
or an ++

User's Guide

Borland® C++
Version 4.0

Redistributable files
You can redistribute the following files in accordance with the No Nonsense License
Statement:

• BC40RTL.DLL • COMPRESS.EXE . • MSMOUSEDRV

• BIDS40.DLL • CTL3D.DLL .OWL200.DLL

• BIDS40F.DLL • CTL3D32.DLL • OWL200F.DLL

• BIVBX1 O.DLL • CW32.DLL • PICT.VBX
• BW320007.DLL • CW32MT.DLL • REGLOAD.EXE

• BW320009.DLL • CX32.DLL • STRESS.DLL
• BW32000C.DLL • CX32MT.DLL • SWITCH.VBX

• BWCC.DLL • DIB.DRV • TOOLHELP.DLL

• BWCCOO07.DLL .• GAUGEVBX • VGAP.DRV
• BWCCOO09.DLL • LOCALEBLL • YESMOUSE.DRV
• BWCCOOOC.DLL • MARS.DLL

• BWCC32.DLL • MARS.MOB

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1987,1993 Borland International. All rights reserved. All Borland products are
trademarks or registered trademarks of Borland International, Inc .. Other brand and product
names are trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95067-3249 .

PRINTED IN THE UNITED STATES OF AMERICA

1EOR1093
9394959697-9876543
W1

Contents

Introduction 1 Editing target attributes with TargetExpert " 32
What's new in Borland c++ 1 Editing node attributes 32
Manual conventions 2 Adding and deleting a node 33
Contacting Borland 2 Adding and deleting targets 33

Part I Using Borland C++ for Windows
Moving nodes and targets 34
Copying nodes 34

Chapter 1 Getting started 7
Installing Borland C++ 7

Hardware and software requirements 7
Installation steps 8
Starting Borland C++ 10
Getting Help 11

Configuring the IDE 11
Changing the SpeedBars 12
Setting IDE preferences 13
Saving your IDE settings : 13

Using the Editor 14
Configuring the IDE editor 14
Syntax highlighting 14

Using Source Pools 35
Setting project options 36

Local Override 36
Using Style Sheets ... , 37

Attaching a Style Sheet to a node 37
Creating a Style Sheet 38
Editing Sty Ie Sheets . 38
Sharing Style Sheets 39

Viewing options in a project 40
Translators 40

Installing a translator 41
Using Special on the SpeedMenu 42
Installing viewers and tools 42

Working with the Message window 15
Browsing through your code 16

Browsing through objects (class overview) ... 17
Filters 17
Viewing declarations of listed symbols 18

Browsing through global symbols 18
Using regular expressions in the browser .. 19

Browsing symbols in your code 20
Using command-line tools 20

Chapter 3 Compiling 43
Compiling in the IDE 43

Using IDE compiler options 44
Using the command-line compilers 44

Configuration files 45
Response files . 45
Option precedence rules 46

Compiler options reference " 46
Directories 55

DPMI and the command-line tools 20
Memory and MAKESWAP.EXE 21
The run-time manager and tools 21

Controlling the memory RTM uses 21
Running other programs from the IDE 22

File-search algorithms 56
Compiler I Defines 56
Compiler I Code-generation 57
Compiler I Floating Point 58
C~mpiler I Compiler Output 59

Chapter 2 Using the project manager 25
What is project management? 25
Creating a project 26

Creating a multiple-target project 28
Converting old projects 29
Converting projects to makefiles " . 29
Changing the Project View , 29

Building a project : 30
Building part of a project 30

Editing the projecttree 31

Compiler I Source 59
Compiler I Debugging 60
Compiler I Precompiled headers ' .. 61
16-bit Compiler I Processor 61
16-bit Compiler I Calling Convention 62
16-bit Compiler I Memory Model 62
16-bit Compiler I Segment Names Data 65
16-bit Compiler I Segment Names Far Data 65
16-bit Compiler I Segment Names Code 66
16-bit Compiler I Entry /Exit Code . ~ 66

32-bit Compiler I Processor 68
32-bit Compiler I Calling Convention 68

Jumping to class source code 98
Using Resource Workshop with ClassExpert ... 98

C++ Options I Member Pointer ;. 69 Running Resource Workshop from the IDE .. 99
C++ Options I C++ Compatibility 69 Using Rescan 99
C++ Options I Virtual Tables 70 Deleting a class 100
C++ Options I Templates 71 Moving a class 100
C++ Options I Exception handling/RTTI 71 Renaming an AppExpert element 100
Optimizations ' 72 Importing a class 101
Optimizations I Specific 72 Rebuilding the .APX database file 101
Optimizations I Size 73
Optimizations i Speed 74
Messages 76
Messages I Portability 77
Messages I ANSI Violations 77
Messages I Obsolete C++ 78
Messages I Potential C++ Errors 78
Messages I Inefficient C++ Coding 78
Messages I Potential errors ' 78
Messages I Inefficient Coding 79
Messages I General , 79
Make 79
Command-line options 79

Chapter 6 Using the integrated debugger 103
Types of bugs 103

Compile-time errors 103
Run-time errors 104
Logic errors 104

Generating debugging information 105
Specifying program arguments 105
Controlling program execution 105

Watching program output 106
Stepping through code 106
Tracing into code 107.

Stepping and tracing class member
functions 107

Chapter 4 Building applications with AppExpert 83 Stepping and tracing external code 108
AppExpert basics 83
Creating an application with AppExpert 84

Stepping over large sections of code 108
Running to a specific location 108

Default AppExpert applications 85 Locating a function 108
Application options 85 Returning to the execution point 108

Application I Basic Options 86 Navigating backward 108
Application I Advanced Options 86 Stopping the program 109
Application I Code Gen Control 87 Starting over . 109
Application I Admin Options 87 Examining values 109

Main Window options 88 What's an expression? 110
Main Window I Basic Options 88 Watching expressions 110
Main Window I SDI Client 89 Adding a watch 110
Main Window I MDI Client 90 Formatting watch expressions 111

MDI Child/View options 90 Disabling a watch 112
MDI Child/View I Basic Options ~ 90 Deleting a watch 112

Chapter 5 Using Class Expert 93
Starting ClassExpert 93

Class Expert basics 93
Classes pane 94
Events pane 94
Edit pane ; 94

Adding a class 94
Creating document types 95
Adding and deleting event handlers 96
Adding and deleting instance variables 97

Editing a watch 112
Evaluating and modifying expressions 112

Evaluating expressions 112
Modifying variables ; 113

Inspecting data elements 114
Examining register values 115

Using breakpoints 116
Setting breakpoints , 116
Working with breakpoints 116

Deleting breakpoints 117
Disabling and enabling breakpoints 117

Viewing and editing code at a breakpoint. 117 TLINK.CFG 144
Resetting invalid breakpoints 118 Response files 145
Changing breakpoint properties 118 Using TLINK with BCC.EXE 146
Logging expressions 119 Linking libraries 146

Customizing breakpoints and the execution TLINK options 147
point ' 120 Module-definition file reference 154

Catching general protection faults 120 CODE statement 154
Using the Event Log window 120 DATA statement 155
Debugging dynamic-link libraries 121 DESCRIPTION statement 155
Debugging in soft and hard mode 122 EXETYPE statement 155

Chapter 7 WinSight 123
Getting started 123

Starting and stopping screen updates 123
Turning off message tracing 124

Choosing a view 124 .
Class List 124

Using the Class List view 125
Spying on classes 125

EXPORTS statement 156
IMPORTS statement 157
LIBRARY statement 157
NAME statement 158
SEGMENTS statement 158
STACKSIZE statement 159
STUB statement ~ 159
Module-definition file defaults 159

Window Tree 125 Chapter 10 Using resource tools 161
Finding a window 126 BRCC.EXE: The resource compiler 162

Leaving Find Window mode 127 RLINK: the resource linker 163
Spying on windows 127 BRC.EXE: the resource shell 164

Choosing messages to trace 127
Using the Message Trace view 127

Other tracing options 128

Chapter 11 Using libraries 167
Using IMPLIB: The import librarian 167
Using IMPDEF: The module-definition file

Chapter 8 WinSpector 133 manager 168
Using WinSpector 133 Classes in a DLL 169

Configuring WINSPCTR LOG: 134 Functions in a DLL 169
WINSPCTRLOG reference 135 Using TLIB: the Turbo Librarian 170

Disassembly section 136 Why use object module libraries? 170
Stack Trace section 136 The TLIB command line 171
Register section 137 Using response files 171
Message Queue section 137 Using case-sensitive symbols: The IC
Tasks section 138 option 172
Modules section 138 Creating an extended dictionary: The IE
USER and GDI heap section 139 option 172
System Information section 139 Setting the page size: The IP option 172

Processing WinSpector data 139 Removing comment records: The 10
DF A output 140 option , : 173
Using DFA with WINSPCTRLOG 140 The operation list 173
Using DFA with WINSPCTRBIN 140 Examples 174

Other WinSpector tools 141
Using EXEMAP.EXE 141
Using TMAPSYM.EXE 142
Using BUILDSYM.EXE 142

Chapter 12 Using MAKE 175
MAKE basics ' 175

BUILTINS.MAK 176
Using TOUCH.EXE 177

Chapter 9 Using the linker: TUNK 143 MAKE options 177
TLINK basid; 143 Setting options on as defaults 178

iii

Compatibility with Microsoft's NMAKE .. 178 Show Identifiers 204
Using makefiles 179 Show Resources 204

Symbolic targets 179 Show Items . ; 204
Rules for symbolic targets 180 Show Unused Types 204

Explicit and implicit rules 180 , Selecting a resource 204
Explicit rule syntax 180 Working with resources 204

Single targets with multiple rules 181 Loading a resource 204
Implicit rule syntax 182 Resource editors 205

Explicit rules with implicit commands ... 182
Commands syntax " 183

The internal text editor , 205
Adding a resource .. ~ 205

Command prefixes 183 Adding an embedded resource 206
Using @ .' ...•.................•......• 183 Adding a linked resource 206
Using -num and - ; 183 I Moving a resource 207
Using & 184 , Copying resources between projects 207
Command operators 184 Deleting a resource 208
Debugging with temporary files 184 Renaming a resource 208

Using MAKE macros 185 Specifying resource memory options 209
Defining macros 185 Using identifiers 210
Using a macro 186 Components of resource identifiers 210
String substitutions in macros 186 Identifier files 211
Default MAKE macros 186 " Creating identifier files 211
Modifying default macros 187 C header files 211

Using MAKE directives 188 Automatic identifier management 212
.autodepend ' 189 Working without an identifier file 213
!error 189 Adding identifiers 213

Summing up error-checking controls 189 By renaming resources 213
!if and other conditional directives 190 By using the Identifiers dialog box 214
!include 191 Editing identifiers 214
!message : 191 Deleting identifiers 214
.path.ext 192 Listing identifiers 215
.precious ',' ' 192 Starting a resource editor 215
.suffixes 192
!undef ' 193

Setting preferences 216
Undo Levels 216

Using macros in directives , . 193 Text Editor 216
Nun macros 193 'Multi-Save 216

Part" Using Resource Workshop
Target Windows Version 217

Working with binary files 217
Chapter 13 Resource Workshop basics 197 Creating 32-bit resources 218
Understanding Windows resources ., 197
Types of resource files 199

Bitmapped resource files 200

Chapter 15 Creating dialog boxes 221
Starting the Dialog editor : . ; 221

Creating a new dialog box 221
Chapter 14 Working with projects, resources, and

identifiers 201

Editing an existing dialog box 222
Using the Dialog editor 222

Creating a new project 201
Opening an existing project 202
Using the Project window 202

, Embedded and linked resources 203

Selecting a dialog box . 223
Setting dialog box attributes 223

Adding a caption 223
Choosing a frame style 224

Displaying the Project window 203 Choosing a dialog style 224

iv

Changing fonts 225 Menu editor screen 259
Including a menu 225 Attribute pane 259
Assigning a custom class to a dialog box .. 226 Test Menu pane " 259

Setting dialog box position 226 Outline pane 259
Working with controls 226 Editing menus 260

Families of controls 226 Adding new statements 260
Tools palette 227 Adding menu items and separators 261
Selecting controls 229 Editing menu items , 261
Adding controls 231 Using the Attribute pane 262
Adding multiple copies of a control 231 Entering item text 264
Control'properties (.VBX controls) 232 Entering item IDs 264
Moving controls 232 Moving and copying statements 264
Resizing controls 232 Deleting menu statements 265
Locating and sizing controls at the
same time 232

Creating floating menus 265
Testing menus : 266

Aligning controls with a grid 233 Editing menu resource scripts 267
Editing controls ' 233 Sample menu 268
Adding captions to controls 235 Creating the sample menu 268
Changing a control's class 235 Adding commands to the menu 269
Specifying controls as tab stops 235 Adding commands to the Arrange
Grouping related controls 236 List menu 270
Reordering controls (tab order) 236 Testing the menu '" 270

Aligning, resizing, and arranging controls .. 237
Aligning multiple controls 237
Placing controls in columns and rows 239
Resizing multiple controls 240
Single-control sizing options 241

Button controls 241
Push button Control ID values 242

Scroll bar controls 243
List box controls 244
Edit text controls 246
Static controls 248

Iconic static controls 249
Combo box controls 250
Custom controls 251

Creating your own custom controls 252
Installing a control library (.DLL or .VBX) .252

, Displaying custom cont~ols 252
Adding a custom control 252

Testing a dialog box 253
Viewing two dialog boxes 253
Customizing the Dialog editor' 254

Chapter 17 Creating accelerators 271
Accelerator table key combinations 271

ASCII keys 272
Virtual keys .. ; 272

Starting the Accelerator editor 272
Creating a new accelerator table 272
Editing an existing accelerator table 273
Running the Menu editor at the same time .. 273

Using the Accelerator editor 273
Outline pane 273
Attribute pane 274

Editing an accelerator table 275
Adding an accelerator key 275
Selecting an accelerator key 275
Using the Attribute pane 275

Setting the command value 276
Specifying the accelerator key 276
Flash feature 277

Checking for duplicate key combinations 277
Creating a sample accelerator table 277

Chapter 16 Creating menus 257
Menu terminology 257
Starting the Menu editor 258

Creating a new menu 258
Editing an existing menu 258

Chapter 18 Creating a string table 281
Starting the String editor 281

To create a new string table 281
To edit an existing string table 282

Working with string tables 282

v

Windows and strings 283 Save with default device colors 308
Entering a new string 283
Editing existing strings _ 284

Changing a string 284
Editing the resource script of a string table .. 285

Changing the string 285
Creating a sample string table 285

Chapter 19 Using the Bitmap editor 289

Chapter 20 Creating icons 309
Creating a new icon 309

Adding an icon to a project file 309
Creating a standalone icon file 310

'Binary format option 310
Icon project file 311

Editing icons 311
Starting the Bitmap editor 289 Viewing other resolutions 311
Pixels, foreground and background colors 289 Using transparent and inverted color areas . 311
Using the Tools palette 290 Adding an image to an icon resource 312

Pick Rectangle tool 292 Changing an icon's attributes 313
Scissors tool 292 Displaying device information 313
Zoom tool ~ 292 Creating a sample icon 314
Eraser tool 293 Drawing the calculator 314
Pen tool 293 Adding a three-dimensional effect ; 315
Paintbrush tool 293 Drawing the ledger page 316
Airbrush tool 294
Paint Can tool 294
Line tool 295
Text tool 295
Painting empty frames 296
Painting filled frames , 296
Hand tool 297
Style selections 297

Using the two window panes 297
Reading the status line 298
Working with colors 298

Choosing the number of colors for a

Chapter 21 Creating cursors 319
Creating a new cursor 319

Adding a cursor to a project file 319
Creating a standalone cursor file 320

Binary format option 320
Cursor project file 321

Editing cursors 321
Colors palette for cursors 321
Working with transparent and
inverted areas 321
Setting the cursor's hot spot 321

resource , 299
Using foreground and background colors ... 299
Transparent and inverted color areas 300

Setting transparent and inverted colors ... 300
Hiding and showing the Colors palette 301

Customizing colors 301
Editing colors in the Colors palette 302

Palette index , 302
Editing a color 302

Adding text to a bitmap 303
Aligning text 303
Choosing fonts, size, and text style 304

Choosing brush shapes 304
Choosing paint patterns 305
Choosing a line style 306
Aligning a selected area 306
Resizing a selected area 307
Setting global Bitmap editor options 307

Draw on both images 308

Chapter 22 Creating fonts 323
Font types 323

Why put bitmaps in a font? 324
Creating a new font resource 324

Adding a font to a project file 324
Creating a standalone font file 325

Binary format option 325
Font project file 325

Editing a font resource 326
Defining and adding characters for a font .. 326

Defining the font size 326
Setting the number of characters 327
Mapping the character set 327

Creating variable-width fonts 328
, Setting the width of a character or image. 328

Defining a header for a font resource 329
Changing size and attributes 330

Using your fonts in your applications 330

vi

Chapter 23 Creating user-defined resources 331 Borland Button Style dialog box 398
Creating a resource type 332 Borland Radio Button Style dialog box ... 400
Adding user-defined resources 332 Borland Check Box Style dialog box 400
Editing user-defined resources 333 Borland Shade Style dialog box 400

Embedding resource data in the project file .334 Borland Static Text Style dialog box 400
Entering data in the resource script 334 Modifying existing applications for BWCC ... 401
Handling data stored in a separate file 335 Loading BWCC 401

Using the RCDATA resource type 335 Using BWCC in C and C++ programs 401

Appendix A Error messages 337
Tips on editing resources .. '. ~ 402

Message classes 337 Appendix C Precompiled headers 403
Fatal errors 337 How they work 403
Errors 338 Drawbacks 404
Warnings ' .. 338 Using precompiled headers 404

Help compiler messages 338 Setting file names 4:04
Message listings 339 Establishing identity 405
Message explanations 339 Optimizing precompiled headers 405

Appendix B Borland Windows Custom Controls 395 Appendix 0 Using EasyWin 407
Using the Borland custom dialog class 395 ConsoleD OS to Windows made easy 407
Using Borland controls 396 _InitEasyWin() 407

Button and check box enchancements 397 Added functions 408
Using the BWCC style dialog boxes 398 Index 409

vii

Tables

1.1 Letter symbols in the Browser 19 11.3 TLIB action symbols 174
1.2 Browser search expressions 19 12.1 MAKE options 177
1.3 Environment variables for RTM's memory 12.2 Command prefixes 183

allocation 22 12.3 Command operators 184
3.1 Options summary 47 12.4 Command line vs. makefile macros 186
4.1 Client/view class with Document/view ... 89 12.5 Default macros , 187
4.2 MDI client/view class with 12.6, Other default macros 187

Document/view 91 12.7 File-name macro modifiers 187
6.1 Format specifiers for debugger expressions .113 12.8 MAKE directives 188
6.2 CPU flags in the Register window 115 _ 12.9 Conditional operators 191
6.3 Event Log window SpeedMenus 121 14.1 Resource memory options 209
7.1 Mouse messages 129 14.2 Identifier prefixes 212
7.2 Window messages 129 15.1 Common options in Style dialog boxes ... 234
7.3 Input messages 129 15.2 Control attributes 234
7.4 System messages 130 15.3 Alignment options 237
7.5 Initialization messages 130 15.4 Size options 240
7.6 Clipboard messages ~ ... 130 15.5 Button types 242
7.7 DDE messages 130 15.6 Predefined Windows button controls 243
7.8 Nonclient messages , 130 15.7 Alignment options 244
7.9 Print messages ' 130 15.8 Owner Drawing options 244
7.10 Control messages 131 15.9 List Box options 245
7.11 Pen messages 132 15.10 Edit Text Style dialog box options 246
7.12 Multimedia messages 132 15.11 Windows 3.1 styles 247
7.13 Other messages 132 15.12 Control Type options 248
7.14 Messages not documented by Microsoft .. 132 15.13 Combo box Type options 25U
8.1 Exception types : 135 15.14 Owner Drawing options 250
8.2 DFA options 141 15.15 Combo box attributes ~ 251
9.1 Borland 16-bit libraries and startup files ... 146 16.1 View menu selections 259
9.2 Borland 32-bit libraries and startup files, .. 147 16.2 Menu editor Attribute pane selections ... 262
9.3 TLINK options 147 17.1 Attribute pane selections 274
9.4 TLlNK32 warnings 153 19.1 Zoom commands 292
10.1 BRCC (Borland resource compiler) 162 22.1 Font size options 327
10.2 RLINK switches 163 22.2 Character options 328
10.3 BRC switches 164 22.3 Font header options 329
11.1 IMPLIB options 168 B.1 Predefined BWCC button controls 399
11.2 TLIB options 171 B.2 Bitmap offsets 399

viii

Figures

1.1 Elements ofthe IDE 10 15.6 Size Controls dialog box 240
1.2 Viewing classes in an application 17 15.7 Edit text control 246
1.3 Symbol declaration window 18 15.8 Combo box from Open File dialog box ... 250
1.4 Viewing globals 18 16.1 Sample menu 268
2.1 The project tree 26 18.1 String editor with string table entries 282
5.1 The ClassExpert window 93 18.2 String editor with four strings defined ... 287
6.1 The Watch window 110 19.1 Bitmap editor Tools palette 291
6.2 The Watch Properties dialog box 111 19.2 16-color Colors palette 299
6.3 The Breakpoint window 116 19.3 16-color palette index 302
6.4 The Breakpoint Properties dialog box 117 19.4 Aligning text . 304
14.1 Project window showing respurces by file .203 20.1 Icon window 312
15.1 A typical dialog box 221 20.2 Calculator before adding drop shading .. 315
15.2 Dialog editor with empty dialog box 222 20.3 Calculator with shading 316
15.3 Tools palette 228 20.4 Finished Home Budget icon 317
15.4 Dialog box coordinates 233 B.1 Dialog box with Borland controls 396
15.5 Control order options 239

ix

x

See the Roadmap for
information on the

manuals and online
Help included with

Borland C++.

Introduction

Borland C++ is a powerful professional tool for creating and maintaining
DOS, Windows, Win32s, and Windows NT applications using the C and
C++ languages. Part 1 of this manual introduces you to the Integrated
Development Environment (IDE) and the command-line tools needed to
create applications. Part 2 teaches you how to use Resource Workshop to
build Windows resources for your applications.

Whats new in Borland C++

Introduction

Borland C++ 4.0 has many more features than previous releases. The
following is a brief list of major additions and changes:

• The 32-bit compiler and tools generate 32-bit targets for Win32s and
Windows NT .

• You can generate DOS programs from the Windows IDE.

• The IDE has a graphical integrated debugger for debugging 16-bit
Windows applications.

• The IDE has an enhanced editor that lets you record keystroke macros,
work in multiple panes in one editor window, and search for text using
regular expressions. You can configure the editor to use Brief or Epsilon
keystrokes or you can create your own keystrokes.

• The right mouse button brings up SpeedMenus that list commands
specific to the object you click. For example, some common editing
commands are on the SpeedMenu of all editor windows. (To access old
functions of the right mouse button, press Ctrl+click right mouse button.)

• The IDE has a new multiple-target project manager that visually shows
file dependencies and lets you manage more than one program.

• The IDE has a new multiple-window ObjectBrowser that displays class
relationships.

• Using AppExpert you can quickly generate ObjectWindows 2.0 Windows
programs. ClassExpert helps you modify and organize your AppExpert
application.

Manual conventions

This manual uses special fonts and icons as follows:

Monospaced type . This font represents text that you type or onscreen text.

Italics Italics are used to emphasize certain words and indicate variable names
(identifiers), C++ function names, class names, and structure names.

Bold Reserved keywC?rds words, format specifiers, and command-line options
appear bold.

Keycap This font represents a particular key you should press-for example, "Press
Del to erase the character."

ALL CAPS All caps are used to represent disk directories, file names, and application
names.

Menu I Choice Rather than use the phrase" choose the Save command from the File
menu," this manual uses the convention" choose File I Save".

16-bit Windows 32-bit Windows

Contacting Borland

Service

Tech Fax

Automated support

2

Borland offers a variety of services to help you with your questions. Be sure
to send in the registration card: registered owners are entitled to receive
technical support and information on upgrades and supplementary
products. North American customers ca~ register by phone 24 hours a day
by calling 1-800-845-0147. Borland provides the following convenient
sources of technical information.

How to contact Available Cost Description

1-800-822-4269 24 hours daily Free Sends technical information to your fax
(voice) machine. You can request up to 3

documents per call. Requires a Touch-
Tone phone.

408-431-5250 24 hours daily' The cost of Requires a Touch-Tone phone or
(modem) the phone call modem.

Borland C++ Users Guide

Online Services

Borland Download
BBS

CompuServe online
service

BIX online
service

GEnie online
service

Introduction

408-431-5096 24 hours daily The cost of Sends sample files, applications, and
the phone call technical information via your modem.

Requires a modem (up to 9600 baud);
no special setup required.

Type GO BORLAND. 24 hours daily; Your online Sends answers to technical questions
Address messages to 1-working-day charges via your modem. Messages are public
Sysop or All. response time. unless sent by CompuServe's private

,mail system.

Type JOIN BORLAND. 24 hours daily; Your online Sends answers to technical questions
Address messages to 1-working-day charges via your modem. Messages are public
Sysop or All. response time. unless sent by BIX's private mail

system.

Type BORLAND. 24 hours daily; Your online Sends answers to technical questions
Address messages to 1-working-day charges via your modem. Messages are public
Sysop or All. response time. unless sent by GEnie's private mail

system.

For additional details on these and other Borland services, please refer to
the Borland Support and Services Guide that was included with your product.

3

4 Borland C++ Users Guide

p A R T

Using Borland C++ for Windows

This section of the User's Guide describes how to install and use Borland
C++. It teaches you how to use the components in the Integrated
Development Environment (IDE), including the integrated debugger, the
browser, AppExpert, ClassExpert, and the project manager. It also
documents the command-lines tools, including the compiler, linker,
librarian, and MAKE. Borland C++,

• Integrates development of DOS, Windows, Win32s, and Windows NT
applications. You can build more than one application type from a single
project file.

• Creates ObjectWindows applications quickly and easily using
AppExpert. After you create an application, ClassExpert helps you
maintain that application by tracking classes and events and works with
Resource Workshop to manage the resources you create and use in your
application.

• Helps you debug and browse your applications without having to use a
separa te debugger.

• Contains a customizable editor. You can use the keyboard shortcuts
provided with Borland C++, or you can customize your own.

This section also describes two Windows programs that help you debug
your applications: WinSight and WinSpector.

There are two online files for Borland C++ that contain additional material
not in the manuals or online Help:

• INSTALL. TXT Contains complete installation information for both
floppy and CD ROM installations.

• UTILS.TXT Describes command-line tools and utilitiesnotfoimd
in the manuals or online Help.

c H A p T E R

Getting started

Borland C++ is a development package containing Windows tools,
command-line tools, and libraries that help you develop applications for
DOS, Windows, Win32s, and Windows NT. This chapter gives you a .
working description of the Borland C++ product-the IDE, project
manager, AppExpert, tools, and utilities.

Read this chapter to learn how to

• Install and configure Borland C++ • Use the Message window

• Use the editor • Browse your code

1

• Use syntax highlighting for code

• Use the SpeedBar

• Start and use other tools from the
IDE

Other utilities and command-line tools are described briefly in this chapter.
For information on other parts of the Borland C++ product, see the
Roadmap, which points you to topics in the documentation.

Installing Borland C++

Hardware and
software
requirements

Borland C++ contains both DOS and Windows applications. Before you can
install Borland C++, make sure your computer has the minimum hardware
and software requirements.

To use Borland C++, your computer must have:

• DOS version 4.01 or higher
• Windows 3.1 or higher running in 386-enhanced mode
• A hard disk with 40 MB of available disk space for a normal installation

(80MB for a full installation) ,

• A 1.44 floppy drive or CD ROM (for installation)

• At least 4MB of extended memory

• A Windows-compatible mouse

Chapter 1, Getting started 7

Installation steps

If you use a disk
compression utility,

you should read
INSTALL.TXT before

you install Borland
CH.

8

Although the following items aren't required, they can greatly increase
your computer's performance:

• 8MB RAM .

• An 80x87 math coprocessor (if you're writing programs that use
floating-point math). Borland C++ emulates a math chip if you don't
have one. '

The Borland C++ install program installs the Borland C++ product (the
IDE, command-line tools, ObjectWindows, and Turbo Debuggers) and it
installs Win32s (Win32s lets you run 32-bit programs under 16-bit
Windows). The installation program works under Windows, Win32s, and
Windows NT; however, not all programs run under Windows NT.

Before you install, make sure your computer meets or exceeds the
hardware and software requirements. If you need more information about
installing Borland C++, read the online file INSTALL.TXT, located on Disk,
1 (this file isn't compressed, so you can view it using any text editor).

The installation instructions for floppy and CD are basically the same, but
you should read the INSTALL.TXT file or the CD liner notes if you're
installing from CD ROM.

To install Borland C++ from floppy disks,

1. Put Disk 1 in your floppy drive (usually A or B).

2. Start Windows and choose File I Run from the Program Manager.

3. Type a: \install (or b: \install if your floppy is in drive B), then press
Enter. The install dialog box appears. At the bottom of this dialog box
you'll see the amount of hard~disk space needed for'a complete install
(Target Requirements). You'll also see the amount of disk space
available on your machine. Make sure you have more than enough
room available for installation before continuing. If your computer uses
disk compression, read the INSTALL.TXT file; you might need more
room than what is listed as available.

4. Click the Customize BC4.0 Installation button if you want to select only
specific files for installation. Another dialog box appears with buttons
and descriptions for areas of the product. Click a button for an area you
want to customize. A dialog box for that area appears where you can
uncheck files you don't want installed (the default installation installs
all files to your machine). Click OK and repeat this process for any areas
you want to customize. Click OK to return to the first install dialog box.

Borland C++ User's Guide

Chapter 1, Getting started

5. The install program lists default directories where it will install files.
Type another path only if you want Borland C++ installed to a different
directory .

• Borland C++ destination directory is the main directory under which
all other files are installed (by default the directory is C: \BC4) .

• Borland C++ Configuration File directory is where the installation
program puts the Borland C++ configuration files (usually
C: \BC4 \BIN).

6. By default, the installation program creates a Windows group where it
places all the Borland C++ icons. If you don't want to create a group,
uncheck Create Borland C++ Group.

7., Win32s also installs by default. If you don't want Win32s, uncheck this
option. Win32s is required for running 32-bit applications.

8. Check LAN Windows Configuration only if you're inst~lling on a
machine with LAN Windows.

9. Click Install to begin copying files to your machine. When installation is
complete, you can read the README.TXT file. This file contains last
minute changes to the product, the documentation, and the online Help.
For a description of all the icons that install creates, read the file
INSTALL.TXT located on disk one and C:\BC4.

After you install, make sure your CONFIG.SYS file has FILES and BUFFERS
equal to 40 or more (see your DOS documentation for information on the
CONFIG.SYS file).

The install makes the follow~g changes to existing files on your machine:

• AUTOEXEC.BAT now includes the path to Borland C++ (c: \BC4 \BIN by
default).

• WIN.lNI includes a section [BCW4. 0 INSTALL] that is used by the TASM
install program to locate where Borland C++ is installed on your
machine. Also, inthe [EXTENSIONS] section, the extension IDE is associated
with the IDE (BCW.EXE).

• SYSTEM.lNI includes two device lines:
device: c:\bc4\bin\tddebug.386
device: c:\bc4\bin\windpmi.386

• If you run under Windows NT, NTCMDPROMPT is added to CONFIG.NT.

FILELIST.TXT lists every file that ships with Borland C++. If you need to
free disk space, read this file before. you delete any Borland C++ files.

9

Starting Borland
C++

Borland
c++

Figure 1.1
Elements of the IDE

10

To start the IDE, double-click the Borland C++ icon in Windows (shown at
left). The IDE lets you write, edit, compile, link, debug, and manage your
programming projects. The IDE has

• An editor and browser described in this chapter

• A project manager, described in Chapter 2, "Using the project manager"

• A debugger, described in Chapter 6, "Using the integrated debugger"

Figure 1.1 shows some of the components of the IDE.

SpeedS

Editor
window

Project
window [.epp) code size=594 lines=274 dala size=99

.. \ .. \ .. \inelude\windows.h [AuloDepend)

.. \ .. \ .. \inelude\sldlib.h [AuloDepend)
" \ .. \ .. \inelude_dels.h [AuloDepend)
.. \ .. \ .. \inelude\slring.h [AuloDepend)
.. \ .. \ .. \inelude\loeale.h [AuloD epend)

~ whello [.Ie)
&) whello [.del)

Status' bar

-r.f--l~IJeE~aMenu

The IDE has context-sensitive SpeedMenus that let you modify objects
quickly. To view a SpeedMenu, right-click in a window (the window must
be selected first with the left mouse button) or on an item in a window, or
press Alt+F10 (the SpeedMenu changes depending on what is selected). For
example, to jump to a line in an editor window, right-click in the editor
window, choose Go to line, then type the number for the line you want to
view. The menu item "Go to line" appears only when an editor window is
selected. If you open a SpeedMenu in a project window, you'll view a
completely different set of menu items.

The SpeedBar also changes depending on what window you select. There is
a configurable SpeedBar for the editor, browser, debugger, project manager,
message window, desktop, and ClassExpert (to configure a SpeedBar, see

Bar/and C++ Users Guide

.1

I

I

Getting Help

page 12). When you place the mouse pointer over a button on the SpeedBar,
a help line describing the button appears in the status line at the bottom of
the IDE.

Some of the buttons on the SpeedBar are dimmed at times. This means that
the command the button represents isn't available to you in the current
context. For example, if an edit window is open, the Paste Text from
Clipboard button is dimmed if there is no text in the Clipboard.

The Borland C++ Help system gives you online access to detailed
information about Borland C++. You can find most product information in
both the manuals and the online Help. The following topics, however, are
only in online Help:

• IDE menu commands • Run-time library example code

• Editor KEYMAPPER • Windows API

To get online Help:

• In the IDE, choose Help from the menu or press F1.

• In dialog boxes, click the Help button or press F1.
I

I

~:'

• For menu commands, select the menu command and then press F1.

Configuring the IDE

You can also press +
or - to expand and
collapse the list of

options.

You can configure the IDE to do tasks automatically (such as saving a
backup of files in editor windows) or to handle events. This section
describes what you can configure.

The Options I Environment dialog box lets you configure the editor,
browser, debugger, project windows, and other elements of the IDE (these
options are saved in a file called BCCONFIG.BCW).

To ope!\ the Environment Options dialog box, choose Options I Environ
ment. The dialog box appears with a, list of topics on the left. Some topics
contain subtopics under them. For example, the Editor topic has subtopics
called Options, File, and Display. When a topic has subtopics that aren't
displayed, the topic contains a + next to the name. When you click a topic's
+ sign, its subtopics appear under it and the + turns to a - (you can then
click the - to collapse the list). Topics that don't contain subtopics appear
with a dot next to their name. When you click a topic, its characteristics
appear to the right in the dialog box.

Chapter 1, Getting started . 11

Changing the
SpeedBars

12

Not all Options I Environment topics are discussed in this chapter. See the
online Help (click the Help button in the dialog box) for complete reference
material on all topics and options.

Some topics associated with tasks or parts of the IDE are discussed
elsewhere in this manual (for example, project options are discussed in
Chapter 2). Check the index of this manual for entries on specific topics.

The IDE has SpeedBars for Editor, Browser, Debugger, Project, Message,
Desktop, and ClassExpert windows. When you select one of these types of
windows, the corresponding SpeedBar appears. You can customize each of
the SpeedBars so that they include only the buttons you need.

To add or delete buttons from any of the SpeedBars,

1. Choose Options I Environment from the main menu.

2. Choose the SpeedBar topic on the left. The right side of the dialog box
displays general options for all SpeedBars.

The options here let you choose how you want the -SpeedBar to appear
(top or bottom of the IDE), and how you want it to behave (check Use
flyby,help to view help hints on the status line when you pass the
mouse pointer over a button).

3. Choose Customize, the topic under SpeedBar. The options on the right
display information about the SpeedBars.

, 4. Choose the type of SpeedBar you want to modify (Editor, Browser,
Debugger, Project, Message, Desktop, or ClassExpert) from the Window
drop list. '

The column on the left (Available Buttons) displays all the available
(unused) buttons with names next to them that describe the button's
function. The column on the right (Active Buttons) displays only the
buttons for the selected SpeedBar.

5. To add a'button, double-click the button icon in the Available Buttons
list, or select it and click the right-pointing arrow. The button moves to
the Active Buttons list.

6. To remove a button from a SpeedBar, double-click the button icon in the
Active Buttons list, or select it and click the left-pointing arrow. The
button moves to the Available Buttons list.

To reorder the button positions for a SpeedBar, use the up and down
arrows. The selected button in the Active Buttons list moves up or down
the list (the top button appears on the far left of the SpeedBar; the last
button in the list appears on the far right).

Borland C++ Users Guide

Setting IDE
preferences

Saving your IDE
settings

Chapter 1, Getting started

You can also make all SpeedBars identical by selecting a SpeedBar in the
Window list, then pressing the Copy Layout button. A dialog box appears
in which you check all the SpeedBars you want to make identical to the
selected SpeedBar. For example, if you first choose the Editor SpeedBar,
then click Copy Layout, the dialog box appears with Editor dimmed. If you
then check Project and Message, those SpeedBars will be exactly the same
as the Editor SpeedBar.

You can restore any SpeedBar to its original defaults by selecting the
SpeedBar in the Window list then clicking the Restore Layout button.

Separators put space between two buttons. You can add separators to any
SpeedBar by selecting a button from the Active Buttons list then clicking
the Separator button. The separator is added before the selected button.

Preferences let you customize what you want saved automatically and how
you want some windows to work.

To set preferences,

1. Choose Options I Environment I Preferences.

2. Check and uncheck the options you want. See the online Help (press the
Help button) for an explanation of each option.

3. Choose OK.

The IDE automatically saves information when you exit the IDE, build or
make a project, use a transfer tool, run the integrated debugger, or close,
open, or save a project. You can control the automatic saving by choosing
Preferences from the Environment Options dialog box (choose Options I
Environment from the main menu) and setting options for automatic save.

To save your settings manually,

1. Choose Options I Save.

2. Check Environment to save the settings from the Editor, Syntax
Highlighting, SpeedBar, Browser, and Preferences sections of the
Environment Options dialog box. These settings are saved in a file
called BCCONFIG.BCW.

3. Check Desktop to save information flbout open windows and their
positions. This information is saved to a file called <prjname>.DSW. If
you don't have a project open, the information is saved to a file called
BCWDEF.DSW.

4. Check Project to save changes to your project (.IDE) file, including build
options and node attributes.

13

Using the Editor

You can open up to
32 editor windows in

the IDE.

Configuring the
IDE editor

The .CKB files also
configure other

windows in the IDE.
See the online Help

for more information.

Syntax
highlighting

14

Editor windows are where you create and edit your program code. When
you're editing a file, the IDE status bar displays the line number and
character position of the cursor. For example, if the cursor is on the first line
and first character of an editor window, you'll see 1: 1 in the status bar; if
the cursor is on line 68 and character 23, you'll see 68: 23. The IDE status bar
also indicates whether the cursor will overwrite or insert characters (press
Insert to toggle this option) and displays the word Modified if you've made
any changes to the file in the selected edit window.

The editor lets you undo multiple edits by choosing Edit I Undo or pressing
Alt+Backspace. For example, if you delete a line of text, then paste some text,
you can undo these edits: the pasting, which was the last edit, is undone
first, then the deletion. You can set the number of undo actions allowed by
choosing Options I Environment I Editor I Options and setting the Undo
Limit.

You can configure the editor so that it looks and behaves similar to other
editors (like Brief and Epsilon). The IDE editor uses keyboard mapping files
(.CKB) that set the keyboard shortcuts for the editor (these files also change
the keystrokes for other windows). '

You can use one of the four default .CKE files by choosing Options I
Environment I Editor and clicking a SpeedSetting (Default keymapping,
IDE classic, BRIEF emulation, or Epsilon). To learn how to edit or create
your own .CKB file, see the online Help (search on "Keymapper").

Syntax Highlighting lets you define a color and font attribute (like bold) for
certain elements of code. For example, you could display comments in blue
and strings in red. Syntax Highlighting is on by default. To turn off
highlighting,

1. Choose Options I Environment I Syntax Highlighting.

2. Uncheck Use Syntax Highlighting.

Syntax Highlighting works on files whose extension is listed in the Syntax
Extensions list (.CPP, .C, .H, and .HPP by default). You can add or delete
any extension from this list, but you must separate extensions with
semicolons. '

The Syntax Highlighting section displays the default color scheme and four
predefined color settings (buttons) you can use.

Borland C++ Users Guide

To use a predefined color scheme,

1. Choose Options I Environment I Syntax Highlighting.

2. Choose one of the four color schemes by clicking its button; the sample
code changes to use the color scheme you select. You can use a color
scheme as a starting point for customizing syntax highlighting.

To manually select syntax highlighting colors,

1. Choose Options I Environment I Syntax Highlighting I Customize.
Elements and sample code appear on the top right of the Environment
Options dialog box.

2. Select an element you want to modify from the list of elements (for
example, Comment), or click the element in the sample code (this selects
the name in the Element list). You might need to scroll the sample code
to view more elements. The sample code uses the font selected in the
Editor I Display section of the Environment Options dialog box.

3. Select a color for the element. The element color in the sample code
reflects your selection. Use the left mouse button to select a foreground
color for the element (FG appears in the color). Use the right mouse
button to select a background color (BG appears in the color). If FB
appears in the color, the color is used as both a background and a
foreground color.

4. Choose an Attribute such as bold, if you want.

5. You can check Default FG (foreground) or BG (background) to use the
Windows default colors for an element.

6. Repeat steps 2-4 for the elements you want to modify.

Working with the Message window

You can customize
some of the

functionality of
message windows by
using Preferences in

the Environment
Options dialog box.

The Message window displays errors and warnings when you compile
programs. When you select a message in the Message window, the editor
places the cursor at the spot in your code where the error or warning
occurred. If the file containing the error isn't loaded in an editor window,
press Spacebar to load it (you can also press AIt+F10 and choose View source
from the SpeedMenu). The message window remains selected so you can
move from message to message.

To view the code associated with an error or a warning, either select the
message in the message window and press Enter, double-click the message,
or press AIt+F10 and choose Edit source from the SpeedMenu. The cursor
appears on the line and column in your source code where the error is most

Chapter 1, Getting started 15

likely to have occurred (the message window moves to the background).
Use AIt+F7 to move to the next error message or Alt+FB to go to the previous
error message.

You can also cursor through messages in the message window. As you
select a message, the cursor in the editor window moves to the place where
the error occurred (this is called automatic error tracking). Automatic error
tracking works only if theiile containing the errors is displayed in an editor
window. If the next message you select references another source file (not
the one in the current editor window), you must select the editor window
that displays the source file associated with the message before you can
continue automatic error tracking.

You can clear the message window by choosing Remove all messages from
the message-window SpeedMenu (right-click or press Alt+F10 to view the
SpeedMenu).

Browsing through your code

The Browser has a
customizable

SpeedBar (see page
12 for more

information on
customizing
SpeedBars).

16

The browser lets you view the object hierarchies, classes, functions,
variables, types, and constants your program uses. The browser also lets
you

• Graphically view the hierarchies in your application, then select the
object of your choice and view the functions and symbols it contains and
inherits.

• List the variables your program defines, then select one and view its
declaration, list all references to it in your program, or edit its declaration
in your source code.

Before you use the browser, be sure to set these options in the Project
Options dialog box (choose Options I Project) and compile your application:

• Choose Compiler I Debugging and check Debug information in OBJs

• Choose Compiler I Debugging and check Browser reference information
in OBJs

• Choose Linker I General and check Include debug information.

To start the browser, choose Search I Browse Symbol, View I Classes, or
View I Globals. You can also place your cursor on a symbol in your code
and choose Search I Browse symbol to bring up the browser. If the program
in the current editor window hasn't been compiled yet, you must compile
and link your program with debugging information before you can use the
browser. If you try to browse a class definition (or any symbol that doesn't
have symbolic debug information), you'll get an error message.

