchTreeBase::lnOrder) :
TBinarySearchTreelteratorlmp<TVoidPointer> (tree, order)

Constructs an iterator object that traverses a TIBinarySearchTreelmp
container.

Public member functions

T *Current() const;

Returns a pointer to the current object.

void Restart ()

Restarts iteration from the beginning of the tree.

Operators

operator int() const;

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to a if nothing remains in the iterator.

T *operator ++ (int i)

Moves to the next object in the tree, and returns a pointer to the object that
was current before the move (post-increment).

T *operator ++ ()

Borland C++ for OS/2 Library Reference

Dequeue containers

Moves to the next object, and returns a pointer to the object that was
current after the move (pre-increment).

TMDequeAsVector template deques.h

CondFunc

IterFunc

Constructor

FirstThat

Flush

ForEach

template <class T, class Alloc> class TMDequeAsVector;

Implements a managed dequeue of T objects, using a vector as the
underlying implementation.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to FarEach member function.

Public constructors

TMDequeAsVector(unsigned max = DEFAULT_DEQUE_SIZE

Constructs a dequeue of max size.

Public member functions

T *FirstThat(CondFunc cond, void *args) const;

Returns a pointer to the first object in the dequeue that satisfies a given
condition. You supply a test-function pointer cand that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: LastThat

void Flush ()

Flushes the dequeue without destroying it.

See also: TShauldDelete::awnsElements

void ForEach(IterFunc iter, void *args);

Chapter 6, The C++ container classes 327

Dequeue containers

Executes function iter for each dequeue element. ForEaeh executes the given
function iter for each element in the array. The args argument lets you pass
arbitrary data to this function.

GetltemslnContainer int GetItemsInCantainer() canst;

Getleft

GetRight

IsEmpty

IsFuli

lastThat

PeekLeft

PeekRight

Put left

328

Returns the number of items in the dequeue.

T GetLeft () ;

Returns the object at the left end and removes it from the dequeue. The
debuggable version throws an exception when the dequeue is empty.

See also: PeekLeft

T GetRight();

Same as GetLeft, except that the right end of the dequeue is returned.

See also: PeekRight

int IsEmpty() canst;

Returns 1 if the dequeue has no elements; otherwise returns o.
int IsFull() canst;

Returns 1 if the dequeue is full; otherwise returns o.
T *LastThat(CandFunc cand, vaid *args) canst;

Returns a pointer to the last object in the dequeue that satisfies a given
condition. You supply a test function pointer eond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: FirstThat, ForEaeh

canst T& PeekLeft() canst;

Returns the object at the left end (head) of the dequeue. The object stays in
the dequeue.

See also: GetLeft

canst T& PeekRight() canst;

Returns the object at the right end (tail) of the dequeue. The object stays in
the dequeue.

See also: GetRight

vaid PutLeft(canst T&);

Adds (pushes) the given object at the left end (head) of the dequeue.

Borland C++ for OS/2 Library Reference

PutRight

Data

Left

Right

Next

Prev

Dequeue containers

vaid PutRight(canst T&);

Adds (pushes) the given object at the right end (tail) of the dequeue.

Protected data members

Vect Data;

The vector containing the dequeue's data.

unsigned Left;

Index to the leftmost element of the dequeue.

unsigned Right;

Index to the rightmost element of the dequeue.

Protected member functions

unsigned Next (unsigned index) canst;

Returns index + 1. Wraps around to the head of the dequeue.

See also: Prev

unsigned Prev(unsigned index) canst;

Returns index -1. Wraps around to the tail of the dequeue.

TMDequeAsVectorlterator template deques.h

Constructor

Current

template <class T, class Allac> class TMDequeAsVectarIteratar;

Implements an iterator object for a managed, vector-based dequeue.

Public constructors

TMDequeAsVectarIteratar(canst TMDequeAsVectar<T,Allac> &d)

Constructs an object that iterates on TMDequeAsVector objects.

Public member functions

canst T& Current();

Chapter 6, The C++ container classes 329

Dequeue containers

Restart

operator ++

operator int

Returns the current object.

void Restart();

Restarts iteration.

Operators

const T& operator ++ (int);

Moves to the next object, and returns the object that was current before the
move (post-increment).

const T& operator ++ ();

Moves to the next object, and returns the object that was current after the
move (pre-increment).

operator int();

Converts the iterator to an integer value for testing if objects remain in the
iterator. Iterator converts to a if nothing remains in the iterator.

TDequeAsVector template deques.h.

Constructor

template <class T> class TDequeAsVector;

Implements a dequeue of T objects, using a vector as the underlying
implementation. TStandardAllocator is used to manage memory. See
TMDequeAsVector on page 327 for members.

Public constructors

TDequeAsVector(unsigned max = DEFAULT_DEQUE_SIZE

Constructs a dequeue of max size.

TDequeAsVectorlterator template deques.h

330

template <class T> class TDequeAsVectorIterator;

Implements an iterator object for a vector-based dequeue. See
TMDequeAsVectorIterator on page 329 for members.

Borland C++ for OS/2 Library Reference

Constructor

Dequeue containers

Public constructors

TDequeAsVectorlterator(const TDequeAsVector<T> &d)

Constructs an object that iterates on TMDequeAs Vector objects.

TMIDequeAsVector template deques.h

CondFunc

lterFunc

Constructor

FirstThat

Flush

template <class T, class Alloc> class TMIDequeAsVector;

Implements a managed, indirect dequeue of pointers to objects of type T,
using a vector as the underlying implementation.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public constructors

TMIDequeAsVector(unsigned sz = DEFAULT_DEQUE_SIZE

Constructs an indirect dequeue of max size.

Public member functions

T *FirstThat(CondFunc cond, void *args) const;

Returns a pointer to the first object in the dequeue that satisfies a given
condition. You supply a test-function pointer cond that returns true for a,
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: LastThat

void Flush(TShouldDelete: : DeleteType = TShouldDelete::DefDelete);

Flushes the dequeue without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the dt argument.

Chapter 6, The C++ container classes 331

Dequeue containers

ForEach vaid FarEach(IterFunc iter, vaid *args);

Executes function iter for each dequeue element. ForEach executes the given
function iter for each element in the array. The args argument lets you pass
arbitrary data to this function.

GetltemslnContainer int GetItemsInCantainer () canst;

Get Left

GetRight

IsEmpty

IsFull

LastThat

PeekLeft

PeekRight

332

Returns the number of items in the dequeue.

T *GetLeft ()

Returns a pointer to the object at the left end and removes it from the
dequeue. Returns 0 if the dequeue is empty.

See also: PeekLeft

T *GetRight ()

Same as GetLeft, except that the right end of the dequeue is returned.

See also: PeekRight

int IsEmpty() canst;

Returns 1 if a dequeue has no elements; otherwise returns O.

int isFull() canst;

Returns 1 if a dequeue is full; otherwise returns O.

T *LastThat(CandFunc cand, vaid *args) canst;

Returns a pointer to the last object in the dequeue that satisfies a given
condition. You supply a test function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: FirstThat, ForEach

T *PeekLeft() canst;

Returns a pointer to the object at the left end (head) of the dequeue. The
object stays in the dequeue.

See also: GetLeft

T *PeekRight() canst;

Returns the object at the right end (tail) of the dequeue. The object stays in
the dequeue.

See also: GetRight

Borland C++ for OS/2 Library Reference

PutLeft

PutRight

Dequeue containers

void PutLeft(T *t)

Adds (pushes) the given object pointer at the left end (head) of the
dequeue.

void PutRight(T *t)

Adds (pushes) the given object pointer at the right end (tail) of the
dequeue.

TMIDequeAsVectorlterator template deques.h

Constructor

template <class T, class Alloc> class TMIDequeAsVectorIteratorj

Implements an iterator for the family of managed, indirect dequeues
implemented as vectors. See TMDequeAsVectorIterator on page 329 for
members.

Public constructors

TMIDequeAsVectorIterator(const TMIDequeAsVector<T,Alloc> &d)

Creates an object that iterates on TMIDequeAsVector objects.

TIDequeAsVector template deques.h

Constructor

template <class T> class TIDequeAsVectori

Implements an indirect dequeue of pointers to objects of type T, using a
vector as the underlying implementation. See TMIDequeAs Vector on page
331 for members.

Public constructors

TIDequeAsVector(unsigned sz = DEFAULT_DEQUE_SIZE
TMIDequeAsVector<T,TStandardAllocator> (sz)

Constructs an indirect dequeue of max size.

Chapter 6, The C++ container classes 333

Dequeue containers

TIDequeAsVectorlterator template deques.h

Constructor

template <class T> class TIDequeAsVectorIterator;

Implements an iterator for the family of indirect dequeues implemented as
vectors. See TMDequeAsVectorIterator on page 329 for members.

Public constructors

TIDequeAsVectorIterator(canst TIDequeAsVector<T> &d)

Constructs an object that iterates on TIDequeAs Vector objects.

TMDequeAsDoubleList template deques.h

CondFunc

lterFunc

FirstThat

Flush

334

template <class T, class Alloc> class TMDequeAsDoubleList;

Implements a managed dequeue of objects of type T, using a double-linked.
list as the underlying implementation.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public member functions

T *FirstThat(CondFunc cond, void *args) const;

Returns a pointer to the first object in the dequeue that satisfies a given
condition. You supply a test-function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: LastThat

void Flush ()

Flushes the dequeue without destroying it.

Borland C++ for OS/2 Library Reference

ForEach

Dequeue containers

void ForEach(IterFunc iter, void *args)

Executes function iter for each dequeue element. ForEach executes the given
function iter for each element in the array. The args argument lets you pass
arbitrary data to this function.

GetltemslnContainer int GetItemslnContainer () const;

GetLeft

GetRight

IsEmpty

IsFuli

LastThat

Peek Left

PeekRight

PutLeft

Returns the number of items in the dequeue.

T GetLeft ()

Returns the object at the left end and removes it from the dequeue.

T GetRight ()

Same as GetLeft, except that the right end of the dequeue is returned.

See also: PeekRight

int IsEmpty() const;

Returns 1 if a dequeue has no elements; otherwise returns O.

int IsFull() const;

Returns 1 if a dequeue is full; otherwise returns O.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the dequeue that satisfies a given
condition. You supply a test function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: FirstThat, ForEach

const T& PeekLeft() const;

Returns a reference to the object at the left end (head) of the dequeue. The
object stays in the dequeue.

See also: Get Left

const T& PeekRight() const;

Returns a reference to the object at the right end (tail) of the dequeue. The
object stays in the dequeue.

See also: GetRight

void PutLeft(const T& t

Adds (pushes) the given object at the left end (head) of the dequeue.

Chapter 6, The C++ container classes 335

Dequeue containers

Put Right void PutRight(const T& t)

Adds (pushes) the given object at the right end (tail) of the dequeue.

TMDequeAsDoubleListiterator template deques.h

Constructor

template <class T, class Alloc> class TMDequeAsDoubleListIterator;

Implements an iterator object for a double-list based deques. See
TMDoubleListIteratorlmp on page 348 for members.

Public constructors

TMDequeAsDoubleListIterator(const TMDequeAsDoubleList<T, Alloc> & s

Constructs an object that iterates on TMDequeAsDoubleList objects.

TDequeAsDoubleList template deques.h

template <class T> class TDequeAsDoubleList;

Implements a dequeue of objects of type T, using a double-linked list as the
underlying implementation, and TStandardAllocator as its memory manager.
See TMDequeAsDoubleList on page 334 for members.

TDequeAsDoubleListiterator template deques.h

Constructor

Implements an iterator object for a double-list based dequeue.

Public constructors

TMDequeAsDoubleListIterator(const TMDequeAsDoubleList<T, Alloc> & s

Constructs an object that iterates on TDequeAsDoubleList objects.

TMIDequeAsDoubleList template deques.h

template <class T, class Alloc> class TMIDequeAsDoubleList;

336 Borland C++ for OS/2 Library Reference

CondFunc

IterFunc

FirstThat

Flush

ForEach

Dequeue containers

Implements a managed dequeue of pointers to objects of type T, using a
double-linked list as the underlying implementation.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to FarEach member function.

Public member functions

T *FirstThat(CondFunc cond, void *args) canst;

Returns a pointer to the first object in the dequeue that satisfies a given
condition. You supply a test-function pointer cand that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns a if no
object in the array meets the condition.

See also: LastThat

void Flush(TShouldDelete::DeleteType dt = TShouldDelete::DefDelete)

Flushes the dequeue without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the dt argument.

void ForEach(IterFunc iter, void *args)

Executes function iter for each dequeue element. FarEach executes the given
function iter for each element in the array. The args argument lets you pass
arbitrary data to this function.

GetltemslnContainer int GetItemslnContainer () const;

GetLeft

GetRight

Returns the number of items in the dequeue.

T *GetLeft ()

Returns a pointer to the object at the left end and removes it from the
dequeue. Returns a if the dequeue is empty.

See also: PeekLeft

T *GetRight ()

Chapter 6, The C++ container classes 337

Dequeue containers

IsEmpty

IsFull

lastThat

PeekLeft

PeekRight

Putleft

PutRight

Same as GetLeft, except that a pointer to the object at the right end of the
dequeue is returned.

See also: PeekRight

int IsEmpty() const;

Returns 1 if the dequeue has no elements; otherwise returns O.

int IsFull() const;

Returns 1 if the dequeue is full; otherwise returns O.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the dequeue that satisfies a given
condition. You supply a test function pointer, cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: FirstThat, ForEach

T *PeekLeft() const;

Returns a pointer to the object at the left end (head) of the dequeue. The
object stays in the dequeue.

T *PeekRight() const;

Returns the object at the right end (tail) of the dequeue. The object stays in
the dequeue.

void PutLeft(T *t)

Adds (pushes) the given object pointer at the left end (head) of the
dequeue.

void PutRight(T *t)

Adds (pushes) the given object pointer at the right end (tail) of the
dequeue.

TMIDequeAsDoubleListlterator template deques.h

338

template <class T, class Alloc> class TMIDequeAsDoubleListlterator;

Implements an iterator for the family of managed, indirect dequeues
implemented as double lists. See TMDoubleListIteratorlmp on page 348 for
members.

Borland c++ for OS/2 Library Reference

Constructor

Dequeue containers

Public constructors

TMIDequeAsDoubleListIterator(const TMIDequeAsDoubleList<T,Alloc> s

Constructs an object that iterates on TMIDequeAsDoubleList objects.

TIDequeAsDoubleList template deques.h

template <class T> class TIDequeAsDoubleList;

Implements a dequeue of pointers to objects of type T, using a double
linked list as the underlying implementation. See TMIDequeAsDoubleList on
page 336 for members.

TIDequeAsDoubleListiterator template deques.h

Constructor

template <class T> class TIDequeAsDoubleListIterator;

Implements an iterator for the family of indirect dequeues implemented as
double lists. See TMDoubleListIteratorlmp on page 348 for members.

Public constructors

TIDequeAsDoubleListIterator(const TIDequeAsDoubleList<T> & s)

Constructs an object that iterates on TIDequeAsDoubleList objects.

TMDictionary AsHashTable template dict.h

HashTable

template <class T, class A> class TMDictionaryAsHashTable;

Implements a managed dictionary using a hash table as the underlying
FDS, and using the user-supplied storage allocator A. It assumes that Tis
one of the four types of associations, and that T has meaningful copy and
== semantics as well as a default constructor.

Protected data members

TMHashTableImp<T,A> HashTable;

Implements the underlying hash table.

Chapter 6, The C++ container classes 339

Dictionary containers

Constructor

Add

Detach

Find

Flush

ForEach

Public constructors

TMDictionaryAsHashTable(unsigned size = DEFAULT_HASH_TABLE_SIZE

Constructs a dictionary with the specified size.

Public member functions

int Add (const T& t)

Adds item t if not already in the dictionary.

int Detach (const T& t, DeleteType dt = DefDelete

Removes item t from the dictionary. Calls DeleteElements on the association.

T * Find(constT& t)

Returns a pointer to item t.

void Flush(DeleteType dt = DefDelete

Removes all items from the dictionary. Calls DeleteElements on the
association.

void ForEach(IterFunc iter, void * args)

Creates an internal iterator that executes the given function iter for each
item in the container. The args argument lets you pass arbitrary data to this
function.

GetltemslnContainer inline unsigned GetItemsInContainer ()

Returns the number of items in the dictionary.

IsEmpty inline int IsEmpty()

Returns 1 if the dictionary is empty; otherwise returns o.

TMDictionary AsHashTablelterator template dict.h

340

template <class T, class A> class TMDictionaryAsHashTableIteratorj

Implements an iterator that traverses TMDictionaryAsHashTable objects,
using the user-supplied storage allocator A.

Borland C++ for OS/2 Library Reference

Constructor

Current

Restart

operator int

operator ++

Dictionary containers

Public constructors

TMDictionaryAsHashTableIterator(TMDictionaryAsHashTable<T,A> & t

Constructs an iterator object that traverses a TMDictionaryAsHashTable
container.

Public member functions

const T& Current()

Returns the current object.

void Restart() i

Restarts iteration from the beginning of the dictionary.

Operators

operator int ()

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

const T& operator ++ (int)

Moves to the next object, and returns the object that was current before the
move (post-increment).

const T& operator ++ ()

Moves to the next object, and returns the object that was current after the
move (pre-increment).

TDictionary AsHashTable template dict.h

template <class T> class TDictionaryAsHashTablei

Implements a dictionary objects of type T, using the system storage
allocator TStandardAllocator. It assumes that T is one of the four types of
associations, and that T has meaningful copy and == semantics as well as a
default constructor. See TMDictionaryAsHashTable on page 339 for
members.

Chapter 6, The C++ container classes 341

Dictionary containers

Constructor

Public constructors

TDictionaryAsHashTable(unsigned size = DEFAULT_HASH_TABLE_SIZE)

Constructs a dictionary with the specified size.

TDictionary AsHashTablelterator template dict.h

Constructor

template <class T> class TDictionaryAsHashTablelteratorj

Implements an iterator that traverses TDictionaryAsHashTable objects, using
the system storage allocator TStandardAllocator.

Public constructors

TDictionaryAsHashTablelterator(TDictionaryAsHashTable<T> & t

Constructs an iterator object that traverses a TDictionaryAsHashTable
container.

TMIDictionary AsHashTable template dict.h

Constructor

Add

342

template <class T, class A> class TMIDictionaryAsHashTablej

Implements a managed indirect dictionary using a hash table as the
underlying FDS, and using the user-supplied storage allocator A. It
assumes that T is of class T Association.

Public constructors

TMIDictionaryAsHashTable(unsigned size = DEFAULT_HASH_TABLE_SIZE)

Constructs an indirect dictionary with the specified size.

Public member functions'

int Add (T * t)

Adds a pointer to item t if not already in the dictionary.

Borland C++ for OS/2 Library Reference

Detach

Find

Flush

ForEach

Dictionary containers

int Detach(T * t, int del = 0)

Removes the pointer to item t from the dictionary, and deletes if del is 1. If
del is 0 the item is not deleted.

T * Find(T * t)

Returns a pointer to item t.

void Flush(int del = 0)

Removes all items from the dictionary. The item is deleted if del is 1. If del is
o the item is not deleted.

void ForEach(IterFunc iter, void * args)j

Creates an internal iterator that executes the given function iter for each
item in the container. The args argument lets you pass arbitrary data to this
function.

GetltemslnContainer inline unsigned GetItemslnContainer ()

IsEmpty

Returns the number of items in the dictionary.

inline int IsEmpty()

Returns 1 if the dictionary is empty; otherwise returns O.

TMIDictionary AsHashTablelterator template dict.h

Constructor

Current

template <class T, class A> class TMIDictionaryAsHashTablelteratorj

Implements an iterator that traverses TMIDictionaryAsHashTable objects,
using the user-supplied storage allocator A.

Public constructors

TMIDictionaryAsHashTablelterator(TMIDictionaryAsHashTable<T,A> & t)

Constructs an iterator object that traverses a TMIDictionaryAsHashTable
container.

Public member functions

T *Current ()

Chapter 6, The C++ container classes 343

Dictionary containers

Restart

operator int

operator ++

Returns a pointer to the current object.

void Restart();

Restarts iteration from the beginning of the dictionary.

Operators

operator int ()

Converts' the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

T *operator ++ (int)

Moves to the next object, and returns a pointer to the object that was
current before the move (post-increment).

T *operator ++ ()

Moves to the next object, and returns a pointer to the object that was
current after the move (pre-increment).

TIDictionary AsHashTable template dict.h

Constructor

template <class T> class TIDictionaryAsHashTable;

Implements an indirect dictionary using a hash table as the underlying
FDS, and using the system storage allocator TStandardAllocator. It assumes
that T is one of the four types of associations. See
TMIDictionaryAsHashTable on page 342 for members.

Public constructors

TIDictionaryAsHashTable(unsigned size = DEFAULT_HASH_TABLE_SIZE

Constructs an indirect dictionary with the specified size.

TIDictionary AsHashTablelterator template dict.h

344

template <class T> class TIDictionaryAsHashTableIterator;

Implements an iterator that traverses TIDictionaryAsHashTable objects,
using the user-supplied storage allocator A. See
TMIDictionaryAsHashTableIterator on page 343 for members.

Borland C++ for OS/2 Library Reference

Constructor

Dictionary containers

Public constructors

TIDictionaryAsHashTableIterator(TIDictionaryAsHashTable<T> & t

Constructs an iterator object that traverses a TIDictionaryAsHashTable
container.

TDictionary template dict.h

A simplified name for TDictionaryAsHashTable. See TDictionaryAsHashTable
on page 341 for members.

TDictionarylterator template dict.h

Constructor

A simplified name for TDictionaryAsHashTableIterator. See
TDictionaryAsHashTableIterator on page 342 for members.

Public constructors

TDictionaryIterator(const TDictionary<T> & a

Constructs an iterator object that traverses a TDictionary container.

TMDoubleListElement template dlistimp.h

data

Next

Prev

template <class T, class Alloc> class TMDoubleListElement;

This class defines the nodes for double-list classes TMDoubleListImp and
TMIDoubleListImp.

Public data members

T data;

Data object contained in the double list.

TMDoubleListElement<T> *Next;

A pointer to the next element in the double list.

TMDoubleListElement<T> *Prev;

Chapter 6, The C++ container classes 345

Double list containers

Constructor

Constructor

operator delete

operator new

A pointer to the previous element in the double list.

Public constructors

TMDoubleListElement() ;

Constructs a double-list element.

TMDoubleListElement(T& t, TMDoubleListElement<T> *p

Constructs a double-list element, and inserts after the object pointed
to by p.

Operators

void operator delete(void *);

Deletes an object.

void *operator newt size_t sz);

Allocates a memory block of S2 amount, and returns a pointer to the
memory block.

TMDoubleListimp template dlistimp.h

CondFunc

IterFunc

346

template <class T, class Alloc> class TMDoubleListlmp;

Implements a managed, double-linked list of objects of type T. Assumes
that T has meaningful copy semantics, operator ==, and a default
constructor. The memory manager Alloc provides class-specific new and
delete operators.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Borland C++ for OS/2 Library Reference

Constructor

Add

AddAtHead

AddAtTaii

Detach

DetachAtHead

FirstThat

Flush

ForEach

IsEmpty

LastThat

Public constructors

TMDoubleListlmp()

Constructs an empty, managed, double-linked list.

Public member functions

int Add (const T& t);

Add the given object at the beginning of the list.

int AddAtHead(const T& t);

Add the given object at the beginning of the list.

int AddAtTail(const T&);

Adds the given object at the end (tail) the list.

int Detach(const T&);

Double list containers

Removes the first occurrence of the given object encountered by searching
from the beginning of the list.

int DetachAtHead();

Removes items from the head of a list without searching for a match.

T *FirstThat(CondFunc cond, void *args) const;

Returns a pointer to the first object in the double-list that satisfies a given
condition. You supply a test-function pointer cand that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

void Flush();

Removes all elements from the list without destroying the list.

void ForEach(IterFunc iter, void *args);

FarEach executes the given function iter for each element in the array. The
args argument lets you pass arbitrary data to this function.

int IsEmpty() const;

Returns 1 if array contains no elements; otherwise returns O.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the double list that satisfies a given
condition. You supply a test function pointer cand that returns true for a

Chapter 6, The C++ container classes 347

Double list containers

PeekHead

PeekTail

Head,Taii

FindDetach

FindPred

certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: FirstThat, ForEach

canst T& PeekHead() canst;

Returns a reference to the Head item in the double list, without removing it.

canst T& PeekTail() canst;

Returns a reference to the Tail item in the double list, without removing it.

Protected data members

TMDaubleListElement<T> Head, Tail;

The head and tail items of the double list.

Protected member functions

virtual TMDaubleListElement<T> *FindDetach(canst T& t)

Determines whether an object is in the list, and returns a pointer to its
predecessor. Returns 0 if not found.

virtual TMDaubleListElement<T> *FindPred(canst T&);

Finds the element that would be followed by the parameter. The function
does not check whether the parameter is actually there. This can be used for
inserting (insert after returned element pointer).

TMDoubleListlteratorlmp template dlistimp.h

Constructor

348

template <class T, class Allac> class TMDaubleListIteratar;

Implements a double list iterator. This iterator works with any direct
double-linked list. For indirect lists, see TMIDoubleListIteratorlmp on
page 354.

Public constructors

TMDaubleListIteratarImp(canst TMDaubleListImp<T, Allac> &1)

Constructs an iterator that traverses TMDoubleListImp objects.

Borland C++ for OS/2 Library Reference

Current

Restart

operator int

operator ++

operator --

Double list containers

TMDoubleListlteratorlmp(const TMSDoubleListlmp<T, Alloc) &1)

Constructs an iterator that traverses TMDoubleListImp objects.

Public member functions

const T& Current()

Returns the current object.

void Restart ()

Restarts iteration from the beginning of the list.

Operators

operator int ()

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to a if nothing remains in the iterator.

const T& operator ++ (int)

Moves to the next object, and returns the object that was current before the
move (post-increment).

const T& operator ++ ()

Moves to the next object, and returns the object that was current after the
move (pre-increment).

const T& operator -- (int)

Moves to the previous object, and returns the object that was current before
the move (post-decrement).

const T& operator -- ()

Moves to the previous object, and returns the object that was current after
the move (pre-decrement).

TDoubleListimp template dlistimp.h

template <class T> class TDoubleListlmp;

Implements a double-linked list of objects of type T, using
TStandardAllocator for memory management. Assumes that T has

Chapter 6, The C++ container classes 349

Double list containers

Constructor

meaningful copy semantics and a default constructor. See TMDoubleListImp
on page 346 for members.

Public constructors

TDaubleListImp()

Constructs an empty double-linked list.

TDoubleListlteratorlmp template dlistimp.h

Constructor

template <class T> class TDaubleListIteratarImpi

Implements a double list iterator. This iterator works with any direct
double-linked list. See TMDoubleListIteratorlmp on page 348 for members.

Public constructors

TDaubleListIteratarImp(canst TDaubleListImp<T> &1)

Constructs an iterator that traverses TDoubleListImp objects.

TMSDoubleListimp template dlistimp.h

FindDetach

FindPred

350

template <class T, class Allac> class TMSDaubleListImpi

Implements a managed, sorted, double-linked list of objects of type T. It
assumes that T has meaningful copy semantics, a == operator, a < operator,
and a default constructor. See TMDoubleListImp on page 346 for members.

Protected member functions

In addition to the following member functions, TMSDoubleListImp inherits
member functions from TMDoubleListImp (see page 346).

virtual TMDaubleListElement<T> *FindDetach(canst T&)i

Determines whether an object is in the list, and returns a pointer to its
predecessor. Returns 0 if not found.

virtual TMDaubleListElement<T> *FindPred(canst T&);

Borland C++ for OS/2 Library Reference

Double list containers

Finds the element that would be followed by the parameter. The function
does not check whether the parameter is actually there. This can be used for
inserting (insert after returned element pointer).

TMSDoubleListiteratorlmp template dlistimp.h

Constructor

template <class T, class Alloc> class TMSDoubleListlteratorlmpi

Implements a double list iterator. This iterator works with any direct
double-linked list. See TMDoubleListIteratorlmp on page 348 for members.

Public constructors

TMSDoubleListlteratorlmp(const TMSDoubleListlmp<T,Alloc> &1)

Constructs an iterator that traverses TMSDoubleListImp objects.

TSDoubleListimp template dlistimp.h

template <class T> class TSDoubleListlmpi

Implements a sorted, double-linked list of objects of type T. It assumes that
T has meaningful copy semantics, a meaningful < operator, and a default
constructor. See TMSDoubleListImp on page 350 for members.

TSDoubleListiteratorlmp template dlistimp.h

Constructor

template <class T> class TSDoubleListlteratorlmpi

Implements a double list iterator. This iterator works with any direct
double-linked list. See TMDoubleListIteratorlmp on page 348 for members.

Public constructors

TSDoubleListlteratorlmp(const TSDoubleListlmp<T> &1)

Constructs an iterator that traverses TSDoubleListImp objects.

Chapter 6, The C++ container classes 351

Double list containers

TMIDoubleListimp template dlistimp.h

CondFunc

IterFunc

Add

AddAtHead

AddAtTail

Detach

DetachAtHead

DetachAtTaiI

FirstThat

352

template <classT, class Alloc> class TMIDoubleListImp;

Implements a managed, double-linked list of pointers to objects of type
T.The contained objects need a valid == operator. Because pointers always
have meaningful copy semantics, this class can handle any type of object.
The memory manager Alloc provides class-specific new and delete
operators.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public member functions

int Add (T *t)

Adds an object pointer to the double list.

int AddAtHead(T *t);

Add the given object at the beginning of the list.

int AddAtTail(T *t)

Adds an object pointer to the tail of the double list.

int Detach(T *t, int del = a)
Removes the given object pointer from the list. The second argument
specifies whether the object should be deleted.

int DetachAtHead(int del = a)

Deletes the object pointer from the head of the list.

int DetachAtTail(int del = a)

Deletes the object pointer from the tail of the list.

T *FirstThat(CondFunc cond, void *args) const;

Borland C++ for OS/2 Library Reference

Flush

ForEach

Double list containers

Returns a pointer to the first object in the double list that satisfies a given
condition. You supply a test-function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: LastThat

void Flush(int = 0);

Removes all elements from the list without destroying the list.

void ForEach(IterFunc iter, void * args);

Executes function iter for each double-list element. ForEach ~xecutes the
given function iter for each element in the array. The args argument lets you
pass arbitrary data to this function.

GetitemslnContainer unsigned GetItemsInContainer () const;

Returns the number of items in the array.

IsEmpty

LastThat

PeekHead

PeekTaii

FindPred

int IsEmpty() const;

Returns 1 if array contains no elements; otherwise returns O.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the list that satisfies a given condition.
You supply a test function pointer cond that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

See also: FirstThat, ForEach

T *PeekHead() const;

Returns the object pointer at the Head of the list, without removing it.

T *PeekTail() const;

Returns the object pointer at the Tail of the list, without removing it.

Protected member functions

virtual TDoubleListElement<void *> *FindPred(void *);

Finds the element that would be followed by the parameter. The function
does not check whether the parameter is actually there. This can be used for
inserting (insert after returned element pointer).

Chapter 6, The C++ container classes 353

Double list containers

TMIDoubleListlteratorlmp template dlistimp.h

Constructor

Current

Restart

operator ++

template <class T, class Alloc> class TMIDoubleListlteratorlmp;

Implements a double list iterator. This iterator works with any indirect
double list. For direct lists, see TMDoubZeListIteratorlmp on page 348.

Public constructors

TMIDoubleListlteratorlmp(const TMIDoubleListlmp<T,Alloc> &1

Constructs an object that iterates on TIDoubZeListImp objects.

Public member functions

T *Current ()

Returns the current object pointer.

void Restart ()

Restarts iteration from the beginning of the list.

Operators

T *operator ++ (int)

Moves to the next object, and returns the object that was current before the
move (post-increment).

T *operator ++ ()

Moves to the next object, and returns the object that was current after the
move (pre-increment).

TIDoubleListimp template dlistimp.h

354

template <class T> class TIDoubleListlmp;

Implements a double-linked list of pointers to objects of type T, using
TStandardAllocator for memory management. Because pointers always have
meaningful copy semantics, this class can handle any type of object. See
TMIDoubZeListImp on page 352 for members.

Borland C++ for OS/2 Library Reference

Double list containers

TIDoubleListiteratorlmp template dlistimp.h

Constructor

template <class T> class TIDoubleListIteratorImpi

Implements a double list iterator. This iterator works with any indirect
double list. See TMIDoubleListIteratorlmp on page 354 for members.

Public constructors

TIDoubleListIteratorImp(const TIDoubleListImp<T> &1)

Constructs an object that iterates on TIDoubleListImp objects.

TMISDoubleListimp template dlistimp.h

FindDetach

template <class T, class Alloc> class TMISDoubleListImpi

"Implements a managed, sorted, double-linked list of pointers to objects of
type T. Because pointers always have meaningful copy semantics, this class
can handle any type of object.

Protected member functions

In addition to the member function described here, TMISOoubleListImp
inherits member functions (see TMIDoubleListImp on page 352).

virtual TMDoubleListElement<void *> *FindDetach(void *) i

Determines whether an object is in the list, and returns a pointer to its
predecessor.

TMISDoubleListiteratorlmp template dlistimp.h

Constructor

template <class T, class Alloc> class TMISDoubleListIteratorImpi"

Implements a double list iterator. This iterator works with any indirect,
sorted double list. See TMIDoubleListIteratorlmp on page 354 for members.

Public constructors

TMISDoubleListIteratorImp(const TMISDoubleListImp<T,Alloc> &1)

Chapter 6, The C++ container classes 355

Double list containers

Constructs an object that iterates on TMISDoubleListImp objects.

TISDoubleListimp template dlistimp.h

template <class T> class TISDoubleListlmpi

Implements a sorted, double-linked list of pointers to objects of type T,
using TStandardAllocator for memory management. Because pointers
always have meaningful copy semantics, this class can handle any type of
object. See TMIDoubleListImp on page 352 for members.

TISDoubleListiteratorlmp template dlistimp.h

Constructor

template <class T> class TISDoubleListlteratorlmpi

Implements a double list iterator. This iterator works with any indirect,
sorted double list. See TMIDoubleListIteratorlmp on page 354 for members.

