
i' DOS Reference ..
53'
::::s
i:::::L
n
+ +

®

++

DOS Reference

Borland® C++
Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT© 1987, 1994 Borland International. All rights reserved. All Borland products are trademarks or
registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.

1EOR1094
9495969798-9 8 7 6 5 4 3 2
Hl

Contents
Introduction 1
What's in this book 1

Chapter 1
DOS memory management 3
Running out of memory. 3 ·
Memory models 3

The 8086 registers 4
General-purpose registers 4
Segment registers 5
Special-purpose registers 5
The flags register 5

Memory segmentation.6
Address calculation 7

Pointers 7
Near pointers . 8
Far pointers . 8
Huge pointers. 9

The six memory models9
Mixed-model programming: Addressing

modifiers . 14
Segment pointers 14
Declaring far objects 15
Declaring functions to be near or far 16
Declaring pointers to be near, far, or huge ... 16

Pointing to a given segment:offset address . 17
Using library files. 18
Linking mixed modules 18

Overlays (VROOMM) for DOS 19
How overlays work 19

Guidelines for using Borland C ++ overlays
effectively . 21

Requirements . 21
Exception handling and overlays 21
Using overlays 22

Overlay example 22
Overlaid programs 23

The far call requirement. 23
Buffer size . 23
What notto overlay 23
Debugging overlays 23
External routines in overlays. 24

Swapping . 24

Chapter2
Math 27
Floating-point 1/0 27
Floating-point options 27

Emulating the 80x87 chip 28

Using the 80x87 code 28
No floating-point code 28
Fast floating-point option. 28
The 87 environment variable 29
Registers and the 80x87 29
Disabling floating-point exceptions. 30

Using complex types 30
Using bed types 31

Converting bed numbers 32
Number of decimal digits 32

Chapter3
Video functions 35
Video modes. 35
Windows and viewports 36
Programming in graphics mode 36

The graphics library functions 37
Graphics system control. 37
A more detailed discussion 38
Drawing and filling 39
Manipulating the screen and viewport 40
Text output in graphics mode 41
Color control 43
Pixels and palettes 43
Background and drawing color 44
Color control on a CGA 44

CGA low resolution. 44
CGA high resolution 45
CGA palette routines 45

Color control on the EGA and VGA. 45
Error handling in graphics mode 46
State query 47

Chapter4
Borland graphics interface 49
arc 49
bar 50
bar3d 50
circle 51
cleardevice 51
clearviewport . 52
closegraph . 52
detectgraph. 53
drawpoly . 55
ellipse 55
fillellipse . : . . 56
fillpoly. 56
floodfill . 57

getarccoords . 57
getaspectratio . 58
getbkcolor . 58
getcolor . 59
getdefaultpalette 59
getdrivernarne. 60
getfillpattern. 60
getfillsettings. 61
getgraphmode 62
getimage . 62
getlinesettings . 63
getmaxcolor . 64
getmaxmode. 65
getmaxx 65
getmaxy 66
getmodename . 66
getmoderange . 67
getpalette. 67
getpalettesize . 68
getpixel . 68
gettextsettings . 69
getviewsettings 69
getx 70
gety 70
graphdefaults . 71
grapherrormsg 71
_graphfreemem 72
_graphgetmem 72
graphresult. 73
imagesize. 7 4
initgraph 74
installuserdriver 77
installuserfont . 78
line 79
linerel. 79
lineto 79
moverel. 80
mo veto 80
outtext 81
outtextxy . 81
pieslice . 82
putimage . 83
putpixel. 83
rectangle . 84
registerbgifont. 84
registerbgidriver 85
restorecrtmode 86

ii

sector 86
setactivepage. 87
setallpalette 87
setaspectratio. 89
setbkcolor. 89
setcolor . 90
setfillpattern . 91
setfillstyle. 92
setgraphmode . 93
setgraphbufsize 93
setlinestyle . 94
setpalette . 95
setrgbpalette . 96
settextjustify . 97
settextstyle . 98
setusercharsize 99
setviewport. 100
setvisualpage 101
setwritemode 101
textheight . 102
textwidth 102

Chapters
DOS-only functions 105
absread . 105
abswrite 106
allocmem, _dos_allocmem. 106
bioscom. 107
biosdisk . 109
_bios_disk 111
bioskey . 112
_bios_keybrd 113
biosprint . 114
_bios_printer 115
_bios_serialcom 116
brk 118
coreleft 118
delay 119
farcoreleft. 119
farheapcheck. 120
farheapcheckfree 120
farheapchecknode 121
farheapfillfree 121
farheapwalk . 122
freemem, _dos_freemem 122
harderr, hardresume, hardretn 123
_harderr. 124

_hardresume. 125
_hardretn 125
keep, _dos_keep. 126
nosound . 127
_OvrinitEms 127
_OvrinitExt 128
randbrd. 128
randbwr . 129
sbrk 130
setblock, _dos_setblock 130
sound 131

Appendix A
DOS libraries 133
The run-time libraries 133

The DOS support libraries. 134
Graphics routines. 134
Interface routines 135
Memory routines 135
Miscellaneous routines. 136

AppendixB
DOS global variables 137
_heaplen . 137
_ovrbuffer . 138
_stklen 139

Index 141

iii

Tables
1.1 Memory models. 13
1.2 Pointer results 14
3.1 Graphics mode state query functions 47
4.1 detectgraph constants 53
4.2 Graphics drivers information. 54

4.3 Graphics drivers constants. 75
4.4 Color palettes. 76
4.5 Graphics modes 76
4.6 Actual color table 88
Al Summary of DOS run-time libraries 134

Figures
1.1 8086 registers . 4
1.2 Flags register of the 80 x86 processors. 6
1.3 Tinymodelmemorysegmentation 10
1.4 Small model memory segmentation. 11
1.5 Medium model memory segmentation 11

iv

1.6 Compact model memory segmentation. . . .12
1.7 Large model memory segmentation 12
1.8 Huge model memory segmentation13
1.9 Memory maps for overlays 20

Introduction

This manual provides information you might need to develop 16-bit applications that
are targeted to run DOS. The following manuals in this documentation set also discuss
DOS-related issues:

• The User's Guide provides a description of all the programming options that can be
used to develop applications on any platform supported by Borland C++ 4.5.

• The Programmer's Guide describes the implementation and extensions to the C and
C++ programming languages. Much of the information in the Programmer's Guide (for
example, information regarding exception-handling, RTTI, and other recent
additions to the C++ language) is applicable to 16-bit DOS programming.

• The Library Reference provides a reference to functions and macros, many of which
are marked as being available to DOS programs.

• The Class Libraries Guide provides a discussion and reference to classes and macros
that are available only for C++ programs.

Typefaces and icons used in these books are described in the User's Guide.

What's in this book
Chapter 1, "DOS memory management" describes memory models, overlays, and
mixed-model programming. Remember that in DOS-only applications you can use any
of the six memory models (the tiny and huge memory models aren't supported in
Windows applications). Overlays are supported only in DOS applications.

Chapter 2, "Math" covers floating-point issues and how to use the bed and complex math
classes. Much of the information regarding math options is specific to DOS applications.
The discussion of bed and complex isn't specific to DOS and is available to applications
on Windows and OS/2 platforms.

Chapter 3, "Video functions" discusses graphics in Borland C++. The topics discussed
in this chapter are available only for 16-bit DOS applications.

Chapter 4, "Borland graphics interface" is a reference to the functions declared in the
graphics.h header file. The functions discussed in this chapter are available only for

Introduction 1

16-bit DOS applications. Sample programs for these functions are available in the online
Help.

Chapter 5, "DOS-only functions" is a reference to those functions that are available
only in a 16-bit DOS-targeted application. There are many additional functions and C ++
classes that can be used in DOS applications (and are also available to other platforms).
Those additional functions are documented in the Library Reference. The online Help
provides many sample programs for the functions that are referenced here and in the
Library Reference.

Appendix A, "DOS libraries" provides an overview of the libraries and global
variables that are available only for 16-bit DOS applications.

Appendix B, "DOS global variables" describes the global variables that are available
only for 16-bit DOS applications.

2 DOS Reference

DOS memory management
This chapter discusses

• What to do when you receive "Out of memory" errors.

• What memory models are: how to choose one, and why you would (or wouldn't)
want to use a particular memory model.

• How overlays work, and how to use them.

• How to overlay modules with exception-handling constructs.

Running out of memory
Borland C++ does not generate any intermediate data structures to disk when it is
compiling (Borland C++ writes only .OBJ files to disk); instead it uses RAM for
intermediate data structures between passes. Because of this, you might encounter the
message "Out of memory" if there isn't enough memory available for the compiler.

The solution to this problem is to make your functions smaller, or to split up the file that
has large functions.

Memory models
Borland C++ gives you six memory models, each suited for different program and code
sizes. Each memory model uses memory differently. What do you need to know to use
memory models? To answer that question, you need to take a look at the computer
system you're working on. Its central processing unit (CPU) is a microprocessor
belonging to the Intel iAPx86 family; an 80286, 80386, 80486, or Pentium. For now, we'll
just refer to it as an 8086.

Note See page 9 for a summary of each memory model.

Chapter 1, DOS memory management 3

The 8086 registers
The following figure shows some of the registers found in the 8086 processor, There are
other registers-because they can't be accessed directly, they aren't shown here. ·

Figure 1.1 8086 registers

General·purpose registers

AX accumulator (math operations)
AH J AL

BX BH
base (iJdexing)

BL

ex count (indexing)
CH l CL

DX data (holding data)
DH J DL

Segment address registers

CS code segment pointer

DS data segment pointer

SS stack segment pointer

ES extra segment pointer

Special·purpose registers

SP stack pointer

BP base pointer

SI source index

DI destination index

General-purpose registers
The general-purpose registers are the registers used most often to hold and manipulate
data. Each has some special functions that only it can do. For example,

• Some math operations can only be done using AX.
• BX can be used as an index register.
• CX is used by LOOP and some string instructions.
• DX is implicitly used for some math operations.

But there are many operations that all these registers can do; in many cases, you can
freely exchange one for another.

4 DOS Reference

Segment registers
The segment registers hold the starting address of each of the four segments. As
described in the next section, the 16-bit value in a segment register is shifted left 4 bits
(multiplied by 16) to get the true 20-bit address of that segment.

Special-purpose registers
The 8086 also has some special-purpose registers:

• The SI and DI registers can do many of the things the general-purpose registers can,
plus they are used as index registers. They're also used by Borland C++ for n•gister
variables.

• The SP register points to the current top-of-stack and is an offset into the stack
segment.

• The BP register is a secondary stack pointer, usually used to index into the stack in
order to retrieve arguments or automatic variables.

Borland C ++ functions use the base pointer (BP) register as a base address for
arguments and automatic variables. Parameters have positive offsets from BP, which
vary depending on the memory model. BP points to the saved previous BP value if there
is a stack frame. Functions that have no arguments will not use or save BP if the
Standard Stack Frame option is Off

Automatic variables are given negative offsets from BP. The offsets depend on how
much space has already been assigned to local variables.

The flags register
The 16-bit flags register contains all pertinent information about the state of the 8086 and
the results of recent instructions.

For example, if you wanted to know whether a subtraction produced a zero result, you
would check the zero flag (the Z bit in the flags register) immediately after the
instruction; if it were set, you would know the result was zero. Other flags, such as the
carry and overflow flags, similarly report the results of arithmetic and logical operations.

Chapter 1, DOS memory management 5

Figure 15.2 Flags register of the 80x86 processors

31 23

Virtual 8086 Mode
Resume

Nested Task

15

V R

1/0 Protection Level
Overflow

Direction
Interrupt Enable

Trap
Sign

Zero

N IOP 0 D I T S Z

Auxiliary Carry
Parity

Carry

I
0

A p c
_________ 80386 _______ _..,.,1 -80286_..,~1 ,------ All 80x86 ____ _,...,.,!

only 80386 processors

Other flags control the 8086 operation modes. The direction flag controls the direction in
which the string instructions move, and the interrupt flag controls whether external
hardware, such as a keyboard or modem, is allowed to halt the current code temporarily
so that urgent needs can be serviced. The trap flag is used only by software that debugs
other software. ·

The flags register isn't usually modified or read directly. Instead, the flags register is
generally controlled through special assemb_ler instructions (such as CLO, STI, and
CMC) and through arithmetic and logical instructions that modify certain flags.
Likewise, the contents of certain bits of the flags register affect the operation of
instructions such as JZ, RCR, and MOVSB. The flags register is not really used as a
storage location, but rather holds the status and control data for the 8086.

Memory segmentation
The Intel 8086 microprocessor has a segmented memory architecture. It has a total address
space of 1 MB, but is designed to directly address only 64K of memory at a time. A 64K
chunk of memory is known as a segment; hence the phrase "segmented memory
architecture."

• The 8086 keeps track of four different segments: code, data, stack, and extra. The code
segment is where the machine instructions are; the data segment is where
information is; the stack is, of course, the stack; and the extra segment is also used for
extra data.

• The 8086 has four 16-bit segment registers (one for each segment) named CS, DS, SS,
and ES; these point to the code, data, stack, and extra segments, respectively.

• A segment can be located anywhere in memory. In DOS real mode it can be located
almost anywhere. For reasons that Will become clear as you read on, a segment must
start on an address that's evenly divisible by 16 (in decimal).

6 DOS Reference

Address calculation
Note 'This whole section is applicable only to real mode under DOS. You can safely ignore it

for Windows development.

A complete address on the 8086 is composed of two 16-bit values: the segment address
and the offset. Suppose the data segment address-the value in the DS register-is 2F84
(base 16), and you want to calculate the actual address of some data that has an offset of
0532 (base 16) from the start of the data segment: how is that done?

Address calculation is done as follows: Shift the value of the segment register 4 bits to
tl1e left (equivalent to one hex digit), then add in the offset.

The resulting 20-bit value is the actual address of the data, as illustrated here:

DS register (shifted) : 0010 1111 1000 0100 0000 2F840
Offset: 0000 0101 0011 0010 = 00532

Address: 0010 1111 1101 0111 0010 = 2FD72

Note A chunk of 16 bytes is known as a paragraph, so you could say that a segment always
starts on a paragraph boundary.

The starting address of a segment is always a 20-bit number, but a segment register only
holds 16 bits-so the bottom 4 bits are always assumed to be all zeros. 'This means
segments can only start every 16 bytes through memory, at an address where the last 4
bits (or last hex digit) are zero. So, if the DS register is holding a value of 2F84, then the
data segment actually starts at address 2F840.

The standard notation for an address takes the form segment:offset; for example, the
previous address would be written as 2F84:0532. Note that since offsets can overlap, a
given segment:offset pair is not unique; the following addresses all refer to the same
memory location:

0000:0123
0002:0103
0008:00A3
0010:0023
0012:0003

Segments can overlap (but don't have to). For example, all four segments could start at
the same address, which means that your entire program would take up no more than
64K-but that's all the space you'd have for your code, your data, and your stack.

Pointers
Although you can declare a pointer or function to be a specific type regardless of the
model used, by default the type of memory model you choose determines the default
type of pointers used for code and data. There are four types of pointers: near (16 bits),
far (32 bits), huge (also 32 bits), and segment (16 bits).

Chapter 1, DOS memory management 7

Near pointers
A near pointer (16-bits) relies on one of the segment registers to. finish calculating its
address; for example, a pointer to a function would add its 16-bit value to the left-shifted
contents of the code segment (CS) register. In a similar fashion, a near data pointer
contains an offset to the data segment (DS) register. Near pointers are easy to
manipulate, since any arithmetic (such as addition) can be done without worrying about
the segment.

Far pointers
A far pointer (32-bits) contains not only the offset within the segment, but also the
segment address (as another 16-bit value), which is then left-shifted and added to the
offset. By using far pointers, you can have multiple code segments; this, in turn, allows
you to have programs larger than 64K. You can also address more than 64K of data.

When you use far pointers for data, you need to be aware of some potential problems in
pointer manipulation. As explained in the section on address calculation, you can have
many different segment:offset pairs refer to the same address. For example, the far
pointers 0000:0120, 0010:0020, and 0012:0000 all resolve to the same 20-bit address.
However, if you had three different far pointer variables-a, b, and c---containing those
three values respectively, then all the following expressions would be false:

if (a == bl
if (b == c) • · ·

if (a == c) • · ·

A related problem occurs when you want to compare far pointers using the >, >=, <,
and<= operators. In those cases, only the offset (as an unsigned) is used for comparison
purposes; given that a, b, and c still have the values previously listed, the following
expressions would all be true:

if (a > b)

if (b > c) · · ·
if (a > c) • • ·

The equals(==) and not-equal(!=) operators use the 32-bit value as an unsigned long
(not as the full memory address). The comparison operators(<=,>=,<, and>) use just
the offset.

The == and != operators need all 32 bits, so the computer can compare to the NULL
pointer (0000:0000). If you used only the offset value for equality checking, any pointer
with 0000 offset would be equal to the NULL pointer, which is not what you want.

Note If you add values to a far pointer, only the offset is changed. If you add enough to cause
the offset to exceed FFFF (its maximum possible value), the pointer just wraps around
bads to the beginning of the segment. For example, if you add 1 to 5031:FFFF, the result
would be 5031:0000 (not 6031:0000). Likewise, if you subtract 1 from 5031:0000, you
would get 5031:FFFF (not 5030:000F).

If you want to do pointer comparisons, it's safest to use either near pointers-which all
use the same segment address-or huge pointers, described next.

8 DOS Reference

Huge pointers
Huge pointers are also 32 bits long. Like far pointers, they contain both a segment
address and an offset. Unlike far pointers, they are normalized to avoid the problems
associated with far pointers.

A normalized pointer is a 32-bit pointer that has as much of its value in the segment
address as possible. Since a segment can start every 16 bytes (10 in base 16), this means
that the offset will only have a value from 0 to 15 (0 to F in base 16).

To normalize a pointer, convert it to its 20-bit address, then use the right 4 bits for your
offset and the left 16 bits for your segment address. For example. given the oointer
2F84:0532, you would co~vert that to the absolute address 2Fb72; which y~u would
then normalize to 2FD7:0002. Here are a few more pointers with their normalized
equivalents:

0000:0123 0012:0003
0040:0056 0045:0006
500D:9407 594D:0007
7418:D03F 811B:OOOF

There are three reasons why it is important to always keep huge pointers normalized:

1 For any given memory address there is only one possible huge address
(segment:offset) pair. That means that the== and!= operators return correct answers
for any huge pointers.

2 In addition, the >, >=, <,and <= operators are all used on the full 32-bit value for
huge pointers. Normalization guarantees that the results of these comparisons will
also be correct.

3 Finally, because of normalization, the offset in a huge pointer automatically wraps
around every 16 values, but-unlike far pointers-the segment is adjusted as well.
For example, if you were to increment 811B:OOOF, the result would be 811C:OOOO;
likewise, if you decrement 811C:OOOO, you get 811B:OOOF. It is this aspect of huge
pointers that allows you to manipulate data structures greater than 64K in size. This
ensures that, for example, if you have a huge array of structs that's larger than 64K,
indexing into the array and selecting a struct field will always work with structs of
any size.

There is a price for using huge pointers: additional overhead. Huge pointer arithmetic is
done with calls to special subroutines. Because of this, huge pointer arithmetic is
significantly slower than that of far or near pointers.

The six memory models
Borland C++ gives you six memory models for 16-bit DOS programs: tiny, small,
medium, compact, large, and huge. Your program requirements determine which one
you pick. Here's a brief summary of each:

• Tiny. As you might guess, this is the smallest of the memory models. All four
segment registers (CS, OS, SS, ES) are set to the same address, so you have a total of
64K for all of your code, data, and stack. Near pointers are always u.Sed. Tiny model

Chapter 1, DOS memory management 9

programs can be converted to .COM format by linking with the It option. Use this
model when memory is at an absolute premium.

• Sinall. The code and data segments are different and don't overlap, so you have 64K
of code and 64K of data and stack. Near pointers are always used. This is a good size
for average applications.

• Medium. Far pointers are used for code, but not for data. As a result, data plus stack
are limited to 64K, but code can occupy up to 1 MB. This modelis best for large
programs without much data in memory.

• Compact. The inverse of medium: Far pointers are used for data, but not for code.
Code is then limited to 64K, while data has a 1 MB range. This model is best if code is
small but needs to address a lot of data.

• Large. Far pointers are used for both code and data, giving both a 1 MB range. Large
and huge are needed only for very large applications.

• Huge. Far pointers are used for both code and data. Borland C++ normally limits the
size of all static data to 64K; the huge memory model sets aside that limit, allowing
data to occupy more than 64K.

Figures 1.3 through 1.8 show how memory in the 8086 is apportioned for the Borland
C++ memory models. To select these memory models, you can either use menu
selections from the IDE or you can type options invoking the command-line compiler
version of Borland C++.

Figure 1.3 Tiny model memory segmentation

Segment registers: Low address Segment size:
CS, DS, SS --•.,~~-----------~

(
TEXT class 'CODE'

I
SP(TOS)\

- code

DATA class 'DATA'
- initialized data

BSS class 'BSS'
uninitialized data

Starting SP _ _____,.,.,._.__ ________ _.__ __ ~
High address

10 DOS Reference

Upto64K

Figure 1.4 Small model memory segmentation

Segment registers:
cs

DS,SS •

DGROUP

I

I
SP (TOS) __ .,..., •­

i

Low address

TEXT class 'CODE'
- code

DATA class 'DATA'
- initialized data

BSS class 'BSS'
uninitialized data

HEAP

High address

Figure 1.5 Medium model memory segmentation

Multiple stiles:
sfileA

cs

sfile B CS points to
only one stile at a

~sfi_lle~Z--~t time.
Segment registers:

DS,SS

DGROUP

SP (TOS) --+-1~,-~

Low address

stile TEXT class 'CODE'
code

DATA class 'DATA'
- initialized data

BSS class 'BSS'
uninitialized data

Segment size:

Up to 64K

Upio64K

Up to rest of memory

Segment size:

Each stile up to 64K

Up to 64K

Starting SP --•• .. ·f ----------1------1

Up to rest of memory

High address

Chapter 1, DOS memory management 11

Fiqur" 1.6 Compact model memory segmentation

Segment registers: Low address Segment size:
cs~~----,---.-~~~--------_,

TEXT class 'CODE'
- code

QS :r DATA class 'DATA'.
- initialized data

DGROUP r-----------------1

SS

SP (TOS)

Starting SP

High address

Figure U Large model memory segmentation

Multiple sfiles:
sfil
sfileB

CS ~s_file_Z __ ~w

Segment registers: Low address

High address

12 DOS Reference

Upto64K

Upto64K

Up to 64K

Up to rest of memory

Segment size:

Each sfile up to 64K

Up to 64K

Upto64K

Up to rest of memory

Figure 1.8 Huge model memory segmentation

Multiple stiles:
stile A
sfile B

CS sfileZ
~----<.

Segment registers:

SP (TOS)

Multiple
siiies:

CS and DS point
to only one stile
at a time.

Low address

sfile fEXT class 'CODE'
code

High address

Segment size:

Each stile up to 64K

Each sfile up to 64K

Upto64K

Up to rest of memory

Table 1.1 summarizes the different models and how they compare to one another. The
models are often grouped according to whether their code or data models are small
(64K) or large (16 MB); these groups correspond to the rows and columns in Table 1.1.

Table 1.1

64K

16MB

Memory models

Tiny (data, code overlap; total size= 64K)

Small (no overlap; total size = 128K)

Compact (large data, small code)

Medium (small data, large code)
.~-----

Large (large data, code)

Huge (same as large but static data> 64K)

The models tiny, small, and compact are small code models because, by default, code
pointers are near; likewise, compact, large, and huge are large data models because, by
default, data pointers are far.

When you compile a module (a given source file with some number of routines in it),
the resulting code for that module cannot be greater than 64K, since it must all fit inside
of one code segment. This is true even if you're using one of the larger code models
(medium, large, or huge). If your module is too big to fit into one (64K) code segment,
you must break it up into different source code files, compile each file separately, then

Chapter 1, DOS memory management 13

link them together. Similarly, even though the huge model permits static data to total
more than 64K, it still must be less than 64K in each module.

Mixed-model programming: Addressing modifiers
Borland C++ introduces eight new keywords not found in standard ANSI C These
keywords are __ near, __ far, __ huge, __ cs, __ ds, __ es, __ ss, and __ seg. These
keywords can be used as modifiers to pointers (and in some cases, to functions), with
certain limitations and warnings.

In Borland C ++, you can modify the declarations of pointers, objects, and functions with
the keywords __ near, __ far, or __ huge. The __ near, __ far, and __ huge data pointers
are described earlier in this chapter. You can declare far objects using the __ far
keyword. __ near functions are invoked with near calls and exit with near returns.
Similarly, __ far functions are called __ far and return far values. __ huge functions are
like __ far functions, except that __ huge functions set DS to a new value, and __ far
functions do not.

There are also four special __ near data pointers: __ cs, __ ds, __ es, and __ ss. These are
16-bit pointers that are specifically associated with the corresponding segment register.
For example, if you were to declare a pointer to be

char _ss *p;

then p would contain a 16-bit offset into the stack segment.

Functions and pointers within a given program default to near or far, depending on the
memory model you select. If the function or pointer is near, it is automatically
associated with either the CS or DS register.

The next table shows how this works. Note that the size of the pointer corresponds to
whether it is working within a 64K memory limit (near, within a segment) or inside the
general 1 MB memory space (far, has its own segment address).

Table 1.2 Pointer results

Tiny near,_cs near,_ds

Small near,_cs near,_ds

Medium far near,_ds

Compact near,_cs far

Large far far

Huge far far

Segment pointers
Use __ seg in segment pointer type declarators. The resulting pointers are 16-bit
segment pointers. The syntax for __ seg is:

14 DOS Reference

datatype _seg *identifier;

For example,

int _seg *name;

Any indirection through identifier has an assumed offset of 0. In arithmetic involving
segment pointers the following rules hold true:

1 You can't use the++, - -, +=,or-= operators with segment pointers.

2 You cannot subtract one segment pointer from another.

3 When adding a near pointer to a segment pointer, the result is a far pointer that is
formed by using the segment from the segment pointer and the offset from the near
pointer. Therefore, the two pointers must either point to the same type, or one must
be a pointer to void. There is no multiplication of the offset regardless of the type
pointed to.

4 When a segment pointer is used in an indirection expression, it is also implicitly
converted to a far pointer.

5 When adding or subtracting an integer operand to or from a segment pointer, the
result is a far pointer, with the segment taken from the segment pointer and the offset
found by multiplying the size of the object pointed to by the integer operand. The
arithmetic is performed as if the integer were added to or subtracted from the far
pointer.

6 Segment pointers can be assigned, initialized, passed into and out of functions,
compared and so forth. (Segment pointers are compared as if their values were
unsigned integers.) In other words, other than the above restrictions, they are treated
exactly like any other pointer.