Borland C++ Users Guide

Browsing through
objects (class
overview)

Figure 1.2
Viewing classes in an

application

Filters

You can also check
the Browser options

in the Environment
Options dialog box to

select the type of
symbols, but you

must set these
options before

opening browser
windows.

Chapter 1, Getting started

You can set several browser options using the Environment Options dialog
box. Choose Options I Enviro.nment, click the Browser topic and select the
options you want to use. Single window means you can only have only one
browser window up at a time; Multiple windows opens a' new browser
window each time you perform a browsing action (such as choosing View I
Globals from the main menu). Visible symbols are described on page 18.

Choose View I Classes to see the "big picture," the object hierarchies in your
application, as well as the small details. When you choose View I Classes,
the browser draws your objects and shows their ancestor-descendant
relationships in a horizontal tree. The red lines in the hierarchy help you
see the immediate ancestor-descendant relationships of the currently
selected object more clearly. Figure 1.2 shows the structure of the WHELLO
application.

To see more information on a particular object, double-click it. If you aren't
using a mouse, select the object by using your arrow keys and press Enter.

When you browse a particular symbol, the same letters that identify the
symbol appear in a Filters matrix at the bottom of the browser window.
You can use filters to select the type of symbols you want to see listed. (See
Table 1.1 for a list of letters and their meaning.)

The Filters matrix has a column for each letter. Click the top or bottom row
to move the letter (a letter in the top row means the browser shows
symbols with that identification; a letter on the bottom means the browser
excludes symbols with that identification).

To restrict views of a particular type of symbol, click the bottom cell of the
letter's column as shown at left. For example, to remove all the variables
displayed in the currently selected object, click the bottom cell in the v
column.

In some cases more than one letter appears next to a symbol. The second
letter appears just after the letter identifying the type of symbol and further
describes the symbol. See Table 1.1 for a list of filter identifiers.

17

Viewing
declarations of
listed symbols

Figure 1.3
Symbol declaration

window

Browsing through
global symbols

Figure 1.4
Viewing globals

Use one of these methods to see the declaration of a particular symbol
displayed in a list:

• Double-click the symbol.
• Select the symbol and press Enter.
• Select the symbol, press Alt+F10 to view the SpeedMenu, then choose

Browse Symbol.

The symbol declaration appears in a window, as shown in Figure 1.3.

Choose View I Globals to open a window that lists every global symbol in
your application in alphabetical order. The browser lists the symbols (the
functions, variables, and so on) used in the object. Figure 1.4 shows the
globals for the WHELLO program.

One or more letters appear to the left of each symbol in the object. The
,letters describe what kind of symbol it is. You can filter out symbols using
the filter list at the bottom of the browser window. See the previous section
"Filters" for more information.

Borland C++ Users Guide '

Table 1.1
Letter symbols in the

Browser

You can also type
regular expressions

for searching (for
example, you can use

?, * and t).

Using regular
expressions in the
browser

Table 1.2
Browser search

expressions

Letter Symbol

F Functions
T Types
V Variables
C Integral constants
? . Debuggable

Inherited from an ancestor
v Virtual method

To get more information on a particular symbol, either click the symbol or
use your cursor keys to select it. A Search input box at the bottom of the
window lets you'quickly search through the list of global symbols by
typing the first few letters of the symbol's name. As you type, the highlight
bar in the list box moves to a symbol that matches the typed characters.
You can view the symbol declaration by selecting the symbol and pressing
Enter. See the previous section, "Viewing declarations of listed symbols," for
more information.

You can use expressions in the search box in some browser windows. See
Table 1.2 for a list of the symbols allowed.

Character Function

Matches one of any character.

Matches zero or more of the previous character. For example,
* is an error because there is no previous character
fo* matches anything starting with an "f"
fo*x matches "fx", "fox","fooox"

t Matches one or more of the previous character. For example,
t is an error

?

fot matches anything starting with "fo"
fotx matches "fox", '1000x"

Matches zero or one of the previous character. For example,
? is an error
f o? matches anything starting with "f"
fo?x matches only "fx" or "fox"

Chapter 1, Getting started 19

Browsing
symbols in your
code

You can also browse any symbol'in your code without viewing object
hierarchies or lists of symbols first. Choose from these methods:

• Highlight the symbol in your code and choose Search I Browse Symbol.

• Click the right mouse button or press Alt+F10when an editor window is
selected to display the SpeedMenu, then choose Browse Symbol.

Using command-line tools

DPMI and the
command-line
tools

20

Borland C++ contains several command-line tools that let you do the same
tasks you can do in the IDE. Borland C++ includes a command-line
compiler, a linker, a resource ~ompiler, a librarian, a project builder (called
MAKE), and other tools. Most of these tools are documented in this
manual. Some are documented in online files. All tools are documented in
the online Help.

You can use either the IDE or the command-line tools, because they
produce the same results, but you might choose to 'use the command-line
tools if you program using a DOS editor such as Brief. Here's a list of the
command-line tools, what they do, and where they are documented:

• BCC.EXE and BCC32.EXE are the 16-bit and 32-bit compilers. They are
documented in Chapter 3.

• TLINK.EXE and TLINK32.EXE link .OB] files and .LIB files to form .EXEs
and .DLLs. They are documented in Chapter 9.

• IMPLIB.EXE, and TLIB.EXE help you work with and create libraries.
They are described in Chapter 11.

• HC31.EXE compiles files for online Help and creates the .HLP file that
most Windows applications can use. It is documented in the online Help.

• BRCC.EXE, BRCC32.EXE, BRC.EXE, BRC32.EXE, and RLINK.EXE are
resource tools that compile resources for your applications. They are
described in Chapter 10.

• MAKE.EXE and MAKER.EXE help manage your projects by building
only the files that have changed since the last build. They are
documented in Chapter 12.

The command-line compiler uses DPMI (Dos Protected Mode Interface) to
run in protected mode on 286, 386, i486, or Pentium machines with at least
640K conventional RAM and at least 1MB extended memory.

Although Borland C++ runs in protected mode, it still generates
applications that run in real mode. The advantage to using Borland C++ in

Borland C++ Users Guide

Memory and
MAKESWAP,EXE

MAKESWAP applies
to DOS only, not to

DOS boxes opened
under Windows. See

the online file
I NSTALL.TXT for

information on
running the tools from

DOS boxes.

The run-time
manager and
tools

Controlling the
memory RTM uses

protected mode is that the compiler has much more room to run than if you
were running it in real mode, so it can compile larger projects faster and
without extensive disk-swapping.

If you get "Out of Memory" errors from DOS (not running DOS from
Windows) when running the 32-bit command-line tools, create a swap file
with the MAKESWAP utility. MAKE SWAP takes the size of the file to
create in KBytes, for example:

MAKESWAP 12000

creates a 12MB swap file called EDPMI.SWP in the current directory, which
the command-line tools use when they need additional memory. To ~et up
a swap file, use the DPMIMEM environment variable at the DOS prompt or
add this line to your AUTOEXEC.BAT file:

set DPMIMEM=SWAPFILE <location of swap file>\EDPMI.SWP

You must clear this environment variable before running Borland C++ 3.1
command-line tools or other 16-bit DPMI-hosted executables, suchas
Paradox. To clear the variable, type at the DOS prompt:

set DPMIMEM=

Borland C++ protected-mode applications (such as BCC and BCC32) use
the run-time managers RTM.EXE and 32RTM.EXE. The tools that use the
run-time manager first load the run-time manager, then do their work, and
then unload the run-time manager. If you're doing lots of calls to 32-bit
command-line tools that use the run-time manager (perhaps from a
makefile), you could speed up the process by loading the run-time manager
once, then calling the tools. To load the run-time manger, type 32RTM at the
command line. To unload the run-time manager, type 32RTM -u.

By default, the run-time manager consumes all available memory for itself
when it loads. It then allocates memory to its clients when they request it
through the memory manager API routines.

To control how much memory the run-time manager can use, at the DOS
command line add the RTM environment variable to your system's DOS
environment. Here is the syntax:

SET RTM=(option nnnnl

Chapter 1, Getting started 21

Table 1.3
Environment

variables for RTMs
memory allocation

The following table lists the options you can use, where nnnn can be a
decimal number or a hex number in the form of xAB54 or xab54.

Option

EXTLEAVE nnnn

EXTMAX nnnn

EXTMIN nnnn

REALLEAVE nnnn

REALMAX nnnn

REALMIN nnnn

Description

Always leave at least nnnn kilobytes of extended memory
available. The default value is 640K.

Don't allocate more than nnnn kilobytes of extended memory. The
default value is 4 gigabytes. In Windows, the default value is one
half the available memory.

If fewer than nnnn kilobytes are. available after applying EXTMAX
and EXTLEAVE limits, terminate with an Out of Memory message.
The default value is zero.

Always leave at least nnnn paragraphs of real memory available.
The default value is 64K or 4096 paragraphs.

Don't allocate more than nnnn paragraphs of real memory. The
default value is 1 megabyte or 65,535 paragraphs.

If fewer than nnnn paragraphs are available after applying
REALMAX and REALLEAVE, terminate with an Out of Memory
message. The default value is zero.

Running other programs from the IDE

22

You can run other programs, tools, and utilities without leaving the IDE.
The IDE lets you run Turbo Debugger, Resource Workshop, GREP,
WinSight, WinSpector, and Keymapper. To run a program from the IDE,
choose Tools I ProgramName (for example, Tools I GREP).

To add programs to the Tools menu,

1. Choose Options I Tools. The Tools dialog box appears, listing Tools,
Viewers, and Translators.

2. Click New. If you want to add an existing tool (listed in the Tools dialog
box), click Edit.

3. Type the name of the program, its path, and any command-line options
you always want to pass to it. (You can use transfer macros on this
command line; see the online Help for more information.)

4. Type Menu text. This text can appear on SpeedMenus and on the Tools
main menu. If you want to assign a shortcut key to your menu text,
precede a letter with an ampersand-this letter will appear underlined
in the menu. For example, the shortcut key for File is F. In the menu

Borland C++ Users Guide

Chapter 1, Getting started

text, File would appear as &File. If you want an ampersand in your
menu text, use two ampersands (&&Test appears as &Test in the menu).

5. Type any help text you want. Help hint text appears in the status line
when you select the menu item.

6. Click Advanced. The Tool Advanced Options dialog box appears.

7. Check Translator if the program uses one file type to create another file
(like a compiler). Check Viewer if the program is used to view a file (like .
an editor).

8. Check Place on Tools menu. Check Place on SpeedMenu if you want the
program to appear on the SpeedMenu for the project window (see
Chapter 2 for more information on projects).

9. If your program is a Translator, type an extension for the files you want
to associate with the program. For example, BeC is a translator for.C
and .CPP files, so Translate From would show . c; . cpp:. Use a semicolon
to separate file extensions and a colon to designate the end of the list.

10. Type an extension for the resulting translated file. For example, Bee
converts .CPP files to .OBJ, so .obj appears in the Translate to box.

11. Choose OK with all the open dialog boxes,-

12. Choose Tool from the main menu to see that your program name was
added correctly to the Tool menu.

23

24 Borland C++ Users Guide

c H A p T E R 2

Using the project manager

Borland C++ 4.0 features a new project manager with expanded
functionality. This chapter describes how to use Borland C++ to build
applications and projects from your source code files and how to use .PRJ
files from previous versions of the project manager. If you have used earlier
versions of the project manager, read this chapter carefully.

The project manager handles applications that are built from many
components. Applications can have several source modules that must be
compiled with different options. For example, to create an .EXE, resource
scripts must be compiled with the resource compiler, import libraries must
be created, and .OBJs must be linked. ,

What is project management?

The project manager
reads .PRJ files from

previous releases.

The project manager organizes and updates complex applications by
keeping track of all the files and their interdependencies in a project file
with the extension .IDE.

Using the project manager is an efficient way to build projects because it
only translates the files that have changed since the last build of the project.
The term translate refers to using one file type to create another. For
example, the C++ compiler is a translator for .CPP files because it uses
them to generate .OBJ files (see page 40 for more information on
transla tors).

A project can be viewed as a list of files dependent on each other. Some files
are source code you create; others, like .OBJ files, .EXE files, and .DLL files
are produced by the compiler, linker, or other tools and are dependent on
your source code files.

Chapter 2, Using the project manager 25

Figure 2.1
The project tree

In the project manager, dependencies are shown graphically (this is the
project tree). On each level, the files shown in a project are dependent on
the files indented beneath them, as shown in Figure 2.1.

Project node
Target node----j--~B sample [.eKe) <linkT arget>

Node ---t[f-.---

Run-time_fl-+-_
node

[j cOwl [.obi) <Binlnclude>
II sample [.epp) <CppCompile>
II sample [.re) <CompileResourees>
II sample [.def) <Soureelnclude>
[j bidsi [.lib) <Binlnelude>
[j owlwi [.lib) <Binlnclude>
[j import [.lib] <Binlnelude>
[j crUd" [.lib) <.Binlnclude>

In the project tree, different nodes have different icons.

• A project node represents the entire project. All the files used to build
that project appear under it (a project node is similar to a symbolic target
in a makefile). A project can contain many target nodes. For example,
you might have one project that you use to build two applications and a
DLL (three targets).

• A target node represents a file that is created when its dependent nodes
are built (a target is usually the .EXE or .DLL that you're creating from
source code). You can collapse a target node so that the dependent nodes
aren't displayed.

• A node generally refers to a file used to build a target. Files such as .C,
.CPP, .H, and .RC are source files associated with nodes.

• A run-time node refers to common files used at run time, such as startup
code (.LIB files). You can choose not to view these files (see page 29).

Creating a project

26

To create a project,

1. Choose Project I New project. Type a path and a name (eight characters
or less) for the project, then press Tab. You can also use the Browse
button to select a path to the project file.

2. Type a name for the first target in your project. This is usually the name
of the program you want to create (the .EXE or .DLL).

Borland C++ Users Guide

You can use
TargetExpert to

change these
attributes.

See the DOS
Reference for more

information on these
libraries.

3. Choose a target type:

• Application is a normal.EXE file.

• Dynamic Library is a .DLL file.

• EasyWin is.a character-mode application that runs under Windows .
.• Static Library is a .LIB file.

• Import Library is a .LIB file.

• Windows Help is a help file (.HLP) that you usually access from a
Windows application (.EXE).

4. Choose a platform for your target:

• Windows 3.x is a 16-bit Windows application.

• Win32 is a 32-bit Windows NT application.

• DOS Standard is a 16-bit DOS application.

• DOS Overlay is a 16-bit DOS application that uses overlays.

5. If your application is for DOS, check

• Floating point to link in FP87.lib.

• Emulation to link in EMU.LIB.

• No Math to link in the DOS math libraries.

• Alternate startup to link in COFx.OBJ, which makes SS==DS for all
memory models.

• Check any standard libraries you want to use in your application.
Some libraries are checked by default when you choose a target type
(you can't uncheck some of these because they are required for the
type of target you're creating). If dynamic and static libraries exist,
you can choose which type you want to use (Dynamic is usually the
default).

• OWL uses th~ ObjectWindows libraries. See the Object Windows
Programmer's Guide for more information.

• Class Library uses the Borland container class libraries discussed in
the Programmer's Guide.

• Runtime uses the run-time libraries listed in the Library Reference.

• BWCC uses the Borland Windows Custom Control libraries. See
Appendix B ..

• BGI uses the Borland Graphics Interface (available for DOS
applications only). See the online file UTILS.TXT.

6. Check Diagnostic if you want to use a diagnostic version of the libraries
(this is available for Class Libraries and ObjectWindows; see the

Chapter 2, Using the project manager 27

Creating a
multiple-target
project

To include a DLL for
an application in a

project, place the DLL
node under the .EXE

node.

28

ObjectWindows documentation for more information on diagnostic
versions of its libraries).

7. Check Multithread if you want to use the multithread version of the
run-time library. Multithread is available only if your platform is
Win32.

8. Choose a memory model for your target (Target Model). Models change
depending on the target type. .

9. Click OK to create the project. A graphical representation of your
project appears in a project window. You can change the target
attributes you set in steps 2-8 by using the project manager's
SpeedMenu (right-click a node or press AIt+F10).

The project manager creates a target with one or more dependents-the
default dependents depend on the target type. To view which dependents
are added for a target type, click the Advanced button in the New Project
dialog box. You can select other dependent nodes, then click OK. For DOS
application, you can select how you want the stack and data segments to
work.

After you create the initial target for a project, you can add, delete; or
rearrange nodes and targets to your project. See page 31 for more
information on editing projects.

Creating multiple-target projects is similar to creating projects with one
target:

1. Create a project using the steps described on page 26.

2. Choose Project I New target to add a second target to your application.
The New Target dialog box appears.

3. Type a name for the second target and choose a target type (Standard is
the default). Choose OK. The project manager adds a new target to your
project just as it does for the first target in a project.

To view a sample project with two targets, open the file MULTITRG.IDE in
the EXAMPLES\IDE\MULTITRG directory. This project file builds two
versions of the WHELLO program (one that is 16-bit and one that is 32-bit).
The project file contains a text file that describes how to use two or more
targets in one project file.

With more than one target in a project, you can choose to build a single
target, multiple targets, or the whole project. See page 30 for information on
building projects.

Borland C++ Users Guide

Converting old
projects

Converting
projects to
makefiles

Changing the'
Project View

The project manager for this release can load and use projects from
previous versions of Borland C++ for Windows. Choose Project I Open
project, then type the name of the old project file. You can also change the
search attributes from * . IDE to * . PRJ to list the old 3.0 and 3.1 projects.'

The project manager converts the old project to a new one. Be sure to save
the new project if you want to keep using it with this version of Borland
C++. To save the project, choose Options I Save. Make sure Project is
checked, then click OK. The new project is saved with the old name and the
new .IDE extension.

You can convert Borland C++ project files (.IDE) to makefiles (.MAK) from
the IDE. To convert a project file to a makefile,

1. Open the project file (.IDE) you want to convert.

2. Choose Project I Generate Makefile. The IDE generates a makefile with
the same name as the project file, but with the extension .MAK. The IDE
displays the new make file in an editor window.

The project window, by default, displays the project node, target, and
dependents. You can control the display by using the Options I
Environment dialog box.

1. Choose Options I Environment. The Environment Options dialog box
appears.

2. Choose Project View. A list of options appears.

3. Check or uncheck the options you want. A sample node called WHELLO

changes as you select or deselect options. This sample shows you how
all nodes will appear in the project window. The following list describes
each option:

Build translator displays the translator used on the node.

Code size displays the total size in bytes of code segments. This
information appears only after the node has been compiled.

Data s~ze displays the size in bytes of the data segment. This
information appears only after the node has been compiled.

Description displays a description of the node. You type the description
using the Edit node attributes dialog box from the SpeedMenu.

Location lists the path to the source file associated with the node.

Name displays the name of the node.

Chapter 2, Using the project manager 29

Number of lines displays the number of lines of code in the file
associated with the node (note that this displays only after you compile
the code).

Node type describes the type of node (for exainple, . cpp or . c).

Style Sheet names the Style Sheet attached with the node.

Output names the file (and the path to that file) that the node creates
when it is translated. For example, a .CPP node creates an .OBJ file.

Show runtime nodes displays the nodes the project manager uses when
the project is built. For example, it lists startup code and libraries.

Show project node displays the node for the entire project. The project
node is built when you choose Project I Build all. Note that all targets are
dependents of the project node.

Building a project

30

To build a project,

1. Open the project you want to build using Project I Open project from the
main menu.

2. Choose Project I Build all from the main menu to build all the nodes in
the project, even if they're up-to-date. Or, choose Project I Make all to
build only the nodes whose dependents have changed since the last
project build.

The project manager builds the project using the Default Project Options
Style Sheet unless you have attached a different Style Sheet to a node or
overridden the options locally. See the section "Using Style Sheets" on
page 37 for more information. .

The project manager starts at the first target and works down the project
until it comes to a node with no dependents. The project manager builds
that node first (and other nodes on the same level), then works back up the
project tree.

For example, if you have a project with an .EXE target that is dependent on
a .CPP file, the project manager builds the .CPP file to an .OBJ, and then the
project uses the new .OBJ file to create the .EXE.

If you choose Make all, the project manager checks a file's date and time to
seeif the file has been updated. If so, the project manager rebuilds that file,
then moves up the project tree and checks the next node's file date and
time. The project manager' checks all the nodes in a pr9ject and builds all
the out-of-date nodes.

Borland C++ Users Guide

Building part of a
project

There are three ways you can build part of a project:

• To build a node and its dependents,

1. Select the node you want to build.

2. Right-click the node (or press Alt+F10) and choose Build node from the
SpeedMenu. All the dependent nodes are built regardless of whether
they're out-of-date.

• To build a project using MAKE,

1. Select the node you want to build.

2. Right-click the node (or press AIt+F10) and choose Make node from the
SpeedMenu. MAKE builds only the nodes that aren't current. For more
information about MAKE and how it chooses which files to build, see
Chapter 12, "Using MAKE."

• To translate the individual node,

1. Select the node you want to translate.

2. Choose Project I Compile from the main menu or select the default
translation command from the SpeedMenu. For example, if you've
selected a .CPP file, the project SpeedMenu contains the command C++
Compile, which compiles only the selected node.

Project I Compile translates the current node if the project window is
selected. If an editor window is selected, Project I Compile translates the
text in the editor.

Editing the project tree

You can edit the project tree using keystrokes or menu commands. Some
menu commands appear only on the SpeedMenu. To display a SpeedMenu
in the Project window', right-click a node, or select a node and press AIt+F10.
The options available on the SpeedMenu reflect the type of selected node
and vary slightly among node types.

When editing projects, you can add, delete, and move targets and nodes,
and you can copy nodes. You can also change node and target attributes.

Chapter 2, Using the project manager 31

Editing target
attributes with
TargetExpert

Editing node
attributes

32

Target attributes describe a target type. For example, a target can be a 16-bit
Windows DLL that you want to change to be 32 bits. You can change
attributes for Standard and AppExpert target types, but not for Source
Pools (see page 35 for information on Source Pools). Also, you can't change
a target type to be another target type (for example, you can't change a
Source Pool target to be an AppExpert target type).

To change a Standard or AppExpert target's attributes,

1. Select the target in the project window.

2. Press AIt+F10 or right-click the target node.

3. Choose TargetExpert from the SpeedMenu. The TargetExpert dialog
box appears.

4. Change the target attributes, then choose OK. Target attributes are
explained on page 27.

Node attributes describe a node and define the options and translator used
when translating a node. To edit a node's attributes,

1. Select the node in the project window.

2. Press Alt+F10 or right-click the node.

3. Choose Edit node attributes from the SpeedMenu. The Node Attributes
dialog box appears.

4. Change the node attributes, then choose OK. Node attributes, which
usually display in the project window, are defined as follows:

Name is the name of the node.

Description is any text that describes the node.

Style Sheet is the name of the Style Sheet the project manager uses
when it translates that node. If «None» is specified, the project manager
uses the parent's Style Sheet.

Translator names the translator used on that node, which is usually the
default translator for the node type (CppCompile for a .CPP node). If
you change the translator, you'll override the default translator for this
node, affecting builds and makes for this node. See page 40 for more
information on translators.

Node type defines the node and the available translators tor that node.

Borland C++ Users Guide

Adding and
deleting a node

You can also use the
SpeedMenu to add

nodes. Press
AIt+F1O, then choose

Add node (you can
add one or more
nodes using this

command).

To add one node to the project,

1. Select the node you want the new node to appear under. If you want the
new node to appear under the target, select the target node.

2. Press Ins or right-click the selected node and choose Add node from the
SpeedMenu.

3. Choose the file or files you want associated with the new node, or type
the name of the node you want to add (if the file you type doesn't exist
in the current directory, the IDE creates the file).

4. Choose OK. The new node appears under the selected node.

.. If you want to add many nodes to a project,

Adding and
deleting targets

1. Start the Windows File Manager and select the files you want to add as
nodes to your project. Make sure you can view the project window in
the IDE.

2. Drag the files from the File Manager. The project manager automatically
adds them under the selected node.

To delete a node in the project, select the node and press Del, or choose
Delete node on the SpeedMenu. You can delete many nodes by selecting
the ones you want to delete (use etrlor Shift with the left mouse button to
select multiple nodes), then pressing Del. The project manager asks if you
want to delete the nodes before it proceeds.

To add a target to a project,

1. Choose Project I New target from the main menu.

2. Type the name for the new target and choose a target type:

Standard (default) can be an executable, DLL, or other file.

AppExpert is an ObjectWindows-based application. See Chapter 4 for
more information on this type of target.

Source Pool is a collection of files that can be referenced in other
targets. See page 35 for more information on using Source Pools.

3. Choose OK. If the target typeis Standard, the TargetExpert dialog box
appears so you can further define your target (see page 27 for more
information on these choices). If the target type is AppExpert, see
Chapter 4. If the target type is Source Pool, the target is added to the.
project and you can add nodes to it immediately.

Chapter 2, Using the project manager 33

.. To delete one or more targets,

Moving nodes and
targets

Copying nodes

34

1. Select the target and view the SpeedMenu (right-click the target or press
Alt+F10). '

2. Choose Delete node.

3. The project manager asks if you're sure you want to delete the target.
Click OK. Note that you cannot undo this deletion.

You can move nodes and targets in several ways:

• Drag the node with the mouse. The node moves under the selected node
when you release the mouse button .

• Select the node and press Alt and the arrow keys. This moves the selected
node up or down through the visible nodes. You can also use Alt and the
right and left arrow keys to move a node through levels of dependencies.
For example, if you have a header file dependent on a .CPP file (so the .H
file appears under the .CPP in the project window), you can move the
header file to the same level as the .CPP file by selecting the header file
and pressing Alt+ left arrow.

Nodes can be copied completely or by reference. A complete copy lets you
take the node and its attributes and put an identical, but separate, copy
somewhere in the project. A complete copy inherits the attributes from its
parent node unless you override any options.

A reference copy lets you take a node and its dependents and reference
them in another place in the project; a reference copy isn't distinct-if you
add or delete dependents of the original, the reference copy is also
updated. A reference copy is a copy of a node and its dependents.

To make a complete copy of a node,

1. Select the node or nodes you want to copy (use Shift or GIrl and the
mouse to select multiple nodes). If a node has dependents, the
dependents are copied automatically-you don't need to select them.

2. Hold down the Girl key and drag the selected nodes to where you want
to place the complete copies.

3. When you release the mouse button, the copied nodes appear. If you
edit the original node, the complete copy is not changed.

Borland C++ User's Guide

To make a reference copy,

1. Select the node you want to reference copy. You don't need to select the
node's dependents because they are copied automatically.

2. Hold down the Aft key and drag the selected node to where you want to
place the reference copy.

3. When you release the mouse button, the copied node appears. The
reference-copied node appears in a lighter (unbold) font. This helps you
remember that the copy is referenced rather than complete. If you edit
the original (such as adding or deleting dependents), all reference copies
are updated.

Warning! If you delete an original node, all references to that node are also deleted.
You cannot undo this deletion. '

Using Source Pools

A Source Pool is a collection of nodes. The Source Pool target isn't built, but
can be referenced during a build. Source Pools let different targets use a
common setof source code. One use for a Source Pool might be to create
two target applications-one 16-bit and the other 32-bit. To see a working
example of Source Pools, open the sample project called SRCPOOL.IDE in
the EXAMPLES\IDE\SRCPOOL directory. This project file includes a text
file that describes how the Source Pool is used in that example.

Source Pools can contain several files that you want to copy by reference in
your project. For example, you might have several header files that you
want to place throughout your project. If you place these files in a Source
Pool, then reference copy the Source Pool throughout the project, you only
have to update the original Source Pool. If you need to add a new header
file to the collection, you can add it in the original Source Pool and all the
referenced copies are automatically updated.

Source Pools are useful when you want to assign a single Style Sheet to
multiple targets. For example, if you have three targets in a project and you
want all the targets to use the same Style Sheet, you can either attach the
Style Sheet to each target individually, or you can move the targets under a
Source Pool; then attach the single Style Sheet to the Source Pool node. If
you want to reassign a Style Sheet (for example, you want to compile
without debug information), you only have to reassign the Style Sheet to
the Source Pool-not to each target.

Chapter 2, Using the project manager 35

Setting project options

Local Override

Once you create a project, you might want to change the default build
options. These options tell the project manager how to build your project
(for example, they specify whether you want to include debugging
information in your application).

To change project options,

1. Choose Options I Project. A dialog box appears.

2. Edit the options you want to change. See Chapters 1 and 3 for a
description of the options.

3. Choose OK when you're done changing options.

When you build your project, the options you set are used for your entire
project. If you create a new project, it receives the project options from the
last open project.

There are times when you want to select different options for a specific node
in the project (for example, you might have a specific file you don't want
compiled with debugging information, but you want the rest of your files
to include debugging information). To use different options for a node, you
can use Local Override or a Style Sheet.

Project options can be overridden locally. Local Override is useful when
you use project options, but you want to override a particular option for a
single node. If you want to override many options, use a separate Style
Sheet instead (see the next section on Style Sheets).

To override an option,

1. Choose the node whose options you want to override.

2. Right-click the node (or press Alt+F10) and choose Edit local options
from the SpeedMenu. The Style Sheet dialog box appears with the
options used for that node.

3. Select the option you want to override. The Local Override box is
checked automatically.

4. Click OK.

Caution! To undo an override, uncheck Local Override. The checkmark in Local
Override shows only when the cursor is in the override option, which
makes it difficult to know which options you oyerrode. The Local Override
box is dark gray if no options in that section of 'options is overridden. The

36 Borland C++ Users Guide

Using Style
Sheets

Attaching a Style
Sheet to a node

box turns light gray if any option in that section is overridden, but you still
must select the individual options to find which one is overridden.

If you find yourself overriding more than one or two options, you might
want to create and use a separate Style Sheet for that node instead of using
Local Override.

Style Sheets are a collection of build options for a project. Every project uses
a default set of options. These "defaults" are saved in a Style Sheet, and by
default the project uses a Style Sheet called "Default Project Options". The
settings in the Style Sheet determine how the project is built. If all the
components in your project can be built with the same options, you can set
the options using the Options I Project dialog box (this is a way of editing
the "Default Project Options" Style Sheet. If you want to change options for
a single node, use Local Override, but if you find you're using Local
Override a lot, you might want to use Style Sheets.

When a project is built, the project's Style Sheet is used unless the node
being built references a different Style Sheet or uses Local Override (see
page 36 for information on using Local Override). You can use Style Sheets
and Local Override. You might want to do this if you attach Style Sheets to
your targets but want to slightly modify (override) the Style Sheet for a
node under the target.

When the project manager builds a node, it uses the node's Style Sheet and
any Local Override options. If the node doesn't have its own Style Sheet,
the project manager uses the Style Sheet of the node's parent. If the parent
node doesn't use a Style Sheet, the project manager looks at the next parent,
continuing until it uses the project's Style Sheet.

Different nodes in a project usually need to be built with different options.
For example, you might want to compile .C files with one set of options but
.CPP files with another. Or, you might want to build one target with 16-bit
options and another with 32-bit options. To see how Style Sheets can be
used in a project, open the project file called STYLESHT.IDE in the
directory \EXAMPLES\IDE\STYLESHT. This file uses Style Sheets for
each of the targets (two versions of WHELLO). The project also contains a .
text file that explains the use of Style Sheets.

The project manager contains several Style Sheets that you can use, but you
can also create your own. To attach an existing Style Sheet to a node,

1. Select the node and right-click it.

2. Choose Edit node attributes.

3. Select a Style Sheet from the list box.

Chapter 2, Using the project manager 37

Creating a Style
Sheet

Editing Style Sheets

4. Click OK.

You can also click the Styles button to create a new Style Sheet. See the next
section for more information on creating Style Sheets.

To create a Style Sheet for a project,

1. Choose Options I Style Sheets from the main menu.

2. Click Create. Type a name for the Style Sheet and press Enter.

3. Click Edit. The Style Sheet dialog box appears.

4. Edit the options for your Style Sheet. Most options are described in
Chapter 3.

5. Click OK when you've completed setting the options for your new Style
Sheet.

You can edit, rename, and copy existing Style Sheets. Choose Options I
Style Sheets to view the Style Sheets dialog box. You can do any of the
following tasks from that dialog box:

Compose lets you create a Style Sheet that contains the combined options
from one or more Style Sheets:

1. Create a new Style Sheet (click New and type a name), then click
Compose.

2. Select a Style Sheet you want included in your new Style Sheet, then
click Add.

3. Continue adding Style Sheets, then click OK when you're finished. You
can't edit a composed Style Sheet, but you can click Compose again to
add or delete Style Sheets from the Composed one.

.. To copy a Style Sheet,

38

1. Select the Style Sheet you want to copy and then click Copy.

2. Type a name for the copied Style Sheet, then click OK. You can now
click Edit to change any of the copied options. Copying is a fast way to
create a Style Sheet that closely resembles another-you only have to
change the options you want.

.. To edit any Style Sheet,

1. Select the Style Sheet and click Edit.

2. Change the options you want, then click OK.

Borland C++ Users Guide

_ To rename a Style Sheet,

Sharing Style
. Sheets

Caution!

1. Select the Style Sheet and click Rename.

2. Type the new Style Sheet name, then click OK.

To remove a Style Sheet, select it and click Remove.

If you create Style Sheets for a project, then choose Project I New project, the
new project inherits the Style Sheets (and tools and options) from the old
project. However, if you close a project or restart the IDE, you'll have to
reopen the project with Style Sheets, then create a new project to inherit the
Style Sheets.

You can also share Style Sheets between projects another way. Every time
you create a project file (.IDE), you also create a Project Description
Language file (.PDL), which contains information about the Style Sheets
and Tools used in the project. Be careful when editing the text in this file
because you run the risk of corrupting the file to the point where the project
manager can't read it.

When you open a project file, the project manager opens the .PDL file with
the same name as the .IDE file.

To share a Style Sheet between projects,

1. Open the .PDL file containing the Style Sheet you want to share. You
can open the .PDL file using any text editor.

2. Search for the Style Sheet's name. For example, if you created a Style
Sheet called MYSTYLE, you'll see a section in the .PDL file that starts
{ StyleSheet = "MYSTYLE".

3. Copy all the text from the beginning brace to the ending brace. You can
copy more than one Style Sheet.

4. Open the .PDL file to receive the copied Style Sheet.

5. Find the section for Style Sheets, then paste the copied text to the end of
the existing Style Sheet list.

6. Save the .PDL file that received the copied Style Sheet. When you open
the project associated with the updated .PDL file, you'll see the pasted
Style Sheets when you choose Options I Style Sheets.

Chapter 2, Using the project manager 39

Viewing options
in a project

Translators

40

Because each node can have its own Style Sheet and you can override the
options in the Style Sheet, you need a quick way to view the1options for
each node.

To view the hierarchy of options,

1. Right-click any node in the project and choose View options hierarchy.

The Options Hierarchy dialog box appears, listing the nodes in the
project and the options each uses. Autodependency nodes don't appear.
You can expand and collapse the list of nodes just like you can in the
project window.

2. Click a node you want to view. Its options appear to the right.

3. If you want to edit an option, double-click the option or select it and
then click Edit. If the option belongs to a Style Sheet, you'll be editing
the entire Style Sheet. If the option is a Local Override option, you'll be
editing the Local Override options for the selected node.

4. When you finish viewing node options, click Close.

The Options list shows the name of the node in square brackets followed by
the name of the Style Sheet for that node. It also lists any options that are
overridden for that node. This hierarchy lets you see what options are sent
to dependent nodes.

A translator is any program that changes (translates) one file type to
another. For example, the compiler is a translator that uses .C and .CPP files
to create .OBJs, and the linker is a translator that uses .OBI, .LIB, .DEF, and
.RES files to produce an .EXE file.

The project manager lets you define your own translators. Translators you
add to a project remain with that project file-they aren't added as
permanent parts of the IDE. However, translators, viewers, other tools, and
Style Sheets can be passed to the next project: if you have a project file open
that contains added-on tools or Style Sheets, the next project you create
(choose Project I New project) inherits the translators, viewers, other tools,
and Style Sheets from the previous project. For more information on ..
sharing information between projects, see page 39.

You can view default translators by choosing Options I Tools-this list also
shows tools and viewers.

Borland C++ User's Guide

Installing a
translator

To install a translator,

1. Choose Options I Tools. A dialog box appears that lists Tools, Viewers,
and Translators. You can also install translators by choosing Build
Attributes from the project manager SpeedMenu.

2. Click New.

3. Type the name of the translator, the path to the translator, and any
command-line options for the translator. You can use transfer macros on
this command line. For more information on transfer macros, see the
online Help.

4. Type Menu text. This text can appear on SpeedMenus and on the Tools
main menu. If you want to assign a shortcut key to your menu text,
precede a letter with an ampersand-this letter will appear underlined
in the menu. For example, the shortcut key for File is F. In the menu
text, File would appear as &File. If you want an ampersand in your
menu text, use two ampersands (&&Test appears as &Test in the menu).

5. Type any help text you want. Help hint text appears in the status line
when you select the menu item.

6. Click Advanced. The Tool Advanced Options dialog box appears.

7. Check Translator.

8. Check Place on Tools menu if you want this translator to appear on the
Tools main menu. Check Place on SpeedMenu if you want it to appear
when you right-click a node associated with your translator.

9. Check Target translator if you want the translator to work on targets.
When you use this translator, the node becomes a target and the
translated file is saved to the Final directory. If you don't check Target
translator, the translated file is saved in the Intermediate directory.

10. Type an extension for the files you want to associate with this translator.
For example, BCC is a translator for .C and .CPP files, so Translate From
would show .c; .cpp:. Use a semicolon to separate file extensions and a
colon to designate the end of the list.

11. Type an extension for the resulting translated file. For example, BCC
converts .CPP files to .OBJ, so .obj appears in the Translate to box.

12. If you want your new translator to be the default for a node type, type
the file extension and a colon in the Default for box.

13. Choose OK.

Chapter 2, Using the project manager 41

Using Special on
the SpeedMenu

Installing viewers
and tools

42

When you display the SpeedMenu, some node types have a Special
command that lists other translators for the type of node you've selected.
For example, you see the commands Assembler Output and Preprocess if a
.CPP node is selected, but you see the command Implib if you selected a
.DLL target node.

Viewers let you see the contents of the selected node. For example, an
editor is a viewer that lets you examine the code in a .CPP file. On the
SpeedMenu for a .CPP node, you'll see the Text Edit command. The default
editor for the Text Edit view is the IDE editor.

To view a node, either

• Double-click it in the project window, or

• Right-click it and choose View to display a list of the available viewers.

Other node types have other viewers available. For example, Resource
Workshop can view .RC files. You can't view an .EXE node in a text editor,
but you can choose to view it using the integrated debugger, Turbo
Debugger for Windows, the ObjectBrowser, or even as an executing
program.

Tools are applications you want to run from the IDE, such as Turbo
Debugger and GREP. You can install viewers and tools just like you can
transla.tors. For more information, see the steps for installing a translator on
page 41.

Borland C++ User's Guide

c H A p T E R

Compiling

You can compile applications using either the IDE or the command-line
programs BCC.EXE (for 16-bit applications) or BCC32.EXE (for 32-bit
applications). You can control how the compiler generates code by using
compiler options that specify the type of application you want to build (a
debugging version for example), where to find header files and link
libraries, how C++ code is handled, and much more.

This chapter is organized into three parts:

• How to compile in the IDE
• How to compile with BCC or BCC32

• Compiler options reference

3

Table 3.1 cross-references the command-line compiler options with the IDE
options. Compiler options are discussed in detail according to their topic
groups in the Project Options dialog box.

Compiling in the IDE

Chapter 3, Compiling

This section describes how to compile simple programs using compiler
options in the IDE. To learn how to build large projects, read Chapter 2.

The IDE SpeedBar has three compiling buttons that correspond to menu
commands:

. Project I Compile (AIt+F9) compiles the code in the selected editor window
using the compiler options set in the Project Options dialog box. If a project
window is selected, all the selected nodes in the project are translated; child
nodes aren't translated unless they're selected (see Chapter 2 for
information on translators).

Project I Make all (F9) translates all the out-of-date nodes in a project. If no
project is open, all the files in edit windows are built using the default
project translators.

43

Using IDE
compiler options

Project I Build all translates all nodes in a project-even if they are up-to
date. Project I Build all always starts at the first project node and builds
down the project. Click Cancel to stop a build.

There are two ways to set compiler options in the IDE:

• Choose Options I Project and set the options in the dialog box. These
options are used when you compile with no project file loaded. If a
project is loaded, these options affect the entire project when it is built.

• Set project options locally for each file; you must use the project manager
to do this. See Chapter 2 for information on local options.

For example, to compile code in an editor window (you don't have a
project loaded) that generates a 32-bit application for a 80386,

1. Select the editor window displaying the code to compile.

2. Choose Options I Project from the menu.

3. In the Project Options dialog box, click the 32-bit Compiler topic to
display the subtopics, then click Processor.

4. The Processor options for 32-bit appear on the right. Check 80386. This
option stays on until you change it or exit the IDE. To save the option as
a default (so that every time you compile, you get a 32-bit application
for a 80386), choose Options I Save from the main menu.

5. Click the Compile button on the SpeedBar, or choose Project I Compile
(this command compiles the code in the current editor window if no
project is loaded).

Using the command-line compilers

44

This section explains how to use the command-line compilers (BCC.EXE
and BCC32.EXE). BCC.EXE is a 16-bit application that generates 16-bit
code. BCC32.EXE is a 32-bit application that generates 32-bit code. BCC and
BCC32 work the same, but have different defaults (specified in Table 3.1)
and generate different code. Unless specified, instructions and options for
BCC also apply to BCC32.

You can use BCC to send files to TLINK or T ASM (.ASM files if you have
TASM installed on your machine). The general syntax for BCC.EXE is

Bee [option [option ...]] filename [filename . ..]

To see a list of common compiler options, type Bee (without any options or
file names), then press Enter. The BCC command and each option and file

Borland C++ Users Guide

Configuration
files

TURBOC.CFG
configures BCC.EXE,

and BCC32.CFG
configures

BCC32.EXE; project
files (.IDE) configure

the IDE.

Response files

Chapter 3, Compiling

name must be separated by at least one space. Precede each option by
either a hyphen (-) or a forward slash (I); for example, to specify an
include path type:

BCC -Ic:\code\hfiles

Options and file names entered on the command line override settings in
configuration files.

By default, BCC compiles files without extensions and files with the .CPP
extension as C++ files. Files with a.C extension or with extensions other
than .CPP, .OBJ, .LIB, or .ASM compile as C files.

BCC.EXE and BCC32.EXE have options that are on by default (these
options are marked with bullets in Table 3.1). To turn off a default option,
type BCC -option-.

By default, BCC tries to link with a module-definition file with the same
name as the executable. Use TLINK to link with a module-definition file
with a different name. You can't link with more than one module-definition
file.

If you repeatedly use a certain set of options at the command-line, you
might want to list them in a configuration file (a standard ASCII text file). _
You must separate options by spaces; options can appear on one or more
lines. .

By default, BCC.EXE uses a configuration file called TURBOC.CFG, and
BCC32.EXE uses BCC32.CFG (these defaults are marked with bullets in
Table 3.1). The compilers look for the .CFG files first in the directory where
you typed BCC, then in the directory where BCC.EXE or BCC32.EXE is
stored.

You can create multiple configuration files or modify TURBOC.CFG. To use
a configuration file, type + [path] filename at the BCC command line. For
example, to use a configuration file called MYCONFIG.CFG, you could use
the following command line:

BCC +C:\MYCONFIG.CFG mycode.cpp

Options typed on the BCC command line override configuration files.

To specify multiple options or files on the command line, place them in a
response file (a standard ASCII text file). Response files let you have a longer
command line than most operating systems allow.

45

Option
precedence rules

To use response files,

1. Type the command-line options you want to use in a file and save the
file. Options can appear on one or more lines in the file, separated by
spaces. Response files s~pped with Borland C++ have the .RSP
extension.

2. TypeBCC @[path]respfile.rsp.

You can specify more than one response file by typing BCC
@ [path] respfile. rsp @ [path] otheresp. rsp. Options typed at the command
line override any option or file name in a response file.

BCC.EXE and BCC32.EXE evaluate options from left to right, and follow
these rules:

• If you duplicate any option except -lor -L, the last option typed
_ overrides any earlier one.