Public constructors

TISDoubleListlteratorlmp(const TISDoubleListlmp<T> &1)

Constructs an object that iterates on TMISDoubleListImp objects.

TMHashTablelmp template hashimp.h

Constructor

356

template <class T, class Alloc> class TMHashTablelmpi

Implements a managed hash table of objects of type T, using the user
supplied storage allocator A. It assumes that T has meaningful copy and ==
semantics, as well as a default constructor.

Public constructors and destructor

TMHashTablelmp(unsigned aPrime = DEFAULT_HASH_TABLE_SIZE

Constructs a hash table.

Borland C++ for OS/2 Library Reference

Add

Detach

Find

Flush

ForEach

Hash table containers

Public member functions

int Add (canst T& t);

Adds item t to the hash table.

int Detach(canst T& t, int del=O);

Removes item t from the hash table. If del is set to 0, t is deleted; if del is set
to 1, t is not deleted.

T * Find(canst T& t) canst;

Returns a pointer to item t.

vaid Flush ()

Flushes all items in the hash table. The hash table is destroyed if del is
nonzero.

vaid FarEach(IterFunc iter, vaid *args);

Creates an internal iterator that executes the given function iter for each
item in the container. The args argument lets you pass arbitrary data to this
function.

GetltemslnContainer unsigned GetItemsInCantainer () canst;

Returns the number of items in the hash table.

IsEmpty int IsEmpty() canst;

Returns 1 if the hash table is empty; otherwise returns O.

TMHashTablelteratorlmp template hashimp.h

Constructor

Destructor

template <class T, class Allac> class TMHashTableIteratarImp;

Implements an iterator for traversing TMHashTablelmp containers, using
the user-supplied storage allocator Alloc.

Public constructors and destructor

TMHashTableIteratarImp(canst TMHashTableImp<T,A> & h)

Constructs an iterator object that traverses a TMHashTablelmp container.

~TMHashTableIteratorImp()

Destroys the iterator.

Chapter 6, The C++ container classes 357

Hash table containers

Current

Restart

operator int

operator ++

Public member functions

const T& Current()

Returns the current object.

void Restart()i

Restarts iteration from the beginning of the hash table.

Operators

operator int ()

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

const T& operator ++ (int)

Moves to the next object, and returns the object that was current before the
move (post-increment).

const T& operator ++ ()

Moves to the next object, and returns the object that was current after the
move (pre-increment).

THashTablelmp template hashimp.h

Constructor

358

template <class T> class THashTablelmpi

Implements a hash table of objects of type T, using the system storage
allocator TStandardAllocator. It assumes that T has meaningful copy and ==
semantics as well as a default constructor. See TMHashTablelmp on page 356
for members.

Public constructors

THashTablelmp(unsigned aPrime = DEFAULT_HASH_TABLE_SIZE

Constructs a hash table that uses TStandardAllocator for memory
management.

Borland C++ for OS/2 Library Reference

Hash table containers

THashTablelteratorlmp template hashimp.h

Constructor

template <class T> class THashTableIteratorImpi

Implements an iterator for traversing THashTablelmp containers. See
TMHashTableIteratorlmp on page 357 for members.

Public constructors

THashTableIteratorImp(const THashTableImp<T,A> & h)

Constructs an iterator object that traverses a THashTablelmp container.

TMIHashTablelmp template hashimp.h

Constructor

Add

Detach

Find

Flush

template <class T, class Alloc> class TMIHashTableImpi

Implements a managed hash table of pointers to objects of type T, using the
user-supplied storage allocator Alloc.

Public constructors

TMIHashTableImp(unsigned aPrime = DEFAULT_HASH_TABLE_SIZE

Constructs an indirect hash table.

Public member functions

int Add(T * t)

Adds a pointer to item t to the hash table.

int Detach (T * t, int del = 0)

Removes a pointer to item t from the hash table. t is deleted if del is set I,
and not deleted if del is set to O.

T * Find(canst T * t) cansti

Returns a pointer to item t.

void Flush(int del = 0)

Flushes all items in the hash table. The hash table is destroyed if del is
nonzero.

Chapter 6, The C++ container classes 359

Hash table containers

ForEach void ForEach(IterFunc iter, void *args);

Creates an internal iterator that executes the given function iter for each
item in the container. The args argument lets you pass arbitrary data to this
function.

GetltemslnContainer unsigned GetItemslnContainer () const;

Returns the number of items in the hash table.

IsEmpty int IsEmpty() const;

Returns 1 if the hash table is empty; otherwise returns O.

TMIHashTablelteratorlmp template hashimp.h

Constructor

Current

Restart

operator int

operator ++

360

template <class T, class Alloc> class TMIHashTablelteratorlmp;

Implements an iterator for traversing TMIHashTablelmp containers.

Public constructors

TMIHashTablelteratorlmp(const TMIHashTablelmp<T,A> & h)

Constructs an iterator object that traverses a TMIHashTablelmp container.

Public member functions

T *Current ()

Returns a pointer to the current object.

void Restart();

Restarts iteration from the beginning of the hash table.

Operators

operator int ()

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

T *operator ++ (int)

Borland C++ for OS/2 Library Reference

Hash table containers

Moves to the next object, and returns the object pointer that was current
before the move (post-increment).

T *operator ++ ()

Moves to the next object, and returns the object pointer that was current
after the move (pre-increment).

TIHashTablelmp template hashimp.h

Constructor

template <class T> class TIHashTableImpi

Implements a hash table of pointers to objects of type T, using the system
storage allocator TStandardAllocator. See TMIHashTablelmp on page 359 for
members.

Public constructors

TIHashTableImp(unsigned aPrime = DEFAULT_HASH_TABLE_SIZE

Constructs an indirect hash table that uses the system storage allocator.

TIHashTablelteratorlmp template hashimp.h

Constructor

template <class T> class TIHashTableIteratorImpi

Implements an iterator object that traverses TIHashTablelmp containers, and
uses the system memory allocator TStandardAllocator. See
TMIHashTableIteratorlmp on page 360 for members.

Public constructors

TIHashTableIteratorImp(const TIHashTableImp<T> & h)

TMListElement template listimp.h

template <class T, class Alloc> class TMListElementi

This class defines the nodes for TMListImp and TMlListImp and related
classes.

Chapter 6, The C++ container classes 361

List containers

data

Next

Constructor

Constructor

operator delete

operator new

Public data members

T Data;

Data object contained in the list.

TMListElement<T,Alloc> *Next;

A pointer to the next element in the list.

Public constructors

TMListElement() ;

Constructs a list element.

TMListElement(T& t, TMListElement<T,Alloc> *p

Constructs a list element, and places it after the object at location p.

Operators

void operator delete(void *);

Deletes an object.

void *operator newt size_t sz);

Allocates a memory block of S2 amount, and returns a pointer to the
memory block.

TMListlmp template listimp.h

CondFunc

lterFunc

362

template <class T, class Alloc> class TMListImp;

Implements a managed list of objects of type T. TMListImp assumes that T
has meaningful copy semantics, and a default constructor.

Type definitions

typedef int (*CondFunc) (canst T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedefvoid (*IterFunc) (T &, void *);

Borland C++ for OS/2 Library Reference

Constructor

Example

Add

Detach

DetachAtHead

FirstThat

Flush

ForEach

IsEmpty

List containers

Function type used as a parameter to ForEach member function.

Public constructors

TMListIrnp ()

Constructs an empty list.

TMListlmp< MyObject, TStandardAllocator > list; II Create list to hold
MyObjects
list.Add(MyObject());
list.Add(MyObject());
list.DetachAtHead());

Public member functions

int Add (const T& t)j

Adds an object to the list.

int Detach (const T&)j

II Construct a MyObject, add to list
II Add a second MyObject
II Remove MyObject as head of list

Removes the given object from the list. Returns 0 for failure, 1 for success in
removing the object. See TShouldDelete on page 408.

int DetachAtHead()j

Removes items from the head of a list without searching for a match.

T *FirstThat(CondFunc cond, void *args) constj

Returns a pointer to the first object in the list that satisfies a given
condition. You supply a test-function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: LastThat

void Flush () j

Flushes the list without destroying it.

void ForEach(IterFunc iter, void * args)j

Executes function iter for list element. ForEach executes the given function
iter for each element in the array. The args argument lets you pass arbitrary
data to this function.

int IsErnpty() constj

Chapter 6, The C++ container classes 363

List containers

LastThat

PeekHead

Head,Taii

FindDetach

FindPred

Returns 1 if the list has no elements; otherwise returns O.

T *LastThat(CandFunc cand, vaid *args) canst;

Returns a pointer to the last object in the list that satisfies a given condition.
You supply a test function pointer cond that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the list meets the condition.

See also: FirstThat, ForEach

canst T& PeekHead() canst;

Returns a reference to the Head item in the list, without removing it.

Protected data members

TMListElement<T,Allac> Head, Tail;

The elements before the first and after the last elements in the list.

Protected member functions

virtual TMListElement<T,Allac> *FindDetach(canst T& t)

Determines whether an object is in the list, andxeturns a pointer to its
predecessor. Returns 0 if not found.

virtual TMListElement<T,Allac> *FindPred(canst T&);

Finds the element that would be followed by the parameter. The function
does not check whether the parameter is actually there. This can be used for
inserting (insert after returned element pointer).

TMListiteratorlmp template listimp.h

Constructor

364

template <class T, class Allac> class TMListIteratarImp;

Implements a list iterator that works on direct, managed list. For indirect
list iteration see TMlListIteratorlmp on page 368.

Public constructors

TMListIteratarImp(canst TMListImp<T,Allac> &1)

Constructs an iterator that traverses TMListImp objects.

Borland C++ for OS/2 Library Reference

Current

Restart

operator int

operator ++

Public member functions

const T& Current()

Returns the current object.

void Restart()

Restarts iteration from the beginning of the list.

Operators

operator int();

List containers

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to a if nothing remains in the iterator.

const T& operator ++ (int)

Moves to the next object, and returns the object that was current before the
move (post-increment).

const T& operator ++ ()

Moves to the next object, and returns the object that was current after the
move (pre-increment).

TListlmp template listimp.h

template <class T> class TListImp;

Implements a list of objects of type T. TListImp assumes that T has
meaningful copy semantics, and a default constructor. See TMListImp on
page 362 for members.

TListiteratorlmp template listimp.h

template <class T> class TListIteratorImp;

Implements a list iterator that works on direct, managed list. See
TMListIteratorlmp on page 364 for members.

Chapter 6, The C++ container classes 365

List containers

Constructor

Public constructors

TListIteratorImp(const TMListImp<T, TStandardAllocator> &1

Constructs an iterator that traverses TListImp objects.

TMSListlmp template listimp.h

template <class T, class Alloc> class TMSListImpi

Implements a managed, sorted list of objects of type T. TMSListImp
assumes that T has meaningful copy semantics, a meaningful < operator,
and a default constructor. See TMListImp on page 362 for members.

TMSListiteratorlmp template listimp.h

Constructor

template <class T, class Alloc> class TMSListIteratorImpi

Implements a list iterator that works on direct, managed, sorted list. See
TMListIteratorImp on page 364 for members.

Public constructors

TMSListIteratorImp(const TMSListImp<T,Alloc> &1

Constructs an iterator that traverses TMSListImp objects.

TSListimp template listimp.h

template <class T> class TSListImpi

Implements a sorted list of objects of type T, using TStandardAllocator for
memory management. TSListImp assumes that T has meaningful copy
semantics, a meaningful < operator, and a default constructor. See
TMListImp on page 362 for members.

TSListlteratorlmp template listimp.h

template <class T> class TSListIteratorImpi

366 Borland C++ for OS/2 Library Reference

Implements a list iterator that works on direct, sorted list. See
TMListIteratorlmp on page 364 for members.

List containers

TMIListimp template listimp.h

CondFunc

IterFunc

Add

Detach

FirstThat

ForEach

template <class T, class Alloc> class TMIListlmpi

Implements a managed list of pointers to objects of type T. Because pointers
always have meaningful copy semantics, this class can handle any type of
object.

Type definitions

typedef int (*CondFunc) (const T &, void *)i

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *) i

Function type used as a parameter to ForEaeh member function.

Public member functions

int Add (T *t) i

Adds an object pointer to the list.

int Detach (T *t, int del = 0)

Removes the given object pointer from the list. The second argument
specifies whether the object should be deleted. See TShouldDelete on
page 408.

T *FirstThat(CondFunc cond, void *args) const;

Returns a pointer to the first object in the list that satisfies a given
condition. You supply a test-function pointer eond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: LastThat

void ForEach(IterFunc iter, void *args)

Chapter 6, The C++ container classes 367

List containers

LastThat

PeekHead

FindPred

Executes function iter for each list element. ForEach executes the given
function iter for each element in the array. The args argument lets you pass
arbitrary data to this function.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the list that satisfies a given condition.
You supply a test function pointer cond that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns a if no object
in the list meets the condition.

See also: FirstThat, ForEach

T *PeekHead() const;

Returns the object pointer at the Head of the list, without removing it.

Protected member functions

virtual TMListElement<VoidPointer,Alloc> *FindPred(voidPointer);

Finds the element that would be followed by the parameter. The function
does not check whether the parameter is actually there. This can be used for
inserting (insert after returned element pointer).

TMIListiteratorlmp template listimp.h

Constructor

Current

Restart

368

template <class T, class Alloc> class TMIListIteratorImp;

Implements a list iterator that works with any managed indirect list. For
direct lists, see TMListIteratorlmp on page 364.

Public constructors

TMIListIteratorImp (const TMIListImp<VoidPointer, Alloc>_ &1

Constructs an object that iterates on TMlListImp objects.

Public member functions

T *Current ()

Returns the current object pointer.

void Restart ()

Borland C++ for OS/2 Library Reference

operator ++

List containers

Restarts iteration from the beginning of the list.

Operators

T *operator ++ (int)

Moves to the next object, and returns the object that was current before the
move (post-increment).

T *operator ++ ()

Moves to the next object, and returns the object that was current after the
move (pre-increment).

TIListimp template listimp.h

template <class T> class TIListImpi

Implements a list of pointers to objects of type T. Because pointers always
have meaningful copy semantics, this class can handle any type of object.
See TMlListImp on page 367 for members.

TIListiteratorlmp template

Constructor

template <class T> class TIListIteratorImpi

Implements a list iterator that works with any indirect list. See
TMlListIteratorlmp on page 368 for members.

Public constructors

TIListIteratorImp(const TIListImp<T> &1

Constructs an object that iterates on TMlListImp objects.

TMISListimp template

template <class T, class Alloc> class TMISListImpi

Chapter 6, The C++ container classes

listimp.h

listimp.h

369

List containers

FindDetach

FindPred

Implements a managed sorted list of pointers to objects of type T. Because
pointers always have meaningful copy semantics, this class can handle any
type of object.

Public member functions

In addition to the member functions described here, TMISListImp inherits
other member functions from TMlListImp (see page 367).

virtual TMListElement<TVoidPointer,Alloc> *FindDetach(TVoidPointer);

Determines whether an object is in the list, and returns a pointer to its
predecessor. Returns a if not found.

virtual TMListElement<TVoidPointer,Alloc> *FindPred(TvoidPointer);

Finds the element that would be followed by the parameter. The function
does not check whether the parameter is actually there. This can be used for
inserting (insert after returned element pointer).

TMISListiteratorlmp template listimp.h

Constructor

template <class T, class Alloc> class TMISListIteratorImp;

Implements a list iterator that works with any managed indirect list. For
direct lists, see TMListIteratorlmp on page 364.

Public constructors

TMISListIteratorImp(const TMISListImp<T,Alloc> &1) :

Constructs an object that iterates on TMISListImp objects.

TISListimp template listimp.h

370

template <class T> class TISListImp;

Implements a sorted list of pointers to objects of type T, using
TStandardAllocator for memory management. Because pointers always have
meaningful copy semantics, this class can handle any type of object. See
TMISListImp on page 369 for members.

Borland C++ for OS/2 Library Reference

List containers

TISListiteratorlmp template listimp.h

Constructor

template <class T> class TISListIteratorImpi

Implements a list iterator that works with any indirect list. See
TMlListIteratorlmp on page 368 for members.

Public constructors

TISListIteratorImp(const TISListImp<T> &1

Constructs an object that iterates on TISListImp objects.

TMQueueAsVector template queues.h

Constructor

FirstThat

Flush

template <class T, class Alloc> class TMQueueAsVectori

Implements a managed queue of objects of type T, using a vector as the
underlying implementation. TMQueueAs Vector assumes T has meaningful
copy semantics, a < operator, and a default constructor. The memory
manager Alloc provides class-specific new and delete operators.

Public constructors

TMQueueAsVector(unsigned sz = DEFAULT_QUEUE_SIZE

Constructs a managed, vector-implemented queue, of S2 size.

Public member functions

T *FirstThat(CondFunc, void *args) consti

Returns a pointer to the first object in the queue that satisfies a given
condition. You supply a test-function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: LastThat

void Flush ()

Flushes the queue without destroying it. The fate of any objects removed
depends on the current ownership status.

Chapter 6, The C++ container classes 371

Queue containers

ForEach

Get

See also: TShouldDelete::ownsElements

void ForEach(IterFunc iter, void *args);

Executes function iter for each queue element. ForEach executes the given
function iter for each element in the array. The args argument lets you pass
arbitrary data to this function.

T Get ()

Removes the object from the head of the queue. If the queue is empty, it
returns O. Otherwise the removed object is returned.

GetltemslnContainer int GetItemslnContainer () const;

IsEmpty

IsFull

LastThat

Put

Returns the number of items in the queue.

int IsEmpty() const;

Returns 1 if the queue has no elements; otherwise returns O.

int IsFull() const;

Returns 1 if the queue is full; otherwise returns O.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the queue that satisfies a given
condition. You supply a test function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the queue meets the condition.

See also: FirstThat, ForEach

void Put(T t)

Adds an object to (the tail of) a queue.

TMQueueAsVectorlterator template queues.h

Constructor

372

template <class T, class Alloc> class TMQueueAsVectorlterator;

Implements an iterator object for managed, vector-based queues. See
TMDequeAsVectorlterator on page 329 for members.

Public constructors

TMQueueAsVectorlterator(const TMDequeAsVector<T,Alloc> &q)

Constructs an object that iterates on TMQueueAsVector objects.

Borland C++ for OS/2 Library Reference

TQueueAsVector template

Constructor

template <class T> class TQueueAsVector;

See TMQueueAs Vector on page 371 for members.

Public constructors

TQueueAsVector(unsigned sz = DEFAULT_QUEUE_SIZE

Constructs a vector-implemented queue, of S2 size.

TQueueAsVectorlterator template

Constructor

template <class T> class TQueueAsVectorlterator;

Implements an iterator object for vector-based queues. See
TMDequeAsVectorIterator on page 329 for members.

Public constructors

TQueueAsVectorlterator(canst TQueueAsVector<T> &q)

Constructs an object that iterates on TQueueAs Vector objects.

TMIQueueAsVector template

template <class T, class Alloc> class TMIQueueAsVector;

Queue containers

queues.h

queues.h

queues.h

Implements a managed queue of pointers to objects of type T, using a
vector as the underlying implementation.

Constructor

FirstThat

Public constructors

TMIQueueAsVector(unsigned sz = DEFAULT_QUEUE_SIZE

Constructs a managed, indirect queue, of S2 size.

Public member functions

T *FirstThat(CondFunc, void *args) const;

Chapter 6, The C++ container classes 373

Queue containers

Flush

ForEach

Get

Returns a pointer to the first object in the queue that satisfies a given
condition. You supply a test-function pointer cand that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: LastThat

void Flush (TShouldDelete:: De,leteType = TShouldDelete:: DefDelete);

Flushes the queue without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the dt argument.

void ForEach(IterFunc iter, void *args);

Executes function iter for each queue element. FarEach executes the given
function iter for each element in the queue. The args argument lets you pass
arbitrary data to this function.

T *Get ()

Removes and returns the object pointer from the queue. If the queue is
empty, it returns O.

GetltemslnContainer int GetItemsInContainer () const;

IsEmpty

IsFull

LastThat

Put

Returns the number of items in the queue.

int IsEmpty() const;

Returns 1 if a queue has no elements; otherwise returns O.

int isFull() const;

Returns 1 if a queue is full; otherwise returns O.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the queue that satisfies a given
condition. You supply a test function pointer cand that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the queue meets the condition.

See also: FirstThat, FarEach

void Putt T *t)

Adds an object pointer to (the tail of) a queue.

TMIQueueAsVectorlterator template queues.h

template <class T, class Alloc> class TMIQueueAsVectorIterator;

374 Borland C++ for OS/2 Library Reference

Constructor

Queue containers

Implements an iterator object for managed, indirect, vector-based queues.

Public constructors

TMIQueueAsVectorIterator(const TMIDequeAsVector<T,Alloc> &q)

Constructs an object that iterates on TMIQueueAsVector objects.

TIQueueAsVector template queues.h

Constructor

template <class T> class TIQueueAsVector;

Implements a queue of pointers to objects of type T, using a vector as the
underlying implementation.

Public constructors

TIQueueAsVector(unsigned S2 = DEFAULT_QUEUE_SIZE

Constructs a indirect queue, of S2 size.

TIQueueAsVectorlterator template queues.h

Constructor

template <class T> class TIQueueAsVectorIterator;

Implements an iterator object for indirect, vector-based queues. See
TMDequeAsVectorlterator on page 329 for members.

Public constructors

TIQueueAsVectorIterator(const TIQueueAsVector<T> &q)

Constructs an object that iterates on TIQueueAsVector objects.

TMQueueAsDoubleList template queues.h

template <class T, class Alloc> class TMQueueAsDoubleList;

Implements a managed queue of objects of type T, using a double-linked
list as the underlying implementation.

Chapter 6, The C++ container classes 375

Queue containers

FirstThat

Flush

ForEach

Get

Public member functions

T *FirstThat(CondFunc cond, void *args) const;

Returns a pointer to the first object in the queue that satisfies a given
condition. You supply a test-function pointer cand that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the queue meets the condition.

See also: LastThat

void Flush ()

Flushes objects from the queue. Flushes the queue without destroying it.

void ForEach(IterFunc iter, void *args)

Executes function iter for each queue element. FarEach executes the given
function iter for each element in the array. The args argument lets you pass
arbitrary data to this function.

T Get ()

Removes the object from the head of the queue. If the queue is empty, it
throws the PRECONDITION exception in the debug version. In the non
debug version Get returns a meaningless object if the queue is empty.

GetltemslnContainer int GetItemsInContainer () const;

IsEmpty

IsFull

LastThat

Put

376

Returns the number of items in the queue.

int IsEmpty() const;

Returns 1 if a queue has no elements; otherwise returns O.

int IsFull() const;

Returns 1 if a queue is full; otherwise returns O.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the queue that satisfies a given
condition. You supply a test function pointer cand that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: FirstThat, FarEach

void Put(T t)

Adds an object to (the tail of) a queue. If the queue is full, it throws the
PRECONDITION exception in the debug version. If the queue is full, the
behavior of the non-debug version of Put is undefined.

Borland C++ for OS/2 Library Reference

Queue containers

TMQueueAsDoubleListiterator template queues.h

Constructor

template <class T, class Alloc> class TMQueueAsDoubleListIterator;

Implements an iterator object for list-based queues. See
TMDequeAsDoubleListIterator on page 336 for members.

Public constructors

TMQueueAsDoubleListIterator(const TMQueueAsDoubleList<T,Alloc> & q)

Constructs an object that iterates on TMQueueAsDoubleList objects.

TQueueAsDoubleList template queues.h

template <class T> class TQueueAsDoubleListi

Implements a queue of objects of type T, using a double-linked list as the
underlying implementation. See TMQueueAsDoubleList on page 375 for
members.

TQueueAsDoubleListiterator template queues.h

Constructor

template <class T> class TQueueAsDoubleListIteratori

Implements an iterator object for list-based queues. See
TMDequeAsDoubleListIterator on page 336 for members.

Public constructors

TQueueAsDoubleListIterator(const TQueueAsDoubleList<T> &q)

Constructs an object that iterates on TQueueAsDoubleList objects.

TMIQueueAsDoubleList template queues.h

template <class T, class Alloc> class TMIQueueAsDoubleListi

Implements a managed indirect queue of pointers to objects of type T,
using a double-linked list as the underlying implementation.

Chapter 6, The C++ container classes 377

Queue containers

FirstThat

Flush

ForEach

Get

Public member functions

T *FirstThat(CondFunc cond, void *args) const;

Returns a pointer to the first object in the queue that satisfies a given
condition. You supply a test-function pointer cand that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the queue meets the condition.

See also: LastThat

void Flush(TShouldDelete::DeleteType dt = TShouldDelete::DefDelete)

Flushes the queue without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the dt argument.

void ForEach(IterFunc iter, void *args)

Executes function iter for each queue element. FarEach executes the given
function iter for each element in the queue. The args argument lets you pass
arbitrary data to this function.

T *Get ()

Removes and returns the object pointer from the queue. If the queue is
empty, it throws the PRECONDITION exception in the debug version. In
the non-debug version Get returns a meaningless object if the queue is
empty.

GetltemslnContainer int GetIternsInContainer () const;

IsEmpty

IsFuil

LastThat

Put

378

Returns the number of items in the queue.

int IsErnpty() const;

Returns 1 if the queue has no elements; otherwise returns O.

int IsFull() const;

Returns 1 if the queue is full; otherwise returns O.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the dequeue that satisfies a given
condition. You supply a test function pointer cand that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the queue meets the condition.

See also: FirstThat, FarEach

void Putt T *t)

Borland C++ for OS/2 Library Reference

Queue containers

Adds an object pointer to (the tail of) a queue. If the queue is full, it throws
the PRECONDITION exception in the debug version. If the queue is full,
the behavior of the non-debug version of Put is undefined.

TMIQueueAsDoubleListiterator template , queues.h

Constructor

template <class T, class Alloc> class TMIQueueAsDoubleListIteratori

Implements an iterator object for indirect, list-based queues. See
TMIDequeAsDoubleListIterator on page 338 for members.

Public constructors

TMIQueueAsDoubleListIterator(canst TMIQueueAsDoubleList<T,Allac> & q)

Constructs an object that iterates on TMIQueueAsDoubleList objects.

TIQueueAsDoubleList template queues.h

Implements an indirect queue of pointers to objects of type T, using a
double-linked list as the underlying implementation. See
TMIQueueAsDoubleList on page 377 for members.

TIQueueAsDoubleListlterator template queues.h

Constructor

Implements an iterator object for indirect, list-based queues. See
TMIDequeAsDoubleListIterator on page 338 for members.

Public constructors

TIQueueAsDoubleListIterator(canst TIQueueAsDoubleList<T> & q)

Constructs an object that iterates on TIQueueAsDoubleList objects.

TQueue template queues.h

A simplified name forTQueueAsVector.

Chapter 6, The C++ container classes 379

Set containers

TQueuelterator template queues.h

A simplified name for TQueueAsVectorIterator.

TMSetAsVector template sets.h

Constructor

Add

template <class T, class Alloc> class TMSetAsVectorj

Implements a managed set of objects of type T, using a vector as the
underlying implementation. A set, unlike a bag, cannot contain duplicate
items.

Public constructors

TMSetAsVector(unsigned sz = DEFAULT_SET_SIZE)

Constructs an empty set. S2 represents the number of items the set can hold.

Public member functions

In addition to the following member function, TMSetAs Vector inherits
member functions from TMBagAsVector. See TMBagAsVector on page 317
for members.

int Add(const T& t) j

Adds an object to the set.

TMSetAs Vectorlterator template sets.h

Constructor

380

template <class T, class Alloc> class TMSetAsVectorlteratorj

Implements an iterator object to traverse TMSetAsVector objects. See
TMArrayAsVectorlterator on page 301 for members.

Public constructors

TMSetAsVectorlterator(const TMSetAsVector<T,Alloc> &s) :

Constructs an object that iterates on TMSetAs Vector objects.

Borland C++ for OS/2 Library Reference

Set containers

TSetAsVector template sets.h

Constructor

template <class T> class TSetAsVectorj

Implements a set of objects of type T, using a vector as the underlying
implementation. TStandardAllocator is used to manage memory. See
TMBagAsVector on page 317 for members.

Public constructors

TSetAsVector(unsigned sz = DEFAULT_SET_SIZE) :

Constructs an empty set. S2 represents the number of items the set can hold.

TSetAsVectorlterator template sets.h

Constructor

template <class T> class TSetAsVectorIteratorj

Implements an iterator object to traverse TSetAs Vector objects. See
TMArrayAsVectorIterator on page 301 for members.

Public constructors

TSetAsVectorIterator(const TSetAsVector<T> &s)

Constructs an object that iterates on TMSetAs Vector objects.

TMISetAsVector template sets.h

Constructor

template <class T, class Alloc> class TMISetAsVectorj

Implements a managed set of pointers to objects of type T, using a vector as
the underlying implementation. See TMIBagAsVector on page 319 for
members.

Public constructors

TMISetAsVector(unsigned sz = DEFAULT_SET_SIZE) :

Constructs an empty, managed, indirect set. S2 represents the initial
number of slots allocated.

Chapter 6, The C++ container classes 381

Set containers

Add

Public member functions

In addition to the following member function, TMISetAs Vector inherits
member functions from TMIBagAsVector. See TMIBagAsVector on page 319.

int Add (T *);

Adds an object pointer to the set.

TMISetAsVectorlterator template sets.h

Constructor

template <class T, class Alloc> class TMISetAsVectorIterator;

Implements an iterator object to traverse TMISetAs Vector objects. See
TMIArrayAsVectorIterator on page 306 for members.

Public constructors

TMISetAsVectorIterator(const TMISetAsVector<T,Alloc> &s)

Constructs an object that iterates on TMISetAs Vector objects.

TISetAsVector template sets.h

Constructor

template <class T> class TISetAsVector;

Implements a set of pointers to objects of type T, using a vector as the
underlying implementation. See TMIBagAsVector on page 319 for members.

Public constructors

TISetAsVector(unsigned sz = DEFAULT_SET_SIZE

Constructs an empty, indirect bag. sz represents the initial number of slots
allocated.

TISetAsVectorlterator template sets.h

382

template <class T> class TISetAsVectorIterator;
Implements an iterator object to traverse TISetAsVector objects. See
TMIArrayAsVectorIterator on page 306 for members.

Borland C++ for OS/2 Library Reference

Set containers

Public constructors

Constructor TISetAsVectorIterator(const TISetAsVector<T> &s)

Constructs an object that iterates on TISetAsVector objects.

TSet template sets.h

A simplified name for TSetAsVector.

TSetlterator template sets.h

A simplified name for TSetAsVectorIterator.

TMStackAsVector template stacks.h

CondFunc

lterFunc

Constructor

template <class T, class Allac> class TMStackAsVector;

Implements a managed stack of objects of type T, using a vector as the
underlying implementation.

Type definitions

typedef int (*CondFunc) (canst T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public constructors

TMStackAsVector(unsigned max = DEFAULT_STACK_SIZE)

Constructs a managed, vector-implemented stack, with max indicating the
maximum stack size.

Chapter 6, The C++ container classes 383

Stack containers

FirstThat

Flush

ForEach

Public member functions

T *FirstThat(CondFunc cond, void *args) const;

Returns a pointer to the first object in the stack that satisfies a given
condition. You supply a test-function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: LastThat

void Flush();

Flushes the stack without destroying it.

See also: TShouldDelete::ownsElements

void ForEach(IterFunc iter, void *args

Executes function iter for each stack element. ForEach executes the given
function iter for each element in the array. The args argument lets you pass
arbitrary data to this function.

GetltemslnContainer int GetItemsInContainer () const;

IsEmpty

IsFull

LastThat

Pop

Push

384

Returns the number of items in the stack.

int IsEmpty() const;

Returns 1 if the stack has no elements; otherwise returns O.

int IsFull() const;

Returns 1 if the stack is full; otherwise returns O.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the stack that satisfies a given
condition. You supply a test function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in t~e array meets the condition.

See also: FirstThat, ForEach

T Pop()

Removes the object from the top of the stack and returns the object. The fate
of the popped object is determined by ownership. See TShouldDelete on
page 408.

void Push(const T& t)

Pushes an object on the top of the stack.

Borland C++ for OS/2 Library Reference

Stack containers

Top const T& Top() consti

Returns but does not remove the object at the top of the stack.

TMStackAsVectorlterator template stacks.h

Constructor

template <class T, class Alloc> class TMStackAsVectorlteratori

Implements an iterator object for managed, vector-based stacks. See
TMVectorIteratorlmp on page 393 for members.

Public constructors

TMStackAsVectorlterator(const TMStackAsVector<T,Alloc> & s)

Constructs an object that iterates on TMStackAs Vector objects.

TStackAsVector template stacks.h

Constructor

template <class T> class TStackAsVectori

Implements a stack of objects of type T, using a vector as the underlying
implementation, and TStandardAllocator for memory management.

Public constructors

TStackAsVector(unsigned max = DEFAULT_STACK_SIZE

Constructs a vector-implemented stack, with max indicating the maximum
stack size.

TStackAsVectorlterator template stacks.h

template <class T> class TStackAsVectorlteratori

Implements an iterator object for managed, vector-based stacks. See
TMVectorIteratorlmp on page 393 for members.

Chapter 6, The C++ container classes 385

Stack containers

Public constructors

Constructor TStackAsVectorIterator(const TStackAsvector<T> & s) :

Constructs an object that iterates on TStackAsVector objects.

TMIStackAsVector template stacks.h

CondFunc

IterFunc

Constructor

FirstThat

Flush

386

template <class T, class Alloc> class TMIStackAsVector;

TMIStackAs Vector implements a managed stack of pointers to objects of
type T, using a vector as the underlying implementation.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public constructors

TMIStackAsVector(unsigned max = DEFAULT_STACK_SIZE
Constructs a managed, indirect, vector-implemented stack, with max
indicating the maximum stack size.

Public member functions

T *FirstThat(CondFunc cond, void *args) const;

Returns a pointer to the first object in the stack that satisfies a given
condition. You supply a test-function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns a if no
object in the array meets the condition.

See also: LastThat

void Flush(TShouldDelete::DeleteType = TShouldDelete::DefDelete

Borland C++ for OS/2 Library Reference

ForEach

Stack containers

Flushes the stack without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the dt argument.