Declaring far objects
You can declare far objects in Borland C++. For example,

int far x = 5;
int far z;
extern int far y = 4;
static long j;

The command-line compiler options -zE, -zF, and -zH (which can also be set using
#pragma option) affect the far segment name, class, and group, respectively. When you
use #pragma option, you can make them apply to any ensuing far object declarations.
Thus you could use the following sequence to create a far object in a specific segment:

#pragma option -zEmysegment -zHmygroup -zFmyclass
int far x;
#pragma option -zE* -zH* -zF*

This will put x in segment MYSEGMENT 'MYCLASS' in the group 'MYGROUP', then
reset all of the far object items to the default values. Note that by using these options,
several far objects can be forced into a single segment:

#pragma option -zEcombined -zFmyclass

C h a pt e r 1 , D 0 S m e m o r y m a n a g e m e n t 15

int far x;
double far y;
#pragma option -zE* -zF*

Both x and y will appear in the segment COMBINED 'MYCLASS' with no group.

Declaring functions to be near or far
On occasion, you'll want (or need) to override the default function type of your memory
model.

For example, suppose you're using the large memory model, but you have a recursive
(self-calling) function in your program, like this:

double power(double x,int exp)
if (exp <= 0)

return(l);
else

return(x * power(x, exp-1));

Every time power calls itself, it has to do a far call, which uses more stack space and clock
cycles. By declaring power as _ _ near, you eliminate some of the overhead by forcing all
calls to that function to be near:

double __ near power(double x,int exp)

This guarantees that power is callable only within the code segment in which it was
compiled, and that all calls to it are near calls.

This means that if you're using a large code model (medium, large, or huge), you can
only call power from within the module where it is defined. Other modules have their
own code segment and thus cannot call _ _ near functions in different modules.
Furthermore, a near function must be either defined or declared before the first time it is
used, or the compiler won't know it needs to generate a near call.

Conversely, declaring a function to be far means that a far return is generated. In the
small code models, the far function must be declared or defined before its first use to
ensure it is invoked with a far call.

Look back at the power example at the beginning of this section. It is wise to also declare
power as static, since it should be called only from within the current module. That way,
being a static, its name will not be available to any functions outside the module.

Declaring pointers to be near, far, or huge
You've seen why you might want to declare functions to be of a different model than the
rest of the program. For the same reasons given in the preceding section, you might
want to modify pointer declarations: either to avoid unnecessary overhead (declaring
__ near when the default would be _ _ far) or to reference something outside of the
default segment (declaring _ _ far or __ huge when the default would be _ _ near).

16 DOS Reference

There are, of course, potential pitfalls in declaring functions and pointers to be of
nondefault types. For example, say you have the following small model program:

void myputs(s)
char *s;
int i;
for Ii = O; s[i] != O; i++) putc(s[i] I;

main(I
char near *mystr;

mystr = "Hello, world\n"
myputs (mystr);
}

This program works fine. In fact, the _ _ near declaration on mystr is redundant, since all
pointers, both code and data, will be near.

But what if you recompile this program using the compact (or large or huge) memory
model? The pointer mystr in main is still near (it's still a 16-bit pointer). However, the
pointers in myputs is now far, because that's the default. This means that myputs will
pull two words out of the stack in an effort to create a far pointer, and the address it ends
up with will certainly not be that of mystr.

How do you avoid this problem? If you're going to explicitly declare pointers to be of
type _ _ far or _ _ near, be sure to use function prototypes for any functions that might
use them. The solution is to define myputs in ANSI C style, like this:

void myputs(char *s) {
/* body of myputs */
}

Now when Borland C ++compiles your program, it knows that myputs expects a pointer
to char; and since you're compiling under the large model, it knows that the pointer
must be _ _ far. Because of that, Borland C ++will push the data segment (DS) register
onto the stack along with the 16-bit value of mystr, forming a far pointer.

How about the reverse case: arguments to myputs declared as __ far and compiled with
a small data model? Again, without the function prototype, you will have problems,
because main will push both the offset and the segment address onto the stack, but
myputs will expect only the offset. With the prototype-style function definitions, though,
main will only push the offset onto the stack.

Pointing to a given segment:offset address
You can make a far pointer point to a given memory location (a specific segment:offset
address). You can do this with the macro MK_FP, which takes a segment and an offset
and returns a far pointer. For example,

MK_FP(segment_value, offset_value)

Given a __ far pointer,fp, you can get the segment component withFP_SEG(jp) and the
offset component with FP _OFF(jp). For more information about these three Borland
C ++ library routines, refer to the Library Reference.

Chapter 1, DOS memory management 17

Using library files
Borland C ++ offers a version of the standard library routines for each of the six memory
models. Borland C++ is smart enough to link in the appropriate libraries in the proper
order, depending on which model you've selected. However, if you're using the
Borland C++ linker, TLINK, directly (as a standalone linker), you need to specify which
libraries to use. See Chapter 9 in the User's Guide for details on how to do this.

Linking mixed modules
Suppose you compiled one module using the small memory model and another module
using the large model, then wanted to link them together. This would present some
problems, but they can be solved.

The files would link together fine, but the problems you would encounter would be
similar to those described in the earlier section, "Declaring functions to be near or far." If
a function in the small module called a function in the large module, it would do so with
a near call, which would probably be disastrous. Furthermore, you could face the same
problems with pointers as described in the earlier section, "Declaring pointers to be
near, far, or huge," since a function in the small module would expect to pass and
receive _ _ near pointers, and a function in the large module would expect __ far
pointers.

The solution, again, is to use function prototypes. Suppose that you put myputs into its
own module and compile it with the large memory model. Then create a header file
called myputs.h (or some other name with a .h extension), which would have the
following function prototype in it:

void far myputs(char far *s);

Now, put main into its own module (called MYMAIN.C), and set things up like this:

#include <Stdio.h>
#include "rnyputs.h"

main() {
char near *rnystr;

mystr = "Hello, world\n";
myputs (mystr);
}

When you compile this program, Borland C++ reads in the function prototype from
myputs.h and sees that it is a __ far function that expects a _ _ far pointer. Therefore, it
generates the proper calling code, even if it's compiled using the small memory model.

What if, on top of all this, you need to link in library routines? Your best bet is to use one
of the large model libraries and declare everything to be __ far. To do this, make a copy
of each header file you would normally include (such as stdio.h), and rename the copy
to something appropriate (such as fstdio.h).

Then edit each function prototype in the copy so that it is explicitly __ far, like this:

int far cdecl printf(char far* format, ...);

18 DOS Reference

That way, not only will __ far calls be made to the routines, but the pointers passed will
also be __ far pointers. Modify your program so that it includes the new header file:

#include <fstdio.h>

void main() {
char near *mystr;
mys tr = "Hello, world\n";
printf (mystr);

Compile your program with the command-line compiler BCC then li,"'11< it •vith TLINK,
specifying a large model library, such as CL.LIB. Mixing models is tricky, but it can be
done; just be prepared for some difficult bugs if you do things wrong.

Overlays (VROOMM) for DOS
Overlays are used only in 16-bit DOS programs; you can mark the code segments of a
Windows application as discardable to decrease memory consumption. Overlays are
parts of a program's code that share a common memory area. Only the parts of the
program that are required for a given function reside in memory at the same time.

Overlays can significantly reduce a program's total run-time memory requirements.
With overlays, you can execute programs that are much larger than the total available
memory, since only parts of the program reside in memory at any given time.

How overlays work
Borland C++'s overlay manager (called VROOMM for Virtual Run-time Object­
Oriented Memory Manager) is highly sophisticated; it does much of the work for you. In
a conventional overlay system, modules are grouped together into a base and a set of
overlay units. Routines in a given overlay unit can call other routines in the same unit
and routines in the base, but not routines in other units. The overlay units are overlaid
against each other; that is, only one overlay unit can be in memory at a time, and each
unit occupies the same physical memory. The total amount of memory needed to run
the program is the size of the base plus the size of the largest overlay.

This conventional scheme is quite inflexible. It requires complete understanding of the
possible calling dependencies in the program, and requires you to have the overlays
grouped accordingly. It might be impossible to break your program into overlays if you
can't split it into separable calling dependencies.

VROOMM's scheme is quite different. It provides dynamic segment swapping. The basic
swapping unit is the segment. A segment can be one or more modules. More
importantly, any segment can call any other segment.

Memory is divided into an area for the base plus a swap area. Whenever a function is
called in a segment that is neither in the base nor in the swap area, the segment
containing the called function is brought into the swap area, possibly displacing other
segments. This is a powerful approach-it is like software virtual memory. You no
longer have to break your code into static, distinct, overlay units. You just let it run!

Chapter 1, DOS memory management 19

Figure 1.9

These
segments are
generated
automatically
by the linker

Near heap and
stack share
data segment

Suppose a segment needs to be brought into the swap area. If there is room for the
segment, execution continues. If there is not, then one or more segments in the swap
area must be thrown out to make room.

The algorithm for deciding which segment to throw out is quite sophisticated. Here's a
simplified version: if there is an inactive segment, choose it for removal. Inactive
segments are those without executing functions. Otherwise, pick an active segment and
swap it out. Keep swapping out segments until there is enough room available. This
technique is called dynamic swapping.

The more memory you provide for the swap area, the better the program performs. The
swap area acts like a cache; the bigger the cache, the faster the program runs. The best
setting for the size of the swap area is the size of the program's working set.

Once an overlay is loaded into memory, it is placed in the overlay buffer, which resides
in memory between the stack segment and the far heap. By default, the size of the
overlay buffer is estimated and set at startup, but you can change it using the global
variable _ovrbuffer (see Appendix B). If there isn't enough available memory, an error
message is displayed by DOS ("Program too big to fit in memory") or by the C startup
code ("Not enough memory to run program").

One important option of the overlay manager is the ability to swap the modules to
expanded or extended memory when they are discarded from the overlay buffer. Next
time the module is needed, the overlay manager can copy it from where the module was
swapped to instead of reading from the file. This makes the overlay manager much
faster.

When using overlays, memory is used as shown in the next figure.

Memory maps for overlays

Medium model Large model

Class CODE Class CODE

Class OVRINFO Class OVRINFO

Class STUBSEG Class STUBSEG

DATA DATA
' Class DATA Class DATA

NEAR HEAP

STACK STACK

Overlay buffer Overlay buffer
(allocated (allocated
at startup) at startup)

FAR HEAP FAR HEAP

Huge model

Class CODE

Class OVRINFO

Class STUBSEG

STACK

Overlay buffer
(allocated
at startup)

FAR HEAP

20 DOS Reference

Guidelines for using Borland C++ overlays effectively
To get the best out of Borland C++ overlays,

• Minimize resident code (resident run-time library, interrupt handlers, and device
drivers are a good starting point).

• Set overlay buffer size to be a comfortable working set (start with 128Kand adjust up
and down to see the speed/ size tradeoff). See page 23 for more information on
setting the size of the overlay buffer.

• Think versatility and variety: take advantage of the overlay system to provide
support for special cases, interactive help, and other end-user benefits you couldn't
consider before.

Requirements
To create overlays, you'll need to remember a few rules:

• The smallest part of a program that can be made into an overlay is a segment.

• Overlaid applications must use the medium, large, or huge programming models;
the tiny, small, and compact models are not supported.

• Normal segment merging rules govern overlaid segments. That is, several .OBJ
modules can contribute to the same overlaid segment.

The link-time generation of overlays is completely separated from the run-time overlay
management; the linker does not automatically include code to manage the overlays. In
fact, from the linker's point of view, the overlay manager is just another piece of code

· that gets linked in. The only assumption the linker makes is that the overlay manager
takes over an interrupt vector (typically INT 3FH) through which all dynamic loading is
controlled. This level of transparency makes it very easy to implement custom-built
overlay managers that suit the particular needs of each application.

Exception handling and overlays
If you overlay a C ++ program that contains exception-handling constructs, there are a
number of situations that you must avoid. The following program elements cannot
contain an exception-handling construct:

• Inline functions that are not expanded inline
• Template functions
• Member functions of template classes

Exception-handling constructs include user-written try/catch and _ _ try I __ except
blocks. In addition, the compiler can insert exception handlers for blocks with automatic
class variables, exception specifications, and some new/delete expressions.

If you attempt to overlay any of the above exception-handling constructs, the linker
identifies the function and module with the following message:

Error: Illegal local public in function_name in module module_name

Chapter 1, DOS memory management 21

When this error is caused by an inline function, you can rewrite the function so that it is
not inline. If the error is caused by a template function, you can do the following:

• Remove all exception-handling constructs from the function
• Remove the function from the overlay module

You need to pay special attention when overlaying a program that uses multiple
inheritance. An attempt to overlay a module that defines or uses class constructors or
destructors that are required for a multiple inheritance class can cause the linker to
generate the following message:

Error: Illegal local public in class_name:: in module module_name

When such a message is generated, the module identified by the linker message should
not be overlaid.

The container classes (in the BIDS? .LIB) have the exception-handling mechanism turned
off by default. However, the diagnostic version of BIDS throws exceptions and should
not be used with overlays. By default, the string class can throw exceptions and should
not be used in programs that use overlays. See the Class Libraries Guide for a discussion
of BIDS and the string class.

·Using overlays
Overlays can be used only in 16-bit DOS programs. To overlay a program, all of its
modules must be compiled with the -Y compiler option enabled. To make a particular
module into an overlay, it needs to be compiled with the -Yo option. (-Yo automatically
enables -Y.)

The-Yo option applies to all modules and libraries that follow it on the command line;
you can disable it with -Yo-. These are the only command line options that are allowed
to follow file names. For example, to overlay the module OVL.C but not the library
GRAPHICS.LIB, either of the following command lines could be used:

BCC -ml -Yo ovl.c -Yo- graphics.lib

or

BCC -ml graphics.lib -Yo ovl.c

If TLINK is invoked explicitly to link the .EXE file, the /o linker option must be specified
on the linker command line or response file. See the User's Guide for details on how to
use the /o option.

Overlay example
Suppose that you want to overlay a program consisting of three modules: MAIN.C,
01.C, and 02.C. Only the modules 01.C and 02.C should be made into overlays.
(MAIN.C contains time-critical routines and interrupt handlers, so it should stay
resident.) Let's assume that the program uses the large memory model.

The following command accomplishes the task:

BCC -ml -Y main.c -Yo ol.c o2.c

The result will be an executable file MAIN.EXE, containing two overlays.

22 DOS Reference

Note See the discussion of TargetExpert in the User's Guide for information on programming
with overlays.

Overlaid programs
This section discusses issues vital to well-behaved overlaid applications.

The far call requirement
Use a large code model (medium, large, or huge) when you want to compile an overlay
module. At any call to an overlaid function in another module, you must guarantee that
all currently active functions are far.

You must compile all overlaid modules with the -Y option, which makes the compiler
generate code that can be overlaid.

Note Failing to observe the far call requirement in an overlaid program will cause
unpredictable and possibly catastrophic results when the program is executed.

Buffer size
The default overlay buffer size is twice the size of the largest overlay. This is adequate
for some applications. But imagine that a particular function of a program is
implemented through many modules, each of which is overlaid. If the total size of those
modules is larger than the overlay buffer, a substantial amount of swapping will occur if
the modules make frequent calls to each other.

The solution is to increase the size of the overlay buffer so that enough memory is
available at any given time to contain all overlays that make frequent calls to each other.
You can do this by setting the _ovrbuffer global variable (see Appendix B) to the required
size in paragraphs. For example, to set the overlay buffer to 128K, include the following
statement in your code:

unsigned _ovrbuffer = Ox2000;

There is no general formula for determining the ideal overlay buffer size.

What not to overlay
Exception-handling constructs in overlays require special attention. See page 21 for a
discussion of exception handling.

Don't overlay modules that contain interrupt handlers, or small and time-critical
routines. Due to the non-reentrant nature of the DOS operating system, modules that
might be called by interrupt functions should not be overlaid.

Borland C++'s overlay manager fully supports passing overlaid functions as arguments,
assigning and initializing function pointer variables with addresses of overlaid
functions, and calling overlaid routines via function pointers.

Debugging overlays
Most debuggers have very limited overlay debugging capabilities, if any at all. Not so
with Borland C++'s Turbo Debugger, the standalone debugger. The debugger fully

Chapter 1, DOS memory management 23

supports single-stepping and breakpoints in overlays in a manner completely
transparent to you. By using overlays, you can easily engineer and debug huge
applications-all by using Turbo Debugger.

Note Overlays should not be used with any diagnostic version of the BIDS libraries.

External routines in overlays
Like normal C functions, external assembly language routines must observe certain
programming rules to work correctly with the overlay manager.

If an assembly language routine makes calls to any overlaid functions, the assembly
language routine must be declared FAR, and it must set up a stack frame using the BP
register. For example, assuming that OtherFunc is an overlaid function in another
module, and that the assembly language routine ExternFunc calls it, then ExternFunc
must be FAR and set up a stack frame, as shown:

ExternFunc PROC
push bp
mov
sub

call

mov
pop
RET

bp,sp
sp,LocalSize

OtherFunc

sp,bp
bp

ExternFunc ENDP

FAR
;Save BP
;Set up stack frame
;Allocate local variables

;Call another overlaid module

;Dispose local variables
;Restore BP
;Return

where LocalSize is the size of the local variables. If LocalSize is zero, you can omit the two
lines to allocate and dispose local variables, but you must not omit setting up the BP
stack frame even if you have no arguments or variables on the stack.

These requirements are the same if ExternFunc makes indirect references to overlaid
functions. For example, if OtherFunc makes calls to overlaid functions, but is not itself
overlaid, ExternFunc must be FAR and still has to set up a stack frame.

In the case where an assembly language routine doesn't make any direct or indirect
references to overlaid functions, there are no special requirements; the assembly
language routine can be declared NEAR. It does not have to set up a stack frame.

Overlaid assembly language routines should not create variables in the code segment,
since any modifications made to an overlaid code segment are lost when the overlay is
disposed. Likewise, pointers to objects based in an overlaid code segment cannot be
expected to remain valid across calls to other overlays, since the overlay manager freely
moves around and disposes overlaid code segments.

Swapping
If you have expanded or extended memory available, you can tell the overlay manager
to use it for swapping. If you do so, when the overlay manager has to discard a module
from the overlay buffer (because it should load a new module and the buffer is full), it
can store the discarded module in this memory. Any later loading of this module is

24 DOS Reference

reduced to in-memory transfer, which is significantly faster than reading from a disk
file.

In both cases there are two possibilities: the overlay manager can either detect the
presence of expanded or extended memory and can take it over by itself, or it can use an
already detected and allocated portion of memory. For extended memory, the detection
of the memory use is not always successful because of the many different cache and
RAM disk programs that can take over extended memory without any mark. To avoid
this problem, you can tell the overlay manager the starting address of the extended
memory and how much of it is safe to use.

Borland C-r-r provides two functions that allow you to initialize expanded and extended
memory. See Chapter 5 for a description of the _OvrlnitEms and _OvrrlnitExt functions.

Chapter 1, DOS memory management 25

26 DOS Reference

Math
This chapter describes the floating-point options and explains how to use complex and
bed numerical types.

Floating-point 1/0
Floating-point output requires linking of conversion routines used by printf, scanf, and
any variants of these functions. To reduce executable size, the floating-point formats are
not automatically linked. However, this linkage is done automatically whenever your
program uses a mathematical routine or the address is taken of some floating-point
number. If neither of these actions occur, the missing floating-point formats can result in
a run-time error.

The following program illustrates how to set up your program to properly execute.

/* PREPARE TO OUTPUT FLOATING-POINT NUMBERS. */
#include <stdio.h>

#pragma extref _floatconvert

void main() (
printf("d = %f\n", 1.3);
}

Floating-point options
There are two types of numbers you work with in C: integer (int, short, long, and so on)
and floating point (float, double, and long double). Your computer's processor can
easily handle integer values, but more time and effort are required to handle floating­
point values.

Chapter 2, Math 27

However, the iAPx86 family of processors has a corresponding family of math
coprocessors, the 8087, the 80287, and the 80387. We refer to this entire family of math
coprocessors as the 80x87, or "the coprocessor."

The 80x87 is a special hardware numeric processor that can be installed in your PC. It
executes floating-point instructions very quickly. If you use floating point a lot, you'll
probably want a coprocessor. The CPU in your computer interfaces to the 80x87 via
special hardware lines.

Note If you have an 80486 or Pentium processor, the numeric coprocessor is probably already
built in.

Emulating the 80x87 chip
The default Borland C++ code-generation option is emulation (the -f command-line
compiler option). This option is for programs that might or might not have floating
point, and for machines that might or might not have an 80x87 math coprocessor.

With the emulation option, the compiler will generate code as if the 80x87 were present,
but will also link in the emulation library (EMU.LIB). When the program runs, it uses
the 80x87 if it is present; if no coprocessor is present at run time, it uses special software
that emulates the 80x87. This software uses 512 bytes of your stack, so make allowance
for it when using the emulation option and set your stack size accordingly.

Using the 80x87 code
If your program is going to run only on machines that have an 80x87 math coprocessor,
you can save a small amount in your .EXE file size by omitting the 80x87 autodetection
and emulation logic. Choose the 80x87 floating-point code-generation option (the -f87
command-line compiler option). Borland C++ will then link your programs with
FP87.LIB instead of with EMU.LIB.

No floating-point code
If there is no floating-point code in your program, you can save a small amount of link
time by choosing None for the floating-point code-generation option (the -f- command­
line compiler option). Then Borland C++ will not link with EMU.LIB, FP87.LIB, or
MATHx.LIB.

Fast floating-point option
Borland C++ has a fast floating-point option (the -ff command-line compiler option). It
can be turned off with -ff- on the command line. Its purpose is to allow certain
optimizations that are technically contrary to correct C semantics. For example,

double x;
x = (float) (3. 5*x);

To execute this correctly, xis multiplied by 3.5 to give a double that is truncated to float
precision, then stored as a double in x. Under the fast floating-point option, the long

28 DOS Reference

double product is converted directly to a double. Since very few programs depend on
the loss of precision in passing to a narrower floating-point type, fast floating point is the
default.

The 87 environment variable
If you build your program with 80x87 emulation, which is the default, your program
will automatically check to see if an 80x87 is available, and will use it if it is.

There are some situations in which you might want to override this default
autodetection behavior. For example, your own run-time system nnght have an 80x87,
but you might need to verify that your program will work as intended on systems
without a coprocessor. Or your program might need to run on a PC-compatible system,
but that particular system returns incorrect information to the autodetection logic
(saying that a nonexistent 80x87 is available, or vice versa).

Borland C ++ provides an option for overriding the start-up code's default autodetection
logic; this option is the 87 environment variable.

You set the 87 environment variable at the DOS prompt with the SET command, like
this:

C> SET 87=N

or like this:

C> SET 87=Y

Don't include spaces on either side of the=. Setting the 87 environment variable to N
(for No) tells the start-up code that you do not want to use the 80x87, even though it
might be present in the system.

Note Setting the 87 environment variable to Y (for Yes) means that the coprocessor is there,
and you want the program to use it. Let the programmer beware: If you set 87 = Y when, in
fact, there is no 80x87 available on that system, your system will hang.

If the 87 environment variable has been defined (to any value) but you want to undefine
it, enter the following at the DOS prompt:

C> SET 87=

Press Enter immediately after typing the equal sign.

Registers and the 80x87
When you use floating point, make note of these points about registers:

• In 80x87 emulation mode, register wraparound and certain other 80x87 peculiarities
are not supported.

• If you are mixing floating point with inline assembly, you might need to take special
care when using 80x87 registers. Unless you are sure that enough free registers exist,
you might need to save and pop the 80x87 registers before calling functions that use
the coprocessor.

Chapter 2, Math 29

Disabling floating-point exceptions
By default, Borland C++ programs abort if a floating-point overflow or divide-by-zero
error occurs. You can mask these floating-point exceptions by a call to _control87 in main,
before any floating-point operations are performed. For example,

#include <float.h>
main () {

_control87(MCW_EM,MCW_EM);

You can determine whether a floating-point exception occurred after the fact by calling
_status87 or _clear87. See the Library Reference entries for these functions for details.

Certain math errors can also occur in library functions; for instance, if you try to take the
square root of a negative number. The default behavior is to print an error message to
the screen, and to return a NAN (an IEEE not-a-number). Use of the NAN is likely to
cause a floating-point exception later, which will abort the program if unmasked. If you
don't want the message to be printed, insert the following version of _matherr into your
program:

#include <math.h>
int _matherr(struct _exception *e)
{

return 1; /* error has been handled*/

Any other use of _matherr to intercept math errors is not encouraged; it is considered
obsolete and might not be supported in future versions of Borland C++.

Using complex types
Complex numbers are numbers of the form x + yi, where x and y are real numbers, and i
is the square root of -1. Borland C ++ has always had a type

struct complex
{

double x, y;
};

defined in math.h. This type is convenient for holding complex numbers, because they
can be considered a pair of real numbers. However, the limitations of C make arithmetic
with complex numbers rather cumbersome. With the addition of C++, complex math is
much simpler.

A significant advantage to using the Borland C++ complex numerical type is that all of
the ANSI C Standard mathematical routines are defined to operate with it. These
mathematical routines are not defined for use with the C struct complex.

Note See the Class Libraries Guide for more information.

To use complex numbers in C++, all you have to do is to include complex.h. In
complex.h, all the following have been overloaded to handle complex numbers:

30 DOS Reference

• All of the binary arithmetic operators.
• The input and output operators,>> and<<.
• The ANSI C math functions.

The complex library is invoked only if the argument is of type complex. Thus, to get the
complex square root of-1, use

sqrt(complex(-1))

and not

sqrt (-1 I

The following functions are defined by class complex:

double arg(complex&); II angle in the plane
complex conj (complex&); 11 complex conjugate
double imag(complex&); II imaginary part
double norm(complex&); II square of the magnitude
double real(complex&); II real part
II Use polar coordinates to create a complex.
complex polar(double mag, double angle = 0);

Using bed types
Borland C++, along with almost every other computer and compiler, does arithmetic on
binary numbers (that is, base 2). This can sometimes be confusing to people who are
used to decimal (base 10) representations. Many numbers that are exactly representable
in base 10, such as 0.01, can only be approximated in base 2.

Note See the Class Libraries Guide for more information.

Binary numbers are preferable for most applications, but in some situations the round­
off error involved in converting between base 2 and 10 is undesirable. The most
common example of this is a financial or accounting application, where the pennies are
supposed to add up. Consider the following program to add up 100 pennies and
subtract a dollar:

#include <stdio.h>
int i;
float x = 0.0;
for Ii = O; i < 100; ++ii

x += 0.01;
x -= 1.0;
printf("l00*.01 - 1 = %g\n",x);

The correct answer is 0.0, but the computed answer is a small number close to 0.0. The
computation magnifies the tiny round-off error that occurs when converting 0.01 to base
2. Changing the type of x to double or long double reduces the error, but does not
eliminate it.

To solve this problem, Borland C++ offers the C++ type bed, which is declared in bcd.h.
With bed, the number 0.01 is represented exactly, and the bed variable x provides an
exact penny count.

Chapter 2, Math 31

#include <bcd.h>
int i;
bed x = 0.0;
for (i = O; i < 100; ++ii

x += 0.01;
x -= 1.0;
cout << "100*.01 - 1 = " << x << "\n";

Here are some facts to keep in mind about bed:

• bed does not eliminate all round-off error: A computation like 1.0/3.0 will still have
round-off error.

• bed types can be used with ANSI C math functions.

• bed numbers have about 17 decimal digits precision, and a range of about 1 x 10-125 to
1x10125.

Converting bed numbers
bed is a defined type distinct from float, double, or long double; decimal arithmetic is
performed only when at least one operand is of the type bed.