• If you list multiple -L or -I options on the command line, the result is
cumulative: the compiler searches all the directories listed, in order from
left to right.

• Options typed at the command line override configuration and response
file options.

Compiler options reference

46

Table 3.1 lists c~mpiler options for the IDE and the command line. Most
IDE options appear in the Project Options dialog box; if an option doesn't
appear in the Project Options dialog box, the IDE equivalent option or
command appears in angle brackets <>. Some topic names are abbreviated
or repeated in this table. You can find a more detailed explanation for each
option on the pages referenced in the table.

Default options for both 16- and 32-bit command-line compilers are marked
by a bullet (.); otherWise, the bullet is marked for 16-bit only default (.16) or
32-bit only default(.32). Note that defaults in the IDE are different. The
main default difference is that the IDE compiles with debug and browser
information, making your compiled files larger than if you compiled with
the command-line compilers (the applications will be the same size if you
use the same set of options for both IDE and command-line).

Borland C++ Users Guide

Table 3.1: Options summary

Option Page IDE setting Description

@fiIename 45 <use project file name> Read compiler options from
the response file filename.

+fiIename 45 <none> Use the alternate configuration
file filename.

-1 79 <none> Generate 80186 instructions.
.16 -2 61 16-bit CompileriProcessorl80286 Generate 80286

protected-mode compatible
instructions (16-bit only).

-3 61 16-bit CompileriProcessorl80386 Generate 16-bit 80386 protec-
ted-mode compatible
instructions (BCC option).

.32 -3 68 32-bit CompileriProcessorl80386 Generate 32-bit 80386 protec-
ted-mode compatible
instructions (BCC32 option).

-4 61 16-bit CompileriProcessorli486 Generate 16-bit 80486 protec-
ted-mode compatible
instructions (BCC option).

-4 68 32-bit CompileriProcessorli486 Generate 32-bit 80486 protec-
ted-mode compatible
instructions (BCC32 option).

-5 68 32-bit CompilerlProcessorlPentium Generate 32-bit Pentium
protected-mode compatible
instructions.

-A 59 CompilerlSourcelANSI ANSI language compliance.
-A-, -AT 59 CompilerlSourcelBorland extensions Borland C++ language

compliance.
-AK 60 CompilerlSourcelKernighan and Ritchie Kernighan and Ritchie

language compliance.
-AU 60 CompilerlSourcelUNIX V UNIX V language compliance.
-an' 68 16- or 32-bit CompilerlProcessorlByte, Word, Double Word Align to n: 1 = Byte, 2 = Word,

4 = Double Word (32-bit only).
• -a- 62 16-bit CompilerlProcessorlByte Align to one byte.

-B 79 <none> Compile and call the
I

assembler to process
assembly code.

• -b 57 CompilerlCode GenerationlAllocate enums and ints Make enums always
integer-sized.

-b- 57 CompilerlCode GenerationlAllocate enums and ints (uncheck) Make enums byte-sized when
possible.

-C 59 CompilerlSourcelNested Comments Turn nested comments on.
• -C- 59 CompilerlSourcelNested Comments (uncheck) Turn nested comments off.

-c 79 <ProjectICompile> Compile to .OBJ but don't link.
-Dname 57 CompilerlDefines Define name to the null string.

. -Dname=string 57 Compilerl Defines Define name to string.
-d 57 CompilerlCode GenerationlDuplicate strings merged Merge duplicate strings.

• -d- 57 CompilerlCode GenerationlDuplicate strings merged (uncheck) Don't merge duplicate strings.

Chapter 3, Compiling 47

Table 3.1: Options summary (continued)

Option Page IDE setting Description

-dc 64 16-bit CompilerlMemory ModeliPut strings in code segments Move string literals from data
segment to code segment
(16-bit only).

-efilename 79 <Edit node attributes in project manager> Link to produce filename.
-Efilename 80 <none> Use filename as the

assembler.
-Fc 59 -CompilerlCompiler OutputiGenerate COMDEFs Generate COMDEFs (16-bit C

only).
-Ff 64 16-bit Compil~rlMemory ModeliAutomatic far data Create far variables

automatically (16-bit only).
-Ff=size 64 16-bit CompilerlMemory ModeliFar Data Threshold Create far variables

automatically; set the threshold
to size (16-bit only).

-Fm 80 <none> Enable the -Fe, -Ff, and -Fs
options (16-bit only).

-Fs 80 < TargetExpertlAlternate startup> Assume OS = SS in all
memory models (16-bit DOS
only).

• -f 58 CompilerlFloating pointlNo floating point (uncheck) Allow floating point.
-f- 58 CompilerlFloating pointlNo floating point Don't do floating point.

• off 58 CompilerlFloating pointiFast floating point Fast floating point.
-ft- 58 CompilerlFloating pointlFast floating point (uncheck) Strict ANSI floating point.
-f87 80 <none> Use 8087 hardware

instructions.
-f287 80 <TargetExpert and click Fast floating point> Use 80287 hardware

instructions (for DOS
applications).

-G 72 OptimizationslSpecificlExecutable Speed Select code for speed.
• -G- 72 OptimizationslSpecificlExecutable Size Select code for size.
• -gn 77 MessageslStop after n warnings Warnings: stop after n

messages (100 by default).
-H 61 CompilerlPrecompiled headerslGenerate and use Generate and use precompiled

headers.
• -H- 61 CompilerlPrecompiled headerslDo not generate or use Do not generate or use

precompiled headers.
-Hc 80 <none> Cache precompiled headers.

Must be used with -H or
-Hxxx.

-Hu 61 CompilerlPrecompiled headerslUse but don't generate Use but don't generate
precompiled headers.

-H"xxx" 61 CompilerlPrecompiled headerslStop precompiling after header Stop compiling precompiled
headers at file "xxi' (32-bit
only). This must be used with
-H, -Hu, or -H=fiIename.

-H=filename 61 CompilerlPrecompiled headerslPrecompiled header file name Set the name of the file for
precompiled headers.

48 Borland C++ Users Guide

Table 3.1: Options summary (continued)

Option Page IDE setting Description

-h 64 16-bit CompilerlMemory ModeliFast huge pointers Use fast huge pointer
arithmetic (16-bit only).

-Ipath 55 Directoriesllnclude Set search path for directories
for include files.

• -in 59 CompilerlSourcelldentifier length Make significant identifier
length to be n (the default is

• -Jg 71 C++ OptionslTemplateslSmart
32).
Generate definitions for all
template instances and merge
duplicates.

-Jgd 71 C++ OptionslTemplateslGlobal Generate public definitions for
all template instances;
duplicate result in redefinition
errors.

-Jgx 71 C++ OptionslTemplateslExternal Generate external references
for all template instances.

• -jn 77 MessageslStop after n errors Errors: ,stop after n messages
(25 messages by default).

-K 57 CompilerlCode GenerationlUnsigned characters Default character type

• -K- 57 CompilerlCode GenerationlUnsigned characters (uncheck)
unsigned.
Default character type ~igned.

-K2 69 C++ OptionslC++ CompatibilitylDon't treat char as distinct Allow only two character types
(unsigned and signed); char
is treated as signed (16-bit
only). Compatibility with
Borland C++ 3.1 and earlier.

• -k 60 CompilerlDebugginglStandard stack frame Turn on standard stack frame.
-Lpath 55 DirectorieslLibrary Set search path for library files.
-Ix 80 <set Linker options> Pass option xto the linker (can

use more than one x).
-I-x 80 <set Linker options> Disable option x for the linker.
-M 80 <check LinkerlMap FilelSegment, Public, or Detailed> Instruct the linker to create a

map file.
-mc 63 16-bit CompilerlMemory ModeliCompact Compile using compact

memory model (16-bit only).
-mh 63 16-bit CompilerlMemory ModeliHuge Compile using huge memory

model (16-bit only).
-ml 63 16-bit CompilerlMemory ModellLarge Compile using large memory

model (16-bit only).
-mm 63 16-bit CompilerlMemory ModeliMedium Compile using medium

memory model (16-bit only).
-mm! 63 16-bit CompilerlMemory ModeliMedium and Never Compile using medium

memory model; assume OS !=
SS (16-bit only).

• oms 63 16-bit CompilerlMemory ModeliSmali Compile using small memory
model (16-bit only).

Chapter 3, Compiling 49

Table 3.1: Options summary (continued)

Option Page IDE setting Description

oms! 63 16-bit CompilerlMemory ModeliSmall and Never Compile using small memory
model; assume DS != SS
(16-bit only).

-mt 63 16-bit CompilerlMemory ModeliTiny Compile using tiny memory
model (16-bit only).

-mt! 63 16-bit CompilerlMemory ModellTiny and Never Compile using tiny memory
model; assume DS.!= SS
(16-bit only).

-N 60 CompilerlDebugginglTest stack overflow Check for stack overflow.
-npath 55 DirectorieslFinal Set the output directory.
-0 73 OptimizationslSizelJump optimizations Optimize jumps.
-01 72 OptimizationslSpecificlExecutable size Generate smallest possible

code.
-02 72 OptimizationslSpecifici Executable speed Generate fastest possible code

(same as -Ox).
-Oa 72 OptimizationslSpecificiAssume no pointer aliasing Optimize assuming pointer

expressions aren't aliased on
common subexpression
evaluation.

-Ob 74 OptimizationslSizelDead code elimination Eliminate dead code.
-Oc 72 OptimizationslSpecificlOptimize locally Eliminate duplicate

expressions within basic
blocks.

-Od 72 OptimizationslDisable all optimizations Disable all optimizations.
-Oe 74 OptimizationslSizelGlobal register allocation Allocate global registers and

analyze variable live ranges.
-Og 72 OptimizationslSpecificiOptimize globally Eliminate duplicate

expressions within functions.
-Oi 74 OptimizationslSpeedlinline intrinsic functions Expand common intrinsic

functions inline.
-01 73 OptimizationslSizelLoop optimization Compact loops.
-Om 75 OptimizationslSpeedlinvariant code motion Move invariant code out of

loops.
-Op 76 OptimizationslSpeedlCopy propagation Propagate copies.
-Os 72 OptimizationslSpecificlExecutable size Generate smallest possible

code.
-Ot 72 OptimizationslSpecificlExecutable speed Generate fastest possible code

(same as -Ox).
-Ov 76 OptimizationslSpeedlinduction variables Enable loop induction variable

and strength reduction.
-OW 74 OptimizationslSizelWindows prolog/epilog Suppress the inc bp/dec bp on

Windows far functions (16-bit
only).

-Ox 72 Optimizationsl Specificl Executable speed Generate fastest code;
Microsoft compatible.

50 Borland C++ Users Guide

Table 3.1: Options summary (continued)

Option Page ' IDE setting Description

-ofilename 81 <none> Compile source file to
filename.OBJ.

-P 81 <use Tools> Perform a C++ compile
regardless of source file
extension.

-Pext 81 <use Tools> Perform a C++ compile and
set the default extension to
ext.

• -P- 81 <use Tools> Perform a C++ or C compile
depending on source file
extension.

-P-ext 81 <use Tools> Perform a C++ or C compile
depending on extension; set
default extension to ext.

-p 62 16-bit CompilerlCalling ConventionlPascal Use Pascal calling convention
with 16-bit applications (BCC
option).

-p 68 32-bit CompilerlCalling ConventionlPascal Use Pascal calling convention
with 32-bit applications

.16 -p- -pc 62 16-bit CompilerlCalling ConventionlC
(BCC32 option).
Use C calling convention (BCC
option).

.32 -p- -pc 68 32-bit CompilerlCalling ConventionlC Use C calling convention
(BCC32 option).

-po 57 CompilerlCode GenerationlFastThis Use fastthis calling
convention for passing this
parameter in registers (16-bit
only).

-pr 62 16-bit CompilerlCalling ConventionlRegister Use fastcall calling convention
for passing pa~ameters in
registers (BCC option).

-pr 68 32-bit CompilerlCalling ConventionlRegister Use fastcall calling convention
for passing parameters in
registers (BCC32 option).

-ps 69 32-bit CompilerlCalling ConventionlStandard call Use stdcall calling convention
(32-bit only).

• -r 58 CompilerlCode GenerationlAutomatic Use register variables.
-r- 58 CompilerlCode GenerationlNone Disable the use of register

variables.
-rd 58 CompilerlCode GenerationlRegister keyword Allow only declared register

variables to be kept in
registers.

-R 61 CompilerlDebugginglBrowser reference information in OBJs Include browser information in
generated .OBJ files.

• -RT 71 C++ optionslException handling/RTTllEnable r,un-time type info Enable run-time type
information.

Chapter 3, Compiling 51

Table 3.1: Options summary (continued)

Option Page IDE setting Description

-S 81 <project manager SpeedMenu> Produce .ASM output file.
-Tstring 81 <use Tools> Pass string as an option to

TASM, TASM32, or assembler
specified with -E.

-T- 81 <use Tools> Remove all previous
assembler options.

-tD 81 < TargetExpert> Make a DOS .EXE file.
-tOc 81 < TargetExpert> Make a DOS .COM file.

.16 -tOe 81 < TargetExpert> Make a DOS .EXE file.
-tW 66 16-bit CompilerlEntry/ExitlWindows all functions exportable Make the target a GUI.EXE

with all functions exportable.
-tWC 81 < TargetExpert> Make the target a console

.EXE with all functions
exportable.

-tWCD 81 < TargetExpert> Make the target a console
.DLL with all functions
exportable.

-tWCDE 81 < TargetExpert> Make the target a console
.DLL with explicit functions
exportable.

-tWO 67 16-bit CompilerlEntry/ExitlWindows DLL, all functions exported Make the target a GUI.DLL
with all functions exportable.

-tWDE 67 16-bit CompilerlEntry/ExitiWindows DLL, explicit funcs exported . Make the target a GUI .DLL
with explicit functions
exportable.

-tWE 67 16-bit CompilerlEntry/ExitlWindows explicit functions exported Make the target a GUI .EXE
with explicit functions
exportable.

-tWM 81 <TargetExpert and check Multithread> Make the target multithread
(32-bit only).

-tWS 67 16-bit CompilerlEntry/ExitlWindows smart callbacks, all funcs Make the tar.get a Windows
.EXE that uses smart callbacks
(16-bit only).

-tWSE 67 16-bit CompilerlEntry/ExitlWindows smart callbacks, explicit Make the target a Windows
.EXE that uses smart
callbacks, with explicit
functions exportable (16-bit
only).

-Uname 81 <use Local Override in project> Undefine any previous
definitions of name.

• -u 59 CompilerlCompiler OutputlGenerate underscores Generate underscores.
-v, -v- 60 CompilerlDebugginglDebug information in OBJs Turn on source debugging.
-vi,-vi- 60 CompilerIDebuggingIOut-of-line inline functions Control expansion of inline

functions.
-va 70 C++ OptionslVirtual TableslExternal External C++ virtual tables.
-V1 70 C++ OptionslVirtual TableslPublic Public C++ virtual tables.

52 Borland C++ Users Guide

Table 3.1: Options summary (continued)

Option Page IDE setting Description

• -V 70 C++ OptionslVirtual TableslSmart Use smart C++ virtual tables.
-Va 69 C++ OptionslC++ ComplPass class values via reference to temp Pass class arguments by

reference to a temporary
variable.

-Vb 69 C++ OptionsIC++ CompatibilitylSame size as 'this' pointer Make virtual base class pointer
same size as 'this' pointer of
the class (16-bit only).

.16 -Vb- 69 C++ OptionsIC++ CompatibilitylAlways near Make virtual base class pointer
always near (16-bit only).

-Vc 69 C++ OptionsIC++ CompatibilitylDisable constructor displacement Don't change the layout of
classes to relax restrictions on
member pointers (16-bit only).

-Vf 64 16-bit CompilerlMemory Modell Far virtual tables Far C++ virtual tables (16-bit
only).

-Vmd 69 C++ OptionslMember PointerlSmallest for class Use the smallest
representation for member
pointers.

-Vmm 69 C++ OptionslMember PointerlSupport multiple inheritance Member pointers support
multiple inheritance.

-Vmp 69 C++ OptionslMember PointerlHonor precision of member pointers Honor the declared precision
for all member pointer types.

-Vms 69 C++ OptionslMember PointerlSupport single inheritance Member pointers support
single inheritance.

• -Vmv 69 C++ OptionslMember POinterlSupport all cases Member pointers have no
restrictions (most general
representation).

-Vo 81 <none> Enable all backward
compatibility options (-Va, -Vb,
-Vc, -Vp, -Vt, -Vv).

-Vp 70 C++ OptionsIC++ CompatibilitylPush "this" first for Pascal Pass the 'this' parameter to
'pascal' member functions as
the first parameter on the
stack.

-Vs 70 C++ OptionslVirtual TableslLocal Local C++ virtual tables.
-Vt 70 C++ OptionsIC++ ComplVirtual table Pointer follows data members Place the virtual table pointer

after nonstatic data members.
-Vv 70 C++ OptionsIC++ Compatibilityl'deep' virtual bases Don't add the hidden members

and code to classes with
pointers to virtual base class
members.

-W 66 16-bit CompilerlEntry/ExitlWindows all functions exportable Make the target a GUI .EXE
with all functions exportable.

-WD 67 16-bit CompilerlEntry/ExitlWindows DLL, all functions exportable Make the target a Windows
.DLL with all functions
exportable.

Chapter 3, Compiling 53

Table 3.1: Options summary (continued)

Option Page IDE setting Description

-WDE 67 16~bit CompilerlEntry/ExitlWindows DLL, explicit funcs exported Make the target a Windows
.DLL with explicit functions
exportable.

-WE 67 16-bit CompilerlEntry/ExitlWindows explicit functions exported Make the target a Windows
.EXE with explicit functions
exportable.

-WM 81 <TargetExpert and check multithread> Make the target multithread
(32-bit only).

-WS 67 16-bitlEntry/ExitlWindows smart callbacks, all functions exported Make the target a Windows
.EXE that uses smart callbacks
with all functions exportable
(16-bit only).

-WSE 67 16-bitlEntry/ExitlWin smart callbacks, explicit functions exported Make the target a Windows
.EXE that uses smart
callbacks, with explicit
functions exportable (16-bit
only).

Ow! 79 MakelBreak Make on warnings Returns a non-zero return
code from the command-line
compiler when there are
warnings and doesn't compile
to .OBJ.

• -w 77 MessageslAIl Display warnings on.
-w- 77 MessageslNone Don't display warnings.
-wxxx 77 MessageslSelected (see specific warning) Enable xxx warning message.
ow-xxx 77 MessageslSelected (see specific warning) Disable xxx warning message.
-X 59 CompilerlCompiler OutputiAutodependency information (uncheck) Don't use compiler

autodependency output.
• -X- 59 CompilerlCompiler OutputlAutodependency information (check) Use compiler autodependency

output.
• -x 71 C++ OptionslException handlinglEnable exceptions Enable exception handling.
• -xd 71 C++ OptionslException handlinglEnable destructor cleanup Enable destructor cleanup.

, -xp 71 C++ OptionslException handlinglEnable exception location info Enable exception location
information.

-V 81 <TargetExpert DOS Overlay> Enable overlay code
generation.

-Vo 81 <edit node attributes and check Overlay this module> Overlay the compiled files.
-y 60 CompilerlDebugginglLine numbers Line numbers on.
-z 74 OptimizationslSizelSuppress redundant loads Enable register load

suppression optimization.
-zAname 66 16-bit CompilerlSegment Names CodelCode Class Code class.

.-zBname 65 16-bit CompilerlSegment Names DatalUnlnitialized Data Class BSS class.
-zCname 66 16-bit CompilerlSegment Names CodelCode Segment Code segment.
-zDname 65 16-bit CompilerlSegment Names DatalUnlnitialized Data Segment BSS segment.
-zEname 65 16-bit CompilerlSegment Names Far DatalFar Data Segment Far segment (16-bit only).
-zFname 65 16-bit CompilerlSegment Names Far DatalFar Data Class Far class (16-bit only).

54 Borland C++ Users Guide

Table 3.1: Options summary (continued)

•

Option Page IDE setting

-zGname 65 16-bit CompilerlSegment Names DatalUnlnitialized Data Group
-zHname 65 16-bit CompilerlSegment Names Far DatalFar Data Group
-zPname 66 16-bit CompilerlSegment Names CodelCode Group
-zRname 65 16-bit CompilerlSegment Names Datallnitialized Data Segment
-zSname 65 16-bit CompilerlSegment Names Datallnitialized Data Group
-zTname 65 16-bit CompilerlSegment Names Datallnitialized Data Class

Description

BSS group.
Far group (16-bit only).
Code group.
Data segment.
Data group.
Data class.

-zVname 65 16-bit CompilerlSegment Names Far DatalVirtual Table Segment Far virtual segment (16-bit
only).

-zWname 66 16-bit CompilerlSegment Names Far DatalVirtual Table Class
-zX: 82 <none>

• Default for both 16- and 32-bit .1616-bit default

Far virtual class (16-bit only).
Use default name for X; X is
A-H, P, R, S, T, V, or W .

.32 32-bit default

Directories

-Ipath Include searches path (the drive specifier or path name of a subdirectory)
for include files (in addition to searching the standard places). A drive
specifier is a single letter, either uppercase or lowercase, followed by a
colon (:). A directory is any valid directory or directory path. You can use
more than one -I (which is an uppercase I) directory option.

-Lpath Library forces the linker to get the COx.OBJ start-up object file and the
Borland C++ library files from the named directory. By default, the linker
looks for them in the current directory.

Source is the directory where the compiler looks for source code.

Intermediate is where the compiler places any temporary files it creates.

-npath Final places any final output files (.OBJ, .I, or .ASM) created by the compiler
in the directory or drive named by path.

Chapter 3, Compiling

You can enter multiple directories on the command line in the following
ways:

• You can stack multiple entries with a single -L or -I option by using a
semicolon:

BCC.EXE -Ldirnamel;dirname2;dirname3 -linel;ine2;ine3 myfile.e

• You can place more than one of each option on the command line, like
this:

BCC.EXE -Ldirnamel -Ldirname2 -Ldirname3 -linel -linc2 -line3 myfile.e

55

File-search
algorithms

• You can mix listings:
BCC.EXE -Ldirnamel;dirname2 -Ldirname3 -linel;ine2 -line3 myfile.e

If you list multiple -L or -I options on the command line, the result is
cumulative: The compiler searches all the directories listed, in order from
left to right. The IDE also supports multiple library directories.

The Borland C++ include-file search algorithms search for the header files
listed in your source code in the following way:

• If you put an #include <somefile .h> statement in your source code,
Borland C++ searches for somefile.h only in the specified include
directories,.

• If, on the other hand, you put an #include "somefile.h" statement in your
code, Borland C++ searches for somefile.h first in the current directory; if
it doesn't find the header file there, it then searches in the include
directories specified in the command line.

The library file search algorithms are similar to those for include files:

• Implicit libraries: Borland C++ searches for implicit libraries only in the
specified library directories; this is similar to the search algorithm for
#include <somefile.h>. Implicit library files are the ones Borland C++
automatically links in and the start-up object file (COx.OB]).

• Explicit libraries: Where Borland C++ searches for explicit (user
specified) libraries depends in part on how you list the library file name.
Explicit library files are ones you list on the command line or in a project
file; these are file names with a .LIB extension .

• If you list an explicit library file name with no drive or directory (like
this: mylib.lib), Borland C++ searches for that library in the current
directory first. Then (if the first search was unsuccessful), it looks in the
specified library directories. This is similar to the search algorithm for
#include 1/ somefile.h" .

• If you list a user-specified library with drive and/or directory
information (like this: c :mystuff\mylibl.lib), Borland C++ searches only
in the location you explicitly listed as part of the library path name and
not in the specified library directories.

CompilerlDefines

56

Macro definitions let you define and undefine macros (also called manifest
or symbolic constants) on the command line or in the IDE. Macros defined

Borland C++ Users Guide

Options I t-JroJectlljompllen UeTlneS

on the command line or in the Options Setting dialog box override those in
your source file. Type IDE macro definitions in the Defines box under the
Code Generation I Settings topic.

-Dname Defines the named identifier name to the null string. separate macros with a
semicolon.

-Dname=string Defines the named identifier name to the string string after the equal sign.
string can't contain any spaces or tabs. Separate macros with a semicolon.

Borland C++ lets you make multiple #define entries on the command line
in any of the following ways:

• You can include multiple entries after a single -0 option by separating
entries with a semicolon:

BCC.EXE -Dxxxiyyy=lizzz=NO MYFILE.C

• Multiple -0 options can be included if they are separated by spaces:

BCC.EXE -Dxxx -Dyyy=l -Dzzz=NO MYFILE.C

• You can mix multiple -0 listings with semicolon entries:

BCC.EXE -Dxxx -Dyyy=lizzz=NO MYFILE.C

CompilerlCode-generation

-b -b- Allocate enums as ints allocates a two-byte int (16-bit) or four-byte int (32-
bit) for enumeration types. This option is on by default. Unchecked (-b-),
this option allocates the smallest variable size that can hold the
enumeration values: the compiler allocates an unsigned or signed char if
the values of the enumeration are within the range of 0 to 255 (minimum)
or -128 to 127 (maximum), or an unsigned or signed short if the values of
the enumeration are within the range of 0 to 65,535 (minimum) or -32,768
to 32,767 (maximum). The compiler allocates a two-byte int (16-bit) or a
four-byte int (32-bit) to represent the enumeration values if any value is out
of range.

-K -K- Unsigned characters treats all char declarations as if they were unsigned
char, which provides compatibility with other compilers. BCC defaults
char declarations to signed (unchecked or -K-).

-d Duplicate strings merged merges literal strings when one string matches
another, producing smaller programs but slightly longer compilation times.
This option can cause errors if one string is modified. This option is
unchecked by default (-d-).

-po FastThis uses the _ _ fastthis calling convention for passing this in a
register to member functions.

Chapter 3, Compiling 57

uptlonslt-'roJectl(.;ompilerICode-generation

With fastthis enabled (16-bit applications only because fastthis is always
used for 32-bit applications), the compiler compiles member functions to
expect their this pointer to be passed in a register (or a register pair in 16-bit
large data models). Likewise, calls to member functions load the register (or
register pair) with t~is. '

You can enable fastthis using the -po command-line option or with the
Compiler I Code Generation I FastThis calling option. You can also use the
language-specifier keyword __ fastthis.

In small or flat data models, this is supplied in the SI register; 16-bit-Iarge
data models use DS:SI. If necessary, the compiler saves and restores DS. All
references in the member function to member data are done via the SI
register.

The names of member functions compiled with fastthis are mangled
differently from non-fastthis member functions, to prevent mixing the two.
It's easiest to compile all classes with fastthis, but you can compile some
classes with fastthis and some without.

-r- None doesn't use register variables.

-rd Register keyword specifies that register variables are used only if you use
the register keyword and a register is available. You can use -rd in
#pragma options. Use this option or the -r option to optimize the use of
registers.

,-r Automatic uses register variables. The compiler automatically assigns
variables to registers if possible, even when you don't specify a register
variable by using the register type specifier. The -r option is on by default.

CompilerlFloating Point

-f -f- No floating point (-f-) specifies that the program contains no floating-point
calculations, so no floating-point libraries are linked. Unchecked (-f), this
option emulates 80x87 calls at run time.

-ff -ft- Fast floating pOint (-ft) optimizes floating-point operations without regard
to explicit or implicit type conversions. This option can provide answers
faster than under ANSI operating mode. Unchecked (-ft-) this option turns
off the fast floating-point option. The compiler follows strict ANSI rules
regarding floating-point conversions.

58 Borland C++ Users Guide

uptlonSI t-'roJeClILiomp"en rloaung t"Ollll

CompilerlCompiler Output

-x -x- Autodependency information (-X-) generates auto dependency information.
Modules compiled with this option on can use MAKE's auto dependency
feature. By default, auto dependency is turned on (-X-).

-u Generate underscores automatically puts an underscore in front of
identifiers before saving them in the object module. Underscores for C and
C++ identifiers are optional, but are on by default. You can set them off
with -u-. But note that setting the underscores off causes link errors when
linking with the standard Borland C++ libraries. See Chapter 10 in the
Programmer's Guide for details about underscores.

-Fe Generate COMDEFs (16-bit only) generates communal variables
(COMDEFs) for global C variables that are not initialized and not declared
as static or extern. The advantage of this option is that header files that are
included in several source files can contain declarations of global variables.
As long as a given variable doesn't need to be initialized to a nonzero
value, you don't need to include a definition for it in any of the source files.
You can use this option when porting code that uses a similar feature with
another implementation.

CompilerlSource

-c Nested comments lets you nest comments. Comments normally can't be
nested.

-in Identifier length causes the compiler to recognize only the first n characters
of identifier names. All identifiers, whether variables, preprocessor macros,
or structure members, are treated as distinct only if their first n characters
are unique. Specifying n to be 0 or greater than 249, or not specifying the
-in option at all, allows identifiers of unlimited length.

By default, Borland C++ uses 32 characters per identifier. Other systems,
including some UNIX compilers, ignore characters beyond the first eight. If
you are porting to other environments, you might want to compile your
code with a smaller number of significant characters; this helps you locate
name conflicts in long identifiers that have been truncated.

-A- -AT Borland extensions uses Borland C++ keywords. See Chapter 1 in the
Programmer's Guide for a complete list of the Borland C++ keywords.

-A ANSI compiles ANSI-compatible code. Any Borland C++ keyword is
ignored and can be used as a normal identifier.

Chapter 3, Compiling 59

upllonSIt"'roJeCm.iOmpllerl~OUrce

-AU UNIX V uses only UNIX language-extension compliance.

-AK Kernighan and Ritchie uses only Kernighan and Ritchie language
compliance.

Compilerl Debugging

-k Standard stack frame generates a standard stack frame, which is useful
when using a debugger to trace back through the stack of called
subroutines. This option is on by default. When it's off, any function that
doesn't use local variables and has no parameters is compiled with
abbreviated entry and return code, which makes your code smaller and
faster.

-N Test stack overflow generates stack overflow logic at the entry of each
function. It causes a stack overflow message to appear when a stack
overflow is detected at run time. This is costly in terms of both program
size and speed but is provided as an option because stack overflows can be
very difficult to detect. If an overflow is detected, the message Stack
overflow! is'printed and the program exits with an exit code of 1.

-vi Out-of-line inline functions expands C++ inline functions inline. To control
the expansion of inline functions, the -v option acts slightly different for
C++: when inline function expansion isn't enabled, the function is
generated and called like any other function. Debugging with inline
expansion can be difficult, so Borland C++ provides the following options:

• -v turns debugging on and inline expansion off. With this option off, you
can link larger .OB] files. This option doesn't affect execution speed, but
it does affect compile time.

• -v- turns debugging off and inline expansion on.

• -vi turns inline expansion on.

• -vi- turns inline expansion off.

For example, if you want to turn both debugging and inline expansion on,
you must use -v -vi.

-y Line numbers includes line numbers in the .OB] for the IDE's integrated
debugger. This increases the size of the .OB] but doesn't affect size or speed
of the executable program. This option is useful with symbolic debuggers.
In general, -v is more useful than -y with the integrated debugger.

60 Borland C++ Users Guide

OptionslProjectiCompilerlDebegglng

The debugging options include debugging information in your generated
code. For information on debugging your applications, see Chapter 6; for
browsing information, see Chapter l.

-v Debug information in OBJs includes debugging information in .OBI files so
that they can be debugged with either t~e integrated debugger or a stand
alone debugger. The compiler passes this option to the linker so it can
include the debugging information in the .EXE file. For debugging, this
option treats C++ inline functions as normal functions.

-R Browser reference information in OBJs includes browser information
when the compiler generates .OBI files; this lets you inspect the appli~ation
using the IDE's integrated Browser. The Browser is described in Chapter l.
When this option is off, you can link larger .OBI files. This option doesn't
affect execution speed, but it does affect compile time.

CompilerlPrecompiled headers

-H Generate and use generates and uses precompiled headers using the
default file name BCDEF.CSM (16-bit) or 13C32DEF.CSM (32-bit) for the
command-line compilers and <projectname>.CSM for projects in the IDE.
Precompiled headers can dramatically increase compile speed, although
they require considerable disk space. See page 403 for more information on
precompiled headers.

-Hu Use but do not generate uses but doesn't generate precompiled headers.

-H- Do not generate or use doesn't generate or use precompiled headers.

-H=fiIename Precompiled header name generates and uses precompiled headers and
sets the name of the file for precompiled headers (other than BCDEF.CSM
or BC32DEF.CSM).

-H"xxx" Stop precompiling after header file stops compiling precompiled headers
when it compiles the file specified as xxx. '

16·bit CompilerlProcessor

-2 80286 generates 16-bit 80286 protected-mode compatible instructions.

-3 80386 generates 16-bit 80386 protected-mode compatible instructions.

-4 . i486 generates 16-bit 80486 protected-mode compatible instructions.

Chapter 3, Compiling 61

Optionsl Projectl16-bit Compilerl Processor

-an Data alignment Byte/Word align to n: 1 = Byte, 2 = Word (2-bytes). See also
-an for 32-bit applications on page 68. Word (-a) forces integer-size and
larger items to be aligned on a machine-word boundary. Extra bytes are
inserted in a structure to ensure member alignment. Automatic and global
variables are aligned properly. char and unsigned char variables and fields
can be placed at any address; all others are placed at an even-numbered
address. Byte (-a-) allows byte-wise alignment. Word alignment increases
the speed with which 80x86 processors fetch and store data.

16·bit CompilerlCaliing Convention

Calling conventions are discussed in more detail in Chapter 2 in the
Programmer's Guide.

-pc -p- C generates all subroutine calls and all functions using the C calling
convention, which is equivalent to declaritlg all subroutine and functions
with the __ cdecl keyword. The C convention permits a function call to
pass a variable number of arguments. You can use the __ cdecl, __ pascal,
or __ fastcall keyword to declare a specific function or subroutine using
another calling convention.

-p Pascal generates all subroutine calls and functions using the Pascal calling
convention, which is equivalent to declaring all subroutine and functions
with the __ pascal keyword. The resulting function calls are usually
smaller and faster than they would be if compiled with the C calling
convention (-pc). Functions must pass the correct number and type of
arguments. You can use the __ cdecl, __ stdcall, or __ fastcall keyword to
specifically declare a function or subroutine using another calling
convention.

-pr Register generates all subroutine calls and all functions using the Register
calling convention, which is equivalent to declaring all subroutine and
functions with the __ fastcall keyword. You can use the __ stdcall,
__ pascal, or __ cdecl keyword to specifically declare a function or
subroutine using another calling convention.

16·bit CompilerlMemory Model

62

Memory model options let you tell the compiler what memory model to
use when compiling 16-bit applications (32-bit applications are always flat
model). The available memory models are small, medium, compact, and

Borland C++ Users Guide

OptionslProjectl16-blt (';ompllenMemory Moael

large. See Chapter 8 in the Programmer's Guide for in-depth information on
memory models.

-ms -ms! Small compiles using small memory model (the default). The command
line option -ms! compiles using small model and assumes DS!= S5. To do
this in the IDE, you need to check two options (Small and Never).

-mm -mm! Medium compiles using medium memory model. The command-line option
-mm! compiles using medium model and assumes DS!= SS. To do this in
the IDE, you need to check two options (Medium and Never).

The net effect of the -ms! and -mm! options is actually very small. If you
take the address of a stack variable (parameter or auto), the default (when
DS == S5) is to make the resulting pointer a near (DS relative) pointer. This
way, you can assign the address to a default sized pointer in those models
without problems. When DS != 5S, the pointer type created when you take
the address of a stack variable is an _ss pointer. This means that the pointer
can be freely assigned or passed to a far pointer or to a _ss pointer. But for
the memory models affected, assigning the address to a near or default
sized pointer produces a "Suspicious pointer conversion" warning. Such
warnings are usually errors, and the warning defaults to on.

The net effect of the -mt!, -ms!, and -mm! options is actually very small. If
you take the address of a stack variable (auto or parameter), the default
(when DS == SS) is to make the resulting pointer a near (DS relative)
pointer. This way, you can simply assign the address to a default-sized
pointer in those models without problems. When DS != SS, the pointer type
created when you take the address of a stack variable is an _ss pointer. This
means that the pointer can be freely assigned or passed to a far pointer or -
to a _ss pointer. But for the memory models affected, assigning the address
to a near or default-sized pointer produces a "Suspicious pointer
conversion" warning. Such warnings are usually errors,- and the warning
defaults to on.

-me Compact compiles using compac~ memory model.

-ml Large compiles using large memory model.
-mh Huge compiles using huge memory model.

-mt -mt! Tiny compiles using tiny memory model. The command-line option -mt!
compiles using small model and assumes DS!= SS. To do this in the IDE,
you need to check two options (Tiny and Never). -

Default for model uses the model to determine if the stack segment is equal
to the data segment. -

-Fs- Never assumes that the data segment is never equal to the stack segment,
regardless of the memory model.

Chapter 3, Compiling 63

uptlonswroJect'l6-bit CompilerlMemory Model

64

Always assumes that DS is equal to SS in all memory models; you can use it
when porting code originally written for an implementation that makes the
stack part of the data segment.

-de Put strings in code segments moves all string literals from the data
segment to the code segment of the generated object file, making the data
type canst (16-bit only). Using this options saves data segment space. In
large programs, especially those with a large number of literal strings, this
option shifts the burden from the data segment to the code segment

~Ft Automatic far data changes global variables greater than or equal to the
threshold size to far. The threshold size defaults to 32,767. This option is
useful for code that doesn't use the huge memory model but declares
enough large global variables that their total size exceeds (or is close to)
64K. For tiny, small, and medium models this option has no effect. If you
use this option in conjunction with -Fc, the generated COMDEFs become
far in the compact, large, and huge models.

-Vt Far virtual tables causes virtual tables to be created in the code segment
instead of the data segment (unless changed using the -zV and -zW
options), and makes virtual table pointers into full 32-bit pointers (the latter
is done automatically if you are using the huge memory model).

There are two primary reasons for using this option: to remove the virtual
tables from the data segment, which might be getting full, and to be able to
share objects (of classes with virtual functions) between modules that use
different data segments (for example, a DLL and an executable using that
DLL). For all modules that can share objects, you must compile either
entirely with or entirely without this option. Y oucan get the same effect by
using the huge or _export modifiers on a class-by-class basis.

-h Fast huge pointers offers an alternative method of calculating huge pointer
expressions; this method is much faster than the standard method, but
must be used with caution. When you use this option, huge pointers are
normalized only when a segment wraparound occurs in the offset part.
This causes problems with huge arrays if any array elements cross a
segment boundary. This option is off by default.

Normally, Borland C++ normalizes a huge pointer whenever adding to or
subtracting from it. This ensures that, for example, if you have a huge array
of structs that's larger than 64K, indexing into the array and selecting a
struct field always works with structs of any size. Borland C++ accom
plishes this by always normalizing the results of huge pointer operations,
so that the offset part contains a number that is no higher than 15, and a
segment wraparound never occurs with huge pointers. The disadvantage
of this approach is that it tends to be quite expensive in terms of execution
speed. This option is automatically selected when compiling for Windows.

Borland C++ Users Guide

OptionslProjectl16-bit (;OmpllenMemory MOael

-Ff=size Far Data Threshold changes the point where data is forced to be far (used
by the -Ff option).

16·bit CompilerlSegment Names Data

Use these options only if you have a good understanding of segmentation
on' the 80x86 processor. Under normal circumstances, you don't need to
specify segment names.

-zRname Initialized Data Segment sets the name of the initialized data segment to
name. By default, the initialized data segment is named _DATA.

-zSname Initialized Data Group changes the name of the initialized data segment
group to name. By default, the data group is named DGROUP.

-zTname Initialized Data Class sets the name of the initialized data segment class to
name. By default, the initialized data segment class is named DATA.

-zDname Uninitialized Data Segment changes the name of the uninitialized data
segment to name. By default, the uninitialized data segment is named _BSS.

-zGname Uninitialized Data Group changes the name of the uninitialized data
segment group to name. By default, the data group is named DGROUP.

-zBname Uninitialized Data Class changes the name of the uninitialized data
segment class to name. By default, the uninitialized data segments are
assigned to class BSS.

16·bit CompilerlSegment Names Far Data

-zEname Far Data Segment changes the name of the segment where _ _ far objects
are put to name. By default, the segment name is the name of the source file
followed by _DATA. A name beginning with an asterisk (*) indicates that
the default string should be used (16-bit only).

-zHname Far Data Group causes _ _ far objects to be put into group name. By default,
_ _ far objects aren't put into a group. A name beginning with an asterisk (*)
indicates that the default string should be used (16-bit only).

-zFname Far Data Class changes the name of the class for _ _ far objects to name. By
default, the name is FAR_DATA. A name beginning with an asterisk (*)
indicates that the default string should be used (16-bit only).

Chapter 3, Compiling 65

upIIons't'roJectll o-Olt (jompllerlsegment Names Far Data

-zVname Far Virtual Tables Segment sets the name of the far virtual table segment to
name. By default, far virtual tables are generated in the code segment (16-bit
only).

-zWname Far Virtual Tables Class sets the name of the far virtual table class segment
to name. By default, far virtual table classes are generated in the CODE
segment (16-bit only).

16-bitCompilerlSegment Names Code

-zCname Code Segment changes the name of the code segment to name. By default,
the code segment is named _TEXT.

-zPname Code Group causes any output files to be generated with a code group for
the code segment named name.

-zAname Code Class changes the name of the code segment class to name. By
default, the code segment is assigned to class CODE.

16-bit CompilerlEntry/Exit Code

66

Entry /Exit code options specify what type of application the compiler
creates. Although these options are listed in the 16-bit compiler section,
they also work for 32-bit applications. Use TargetExpert to specify if your
application is 16-bit or 32-bit (see Chapter 2 for more information).

-tW -W -WC- Windows all functions exportable creates a Windows object module with
all far functions exportable. This option creates the most general kind of
Windows executable, although not necessarily the most efficient. This is the
default option (-W- is the default). This option generates the necessary
overhead information for every far function, whether the function needs it
or not. It assumes that all functions are capable of being called by the
Windows kernel or by other modules.

This option, when used with a 16-bit application, creates a Windows .EXE
function prolog/ epilog for all far functions, then sets up those functions to
be called from another module. To actually export the function address
from the .EXE to a .OLL, the code includes a call to MakeProcInstanceO,
passing the resulting pointer to the .OLL requesting the address of the
function. To actually export the function address from the .OLL, function
names need to be included in the .OEF file of the executable.

Borland C++ User's Guide

OptionslProjectl16-bit Gompllenl:ntry/l:XIt lioae

-tWE -WE . Windows explicit functions exported creates a Windows object module in
which only those functions declared as _export functions are exportable.
Use this option if you have functions that aren't called by the Windows
kernel. Windows Explicit Functions Exported operates the same as
Windows All Functions Exportable except that only those functions
marked with the _export keyword (and methods of classes marked as
_export) are siven the extra prolog/ epilog.

This option is far more efficient for 16-bit applications than Windows All
Functions Exportable, because only those functions called from outside the
module get the overhead of the prolog. This option does, however, require
determining in advance which functions/ classes need to be exported.
MakeProcInstanceO is still used, but no .DEF file manipulation is needed.

-tWS -WS Windows smart callbacks, all functio!1s exportable (16-bit only) creates an
object module with functions using smart callbacks and all functions
exported. Use this option only if the compiler can assume that DS == SS for
all functions in the module (which is the vast majority of Windows
programs and the default for Borland tools).

This option creates a Windows EXE function prolog/ epilog for all/far'
functions, then sets up those functions to be called from another module.
MakeProcInstanceO need not be called and no .DEF file editing is needed.

-tWSE -WSE Windows smart callbacks, explicit functions exportable creates a 16-bit
Windows application with smart callbacks and explicit exported functions.
This option is the same as Windows Smart Callbacks except that only those
functions marked with the _export keyword (and methods of classes
marked as _export) are given the extra prolog/ epilog. This is far more
efficient because only those functions called from outside the module get
the overhead of the prolog. This option does, however, require determining
in advance which functions/ classes need to be exported.

-tWO -WO Windows DLL, all functions exportable creates a DLL object module with
all functions exportable. This option creates a Windows DLL function
prolog/ epilog for all/far' functions, then sets up those functions to be
called from another module. To actually export the function address from
the .DLL, function names need to be included in the .DEF file of the
executable.