See also: TShouldDelete::ownsElements

void ForEach(IterFunc iter, void *args

Executes function iter for each stack element. ForEach executes the given
function iter for each element in the array. The args argument lets you pass
arbitrary data to this function.

GetltemslnContainer int GetItemsInContainer () const;

IsEmpty

IsFull

LastThat

Pop

Push

Top

Returns the number of items in the stack.

int IsEmpty() const;

Returns 1 if the stack has no elements; otherwise returns O.

int IsFull() const;

Returns 1 if the stack is full; otherwise returns O.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the stack that satisfies a given
condition. You supply a test function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

See also: FirstThat, ForEach

T *Pop ()

Removes the object from the top of the stack and returns a pointer to the
object. The fate of the popped object is determined by ownership. See
TShouldDelete on page 408.

void Push(T *t)

Pushes a pointer to an object on the top of the stack.

T *Top () const;

Returns but does not remove the object pointer at the top of the stack.

TMIStackAsVectorlterator template stacks.h

template <class T, class Alloc> class TMIStackAsVectorIterator;

Implements an iterator object for managed, indirect, vector-based stacks.
See TMVectorIteratorlmp on page 393 for members.

Chapter 6, The C++ container classes 387

Stack containers

Constructor

Public constructors

TMIStackAsVectarIteratar(canst TMIStackAsVector<T,Allac> & s

Constructs an object that iterates on TMIStackAsVectar objects.

TIStackAsVector template stacks.h

Constructor

template <class T> class TIStackAsVectar;

Implements an indirect stack of pointers to objects of type T, using a vector
as the underlying implementation. See TMIStackAsVectar on page 386 for
members.

Public constructors

TIStackAsVectar(unsigned max = DEFAULT_STACK_SIZE);

Constructs an indirect, vector-implemented stack, with max indicating the
maximum stack size.

TIStackAsVectorlterator template stacks.h

Constructor

template <class T> class TIStackAsVectarIterator;

Implements an iterator object for indirect, vector-based stacks. See
TMIVectarIteratarlmp on page 402 for members.

Public constructors

TMIStackAsVectarIteratar(canst TMIStackAsVectar<T,Allac> & s

Constructs an object that iterates on TIStackAsVectar objects.

TMStackAsList template stacks.h

388

template <class T, class Allac> class TMStackAsList;

Implements a managed stack of objects of type T, using a list as the
underlying implementation. See TMStackAsVectar on page 383 for
members.

Barland c++ far OS/2 Library Reference

Stack containers

TMStackAsListiterator template stacks.h

Constructor

template <class T, class Alloc> class TMStackAsListIteratori

Implements an iterator object for managed, list-based stacks. See
TMListIteratorlmp on page 364 for members.

Public constructors

TMStackAsListIterator(const TMStackAsList<T,Alloc> & s) :
TMListIteratorImp<T,Alloc> (s.Data)

Constructs an object that iterates on TMStackAsList objects.

TStackAsList template stacks.h

template <class T> class TStackAsList;

Implements a managed stack of objects of type T, using a list as the
underlying implementation. See TMStackAsVector on page 383 for
members.

TStackAsListiterator template stacks.h

template <class T> class TStackAsListIteratori

Implements an iterator object for list-based stacks. See TMVectorIteratorlmp
on page 393 for members.

Constructor

Public constructors

TStackAsListIterator(const TStackAsList<T> & s);

Constructs an object that iterates on TIStackAsVector objects.

TMIStackAsList template

template <class T, class Alloc> class TMIStackAsListi

Chapter 6, The C++ container classes

stacks.h

389

Stack containers

Implements a managed stack of pointers to objects of type T, using a linked
list as the underlying implementation. See TMIStackAs Vector on page 386
for members.

TMIStackAsListiterator template stacks.h

Constructor

template <class T, class Alloc> class TMIStackAsListlteratori

Implements an iterator object for managed, indirect, list-based stacks. See
TMlListIteratorlmp on page 368 for members.

Public constructors

TMIStackAsListlterator(const TMIStackAsList<T,Alloc> & s)

Constructs an object that iterates on TMIStackAsList objects.

TIStackAsList template stacks.h

template <class T> class TIStackAsListi

Implements TMIStackAsList with the standard allocator TStandardAllocator.
See TMIStackAsVector on page 386 for members.

TIStackAsListiterator template stacks.h

Constructor

template <class T> class TIStackAsListlteratori

Implements an iterator object for indirect, list-based stacks. See
TMIVectorIteratorlmp on page 402 for members.

Public constructors

TIStackAsListlterator(const TIStackAsList<T> & s

Constructs an object that iterates on TIStackAsList objects.

TStack template stacks.h

A simplified name for TStackAsVector.

390 Borland C++ for OS/2 Library Reference

Vector containers

TStacklterator template stacks.h

A simplified name for TStackAsVectorIterator.

TMVectorlmp template vectimp.h

CondFunc

lterFunc

Constructor

Constructor

Constructor

FirstThat

template <class T, class Alloc> class TMVectorlmp;

Implements a managed vector of objects of type T. TMVectorlmp assumes
that T has meaningful copy semantics, and a default constructor.

Type definitions

typedef int (*CondFunc) (canst T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public constructors

TMVectorlmp();

Constructs a vector with no entries.

TMVectorlmp(unsigned sz, unsigned = 0);

Constructs a vector of S2 objects, initialized by default to o.
TMVectorlmp(canst TMVectorlmp<T,Alloc> &);

Constructs a vector copy.

Public member functions

T *FirstThat(CondFunc cond, void *args) canst;

Returns a pointer to the first object in the vector that satisfies a given
condition. You supply a test-function pointer cond that returns true for a
certain condition. You can pass arbitra.ry arguments via args. Returns 0 if no
object in the vector meets the condition.

Chapter 6, The C++ container classes 391

Vector containers

Flush

ForEach

GetDelta

LastThat

Limit

Resize

392

T *FirstThat(CondFunc cond, void *args, unsigned start,
unsigned stop) const;

This version of FirstThat allows you to specify a range to be searched.
Returns a pointer to the first object in the vector that satisfies a given
condition. You supply a test-function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns a if no
object in the vector meets the condition.

See also: LastThat

void Flush(unsigned stop = DINT_MAX, unsigned start = 0);

Flushes the vector without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the first
argument.

See also: TShouldDelete::ownsElements

void ForEach(IterFunc iter, void *args

Returns a pointer to the first object in the vector that satisfies a given
condition. ForEach executes the given function iter for each element in the
array. The args argument lets you pass arbitrary data to this function.

void ForEach(IterFunc iter, void *, unsigned start, unsigned stop);

This version allows you to specify a range.

See also: LastThat

virtual unsigned GetDelta() const;

Returns the growth delta for the array.

T *LastThat(CondFunc cond, void *args) const;

Returns a pointer to the last object in the vector that satisfies a given
condition. You supply a test function pointer cond that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns a if no
object in the vector meets the condition.

T *LastThat(CondFunc cond, void *args, unsigned start,
unsigned stop) const;

This version allows you to specify a range.

See also: FirstThat, ForEach

unsigned Limit() const;

Returns the number of items that the vector can hold.

void Resize(unsigned sz, unsigned offset = 0);

Borland C++ for OS/2 Library Reference

Top

operator []

operator =

Lim

Zero

Vector containers

Creates a new vector of size S2. The existing vector is copied to the
expanded vector, then deleted. In a vector of pointers the entries are
zeroed. In an array of objects the default constructor is invoked for each
unused element. offset is the location in the new vector where the first
element of the old vector should be copied. This is needed when the vector
has to be extended downward.

virtual unsigned Top() const;

Returns the index of the current top element. For plain vectors Top returns
Lim; for counted and sorted vectors Top returns the current insertion point.

Operators

T & operator [] (unsigned index) const;

Returns a reference to the object at index.

const TMVectorImp<T,Alloc> & operator = (const TMVectorImp<T,Alloc> &);

Provides the vector assignment operator.

Protected data members

unsigned Lim;

Lim stores the upper limit for indexes into the vector.

Protected member functions

virtual void Zero(unsigned, unsigned

Provides for zeroing vector contents within the specified range.

TMVectorlteratorlmp template vectimp.h

template <class T, class Alloc> class TMVectorIteratorImp;

Implements a vector iterator that works with any direct, managed vector of
objects of type T. For indirect vector iterators, see TMIVectorIteratorlmp on
page 402.

Chapter 6, The C++ container classes 393

Vector containers

Constructor

Constructor

Current

Restart

operator ++

operator int

Public constructors

TMVectorIteratorImp(const TMVectorImp<T,Alloc> &v)

Creates an iterator object to traverse TMVectorlmp objects.

TMVectorIteratorImp(const TMVectorImp<T,Alloc> &v, unsigned start,
unsigned stop)

Creates an iterator object to traverse TMVectorlmp objects. A range can be
specified.

Public member functions

const T& Current();

Returns the current object.

void Restart();

Restarts iteration over the whole vector.

void Restart (unsigned start, unsigned stop);

Restarts iteration over the given range.

Operators

const T& operator ++(int);

Moves to the next object, and returns the object that was current before the
move (post-increment).

const T& operator ++();

Moves to the next object, and returns the object that was current after the
move (pre-increment).

operator int();

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

TVectorlmp template vectimp.h

template <class T> class TVectorImp;

394 Borland C++ for OS/2 Library Reference

Constructor

Constructor

Constructor

Vector containers

Implements a vector of objects of type T. TVectorlmp assumes that T has
meaningful copy semantics, and a default constructor. See TMVectorlmp on
page 391 for members.

Public constructors

TVectorlmp ()

Constructs a vector with no entries.

TVectorlmp(unsigned sz, unsigned = 0

Constructs a vector of S2 objects, initialized by default to O.

TVectorlmp(const TVectorlmp<T> &v)

Constructs a vector copy.

TVectorlteratorlmp template vectimp.h

Constructor

Constructor

template <class T> class TVectorlteratorlmpi

Implements a vector iterator that works with any direct vector of objects of
type T. See TMVectorIteratorlmp on page 393 for members.

Public constructors

TVectorlteratorlmp(const TVectorlmp<T> &v)

Creates an iterator object to traverse TVectorlmp objects.

TVectorlteratorlmp(const TVectorlmp<T> &v, unsigned start, unsigned stop

Creates an iterator object to traverse TVectorlmp objects. A range can be
specified.

TMCVectorlmp template vectimp.h

template <class T, class Alloc> class TMCVectorlmpi

Implements a managed, counted vector of objects of type T. TMCVectorlmp
assumes that T has meaningful copy semantics, and a default constructor.

Chapter 6, The C++ container classes 395

Vector containers

Constructor

Constructor

Add

AddAt

Count

Detach

Find

GetDelta

396

Public constructors

TMCVectarlrnp() ;

Constructs a vector with no entries.

TMCVectarlrnp(unsigned sz, unsigned = 0);

Constructs a vector of S2 objects, initialized by default to o.

Public member functions

In addition to the member functions described here, TMCVectorlmp inherits
member functions from TMVectorlmp (see page 391).

int Add (canst T& t);

Adds an object to the vector and increments Count_.

int AddAt(canst T&, unsigned);

Adds an object to the vector at the specified location, and increments
Count_.

unsigned Caunt() canst;

Returns Count_.

int Detach (unsigned lac);
int Detach (canst T& lac);

Remove by specifying the object or its index.

virtual unsigned Find(canst T&) canst;

Finds the specified object and returns the object's index; otherwise returns
INT_MAX.

virtual unsigned GetDelta() canst;

Returns Delta.

Protected data members

In addition to the data members described here, TMCVectorlmp inherits
data members from TMVectorlmp (see page 391).

unsigned Caunt_;

Maintains the number of objects in the vector.

Borland C++ for OS/2 Library Reference

Delta

Top

Vector containers

unsigned Delta;

Specifies the size increment to be used when the vector grows.

virtual unsigned Top() const;

Returns Count_.

TMCVectorlteratorlmp template vectimp.h

Constructor

Constructor

template <class T, class Alloc> class TMCVectorIteratorImp;

Implements a vector iterator that works with any direct, managed, counted
vector of objects of type T. See TMVectorIteratorlmp on page 393 for
members.

Public constructors

TMCVectorIteratorImp(const TMCVectorImp<T,Alloc> &v)

Creates an iterator object to traverse TMCVectorlmp objects.

TMVectorIteratorImp(const TMCVectorImp<T,Alloc> &v, unsigned start,
unsigned stop)

Creates an iterator object to traverse TMCVectorlmp objects. A range can be
specified.

TCVectorlmp template vectimp.h

Constructor

Constructor

template <class T> class TCVectorImp;

Implements a counted vector of objects of type T. TCVectorlmp assumes that
T has meaningful copy semantics, and a default constructor. See
TMCVectorlmp on page 395 for members.

Public constructors

TCVectorImp() ;

Constructs a vector with no entries.

MCVectorImp(unsigned S2, unsigned = 0);

Chapter 6, The C++ container classes 397

Vector containers

Constructs a vector of S2 objects, initialized by default to o.

TCVectorlteratorlmp template vectimp.h

Constructor

Constructor

template <class T> class TCVectorIteratorImpi

Implements a vector iterator that works with any direct, counted vector of
objects of type T. See TMCVectorIteratorlmp on page 397 for members.

Public constructors

TCVectorIteratorImp(const TCVectorImp<T> &v

Creates an iterator object to traverse TCVectorlmp objects.

TCVectorIteratorImp(const TCVectorImp<T> &v, unsigned start,
unsigned stop)

Creates an iterator object to traverse TCVectorlmp objects. A range can be
specified.

TMSVectorlmp template vectimp.h

Constructor

Constructor

template <class T, class Alloc> class TMSVectorImpi

Implements a managed, sorted vector of objects of type T. TM5Vectorlmp
assumes that T has meaningful copy semantics, a meaningful < operator,
and a default constructor. See TMCVectorlmp on page 395 for members.

Public constructors

TMSVectorImp ()

Constructs a vector with no entries.

TMSVectorImp(unsigned sz, unsigned d = 0)

Constructs a vector of S2 objects, initialized by default to o.

TMSVectorlteratorlmp template vectimp.h

template <class T, class Alloc> class TMSVectorIteratorImpi

398 Borland C++ for OS/2 Library Reference

Constructor

Constructor

Vector containers

Implements a vector iterator that works with any direct, managed, sorted
vector of objects of type T. See TMVectorIteratorlmp on page 393 for
members.

Public constructors

TMSVectorIteratorImp(const TMSVectorImp<T,Alloc> &v)

Creates an iterator object to traverse TM5Vectorlmp objects.

i TMSVectorIteratorImp(const TMSVectorImp<T,Alloc> &v, unsigned start,
unsigned stop)

Creates an iterator object to traverse TM5Vectorlmp objects. A range can be
specified.

TSVectorlmp template vectimp.h

Constructor

Constructor

template <class T> class TSVectorImp;
Implements a sorted vector of objects of type T. T5Vectorlmp assumes that T
has meaningful copy semantics, a meaningful < operator, and a default
constructor. See TMCVectorlmpon page 395 for members.

Public constructors

TSVectorImp ()

Constructs a vector with no entries.

TSVectorImp(unsigned sz, unsigned d = 0

Constructs a vector of 5Z objects, initialized by default to o.

TSVectorlteratorlmp template vectimp.h

template <class T> class TSVectorIteratorImp;

Implements a vector iterator that works with any direct, sorted vector of
objects of type T. See TMVectorlteratorlmp on page 393 for members.

Chapter 6, The C++ container classes 399

Vector containers

Constructor

Constructor

Public constructors

TSVectorIteratorImp(const TSVectorImp<T> &v

Creates an iterator object to traverse T5Vectorlmp objects.

TSVectorIteratorImp(const TSVectorImp<T> &v, unsigned start,
unsigned stop)

Creates an iterator object to traverse T5Vectorlmp objects. A range can be
. specified.

TMIVectorlmp template vectimp.h

CondFunc

lterFunc

Constructor

FirstThat

400

template <class T, class Alloc> class TMIVectorImp;

Implements a managed vector of pointers to objects of type T. Because
pointers always have meaningful copy semantics, this class can handle any
type of object.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public constructors

TMIVectorImp(unsigned sz);

Constructs a managed vector of pointers to objects. S2 represents the vector
size.

Public member functions

T *FirstThat(CondFunc cond, void *args) const;

Returns a pointer to the first object in the vector that satisfies a given
condition. You supply a test-function pointer cond that returns true for a

Borland C++ for OS/2 Library Reference

Flush

ForEach

GetDelta

LastThat

Limit

Resize

Top

Vector containers

certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition.

T *FirstThat(CondFunc cond, void *args, unsigned, unsigned) constj

This version allows specifying a range to be searched. You supply a test
function pointer cond that returns true for a certain condition. You can pass
arbitrary arguments via args. Returns 0 if no object in the array meets the
condition.

void Flush(unsigned = 0, unsigned stop = UINT_MAX, unsigned start = 0) j

Flushes the vector without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the first
argument. A range to be flushed can be specified with the last two
arguments.

void ForEach(IterFunc iter, void *args)

Returns a pointer to the first object in the vector that satisfies a given
condition. See TMArrayAsVector::FirstThat.

void ForEach(IterFunc iter, void *, unsigned, unsigned)j

This version allows specifying a range.

virtual unsigned GetDelta() constj

Returns the growth delta for the array.

T *LastThat(CondFunc cond, void *args) constj

Returns a pointer to the last object in the vector that satisfies a given
condition. See TMArrayAsVector::LastThat.

T *LastThat(CondFunc cond, void *args, unsigned, unsigned) constj

This version allows specifying a range.

unsigned Limit() constj

Returns the number of items that the vector can hold.

void Resize(unsigned sz, unsigned offset = 0)j

Creates a new vector of size S2. The existing vector is copied to the
expanded vector, then deleted. In a vector of pointers the entries are
zeroed. In an array of objects the default constructor is invoked for each
unused element. offset is the location in the new vector where the first
element of the old vector should be copied. This is needed when the vector
has to be extended downward.

virtual unsigned Top() constj

Chapter 6, The C++ container classes 401

Vector containers

Zero

operator []

Returns the index of the current top element. For plain vectors Top returns
Lim; for counted and sorted vectors Top returns the current insertion point.

virtual void Zero(unsigned, unsigned)i

Provides for zeroing vector contents within the specified range.

Operators

T * & operator [] unsigned index

T * & operator [] unsigned index consti

Returns a reference to the object at index.

TMIVectorlteratorlmp template vectimp.h

Constructor

Constructor

Current

Restart

402

template <class T, class Alloc> class TMIVectorIteratorImpi

Implements a vector iterator that works with an indirect, managed vector.

Public constructors

TMIVectorIteratorImp(const TMIVectorImp<T,Alloc> &v)

Creates an iterator object to traverse TMIVectorlmp objects.

TMIVectorIteratorImp(const TMIVectorImp<T,Alloc> &v, unsigned 1, unsigned u

Creates an iterator object to traverse TMIVectorlmp objects. A range can be
specified.

Public member functions

T *Current()i

Returns a pointer to the current object.

void Restart()i

Restarts iteration over the whole vector.

void Restart (unsigned start, unsigned stop)i

Restarts iteration over the given range.

Borland C++ for OS/2 Library Reference

operator ++

operator int

Vector containers

Operators

const T& operator ++(int) i

Moves to the next object, and returns the object that was current before the
move (post-increment).

const T& operator ++() i

Moves to the next object, and returns the object that was current after the
move (pre-increment).

operator int() i

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

TIVectorlmp template vectimp.h

Constructor

template <class T> class TIVectorImpi

Implements a vector of pointers to objects of type T. Because pointers
always have meaningful copy semantics, this class can handle any type of
object. See TMIVectorlmp on page 400 for members.

Public constructors

TIVectorImp(unsigned SZ, unsigned d = 0)

Constructs an indirect vector of S2 size, with default initialization of o.

TIVectorlteratorlmp template vectimp.h

Constructor

template <class T> class TIVectorIteratorlmpi

Implements a vector iterator that works with an indirect, managed vector.
See TMIVectorIteratorlmp on page 402 for members.

Public constructors

TIVectorIteratorlmp(const TIVectorImp<T> &v)

Creates an iterator object to traverse TIVectorlmp objects.

Chapter 6, The C++ container classes 403

Vector containers

Constructor TIVectorlteratorlmp(const TIVectorlmp<T> &v, unsigned 1, unsigned u)

Creates an iterator object to traverse TIVectorlmp objects. A range can be
specified.

TMICVectorlmp template vectimp.h

Constructor

Add

Find

Find

template <class T, class Alloc> class TMICVectorlmp;

Implements a managed, counted vector of pointers to objects of type T.
Because pointers always have meaningful copy semantics, this class can
handle any type of object.

Public constructors

TMICVectorlmp(unsigned sz, unsigned d = 0)

Constructs a managed, counted vector of pointers to objects. sz represents
the vector size. d represents the initialization value.

Public member functions

In addition to the following member functions, TMICVectorlmp inherits
other member functions and operators from TMIVectorlmp (see page 400).

int Add (T *t);

Adds an object to the vector.

unsigned Find(T *t) const;

Finds the specified object pointer, and returns its index.

Protected member functions

virtual unsigned Find(void *) const;

Finds the specified pointer and returns its index.

TMICVectorlteratorlmp template vectimp.h

template <class T, class Alloc> class TMICVectorlteratorlmp;

404 Borland C++ for OS/2 Library Reference

Constructor

Constructor

Vector containers

Implements a vector iterator that works with an indirect, managed,
counted vector. See TMIVectorIteratorlmp on page 402 and
TMVectorIteratorlmp on page 393 for members.

Public constructors

TMICVectorlteratorlmp(const TMICVectorlmp<T,Alloc> &v)

Creates an iterator object to traverse TMCIVectorlmp objects.

TMICVectorlteratorlmp(const TMICVectorlmp<T,Alloc> &v, unsigned 1,
unsigned u)

Creates an iterator object to traverse TMICVectorlmp objects. A range can be
specified.

TICVectorlmp template vectimp.h

Constructor

template <class T> class TICVectorlmp;

Implements a counted vector of pointers to objects of type T. Because
pointers always have meaningful copy semantics, this class can handle any
type of object. See TMICVectorlmp on page 404 for members. .

Public constructors

TICVectorlmp(unsigned sz, unsigned d = 0)

Constructs a counted vector of pointers to objects. 52 represents the vector
size. d represents the initialization value.

TICVectorlteratorlmp template vectimp.h

template <class T> class TICVectorlteratorlmp;

Implements a vector iterator that works with an indirect, managed,
counted vector. See TMIVectorIteratorlmp on page 402 and
TMVectorIteratorlmp on page 393 for members.

Chapter 6, The C++ container classes 405

Vector containers

Constructor

Constructor

Public constructors

TICVectorlteratorlmp(const TICVectorlmp<T> &v)

Creates an iterator object to traverse TICVectorlmp objects.

TICVectorlteratorlmp(const TICVectorlmp<T> &v, unsigned 1, unsigned u)

Creates an iterator object to traverse TICVectorlmp objects. A range can be
specified.

TMISVectorlmp template vectimp.h

Constructor

template <class T, class Alloc> class TMISVectorlmp;

Implements a managed, sorted vector of pointers to objects of type T.
Because pointers always have meaningful copy semantics, this class can
handle any type of object. See TMICVectorlmp on page 404 for members.

Public constructors

TMISVectarlmp(unsigned sz, unsigned d = 0);

Constructs a managed, sorted vector of pointers to objects. sz represents the
vector size. d represents the initialization value.

TMISVectorlteratorlmp template vectimp.h

Constructor

Constructor

406

template <class T, class Allac> class TMISVectarlteratarlmp;

Implements a vector iterator that works with an indirect, managed, sorted
vector. See TMIVectoriteratorlmp on page 402 and TMVectoriteratorlmp on
page 393 for members.

Public constructors

TMISVectarlteratarlmp(canst TMISVectorlmp<T,Allac> &v)

Creates an iterator object to traverse TMIVectorlmp objects.

TMISVectorlteratorlmp(canst TMISVectorlmp<T,Allac> &v, unsigned 1,
unsigned u)

Borland C++ for OS/2 Library Reference

Vector containers

Creates an iterator object to traverse TMIVectorlmp objects. A range can be
specified.

TISVectorlmp template vectimp.h

Constructor

template <class T> class TISVectorlmpi

Implements a sorted vector of pointers to objects of type T. Because
pointers always have meaningful copy semantics, this class can handle any
type of object. See TMICVectorlmp on page 404 for members.

Public constructors

TISVectorlmp(unsigned sz, unsigned d = 0)

Constructs a managed, sorted vector of pointers to objects. S2 represents the
vector size. d represents the initialization value.

TISVectorlteratorlmp template vectimp.h

Constructor

Constructor

template <class T> class TISVectorlteratorlmpi

Implements a vector iterator that works with an indirect, managed, sorted
vector. See TMIVectorIteratorlmp on page 402 and TMVectorIteratorlmp on
page 393 for members.

Public constructors

TISVectorlteratorlmp(const TISVectorlmp<T> &v)

Creates an iterator object to traverse TI5Vectorlmp objects.

TISVectorlteratorlmp(const TISVectorlmp<T> &v, unsigned 1, unsigned u)

Creates an iterator object to traverse TI5Vectorlmp objects. A range can be
specified.

Chapter 6, The C++ container classes 407

TShould Delete

TShouldDelete class shddel.h

Constructor

OwnsElements

DelObj

408

class TShouldDelete;

TShouldDelete maintains the ownership state of an indirect container. The
fate of objects that are removed from a container can be made to depend on
whether the container owns its elements or not. Similarly, when a container
is destroyed, ownership can dictate the fate of contained objects that are
still in scope. As a virtual base class, TShouldDelete provides ownership
control for all containers classes. The member function OwnsElements can
be used either to report or to change the ownership s.tatus of a container.
The member function DelObj is used to determine if objects in containers
should be deleted or not.

Public data members

enum DeleteType { NoDelete, DefDelete, Delete };

Enumerates values to determine whether or not an object should be deleted
upon removal from a container.

Public constructors

TShouldDelete(DeleteType dt = Delete)

Creates a TShouldDelete object. See member function DelObj.

Public member functions

int OwnsElements()

Returns 1 if the container owns its elements; otherwise returns O.

void OwnsElements(int del)

Changes the ownership status as follows: if del is 0, ownership is turned off;
otherwise ownership is turned on.

Protected member functions

int DelObj (DeleteType dt)

Tests the state of ownership and returns 1 if the contained objects should be
deleted or 0 if the contained elements should not be deleted. The factors

Borland C++ for OS/2 Library Reference

TShouldDelete

determining this are the current ownership state, and the value of dt, as
shown in the following table.

delObj
owns Elements No Yes

NoDelete No No
DefDelete No Yes
Delete Yes Yes

delObj returns 1 if (dt is Delete) or (dt is DefDelete and the container currently
owns its elements). Thus a dt of NoDelete returns 0 (don't delete) regardless
of ownership; a dt of Delete return 1 (do delete) regardless of ownership;
and a dt of DefDelete returns 1 (do delete) if the elements are owned, but a 0
(don't delete) if the objects are not owned.

Chapter 6, The C++ container classes 409

410 Borland C++ for OS/2 Library Reference

bed

c H A p T E R 7

The C++ mathematical classes

This chapter describes Borland C++ mathematics based on C++ classes.
These mathematical operations are available only in C++ programs. How
ever, a C++ program that uses any of these classes, the numerical types that
the classes define, or any of the classes' friend and member functions can
use any of ANSI C Standard mathematics routines.

There are two classes, bed and complex, that construct numerical types.
Along with these numerical types, each class defines the functions with
which to carry out operations with their respective types (for example,
converting to and from the bed and complex type). Each class also overloads
all necessary operators.

The mathematical classes are independent of any hierarchy. However, each
class includes the iostream.h header file.

The portability for bed and complex is as follows:

bed.h

The class constructors create binary coded decimals (BCD) from integers or
floating-point numerical types. The friend function real, described on page
413, converts bed numbers to long double.

Once you construct bed numbers, you can freely mix them in expressions
with ints, doubles, and other numeric types. You can also use bed numbers
in any of the ANSI C Standard mathematical functions.

The following ANSI C math functions are overloaded to operate with bed
types:

friend bed abs(bed &)i
friend bed aeos(bed &)i
friend bed asin(bed &)i

Chapter 7, The C++ mathematical classes 411

bed

Constructor

Constructor

412

friend bed atan(bed &);

friend bed cos (bed &) ;

friend bed cosh (bed &);

friend bed exp(bed &);

friend bed log (bed &) ;

friend bed log10 (bed &) ;

friend bed pow (bed & base, bed & expon);
friend bed sin(bed &);

friend bed sinh(bed &) ;

friend bed sqrt (bed &) ;

friend bed tan(bed &);

friend bed tanh(bed &);

See the documentation of these functions in Chapter 2.

The bed class also overloads the operators +, -, *, /, +=, -=, *=, /=, =, ==, and
!=. These operators provide bed arithmetic manipulation in the usual sense.

The operators « and » are overloaded for stream input and output of bed
numbers, as they are for other data types in iostream.h.

bed numbers have about 17 decimal digits precision, and a range of about
1 x 10-125 to 1 X 10125.

The number is rounded according to the rules of banker's rounding, which
means round to nearest whole number, with ties being rounded to an even
digit.

Public constructors

bcd() ;

The default constructor. You typically use this to declare a variable of type
bed.

bed i; II Construct a bcd-type number.
bed j = 37; II Construct and initialize a bcd-type number.

bcd(int x);

This constructor defines a bed variable from an int variable or directly from
an integer.

int i = 15;
bed j = bed (i);
bed k = bed (12) ;

II Initialize j with a previously declared type.
II Construct k from the integer provided.

The above example provides these variables:

i = 15 j = 15 k = 12

Borland C++ for OS/2 Library Reference

Constructor

Constructor

Constructor

Constructor

Constructor

real

bed

bed (unsigned int x);

This constructor defines a bed variable from a variable that was previously
declared to be an unsigned int type. An unsigned integer can be provided
directly to the constructor.

bed (long x);

This constructor defines a bed variable from an long variable or directly
from a long value.

bed (unsigned long x);

This constructor defines a bed variable from a variable that was previously
declared to be an unsigned long type.

bed (double x, int decimals = Max) ;

This constructor defines a bed variable from a variable that was previously
declared to be a floating point double type. The constructor also creates a
variable directly from a double value.

To specify a precision level (that is, the number of digits after the decimal
point) that is different from the default, use the variable decimals; for
example,

double x = 1.2345; II Declare and initialize in the usual manner.
bcd y = bcd(x, 2); II Create a bed numerical type from x.

The precision level for y is set to 2. Therefore, y is initialized with 1.23.

bed (long double x, int decimals = Max) ;

This constructor defines a bed variable from a variable that was previously
declared to be a floating point long double type. Alternately, you can
supply a long double value directly in the place of x.

To specify a precision level (that is, the number of digits after the decimal
point) that is different from the default, use the variable decimals.

Friend functions

long double real (bed number)

You can use the real function to convert a binary coded decimal number
back to a long double. See the Programmer's Guide, Chapter 2, for a discus
sion about arithmetic conversions.

Chapter 7, The C++ mathematical classes 413

complex

complex

Constructor

Constructor

abs

acos

414

complex.h

Creates complex numbers. Once you construct complex numbers, you can
freely mix them in expressions with ints, doubles, and other numeric types.
You can also use complex numbers in any of the ANSI C Standard mathe
matical functions. The ANSI math functions are documented in Chapter 2.

The complex class also overloads the operators +, -, *, /, +=, -=, *=, /=, =, ==,
and !=. These operators provide complex arithmetic manipulation in the
usual sense.

The operators « and » are overloaded for stream input and output of
complex numbers, as they are for other data types in iostream.h.

If you don't want to program in C++, but instead want to program in C, the
only constructs available to you are struct complex and cabs, which give the
absolute value of a complex number. Both of these alternates are defined in
math.h.

Public constructors

complex () ;

The default constructor. You typically use this to declare a variable of type
complex.

complex i;
complex j = 37;

II Construct a complex-type number.
II Construct and initialize a complex-type number.

complex(double real, double imag = 0);

Creates a complex numerical type out of a double. Upon construction, a real
and an imaginary part are provided. The imaginary part is considered to be
zero if imag is omitted.

Friend functions

friend double abs(complex& val);

Returns the absolute value of a complex number.

The complex version of abs returns a double. All other math functions
return a complex type when val is complex type.

friend complex acos(complex& z);

Borland C++ for OS/2 Library Reference

arg

asin

atan

conj

cos

cosh

exp

Calculates the arc cosine.

The complex inverse cosine is defined by

acos(z) = -i * log(z + i sqrt(l - z2))

double arg(complex x) ;

arg gives the angle, in radians, of the number in the complex plane.

complex

The positive real axis has angle 0, and the positive imaginary axis has angle
pi/2. If the argument passed to arg is complex 0 (zero), arg returns zero.

arg(x) returns atan2(imag(x), real(x)).

friend complex asin(complex& z);

Calculates the arc sine.

The complex inverse sine is defined by

asin(z) = -i * log(i * z + sqrt(l - z2))

friend complex atan(complex& z);

Calculates the arc tangent.

The complex inverse tangent is defined by

atan(z) = -0.5 i 10g((1 + i z)/(l - i z))

complex conj(complex z);

Returns the complex conjugate of a complex number.
conj (z) is the same as complex (real (z), -imag(z)).

friend complex cos(complex& z);

Calculates the cosine of a value.

The complex cosine is defined by

cos(z) = (exp(i * z) + exp(-i * z)) / 2

friend complex cosh(complex& z);

Calculates the hyperbolic cosine of a value.

The complex hyperbolic cosine is defined by

cosh(z) = (exp(z) + exp(-z)) / 2

friend complex exp(complex& y);

Calculates the exponential e to the y.

Chapter 7, The C++ mathematical classes 415

complex

imag

log

log10

norm

polar

pow

real

416

The complex exponential function is defined by

exp(x + y * i) = exp(x) (cos (y), + i * sin(y))

double imag(complex x);

Returns the imaginary part of a complex number.

The data associated to a complex number consists of two floating-point
(double) numbers. imag returns the one considered to be the imaginary
part.

friend complex log(complex& z);

Calculates the natural logarithm of z.

The complex natural logarithm is defined by

log(z) = log(abs(z)) + i * arg(z)

friend complex loglO(complex& z);

Calculates log 10(2).