Note The bed member function real is available for converting a bed number back to one of the
usual formats (float, double, or long double), though the conversion is not done
automatically. real does the necessary conversion to long double, which can then
be converted to other types using the usual C conversions. For example, a bed can be
printed using any of the following four output statements with eout and printf

I* PRINTING bed NUMBERS *I
I* This must be compiled as a C++ program. *I
#include <bcd.h>
#include <iostream.h>
#include <stdio.h>

void main(void) {
bed a = 12.1;
double x = real(a); II This conversion required for printf().

printf("\na = %g", x);
printf("\na =%Lg", real(a));
printf("\na = %g", (double)real(a));
cout « "\na = "«a; II The preferred method.
}

Note that since printf doesn't do argument checking, the format specifier must have the
L if the long double value real(a) is passed.

Number of decimal digits
You can specify how many decimal digits after the decimal point are to be carried in a
conversion from a binary type to a bed. The number of places is an optional second

32 D 0 S R e f e re n c e

argument to the constructor bed. For example, to convert $1000.00/7 to a bed variable ,
rounded to the nearest penny, use

bed a= bed(l000.00/7, 2)

where 2 indicates two digits following the decimal point. Thus,

1000. 0017

bed(l000.00/7, 2)

bed (10 0 0 o 0017 I 1)

bed (1000 • 0017 1 0)

bed (1000 o 00/7 I -1)

bed (1000 • 0017 I -2)

= 142.85714 ...

142.860

142.900

143.000

140.000

== 100.000

The number is rounded using banker's rounding (as specified by IEEE), which rounds
to the nearest whole number, with ties being rounded to an even digit. For example,

bed(12.335, 2)

bcd(l2.345, 2)

bed(12 .355, 2)

==

==

12.34

12.34

12.36

Chapter 2, Math 33

34 DOS Reference

Video functions
Borland C ++ comes with a complete library of graphics functions, so you can produce
onscreen charts and diagrams. The graphics functions are available for 16-bit DOS-only
applications. This chapter briefly discusses video modes and windows, then explains
how to program in graphics mode.

Video modes
Your PC has some type of video adapter. This can be a Monochrome Display Adapter
(MDA) for text-only display, or it can be a graphics adapter, such as a Color/Graphics
Adapter (CGA), an Enhanced Graphics Adapter (EGA), a Video Graphics Array
adapter (VGA), or a Hercules Monochrome Graphics Adapter. Each adapter can
operate in a variety of modes; the mode specifies whether the screen displays 80 or 40
columns (text mode only), the display resolution (graphics mode only), and the display
type (color or black and white).

The screen's operating mode is defined when your program calls one of the mode­
defining functions textmode, initgraph, or setgraphmode.

• In text mode, your PC's screen is divided into cells (80- or 40-columns wide by 25, 43,
or 50 lines high). Each cell consists of a character and an attribute. The character is the
displayed ASCII character; the attribute specifies how the character is displayed (its
color, intensity, and so on). Borland C++ provides a full range of routines for
manipulating the text screen, for writing text directly to the screen, and for
controlling cell attributes.

• In graphics mode, your PC's screen is divided into pixels; each pixel displays a single
dot onscreen. The number of pixels (the resolution) depends on the type of video
adapter connected to your system and the mode that adapter is in. You can use
functions from Borland C ++' s graphics library to create graphic displays onscreen:
You can draw lines and shapes, fill enclosed areas with patterns, and control the color
of each pixel.

Chapter 3, Video functions 35

In text modes, the upper left comer of the screen is position (1,n with x-coordinates
increasing from left to right, and y-coordinates increasing from screen-top to screen­
bottom. In graphics modes, the upper left comer is position (0,0), with the x- and y­
coordinate values increasing in the same manner ..

Windows and viewports
Borland C++ provides functions for creating and managing windows on your screen in
text mode (and viewports in graphics mode). If you aren't familiar with windows and
viewports, you should read this brief overview. Borland C++'s window- and viewport­
management functions are explained in the "Programming in graphics mode" section.

A window is a rectangular area defined on your PC's video screen when it's in a text
mode. When your program writes to the screen, its output is restricted to.the active
window. The rest of the screen (outside the window) remains untouched.

The default window is a full-screen text window. Your program can change this default
window to a text window smaller than the full screen (with a call to the window function,
which specifies the window's position in terms of screen coordinates).

In graphics mode, you can also define a rectangular area on your PC's video screen; this
is a viewport. When your graphics program outputs drawings and so pn, the viewport
acts as the virtual screen. The rest of the screen (outside the viewport) remains
untouched. You define a viewport in terms of screen coordinates with a call to the
setviewport function.

Except for these window- and viewport-defining functions, all coordinates for text-mode
and graphics-mode functions are given in window- or viewport-relative terms, not in
absolute screen coordinates. The upper left comer of the text-mode window is the
coordinate origin, referred to as (1,1); in graphics modes, the viewport coordinate origin
is position (0,0).

Programming in graphics mode
This section provides a brief summary of the functions used in graphics mode. For more
detailed information about these functions, refer to Chapter 4.

Borland C++ provides a separate library of over 70 graphics functions, ranging from
high-level calls (like setviewport, bar3d, and drawpoly) to bit-oriented functions {like
getimage and putimage). The graphics library supports numerous fill and line styles, and
provides several text fonts that you can size, justify, and orient horizontally or vertically.

These functions are in the library file GRAPHICS.LIB, and they are prototyped in the
header file graphics.h. In addition to these two files, the graphics package includes
graphics device drivers (*.BGI files) and stroked character fonts (*.CHR files); these files
are discussed in following sections.

36 DOS Reference

To use the graphics functions with the BCC.EXE command-line compiler, you have to
list GRAPHICS.LIB on the command line. For example, if your program MYPROG.C
uses graphics, the BCC command line would be

BCC MYPROG GRAPHICS.LIB

See the User's Guide discussion of TargetExpert for a description of DOS programming
with graphics. When you make your program, the linker automatically links in the
Borland C++ graphics library.

Note Because graphics functions use far pointers, graphics aren't supported in the tiny
memory model.

There is only one graphics library, not separate versions for each memory model (in
contrast to the standard libraries CS.LIB, CC.LIB, CM.LIB, and so on, which are
memory-model specific). Each function in GRAPHICS.LIB is a far function, and those
graphics functions that take pointers take far pointers. For these functions to work
correctly, it is important that you #include graphics.h in every module that uses
graphics.

The graphics library functions
There are seven categories of Borland C ++ graphics functions:

• Graphics system control
• Drawing and filling
• Manipulating screens and viewports
• Text output
• Color control
• Error handling
• State query

Graphics system control
Here's a summary of the graphics system control:

closegraph

detect graph

graphdef aults

_graphfreemem
_graphgetmem

getgraphmode

getmoderange

initgraph

installuserdriver
installuserfont

registerbgidriver

restorecrtmode

Shuts down the graphics system.

Checks the hardware and determines which graphics driver to use; recommends a
mode.

Resets all graphics system variables to their default settings.

Deallocates graphics memory; hook for defining your own routine.

Allocates graphics memory; hook for defining your own routine.

Returns the current graphics mode.

Returns lowest and highest valid modes for specified driver.

Initializes the graphics system and puts the hardware into graphics mode.

Installs a vendor-added device driver to the BGI device driver table.

Loads a vendor-added stroked font file to the BGI character file table.

Registers a linked-in or user-loaded driver file for inclusion at link time.

Restores the original (pre-initgraph) screen mode.

Chapter 3, Video functions 37

setgraphbufsize

setgraphmode

Specifies size of the internal graphics buffer.

Selects the specified graphics mode, clears the screen, and restores all defaults.

Borland C++'s graphics package provides graphics drivers for the following graphics
adapters (and true compatibles):

• Color/Graphics Adapter (CGA)
• Multi-Color Graphics Array (MCGA)
• Enhanced Graphics Adapter (EGA)
• Video Graphics Array (VGA)
• Hercules Graphics Adapter
• AT&T 400-line Graphics Adapter
• 3270 PC Graphics Adapter
• IBM 8514 Graphics Adapter

To start the graphics system, you first call the initgraph function. initgraph loads the
graphics driver and puts the system into graphics mode.

You can tell initgraph to use a particular graphics driver and mode, or to autodetect the
attached video adapter at run time and pick the corresponding driver. If you tell
initgraph to autodetect, it calls detectgraph to select a graphics driver and mode. If you tell
initgraph to use a particular graphics driver and mode, you must be sure that the
hardware is present. If you force initgraph to use hardware that is not present, the results
will be unpredictable.

Once a graphics driver has been loaded, you can use the gerdrivername function to find
out the name of the driver and the getmaxmode function to find out how many modes a
driver supports. getgraphmode will tell you which graphics mode you are currently in.
Once you have a mode number, you can find out the name of the mode with
getmodename. You can change graphics modes with setgraphmode and return the video
mode to its original state (before graphics was initialized) with restorecrtmode.
restorecrtmode returns the screen to text mode, but it does not close the graphics system
(the fonts and drivers are still in memory).

graphdefaults resets the graphics state's settings (viewport size, draw color, fill color and
pattern, and so on) to their default values.

installuserdriver and installuserfont let you add new device drivers and fonts to your BGI.

Finally, when you're through using graphics, call closegraph to shut down the graphics
system. closegraph unloads the driver from memory and restores the original video
mode (via restorecrtmode).

A more detailed discussion
The previous discussion provided an overview of how initgraph operates. In the
following paragraphs, we describe the behavior of initgraph, _graphgetmem, and
_graphfreeme1J1:.in some detail.

Normally, the initgraph routine loads a graphics driver by allocating memory for the
driver, then loading the appropriate .BGI file from disk. As an alternative to this

38 DOS Reference

dynamic loading scheme, you can link a graphics driver file (or several of them) directly
into your executable program file. You do this by first converting the .BGI file to an .OBJ
file (using the BGIOBJ utility-see UTILS.TXT, included with your distribution disks),
then placing calls to registerbgidriver in your source code (before the call to initgraph) to
register the graphics driver(s). When you build your program, you need to link the .OBJ
files for the registered drivers.

After determining which graphics driver to use (via detectgraph), initgraph checks to see
if the desired driver has been registered. If so, initgraph uses the registered driver
directly from memory. Otherwise, initgraph allocates memory for the driver and loads
the .BGI file from disk.

Note Using registerbgidriver is an advanced programming technique, not recommended for
novice programmers. This function is described in more detail in Chapter 4.

During run time, the graphics system might need to allocate memory for drivers, fonts,
and internal buffers. If this is necessary, it calls _graphgetmem to allocate memory and
_graphfreemem to free memory. By default, these routines call malloc and free,
respectively.

You can override this default behavior by defining your own _graphgetmem and
_graphfreemem functions. By doing this, you can control graphics memory allocation
yourself. You must, however, use the same names for your own versions of these
memory-allocation routines: they will override the default functions with the same
names that are in the standard C libraries.

Note If you provide your own _graphgetmem or _graphfreemem, you might get a "duplicate
symbols" warning message. Just ignore the warning.

Drawing and filling
Here's a quick summary of the drawing and filling functions:

arc

circle

drawpoly

ellipse

getarccoords

getaspectratio

getlinesettings

line
linerel

lineto

move to

mover el

rectangle
setaspectratio

setlinestyle

Draws a circular arc.

Draws a circle.

Draws the outline of a polygon.

Draws an elliptical arc.

Returns the coordinates of the last call to arc or ellipse.

Returns the aspect ratio of the current graphics mode.

Returns the current line style, line pattern, and line thickness.

Draws a line from (xO,yO) to (xl,yl).

Draws a line to a point some relative distance from the current position (CP).

Draws a line from the current position (CP) to (x,y).

Moves the current position (CP) to (x,y).

Moves the current position (CP) a relative distance.

Draws a rectangle.

Changes the default aspect ratio-correction factor.

Sets the current line width and style.

C h a p t e r 3 , V i d e o I u n ct i o n s 39

bar

bar3d

fillellipse

fill poly

flood fill
getfillpattern

getfillsettings

pies lice
sector

setfillpattern

setfillstyle

Draws and fills a bar.

Draws and fills a 3-D bar.

Draws and fills an ellipse.

Draws fllld fills a polygon.

Flood-fills a bounded region.

Returns the user-defined fill pattern.

Returns information about the current fillpattem and color.

Draws and fills a pie slice.

Draws and fills an elliptical pie slice.

Selects a user-defined fill pattern.

Sets the fill pattern and fill color.

With Borland C++'s drawing and painting functions, you can draw colored lines, arcs,
circles, ellipses, rectangles, pie slices, two- and three-dimensional bars, polygons, and
regular or irregular shapes based on combinations of these. You can fill any bounded
shape (or any region surrounding such a shape) with one of eleven predefined patterns,
or your own user-defined pattern. You can also control the thickness and style of the
drawing line, and the location of the current position (CP).

You draw lines and unfilled shapes with the functions arc, circle, drawpoly, ellipse, line,
linerel, lineto, and rectangle. You can fill these shapes with floodfill, or combine drawing
and filling into one step with bar, bar3d, fillellipse, fillpoly, pieslice, and sector. You use
setlinestyle to specify whether the drawing line (and border line for filled shapes) is thick
or thin, and whether its style is solid, dotted, and so forth, or some other line pattern
you've defined. You can select a predefined fill pattern with setfillstyle, and define your
own fill pattern with setfillpattern. You move the CP to a specified location with moveto,
and move it a specified displacement with moverel.

To find out the current line style and thickness, callgetlinesettings. For information about
the current fill pattern and fill color, callgetfillsettings; you can get the user-defined fill
pattern with getfillpattern.

You can get the aspect ratio (the scaling factor used by the graphics system to make sure
circles come out round) with getaspectratio, and the coordinates of the last drawn arc or
ellipse withgetarccoords. If your circles aren't perfectly round, use setaspectratio to correct
them.

Manipulating the screen and viewport
Here's a quick summary of the screen-, viewport-, image-, and pixel-manipulation
functions

Screen manipulation
cleardevice

setactivepage

setvisualpage

40 DOS Reference

Clears the screen (active page).

Sets the active page for graphics output.

Sets the visual graphics page number.

Function Description

Viewport manipulation

clearviewport Clears the current viewport.

getviewsettings Returns information about the current viewport.

setviewport Sets the current output viewport for graphics output.

Image manipulation

getimage

imagesize

Saves a bit image of the specified region to memory.

Returns the number of bytes required to store a rectangular region of
the screen.

putimage Puts a previously saved bit image onto the screen.

Pixel manipulation

getpixel Gets the pixel color at (x,y).

putpixel Plots a pixel at (x,y).

Besides drawing and painting, the graphics library offers several functions for
manipulating the screen, viewports, images, and pixels. You can clear the whole screen
in one step with a call to cleardevice; this routine erases the entire screen and homes the
CP in the viewport, but leaves all other graphics system settings intact (the line, fill, and
text styles; the palette; the viewport settings; and so on).

Depending on your graphics adapter, your system has between one and four screen­
page buffer; these are areas in memory where individual whole-screen images are
stored dot-by-dot. You can specify the active screen page (where graphics functions
place their output) with setactivepage and the visual page (the one displayed onscreen)
with setvisualpage.

Once your screen is in graphics mode, you can define a viewport (a rectangular "virtual
screen") on your screen with a call to setviewport. You define the viewport's position in
terms of absolute screen coordinates and specify whether clipping is on (active) or off.
You clear the viewport with clearviewport. To find out the current viewport's absolute
screen coordinates and clipping status, call getviewsettings.

You can capture a portion of the onscreen image withgetimage, call imagesize to calculate
the number of bytes required to store that captured image in memory, then put the
stored image back on the screen (anywhere you want) with putimage.

The coordinates for all output functions (drawing, filling, text, and so on) are viewport­
relative.

You can also manipulate the color of individual pixels with the functions getpixel (which
returns the color of a given pixel) and putpixel (which plots a specified pixel in a given
color).

Text output in graphics mode
Here's a quick summary of the graphics-mode text output functions:

gettextsettings

outtext

Returns the current text font, direction, size, and justification.

Sends a string to the screen at the current position (CP).

Ch apter 3, Video I unctions 41

outtextxy

registerbgifont
settextjustify
settextstyle

setusercharsize

textheight

textwidth

Sends a string to the screen at the specified position.

Registers a linked-in or user-loaded font.

Sets text justification values used by outtext and outtextxy.

Sets the current text font, style, and character magnification factor.

Sets width and height ratios for stroked fonts.

Returns the height of a string in pixels.

Returns the width of a string in pixels.

The graphics library includes an 8X8 bit-mapped font and several stroked fonts for text
output while in graphics mode.

• In a bit-mapped font, each character is defined by a matrix of pixels.

• In a stroked font, each character is defined by a series of vectors that tell the graphics
system how to draw that character.

The advantage of using a stroked font is apparent when you start to draw large
characters. Since a stroked font is defined by vectors, it retains good resolution and
quality when the font is enlarged. On the other hand, when you enlarge a bit-mapped
font, the matrix is multiplied by a scaling factor; as the scaling factor becomes larger, the
characters' resolution becomes coarser. For small characters, the bit-mapped font should
be sufficient, but for larger text you should select a stroked font.

You output graphics text by calling either outtext or outtextxy, and you control the
justification of the output text (with respect to the CP) with settextjustify. You choose the
character font, direction (horizontal or vertical), and size (scale) with settextstyle. You can
find out the current text settings by calling gettextsettings, which returns the current text
font, justification, magnification, and direction in a textsettings structure. setusercharsize
lets you modify the character width and height of stroked fonts.

If clipping is on, all text strings output by outtext and outtextxy are clipped at the
viewport borders. If clipping is off, these functions throw away bit-mapped font output
if any part of the text string would go off the screen edge; stroked font output is
truncated at the screen edges.

To determine the onscreen size of a given text string, call textheight (which measures the
string's height in pixels) and textwidth (which measures its width in pixels).

The default 8x8 bit-mapped font is built into the graphics package, so it's always
available at run time. The stroked fonts are each kept in a separate .CHR file; they can be
loaded at run time or converted to .OBJ files (with the BGIOBJ utility) and linked into
your .EXE file.

Normally, the settextstyle routine loads a font file by allocating memory for the font, then
loading the appropriate .CHR file from disk. As an alternative to this dynamic loading
scheme, you can link a character font file (or several of them) directly into your
executable program file. You do this by first converting the .CHR file to an .OBJ file
(using the BGIOBJ utility-you can read about it in UTILS.TXT, the online
documentation included with your distribution disks), then placing calls to
registerbgifont in your source code (before the call to settextstyle) to register the character

42 DOS Reference

font(s). When you build your program, you need to link in the .OBJ files for the stroked
fonts you register.

Note Using registerbgifont is an advanced programming technique, not recommended for
novice programmers. This function is described in more detail in UTILS.TXT, which is
included with your distribution disks.

Color control
Here's a quick summary of the color control functions:

Function Description

Get color information
getbkcolor Returns the current background color.

Returns the current drawing color.

Returns the palette definition structure.

getcolor
getdefaultpalette

getmaxcolor

getpalette

getpalettesize

Returns the maximum color value available in the current graphics mode.

Returns the current palette and its size.

Returns the size of the palette look-up table.

Set one or more colors
setallpalette Changes all palette colors as specified.

Sets the current background color.

Sets the current drawing color.

setbkcolor

set color
setpalette Changes one palette color as specified by its arguments.

Before summarizing how these color control functions work, we first present a basic
description of how colors are actually produced on your graphics screen.

Pixels and palettes
The graphics screen consists of an array of pixels; each pixel produces a single (colored)
dot onscreen. The pixel's value does not specify the precise color directly; it is an index
into a color table called a palette. The palette entry corresponding to a given pixel value
contains the exact color information for that pixel.

This indirection scheme has a number of implications. Though the hardware might be
capable of displaying many colors, only a subset of those colors can be displayed at any
given time. The number of colors in this subset is equal to the number of entries in the
palette (the palette's size). For example, on an EGA, the hardware can display 64
different colors, but only 16 of them at a time; the EGA palette's size is 16.

The size of the palette determines the range of values a pixel can assume, from 0 to (size -
1). getmaxcolor returns the highest valid pixel value (size -1) for the current graphics
driver and mode.

When we discuss the Borland C++'s graphics functions, we often use the term color,
such as the current drawing color, fill color and pixel color. In fact, this color is a pixel's
value: it's an index into the palette. Only the palette determines the true color on the
screen. By manipulating the palette, you can change the actual color displayed on the

Chapter 3, Video functions 43

screen even though the pixel values (drawing color, fiU color, and so on) haven't
changed.

Background and drawing color
The background color always corresponds to pixel value 0. When an area is cleared to the
background color, that area's pixels are set to 0.

The drawing color is the value to which pixels are set when lines are drawn. You choose a
drawing color with setcolor (n), where n is a valid pixel value for the current palette.

Color control on a CGA
Due to graphics hardware differences, how you actually control color differs quite a bit
between CGA and EGA, so they're presented separately. Color control on the AT&T
driver, and the lower resolutions of the MCGA driver is similar to CGA.

On the CGA, you can choose to display your graphics in low resolution (320x200),
which allows you to use four colors, or in high resolution (640x200), in which you can
use two colors.

CGA low resolution
In the low-resolution modes, you can choose from four predefined four-color palettes.
In any of these palettes, you can set only the first palette entry; entries 1, 2, and 3 are
fixed. The first palette entry (color 0) is the background color; it can be any one of the 16
available colors (see the following table of CGA background colors).

You choose which palette you want by selecting the appropriate mode (CGACO,
CGACl, CGAC2, CGAC3); these modes use color palette 0 through color palette 3, as
detailed in the following table. The CGA drawing colors and the equivalent constants
are defined in graphics.h.

0

1

2

3

CGA_LIGHTGREEN

CGA_LIGHTCYAN

CGA_GREEN
CGA_CYAN

CGA_LIGHTRED

CGA_LIGHTMAGENTA

CGA_RED

CGA_MAGENTA

CGA_YELLOW

CGA_WIIlTE

CGA_BROWN
CGA_LIGHTGRAY

To assign one of these colors as the CGA drawing color, call setcolor with either the
color number or the corresponding constant name as an argument; for example, if
you're using palette 3 and you want to use cyan as the drawing color:

setcolor (1) ;

or

setcolor(CGA_CYAN);

44 DOS Reference

The available CGA background and foreground colors, defined in graphics.h, are listed
in the following table:

N'umeri(•value · sy:n11,0Wi¢ i:lame • .·• Numeniiii'value < ;·~~bC>11~1lii.am.e

0 BLACK 8 DARK GRAY

1 BLUE 9 LIGHTBLUE

2 GREEN 10 LIGHTGREEN

3 CYAN 11 LIGHTCYAN

4 RED 12 LIGHTRED

5 iv1AGEl'\JlA 13 LIGI-fTlvIAGEN!A

6 BROWN 14 YELLOW

7 LIGHTGRAY 15 WHITE

To assign one of these colors to the CGA background color, use setbkcolor(color), where
color is one of the entries in the preceding table. For CGA, this color is not a pixel value
(palette index); it directly specifies the actual color to be put in the first palette entry.

CGA high resolution
In high-resolution mode (640x200), the CGA displays two colors: a black background
and a colored foreground. Pixels can take on values of either 0 or 1. Because of a quirk in
the CGA itself, the foreground color is actually what the hardware thinks of as its
background color; you set it with the setbkcolor routine. (Strange but true.)

The colors available for the colored foreground are those listed in the preceding table.
The CGA uses this color to display all pixels whose value equals 1.

The modes that behave in this way are CGAHI, MCGAMED, MCGAHI, ATT400MED,
and ATT400HI.

CGA palette routines
Because the CGA palette is predetermined, you shouldn't use the setallpalette routine on
a CGA. Also, you shouldn't use setpalette(index, actual_color), except for index= 0. (This is
an alternate way to set the CGA background color to actual_color.)

Color control on the EGA and VGA
On the EGA, the palette contains 16 entries from a total of 64 possible colors; each entry
is user-settable. You can retrieve the current palette with getpalette, which fills in a
structure with the palette's size (16) and an array of the actual palette entries (the
"hardware color numbers" stored in the palette). You can change the palette entries
individually with setpalette, or all at once with setallpalette.

The default EGA palette corresponds to the 16 CGA colors, as given in the previous
color table: black is in entry 0, blue in entry 1, ... ,white in entry 15. There are constants
defined in graphics.h that contain the corresponding hardware color values: these are
EGA_BLACK, EGA_ WHITE, and so on. You can also get these values with getpalette.

The setbkcolor(color) routine behaves differently on an EGA than on a CGA. On an EGA,
setbkcolor copies the actual color value that's stored in entry #color into entry #0.

Chapter 3, Video functions 45

As far as colors are concerned, the VGA driver behaves like the EGA driver; it just has
higher resolution (and smaller pixels).

Error handling in graphics mode
Here's a quick summary of the graphics-mode error-handling functions:

grapherronnsg Returns an error message string for the
specified error code.

graphresult Returns an error code for the last graphics
operation that encountered a problem.

If an error occurs when a graphics library function is called (such as a font requested
with settextstyle not being found), an internal error code is set. You retrieve the error
code for the last graphics operation that reported an error by calling graphresult. A call to
grapherrormsg(graphresult()) returns the error strings listed in the following table.

The error return-code accumulates, changing only when a graphics function reports an
error. The error return code is reset to 0 only when initgraph executes successfully or
when you call graphresult. Therefore, if you want to know which graphics function
returned which error, you should store the value of graphresult into a temporary variable
and then test it.

0 grOk No error

-1 grNoinitGraph (BGI) graphics not installed (use initgraph)
-2 grNotDetected Graphics hardwaren't detected

-3 grFileNotFound Device driver file not found

-4 grlnvalidDriver Invalid device driver file

-5 grNoLoadMem Not enough memory to load driver

-6 grNoScanMem Out of memory in scan fill

-7 grNoFloodMem Out of memory in flood fill

-8 grFontNotFound Font file not found

-9 grNoFontMem Not enough memory to load font

-10 grlnvalidMode Invalid graphics mode for selected driver

-11 gr Error Graphics error

-12 grIOerror Graphics I/O error

-13 grlnvalidFont Invalid font file

-14 grinvalidFontNum Invalid font number

-15 grlnvalidDeviceNum Invalid device number

-18 grlnvalidVersion Invalid version of file

46 DOS Reference

State query
The following table summarizes the graphics mode state query functions:

Table 3.1

Function

Graphics mode state query functions

Returns

getarccoords
getaspectratio
getbkcolor
getcolor
getdrivername
getfillpattern
getfil/settings
getgraphmode
getlinesettings
getmaxcolor
getmaxmode
getmaxx
getmaxy
getmodename
getmoderange
getpalette
getpixel
gettextsettings
getviewsettings
getx
gety

Information about the coordinates of the last call to arc or ellipse.
Aspect ratio of the graphics screen.

Current background color.

Current drawing color.

Name of current graphics driver.

User-defined fill pattern.

Information about the current fill pattern and color.

Current graphics mode.

Current line style, line pattern, and line thickness.

Current highest valid pixel value.

Maximum mode number for current driver.

Current x resolution.

Current y resolution.

Name of a given driver mode.

Mode range for a given driver.

Current palette and its size.

Color of the pixel at x,y.
Current text font, direction, size, and justification.