-tWOE -WOE Windows DLL, explicit functions exported creates a DLL object module in
which only those functions marked as _export are exportable. The
Windows DLL, Explicit Functions Exported is the same as Windows DLL,
All Functions Exportable, except that only those functions marked with the
_export keyword (and methods of classes marked as _export) are given the
extra prolog/ epilog. This is far more efficient than Windows DLL, All

Chapter 3, Compiling 67

uplIonSI t"'roJeCtll 0-011 l,;Ompllerl Entry/Exit Code

Functions Exportable because only those functions called from outside the
module get the overhead of the prolog. This option does, however, require
determining in advance which functions/ classes need to be exported. No
.DEF file manipulation is needed.

32-bit Compilerl Processor

-3 80386 generates 32-bit 80386 protected-mode compatible instructions.

-4. i486 generates 32-blt 80486 protected-mode compatible instructions.

-5 Pentium generates Pentium protected-mode compatible instructions.

-an Data alignment BytelWord/Double word aligns to n at the command-line
where n matches the IDE options as follows: 1 = Byte,2 = Word (2-bytes),
4 = Double word (4-bytes).Word alignment increases the speed with which
80x86 processors fetch and store data. See page 62 for information on using
this option with 16-bit applications.

32-bit CompilerlCaliing Convention

Calling conventions are discussed in more detail in Chapter 2 in the
Programmer's Guide.

-pc -p- C generates all subroutine calls and all functions using the C calling
convention, which is equivalent to declaring all subroutine and functions
with the _ _ cdecl keyword. The C convention permits a function call to
pass a variable number of arguments. You can use the _ _ cdecl, __ pascal,
or _ _ fastcall keyword to declare a specific function or subroutine using
another calling convention.

-p Pascal generates all subroutine calls and functions using the Pascal calling
convention, which is equivalent to declaring all subroutine and functions
with the _ _ pascal keyword. The resulting function calls are usually
smaller and faster than they would be if compiled with the C calling
convention (-pc). Functions must pass the correct number and type of
arguments. You can use the _ _ cdecl, __ stdcall, or _ _ fastcall keyword to
specifically declare a function or subroutine using another calling
convention.

-pr Register generates all subroutine calls and all functions using the Register
calling convention, which is equivalent to declaring all subroutine and
functions with the _ _ fastcall keyword. You can use the _ _ stdcall,

68 Borland C++ Users Guide

up1l0nsu roJeCIIJi::::-0I1 vOrnfJlI~r IvalllllY vUIIVt:IIUUII

_ _ pascal, __ fastcall, or _ _ cdecl keyword to specifically declare a function
or subroutine using another calling convention.

-ps Standard call uses stdcall calling conventions. This option tells the compiler
to use Pascal ordering for pushing parameters. Parameters are pushed
starting from left to right.

c++ OptionslMember Pointer

-Vmp Honor precision of member pOinters uses the declared precision for
meIl).ber pointer types. Use this option when a pointer to a derived class is
explicitly cast as a pointer-to-member of a simpler base class (when the
pointer is actually pointing to a derived class member).

-Vmv Support all cases lets member pointers point to any members. Member
pointers use the most general (but not always the most efficient)
representa tion.

-Vmm Support multiple inheritance lets member pointers point to members of
multiple inheritance classes except members of virtual base classes.

-Vms Support single inheritance lets member pointers point to members of
single inheritance classes only.

-Vmd Smallest for class uses the smallest representation that lets member
pointers point to all members of their class. If the class isn't fully defined at
the point where the member pointer type is declared, the most general
representation is chosen by the compiler (a warning is issued).

c++ OptionsIC++ Compatibility

-K2 Do not treat 'char' as distince type treats char as signed. Compatibility
with Borland C++ 3.1 and earlier (16-bit only).

-Vb- Always near stores a hidden pointer as near. When a class inherits virtually
from a base class, the compiler stores a hidden pointer in the class object to
access the virtual base class subobject. This option generates smaller and
more efficient code.

-Vb Same size as 'this' pOinter matches the hidden pointer to the size of the
'this' pointer used by the class itself.

-Va Pass class values via reference to temporary. When an argument of type
class with constructors is passed by value to a function, this option
instructs the compiler to create a temporary variable at the calling site,

Chapter 3, Compiling 69

uplIOnSll"'roJeCllli++ UptiOnSIG++ GOmpatibility

initialize this temporary variable with the argument value, and pass a
reference to this temporary to the function.

-Vc Disable constructor displacements. When the Disable Constructor
Displacements option is on, the compiler doesn't add hidden members and
code to a derived class (the default). This option ensures compatibility with
previous versions of the compiler.

-Vp Push 'this' first for Pascal member functions directs the compiler to pass
the 'this' parameter to 'pascal' member functions as the first parameter on
the stack. By default, the compiler passes the 'this' parameter as the last
parameter on the stack.

-Vv 'deep' virtual bases. When a derived class overrides a virtual function that
it inherits from a virtual base class, and a constructor or destructor for the
derived class calls that virtual function using a pointer to the virtual base
class, the compiler can sometimes add hidden members to the derived
class, and add more code to its constructors and destructors. This option
directs the compiler not to add the hidden members and code, so that class
instance layout is same as with previous versions of Borland C++.

-Vt Virtual table pointer follows data members places the virtual table pointer
after any nonstatic data members of the particular class, ensuring
compatibility when class instances are.shared with non-C++ code and
when sharing classes with code compiled with previous versions of
Borland C++.

c++ OptionslVirtual Tables

The -Vn option controls the C++ virtual tables. It has five variations:

-v Smart generates common C++ virtual tables and out-of-line inline functions
across modules within your application. Asa result, only one instance of a
given virtual table or out-of-line inline function is included in the program.
This produces the smallest and most efficient executables, but uses .OBJ
and .ASM extensions only available with TLINK or T ASM.

-Vs Local generates local virtual tables and out-of-line inline functions. As a
result, each module gets its own private copy of each virtual table or out
of-line inline function it uses; this setting produces larger executables than
the Smart setting.

-va External creates external references to virtual tables. If you don't want to
use the Smart or Local options, you can use External and Public to produce
and reference global virtual tables.

70 Borland C++ Users Guide

OptionsIProjectIC++ OptionslVirtual I abies

-V1 Public produces public definitions for virtual tables. When using External
or Public options, at least one of the modules in the program must be
compiled with the Public option to supply the definitions for the virtual
tables. All other modules should be compiled with the -va option to refer
to that Public copy of the virtual tables.

c++ OptionslTemplates

For more information about templates, see Chapter 3 in the Programmer's
Guide.

-Jg Smart generates public definitions of all template instances. If more than
one module generates the same template instance, the linker merges them
to produce a single copy of the instance. To generate the instances~
however, the compiler must have available the function body (in the case of
a template function) or the bodies of member functions and definitions for
static data members (in the case of a template class).

-Jgd Global generates public definitions for all template instances encountered.
Duplicate instances are not merged, causing the linker to report public
symbol redefinition errors if more than one module defines the same
template instance.

-Jgx External generates external references to template instances. Make sure
instances are publicly defined in some other module (using the -Jgd
option), so that external references are properly resolved.

c++ OptionslException handling/RTTI

-x Enable exceptions enables C++ exception handling. If you use C++
exception handling constructs in your code and compile with this option
disabled (by unchecking the option in the IDE or using the -x- command
line option), you'll get an error.

-xp Enable exception location information makes available run-time
identification of exceptions by providing the line numbers in the source
code where the exception occurred. This lets the program query the file and
line number from where a C++ exception occurred.

-xd Enable destructor cleanup destructors are called for all automatically
declared objects between the scope of the catch and throw statements when
an exception is thrown. Note that destructors aren't automatically called for
dynamic objects and dynamic objects aren't automatically freed.

Chapter 3, Compiling 71

optionsIProjectlC++ OptionslException handling/Rnl

-RT Enable runtime type information generates code that allows run-time type
identification.

Optimizations

The Borland compiler contains an optimizer for improving your
application's speed or reducing its size. Compiling takes only 50% longer
for full speed optimizations and 20% longer for size optimizations. You can
compile with optimizations any time during your project cycle. When
debugging, compiling with optimizations on can sometimes help reveal
bugs in your code (the integrated debugger works with optimized code).

-Od Disable all optimizations turns off all optimizations. You can override this
using named options sets in the project manager.

OptimizationslSpecific

-02 -Ot -Ox -G Executable speed creates the fastest code. The compiler determines
whether it can safely generate code to perform a rep movsw instruction
instead of calling a helper function to do the copy. This produces faster
structure copies for structures and unions over eight bytes long than does
the helper function call. The command-line option -Ox is provided for
• compatibility with the Microsoft compiler.

-01 -Os -G- Executable size creates the smallest code by scanning the generated code
for duplicate sequences. When such sequences warrant, the optimizer
replaces one sequence of code with a jump to the other and eliminates the
first piece of code. This occurs most often with switch statements.

No optimization doesn't optimize common subexpressions. This option is
on by default. The command-line compilers don't optimize common
sub expressions by default, so there is no command-line equivalent option
(you don't need to specify an option). .

-Oc Optimize locally eliminates common subexpressions within groups of
statements unbroken by jumps (basic blocks).

-09 Optimize globally eliminates duplicate expressions within the target scope
and stores the calculated value of those expressions once (instead of
recalculating the expression). Although in theory this optimization could
reduce code size, it optimizes for speed and rarely results in size
reductions. Use this option if you prefer to reuse expressions rather than
recalculate them for each instance.

72 Borland C++ Users Guide

OptionSll-'rOJeCIIUptlmlZa1l0nSIi:lpeCITIC

-Oa Assume no pointer aliasing affects the way the optimizer performs
common subexpression elimination and copy propagation by letting the
optimizer maintain copy propagation information across function calls and
maintain common subexpression information across some stores. Without
this option the optimizer must discard information about copies and sub
expressions. Pointer aliasing might create bugs that are hard to spot, so it is
applied only when you use -Oa.

-Oa controls how the optimizer treats expressions with pointers in them.
When compiling with common sub expressions and -Oa enabled, the
optimizer recognizes *p * x as a common subexpression in function func1.

~ int g, y;

OptimizationslSize

int funcl(int *p)
{

int x=5;
y = *p * x;
9 = 3;
return (*p * Xli

void func2(void)
{

g=2;
funcl(&g); II This is incorrect--the assignment 9 = 3

II invalidates the expression *p * x

-0 Jump optimizations optimize jumps. When the Jump Optimization option
is on, the compiler reduces the code size by eliminating redundant jumps
and reorganizing loops and switch statements. When this option is on, the
sequences of tracing and stepping in the debugger can be confusing,
because there might be multiple lines of source code associated with a
particular generated code sequence. When this option is off, you'll get the
best stepping results when debugging.

-01 Loop optimization takes advantage of the string move instructions on the
80x86 processors by replacing the code for a loop with a string move
instruction, making the code faster.

int v[lOO];
void t(void)
{

Chapter 3, Compiling 73

upuonSIt'roJeCIIUptlmlZatlOnSltilze

int i;
for (i = 0; i < 100; itt)

v[iJ = 0;

Depending on the complexity of the operands, the compaCted loop code
~an also be smaller than the corresponding noncompacted loop.

-z Suppress redundant loads, which you should always use when compiling
with optimizations, optimizes for both speed and size by keeping track of
the values loaded into registers. Values already in a register aren't loaded
again.

-Ob Dead-code elimination reveals variables that might not be needed. Because
the optimizer must determine where variables are no longer used and
where their values are needed (live range analysis), you must use Global
Register Allocation (-Oe) when using -Ob.

-ow Windows prolog/epilog suppresses the inc bp / dec bp of an exported
Windows far function Prolog and Epilog code. If the Debug information in
OBJs (-v) option is on, this option is disabled because some debugging tools
(such as WinSpector or Turbo Debugger for Windows) need the inc bp/dec
bp to display stack frame information.

-Oe Global register allocation, which you should always use when optimizing
code, increases the speed and decreases the size of your application. When
the Global Register Allocation option is on, global register allocation and
variable live range analysis are enabled.

OptimizationslSpeed

74

-Oi Inline intrinsic functions generates the code for memory functions (such as
strcpy or memcmp) within your function's scope, thus eliminating the need
for a function call. The resulting code executes faster, but it is larger. The
following functions are inlined with this option:

• alloca .memset • strchr .strncmp
.fabs .rotl .strcmp .strncpy
.memchr .rotr • strcpy • strnset
.memcmp .stpcpy • strlen • strrchr
.memcpy • strcat • strncat

You can control the inlining of these functions with the pragma intrinsic.
For example, #pragma intrinsic strcpy generates inline code for all
subsequent calls to strcpy in your function, and #pragma intrinsic -strcpy

Borland C++ Users Guide

OptionslProjectlOptimizationslSpeed

prevents the compiler from inlining strcpy. Using these pragmas in a file
overrides compiler options.

When inlining any intrinsic function, you must include a prototype for that
function before you use it, because the compiler creates a macro that
renames the inlined function to a function that the compiler recognizes
internally. In the previous example, the compiler would create a macro
#define strcpy __ sticpy __ .

The compiler recognizes calls to functions with two leading and two
trailing underscores and tries to match the prototype of that function
against its own internally stored prototype. If you don't supply a prototype
or if the prototype you supplied doesn't match the compiler's prototype,
the compiler rejects the attempt to inline that function and generates an
error.

-Om Invariant code motion moves invariant code out of loops and optimizes for
speed. The optimizer uses information gathered about all the expressions in
the function during common subexpression elimination to find expressions
whose values don't change inside a loop. To prevent the calculation from
being done many times inside the loop, the optimizer moves the code
outside the loop so that it is calculated only once. The optimizer then reuses
the calculated value inside the loop. You should use loop-invariant code
motion whenever you are compiling for speed and you have used global
common sub expressions, because moving code out of loops can result in
enormous speed gains. For example, in the following code, x * y * z is

Chapter 3, Compiling

evaluated in every iteration of the loop: .

int v[lO];
void f (void)
{

int i,x,y,z;
for (i = 0; i < 10; itt)

v[i] = x * y * z;

The optimizer rewrites the code:

int v[10];
void f (void)
{

int i,x,y,z,tl;
tl '= x * y * z;
for (i ~ OJ i < 10; itt)

v[i] = tlj

75

Optionsl ProjectiOptimizationsl Speed

Messages

76

-Op Copy propagation is primarily speed optimization, but it never increases
the size of your code. Like loop-invariant code motion, copy propagation
relies on the analysis performed during common sub expression
elimination. Copy propagation means that the optimizer remembers the
values assigned to expressions and uses those values instead of loading the
value of the assigned expressions. Copies of constants, expressions, and
variables can be propagated.

-Ov Induction variables creates induction variables and performs strength
reduction, which optimizes loops for speed. Use this option when you're
compiling for speed and your code contains loops. The optimizer uses
induction to create new variables (induction variables) from expressions used
in loops. The optimizer assures that the operations performed on these new
variables are computationally less expensive (reduced in strength) than
those used by the original variables.

Optimizations are common if you use array indexing inside loops, because
a multiplication operation is required to calculate the position in the array
that is indicated by the index. For example, the optimizer creates an
induction variable out of the operation v[il in the following code because
the v[il operation requires multiplication, which also eliminates the need
to preserve the value of i:

int v[10];
void f(void)
{

int i,x,y,z;
for (i = 0; i < 10i itt)

v[i] = x * y * Zi

With Induction variables enabled, the code changes:

int v[10] ;
void f (void)
{

int i,x,y,z, *p;
for (p = Vi P < &V[10]i ptt)

*p = x * y * z;

Messages on by default contain an asterisk next to the command-line
option; these options are checked in the IDE.

Borland C++ Users Guide

uplIomjl t"'fUJt:::l,;lIIVIt:::::i::iayt::\)

-w All displays all warning messages.

-wxxx -w-xxx Selected enables the specific warning message typed at the command line
or checked in the IDE. Using the pragma warn in your source code
overrides messages options set either at the command line or in the IDE.
See Chapter 5 in the Programmer's Guide for more information on pragmas.

-w- None doesn't display warning messages. Errors are still displayed.

-gn Stop after n warnings stops compiling after n warnings occur in your
project.

-jn Stop after n errors stops compiling after n errors occur in your project.

Messagesl Portability

-wrpt*
-wept*
-wrng*
-weln
-wsig

-wuep

Nonportable pointer conversion.
Nonportable pointer comparison.
Constant out of range in comparison.
Constant is long. .
Conversion may lose significant digits.
Mixing pointers to different 'char' types.

MessageslANSI Violations

-wvoi*
-wret*

-wsus*
-wstu*

-wdup*
-wbig*
-wbbf

-wext*
-wdpu*
-wzdi*
-wbei*
-wpin
-wnak

Chapter 3, Compiling

Void functions may not return a value.
Both return and return with a value used.
Suspicious pointer conversion.
Undefined structure structure.
Redefinition of macro is not identical.
Hexadecimal value contains more than 3 digits.
Bit fields must be signed or unsigned into
Identifier is declared as both external and static.
Declare type prior to use in prototype.
Division by zero.
Initializing identifier with identifier.

. Initialization is only partially bracketed.
Non-ANSI keyword used: word.

77

ul.JllunSI t'roJecIIIVlessagesluOSolete t;++

MessageslObsolete c++

-wbbi* Base initialization without a class name is now obsolete.
-wofp* Style of function definition is now obsolete.
-wpre* Overloaded prefix operator used as a postfix operator.

MessageslPotential C++ Errors

-wnci*
-weast
~whid*

-wnef*
-wibe*
-wdsz*
-wnst*

Constant member identifier is not initialized.
Assigning type to enumeration.
Functionl hides virtual function function2.
Non-const function function called for const object.
Base class basel is also a base class of base2.
Array size for' delete' ignored.
Use qualified name to access nested type type.

-wheh*
-wmpe*
-wmpd*
-wntd*

Handler for xxx is hidden by previous handler for yyy.
Conversion to type will fail for members of virtual base base.
Maximum precision used for member pointer type type.
Use '> >' for nested templates instead of '»'.

-wncf* Non-volatile function function called for volatile object.

Messagesllnefficient C++ Coding

-winl* Functions containing identifier are not expanded inline.
-wlin* Temporary used to initialize identifier.
-wlve* Temporary used for parameter in call to identifier.

Messagesl Potential errors

-wpia*
-wdef
-wnod
-wpro*
-wrvl*

-wamb
-weee*

78

Possibly incorrect assignment.
Possible use of identifier before definition.
No declaration for function function.
Call to function with no prototype.
Function should return a value. .
Ambiguous operators need parentheses.
Condition is always true/ false.

Borland C++ Users Guide

OptionslProjectiMessagesllnetticient Goamg

Messagesllnefficient Coding

-waus*
-wpar*
-wuse
-wstv

':""wrch*
-weff*

Identifier is assigned a value that is never used.
Parameter identifier is never used.
Identifier is declared but never used.
Structure passed by value.
Unreachable code.
Code has no effect.

MessageslGeneral

Make

-wasm
-will*

-wias*
-wamp
-wobs*
-wpch*

Unknown assembler instruction.
Ill-formed pragma.
Array variable variable is near.
Superfluous & with function.
Identifier is obsolete.
Cannot create precompiled header: header.

-wI Break Make on warnings returns a non-zero return code from the
command-line compiler when there are warnings and doesn't compile to
.OBJ.

Command-line options

The options listed here can be used only with the command-line compilers
(BCC.EXE and BCC32.EXE). There are no direct equivalent options in the
IDE; however, because you can do most of these tasks in the IDE, each
option contains directions for the IDE.

-1 Generates extended 80186 instructions. It also generates 80286 programs
running in real mode.

-8 Compiles towards assembly and calls TASM to assemble code. If you don't
have TASM, using this option generates an error. Also, old versions of
TASM might have problems with 32-bit code.

--c Compiles and assembles the named .C, .CPP, and .ASM files, but does not
execute a link command. Choose Project I Compile in the IDE.

Chapter 3, Compiling 79

vommana-IJne options

-efilename Derives the executable program's name from filename by adding the file
extension .EXE (the program name is then filename.EXE). filename must
immediately follow the -e, with no intervening whitespace. Without this
option, the linker derives the .EXE file's name from the name of the first
source or object file in the file name list.

-Efilename Uses name as the name of the assembler to use. By default, T ASM is used. In
the IDE, you can add a tool for the assembler program you want to use. See
Chapter 2 for information on adding tools to the IDE.

-f87 Uses 8087 hardware instructions (16-bit DOS only).

-f287 Uses 80287 hardware instructions (16-bit DOS only). In the IDE, check Fast
floating point in TargetExpert when you create a DOS target.

-Fm Enables all the other -F options (-Fc, -Ff and -Fs).You can use it as a
handy shortcut when porting code from other compilers. To do this in the
IDE, check the IDE options for -Fc, -Ff and -Fs.

-Fs Assumes that OS is equal to SS in all memory models. You can use this
option when porting code originally written for an implementation that
makes the stack part of the data segment. When you specify this optin, the
compiler links in an alternate startup module (COFx.OBJ) that places the
stack in the data segment. In the IDE, check Alternate Startup in the
TargetExpert dialog box. This option works with DOS applications only.

-He Cache precompiled headers. Must be ~sed with -H or -Hxxx. This option is
useful when compiling more than one precompiled header.

-Ix Passes option x to the linker (TLINK for BCC and TLINK32 for BCC32).
More than one option can appear after the -I (a lowercase 1). You can select
linker options in the IDE by choosing Options I Project I Linker. See Chapter
9 for a list of linker options.

-I-x Suppresses linker option x. More than one option can appear after the -1- (a
lowercase 1). You can check and uncheck linker options in the IDE by
choosing Options I Project I Linker.

-M Forces the linker to produce a full link map. The default is to produce no
link map. In the IDE, check Segment, Public, or Detailed in the Linker I
Map File section of the Project Option~ dialog box.

-0 filename Compiles the named file to the specified filename.obj.

-p- Compiles files with the .CPP extension as C++ files; other files compile as C
files. In the IDE, use different tools for compiling a project node. See
Chapter 2 for more information.

80 Borland C++ Users Guide

vUIII"laIlU-IIII~ UfJlIUII;:)

-P Compiles all files as C++, regardless of extension. In the IDE, use different
tools for compiling a project node. See Chapter 2 for more information.

-Pext Compiles all files as C++; it changes the default extension to whatever you
specify with ext. This option is available because sqme programmers use .C
or another extension as their default extension for C++ code. In the IDE, use
different tools for compiling a project node. See Chapter 2 for more
informa tion. .

-P-ext Compiles based on the extension (.CPP for C++ code, all other file-name
extensions for C code) and defines the default extension (other than .CPP).
In the IDE, use different tools for compiling a project node. See Chapter 2
for more information.

-s Generate assembler source compiles the named source files and produces
assembly language output flIes (.ASM), but does not assemble. When you
use this option, Borland C++ includes the C or C++ source lines as
comments in the produced .ASM file. In the IDE, use different tools for
compiling a project node. Select Special I C++ to Assembler from the project
window SpeedMenu. See Chapter 2 for more information.

-T string Passes string as an option to T ASM (or as an option to the assembler
defined with -E).

- T- Removes all previously defined assembler options.

-to -tOe Creates a 16-bit DOS .EXE file. In the IDE, choose this target type when you
create a target for your project.

-tOe Creates a 16-bit DOS .COM file. You can't create .COM files from the IDE.

-tWC -WC Creates a 32-bit console mode application. In the IDE, choose this target
type when you create a target for your project.

-tWCD -WCD Creates a 32-bit console mode OLL with all functions exported. In the IDE,
choose this target type when you create a target for your project.

, -tWCDE -WCDE Creates a 32-bit console mode OLL with explicit functions exported. In the
IDE, choose this target type when you create a target for your project.

-tWM -WM Creates a multithread application or OLL. Use this option with -Wm and
-weD. In the IDE, choose this target type when you create a target for your
project.

-Uname Undefines any previous definitions of the named identifier name.

-Vo This option is a "master switch" that sets on all of the backward-
compatibility options listed in this'section. It can be used as a handy

Chapter 3, Compiling 81

vUllllllcUlU-lIne opIIons

shortcut when linking with libraries built with older versions of Borland
C++.

-Y Enable overlay code generation. In the IDE, choose DOS Overlay for the
target type when you create a target for your project.

-Yo Overlay the compiled files. In the IDE, check Overlay this module in the
node attributes dialog box for any nodes under a DOS Overlay (-Y) target.

-zx* Uses the default name for X. For example, -zA* assigns the default class
name CODE to the code segment class.

82 Borland C++ Users Guide

See Chapter 5 or the
online Help for

reference material on
AppExpert.

c H A p T E

Building applications with
AppExpert

R 4

This chapter teaches you how to create ObjectWindows 2.0-based Windows
applications using AppExpert. AppExpert works with Resource Workshop,
ObjectWindows 2.0 classes, and the IDE's project manager to form a visual
approach to application generation. You should be familiar with these
components to effectively use AppExpert.

AppExpert lets you create a Windows executable with features such as a
SpeedBar, a status bar, a menu structure, online Help, and MDI windows.
You can also select options to support printing, print preview, and
document/view.

AppExpert basics

AppExpert creates an
.APX file that

contains important
information that

Class Expert uses.

The process of creating applications with AppExpert consists of four steps:

1. Use AppExpert to define the user interface and application features and
to generate the code.

2. Use ClassExpert to add classes and event handlers, to implement virtual
functions, and to navigate to existing class source code. ClassExpert can
also associate Resource Workshop objects with classes or handlers. You
should always use ClassExpert to help you with event handling, virtual
function implementation, and instance variables.

3. Use Resource Workshop to edit or add resources.

4. Use the project manager to build the executable.

AppExpert always creates the following files for each application:

• A project file (.IDE) • A resource script file (.RC)

• A main source file (. CPP)

• A main header file (.H)

• A resource header file (.RH)

• A database file for the
AppExpert source (.APX)

Chapter 4, Building applications with AppExpert 83

Depending on what options you choose, AppExpert can create the
following files:

• Help source files (.RTF)

• A Help project file (.HPJ)

• Icon and bitmap files (.lCO and .BMP)

Creating an application with AppExpert

=Application
o Basic Options
o Advanced Options
o Code Gen Control
o Admin Options

84

This section tells you how to create an AppExpert application.

1. Start the IDE and choose Project I AppExpert. A dialog box appears.

2. Type a name for your project file. By default, most generated files
(including the .EXE) are derived from the project name (for example,
<prjname>.CPP).

3. Select a path where you want the AppExpert project file to be stored
(AppExpert creates the directory if it doesn't already exist). This
directory becomes the default location for all created source files (you
can change this directory in the Application Generation Options dialog
box before generating the application). (You might want to place each
AppExpert project in its own directory for ease of use when making
changes to files.) Click OK. The AppExpert Application Generation
Options dialog box appeflrs.

4. You can click the Generate button at the bottom of the Options dialog
box to generate the default Windows application, or you can change
options in the dialog box and then generate the application. The
Application Generation Options dialog box contains a list of topics on
the left and a brief description of the topic on the right (you can press
the Help button for information on the options in that topic). To change
application options,

• View options by clicking any + to display a subtopic (the + means the
topic contains subtopics, a - means all subtopics are displayed) then
selecting a subtopic. For example, click the + next to the Application
topic (or double-click the word" Application"), then select the
subtopic Basic Options. The panel on the right displays the basic
options for an AppExpert application .

• Check the options you' want in your application. For example, you
can edit the Base directory where AppExpert files are saved (which
you specified in step 3).

5. Click the Generate button at the bottom of the Options dialog box.

Borland C++ Users Guide

Default AppExpert
applications

6. A dialog box confirming code generation appears. Click Yes to generate
the code (click No to return to setting options). When AppExpert is
generating your application, a message box appears.

AppExpert creates all the files for your application and places them in
the Base directory (you can edit the directories before generating the
application; see the Base Directory option on page 86).

With AppExpert, you choose your application options once, then
generate the code. After you generate the code and resources, you can
edit them and add to them, but you can't go back to AppExpert and
change options. For example, if you generate an application that doesn't
contain a status line, you can't use AppExpert to add that
functionality-you need to add it manually.

7. The project window appears, listing some of the files required for your
application (files for bitmaps, icons, and help text don't display). You
can use ClassExpert to modify your application or you can build it first
(see Chapter 5 for information on ClassExpert). To build your
application, choose Project I Make all (you can choose Build all, but
Make all is faster). By default, the executable (.EXE) is saved in the Base
directory.

If you don't change any AppExpert options when you generate your
application, you get a default application. You can browse through the
options to view what the default options are.

If you uncheck options you don't need, the application generates and
builds faster.

Application options

Application options control how your application looks.

Multiple Document Interface sets the style of y'our application to follow the
Multiple Document Interface (MOl) model. .

Single Document Interface sets the style of your application to follow the
Single Document Interface (SOl) model.

DocumentlView determines whether your application supports the
Document/View model for handling application objects. The "document"
is the data and the "view" is the user interface to the data. In a
Document/View model, these two are separate (see the Object Windows
Programmer's Guide for more information on Document/View). You can use
this option with either SOl or MOl applications.

Chapter 4, Building applications with AppExpert 85

ApplicationlBasic
Options

Applicationl
Advanced
Options

86

SpeedBar places a SpeedBar at the top of the main window of your'
application.

Status Line places a status line at the bottom of the main window of your
application and generates code to display help hints in the status line when
menu items are highlighted.

Drag/Drop supports standard Windows drag-and-drop actions.

Printing supports printing-related activities and creates the menus File I
Print Setup, Print Preview, and Print.

Basic Options define where generated code is stored and controls Help file
support.

Target Name defines the name of the project you want to create as a basis
for the default names of other elements in your project (for example, header
files,class database,application class, and source files).

Base Directory sets the base directory path from which all of the project
directories are located. All paths in the project are relative to this directory.
You can choose a directory by typing it yourself or by selecting it from the
Browse dialog box (click the Browse button). The name of this direcfory is
passed to the project manager for the new AppExpert target. The default
value for the base directory is the directory of the parent node of the project
defined in the project manager. If you specify a new directory, AppExpert
creates the directory.

Help File Support generates Help source files (.RTF) and a Help project file
(.HPJ). The Help project file is added to the Project Manager project and
automatically built with the target application. The Help source file
contains placeholder text for the menu items in the application.

Help File Name names the help files (.HLP and .HPJ) associated with your
application.

Advanced Options control the behavior of your application when it starts
running, and its appearance.

Start Up sets the initial state of the application's main window .

• Normal (default) starts in a default size (defined by WS_NORMAL).

• Minimized starts as an icon on the Windows desktop.

• Maximized fills the entire Windows desktop when it starts running.

Control Style determines which type of controls the application uses.

• Windows (default) uses standard Windows controls.

Borland C++ Users Guide

ApplicationlCode
Gen Control

Applicationl
Admin Options

• BWCC uses the Borland custom control style .

• 3D uses the new three-dimensional Windows controls.

Code Gen Control options name various aspects of the code-generation
process and determine where the generated code is stored.

Target Name displays the name of the project as defined in Basic Options I
Target.

Base Directory displays the base directory for the project as defined in
Basic Options I Base Directory. \

Source Directory specifies the directof~ where the source files for the
application are stored. This path is relative to the directory specified as the
Base Directory. If an absolute path is specified, it is converted to a path
relative to the Base Directory (you can't specify another drive). You can
choose a directory by typing it yourself or by selecting one (click the
Browse button). The default value for the Source Path is //. \ //.

Header Directory specifies the directory where the header files for the
application are stored. This path is relative to the directory specified as the
Base Directory. If an absolute path is specified, it is converted to a path
relative to the Base Directory (you can't specify another drive). You can
choose a directory by typing it yourself or by selecting one (click the
Browse button). The default value for the Header Path is //.\//.

Main Source File names the main application source file.

Main Header File names the main application header file.

Application Class names the class that AppExpert derives from
T Application. The default class name is based on the project name.

About Dialog Class names the class that AppExpert derives from TDialog.
The default class name is based·on the project name.

Comments documents the generated code partially (terse) or fully
(verbose).

Admin Options identify information placed in a comment block at the
beginning of all the files generated forJhe project. Some of the information
is displayed in the application's Help I About dialog box.

Version Number sets the project version number that displays in the Help I
About dialog box (the default version number is //1.0"). This information is
stored in the .RC file for your project.

Chapter 4, Building applications with AppExpert 87

Copyright defines the copyright information that displays in the Help I
About dialog box.

Description describes the application and displays the text in the
application's Help I About dialog box. The default value is the name of the
project.

Author names the programmers who generate the source code and is used
to comment the generated code.

Company names the programmers' company and is used to comment the
generated code.

Main Window options

Main Windowl
Basic Options

88

Main Window options control the features of your application's main
window-its appearance and type.

Window title names the text for the title bar of the application's main
window.

Background color sets the background color of the application's main
window; click the Background color button to select a color.

Basic Options control the general appearance of the application's main
window.

Window Styles controls the appearance of the application's main window,
specifying its non-client area styles.

• Caption creates a single, thin border and a title bar where a caption can
be displayed.

• Border puts a single, thin border without a title bar around the main
window.

• Max box adds a maximize button to the right side of the main window
title bar. This option is available only if the Caption option is on.

• Min box adds a minimize button to the right side of the main window
title bar (available only if the Caption option is on).

• Vertical scroll adds a vertical scroll bar to the right side of the main
window. This option is available only if you check either Caption or
Border.

• Horizontal scroll adds a horizontal scroll bar to the bottom of the main
window. This option is available only if you check either Caption or
Border.

Borland C++ Users Guide

Main WindowlSDI
Client

Table 4.1
ClienVview class with

DocumenVview

• System menu adds a control-menu button on the left side of the main
window title bar (available only if the Caption option is on).

• Visible makes the main window visible. When Visible is off, the
WS_ VISIBLE style is changed to NOT WS_ VISIBLE.

• Disabled disables the main window by default (for example, if you want
to display a bitmap when the application is started).

• Thick frame puts a double border on the main window and makes the
main window resizable.

• Clip siblings protects the siblings of the child windows. Painting is
restricted to that window (see WS_CLIPSIBLINGS in the API online
Help).

• Clip children protects child windows from being painted over by the
application's main window (see WS_CLIPCHILDREN in the API online
Help).

SDI Client defines the class that represents the client area of the Single
Document Interface main window.

Client/view class names the class of the SDI client area window or view.
The interpretation of this value depends on whether you selected the
Document/view option in the Application Model settings. If
Document/view is selected, Client/view class selects the class of the view
of the default document/view. If Document/view is not selected,
Client/view class selects the class of the client window.

Document/view on

TEditView (default)
TListView
TWin do wVie w

Document/view off

TEditFile (default)
TListBox
TWindow

This value is automatically mapped to the Document/view setting. For
example, if you turn off the Document/view option, TListView is switched
to TListBox. Conversely, if you turn on the Document/view option,
TListBox switches tp TListView.

Document class (TFileDocument by default) names the class of the default
document (available if Document/view is on). '

Description describes the class of files associated with the document/view.
The default value is "All Files (*.*)".

Filters (*.* by default) lists wildcard file specifications, separated by
semicolons or commas, that specify the file names you want the application

Chapter 4, Building applications with AppExpert 89

Main Window/MOl
Client

to recognize. This value is passed to Windows common-file dialog boxes to
filter files displayed in them.

Default extension specifies the default file-name extension. This value is
passed to Windows common-file dialog boxes to be added to file names
when no extension is given. The default extension is used in the File I Open
and File I New dialog boxes.

MDI Client describes the class that defines the client window of the
Multiple Document Interface main window (available if MDI is selected in
Application Model settings).

Client class specifies the name AppExpert uses for the class derived from
TMDIClient that represents the client area of the MDI frame window.

Source file names the source file that stores the implementation of the class
named in Client Class.

Header file names the header file that stores the definition of the class
named in Client Class.

MOl ChiidNiew options,

MDI ChiidNiew/
Basic Options

90

MDI Child/View options define the class for child window or
document/view (available if MDI and Document/view from Application
Model settings are selected).

, MOl child names the class derived from TMDIChild that represents the
frame of the default MDI child windows.

Source file names the source file that stores the implementation of the class
named in MDI child.

Header file names the header file that stores the definition of the class
named in MDI child.

Basic Options defines the default MDI child window.

MOl client/view class names the class of the default MDI view. The
interpretation of this value depends on whether you selected the
Document/View option in the Application settings:

Borland C++ Users Guide

Table 4.2
MDI clienVview class
with DocumenVview

Document/view on

TEditView (default)
TListView
TWindowView

Document/view off

-TEditFile (default)
TListBox
TWindow

This value is automatically mapped to the Document/view settings. For
example, if you turn off the Document/view option,' TListView is switched
to TListBox. Conversely, if you turn on the Document/view option,
TListBox switches to TListView. -

Document class names the class of the document in the default
document/view (TFileDocument by default).

Description describes the class of files associated with the document/view.
The default value is II All Files (*.*)".

Filters (*.* by default) lists wildcard file specifications, separated by
semicolons or commas, that specify the file names you want the application
to recognize. This value is passed to Windows common file dialog boxes to
filter files displayed in them.

Default extension specifies the default file-name extension passed to
Windows common file dialog boxes to be added to file names when no
extension is given.

Chapter 4, Building applications with AppExpert 91

92 Borland C++ Users Guide

Class Expert displays
virtual functions and

events for existing
classes and checks

the ones
implemented in your

application.

c H A p T E R 5

Using ClassExpert

ClassExpert lets you create new classes, edit and refine the implementation
of classes, and navigate through the source code for existing classes in your
AppExpert applications. You can use ClassExpert with Resource Workshop
to associate classes to resources (for example, associating a TDialog class to
a dialog resource).

Starting Class Expert

ClassExpert
basics

Figure 5.1
The ClassExpert

window

To start ClassExpert,

1. Open an AppExpert project file by choosing Project I Open project.

2. Double-click the AppExpert target node (ClassExpert is the default
viewer for AppExpert targets), or choose View I ClassExpert or click the
SpeedBar button shown at left. ClassExpert appears, listing the classes
and their implementation for your application.

This section describes the three ClassExpert panes and their functionality .
You can size the panes by dragging their borders. If you resize ClassExpert,
the panes keep their relative proportions.

Classes

PreviewWindow
sampleAboutDlg
sampleApp
sampleMDlChiid
sampleMDIClient

+1 Command Notifications
V + Virtual Functions
V + Windows Messages

___ -tl--Events
pane

pane --tt-----

IF/="=jI'J=a=in=s=am=p=l=e =11=======_ =_=_=:_=_=lij-----'IEdit

Copyxight ~ 1993. All Rights Resexved

SUBSYSTEjI'J:

FILE:
AUTHOR:

sample. exe Application
APXPxev.CPP

pane

Chapter 5, Using ClassExpert 93

Classes pane

Events pane

Edit pane

Adding a class

94

The Classes pane lists the classes ClassExpert manages for the current
target. The information in the Events and Edit panes depends on which
class is selected here. You can double-click a class to jump to the class
constructor source code, which displays in the Edit pane. Using the Class
SpeedMenu (right-click in the Classes pane), you can add classes, associate
document classes with view classes, get information about a class, jump to
the class source code or header file, edit the class, and start Resource
Workshop (by choosing Edit dialog or Edit menu).

The Events pane lists events and virtual functions from the base class of the
class selected in the Classes pane. The information in the Events pane
depends on the base class type.

Using the Event SpeedMenu (right-click in the Event pane), you can add or
delete ~essage handlers and instance variables.

The Edit pane is an editor that displays the source code for the items
selected in the Classes pane and the Events pane. The Edit pane has the
same functionality as an IDE editor window; if you make changes or
update the IDE editor options, those options are immediately available in
the ClassExpert Edit pane.

The Edit pane uses the IDE main menu, and it has a SpeedMenu that you
access by right-clicking in the Edit pane. The Edit pane works exactly like
an editor window in the IDE except you can't split panes or open other files
into the Edit pane.

ClassExpert lets you add ObjectWindows-based classes and supports one
level of inheritance (you can manually add more derivations).

To add a class,

1. Right-click in the Classes pane. The SpeedMenu appears.

2. Choose Create new class or click the SpeedBar button shown at left. The
Add New Class dialog box appears.

3. Select the ObjectWindows base class you want your class derived from.
Press Tab.

4. Type the name you want to give to the new class. Press Tab.

5. Type the name of the source file you want the source code to appear in.
The file is saved in the project's Source path. Press Tab.

Borland C++ Users Guide

Creating
document types

See the
ObjectWindows

documentation for
more information on

these classes.

6. Type the name of the header file that defines the class. This file defaults
to the source file name but uses the extension .H. Press Tab.

7. Your next selections depend on the base class:

• If the base class is TDiaiog, you must specify or select a dialog
template ID. The Dialog ID list box contains IDs for all dialog
resources in your AppExpert application. If you specify an ID that
doesn't already exist, AppExpert creates an empty dialog box with
your specified ID (for consistency, you might want to use the prefix
IDD_), then Resource Workshop loads so you can define the dialog
box.

• If the base class is TFrame Window or a TFrame Window-derived class,
you can choose an existing class in the Client class list box to
represent the client area of the new frame window.

• If the base class is TWindow or a TWindow-derived class, you can click
the Set Window Properties button. A dialog box appears where you
set properties for the window such as color, border, and caption. See
the online Help (click the Help button) for information on each
property.

8. Click OK to add the new class.

When you create an AppExpert application that supports document/view,
you can use ClassExpert to create view classes and document types.

To create a document type,

1. Create a class for the view unless you want to use one of the three
predefined view classes (TEditView, TListView, or TWindowView).

2. St~rt ClassExpert from your project. Right-click in the Classes pane,
then choose Create doc types from the SpeedMenu.

,/ 3. Select a View class (if you created your own class, it appears in this list).
The default view classes are:

• TEditView provides a view wrapper for ObjectWindows text edit
class. '

• TListView provides views for list boxes.

• TWindowView provides window-based views.

4. Type a description for the types of files your document type will
support. This text appears in the File I Open dialog box.

5. Type any Filters you want and separate them with commas; these filters
appear in the File I Open dialog box and are used to filter for any files a

Chapter 5, Using ClassExpert 95

Adding and
deleting event
handlers

96

user can open and use in your application. For example, if you're
creating a document type for bitmaps, you might have a filter * .EMP.

6. Type a Default extension for your application to use when saving files.

7. Click the Style's button to set styles for the document/view. The styles
you can choose are as follows (see the ObjectWindows documentation
for more information): .

• dtAutoDelete deletes the document object when the last view is closed.

• dtNoAutoView doesn't automatically create a default view type.

• dtSingleView provides only a single view for ~ach document.

• dtAutoOpen opens a document when it's created.

• dtUpdateDir updates the directory with the dialog directory.

• dtHidden hides the template from the list of user selections.

• dtSelected indicates the last selected template.

• dtReadOnly checks the read-only check box when the dialog box is
created.

• dtOver WritePrompt asks users if it's OK to overwrite an existing file
when they use the Save As dialog box.

• dtHideReadOnly hides the read-only checkbox.

• dtPathMustExist lets the user type only existing paths.

• dtFileMustExist lets the user type only existing file names.

• dtCreatePrompt prompts the user before creating a new document. .

• dtNoReadOnly returns the specified file as writeable.

8. Click Add to add the document type to your application (this updates a
data structure in the main source file that describes all available
document types). The document/view appears in the list of existing
types.

9. Repeat steps 1-8 for any document types you want to add. When you're
finished, click Close to return to ClassExpert.

To add a handler for an event,

1. Select the class for the message handler. The events appear in the Events
pane.

2. Select the event to handle (you might have to expand the list of events),
then right-click the event to view the SpeedMenu.

3. Choose Add handler from the SpeedMenu. If you choose to add a
handler for a Windows message, ClassExpert adds an entry to the
response table whose name is defined by default, then the function

Borland C++ Users Guide

Adding and
deleting instance
variables

associated with the handler appears in the edit window. Other handlers,
such as commands, prompt you for the name of the function before
adding the entry to the response table.

4. ClassExpert places a check mark next to the event in the Events pane to
show you that the event is handled. A lighter gray checkmark means
some events under the event category are handled (expand the list to
view the events).