The complex common logarithm is defined by

loglO(z) = log(z) / log(lO)

double norm (complex x);

Returns the square of the absolute value. norm(x) returns the magnitude
real(x) * real(x) + imag(x) * imag(x).

norm can overflow if either the real or imaginary part is sufficiently large.

complex polar(double mag, double angle = 0);

Returns a complex number with a given magnitude (absolute value) and
angle.

polar(mag, angle) is the same as complex(mag * cos(angle), mag * sin(angle)).

friend complex pow(complex& base, double expon);
friend complex pow(double base, complex& expon);
friend complex pow(complex& base, complex& expon);

Calculates base to the power of expon.

The complex pow is defined by

pow(base, expon) = exp(expon * log(base))

double real (complex x);

You can use the real function to convert a complex number back to a long
double. The friend function returns the real part of a complex number or

Borland C++ for OS/2 Library Reference

sin

sinh

sqrt

tan

tanh

complex

converts a complex number back to double. The data associated to a
complex number consists of two floating-point numbers. real returns the
number considered to be the real part.

See the Programmer's Guide, Chapter 2, for a discussion about arithmetic
conversions.

friend complex sin(complex& z);

Calculates the trigonometric sine.

The complex sine is defined by

sin(z) = (exp(i * z) - exp(-i * z)) / (2 * i)

friend complex sinh(complex& z);

Calculates the hyperbolic sine.

The complex hyperbolic sine is defined by

sinh(z) = (exp(z) - exp(-z)) / 2

friend complex sqrt(complex& x);

Calculates the positive square root.

For any complex nUJ;nber x, sqrt(x) gives the complex root whose arg is
arg(x)/2.

The complex square root is defined by

sqrt(x) = sqrt(abs(x)) (cos(arg(x) /2) + i * sin(arg(x)!2))

friend complex tan(complex& z);

Calculates the trigonometric tangent.

The complex tangent is defined by

tan(z) = sin(z) / cos(z)

friend complex tanh(complex& z);

Calculates the hyperbolic tangent.

The complex hyperbolic tangent is defined by

tanh(z) = sinh(z) / cosh(z)

Chapter 7, The C++ mathematical classes 417

418 Borland C++ for OS/2 Library Reference

To use DEBUG,
you must ifnk with the

diagnostic libraries.

c H A p T E R

Class diagnostic macros

Borland provides a set of macros for debugging C++ code. These macros
are located in checks.h. There are two types of macros, default and
extended. The default macros are

sCHECK

II PRECONDITION

The extended macros are

.CHECKX

II PRECONDITIONX

gTRACE

• WARN

IITRACEX

IIWARNX

The default macros provide straightforward value checking and message
output. The extended macros let you create macro groups that you can
selectively enable or disable. Extended macros also let you selectively
enable or disable macros within a group based on a numeric threshold
level.

Three preprocessor symbols control diagnostic macro expansion:
__ DEBUG, __ TRACE, and __ WARN. If one of these symbols is defined
when compiling, then the corresponding macros expand and diagnostic
code is generated. If none of these symbols is defined, then the macros do
not expand and no diagnostic code is generated. These symbols can be
defined on the command line using the -0 switch, or by using #define
statements within your code.

The diagnostic macros are enabled according to the following table:

8

--DEBUG=1 --DEBUG=2 __ TRACE __ WARN

PRECONDITION X X
PRECONDITIONX X X
CHECK X
CHECKX X
TRACE X
TRACEX X
WARN X
WARNX X

Chapter 8, Class diagnostic macros 419

To create a diagnostic version of an executable, place the diagnostic macros
at strategic points within the program code and compile with the
appropriate preprocessor symbols defined. Diagnostic versions of the
Borland class libraries are built in a similar manner.

The following sections describe the default and extended diagnostic
macros, give examples of their use, and explain message output and run
time control.

Default diagnostic macros checks.h

CHECK CHECK «cond»

Throws an exception containing the string <msg> if <cond> equals o. Use
CHECK to perform value checking within a function.

PRECONDITION PRECONDITION «cond»

TRACE

WARN

420

Throws an exception containing the string <msg> if <cond> equals O. Use
PRECONDITION on entry to a function to check the validity of the
arguments and to do any other checking to determine if the function has
been invoked correctly.

TRACE «msg»

Outputs <msg>. TRACE is used to output general messages that are not
dependent on a particular condition.

WARN «cond>, <msg»

Outputs <msg> if <cond> is nonzero. It is used to output conditional
messages.

Example The following program illustrates the use of the default TRACE and
WARN macros:

#include <checks.h>

int main ()
{

TRACE ("Hello World");
WARN (5 != 5, "Math is broken!");
WARN (5 != 7, "Math still works!");

return 0;

When the above code is compiled with __ TRACE and __ WARN defined, it
produces the following output when run:

Borland C++ for OS/2 Library Reference

Trace PROG.C 5: [Def] Hello World
Warning PROG.C 7: [Def] Math still works!

Default diagnostic macros

The above output indicates that the message "Hello World" was output by
the default TRACE macro on line 5 of PROG.C, and the message "Math still
works!" was output by the default WARN macro on line 7 of PROG.C.

Default diagnostic macros expand to extended diagnostic macros with the
group set to "Def" and the level set to O. This "Def" group controls the
behavior of the default macros and is initially enabled with a threshold
level of O.

Extended diagnostic macros checks.h

CHECKX

PRECONDITIONX

TRACEX

WARNX

The extended macros CHECKX and PRECONDITIONX augment CHECK
and PRECONDITION by letting you provide a message to be output when
the condition fails.

The extended macros TRACEX and WARNX augment TRACE and WARN
by providing a way to specify macro groups that can be independently
enabled or disabled. TRACEX and WARNX require additional arguments
that specify the group to which the macros belongs, and the threshold level
at which the macro should be executed. The macro is executed only if the
specified group is enabled and has a threshold level that is greater than or
equal to the threshold-level argument used in the macro.

The following sections describe the extended diagnostic macros.

CHECKX«cond>,<msg»

Throws an exception containing the string <msg> if <cond> equals O. Use
CHECKX to perform value checking within a function.

PRECONDITIONX«cond>,<msg»

Throws an exception containing the string <msg> if <cond> equals O. Use
PRECONDITIONX on entry to a function to check the validity of the
arguments and to do any other checking to determine if the function has
been invoked correctly.

TRACEX«group>, <level>, <msg»

Trace only if <group> and <level> are enabled.

WARNX«group>, <cond>, <level>, <msg»

Warn only if <group> and <level> are enabled.

Chapter 8, Class diagnostic macros 421

Extended diagnostic macros

When using TRACEX and W ARNX you need to be able to create groups.
The following three macros create diagnostic macro groups:

DIAG_DEClARE_GROUP DIAG_DECLARE_GROUP «name»

Declare a group named <name>. You cannot use DIAG_DEFINE_GROUP
and DIAG_DECLARE_GROUP in the same compilation unit. Multiple
group declarations in the same compilation unit are allowed.

If a header file uses DIAG_DECLARE_ GROUP (so that the group declara
tion is automatically available to files that include the header), the source
file that contains the DIAG_DECLARE_ GROUP invocation for that group
then generates a redefinition error. The solution is to conditionalize the
header file so that the declaration goes away when the source file with the
DIAG_DECLARE_GROUP invocation is built.

For example, in myheader.h

#if !defined(BUILD_MY_GROUP)

#endif

And in the source file my _prog.cpp:

#define BUILD_MY_GROUP
#include "myheader.h"

DIAG_DEFINE_ GROUP DIAG_DEFINE_GROUP «name>, <enabled>, <level»

Define a group named <name>. You cannot use DIAG_DEFINE_GROUP
and DIAG_DECLARE_GROUP in the same compilation unit.

The following two macros manipulate groups:

DIAG_ENABLE «group>, <state»

Sets <group>'s enable flag to <state>.

DIAG-,SENABlED DIAG_ISENABLED «group»

Returns nonzero if <group> is enabled.

The following two macros manipulate levels:

DIAG _ SETlEVEl DIAG_SETLEVEL (<group> , <l evel>)

Sets <group>'s threshold levet to <level>.

DIAG_GETlEVEl DIAG_GETLEVEL «group»

Gets <group>'s threshold level.

422 Borland C++ for OS/2 Library Reference

Extended diagnostic macros

Threshold levels are arbitrary numeric values that establish a threshold for
enabling macros. A macro with a level greater than the group threshold
level its test will be performed, but it won't display anything. For example,
if a group has a threshold level of 0 (the default value), all macros that
belong to that group and have levels of 1 or greater are ignored.

Example The following PROG.C example defines two diagnostic groups, Groupl and
Group2, which are used as arguments to extended diagnostic macros:

#include <checks.h>

DIAG_DEFINE_GROUP(Group1, 1, 0);
DIAG_DEFINE_GROUP(Group2, 1, 0);

int main(int argc, char **argv)
{

TRACE ("Always works, argc=" « argc);
TRACEX (Groupl, 0, "Hello");
TRACEX (Group2, 0, "Hello");

DIAG_ENABLE(Group1, 0);

TRACEX(Group1, 0, "Won't execute - group is disabled!");
TRACEX(Group2, 3, "Won't execute - level is too high!");

return 0;

When the above code is compiled with __ TRACE defined and run, it
produces the following output:

Trace PROG.C 8: [Def] Always works, argc=l
Trace PROG.C 10: [Group1] Hello
Trace PROG.C 11: [Group2] Hello

Note that the last two macros are not executed. In the first case, the group
Groupl is disabled. In the second case, the macro level exceeds Group2's
threshold level (set by default to 0).

Macro message output

The TRACE, TRACEX, WARN, and W ARNX macros take a <msg>
argument that is conditionally inserted into an output stream. This means a
sequence of objects can be inserted in the output stream (for example TRACE (

"Mouse @ " « x « 11 1" « Y) ;). The use of streams is extensible to
different object types and allows for parameters within trace messages.

Chapter 8, Class diagnostic macros 423

Extended diagnostic macros

Run-time macro control

424

Diagnostic groups can be controlled at run time by using the control
macros described above within your program or by directly modifying the
group information within the debugger.

This group information is contained in a class named TDiagGroup<
TDiagGraupClass##Graup >, where ##Graup is the name of the group. This
class contains a static structure Flags, which in turn contains the enabled
flag and the threshold level. For example, to enable the group Groupl, you
would set the variable TDiagGraup<TDiagGraupClassGraupl>::Flags.EnabZed
to 1.

Borland C++ far OS/2 Library Reference

Bad cast class

c H A p T E R 9

Run-time support

This chapter provides a detailed description, in alphabetical order, of
functions and classes that provide run-time support. Any class operators or
member functions are listed immediately after the class constructor. See the
Programmer's Guide, Chapter 4, for a discussion of how to use exception
handling keywords.

The portability for all classes and functions in this chapter is as follows:

typeinfo.h

When dynamic_cast fails to make a cast to reference, the expression can
throw Bad_cast. Note that when dynamic_cast fails to make a cast to
pointer type, the result is the null pointer.

Bad _ typeid class typeinfo.h

When the operand of typeid is a dereferenced 0 pointer, the typeid operator
can throw Bad _typeid.

set_new_handler function

typedef void (new * new_handler) () throw(xalloc);
new_handler set_new_handler(new_handler my_handler);

new.h

set_new_handler installs the function to be called when the global operator
newO or operator new[]O cannot allocate the requested memory. By default
the new operators throw an xalloc exception if memory cannot be allocated.
You can change this default behavior by calling set_new_handler to set a

Chapter 9, Run-time support 425

seCnew_handler function

new handler. To retain the traditional version of new, which does not throw
exceptions, you can use set_new_handler(O).

If new cannot allocate the requested memory, it calls the handler that was
set by a previous call to set_new_handler. If there is no handler installed by
set_new_handler, new returns o. my_handler should specify the actions to be
taken when new cannot satisfy a request for memory allocation. The
new_handler type, defined in new.h, is a function that takes no arguments
and returns void. A new _handler can throw an xalloe exception.

The user-defined my_handler should do one of the following:

• Return after freeing memory

• Throw an xalloe exception or an exception derived from xalloe

• Call abort or exit functions

If my_handler returns, then new will again attempt to satisfy the request.

Ideally, my_handler frees up memory and returns; new can then satisfy the
request and the program can continue. However, if my_handler cannot
provide memory for new, my_handler must throw an exception or terminate
the program. Otherwise, an infinite loop will be created. .

Preferably, you should overload operator newO and operator new[]O to
take appropriate actions for your applications.

set_new_handler returns the old handler, if one has been registered.

The user-defined argument function, my_handler, should not return a value.

See also the description of abort, exit, and _new_handler (global variable).

set terminate function except.h

426

typedef void (*terminate_functionl () i

terminate_function set_terminate(terminate_function t_funcl i

set_terminate lets you install a function that defines the program's termina
tion behavior when a handler for the exception cannot be found. The
actions are defined in tJune, which is declared to be a function of type
terminateJunetion. A terminateJunetion type, defined in except.h, is a
function that takes no arguments, and returns void.

By default, an exception for which no handler can be found results in the
program calling the terminate function. This will normally result in a call to
abort. The program then ends with the message Abnormal program
termination. If you want some function other than abort to be called by the

Borland C++ for OS/2 Library Reference

setterminate function

terminate function, you should define your own t Junc function. Your t Junc
function is installed by set_terminate as the termination function. The instal
lation of tJunc lets you implement any actions that are not taken by abort.

The previous function given to set_terminate will be the return value.

The definition of tJunc must terminate the program. Such a user-defined
function must not return to its caller, the terminate function. An attempt to
return to the caller results in undefined program behavior. It is also an error
for t Junc to throw an exception.

See also the description of abort, set_unexpected, and terminate.

set_unexpected function except.h

typedef void (* unexpected_function) ();
unexpected_function set_unexpected(unexpected_function unexpected_func);

set_unexpected lets you install a function that defines the program's behavior
when a function throws an exception not listed in its exception specifica
tion. The actions are defined in unexpectedJunc, which is declared to be a
-function of type unexpectedJunction. An unexpectedJunction type, defined in
except.h, is a function that takes no arguments, and returns void.

By default, an unexpected exception causes unexpected to be called. If
unexpectedJunc is defined, it is subsequently called by unexpected. Program
control is then turned over to the user-defined unexpectedJunc. Otherwise,
terminate is called.

The previous function given to set_unexpected will be the return value.

The definition of unexpectedJunc must not return to its caller, the unexpected
function. An attempt to return to the caller results in undefined program
behavior.

unexpectedJunc can also call abort, exit, or terminate.

See also the description of abort, exit, set_terminate, and terminate.

terminate function except.h

void terminate();

The function terminate can be called by unexpected or by the program when
a handler for an exception cannot be found. The default action by terminate

Chapter 9, Run-time support 427

terminate function

is to call abort. Such a default action causes immediate program
termina tion.

You can modify the way your program terminates when an exception is
generated that is not listed in the exception specification. If you don't want
the program to terminate with a call to abort, you can instead define a
function to be called. Such a function (called a terminateJunction) will be
called by terminate if it is registered with set_terminate.

The function does not return.

See also the description of abort and set_terminate.

Type_info class typeinfo.h

Constructor

operator ==

operator !=

before

428

Provides information about a type.

Public constructor

None.

Only a private constructor is provided. You cannot create Type_info objects.
By declaring your objects to be _ _ rtti types, or by using the -RT compiler
switch, the compiler provides your objects with the elements of Type_info.

Type_info references are generated by the typeid operator. See Chapter 2 in
the Programmer's Guide for a discussion of typeid.

Operators

int operator==(const Type_info &) const;

Provides comparison of Typeinfos.

int operator!=(const Type_info &) const;

Provides comparison of Typeinfos.

Public member functions

int before(const Type_info &);

Use this function to compare the lexical order of types. For example, to
compare two types, T1 and T2, use the following syntax:

Borland C++ for OS/2 Library Reference

name

typeid(Tl) .before(typeid(T2)) i

The before function returns a or 1.

canst char* name() canst;

Typejnfo class

The name function returns a printable string that identifies the type name of
the operand to typeid. The space for the character string is overwritten on
each call.

unexpected function except.h

xalloc class

Constructor

raise

requested

void unexpected()i

The unexpected function is called when a function throws an exception not
listed in its exception specification. The program calls unexpected, which by
default calls any user-defined function registered by set_unexpected. If no
function is registered with set_unexpected, the unexpected function then calls
terminate.

The unexpected function does not return. However, the function can throw
an exception.

See also the description of set_unexpected and terminate.

except.h

Reports an error on allocation request.

Public constructors

xallac(canst string &msg, size_t size);

The xalloc class has no default constructor. Every use of xalloc must define
the message to be reported when a size allocation cannot be fulfilled. The
string type is defined in cstring.h header file.

Public member functions

vaid raise() thraw(xallac);

Calling raise causes an xalloc to be thrown. In particular, it throws *this.

size_t requested() canst;

Chapter 9, Run-time support 429

xmsg class

xmsg class

Constructor

raise

why

430

Returns the number of bytes that were requested for allocation.

except.h

Reports a message related to an exception.

Public constructor

xmsg(string msg);

There is no default constructor for xmsg. Every xmsg object must have a
string message explicitly defined. The string type is defined in cstring.h
header file.

Public member functions

void raise() throw(xmsg);

Calling raise causes an xmsg to be thrown. In particular, it throws *this.

string why() canst;

Reports the string used to construct an xmsg. Because every xmsg must
have its message explicitly defined, every instance should have a unique
message.

Borland C++ for OS/2 Library Reference

TDate class

OayTy

HowToPrint

JulTy

MonthTy

YearTy

c H A p T E R 10

c++ utility classes

This chapter is a reference guide for the following classes, which are listed
here with their associated header-file names:

• Date class

• File classes

• String classes

• Threading classes

• Time classes

class TDate

BCOS2\INCLUDE\CLASSLIB\date.h .

BCOS2\INCLUDE\CLASSLIB\file.h

BCOS2\INCLUDE \ cstring.h

BCOS2 \ INCLUDE \ CLASSLIB \thread.h

BCOS2\INCLUDE\CLASSLIB\time.h

date.h

Class TDate represents a date. It has members that read, write, and store
dates, and that convert dates to Gregorian calendar dates.

Type definitions

typedef unsigned DayTyi

Day type.

enum HowToPrint{ Normal, Terse, Numbers, EuropeanNumbers, European }i

Lists different print formats.

typedef unsigned long JU1Tyi

Julian calendar type.

typedef unsigned MonthTyi

Month type.

typedef unsigned YearTyi

Year type.

Chapter 10, C++ utility classes 431

TDate class

Constructor

Constructor

Constructor

Constructor

Constructor

AsString

Between

CompareTo

Day

DayName

DayOfMonth

432

Public constructors

TDate() ;

Constructs a TDate object with the current date.

TDate(DayTy day, YearTy year);

Constructs a TDate object with the given day and year. The base date for this
computation is Dec. 31 of the previous year. If year == 0, it constructs a
TDate with Jan. 1, 1901 as "day zero." For example, TDate(-I,O) = Dec. 31,
1900 and TDate(I,O) = Jan. 2, 1901.

TDate(DayTy day, canst char* manth, YearTy year);
TDate(DayTy day, ManthTy manth, YearTy year);

Constructs a TDate object for the given day, month, and year.

TDate(istream& is);

Constructs a TDate object, reading the date from input stream is.

Tpate(canst TTime& time);

Constructs a TDate object from TTime object time.

Public member functions

string AsString() canst;

Converts the TDate object to a string object.

int Between (canst TDate& dl, canst TDate& d2) canst;

Returns 1 if this TDate object is between dl and d2, inclusive.

int CampareTa(canst TDate &) canst;

Returns 1 if the target TDate is greater than parameter TDate, -1 if the target
is less than the parameter, and ° if the dates are equal.

DayTy Day() canst;

Returns the day of the year (1-365).

canst char * DayName(DayTy weekDayNumber);

Returns a string name for the day of the week, where Monday is 1 and
Sunday is 7.

DayTy DayOfManth() canst;

Returns the day of the month (1-31).

Borland C++ for OS/2 Library Reference

DayOfWeek

DayslnYear

DayWithinMonth

FirstDayOfMonth

Hash

IndexOfMonth

IsValid

Jday

Leap

Max

Min

Month

TDate class

DayTy DayOfWeek(canst char* dayName);

Returns the number associated with a string naming the day of the week,
where Monday is 1 and Sunday is 7.

DayTy DaysInYear(YearTy);

Returns the number of days in the specified year (365 or 366).

int DayWithinManth(MonthTy, DayTy, YearTy);

Returns 1 if the given day is within the given month for the given year.

DayTy FirstDayOfManth() canst;

Returns the number of the first day of the month for this TDate.

DayTy FirstDayOfManth(ManthTy manth) canst;

Returns the number of the first day of a given month. Returns 0 if month is
outside the range 1 through 12.

unsigned Hash() canst;

Returns a hash value for the date.

ManthTy IndexOfManth(canst char *manthName);

Returns the number (1-12) of the month monthname.

int IsValid() canst;

Returns 1 if this TDate is valid, 0 otherwise.

JulTy Jday(ManthTy, DayTy, YearTy);

Converts the given Gregorian calendar date to the corresponding Julian
day number. Gregorian calendar started on Sep. 14, 1752. This function not
valid before that date. Returns 0 if the date is invalid.

int Leap() canst;

Returns 1 if this TDate's year is a leap year, 0 otherwise.

TDate Max (canst TDate& dt) canst;

Compares this TDate with dt and returns the date with the greater Julian
number.

TDate Min(canst TDate& dt) canst;

Compares this TDate with dt and returns the date with the lesser Julian
number.

ManthTy Manth() canst;

Chapter 10, C++ utility classes 433

TDate class

MonthName

NameOfDay

NameOfMonth

Previous

SetPrintOption

WeekDay

Year

Returns the month number for this TDate.

canst char *ManthName(ManthTy manthNumber);

Returns the string name for the given monthNumber (1-12). Returns 0 for an
invalid monthNumber. .

canst char *NameOfDay() canst;

Returns this TDate's day string name.

canst char *NameOfManth() const;

Returns this TDate's month string name.

TDate Previous (const char *dayName) const;

Returns the TDate of the previous dayName.

TDate Previous (DayTy day) const;

Returns the TDate of the previous day.

HowToPrint SetPrintOption(HowToPrint h);

Sets the print option for all TDate objects and returns the old setting. See
HowToPrint in the "Type definition" section for this class.

DayTy WeekDay() const;

Returns 1 (Monday) through 7 (Sunday).

YearTy Year() const;

Returns the year of this TDate.

Protected member functions

AssertindexOfMonth static int AssertIndexOfMonth (ManthTy m);

Returns 1 if m is between 1 and 12 inclusive, otherwise returns O.

AssertWeekDayNumber static int AssertWeekDayNumber (DayTy d) ;

Operator <

Operator <=

434

Returns 1 if d is between 1 and 7 inclusive, otherwise returns O.

Operators

int operator < (canst TDate& date) canst;

Returns 1 if this TDate precedes date, otherwise returns O.

int operator <= (const TDate& date) const;

Borland C++ for OS/2 Library Reference

Operator>

Operator >=

Operator ==

Operator !=

Operator-

Operator +

Operator -

Operator ++

Operator--

Operator +=

Operator -=

Operator «

Operator »

TDate class

Returns 1 if this TDate is less than or equal to date, otherwise returns O.

int operator> (const TDate& date) const;

Returns 1 if this TDate is greater than date, otherwise returns O.

int operator >= (const TDate& date) const;

Returns 1 if this TDate is greater than or equal to date, otherwise returns O.

int operator == (const TDate& date) const;

Returns 1 if this TDate is equal to date, otherwise returns O.

int operator != (const TDate& date) const;

Returns 1 if this TDate is not equal to date, otherwise returns O.

JulTy operator - (const TDate& dt) const;

Subtracts dt from this TDate and returns the difference.

friend TDate operator + (const TDate& dt, int dd)i
friend TDate operator + (int dd, const TDate& dt)i

Returns a new TDate containing the sum of this TDate and dd.

friend TDate operator - (const TDate& dt, int dd);

Subtracts dd from this TDate and returns the difference.

. void operator ++ ();

Increments this TDate by 1.

void operator -- ();

Decrements this TDate by 1.

void operator += (int dd);

Adds dd to this TDate.

void operator -= (int dd);

Subtracts dd from this TDate.

friend ostream& operator « (ostream& os, const TDate& date);

Inserts date into output stream as.

friend istream& operator » (istream& is, TDate& date);

Extracts date from input stream is.

Chapter 10, C++ utility classes 435

TFileStatus structure

TFileStatus structure file.h

TFile class

FileNull

File flags

436

struct TFileStatus

} ;

TTime createTime;
TTime modifyTime;
TTime accessTime;
long size;
uint8 attribute;
char fullName[_MAX_PATH];

Describes a file record containing creation, modification, and access times;
also provides the file size, attributes, and name.

See also: TTime class

file.h

class TFile

Class TFile encapsulates standard file characteristics and operations.

Public data members

enum { FileNull };

Represents a null file handle.

enum{
ReadOnly = O_RDONLY,
ReadWrite = O_RDWR,
WriteOnly = O_WRONLY,
Create = O_CREAT I O_TRUNC,
CreateExcl = O_CREAT I O_EXCL,
Append = O_APPEND,
Compat = SH_COMPAT,
DenyNone = SH_DENYNONE,
DenyRdWr = SH_DENYRW,
NoInherit = O_NOINHERIT
} ;

Enumerates file-translation modes and sharing capabilities. See the open
and sopen functions in Chapter 2.

Borland C++ for OS/2 Library Reference

Constructor

Constructor

Constructor

Constructor

enum{
PermRead
PermWrite
PermRdWr
}i

= S_IREAD,
= S_IWRITE,
= S_IREAD I S_IWRITE

TFile class

Enumerates file read and write permissions. See the creat function in
Chapter 2.

enum{
Normal OxOO,
RdOnly Ox01,
Hidden Ox02,
System Ox04,
Volume Ox08,
Directory Ox10,
Archive Ox2O

}i

Enumerates file types.

beg = 0,
cur = 1,
end = 2
}i

Enumerates file-pointer seek direction.

Public constructors

TFile () i

Creates a TFile object with a file handle of FileNull.

TFile(int handle)i

Creates a TFile object with a file handle of handle.

TFile(const TFile& file)i

.Creates a TFile object with the same file handle file.

TFile(const char* name, uint16 access=ReadOnly,
uint16 permission=PermRdWr)i

Creates a TFile object and opens file name with the given attributes. The file
is created if it doesn't exist.

Chapter 10, C++ utility classes 437

TFile class

Close

Flush

GetHandle

GetStatus

IsOpen

Length

LockRange

Open

Position

Read

438

Public member functions

int Close();

Closes the file. Returns nonzero if successful, 0 otherwise.

void Flush();

Performs any pending I/O functions.

int GetHandle() canst;

Returns the file handle.

int GetStatus(TFileStatus& status) canst;

Fills status with the current file status. Returns nonzero if successful, 0
otherwise.

int GetStatus(canst char *name, TFileStatus& status);

Fills status with the status for file name. Returns nonzero if successful, 0
otherwise.

int IsOpen() canst;

Returns 1 if the file is open, 0 otherwise.

long Length() const;

Returns the file length.

void Length(long newLen);

Resizes file to newLen.

void LockRange(long position, uint32 count);

Locks count bytes, beginning at position of the associated file.

See also: UnlockRange

int Open (const char* name, uint16 access, uint16 permission);

Opens file name with the given attributes. The file will be created if it
doesn't exist. Returns 1 if successful, 0 otherwise.

long position() const;

Returns the current position of the file pointer. Returns -1 to indicate an
error.

int Read(void *buffer, int numBytes);

Reads numBytes from the file into buffer.

Borland C++ for OS/2 Library Reference

Remove

Rename

Seek

SeekTo8egin

SeekToEnd

SetStatus

UnlockRange

Write

string class

StripType

static void Remove (const char *name);

Removes file name. Returns 0 if successful, -1 if unsuccessful.

static void Rename (const char *oldName, const char *newName);

Renames file oldName to newName.

long Seek(long offset, int origin = beg) ;

Repositions the file pointer to offset bytes from the specified origin.

long SeekToBegin();

Repositions the file pointer to the beginning of the file.

long SeekToEnd();

Repositions the file pointer to the end of the file.

TFile class

static int SetStatus(const char *name, const TFileStatus& status);

Sets file name's status to status.

void UnlockRange(long position, uint32 count);

Unlocks the range at the given Position.

See also: LockRange

int Write(const void *buffer, int numBytes);

Writes numbytes of buffer to the file.

class string

cstring.h

This class uses a technique called "copy-on-write." Multiple instances of a
string can refer to the-same piece of data so long as it is in a "read-only"
situation. If a string writes to the data, a copy is automatically made if more
than one string is referring to it.

Type definitions

enum StripType { Leading, Trailing, Both };

Enumerates type of stripping. See strip in the "Public member functions"
section for this class.

Chapter 10, C++ utility classes 439

string class

Constructor

Constructor

Constructor

Constructor

Constructor

Constructor

Constructor

Constructor

Constructor

440

Public constructors and destructor

string();

The default constructor. Creates a string of length zero.

string(canst string &s);

Copy constructor. Creates a string that contains a copy of the contents of
string s.

string(canst string &s, size_t start, size_t n = NPOS)

Creates a string containing a copy of the n bytes beginning at position start
of string s.

string(canst char *cp);

Creates a string containing a copy of the bytes from the location pointed to
by cp through the first 0 byte (conversion from char*).

string(canst char *cp, size_t start, size_t n = NPOS);

Creates a string containing a copy of the n bytes beginning at the position
start in the buffer pointed to by cpo

II Construct a string object from a char buffer.
#include <cstring.h>
#include <iostream.h>

int main (void) {
const char *cp = "0123456789";
string sl(cp, 3, 5);

cout « "sl = " « sl;
return 0;
}

Program output:
sl = 34567

string(char c)

Constructs a string containing the character c.

string(char c, size_t n)

Constructs a string containing the character c repeated n times.

string(signed charc)

Constructs a string containing the character c.

string (signed char c, size_t n

Borland C++ for OS/2 Library Reference

Constructor

Constructor

Constructor

Destructor

append

assign

Constructs a string containing the character c repeated n times.

string(unsigned char c)

Constructs a string containing the character c.

string(unsigned char c, size_t n)

Constructs a string containing the character c repeated n times.

string(canst TSubString &ss);

Constructs a string from the substring ss.

-string () ;

Frees all resources allocated to this object.

Public member functions

string & append (canst string &s

Appends string s to the target string.

string class

string & append (canst string &s, size_t start, size_t n = NPOS)

Beginning from the start position in s, the append function appends the next
n characters of string s to the target string.

string & append (canst char *cp, size_t start, size_t n = NPOS)
l

Beginning from the start position of the character array cp, the append
function appends the next n characters to the target string.

string & assign(canst string &s);

Assigns string s to target string.
I

See also: operator =

string & assign(canst string &s, size_t start, size_t n = NPOS);

Beginning from the start position in s, the assign function copies n
characters to target string. For example:

string sl = "abcdef";
string s2;
s2.assign(sl, 2, 3 I;

Results in s2 set to cde.

See also: operator =

Chapter 10, C++ utility classes 441

string class

compare

contains

copy

find

442

int campare(canst string &s);

Compares the target string to the string s. compare returns an integer less
than, equal to, or greater than 0, depending on whether the target string is
less than, equal to, or greater than s.

int campare(canst string &s, size_t start, size_t n = NPOS);
Beginning as position start in s, the compare function compares not more
than n characters from the target string to the string s. The compare function
returns a negative value if the string compares less than the argument, 0 if
they compare equal, and positive if greater than.

int cantains(canst char * pat) canst;

Returns 1 if pat is found in the target string, a otherwise.

int cantains(canst string & s) canst;

Returns 1 if string s is found in the target string, a otherwise.

size_t capy(char *cb, size_t n)

Copies at most n characters from the target string into the char array
pointed to by cb. copy returns the number of characters copied.

size_t capy(char *cb, size_t n, size_t pas)

Copies at most n characters beginning at position pas from the target string
into the char array pointed to by cb. copy returns the number of characters
copied.

string capy() canst thraw(xallac).

Returns a distinct copy of the string.

canst char *c_str() canst;

Returns a pointer to a zero-terminated character array that holds the same
characters contained in the string. The returned pointer might point to the
actual contents of the string, or it might point to an array that the string
allocates for this function call. The effects of any direct modification to the
contents of this array are undefined, and the results of accessing this array
after the execution of any non-const member function on the target string
are undefined.

Conversions from a string object to a char* are inherently dangerous,
because they violate the class boundary and can lead to dangling pointers. ,
For this reason class string does not have an implicit conversion to char*,
but provides c_str for use when this conversion is needed.

size_t find(canst string &s)

Borland C++ for OS/2 Library Reference

findJirsCof

string class

Locates the first occurrence of the string s in the target string. If the string is
found, it returns the position of the beginning of s within the target string.
If the string s is not found, it returns NPOS.

size_t find(const string &s, size_t pas)

Locates the first occurrence of the string s in the target string, beginning at
the position pas. If the string is found, it returns the position of the
beginning of s within the target string. If the s is not found, it returns NPOS
and does not change pas.

size_t find(const TRegexp &pat, size_t i = 0)

Searches the string for patterns matching regular expression pat beginning
at location i. It returns the position of the beginning of pat within the target
string. If the pat is not found, it returns NPOS and does not change pas.

size_t find(const TRegexp &pat, size_t *ext, size_t i = 0) const;

Searches the string for patterns matching regular expression pat beginning
at location i. Parameter ext returns the length of the matching string if
found. It returns the position of the beginning of pat within the target
string. If the pat is not found, it returns NPOS and does not change pas.