Information about the current viewport.

x coordinate of the current position (CP).

y coordinate of the current position (CP).

Each of Borland C ++' s graphics function categories has at least one state query function.
These functions are mentioned under their respective categories and also covered here.
Each of the Borland C++ graphics state query functions is named get something (except
in the error-handling category). Some of them take no argument and return a single
value representing the requested information; others take a pointer to a structure
defined in graphics.h, fill that structure with the appropriate information, and return no
value.

The state query functions for the graphics system control category are getgraphmode,
getmaxmode, and getmoderange: the first returns an integer representing the current
graphics driver and mode, the second returns the maximum mode number for a given
driver, and the third returns the range of modes supported by a given graphics driver.
getmaxx and getmaxy return the maximum x and y screen coordinates for the current
graphics mode.

The drawing and filling state query functions are getarccoords, getaspectratio, getfillpattern,
getfillsettings, and getlinesettings. getarccoords fills a structure with coordinates from the
last call to arc or ellipse; getaspectratio tells the current mode's aspect ratio, which the
graphics system uses to make circles come out round. getfillpattern returns the current
user-defined fill pattern. getfillsettings fills a structure with the current fill pattern and fill

Chapter 3, Video functions 47

color. getlinesettings fills a structure with the current line style (solid, dashed, and so on),
line width (normal or thick), and.line pattern.

In the screen- and viewport-manipulation category, the state query functions are
getviewsettings, getx, gety, and getpixel. When you have defined a viewport, you can find
out its absolute screen coordinates and whether clipping is active by calling
getviewsettings, which fills a structure with the information. getx andgety return the
(viewport-relative) x- and y-coordinates of the CP. getpixel returns the color of a
specified pixel.

The graphics mode text-output function category contains one all-inclusive state query
function: gettextsettings. This function fills a structure with information about the current
character font, the direction in which text will be displayed (horizontal or bottom-to-top
vertical), the character magnification factor, and the text-string justification (both
horizontal and vertical).

Borland C++'s color-control function category includes four state query functions.
getbkcolor returns the current background color, and getcolor returns the current drawing
color. getpalette fills a structure with the size of the current drawing palette and the
palette's contents. getmaxcolor returns the highest valid pixel value for the current
graphics driver and mode (palette size -1).

Finally, getmodename and getdrivername return the name of a given driver mode and the
name of the current graphics driver, respectively.

48 DOS Reference

arc

Borland graphics interface
This chapter presents a description, in alphabetical order, of the Borland C++ graphics
functions. The graphics functions are available only for 16-bit DOS applications.

Function
Draws an arc.

Syntax

graphics.h

void far arc(int x, int y, int stangle, int endangle, int radius);

Remarks
arc draws a circular arc in the current drawing color centered at (x,y) with a radius given
by radius. The arc travels from stangle to endangle. If stangle equals 0 and endangle equals
360, the call to arc draws a complete circle.

The angle for arc is reckoned counterclockwise, with 0 degrees at 3 o'clock, 90 degrees at
12 o'clock, and so on.

The linestyle parameter does not affect arcs, circles, ellipses, or pie slices. Only the
thickness parameter is used.

If you're using a CGA in high resolution mode or a monochrome graphics adapter, the
examples in online Help that show how to use graphics functions might not produce the
expected results. If your system runs on a CGA or monochrome adapter, pass the value
1 to those functions that alter the fill or drawing color (setcolor, setfillstyle, and setlinestyle,
for example), instead of a symbolic color constant (defined in graphics.h).

Return value
None.

Ch apter 4, Bo r I and graphics interface 49

bar

bar

bar3d

See also
circle, ellipse, fillellipse, getarccoords, getaspectratio, graphresult, pieslice, sector

graphics.h

Fonetion
Draws a two-dimensional bar.

Syntax
void far bar(int left, int top, int right, int bottom);

Flemarks
bar draws a filled-in, rectangular, two-dimensional bar. The bar is filled using the
current fill pattern and fill color. bar does not outline the bar; to draw an outlined two­
dimensional bar, use bar3d with depth equal to 0.

The upper left and lower right corriers of the rectangle are given by (left, top) and (right,
bottom), respectively. The coordinates refer to pixels.

Return value
None.

See also
bar3d, rectangle, setcolor, setfillstyle, setlinestyle

Function
Draws a three-dimensional bar.

Syntax

graphics.h

void far bar3d(int left, int top, int right, int bottom, int depth, int topflag);

Remarks
bar3d draws a three-dimensional rectangular bar, then fills it using the current fill
pattern and fill color. The three-dimensional outline of the bar is drawn in the current
line style and color. The bat's depth in pixels is given by depth. The topflag parameter
governs whether a three-dimensional top is put on the bar. If topflag is nonzero, a top is
put on; otherwise, no top is put on the bar (making it possible to stack several bars on
top of one another).

The upper left and lower right comers of the rectangle are given by (left, top) and (right,
bottom), respectively.

To calculate a typical depth for bar3d, take 25% of the width of the bar, like this:

50 DOS Reference

circle

bar3d(left,top,right,bottom, (right-left)/4,1);

Return value
None.

See also
bar, rectangle, setcolor, setfillstyle, setlinestyle

Function
Draws a circle of the given radius with its center at (x,y).

Syntax

void far circle(int x, int y, int radius);

Remarks

cir c I e

graphics.h

circle draws a circle in the current drawing color with its center at (x,y) and the radius
given by radius.

Note The linestyle parameter does not affect arcs, circles, ellipses, or pie slices. Only the
thickness parameter is used.

If your circles are not perfectly round, adjust the aspect ratio.

Return value
None.

See also
arc, ellipse, fillellipse, getaspectratio, sector, setaspectratio

cleardevice

Function
Clears the graphics screen.

Syntax
void far cleardevice(void);

Remarks

graphics.h

cleardevice erases (that is, fills with the current background color) the entire graphics
screen and moves the CP (current position) to home (0,0).

Chapter 4, Borland graphics interface 51

clearviewport

Return value
None.

See also
clearviewport

clearviewport
Function
Clears the current viewport.

Syntax
void far clearviewport(void);

Remarks

graphics.h

clearviewport erases the viewport and moves the CP (current position) to home (0,0),
relative to the viewport.

Return value
None.

See also
cleardevice, getviewsettings, setviewport

closegraph
Function
Shuts down the graphics system.

Syntax
void far closegraph(void);

Remarks

graphics.h

closegraph deallocates all memory allocated by the graphics system, then restores the
screen to the mode it was in before you called initgraph. (The graphics system
deallocates memory, such as the drivers, fonts, and an internal buffer, through a call to
_graphfreemem.)

Return value
None.

52 D 0 S R e f e r e n c e

detectgraph

See also
initgraph, setgraphbufsize

detectgraph graphics.h

Function
Determines graphics driver and graphics mode to use by checking the hardware.

Syntax
void far detectgraph(int far *graphdriver, int far *graphmode);

Remarks
detectgraph detects your system's graphics adapter and chooses the mode that provides
the highest resolution for that adapter. If no graphics hardware is detected, *graphdriver
is set to grNotDetected (-2), and graphresult returns grNotDetected (-2).

*graphdriver is an integer that specifies the graphics driver to be used. You can give it a
value using a constant of the graphics _drivers enumeration type, which is defined in
graphics.hand listed in the following table.

Table 4.1 detectgraph constants

CURRENT_DRIVER -1

DETECT 0 (requests autodetection)

CGA 1

MCGA 2

EGA 3

EGA64 4

EGAMONO 5

IBM8514 6

HERCMONO 7

ATT400 8

VGA 9

PC3270 10

*graphmode is an integer that specifies the initial graphics mode (unless *graphdriver
equals DETECT; in which case, *graphmode is set to the highest resolution available for
the detected driver). You can give *graphmode a value using a constant of the

Chapter 4, Borland graphics interface 53

detectgraph

graphics_modes enumeration type, which is defined in graphics.hand listed in the
following table.

Table 4.2 Graphics drivers information

CGA CGACO 0 320x200 co 1

CGACl 1 320x200 Cl 1

CGAC2 2 320x200 C2 1

CGAC3 3 320x200 C3 1

CGAHI 4 640x200 2color 1

MCGA MC GA CO 0 320x200 co 1

MC GA Cl 1 320x200 Cl 1

MCGAC2 2 320x200 C2 1

MCGAC3 3 320x200 C3 1

MCGAMED 4 640x200 2 color 1

MCGAHI 5 640x480 2 color 1

EGA EGALO 0 640x200 16 color 4

EGAHI 1 640x350 16 color 2

EGA64 EGA64LO 0 640x200 16 color 1

EGA64HI 1 640x350 4 color 1

EGA-MONO EGAMONOHI 3 640x350 2 color l*

EGAMONOHI 3 640x350 2 color 2**

HERC HERCMONOHI 0 720x348 2 color 2

ATT400 ATT400CO 0 320x200 co 1

ATT400Cl 1 320x200 Cl 1

ATT400C2 2 320x200 C2 1

ATT400C3 3 320x200 C3 1

ATT400MED 4 640x200 2 color 1

ATT400HI 5 640x400 2 color 1

VGA VGALO 0 640x200 16 color 2

VGAMED 1 640x350 16 color 2

VGAHI 2 640x480 16color 1

PC3270 PC3270HI 0 720x350 2color 1

IBM8514 IBM8514HI 0 640x480 256color

IBM8514LO 0 1024x768 256 color

* 64K on EGAMONO card

** 256K on EGAMONO card

Note The main reason to call detectgraph directly is to override the graphics mode that
detectgraph recommends to initgraph.

Return value
None.

54 DOS Reference

drawpoly

See also
graphresult, initgraph

drawpoly graphics.h

ellipse

Function
Draws the outline of a polygon.

Syntax

void far drawpoly(int numpoints, int far *polypoints);

Remarks
drawpoly draws a polygon with numpoints points, using the current line style and color.

*polypoints points to a sequence of (numpoints x 2) integers. Each pair of integers gives
the x and y coordinates of a point on the polygon.

To draw a dosed figure with n vertices, you must pass n + 1 coordinates to drawpoly
where the nth coordinate is equal to the 0th.

Return value
None.

See also
fillpoly, floodfill, graphresult, setwritemode

Function
Draws an elliptical arc.

Syntax

graphics.h

void far ellipse(int x, int y, int stangle, int endangle, int xradius, int yradius);

Remarks
ellipse draws an elliptical arc in the current drawing color with its center at (x,y) and the
horizontal and vertical axes given by xradius and yradius, respectively. The ellipse
travels from stangle to endangle. If stangle equals 0 and endangle equals 360, the call to
ellipse draws a complete ellipse.

The angle for ellipse is reckoned counterclockwise, with 0 degrees at 3 o' dock, 90 degrees
at 12 o' dock, and so on.

The linestyle parameter does not affect arcs, circles, ellipses, or pie slices. Only the
thickness parameter is used.

Chapter 4, Borland graphics interface 55

f i 11e11 i p s e

Return value
None.

See also
arc, circle, fillellipse, sector

fillellipse graphics.h

fill poly

Function
Draws and fills an ellipse.

Syntax
void far fillellipse(int x, int y, int xradius, int yradius);

Remarks
fillellipse draws an ellipse using (x,y) as a center point and xradius and yradius as the
horizontal and vertical axes; fills it with the current fill color and pattern.

Return value
None.

See also
arc, circle, ellipse, pieslice

Function
Draws and fills a polygon.

Syntax
void far fillpoly(int numpoints, int far *polypoints);

Remarks

graphics.h

fillpoly draws the outline of a polygon with numpoints points in the current line style and
color Gust as drawpoly does), then fills the polygon using the current fill pattern and fill
color.

polypoints points to a sequence of (numpoints x 2) integers. Each pair of integers gives the
x and y coordinates of a point on the polygon.

Return value
None.

56 DOS Reference

I Io o d Ii 11

See also
drawpoly, floodfill, graphresult, setfillstyle

floodfill graphics.h

Function
Flood-fills a bounded region.

Syntax
void far floodfill(int x, int y, int border);

Remarks
Jloodfill fills an enclosed area on bitmap devices. (x,y) is a "seed point" within the
enclosed area to be filled. The area bounded by the color border is flooded with the
current fill pattern and fill color. If the seed point is within an enclosed area, the inside
will be filled. If the seed is outside the enclosed area, the exterior will be filled.

Use fillpoly instead of Jloodfill whenever possible so that you can maintain code
compatibility with future versions.

Note Jloodfill does not work with the IBM-8514 driver.

Return value
If an error occurs while flooding a region, graphresult returns a value of -7.

See also
drawpoly, fillpoly, graphresult, setcolor, setfillstyle

getarccoords graphics.h

Function
Gets coordinates of the last call to arc.

Syntax
void far getarccoords(struct arccoordstype far *arccoords);

Remarks
getarccoords fills in the arccoordstype structure pointed to by arccoords with information
about the last call to arc. The arccoordstype structure is defined in graphics.h as follows:

struct arccoordstype {
int X, y;

int xstart, ystart, xend, yend;
);

C h a p t e r 4 , B o r I a n d g r a p h i c s i n t e r fa c e 57

getaspectratio

The members of this structure are used to specify the center point (x,y), the starting
position (xstart, ystart), and the ending position (xend, yend) of the arc. They are useful if
you need to make a line meet at the end of an arc.

Return value
None.

See also
arc, fillellipse, sector

getaspectratio

Function
Retrieves the current graphics mode's aspect ratio.

Syntax
void far getaspectratio(int far *xasp, int far *yasp);

Remarks

graphics.h

They aspect factor, *yasp, is normalized to 10,000. On all graphics adapters except the
VGA, *xasp (the x aspect factor) is less than *yasp because the pixels are taller than they
are wide. On the VGA, which has "square" pixels, *xasp equals *yasp. In general, the
relationship between *yasp and *xasp can be stated as

*yasp = 10,000

*xasp <= 10,000

getaspectratio gets the values in *xasp and *yasp.

Return value
None.

See also
arc, circle, ellipse, fillellipse, pies lice, sector, setaspectratio

getbkcolor

Function
Returns the current background color.

Syntax
int far getbkcolor(void);

58 D 0 S R e f e r e n c e

graphics.h

getcolor

Remarks
getbkcolor returns the current background color. (See the table under setbkcolor for
details.)

Return value
getbkcolor returns the current background color.

See also
getcolor, getmaxcolor, getpalette, setbkcolor

getcolor graphics.h

Function
Returns the current drawing color.

Syntax
int far getcolor(void);

Remarks
getcolor returns the current drawing color.

The drawing color is the value to which pixels are set when lines and so on are drawn.
For example, in CGACO mode, the palette contains four colors: the background color,
light green, light red, and yellow. In this mode, if getcolor returns 1, the current drawing
color is light green.

Return value
getcolor returns the current drawing color.

See also
getbkcolor, getmaxcolor, getpalette, setcolor

getdefaultpalette graphics.h

Function
Returns the palette definition structure.

Syntax
struct palettetype *far getdefaultpalette(void);

Remarks
getdefaultpalette finds the palettetype structure that contains the palette initialized by the
driver during initgraph.

Chapter 4, Borland graphics interface 59

getdrivername

Return value
getdefaultpalette returns a pointer to the default palette set up by the current driver when
that driver was initialized.

See also
getpalette, initgraph

getdrivername graphics.h

Function
Returns a pointer to a string containing the name of the current graphics driver.

Syntax
char *far getdrivername(void);

Remarks
After a call to initgraph, getdrivername returns the name of the driver that is currently
loaded.

Return value
getdrivername returns a pointer to a string with the name of the currently loaded
graphics driver.

See also
in it graph

geHillpattern

Function
Copies a user-defined fill pattern into memory.

Syntax
void far getfillpattern(char far *pattern);

Remarks

graphics.h

getfillpattern copies the user-defined fill pattern, as set by setfillpattern, into the 8-byte
area pointed to by pattern.

pattern is a pointer to a sequence of 8 bytes, with each byte corresponding to 8 pixels in
the pattern. Whenever a bit in a pattern byte is set to 1, the corresponding pixel will be
plotted. For example, the following user-defined fill pattern represents a checkerboard:

char checkboard[8] = { OxAA, Ox55, OxAA, Ox55, OxAA, Ox55, OxAA, Ox55 };

60 DOS Reference

Return value
None.

See also
getfillsettings, setfillpattern

getfillsettings
Function
Gets information about current fill pattern and color.

Syntax
void far getfillsettings(struct fillsettingstype far *fillinfo);

Remarks

getfillsettings

graphics.h

getfillsettings fills in the fillsettingstype structure pointed to by fillinfo with information
about the current fill pattern and fill color. The fillsettingstype structure is defined in
graphics.h as follows:

struct f illsettingstype

} ;

int pattern;
int color;

/* current fill pattern*/
/*current fill color*/

The functions bar, bar3d,fillpoly,floodfill, and pieslice all fill an area with the current fill
pattern in the current fill color. There are 11 predefined fill pattern styles (such as solid,
crosshatch, dotted, and so on). Symbolic names for the predefined patterns are provided
by the enumerated type fill_patterns in graphics.h (see the following table). In addition,
you can define your own fill pattern.

If pattern equals 12 (USER_FILL), then a user-defined fill pattern is being used;
otherwise, pattern gives the number of a predefined pattern.

The enumerated type fill_patterns, defined in graphics.h, gives names for the predefined
fill patterns, plus an indicator for a user-defined pattern.

EMPTY_FILL

SOLID_FILL

LINE_FILL

LTSLASH_FILL

SLASH_FILL

BKSLASH_FILL

L TBKSLASH_FILL

HATCH_ FILL

XHATCH_FILL

INTERLEAVE_ FILL

0

1

2

3

4

5

6

7

8

9

Fill with background color

Solid fill

Fill with-

Fill with I I I
Fill with I I I, thick lines

Fill with \\\,thick lines

Fill with \ \ \

Light hatch fill

Heavy crosshatch fill

Interleaving line fill

Ch a p I er 4, Bo r I and graphics interface 61

getgraphmode

WIDE_DOT_FILL

CLOSE_DOT_FILL

USER_FILL

10

11

12

Widely spaced dot fill

Closely spaced dot fill

User-defined fill pattern

All but EMPTY_FILL fill with the current fill color; EMPTY_FILL uses the current
background color.

Return value
None.

See also
getfillpattern, setfillpattern, setfillstyle

getgraphmode

Function
Returns the current graphics mode.

Syntax
int far getgraphmode(void);

Remarks

graphics.h

Your program must make a successful call to initgraph before calling getgraphmode.

The enumerationgraphics_mode, defined in graphics.h, gives names for the predefined
graphics modes. For a table listing these enumeration values, refer to the description for
initgraph.

Return value
getgraphmode returns the graphics mode set by initgraph or setgraphmode.

See also
getmoderange, restorecrtmode, setgraphmode

getimage graphics.h

Function
Saves a bit image of the specified region into memory.

Syntax
void far getimage(int left, int top, int right, int bottom, void far *bitmap);

62 D 0 S R e f e r e n c e

getlinesettings

Remarks
getimage copies an image from the screen to memory.

left, top, right, and bottom define the screen area to which the rectangle is copied. bitmap
points to the area in memory where the bit image is stored. The first two words of this
area are used for the width and height of the rectangle; the remainder holds the image
itself.

Return value
None.

See also
imagesize, putimage, putpixel

getlinesettings

Function
Gets the current line style, pattern, and thickness.

Syntax

void far getlinesettings(struct linesettingstype far *lineinfo);

Remarks

graphics.h

getlinesettings fills a linesettingstype structure pointed to by lineinfo with information
about the current line style, pattern, and thickness.

The linesettingstype structure is defined in graphics.h as follows:

struct linesettingstype
int linestyle;
unsigned upattern;
int thickness;

};

linestyle specifies in which style subsequent lines will be drawn (such as solid, dotted,
centered, dashed). The enumeration line_styles, defined in graphics.h, gives names to
these operators:

SOLID_LINE 0 Solid line

DOTIED_LINE 1 Dotted line

CENTER_LINE 2 Centered line

DASHED_LINE 3 Dashed line

USERBIT_LINE 4 User-defined line style

Chapter 4, Borland graphics interface 63

getmaxcolor

thickness specifies whether the width of subsequent lines drawn will be normal or thick.

NORM_ WIDTH

TIIICK_WIDTH

1

3

1 pixel wide

3 pixels wide

upattern is a 16-bit pattern that applies only if linestyle is USERBIT_LINE (4). In that case,
whenever a bit in the pattern word is 1, the corresponding pixel in the line is drawn in
the current drawing color. For example, a solid line corresponds to a upattern of OxFFFF
(all pixels drawn), while a dashed line can correspond to a upattern of Ox3333 or OxOFOF.
If the linestyle parameter to setlinestyle is not USERBIT_LINE (!=4), the upattern
parameter must still be supplied but is ignored.

Return value
None.

See also
setlinestyle

getmaxcolor
Function
Returns maximum color value that can be passed to the setcolor function.

Syntax

int far getmaxcolor(void);

Remarks

graphics.h

getmaxcolor returns the highest valid color value for the current graphics driver and
mode that can be passed to setcolor.

For example, on a 256K EGA, getmaxcolor always returns 15, which means that any call
to setcolor with a value from 0 to 15 is valid. On a CGA in high-resolution mode or on a
Hercules monochrome adapter, getmaxcolor returns a value of 1.

Return value
getmaxcolor returns the highest available color value.

See also
getbkcolor, getcolor, getpalette, getpalettesize, setcolor

64 DOS Reference

getmaxmode

getmaxmode graphics.h

Function
Returns the maximum mode number for the current driver.

Syntax
int far getmaxrnode(void);

Remarks
getmaxmode lets you find out the maximum mode number for the currently loaded
driver, directly from the driver. This gives it an advantage over getmoderange, which
works for Borland drivers only. The minimum mode is 0.

Return value
getmaxmode returns the maximum mode number for the current driver.

See also
getmodename, getmoderange

getmaxx graphics.h

Function
Returns maximum x screen coordinate.

Syntax

int far getmaxx(void);

Remarks
getmaxx returns the maximum (screen-relative) x value for the current graphics driver
and mode.

For example, on a CGA in 320x200 mode, getmaxx returns 319. getmaxx is invaluable for
centering, determining the boundaries of a region onscreen, and so on.

Return value
getmaxx returns the maximum x screen coordinate.

See also
getmaxy, getx

Chapter 4, Borland graphics interface 65

getmaxy

getmaxy graphics.h

Function
Returns maximum y screen coordinate.

Syntax
int far getmaxy(void);

Remarks
getmaxy returns the maximum (screen-relative) y value for the current graphics driver
and mode.

For example, on a CGA in 320x200 mode, getmaxy returns 199. getmaxy is invaluable for
centering, determining the boundaries of a region onscreen, and so on.

Return value
getmaxy returns the maximum y screen coordinate.

See also
getmaxx, getx, gety

getmodename graphics.h

Function
Returns a pointer to a string containing the name of a specified graphics mode.

Syntax
char *far getmodename(int mode_number);

Remarks
getmodename accepts a graphics mode number as input and returns a string containing
the name of the corresponding graphics mode. The mode names are embedded in each
driver. The return values ("320x200 CGA Pl," "640x200 CGA," and so on) are useful for
building menus or displaying status.

Return value
getmodename returns a pointer to a string with the name of the graphics mode.

See also
getmaxmode, getmoderange

66 DOS Reference

getmoderange

getmoderange graphics.h

Function
Gets the range of modes for a given graphics driver.

Syntax
void far getmoderange(int graphdriver, int far *lomode, int far *himode);

Remarks
getmoderange gets the range of valid graphics modes for the given graphics driver,
graphdriver. The lowest permissible mode value is returned in *lomode, and the highest
permissible value is *himode. If graphdriver specifies an invalid graphics driver, both
*lomode and *himode are set to -1. If the value of graphdriver is -1, the currently loaded
driver modes are given.

Return value
None.

See also
getgraphmode, getmaxmode, getmodename, initgraph, setgraphmode

getpalette

Function
Gets information about the current palette.

Syntax
void far getpalette(struct palettetype far *palette);

Remarks

graphics.h

getpalette fills the palettetype structure pointed to by palette with information about the
current palette's size and colors.

The MAXCOLORS constant and the palettetype structure used by getpalette are defined in
graphics.h as follows:

#define MAXCOLORS 15

struct palettetype (
unsigned char size;
signed char colors[MAXCOLORS + 1];

};

size gives the number of colors in the palette for the current graphics driver in the
current mode.

Ch apter 4, Bo r I and graphics inter I ace 67

getpalettesize

colors is an array of size bytes containing the actual raw color numbers for each entry in
the palette.

Note getpalette cannot be used with the IBM-8514 driver.

Return value
None.

See also
getbkcolor, getcolor, getdefaultpalette, getmaxcolor, setallpalette, setpalette

getpalettesize
Function
Returns size of palette color lookup table.

Syntax
int far getpalettesize(void);

Remarks

graphics.h

getpalettesize is used to determine how many palette entries can be set for the current
graphics mode. For example, the EGA in color mode returns 16.

Return value
getpalettesize returns the number of palette entries in the current palette.

See also
setpalette, setallpalette

getpixel graphics.h

Function
Gets the color of a specified pixel.

Syntax
unsigned far getpixel(int x, int y);

Remarks
getpixel gets the color of the pixel located at (x,y).

Return value
getpixel returns the color of the given pixel.

68 DOS Reference

See also
getimage, putpixel

gettextsettings
Function
Gets information about the current graphics text font.

Syntax
void far gettextsettings(struct textsettingstype far *texttypeinfo);

Remarks

g ettextsetti n gs

graphics.h

gettextsettings fills the textsettingstype structure pointed to by textinfo with information
about the current text font, direction, size, and justification.

The textsettingstype structure used by gettextsettings is defined in graphics.h as follows:

struct textsettingstype {
int font;

};

int direction;
int charsize;
int horiz;
int vert;

See settextstyle for a description of these fields.

Return value
None.

See also
outtext, outtextxy, registerbgifont, settextjustify, settextstyle, setusercharsize, textheight,
textwidth

· getviewsettings graphics.h

Function
Gets information about the current viewport.

Syntax
void far getviewsettings(struct viewporttype far *viewport);

Remarks
getviewsettings fills the viewporttype structure pointed to by viewport with information
about the current viewport.

Chapter 4, Borland graphics interface 69

g etx

getx

gety

The viewporttype structure used by getviewpor~ is defined in graphics.h as follows:

struct viewporttype {

};

int left, top, right, bottom;
int clip;

Return value
None.

See also
clearviewport, getx, gety, setviewport

Function
Returns the current graphics position's x-coordinate.

Syntax
int far getx(void);

Remarks

graphics.h

getx finds the current graphics position's x-coordinate. The value is viewport-relative.

Return value
getx returns the x-coordinate of the current position.

See also
getmaxx, getmaxy, getviewsettings, gety, moveto

graphics.h

Function
Returns the current graphics position's y-coordinate.

Syntax
int far gety(void);

Remarks
gety returns the current graphics position's y-coordinate. The value is viewport-relative.

Return value
gety returns the y-coordinate of the current position.

70 DOS Reference

See also
getmaxx, getmaxy, getviewsettings, getx, moveto

graphdefaults

Function
Resets all graphics settings to their defaults.

Syntax

void far graphdefaults(void);

Remarks
graphdefaults resets all graphics settings to their defaults:

• Sets the viewport to the entire screen.