To delete a handler for an event,

1. Select the class for the message handler. The events appear in the Events
pane.

2. Select the checkmarked event with the handle you want to remove (you
might have to expand the list of events), then right-click the event to
view the SpeedMenu.

3. Choose Delete handler. ClassExpert deletes only the entry in the
response table, not the code in the source file. The code for the handler
appears in the Edit pane, so you can delete it. If you delete the function,
remove the function definition from the header file (you can choose Edit
header from the Classes pane SpeedMenu to view the file).

Instance variables let you handle lots of controls easily. When you create
instance variables, ClassExpert adds a transfer buffer in your code. This
transfer buffer collects information at run time, so you can use the
information in the transfer buffer instead of creating code that checks
whether each check box is checked. For example, if you have a dialog box
that has six check-box controls and you want your application to do
something based on which boxes are checked, you can use instance
variables for each of the controls and then use the transfer buffer data in
your code. Consult the Object Windows Programmer's Guide for more
information on transfer buffers.

To add (associate) an instance variable to a control,

1. Select the control in the Events pan~ (you might need to expand the list
of events to view the controls).

2. Right-click the control and choose Add Instance variable.

3. In the Add Instance variable dialog box, type a name for the variable.
Click OK. ClassExpert adds the following to your application code:

• In the header file, it adds a structure declaration with an entry for the
instance variable.

Chapter 5, Using ClassExpert 97

• In the class constructor in the .CPP source file, the instance variable is
allocated (this associates the ObjectWindows class with the resource
object).

• In the .CPP file, a static instance of the transfer structure is declared.

4. The control label in the Events pane shows the class and name of the
instance variable you just created.

To delete an instance variable,

1. Select the control with the instance variable you want to delete.

I~~I 2. Right-click the control and choose Delete Instance variable.

Jumping to class
source code

3. ClassExpert deletes the following from your code:

• The entry from the structure

• The pointer variable in the class declaration

• The allocation of the class variable associated with the resource
control in the constructor

If you delete all instance variables from your code, you'll be left with an
empty structure and the set transfer buffer call. This information doesn't
affectthe rest of your code, so you don't need to delete it manually.

To view the source code for a class, select the class in the Classes pane (click
the class name once). The code appears in the Edit pane. If you move the
cursor in the Edit pane, ClassExpert remembers the position the next time
you select the class.

To jump the cursor to the class constructor code, double-click the class
name in the Classes pane. To jump to a handled event, double-click the
event in the Events pane. You can also view the source file or its header file
in an IDE editor:

1. Select the class in the Classes pane.

2. Right-click the class. A SpeedMenu appears.

3. Choose Edit source to view the source file for the class constructor (the
.CPP file), or choose Edit header to view the header file where the class
is defined. .

Using Resource Workshop with ClassExpert

98

Resource Workshop is the default viewer for ClassExpert resource scripts
(.RC files). When you start Resource Workshop from ClassExpert (by right-

Borland C++ User's Guide

Running
Resource
Workshop from
the IDE

Using Rescan

clicking a class and choosing Edit dialog or Edit menu), Resource
Workshop automatically loads the RC script for that application.

When using Resource Workshop with AppExpert-generated code, you
should always run it from ClassExpert because Resource Workshop and
ClassExpert update each other as you make changes to the project. When
you start Resource Workshop, it checks the resource code for changes and
sends any updates immediately to ClassExpert. For example, if you add a
button to a dialog box, Resource Workshop tells ClassExpert, which then
adds the control to the Events pane. To view the control in ClassExpert,
select the control in Resource Workshop, right-click it, then choose
ClassExpert from the SpeedMenu. Resource Workshop returns you to
ClassExpert with the control highlighted in the Events pane.

When you start Resource Workshop as a viewer for an AppExpert
application (either through the project manager in the IDE or through
ClassExpert), its behavior differs from running Resource Workshop
separately:

• When you make changes in Resource Workshop that affect the class
structure or functionality (such as editing menus or dialog boxes), those
changes are updated instantly in the ClassExpert window.

• You can't open another script (no File I Open or File I New).

• If you close the IDE, Resource Workshop is also closed and any changes
you made are automatically saved.

• If you close the AppExpert project file that started Resource Workshop,
Resource Workshop is also closed.

• If you build a project while Resource Workshop is open, it creates a .RES
file based on the resources loaded. For example, if you edit a dialog box,
but haven't saved it, the .RES file will reflect the unsaved edits.

• You can access the IDE from Resource Workshop using the SpeedMenu
(right-click) and choosing ClassExpert.

Rescan is a special project tool that examines all the source code listed in
your AppExpert project (.IDE file) and updates or rebuilds the project's
database (the .APX file) according to what it finds in the source code.
Rescan looks for special markers in the source code to reconstruct the
AppExpert database file and then starts Resource Workshop to reconstruct
information about project resources. If the rescan is successful, the original

Chapter 5, Using ClassExpert 99

Deleting a class

Moving a class

Renaming an
AppExpert
element

100

project database file is renamed to *.-AP and a new database file is created;
otherwise, the original database is left as * .APX.

You can use Rescan to:

• Delete a class
• Move a class from one source file to another

• Rename a class, handler, instance variable, or dialog ID

• Import a class from another AppExpert project

• Rebuild a lost or damaged project database (*.APX) file

To delete a class,

1. Remove the class source file from the IDE project by selecting the source
node, right-clicking the node, and choosing Delete node. If the class
shares a source file with other classes, delete the"code related to the class
from the source file and delete references to the class from other source
files.

2. Select the AppExpert target in the project, right-click it, then choose
Special I Rescan. Rescan scans the source files listed as dependencies for
the AppExpert target. Resource Workshop scans and updates the
resource files. When Rescan is complete, you'll return to the updated
project file where you can either build your application or use
ClassExpert. You can add the deleted class to the project by adding the
class source file as a dependent of the AppExpert target, then
rescanning.

To move a class from one source file to ,another,

1. Move (cut and paste) the source code of the class to the new file. If the
new file isn't in the project as a node under the AppExpert target, add it
(see Chapter 2). If the moved class was its own source file, you might
want to delete that empty source file from the project.

2. Select the AppExpert target in the project, right-click it to view the
SpeedMenu, then select Special I Rescan. When complete, Rescan
returns you to the project window in the IDR

To rename a class, event handler function, instance variable, or dialog ID,

1. Use the IDE editor to search and replace all occurrences of the original
name with the new name. Be sure to check all source files associated
with the project (.CPP, .H, .RC, and .RB files).

Borland C++ Users Guide

Importing a class

Rebuilding the
.APX database file

2. In the project window, select the AppExpert target, right-click it, then
choose Special I Rescan. When complete, Rescan returns you to the
project window in the IDE.

To import a class from one AppExpert project to another,

1. Move or copy the source and header file that defines the class to the
source and header directory of the other project. All source files for a
project must be in the project's source directory (.CPP files) or header
directory (.H files). These directories were created when you first
generated the AppExpert project.

2. Add the class source file as a dependent node under the AppExpert
target in the IDE project (use Add node from the SpeedMenu).

3. In the project window, select the AppExpert target, right-click, then
choose Special I Rescan.

To rebuild a lost or damaged database file (the .APX file),

1. Open the project file that contains the AppExpert target and dependent
nodes (this is the .IDE file).

2. Select the AppExpert target, right-click it, then choose Special I Rescan
from the SpeedMenu. Rescan automatically creates a new da,tabase file
using markers from the source code for the AppExpert application.

Chapter 5, Using Class Expert 101

102 Borland C++ Users Guide

Types of bugs

Compile-time
errors

c H A p T E R 6

Using the integrated debugger

No matter how careful you are when you code, your program is likely to
have bugs, or errors, that prevent it from running the way you want it to.
Debugging is the process of locating and fixing program errors that prevent
your programs from operating correctly. This chapter explains how to
locate errors in your Windows programs and how to correct them using the
IDE.

There are three bas~c types of program bugs: compile-time errors, run-time
errors, and logic errors.

Compile-time errors, or syntax errors, occur when your code violates a rule
of C or C++ syntax. The IDE can't compile your program unless the
program contains valid C or C++ statements.

If your code has syntax errors, the compiler opens the Message window
and displays all the errors and warnings. Errors must be fixed one at a time.
To correct an error, double-click it and the IDE positions your cursor on the
source code line that caused the problem so you can make your correction.
If your code had more than one syntax error, you can repeat this process
with each error until all the errors are corrected.

Warnings that appear in the Message window don't stop your code from
compiling, but they do indicate areas in your code you mightwant to
examine for problems. For example, warnings can alert you to code that
isn't portable, code that violates the ANSI standard, or inefficient code. You
can choose which type of warnings you want to see:

1. Choose Options I Project and double-click Messages.

The IDE displays the various message categories and (on the right) the
settings that affect those messages.

Chapter 6, Using the integrated debugger 103

Run-time errors

Logic errors

104

2. Select the option you want. These options determine which warnings
the IDE displays.

• Select All and the IDE displays all warning messages.

• Select Selected and the IDE displays only the selected warning
messages. (You'll be selecting the messages in Step 4.)

• Select None and the IDE displays no warnings.

3. Limit the number of error and warning messages displayed in the
Message window. In the Stop After boxes, indicate the maximum
number of error messages and warning messages you want displayed
each time you compile. The number can be any whole number from
o to 255.

If you enter 0 in either box, the IDE won't limit the number of messages
it displays in the Message window.

4. Under Topics, choose the category of warning messages you want.

5. On the right, select the specific messages you want the IDE to display.

For example, if you want the compiler to warn you about suspicious
pointer conversions that might violate the ANSI standard, choose ANSI
Violations and check the Suspicious Pointer Conversion option.

Common causes of compile-time errors are typographical errors, omitted
semicolons, references to variables that haven't been declared, passing the
wrong number (or type) of arguments to a function, and assigning values
of the wrong type to a variable.

After you correct all the errors,' you can restart the compilation. Once
you've eliminated all the syntax errors and your program compiles
successfully, you're ready to run the program and look for run-time errors
and logic errors.

If your program compiles but it fails when you try to run it, you've
encountered a run-time error. Your program contains legal statements, but
the statements can't be executed properly. For example, your program
might be trying to open a nonexistent file for input or to divide by zero.
The operating system detects this situation and stops your program from
executing. '

Logic errors are errors in design and implementation. Your statements are·
valid and they do something, but what they do is not what you intended.
These errors are often hard to track down, because the IDE can't find them
automaticq.lly~ Fortunately, the IDE includes debugging features that can
help you locate logic errors. .

Borland C++ User's Guide

Logic errors occur when variables have incorrect or unexpected values,
when graphic images don't look right, or when code isn't executed when
you expect it. The rest of this chapter d~scusses techniques for tracking
down these logic errors.

Generating debugging information

You must compile and link your program so that debugging information is
generated in your program's .OBJ and .EXE files .

• To add debugging information to your .OBJ files, choose Options I Project
to open the Option Settings dialog box, and select Compiler I Debugging I
Debug Information in OBJs. This is the default setting .

• To include debugging information in your .EXE files, in the Options
Settings dialog box, select Linker I General I Include Debug Information.
This is the default setting.

Now when you compile the program, the compiler generates a special table
of all the identifiers used, and stores it in the executable file. This list, called
the symbol table, is used by the debugger to track all variables, constants,
types, function names, and statements used in your program.

Specifying program arguments

If the program you want to debug requires that arguments be passed to it,
you must specify those arguments:

1. Choose Options I Environment and select the Debugger topic.

2. In the Run Arguments box, type in the arguments you want passed to
the program.

Controlling program execution

The most important element of debugging is controlling the execution of
your program. Because you can control when each statement is executed,
it's easier to determine which part of your program is causing a problem.

Stepping and tracing let you run your program one statement at a time; the
next statement won't execute until you tell the debugger to continue. You
can step or trace until you reach the spot in your code where things go
awry. You can then examine the state of the program and its data, view the

Chapter 6, Using the integrated debugger 105

Watching
program output

Stepping through
code

program's output and the value of its variables, or modify or evaluate
expressions in your program before you tell the debugger to execute the
next line.

As you step or trace through your program, you can watch your
application's output in its window. Set up your windows so you can see
both your source code and your application's window as you step and
trace. If the IDE desktop window and your application window overlap as
you debug, you'll see some flickering in your application window. If you
arrange these windows so they don't overlap, your program's execution
will be quicker and smoother.

All execution in the debugger, including stepping, tracing, and halting at
breakpoints, is based on lines of source code. If a statement is more than·
one line on the screen, the statement is still considered to be one line.

You can control the rate of debugging to the level of a single line of source
code. If you string several statements together on one line, you can't debug
those statements individually. On the other hand, you can spread a single
statement out over multiple lines for debugging purposes, and the
statement still executes as a single step.

Each time you tell the debugger to step or trace, the execution point (the
highlighted line that marks your place in the program you're debugging)
moves to the next line. The execution point always shows you the next line
to be executed.

Stepping is the simplest way to move through your code a little bit at a
time. To step through your code, choose Debug I Step Over (or FB or the
Step Over button on the SpeedBar) to execute the code indicated by the
execution point, including any functions it might call before returning
control to you. The execution point then indicates the next complete line.

The following example helps explain how stepping works. Let's say that
these are the first lines of a program loaded into an edit window:

BOOL InitApplication (HINSTANCE hlnstance)
{

WNDCLASS WCi

wc.style = CS_HREDRAW I CS_VREDRAWi
wc.lpfnWndProc = (long (FAR PASCAL*) ())MainWndProcj
wc.cbClsExtra = OJ

wc.cbWndExtra = OJ

1 06 Borland C++ tJ~er's Guide

Tracing into code

Stepping and
tracing class
member functions

return (RegisterClass (&wc))i

int PASCAL WinMain (HINSTANCE hlnstance, HINSTANCE hPrevlnstance,
LPSTR lpCmdLine, int nCmdShow)
{

MSG msgi

if (!hPrevlnstance)
if (!InitApplication (hlnstance))

return (FALSE)i

if (!Initlnstance (,hlnstance, nCmdShow)
return (FALSE) i

In this example, InitApplication is a function you defined in a module that
has been compiled with debugging information. If you were actually
debugging this program, each time you chose Debug I Step Over (or
pressed FB), the debugger would execute the line highlighted by the
execution point, and then the execution point would advance to the next
line. If you chose Step Over when the execution point got to the statement

if (!InitApplication (hlnstance))

the debugger would execute the InitApplication function and return a
Boolean value, but you W_Quldn't see the execution point move through the
actuallnitApplication function. Instead, the debugger would step over the
function. Stepping returns control to you after the function finishes.

Tracing into code is very much like stepping through code, except that
when you come to a line that calls a function, tracing into the code moves
the execution point into the code in the function. In Listing 6.0, if you chose
Debug I Trace In~o (F7 or the Trace Into SpeedBar button) to execute each
statement, you'd see the execution point jump to the code that implements
the InitApplication function when the debugger reached the statement that
evaluates the return value of InitApplication. As you debug, you can choose
to trace into some functions and step over others, depending upon your
needs.

If you use classes in your programs, you can still use the integrated
debugger to step and trace. The debugger handles member functions the
same way it would step over or trace through functions in a program that is
not object-oriented.

Chapter 6, Using the integrated debugger 107

Stepping and
tracing external
code

Stepping over
large sections of
code

Running to a
specific location

Locating a function

Returning to the
execution point

Navigating
backward

108

If you link external code into your program, you can step over or trace into
that code if the .OBJ file you link in contains debugging information.

You can debug external code written in any language, including C, C++,
Pascal, and assembly language. As long as the code meets all the
requirements for external linking and contains full Borl~nd symbolic
debugging information, the IDE's debugger can step or trace through it.

Sometimes you don't want to step through each line of your code just to get
to the part that is causing problems. With the integrated debugger, you can
step over large amounts of code and regain control at the point where you
want to begin executing line-by-line again.

You can tell the debugger you want to execute your program normally (not
step-by-step) until a certain location in your code is reached:

1. Position the cursor at the line where you want to resume debugging
control.

2. Choose Run to Cursor on the SpeedMenu (or press F4).

You can use Run to Cursor as a way to start your debugging session or
after you've already been stepping and tracing.

You can locate a particular function quickly with the Locate Function
command on the Search menu. Locate Function asks you for the name of a
function, then positions the cursor on the proper line in the file where that
function is defined. You must be debugging (stepping or tracing through
code) before you can use Locate Function.

While you are debugging, you are free to browse through any file in any
edit window, go to any place in your file, and even open and close files.
You can then return to the execution-point location very quickly.

To go to the execution-point location, choose Debug I Find Execution Point.

The debugger positions the cursor at the execution point. If you closed the
edit window containing the execution point, Find Execution Point opens an
edit window and displays the source code containing the execution point.

While you're debugging, it can be useful to know how you got to where
you are. The Call Stack window shows you the sequence of fUhction calls

Borland C++ Users Guide

Stopping the
program

Starting over

that brought you to your current state. Use View I Call Stack to display the
Call Stack window.

The Call Stack window is particularly useful if you accidentally trace into
code you want to step over. You can step back, and then resume stepping
and tracing where you originally intended:

1. In the Call Stack window, double-click the call that calls the function
you traced into by mistake. (It will be the second call from the top of the
Call Stack window.)

The edit window becomes the active window with your cursor
positioned at the place the call was made.

2. In the edit window, move the cursor completely past the call.

3. Choose Run to Cursor on the edit window SpeedMenu.

The Call Stack window is also useful when you want to view the
arguments passed to each function.

You can view or edit the source code that contains a particular call. Select
the call in the Call Stack window and right-click to display the SpeedMenu
to display view and edit commands.

Instead of stepping over or tracing through code, you can use a simpler
technique to pause your program. Choose Debug I Pause Program, and
your program will stop executing. Then you can examine the value of
variables and inspect data at this state of the program. When you're done,
choose Debug I Run to continue the execution of your program.

If for some reason your program assumes control and won't allow you to
return to the debugger (for example, it might be in an infinite loop), you
can press Ctrl+AIt+Sys Req to stop your program.

While debugging, you might occasionally want to start over from the
beginning. Choose the Debug I Terminate Program command or press
Ctrl+F2. This ends your program so that all subsequent running, stepping, or
tracing begins at the start of the main program.

Examining values

Stepping and tracing through your code can help you find problems in
program flow, but you'll usually want to watch what happens to the values
of variables while you step. For example, when you step through a for loop,

Chapter 6, Using the integrated debugger 109

Whats an
expression?

Watching
expressions

Figure 6.1
The Watch window

Adding a watch

110

it's helpful to know the value of the index variable. The IDE has several
tools to help you examine the contents of your program's variables:

• The Watch window lets you track the value of a variable or expression.

• The Evaluate Expression dialog box lets you evaluate any expression
· meaningful to the program you're debugging, and it lets you change the

value of a variable while you're debugging your program.

• The Data Inspector window lets you examine and modify the value in a
data element.

Watching, evaluating, and inspecting operate at the level of expressions. An
expression consists of constants, variables, and data structures combined
with operators. Almost anything you can use as the right side of an
assignment statement can be used as a debugging expression.

If you want to keep track of the value of a variable or expression while you
step through your code, use a watch. A watch is an expression you enter in
the Watch window, which then displays the current value of the
expression. As you step through your program, the value of the watch
expression changes when the program does something to change it.

If the execution point steps out of the scope of a watch expression, the
'watch expression is undefined. Once the execution point enters the scope of
the expression once again, the Watch displays the current value of the
expression once more.

To open the Watch window, choose View I Watch. If you haven't added any
watches yet, the window is empty.

To add a variable to the Watch window, choose Debug I Add Watch. The
IDE opens a Watch Properties dialog box, prompting you to type in a watch
expression.

Just like other IDE windows, you can move, resize, and close the Watch
window. If the Watch window is closed, you can display it again with
View I Watch. If the Watch window is the active window, you can add a
watch by choosing Add Watch from the SpeedMenu.

Borland C++ User's Guide

Formatting watch
expressions

Figure 6.2
The Watch Properties

dialog box

If the edit window is the active window, you can quickly add the
expression at your cursor into the Watch window. To do so, choose Set
Watch on the SpeedMenu. '

If you double-click a watch in the Watch window, a Watch Properties
dialog box appears. You can also display a Watch Properties dialog box by
selecting a watch in the Watch window and then choosing Set Properties on
th~ Watch window SpeedMenu.

Watch Properties

EHPression:

Display as ...
r;:-~D~fau,-t --~- ,,),ftT:r;cter' -'--ID;ing --~: L-_-.i

I, ,,'.· •. · .. > . Slruc.tUte ... '. ,> f.. ointe.r .. floating pOint. '.',.
~j Memory dump , \' • "

· l.~~~e~al,:~~~~.;~T~--~. t ,.~~~i!i~~~t.'d!~i!~:J7, . , .. ,., ..•. ' .•. , [ii
The default expression in a Watch Properties dialog box is the word at the
cursor in the current edit window. A history list keeps track of expressions
you've entered as watches previously.

You can format watch expression results by selecting options in the Watch
Properties dialog box. For example, although integer values normally
display in decimal form, you can specify that an expression be displayed as
hexadecimal by selecting the Hexadecimal button .. After selecting either
Decimal or Hexadecimal, you can modify the format of the expression
further with the Display As options.

If you're watching a data element such as an array, you can display the
values of the consecutive data elements. For example, for an array of five
integers named xarray, you would type the number 5 in the Repeat Count
box of a Watch Properties dialog box to see all five values of the array. An
expression used with a repeat count must represent a single data element.
The debugger views the data element as the first element of an array if the
element isn't a pointer, or as a pointer to an array if it is.

If you select the Floating Point display option, you can also indicate the
number of significant digits you want displayed in the watch expression
result. Specify the number of digits in the Significant box.

Chapter 6, Using the integrated debugger 111

Disabling a watch

Deleting a watch

Editing a watch

Evaluating and
modifying
expressions

Evaluating
expressions

112

If you prefer not to watch an expression you've entered in the Watch
window, but you don't want to delete it because you might want to use it
later, you can disable the watch.

If the IDE must evaluate many watch expressions in the Watch window~
stepping might slow down. You can choose to disable a watch, and then
enable it later when you need it. To disable a watch, click the check box
next to the watch. To enable it again, click the check box again.

You can also disable and enable watches with SpeedMenu commands. To
disable or enable multiple watches at a time, click and drag over a block of
watches to select them in the Watch window, or press etr/while you click
all the watches you want to disable or enable. Then choose the appropriate
command on the SpeedMenu.

To delete a watch expression, select the expression in the Watch window
and choose Delete Watch on the SpeedMenu. To delete all watch
expressions, choose Delete All Watches on the SpeedMenu.

To change the properties of a watch, display the Watch Properties dialog
box for that watch and edit the properties you want changed.

In addition to watching variables as your program executes, you can
evaluate expressions at any time and you can change the values of
variables at run time.

To evaluate an expression, choose Debug I Evaluate/Modify. The debugger
displays an Expression Evaluator dialog box. By default, the word at the
cursor position in the current edit window is highlighted in the Expressions
box. You can edit the expression, type in another, or choose one from the
history list of expressions you evaluated previously.

The current value of the expression in the Expression box shows in·the
Result box when you choose Evaluate. You can evaluate any valid C or
c++ expressions except those that contain these things:

• Symbols or macros defined with #define
• Local or static variables not in the scope of the function being executed

• Function calls

Borland C++ Users Guide

You can format expressions by adding a comma and one or more format
specifiers. For example, to display the result in hexadecimal, type ,H after
the expression. Table 6.1 shows all the legal format specifiers and their
effects.

Table 6.1: Format specifiers for debugger expressions

Character

H orX

C

D

Fn

nM

P

R

S

Types affected

Integers

Characters,
strings

Integers

Floating point

All

Pointers

Structures,
unions

Char, strings

Function

Hexadecimal. Shows integer values in hexadecimal with the Ox prefix, including those in
data structures.

Character. Shows special display characters for ASCII 0 .. 31. By default, such
characters are shown using the appropriate C escape sequences ~n, \t, and so on).

Decimal. Shows integer values in decimal form, including those in data structures.

Floating point. Shows n significant digits (where n is in the range 2 .. 18, and 7 is the
default).

Memory dump. Shows n bytes starting at the address of the indicated expression. If n is
not specified, it defaults to the size in bytes of the type of the variable.

By default, each byte shows as two hex digits. The C, D, H, and S specifiers can be
used with M to change the byte formatting.

Pointer. Shows pointers as seg:ofs with additional information about the address
pointed to. It tells you the region of memory in which the segment is located, and the
name of the variable at the offset address, if appropriate.

Structure/Union. Shows both field names and values such as (X:1; Y:1 0;Z:5).

String. Shows ASCII 0 .. 31 as C escape sequences. Use only to modify memory dumps
(see nM above).

Modifying variables While debugging, you can change the value of a variable by using the
Expression Evaluator dialog box. Enter the variable in the Expression box,
then type the new value in the New Value box. If you want the modified
value to take effect in your program, choose Modify. Otherwise, when you
close the dialog box, the debugger ignores the modified value.

Keep these points in mind when you change the values of variables:

• You can change individual variables or elements of arrays or structures,
but not arrays or structures themselves .

• The expression in the New Value box must evaluate to a result that is
assignment-compatible with the variable you want to assign it to. A good
rule of thumb is that if the assignment would cause a compile-time or
run-time error, it's not a legal modification value.

Chapter 6, Using the integrated debugger 113

Warning!

Inspecting data
elements

114

• You can't directly modify untyped arguments passed into a function, but
you can typecast them and then assign new values.

• You can use the Expression Evaluator dialog box to examine and modify
values in registers, including the flags register. For example, you can
enter expressions such as these: _CS,_BX,_FLAGS. These values are
bitmasks.

• Modifying values, and especially pointer values and array indexes, can
have undesirable effects because you might overwrite other variables
and data structures. Be careful.

You can examine and modify values in a data element in an Inspector
window. To inspect a data element,

1. Choose Debug I Inspect to display the Data Inspector window.

2. Type in the expression you want to inspect.

3. Choose Inspect to display an Inspector window.

If the execution point is in the scope of the expression you are inspecting,
the value appears in the Data Inspector window. If the execution point is
outside the scope of the expression, the value is undefined.

You can also display an Inspector directly from the edit window:

1. Po~ition your cursor on the data element you want to inspect.

2. Choose Inspect on the SpeedMenu or press Enter.

~f you choose this method, the data element is always evaluated within the
scope of the line on which the data element appears.

With either method, the appearance of the data in an Inspector window
depends on the type of data being inspected. For example, if you inspect an
array, you'll see a line for each member of the array with the array index of
the member. The value of the member follows in its display format,
followed by the value in hexadecimal.

Once you're in an Inspector window, you can inspect certain elements to
isolate the view. To inspect an item,

, 1. Select the item you want to inspect further.

2. Choose Inspect on the SpeedMenu or press Enter.

Borland C++ Users Guide

Examining
register values

Table 6.2
CPU flags in the
Register window

You can change the value of inspector items. To change the value of a
single inspector item:

1. Select the item.

2. Choose Change on the SpeedMenu.

3. Type.in a new value and choose OK.

If you're inspecting a data structure, it's possible the number of items
displayed might be so great that you'll have to scroll in the Inspector
window to see data you're interested in. For easier viewing, you can
narrow the display to a range of data items.

To display a range of items,

1. Click in the Inspector window.

2. Choose Range on the SpeedMenu.

3. In the Start Index box, enter the index of the item you want to see first in
the window.

4. In the Count box, enter the number of items you want to see in the
Inspector window.

While debugging, you can display the values in the data, pointer, index,
segment, and instruction pointer registers, as well as the settings of the
status word or flags. Choose View I Register to display the Registers
window.

You can also view register values with the Expression Evaluator dialog box.
See page 114.

Letter in pane Flag name

c Carry
z Zero
s Sign
0 Overflow
p Parity
a Auxiliary carry
i Interrupt enable
d Direction

The Registers SpeedMenu lets you select the format to display the values in
the registers; choose from Hexadecimal or Decimal. You can also choose to
view the 16-bit (word) or 32-bit (double word) registers.

Chapter 6, Using the integrat~d debugger 115

Using breakpoints

Setting
breakpoints

Working with
breakpoints

116

Figure 6.3
The Breakpoint

window

A breakpoint is a designated position in the code where you want the
program to stop executing and return control to the debugger. A
breakpoint is similar to the Run to Cursor command, because the program
runs at full speed until it reaches a certain point But unlike Run to Cursor,
you can have multiple breakpoints and you can choose to stop at a

. breakpoint only under certain conditions.

To set a breakpoint in your code, move the cursor to the line where you
want to break. The line needs to contain executable code-if it's a comment,
a blank line, or a declaration, the debugger will declare it invalid. To select
the line as a breakpoint, choose Toggle Breakpoint (F5) on the Debug menu
or the edit window SpeedMenu; the line becomes highlighted.

Now when you run your program from the IDE it will stop whenever it
reaches that line, but before it executes the line. The line containing the
breakpoint shows in the edit window with the execution point on it. At that
point, you can do any other debugging actions such as stepping, tracing,
watching, inspecting, and evaluating.

To delete a breakpoint, move the cursor to the line containing the
breakpoint and choose Toggle Breakpoint(F5) from the Debug menu or the
edit window SpeedMeny.

The IDE keeps track of all your breakpoints during a debugging session
and associates them with your current project. You can maintain all your
breakpoints from a single window, so you don't have to search through
your source code files looking for them. Choose View I Breakpoint to
display the Breakpoint window.

From the Breakpoint window, you can set and view breakpoint properties.
, Double-click a breakpoint in the Breakpoint window, or select it and select
Set Properties from the SpeedMenu. A Breakpoint Properties dialog box
appears.

Borland C++ Users Guide

Figure 6.4
The Breakpoint

Properties dialog box

Deleting
breakpoints

Disabling and
enabling
breakpoints

Viewing and editing
code at a breakpoint

Breakpoint Properties

1~~WiMfl!f '" hin,eNUmber: 168, ",,', ~ Stale: Verified, ~-=;....,
L,,'-

!~~~t~:;t;;;i:~:~Cr-_ak_po_in_t_---__ ------,

[~-f~;~~~:-Il ,I[!L
rActlonS:'---:-'~-----:-:::--'-;--~--------·---------0

t~ .Ilreak .' E~renjon to log: ", ", " " " , ,::1
lhJ~o~i~~r~$~~~,n .. J ... ".,' ",.' "'.q,."""", .",.",.".",I~n

To delete a breakpoint, select it in the Breakpoint window and choose
Delete Breakpoint on the SpeedMenu. To delete all breakpoints, choose
Delete All on the SpeedMenu.

You can also delete breakpoints with the Delete Breakpoint and Delete All
Breakpoints commands on the Breakpoint Properties SpeedMenu.

You can disable breakpoints temporarily. The simplest way is to uncheck
the check box for the breakpoint you want to disable in the Breakpoint.
When you want to enable the breakpoint again, check the breakpoint's
check box again.

You can also disable and enable breakpoints with SpeedMenu commands.
To disable or enable multiple breakpoints at a time, click and drag over a
block of breakpoints to select them in the Breakpoint window, or press etrl
while you click all breakpoints you want to disable or enable. Then choose
the appropriate command on the SpeedMenu.

Even if a breakpoint isn't in your current edit window, you can quickly find
a breakpoint in your source code. To do so, select the breakpoint in the
Breakpoint window, then choose View Source on the SpeedMenu. The
breakpoint appears in the current edit window with your cursor positioned
on the breakpoint. The Breakpoint window remains open and is the active
window.

If you prefer to edit the source code marked as a breakpoint rather than just
view it, choose Edit Source on either the Breakpoint window SpeedMenu.
The breakpoint appears in the current edit window with your cursor
positioned on the breakpoint, ready for you to edit.

Chapter 6, Using the integrated debugger 117

Resetting invalid
breakpoints

Changing
breakpoint
properties

118

Breakpoints must be set on executable code, or they are invalid. For
example, a breakpoint set on a comment, a blank line, or declaration is an
invalid breakpoint. If you unintentionally set an invalid breakpoint and run
your application, the debugger checks all breakpoints and reports an
invalid breakpoint by displaying an Invalid Breakpoint dialog box. Close
the dialog box and open the Breakpoints window. Find the invalid
breakpoint and delete it; if you want to set the breakpoint in a proper
location, do so now. Then continue to run your application.

You can choose to ignore the Invalid Breakpoint dialog box by putting the
dialog box away and choosing Run to continue to execute your program.
Your application will resume and the IDE will disable the invalid
breakpoint.

To see and change the properties of a breakpoint, double-click it, or select it
in the Breakpoint window and choose Edit Breakpoint on the SpeedMenu.
A Breakpoint Properties dialog box appears.

Besides examining a breakpoint's properties, you can use a Breakpoint
Properties dialog box to do such things as set a new breakpoint, modify an
existing breakpoint, and make a breakpoint conditional.

The next sections explain how to do these things.

Setting a breakpoint
Although using Toggle Breakpoint on the edit window SpeedMenu is the
simplest way to set a breakpoint, there are times you might want to set a
breakpoint using the Breakpoint Properties dialog box, especially if you
want to create a conditional breakpoint:

1. Position the cursor where you want the breakpoint to occur.

2. Choose Add Breakpoint on either the Debug menu or the Breakpoints
SpeedMenu. .

A Breakpoint Properties dialog box appears.

You can also set a breakpoint in a file that is not open in an edit window:

1. In the Breakpoint Properties dialog box, type the name of the file you
want the breakpoint set in. '

2. In the Line Number box, ent.er the line number of your code where you
want the breakpoint to appear.

Borland C++ Users Guide

Logging
expressions

Modifying an existing breakpoint
You can modify an existing breakpoint by changing its properties in the
Breakpoint Properties dialog box. Enter new information for the properties
you want to alter.

Setting breakpoints after starting a program
While your program is running, you can switch to the debugger (just like
you would switch to any Windows application) and set a breakpoint. When
you return to your application, the new breakpoint will be set, and your
application will halt when it reaches the breakpoint.

Creating conditional breakpoints
The breakpoints added by the Toggle Breakpoint command on the edit
window SpeedMenu are unconditional: any time you get to that line, the
debugger stops. When you're editing a new or existing breakpoint,
however, you have extra options in the Breakpoint Properties dialog box
that let you create conditional breakpoints. You can put two kinds of
conditions on breakpoints: Boolean conditions and number of passes.

You can enter a Boolean expression as a condition for a breakpoint. For
example, you might test if a variable falls in a certain range, or if a
particular flag has been set. When the specified condition is met, the
debugger breaks, turning control over to you.

Specifying a number of passes on a breakpoint tells the debugger not to
break every time it reaches the-specified condition, but instead to break
only the nth time the specified condition is met. That is, if the pass count is
3, the debugger breaks only the third time the specified condition is met. If
you don't specify a condition, the debugger breaks every time the line of
code executes.

You can choose to have the value of a specified expression written in the
Event Log window each time a breakpoint is reached:

1. Select Log Expression in the Breakpoint Properties dialog box.

2. In the Expression to Log box, type the expression you want evaluated.

For example, if you type the name of a variable in the Expression to Log
box in the Breakpoint Properties dialog box, the debugger writes the value
of that expression in the Event Log window when it reaches your set
breakpoint.

For more information about the Event Log window, see the "Using the
Event Log window" section.

Chapter 6, Using the integrated debugger 119

Customizing
breakpoints and
the execution
point

You can use color to indicate enabled, disabled, and invalid breakpoint
lines:

1. Choose Options I Environment and choose Syntax Highlighting I
Customize Syntax Highlighting.

2. From the Element list, select the Break element you want to change and
then change the background and foreground to the colors you want.

To read more about using syntax highlighting, see page 14.

You can also change the color of the execution point. To do so, select the
Execution Point element and then select your desired colors.

Catching general protection faults

If a general protection exception (GP exception) occurs while running your
program in the IDE, your program halts and a General Protection
Exception dialog box appears. If you choose OK to close the dialog box, the
debugger displays the code that is responsible for the GP exception in the
edit window. The execution point marks the offending code.

At this point, you must choose Debug I Terminate Program to prevent your
program from crashing. Then you can correct the error that caused the
problem before you run your program again.

Although the debugger can catch most GP exceptions, it might fail to catch
all of them, depending on the cause of the exception.

Using the Event Log window

120

To display the Event Log window, choose View I Event Log.

In the previous section, you saw how to log expressions you've specified
when the debugger reaches a breakpoint to the Event Log window.

You can also log window messages and output messages to the Event Log
window. To select the events you want to log, choose Set Options on the
Event Log window SpeedMenu. Select the Debugger topic and then select
the Event Capture options you want.

Borland C++ Users Guide

Table 6.3
Event Log window

Speed Menus

The following table describes all the commands on the Event Log window
SpeedMenu:

Command

Save Events to File

Add Comment

Clear Events

Set Options

Description

Displays a dialog box so you can specify a file name. All events that
are currently in the Event Log window are saved in that file, so you
can examine the events later.

Prompts you for a line of text that is inserted in the Log window as a
comment.

Clears the Event Log window.

Displays Environment Options dialog box, so you can select
Debugger options and set the Event Capture options you want.

Debugging dynamic-link libraries

When you step or trace into a DLL your application uses, the debugger
automatically loads the DLL's symbol table, which is the list used to track
all the variables, constants, types, and function names used in the DLL.

Because only one symbol table can be loaded into memory at a time, your
.EXE's symbol table is unloaded when a DLL's symbol table is loaded.
Therefore, you won't be able to watch variables, inspect data, and so on in
the source code of the .EXE. You will, of course, be able to perform these
operations on the DLL code.

To see which symbol table the debugger is using, choose Debug I Load
Symbol Table. You'll see a listing of the current symbol table and any
others that are available. For example, if your .EXE is named MYAPP .EXE
and it uses a MYDLL.DLL, then when you are stepping in the DLL,
MYDLL.DLL is the current symbol table and the MYAPP.EXE symbol table
is listed as available.

You can switch between symbol tables. For example, if you're stepping in
MYDLL.DLL and want to examine the value of a variable that's in
MYAPP.EXE, you can do so by loading the MYAPP.EXE symbol table:

1. Choose Debug I Load Symbol Table.

2. Choose the symbol table you want to load from the Available list of
symbol tables.

Once you've examined the variable and want to resume stepping, you must
switch back to the original symbol table.

Chapter 6, Using the integrated debugger 121

Debugging in soft and hard mode

122

Windows is continually processing and generating messages. Any
executing Windows program, such as Borland C++ for Windows, must do
the same. When you run your own Windows programs, they too send
messages and process messages they receive.

When you set a breakpoint in your code, however, you want your program
to stop executing when it reaches the breakpoint. But in the Windows
environment, just doing such things as resizing a window, opening a dialog
box, moving the mouse cursor, or opening a menu generates Windows
messages that are sent to your executing program. Unless the debugger
handles these messages for you, the messages could force your program to
execute or possibly to lock up your system.

Fortunately, the integrated debugger handles the majority of these
situations for you, thus freeing you to debug your program while using the
full functionality of the Windows environment. When the debugger works
simultaneously with other Windows programs, it is said to be in soft mode.

Because of limitations in Windows, you might occasionally need to stop all
other Windows programs except the debugger from executing. This state is
called hard mode. When the debugger is in hard mode, you won't be able to
use the functionality of the Windows environment. For example, you won't
be able to switch to another task. The debugger behaves as if it's the only
program in memory.

You'll want to debug your programs in hard mode if they send inter task
messages such as DOE messages and for other very low-level debugging.
To change to hard mode,

1. Choose Options I Environment to open the Environment Options dialog
box.

2. Choose Debugger.

3. Select the Hard Mode on All Stops option.

When the Smart option is selected, the debugger chooses hard or soft
mode, depending on what is happening in the Windows environment. This
is the option you'll want tq use most frequently. To use the Smart option,

1. Choose Options I Environment.

2. Choose Debugger.

3. Select the Smart option.

Borland C++ Users Guide

Getting started

~
r~

WinSight

Starting and
stopping screen
updates

Chapter 7, WinSight

c H A p T E R 7

WinSight

WinSight is a debugging tool that gives you information about windows,
window classes, and messages. You can use it to study a Windows
application, to see how windows and window classes are created and used,
and to see what messages the windows receive.

You can configure WinSight to trace and display messages by
_ Window _ Message type

_ Window class _ A combination of these

WinSight is a passive observer: it intercepts and displays information about
messages, but it doesn't prevent messages from getting to applications.

To start WinSight, double-click the WinSight icon. The WinSight window
appears in its default configuration; it displays the Window Tree view that
lists all the windows currently active on the desktop. WinSight saves your
configuration, so if you open all three views and exit WinSight, the next
time you start it, all three views will display.

WinSight has three views: Class List, Window Tree, and Message Trace.
You can display these views from left to right or top to bottom by choosing
View I Split Horizontal or View I Split Vertical.

You can control the messages traced by WinSight (see page 127) and you
can control when messages start and stop tracing as described in the
following sections.

To tum on tracing, choose Start! from the menu (Start! then becomes Stop!
on the menu). Normally, all three views are kept current as classes are
registered, windows are created and destroyed, and messages are received.
However, you can use Messages I Trace Off to suspend tracing of messages
only (Class List and Window Tree will continue to update).

123

Turning off
message tracing

Use Stop! and Start! to

• Study a particular situation
• Control (minimize) the machine time WinSight uses when it updates

itself constantly. '

To tum off tracing of message types, choose Messages I Trace Off. The
Message Trace view remains visible, and tracing resumes when you choose
Messages I Selected Classes, Selected Windows, or All Windows (provided
tracing is on).

The following sections describe how to use the three views to get the
information you need to debug an application. Choose Spy I Exit to leave
WinSight. .

ChQosing a view·

You can hide or
display views at any
time, using the View

menu. Information
and selections are

not lost when a view
is hidden.

Class List

A class is the name
with which the

window class was
registered with

Windows.

124

WinSight has three views that can appear within its main window: Class
List, Window Tree, and Message Trace. You can choose to look at any or all
of the views. WinSight automatically tiles the views within the main
window.

• The Class List view shows all the currently registered window classes.

• The Window Tree view displays the hierarchy of all the windows on the
desktop. Window Tree displays by default when you start WinSight.

• The Message Trace view displays information about messages received
by selected windows or window classes.

To get more detail about an item in Window Tree or Class List,

• Select a window or a class, then choose Spy I Open Detail.

• Double-click the window or class.

The Detail window displays the class name, executable module, and other
information about the class or window.

Sometimes, instead of choosing specific windows to trace, you might want
to look at messages for entire classes of windows. WinSight lets you do this
with the Class List view.

Borland C++ Users Guide

Using the Class
List view

The Class List view shows all the currently registered window classes. To
get details about a class, double-click it or select it and press Enter.

The diamonds next to the classes turn black momentarily whenever the
window receives any messages. This gives you an overview of which
windows are currently receiving messages. If a hidden child window
receives a message, the diamond for the parent changes color.

Format Class (Module) Function Styles

Spying on classes

Window Tree

Chapter 7, WinSight

Class is the name of the class. Some predefined Windows classes have
numeric names. For example, the Popup menu class uses the number 32768
as its name. These predefined classes are shown with both the number and
a name, such as #32768:PopupMenu. The actual class name is only the
number (using the MAKEINTRESOURCE format, which is also used for
resource IDs).

Module is the name of the executable module (.EXE or .DLL) that registered
the class.

Function is the address of the class window function.

Styles is a list of the cs_ styles for the class. The names are the same as the
cs_ definitions in WinTypes, except the cs_ is removed and the name is in
mixed case (uppercase and lowercase).

To trace messages for one or more classes, select the classes in Class List
(Shift-Click or Ctr/-Click), then choose Messages I Selected Classes. If the
Message Trace view is hidden, it becomes visible when you choose
Messages I Selected Classes.

Note that tracing messages to a class lets you see all messages to windows
of that class, including creation messages, which would otherwise not be
accessible.

To change which classes are traced, change the selection in the Class List.
Choose Messages I Trace Off to turn off all message tracing to the Message
view.

The Window Tree view displays a hierarchical outline of all existing
windows on the desktop. This display lets you:

• Determine what windows are present on the desktop.

125

Format

Finding a window

126

• View the status of windows, including hidden windows.

• See which windows are receiving messages.

• Select windows for message tracing.

The lines on the left of the Window Tree view show the tree structure. Each
window is connected to its parent, siblings, and children with these lines.
The diamond next to each window shows whether the window has any
children. When a window receives a message, the diamond next to it (or its
parent window if the tree is collapsed) turns black.