See also: rfind

size_t find_first_of(const string &s) const;

Locates the first occurrence in the target string of any character contained
in string s. If the search is successful findJirst_of returns the character
location. If the search fails findJirst _of returns NPOS.

size_t find_first_of(const string &s, size_t pas) const;

Locates the first occurrence in the target string of any character contained
in string s after position pas. If the search is successful, the function returns
the character position within the target string. If the search fails or if pas >
length (), findJirst_of returns NPOS.

size_t find_first_not_of(const string &s) const;

Locates the first occurrence in the target string of any character not
contained in string s. If the search is successful, find_first_not_of returns the
character position within the target string. If the search fails it returns
NPOS.

size_t find_first_not_of(const string &s, size_t pas) const;

Locates the first occurrence in the target string of any character not
contained in string s after position pas. If the search is successful

Chapter 10, C++ utility classes 443

string class

findJasCof

geCat

findJirst_not_of returns the character position within the target string. If the
search fails or if pas > lengthO,findJirst_not_ofreturns NPOS.

size_t find_last_of(const string &s) const;

Locates the last occurrence in the target string of any character contained in
string s. If the search is successfulfind_Iast_ofreturns the character position
within the target string. If the search fails it returns O.

size_t find_last_of(const string &s, size_t pas) const;

Locates the last occurrence in the target string of any character contained in
string s after position pas. If the search is successful find_last_of returns the
character position within the target string. If the search fails or if pas >
length 0 , find _last _of returns NPOS.

size_t find_last_not_of(const string &s) const;

Locates the last occurrence in the target string of any character not
contained in string s. If the search is successful find_las t_no t_of returns the
character position within the target string. If the search fails it returns
NPOS.

size_t find_last_not_of(const string &s, size_t pas) canst;

Locates the last occurrence in the target string of any character not
contained in string s after position pas. If the search is successful
find_Iast_not_of returns the character position within the target string. If the
search fails or if pas > lengthO, find_Iast_not_of returns NPOS.

char get_at (size_t pas) canst thraw(autafrange);

Returns the character at the specified position. If pas > length () -1, an
out0frange exception is thrown.

See also: put_at

geCcase_sensitive_flag static int get_case_sensi ti veFlag ()

Returns 0 if string comparisons are case sensitive, 1 if not.

getjnitia'-capacity static unsigned get_initial_capacity ()

Returns the number of characters that will fit in the string without resizing.

static unsigned get_max_waste()

After a string is resized, returns the amount of free space available.

get_paranoid_check static int get-paranoid_check();

Returns 1 if paranoid checking is enabled, 0 if not.

geCresizejncrement static unsigned get_resize_increment ()

444 Borland C++ for OS/2 Library Reference

string class

Returns the string resizing increment.

get_skipwhitespaceJlag static int get_skipwhitespace_flag ()

Returns 1 if whitespace is skipped, a if not.

hash

initiaL capacity

insert

length

prepend

unsigned hash() canst;

Returns a hash value.

static size_t initial_capacity(size_t ic 63);

Sets initial string allocation capacity.

string &insert(size_t pas, canst string &s)

Inserts string s at position pos in the target string. insert returns a reference
to the resulting string.

string &insert(size_t pas, canst string &s, size_t start,
size_t n = NPOS)

Beginning as position start in s, the insert function inserts not more than n
characters from the target string to the string s at position pos. insert returns
a reference to the resulting string. If pos is invalid, insert throws the
outofrange exception.

int is_null() canst;

Returns 1 if the string is empty, a otherwise.

unsigned length() canst;

Returns the number of characters in the target string. Since null characters
can be stored in a string, length () might be greater than strlen (c_str ()).

static size_t MaxWaste(size_t mw = 63);

Sets the maximum empty space size and resizes the string.

string &prepend(canst string &s)

Prep ends string s to the target string.

string &prepend(canst string &s, size_t start, size_t n = NPOS)

Beginning from the start position in s, the prepend function prefixes the
target string with n characters taken from string s.

string sl = "abcdef";
string s2 = "0123";
s2.prepend(sl, 2, 3);

Results in s2 set to cde0123.

Chapter 10, C++ utility classes 445

string class

puCat

readJile

read_line

read_string

readJoken

rfind

remove

446

string &prepend(const char *cp)

Prepends the character array cp to the target string.

string &prepend(const char *cp, sizes_t start, size_t n = NPOS

Beginning from the start position in cp, the prepend function prefixes the
target string with n characters taken from character array cpo

void put_at (size_t pos, char c) throw (outofrange);

Replaces the character at pas with c. If pos == length () , putAt appends c to
the target string. If pos > length () an autafrange exception is thrown.

istream &read_file(istream &is);

Reads from input stream is until an EOF or a null terminator is reached.

istream &read_line(istream &is);

Reads from input stream is until an EOF or a newline is reached.

istream &read_string(istream &is);

Reads from input stream is until an EOF or a null terminator is reached.

istream &read_to_delim(istream &is, char delim = '\n');

Reads from input stream is until an EOF or a delim is reached.

istream &read_token(istream &is);

Reads from input stream is until whitespace is reached. Note that this
function skips any initial whitespace.

size_t rfind(const string &s)

Locates the last occurrence of the string s in the target string. If the string is
found, it returns the position of the beginning of the string s within the
target string. If s is not found, it returns NPOS.

size_t rfind(const string &s, size_t pos)

Locates the last occurrence of the string s that is not beyond the position pas
in the target string. If the string is found, it returns the position of the
beginning of s within the target string. If s is not found, it returns NPOS
and does not change pas.

See also: find

string &remove(size_t pos);

Removes the characters from pas to the end of the target string and returns
a reference to the resulting string.

Borland C++ for OS/2 Library Reference

replace

reserve

resize

resizeJncrement

string class

string &remove(size_t pas, size_t n)

Removes at most n characters from the target string beginning at pas and
returns a reference to the resulting string.

string &replace(size_t pas, size_t n, canst string &s)

Removes at most n characters from the target string beginning at pas, and
replaces them with a copy of the string s. replace returns a reference to the
resulting string.

string &replace(size_t pas, size_t n1, canst string &s, size_t start,
size_t n2 = NPOS)

Removes at most nl characters from the target string beginning at pas, and
replaces them with n2 characters of string s beginning at start. replace
returns a reference to the resulting string.

size_t reserve() canst;

Returns an implementation-dependent value that indicates the current
internal storage size. The returned value is always greater than or equal to
length ().

void reserve(size_t ic)

Suggests to the implementation that the target string might eventually
require ic bytes of storage.

void resize(size_t m);

Resizes the string to m characters, truncating or adding blanks as necessary.

static size_t resize_increment(size_t ri = 64);

Sets the resize increment for automatic resizing.

set_case_sensitive static int set_case_sensitive (int tf = 1);

Sets case sensitivity. 1 is case sensitive; 0 is not case sensitive.

seCparanoid_check static int setJ)aranoid_check (int ck = 1) i

skip_whitespace

strip

String searches use a hash value scheme to find the strings. There is a
possibility that more than one string could hash to the same value. Calling
set...'paranoid_check with ck set to 1 forces checking the string found against
the desired string with the C library function strcmp. When
set-.J1aranoid_check is called with ck set to 0, this final check isn't made.

static int skip_whitespace(int sk = 1);

Set to 1 to skip whitespace after a token read, 0 otherwise.

TSubString strip(StripType s = Trailing, char c = ' ');

Chapter 10, C++ utility classes 447

string class

substr

substring

toJower

assert_element

assertindex

cow

448

Strips away c characters from the beginning, end, or both (beginning and
end) of string s, depending on StripType.

string substr(size_t pas) canst;

Creates a string containing a copy of the characters from pos to the end of
the target string.

string substr(size_t pas, size_t n) canst;

Creates a string containing a copy of not more than n characters from pos to
the end of the target string.

TSubString substring (canst char *cp)

Creates a TSubString object containing a copy of the characters pointed to
by *cp.

canst TSubString substring (canst char *cp) canst;

Creates a TSubString object containing a copy of the characters pointed to
by *cp.

TSubString substring (canst char *cp, size_t start)

Creates a TSubString object containing a copy of the characters pointed to
by *cp, starting at character start.

canst TSubString substring (canst char *cp, size_t start) canst;

Creates a TSubString object containing a copy of the characters pointed to
by *cp, starting at character start.

vaid ta_lawer();

Changes the string to lowercase.

vaid ta_upper();.

Changes target string to uppercase.

Protected member functions

vaid assert_element (size_t pas) canst;

Throws an outofrange exception if an invalid element is given.

vaid assert_index (size_t pas) canst;

Throws an outofrange exception if an invalid index is given.

vaid caw() ;

Borland C++ for OS/2 Library Reference

valid_element

validjndex

Operator =

Operator +=

Operator +

Operator []

Operator 0

string class

Copy on write. Multiple instances of a string can refer to the same piece of
data as long as it is in a read-only situation. If a string writes to the data,
then cow (copy on write) is called to make a copy if more than one string is
referring to it.

int valid_element (size_t pos) const;

Returns 1 if pas is an element of the string, a otherwise.

int valid_index (size_t pos) const;

Returns 1 if pas is a valid index of the string, a otherwise.

Operators

string & operator=(const string &s);

If the target string is the same object as the parameter passed to the
assignment, the assignment operator does nothing. Otherwise it performs
any actions necessary to free up resources allocated to the target string,
then copies s into the target string.

string & operator += (const string &s)

Appends the contents of the string s to the target string.

string & operator += (const char *cp);

Appends the contents of cp to the target string.

friend string operator + (const string &s, const char *cp);

Concatenates ~tring sand cpo

char & operator [] (size_t pos);

Returns a reference to the character at position pas.

char operator [] (size_t pos) const;

Returns the character at position pas.

char & operator () (size_t pos);,

Returns a reference to the character at position pas.

TSubString operator () (size_t start, size_t len);
(

Returns the substring beginning at location start and spanning len bytes.

TSubString operator () (const TRegexp & re);

Returns the first occurrence of a substring matching regular expression reo

Chapter 10, C++ utility classes 449

string class

Operator ==

Operator !=

Operator <

450

TSubString operator () (const TRegexp & re, size_t start);

Returns the first occurrence of a substring matching regular ,expression re,
beginning at location start.

char operator () (size_t pos) const;

Returns the character at position pas.

const TSubString operator () (size_t start, size_t len) const;

Returns the substring beginning at location start and spanning len bytes.

const TSubString operator () (const TRegexp & pat) const;

Returns the first occurrence of a substring matching regular expression reo

const TSubString operator () (const TRegexp & pat, size_t start) const;

Returns the first occurrence of a substring matching regular expression re,
beginning at location start.

friend int operator == (const string &sl, const string &s2);

Tests for equality of string 51 and string 52. Two strings are equal if they
have the same length, and if the same location in each string contains
characters that compare equally. Operator == returns a 1 to indicate that the
strings are equal, and a 0 to indicate that they are not equal.

friend int operator == (const string &sl, const char *cp);
friend int operator == (const char *cp, const string &s);

Tests for equality of string 51 and char *cp. The two are equal if they have
the same length, and if the same location in each string contains characters
that compare equally. Operator == returns a 1 to indicate that the strings
are equal, and a 0 to indicate that they are not equal.

friend int operator != (const string &sl, const string &s2);

Tests for inequality of strings sl and s2. Two strings are equal if they have
the same length, and if the same location in each string contains characters
that compare equally. Operator != returns a 1 to indicate that the strings are
not equal, and a 0 to indicate that they are equal.

friend int operator != (const string &8, const char *cp);
friend int operator != (const char *cp, const string &s);

Tests for inequality between string 5 and char *cp. The two are equal if they
have the same length, and if the same location in each string contains the
same character. Operator != returns a 1 to indicate that the strings are not
equal, and a 0 to indicate that they are equal.

friend int operator < (const string &sl, const string &s2);

Borland C++ for OS/2 Library Reference

Operator <=

Operator>

Operator >=

Operator »

Operator »

string class

Compares string 51 to string 52. Returns 1 if string 51 is less than 52,0
otherwise.

friend int operator < (const string &s, const char *cp);
friend int operator < (const char *cp, const string &s);

Compares string 51 to *cp2. Returns 1 if the left side of the expression is less
than the right side, 0 otherwise.

friend int operator <= (const string &sl, const string &s2);

Compares string 51 to string 52. Returns 1 if string 51 is less than or equal to
52,0 otherwise.

friend int operator <= (const string &s, const char *cp);
friend int operator <= (const char *cp, const string &s);

Compares string 51 to *cp. Returns 1 if the left side of the expression is less
than or equal to the right side, 0 otherwise.

friend int operator> (const string &sl, const string &s2);

Compares string 51 to string 52. Returns 1 if string 51 is greater than 52, 0
otherwise.

friend int operator> (const string &s, const char *cp);
friend int operator> (const char *cp, const string &8);

Compares string 51 to *cp2. Returns 1 if the left side of the expression is
greater than the right side, 0 otherwise.

friend int operator >= (const string &sl, const string _FR &s2);

Compares string 51 to string 52. Returns 1 if string 51 is greater than or
equal to 52, 0 otherwise.

friend int operator >= (const string &s, const char *cp);
friend int operator >= (const char *cp, const string &s);

Compares string 51 to *cp. Returns 1 if the left side of the expression is
greater than or equal to the right side, 0 otherwise.

friend ipstream & operator » (ipstrearn & is, string & str);

Extracts string 5tr from input stream is.

Related global operators and functions

istream & operator » (istream &is, string &s);

Behaves the same as operator» (istrearn&, char *) (see Chapter 4), and
returns a reference to i5.

Chapter 10, C+,+ utility classes 451

string class

Operator «

Operator +

getline

to-'ower

ostream & operator « (ostream &os, const string & s);

Behaves the same as operator « (ostream&, const char *) (see Chapter 4)
except that it does not terminate when it encounters a null character in the
string. Returns a reference to as.

opstream & operator « (opstream & os, const string & str);

Inserts string str into persistent output stream as.

string operator + (const char *cp, const string & s);

Concatenates *cp and string s.

string operator + (const string &sl, const string &s2);

Concatenates string sl and s2.

istream & getline(istream &is, string &s);

Behaves the same as is tream: : get 1 ine (chptr, NPOS) , except that instead of
storing into a char array, it stores into a string. getline returns a reference to
is.

istream & getline(istream &is, string &s, char c);

Behaves the same as istream: :getline (cb, NPOS, c), except that instead of
storing into a char array, it stores into a string. getline returns a reference to
is.

string to_lower(const string &s);

Changes string s to lowercase.

string to_upper(const string &s);

Changes string s to uppercase.

TSubString class cstring.h

class TSubString

Addresses selected substrings.

Public member functions

char get_at (size_t pos) const;

452 Borland C++ for OS/2 Library Reference

length

puCat

start

tOJower

asserC element

Operator =

Operator ==

TSubString class

Returns the character at the specified position. If pas > length () -1, an
exception is thrown.

See also: put_at

int is_null() canst;

Returns 1 if the string is empty, 0 otherwise.

size_t length() canst;

Returns the substring length.

void put_at (size_t pas, char c

Replaces the character at pas with c. If pas == length (), putAt appends c to
the target string. If pas > length () , an exception is thrown.

int start() canst;

Returns the index of the starting character.

void to_lower();

Changes the substring to lowercase.

void to_upper();

Changes the substring to uppercase.

Protected member functions

int assert_element (size_t pas) canst;

Returns 1 if pas represents a valid index into the substring, 0 otherwise.

Operators

TSubString & operator = (canst string &s);

Copies s into the target substring.

int operator == (canst char * cp) canst;

Tests for equality between the target substring and *cp. The two are equal if
they have the same length, and if the same location in each string contains
the same character. Operator == returns a 1 to indicate that the strings are
equal, and a 0 to indicate that they are not equal.

int operator == (canst string & s) canst;

Chapter 10, C++ utility classes 453

TSubString class

Operator !=

Operator ()

Operator D

Operator!

Tests for equality between the target substring and string s. Two are equal
if they have the same length, and if the same location in each string
contains the same character. Operator == returns a 1 to indicate that the
strings are equal, and a 0 to indicate that they are not equal.

int operator != (const char * cp) const;

Tests for inequality between the target string and *cp. Two strings are equal
if they have the same length, and if the same location in each string
contains the same character. Operator != returns a 1 to indicate that the
strings are not equal, and a 0 to indicate that they are equal.

int operator != (const string & s) const;

Tests for inequality between the target string and string s. Two strings are
equal if they have the same length, and if the same location in each string
contains the same character. Operator != returns a 1 to indicate that the
strings are not equal, and a 0 to indicate that they are equal.

char & operator () (size_t pos);

Returns a reference to the character at position pos.

char operator () (size_t pos) const;

Returns the character at position pos.

char & operator [] (size_t pos);

Returns a reference to the character at position pos.

char operator [] (size_t pos) const;

Returns the character at position pos.

int operator! () const;

Detects null substrings. Returns 1 if the substring is not null.

TCriticalSection class thread.h

454

class TCriticalSection

TCriticalSection provides a system-independent interface to critical sections
in threads. TCriticalSection objects can be used in conjunction with
TCriticaISection::Lock objects to guarantee that only one thread can be
executing any of the code sections protected by the lock at any given time.

See also: TCriticaISection::Lock

Borland C++ for OS/2 Library Reference

Constructor

Destructor

Constructors and destructor

TCriticalSection();

Constructs a TCriticalSection object.

~TCriticalSection() ;

Destroys a TCriticalSection object.

TCriticalSection class

TCriticalSection: :Lock class thread.h

Constructor

Destructor

TMutex class

class Lock

This nested class handles locking and unlocking critical sections. Here's an
example:

TCriticalSection LockF;
void f ()
{

TCriticalSection: :Lock(LockF);

II critical processing here

Only one thread of execution will be allowed to execute the critical code
inside function f at anyone time.

Public constructors and destructor

Lock(const TCriticalSection&);

Requests a lock on the TCriticalSection object. If no Lock object in another
thread holds a lock on that TCriticalSection object, the lock is allowed and
execution continues. If a Lock object in another thread holds a lock on that
object, the requesting thread is blocked until the lock is released.

~Lock () ;

Releases the lock.

thread.h

TMutex provides a system-independent interface to critical sections in
threads. TMutex objects can be used in conjunction with TMutex::Lock

Chapter 10, C++ utility classes 455

TMutex class

Constructor

Destructor

HMTX

objects to guarantee that only one thread can be executing any of the code
sections protected by the lock at any given time.

The differences between the classes TCriticalSection and TMutex are that a
timeout can be specified when creating a Lock on a TMutex object, and that
a TMutex object has an HMTX handle that can be used outside the class.
This mirrors the distinction made in Windows NT between a
CRITICALSECTION and a Mutex. Under NT a TCriticalSection object is
much faster than a TMutex object. Under operating systems that don't make
this distinction a TCriticalSection object can use the same underlying
implementation as a TMutex, losing the speed advantage that it has under
NT.

Public constructors and destructor

TMutex() ;

Constructs a TMutex object.

~TMutex() ;

Destroys a TMutex object.

Operators

operator HMTX() const;

Returns a handle to the underlying TMutex object, for use in operating
system calls that require it.

TMutex::Lock class thread.h

Constructor

456

This nested class handles locking and unlocking TMutex objects.

Public constructors

Lock(const TMutex&, unsigned long timeOut = NoLimit);

Requests a lock on the TMutex object. If no Lock object in another thread
holds a lock on that TMutex object, the lock is allowed and execution
continues. If a Lock object in another thread holds a lock on that object, the
requesting thread is blocked until the lock is released.

Borland C++ for OS/2 Library Reference

Release

TSync class

Constructor

Constructor

TMutex::Lock class

Public member functions

void Release();

Releases the lock on the TMutex object.

thread.h

TSync provides a system-independent interface for building classes that act
like monitors-classes in which only one member function can execute on a
particular instance at anyone time. TSync uses TCriticalSection, has no
public members, and can only be used as a base class. Here is an example
of TSync in use:

class ThreadSafe : private TSync
{

pUblic:
void f();
void g();

private:
int i;

};

void ThreadSafe::f()
{

Lock (this) ;
if(i == 2)

i = 3;

void ThreadSafe: :g()
{

Lock(this);
if(i == 3)

i = 2;

See also: class TSync::Lock

Protected constructors

TSync() ;

Default constructor.

TSync(canst TSync&);

Chapter 10, C++ utility classes 457

TSync class

Copy constructor. Does not copy the TCriticalSection object.

Protected operators

Operator = const TSync& operator = (const TSync& s)

Assigns s to the target, and does not copy the TCriticalSection object.

TSync::Lock class thread.h

Constructor

Destructor

TThread class

458

class Lock: private TCriticalSection::Lock

This nested class handles locking and unlocking critical sections.

Public constructors and destructor

Lock(const TSync *s)i

Requests a lock on the critical section of the TSync object pointed to by s. If
no other Lock object holds a lock on that TCriticalSection object, the lock is
allowed and execution continues. If another Lock object holds a lock on that
object, the requesting thread is blocked until the lock is released.

-Lock() i

Releases the lock.

thread.h

class TThread

TThread provides a system-independent interface to threads. Here is an
example:

class TimerThread : private TThread
{

public:
TimerThread() : Count (0) {}

private:
unsigned long Run();
int Count;

};

unsigned long TimerThread: :Run()
{

Borland C++ for OS/2 Library Reference

Status

II loop 10 times
while(Count++ < 10
{

Sleep(1000); II delay 1 second
cout « "Iteration" « Count « endl;

return OL;

int main ()
{

TimerThread timer;
timer. Start () ;
Sleep(20000); II delay 20 seconds
return 0;

Type definitions

enum Status { Created, Running, Suspended, Finished, Invalid };

Describes the state of the thread, as follows:

TIhread class

• Created. The object has been created but its thread has not been started.
The only valid transition from this state is to Running, which happens on
a call to Start. In particular, a call to Suspend or Resume when the object is
in this state is an error and will throw an exception.

II Running. The thread has been started successfully. There are two
transitions from this state:

• When the user calls Suspend, the object moves into the Suspended state .

• When the thread exits, the object moves into the Finished state.

Calling Resume on an object that is in the Running state is an error and
will throw an exception.

• Suspended. The thread has been suspended by the user. Subsequent calls
to Suspend nest, so there must be as many calls to Resume as there were to
Suspend before the thread resumes execution.

• Finished. The thread has finished executing. There are no valid transitions
out of this state. This is the only state from which it is legal to invoke the
destructor for the object. Invoking the destructor when the object is in
any other state is an error and will throw an exception.

Chapter 10, C++ utility classes 459

TIhread class

Constructor

Constructor

Destructor

GetPriority

GetStatus

Resume

Set Priority

Start

Suspend

Terminate

Protected constructors and destructor

TThread();

Constructs an object of type TThread.

TThread(canst TThread&);

Copy constructor. Puts the target object into the Created state.

virtual -TThread();

Destroys the TThread object.

Public member functions

int GetPriority() canst;

Gets the thread priority.

See also: SetPriority

Status GetStatus() canst;

Returns the current status of the thread. See data member Status for
possible values.

unsigned long Resume();

Resumes execution of a suspended thread.

int SetPriority(int);

Sets the thread priority.

See also: GetPriority

THANDLE Start();

Begins execution of the thread, and returns the thread handle.

unsigned long Suspend();

Suspends execution of the thread.

void Terminate();

Sets an internal flag that indicates that the thread should exit. The derived
class can check the state of this flag by calling ShouldTerminate.

TerminateAndWait void TerminateAndWait (unsigned long timeout = NoLimit);

460

Combines the behavior of Terminate and WaitForExit. Sets an internal flag
that indicates that the thread should exit and blocks the calling thr~ad until

Borland C++ for OS/2 Library Reference

WaitForExit

ShouldTerminate

Operator =

the internal thread exits or until the time specified by timeout, in
milliseconds, expires. A timeout of -1 says to wait indefinitely.

void WaitForExit(unsigned long timeout = NoLimit);

TThread class

Blocks the calling thread until the internal thread exits or until the time
specified by timeout, in milliseconds, expires. A timeout of -1 says wait
indefinitely.

Protected member functions

int ShouldTerminate() const;

Returns a nonzero value to indicate that Terminate or TerminateAndWait has
been called and that the thread will finish its processing and exit.

Protected operators

const TThread& operator = (const TThread&);

The TThread assignment operator. The target object must be in either the
Created or Finished state. If so, assignment puts the target object into the
Created state. If the object is not in either state an exception will be thrown.

TIhread: :TThreadError class thread.h

class TThreadError

TThreadError defines the exceptions thrown when a threading error occurs.

ErrorType

Type definitions

enum ErrorType
{

SuspendBeforeRun,
ResumeBeforeRun,
ResumeDuringRun,
SuspendAfterExit,
ResumeAfterExit,
CreationFailure,
DestroyBeforeExit,
AssignError
} ;

Chapter 10, C++ utility classes 461

TThread::TIhreadError class

GetErrorType

Identifies the type of error that occurred. The following list explains each
error type:

a SuspendBeforeRun. The user called Suspend on an object before calling
Start.

a ResumeBeforeRun. The user called Resume on an object before calling Start.

a ResumeDuringRun. The user called Resume on a thread that was not
suspended .

• SuspendAfterExit. The user called Suspend on an object whose thread had
already exited.

a ResumeAfterExit. The user called Resume on an object whose thread had
already exited.

a CreationFailure. The operating system was unable to create the thread .

• DestroyBeforeExit. The object's destructor was invoked before its thread
had exited.

a AssignError. An attempt was made to assign to an object that was not in
either the Created or Finished state.

Public member functions

ErrorType GetErrorType() const;

Returns the ErrorType for the error that occurred.

TTime type definitions time.h

TTime class

462

typedef unsigned HourTy;
typedef unsigned MinuteTy;
typedef unsigned SecondTy;
typedef unsigned long ClockTy;

Type definitions for hours, minutes, seconds, and seconds since January I,
1901.

time.h

class TTime

Class TTime encapsulates time functions and characteristics.

Borland C++ for OS/2 Library Reference

Constructor

Constructor

Constructor

Constructor

AsString

BeginDST

Between

CompareTo

EndDST

Hash

Hour

HourGMT

IsDST

Public constructors

TTime() ;

Constructs a TTime object with the current time.

TTime(ClackTy s);

TTime class

Constructs a TTime object with the given s (seconds since January 1, 1901).

TTime(HaurTy h, MinuteTy m, SecandTy s = 0);

Constructs a TTime object with the given time and today's date.

TTime(canst TDate&, HaurTy h=O, MinuteTy m=O, SecandTy s=O);

Constructs a TTime object with the given time and date.

Public member functions

string AsString() canst;

Returns a string object containing the time.

static TTime BeginDST(unsigned year);

Returns the start of daylight savings time for the given year.

int Between (canst TTime& a, canst TTime& b) canst;

Returns 1 if the target date is between TTimes a and b, 0 otherwise.

int CampareTa(canst TTime &) canst;

Compares t to this TTime object and returns 0 if the times are equal, 1 if t is
earlier, and -1 if t is later.

static TTime EndDST(unsigned year);

Returns the time when daylight savings time ends for the given year.

unsigned Hash() canst;

Returns seconds since January I, 1901.

HaurTy Haur() canst;

Returns the hour in local time.

HaurTy HaurGMT() canst;

Returns the hour in Greenwich Mean Time.

int IsDST() canst;

Chapter 10, C++ utility classes 463

TTime class

IsValid

Max

Min

Minute

MinuteGMT

PrintDate

Second

Seconds

AssertDate

Ref Date

Max Date

464

Returns 1 if the time is in daylight savings time, 0 otherwise.

int IsValid() canst;

Returns 1 if this TTime object contains a valid time, 0 otherwise.

TTirne Max (canst TTirne& t) canst;

Returns either this TTime object or t, whichever is greater.

TTirne Min(canst TTirne& t) canst;

Returns either this TTime object or t, whichever is lesser.

MinuteTy Minute() canst;

Returns the minute in local time.

MinuteTy MinuteGMT() canst;

Returns the minute in Greenwich Mean Time.

static int PrintDate(int flag);

Set flag to 1 to print the date along with the time; set to 0 to not print the
date. Returns the old setting.

SecandTy Secand() canst;

Returns seconds.

ClackTy Secands() canst;

Returns seconds since January I, 1901.

Protected member functions

static int AssertDate(canst TDate& d);

Returns 1 if d is between the earliest valid date (RefDate) and the latest valid
date (MaxDate).

Protected data members

static canst TDate Ref Date;

The minimum valid date for TTime objects: January I, 1901.

static canst TDate MaxDate;

The maximum valid date for TTime objects.

Borland C++ for OS/2 Library Reference

Operator <

Operator <=

Operator>

Operator >=

Operator ==

Operator !=

Operator ++

Operator --

Operator +=

Operator-=

Operator +

Operator-

Operator «

Operators

int operator < (const TTime& t) const;

Returns 1 if the target time is less than time t, 0 otherwise.

int operator <= (const TTime& t) const;

Dime class

Returns 1 if the target time is less than or equal to time t, 0 otherwise.

int operator> (const TTime& t) const;

Returns 1 if the target time is greater than time t, 0 otherwise.

int operator >= (const TTime& t) const;

Returns 1 if the target time is greater than or equal to time t, 0 otherwise.

int operator == (const TTime& t) const;

Returns 1 if the target time is equal to time t, 0 otherwise.

int operator != (const TTime& t) const;

Returns 1 if the target time is not equal to time t, 0 otherwise.

void operator ++ ();

Increments time by 1 second.

void operator -- ();

Decrements time by 1 second.

void operator += (long s);

Adds s seconds to the time.

void operator -= (long s);

Subtracts s seconds from the time.

friend TTime operator '+ (const TTime& t, long s);
friend TTime operator + (long s, const TTime& t);

Adds s seconds to time t.

friend TTime operator - (const TTime& t, long s);
friend TTime operator - (long s, const TTime& t);

Performs subtraction, in seconds, between sand t.

friend ostream& operator « (ostream& os, const TTime& t);

Inserts time t into output stream as.

Chapter 10, C++ utility classes 465

TTimeclass

Operator »

466

friend opstream& operator « (opstream& s,' const TTime& d);

Inserts time t into persistent stream s.

friend ipstream& operator » (ipstream& s, TTirne& d);

Extracts time t from persistent stream s.

Borland C++ for OS/2 Library Reference

A p p E N o x

Run-time library cross-reference

This appendix is an overview of the Borland C++ library routines and
include files.

This appendix

• Names the object libraries and other files found the LIB directory, and
describe their uses.

A

• Explains why you might want to obtain the source code for the Borland
C++ run-time library.

• Lists and describes the header files.

II Summarizes the different categories of tasks performed by the library
routines.

Borland C++ has several hundred functions and macros that you call from
within your C and C++ programs to perform a wide variety of tasks,
including low- and high-level I/O, string and file manipulation, memory
allocation, process control, data conversion, mathematical calculations, and
much more. These functions and macros, collectively referred to as library
routines, are documented in Chapter 2 of this book.

The run-time libraries

The following table lists the OS/2 libraries names and uses.

File name Use

BPMCC.LlB Static-link implementation of the Borland Presentation Manager custom controls.

BPMCC.DLL Dynamic-link implementation of the Borland Presentation Manager custom
controls.

C02.0BJ Startup code for EXE files (must be first .OBJ)

C02D.OBJ Startup code for DLL files (must be first .OBJ)

OS2.LlB Import library for OS/2 API

C2.LlB Single-threaded static-link run-time library

Appendix A, Run-time library cross-reference 467

C2MT.L1B

C2.DLL

C21.L1B

C2MT.DLL·

C2MTI.L1B

Multi-threaded static-link run-time library

Single-threaded dynamic-link run-time library

Import library for single-threaded dynamic-link run-time library. Link with this to
use C2.DLL

Multi-threaded dynamic-link run-time library

Import library for multi-threaded dynamic-link run-time library. Link with this to
use C2MT.DLL

FILEINFO.OBJ Link with this file to allow file handle information to be passed to child processes
started with execl and spawn functions.

LOCALE.BLL Provides locale-specific data.

OBSOLETE.L1B Provides obsolete global variables

POPUP.OBJ Link with this file to cause runtime messages (such as those printed by the abort
and assert functions) to be displayed in a pop-up character-mode screen.

WILDARGS.OBJ Link with this file for automatic expansion of wildcard file names on the command
line.

The following table lists the container libraries:

BIDS2.L1B
BIDSDB2.L1B
BIDS21.L1B
BIDS402.DLL
BIDS40D2.DLL

Static library
Static library, diagnostic version
Import static library
Dynamic link library
Dynamic link library, diagnostic version

Here is an example of how you create an EXE that uses the single-threaded
static run-time library:

TLINK /TOE C02.0BJ <OBJS>, <EXE>, <MAP>, OS2.LIB C2.LIB
For these examples you
mus/provide your own This example creates an EXE that uses the dynamic link library C2.DLL:

file names in place of
OBJ~EX~andMA~ TLINK /TOE C02.0BJ <OBJS>, <EXE>, <MAP>, OS2.LIB C2I.LIB

468

This example creates a DLL that uses the multi-threaded static run-time
library:

TLINK /TOE C02D.OBJ <OBJS>, <EXE>, <MAP>, OS2.LIB C2MT.LIB

See also the Programmer's Guide, Chapter 9, for additional information and
examples on how to use the various libraries.

Borland C++ for OS/2 Library Reference

Reasons to access the run-time library source code

There are several good reasons why you might want to obtain the source
code for the run-time library routines:

• You might find that a particular function you want to write is similar to,
but not the same as, a Borland C++ function. With access to the run-time
library source code, you could tailor the library function to your own
needs, and avoid having to write a separate function of your own.

• Sometimes, when you are debugging code, you might want to know
more about the internals of a library function. Having the source code to
the run-time library would be of great help in this situation.

• You might want to delete the leading underscores on C symbols. Access
to the run-time library source code will let you delete them.

• You can learn a lot from studying tight, professionally written library
source code.

For all these reasons, and more, you will want to have access to the Borland
C++ run-time library source code. Because Borland believes strongly in the
concept of "open architecture," we have made the Borland C++ run-time
library source code available for licensing. All you have to do is fill out the
order form distributed with your Borland C++ package, include your
payment, and we'll ship you the Borland C++ run-time library source code.

The Borland C++ header files

c++ header files, and
header files defined

by ANSI C, are
marked in the margin.

ANSI C

~

~

Header files, also called include files, provide function prototype
declarations for library functions. Data types and symbolic constants used
with the library functions are also defined in them, along with global
variables defined by Borland C++ and by the library functions. The Borland
C++ library follows the ANSI C standard on names of header files and their
contents.

alloc.h

assert.h

bcd.h

checks.h

Declares memory management functions (allocation,
de allocation, and so on).

Defines the assert debugging macro.

Declares the C++ class bed and the overloaded operators
for bed and bed math functions.

Defines PRECONDITION, WARN, and TRACE diagnostic
macros.