• Moves the current position to (0,0).

• Sets the default palette colors, background color, and drawing color.

• Sets the default fill style and pattern.

• Sets the default text font andjustification.

Return value
None.

See also
initgraph, setgraphmode

grapherrormsg

Function
Returns a pointer to an error message string.

Syntax
char * far grapherrormsg(int errorcode);

Remarks

graphdefaults

graphics.h

graphics.h

grapherrormsg returns a pointer to the error message string associated with errorcode, the
value returned by graphresult. ·

Refer to the entry for errno in the Library Reference for a list of error messages and
mnemonics.

Chapter 4, Borland graphics interface 71

_graphfreemem

Return value
grapherrormsg returns a pointer to an error message string.

See also
graph result

_graphfreemem
Function
User hook into graphics memory deallocation.

Syntax
void far _graphfreemem(void far *ptr, unsigned size);

Remarks

graphics.h

The graphics library calls _graphfreemem to release memory previously allocated
through _graphgetmem. You can choose to control the graphics library memory
management by simply defining your own version of _graphfreemem (you must declare
it exactly as shown in the declaration). The default version of this routine merely calls
free.

Return value
None.

See also
_graphgetmem, setgraphbufsize

_graphgetmem
Function
User hook into graphics memory allocation.

Syntax
void far * far _graphgetmem (unsigned size);

Remarks

graphics.h

Routines in the graphics library (not the user program) normally call _graphgetmem to
allocate memory for internal buffers, graphics drivers, and character sets. You can
choose to control the memory management of the graphics library by defining your
own version of _graphgetmem (you must declare it exactly as shown in the declaration).
The default version of this routine merely calls malloc.

72 DOS Reference

Return value
None.

See also
_graphfreemem, initgraph, setgraphbufsize

graph result
Function

graph result

graphics.h

Returns an error code for the last unsuccessful graphics operation.

Syntax
int far graphresult(void);

Remarks
graphresult returns the error code for the last graphics operation that reported an error
and resets the error level to grOk.

The following table lists the error codes returned by graphresult. The enumerated type
graph_errors defines the errors in this table. graph_errors is declared in graphics.h.

0 grOk No error

-1 grNoinitGraph (BGI) graphics not installed (use initgraph)

-2 grNotDetected Graphics hardware not detected

-3 grFileNotFound Device driver file not found

--4 grlnvalidDriver Invalid device driver file

-5 grNoLoadMem Not enough memory to load driver

-6 grNoScanMem Out of memory in scan fill

-7 grNoFloodMem Out of memory in flood fill
-8 grFontNotFound Font file not found

-9 igrNoFontMem Not enough memory to load font

-10 grlnvalidMode Invalid graphics mode for selected driver

-11 gr Error Graphics error

-12 grIOerror Graphics 1/0 error

-13 grlnvalidFont Invalid font file

-14 grlnvalidFontNum Invalid font number

-15 grlnvalidDeviceNum Invalid device number

-18 grin valid Version Invalid version number

Note that the variable maintained by graphresult is reset to 0 after graphresult has been
called. Therefore, you should store the value of graphresult into a temporary variable and
then test it.

Chapter 4, Borland graphics interface 73

imagesize

Return value
graphresult returns the current graphics error number, an integer in the range -15 to O;
grapherrormsg returns a pointer to a string associated with the value returned by
graphresult.

See also
detectgraph, drawpoly, fillpoly, floodfill, grapherrormsg, initgraph, pieslice, registerbgidriver,
registerbgifont, setallpalette, setcolor, setfillstyle, setgraphmode, setlinestyle, setpalette,
settextjustify, settextstyle, setusercharsize, setviewport, setvisualpage

imagesize graphics.h

Function
Returns the number of bytes required to store a bit image.

Syntax
unsigned far imagesize(int left, int top, int right, int bottom);

Remarks
imagesize determines the size of the memory area required to store a bit image. If the size
required for the selected image is greater than or equal to 64K - 1 bytes, imagesize returns
OxFFFF (-1).

Return value
imagesize returns the size of the required memory area in bytes.

See also
getimage, putimage

initgraph graphics.h

Function
Initializes the graphics system.

Syntax
void far initgraph(int far *graphdriver, int far *graphmode, char far *pathtodriver);

Remarks
initgraph initializes the graphics system by loading a graphics driver from disk (or
validating a registered driver), and putting the system into graphics mode.

To start the graphics system, first call the initgraph function. initgraph loads the graphics
driver and puts the system into graphics mode. You can tell initgraph to use a particular

74 DOS Reference

initgraph

graphics driver and mode, or to autodetect the attached video adapter at run time and
pick the corresponding driver.

If you tell initgraph to autodetect, it calls detectgraph to select a graphics driver and mode.
initgraph also resets all graphics settings to their defaults (current position, palette, color,
viewport, and so on) and resets graphresult to 0.

Normally, initgraph loads a graphics driver by allocating memory for the driver
(through __graphgetmem), then loading the appropriate .BGI file from disk. As an
alternative to this dynamic loading scheme, you can link a graphics driver file (or
several of them) directly into your executable program file. See UTILS.TXT (included
with your distribution disks) for more information on BGIOBJ.

pathtodriver specifies the directory path where initgraph looks for graphics drivers.
initgraph first looks in the path specified in pathtodriver, then (if they're not there) in the
current directory. Accordingly, if pathtodriver is null, the driver files (*.BGI) must be in
the current directory. This is also the path settextstyle searches for the stroked character
font files (*.CHR).

*graphdriver is an integer that specifies the graphics driver to be used. You can give it a
value using a constant of the graphics_drivers enumeration type, which is defined in
graphics.hand listed in Table 4.3.

Table 4.3 Graphics drivers constants

DETECT 0 (requests autodetection)

CGA 1

MCGA 2

EGA 3

EGA64 4

EGAMONO 5

IBM8514 6

HERCMONO 7

ATT400 8

VGA 9

PC3270 10

*graphmode is an integer that specifies the initial graphics mode (unless *graphdriver
equals DETECT, in which case *graphmode is set by initgraph to the highest resolution
available for the detected driver). You can give *graphmode a value using a constant of
the graphics_modes enumeration type, which is defined in graphics.hand listed in
Table 4.5.

Note graphdriver and graphmode must be set to valid values from Tables 4.3 and 4.5, or you'll
get unpredictable results. The exception is graphdriver = DETECT.

In Table 4.5, the Palette listings CO, Cl, C2, and C3 refer to the four predefined four­
color palettes available on CGA (and compatible) systems. You can select the
background color (entry #0) in each of these palettes, but the other colors are fixed.

C h a pt e r 4 , B o r I a n d g r a p h i c s i n t e r fa c e 75

initgraph

These palettes are described in greater detail in Chapter 3, and summarized in
Table 4.4.

Table4.4 Color palettes

0 LIGHTGREEN LIGHTRED YELLOW

1 LIGHTCYAN LIGHTMAGENTA WHITE

2 GREEN RED BROWN

3 CYAN MAGENTA LIGHTGRAY

After a call to initgraph, *graphdriver is set to the current graphics driver, and *graphmode
is set to the current graphics mode.

Table 4.5 Graphics modes

CGA CGACO 0 320x200 co 1

CGACl 1 320x200 Cl 1

CGAC2 2 320x200 C2 1

CGAC3 3 320x200 C3 1

CGAHI 4 640x200 2 color 1

MCGA MC GA CO 0 320x200 co 1

MCGACl 1 320x200 Cl 1

MCGAC2 2 320x200 C2 1

MCGAC3 3 320x200 C3 1

MC GAMED 4 640x200 2 color 1

MCGAHI 5 640x480 2 color 1

EGA EGALO 0 640x200 16 color 4

EGAHI 1 640x350 16 color 2

EGA64 EGA64LO 0 640x200 16 color 1

EGA64HI 1 640x350 4 color 1

EGA-MONO 3 640x350 2color l*

EGAMONOHI 3 640x350 2 color 2**

HERC HERCMONOHI 0 720x348 2 color 2

ATT400 ATT400CO 0 320x200 co 1

ATT400Cl 1 320x200 Cl 1

ATT400C2 2 320x200 C2 1

ATT400C3 3 320x200 C3 1

ATT400MED 4 640x200 2 color 1

ATT400HI 5 640x400 2 color 1

VGA VGALO 0 640x200 16 color 2

VGAMED 1 640x350 16 color 2

VGAHI 2 640x480 16 color 1

76 DOS Reference

installuserdriver

Table 4.5 Graphics modes (continued)

Graphics driver ~aphi~s;.:.modes

PC3270 PC3270HI

IBM8514 IBM8514HI

IBM8514LO

* 64K on EGAMONO card

** 256K on EGAMONO card

Return value

Value _Colu:m.ll:~fow

0 720x350

1 1024x768

0 640x480

Palette
2color

256 color

256 color

~ilges

1

initgraph always sets the internal error code; on success, it sets the code to 0. If an error
occurred, *graphdriver is set to -2, -3, -4, or -5, and graphresult returns the same value as
listed here:

grNotDetected -2
grFileNotFound -3
grinvalidDriver -4
grNoLoadMem -5

See also

Cannot detect a graphics card
Cannot find driver file
Invalid driver
Insufficient memory to load driver

closegraph, detectgraph, getdefaultpalette, getdrivername, getgraphmode, getmoderange,
graphdefaults, _graphgetmem, graphresult, installuserdriver, registerbgidriver, registerbgifont,
restorecrtmode, setgraphbufsize, setgraphmode

installuserdriver graphics.h

Function
Installs a vendor-added device driver to the BGI device-driver table.

Syntax

int far installuserdriver(char far *name, int huge (*detect) (void));

Remarks
installuserdriver lets you add a vendor-added device driver to the BGI internal table. The
name parameter is the name of the new device-driver file (.BGI), and the detect parameter
is a pointer to an optional autodetect function that can accompany the new driver. This
autodetect function takes no parameters and returns an integer value.

There are two ways to use this vendor-supplied driver. Let's assume you have a new
video card called the Spiffy Graphics Array (SGA) and that the SGA manufacturer
provided you with a BGI device driver (SGA.BGI). The easiest way to use this driver is
to install it by calling installuserdriver and then passing the return value (the assigned
driver number) directly to initgraph.

The other, more general way to use this driver is to link in an autodetect function that
will be called by initgraph as part of its hardware-detection logic (presumably, the
manufacturer of the SGA gave you this autodetect function). When you install the

Chapter 4, Borland graphics interface 77

installuserfont

driver (by calling installuserdriver), you pass the address of this function, along with the
device driver's file name.

After you install the device-driver file name and the SGA autodetect function, call
initgraph and let it go through its normal autodetection process. Before initgraph calls its
built-in autodetection function (detectgraph), it first calls the SGA autodetect function. If
the SGA autodetect function doesn't find the SGA hardware, it returns a value of -11
(grError), and initgraph proceeds with its normal hardware detection logic (which can
include calling any other vendor-supplied autodetection functions in the order in which
they were "installed"). If, however, the autodetect function determines that an SGA is
present, it returns a nonnegative mode number; then initgraph locates and loads
SGA.BGI, puts the hardware into the default graphics mode recommended by the
autodetect function, and finally returns control to your program.

You can install up to ten drivers at one time.

Return value
The value returned by installuserdriver is the driver number parameter you would pass
to initgraph in order to select the newly installed driver manually.

See also
initgraph, registerbgidriver

installuserfont graphics.h

Function
Loads a font file (.CHR) that is not built into the BGI system.

Syntax
int far installuserfont (char far *name);

Remarks
name is a filename in the current directory (pathname is not supported) of a font file
containing a stroked font. Up to twenty fonts can be installed at one time.

Return value
installuserfont returns a font ID number that can then be passed to settextstyle to select the
corresponding font. If the internal font table is full, a value of -11 (grError) is returned.

See also
settextstyle

78 DOS Reference

line

linerel

lineto

Ii n e

graphics.h

Function
Draws a line between two specified points.

Syntax
void far line(int xl, int yl, int x2, int y2);

Remarks
line draws a line in the current color, using the current line style and thickness between
the two points specified, (xl,yl) and (x2,y2), without updating the current position (CP).

Return value
None.

See also
getlinesettings, linerel, lineto, setcolor, setlinestyle, setwritemode

Function
Draws a line a relative distance from the current position (CP).

Syntax

void far linerel(int dx, int dy);

Remarks

graphics.h

linerel draws a line from the CP to a point that is a relative distance (dx,dy) from the CP.
The CP is advanced by (dx,dy).

Return value
None.

See also
getlinesettings, line, lineto, setcolor, setlinestyle, setwritemode

Function
Draws a line from the current position (CP) to (x,y).

graphics.h

Chapter 4, Borland graphics interface 79

moverel

Syntax
void far lineto (int x, int y) ;

Remarks
lineto draws a line from the CP to (x,y), then moves the CP to (x,y).

Return value
None.

See also
getlinesettings, line, Iinerel, setcolor, setlinestyle, setvisualpage, setwritemode

moverel
Function
Moves the current position (CP) a relative distance.

Syntax
void far moverel(int dx, int dy);

Remarks

graphics.h

moverel moves the current position (CP) dx pixels in the x direction and dy pixels in they
direction.

mo veto

Return value
None.

See also
moveto

Function
Moves the current position (CP) to (x,y).

Syntax
void far moveto(int x, int y);

Remarks
moveto moves the current position (CP) to viewport position (x,y).

80 DOS Reference

graphics.h

outtext

Return value
None.

See also
mover el

Function
Displays a string in the viewport.

Syntax
void far outtext(char far *textstring);

Remarks

outtext

graphics.h

outtext displays a text string in the viewport, using the current font, direction, and size.

outtext outputs textstring at the current position (CP). If the horizontal text justification is
LEFT_TEXT and the text direction is HORIZ_DIR, the CP's x-coordinate is advanced by
textwidth(textstring). Otherwise, the CP remains unchanged.

To maintain code compatibility when using several fonts, use textwidth and textheight to
determine the dimensions of the string.

Note If a string is printed with the default font using outtext, any part of the string that
extends outside the current viewport is truncated.

outtext is for use in graphics mode; it will not work in text mode.

Return value
None.

See also
gettextsettings, outtextxy, settextjustify, textheight, textwidth

outtextxy

Function
Displays a string at a specified location.

Syntax
void far outtextxy(int x, int y, char far *textstring);

graphics.h

Chapter 4, Borland graphics interface 81

pieslice

Remarks,
outtextxy displays a text string in the viewport at the given position (x, y), using the
current justification settings and the current font, direction, and size.

To maintain code compatibility when using several fonts, use textwidth and textheight to
determine the dimensions of the string.

Note If a string is printed with the default font using outtext or outtextxy, any part of the string
that extends outside the current viewport is truncated.

outtextxy is for use in graphics mode; it will not work in text mode.

Return value
None.

See also
gettextsettings, outtext, textheight, textwidth

pieslice
Function
Draws and fills in pie slice.

Syntax
void far pieslice(int x, int y, int stangle, int endangle, int radius);

Remarks

graphics.h

pieslice draws and fills a pie slice centered at (x,y) with a radius given by radius. The slice
travels from stangle to endangle. The slice is outlined in the current drawing color and
then filled using the current fill pattern and fill color.

The angles for pieslice are given in degrees. They are measured counterclockwise, with 0
degrees at 3 o'clock, 90 degrees at 12 o'clock, and so on.

If you're using a CGA or monochrome adapter, the examples in online Help that show
how to use graphics functions might not produce the expected results. If your system
runs on a CGA or monochrome adapter, use the value 1 (one) instead of the symbolic
color constant, and consult the second online Help example under arc on how to use the
pieslice function.

Return value
None.

See also
ftllellipse, ftll_patterns (enumerated type), graphresult, sector, setftllstyle

82 DOS Reference

putimage

putimage graphics.h

Function
Outputs a bit image to screen.

Syntax

void far putimage(int left, int top, void far *bitmap, int op);

Remarks
putimage puts the bit image previously saved with getimage back onto the screen, with
the upper left comer of the image placed at (left,top). bitmap points to the area in memory
where the source image is stored.

The op parameter to putimage specifies a combination operator that controls how the
color for each destination pixel onscreen is computed, based on the pixel already
onscreen and the corresponding source pixel in memory.

The enumeration putimage_ops, as defined in graphics.h, gives names to these operators.

COPY_PUT 0 Copy

XOR_pUT 1 Exclusive or

OR_pUT 2 Inclusive or

AND_PUT 3 And

NOT_PUT 4 Copy the inverse of the source

In other words, COPY_PUT copies the source bitmap image onto the screen, XOR_PUT
XORs the source image with the image already onscreen, OR_PUT ORs the source
image with that onscreen, and so on.

Return value
None.

See also
getimage, imagesize, putpixel, setvisualpage

putpixel

Function
Plots a pixel at a specified point.

Syntax

void far putpixel(int x, int y, int color);

graphics.h

Chapter 4, Borland graphics interface 83

rectangle

Remarks
putpixel plots a point in the color defined by color at (x,y).

Return value
None.

See also
getpixel, putimage

rectangle graphics.h

Function
Draws a rectangle.

Syntax
void far rectangle(int left, int top, int right, int bottom);

Remarks
rectangle draws a rectangle in the current line style, thickness, and drawing color.

(left,top) is the upper left comer of the rectangle, and (right,bottom) is its lower right
comer.

Return value
None.

See also
bar, bar3d, setcolor, setlinestyle

registerbgifont

Function
Registers linked-in stroked font code.

Syntax
int registerbgifont(void (*font) (void));

Remarks

graphics.h

Calling registerbgifont informs the graphics system that the font pointed to by font was
included at link time. This routine checks the linked-in code for the specified font; if the
code is valid, it registers the code in internal tables. Linked-in fonts are discussed in
detail under BGIOBJ in UTILS.TXT included with your distribution disks.

84 DOS Reference

registerbgidriver

By using the name of a linked-in font in a call to registerbgifont, you also tell the compiler
(and linker) to link in the object file with that public name.

If you register a user-supplied font, you must pass the result of registerbgifont to
settextstyle as the font number to be used.

Return value
registerbgifont returns a negative graphics error code if the specified font is invalid.
Otherwise, registerbgifont returns the font number of the registered font.

See also
graphresult, initgraph, installuserdriver, registerbgidriver, settextstyle

registerbgidriver graphics.h

Function
Registers a user-loaded or linked-in graphics driver code with the graphics system.

Syntax
int registerbgidriver(void (*driver) (void));

Remarks
registerbgidriver enables a user to load a driver file and "register" the driver. Once its
memory location has been passed to registerbgidriver, initgraph uses the registered driver.
A user-registered driver can be loaded from disk onto the heap, or converted to an .OBJ
file (using BGIOBJ.EXE) and linked into the .EXE.

Calling registerbgidriver informs the graphics system that the driver pointed to by driver
was included at link time. This routine checks the linked-in code for the specified driver;
if the code is valid, it registers the code in internal tables. Linked-in drivers are discussed
in detail in UTILS.TXT, included with your distribution disks.

By using the name of a linked-in driver in a call to registerbgidriver, you also tell the
compiler (and linker) to link in the object file with that public name.

Return value
registerbgidriver returns a negative graphics error code if the specified driver or font is
invalid. Otherwise, registerbgidriver returns the driver number.

If you register a user-supplied driver, you must pass the result of registerbgidriver to
initgraph as the driver number to be used.

See also
graphresult, initgraph, installuserdriver, registerbgifont

Chapter 4, Borland graphics interface 85

restorecrtmode

restorecrtmode graphics.h

sector

Function
Restores the screen mode to its pre-initgraph setting.

Syntax
void far restorecrtmode(void);

Remarks
restorecrtmode restores the original video mode detected by initgraph.

This function can be used in conjunction with setgraphmode to switch back and forth
between text and graphics modes. textmode should not be used for this purpose; use it
only when the screen is in text mode, to change to a different text mode.

Return value
None.

See also
getgraphmode, initgraph, setgraphmode

Function
Draws and fills an elliptical pie slice.

Syntax

graphics.h

void far sector(int x, int y, int stangle, int endangle, int xradius, int yradius);

Remarks
Draws and fills an elliptical pie slice using (x,y) as the center point, xradius and yradius as
the horizontal and vertical radii, respectively, and drawing from stangle to endangle. The
pie slice is outlined using the current color, and filled using the pattern and color
defined by setfillstyle or setfillpattern.

The angles for sector are given in degrees. They are measured counterclockwise with 0
degrees at 3 o'clock, 90 degrees at 12 o'clock, and so on.

If an error occurs while the pie slice is filling, graphresult returns a value of -6
(grNoScanMem).

Return value
None.

86 DOS Reference

setactivepage

See also
arc, circle, ellipse, getarccoords, getaspectratio, graphresult, pieslice, setfillpattern, setfillstyle,
setgraphbufsize

setactivepage graphics.h

Function
Sets active page for graphics output.

Syntax
void far setactivepage(int page);

Remarks
setactivepage makes page the active graphics page. All subsequent graphics output will be
directed to that graphics page.

The active graphics page might not be the one you see onscreen, depending on how
many graphics pages are available on your system. Only the EGA, VGA, and Hercules
graphics cards support multiple pages.

Return value
None.

See also
setvisualpage

setallpalette

Function
Changes all palette colors as specified.

Syntax

graphics.h

void far setallpalette(struct palettetype far *palette);

Remarks
setallpalette sets the current palette to the values given in the palettetype structure pointed
to by palette.

You can partially (or completely) change the colors in the EGA/VGA palette with
setallpalette.

The MAXCOLORS constant and the palettetype structure used by setallpalette are defined
in graphics.h as follows:

#define MAXCOLORS 15

C h a p t e r 4 , B o r I a n d g r a p h i c s i n t e r fa c e 87

setallpalette

struct palettetype {
unsigned char size;
signed char colors[MAXCOLORS + 1];

};

size gives the number of colors in the palette for the current graphics driver in the
current mode.

colors is an array of size bytes containing the actual raw color numbers for each entry in
the palette. If an element of colors is -1, the palette color for that entry is not changed.

The elements in the colors array used by setallpalette can be represented by symbolic
constants which are defined in graphics.h.

Table4.6 Actual color table

BLACK 0 EGA_BLACK 0

BLUE 1 EGA_BLUE 1
GREEN 2 EGA_GREEN 2
CYAN 3 EGA_CYAN 3
RED 4 EGA_RED 4
MAGENTA 5 EGA_MAGENTA 5
BROWN 6 EGA_LIGHTGRA Y 7
LIGHTGRAY 7 EGA_BROWN 20
DARKGRAY 8 EGA_DARKGRAY 56
LIGHTBLUE 9 EGA_LIGHTBLUE 57
LIGHTGREEN 10 EGA_LIGHTGREEN 58
LIGHTCYAN 11 EGA_LIGHTCYAN 59
LIGHTRED 12 EGA_LIGHTRED 60
LIGHTMAGENTA 13 EGA_LIGHTMAGENTA 61
YELLOW 14 EGA_ YELLOW 62
WIBTE 15 EGA_WHITE 63

Note that valid colors depend on the current graphics driver and current graphics
mode.

Changes made to the palette are seen immediately onscreen. Each time a palette color is
changed, all occurrences of that color onscreen will change to the new color value.

Note setallpalette cannot be used with the IBM-8514 driver.

Return value
If invalid input is passed to setallpalette, graphresult returns -11 (gr Error), and the current
palette remains unchanged.

88 DOS Reference

setaspectratio

See also
getpalette, getpalettesize, graphresult, setbkcolor, setcolor, setpalette

setaspectratio graphics.h

Function
Changes the default aspect ratio correction factor.

Syntax

void far setaspectratio(int xasp, int yasp);

Remarks
setaspectratio changes the default aspect ratio of the graphics system. The graphics
system uses the aspect ratio to make sure that circles are round onscreen. If circles
appear elliptical, the monitor is not aligned properly. You could correct this in the
hardware by realigning the monitor, but it's easier to change in the software by using
setaspectratio to set the aspect ratio. To obtain the current aspect ratio from the system,
call getaspectratio.

Return value
None.

See also
circle, getaspectratio

setbkcolor
Function

graphics.h

Sets the current background color using the palette.

Syntax

void far setbkcolor(int color);

Remarks
setbkcolor sets the background to the color specified by color. The argument color can be a
name or a number, as listed in the following table:

Number Name Number N~e·

0 BLACK 8 DARKGRAY

1 BLUE 9 LIGHTBLUE

2 GREEN 10 LIGHTGREEN

3 CYAN 11 LIGHTCYAN

C h a p t e r 4 , B o r I a n d g r a p h i c s i n I e r fa c e 89

setcolor

4

5

6

7

RED
MAGENTA

BROWN

LIGHTGRAY

12
13

14

15

LIGHTRED

LIGHTMAGENTA

YELLOW

WHITE

Note These symbolic names are which are defined in graphics.h.

For example, if you want to set the background color to blue, you can call

ASPROGRAMC setbkcolor(BLUE) /*or */ setbkcolor(l)

On CGA and EGA systems, setbkcolor changes the background color by changing the
first entry in the palette.

Note If you use an EGA or a VGA, and you change the palette colors with setpalette or
setallpalette, the defined symbolic constants might not give you the correct color. This is
because the parameter to setbkcolor indicates the entry number in the current palette
rather than a specific color (unless the parameter passed is 0, which always sets the
background color to black).

Return value
None.

See also
getbkcolor, setallpalette, setcolor, setpalette

setcolor
Function
Sets the current drawing color using the palette.

Syntax
void far setcolor(int color);

Remarks

graphics.h

setcolor sets the current drawing color to color, which can range from 0 to getmaxcolor.

90 DOS Reference

setfillpattern

The current drawing color is the value to which pixels are set when lines, and so on are
drawn. The following tables show the drawing colors available for the CGA and EGA,
respectively.

Palette
number 1

0 CGA_LIGHTGREEN CGA_LIGHTRED CGA_YELLOW

1 CGA_LIGHTCYAN CGA_LIGHlMAGENTA CGA_WHITE

2 CGA_GREEN CGA_RED CGA_BROWN

3 CGA_CYAN CGA_MAGENTA CGA_LIGHTGRA Y

Number Natne Ntu'J'.1.J:>er·.·· Name
0 BLACK 8 DARKGRAY

1 BLUE 9 LIGHTBLUE

2 GREEN 10 LIGHTGREEN

3 CYAN 11 LIGHTCYAN

4 RED 12 LIGHTRED

5 MAGENTA 13 LIGHTMAGENTA

6 BROWN 14 YELLOW

7 LIGHTGRAY 15 WHITE

You select a drawing color by passing either the color number itself or the equivalent
symbolic name to setcolor. For example, in CGACO mode, the palette contains four
colors: the background color, light green, light red, and yellow. In this mode, either
setcolor(3) or setcolor(CGA_ YELLOW) selects a drawing color of yellow.

Return value
None.

See also
getcolor, getmaxcolor, graphresult, setallpalette, setbkcolor, setpalette

seHillpattern

Function
Selects a user-defined fill pattern.

Syntax
void far setfillpattern(char far *upattern, int color);

Remarks

graphics.h

setfillpattern is like setfillstyle, except that you use it to set a user-defined 8x8 pattern
rather than a predefined pattern.

C h a p I e r 4 , B o r I a n d g r a p h i c s i n I e r I a c e 91

setfillstyle

upattern is a pointer to a sequence of 8 bytes, with each byte corresponding to 8 pixels in
the pattern. Whenever a bit in a pattern byte is set to 1, the corresponding pixel is
plotted.