The window has no children.

The window has children but they aren't displayed. To show the next level
of children, click the diamond next to the window. To show all the levels of
child windows (children of children, and so on), right-click the diamond.

The window has children displayed (at least one level of child windows is
visible; further levels might be collapsed). To hide all of a window's child
windows, click (or double-click) the diamond next to the window.

Handle {Class} Module Position "Title"

, Handle is the window handle as returned by Create Window.

Class is the window class name, as described in the Class List view.

Module is the name of the executable module (.EXE or .OLL) that created
the window. Module is the name of the module owning the data segment
passed as the hlnstance parameter to Create Window.

Position is "hidden" if the window is hidden. If the window is visible,
Position is indicated by using screen coordinates (for parent windows) or
coordinates in theparent's client area (for child windows). Position uses the
following format:

xBegin,yBegin - xEnd,yEnd

Title is the window title or text, as returned by GetWindowText or a
wm_ GETTEXT message. If the title is the null string, the quotation marks
are omitted.

WinSight has a special mode for locating windows. It can work in two
ways: either identifying the line in the Window Tree that corresponds to a
window you point at with the mouse, or highlighting a window you select
in the Window Tree.

Borland C++ User's Guide

Important! All other
applications are

suspended while
you're in Find

Window mode.

Leaving Find
Window mode

Spying on
windows

Enter Find Window mode by choosing Spy I Find Window. In this mode,
whenever the mouse passes into the boundaries of a window, a thick
border appears around that window, and the window is selected in the
Window Tree view.

Alternatively, once in Find Window mode, you can select windows in the
Window Tree with the mouse or cursor keys, and WinSight will put a thick
border around the selected window or windows. If you press Enter, you will
see the Window Detail window for the selected window.

Once you have located the window you want, you can leave Find Window
mode by clicking the mouse button or by pressing the Esc key. This
removes the border from the screen, leaving the current window's
description selected in the Window Tree view.

To spy on one or more windows, select the windows (using the mouse and
the Shift or etr/key), then choose Messages I Selected Windows. To change
which windows are traced, change the selected window in Window Tree.

To spy on all windows, regardless of what is selected in the Class List or
the Window Tree, choose Messages I All Windows.

Message Trace becomes visible when you choose Messages I Selected
Windows or Windows I All Windows.

Choose Messages I Trace Off to disable message tracing without hiding
Message Trace.

Choosing messages to trace

Using the
Message Trace
view

Chapter 7, Win Sight

Message Trace displays messages received by selected window classes or
windows. Messages received via SendMessage are shown twice, once when
they are sent and again when they return to show the return value.
Dispatched messages are shown once only, since their return value is
meaningless. The message display is indented to show how messages are
nested within other messages.

By default, WinSight traces all messages and displays them in the Message
Trace view. WinSight gives you several ways to narrow down the tracing
of messages:

127

Other tracing
options

128

• Choose Messages I Selected Classes or Messages I Selected Windows, then
select the classes (in the Class List view) or windows (in the Window
Tree view) by using the mouse and Shift or Gtr!.

• Choose Message I All Windows.

• Choose Message I Options, then select any or all of fourteen groups of
messages (the groups are described in Tables 7.1 through 7.14). Check All
Messages in the Options dialog box to return to tracing all messages.

The Message Trace Options dialog box lets you change the format of the
messages in Message Trace. It also lets you trace messages to a file, printer,
or an auxiliary monitor or window.

• Normally, the Message Trace view interprets each message's parameters
and displays them in a readable format (Interpret Values is checked).
Check Hex Values to view message parameters as hex values of wParam
and IParam.

• Information on traced messages usually displays in the Message Trace
view. However, you can send messages to a file, printer, or auxiliary
monitor by checking Log File in the Message Trace Options dialog box
and doing one of the following:

• Type a file name to trace to a log file. If the file already exists, messages
are appended to the file.

• Type the name of the device (for example, type PRN) for the log file to
send output to the printer port.

• Type AUX to output trace messages to an auxiliary monitor or
window. To do this, you must have WINOX.SYS or OX.SYS installed
as a device in your CONFIG.SYS file.

To stop logging message traces to a file, printer, or auxiliary monitor,
uncheck Log File.

u
Format Handle ["Title" or {Class} 1 Message Status

Handle is the window handle receiving the message.

Title is the window's title. If the title is the null string, the class name is
displayed instead, in curly braces.

Message is the message name as defined by Windows. They are displayed in
WinSight in all uppercase letters. Known undocumented Windows
messages are shown in lowercase. Unknown message numbers (user
defined) are shown as wm_User+OxXXXX if they are greater-than or equal
to wm_User or as wm_OxXXXX if they are less than wm_User. Registered
message numbers (from RegisterWindowsMessage) are shown with their
registered name in single quotes.

Borland C++ Users Guide

Status is one or more of the following:

• Dispatched indicates the message was received via DispatchMessage.
• Sent [from XXXXl indicates the message was received via SendMessage. If

it was sent from another window, from XXXX gives that window's handle.
If it was sent from the same window receiving it, this is shown with from
self. If it was sent from Windows itself, the "from" phrase is omitted.

• Returns indicates the message was received via SendMessage and is now
returning.

• Additional messages might include a numeric return value or text
message such as wm_GetText. For sent and dispatched messages,
WinSight interprets the parameters and gives a readable display. For
messages that have associated data structures (wm_Create, for example) it
takes those structures and includes them in the display.

Table 7.1: Mouse messages

WM_HSCROLL
WM_LBUTTONDBLCLK
WM_LBUTTONDOWN
WM_LBUTTONUP
WM_MBUTTONDBLCLK

. WM_MBUTTONDOWN

Table 7.2: Window messages

WM_ACTIVATE
WM_ACTIVATEAPP
WM_CANCELMODE
WM_CHILDACTIVATE
WM_CLOSE
WM_CREATE
WM_CTLCOLOR
WM_DDE_FIRST
WM_DESTROY
WM_ENABLE
WM_ENDSESSION
WM_ERASEBKGND

Table 7.3: Input messages

WM_CHAR
WM_CHARTOITEM
WM_COMMAND
WM_DEADCHAR
WM_KEYDOWN
WM_KEYLAST

Chapter 7, WinSight

WM_MBUTTONUP
WM_MOUSEACTIVATE
WM_MOUSEFIRST
WM_MOUSELAST
WM_MOUSEMOVE
WM_RBUTTONDBLCLK

WM_GETDLGCODE
WM_GETFONT
WM_GETMINMAXINFO
WM_GETTEXT
WM_GETTEXTLENGTH
WMJCONERASEBKGND
WM_KILLFOCUS
WM_MOVE
WM_PAINT
WM_PAINTICON
WM_QUERYDRAGICON
WM_QUERYENDSESSION

WM_KEYUP
WM_MENUCHAR
WM_MENUSELECT
WM_PARENTNOTIFY
WM_SYSCHAR
WM_SYSDEADCHAR

WM_RBUTTONDOWN
WM_RBUTTONUP
WM_SETCURSOR
WM_VSCROLL

WM_QUERYNEWPALETTE
WM_QUERYOPEN
WM_QUIT
WM_SETFOCUS
WM_SETFONT
WM_SETREDRAW
WM_SETTEXT
WM_SHOWWINDOW
WM_SIZE
WM_WINDOWPOSCHANGED
WM_WINDOWPOSCHANGING

WM_SYSKEYDOWN
WM_SYSKEYUP
WM_TIMER
WM_ VKEYTOITEM

129

Table 7.4: System messages

WM_COMPACTING WM_PALETTECHANGED WM_SYSCOLORCHANGE
WM_DEVMODECHANGE WM_PALETTEISCHANGING WM_SYSCOMMAND
WM_ENTERIDLE WM_POWER WM_ TIMECHANGE
WM_FONTCHANGE WM_QUEUESYNCH WM_WININICHANGE
WM_NULL WM_SPOOLERSTATUS

Table 7.5: Initialization messages

WMJNITDIALOG WMJNITMENU WMJNITMENUPOPUP

Table 7.6: Clipboard messages·

WM_ASKCBFORMATNAME WM_DESTROYCLIPBOARD WM_RENDERALLFORMATS
WM_CHANGECBCHAIN WM_DRAWCLIPBOARD WM_RENDERFORMAT
WM_CLEAR WM_HSCROLLCLIPBOARD WM_SIZECLIPBOARD
WM_COPY WM_PAINTCLIPBOARD WM_UNDO
WM_CUT WM_PASTE WM_ VSCROLLCLIPBOARD

Table 7.7: DDE messages

WM_DDE_ACK WM_DDE_EXECUTE WM_DDE_REQUEST
WM_DDE_ADVISE WM_DDEJNITIATE WM_DDE_TERMINATE
WM_DDE_DATA WM_DDE_POKE WM_DDE~UNADVISE

Table 7.8: Nonclient messages

WM_NCACTIVATE WM_NCLBUTTONDOWN WM_NCPAINT
WM_NCCALCSIZE WM_NCLBUTTONUP WM_NCRBUTTONDBLCLK
WM_NCCREATE WM_NCMBUTTONDBLCLK WM_NCRBUTTONDOWN
WM_NCDESTROY WM_NCMBUTTONDOWN WM_NCRBUTTONUP
WM_NCHITTEST WM_NCMBUTTONUP
WM_NCLBUTTONDBLCLK WM ... NCMOUSEMOVE

Table 7.9: Print messages

DM_COLOR DM_MODIFY DM_PRINTQUALITY
DM_COPIES DM_ORIENTATION DM_PROMPT
DM_COPY DM_OUT _BUFFER DM_SCALE
DM_DEFAUL TSOURCE DM_OUT _DEFAULT DM_SPECVERSION
DM_DUPLEX DM_PAPERLENGTH DM_ TTOPTION
DMJN_BUFFER DM_PAPERSIZE DM_UPDATE
DMJN_PROMPT DM_PAPERWIDTH DM_ YRESOLUTION

130 Borland C++ Users Guide

Table 7.10: Control messages

BM_GETCHECK
BM_GETSTATE
BM_SETCHECK
BM_SETSTATE
BM_SETSTYLE

BN_CLlCKED
BN_DISABLE
BN_DOUBLECLICKED
BN_HILITE
BN_PAINT
BN_UNHILITE

CB_ADDSTRING
CB_DELETESTRING
CB_DIR
CB_FINDSTRING
CB_FINDSTRINGEXACT
CB_GETCOUNT
CB_GETCURSEL
CB_GETDROPPEDCONTROLRECT
CB_GETDROPPEDSTATE
CB_GETEDITSEL
CB_GETEXTENDEDUI
CB_GETITEMDATA
CB_GETITEMHEIGHT
CB_GETLBTEXT
CB_GETLBTEXTLEN
CBJNSERTSTRING
CB_LlMITIEXT
CB_MSGMAX
CB_RESETCONTENT
CB_SELECTSTRING
CB_SETCURSEL
CB_SETEDITSEL
CB_SETITEMDATA
CB_SETITEMHEIGHT
CB_SHOWDROPDOWN

CBN_CLOSEUP
CBN_DBLCLK
CBN_DROPDOWN
CBN_EDITCHANGE
CBN_EDITUPDATE
CBN_ERRSPACE
CBN_KILLFOCUS

Chapter 7, WinSight

CBN_SELCHANGE
CBN_SELENDCANCEL
CBN_SETFOCUS

DM_GETDEFID
DM_SETDEFID

EM_CAN UNDO
EM_EMPTYUNDOBUFFER
EM_FMTLlNES
EM_GETFIRSTVISIBLELINE
EM_GETHANDLE
EM_GETLINE
EM_GETLINECOUNT
EM_GETMODIFY
EM_GETPASSWORDCHAR
EM_GETRECT
EM_GETSEL
EM_GETIHUMB
EM_GETWORDBREAKPROC
EM_LlMITIEXT
EM_LlNEFROMCHAR
EM_LlNEINDEX
EM_LlNELENGTH
EM_LlNESCROLL
EM_MSGMAX'
EM_REPLACESEL
EM_SCROLL
EM_SETFONT
EM_SETHANDLE
EM_SETMODIFY
EM_SETPASSWORDCHAR
EM_SETRECT
EM_SETRECTNP
EM_SETSEL
EM_SETIABSTOPS
EM_SETWORDBREAK
EM_UNDO

EN_CHANGE
EN_ERRSPACE
EN_HSCROLL
EN_KILLFOCUS
EN_MAXTEXT
EN_SETFOCUS
EN_UPDATE

EN_VSCROLL

LB_ADDSTRING
LB_DELETESTRING
LB_DIR
LB_FINDSTRING
LB_FINDSTRINGEXACT
LB_GETCARETINDEX
LB_GETCOUNT
LB_GETCURSEL
LB_GETHORIZONTALEXTENT
LB_GETITEMDATA
LB_GETITEMHEIGHT
LB_GETITEMRECT
LB_GETSEL
LB_GETSELCOUNT
LB_GETSELITEMS
LB_GETTEXT
LB_GETTEXTLEN
LB_GETTOPINDEX
LBJNSERTSTRING
LB_MSGMAX
LB_RESETCONTENT
LB_SELECTSTRING
LB_SELlTEMRANGE
LB_SETCARETINDEX

. LB_SETCOLUMNWIDTH
LB_SETCURSEL
LB_SETHORIZONTALEXTENT
LB_SETITEMDATA
LB_SETITEMHEIGHT
LB_SETSEL
LB_SETTABSTOPS
LB_SETTOPINDEX

LBN_DBLCLK
LBN_ERRSPACE
LBN_KILLFOCUS
LBN_SELCANCEL
LBN_SELCHANGE
LBN_SETFOCUS

STM_GETICON
STM_SETICON

131

Table 7.11: Pen messages

WIN_USER WM_HOOKRCRESUL T WM_RCRESUL T
WM_GLOBALRCCHANGE WM_PENWINFIRST WM_SKB
WM_HEDITCTL WM_PENWINLAST

Table 7.12: Multimedia messages

MM_ADLIB MM_MIM_CLOSE MM_SNDBLST _MIDIIN
MM_JOY1 BUTTON DOWN MM_MIM_DATA MM_SNDBLST _MIDIOUT
MM_JOY1 BUTTONUP MM_MIM_ERROR MM_SNDBLST _SYNTH
MM_JOY1 MOVE MM_MIM_LONGDATA MM_SNDBLST _WAVEIN
MM_JOY1 ZMOVE MM_MIM_LONGERROR MM_SNDBLST _WAVEOUT
MM_JOY2BUTTONDOWN MM_MIM_OPEN MM_WAVE_MAPPER
MM_JOY2BUTTONUP MM_MOM_CLOSE MM_WIM_CLOSE
MM_JOY2MOVE MM_MOM_DONE MM_WIM_DATA
MM_JOY2ZMOVE MM_MOM_OPEN MM_WIM_OPEN
MM_MCINOTIFY MM_MPU40CMIDIIN MM_WOM_CLOSE
MM_MICROSOFT MM_MPU40CMIDIOUT MM_WOM_DONE
MM_MIDI_MAPPER MM_PC_JOYSTICK MM_WOM_OPEN

Table 7.13: Other messages

WM_COALESCE_FIRST WM_MDIACTIVATE WM_MDIRESTORE
WM_ COALESCE_LAST WM_MDICASCADE WM_MDISETMENU
WM_COMMNOTIFY WM_MDICREATE . WM_MDITILE
WM_COMPAREITEM WM_MDIDESTROY WM_MEASUREITEM
WM_DELETEITEM WM_MDIGETACTIVE WM_NEXTDLGCTL
WM_DRAWITEM WM_MDIICONARRANGE WM_SYSTEMERROR
WM_DROPFILES WM_MDIMAXIMIZE
WM_KEYFIRST WM_MDINEXT

Table 7.14: Messages not documented by Microsoft

WM_AL TT ABACTIVE WM_ENTERSIZEMOVE WM_QUERYPARKICON
WM_BEGINDRAG WM_EXITMENULOOP WM_SETHOTKEY
WM_CONVERTREQUEST WM_EXITSIZEMOVE WM_SETVISIBLE
WM_CONVERTRESUL T WM_FILESYSCHANGE WM_SIZEWAIT
WM_DRAGLOOP WM_GETHOTKEY WM_SYNCPAINT
WM_DRAGMOVE WM-,SACTIVEICON WM_SYNCTASK
WM_DRAGSELECT WM_LBTRACKPOINT WM_SYSTIMER
WM_DROPOBJECT WM_NEXTMENU WM_TESTING
WM_ENTERMENULOOP WM_QUERYDROPOBJECT WM_ YOMICHAR

132 Borland C++ Users Guide

c H A p T E R 8

WinSpector

WinSpector and its utilities help you perform a postmortem examination of
Unrecoverable Application Errors (UAEs) and General Protection Faults
(GPFs). When a UAE or GPF occurs, WinSpector writes a log file to your
disk that shows you helpful information about the cause of the exception,
including

• The call stack that was active when an exception occurred

• Function and procedure names ill the call stack

• CPU registers
• A disassembly of the machine instructions where the exception occurred

• Windows information about the program environment

Using WinSpector

[I
, ..

. "".;~~ .
::'+; ,;,\

WinSpector

Chapter 8, WinSpector

Before using WinSpector, be sure that TOOLHELP.DLL (from Windows 3.1
or later) is in your search path (TOOLHELP.DLL ships with Borland C++).
TOOLHELP.DLL is a Windows DLL that lets utilities access low-level
system information. WinSpector uses TOOLHELP.DLL to log exceptions
and to obtain the system information it writes to the log file. Don't use
other exception debugging tools, except for Turbo Debugger, while running
with WinSpector.

There are three ways to start WinSpector (it loads minimized):

• Include it in the "load=" section of your WIN.INI file.

• Include it in the Startup folder in Windows.
• Double-click the WinSpector icon to run WinSpector after you load

Windows.

When an exception (UAE or GPF) occurs, WinSpector creates a report in a
file called WINSPCTR.LOG (a text file) with information to help you
determine what caused the error. WinSpector also creates a file called
WINSPCTR.BIN, a binary file that the DFA utility translates into a text file
called DFA.OUT (see page 139 for more information on DFA.EXE).

133

Configuring
WINSPCTR.LOG

After the exception, WinSpector displays a dialog box with a brief
exception report. Click OK to remove the box and read the log file to find
the cause of the exception. You can control the output to WINSPCTR.LOG
as described in the following section.

There are two ways you can set the WinSpector options that control the
output to WINSPCTR.LOG:

_ To use the WinSpector Preferences dialog box, start WinSpector, click the
WinSpector icon and choose Preferences from the popup menu.

_ To edit commands in WINSPCTR.lNI,load the file into any text editor,
edit or add commands, then save the file and restart WinSpector.

The following sections describe each option in the Preferences dialog box.
WINSPCTR.INI options are listed to the left.

LogDir=[directory] _ Directory is the location of WINSPCTR.LOG. Type the path where you
want the file (C: \ WINDOWS is the default).

LogViewer=[viewername] '_ Viewer is the program WinSpector uses to display the log file. Type the
path and file name of the viewer you want to use (NOTEP AD.EXE is the
default). For example, C: \ WIN31 \ WRITE.EXE. If WinSpector can't find
the editor, it displays the message

CreateNewLog=
o (append) or
1 (overwrite)

ShowSystemlnfo=
o (omit) or 1 (show)

LogToStdAux=O (on)
or 1 (off)

PostMortemDump=
1 (show) or 0 (omit)

, ShowStacklnfo=
1 (show) or 0 (omit)

134

Error: Unable to execute: [option]

where option is the editor file name. Check to make sure the editor you
indicated exists in the specified directory.

_ Append New Reports and Overwrite Previous Reports lets you control
whether WinSpector appends reports to the existing log file or overwrites
the old log file when a new report is generated.

_ Check System Information to add the Task List, the Module List, and
information about the USER and GDI heaps to the log file.

_ Check AUX Summary to view an abbreviated form of the information
sent to the log file on the AUX device. To use this option, you need a
terminal connected to AUX or a device driver, such as OX.SYS, that
redirects the AUX device to a second monitor.

_ Check PostMortem Dump to generate a WINSPCTR.BIN file. Use
DFA.EXE to translate the BIN file into a text file you can read.

_ Check Stack Frame Data to add a verbose stack trace display to the log
file. For each stack frame that doesn't exceed 256 bytes, WinSpector
performs a hex dump, starting at the SS:BP for that frame. If there are
more than 256 bytes between two successive stack frames, the memory
display is omitted for that frame. You can use this data to get the values
of the parameters that were passed to the function.

Borland C++ Users Guide

ShowUserlnfo=
1 (show) or 0 (omit)

WINSPCTR.LOG
reference

It is usually easier to let DFA do the hard work of figuring out what your
parameters are. However, for those cases where Turbo Debugger
information is not available, you might find that a verbose trace supplies
helpful information.

• Check User Comments if you want to add information to the log file
about what was happening when the exception occurred. With User
Comments checked, WinSpector displays a dialog box immediately after
the exception. The comments you type are appended to the log file.

Each report in WINSPCTR.LOG has several sections that help you
determine what caused the exception in your program. The first line of a
report in WINSPCTR.LOG gives the date and time when the exception
occurred; for example,

WinSpector failure report - 6/18/1992 11:04:25

The second line lists

• What type of exception occurred (Table 8.1 lists frequent exceptions)
• The module name
• The logical address
• The physical address
• The currently active task at the time of the exception

A second line might look like this:

Exception 13 at USER 002A:0429 (079F:0429) (TASK=BAD)

Table 8.1: Exception types

Number

o
12

13

Name Description

Division by zero

Stack' fault

Occurs during a DIV or an IDIV interaction if the divisor is O.

Usually occurs when there is ~ot enough room on the stack to proceed.

All protection errors that don't cause another exception cause an
exception 13.

General protection fault (GPF)

Exception 13 errors include, but are not limited to, the following errors:

• Invalid selector loaded into a segment register.

• Segment limit exceeded. Although the selector is valid, the offset value is
greater than the segment limit (for example, an array index out of bounds
error in DS, ES, or other segments).

• Execution is transferred to a nonexecutable segment, such as a bad
function pointer.

Chapter 8, WinSpector 135

Disassembly
section

Stack Trace section

136

• Accessing DS, ES, FS, or GS registers containing a null selector. (This
error can cause a 0 to appear in the segment register of the log file.)

A log file lists both the physical and logical addresses where the exception
occurred. These two types of addresses are important to Windows
programs for the following reasons:

• When a program is loaded, Windows allocates space for each logical
segment and assigns each segment a unique selector. The selector and its
offset are combined to form a physical address.

• When a Windows .EXE file is linked, each segment is placed in a
different section of the file, and a segment table is created.

• A logical address, which is actually a segment's position in the Windows
segment table, consists of a module name, a logical segment, and an
offset. You can run TDUMP on the file to find out segment size and other
information, or you can generate a .MAP file that contains the same kind
of information.

If the stack pointer is too small at the time of exception, TOOLHELP.DLL
automatically switches the stack and appends the message Stack Swi tched
to the end of the second line of the log.

The Disassembly section in WINSPCTR.LOG begins with the assembly
language instruction that caused the exception that is followed by the next
few instructions in the program, which provide a point of reference for
finding the task that caused the exception.

For example, given the following'code, where ES is the segment register
that contains a selector and BX is the offset into the segment, an exception
13 occurred because the value in BX was greater than the segment limit
referenced by ES:

079F:0429 CMP
079F:042D JNE
079F:042F CMP
079F:0435 MOV

BYTE PTR ES: [BX1,FF
043A
WORD PTR [BP+061,03
DI, 0001

The first line of the Stack Trace section in WINSPCTR.LOG identifies the
function or procedure that was executing at the time of the exception. Stack
Trace information includes the

• Frame number

• Module name

Borland C++ Users Guide

Register section

Message Queue
section

Chapter 8, WinSpector

• Name of the closest function before the address of the one that caused
the exception, plus a number indicating how far away you were from
that function. (This information is present only if a .sYM file is present.)

• Logical and physical address for the stack frame

• Location where your program returns after the call

When WinSpector lists function names, it looks in the .sYM file for the
closest symbol name that appears before the address in the call stack. Since
some .SYM files do not contain information for all functions, the function
name in the log file is the closest function in the .SYM file with an address
preceding the frame address. If the offset field appears to be too high,
function names might not be reliable.

The following stack trace information shows some of the functions that
were executing at the time BAD, a ~ample task, caused an exception:

Stack Trace:
o User <no info>

CS:IP 002A:0429 (079F:0429)
C:\W1N31\SYSTEM\USER.EXE

SS:BP 10FF:18CA

BAD function5(unsigned long, unsigned long, unsigned long) + 0014
CS:IP 0001:0184 (1107:0184) SS:BP 10FF:1952
C:\BIN\BAD.EXE

The Register section in WINSPCTRLOG lists the values stored in the
standard registers when the exception occurred, as the following example
shows:

Registers:
AX 0037
BX 0000
cx 0008
DX 10EE
SI 0037
D1 0028

Limits and access rights are given for the CS, DS, ES, and SS registers.

The Message Queue section in WINSPCTR.LOG gives the last message
received in the middle of processing. This section also lists any messages
that were waiting in the queue at the time of exception. For each message,
WinSpector lists the following information:

137

The Message Queue
section might not list
the last message the

program received:
Windows could

bypass the message
-queue by using a
SendMessage or

similar function.

Tasks section

Modules section

138

• The Window handle that identifies the destination window
• The Message ID number that identifies the message
• Two parameters that contain additional message information

The following Message Queue example shows one message received and
one waiting in the queue:

Message Queue:
Last message received:

hwnd: 0000 msg: 0001 wParam: 0002 lParam: 00000003
Waiting in queue:

hWnd: 0000 msg: 0001 wParam: .0002 lParam: 00000003

The Tasks section in WINSPCTR.LOG lists the programs running when the
exception occurred, including the

• Complete path to the executable file
• Module name
• Windows module handle
• Task handle
• Data segment value for the task (the instance handle)

Some of the tasks running when the BAD application caused an exception
include

C:\WIN31\SYSTEM\NWPOPUP.EXE
Module: NWPOPUP hModule: 142F hTask: 141F hlnstance: 13F6

C:\BIN\WINSPCTR.EXE
Module: WINSPCTR hModule: 1397 hTask: 1387 hlnstance: 13SE

C:\BIN\BAD.EXE
Module: BAD hModule: 1467 hTask: 1127 hlnstance: 10FE

The Modules section in WINSPCTR.LOG lists the modules that were
running at the time of the exception, including the

• Path to the executable file
• Date stamp of the executable file
• File size
• Module name
• Module handle
• Reference count indicating how many times the module is in use

Three of the modules running when the BAD application caused an
exception include

Borland C++ User's Guide

USER and GDI heap
section

System Information
section

C:\WIN31\SYSTEM\KRNL386.EXE Date: 03/02/1992 Size: 116132
Module: KERNEL hModule: 010F reference count: 21

C:\WIN31\SYSTEM\SYSTEM.DRV Date: 03/01/1992 Size: 2304
Module: SYSTEM hModule: 013F reference count: 13

C:\C\BIN\WINSPCTR.EXE Date: 06/02/1992 Size: 46256
Module: WINSPCTR hModule: 1397 reference count: 1

The USER 'and GDI (graphics device interface) heap information section in
WINSPCTR.LOG shows what percentage of the USER and GDI heaps was
available at the time of exception. For example,

USER Free 91%
GDI Free 83%

Because Windows has only 64K of internal heap space for applications to
share, it's often helpful to keep track of how the space is used. If you find
that USER and GDI are taking up a lot of heap space, check to see if you
have deallocated resources you are not using. The Help I About box for
Program Manager lists the lower of these values as the amount of free
System Resources.

The System Information section in WINSPCTR.LOG shows the windows
version and mode you're running, including ,

• CPU type
• Largest free block of contiguous linear memory in the system
• Total linear address space in pages .
• Amount of free memory pages in the linear address space
• Number of pages in the system swap file

The System Information section for a 486 system might look like this:

System info: Running in enhanced mode under Windows 3.1 debug version
CPU: 80486
Largest free memory block: 3457024 bytes
Total linear memory space: 19696 K
Free linear memory space 18212 K
Swap file Pages: 0 (0 K)

Processing WinSpector data

Chapter 8, WinSpector

DFA is a utility that takes a WINSPCTR.BIN file and Turbo Debugger
information (either in the .EXE, .DLL or .TDS files) and translates the binary

139

DFA output

Using DFA with
WINSPCTR.LOG

Using DFA with
WINSPCTR.BIN

140

data into a useful form by generating a file that contains not only stack
trace information similar to the log file but also function names, line
numbers, and lo~al and global variables.

DFA post-processes Turbo Debugger information that WinSpector gathered
at the time of the exception. If you check the PostMortem dump option (see
page 134), WinSpector creates a WINSPCTR.BIN file at the time of the
exception. You can use DFA.EXE to translate the binary data in
WINSPCTR.BIN into usable information stored in a text file called
DFA.OUT.

Because only one WINSPCTR.BIN file is written per Windows session,
make sure you run DFA promptly. For example, if you get three UAEs in
succession, WinSpector will write three reports to the log file, but binary .
data will exist for only the first report. It's best to run DFA immediately
after receiving the first UAE. You might then want to rename the DFA.OUT
file and delete the WINSPCTR.BIN and WINSPCTR.LOG files before
continuing.

DFA writes a file only if Turbo Debugger information exists for the file in
the stack frame. The DFA output file (DFA.OUT) has a stack trace similar to
the one in the WinSpector log file, except that it contains

• Function names
• Line numbers
• Local and global variables
• Data segments and their values (including the stack segment)

When DFA is used with the WINSPCTR.LOG file alone, it gives minimal
stack trace information, such as addresses. If Turbo Debugger information
(contained in a .EXE, .DLL, or .TDS file) is present, source file names and
line numbers are added to the report.

When used with the WINSPCTR.BIN file, DFA

• Adds Stack-based variables to the log, including local variables,
parameters passed to the function, structures and arrays.

• Lists variable types, values, and addresses by function.

If Turbo Debugger information is present, for each stack frame, DFA
reports

• In section one, the

• Source file • Local variables
• Line number • Parameters

Bor/and c++ Users Guide

• In section two, the

• Module name for the task with the fault
• File names
.. Logical segments
• The segments' selectors
• Whether the segments are data or code segments

• In section three, the

• Global variables
.' Static variables
• The variables' values at the time of the exception

Format DFA [option] WINSPCTR.LOG [WINSPCTR.BIN]

Table 8.2
DFA options

When WINSPCTR.LOG (required) is present, you get source file and line
numbers. When WINSPCTR.BIN (optional) is present, you get additional
variable information.

Option

IO[outputfile]
10

What it does

Renames the output file from the DFA.OUT default
Forces DFA to write a hex dump of the saved data segments

Other WinSpector t0915

Using
EXEMAP.EXE

Chapter 8, WinSpector

WinSpector has three utilities you can use to enhance the information about
an exception:

• EXEMAP.EXE creates a .MAP file from a Windows .EXE file. The .MAP
file is needed to create a .SYM file, which expands error reporting for the
original .EXE.

• TMAPSYM.EXE, used in conjunction with EXEMAP.EXE, creates a .sYM
file from a .MAP file.

• BUILDSYM.EXE uses EXEMAP .EXE and TMAPSYM.EXE to create a
.SYM file from a Windows .EXE file.

EXEMAP creates .MAP files for Windows executables. A .MAP file can be
used to create a .sYM file, which can then be used by WinSpector to expand
its error reporting. If you are using .DLLs or other programs for which you
don't have the source code, this information can be especially useful.

141

Using
TMAPSYM.EXE

Using
BUILDSYM.EXE

142

To create a .MAP file from an .EXE, type EXEMAP filename.EXE newname.MAP. If
you don't type a new name, EXEMAP creates a .MAP file with the same
name as the .EXE.

Although the resulting .MAP file isn't as complete as one generated by the
link phase of the compile process, it does include addresses for exported
public functions. '

TMAPSYM creates .SYM files from existing .MAP files (created either by
the compiler or by the EXEMAP utility). The resulting .SYM files make·
available to WinSpector the public functions, variable names, and functions
in the entry table of the executable. Constants and line-number informa
tion, however, are not included in a TMAPSYM-generated .SYM file.

To create a .SYM file from a .MAP file, type TMAPSYM filename . MAP (you must
type the .MAP extension).

BUILDSYM creates .SYM files from .EXE files. It has the same output as
using both EXEMAP and TMAPSYM, since it automatically runs them, but
it deletes the .MAP files from your directory. BUILDSYM supports
wildcards, so you can create .SYM files for part or all of a directory by
entering a single command.

To run BUILDSYM, both EXEMAP and TMAPSYM must be in the same
directory as BUILDSYM or in your search path. BUILDSYM places the
.SYM files it creates in the current directory. For WinSpector to find a .SYM
file, the file must be in the same directory as the executable that caused the
exception.

BUILDSYM performs the following tasks:

• Verifies that the files are Windows files, and if not, leaves them alone.

• Calls EXEMAP to create .MAP files.

• Verifies that .MAP files were created.

• Calls TMAPSYM and passes the names of the new .MAP files so
TMAPSYM can create .SYM files.

• Deletes the .MAP files because they are no longer needed.

To create a .SYM file from an .EXE, type BUILDSYM filename.EXE.

Conveniently, you can use DOS wildcards in the filename portion of the
syntax. For example, type BUILDSYM *. EXE to create .SYM files for all the .EXE
files in the current directory.

Borland C++ Users Guide

Appendix A, "Error
messages," lists
linker messages

generated by TLiNK
and by the built-in

IDE linker.

TLINK basics

TLiNK and TLlNK32
options are case

sensitive.

See Tables 9.1 and
9.2 to determine

which module to use.

c H A p T E R 9

Using the linker: TLINK

TLINK and TLINK32 are command-line tools that combine object modules
(.OBJ files) and library modules (.LIB files) to produce executable files. The
IDE uses built-in versions of the linkers. Because the compiler
automatically calls the linker, you don't need to use TLINK unless you
suppress the linking stage of compiling (see the -c compiler option). Unless
otherwise specified, instructions and options for TLINK also apply to
TLINK32.

TLINK uses a configuration file called TLINK.CFG, a response file
(optional), and command-line options to link object modules, libraries, and
resources into an executable file (.EXE or .DLL). The IDE linker uses the
options specified in the Project Options dialog box in the Linker section.
The syntax for TLINK is

TLINK [@respfile] [options] startupfile myobjs, exename, [mapfile],
[mylibs] runtimelib [import], [deffile], [resfiles]

where

• options are TLINK options that control how TLINK works. For example,
options specify whether to produce an .EXE or a DLL file. TLINK options
must be preceded by either a slash (/) or a hyphen (-). To turn off a
default option,-place a hyphen after the option (for example, -P-).
Table 9.3 lists the TLINK options .

• startupfile is a Borland initialization module for executables or DLLs
that arranges the order of the various segments of the program. The
initialization module must appear first in the object file list. If it isn't first,
the program segments might not be placed in memory properly, which
could cause some frustrating program bugs. Failure to link the correct
initialization module usually results in a long list of error messages
telling you that certain identifiers are unresolved, or that no stack has
been created.

Chapter 9, Using the linker: TUNK 143

TLlNK.CFG

The IDE uses linker
options specified in
project options and

style sheets. See
Chapter 2 for more

information on setting
options for project.

144

_ myobj s are the .OB] files you want linked. Specify the path if the files
aren't in the current directory.

_ exename is the name you want given to the executable file (.EXE or .DLL).
If you don't specify an executable file name, TLINK derives the name of
the executable by appending .EXE or .DLL to the first object file name
listed. Be sure you give an explicit name for the executable file name on
the TLINK command line. Otherwise, your program name will be
something like .C02.EXE-which probably isn't what you wanted.

_ mapfile (optional) is the name you want given to the map file. If you
don't specify a name, the map file name is given the same asexefile (but
with the .MAP extension).

_ mylibs (optional) are the library files you want included at link time. If
these files aren't in the current directory or the search path (see the IL
option) then you must include their paths.

_ runtimelib is the Borland run-time library. If no libraries are included,
none are linked.

_ importlib is the Windows import library, which provides access to the
Microsoft Windows API functions.

_ deffile is the module-definition file (.DEF) for a Windows executable. If
you don't specify a .DEF file, TLINK creates an application based on
default settings.

_ resfiles are a list of .RES files to bind to the executable.

TLINK assumes or appends these extensions to file names that have none:

_ .OB] for object files _ .LIB for library files

_ .EXE for executable files

_ .DLL for dynamic-link libraries

_ .MAP for map files

_ .DEF for module-definition
files

_ .RES for resource files

TLINK uses a configuration file called TLINK.CFG (or TLINK32.CFG) for
options that you'd normally type at the command-line (note that
TLINK.CFG can only be options, not file names). Configuration files let you
save options you use frequently, so that you don't have to continually
retype them.

TLINK looks for TLINK.CFG in the current directory, then in the directory
from which TLINK was loaded.

The following TLINK.CFG file tells TLINK to look for libraries first in the
directory C: \ BC4 \ LIB and then in C: \ WINAPPS \ LIB, to include debug

Borland C++ Users Guide

Response files

The command-line
compilers also use
response files. See

page 45 for more
information.

information in the executables it creates, to create a detailed segment map,
and to produce a Windows executable (.EXE not .DLL).

TLINK TLINK32
ILC:\bc4\libic:\winapps\lib
Iv Is
ITwe

ILc:\bc4\libi c:\winapps\lib
Iv Is
ITpe

Response files are ASCII files of options and file names for TLINK.EXE
(and TLINK32.EXE) that you would normally type at the command line.
Response files let you have a longer command line than most operating
systems allow. Response files can include the same information as
configuration files (command-line options), but they can also contain file
names.

Unlike the command line, a response file can be several lines long. To use
more than one line in your response file, end each line with a plus character
(+). Note that if a line ends with an option that uses the plus to turn it on
(such as /v+), the + isn't treated as a line continuation character (to continue
the line, use Iv++).

If you separate command-line components (such as .OBJ files from .LIB
files) by lines in a response file, you must leave out the comma used to
separate them on the command line. For example,

Ic cOWSt

rnyprog,rnyexe
rnyrnap
rnylib cws

leaves out the commas you'd have to type if you put the information on the
command line:

TLINK Ic cOws rnyprog,rnyexe,rnyrnap,rnylib cws

To use response files,

1. Type the command-line options and file names into an ASCII text file
and save the file.

2. Type TLINK @[path]RESFILE.RSP, where RESFILE.RSP is the name of your
response file.

You can specify more than one response file as follows:

tlink Ic @listobjs,rnyexe,rnyrnap,@listlibs

If you use a response file in addition to command-line options, the
command-line options will override any options in the response file. For

Chapter 9, Using the linker: TLINK 145

Using TLiNK with
BCC.EXE

BCC always starts
TLiNK with the Ic

(case-sensitive link)
option.

Linking libraries

Table 9.1
Borland 16-bit

libraries and startup
files

146

example, if you include -v in a response file, but you use -v- at the
command-line, TLINK uses the command-line option -v-.

You can pass options and files to TLINK through the command-line
compilers (BCC.EXE and BCC32.EXE) by typing file names on the com
mand line with explicit .OBJ and .LIB extensions. For example,

BCC mainfile.obj subl.obj mylib.lib

links MAINFILE.OBJ, SUBl.OBJ, and MYLIB.LIB and produces the
executable MAINFILE.EXE.

BCC starts TLINK with the files COWS.OBJ, CWS.LIB, and IMPORT. LIB
(initialization module, run-time library, and Windows import library).
BCC32 starts TLINK32 with the files COW32.0BJ, CW32.LIB, and
IMPORT32.LIB by default.

You must always link the Borland C++ run-time library that contains the
standard C/C++ library functions for the type of application you are
linking. You must also include the appropriate import library (IMPORT. LIB
for 16-bit Windows applications,IMPORT32.LIB for console applications, '
or IMPRTW32.LIB for 32-bit Windows applications).

Table 9.1 describes the 16-bit Windows 3.~ libraries and .OBJ files provided
by Borland. See the Library Reference for a complete list of Windows
libraries and the DOS Reference for a complete list of DOS libraries and
startup files.

Libraries and .OBJs

Cn.LlB

CWn.LlB

CRTLDLL.LlB
IMPORT.LlB
COn.OBJ

COWn.OBJ

CODn.OBJ

MATHWS.LlB

MATHWC.LlB

Description

Run-time library for DOS applications, where n is S, C, M, L or H to
indicate Small, Compact, Medium, Large or Huge memory model.

Run-time library for Windows 3.x applications, where n is S, C, M, or L
to indicate Small, Compact, Medium, or Large memory model.
Run-time library for Windows 3.x applications to link in as a .DLL.
Import library for Windows 3.x API functions.
Startup code for DOS .EXE applications, where n is T, S, C, M, L, or H
to indicate Tiny, Small, Compact, Medium, Large or Huge memory
model.
Startup code for Windows 3.x applications, where n is S, M, C, or L to
indicate Small, Medium, Compact, or Large memory model.
Startup code for Windows 3.x .DLL modules, where n is S, M, or L to
indicate Small, Medium, or Large memory model.
If your program uses floating-paints, you must include a math library.
MATHWS.LlB is for small and tiny models.
Math library for compact models.

Borland C++ Users Guide

Table 9.2
Borland 32-bit

libraries and startup
files

Table 9.1: Borland 16-bit libraries and startup files (continued)

MATHWM.LlB Math library for medium models.
MATHWL.LlB Math library for large models.

Table 9_2 describes the 32-bit libraries and .OBJ files provided by Borland;
these are used by TLINK32. See the Library Reference for a complete list of
libraries.

Libraries and .OBJs

CW32.LlB
. IMPORT32.LlB

COX32.0BJ
COW32.0BJ
COD32.0BJ

Description

Run-time library for Win32 applications. .
Import library for console applications and 32-bit Windows
applications.
Startup code for console applications.
Startup code for Win32 applications.
Startup code for 32-bit DLL modules.

TLINK options

Unless otherwise specified, options work with both TLINK and TLINK32.
Options are case-sensitive and must be preceded by either a slash (I) or a
hyphen (-). To turn off a default option, place a hyphen after the option at
the command-line (for example, -P- or IP-). You can place options
anywhere in the command line. You don't need spaces after options (lmlflc
is the same as 1m If Ic), but you must separate options and files with a
space.

Table 9.3 lists the TLINK command-line options and the IDE equivalent
options (note that not all command-line options have an IDE equivalent).
Command-line default options are marked by a bullet (.). A more detailed
explanation of options, including the IDE option names, follows the table.

Table 9.3: TLiNK options

Default Option IDE Linker option For Description

13 Linkerl16-bit LinkerlEnable 32-bit processing 16-bit Accepts and links 32-bit code produced by
TASM or a compatible assembler.

lax 32-bit Specifies application type, where
Target AttributeslTarget Model laa targets Windows applications
<none> lap targets console applications.

IA:dd 16-bitlSegment Alignment 16/32-bit Specifies page alignment within .EXE file.
IB:xxxxxx 32-bit Linkerllmage based address 32-bit Specifies image base address (in

hexadecimal).
Ic GeneraliCase-sensitive link 16/32-bit Treats case as significant in symbols.

Chapter 9, Using the linker: TLiNK 147

Table 9.3: TLINK options (continued)

Ie General/Case-sensitive exports, imports 16-bit Treats case as significant in EXPORTS and
IMPORTS section of module-definition file.

Id WarningslWarn duplicate symbol in .LlB 16-bit Warns you if there are duplicate symbols in
libraries.

IE 16-bit LinkerlProcess extended dictionaries 16-bit Enables processing of extended
dictionaries in libraries.

IEnn 32-bit LinkerlMaximum linker errors 32-bit Specifies maximum errors before
termination.

• Ie 16-bitiProcess extended dictionaries (uncheck) 16-bit Ignores extended dictionaries in libraries.
This is the opposite of the IE option.

If 16-bit Linkerllnhibit optimizing far to near 16-bit Inhibits optimization of far calls to near
data.