Appendix A, Run-time library cross-reference 469

~ complex.h Declares the C++ complex math functions.

conio.h Declares various functions used in calling the operating
system console I/O routines. The functions defined in this
header file cannot be used in PM applications.

~ constrea.h Declares C++ classes and methods to support console
output.

~ cstring.h Declares the ANSI C++ string class support.

ANSIC ctype.h Contains information used by the character classification
and character conversion macros (such as isalpha and
toascii).

dir.h Contains structures, macros, and functions for working
with directories and path names.

direct.h Defines structures, macros, and functions for dealing with
directories and path names.

dirent.h Declares functions and structures for POSIX directory
operations.

dos.h Defines various constants and gives declarations needed
for DOS and 8086-specific calls.

ANSIC ermo.h Defines constant mnemonics for the error codes.

~ except.h Declares routines that provide support for ANSI C++
exceptions.

excpt.h Declares routines and keywords that provide support for
C -based structured exceptions.

fcntl.h Defines symbolic constants used in connection with the
library routine open.

ANSIC float.h Contains parameters for floating-point routines.

~ fstream.h Declares the C++ stream classes that support file input and
output.

~ generic.h Contains macros for generic class declarations.

io.h Contains structures and declarations for low-level
input/output routines.

~ iomanip.h Declares the C++ streams I/O manipulators and contains
templates for creating parameterized manipulators.

~ iostream.h Declares the basic C++ streams (I/O) routines.

470 Borland C++ for OS/2 Library Reference

ANSIC limits.h

ANSIC locale.h

sys \locking.h

malloc.h

ANSIC math.h

mem.h

memory.h

~ new.h

process.h

search.h

ANSIC se~mp.h

share.h

ANSIC signal.h

ANSIC stdarg.h

ANSI C stddef.h

ANSI C stdio.h

~ stdiostr.h

Appendix A, Run-time library cross-reference

Contains environmental parameters, information about
compile-time limitations, and ranges of integral quantities.

Declares functions that provide country- and language
specific information.

Definitions for mode parameter of locking function.

Memory management functions and variables.

Declares prototypes for the math functions and math error
handlers.

Declares the memory-manipulation functions~ (Many of
these are also defined in string.h.)

Memory manipulation functions.

Access to _new_handler and _set_new_handler.

Contains structures and declarations for the spawn ... and
exec ... functions.

Declares functions for searching and sorting.

Defines a type jmp _buf used by the longjmp and setjmp
functions and declares the functions longjmp and setjmp.

Defines parameters used in functions that make use of file
sharing.

Defines constants and declarations for use by the signal and
raise functions.

Defines macros used for reading the argument list in
functions declared to accept a variable number of argu
ments (such as vprintf, vscanf, and so on).

Defines several common data types and macros.

Defines types and macros needed for the standard I/O
package defined in Kernighan and Ritchie and extended
under UNIX System V. Defines the standard I/O pre
defined streams stdin, stdout, and stderr, and declares
stream-level I/O routines.

Declares the C++ (version 2.0) stream classes for use with
stdio FILE structures. You should use iostream.h for new
code.

471

ANSIC stdlib.h

ANSIC string.h

~ strstrea.h

sys\stat.h

ANSIC time.h

sys \ timeb.h

Declares several commonly used routines: conversion
routines, search/ sort routines, and other miscellany.

Declares several string-manipulation and memory
manipulation routines.

Declares the C++ stream classes for use with byte arrays in
memory.

Defines symbolic constants used for opening and creating
files.

Defines a structure filled in by the time-conversion routines
asctime, localtime, and gmtime, and a type used by the
routines ctime, difftime, gmtime, localtime, and stime; also
provides prototypes for these routines.

Declares the function ftime and the structure timeb that ftime
returns.

sys \ types.h

~ typeinfo.h

Declares the type time _t used with time functions.

Provides declarations for ANSI C++ run-time type
identification (RTTI).

utime.h

values.h

varargs.h

Declares the utime function and the utimbuf struct that it
returns.

Defines important constants, including machine depen
dencies; provided for UNIX System V compatibility.

Definitions for accessing parameters in functions that
accept a variable number of arguments. Provided for UNIX
compatibility; you should use stdarg.h for new code.

Library routines by category

c++ prototyped
routines

472

The Borland C++ library routines perform a variety of tasks. In this section,
we list the routines, along with the include files in which they are declared,
under several general categories of task performed. Chapter 2 contains
complete information about the functions.

Certain routines described in this book have multiple declarations. You
must choose the prototype appropriate for your program. In general, the
multiple prototypes are required to support the original C implementation
and the stricter and sometimes different C++ function declaration syntax.

Borland C++ for OS/2 Library Reference

Classification
routines

Conversion
routines

Directory control
routines

For example, some string-handling routines have multiple prototypes
because in addition to the ANSI-C specified prototype, Borland C++
provides prototypes that are consistent with the ANSI C++ draft.

getvect (dos.h) strchr (string.h)
max (stdlib.h) strpbrk (string.h)
memchr (string.h) strrchr (string.h)
min (stdlib.h) strstr (string.h)
setvect (dos.h)

These routines classify ASCII characters as letters, control characters,
punctuation, uppercase, and so on.

isalnum (ctype.h) is lower (ctype.h)
isalpha (ctype.h) isprint (ctype.h)
isascii (ctype.h) ispunct (ctype.h)
iscntrl (ctype.h) isspace (ctype.h)
isdigit (ctype.h) is upper (ctype.h)
isgraph (ctype.h) isxdigit (ctype.h)

These routines convert characters and strings from alpha to different
numeric representations (floating-point, integers, longs) and vice versa, and
from uppercase to lowercase and vice versa.
atof (stdlib.h) strtol
atoi (stdlib.h) _strtold
atol (stdlib.h) strtoul
ecvt (stdlib.h) toascii
fcvt (stdlib.h) _to lower
gcvt (stdlib.h) tolower
itoa (stdlib.h) _to upper
ltoa (stdlib.h) to upper
strtod (stdlib.h) ultoa

These routines manipulate directories and path names.

chdir
_chdrive
closedir
_dos Jindfirst
_dos Jindnext
_dos ~etdiskfree
_dos -$etdrive
_dos _setdrive
findfirst
findnext

(dir.h)
(direct.h)
(dirent.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dir.h)
(dir.h)

fnmerge
fnsplit
Jullpath
getcurdir
getcwd
~etdcwd
getdisk
~etdrive
_makepath
mkdir

(stdlib.h)
(stdlib.h)
(stdlib.h)
(ctype.h)
(ctype.h)
(ctype.h)
(ctype.h)
(ctype.h)
(stdlib.h)

(dir.h)
(dir.h)
(stdlib.h)
(dir.h)
(dir.h)
(direct.h)
(dir.h)
(direct.h)
(stdlib.h)
(dir.h)

Appendix A, Run-time library cross-reference 473

Diagnostic
routines

Inline routines

Inputbutput
routines

474

mktemp (dir.h) _searchenv (stdlib.h)
opendir (dirent.h) sea rchpa th (dir.h)
readdir (dirent.h) _searchstr (stdlib.h)
rewinddir (dirent.h) setdisk (dir.h)
rmdir (dir.h) _splitpath (stdlib.h)

These routines provide built-in troubleshooting capability.

assert
CHECK
_matherr
_matherrI

(assert.h)
(checks.h)
(math.h)
(math.h)

perror (errno.h)
PRECONDITION (checks.h)
TRACE (checks.h)
WARN (checks.h)

These routines have inline versions. The compiler will generate code for the
inline versions when you use #pragma intrinsic or if you specify program
optimization. See the User's Guide, Appendix A, "The optimizer," for more
details.
abs
alloca
_crotI
_crotr
_IrotI
_Irotr
memchr
memcmp
memcpy
memset
_rotI
Jotr

(math.h)
(maUoc.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(mem.h)
(mem.h)
(mem.h)
(mem.h)
(stdlib.h)
(stdlib.h)

stpcpy
strcat
strchr
strcmp
strcpy
strIen
strncat
strncmp
strncpy
strnset
strrchr
strset

(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string. h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)

These routines provide stream- and operating-system level IIO capability.

access (io.h) - dos_close (dos.h)

- chmod (io.h) _dosJreat (dos.h)
chmod (io.h) _dos _creatnew (dos.h)
chsize (io.h) _dos -setfileattr (dos.h)
clearerr (stdio.h) _dos -setftime (dos.h)
_close (io.h) _dos_open (dos.h)
close (io.h) _dosJead (dos.h)

- creat (io.h) _dos _setfileattr (dos.h)
creat (io.h) _dos _seiftime (dos.h)
creatnew (io.h) _dos_write (dos.h)
creattemp (io.h) dup (io.h)
cscanf (conio.h) dup2 (io.h)

Borland C++ for OS/2 Library Reference

eof (io.h) perror (stdio.h)
fcZose (stdio.h) -pipe (io.h)
fcloseall (stdio.h) printj (stdio.h)
fdopen (stdio.h) putc (stdio.h)
feof (stdio.h) putchar (stdio.h)
ferror (stdio.h) puts (stdio.h)
!flush (stdio.h) putw (stdio.h)
fgetc (stdio.h) Jead (io.h)
fgetchar (stdio.h) read (io.h)
fgetpos (stdio.h) remove (stdio.h)
fgets (stdio.h) rename (stdio.h)
filelength (io.h) rewind (stdio.h)
fileno (stdio.h) rmtmp (stdio.h)
fLushall (stdio.h) scanf (stdio.h)
fopen (stdio.h) setbuf (stdio.h)
Jprintj (stdio.h) _setcursortype (conio.h)
Jputc (stdio.h) setjtime (io.h)
Jputchar (stdio.h) setmode (io.h)
Jputs (stdio.h) setvbuf (stdio.h)
fread (stdio.h) sopen (io.h)
freopen (stdio.h) sprintj (stdio.h)
fscanf (stdio.h) sscanf (stdio.h)
fseek (stdio.h) stat (sys \stat.h)
fsetpos (stdio.h) _strerror (string.h, stdio.h)
Jsopen (stdio.h) strerror (stdio.h)
fstat (sys \stat.h) tell (io.h)
ftell (stdio.h) tempnam (stdio.h)
Jtruncate (io.h) tmpfile (stdio.h)
fwrite (stdio.h) tmpnam (stdio.h)
getc (stdio.h) - truncate (io.h)
getch (conio.h) umask (io.h)
getchar (stdio.h) ungetch (conio.h)
getche (conio.h) unlink (dos.h)
getjtime (io.h) unlock (io.h)
gets (stdio.h) utime (utime.h)
getw (stdio.h) vJprintj (stdio.h)
isatty (io.h) vfscanf (stdio.h)
kbhit (conio.h) vprintj (stdio.h)
lock (io.h) vscanf (stdio.h)
locking (io.h) vsprintj (stdio.h)
lseek (io.h) vsscanf (io.h)
_open (io.h) _write (io.h)
open (io.h)

Appendix A, Run-time library cross-reference 475

Interface routines

International
locale API
routines

Manipulation
routines

476

These routines provide operating system and machine-specific capabilities.

country
getdfree
getverify

(dos.h)
(dos.h)
(dos.h)

setverify
sleep

(dos.h)
(dos.h)

These routines are affected by the current locale. The current locale is
specified by the setlocale function and is enabled by defining
__ USELOCALES __ with -0 command line option. When you define
__ USELOCALES_ -' only function versions of the following routines are
used in the run-time library rather than macros. See online Help for a
discussion of the International API.

cprintj (stdio.h) scanf (stdio.h)
cscanf (stdio.h) setlocale (locale.h)
fprintf (stdio.h) sprintj (stdio.h)
fscanf (stdio.h) sscanf (stdio.h)
isalnum (ctype.h) strcoll (string.h)
isalpha (ctype.h) strftime (time.h)
iscntrl (ctype.h) strlwr (string.h)
isdigit (ctype.h) strupr (string.h)
isgraph (ctype.h) strxfrm (string.h)
is lower (ctype.h) tolower (ctype.h)
isprint (ctype.h) toupper (ctype.h)
ispunct (ctype.h) vfprintf (stdio.h)
isspace (ctype.h) vfscanf (stdio.h)
is upper (ctype.h) vprintj (stdio.h)
isxdigit (ctype.h) vscanf (stdio.h)
localeconv (locale.h) vsprintj (stdio.h)
printj (stdio.h) vsscanf (stdio.h)

These routines handle strings and blocks of memory: copying, comparing,
converting, and searching. .

mblen (stdlib.h) strchr (string.h)
mbstowcs (stdlib.h) strcmp (string.h)
mbtowc (stdlib.h) strcoll (string.h)
memccpy (mem.h, string.h) strcpy (string.h)
memchr (mem.h, string.h) strcspn (string.h)
memcmp (mem.h, string.h) strdup (string.h)
memcpy (mem.h, string.h) strerror (string.h)
memicmp (mem.h, string.h) stricmp (string.h)
memmove (mem.h, string.h) strcmpi (string.h)
memset (I,11em.h, string.h) strlen (string.h)
stpcpy (string.h) strlwr (string.h)
strcat (string.h) strncat (string.h)

Borland C++ for OS/2 Library Reference

strncmp (string.h) strset (string.h)
strncmpi (string.h) strspn (string.h)
strncpy (string.h) strstr (string.h)
strnicmp (string.h) strtok (string.h)
strnset (string.h) strupr (string.h)
strpbrk (string.h) strxfrm (string.h)
strrchr (string. h) wcstombs (stdlib.h)
strrev (string. h) wctomb (stdlib.h)

Math routines These routines perform mathematical calculations and conversions.

abs (complex.h, stdlib.h) cosh (complex.h, math.h)
acos (complex.h, math.h) cosh I (math.h)
acosl (math.h) cos I (math.h)
arg (complex.h) div (math.h)
asin (complex.h, math.h) ecvt (stdlib.h)
asinl (math.h) exp (complex.h, math.h)
atan (complex.h, math. h) expl (math.h)
atan2 (complex.h, math.h) Jabs (math.h)
atan21 (math.h) Jabsl (math.h)
atanl (math.h) Jcvt (stdlib.h)
atoJ (stdlib.h, math.h) floor (math.h)
atoi (stdlib.h) floor! (math.h)
atol (stdlib.h) fmod (math.h)
_atoId (math.h) jmodl (math.h)
bcd (bcd.h) Jpreset (float.h)
cabs (math.h) frexp (math.h)
cabsl (math.h) frexpl (math. h)
ceil (math.h) gcvt (stdlib.h)
ceill (math.h) hypot (math.h)
_clear87 (float.h) hypotI (math.h)
complex (complex.h) imag (complex.h)
conj (complex.h) itoa (stdlib.h)
_control87 (float.h) labs (stdlib.h)
cos (complex.h, math.h) ldexp (math.h)

ldexpl (math. h) modfl (math.h)
ldiv (math.h) norm (complex.h)
log (complex.h, math.h) polar (complex.h)
logl (math.h) poly (math.h)
logIO (complex.h, math. h) polyl (math. h)
logIOI (math.h) pow (complex.h, math.h)

- IrotI (stdlib.h) powIO (math.h)

- lrotr (stdlib.h) powIOl (math.h)
ltoa (stdlib.h) powl (math.h)

- matherr (math. h) rand (stdlib.h)

- matherrl (math.h) random (stdlib.h)
modJ (math.h) randomize (stdlib.h)

Appendix A, Run-time library cross-reference 477

Memory routines

Miscellaneous
routines

Obsolete
definitions

Table A.1
Obsolete global

variables

478

real (complex.h) _status87 (float. h)

-rotl (stdlib.h) strtod (stdlib.h)
Jotr (stdlib.h) strtol (stdlib.h)
sin . (complex.h, math.h) _strtold (stdlib.h)
sinh (complex.h, math.h) strtoul (stdlib.h)
sinhl (math.h) tan (complex.h, math.h)
sinl (math.h).h, math.h) tanh (complex.h, math.h)
sqrt (complex.h, math.h) tanhl (complex.h, math.h)
sqrtl (math.h) tani (math.h)
srand (stdlib.h) uItoa (stdlib.h)

These routines provide dynamic memory allocation.

alloca (malloc.h) _heapmin (malloc.h)
calloc (alloc.h, heapwalk (alloc.h)

stdlib.h) _heapwalk (malloc.h)
free (alloc.h, malloc (alloc.h,

stdlib.h) stdlib.h)
_heapadd (malloc.h) realloc (alloc.h,
heapcheck (alloc.h) stdlib.h)
heapcheckfree (alloc.h) _set _new_handler (new.h)
heapchecknode (alloc.h) stackavail (malloc.h)

These routines provide nonlocal go to capabilities and locale.

localeconv
longjmp

(locale.h)
(setjmp.h)

setjmp
setlocale

(setjmp.h)
(locale.h)

The following global variables have been renamed to comply with ANSI
naming requirements. You should always use the new names. If you link
with libraries that were compiled with Borland C++ 3.1 (or earlier) header
files, you will get the message

Error: undefined external varname in module LIBNAME.LIB

A library module that results in such an error should be recompiled. How
ever, if you cannot recompile the code for such libraries, you can link with
OBSOLETE.LIB to resolve the external variable names.

The following global variables have been renamed:

Old name New name Header file

daylight _daylight time.h
directvideo directvideo conio.h -
environ environ stdlib.h -

Borland C++ for OS/2 Library Reference

Table A.2
Obsolete function

names

Process control
routines

Table A.1: Obsolete global variables (continued)

sys_errlist _sys_errlist
sys_nerr _sys_nerr
timezone _timezone
tzname tzname

errno.h
errno.h
time.h
time.h

The old names of the following functions are available. However, the
compiler will generate a warning that you are using an obsolete name.
Future versions of Borland C++ might not provide support for the old
function names.

The following function names have been changed:

Old name New name Header file

- chmod _rtLchmod io.h

- close _rtLclose io.h

- creat _rtLcreat io.h
_heapwalk _ rtL heap walk malloc.h
_open _rtLopen io.h·

- read _rtLread io.h
write _rtLwrite io.h

These routines invoke and terminate new processes from within
another.

abort (process.h) exit (process. h)
_begin thread (process. h) _expand (process.h)
_c_exit (process.h) getpid (process.h)

-cexit (process.h) -pc1ose (stdio.h)
cwait (process.h) -popen (stdio.h)

- endthread (process.h) raise (signal.h)
exec1 (process.h) signal (signal.h)
exec1e (process.h) spawnl (process.h)
exec1p (process. h) spawnle (process.h)
exec1pe (process. h) spawnlp (process.h)
execv (process.h) spawnlpe (process.h)
execve (process.h) spawnv (process.h)
execvp (process.h) spawnve (process.h)
execvpe (process.h) spawnvp (process.h)
_exit (process.h) spawnvpe (process.h)

Appendix A, Run-time library cross-reference 479

Console 1/0
routines

Time and date
routines

Variable argument
list routines

480

These routines output text to the screen or read from the keyboard. They
cannot be used in a PM application.

cgets (conio.h) movetext (conio.h)
elreol (conio.h) norm video (conio.h)
elrscr (conio.h) putch (conio.h)
cprintj (conio.h) puttext (conio.h)
cputs (conio.h) _setcursortype (conio.h)
delline (conio.h) textattr (conio.h)
getpass (conio.h) text background (conio.h)
gettext (conio.h) textcolor (conio.h)
gettextinfo (conio.h) textmode (conio.h)
gotoxy (conio.h) ungetc (stdio.h)
highvideo (conio.h) wherex (conio.h)
insline (conio.h) wherey (conio.h)
lowvideo (conio.h) window (conio.h)

These are time conversion and time manipulation routines.

asctime (time.h) mktime (time.h)
ctime (time.h) setdate (dos.h)
difftime (time.h) settime (dos.h)
_dos~etdate (dos.h) stime (time.h)
_dos~ettime (dos.h) _strdate (time.h)
_dos_setdate (dos.h) strftime (time.h)
_dos_settime (dos.h) _strtime (time.h)
dostollnix (dos.h) TDate (date.h)
ftime (sys \ timeb.h) time (time.h)
getdate (dos.h) TTime (time.h)
gettime (dos.h) tzset (time.h)
gmtime (time.h) llnixtodos (dos.h)
localtime (time.h)

These routines are for use when accessing variable argument lists (such as
with vprintj, etc).

(stdarg.h)
(stdarg.h)

(stdarg.h)

Borland C++ for OS/2 Library Reference

Index

+

<

>

!=

o

TSubString operator 454

global string operator 452
string operator 449
TDate operator 435
TTime operator 465

TDate operator 435
TTime operator 465

string operator 450
TDate operator 434
TTime operator 465

string operator 449
TMVectorImp operator 393
TSubString operator 453
TSync operator 458
TThread operator 461

string operator 451
TDate operator 435
TTime operator 465

string operator 450
TDate operator 435
TSubString operator 454
TTime operator 465

string operator 449
TSubString operator 454

++
TBinarySearchTreeIteratorImp operator 324
TDate operator 435
TIBinarySearchTreeIteratorImp operator 326
TMArray As VectorIterator operator 301
TMDequeAsVectorIterator operator 330
TMDictionaryAsHashTableIterator operator 341
TMDoubleListIteratorImp operator 349
TMHashTableIteratorImp operator 358
TMIArrayAsVectorIterator operator 307

Index

TMIDictionary AsHashTableIterator operator
344
TMIDoubleListIterator operator 354
TMIHashTableIteratorImp operator 360
TMIListIteratorImp operator 369
TMIVectorIteratorImp operator 403
TMListIteratorImp operator 365
TMVectorIteratorImp operator 394
TTime operator 465

+=

«

string operator 449
TDate operator 435
TTime operator 465

TDate operator 435
TMDoubleListIteratorImp operator 349
TTime operator 465

TDate operator 435
TTime operator 465

global string operator 451
TDate operator 435
TTime operator 465

<=
string operator 451
TDate operator 434
TTime operator 465

string operator 450
TDate operator 435
TMDDAssociation operator 311
TMDIAssociation operator 313
TMIDAssociation operator 315
TMIIAssociation operator 316
TSubString operator 453
TTime operator 465

>=

»

string operator 451
TDate operator 435
TTime operator 465

global string operator 451

481

[]

string operator 451
TDate operator 435
TTime operator 466

string operator 449
TArray operator 306
TMArrayAsVector operator 300
TMIVectorImp operator 402
TMVectorImp operator 393
TSubString operator 454

80x86 processors
functions (list) 476

Ox4E DOS system call 67

A
abnormal program termination 152, 426
abort (function) 10
abs (complex friend function) 414

. abs (function) 11
absolute value

complex numbers 21, 414
square 416

floating-point numbers 60
integers 11

long 109
access

modes, changing 25,47, 159
program, signal types 152

invalid 152
read/write 25, 82

files 12,34, 134, 187
permission 135

access (function) 11
access flags 134, 187
access permission mask 228
acos (complex friend function) 414
acos (function) 12
acosl (function) 12
Add

TBinarySearchTreelmp member function 322
TIBinarySearchTreelinp member function 325
TMArray As Vector member function 298
TMBagAs Vector member function 318
TMCVectorImp member function 396
TMDictionaryAsHashTable member function
340

482

TMDoubleListImp member function 347
TMHashTablelmp member function 357
TMIArray As Vector member function 303
TMIBagAs Vector member function 320
TMICVectorImp member function 404
TMIDictionaryAsHashTable member function
342
TMIDoubleListImp member function 352
TMIHashTablelmp member function 359
TMlListImp member function 367
TMISetAs Vector member function 382
TMListImp member function 363
TMSetAs Vector member function 380

AddAt
TMArray As Vector member function 298
TMCVectorImp member function 396
TMIArray As Vector member function 303

AddAtHead
TMDoubleListImp member function 347
TMIDoubleListImp member function 352

AddAtTail
TMDoubleListImp member function 347
TMIDoubleListImp member function 352

adjustfield, ios data member 260
alloc.h (header file) 469
alloca (function) 13
allocate, streambuf member function 273
allocation

streamable object file buffers and 278, 286
alphabetic ASCII codes, checking for 103
alphanumeric ASCII codes, checking for 102
angles (complex numbers) 415
app, ios data member 261
append, string member function 441
arc cosine 12
arc sine 14
arc tangent 15, 16
arg (complex friend function) 415
argc (argument to main) 3
_argc (global variable) 243
ARGS.EXE 4
argument list, variable 232

conversion specifications and 142
arguments

command line, passing to main 3
wildcards and 5

command-line, passing to main 243

Borland C++ for OS/2 Library Reference

variable number of
functions (list) 480

argv (argument to main) 3
_argv (global variable) 243
arrays

of character, attribute information 243
searching 20, 110
of time zone names 250

ArraySize
TMArrayAsVector member function 298
TMIArray As Vector member function 303

ASCII codes
alphabetic 103

lowercase 105
uppercase 107

alphanumeric 102
control or delete 104
converting

characters to 224
date and time to 13

digits 105
hexadecimal 107

functions,list 473
low 103
lowercase alphabetic 105
printing characters 105, 106
punctua tion characters 106
uppercase alphabetic 107
whitespace 107

asctime (function) 13
asin (complex friend function) 415
asin (function) 14
asinl (function) 14
assert (function) 15
assert_element

string member function 448
TSubString member function 453

assert.h (header file) 469
assert_index, string member function 448
AssertDate, TTime member function 464
AssertIndexOfMonth, TDate member function 434
assertion 15
AssertWeekDayNumber, TDate member function

434
assign, string member function 441
assignment suppression, format specifiers 166,

170, 171

Index

AsString
TDate member function 432
TTime member function 463

atan (complex friend function) 415
atan (function) 15
atan2 (function) 16
atan21 (function) 16
atanl (function) 15
ate, ios data member 261
atexit (function) 16
atof (function) 17
atoi (function) 18
atol (function) 18
_atold (function) 17
attach member functions

filebuf 256
fpbase 278
fstreambase 259

attribute bits 134, 187
attribute word 36, 42, 160
attributes

B

characters, arrays of 243
text 218, 219, 220

bad
ios member function 262
pstream member function 286

Bad_cast (class) 425
Bad_typeid (class) 425
banker's rounding 412
base 10 logarithm 116, 416
base, streambuf member function 273
basefield, ios data member 260
BCD (binary coded decimal) numbers 411, 413
bcd (class constructor) 411, 412
bcd.h (header file) 469
before, Type_info member function 428
BeginDST, TTime member function 463
_beginthread (function) 19
Between

TDate member function 432
TTime member function 463

binary, ios data member 261
binary files

creat and 34
creattemp and 36

483

fdopen and 62
fopen and 73
freopen and 76
_fsopen and 80
opening 63, 73, 76, 80

and translating 248
setting 179
temporary

naming 217, 223
opening 223

binary search 20
bit mask 81 '
bit rotation

long integer 118
unsigned char 37
unsigned integer 159

bitalloc, ios member function 262
bits, attribute 36, 41, 42, 134, 161, 187
bIen, streambuf member function 273
blink-enable bit 219
Borland C++

obsolete definitions 478
Borland C++, functions,licensing 469
BoundBase

TArrayAsVectorImp member function 305
TMArrayAsVector member function 298

bp
ios data member 261
pstream data member 287

bsearch (function) 20
buffers

default, allocating 286
files 180, 255, 257

allocating 278
creating 278, 279, 282, 283

pstream 286
current 278

keyboard, pushing character to 229
pointers, pstream 287
streams and 174, 180, 255, 257

clearing 69
flushing 61
pointers to 287
writing 69

system-allocated, freeing 61
writing data from 284

BUILDER type, streamable classes and 289

484

bytes

c

streamable objects and 279, 280, 281, 282 283
284,290 ' ,

swapping 215

c_str, string member function 442
cabs (function) 21
cabsl (function) 21
calendar format (time) 131
calloc (function) 22
CastableID, TStreamableBase member function

288
ceil (function) 22
ceill (function) 22
cgets (function) 23
characters

alphabetic 103
alphanumeric 102
array 280

global variable 243
attributes 218, 219, 220
blinking 219
color, setting 218, 220
control ~r delete 104
converting to ASCII 224
device 104
digits 105
displaying 143, 148, 167
floating-point numbers and 17
functions (list) 473
hexadecimal digits 107
intensity

high 101
low 117
normal 133

low ASCII 103
lowercase 225

checking for 105
converting to 224, 225

manipulating header file 470
newline (\n) 150
printing 105, 106
punctuation 106
pushing

to input stream 229
to keyboard buffer 229

Borland C++ for OS/2 Library Reference

reading 167
from console 23
from keyboard 85, 86
from streams 64, 85, 86

stdin 65
scanning in strings 199, 207

segment subset 209
searching

blocks 126
strings 196

streamable objects and 284
uppercase

checking for 107
converting to 225, 226

whitespace 107
writing

to screen 148
to streams 74, 148

chdir (function) 24
_chdrive (function) 24
CHECK macro 420
checks.h (header file) 469
CHECKX macro 421
child processes 56, 188

file handles 468
functions (list) 479
header file 471

created by exec (function) 6
created by spawn (function) 6
chmod (function) 25
chsize (function) 26
class diagnostics 419

CHECK macro 419
CHECKX macro 419
PRECONDITION macro 419
PRECONDITIONX macro 419
TRACE macro 419
TRACEX macro 419
WARN macro 419
WARNX macro 419

classes
names, read/write prefix/suffix 281
registering 280, 284, 289
writing to streams 285

clear
ios member function 262
pstream member function 286

Index

_clearS7 (function) 26
clearerr (function) 27
clearing

screens 29
to end of line 29

clock (function) 27
close (function) 28
Close, TFile member function 438
close member functions

filebuf 256
fpbase 278
fstreambase 259

closedir (function) 28
clreol, conbuf member function 253
clreol (function) 29
clrscr (function) 29
clrscr member functions

conbuf 253
constream 255

co-routines, task states and 117
colors and palettes

background color, text 218, 219
setting, character 218, 220

command-line arguments, passing to main 243
command-line compiler, Pascal calling conventions,

option (-p) 6
communications, ports, checking for 104
compare, string member function 441
CompareTo

TDate member function 432
TTime member function 463

comparing two values 124, 129
comparison function, user-defined 151
compile-time limitations, header file 470
complex (class constructor) 414
complex.h (header file) 469
complex numbers

absolute value 21
square of 416

angles 415
conjugate of 415
constructor for 414
conversion to real 414
functions (list) 477
header file 469
imaginary portion 416
logarithm 416

485

polar function 416
real portion 416

COMSPEC environment variable 215
conbuf (class) 253
concatenated strings 196, 204
CondFunc typedef 297,302,317,320,327,331,

334,337,346,352,362,367, 383, 386, 391, 400
conditions, testing 15
conio.h (header file) 470
conj (complex friend function) 415
conjugate (complex numbers) 415
console

checking for 104
header file 470
reading and formatting

characters 23
input 37

constants
DOS (header file) 470
open function (header file) 470
symbolic (header file) 472
UNIX compatible (header file) 472
used by function setf 260

constrea.h (header file) 470
constream (class) 255
constructors

complex numbers 414
conbuf 253
filebuf 256
fpbase 278
fstream 258
fstreambase 258
ifpstream 279
ifstream 259
iostream 264
iostream_ withassign 265
ipstream 279, 281
istream 265
istream_ withassign 267
istrstream 268
ofpstream 282
of stream 268
opstream 283, 285
ostream 269
ostream_ withassign 270
ostrstream 270
pstream 286, 287

486

streambuf 262, 271
strstream 276
strstreambase 274
strstreambuf 275
TStreamableClass 289

contains, string member function 442
_control87 (function) 30
control-break

software signal 152
control characters, checking for 104
control word, floating point 30
conversions

binary coded decimal 411, 413
complex numbers 414
date and time 13

to calendar format 131
DOS to UNIX format 53
to Greenwich mean time 95
header file 472
to string 38
to structure 113
UNIX to DOS format 230

double
to integer and fraction 131
to mantissa and exponent 77
strings to 210

floating point
strings to 17
to string 54, 61, 84

format specifiers 142, 143, 146
functions (list) 473
header file 472
integer

strings to 18
to ASCII 224
to string 108

long double, strings to 210
long integer

strings to 18,211,213
to string 120, 228

lowercase to uppercase 213, 225, 226
specifications (printf) 142
strings

date and time to 38
integers to 108
to double 210
to floating point 17

Borland C++ for OS/2 Library Reference

to integer 18
to long double 210
to long integer 18,211,213
to unsigned long integer 213

unsigned long integer
strings to 213
to string 228

uppercase to lowercase 204, 224, 225
coordinates

cursor position 96, 239
screens, text mode 93

copy, string member function 442
cos (complex friend function) 415
cos (complex numbers) 415
cos (function) 31
cosh (complex friend function) 415
cosh (complex numbers) 415
cosh (function) 31
coshl (function) 31
cosine 31, 415

hyperbolic 31
complex numbers 415

inverse 12
cosl (function) 31 .
Count, TMCVectorImp member function 396
country (function) 32
country-dependent data 32, 111, 176
cow, string member function 448
cprintf (function) 33

format specifiers 141
cputs (function) 33
creat (function) 34
creatnew (function) 35
creattemp (function) 36
_crotl (function) 37
_crotr (function) 37
cscanf (function) 37

format specifiers 165
cstring.h (header file) 470
ctime (function) 38
_ctype (global variable) 243
ctype.h (header file) 470
currency symbols 32, 111, 176
Current

TBinarySearchTreeIteratorImp member function
324
TIBinarySearchTreeImp member function 326

Index

TMArrayAsVectorIterator member function 301
TMDequeAs VectorIterator member function
329
TMDictionary AsHash TableIterator member
function 341
TMDoubleListIteratorImp member function 349
TMHashTableIteratorImp member function 358
TMIArrayAsVectorIterator member function
306
TMIDictionary AsHash TableIterator member
function 343
TMIDoubleListIteratorImp member function
354
TMIHashTableIteratorImp member function
360
TMIListIteratorImp member function 368
TMIVectorIteratorImp member function 402
TMListIteratorImp member function 365
TMVectorIteratorImp member function 394

current drive number 89
cursor

appearance, selecting 175
position in text window 96

returning 239
cwait (function) 38

D
data

country-dependent, supporting 32, 111, 176
reading from streams 75, 77, 234, 236

stdin 165, 235
returning from current environment 90
security 91
writing to current environment 149