Return value
None.

See also
getfillpattern, getfillsettings, graphresult, sector, setfillstyle

setfillstyle graphics.h

Function
Sets the fill pattern and color.

Syntax
void far setfillstyle(int pattern, int color);

Remarks
setftllstyle sets the current fill pattern and fill color. To set a user-defined fill pattern, do
not give a pattern of 12 (USER_FILL) to setfillstyle; instead, call setfillpattern.

The enumeration ftll_patterns, which is defined in graphics.h, gives names for the
predefined fill patterns and an indicator for a user-defined pattern.

EMPTY_FILL 0 Fill with background color
SOLID_FILL 1 Solid fill

LINE_FILL 2 Fill with-

LTSLASH_FILL 3 Fill with I I I
SLASH_FILL 4 Fill with/ I/, thick lines
BKSLASH_FILL 5 Fill with \ \ \, thick lines
LTBKSLASH_FILL 6 Fill with\\\

HATCH_FILL 7 Llght hatch fill
XHATCH_FILL 8 Heavy crosshatch fill

INTERLEA VE_FILL 9 Interleaving line fill
WIDE_OOT_FILL 10 Widely spaced dot fill
CLC>SE_OOT_FILL 11 Closely spaced dot fill
USER_FILL 12 User-defined fili pattern

All but EMPTY_FILL fill with the current fill color; EMPTY_FILL use the current
background color.

If invalid input is passed to setfillstyle, graphresult returns-11 (grError), and the current
fill pattern and fill color remain unchanged. ·

92 DOS Reference

Return value
None.

See also

setgraphmode

bar, bar3d, fillpoly, floodfill, getfillsettings, graphresult, pieslice, sector, setfillpattern

setgraphmode graphics.h

Function
Sets the system to graphics mode and clears the screen.

Syntax
void far setgraphmode(int mode);

Remarks
setgraphmode selects a graphics mode different than the default one set by initgraph. mode
must be a valid mode for the current device driver. setgraphmode clears the screen and
resets all graphics settings to their defaults (current position, palette, color, viewport,
and soon).

You can use setgraphmode in conjunction with restorecrtmode to switch back and forth
between text and graphics modes.

Return value
If you give setgraphmode an invalid mode for the current device driver, graphresult
returns a value of -10 (grinvalidMode).

See also
getgraphmode, getmoderange, graphresult, initgraph, restorecrtmode

setgraphbufsize graphics.h

Function
Changes the size of the internal graphics buffer.

Syntax
unsigned far setgraphbufsize(unsigned bufsize);

Remarks
Some of the graphics routines (such as floodfill) use a memory buffer that is allocated
when initgraph is called and released when closegraph is called. The default size of this
buffer, allocated by _graphgetmem, is 4,096 bytes.

Chapter 4, Borland graphics interface 93

setlinestyle

You might want to make this buffer smaller (to save memory space) or bigger (if, for
example, a call to floodfill produces error -7: Out of flood memory).

setgraphbufsize tells initgraph how much memory to allocate for this internal graphics
buffer when it calls _graphgetmem.

Note You must call setgraphbufsize before calling initgraph. Once initgraph has been called, all
calls to setgraphbufsize are ignored until after the next call to closegraph.

Return value
setgraphbufsize returns the previous size of the internal buffer.

See also
closegraph, _graphfreemem, _graphgetmem, initgraph, sector

setlinestyle graphics.h

Function
Sets the current line width and style.

Syntax
void far setlinestyle(int linestyle, unsigned upattern, int thickness);

Remarks
setlinestyle sets the style for all lines drawn by line, lineto, rectangle, drawpoly, and so on.

The linesettingstype structure is defined in graphics.h as follows:

struct linesettingstype {
int linestyle;
unsigned upattern;
int thickness;

};

linestyle specifies in which of several styles subsequent lines will be drawn (such as
solid, dotted, centered, dashed). The enumeration line_styles, which is defined in
graphics.h, gives names to these operators:

SOLID_LINE 0 Solid line
DOTTED _LINE 1 Dotted line

CENTER_LINE 2 Centered line

DASHED _LINE 3 Dashed line

USERBIT_LINE 4 User-defined line style

94 DOS Reference

setpalette

thickness specifies whether the width of subsequent lines drawn will be normal or thick.

Narite Value Description
"',; ~

NORM_ WIDTH 1 1 pixel wide

THICK_ WIDTH 3 3pixelswide

upattern is a 16-bit pattern that applies only if linestyle is USERBIT_LINE (4). In that case,
whenever a bit in the pattern word is 1, the corresponding pixel in the line is drawn in
the current drawing color. For example, a solid line corresponds to a upattern of OxFFFF
(all pixels dr~:nvrL), and a dashed liI1c can corrcsporld to a upattcrn of Ox3333 or OxOFOF. If
the linestyle parameter to setlinestyle is not USERBIT_LINE (in other words, if it is not
equal to 4), you must still provide the upattern parameter, but it will be ignored.

Note The linestyle parameter does not affect arcs, circles, ellipses, or pie slices. Only the
thickness parameter is used.

Return value
If invalid input is passed to setlinestyle, graphresult returns -11, and the current line style
remains unchanged.

See also
arc, bar3d, circle, drawpoly, ellipse, getlinesettings, graphresult, line, linerel, lineto, pieslice,
rectangle

setpalette graphics.h

Function
Changes one palette color.

Syntax
void far setpalette(int colornum, int color);

Remarks
setpalette changes the colornum entry in the palette to color. For example, setpalette(0,5)
changes the first color in the current palette (the background color) to actual color
number 5. If size is the number of entries in the current palette, colornum can range
between 0 and (size -1).

You can partially (or completely) change the colors in the EGA/VGA palette with
setpalette. On a CGA, you can only change the first entry in the palette (colornum equals
0, the background color) with a call to setpalette.

Chapter 4, Borland graphics interface 95

setrgbpalette

The color parameter passed to setpalette can be represented by symbolic constants which
are defined in graphics.h.

BLACK 0 EGA_BLACK 0
BLUE 1 EGA_BLUE· 1
GREEN 2 EGA_ GREEN 2
CYAN 3 EGA_CYAN 3
RED 4 EGA_RED 4
MAGENTA 5 EGA~MAGENTA 5
BROWN 6 EGA_LIGHTGRA Y 7
LIGHTGRAY 7 EGA_BROWN 20

DARKGRAY 8 EGA_DARKGRAY 56
LIGHTBLUE 9 EGA_LIGHTBLUE 57
LIGHTGREEN 10 EGA_LIGHTGREEN 58
LIGHTCYAN 11 EGA_LIGHTCYAN 59
LIGHTRED 12 EGA_LIGHTRED 60
LIGHTMAGENTA 13 EGA_LIGHTMAGENTA 61
YELLOW 14 EGA_ YELLOW 62
Wlil1E 15 EGA_WimE 63

Note that valid colors depend on the current graphics driver and current graphics
mode.

Changes made to the palette are seen immediately onscreen. Each time a palette color is
changed, all occurrences of that color onscreen change to the new color value.

Note setpalette cannot be used with the IBM-8514 driver; use setrgbpalette instead.

Return value
If invalid input is passed to setpalette, graphresult returns -11, and the current palette
remains unchanged.

See also
getpalette, graphresult, setallpalette, setbkcolor, setcolor, setrgbpalette

setrgbpalette grap~ics.h

Function
Lets user define colors for the IBM 8514.

Syntax
void far setrgbpalette(int colornurn, int red, int green, int blue);

96 DOS Reference

settextjustify

Remarks
setrgbpalette can be used with the IBM 8514 and VGA drivers.

colornum defines the palette entry to be loaded, while red, green, and blue define the
component colors of the palette entry.

For the IBM 8514 display (and the VGA in 256K color mode), colornum is in the range 0
to 255. For the remaining modes of the VGA, colornum is in the range 0 to 15. Only the
lower byte of red, green, or blue is used, and out of each byte, only the 6 most significant
bits are loaded in the palette.

Note For corr1patibility ..-v\rith other IB11 grapI'Jcs adapters, the BGI driver defir1es tl'te first 16
palette entries of the IBM 8514 to the default colors of the EGA/VGA. These values can
be used as is, or they can be changed using setrgbpalette.

Return value
None.

See also
setpalette

settextjustify

Function
Sets text justification for graphics functions.

Syntax
void far settextjustify(int horiz, int vert);

Remarks

graphics.h

Text output after a call to settextjustify is justified around the current position (CP)
horizontally and vertically, as specified. The default justification settings are
LEFT_TEXT (for horizontal) and TOP _TEXT (for vertical). The enumeration textjust in
graphics.h provides names for the horiz and vert settings passed to settextjustify.

Descrlpti-0:1:1 ··Name

horiz LEFT_TEXT 0 Left-justify text

CENTER_TEXT 1 Center text

RlGHT_TEXT 2 Right-justify text

vert BOTTOM_TEXT 0 Justify from bottom

CENTER_TEXT 1 Center text

TOP_TEXT 2 Justify from top

If horiz is equal to LEFT_TEXT and direction equals HORIZ_DIR, the CP's x component
is advanced after a call to outtext(string) by textwidth(string).

Chapter 4, Borland graphics interface 97

settextstyle

settextjustify affects text written with outtext and cannot be used with text mode and
stream functions.

Return value
ff invalid input is passed to settextjustify, graphresult returns -11, and the current text
justification remains unchanged.

See also
gettextsettings, graphresult, outtext, settextstyle

settextstyle graphics.h

Function
Sets the current text characteristics for graphics output.

Syntax
void far settextstyle(int font, int direction, int charsize);

Remarks
settextstyle sets the text font, the direction in which text is displayed, and the size of the
characters. A call to settextstyle affects all text output by outtext and outtextxy.

The parameters font, direction, and charsize passed to settextstyle are described in the
following:

font: One 8x8 bit-mapped font and several "stroked" fonts are available. The 8x8 bit­
mapped font is the default. The enumeration font_names, which is defined in graphics.h,
provides names for these different font settings:

DEFAULT_FONT 0 8x8 bit-mapped font

TRIPLEX_FONT 1 Stroked triplex font

SMALL_FONT 2 Stroked small font

S.Al\JS_SERIF_FONT 3 Stroked sans-serif font

GOTIIlC_FONT 4 Stroked gothic font

SCRIPT_FONT 5 Stroked script font

SIMPLEX_FONT 6 Stroked triplex script font

TRIPLEX_SCR_FONT 7 Stroked triplex script font

COMPLEX_FONT 8 Stroked complex font

EUROPE.Al\J_FONT 9 Stroked European font

BOLD_FONT 10 Stroked bold font

The default bit-mapped font is built into the graphics system. Stroked fonts are stored in
*.CHR disk files, and only one at a time is kept in memory. Therefore, when you select a

98 DOS Reference

setusercharsize

stroked font (different from the last selected stroked font), the corresponding *.CHR file
must be loaded from disk.

To avoid this loading when several stroked fonts are used, you can link font files into
your program. Do this by converting them into object files with the BGIOBJ utility, then
registering them through registerbgifont, as described in UTILS.TXT, included with your
distributions disks.

direction: Font directions supported are horizontal text (left to right) and vertical text
(rotated 90 degrees counterclockwise). The default direction is HORIZ_DIR.

Name

HORIZ_DIR

VERT_DIR

Value

0

1

Description

Left to right

Bottom to top

charsize: The size of each character can be magnified using the charsize factor. If charsize is
nonzero, it can affect bit-mapped or stroked characters. A charsize value of 0 can be used
only with stroked fonts.

• If charsize equals 1, outtext and outtextxy displays characters from the 8x8 bit-mapped
font in an 8x8 pixel rectangle onscreen.

• If charsize equals 2, these output functions display characters from the 8x8 bit­
mapped font in a 16x16 pixel rectangle, and so on (up to a limit of ten times the
normal size).

• When charsize equals 0, the output functions outtext and outtextxy magnify the
stroked font text using either the default character magnification factor (4) or the
user-defined character size given by setusercharsize.

Always use textheight and textwidth to determine the actual dimensions of the text.

Return value
None.

See also
gettextsettings, graphresult, installuserfont, settextjustify, setusercharsize, textheight, textwidth

setusercharsize graphics.h

Function
Varies character width and height for stroked fonts.

Syntax
void far setusercharsize(int multx, int divx, int multy, int divy);

Chapter 4, Borland graphics interface 99

setviewport

Remarks
setusercharsize gives you finer control over the size of text from stroked fonts used with
graphics functions. The values set by setusercharsize are active only if charsize equals 0, as
set by a previous call to settextstyle.

With setusercharsize, you specify factors by which the width and height are scaled. The
default width is scaled by multx : divx, and the default height is scaled by multy : divy.
For example, to make text twice as wide and 50% taller than the default, set

rnultx = 2; divx = l;
rnulty = 3; divy = 2;

Return value
None.

See also
gettextsettings, graphresult, settextstyle

setviewport
Function
Sets the current viewport for graphics output.

Syntax
void far setviewport(int left, int top, int right, int bottom, int clip);

Remarks
setviewport establishes a new viewport for graphics output.

graphics.h

The viewport's comers are given in absolute screen coordinates by (left,top) and
(right,bottom). The current position (CP) is moved to (0,0) in the new window.

The parameter clip determines whether drawings are clipped (truncated) at the current
viewport boundaries. If clip is nonzero, all drawings will be clipped to the current
viewport.

Return value
If invalid input is passed to setviewport, graphresult returns -11, and the current view
settings remain unchanged.

See also
clearviewport, getviewsettings, graphresult

100 DOS Reference

setvisualpage

Function
Sets the visual graphics page number.

Syntax
void far setvisualpage(int page);

Remarks
setvisualpage makes page the visual graphics page.

Return value
None.

See also
graphresult, setactivepage

setwritemode
Function
Sets the writing mode for line drawing in graphics mode.

Syntax
void far setwritemode(int mode);

Remarks
The following constants are defined:

COPY_PUT = 0
XOR_PUT = 1

/* MOV *I
/* XOR */

setvisualpage

graphics.h

graphics.h

Each constant corresponds to a binary operation between each byte in the line and the
corresponding bytes onscreen. COPY_PUT uses the assembly language MOV
instruction, overwriting with the line whatever is on the screen. XOR_PUT uses the
XOR command to combine the line with the screen. Two successive XOR commands
will erase the line and restore the screen to its original appearance.

Note setwritemode currently works only with line, linerel, lineto, rectangle, and drawpoly.

Return value
None.

See also
drawpoly, line, linerel, lineto, putimage

Ch apter 4 , Bo r I and g rap h i cs interface 101

textheight

textheight graphics.h

Function
Returns the height of a string in pixels.

Syntax
int far textheight(char far *textstring);

Remarks
The graphics function textheight takes the current font size and multiplication factor, and
determines the height of textstring in pixels. This function is useful for adjusting the
spacing between lines, computing viewport heights, sizing a title to make it fit on a
graph or in a box, and so on.

For example, with the 8x8 bit-mapped font and a multiplication factor of 1 (set by
settextstyle), the string TurboC++ is 8 pixels high.

Note Use textheight to compute the height of strings, instead of doing the computations
manually. By using this function, no source code modifications have to be made when
different fonts are selected.

Return value
textheight returns the text height in pixels.

See also
gettextsettings, outtext, outtextxy, settextstyle, textwidth

textwidth graphics.h

Function
Returns the width of a string in pixels.

Syntax
int far textwidth(char far *textstring);

Remarks
The graphics function textwidth takes the string length, current font size, and
multiplication factor, and determines the width of textstring in pixels.

This function is useful for computing viewport widths, sizing a title to make it fit on a
graph or in a box, and so on.

Note Use textwidth to compute the width of strings, instead of doing the computations
manually. When you use this function, no source code modifications have to be made
when different fonts are selected.

102 DOS Reference

textwidth

Return value
textwidth returns the text width in pixels.

See also
gettextsettings, outtext, outtextxy, settextstyle, textheight

Chapter 4, Borland graphics interface 103

104 DOS Reference

DOS-only functions
Except for the functions brk and sbrk (which are available on DOS and UNIX), the
functions described in this chapter are available only for 16-bit DOS applications. The
Library Reference, Chapter 3, describes additional functions; some of those functions can
also be used in 16-bit DOS applications. The descriptions of some of the functions listed
in the See also entries of this chapter can be found in Chapter 3 of the Library Reference.

abs read dos.h

Function
Reads absolute disk sectors.

Syntax
int absread(int drive, int nsects, long lsect, void *buffer);

Remarks
absread reads specific disk sectors. It ignores the logical structure of a disk and pays no
attention to files, FA Is, or directories.

absread uses DOS interrupt Ox25 to read specific disk sectors.

drive drive number to read (0 =A, 1 = B, etc.)
nsects number of sectors to read
lsect beginning logical sector number
buffer memory address where the data is to be read

The number of sectors to read is limited to 64K or the size of the buffer, whichever is
smaller.

Return value
If it is successful, absread returns 0.

Chapter 5, DOS-only functions 105

abswrite

On error, the routine returns -1 and sets the global variable errno to the value returned
by the system call in the AX register.

See also
abswrite, biosdisk

abswrite dos.h

Function
Writes absolute disk sectors.

Syntax
int abswrite(int drive, int nsects, long lsect, void *buffer);

Remarks
abswrite writes specific disk sectors. It ignores the logical structure of a disk and pays no
attention to files, FATs, or directories.

Note If used improperly, abswrite can overwrite files, directories, and FATs.

abswrite uses DOS interrupt Ox26 to write specific disk sectors.

drive drive number to write to (0 =A, 1 = B, etc.)
nsects number of sectors to write to
lsect beginning logical sector number
buffer memory address where the data is to be written

The number of sectors to write to is limited to 64K or the size of the buffer, whichever is
smaller.

Return value
If it is successful, abswrite returns 0.

On error, the routine returns -1 and sets the global variable errno to the value of the AX
register returned by the system call.

See also
absread, biosdisk

allocmem, _dos_ allocmem

Function
Allocates DOS memory segment.

Syntax
int allocrnern(unsigned size, unsigned *segp);

106 DOS Reference

dos.h

bioscom

unsigned _dos_allocmem(unsigned size, unsigned *segp);

Remarks
allocmem and _dos_allocmem use the DOS system call Ox48 to allocate a block of free
memory and return the segment address of the allocated block.

size is the desired size in paragraphs (a paragraph is 16 bytes). segp is a pointer to a word
that will be assigned the segment address of the newly allocated block.

For allocmem, if not enough room is available, no assignment is made to the word
pointed to by segp.

For _dos_allocmem, if not enough room is available, the size of the largest available block
will be stored in the word pointed to by segp.

All allocated blocks are paragraph-aligned.

Note allocmem and _dos_allocmem cannot coexist with malloc.

Return value
allocmem returns -1 on success. In the event of error, allocmem returns a number
indicating the size in paragraphs of the largest available block.

_dos_allocmem returns 0 on success. In the event of error, _dos_allocmem returns the DOS
error code and sets the word pointed to by segp to the size in paragraphs of the largest
available block.

An error return from allocmem or _dos_allocmem sets the global variable _doserrno and
sets the global variable errno to the following:

ENOMEM Not enough memory

See also
coreleft,freemem, malloc, setblock

bioscom bios.h

Function
Performs serial 1/0.

Syntax
int bioscom(int cmd, char abyte, int port);

Remarks
bioscom performs various RS-232 communications over the I/O port given in port.

A port value of 0 corresponds to COMl, 1 corresponds to COM2, and so forth.

C h a p I e r 5 , D 0 S - o n I y f u n c I i o n s 107

bioscom

The value of cmd can be one of the following:

0 Sets the communications parameters to the value in abyte.
1 Sends the character in abyte out over the communications line.
2 Receives a character from the communications line.
3 Returns the current status of the communications port.

abyte is a combination of the following bits (one value is selected from each of the
groups):

Ox02
Ox03

7 data bits
8 data bits

OxOO 110 baud
Ox20 150 baud
Ox40 300 baud

OxOO 1 stop bit Ox60 600 baud
Ox04 2 stop bits Ox80 1200 baud
OxOO No parity OxAO 2400 baud
Ox08 Odd parity OxCO 4800 baud
Ox18 Even parity OxEO 9600 baud

For example, a value of OxEB (OxEO I Ox08 I OxOO I Ox03) for abyte sets the communications
port to 9600 baud, odd parity, 1 stop bit, and 8 data bits. bioscom uses the BIOS Ox14
interrupt.

Return value
For all values of cmd, bioscom returns a 16-bit integer, of which the upper 8 bits are status
bits and the lower 8 bits vary, depending on the value of cmd. The upper bits of the
return value are defined as follows:

Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8

Timeout
Transmit shift register empty
Transmit holding register empty
Break detect
Framing error
Parity error
Overrun error
Data ready

If the abyte value could not be sent, bit 15 is set to 1. Otherwise, the remaining upper and
lower bits are appropriately set. For example, if a framing error has occurred, bit 11 is set
to 1.

With a cmd value of 2, the byte read is in the lower bits of the return value if there is no
error. If an error occurs, at least one of the upper bits is set to 1. If no upper bits are set to
1, the byte was received without error.

With a cmd value of 0 or 3, the return value has the upper bits set as defined, and the
lower bits are defined as follows:

Bit 7
Bit6
Bit5
Bit4
Bit3
Bit 2
Bit 1
BitO

Received line signal detect
Ring indicator
Data set ready
Clear to send
Change in receive line signal detector
Trailing edge ring detector
Change in data set ready
Change in clear to send

108 DOS Reference

biosdisk

biosdisk bios.h

Function
Issues BIOS disk drive services.

Syntax
int biosdisk(int cmd, int drive, int head, int track, int sector, int nsects, void *buffer
);

Remarks
biosdisk uses interrupt Ox13 to issue disk operations directly to the BIOS.

drive is a number that specifies which disk drive is to be used: 0 for the first floppy disk
drive, 1 for the second floppy disk drive, 2 for the third, and so on. For hard disk drives,
a drive value of Ox80 specifies the first drive, Ox81 specifies the second, Ox82 the third,
and so forth.

For hard disks, the physical drive is specified, not the disk partition. If necessary, the
application program must interpret the partition table information itself.

cmd indicates the operation to perform. Depending on the value of cmd, the other
parameters might or might not be needed.

Here are the possible values for cmd for the IBM PC, XT, AT, or PS/2, or any compatible
system:

0 Resets disk system, forcing the drive controller to do a hard reset. All other parameters are
ignored.

1 Returns the status of the last disk operation. All other parameters are ignored.

2 Reads one or more disk sectors into memory. The starting sector to read is given by head,
track, and sector. The number of sectors is given by nsects. The data is read, 512 bytes per
sector, into buffer.

3 Writes one or more disk sectors from memory. The starting sector to write is given by head,
track, and sector. The number of sectors is given by nsects. The data is written, 512 bytes per
sector, from buffer.

4 Verifies one or more sectors. The starting sector is given by head, track, and sector. The
number of sectors is given by nsects.

5 Formats a track. The track is specified by head and track. buffer points to a table of sector
headers to be written on the named track. See the Technical Reference Manual for the IBM PC
for a description of this table and the format operation.

The following cmd values are allowed only for the XT, AT, PS/2, and compatibles:

6 Formats a track and sets bad sector flags.

7 Formats the drive beginning at a specific track.

8 Returns the current drive parameters. The drive information is returned in buffer in the first
4 bytes.

Chapter 5, DOS-only functions 109

biosdisk

9 Initializes drive-pair characteristics.

10 Does a long read, which reads 512 plus 4 extra bytes per sector.

11 Does a long write, which writes 512 plus 4 extra bytes per sector.

12 Does a disk seek.

13 Alternates disk reset.

14 Reads sector buffer.

15 Writes sector buffer.

16 Tests whether the named drive is ready.

17 Recalibrates the drive.

18 Controller RAM diagnostic.

19 Drive diagnostic.

20 Controller internal diagnostic.

Note biosdisk operates below the level of files on raw sectors. It can destoy file contents and
directories on a hard disk.

Return value
biosdisk returns a status byte composed of the following bits:

Ox:OO Operation successful.

Ox:Ol Bad command.

Ox02 Address mark not found.

Ox03 Attempt to write to write-protected disk.

Ox04 Sector not found.

Ox05 Reset failed (hard disk).

Ox06 Disk changed since last operation.

Ox07 Drive parameter activity failed.

Ox08 Direct memory access (DMA) overrun.

Ox09 Attempt to perform DMA across 64K boundary.

OxOA Bad sector detected.

OxOB Bad track detected.

OxOC Unsupported track.

OxlO Bad CRC/ECC on disk read.

Oxll CRC/ECC corrected data error.

Ox20 Controller has failed.

Ox40 Seek operation failed.

Ox:SO Attachment failed to respond.

OxAA Drive not ready (hard disk only).

Ox:BB Undefined error occurred (hard disk only).

Ox:CC Write fault occurred.

Ox:EO Status error.

OxFF Sense operation failed.

110 DOS Reference

bios disk

Oxll is not an error because the data is correct. The value is returned to give the
application an opportunity to decide for itself.

See also
absread, abswrite

bios disk

Function
Issues BIOS disk drive services

Syntax
unsigned _bios_disk(unsigned cmd, struct diskinfo_t *dinfo);

Remarks

bios.h

_bios_disk uses interrupt Oxl3 to issue disk operations directly to the BIOS. The cmd
argument specifies the operation to perform, and dinfo points to a diskinfo _t structure
that contains the remaining parameters required by the operation.

The diskinfo_t structure (defined in bios.h) has the following format:

struct diskinfo_t (

};

unsigned drive, head, track, sector, nsectors;
void far *buffer;

drive is a number that specifies which disk drive is to be used: 0 for the first floppy disk
drive, 1 for the second floppy disk drive, 2 for the third, and so on. For hard disk drives,
a drive value of Ox80 specifies the first drive, Ox81 specifies the second, Ox82 the third,
and so forth.

For hard disks, the physical drive is specified, not the disk partition. If necessary, the
application program must interpret the partition table information itself.

Depending on the value of cmd, the other parameters in the diskinfo_t structure might or
might not be needed.

The possible values for cmd (defined in bios.h) are the following:

_DISK_RESET Resets disk system, forcing the drive controller to do a hard reset. All diskinfo_t
parameters are ignored.

_DISK_STATUS Returns the status of the last disk operation. All diskinfo_t parameters are ignored.

_DISK_READ Reads one or more disk sectors into memory. The starting sector to read is given
by head, track, and sector. The number of sectors is given by nsectors. The data is
read, 512 bytes per sector, into buffer. If the operation is successful, the high byte of
the return value will be 0 and the low byte will contain the number of sectors. If
an error occurred, the high byte of the return value will have one of the following
values:

OxOl Bad command.

Chapter 5, DOS-only functions 111

bioskey

Ox02 Address mark not found.

Ox03 Attempt to write to write-protected disk.

Ox04 Sector not found.

Ox05 Reset failed (hard disk).

Ox06 Disk changed since last operation.

Ox07 Drive parameter activity failed.

Ox08 Direct memory access (DMA) overrun.

Ox09 Attempt to perform DMA across 64K boundary.

OxOA Bad sector detected.

OxOB Bad track detected.

OxOC Unsupported track

OxlO Bad CRC/ECC on disk read.