IGx 16/32-bit "Goodies" options where x is n, r, or m.
IGn 16-bit LinkerlDiscard nonresident name table 16-bit Discard nonresident name table.
IGr 16-bitiTransfer re$ident to nonresident table 16-bit Transfer Resident names to nonresident

names table.
IGm Map FilelPrint mangled names in map file 16/32-bit Put Mangled names in map file.
n 16-bit Linkerllnitialize segments 16-bit Initializes all segments.
II Map Filellnclude source line numbers 16-bit Includes source line numbers

(lowercase L).
IL DirectorieslLibrary (not under Linker in /DE) 16/32-bit Specifies library search paths.
1m Map FilelPublic 16/32-bit Creates map file with publics.
In General/Default Libraries 16-bit Don't use default libraries.
10 Overlay module (Node attributes dialog box) 16-bit Overlays modules or libraries.

• IP General/Pack code segments 16-bit Packs code segments.
IRk ResourcelPack fast load area (not under. Linkef) 16-bit Sends options to RLlNK.EXE.
IRv <none> 32-bit Verbose resource binding.
IRexxxx <none> 32-bit Renames the executable to xxxx.
IS:xxxxxx 32-bit LinkerlStack size 32-bit Specifies stack size (in hexadecimal).
Is Map FilelDetailed 16-bit Creates detailed map of segments.
It <none> 16-bit Creates a tiny-model DOS .COM file.
ITdx 16-bit Specifies application target, where

<none> ITde means build a DOS .COM file.
• TargetExpert Platform ITde means build a DOS .EXE file.

ITpx TargetExpert Platform 32-bit Specifies application target, where
• ITpe means build a 32-bit .EXE file.

ITpd means build a 32-bit DLL.
ITwx TargetExpert Target Type 16-bit Specifies Windows 3.x target application,

where
• ITwe builds a Windows .EXE file.

ITwd builds a Windows DLL.
Iv Generalllnciude debug information 16/32-bit Includes full symbolic debug information.
Iwxxx Warnings (see page 153 for information) 32-bh Enable or disable warnings (see page 153).
Ix Map FilelOff < 16/32-bit Doesn't create a map file.
lye <none> 16-bit Uses expanded memory for swapping.
Iyx <none> 16-bit Configures TLlNK's use of extended

memory swapping.

148 Borland C++ Users Guide

13 (32-bit code) lets you link 32-bit DOS object modules produced by TASM
or a compatible assembler. This option increases the memory requirements
for TLINK and slows down linking.

la (application type) lets you specify the type of EXE image:

./aa targets Windows applications .

• lap targets console applications that can be run in a window.

IA:dd (align pages) specifies page alignment for code and data within the
executable file where dd must be a decimal power of 2. For example, if you
specify an alignment value of IA:12, the sections in the image are stored on
4096-byte boundaries. The operating system seeks pages for loading based
on this alignment value. The default is IA:9, which means sections are
aligned on 512-byte boundaries within the executable file.

IB:xxxxxx (base address) specifies an image base address for an
application. If this option is used, internal fixups are removed from the
image, and the requested load address of the first object is set to the
hexadecimal number given with the option. All successive objects are
aligned on 64K linear address boundaries. This option makes applications
smaller on disk, and improves both load-time and run-time performance
since the operating system no longer has to apply internal fixups. Because
NT loads all .EXE images at 64K, you're advised to link all .EXEs with
IB:Ox10000.

Ic (case sensitivity) makes the case significant in public and external
symbols.

Ie (case sensitivity) makes the case significant in the EXPORTS and
IMPORTS sections in module-definition files.

Id (duplicate symbols) warns you if a symbol appears in more than one
library file. If the symbol must be included in the program, TLINK uses the
symbol from the first file containing the symbol that is specified on the
command line (or in a response file). This option also warns you if symbols
appear in both an .OBJ file and a .LIB file (TLINK uses the first one linked
in and ignores the others).

IEnn (maximum errors) specifies the maximum number of errors the linker
reports before terminating. lEO (the default) reports an infinite number of
errors (that is, as many as possible).

IE (extended dictionaries) processes extended dictionaries. The library files
in Borland C++ contain an extended dictionary with information that lets
TLINK use less memory and link faster with those libraries. You can add
the extended dictionary to other library files using TLIB's IE option (see the

Chapter 9, Using the linker: TLINK 149

150

TLIB section on page 170). Avoid using IE with programs linked with
libraries that have been built without an extended dictionary (third-party
libraries that have been provided without source code, for example). To use
extended dictionaries, all linked libraries must have extended dictionaries.

Ie (ignore extended dictionaries) ignores extended dictionaries. This is the
opposite of the IE option, and is the default.

If (inhibit far optimizations) inhibits the optimization of far calls to near
data.

IGx (Goodies) are options where x can be
n = Discard nonresident name table.
r = Transfer resident names to nonresident table.
m = (TLINK32) Put mangled names in map file; this can help you

identify how names are mangled.

Ii (uninitialized trailing segments) outputs uninitialized trailing segments
into the executable file even if the segments don't contain data records.

II (line numbers) creates a section in the .MAP file for source-code line
numbers. Linked .OBJ files must be compiled with debug information
using -y or -v. If you use Ix to suppress map file creation, the II
(lowercase L) option has no effect.

IL (library search paths) lets you list directories for TLINK to search if you
don't type an explicit path for a library or the C or C++ initialization
module. TLINK searches the current directory first (where you typed
TLINK). For example,

TLINK /Lc:\BC4\lib;c:\rnylibs splash logo",utils .\logolib

first searches the current directory for UTILS.LIB, then searches C: \ BC4 \
LIB, then C: \MYLIBS. Because LOGOLIB explicitly names the current
directory, TLINK doesn't search the libraries specified with the IL option to
find LOGOLIB. LIB.

1m (detailed map file) creates a more complete map than TLINK normally
does by adding a list of sorted public symbols to the map file. This kind of
map file is useful in debugging. Many debuggers can use the list of public
symbols, which lets you refer to symbolic addresses when you're
debugging. If you don't specify map file options (1m, Is, or Ix), then the
option Map File I Segments is used. See also Is.

1M (map mangled) maps with mangled public names.

Borland C++ Users Guide

In (ignore default libraries) ignores default libraries specified by some com
pilers. Use this option when linking modules that are written in another
language.

/0 (overlays) overlays code in all the modules or libraries that follow the
option on the command line (this option works for DOS applications only).
Use /0- on the command line to turn off overlays. If you specify a class
name after this option, all the segments in that class are overlaid (you can
do this for multiple classes). If you don't specify any name after this option,
all segments of classes ending with CODE are overlaid. This option uses
the default overlay interrupt number of 3FH. To specify a different
interrupt number, use /o#xx, where xx is a two-digit hexadecimal numbet:

IP (pack code segments) combines as many code segments as possible in
one physical segment up to (and never greater than) the code-segment
packing limit. TLINK starts a new segment if it needs to. The default code
segment packing limit is 8,192 bytes (8K). To change it, use jP=n where n
specifies the number of bytes between 1 and 65,536. You would probably
want the limit to be a multiple of 4K under 386 enhanced mode because of
the paging granularity of the system.

Although the optimum segment size in 386 enhanced mode is 4K, the
default code-segment packing size is 8K because typical code segments are
from 4K to 8K and 8K might pack more efficiently.

Because each maintained segment has some system overhead, code
segment packing typically increases performance. IP- turns off code
segment packing (useful if you've turned it on in the configuration file and
want to disable it for a particular link).

Is (detailed segment map) creates a map file with the same features as the
1m option, but adds a detailed segment map. If you don't specify map file
options (1m, Is, or Ix), then the option Map File I Segments is used. For each
segment in each module, this map file includes the address, length in bytes,
class, segment name, group, module, and ACBP information. If the same
segment appears in more than one module, each module appears as a
separate line. Except for the ACBP field, the information in the detailed
segment map is self-explanatory.

The ACBP field encodes the A (alignment), C (combination), and B (big)
attributes into a set of four bit fields, as defined by Intel. TLINK uses only
three of the fields, the A, C, and B fields. The ACBP value in the map is
printed in hexadecimal. The following values of the fields must be OR' ed
together to arrive at the ACBP value printed.

Chapter 9, Using the linker: TLINK 151

152

Field Value Description

The A field (alignment) 00
20
40
60
80
AD

The C field (combination) 00
08

The B field (big) 00
02

An absolute segment.
A byte-aligned segment.
A word-aligned segment.
A paragraph-aligned segment.
A page-aligned segment.
An unnamed absolute portion of storage.
Cannot be combined.
A public combining segment.
Segment less than 64K.
Segment exactly 64K.

With the Is option, public symbols with no references are flagged "idle."
An idle symbol is a publicly-defined symbol in a module that wasn't
referenced by an EXTDEF record by any other module included in the link.
For example, this fragment from the public symbol section of a map file
indicates that symbols Symboll and Symbo13 aren't referenced by the image
being linked:

0002:00000874 Idle
0002:00000CE4
0002:000000E7 Idle

Symboll
Symbo12
Symbo13

IS:xxxxxx (stack size) sets the application stack size in hexadecimal where
xxxxxx is a hexadecimal string. Specifying the stack size with IS overrides
any stack size setting in a module-definition file.

It (tiny model DOS .COM file) creates a DOS tiny-model.COM file (this
option works the same as fTdc, except you can use It with BCC.EXE). DOS
.COM files can't exceed 64K in size, have segment-relative fixups, or define
a stack segment. They must have a starting address of 0:100H. If you
change the file extension (to .BIN, for example), the starting address can be
either 0:0 or 0:100H. The linker can't generate debugging information for
.COM files, so you'll need to debug it as an .EXE, then recompile and link
as a .COM file.

fTdx(DOS target) produces a DOS .EXE (fTde) or a DOS .COM (fTdc) file.

fTpx(protected target) produces a protected mode .EXE (fTpe) or .DLL file
(fTpd).

fTwx (target type) produces a Windows .EXE (fTwe) or .DLL file (fTwd).
This option isn't necessary if you include a module-definition file with an
EXETYPE Windows statement because TLINK creates an application (.EXE)
if the module-definition file has a NAME statement or a DLL if the
module-definition file has a LIBRARY statement.

Borland C++ Users Guide

Iv (debugging information) includes debugging information in the
executable file. If this option is found anywhere on the command line,
debugging information is included in the executable file for all object
modules that contain debugging information. You can use the Iv+ and Iv
options to selectively enable or disable debugging information on a
module-by-module basis (but not on the same command line as Iv). For
example, the command

TLINK modi /Vt mod2 mod3 /v- mod4

includes debugging information for modules mod2 and mod3; but not for
modl and mod4.

Iwxxx (warning control) turns on (/wxxx) or off (/w-xxx) TLINK warnings,
where xxx can be one of the following (defaults mean TLINK will send the
warning without you specifically turning it on):

Table 9.4
TLlNK32 warnings Default Iwoption IDE description

---.-------b~d-I-----U-s-in-g-b-as-e-d-lin-k-in-g-in-D-L-Ls-(~m-ig-ht-c-a-us-e-th-e-D-L-L-to-m-a-If~un-c-tio-n~)----

•
•

•

def No .DEF file; using defaults
dpl Warn duplicate symbol in .LlB
dup Duplicate symbol (warning for .OBJs)
ent No entry point
imt Import doesn't match previous definition
inq Extern not qualified with _ jmport
srf Self-relative fixup overflowed

"No stack" warning

Ix (no map file) tells TLINK to not generate a map file. TLINK usually
creates map files that list segments in the program, the program start
address, and any TLINK warning or error messages (the Map File I
Segments option, which has no command-line option, is on by default).

lye (expanded memory) controls TLINK's use of expanded memory for I/O
buffering. If TLINK needs more memory for active data structures (while
reading object files or writing the executable file), it either clears buffers or
swaps them to expanded memory.

When reading files, TLINK clears the input buffer so that its space can be
used for other data structures. When creating an executable, it writes the
buffer to its correct place in the executable file. In both cases, you can
substantially increase the link speed by swapping to expanded memory. By
default, swapping to expanded memory is enabled, and swapping to
extended memory is disabled. If swapping is enabled and no appropriate
memory exists in which to swap, then swapping doesn't occur.

Chapter 9, Using the linker: TUNK 153

This option has several forms, shown below

• lye or Iye+ enables expanded memory swapping (this is the default).

• ye- disables expanded memory swapping (this is off by default).

Iyx (extended memory) controls TLINKs use of extended memory for I/O
buffering. By default, TLINK can use up to BMB of extended memory. You
can change TLINK's use of extended memory with one of the following
forms of this option:

./yx+ uses all available extended memory up to 8MB .

• /yxn uses only up to n KB extended memory.

Module-definition file reference

IMPDEF creates
module-definition
files, and IMPLIB

creates import
libraries from

module-definition
files. See Chapter 10
for more information

on these tools.

CODE statement

154

This section describes module-definition files and the statements that
appear in them. A module-definition file provides information to TLINK
about the contents and system requirements of a Windows application.
More specifically, a module-definition file

• Names the .EXE or .DLL.
• Identifies the application type.
• Lists imported and exported functions.
• Describes the code and data segment attributes, and lets you specify

attributes for additional code and data segments.
• Specifies the size of the stack.
• Provides for the inclusion of a stub program.

See the Programmer's Guide for uses and examples of module-definition files.

CODE defines the default attributes of code segments. Code segments can
have any name, but must belong to segment classes whose name ends in
CODE (such as CODE or MYCODE). The syntax is

TLINK TLINK32
CODE [FIXED I MOVEABLE]

[DISCARDABLEINONDISCARDABLE]
[PRELOAD I LOADONCALL]

[PRELOAD I LOADONCALL]
[EXECUTEONLY I EXECUTEREAD]

• FIXED (the default) means the segment remains at a fixed memory
location; MOVEABLE means the segment can be moved.

• PRELOAD means code is loaded when the calling program is loaded.
LOADONCALL (the default) means the code is loaded when called by
the program.

Borland C++ Users Guide

DATA statement

DESCRIPTION
statement

EXETYPE
statement

• DISCARDABLE means the segment can be discarded if it is no longer
needed (this implies MOVABLE). NONDISCARDABLE (the default)
means the segment can't be discarded.

• EXECUTEONL Y means a code segment can only be executed.
EXECUTEREAD (the default) means the code segment can be read and
executed.

• PRELOAD means the segment is loaded when the module is first loaded.
LOADONCALL (the default) means the segment is loaded when called.

DATA defines attributes of data segments. The syntax is

DATA [NONE I SINGLE I MULTIPLE]
[READONLY I READWRITE]
[PRELOAD I LOADONCALL]
[SHARED I NONSHARED]

• NONE means that there is no data segment created. This option is
available only for libraries. SINGLE (the default for .DLLs) means a
single data segment is created and shared by all processes. MULTIPLE
(the default for .EXEs) means a data segment is created for each process.

• READONL Y means the data segment can be read only. READWRITE
(the default) means the data segment can be read and written to.

• PRELOAD means the data segment is loaded when a module that uses it
is first loaded. LOADONCALL (the default) means the data segment is
loaded when it is first accessed (this is ignored for 32-bit applications).

• SHARED (the default for 16-bit .DLLs) means one copy of the data
segment is shared among all processes. NONSHARED (the default for
programs and 32-bit .DLLs) means a copy of the data segment is loaded
for each process needing to use the data segment.

DESCRIPTION (optional) inserts text into the application module and is
typically used to embed author, date, or copyright information. The syntax
is

DESCRIPTION 'Text'

Text is an ASCII string delimited with single quotes.

EXETYPE defines the default executable file (.EXE) header type for 16-bit
application. You can leave this section in for 32-bit application for
backward compatibility, but if you need to change the EXETYPE, see the
NAME statement on page 158. The syntax for EXETYPE is

EXETYPE WINDOWS

Chapter 9, Using the linker: TUNK 155

EXPORTS
statement

156

EXPORTS defines the names and attributes of functions to be exported. The
EXPORTS keyword marks the beginning of the definitions. It can be
followed by any number of export definitions, each on a separate line. The
syntax is

EXPORTS
ExportName [Ordinal] [RESIDENTNAME] [Parameter]

• ExportName specifies an ASCII string that defines the symbol to be
exported:

EntryName [=InternalNarne]

InternalName is the name used within the application to refer to this
entry. EntryName is the name listed in the executable file's entry table
and is externally visible.

• Ordinal defines the function's ordinal value as follows:

@ordinal

where ordinal is an integer value that specifies the function's ordinal
value.

When an application or OLL module calls a function exported from a
OLL, the calling module can refer to the function by name or by ordinal
value. It's faster to refer to the function by ordinal because string
comparisons aren't required to locate the function. To use less memory,
export a function by ordinal (from the point of view of that function's
OLL) and import/ call a function by ordinal (from the point of view of
the calling module).

When a function is exported by ordinal, the name resides in the
nonresident name table. When a function is exported by name, the name
resides in the resident name table. The resident name table for a module
is in memory whenever the module is loaded; the nonresident name
table isn't.

• RESIOENTNAME specifies that the function's name must be resident at
all times. This is useful only when exporting by ordinal (when the name
wouldn't be resident by default).

• Parameter is an optional integer value that specifies the number of words
the function expects to be passed as parameters.

Borland C++ User's Guide

IMPORTS
statement

LIBRARY
statement

IMPORTS defines the names and attributes of functions to be imported
from DLLs. Instead of listing imported DLL functions in the IMPORTS
statement, you can either

• Specify an import library for the DLL in the TLINK command line, or

• Include the import library for the DLL in the project manager in the IDE.

If you're programming for 32-bits, you must use _ _ import to import any
function, class, or data you want imported; for 16-bits you must use
_ _ import with classes. See the Programmer's Guide for more information on
using _ _ import.

The IMPORTS keyword marks the beginning of the definitions; it is
followed by any number of import definitions, each on a separate line. The
syntax is

IMPORTS
[InternalName=] ModuleName. Entry

• InternalName is an ASCII string that specifies the unique name the
application uses to call the function.

• ModuleName specifies one or more uppercase ASCII characters that define
the name of the executable module containing the function. The module
name must match the name of the executable file. For example, the file
SAMPLE.DLL has the module name SAMPLE.

• Entry specifies the function to be imported-either an ASCII string that
names the function or an integer that gives the function's ordinal value.

LIBRARY defines the name of a DLL module. A module-definition file can
contain either a LIBRARY statement to indicate a DLL or a NAME
statement to indicate a program.

A library's module name must match the name of the executable file. For
example, the library MYLIB.DLL has the module name MYLIB. The syntax
is

LIBRARY LibraryName [INITGLOBAL I INITINSTANCE]

• LibraryName (optional) is an ASCII string that defines the name of the
library module. If you don't include a LibraryName, TLINK uses the file
name with the extension removed. If the module-definition file includes
neither a NAME nor a LIBRARY statement, TLINK assumes a NAME
statement without a ModuleName parameter.

• INITGLOBAL means the library-initialization routine is called only when
the library module is first loaded into memory. INITINST ANCE means

Chapter 9, Using the linker: TLINK 157

NAME statement

SEGMENTS
statement

158

the library-initialization routine is called each time a new process uses
the library. .

NAME is the name of the application's executable module. The module
name identifies the module when exporting functions. For 32-bit
applications, NAME must appear before EXETYPE. If NAME and
EXETYPE don't specify the same target type, the type listed with NAME is
used. The syntax is

NAME ModuleName [WINDOWSAPI) I [WINDOWCOMPAT)

ModuleName (optional) specifies one or more uppercase ASCII characters
that name the executable module. The name must match the name of the
executable file. For example, an application with the executable file
SAMPLE.EXE has the module name SAMPLE.

If ModuleName is missing, TLINK assumes the module name matches the
file name of the executable file. For example, if you don't specify a module
name and the executable file is named MYAPP.EXE, TLINK assumes the
module name is MYAPP.

If the module-definition file includes neither a NAME nor a LIBRARY
statement, TLINK assumes a NAME statement without a ModuleName
parameter.

WINDOW API is a Windows executable, and is equivalent to the TLINK32
option/aa.

WINDOWCOMP AT is a Windows-compatible character-mode executable,
and is equivalent tio the TLINK32 option lap. .

SEGMENTS defines the segment attributes of additional code and data
segments. The syntax is

SEGMENTS
SegmentName [CLASS 'ClassName') [MinAlloc)
[SHARED I NONSHARED)
[PRELOAD I LOADONCALL)

• SegmentName is a character string that names the new segment. It can be
any name, including the standard segment names _TEXT and _DATA,
which represent the standard code and data segments .

• ClassName (optional) is the class name of the specified segment. If no
class name is specified, TLINK uses the class name CODE .

• MinAlloc (optional) is an integer that specifies the minimum allocation
size for the segment. TLINK and TLINK32 ignore this value.

Borland C++ User's Guide

STACKSIZE
statement

STU B statement

Module-definition
file defaults

• SHARED (the default for 16-bit .DLLs) means one copy of the segment is
shared among all processes. NONSHARED (the default for programs
and 32-bit .DLLs) means a copy of the segment is loaded for each process
needing to use the data segment.

• PRELOAD means that the segment is loaded immediately;
LOADONCALL means that the segment is loaded when it is accessed or
called (this is ignored by TLINK32). The resource compiler might
override the LOAD ON CALL option and preload segments instead.

STACKSIZE defines the number of bytes needed by the application for its
local stack. An application uses the local stack whenever it makes function
calls. Don't use the STACKSIZE statement for dynamic-link libraries. The
syntax is

STACKSIZE bytes

bytes is an integer value that specifies the stack size in bytes.

STUB appends a DOS executable file specified by FileName to the beginning
of the module. The executable stub displays a warning message and
terminates if the user attempts to run the executable stub in the wrong
environment (running a Windows application under DOS, for example).

Borland C++ adds a built-in stub to the beginning of a Windows
application unless a different stub is specified with the STUB statement.
You shouldn't use the STUB statement to include WINSTUB.EXE because
the linker does this automatically. The syntax is

STUB "FileName"

FileName is the name of the DOS executable file to be appended to the
module. The name must have the DOS file name format.

If the file named by FileName isn't in the current directory, TLINK searches
for the file in the directories specified by the PATH environment variable.

The module-definition file isn't strictly necessary to produce a Windows
executable under Borland C++.

If no module-definition file is specified, the following defaults are assumed:

CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE (for applications)

PRELOAD MOVEABLE SINGLE (for DLLs)
HEAPSIZE 4096
STACKSIZE 5120 (1048576 for TLINK32)

Chapter 9, Using the linker: TUNK . 159

160

To replace the EXETYPE statement, the Borland C++ linker can discover
what kind of executable you want to produce by checking settings in the
IDE or options on the command line.

You can include an import library to substitute for the IMPORTS section of
the module definition file.

You can use the _export keyword in the definitions of export functions in
your C and C++ source code to remove the need for an EXPORTS section.
Note, however, that if _export is used to export a function, that function is
exported by name rather than by ordinal (ordinal is usually more efficient).

If you want to change various attributes from the default, you'll need to
have a module-definition file.

Borland C++ Users Guide

c H A p T E R 10

Using resource tools

This chapter describes the Borland resource tools.

• BRCC.EXE and BRCC32.EXE are the Borland resource compilers. They
compile resource script files (.RC files) and produce the binary .RES file.

• RLINK.EXE and RLINK32.DLL (through TLINK32.EXE) are the Borland
resource linkers that bind resources, in .RES file form, to an .EXE file, and
mark the resulting .EXE file as a Windows executable.

• BRC.EXE and BRC32.EXE are shells through which both BRCC or
BRCC32 and RLINK or RLINK32 (through TLINK32) can be started in a
single step.

All 32-bit resource tools work exactly like the 16-bit tools unless specified in
this chapter.

Windows programs provide a familiar and standard user interface for all
applications. The components of the user interface are known as resources
and can include:

• Menus • Bitmaps
• Dialog boxes • Strings

• Pointers II Accelerator keys

• Icons • Fonts

Resources are defined external to your source code, and then- attached to
the executable file during linking. The application calls resources into
memory only when needed, thus minimizing memory usage.

Resource script (.RC) files are text files that describe the resources a
particular application will use. BRCC and RC use the .RC file to compile the
resources into a binary format resource (.RES) file. RLINK then attaches the
.RES file, which contains your resources, to your executable (this is called
resource linking). r,

Chapter 10, Using resource tools 161

BRCC.EXE: The resource compiler

Table 10.1
BRCC (Borland

resource compiler)

162

BRCC is a command-line version of Resource Workshop's resource
compiler. It accepts a resource script file (.RC) as input and produces a
resource object file (.RES) as output. BRCC uses the following command
line syntax:

BRCC [options) <filename>.RC

Table 10.1 lists all BRCC options. Note that options are not case-sensitive (-r
is the same as -R).

Switch

@ responsefile

-d<name>[=<string>]

-fo<fiIename>

-kpath>

-r

-v
-x
-? or-h

-30

-31

-w32

Description

Takes instructions from the specified command file.

Defines a preprocessor symbol.

Renames the output .RES file. (By default, BRCC creates the
output .RES file with the same name as the input .RC file.)

Adds one or more directories (separated by semicolons) to the
include search path.

This switch is ignored. It is included for compatibility with other
resource compilers.

Prints progress messages (verbose).

Deletes the current include path.

Displays switch help.

Builds Windows 3.0-compatible .RES files.

Builds Windows 3.1-compatible .RES files.

Builds Win32-compatible .RES files.

Like Resource Workshop's resource compiler, BRCC predefines common
resource-related Windows constants such as WS_ VISIBLE and
BS_PUSHBUTTON. Also, two special compiler-related symbols are
defined: RC_INVOKED and WORKSHOP_INVOKED. These symbols can
be used in the source text in conjunction with conditional preprocessor
statements to control compilation. For example, the following construct can
gr~atly speed up compilation:

#ifndef WORKSHOP_INVOKED
#include "windows.h"
#endif

Borland C++ User's Guide

The following example adds two directories to the include path and
produces a .RES file with the same name as the input .RC file.

bree -i<dirl>i<dir2> <filename>.RC

This example produces an output .RES file with a name different from the
input .RC file name:

bree -fo<filename>.RES <filename>.RC

RLINK: the resource linker

Table 10.2
RLiNK switches

RLINK combines a .RES file with an .EXE file to produce a new Windows
executable. RLINK accepts as input one or more object files (.RES) and a
single Windows executable file. RLINK links the resources by fixing up
stringtables and messagetables and then binding these linked resources to
the executable.

RLINK uses the following command-line syntax:

rlink [options] <filename>.RES <filename>.EXE

RLINK accepts these options:

Switch

@<filename>

-d

-fe<filename>

-fi<filename>

-k

-v

-vx

-? or-h

-30

'-31

Description

Takes instructions from the specified command file.

Removes resources from the .EXE file (no .RES file is specified).

Renames the output .EXE file.

Renames the input .RES file.

Don't reorder segments for fastload.

Prints progress messages (verbose listing).

Lists resources but does not bind to EXE file.

Displays switch help.

Builds Windows 3.0-compatible .RES files.

Builds Windows 3.1-compatible .RES files.

The following example binds the resources in the .RES file into the .EXE
file.

rlink <filename>.RES <filename>.EXE

Chapter 10, Using resource tools 163

The next example links the resources in the two .R~S files and binds them
to the .EXE file.

rlink -fi<filename>.RES <filename>.RES <filename>.EXE

The next example combines the program code in the input .EXE file with
the resources in the input .RES file and produces an output .EXE file with a
new name.

rlink -fe<filename>.EXE <filename>.RES <filename>.EXE

The final example takes input from an .RLK command file. It then links the
resources in three .RES files and binds them to the .EXE file.

rlink @<filename>.RLK

The command file «filename> .RLK) contains

-fi<filename>.RES
-fi<filename>.RES
<filename>. RES
<filename>. EXE

BRC.EXE: the resource shell

Table 10.3
BRC switches

The Borland Resource Compiler (BRC) is a resource compiler shell. It
invokes either BRCC or RLINK or both, depending on the command-line
syntax. The command-line syntax for BRC is as follows:

brc [switches] <filename>.RC [<filename>.EXE]

BRC accepts these switches:

Switch Description

-ckname>=string Defines a symbol you can test with the #IFDEF preprocessor directive.

-fo<filename> Renames the .RES file.

-fe<fiIename> Renames the .EXE file.

-fi<filename> Specifies additional .RES files.

-kpath> Adds one or more directories (separated by semicolons) to the include
search path.

-k Don't create fastload area.

-r Creates a .RES file only. The compiled .RES file is not added to the .EXE.

-v Prints progress messages (verbose listing).

164 Borland C++ User's Guide

Table 10.3: BRC switches (continued)

-x Directs the compiler to ignore the INCLUDE environment variable when it
searches for include or resource files.

-31

-w32

Builds Windows 3.1-compatible .RES files.

Builds Win32-compatible .RES files.

Depending on your task, there are several variations on the basic BRC
command-line syntax:

(

• The following statement compiles the .RC file, creates a .RES file, and
adds the .RES file to the executable file.

brc <filename>.RC [<filename>.EXE]

BRC automatically seeks an .EXE file with the same name as the .RC file.
You need to specify the .EXE file only if its name is different from the .RC
file's.

• The following statement creates a .RES file, but not an .EXE file. If you
name an .EXE file in the command line, BRC ignores it.

brc -r <filename>.RC

• The following statement adds an existing .RES file to an executable file.
The .EXE file name is required only if it differs from the .RES file name.

brc <filename>.RES [<filename>.EXE]

Chapter 10, Using resource tools 165

166 Borland C++ Users Guide

c H A p T E R 11

Using libraries

This chapter describes several tools that let you work with library files. You
can use these tools from either the IDE or the command line .

• IMPLIB creates import libraries, and IMPDEF creates module definition
files (.DEF files). Import libraries and module definition files provide
information to the linker about functions imported from dynamic-link
libraries (DLLs) .

• TLIB is a utility that manages libraries of individual.OBJ (object module)
files. A library is a convenient tool for dealing with a collection of object
modules as a single unit.

Using IMPLIB: The import librarian

The IMPLIB utility creates import libraries. IMPLIB takes as input DLLs,
module definition files, or both, and produces an import library as output.
The IDE uses IMP LIB as'a translator for a DLL target (see Chapter 2 for
information on the project manager and targets). When you add a DLL as a
target, the project manager compiles and links the DLL's dependent files to
create the .DLL file, then runs IMPLIB to create a .LIB file. You can also run
IMPLIB from the IDE (see page 20 for information on using tools from the
IDE).

Import libraries contain records. Each record contains the name of a DLL,
and specifies where in the DLL the imported functions reside. These
records are bound to the application by TLINK or the IDE linker, and
provide Windows with the information necessary to resolve DLL function
calls. An import library can be substituted for part or all of the IMPORTS
section of a module definition file.

If you've created a Windows application, you've already used at least one
import library, IMPORT.LIB, the import library for the standard Windows
DLLs. (IMPORT. LIB is linked automatically when you build a Windows
application in the IDE and when using BCC to link. Youhave to explicitly
link with IMPORT. LIB only if you're using TLINK to link separately.)

Chapter 11, Using libraries 167

A DLL can also have
an extension of .EXE

or .DRV, not just
.DLL.

Table 11.1
IMPLIB options

Options must be
lowercase and

preceded by either a
hyphen or a slash.

An import library lists some or all of the exported functions for one or more
DLLs. IMPLIB creates an import library directly from DLLs or from module
definition files for DLLs (or a combination of the two).

To create an import library for a DLL, type.

IMPLIB Options LibName [DefFiles ... I DLLs ...

where Options is an optional list of one or more IMP LIB options (see Table
ILl), LibName is the name for the new import library, DefFiles is a list of one
or more existing module definition files for one or more DLLs, and DLLs is
a list of one or more existing DLLs. You must specify at least one DLL or
module definition file.

Option Description

-c Accepts case-sensitive symbols. If you have two symbols that differ only in case (like
MYSYM and mysym) and you don't use -c, IMPLIB uses the first symbol and treats the
second one as a duplicate.

-i Tells IMPLIB to ignore WEP, the Windows exit procedure required to end a DLL. Use
this option if you are specifying more than one DLL on the IMPLIB command line.

-w No warnings.

Using IMPDEF: The module-definition file manager

Import libraries
provide access to the

functions in a
Windows DLL. See
page 167 for more

details.

168

IMPDEF takes as input a DLL name, and produces as output a module
definition file with an export section containing the names of functions
exported by the DLL. The syntax is

IMPDEF DestName.DEF SourceName.DLL

This creates a module definition file named DestName.DEF from the file
SourceName.DLL. The resulting module definition file would look
something like this:

LIBRARY FileName

DESCRIPTION 'Description'

EXPORTS
ExportFuncName @Ordinal

ExportFuncName @Ordinal

where FileName is the DLL's root file name, Description is the value of the
- DESCRIPTION statement if the DLL was previously linked with a module

definition file that included a DESCRIPTION statement, ExportFuncName

Borland C++ Users Guide

Classes in a DLL

Functions in a
DLL

names an exported function, and Ordinal is that function's ordinal value (an
integer).

IMPDEF is useful for a DLL that uses C++ classes. If you use the _export
keyword when defining a class, all of the non-inline member functions and
static data members for that class are exported. It's easier to let IMPDEF
make a module definition file for you because it lists all the exported
functions, and automatically includes the member functions and static data
members.

Since the names of these functions are mangled, it would be tedious to list
them all in the EXPORTS section of a module definition file simply to create
an import library from the module definition file. If you use IMPDEF to
create the module definition file, it includes the ordinal value for each
exported function. If the exported name is mangled, IMPDEF also includes
that function's unmangled, original name as a comment following the
function entry. So, for instance, the module definition file created by
IMPDEF for a DLL that used C++ classes would look something like this:

LIBRARY FileName

DESCRIPTION 'Description'

EXPORTS
MangledExportFuncName @Ordinal ExportFuncName

MangledExportFuncName @Ordinal ExportFuncName

where FileName is the DLL's root file name, Description is the value of the
DESCRIPTION statement if the DLL was previously linked with a module
definition file that included a DESCRIPTION statement,
MangledExportFuncName provides the mangled name, Ordinal is that
function's ordinal value (an integer), and ExportFuncName gives the
function's or.iginal name.

•

IMPDEF creates an editable source file that lists all the exported functions
in the DLL. You can edit this .DEF file to contain only those functions that
you want to make available to a particular application, then run IMPLIB on
the edited .DEF file. This results in an import library that contains import
information for a specific subset of a DLL's export functions.

Suppose you're distributing a DLL that provides functions to be used by
several applications. Every export function in the DLL is defined with
_export. Now, if all the applications u~ed all the DLL's exports, then you
could use IMP LIB to make one import library for the DLL. You could
deliver that import library with the DLL, and it would provide import

Chapter 11, Using libraries 169

information for all of the DLL's exports. The import library could be linked
to any application, thus eliminating the need for the particular application
to list every DLL function it uses in the IMPORTS section of its module
definition file.

But let's say you want to give only a few of the DLL's exports to a particular
application. Ideally, you want a customized import library to be linked to
that application-an import library that provides import information only
for the subset of functions that the application uses. All of the other export
functions in the DLL are hidden to that client application.

To create an import library that satisfies these conditions, run IMPDEF on
the compiled and linked DLL. IMPDEF produces a module definition file
that contains an EXPORT section listing all of the DLL's export functions.
You can edit that module definition file, remove the EXPORTS section
entries for those functions you don't want in the customized import library,
and then run IMPLIB on the module definition file. The result is an import
library that contains import information for only those export functions
listed in the EXPORTS section of the module definition file.

Using TLIB: the Turbo Librarian

When it modifies an
existing library, TUB

always creates a
copy of the original
library with a .BAK

extension.

See the section on
the IE option (page

172) for details.

Why use object
module libraries?

170

The libraries included with Borland C++ were built with TLIB. You can use
TLIB to build and modify your own libraries, or to modify the Borland C++
libraries, libraries furnished by other programmers, or commercial libraries
you've purchased. You can also use TLIB to

• Create a new library from a group of objectmodules.

• Add object modules or other libraries to an existing library.

• Remove object modules from an existing library.

• Replace object modules from an existing library.

• Extract object modules from an existing library.

• List the contents of a new or existing library.

TLIB can also create (and include in the library file) an extended dictionary,
which can be used to speed up linking.

Although TLIB is not essential for creating executable programs with
Borland C++, it saves you time on large development projects.

When you program in C and C++, you often create a collection of useful
functions and classes. Because of C and C++'s modularity, you are likely to
split those functions into many separately compiled source files. Any

Borland C++ Users Guide

The TLiB
command line

For an online
summary of TLiB

options, type TLIB
and press Enter.

Tab,le 11.2: TLiB options

particular program might use only a subset of functions from the entire
collection.

An object module library manages a collection of functions and classes.
When you link your program with a library, the linker scans the library and
automatically selects only those modules needed for the current program.

The TLIB command line takes the following general form, where items
listed in square brackets are optional:

tlib [@respfile] [option] libname [operations] [, listfile]

In the IDE, you can create a library as a target in a project file. Using
TargetExpert, choose Static Library for the target type (see Chapter 2 for
help using the project manager). TLIB is the default translator for a library
file and it uses options you set in the Project Options dialog box under the
Librarian section (choose Options I Project from the main menu).

Option Librarian (IDE option) Description

@respfile

Iibname

Ie

IE
IPsize
10
operations

Iistfile

Case-sensitive library

Create extended dictionary
Library Page Size
Purge comment records

Generate list file

The path and name of the response file you want to include. You can specify more
than one response file.
The DOS path name of the library you want to create or manage. Every TLiB com
mand must be given a Iibname. Wildcards are not allowed. TLiB assumes an exten
sion of .LlB if none is given. Use only the .LlB extension because the command-line
compilers (BCC and BCC32) and the IDE require the .LlB extension to recognize
library files. Note: If the named library does not exist and there are add operations,
TLiB creates the library.
The ,case-sensitive flag. This option is not normally used; see page 172 for a
detailed explanation.
Creates Extended Dictionary; see page 172 for a detailed explanation.
Sets the library page size to size; see page 172 for a detailed explanation.
Removes comment records from the library.
The list of operations TLiB performs. Operations can appear in any order. If you only
want to examine the contents of the library, don't give any operations.
The name of the file that lists library contents. It must be preceded by a comma. No
listing is produced if you don't give a file name. The listing is an alphabetical list of
each module. The entry for each module contains an alphabetical list of each public
symbol defined in that module. The default extension for the Iistfile is .LST. You can
direct the listing to the screen by using the Iistfile name CON, or to the printer by
using the name PRN.

Using response
files

When you use a large number of operations, or if you find yourself
repeating certain sets of operations over and over, you will probably want
to use response files. A response file is an ASCII text file (which can be
created with the Borland C++ editor) that contains all or part of a TLIB

Chapter 11, Using libraries 171

Using case
sensitive symbols:
The IC option

Don't use Ie if you
plan to use the library

with other linkers or
let other people use

the library.

Creating an
extended
dictionary: The IE
option

Setting the page
size: The IP option

172

command. Using response files, you can build TLIB commands larger than
would fit on one command line. Response files can

• Contain more than one line of text; use the ampersand character (&) at
the end of a line to indicate that another line follows.

• Include a partial list of commands. You can combine options from the
command line with options in a response file.

• Be used with other response files in a single TLIB command line.

TLIB maintains a dictionary of all public symbols defined in the modules of
the library. When you add a module to a library, its symbol must be
unique. If you try to add a module to the library that duplicates a symbol,
TLIB displays an error message and doesn't add the module.

Because some linkers aren't case-sensitive, TLIB rejects symbols that differ
only in case (for example, the symbols lookup and LOOKUP are treated as
duplicates). TLINK, however, can distinguish case, so if you use your
library only with TLINK, you can use the TLIB Ie option to add a module
to a library that includes symbols differing only in case.

To increase the linker's capacity for large links, you can use TLIB to create
an extended dictionary and append it to the library file. This dictionary
contains, in a compact form, information that is not included in the stan
dard library dictionary and that lets the linker (TLINK) preprocess library
files so that any unnecessary modules are not preprocessed.

To create an extended dictionary for a library that you're modifying, use
the IE option when you start TLIB to add, remove, or replace modules in
the library. You can also use the IE option to create an extended dictionary
for an existing library that you don't want to modify. For example, if you
type TLIB IE rnylib the linker appends an extended dictionary to the
specified library.

If you use IE to add a library module containing a C++ class with a virtual
function, you'll get the error message Library contains COMDEF
records--extended dictionary not created.

Every DOS library file contains a dictionary that appears at the end of the
.LIB file, following all of the object modules. For each module in the library,
the dictionary contains a 16-bit address of that particular module within the
.LIB file; this address is given in terms of the library page size (it defaults to
16 bytes).

The library page size determines the maximum combined size of all object
modules in the library, which cannot exceed 65,536 pages. The default (and

Borland C++ Users Guide

Removing comment
records: The /0
option

The operation list

To replace a module,
remove it, then add

the replacement
module.

Wildcards are never
allowed in file or
module names.

minimum) page size of 16 bytes allows a library of about 1 MB in size. To
create a larger library, use the IP option to increase the page size. The page
size must be a power of 2, and it cannot be smaller than 16 or larger than
32,768.

All modules in the library must start on a page boundary. For example, in a
library with a page size of 32 (the lowest possible page size higher than the
default 16), an average of 16 bytes is lost per object module in padding. If
you attempt to create a library that is too large for the given page size, TLIB
issues an error message and suggests that you use IP with the next
available higher page size.

Use the 10 option to remove comment records, which reduces the size of a
library. For example, you might have debugging or browsing information
in a library, but you no longer need to use that information; the 10 option
removes that information.

The operation list describes what actions you want TLIB to do. It consists of
a sequence of operations given one after the other. Each operation consists
of a one- or two-character action symbol followed by a file or module name.
You can put whitespace around either the action symbol or the file or
module name but not in the middle of a two-character action or in a name.

You can put as many operations as you like on the command line, up to
DOS's COMMAND. COM-imposed line-length limit of 127 characters. The
order of the operations is not important. TLIB always applies the
operations in a specific order:

1. All extract operations are done first.

2. All remove operations are done next.

3. All add operations are done last.

TLIB finds the name of a module by stripping any drive, path, and exten
sion information from the given file name. TLIB always assumes reasonable
defaults. For example, to add a module that has an .OBJ extension from the
current directory, you need to supply only the module name"not the path
and .OBJ extension.

Chapter 11, Using libraries 173

Table 11.3
TUB action symbols

To create a library,
add modules to a

library that does not
yet exist.

You can't directly
rename modules in a
library. To rename a
module, extract and

remove it, rename the
file just created, then

add it back into the
library.

Examples

174

TLIB recognizes three action symbols (-, +, *), which you can use singly or
combined in pairs for a total of five distinct operations. The action symbols
and what they do are listed here:

Action
symbol Name Description

+ Add TUB adds the named file to the library. If the file has no extension, TUB
assumes an extension of .OBJ. If the file is itself a library (with a .UB
extension), then the operation adds all of the modules in the named library
to the target library. If a module being added already exists, TUB displays
a message and does not add the new module.

Remove TUB removes the named module from the library. If the module does not
exist in the library, TUB displays a message. A remove operation needs
only a module name. TUB lets you enter a full path name with drive and
extension included, but ignores everything except the module name.

* Extract TUB creates the named file by copying the corresponding module from the
library to the file. If the module does not exist, TUB displays a message
and does not create a file. If the named file already exists, it is overwritten.

-* Extract & TUB copies the named module to the corresponding file name and then

*- Remove removes it from the library.

-+ Replace TUB replaces the named module. with the corresponding file.
+-

These examples demonstrate some of the things you can do with TLIB:

• To create a library named MYLIB.LIB with modules X.OBJ, Y.OBJ, and
Z.OBJ, type tlib mylib +x +y +z.

• To create a library named MYLIB.LIB and get a listing in MYLIB.LST too,
type tlib mylib +x +y. +z, mylib.lst.

• To replace module X.OBJ with a new copy, add A.OBJ and delete Z.OBJ
from MYLIB.LIB, type tlib mylib -+x +a -z.

• To create a new library (ALPHA) with modules A.OB], B.OBJ ... G.OBJ
using a response file:

• First create a text file, ALPHA.RSP, with
+a.obj +b.obj +c.obj &

+d.obj +e.obj +f.obj &
+g.obj

• Then use the TLIB command, which produces a listing file named
ALPHA.LST: tlib alpha @alpha. rsp, alpha .lst

Borland C++ Users Guide

MAKE basics

c H A p T E R 12

Using MAKE

MAKE.EXE is a command-line project-manager utility that helps you
quickly compile only those files in a project that have changed since the last
compilation. (MAKER is a real-mode version of MAKE.) If you work in the
IDE, you should use the IDE's project manager (see Chapter 2).