Data, TMDequeAsVector data member 329
data public members

TMDoubleListElement 345
TMListElement 362

data types
defining header file 471
time_t (header file) 472

date
file 48, 90
global variable 244
international formats 32
system 13, 38, 83, 95, 113

converting from DOS to UNIX 53

487

converting from UNIX to DOS 230
getting 45
setting 45, 195

date functions (list) 480
Day, TDate member function 432
_daylight (global variable) 244

setting value of 227
daylight saving time

adjustments 38, 244
setting 227

DayName, TDate member function 432
DayOfMonth, TDate member function 432
DayOfWeek, TDate member function 432
DayslnYear, TDate member function 433
DayTy, TDate type definition 431
DayWithinMonth, TDate member function 433
__ DEBUG debugging symbol 419
debugging

classes 419
debugging, macros (header file) 469
dec, ios data member 261
delete

TMDoubleListElement operator 346
TMListElement operator 362

DeleteElements
TMDDAssociation member function 311
TMIDAssociation member function 314
TMIIAssociation member function 316

DeleteNode
TBinarySearchTreeImp member function 323
TIBinarySearchTreeImp member function 325

DeleteType, TShouldDelete data member 408
deletion

characters, checking for 104
directories 158
file 156, 230
line 29, 40

delline, conbuf member function 253
delline (function) 40
DelObj

TShouldDelete member function 408
__ DELTA macro 291

TStreamableClass 289
Destroy

TMArray As Vector member function 298
TMIArray As Vector member function 303

488

destructor
opstream 283
pstream 286

Detach
TBinarySearchTreeImp member function 322
TIBinarySearchTreeImp member function 325
TMArray As Vector member function 298
TMBagAs Vector member function 318
TMCVectorImp member function 396
TMDictionary AsHash Table member function
340
TMDoubleListlmp member function 347
TMHashTableImp member function 357
TMIArray As Vector member function 303
TMIBagAs Vector member function 320
TMIDictionary AsHashTable member function
343
TMIDoubleListlmp member function 352
TMIHashTablelmp member function 359
TMIListlmp member function 367
TMListlmp member function 363

DetachAtHead
TMDoubleListlmp member function 347
TMListlmp member function 363

DetachAtHead, TMIDoubleListlmp member function
352

DetachAtTail, TMIDoubleListlmp member function
352

device
character 104
type checking 104

DIAG_DECLARE_GROUP 422
DIAG_DEFlNE_GROUP macro 422
DIAG_ENABLE macro 422
DIAG_GETLEVEL macro 422
DIAG_ISENABLED macro 422
DIAG_SETLEVEL macro 422
diagnostics

class 419
header file 469
preprocessor symbols 419

difftime (function) 40
dir.h (header file) 470
direct.h (header file) 470
directories

creating 130
current 57, 189

Borland C++ for OS/2 Library Reference

changing 24
returning 86, 87, 88

deleting 158
functions (list) 473
header file 470
searching 28, 43, 44, 67, 68, 135, 155, 158, 172,

173
directory stream

closing 28
opening 135
reading 155
rewinding 158

dirent.h (header file) 470
disk drives

current number 46, 89
setting 24

disks
space available 46, 88
writing to, verification 95, 181

div (function) 40
division, integers 40, 110
doallocate, strstreambuf member function 275
DOS

date and time 45
converting to UNIX format 53
converting UNIX to 230
setting 94

environment, adding data to 149
file attributes, search 67
functions (list) 476
header file 470
system calls

Ox4E 67
verify flag 94

_dos_close (function) 41
_dos_creat (function) 41
DosCreateThread (function) 7
_dos_creatnew (function) 42
_doserrno (global variable) 245
_dos_findfirst (function) 43
_dos_findnext (function) 44
_dos~etdate (function) 45
_dos~etdiskfree (function) 46
_dos_getdrive (function) 46
_dos_getfileattr (function) 47
_dos_getftime (function) 48
_dos_gettime (function) 49

Index

dos.h (header file) 470
_dos_open (function) 49
_dosJead (function) 50
_dos_setdate (function) 45
_dos_setdrive (function) 46
_dos_setfileattr (function) 47
_dos_setftime (function) 48
_dos_settime (function) 49
dostounix (function) 53
_dos_write (function) 52
dup (function) 53
dup2 (function) 54
dynamic_cast (exception) 425
dynamic memory allocation 22,76, 121, 155, 194

E
eatwhite, istream member function 267
eback, streambuf member function 273
ebuf, streambuf member function 273
echoing to screen 85, 86
ecvt (function) 54
editing, block operations

copying 126, 128
searching for character 126

egptr, streambuf member function 273
encryption 91
end of file

checking 55, 63, 154
resetting 27

end of line, clearing to 29
_endthread (function) 55
enum open_mode, ios data member 261
env (argument to main) 3
environ (global variable) 4
_environ (global variable) 244
environment

operating system
header file 470

variables 244
COMSPEC 215
PATH 57,189

eof
ios member function 262
pstream member function 286

eof (function) 55
epptr, streambuf member function 273

489

EqualTo
TBinarySearchTreelmp member function 323
TIBinarySearchTreelmp member function 325

equations, polynomial 139
errno (global variable) 245
errno.h (header file) 470
error codes 245
error handlers, math, user-modifiable 122
errors

detection, on stream 63
DOS

mnemonics 245
indicators, resetting 27
locked file 114
messages

perror function 137
pointer to, returning 200
printing 136, 245

messages under Presentation Manager 7
mnemonics for codes 470
pop-up screens 7
read/write 63
streams and 286

ErrorType, TThreadError data member 461
European date formats 32
except.h (header file) 470
exception handlers, numeric coprocessors 27, 195
exception handling

exception names 250
files 250
global variables 250
messages 430
predefined exceptions 425, 429, 430
set_terminate (function) 426
set_unexpected (function) 427
terminate (function) 427
unexpected (function) 429

exceptions
Bad_cast (class) 425
Bad_typeid (class) 425
floating-point 30
memory allocation 426, 429
xalloc 426, 429
xmsg (class) 430

excpt.h (header file) 470
exec ...

(functions) file handles 468

490

execl (function) 56
execle (function) 56
execlp (function) 56
execlpe (function) 56
execution, suspending 186
execv (function) 56
execve (function) 56
execvp (function) 56
execvpe (function) 56
exit (function) 16, 23, 58
_exit (function) 58
exit codes 11
exit status 58, 59
exp (complex friend function) 415
exp (function) 59
_expand (function) 60
expl (function) 59
exponential (complex numbers) 415
exponents

calculating 59, 140, 141
double 77, 109

external, undefined 478

F
fabs (function) 60
fabsl (function) 60
fail

ios member function 262
pstream member ftinction 286

fclose (function) 61
fcloseall (function) 61
fcntl.h (header file) 470
fcvt (function) 61
fd, filebuf member function 256
fdopen (function) 62
feof (function) 63
ferror (function) 63
fflush (function) 64
fgetc (function) 64
fgetchar (function) 65
fgetpos (function) 65
fgets (function) 65
fields, input 168, 171
file modes

changing 25, 47, 159
default 36, 42, 43, 161
global variables 248

Borland C++ for OS/2 Library Reference

setting 179, 248
text 62, 73, 76, 80
translation 34, 36, 248

file permissions 228
filebuf (class) 255
filelength (function) 66
fileno (function) 66
FileNull, TFile data member 436
files

access
determining 11
flags 134, 187
permission 25

ARGS.EXE 4
attaching 278, 279, 282, 283
attribute bits 134, 187
attribute word 160
attributes 34

access mode 47, 159
file sharing 50, 163
searching directories and 43, 67
setting 36, 41, 42, 161

buffers 180
allocating 278
current 278
input and output 255, 257
line 181

closing 28,41,61, 76, 160,278
date 48, 90
deleting 156, 230
end of

checking 55, 63, 154
resetting 27

file descriptor fd (function) 256
file pointer reposition 257
handles 28, 41, 135, 160

duplicating 53, 54
linking 468
linking to streams 62
returning 66

header 9
information on, returning 81
locking 114, 231
modes, setting 278, 279, 282, 283
names

unique 130,217,223
new 34, 35, 36, 41, 42, 161

Index

open, statistics on 81
opening 49, 134, 162, 278, 279, 283

for update 63, 73, 77, 80
in binary mode 223

for writing 282
modes 261, 279, 283

default 256
openprot 256
shared 79, 186, 187
streams and 72, 76, 79

overwriting 34
position seeking 260
reading 34, 50, 154, 163

and formatting input from 77, 165, 234, 235,
236
characters from 64, 85
data from 75
header file 470
integers from 95
strings from 65

renaming 157
replacing 76
rewriting 34, 41, 42, 161
scratch 217, 223

opening 223
security 91
seek an offset 257
sharing

attributes 50, 163
header file 471
locks 114,231
opening shared files 79, 186, 187
permission 80, 187

size 26
returning 66

statistics 81
streams, C++ operations 258
temporary 217, 223

opening 223
removing 159

time 48,90
unlocking 231
WILDARGS.OBJ 5, 6
writing 52, 84, 164, 240

attributes 34
characters to 74
formatted output to 74, 141,233,234

491

header file 470
strings to 75

fill, iDS member function 262
Find

TBinarySearchTreeImp member function 323
TIBinarySearchTreeImp member function 325
TMArrayAsVector member function 298
TMBagAs Vector member function 318
TMCVectorImp member function 396
TMDictionaryAsHashTable member function
340
TMHashTableImp member function 357
TMIArray As Vector member function 304
TMIBagAs Vector member function 320
TMICVectorImp member function 404
TMIDictionaryAsHashTable member function
343
TMIHashTableImp member function 359

find
ipstream member function 279
string member function 442

findjirst_not_of, string member function 443
find_first_of, string member function 443
findJasCnot_of, string member function 444
findJasCof, string member function 444
FindBase, TStreamableBase member function 288
FindDetach

TMDoubleListImp member function 348
TMISDoubleListImp member function 355
TMISListImp member function 370
TMListImp member function 364
TMSDoubleListImp member function 350

findfirst (function) 67
findnext (function) 68
findObject, opstream member function 283
FindPred

TMDoubleListImp member function 348
TMIDoubleListImp member function 353
TMISListImp member function 370
TMListImp member function 364
TMSDoubleListImp member function 350

findVB, opstream member function 283
FirstDayOfMonth, TDate member function 433
FirstThat

TMArray As Vector member function 299
TMDequeAsDoubleList member function 334
TMDequeAs Vector member function 327

492

TMDoubleListImp member function 347
TMIArray As Vector member function 304
TMIBagAs Vector member function 320
TMIDequeAsDoubleList member function 337
TMIDequeAs Vector member function 331
TMIDoubleListImp member function 352
TMIListImp member function 367
TMIQueueAsDoubleList member function 378
TMIQueueAsVector member function 373
TMIStackAs Vector member function 386
TMIVectorImp member function 400
TMListImp member function 363
TMQueueAsDoubleList member function 376
TMQueueAsVector member function 371
TMStackAs Vector member function 384
TMVectorImp member function 391

fixed, ios data member 261
flags

DOS verify 94
format specifiers 142, 144, 145
format state 287
ios member function 262
operating system verify 181
read/write 134, 187

float.h (header file) 470
_floatconvert (global variable) 247
floatfield, ios data member 260
floating point

absolute value of 60
binary coded decimal 411, 413
characters and 17
control word 30
displaying 143, 170
double, exponents 109
exceptions 30
format specifiers 143, 167, 170
formats 247
functions (list) 477
header file 470
1/0247
infinity 30
math package 73
modes 30
precision 30
reading 167
software signal 152
status word 26, 194

Borland C++ for OS/2 Library Reference

floor (function) 69
floor! (function) 69
Flush

TBinarySearchTreelmp member function 323
TFile member function 438
TIBinarySearchTreelmp member function 325
TMArray As Vector member function 299
TMBagAs Vector member function 318
TMDequeAsDoubleList member function 334
TMDequeAsVector member function 327
TMDictionaryAsHashTable member function
340
TMDoubleListImp member function 347
TMHashTablelmp member function 357
TMIArray As Vector member function 304
TMIBagAs Vector member function 320
TMIDequeAsDoubleList member function 337
TMIDequeAs Vector member function 331
TMIDictionary AsHashTable member function
343
TMIDoubleListImp member function 353
TMIHashTablelmp member function 359
TMIQueueAsDoubleList member function 378
TMIQueueAsVector member function 374
TMIStackAs Vector member function 386
TMIVectorImp member function 401
TMListImp member function 363
TMQueueAsDoubleList member function 376
TMQueueAsVector member function 371
TMStackAs Vector member function 384
TMVectorImp member function 392

flush
opstream member function 283
ostream member function 269

flushall (function) 69
flushing streams 64, 69
_fmemmove (function) 128
fmod (function) 70
_fmode (global variable) 248
fmodl (function) 70
fnmerge (function) 70
fnsplit (function) 71
fopen (function) 72
ForEach

TBinarySearchTreelmp member function 323
TIBinarySearchTreelmp member function 325
TMArrayAsVector member function 299

Index

TMBagAs Vector member function 318
TMDequeAsDoubleList member function 334
TMDequeAsVector member function 327
TMDictionary AsHashTable member function
340
TMDoubleListImp member function 347
TMIArrayAsVector member function 304
TMIBagAs Vector member function 321
TMIDequeAsDoubleList member function 337
TMIDequeAs Vector member function 331
TMIDictionaryAsHashTable member function
343
TMIDoubleListImp member function 353
TMIHashTablelmp member function 357, 359
TMlListImp member function 367
TMIQueequeAsVector member function 374
TMIQueueAsDoubleList member function 378
TMIStackAs Vector member function 387
TMIVectorlmp member function 401
TMListImp member function 363
TMQueueAsDoubleList member function 376
TMQueueAsVector member function 372
TMStackAs Vector member function 384
TMVectorImp member function 392

format flags 260, 261
state 287

format specifiers
assignment suppression 166, 170, 171
characters 143, 167

type 166, 167
conventions

display 144
reading 168

conversion type 142, 143, 146
cprintf 141
cscanf 165
F and N 142
flags 142, 144

alternate forms 145
floating-point 143, 167, 170
fprintf 141
fscanf 165
inappropriate character in 171
input fields and 168, 171
integers 143, 167
modifiers

argument-type 166~ 171

493

input-size 142, 143, 147
size 166, 171

pointers 144, 168
precision 142, 143, 146
printf 141
range facility shortcut 169
scanf 165
sprintf 141, 192
sseanf 165
strings 143, 167
vfprintf 141
vfscanf 165
vprintf 141
vseanf 165
vsprintf 141
vsscanf 165
width

printf 142, 145
scanf 166, 170, 171

format strings
input 165
output 142

formatting
console input 37
cprintf 33
cseanf 37
fprintf 74
fseanf 77
output 33
printf 141
scanf 165
sprintf 192
sseanf 193
strings 192, 236
time 201
vfprintf 233
vfscanf 234
vprintf 234
vscanf 235
vsprintf 236
vsscanf 236

fpbase class 278
_fpreset (function) 73
fprintf (function) 74

format specifiers 141
fpute (function) 74
fputehar (function) 74

494

fputs (function) 75
frame base pointers as task state 117, 176
£read (function) 75
freadBytes, ipstream member function 279
freadString, ipstream member function 280
free (function) 76
freeze, strstreambuf member function 275
freopen (function) 76
frexp (function) 77
frexpl (function) 77
fscanf (function) 77

format specifiers 165
fseek (function) 78
fsetpos (function) 79
_fsopen (function) 79
fstat (function) 81
fstream (class) 257
fstream.h (header file) 470
fstreambase (class) 258
ftell (function) 82
ftime (function) 83
ftruncate (function) 226
_fullpath (function) 83
functions

bcd (header file) 469
Borland C++, licensing 469
child processes 479

header file 471
classification 473
comparing two values 124
comparison, user-defined 151
complex numbers 477

header file 469
console (header file) 470
conversion 473
date and time 480

header file 472
diagnostic 474
directories 473

header file 470
file sharing (header file) 471
floating point (header file) 470
fstream (header file) 470
generic (header file) 470
go to 478

header file 471
integer 477

Borland C++ for OS/2 Library Reference

international
header file 471
information 478

I/O 474
header file 470

iomanip (header file) 470
iostream (header file) 470
listed by topic 472-480
locale 478
mathematical 477

header file 471
memory 476

allocating and checking 478
header file 471

obsolete names 479
operating system 476
process control 479
signals (header file) 471
stdiostr (header file) 471
strings 476
strstrea (header file) 472
variable argument lists 480
windows 480
with multiple prototypes 472

fwrite (function) 84
fwriteBytes, opstream member function 283
fwriteString, opstream member function 283

G
gbump, streambuf member function 273
gcount, istream member function 265
gcvt (function) 84
generic.h (header file) 470
Get

TMIQueueAsDoubleList member function 378
TMIQueueAsVector member function 374
TMQueueAsDoubleList member function 376
TMQueueAsVector member function 372

get, istream member function 265, 266
get_at

string member function 444
TSubString member function 452

get_case_sensitive_flag, string member function
444

get_initial_capacity, string member function 444
get_max_ waste, string member function 444
get_paranoid_check, string member function 444

Index

get_resize_increment, string member function 444
get_skipwhitespace_flag, string member function

445
getc (function) 85
getch (function) 85
getchar (function) 86
getche (function) 86
getcurdir (function) 86
getcwd (function) 87
getdate (function) 45
~etdcwd (function) 88
GetDelta

TMCVectorImp member function 396
TMIVectorImp member function 401
TMVectorImp member function 392

getdfree (function) 88
getdisk (function) 89
_getdrive (function) 89
getenv (function) 90
GetErrorType, TThreadError member function 462
getftime (function) 90
GetHandle, TFile member function 438
GetItemslnContainer

TBinarySearchTreelmp member function 323,
325
TMArray As Vector member function 299
TMBagAs Vector member function 318
TMDequeAsDoubleList member function 335
TMDequeAs Vector member function 328
TMDictionaryAsHashTable member function
340
TMDoubleListImp member function 353
TMHashTablelmp member function 357
TMIArray As Vector member function 304
TMIBagAs Vector member function 321
TMIDequeAsDoubleList member function 337
TMIDequeAs Vector member function 332
TMIDictionary AsHashTable member function
343
TMIHashTablelmp member function 360
TMIQueueAsDoubleList member function 378
TMIQueueAsVector member function 374
TMQueueAsDoubleList member function 376
TMQueueAsVector member function 372
TMStackAsVector member function 384, 387

GetLeft
TMDequeAsDoubleList member function 335

495

TMDequeAs Vector member function 328
TMIDequeAsDoubleList member function 337
TMIDequeAs Vector member function 332

getline
global string function 452
istream member function 266

GetObject, TStreamer member function 290
getpass (function) 91
getpid (function) 92
GetPriority, TThread member function 460
GetRight

TMDequeAsDoubleList member function 335
TMDequeAsVector member function 328
TMIDequeAsDoubleList member function 337
TMIDequeAs Vector member function 332

gets (function) 92
GetStatus

TFile member function 438
TThread member function 460

gettext (function) 92
gettextinfo (function) 93
gettime (function) 94
getverify (function) 94
getVersion, ipstream member function 280
getw (function) 95
global variables 243

_fileinfo 247
_argc 243
_argv 243
arrays, character 243
command-line arguments 243
_ctype 243
_daylight 244

setting value of 227
_doserrno 245
environ 4
_environ 244
errno 245
file mode 248
_floatconvert 247
_fmode 248
main function and 243
_new_handler 248
obsolete names 478
operating system environment 244
_osmajor 249
_osminor 249

496

_osversion 249
printing error messages 245
_sys_errlist 245
_sys_nerr 245
time zones 244, 250

setting value of 227
_timezone 250

setting value of 227
_tzname 250

setting value of 227
undefined 478
_version 251

gmtime (function) 95
good

ios member function 263
pstream member function 286

go to, nonlocal 116, 175
goto statements

functions (list) 478
header file 471

gotoxy, conbuf member function 254
gotoxy (function) 96
gptr, streambuf member function 273
graphics drivers, modes, text 92, 93
Greenwich mean time (GMT) 38, 40, 83

converting to 95
global variable 250
time zones and 227, 250

Grow

H

TMArray As Vector member function 299
TMIArray As Vector member function 305

handlers
exception 27, 195

hardware
checking for presence of 104

device type 104
Hash

TDate member function 433
TTime member function 463

hash, string member function 445
HashTable, TMDictionaryAsHashTable data member

339
HashValue

TMDDAssociation member function 311
TMDIAssociation member function 313

Borland C++ for OS/2 Library Reference

TMIDAssociation member function 314
TMIIAssociation member function 316

HasMember
TMArray As Vector member function 299
TMBagAs Vector member function 318
TMIArrayAsVector member function 304
TMIBagAs Vector member function 321

Head
TMDoubleList data member 348
TMListImp data member 364

header files 9, 469-472
described 469
floating point 470
reading and writing 470
sharing 471

heap
allocating memory from 22, 76, 121, 155
checking 97, 98
free blocks

checking 97
filling 99, 100

memory freeing in 76
nodes 98
reallocating memory in 155
walking through 100, 161

_heapadd(function) 97
heap check (function) 97
heapcheckfree (function) 97
heapchecknode (function) 98
_heapchk (function) 98
_HEAPEMPTY 101
_HEAPEND 100, 101
_HEAPOK 100
heapfillfree (function) 99
_heapmin (function) 99
_HEAPOK 101
_heap set (function) 100
heapwalk (function) 100
hex, ios data member 261
hexadecimal digits, checking for 107
hierarchy, streams 277
high intensity 101
highvideo, conbuf member function 254
highvideo (function) 101
Hour, TTime member function 463
HourGMT, TTime member function 463
HowToPrint, TDate type definition 431

Index

hyperbolic cosine 31
hyperbolic sine 185
hyperbolic tangent 216,417
hypot (function) 101
hypotenuse 101
hypotl (function) 101

ID, process 92
ifpstream class 278
ifstream (class) 259
ignore, istream member function 266
illegal instruction, software signal 152
imag (complex friend function) 416
in, ios data member 261
in_avail, streambuf member function 272
IndexOfMonth, TDate member function 433
indicator

end-of-file 27, 55, 63, 154
error 27

infinity, floating point 30
init

ios member function 264
pstream member function 288

initial_capacity, string member function 445
initialization

file pointers 157
memory 129
random number generator 153, 193
strings 207, 208

inline optimization 474
input

console, reading and formatting 37
fields 168

format specifiers and 171
from streams 77, 234, 236

formatting 77, 165, 234, 235, 236
pushing characters onto 229
stdin 165, 235
terminating 172

insert, string member function 445
InsertEntry

TMArray As Vector member function 299
TMIArrayAsVector member function 305

insline (conbuf member function) 254
ins line (function) 102

497

int
TBinarySearchTreeIteratorImp operator 324
TIBinarySearchTreeIteratorImp operator 326
TMArrayAsVectIterator operator 301
TMDequeAsVectorIterator operator 330
TMDictionaryAsHashTableIterator operator 341
TMDoubleListIteratorImp operator 349
TMHashTableIteratorImp operator 358
TMIDictionary AsHash TableIterator operator
344
TMIHashTableIteratorImp operator 360
TMIVectorIteratorImp operator 403
TMListIteratorImp operator 365

. TMVectorIteratorImp operator 394
integers

absolute value 11
displaying 143
division 40

long integers 110
format specifiers 143, 167
functions (list) 477
long

absolute value of 109
division 110
rotating 118

ranges, header file 470
reading 95, 167
rotating 118, 159
writing to stream 151

integrated environment, wildcard expansion and 6
intensity

high 101
low 117
normal 133

internal, ios data member 261
international

character sets 177
code pages 177
code sets 177
country-dependent data 32

setting 111, 176
currency symbol position 112
date formats 32
decimal point 144, 168
default category 179
locales supported 176
specify a category 179

498

international information
functions (list) 478
header file 471

interrupts
software

signal 152
invalid access to storage 152
inverse cosine (complex numbers) 414
inverse sine (complex numbers) 415
inverse tangent 16

complex numbers 415
io.h (header file) 470
I/O

buffers 174
characters, writing 148
floating-point

formats, linking 247
numbers 247

functions (list) 474
integers, writing 151
keyboard 85, 86

checking for keystrokes 108
low level header file 470
screen 33

writing to 33, 148
streams 63, 73, 77, 80, 229

iomanip.h (header file) 470
ios (class) 260
ios data members 260
iostream (class) 264
iostream.h (header file) 470
iostream_withassign (class) 264
ipfx, istream member function 266
ipstream class 279

friends 282
is_null

String member function 445
TSubString member function 453

is_open, filebuf member function 256
isalnum (function) 102
isalpha (function) 103
isascii (function) 103
isatty (function) 104
iscntrl (function) 104
is digit (function) 105
IsDST, TTime member function 463

Borland C++ for OS/2 Library Reference

IsEmpty
TBinarySearchTreeImp member function 323,
325
TMArray As Vector member function 299
TMBagAs Vector member function 318
TMDequeAsDoubleList member function 335
TMDequeAs Vector member function 328
TMDictionaryAsHashTable member function
340
TMDoubleListImp member function 347
TMHashTableImp member function 357
TMIArrayAsVector member function 304
TMIBagAsVector member function 321
TMIDequeAsDoubleList member function 338
TMIDequeAs Vector member function 332
TMIDictionary AsHashTable member function
343
TMIDoubleListImp member function 353
TMIHashTableImp member function 360
TMIQueueAsDoubleList member function 378
TMIQueueAsVector member function 374
TMIStackAs Vector member function 387
TMListImp member function 363
TMQueueAsVector member function 372
TMQuueAsDoubleList member function 376
TMStackAs Vector member function 384

Is Full
TMArray As Vector member function 299
TMBagAs Vector member function 318
TMDequeAsDoubleList member function 335
TMDequeAs Vector member function 328
TMIArrayAsVector member function 304
TMIBagAs Vector member function 321
TMIDequeAsDoubleList member function 338
TMIDequeAs Vector member function 332
TMIQueueAsDoubleList member function 378
TMIQueueAsVector member function 374
TMIStackAs Vector member function 387
TMQueueAsDoubleList member function 376
TMQueueAsVector member function 372
TMStackAs Vector member function 384

isgraph (function) 105
islower (function) 105
IsOpen, TFile member function 438
isprint (function) 106
ispunct (function) 106
isspace (function) 107

Index

istream (class) 265
istream_withassign (class) 267
istrstream (class) 267
isupper (function) 107
IsValid

TDate member function 433
TTime member function 464

isxdigit (function) 107
ItemAt

TMArrayAsVector member function 300
TMIArray As Vector member function 305

IterFunc typedef 297,302,317,320,327,331,334,
337,346,352,362,367,383,386,391,400

itoa (function) 108

J
Japanese date formats 32
Jday, TDate member function 433
JulTy, TDate type definition 431

K
kbhit (function) 108
Key

TMDDAssociation member function 311
TMDIAssociation member function 313
TMIDAssociation member function 315
TMIIAssociation member function 316

keyboard
buffer, pushing characters back into 229
I/O 85, 86

checking for 108
reading characters from 85, 86

KeyData, TMIDAssociation data member 314
keystrokes, checking for 108

L
labs (function) 109
LastThat

TMArray As Vector member function 299
TMDequeAsDoubleList member function 335
TMDequeAs Vector member function 328
TMDoubleListImp member function 347
TMIArray As Vector member function 304
TMIBagAs Vector member function 321
TMIDequeAsDoubleList member function 338
TMIDequeAs Vector member function 332

499

TMIDoubleListImp member function 353
TMlListImp member function 368
TMIQueueAsDoubleList member function 378
TMIQueueAsVector member function 374
TMIStackAs Vector member function 387
TMIVectorlmp member function 401
TMListImp member function 384
TMQueueAsDoubleList member function 376
TMQueueAsVector member function 372
TMStackAs Vector member function 384
TMVectorImp member function 392

lconv structure 111
Idexp (function) 109
ldexpl (function) 109
ldiv (function) 110
Leap, TDate member function 433
left, ios data member 261
Left, TMDequeAsVector data member 329
length

of files 26, 66
of strings 203

Length, TFile member function 438
length member functions

string 445
TSubString 453

LessThan
TBinarySearchTreelmp member function 323
TIBinarySearchTreelmp member function 325

Hind (function) 110
libraries

entry headings 9
multi-thread support 7

LIBC 7
LIBCMT 7
Lim, TMVectorImp data member 393
Limit

TMIVectorImp member function 401
TMVectorImp member function 392

limits.h (header file) 470
line-buffered files 181
linear searches 110, 118
lines

blank, inserting 102
clearing to end of 29
deleting 29, 40

local standard time 38, 40, 83, 95, 113

500

locale
current 111
dynamically loadable 178
enabling 178
environment variable LANG 178
functions (list) 478
monetary information 111
numeric formats 111
printf 144
scanf 168
selecting 176
__ USELOCALES __ 178

locale.h (header file) 471
localeconv (function) 111
localtime (function) 113
Lock 455, 458

constructor 455, 458
destructor 455, 458

lock (function) 114
locking (function) 114
locking.h (header file) 471
LockRange, TFile member function 438
locks, file-sharing 114, 231
log10 (complex friend function) 416
log (complex friend function) 416
log (function) 115
log10 (function) 116
10g101 (function) 116
logarithm

base 10 116,416
complex numbers 416
natural 115,416

logl (function) 115
longjmp (function) 116

header file 471
low intensity 117
LowerBound

TMArray As Vector member function 300
TMIArray As Vector member function 305

lowercase
characters 224, 225

checking for 105
conversions 213, 225, 226
strings 204

lowvideo, conbuf member function 254
lowvideo (function) 117
_IrotI (function) 118

Borland C++ for OS/2 Library Reference

_lrotr (function) 118
lsearch (function) 118
lseek (function) 119
ltoa (function) 120

M
macros

argument lists, header file 471
assert 15, 469
case conversion 225
character classification 104, 106, 107

case 102, 103, 105, 107
integers 102, 103, 105, 107
printable characters 105, 106

character conversion, header file 470
characters 148

ASCII conversion 224
comparing two values 124, 129
debugging, assert (header file) 469
defining (header file) 471
directory manipulation (header file) 470
file deletion 156
streaming 291
toascii 224
variable argument list 232

main (function) 3-6
arguments passed to 3, 243

example 4
wildcards 5

compiled with Pascal calling conventions 6
declared as C type 6
global variables and 243
value returned by 6

_makepath (function) 120
malloc (function) 121
malloc.h (header file) 471
mantissa 77, 131
math, functions, list 477
math error handler, user-modifiable 122
math.h (header file) 471
math package, floating-point 73
_matherr (function) 122
_matherrl (function) 122
Max

TDate member function 433
TTime member function 464

max (function) 124

Index

max_waste, string member function 445
MaxDate, TTime member function 464
mblen (function) 124
mbstowcs (function) 125
mbtowc (function) 125
mem.h (header file) 471
memccpy (function) 126
memchr (function) 126
memcmp (function) 127
memcpy (function) 128
memicmp (function) 128
memmove (function) 128
memory

allocation
dynamic 22, 76, 121, 155, 194
errors 425
functions (list) 478
_new_handler and 248
seCnew _handler and 248

checking 478
copying 126, 128
freeing

in heap 76
functions (list) 476
header file 469, 471
initialization 129
screen segment, copying to 92
size 194

memory blocks
adjusting size in heap 155
free 97

filling 99, 100
initializing 129
searching 126

memory.h (header file) 471
memory management functions 471
memset (function) 129
Min

TDate member function 433
TTime member function 464

min (function) 129
Minute, TTime member function 464
MinuteGMT, TTime member function 464
mixing with BCD numbers 414
mixing with complex numbers 414
mkdir (function) 130
mktemp (function) 130

501

mktime (function) 131
mnemonics, error codes 245,470
modes, floating point, rounding 30
modf (function) 131
modfl (function) 131
modulo 70
Month, TDate member function 433
MonthName, TDate member function 434
MonthTy, TDate type definition 431
MostDerived, TStreamableBase member function

289
movetext (function) 132
_msize (function) 132
multi-thread libraries 7
multibyte characters 124

converting to wchar_t code 125
multibyte string, converting to a wchar_t array 125

N
name, Type_info member function 429
NameOfDay, TDate member function 434
NameOfMonth, TDate member function 434
natural logarithm 115
new

TMDoubleListElement operator 346
TMListElement operator 362

new files 34, 35, 36, 41, 42, 161
new.h (header file) 471
new_handler (function type) 426
_new_handler (global variable) 248
newline character 150
Next

TMDequeAs Vector member function 329
TMDoubleListElement data member 345
TMListElement data member 362

nocreate, ios data member 261
nodes, checking on heap 98
nonlocal goto 116, 175
noreplace, ios data member 261
norm (complex friend function) 416
normal intensity 133
normvideo, conbuf member function 254
normvideo (function) 133
not operator (!), overloading 287
number of drives available 89
numbers

ASCII, checking for 105

502

BCD (binary coded decimal) 411, 413
complex 416
functions (list) 477
pseudorandom 153
random 153

generating 193
rounding 22, 69
turning strings into 17

numeric coprocessors
control word 30
exception handler 27, 195
status word 27, 195

o
OBSOLETE.LIB 478
oct, ios data member 261
offsetof (function) 133
ofpstream class 282
of stream (class) 268
open (function) 134

header file 470
Open, TFile member function 438
open member functions

filebuf 257
fpbase 278
fstream 258
fstreambase 259
ifpstream 279
ifstream 260
ofpstream 283
of stream 269

open_mode, ios data member 261
opendir (function) 135
openprot, filebuf data member 256
operating system

command processor 215
commands 215
date and time, setting 195
environment

returning data from 90
variables 57, 189

accessing 244
file attributes, shared 50, 163
path, searching for file in 172, 173
search algorithm 56
system calls 51, 163
verify flag 181

Borland C++ for OS/2 Library Reference

version number 249, 251
operator «

opstream friends 285
writing prefix/suffix (streamable) 285

operator! 0, pstream 287
operator », ipstream friends 282
operator void *0, pstream member function 287
opfx, ostream member function 269
opstream class 283

friends 285
OS/2; version 251
osfx, ostream member function 269
_osmajor (global variable) 249
_osminor (global variable) 249
ostream (class) 269
ostream_withassign (class) 270
ostrstream (class) 270
_osversion (global variable) 249
out, ios data member 261
out_waiting, streambuf member function 272
output

characters, writing 148
displaying 74, 141,234
flushing 64
formatting 33, 261
to streams, formatting 74, 141,234

overflow member functions
conbuf 254
filebuf 257
strstreambuf 275

overloaded operators 287
overwriting files 34
OwnsElements, TShouldDelete member function