Oxll CRC/ECC corrected data error.

Ox20 Controller has failed.

Ox40 Seek operation failed.

Ox80 Attachment failed to respond.

OxAA Drive not ready (hard disk only).

OxBB Undefined error occurred (hard disk only).

OxCC Write fault occurred.

OxEO Status error.

OxFF Sense operation failed.

Oxl 1 is not an error because the data is correct. The value is returned to give the
application an opportunity to decide for itself.

DISK WRITE Writes one or more disk sectors from memory. The starting sector to write is given
by head, track, and sector. The number of sectors is given by nsectors. The data is
written, 512 bytes per sector, from buffer. See _DISK_READ (above) for a
description of the return value.

DISK VERIFY Verifies one or more sectors. The starting sector is given by head, track, and sector.
The number of sectors is given by nsectors. See _DISK_READ (above) for a
description of the return value.

_DISK_FORMAT Formats a track The track is specified by head and track. buffer points to a table of
sector headers to be written on the named track. See the Technical Reference Manual
for the IBM PC for a description of this table and the format operation.

Return value
_bios_disk returns the value of the AX register set by the INT Ox13 BIOS call.

See Also
absread, abswrite, biosdisk

bioskey bios.h

Function
Keyboard interface, using BIOS services directly.

112 D 0 S R e f e r e n c e

_bios_keybrd

Syntax
int bioskey(int cmd);

Remarks
bioskey performs various keyboard operations using BIOS interrupt Oxl6. The parameter
cmd determines the exact operation.

Return value
The value returned bv bioskeu depends on the task it performs. determined bv thP wi h1P
of cmd: - ~ • ' · '

0 If the lower 8 bits are nonzero, bioskey returns the ASCII character for the next keystroke
waiting in the queue or the next key pressed at the keyboard. If the lower 8 bits are zero, the
upper 8 bits are the extended keyboard codes defined in the IBM PC Technical Reference
Manual.

1 This tests whether a keystroke is available to be read. A return value of zero means no key is
available. The return value is OxFFFFF (-1) if Ctrl-Brk has been pressed. Otherwise, the value
of the next keystroke is returned. The keystroke itself is kept to be returned by the next call to
bioskey that has a cmd value of zero.

2 Requests the current shift key status. The value is obtained by ORing the following values
together:

_ bios _ keybrd

Function

Bit 7 Ox80 Insert on

Bit6 Ox40

Bit5 Ox20

Bit4 OxlO

Bit3 Ox08

Bit2 Ox04

Bit 1 Ox02

BitO OxOl

Caps on

Num Lock on

Scroll Lock on

Alt pressed

Ctr! pressed

~ Shift pressed

--<> Shift pressed

Keyboard interface, using BIOS services directly.

Syntax
unsigned _bios_keybrd(unsigned cmd);

Remarks

bios.h

_bios_keybrd performs various keyboard operations using BIOS interrupt Ox16. The
parameter cmd determines the exact operation.

C h a p I e r 5 , D 0 S - o n I y f u n c I i o n s 113

biosprint

Return value
The value returned by _bios_keybrd depends on the task it performs, determined by the
value of cmd (defined in bios.h):

_KEYBRD_READ

_NKEYBRD _READ

_KEYBRD_READY

_NKEYBRD _READY

_KEYBRD_SHIFTSTATUS

If the lower 8 bits are nonzero, _bios_)<eybrd returns the ASCII character
for the next keystroke waiting in the queue or the next key pressed at
the keyboard. If the lower 8 bits are zero, the upper 8 bits are the
extended keyboard codes defined in the IBM PC Technical Reference
Manual.

Use this value instead of _KEYBRD _READY to read the keyboard
codes for enhanced keyboards, which have additional cursor and
function keys.

This tests whether a keystroke is available to be read. A return value of
zero means no key is available. The return value is OxFFFF (-1) if
Ctrl-Brk has been pressed. Otherwise, the value of the next keystroke is
returned, as described in_KEYBRD_READ (above). The keystroke
itself is kept to be returned by the next call to _bios_keybrd that has a
cmd value of _KEYBRD _READ or _NKEYBRD _READ.

Use this value to check the status of enhanced keyboards, which have
additional cursor and function keys.

Requests the current shift key status. The value will contain an OR of
zero or more of the following values:

Bit 7 Ox80 Insert on

Bit 6 Ox40 Caps on

Bit 5 Ox20 Num Lock on

Bit 4 OxlO Scroll Lock on

Bit3

Bit2

Bit 1

BitO

Ox08

Ox04

Ox02

OxOl

Aft pressed

Ctr/ pressed

Left Shift pressed

Right Shift pressed

_NKEYBRD_SHIFTSTATUS Use this value instead of _KEYBRD_SHIFTSTATUS to request the full
16-bit shift key status for enhanced keyboards. The return value will
contain an OR of zero or more of the bits defined above in
_KEYBRD_SHIFTSTATUS, and additionally, any of the following bits:

Bit 15 Ox8000 Sys Req pressed

Bit 14 Ox4000 Caps Lock pressed

Bit 13 Ox2000 Num Lock pressed

Bit 12 OxlOOO Scroll Lock pressed

Bit 11 Ox0800 Right Alt pressed

BitlO Ox0400 Right Ctr/ pressed

Bit9 Ox0200 Left Alt pressed

Bit8 OxOlOO Left Ctr/ pressed

biosprint bios.h

Function
Printer I/O using BIOS services directly.

114 DOS Reference

_bios_printer

Syntax

int biosprint(int cmd, int abyte, int port);

Remarks
biosprint performs various printer functions on the printer identified by the parameter
port using BIOS interrupt Ox17.

A port value of 0 corresponds to LPTl; a port value of 1 corresponds to LPT2; and so on.

The value of cmd can be one of the following:

0 Prints the character in abyte.
1 Initializes the printer port.
2 Reads the printer status.

The value of abyte can be 0 to 255.

Return value
The value returned from any of these operations is the current printer status, which is
obtained by ORing these bit values together:

Bit 0 OxOl Device time out
Bit 3 Ox08 I/O error
Bit 4 OxlO Selected
Bit 5 Ox20 Out of paper
Bit 6 Ox40 Acknowledge
Bit 7 Ox80 Not busy

_ bios _printer

Function
Printer I/O using BIOS services directly.

Syntax
unsigned _bios_printer(int cmd, int port, int abyte);

Remarks
_bios_printer performs various printer functions on the printer identified by the
parameter port using BIOS interrupt Ox17.

bios.h.

A port value of 0 corresponds to LPTl; a port value of 1 corresponds to LPT2; and so on.

The value of cmd can be one of the following values (defined in bios.h):

PRINTER WRITE Prints the character in abyte. The value of abyte can be 0 to 255.
-PRINTER -INIT Initializes the printer port. The abyte argument is ignored.
=PRINTER=STATUS Reads the printer status. The abyte argument is ignored.

C h a p I e r 5 , D 0 S · o n I y f u n c I i o n s 115

bios_serialcom

Return value
The value returned from any of these operations is the current printer status, which is
obtained by ORing these bit values together:

Bit 0 OxOl Device time out
Bit 3 Ox08 I/0 error
Bit 4 OxlO Selected
Bit 5 Ox20 Out of paper
Bit 6 Ox40 Acknowledge
Bit 7 Ox80 Not busy

bios serialcom bios.h

Function
Performs serial I/O.

Syntax
unsigned _bios_serialcom(int cmd, int port, char abyte);

Remarks
_bios_serialcom performs various RS-232 communications over the I/O port given in
port.

A port value of 0 corresponds to COMl, 1 corresponds to COM2, and so forth.

The value of cmd can be one of the following values (defined in bios.h):

_COM_INIT Sets the communications parameters to the value in abyte.
_COM_SEND Sends the character in abyte out over the communications line.

_COM_RECENE Receives a character from the communications line. The abyte
argument is ignored.

_COM_STATUS Returns the current status of the communications port. The abyte
argument is ignored.

When cmd is _COM_INIT, abyte is a OR combination of the following bits:

• Select only one of these:

COM CHR7 7 data bits
=COM=CHR8 8 data bits

• Select only one of these:

_ COM_STOPl 1 stop bit
_COM_STOP2 2 stop bits

116 DOS Reference

• Select only one of these:

_COM_NOPARITY Noparity
_COM_ODDPARITY Odd parity
_COM_EVENPARITY Even parity

• Select only one of these:

COM 110 110 baud
- COM -150 150 baud
-COM-300 300 baud
- COM-600 600 baud
-COM-1200 1200 baud
-COM-2400 2400baud
- COM-4800 4800 baud
= COM=9600 9600 baud

bios serialcom

For example, a value of (_COM_9600 I _COM_ODDPARITY I _COM_STOPl I
_COM_CHR8) for abyte sets the communications port to 9600 baud, odd parity, 1 stop
bit, and 8 data bits. _bios_serialcom uses the BIOS Ox14 interrupt.

Return value
For all values of cmd, _bios _serialcom returns a 16-bit integer of which the upper 8 bits are
status bits and the lower 8 bits vary, depending on the value of cmd. The upper bits of
the return value are defined as follows:

Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8

Timeout
Transmit shift register empty
Transmit holding register empty
Break detect
Framing error
Parity error
Overrun error
Data ready

If the abyte value could not be sent, bit 15 is set to 1. Otherwise, the remaining upper and
lower bits are appropriately set. For example, if a framing error has occurred, bit 11 is set
to 1.

With a cmd value of_ COM_RECEIVE, the byte read is in the lower bits of the return
value if there is no error. If an error occurs, at least one of the upper bits is set to 1. If no
upper bits are set to 1, the byte was received without error.

With a cmd value of _COM_INIT or _COM_STATUS, the return value has the upper bits
set as defined, and the lower bits are defined as follows:

Bit 7 Received line signal detect
Bit 6 Ring indicator
Bit 5 Data set ready
Bit 4 Clear to send
Bit 3 Change in receive line signal detector
Bit 2 Trailing edge ring detector
Bit 1 Change in data set ready
Bit 0 Change in clear to send

Ch apter 5, D 0 S -on I y functions 117

brk

brk alloc.h

Function
Changes data-segment space allocation.

Syntax
int brk(void *addr);

Remarks
brk dynamically changes the amount of space allocated to the calling program's heap.
The change is made by resetting the program's break value, which is the address of the
first location beyond the end of the data segment. The amount of allocated space
increases as the break value increases.

brk sets the break value to addr and changes the allocated space accordingly.

This function will fail without making any change in the allocated space if such a change
would allocate more space than is allowable.

Return value
Upon successful completion, brk returns a value of 0. On failure, this function returns a
value of -1 and the global variable errno is set to the following:

ENOMEM Not enough memory

See also
coreleft, sbrk

coreleft alloc.h

Function
Returns a measure of unused RAM memory.

Syntax
In the tiny, small, and medium models:

unsigned coreleft(void);

In the compact, large, and huge models:

unsigned long coreleft(void);

Remarks
coreleft returns a measure of RAM memory not in use. It gives a different measurement
value, depending on whether the memory model is of the small data group or the large
data group.

118 D 0 S R e f e r e n c e

delay

de I a y

Return value
In the small data models, coreleft returns the amount of unused memory between the top
of the heap and the stack. In the large data models, coreleft returns the amount of
memory between the highest allocated block and the end of available memory.

See also
allocmem, brk,farcoreleft, malloc

dos.h

Function
Suspends execution for an interval (milliseconds).

Syntax
void delay(unsigned milliseconds);

Remarks
With a call to delay, the current program is suspended from execution for the number of
milliseconds specified by the argument milliseconds. It is no longer necessary to make a
calibration call to delay before using it. delay is accurate to a millisecond.

Return value
None.

See also
nosound, sleep, sound

farcorelefl alloc.h

Function
Returns a measure of unused memory in far heap.

Syntax
unsigned long farcoreleft(void);

Remarks
farcoreleft returns a measure of the amount of unused memory in the far heap beyond
the highest allocated block.

A tiny model program cannot make use of farcoreleft.

Chapter 5, DOS-only functions 119

farheapcheck

Return value
farcoreleft returns the total amount of space left in the far heap, between the highest
allocated block and the end of available memory.

See also
core left, farcalloc, farmalloc

farheapcheck alloc.h

Function
Checks and verifies the far heap.

Syntax
int farheapcheck(void);

Remarks
farheapcheck walks through the far heap and examines each block, checking its pointers,
size, and other critical attributes.

Return value
The return value is less than zero for an error and greater than zero for success.

_HEAPEMPTYis returned if there is no heap (value 1).
_HEAPOK is returned if the heap is verified (value 2).
_HEAPCORRUPT is returned if the heap has been corrupted (value -1).

See also
heapcheck

farheapcheckfree
Function
Checks the free blocks on the far heap for a constant value.

Syntax
int farheapcheckfree(unsigned int fill value);

Return value
The return value is less than zero for an error and greater than zero for success.

_HEAPEMPTY is returned if there is no heap (value 1).
_HEAPOK is returned if the heap is accurate (value 2).

alloc.h

_HEAPCORRUPT is returned if the heap has been corrupted (value -1).
_BADV ALUE is returned if a value other than the fill value was found (value -3).

120 D 0 S R e f e re n c e

farheapchecknode

See also
farheapfillfree, heapcheckfree

farheapchecknode alloc.h

Function
Checks and verifies a single node on the far heap.

Syntax

int farheapchecknode(void *node);

Remarks
If a node has been freed and farheapchecknode is called with a pointer to the freed block,
farheapchecknode can return_ BADNODE rather than the expected_ FREEENTRY. This is
because adjacent free blocks on the heap are merged, and the block in question no
longer exists.

Return value
The return value is less than zero for an error and greater than zero for success.

_HEAPEMPTY is returned if there is no heap (value 1).
_HEAPCORRUPT is returned if the heap has been corrupted (value -1).
_BADNODE is returned if the node could not be found (value -2).
_FREEENTRY is returned if the node is a free block (value 3).
_USEDENTRY is returned if the node is a used block (value 4).

See also
heapchecknode

farheapfillfree

Function
Fills the free blocks on the far heap with a constant value.

Syntax

int farheapfillfree(unsigned int fillvalue);

Return value
The return value is less than zero for an error and greater than zero for success.

_HEAPEMPTY is returned if there is no heap (value 1).
_HEAPOK is returned if the heap is accurate (value 2).
_HEAPCORRUPT is returned if the heap has been corrupted (value -1).

alloc.h

Ch apter 5, D 0 S - on I y I unctions 121

farheapwalk

See also
farheapcheckfree, heapfillfree

farheapwalk alloc.h

Function
farheapwalk is used to "walk" through the far heap node by node.

Syntax

int farheapwalk(struct farheapinfo *hi);

Remarks
farheapwalk assumes the heap is correct. Use farheapcheck to verify the heap before using
farheapwalk. _HEAPOK is returned with the last block on the heap. _HEAPEND will be
returned on the next call to farheapwalk.

farheapwalk receives a pointer to a structure of type heapinfo (defined in alloc.h). For the
first call to farheapwalk, set the hi.ptr field to null. farheapwalk returns with hi.ptr
containing the address of the first block. hi.size holds the size of the block in bytes.
hi.in_use is a flag that's set if the block is currently in use.

Return value
_HEAPEMPTY is returned if there is no heap (value 1).
_HEAPOK is returned if the heapinfo block contains valid data (value 2).
_HEAPEND is returned if the end of the heap has been reached (value 5).

See also
heapwalk

freemem, dos freemem - -
Function
Frees a previously allocated DOS memory block.

Syntax

int freemem(unsigned segx);
unsigned _dos_freemem(unsigned segx);

Remarks
freemem frees a memory block allocated by a previous call to allocmem.

_dosJreemem frees a memory block allocated by a previous call to _dos_allocmem.
segx is the segment address of that block.

122 D 0 S R e f e r e n c e

dos.h

harderr, hardresume, hardretn

Return value
freemem and _dosJreemem return 0 on success.

In the event of error,freemem returns -1 and sets errno.

In the event of error, _dosJreemem returns the DOS error code and sets errno.

In the event of error, these functions set global variable errno to the following:

ENOMEM Insufficient memory

See also
allocmem, _dos_allocmem,free

harderr, hardresume, hardretn

Function
Establishes and handles hardware errors.

Syntax

void harderr(int (*handler)());
void hardresume(int axret);
void hardretn(int retn);

Remarks

dos.h

The error handler established by harderr can call hardresume to return to DOS. The return
value of the rescode (result code) of hardresume contains an abort (2), retry (1), or ignore
(0) indicator. The abort is accomplished by invoking DOS interrupt Ox23, the control­
break interrupt.

The error handler established by harderr can return directly to the application program
by calling hardretn. The returned value is whatever value you passed to hardretn.

harderr establishes a hardware error handler for the current program. This error handler
is invoked whenever an interrupt Ox24 occurs. (See your DOS reference manuals for a
discussion of the interrupt.)

The function pointed to by handler is called when such an interrupt occurs. The handler
function is called with the following arguments:

handler lint errval, int ax, int bp, int si);

errval is the error code set in the DI register by DOS. ax, bp, and si are the values DOS sets
for the AX, BP, and SI registers, respectively.

• ax indicates whether a disk error or other device error was encountered. If ax is
nonnegative, a disk error was encountered; otherwise, the error was a device error.
For a disk error, ax ANDed with OxOOFF gives the failing drive number (0 equals A, 1
equals B, and so on).

C h a pt e r 5 , D 0 S - o n I y f u n ct i o n s 123

harderr

• bp and si together point to the device driver header of the failing driver. bp contains
the segment address, and si the offset.

The function pointed to by handler is not called directly. harderr establishes a DOS
interrupt handler that calls the function.

The handler can issue DOS calls 1 through OxC; any other DOS call corrupts DOS. In
particular, any of the C standard I/O or UN1X-emulation I/O calls cannot be used.

The handler must return 0 for ignore, 1 for retry, and 2 for abort.

Return value
None.

See also
peek, poke

hard err dos.h

Function
Establishes a hardware error handler.

Syntax
void _harderr(int (far *handler)() I;

Remarks
_harderr establishes a hardware error handler for the current program. This error
handler is invoked whenever an interrupt Ox24 occurs. (See your DOS reference
manuals for a discussion of the interrupt.)

The function pointed to by handler is called when such an interrupt occurs. The handler
function is called with the following arguments:

void far handler(unsigned deverr, unsigned errval, unsigned far *devhdr);

• deverr is the device error code (passed to the handler by DOS in the AX register).

• errval is the error code (passed to the handler by DOS in the DI register).

• devhdr a far pointer to the driver header of the device that caused the error (passed to
the handler by DOS in the BP:SI register pair).

The handler should use these arguments instead of referring directly to the CPU
registers.

deverr indicates whether a disk error or other device error was encountered. If bit 15 of
deverr is 0, a disk error was encountered. Otherwise, the error was a device error. For a
disk error, deverr ANDed with OxOOFF give the failing drive number (0 equals A, 1
equals B, and so on).

124 DOS Reference

hardresume

The function pointed to by handler is not called directly. _harderr establishes a DOS
interrupt handler that calls the function.

The handler can issue DOS calls 1 through OxC; any other DOS call corrupts DOS. In
particular, any of the C standard I/O or UNIX-emulation I/O calls cannot be used.

The handler does not return a value, and it must exit using _hardretn or _hardresume.

Return value
None.

See also
_hardresume, _hardretn

hardresume

Function
Hardware error handler.

Syntax
void _hardresume(int rescode);

Remarks

dos.h

The error handler established by _harderr can call _hardresume to return to DOS. The
return value of the rescode (result code) of _hardresume contains one of the following
values:

_HARDERR_ABORT

HARDERR IGNORE
-HARDERR-RETRY
=HARDERR=FAIL

Return value

Abort the program by invoking DOS interrupt Ox23, the
control-break interrupt.
Ignore the error.
Retry the operation.
Fail the operation.

The _hardresume function does not return a value, and does not return to the caller.

See also
_harderr,_hardretn

hardretn

Function
Hardware error handler.

dos.h

Chapter 5, DOS-only functions 125

keep, _dos_keep

Syntax
void _hardretn(int retn);

Remarks
The error handler established by _harderr can return directly to the application program
by calling _hardretn.

If the OOS function that caused the error is less than Ox38, and it is a function that can
indicate an error condition, then _hardretn will return to the application program with
the AL register set to OxFF. The retn argument is ignored for all OOS functions less than
Ox38.

If the DOS function is greater than or equal to Ox38, the retn argument should be a OOS
error code; it is returned to the application program in the AX register. The carry flag is
also set to indicate to the application that the operation resulted in an error.

Return value
The _hardresume function does not return a value, and does not return to the caller.

See also
_harderr, _hardresume

keep,_dos_keep dos.h

Function
Exits and remains resident.

Syntax
void keep(unsigned char status, unsigned size);
void _dos_keep(unsigned char status, unsigned size);

Remarks
keep and _dos_keep return to DOS with the exit status in status. The current program
remains resident, however. The program is set to size paragraphs in length, and the
remainder of the memory of the program is freed.

keep and _dos_keep can be used when installing TSR programs. keep and _dos_keep use
DOS function Ox31.

Before _dos_keep exits, it calls any registered "exit functions" (posted with atexit), flushes
file buffers, and restores interrupt vectors modified by the startup code.

Return value
None.

126 DOS Reference

nosound

See also
abort, exit

nosound

Function
Turns PC speaker off.

Syntax
void nosound(void);

Remarks
Turns the speaker off after it has been turned on by a call to sound.

Return value
None.

See also
delay, sound

OvrlnitEms

Function
Initializes expanded memory swapping for the overlay manager.

Syntax

dos.h

dos.h

int __ cdecl __ far _OvrinitEms(unsigned emsHandle, unsigned firstPage, unsigned pages);

Remarks
_OvrinitEms checks for the presence of expanded memory by looking for an EMS driver
and allocating memory from it. If emsHandle is zero, the overlay manager allocates EMS
pages and uses them for swapping. If emsHandle is not zero, then it should be a valid
EMS handle; the overlay manager will use it for swapping. In that case, you can specify
firstPage, where the swapping can start inside that area.

In both cases, a nonzero pages parameter gives the limit of the usable pages by the
overlay manager.

Return value
_OvrinitEms returns 0 if the overlay manager is able to use expanded memory for
swapping.

Chapter 5, DOS-only functions 127

OvrlnitExt

See also
_OvrlnitExt, _ovrbuffer (global variable)

OvrlnitExt dos.h

Function
Initializes extended memory swapping for the overlay manager.

Syntax
int __ cdecl __ far _OvrinitExt(unsigned long startAddress, unsigned long length);

Remarks
_OvrlnitExt checks for the presence of extended memory, using the known methods to
detect the presence of other programs using extended memory, and allocates memory
from it. If startAddress is zero, the overlay manager determines the start address and
uses, at most, the size of the overlays. If startAddress is not zero, then the overlay
manager uses the extended memory above that address.

In both cases, a nonzero length parameter gives the limit of the usable extended memory
by the overlay manager.

Return value
_OvrlnitExt returns 0 if the overlay manager is able to use extended memory for
swapping.

See also
_OvrlnitEms, _ovrbuffer (global variable)

randbrd

Function
Reads random block.

Syntax
int randbrd(struct fcb *fcb, int rent);

Remarks

dos.h

randbrd reads rent number of records using the open file control block (FCB) pointed to
by fcb. The records are read into memory at the current disk transfer address (DTA).
They are read from the disk record indicated in the random record field of the FCB. This
is accomplished by calling DOS system call Ox27.

128 DOS Reference

randbwr

The actual number of records read can be determined by examining the random record
field of the FCB. The random record field is advanced by the number of records actually
read.

Return value
The following values are returned, depending on the result of the randbrd operation:

0 All records are read.

1 End-of-file is reached and the last record read is complete.

2 Reading records would have wrapped around address OxFFFF (as many
records as possible are read).

3 End-of-file is reached with the last record incomplete.

See also
getdta, randbwr, setdta

randbwr

Function
Writes random block.

Syntax
int randbwr(struct fcb *fcb, int rent);

Remarks

dos.h

randbwr writes rent number of records to disk using the open file control block (FCB)
pointed to by feb. This is accomplished using DOS system call Ox28. If rent is 0, the file is
truncated to the length indicated by the random record field.

The actual number of records written can be determined by examining the random
record field of the FCB. The random record field is advanced by the number of records
actually written.

Return value
The following values are returned, depending on the result of the randbwr operation:

0 All records are written.

1 There is not enough disk space to write the records (no records are written).

2 Writing records would have wrapped around address OxFFFF (as many records
as possible are written).

See also
randbrd

C h a pt e r 5 , D 0 S - o n I y f u n c t i o n s 129

s b r k

sbrk alloc.h

Function
Changes data segment space allocation.

Syntax
void *sbrk(int incr);

Remarks
sbrk adds incr bytes to the break value and changes the allocated space accordingly. incr
can be negative, in which case the amount of allocated space is decreased.

sbrk will fail without making any change in the allocated space if such a change would
result in more space being allocated than is allowable.

Return value
Upon successful completion, sbrk returns the old break value. On failure, sbrk returns a
value of -1, and the global variable errno is set to the following:

ENOMEM Not enough core

See also
brk

setblock, _dos_ setblock dos.h

Function
Modifies the size of a previously allocated block.

Syntax
int setblock(unsigned segx, unsigned newsize);
unsigned _dos_setblock(unsigned newsize, unsigned segx, unsigned *maxp);

Remarks
setblock and _dos_setblock modify the size of a memory segment. segx is the segment
address returned by a previous call to allocmem or _dos_allocmem. newsize is the new,
requested size in paragraphs. If the segment cannot be changed to the new size,
_dos_setblock stores the size of the largest possible segment at the location pointed to by
maxp.

Return value
setblock returns -1 on success. In the event of error, it returns the size of the largest
possible block (in paragraphs), and the global variable _doserrno is set.

130 DOS Reference

sound

sound

_dos_setblock returns 0 on success. In the event of error, it returns the DOS error code,
and the global variable errno is set to the following:

ENOMEM Not enough memory, or bad segment address

See also
allocrne111,.freernern

Function
Tums PC speaker on at specified frequency.

Syntax
void sound(unsigned frequency);

Remarks

dos.h

sound turns on the PC's speaker at a given frequency . .frequency specifies the frequency of
the sound in hertz (cycles per second). To tum the speaker off after a call to sound, call
the function nosound.

See also
delay, nosound

Chapter 5, DOS-only functions 131

132 D 0 S R e f e re n c e

DOS libraries
This appendix provides an overview of the Borland C ++ library routines available to
16-bit DOS-only applications. Library routines are composed of functions and macros
that you can call from within your C and C ++ programs to perform a wide variety of
tasks. These tasks include low- and high-level 1/0, string and file manipulation,
memory allocation, process control, data conversion, mathematical calculations, and
much more.

This appendix provides the following information:

• Names the libraries and files found in the LIB subdirectory, and describes their uses.

• Categorizes the library routines according to the type of tasks they perform.

The run-time libraries
The DOS-specific applications use static run-time libraries (OBJ and LIB). The libraries
summarized in this appendix are available only to the 16-bit development tools. See the
Borland C++ Library Reference, Chapter 1, "Library cross-reference", for a description of
additional libraries.

Several versions of the run-time library are available. For example, there are memory­
model specific versions and diagnostic versions. There are also optional libraries that
provide containers, graphics, and mathematics.