408

p
P _id_type 279, 283
-p option (Pascal calling conventions), main function

and 6
parameter values for locking function 471
parent process 56, 188
Pascal calling conventions, compiling main with 6
passwords 91
PATH environment variable 57, 189
paths

directory 172, 173
finding 87

Index

names
converting 83
crea ting 70, 120
splitting 71, 191

operating system 172, 173
pause (suspended execution) 186
pbase, streambuf member function 273
pbump, streambuf member function 273
_pclose (function) 136
pcount, ostrstream member function 271
peek, istream member function 266
PeekHead

TMDoubleListImp member function 348
TMIDoubleListImp member function 353
TMInternalIListImp member function 368
TMListImp member function 364

PeekLeft
TMDequeAsDoubleList member function 335
TMDequeAs Vector member function 328
TMIDequeAsDoubleList member function 338
TMIDequeAs Vector member function 332

PeekRight
TMDequeAsDoubleList member function 335
TMDequeAs Vector member function 328
TMIDequeAsDoubleList member function 338
TMIDequeAs Vector member function 332

PeekTail
TMDoubleListImp member function 348
TMIDoubleListImp member function 353

perror (function) 136, 245
messages generated by 137

persistent streams, macros 291
PID (process ID) 92
_pipe (function) 138
pointers

to error messages 200
file

initialization 157
moving 119
obtaining 65
resetting 51, 78, 154, 164
returning 82

current position of 21 7
setting 79, 134, 135, 187

format specifiers 144, 168
frame base 117, 176
stack 117, 176

503

stream buffers 287
pstream 287

to void, overloading 287
PointerTypes, pstream data member 286
polar (complex friend function) 416
poly (function) 139
polyl (function) 139
polynomial equation 139
Pop

TMIStackAsVector member function 387
TMStackAs Vector member function 384

_popen (function) 139
ports

communications 104
position

current 281
stream 280

streamable objects 280, 281, 284
Position, TFile member function 438
POSIX directory operations 470
powl0 (function) 141
pow (complex friend function) 416
pow (complex numbers) 416
pow (function) 140
powlOl (function) 141
powers

calculating ten to 141
calculating values to 140

powl (function) 140
pptr, streambuf member function 273
precision

floating point 30
format specifiers 142, 143, 146

precision, ios member function 263
PRECONDITION macro 420
PRECONDITIONX macro 421
prefixes, streamable object's name and 281, 285
prep end, string member function 445
Prev

TMDequeAs Vector member function 329
TMDoubleListElement data member 345

Previous, TDate member function 434
printable characters, checking for 105, 106
PrintDate, TTime member function 464
printers, checking for 104
printf (function) 141

conversion specifications 142

504

format specifiers 141
input-size modifiers 141
locale support 144

printing, error messages 136, 245
process control, functions (list) 479
process.h (header file) 471
process ID 92
processes

child 56, 188
exec ... (functions), suffixes 57
parent 56, 188
stopping 10

programs
loading and running 56
process ID 92
signal types 152
stopping 10, 16

exit status 23, 58
request for 152
suspended execution 186

termination 426, 427
pseudorandom numbers 153
pstream class 286
punctuation characters, checking for 106
Push

TMIStackAs Vector member function 387
TMStackAs Vector member function 384

Put
TMIQueueAsDoubleList member function 378
TMIQueueAsVector member function 374
TMQueueAsDoubleList member function 376
TMQueueAs Vector member function 372

put, ostream member function 269
put_at

string member.function 446
TSubString member function 453

putback, istream member function 266
putc (function) 148
putch (function) 148
putchar (function) 148
putenv (function) 149
PutLeft

TMDequeAsDoubleList member function 335
TMDequeAsVector member function 328
TMIDequeAsDoubleList member function 338
TMIDequeAs Vector member function 332

Borland C++ for OS/2 Library Reference

PutRight
TMDequeAsDoubleList member function 335
TMDequeAs Vector member function 328
TMIDequeAsDoubleList member function 338
TMIDequeAs Vector member function 333

puts (function) 149
puttext (function) 150
putw (function) 151

Q
qsort (function) 151
quicksort algorithm 151
quotient 40, 110

R
raise (function) 152

header file 471
raise member function, xmsg 430
raise member functions

xalloc 429
rand (function) 153
random (function) 153
random number generator 153

initialization 153, 193
random numbers 153
randomize (function) 153
range facility shortcut 169
rdbuf member functions

constream 255
fpbase 278
fstream258
fstreambase 259
ifpstream 279
ifstream 260
ios 263
ofpstream 283
of stream 269
pstream 287
strstreambase 274

rdstate
ios member function 263
pstream member function 287

Read
TFile member function 438
TStreamer member function 290

read (function) 154

Index

read, istream member function 266
_dos_read (function) 50
read error 63
readjile, string member function 446
read_line, string member function 446
read_string, string member function 446
read_to_delim, string member function 446
read_token, string member function 446
read/write flags 134, 187
readByte, ipstream member function 280
readBytes, ipstream member function 280
readData, ipstream member function 281
readdir (function) 155
readPrefix, ipstream member function 281
readString, ipstream member function 280
readSuffix, ipstream member function 281
readVersion, ipstream member function 281
readWord16, ipstream member function 280
readWord32, ipstream member function 280
readWord, ipstream member function 280
real friend functions

bcd 413
complex 416

realloc (function) 155
Reallocate

TMArray As Vector member function 300
TMIArray As Vector member function 305

records, sequential 110
RefDate, TTime data member 464
RegClassName 289
register variables, as task states 117
registerObject

ipstream member function 280
opstream member function 284

registerVB, opstream member function 284
registration types 289
remainder 40, 70, 110
remove (function) 156
remove, string member function 446
Remove, TFile member function 438
RemoveEntry

TMArrayAsVector member function 300
TMIArrayAsVector member function 305

rename (function) 157
Rename, TFile member function 439
replace, string member function 447
request for program termination 152

505

requested member function, xalloc 429
reserve, string member function 447
Resize

TMIV ectorImp member function 401
TMVectorImp member function 392

resize, string member function 447
resize_increment, string member function 447
Restart

TBinarySearchTreeIteratorImp member function
324
TIBinarySearch TreeIteratorImp member
function 326
TMArrayVectorIterator member function 301
TMDequeAsVectorIterator member function
330
TMDictionary AsHashTableIterator member
function 341
TMDoubleListIteratorImp member function 349
TMHashTableIteratorImp member function 358
TMIArrayAsVectorIterator member function
306
TMIDictionary AsHash TableIterator member
function 344
TMIDoubleListIteratorImp member function
354
TMIHashTableIteratorImp member function
360
TMIListIteratorImp member function 368
TMIVectorIteratorImp member function 402
TMListIteratorImp member function 365
TMVectorIteratorImp member function 394

restoring screen 150
Resume, TThread member function 460
rewind (function) 157
rewinddir (function) 158
rfind, string member function 446
right, ios data member 261
Right, TMDequeAs Vector data member 329
rmdir (function) 158
rmtrnp (function) 159
rotation, bit

long integer 118
unsigned char 37
unsigned integer 159

_rotl (function) 159
_rotr (function) 159
rounding 22, 69

506

banker's 412
modes, floating point 30

_rtl_chmod (function) 159
_rtl_close (function) 160
_rtl_creat (function) 161
_rtCheapwalk (function) 161
_rtCopen (function) 162
_rtC write (function) 164
__ rtti type (Type_info class) 428
run-time library

S

functions by category 472
source code, licensing 469

S_IREAD 229
S_IWRITE 229
sbumpc, streambuf member function 272
scanf (function) 165

format specifiers 165
locale support 168
termination 171

conditions 172
scientific, ios data member 261
scratch files

naming 217, 223
opening 223

screens
clearing 29
copying text from 132
displaying strings 33
echoing to 85, 86
formatting output to 33
modes, restoring 150
saving 93
segment, copying to memory 92
writing characters to 148

scrolling 251
search.h (header file) 471
search key 118
_searchenv (function) 172
searches

appending and 118
binary 20
block, for characters 126
header file 472
linear 110, 118

Borland C++ for OS/2 Library Reference

operating system
algorithms 56
path, for file 172, 173

string
for character 196
for tokens 211

searchpath (function) 173
_searchstr (function) 173
Second, TTime member function 464
Seconds, TTime member function 464
security, passwords 91
seed number 193
Seek, TFile member function 439
seek_dir, ios data member 260
seekg

ipstream member function 280
istream member function 266

seekoff member functions
filebuf 257
streambuf 272
strstreambuf 275

seekp
opstream member function 284
ostream member function 269, 270

seekpos, streambuf member function 272
SeekToBegin, TFile member function 439
SeekToEnd, TFilemember function 439
segments

scanning for characters in strings 209
screen, copying to memory 92

sequential records 110
set_case_sensitive, string member function 447
set_new _handler (function) 248, 425
set_paranoid_check, string member function 447
set_terminate (function) 426
set_unexpected (function) 427
setb, streambuf member function 273
setbuf (function) 174
setbuf member functions

filebuf 257
£pbase 278
fstreambase 259
streambuf 272
strstreambuf 275

setcursortype, conbuf member function 254
setcursortype (function) 175

Index

SetData
TMArray As Vector member function 300
TMIArray As Vector member function 306

setdate (function) 45
setdisk (function) 89
setf, ios member function 263

constants used with 260
setftime (function) 90
setg, streambuf member function 274
se~mp (function) 175

header file 471
se~mp.h (header file) 471
setlocale (function) 176
setmode (function) 179
setp, streambuf member function 274
SetPrintOption, TDate member function 434
SetPriority, TThread member function 460
sets tate

ios member function 264 .
pstream member function 288

SetStatus, TFile member function 439
settime (function) 94
setting file read/write permission 228
setvbuf (function) 180
setverify (function) 181
sgetc, streambuf member function 272
sgetn, streambuf member function 272
share.h (header file) 471
ShouldTerminate, TThread member function 461
showbase, ios data member 261
showpoint, ios data member 261
showpos, ios data member 261
signal (function) 182

header file 471
use in multi-thread program 8
signal.h (header file) 471
signals

handlers 152, 182
returning from 184
user-specified 182

program 152
sin (complex friend function) 417
sin (function) 185
sine 185

complex numbers 417
hyperbolic 185
inverse 14

507

sinh (complex friend function) 417
sinh (complex numbers) 417
sinh (function) 185
sinh! (function) 185
sinl (function) 185
size

file 26,66
skip_whitespace, string member function 447
skipws, ios data member 261
sleep (function) 186
snextc, streambuf member function 272
software signals 152
sopen (function) 186
sorts, quick 151
source code, run-time library, licensing 469
space on disk, finding 46, 88
spawn ...

(functions) file handles 468
spawn ... (functions), suffixes 189
spawnl (function) 188
spawnle (function) 188
spawnlp (function) 188 .
spawnlpe (function) 188
spawnv (function) 188
spawnve (function) 188
spawnvp (function) 188
spawnvpe (function) 188
_splitpath (function) 191
sprintf (function) 192

format specifiers 141, 192
sputbackc, streambuf member function 272
sputc, streambuf member function 272
sputn, streambuf member function 272
sqrt (complex friend function) 417
sqrt (function) 192
sqrtl (function) 192
square root 192

complex numbers 417
SqueezeEntry

TMIArray As Vector member function 306
srand (function) 193
sscanf (function) 193

format specifiers 165
stack

pointer, as task states 117, 176
size 194

stackavail (function) 194

508

standard time 38, 40, 83, 95
start, TSubString member function 453
Start, TThread member function 460
stat (function) 81
stat structure 81
state

ios data member 262
pstream data member 287
read current pstream 287
set current pstream 288

_status87 (function) 194
Status, TThread data member 459
status word

floating-point 26, 194
numeric coprocessors 27, 195

stdargs.h (header file) 471
stdaux 61
stddef.h (header file) 471
stderr 61, 76
stderr (header file) 471
stdin 61, 76

buffers and 174
reading

characters from 65, 86
input from 165, 235
strings from 92

stdin (header file) 471
stdio, ios data member 261
stdio.h (header file) 471
stdiostr.h (header file) 471
stdlib.h (header file) 472
stdout 61, 76

buffers and 174
writing

characters to 74, 148
formatted output to 141, 234
strings to 149

stdout (header file) 471
stdpm 61
stime (function) 195
storage, invalid access 152
stossc, streambuf member function 272
stpcpy (function) 195
str member functions

ostrstream 271
strstream 276
strstreambuf 275

Borland C++ for OS/2 Library Reference

strcat (function) 196
strchr (function) 196
strcmp (function) 197
strcmpi (function) 197
strcoll (function) 198
strcpy (function) 198
strcspn (function) 199
_strdate (function) 199
strdup (function) 199
streamable classes

base class 286
BUILDER typedef and 289
creating 288, 289
reading 279

strings 280
registering 289
TStreamableBase 288
TStreamableClass 289
writing 283

streamable objects
basic operations 278
finding 279, 283
flushing 283
position within 280, 281, 284
reading 278, 281

current position 280
writing 278, 282

StreamableName, TStreamer member function 290
streambuf (class) 271
streaming macros 291

DECLARE_ABSTRACT_STREAMABLE 292
DECLARE_ABSTRACT_STREAMER 292
DECLARE_CASTABLE 293
DECLARE_STREAMABLE 291
DECLARE_STREAMABLE_CTOR 293
DECLARE_STREAMABLE_FROM_BASE 291
DECLARE_STREAMABLE_OPS 293
DECLARE_STREAMER 292
DECLARE_STREAMER_FROM_BASE 292
IMPLEMENT_ABSTRACT_STREAMABLE 295
IMPLEMENT_CASTABLE_ID 294
IMPLEMENT_STREAMABLE 293
IMPLEMENT_STREAMABLE_CLASS 294
IMPLEMENT_STREAMABLE_CTOR 294
IMPLEMENT_STREAMABLE_POINTER 294
IMPLEMENT_STREAMER 295

Index

streams
buffer, pointer to 287
closing 61, 76
end of 286
error and end-of-file indicators 27, 63
flushing 64, 69, 283
formatting input from 77,234,236

stdin 165, 235
header file 471
hierarchy 277
II 0 63, 73, 77, 80

pushing character onto 229
initializing 288
linking file handles to 62
macros 291
opening 72, 76, 79
pointers

file 78, 79
initialization 157

reading
characters from 64, 85
data from 75
errors 286
input from 77, 234, 236

stdin 165
integers from 95
strings from 65

reading and writing, errors 286
registering 289
replacing 76
state 286
stdaux 61
stderr 61, 76
stdprn 61
terminated input 172
tied 263
unbuffered 174, 180
writing 69, 84

characters to 74, 148
errors 286
formatted output to 74, 141, 233

stdout 234
integers to 151
strings to 75, 149

writing to 284, 285
_strerror (function) 200
strerror (function) 200

509

strftime (function) 201
stricmp (function) 203
string 439

!= operator 450
o operator 449
+= operator 449
<= operator 451
== operator 450
>= operator 451
» operator 451
[] operator 449
+ operator 449
< operator 450
= operator 449
> operator 451
append member function 441
assign member function 441
assignment operator 449
c_str member function 442
compare member function 441
concatentation operator 449
copy member function 442
cow member function 448
find_first_not_of member function 443
find_first_of member function 443
find_Iast_not_of member function 444
find_last_of member function 444
find member function 442
get_case_sensitive_flag member function 444
get_initiaCcapacity member function 444
get_max_ waste member function 444
get_paranoid_check member function 444
get_resize_increment member function 444
get_skipwhitespace_flag member function 445
hash member function 445
initial_capacity member function 445
is_null member function 445
length member function 445
max_waste member function 445
prep end member function 445
read_file member function 446
read_line member function 446
read_string member function 446
read_to_delim member function 446
read_token member function 446
replace member function 447
reserve member function 447

510

resize_increment member function 447
resize member function 447
rfind member function 446
set_case_sensitive member function 447
set_paranoid_check member function 447
skip_whitespace member function 447
strip member function 447
substr member function 448
substring member function 448
to_lower member function 448
to_upper member function 448

string.h (header file) 472
strings

appending 196
parts of 204

array allocation 280
changing 213
comparing 127, 197, 198

ignoring case 128, 197,203
parts of 205

ignoring case 205, 206
concatenating 196, 204
copying 195, 198

new location 199
truncating or padding 206

displaying 33, 143
duplicating 199
format specifiers 143, 167
formatting 192,201,236
functions

with multiple prototypes 472
functions (list) 476
header file 472
initialization 207, 208
length, calculating 203
lowercase 204
reading 167, 280

formatting and 193
from console 23
from streams 65, 92

reversing 208
searching

for character 196
in set 207
last occurrence of 207
not in set 199

for segment in set 209

Borland C++ for OS/2 Library Reference

for substring 209
for tokens 211

space allocation 280
transforming 213
uppercase 213
writing

formatted output to 192, 236
to current environment 149
to screen 33
to stdout 149
to streams 75, 283

strip, string member function 447
StripType, string type definition 439
strlen (function) 203
strlwr (function) 204
stmcat (function) 204
strncmp (function) 205
strncmpi (function) 205
strncpy (function) 206
strnicmp (function) 206
stmset (function) 207
strpbrk (function) 207
strrchr (function) 207
strrev (function) 208
strset (function) 208
strspn (function) 209
strstr (function) 209
strstrea.h (header file) 472
strstream (class) 276
strstreambase (class) 274
strstreambuf (class) 274
_strtime (function) 209
strtod (function) 210
strtok (function) 211
strtol (function) 211
_strtold (function) 210
strtoul (function) 213
struct heapinfo 101
structures

stat 81
strupr (function) 213
strxfrm (function) 213
substr, string member function 448
substring, string member function 448
substrings, scanning for 209
suffixes

exec ... 57

Index

spawn ... 189
streamable object's name and 281,285

support for variable-argument funtions 472
Suspend, TThread member function 460
suspended execution, program 186
swab (function) 215
swapping bytes 215
sync member functions

filebuf 257
strstreambuf 275

sync_with_stdio, ios member function 263
sys \stat.h (header file) 472
sys \ types.h (header file) 472
_sys_errlist (global variable) 245
_sys_nerr (global variable) 245
system

buffers 61
commands, issuing 215
error messages 136, 245

system (function) 215

T
T constructor

TBinarySearchTreeIteratorlmp 324,326
TMDictionary AsHash TableIterator 341, 343,
344
TMIHashTableImp 359

tables, searching 20, 118
Tail

TMDoubleList data member 348
TMListImp data member 364

tan (complex friend function) 417
tan (function) 216
tangent 216, 417

complex numbers 417
hyperbolic 216
inverse 15, 16

tanh (complex friend function) 417
tanh (function) 216
tanhl (function) 216
tanl (function) 216
TArrayAsVector 302

constructor 302
TArrayAsVectorIterator 302

constructor 302
task states

defined 11 7, 1 76

511

register variables 117
TBagAs Vector 319

constructor 319
TBagAs Vectorlterator 319

constructor 319
TBinarySearchTreelmp 322
TBinarySearchTreeIteratorImp 323
TCriticalSection 454

constructor 455
destructor 455

TCVectorImp 397
constructor 397

TCVectorIteratorImp 398
TDate 431

constructor 432
TDDAssociation 312

constructor 312
TDeque constructor 331
TDequeAsDoubleList 336
TDequeAsDoubleListIterator 336

constructor 336
TDequeAs Vector 330

constructor 330
TDequeAsVectorIterator 330
TDIAssociation 313

constructor 313
TDictionary 345
TDictionaryAsHashTable 341

constructor 342
TDictionaryAsHashTableIterator 342

constructor 342
TDictionaryIterator 345

constructor 345
TDoubleListIteratorImp 350

constructor 350
tell (function) 217
tellg

ipstream member function 281
istream member function 267

tellp
opstream member function 284
ostream member function 270

template (file names) 130
tempnam (function) 217
temporary files

naming 217, 223
opening 223

512

removing 159
terminals, checking for 104
terminate (function) 427
Terminate, TThread member function 460
TerminateAndWait, TThread member function

460
terminating

input from streams 172
software signals 152

termination function 16
testing conditions 15
text

attributes 218, 219, 220
background color, setting 218, 219
colors 220
copying

from one screen rectangle to another 132
to memory 92
to screen 150

intensity
high 101
low 117
normal 133

modes (screens) 150,222,240
character color 218, 220
coordinates 93
copying to memory 92
video information 93

text files
creat and 34
creattemp and 36
_dos_read and 51
fdopen and 62
fopen and 73
freopen and 76
_fsopen and 80
_rtl_read and 163
reading 154
setting 179

mode 62, 73, 76, 80, 248
textattr (conbuf member functions) 254
textattr (function) 218
textbackground (conbuf member function) 254
textbackground (function) 219
textcolor (conbuf member function) 254
textcolor (function) 220
textmode (function) 222

Borland C++ for OS/2 Library Reference

textmode member functions
conbuf 254
constream 255

TFile 436
constructor 437

TFileStatus 436
THashTableImp 358

constructor 358
THashTableIteratorImp 359

constructor 359
thread

locking and protecting 455
thread ID 249
_threadid (global variable) 249
__ throwExceptionName (global variable) 250
__ throw FileName (global variable) 250
__ throwLineNumber (global variable) 250
TIArrayAsVector 307

constructor 307
TIArrayAsVectorIterator 307

constructor 308
TIBagAs Vector 322

constructor 322
TIBagAs Vector Iterator 322

constructor 322
TIBinarySearchTreeImp 324
TIBinarySearchTreeIteratorImp 326
TICVectorImp 405

constructor 405
TIDAssociation 315

constructor 315
TIDequeAsDoubleList 339
TIDequeAsDoubleListIterator 339

constructor 339
TIDequeAs Vector 333

constructor 333
TIDequeAs VectorIterator 334

constructor 334
TIDictionary AsH ash Table 344
TIDictionary AsH ash TableIterator 344

constructor 345
TIDoubleListImp 354
TIDoubleListIteratorImp 355

constructor 355
tie, ios member function 263
tied streams 263
TIHashTableImp 361

Index

TIHashTableIteratorImp 361
constructor 361

TIIAssocia tion 316
constructor 317

TIListIteratorImp 369
constructor 369

time
delays in program execution 186
difference between two 40
elapsed 27, 40

returning 223
file 48, 90
formatting 201
functions (list) 480
global variables 227, 244, 250
system 13, 38, 83, 95

converting from DOS to UNIX 53
converting from UNIX to DOS 230
local 113
returning 49, 94
setting 49, 94, 195

time (function) 223
time.h (header file) 472
time zones 83, 95

arrays 250
differences between 40
global variables 244, 250
setting 38, 227

_timezone (global variable) 250
setting value of 227

TIQueueAsDoubleList 379
TIQueueAsDoubleListIterator 379

constructor 379
TIQueueAsVector 375

constructor 375
TIQueueAsVectorIterator 375

constructor 375
TISArray As Vector 309

constructor 310
TISArrayAsVectorIterator 310

constructor 310
TISDoubleListImp 356
TISDoubleListIteratorImp 356

constructor 356
TISetAs Vector 382
TISetAsVectorIterator 382

constructor 383

513

TIStackAsList 390
TIStackAsListIterator 390

constructor 390
TIStackAs Vector 388

constructor 388
TIStackAs Vector I tera tor 388
TISVectorImp 407

constructor 407
TIVectorImp 403

constructor 403
TMArrayAsVector 297

constructor 298
TMArrayAsVectorIterator 301

constructor 301
TMBagAs Vector 317

constructor 31 7
TMBagAs VectorIterator 318

constructor 319
TMCVectorImp 395
TMCVectorIteratorImp 397
TMDDAssociation 310

constructor 311
TMDequeAsDoubleList 334
TMDequeAsDoubleListIterator 336

constructor 336
T¥DequeAs Vector 327

constructor 327
TMDequeAs VectorIterator 329

constructor 329
TMDIAssociation 312

constructor 312
TMDictionaryAsHashTable 339
TMDictionary AsHash TableIterator 340
TMDictionay AsHash Table

constructor 340
TMDoubleListElement 345

constructor 346
TMDoubleListlmp 346, 349
TMDoubleListIteratorImp 348

constructor 348
TMHashTableImp 356

constructor 356
TMHashTableIteratorImp 357

constructor 357
TMIArrayAsVector 302

constructor 303
TMIArrayAsVectorIterator 306

514

constructor 306
TMIBagAs Vector 319

constructor 320
TMIBagAs VectorIterator 321

constructor 321
TMIDAssociation 314

constructor 314
TMIDequeAsDoubleList 336
TMIDequeAsDoubleListIterator 338

constructor 339
TMIDequeAs Vector 331

constructor 331
TMIDequeAs VectorIterator 333

constructor 333
TMIDictionaryAsHashTable 342

constructor 342
TMIDictionary AsH ash TableIterator 343
TMIDoubleListlmp 352
TMIDoubleListIteratorImp 354

constructor 354
TMIHashTableImp 359

constructor 361
TMIHashTableIteratorImp 360

constructor 360
TMIIAssociation 315

constructor 316
TMIQueueAsDoubleList 377
TMIQueueAsDoubleListlterator 379

constructor 379
TMIQueueAsVector 373

constructor 373
TMIQueueAsVectorIterator 374

constructor 375
TMISArrayAsVector 310

constructor 310
TMISDoubleListlmp 355
TMISDoubleListIteratorImp 355

constructor 355
TMISetAs Vector 381

constructor 381
TMISetAs VectorIterator 382

constructor 382
TMIStackAsList 389
TMIStackAsListIterator 390

constructor 390
TMIStackAs Vector 386
TMIStackAs VectorIterator 387

Borland C++ for OS/2 Library Reference

constructor 388
TMIVectorImp 400
tmpfile (function) 223
tmpnam (function) 223
TMQueueAsDoubleList 375
TMQueueAsDoubleListIterator 377

constructor 377
TMQueueAsVector 371

constructor 371
TMQueueAsVectorIterator 372

constructor 372
TMSArray As Vector 308

constructor 308
TMSArray As VectorIterator

constructor 308
TMSDoubleListImp 350
TMSDoubleListIteratorImp 351

constructor 351
TMSetAs Vector 380

constructor 380
TMSetAs VectorIterator 380

constructor 380
TMStackAsList 388
TMStackAsListIterator 389
TMStackAs Vector

constructor 383
TMStackAs VectorIterator 385

constructor 385
TMSVectorImp 398
TMSVectorIteratorImp 398
TMutex 455

constructor 456
destructor 456
HMTX operator 456

TMutex::Lock 456
constructor 456, 457

TMVectorImp 391
to_lower

global string function 452
string member function 448
TSubString member function 453

to_upper
global string function 452
string member function 448
TSubString member function 453

toascii (function) 224
tokens, searching for in string 211

Index

_tolower (function) 224
tolower (function) 225
Top

TMCVectorImp member function 397
TMIStackAsVector member function 387
TMIVectorImp member function 401
TMStackAs Vector member function 384
TMVectorImp member function 393

_toupper (function) 225
toupper (function) 226
TQueue 379
TQueueAsDoubleList 377
TQueueAsDoubleListIterator 377

constructor 377
TQueueAsVector 373

constructor 373
TQueueAsVectorIterator 373

constructor 373
TQueueIterator 380
__ TRACE debugging symbol 419
TRACE macro 420
TRACEX macro 421
translation mode 34, 36, 248
triangles, hypotenuse 101
trigonometric functions

arc cosine 12
arc sine 14
arc tangent 15, 16
cosine 31

hyperbolic 31
inverse 12

hyperbolic tangent 216
sine 185

hyperbolic 185
inverse 14

tangent 216
hyperbolic 216
inverse 15, 16

trunc, ios data member 261
truncate (function) 226
TSArray 308
TSArrayAsVector 309

constructor 309
TSArrayAsVectorIterator 308, 309

constructor 309
TSArrayIterator 309
TSDoubleListImp 351

515

TSDoubleListIteratorImp 351
constructor 351

TSet383
constructor 381, 382

TSetAs Vector 381
TSetAsVectorIterator 381

constructor 381
TSetIterator 383
TShouldDelete 408

constructor 408
TSListIteratorImp 366
TStack 390
TStackAsList 389
TStackAsListIterator 389
TStackAs Vector 385

constructor 385
TStackAs VectorIterator 385

constructor 386
TStackIterator 391
TStreamableBase 288

CastableID member function 288
destructor 288
FindBase member function 288
MostDerived member function 289

TStreamableClass 289
__ DELTA macro 289
friends of 290

TStreamer 290
constructor 290
GetObject member function 290
Read member function 290
StreamableName member function 290
Write member function 291

TString
constructor 440
destructor 441

TSubString 452
o operator 454
assert_element member function 453
get_at member function 452
is_null member function 453
length member function 453
put_at member function 453
start member function 453
to_lower member function 453
to_upper member function 453

TSVector Imp 399

516

constructor 399
TSVectorIteratorImp 399
TSync 457

= operator 458
constructor 457

TThread 458
= operator 461
constructor 460
destructor 460
GetPriority member function 460
GetStatus member function 460
Resume member function 460
SetPriority member function 460
ShouldTerminate member function 461
Start member function 460
Status data member 459
Suspend member function 460
Terminate member function 460
TerminateAndWait member function 460
WaitForExit member function 461

TThreadError 461
ErrorType data member 461
GetErrorType member function 462

TTime 462
!= operator 465
++ operator 465
+= operator 465
- operator 465
-= operator 465
« operator 465
<= operator 465
== operator 465
>= operator 465
»operator 466
+ operator 465
- operator 465
< operator 465
> operator 465
AssertDate member function 464
AsString member function 463 .
BeginDST member function 463
Between member function 463
CompareTo member function 463
constructor 463
EndDST member function 463
Hash member function 463
Hour member function 463

Borland C++ for OS/2 Library Reference

HourGMT member function 463
IsDST member function 463
Is Valid member function 464
Max member function 464
MaxDate data member 464
Min member function 464
Minute member function 464
MinuteGMT member function 464
PrintDate member function 464
RefDate data member 464
Second member function 464
Seconds member function 464

TV ectorImp 394
constructor 395

TVectorIteratorImp 395
constructor 395

type checking, device 104
Type_id, TStreamable base typedef 288
Type_info class 428
typeid operator (Type_info class) 428
typeinfo.h (header file) 472
_tzname (global variable) 250

setting value of 227
tzset (function) 227

u
u.s. date formats 32
ultoa (function) 228
umask (function) 228
unbuffered, streambuf member function 274
unbuffered streams 174, 180
undefined external 478
underflow member functions

filebuf 257
strstreambuf 276

unexpected (function) 429
ungetc (function) 229
ungetch (function) 229
unitbuf, ios data member 261
UNIX

constants, header file 472
date and time

converting DOS to 53
converting to DOS format 230

unixtodos (function) 230
unlink (function) 230
unlock (function) 231

Index

UnlockRange, TFile member function 439
unsetf, ios member function 263
UpperBound

TMArrayAsVector member function 300
TMIArrayAsVector member function 305

uppercase
characters 107, 225, 226
checking for 107
conversions 204, 224, 225
strings 213

uppercase, ios data member 261
__ USE LOCALES __

international support
API, enabling 476

macro 178
user-defined comparison function 151
user-defined formatting flags 264
user hook 122
user-modifiable math error handlers 122
user-specified signal handlers 182
utime (function) 231
utime.h (header file) 472

v
va_arg (function) 232
va_arg (variable argument macro) 232
va_end (function) 232
va_list (variable argument macro) 232
va_start (function) 232
va_start (variable argument macro) 232
valid_element, string member function 449
valid_index, string member function 449
Value

TMDDAssociation member function 311
TMDIAssociation member function 313
TMIDAssociation member function 315
TMIIAssociation member function 316

ValueData, TMIDAssociation data member 314
values

calculating powers to 140, 141
comparing 124, 129

values.h (header file) 472
varargs.h (header file) 472
variables

argument list 232
conversion specifications and 142
environment 57, 189, 244

517

COMSPEC215
register 117

verify flag (DOS) 94
verify the heap 100
version numbers

DOS 249
operating system 251
OS/2249

_version (global variable) 251
vfprintf (function) 233

format specifiers 141
variable argument list 232

vfscanf (function) 234
format specifiers 165
variable argument list 232

video
checking for 104
information, text mode 93

void *0, pstream operator 287
vprintf (function) 234

format specifiers 141
variable argument list 232

vscanf (function) 235
format specifiers 165
variable argument list 232

vsprintf (function) 236
format specifiers 141
variable argument list 232

vsscanf (function) 236
format specifiers 165
variable argument list 232

w
wait (function) 237
WaitForExit TThread member function 461
__ WARN debugging symbol 419
WARN macro 420
WARNX macro 421
wcstombs (function) 238
wctomb (function) 238
WeekDay, TDate member function 434
wherex, conbuf member function 254
where x (function) 239
wherey, conbuf member function 254
wherey (function) 239
whitespace, checking for 107
why member function, xmsg 430

518

wid th, ios member function 264
WILDARGS.OBJ 5
wildcards, expansion 5

by default 6
from the IDE 6

window (function) 240
window member functions

conbuf 254
constream 255

windows
functions (list) 480
scrolling 251
text

cursor position 96, 239
defining 240
deleting lines in 29, 40
inserting blank lines in 102

words
floating-point control 30
writing to streams 284

Write
TFile member function 439
TStreamer member function 291

write (function) 240
write, ostream member function 270
write error 63
write Byte, opstream member function 284
writeBytes, opstream member function 284
write Data, opstream member function 285
writeObjectPointer, opstream member function

284
writePrefix, opstream member function 285
write String, opstream member function 284
writeSuffix, opstream member function 285
writeWord16, opstream member function 284
writeWord32, opstream member function 284
writeWord, opstream member function 284

x
x_fill, ios data member 261
x_flags, ios data member 261
x_precision, ios data member 261
x_tie, ios data member 262
x_width, ios data member 262
xalloc (class) 429
xalloc, ios member function 264
xmsg (class) 430

Borland C++ for OS/2 Library Reference

ear, TDate member function 434
earTy, TDate type definition 431

Idex

z
Zero

TMIVectorImp member function 402
TMVectorImp member function 393

ZeroBase
TMArray As Vector member function 300
TMIArrayAsVector member function 306

519

Borland
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Canada,
Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, New Zealand, Singapore,
Spain, Sweden, Taiwan, and United Kingdom· Part # BCPI415WW21772 • BOR 7002