Keep these guidelines in mind when selecting which run-time libraries to use:

• The libraries listed below are for use in 16-bit DOS applications only.

• Information on additional DOS routines can be found in the Borland C++ Library
Reference.

• Exception-handling should not be used with overlays. See the discussion of
exceptions on page 21.

Appendix A, D 0 S Ii bra r i es 133

The DOS support libraries
The static (OBJ and LIB) 16-bit Borland C++ run-time libraries are contained in the LIB
subdirectory of your installation. For each of the library file names, the'?' character
represents one of the six (tiny, compact, small, medium, large, and huge) distinct
memory models supported by Borland. Each model has its own library file and math
file containing versions of the routines written for that particular model. See Chapter 1,
"DOS memory management" for details on memory models.

The following table lists the Borland C++ libraries names and uses that are available for
16-bit DOS-only applications. See the Borland C++ User's Guide for information on
linkers, linker options, requirements, and selection of libraries. See also the Borland C++
Library Reference for more information on other libraries and header files that can
provide additional DOS support.

Table A.1 Summary of DOS run-time libraries

BIDSH.LIB Huge memory model of Borland classlibs

BIDSDBH.LIB

C?.LIB

COF?.OBJ

CO?.OBJ

EMU.LIB

FP87.LIB

GRAPHICS.LIB

MATH?.LIB

OVERLAY.LIB

Diagnostic version of the above library

DOS-only libraries

MS compatible startup

BC startup

Floating-point emulation

For programs that run on machines with 80x87 coprocessor

Borland graphics interface

Math routines

Overlay development

Graphics routines
These routines let you create onscreen graphics with text.

arc
bar
bar3d
circle
clear device
clearviewport
close graph
detect graph
drawpoly
ellipse
ftllellipse
ftllp~ly
floodftll
getarccoords
getaspectratio
getbkcolor
getcolor

134 D 0 S R e f e r e n c e

(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)

getdefaultpalette (graphics.h)
getdrivername (graphics.h)
getfillpattern (graphics.h)
getfillsettings (graphics.h)
getgraphmode (graphics.h)
getimage (graphics.h)
getlinesettings (graphics.h)
getmaxcolor (graphics.h)
getmaxmode (graphics.h)
getmaxx (graphics.h)
getmaxy (graphics.h)
getmodename (graphics.h)
getmoderange (graphics.h)
getpalette (graphics.h)
getpalettesize (graphics.h)
getpixel (graphics.h)
gettextsettings (graphics.h)

getviewsettings
getx
gety
graphdefaults
grapherrormsg
_graphfreemem
_graphgetmem
graphr~sult
zmageszze
initgraph
installuserdriver
installuse;funl
line
linerel
lineto
mover el
moveto
outtext
outtextxy
pieslice
putimage
putpixel
rectangle
registerbgidriver

(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphic::..h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)

Interface routines

registerbgifont
restorecrtmode
sector
setactivepage
setallpalette
setaspectratio
setbkcolor
set color
_setcursortype
setfillpattern
setfillstyle
;,etgraphbufsize
setgraphmode
setlinestyle
setpalette
setrgbpalette
settextjustify
settextstyle
setusercharsize
setviewport
setvisualpage
setwritemode
textheight
textwidth

(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(conio.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)

These routines provide operating-system BIOS and machine-specific capabilities.

abs read
abs write
bioscom

bias disk
biosdTsk
_bios_keybrd
bioskey
biosprint
_bias _printer

bias serialcom
=dos]ceep

(dos.h)
(dos.h)
(bios.h)
(bios.h)
(bios.h)
(bios.h)
(bios.h)
(bios.h)
(bios.h)
(bios.h)
(dos.h)

_dosJreemem
freemem

harderr
harderr
hardresume

hardresume
hardretn

hardretn
keep
randbrd
randbwr

(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)

Memory routines
These routines provide dynamic memory allocation in the small-data and large-data
models.

allocmem
brk
core left
dos allocmem

=dos}reemem
dos setblock

Jar core left

(dos.h)
(alloc.h)
(alloc.h, stdlib.h)
(dos.h)
(dos.h)
(dos.h)
(alloc.h)

farheapcheck (alloc.h)
farheapcheckfree (alloc.h)
farheapchecknode (alloc.h)
farheapfillfree (alloc.h)
farheapwalk (alloc.h)
farrealloc (alloc.h)
sbrk (alloc.h)

App en d ix A, D 0 S I i b r a r i es 135

Miscellaneous routines
These routines provide sound effects and time delay.

delay (dos.h) sound (dos.h)
nosound (dos.h)

136 D 0 S R e I e re n c e

DOS global variables
This appendix describes the Borland C++ global variables that are available for 16-bit
DOS-only applications. Additional global variables are described in the Library
Reference.

_heaplen dos.h

Function
Holds the length of the near heap.

Syntax

extern unsigned _heaplen;

Remarks
_heaplen specifies the size (in bytes) of the near heap in the small data models (tiny,
small, and medium). _heaplen does not exist in the large data models (compact, large,
and huge) because they do not have a near heap.

In the small and medium models, the data segment size is computed as follows:

data segment [small,medium] = global data + heap + stack

where the size of the stack can be adjusted with _stklen.

If _fieaplen is set to 0, the program allocates 64K bytes for the data segment, and the
effective heap size is

64K - (global data + stack) bytes

By default, _heaplen equals 0, so you'll get a 64K data segment unless you specify a
particular _heaplen value.

Appendix B , D 0 S g Io b a I var i ab I es 137

ovrbuffer

In the tiny model, everything (including code) is in the same segment, so the data
segment computations are adjusted to include the code plus 256 bytes for the program
segment prefix (PSP).

data segment [tiny] = 256 + code + global data + heap + stack

If _heaplen equals 0 in the tiny model, the effective heap size is obtained by subtracting
the PSP, code, global data, and stack from 64K.

In the compact and large models, there is no near heap, and the stack is in its own
segment, so the data segment is

data segment [compact, large] =global data

In the huge model, the stack is a separate segment, and each module has its own data
segment.

See also
_stklen

ovrbuffer

Function
Changes the size of the overlay buffer.

Syntax
unsigned _ovrbuffer = size;

Remarks

dos.h

The default overlay buffer size is twice the size of the largest overlay. This is adequate
for some applications. But imagine that a particular function of a program is
implemented through many modules, each of which is overlaid. If the total size of those
modules is larger than the overlay buffer, a substantial amount of swapping will occur if
the modules make frequent calls to each other.

The solution is to increase the size of the overlay buffer so that enough memory is
available at any given time to contain all overlays that make frequent calls to each other.
You can do this by setting the _ovrbuffer global variable to the required size in
paragraphs. For example, to set the overlay buffer to 128K, include the following
statement in your code:

unsigned _ovrbuffer = Ox2000;

There is no general formula for determining the ideal overlay buffer size.

See also
_OvrinitEms, _OvrinitExt

138 D 0 S R e f e r e n c e

stklen

st k I en

dos.h

Function
Holds size of the stack

Syntax
extern unsigned _stklen;

Remarks
_stklen specifies the size of the stack for all six memory models. The minimum stack size
allowed is 128 words; if you give a smaller value, _stklen is automatically adjusted to the
minimum. The default stack size is 4K.

In the small and medium models, the data segment size is computed as follows:

data segment [small, medium] = global data + heap + stack

where the size of the heap can be adjusted with _heaplen.

In the tiny model, everything (including code) is in the same segment, so the data
segment computations are adjusted to include the code plus 256 bytes for the program
segment prefix (PSP).

data segment [tiny] = 256 + code + global data + heap + stack

In the compact and large models, there is no near heap, and the stack is in its own
segment, so the data segment is simply

data segment [compact,large] = global data

In the huge model, the stack is a separate segment, and each module has its own data
segment.

See also
_heaplen

Append ix B, DOS g Io bal vari ab I es 139

·140 DOS Reference

Symbols
!=operator

huge pointer comparison
and 9

<<operator
complex numbers and 31

==operator
huge pointer comparison

and 9
>>operator

complex numbers and 31

Numerics
Ox13 BIOS interrupt 109
Ox16 BIOS interrupt 113
Ox17 BIOS interrupt 115
Ox23 DOS interrupt 125
Ox24 DOS interrupt 123, 124
Ox25 DOS interrupt 105
Ox26 DOS interrupt 106
Ox27 DOS system call 128
Ox28 DOS system call 129
Ox31 DOS function 126
Ox48 DOS system call 107
80x86 processors

address segment
offset notation 7

functions (list) 135
registers 4-6

80x87 coprocessors 28, 29
See also numeric coprocessors

87 environment variable 29

A
absolute disk sectors 105, 106
absread function 105
abswrite function 106
access, memory (DMA) 110
accounting applications 31
active page 101

defined 41
setting 40, 87

adapters
graphics 53
monochrome 49, 82

allocmem function 106
arc function 49

coordinates 57
arcs, elliptical 55

Index
aspect ratio

correcting 89
determining current 47
getting 58
setting 40

assembly language
inline, floating point in 29
routines, overlays and 24

AT&T6300PC
detecting presence of 53

attributes, screen cells 35
autodetection (graphics

drivers) 53, 60, 74, 77
AX register 4

B

hardware error handlers
and 123

banker's rounding 33
bar function 50
bar3d function 50
bars

three-dimensional 50
two-dimensional 50

base address register 5
baud rate 108, 116
bed class 31

converting 32
number of decimal digits 32
output 32
range 32
rounding errors and 32

beeps 127, 131
BGI See Borland Graphics

Interface
BGIOBJ (graphics converter) 75

initgraph function and 39
stroked fonts and 99

BIOS functions (list) 135
BIOS interrupts

Ox13 109
Ox16 113
Ox17 115

_bios_disk function 111
_bios_keybrd function 113
_bios_printer function 115
_bios_serialcom function 116
bioscom function 107
biosdisk function 109
bioskey function 112
biosprint function 114

bit images, functions for 40
saving 62
storage requirements 74
writing to screen 83

bits
status 108, 117
stop 108, 116

Borland Graphics Interface (BGl)
device driver table 77
fonts 84

new 78
graphics drivers and 73, 74,

85
BP register 5

hardware error handlers
and 123

overlays and 24
break value 118, 130
brk function 118
buffers

graphics, internal 93
overlays, default size 23, 138

BX register 4
bytes, status (disk drives) 110

c
CGA See Color/Graphics

Adapter
characters

in screen cells 35
magnification, user­

defined 99
size 102

.CHRfiles 78
circle function 51
circles

drawing 51
roundness of 40

_clear87 function, floating point
exceptions and 30

cleardevice function 51
clearing screens 40, 51, 93
clearviewport function 52
clipping, defined 42
closegraph function 52
code segment 6
Color/Graphics Adapter (CGA)

background and foreground
colors 83

color palettes 44, 45
detecting presence of 53

Index 141

problems 49, 82
resolution 44

high 45
colors and palettes 711 87

background color 58, 89
setting 71, 89

changing 87,95
color table 88, 89, 96
default 59
definition structure 59
dra\Ring 59,71,82,90
fill colors 56, 57

information on 61
pie slices 82, 86
setting 92

fill patterns 56, 57, 71
defining 60,61

by user 91, 92
information on 61
pie slices 82, 86
predefined 61
setting to default 71

filling graphics 57
IBM8514 96
information on 67

returning 59
maximum value 64
pixels 68, 83
problems with 49, 82
rectangle 84
setting 90, 96

background 89
dra\Ring 71

size of 68
VGA 96

.COM files, memory models
and 10

communications
parity 108, 116
ports 107, 116
protocol settings 108, 116
RS-232 107, 116
stop bits 108, 116

compiler options
code segment 15
data segment 15
far objects 15
floating point 28
overlays 22, 23

complex numbers 30
header file 30
overloading operators and 30

complex.h 30
_control87 function, floating

point exceptions and 30
control-break interrupt 125
conversions, bed 32

142 DOS Reference

coordinates,
arc, returning 57
current position 70, 100
origin 36
starting positions 36
x-coordinate 65, 70

maximum 65
y-coordinate 66, 70

maximum 66
coprocessors See numeric

coprocessors
coreleft function 118
correction factor of aspect

ratio 89
_cs keyword 14
CS register 6, 8
current position (graphics) 71

coordinates 70, 100
justified text and 97
lines and 79
moving 80

ex register 4

D
data bits 108, 116
data segments 6, 137

allocation 118
changing 130

naming and renaming 15
debugging, overlays 23
delay function 119
detectgraph function 53
detection

graphics adapter 53, 60
graphics drivers 74

device drivers 77
device errors 123, 124
DI register 5

hardware error handlers
and 123

direct memory access (DMA)
checking for presence of 110

disk drives
functions 109
1/0 operations 109
status byte 110

disk sectors
readihg 105, 109, 111
writing 106, 109, 112

disk transfer address (DTA)
DOS 128
random blocks and 128

disks
errors 123, 124
operations 109

DOS environment
87 variable 29

DOS functions 126
list 135

DOS interrupts
Ox23 123, 125
Ox24 123,124
Ox25 105
Ox26 106
handlers 124, 125

DOS system calls 124, 125
Ox27 128
Ox28 129
Ox48 107

_dos_freemem function 122
_dos_keep function 126
DMA See direct memory access
drawing functions 39
drawpoly function 55
_ds keyword 14
DS register 6, 8
DTA See disk transfer address
DX register 4

E
EGA See Enhanced Graphics

Adapter
ellipse function 55
ellipses, dra\Ring and filling 56
elliptical arcs 55
elliptical pie slices 86
Enhanced Graphics Adapter

(EGA) 45
color control on 45
detecting presence of 53

environment, 87 variable
(DOS) 29

error handlers, hardware 123,
124, 125

error messages
graphics 46, 73

returning 71
pointer to, returning 71

errors
floating-point, disabling 30
graphics, functions for

handling 46
math,masking 30
out of memory 3

_eskeyword 14
ES register 6
even parity 108, 116
exception handling 21
execution, suspending 119
exit status 126

extended and expanded memory
overlays and 24

extra segment 6

F
-f compiler option 28
-f87 compiler option 28
far calls 23
far heap

checking 120
nodes 121

free blocks 120, 121
unused memory 119
walking through 122

far keyword 7, 14, 18
farcoreleft function 119
farheapcheck function 120
farheapcheckfree function 120
farheapchecknode function 121
farheapfillfree function 121
farheapwalk function 122
FCB See file control block
-ff compiler option 28
fields, random record 128, 129
file control block (FCB) 128, 129
files

font 78
graphics driver 75

linking 38
project

graphics library listed
in 36

fill style (graphics) 71
fillellipse function 56
filling functions 39
fillpoly function 56
financial applications 31
flags, register 4, 5
floating point 27

emulating 28
exceptions, disabling 30
fast 28
formats 27
I/O 27
libraries 27
registers and 29

floodfill function 57
fonts 98

bit-mapped 42
stroked vs. 42

character size 102
characteristics 98
clipping 42
files, loading and

registering 42

graphics text 71, 98
information on 69

height 42, 102
ID numbers 78
information on current

settings 48
linked-in 85
multiple 81, 99
new 78
registering 43

sans-serif 85
sptting size 42, 85

small 85
stroked

advantages of 42
fine tuning 99
linked-in code 84
maximum number 78
multiple 99

text 81
triplex 85
width 42, 102

FP_OFF 17
FP SEG 17
fre~mem function 122
functions

See also specific function
8086 135
BIOS 135
color control 44
declaring as near or far 16
drawing 39
error-handling, graphics 46
far 16
filling 39
goto 136
graphics 37-48, 134

drawing operations 39
fill operations 39
system control 37

image manipulation 40
international information 136
list 120
locale 136
memory, allocating and

checking 135
near 16
operating system 135
pixel manipulation 41
pointers, overlaid routines 23
recursive, memory models

and 16
screen manipulation 40
sound 136
state queries 47
text

output, graphics mode 41
viewport manipulation 40

G
getarccoords function 57
getaspectratio function 58
getbkcolor function 58
getcolor function 59
getdefaultpalette function 59
getdrivemame function 60
getfillpattem function 60
getfillsettings function 61
getgraphmode function 62
getimage function 62
getlinesettings function 63
getmaxcolor function 64
getmaxmode function 65
getmaxx function 65
getmaxy function 66
getmodenamefunction 66
getmoderange function 67
getpalette function 67
getpalettesize function 68
getpixel function 68
gettextsettings function 69
getviewsettings function 69
getx function 70
gety function 70
global variables

heap size 137
overlay buffer, changing 20,

23, 138
stack size 139

gothic fonts 98
goto statements

functions (list) 136
graphdefaults function 71
grapherrormsg function 71
_graphgetmem function 72
graphics

active page 101
setting 87

arcs 49
coordinates of 57
elliptical 55

aspect ratio
correcting 89
getting 58

bars 50
circles

aspect ratio 40
drawing 51

colors
background 45

defined 44
CGA 44,45
drawing 44
EGA/VGA 45
foreground 45

Index 143

functions 43
information on current

settings 48
default settings 59, 71

restoring 38
displaying 44
drawing functions 39
ellipses 56
error messages 71
error-handling 46
fill operations 39
fill patterns 40, 47
functions 36-58

justifying text for 97
list 134

header file 36
I/O 100
library 36

memory and 72
line style 40
memory 39

allocation of memory
from 72

freeing 72
pages 41, 101

setting 40,87
palettes

defined 43
functions 43
information on current 48

pie slices 82, 86
pixels

colors 68, 83
current 48

functions for 41
setting color of 43

polygons 55, 56
rectangle 84
screens, clearing 41, 51
settings 41

default 59, 71
state queries 47
system

control functions 37
initialization 74
shutting down 38, 52
state queries 47

text and 41
viewports 71

clearing 52
defined 36
displaying strings in 81
furictions 40
information 69

on current 48
setting for output 100

visual page 101
graphics adapters 53

problems with 49, 82

144 DOS Reference

graphics buffers 41
internal 93

graphics drivers
BGI and 73, 74, 85

device driver table 77
current 38, 47, 60

returning information
on 48

detecting 53, 60, 74, 77
error messages 73
file 75
initialization 7 4
linking 38
loading 38, 74, 85
modes 86

maximum number for
current driver 65

names 66
overriding 53
range 67
returning 62
setting 93
switching 93

new 77
adding 38

registering 39, 85
returning information on 47,

48
selecting 38
supported 38
vendor added 77

graphics.h 36
graphresult function 73

H
handlers, interrupt (DOS) 124,

125
_harderr function 124
harderr function 123
_hardresume function 125
hardresume function 123
_hardretn function 125
hardretn function 123
hardware

error handlers 123, 124, 125
printer ports 114, 115

header files
complex numbers 30
graphics 36

heap 119
length 137
near, size of 137

_heaplen global variable 137
Hercules card

detecting presence of 53
huge keyword 7, 14

I/O
disk 109
floating-point numbers 27
graphics 100
serial 107, 116

IBM3270PC
detecting presence of 53

IBM8514
colors, setting 96
detecting presence of 53

IDs (fonts) 78
IEEE, rounding 33
imagesize function 7 4
initgraph function 7 4
initialization, graphics system 74
installuserdriver function 77
installuserfont function 78
internal graphics buffer 93
international information

functions (list) 136
interrupts

control-break 123, 125
handlers

DOS 124, 125
modules and 23

IP (instruction pointer) register 4

J
justifying text for graphics

functions 97

K
keep function 126
keyboard operations 113

L
libraries

files (list) 133
floating-point 27
graphics 36, 72
selecting 133
summary 134

line function 79
linerel function 79
lines

drawing
between points 79
from current position 79
mode 101
relative to current

position 79
patternof 63

rectangles and 84
style of 63, 94
thickness of 63, 94

lineto function 79
linked-in fonts 85
linked-in graphics drivers

code 85
linker 18
locale functions (list) 136

M
macros, far pointers 17
math errors, masking 30
_matherr function 30
maximum color value 64
MCGA

detecting presence of 53
memory 3

access(])MA) 110
allocation 106

data segment 118
changing 130

freeing 122
functions (list) 135
graphics 39, 72
unused 118, 119

bit images 7 4
saving to 62

checking 135
direct access (])MA) 110
expanded and extended 127,

128
freeing

in])OS memory 122
in graphics memory 72

memory models and 10
overlays and 20
paragraphs 7

boundary 7
segments in 6

memory addresses
calculating 5, 7
far pointers and 8
near pointers and 8
pointing to 17
segment, offset notation 7
standard notation for 7

memory blocks
adjusting size of 130
file control 128, 129
free 120

filling 121
random

reading 128
writing 129

memory models 3-19
changing 17
compact 10
comparison 13
defined 9
functions list 135
graphics library 37
huge 10
large 10
libraries 133
math files for 133
medium 10
memory apportionment

and 10
mixing 18
overlays and 21, 23
pointers and 7, 14
program segment prefix

and 138,139
size of near heap 137
small 10
stack size 139
supported 9
tiny 9

restrictions 119
mixed modules, linking 18
MK FP macro 17
modifiers (pointers) 14
modules

linking mixed 18
size limit 13

monochrome adapters 53
graphics problems 49, 82

moverel function 80
moveto function 80

N
near heap 137
near keyword 7, 14
negative offsets 5
no parity 108, 116
nosound function 127
numeric coprocessors

0

autodetecting 29
built-in 28
floating-point emulation 28
registers and 29

.OBJ files, converting .BGI files
to 39

objects, far
class names 15
combining into one

segment 15

declaring 15
option pragma and 15

odd parity 108, 116
offsets 8

component of a pointer 17
option pragma, far objects

and 15
out of memory errors 3
outtext function 81
outtextxy function 81
_OvrlnitEms function 127
overlays i9-25

assembly language routines
and 24

BP register and 24
buffers, default size 23, 138
cautions 23
command-line option 22
debugging 23
designing programs for 23
expanded and extended

memory and 24, 127, 128
large programs 19
linking 21

errors 21, 22
memory map 20
memory models and 21, 23
routines, calling via function

pointers 23
overloaded operators

complex numbers and 30
_ovrbuffer global variable 20, 23,

138
_ OvrlnitExt function 128

p
pages

active 87
defined 41
setting 40

buffers 41
visual 41

numbers, setting 101
setting 40

palettes See colors and palettes
parity 108, 116
pause(suspended

execution) 119
PC speaker 127, 131
pie slices 82

elliptical 86
pieslice function 82
pixels, graphics color 68, 83
pointers

arithmetic 8

Index 145

changing memory models
and 17

comparing 8
default data 13
error messages 71
far 8

comparing 8
declaring 8-17
function prototypes

and 17
far memory model and 7
huge 9

comparing 9
declaring 8-17
overhead 9

huge memory model and 7
manipulating 8
memory addresses 17
memory models and 7, 14
modifiers 14
near 8

declaring 8-17
function prototypes

and 17
near memory model and 7
normalized 9
overlays and 23
segment 14
stack 5

polygons
drawing 55, 56
filling 56

ports
communications 107, 116
printer 114, 115

positive offsets 5
#pragma directives

far objects and 15
printers

ports 114, 115
printing directly 114, 115

profilers 23, 138
program segment prefix (PSP)

memory models and 138, 139
programs

large, overlaying 19
RAM resident 126
stopping

exit status 126
suspended execution 119

TSR 126
project files

graphics library listed in 36
protocol settings

(communications) 108, 116
prototypes

far and near pointers and 17
mixing modules and 18

146 DOS Reference

PSP See program segment prefix
putimage function 83
putpixel function 83

R
RAM 3

unused 118
RAM resident programs 126
randbrd function 128
randbwr function 129
random block read 128
random block write 129
records, random fields 128, 129
rectangle function 84
recursive functions

memory models and 16
registerbgidriver function 85
registerbgifont function 84
registers 123

8086 4-6
AX 4
basepoint 5
BP 5

overlays and 24
BX 4
cs 6,8
ex 4
DI 5
DS 6,8
DX 4
ES 6
flags 4, 5
index 4, 5
IP (instruction pointer) 4
LOOP and string

instruction 4
math operations 4
numeric coprocessors and 29
segment 5, 6
SI 5
SP 5
special-purpose 5
SS 6

restorecrtmode function 86
restoring screen 86
rounding

banker's 33
errors 31

RS-232 communications 107, 116

s
sbrk function 130
scaling factor (graphics) 40
screens

aspect ratio 40

correcting 89
getting 58

cells, characters in 35
clearing 40, 51, 93
colors 43
coordinates 36

starting positions 36
modes

defining 35
graphics 35, 36, 38
restoring 86
selecting 38
text 35, 38

resolution 35
x-coordinate

maximum 65
y-coordinate

maximum 66
sector function 86
_seg keyword 14
segment prefix (program) 138,

139
segmented memory

architecture 6
segments 7, 10

component of a pointer 17
memory 6
offset address notation 7

making far pointers
from 17

pointers 14
registers 5, 6

serial communications 107, 116
setactivepage function 87
setallpalette function 87
setaspectratio function 89
setbkcolor function 45, 89
setblock function 130
setcolor function 90
setfillpattem function 91
setfillstyle function 92
setgraphbufsize function 93
setgraphmode function 93
setlinestyle function 94
setpalette function 95
setrgbpalette function 96
settextjustify function 97
settextstyle function 98
settings, graphics

clearing screen and 41
default 59, 71

restoring 38
setusercharsize function 99
setviewport function 100
setvisualpage function 101
setwritemode function 101
SI register 5

size
color palette 68
stack 139

small fonts 85
sound function 131
sounds

functions (list) 136
turning off 127
turning on 131

SP register 5
hardware error handlers

and 123
speaker

turning off 127
turning on 131

special-purpose registers
(8086) 5

_ss keyword 14
SS register 6
stack 119

length 139
pointers 5
segment 6
size 139

state queries 47-48
status bits 108, 117
status byte 110
_status87 function, floating point

exceptions and 30
_stklen global variable 139
stop bits 108, 116
string instructions, registers 4
strings

clipping 42
displaying 81
height, returning 102
width, returning 102

structures
complex 30
graphics palette definition 59

suspended program
execution 119

system, graphics
controlling 37
initializing 7 4
shutting down 38, 52
state queries 47

T
terminate-and-stay resident

programs 126
text

characteristics 98
in graphics mode 41

information on current
settings 48

justifying 42, 97
text strings

clipping 42
displaying 81
size 42

textheight function 102
textwidth function 102
three-dimensional bars 50
time, delays in program

execution 119 ~
TLINK 18
TSR programs 126
two-dimensional bars 50

u
user-defined characters

(fonts) 99
user-defined fill patterns 91, 92
user-loaded graphics driver

code 85
UTIL.DOC 43

v
values, break 118, 130
vendor-added device driver 77
VGA See Video Graphics Array

Adapter
video adapters 35-48

graphics, compatible 38
modes 35

Video Graphics Array Adapter
(VGA) 45

detecting presence of 53
visual page

defined 41
numbers setting 101
setting 40

VROOMM 19

w
warning beeps 127, 131
width, strings, returning 102
window function 36
windows 36

default type 36

x
x aspect factor 58
x-coordinate 65, 70

y
-Y compiler option 23
y aspect factor 58
y-coordinate 66, 70
-Yo compiler option 22

z
-zX compiler option 15

Index 147

148 DOS Reference

Borland
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Brazil,
Canada, Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, Singapore, Spain,
Sweden, Taiwan, and United Kingdom • Part# BCP1245WW21779 • BOR 7777