This chapter covers the following topics:

_ MAKE basics _ Using MAKE macros

_ Makefile contents _ Using MAKE directives

_ Using explicit and implicit rules

MAKE uses rules from a text file (MAKEFILE or MAKEFILE.MAK by
default) to determine which files to build and how to build them. For
example, you can get MAKE to compile an .EXE file if the date-time stamps
for the .CPP files that contain the code for the .EXE are more recent than the
.EXE itself. MAKE is very useful when you build a program from more
than one file because MAKE will recompile only the files that you modified
since the last compile.

Two types of rules (explicit and implicit) tell MAKE what files depend on
each other. MAKE then compares the date-time stamp of the files in a rule
and determines if it should execute a command (the commands usually tell
MAKE which files to recompile or link, but the commands can be nearly
any operating system command).

MAKE accepts * and The general syntax for MAKE is
? as wildcards.

To get command-line
help for MAKE, type

MAKE -?orMAKE
-h.

Chapter 12, Using MAKE

MAKE [options ... J [targets [s JJ

where options are MAKE options that control how MAKE works, and
targets are the names of the files in a makefile that you want MAKE to
build. Options are separated from MAKE by a single space. Options and
targets are also separated by spaces.

175

To place MAKE
instructions in a file

other than
MAKEFILE, see the
section titled "MAKE

options."

BUlL TINS.MAK

176

If you type MAKE at the command prompt, MAKE performs the following
default tasks:

1. MAKE looks in the current directory for a file called BUILTINS.MAK
(this file contains rules MAKE always follows unless you use the-r
option). If it can't find the file in the current directory, it looks in the
directory where MAKE.EXE is stored. After loading BUILTINS.MAK,
MAKE looks for a file called MAKE FILE or MAKEFILE.MAK. If MAKE
can't find any of these files, it gives you an error message.

2. When MAKE finds a makefile, it tries to build only the first target file in
the makefile (although the first target can force other targets to be built).
MAKE checks the time and date of the dependent files for the first
target. If the dependent files are more recent than the target file, MAKE
executes the target commands, which update the target. See the section
called "Using makefiles" for more information on instructions in
makefiles.

3. If a dependent file for the first target appears as a target elsewhere in the
makefile, MAKE checks its dependencies and builds it before building
the first target. This chain reaction is called linked dependency.

4. If the MAKE build process fails, MAKE deletes the target file it was
building. To get MAKE to keep a target when a build fails, see the
.precious directive on page 192.

You can stop MAKE by using Ctrl+Break or Ctrl+C.

BUILTINS.MAK contains standard rules and macros that MAKE uses
before it uses a makefile (you can use the -r option to tell MAKE to ignore
BUILTINS.MAK). Use BUILTINS.MAK for instructions or macros you want
executed each time you use MAKE. Here's the default text of
BUILTINS.MAK:

Borland Ctt - (C) Copyright 1992 by Borland International

CC = BCC
AS = TASM
RC= RC
.asm.obj:

$ (AS) $ (AFLAGS) $&.asm
.e.exe:

$(CC) $ (CFLAGS) $&.e
.e.obj:

$(CC) $ (CFLAGS) Ie $&.e
.epp.obj:

$(CC) $ (CPPFLAGS) Ie $&.epp

Borland C++ Users Guide

Using
TOUCH.EXE

You can use
wildcards * and? with

TOUCH.

Important!

MAKE optio,ns

.rc.res:
$(RC) $ (RFLAGS) /r $&

. SUFFIXES: .exe .obj .asm .c .res .rc

Sometimes you'll want to force a target file to be recompiled or rebuilt even
though you haven't changed it. One way to do this is to use the TOUCH
utility. TOUCH changes the date and time of one or more files to the
current date and time, making it "newe.r" than the files that depend on it.

You can force MAKE to rebuild a target file by touching one of the files that
target depends on. To touch a file (or files), type the following at the
command prompt:

touch filename [filename ...]

TOUCH updates the file's creation date and time.

Before you use TOUCH, make sure your system's internal clock is set
correctly. If it isn't, TOUCH and MAKE won't work properly.

Command-line options control MAKE behavior. Options are case-sensitive.
Type options with either a preceding - or /. For example, to use a file called
PROJECTA.MAK as the make file, type MAKE -fPROJECTA.MAK (a space after-f
is optional). Many of the command-line options have equivalent directives
that are used in the make file (see page 188 for more information on
directives).

Table 12.1: MAKE options

Option Description

-h or -? Displays MAKE options and shows defaults with a trailing plus sign.

-B Builds all targets regardless of file dates.

-Dmacro Defines macro as a single character, causing an expression !ifdef macro written in the makefile to
return true.

[-D]macro=[string] Defines macro as string. If string contains any spaces or tabs, enclose string in quotation marks. The
-D is optional.

-I directory _ Searches for include files in the current directory first, then in directory.

-K Keeps temporary files that MAKE creates (MAKE usually deletes them). See also KEEP on page 179.

-N Executes MAKE like Microsofts NMAKE (see the section following this table for more information).

-Umacro Undefines previous definitions of macro.

-W Writes the current specified non-string options to MAKE.EXE making them defaults.

-ffilename Uses filename or filename.MAK instead of MAKEFILE (space after -1 is optional).

Chapter 12, Using MAKE 177

Table 12.1: MAKE options (continued)

-a Checks dependencies of include files and nested include files associated with .OBJ files and updates
the .OBJ if the .H file changed. See also -c.

-c

-ddirectory

-e

-i

-m

-n

-p

-q

, -r

-s

-S

Setting options on
as defaults

Caution!

Compatibility with
Microsofts NMAKE

178

Caches autodependency information, which can improve MAKE's speed. Use with -a; don't use if
MAKE changes include files (such as using TOUCH from a makefile or creating header or include files
during the MAKE process).

Used with -S to specify the drive and directory MAKE uses when it swaps out of memory. The option is
ineffective when used with the MAKER.

Ignores a macro if its name is the same as an environment variable (MAKE uses the environment
variable instead of the macro).

Ignores the exit status of all programs run from MAK~ and continues the build process.

Displays the date and time stamp of each file as MAKE processes it.

Prints the commands but doesn't actually perform them, which is helpful for debugging a makefile.

Displays all macro definitions and implicit rules before executing the makefile.

Returns 0 if the target is up-to-date and nonzero if is is not (for use with batch files).

Ignores any rules defined in BUlL TINS.MAK.

Suppresses onscreen command display.

Swaps MAKER out of memory while commands are executed, reducing memory overhead and
allowing compilation of large modules. This option has no effect on MAKER.

The -W option lets you set some MAKE options on as defaults so that each
time you use MAKE, those options are used. To set MAKE options, type

make -option [-] [-option] [-] ...-w

For example, you could type MAKE -m -W to always view file dates and times.
Type MAKE -m- -W to turn off the default option. When MAKE asks you to
write changes to MAKE.EXE, type Y.

The -W option doesn't work when the DOS Share program is running. The
message Fatal: unable to open file MAKE. EXE is displayed. The -Woption
doesn't work with the fC?llowing MAKE options:
_ -Dmacro _ -ffilename
_ -Dmacro=string _ -? or -h
_ -ddirectory _ -Idirectory
_-Usymbol

Use the -N option if you want to use makefiles that were originally created
for Microsoft's NMAKE. The following changes occur when you use -N:

Borland C++ Users Guide

• MAKE interprets the « operator like the && operator: temporary files
are used as response files, then deleted. To keep a file, either use the-K
command-line option or use KEEP in the makefile.

MAKE usually deletes temporary files it creates.

«TEMPFILE.TXT!
text

!KEEP

If you don't want to keep a temporary file, type NOKEEP or type only
the temporary file name. If you use NOKEEP with a temporary file, then
use the -K option with MAKE, MAKE deletes the temporary file.

• The $d macro is treated differently. Use !ifdef or !ifndef instead.

• Macros that return paths won't return the last \. For example, if $ «D)
normally returns C: \CPP\, the -N option makes it return C: \CPP.

• Unless there's a matching .suffixes directive, MAKE searches rules from
bottom to top of the makefile.

• The $* macro always expands to the target name instead of the
dependent in an implicit rule.

Using makefiles

Symbolic targets

Chapter 12, Using MAKE

A makefile is an ASCII file of instructions for MAKE.EXE. MAKE assumes
your makefile is called MAKEFILE or MAKEFILE.MAK unless you use the
-f option (see page 177).

MAKE either builds targets you specify at the MAKE command line or it
builds only the first target it finds in the makefile (to build more than one
target, see the section "Symbolic targets.") Makefiles can contain:

.• Comments • Macros

• Explicit rules • Directives

• Implicit rules

A symbolic target forces MAKE to build multiple targets in a make file (you
don't need to rely on linked dependencies). The dependency line lists all
the targets you want to build. You don't type any commands for a symbolic
target.

In the following makefile, the symbolic target allFiles builds both FILE1;EXE
and FILE2.EXE. -

179

Rules for symbolic
targets

allFiles: filel.exe file2.exe
filel.exe: filel.obj

bee file1. obj
file2.exe: file2.obj

bee file2. obj

#Note this target has no commands.

Observe the following rules with symbolic targets:

• Symbolic targets don't need a command line.

• Give your symbolic target a unique name; it can't be the name of a file in
your current directory.

• Name symbolic targets according to the operating system rules for
naming files.

Explicit and implicit rules

Explicit rule
syntax

180

The explicit and implicit rules that instruct MAKE are generally defined as
follows:

• Explicit rules give MAKE instructions for specific files.

• Implicit rules give general instructions that MAKE follows when it can't
find an explicit rule.

Rules follow this general format:

Dependency line
Commands

The dependency line is different for explicit and implicit rules, but the
commands are the same (for information on linked dependencies see
page 176).

MAKE supports multiple rules for one target. You can add dependent files
after the first explicit rule, but only one should contain a command line. For
example,

Targetl: dependentl dep2 dep3 dep4 dep5
Targetl: dep6 dep7 dep8

bee -e $**

Explicit rules are instructions to MAKE that specify exact file names. The
explicit rule names one or more targets followed by one or two colons. One

Borland e++ Users Guide

Braces must be
included if you use

the paths parameter.

Single targets with
multiple rules

Chapter 12, Using MAKE

colon means one rule is written for the target; two colons mean that .two or
more rules are written for the target.

Explicit rules follow this syntax:

target [target. ..]: [:] [{path}] [dependent [s] ...]
[commands]

• target The name and extension of the file to be updated (target
must be at the start of the line-no spaces or tabs are
allowed). One or more targets must be separated by spaces
or tabs. Don't use a target's name more than once in the
target position of an explicit ru'ie in a makefile.

• path A list of directories, separated by semicolons and enclosed
in braces, that points to the dependent files.

• dependent The file (or files) whose date and time MAKE checks to see if
it is newer than target (dependent must be preceded by a
space). If a dependent file also appears in the makefile as a
target, MAKE updates or creates the target file before using
it as a dependent for another target.

• commands Any operating system command. Multiple commands are
allowed in a rule. Commands must be indented by at least
one space or tab (see the section on commands on page 183).

If the dependency or command continues on to the next line, use the
backslash (\) at the end of the line after a target or a dependent file name.
For example:

MYSOURCE.EXE: FILE1.OBJ\
FILE2.0BJ\
FILE3.0BJ

bee filel.obj file2.obj file3.obj

A single target can have more than one explicit rule. You must use the
double colon:: after the target name to tell MAKE to expect multiple
explicit rules. The following example shows how one target can have
multiple rules and commands .

. epp.obj:
bee -e -neobj $<

.asrn.obj:
tasrn /rnx $<, asrnobj\\

mylib.lib :: fl.obj f2.obj
echo Adding C files

181

Implicit rule
syntax

Explicit rules with
implicit commands

See page 186 for
information on default

macros.

182

tlib mylib -+cobj\fl -+cobj\f2

mylib.lib :: f3.obj f4.obj
echo Adding ASM files
tlib mylib -+asmobj\f3 -+asmobj\f4

An implicit rule starts with either a path or a period and implies a target
dependent file relationship. Its main components are file extensions
separated by periods. The first extension belongs to the dependent, the
second to the target. '

If implicit dependents are out-of-date with respect to the target or if they
don't exist, MAKE executes the commands associated with the rule. MAKE
updates explicit dependents before it updates implicit dependents.

Implicit rules follow this basic syntax:

[{source_dirs}] . source_ext [{target_dirs}] .target_ext:
[commands]

• {source_dirs} The directory of the dependent files. Separate multiple
directories with a semicolon.

• .source_ext The dependent file-name extension.

• {target_dirs} The directory of the target (executable) files. Separate
multiple directories with a semicolon.

• .target_ext The target file-name extension. Macros are allowed here.

• : Marks the end of the dependency line.

• commands Any operating system command. Multiple commands are
allowed. Commands must be indented by one space or
tab (see the section on commands on page 183).

If two implicit rules match a target extension but no dependent exists,
MAKE uses the implicit rule whose dependent's extension appears first in
the .sUFFIXES list. See the ".suffixes" section on page 192.

A target in an explicit rule can get its command line from an implicit rule.
The following example shows an implicit rule and an explicit rule without
a command line .

. c.obj:
bcc -c $< #This command uses a macro $< described later.

myprog.obj: #This explicit rule ,uses the command: bcc -c myprog.c

The implicit rule command tells MAKE to compile MYPROG.C (the macro
$< replaces the name myprog. obj with myprog. c).

Borland C++ Users Guide

Commands
syntax

Command prefixes

Table 12.2
Command prefixes

Using @

Using -num and -

Chapter 12, Using MAKE

Commands can be any operating system command, but they can also
include MAKE macros, directives, and special operators that operating
systems can't recognize (note that I can't be used in commands). Here are
some sample commands:

cd ..

bcc -c rnysource.c

COpy *.OBJ C:\PROJECTA

bcc -c $(SOURCE) #Macros are explained later in the chapter.

Commands follow this general syntax:

[prefix ... J commands

Commands in both implicit and explicit rules can have prefixes that modify
how MAKE treats the commands. Table 12.2 lists the prefixes you can use
in makefiles; each prefix is explained in more detail following the table.

Option Description

@ Don't display command while it's ,being executed.

-num Stop processing commands in the makefile when the exit code returned from
command exceeds num. Normally, MAKE aborts if the exit code is nonzero. No
white space is allowed between - and num.

Continue processing commands in the makefile, regardless of the exit code
returned by them.

& Expand either the macro $**, which represents all dependent files, or the macro
$?, which represents all dependent files stamped later than the target. Execute the
command once for each dependent file in the expanded macro.

The following command uses the modifier @, which prevents the
command from displaying onscreen when MAKE executes it.

diff.exe : diff.obj
@bcc dif f. obj

The -nurn and - modifiers control MAKE processing under error
conditions. You can choose to continue with the MAKE process if an error
occurs or only if the errors exceed a given number.

183

Using &

Command
operators

Table 12.3
Command operators

Debugging with
temporary files

184

In the following example, MAKE continues processing if BCC isn't run
successfully:

target.exe : target.obj
target.obj : target.cpp

bee -c target.cpp

The & modifier issues a command once for each dependent file. It is
especially useful for commands that don't take a list of files as parameters.
For example,

eopyall : filel.epp file2.epp
© $** e:\temp

results in COpy being invoked twice as follows:
copy filel.cpp e:\temp
copy file2.epp c:\temp

/

Without the & modifier, COpy would be called only once.

You can use any operating system command in a MAKE commands
section. MAKE uses the normal operators (such as +,-, and so on), but it
also has other operators you can use.

Operator

<

>

»

«

&&
delimiter

Description

Take the input for use by command from file rather than from standard input.

Send the output from command to file.

Append the output from command to file.

Create a temporary, in line file and use its contents as standard input to command.

Create a temporary file and insert its name in the makefile.

Any character other than # and \ used with « and && as a starting and ending
delimiter for a temporary file. Any characters on the same line and immediately
following the starting delimiter are ignored. The closing delimiter must be written on
a line by itself.

Temporary files can help you debug a command set by placing the actual
commands MAKE executes into the temporary file. Temporary file names
start at MAKEOOOO.@@@, where the 0000 increments for each temporary file
you keep. You must place delimiters after && and at the end of what you
want sent to the temporary file (! is a good delimiter).

The following example shows && instructing MAKE to create a file of the
input to TLINK.

prog.exe: A.obj B.obj

Borland C++ Users Guide

TLINK Ie &&!
eOs.obj $**
prog.exe
prog.map
maths.lib es.lib

The response file created by && contains these instructions:

eOs.obj a.obj b.obj
prog.exe
prog.map
maths.lib es.lib

Using MAKE macros

Macros are case
sensitive: MACR01 is

different from
Macro1.

Defining macros

Chapter 12, Using MAKE

A MAKE macro is a string that is expanded (used) wherever the macro is
called in a makefile. Macros let you create template makefiles that you can
change to suit different projects. For example, to define a macro called
LIBNAME that represents the string "mylib.lib," type LIBNAME = mylib.lib.
When MAKE encounters the macro $ (LIBNAME), it uses the string mylib.lib.

If MAKE finds an undefined macro in a makefile, it looks for an operating
system environment variable of that name (usually defined with SET) and
uses its definition as the expansion text. For example, if you wrote $ (path)
in a makefile and never defined path, MAKE would use the text you
defined for PATH in your AUTOEXEC.BAT. (See the manuals for your
operating system for information on defining environment variables.)

The general syntax for defining a macro in a make file is MacroName =
expansion_text.

• MacroName is case-sensitive and is limited to 512 characters .

• expansion_text is limited to 4096 characters consisting of alphanumeric
characters, punctuation, and white space.

Each macro must be on a separate line in a makefile. Macros are usually put
at the top of the makefile. If MAKE finds more than one definition for a
macroName, the new definition replaces the old one.

Macros can also be defined using the command-line option -0 (see page
177). More than one macro can be defined by separating them with spaces.
The following examples show macros defined at the command line:

make -Dsoureedir=e:\projeeta
make eornrnand="bee -e"

185

Table 12.4
Command line vs.

makefile macros

Using a macro

String
substitutions in
macros

Default MAKE
macros

186

make command=bcc option=-c

The following differences in syntax exist between macros entered on the
command line and macros written in a makefile.

Syntax Makefile Command line

Spaces allowed before and after = Yes No

Space allowed before macroName No Yes

To use a macro in a makefile, type $ (MacroName) where MacroName is the
name of a defined macro. You can use braces {} and parentheses 0 to
enclose the MacroName.

MAKE expands macros at various times depending on where they appear
in the makefile:

I

• Nested macros are expanded when the outer macro is invoked.

• Macros in rules and directives are expanded when MAKE first looks at
the makefile.

• Macros in commands are expanded when the command is executed.

MAKE lets you temporarily substitute characters in a previously defined
macro. For example, if you defined a macro called SOURCE as SOURCE =

fl. cpp f2. cpp f3. cpp, you could substitute the characters .OBJ for the
characters .CPP by using $ (SOURCE: . CPP=. OBJ). The substitution doesn't
redefine the macro.

Rules for macro substitution:

• Syntax: $ (MacroName: original_text=new_text) .

• No whitespace before or after the colon.

• Characters in originaCtext must exactly match the characters in the macro
definition; this text is case-sensitive.

MAKE now lets you use macros within substitution macros. For example,

MYEXT=.C
SOURCE=fl.cpp f2.cpp f3.cpp
$(SOURCE:.cpp=$(MY~XT)) #Changes fl.cpp to fl.C, etc.

MAKE contains several default macros you can use in your makefiles.
Table 12.5 lists the macro definition and what it expands to in explicit and
implicit rules.

Bor/and c++ Users Guide

Table 12.5: Default macros

Macro Expands in implicit: Expands in explicit: Example

$* path\dependent file path\target file C:\PROJECTA \MYTARGET

$< path\dependent file+ext path\target file+ext C:\PROJ ECTA\MYTARG ET.OBJ

$: path for dependents path for target C:\PROJECTA .
$. dependent file+ext target file + ext MYSOURCE.C

$& dependent file target file MYSOURCE

$@ path\target file+ext path\target file+ext C:\PROJECTA\MYSOURCE.C

$** path\dependent file+ext all dependents file+ext FILE1.CPP FILE2.CPP FILE3.CPP

$? path\dependent file+ext old dependents FILE1.CPP

Table 12.6
Other default macros Macro Expands to: Comment

Modifying default
macros

Table 12.7
File-name macro

modifiers

Chapter 12, Using MAKE

__ MSDOS_ _ If running under DOS.

__ MAKE __

MAKE

MAKEFLAGS

MAKEDIR

Ox0370

make

options

directory

MAKEs hex version number.

MAKEs executable file name.

The options typed at the command line.

Directory where MAKE.EXE is located.

When the default macros listed in Table 12.5 don't give you the exact string
you want, macro modifiers let you extract parts of the string to suit your
purpose.

To modify a default macro, use this syntax:

$(MacroName [modifier])

Table 12.7 lists macro modifiers and provides examples of their use.

Modifier Part of file name expanded Example Result

0 Drive and directory $«0) C:\PROJECTA\

F Base and extension $«F) MYSOURCE.C

B Base only $«B) MYSOURCE

R Drive, directory, and base $«R) C:\PROJECTA\MYSOURCE

187

Using MAKE directives

188

Table 12.8
MAKE directives

MAKE directives resemble directives in languages such as C and Pascal,
and perform various control functions, such as displaying commands
onscreen before executing them. MAKE directives begin either with an
exclamation point or a period. Table 12.8 lists MAKE directives and their
corresponding command-line options (directives override command-line
options). Each directive is described in more detail following the table.

Directive

. autodepend

!elif

!else

!endif

!error

!if

!ifdef

!ifndef

. ignore

!include

!message

. noautodepend

. nolgnore

.nosilent

.noswap

.path.ext

. precious

.silent

.suffixes

.swap

!undef

Option

-a

-i

-a-

-i-

-s-

-S-

-s

-S

Description

Turns on autodependency checking .

Acts like a C else if.

Acts like a C else.

Ends an !if, !ifdef, or !ifndef statement.

Stops MAKE and prints an error message.

Begins a conditional statement.

If defined that acts like a C ifdef, but with macros rather than
#define directives.

If not defined .

MAKE ignores the return value of a command.

Specifies a file to include in the makefile.

Lets you print a message from a makefile .

Turns off autodependency checking.

Turns off .Ignore .

Displays commands before MAKE executes them.

Tells MAKE not to swap itself out of memory before executing a
command.

Tells MAKE to search for files with the extension .ext in path
directories.

Saves the target or targets even if the build fails .

Executes without printing the commands.

Determines the implicit rule for ambiguous dependencies.

Tells MAKE to swap itself out of memory before executing a
command.

Clears the definition of a macro.

Borland C++ Users Guide

.autodepend

!error

Summing up error
checking controls

Chapter 12, Using MAKE

Autodependencies occur in .OBJ files that have corresponding .CPP, .C, or
.ASM files. With .autodepend on, MAKE compares the dates and times of
all the files used to build the .OBJ. If the dates and times of the files used to
build the .OBJ are different from the date-time stamp of the.OBJ file, the
.OBJ file is recompiled. You can use .autodepend or -a in place of linked
dependencies (see page 176 for information on linked dependencies).

Thi~ is the syntax of the !error directive:

lerror message

MAKE stops processing and prints the following string when it encounters
this directive:

Fatal makefile exit code: Error directive: message

Embed !error in conditional statements to abort processing and print an
error message, as shown in the following example:

! if ! $d (MYMACRO)
#if MYMACRO isn't defined
lerror MYMACRO isn't defined
lendif

If MYMACRO in the example isn't defined, MAKE prints the following
message:

Fatal makefile 4: Error directive: MYMACRO isn't defined

Four different controls turn off error checking:

• The .ignore directive turns off error checking for a selected portion of the
makefile.

• The -i command-line option turns off error checking for the entire
makefile.

• The -num comm~nd operato:t; which is entered as part of a rule, turns off
error checking for the related command if the exit code exceeds the
specified number.

• The - command operator turns off error checking for the related
command regardless of the exit code.

189

!if and other
conditional
directives

190

The !it directive works like C it statements (see the Programmer's Guide if
you don't understand it statements). As shown here, the syntax of !it and
the other conditional directives resembles compiler conditionals:

!if condition !if condition !if condition

!endif !else !elif condition

!endif !endif

The following expressions are equivalent:
! ifdef macro and! if $d (macro)

, ! ifndef macro and! if, ! $d (macro)

These rules apply to conditional directives:

!ifdef macro

!endif

_ One !else directive is allowed between lit, !itdet, or !itndet and !endit
directives.

_ Multiple !elif directives are allowed between lit, !itdet, or !itndet and
!else directives and !endif.

_ You can't split rules across conditional directives.

_ You can nest conditional directives.

_ lit, !ifdef, and !ifndet must have matching !endit directives within the
same source file.

The following information can be included between !it and !endit
directives:
_ Macro definition _ !include directive

_ Explicit rule _ terror directive

, _ Implicit rule _ !undet directive

Condition in it statements represents a conditional expression consisting of
decimal, octal, or hexadecimal constants and the operators shown in
Table 12.9.

Borland C++ User's Guide

Table 12.9
Conditional operators

!include

!message

Chapter 12, Using MAKE

Operator Description Operator Description

Negation ?: Conditional expression

Bit complement Logical NOT

+ Addition » Right shift

Subtraction « Left shift

Multiplication & Bitwise AND

Division I Bitwise OR

% Remainder " Bitwise XOR

&& Logical AND >= Greater than or equal*

II Logical OR <= Less than or equal*

> Greater than -- Equality*

< Less than != Inequality*

·Operator also works with string expressions.

MAKE evaluates a conditional expression as either a simple 32-bit signed
integer or as a character string.

This directive is like the #include preprocessor directive for the C or C++
language-it lets you include the text of another file in the makefile:

!include filename

You can enclose filename in quotation marks ('''') or angle brackets «» and
nest directives to unlimited depth, but writing duplicate !include directives
in a makefile isn't permitted-you'll get the error message cycle in the
include file. .

Rules, commands, or directives must be complete within a single source
file; you can't start a command in an !include file, then finish it in the
makefile.

MAKE searches for !include files in the current directory unless you've
specified another directory with the -I option.

The !message directive lets you send messages to the screen from a
makefile. You can use these messages to help debug a makefile that isn't
working the way you'd like it to. For example, if you're havi:J;lg trouble with
a macro definition, you could put this line in your makefile:

!message The macro is defined here as: $ (MacroName)

191

.path.ext

.precious

.suffixes

192

When MAKE interprets this line, it will print onscreen The macro is defined
here as: . CPP, if th~ macro expands to .CPP at that line. Using a series of
!message directives, you can debug your makefiles.

The .path.ext directive tells MAKE where to look for files with a certain
extension. The following example tells MAKE to look for files with the .c
extension in C:\SOURCE or C:\CFILES and to look for files with the .obj
extension in C:\OBJS .

. path.c = C:\CSOURCEiC:\CFILES

.path.obj = C:\OBJS

If a MAKE build fails, MAKE deletes the target file. The .precious directive
prevents the file deletion, which is desired for certain kinds of targets such
as libraries. When a build fails to add a module to a library, you don't want
the library to be deleted.

The syntax for .precious is:

.precious: target [target] ... [target]

The .suffixes directive tells MAKE the order (by file extensions) for
building implicit rules.

The syntax of the .suffixes directive is:

. suffixes: .ext [.ext] [.ext] ... [.ext]

.ext represents the dependent file extension in implicit rules. For example,
you could include the line. suffixes: . asm . c . cpp to tell MAKE to interpret
implicit rules beginning with the ones dependent on .ASM files, then .C
files, then ·.CPP files, regardless of what order they appear in the makefile.

The following example shows a makefile containing a .suffixes directive
that tells MAKE to look for a source file (MYPROG.EXE) first with an .ASM
extension, next with a.C extension, and finally with a .CPP extension. If
MAKE finds MYPROG.ASM, it builds MYPROG.OBJ from the assembler
file by calling TASM. MAKE then calls TLINK; otherwise, MAKE searches
for MYPROG.C to build the .OBJ file, and so on .

. suffixes: .asrn .c .cpp

rnyprog.exe: rnyprog.obj
tlink rnyprog.obj

.cpp.obj:
bcc -P $<

.asrn.obj:

Borland C++ Users Guide

!undef

Using macros in
directives

Caution!

Null macros

Chapter 12, Using MAKE

tasm /mx $<
.e.obj:

bee -p- $<

The syntax of the !undef directive is:

!undef MaeroName

!undef (undefine) clears the given macro, MacroName, causing an !ifdef
MacroName test to fail.

The macro $d is used with the !if conditional directive to perform some
processing if a specific macro is defined. The $d is followed by a macro
name, enclosed in parentheses or braces, as shown in the following
example.

!if $d(DEBUG)
bee -v fl.epp f2.epp
!else
bee -v- fl.epp f2.epp
!endif

#If DEBUG is defined,
#eompile with debug information;
#otherwise (else)
#don't include debug information.

Don't use the $d macro when MAKE is invoked with the -N option.

An undefined macro causes an !ifdef MacroName test to return false; a null
macro returns true. A null macro is a macro defined with either spaces to
the right of the equal sign (=) or no characters to the right of the equal sign.
For example, the following line defines a null macro in a makefile:

NULLMACRO =

One of the following lines can define a null macro on the MAKE command
line:

NULLMACRO=" "
or

-DNULLMACRO

193

194 Borland C++ Users Guide

p A R T II

Using Resource Workshop

This section of the User's Guide describes how to use Resource Workshop, a
tool that integrates the entire process of designing and compiling resources
for applications running under Microsoft Windows, Version 3.0 and later .

. Resource Workshop,

• Works with resources in either text or binary format. It includes
graphics~oriented editors that let you editbinary files and a text editor
that lets you edit the fil~s as resource scripts.

• Makes it easy to manage hundreds of resources stored in dozens of files.
• Includesmultilevel Undo and Redo features that let you step back

through changes you've made.

• Includes all the compilers you need and lets you compile your resources
only when you need to. .

• Decompiles birlary resource files, so you can change a program's
resources even if you don't have access to the source code .

• Includes features that automatically check for errors, making it easy to
test . resources for errors like incorrect syntax and duplicate .resource IDs.

There arefouronlme files for Resource Workshop. These filesinc1ude
advanced information that most users don't need. .

• BWCCAPI.TXT

• CUSTCNTLTXT

Describes the BWCCApplication Program Interface
(API).
Describes how to create custom control classes.·It
inchides sample code for C++.andfascaLYou
should be familiar with this material if you plan to
createy()ur owncustoIIl. control classes.
Describes some of the considerations that wenfiftto
designing Borlan<i~style· dialog box~s .withBorl~n.<i
Windows Custom ControlS. .-

Describes . options youcanset.orilyin·.the
WORKSHOPJNl file.

c H A p T E R 13

Resource Workshop basics

This chapter provides an overview of Resource Workshop and Windows
resources. It explains resources and resource types. It also covers how to
use the different types of resource files in Resource Workshop and how
these files fit together in a project.

Understanding Windows resources

Resourc;:es define the visible portions of your Windows program. For
example, when you open a dialog box and click a button to accomplish a
task with a program, you're interacting with that program's resources. In
addition to dialog boxes and buttons, other types of resources you can use
in your Windows programs include icons, cursors, bitmaps, menus, and

. keyboard accelerators.

In general, resources in a Windows application are separate from the
program code, letting you make significant changes to the user interface
without even opening the file that contains the program cpde.

Also, because different applications can use the same set of resources, you
don't have to reinvent all your favorite dialog boxes, icons, and customized
cursors. Instead, you can use them over and over.

Resource Workshop supports the following types of Windows resources:

• Dialog boxes. A window (usually a popup window) that co~municates
information to the user and lets the user select choices, such as files to
open, colors to display, text to search for, and so on.

• Menus. Windows programs usually include a menu bar that lists the
names of individual menus. A typical menu contains one or more menu
items (commands). For example, most Windows programs have a File
menu with commands for creating, opening, saving, or printing files.

• Accelerators. Keyboard combinations (or hot keys) that a user presses to
perform a task in an application. For example, a Windows program can
include the accelerator Shift+ins for the Paste command, which the user
presses to paste text or images from the Clipboard into a file the program

Chapter 13, Resource Workshop basics 197

198

has open. Accelerators typically appear in the menu to the right of the
commands to which they're linked.

• String tables. These tables contain text (like descriptions, prompts, and
error messages) that's displayed as part of a Windows program. Because
these text strings are Windows resources that are separate from the
program (instead of strings embedded in the program), you or others can
edit and translate messages displayed by a program without having to
make any changes to the program's source code.

• Bitmaps. A binary representation of a graphic image in a program.
Windows itself uses lots of bitmaps. For example, the images
representing various controls on a typical window, such as scroll bar
arrows, the Control-menu symbol, and the Minimize symbol, are all
bitmaps. Each bit, or group of bits, in the bitmap represents one pixel of
the image.

• Icons. Small bitmaps-64x64 (supported in Windows 3.1 on very high
resolution devices), 32x32, or 16x32 pixels in size-that represent
minimized windows. You create icons using the Bitmap editor (described
in Chapter 19).

• Cursors. Small bitmaps, 32x32 pixels in size, that represent the position of
the mouse on the screen. Windows programs use customized cursors to
indicate what type of task the user is currently performing. You create
cursors using the Bitmap editor (see Chapter 19).

You can see an example of customized cursors in the Resource Workshop
Bitmap editor, which appears if you edit a bitmapped resource (bitmap,
icon, cursor, or font). Each time you choose a new paint tool and move
the cursor to the image you're working on, the cursor takes a shape that
represents its current function.

• Fonts. Although font usually refers to a set of text characters, in Resource
Workshop it most commonly refers to a set of bitmaps that are always
stored and used together.

Windows programs use text fonts to define the typeface, size, and style
of text. For example, a font that a program can display onscreen or print
on a printer is to-point Times Roman bold. In this case, the typeface is
Times Roman, the size is 10 points, and the style is bold.

You can use Resource Workshop to modify the way existing fonts appear
or to create your own fonts.

• User-defined and rcdata resources. These resources are essentially the same
in Resource Workshop. They consist of any data you want to add to your
executable file. For example, if you have a large block of initialized,
read-only data, such as a text file, you can add it to your executable file as
a user-defined resource.

Borland C++ Users Guide

One common reason for adding user-defined resources to an application
is to help manage memory. Many Windows applications use the medium
memory model, which includes a single data segment. If you have a
relatively large amount of data and you don't want that data to take up
permanent residence in memory, you can save the data as a user-defined
resource defined to be discardable data. The user-defined resource then
takes up memory only when your program needs to use it.

• Version information. Resource Workshop supports the VERSIONINFO
resource, the version stamper for Windows 3.1 .EXE files. For a detailed
description of VERSIONINFO, see the Resource Workshop online Help
files or your Windows 3.1 programming materials.

For most resource types, Resource Workshop gives you a choice: a
powerful, easy-to-use, graphics-oriented resource editor, or a text editor for
writing resource scripts. This choice makes Resource Workshop accessible
to all levels of Windows programmers.

In addition to its own graphics and text editors, Resource Workshop lets
you specify an external editor to use for editing project files that won't
compile when they're being opened.

Types of resource files

A file you create and edit with Resource Workshop can be in either binary
or text format. In addition, Resource Workshop can generate standard
Windows file formats, which means you can use Resource Workshop files
with programs that generate binary code from resource script files.

• Resource compiler script files. A resource compiler (.RC) file is a resource
script (text) file containing definitions of one or more resources. The file
can contain resources defined in script form and references to other files
containing resources.

In general, you should base all your Resource Workshop projects on at
least one .RC file. .

• Compiled resource files. A compiled resource (.RES) file contains one or
more compiled resources.

Typically, when creating a Windows program, you compile all resources
for an application into a single .RES file, and then you bind the .RES file
to the executable file as part of the linking process. However, with
Resource Workshop if you don't want to produce a .RES file, you don't
have to, because Resource Workshop can compile resource files and bind
them directly to an executable file.

Chapter 13, Resource Workshop basics 199

Bitmapped
resource files

200

• Executable and dynamic-link library files. An executable (.EXE) or dynamic
link library (OLL) file is the ultimate destination for all resources you.
define with Resource Workshop. Usually, you compile an .RC file into a
.RES file, then use your compiler to bind the .RES file to the executable or
OLL file. You can also use Resource Workshop to bind the resources
directly to the executable or OLL file and bypass the Microsoft Resource
Compiler altogether.

• .DRV files. A .ORV file is a Windows device driver, a special case of a
OLL. You can edit the resources in a .ORV file the same way you can
edit resources in any DLL.

If you want to change the resources in a compiled binary file (an
executable file, a OLL file, or a .RES file), Resource Workshop will
decompile the file and let you make changes, and then save the resources
back to the original binary file.

• Dialog files. A dialog (.OLG) file is a resource script (text) file that
typically contains descriptions of one or more dialog boxes. There is,
however, no requirement that a .DLG file contain dialog boxes; it can
contain any of the resources found in an .RC file.

There are four kinds of bitmapped resource files:

• A bitmap (.BMP) file contains a bitmap resource in binary format.

• An icon (.lCO) file contains an icon in binary format.

• A cursor (.CUR) file contains a customized cursor in binary format.

• Font files take two forms, binary and font library.

• A binary font (.FNT) file contains the definition of a customized font in
binary format. You can use· the Resource Workshop Bitmap editor to
design a font and store it in an .FNT file.

• A font library (.FON) file is a resource-only dynamic-link library that
contains a font directory and one or more fonts. You must create .FON
files outside Resource Workshop. However, once you've created an
.FON file,·you can use Resource Workshop to modify the file.

Borland C++ Users Guide

c H A p T E R

Working with projects, resources,
and identifiers

14

This chapter describes the Project window and explains how to control the
display of resources in that window and how to choose resources from that
window for editing. It also explains how to add and delete resources from
projects, how to save them, and how to work with identifiers.

A project is a collection of one or more resources. A project file (typically
.RC) either contains one or more resources or references files containing
resources, or both.

Creating a new project

If you have a project
open, Resource

VVorkshop closes it
first. If there are

unsaved changes,
Resource Workshop

asks if you want to
save those changes

before closing.

To create a new project,

1. Choose File I New project.

Decide what type of file you want to base your project on. A typical
project is based on an .RC file, because this type of file lets you work
with all kinds of resources. However, you can also choose one of the
following:

• .RC, to create a resource script file

• .RES, to work with a binary resource file

• .CUR, to create a project containing a cursor

• .ICO, to create a project containing an icon

• .BMP, to create a project containing a bitmap

• .FNT, to create a project, containing only fonts

2. Click the project file type you want, then click OK.

Resource Workshop displays your new, untitled project in the Project
window. For .RC projects, you'll need to specify a default header file
where Resource Workshop stores identifiers.

Chapter 14, Working with projects, resources, and identifiers 201

Opening an existing project

An existing project can be one that you created with Resource Workshop or
an .RC file you created with other tesource development software. You can
also work with the resources in any application developed for Windows 3.0
or higher, even if you don't have access to the source code. If you have
access only to an executable file, Resource Workshop can decompile the
resources bound to that file so that you can make changes to them.

To open an existing project,

1. Choose File I Open Project. Resource Workshop displays the Open
Project,dialog box.

2. Specify the file you want to open by doing either of the following:

• Type the path and file name, then press Enter.

• Choose a file type, then choose a file from the Files list and click OK.

What Resource Workshop does next depends on whether the project is a
binary file or a file containing resource data.

• If the project is a binary file (an executable file, a .RES file, or a OLL
file), Resource Workshop decompiles the resources and shows you its
progress on the left side of the status bar at the bottom of the display.

• If the project is an .RC file or other file containing resource data (as is
usually the case), Resource Workshop reads the file directly (since
decompiling isn't necessary), then it compiles the file and each
resource, showing you its progress in the Compile Status dialog box.

If the compiler encounters an error, Resource Workshop displays the
Compiler Error dialog box, which shows you the error and highlights
the line where the error -occurred.

To edit the file using the extemaltext editor specified in File I
Preferences, press the Run Editor button in the Compiler Error dialog
box. When the editor appears, make your changes, then save your
changes and exit the editor. You must then reload the project.

3. Once the project is compiled or decompiled, Resource Workshop
displays the Project window with all the resources listed in it.

Using the Project window

202

Once you've opened a new or existing project, Resource Workshop displays
the Project window.

Borland C++ Users Guide

Embedded and
linked resources

Displaying the
Project window

Figure 14.1
Project window

showing resources
by file

The Project window acts as a file management tool, making it easy to get an
overall view of a project. Even if the project contains a large number of
resources, you can quickly scan through them by scrolling through the
Project window.

For a new project, the window is empty, and you have to put resources into
it by creating them or adding them as files (more on these subjects later).

For an existing project, you can see

• The complete list of files in the project.

• The types of resources contained in each file.

• If the file contains resource data (is not an .EXE, .RES, or .DLL file), the
identifiers (#defines or constants) associated with the resources.
Identifiers are discussed on page 210.

The resources in your project file can be embedded in the file or linked to it.

• An embedded resource is stored in resource script form in the project file.
It exists only as part of the project in which it's stored, and it can't be
used in other projects.

• A linked resource is a separate file that is referenced in the project file.
Linked resources such as .Re, .DLG, or binary-format can be used in
other projects.

Use the View menu to determine how the Project window displays
information. By default, the Project window displays the selected resource
in a preview window. Use View I Hide preview to turn off the preview
(preview is off in Figure 14.1). You can also set where the preview displays
in relation to the project outline by choosing View I Show vertical preview
or View I Show horizontal preview.

This ICON resource is
in the project file
and is stored in resource
script format.

Project window

myproj.rc
DIALOG: my_dialog

'---I---ICON: myjco
iconfile. ico

ICON: myjco1 --feit---..

This Icon resource is in a
separate file, ICONFILE.ICO,
and is in binary format (as
are all bitmapped resources
stored in external files).

Chapter 14, Working with projects, resources, and identifiers 203

Show Identifiers

Show Resources

Showlterns

Show Unused
Types

Selecting a
resource

Displays any identifiers (#defines or constants) in the project. Identifiers are
discussed on page 210.

Lists the types and names of resources, like BITMAP: airplane. In most
cases you'll leave this option checked.

Uncheck the Show Resources option if you want to see file names only
without a list of resources contained in those files, or if you're just
interested in looking at identifiers. With Show Resources off, none of the
resources defined in the project file can be selected for editing.

Shows another level of detail in the Project window. When Show Items is
on, Resource Workshop displays items within individual resources (for
example, POPUPs and MENUITEMs defined in a menu resource).

Lists all the resource types, whether or not they are used in the project.

Show Unused Types is available only when you are viewing By Type.

To select a resource, use the mouse or the arrow keys to highlight it in the
Project window.

• If you've chosen View I By Type, look for the resource type first. The
resource is listed by name under the resource type.

• If you've chosen View I By File, look for the resource under its file name,
if you know it. The resource name is preceded by the resource type and a
colon.

For example, in the myproj.rc Project window in Figure 14.1 on page 203,
the Icon resource my _ico1 is listed under the file iconfile.ico as
ICON:my _icol.

Working with resources

Loading a
resource

204

This section describes typical tasks performed on resources.

To load a resource for naming or editing, you can do either of the
following:

• Double-click the resource name (not the file type) in the Project window.
Resource Workshop automatically starts the appropriate graphical
resource editor, if one is available. If a resource editor is not available (for

Borland e++ Users Guide

Resource editors

Each resource editor
is explained in the

chapter on that
resource.

The internal text
editor

See the online Help
index for a

description of the
resource script

language.

Adding a resource

example, for a user-defined resource), Resource Workshop starts the
internal text editor.

• Select the resource name in the Project window and then choose either
Resource I Edit (to open a graphical editor) or Resource I Edit as Text (to
open the text editor).

When you double-click one of the following resource types in the Project
window (or select it and choose Resource I Edit), Resource Workshop loads
the appropriate resource editor:

• If the resource is a dialog box, menu, accelerator, or string table, Resource
Workshop loads an editor specifically designed to work with that type of
resource. For descriptions of these editors, see Chapters 15 through 18.

• If the resource is a bitmapped resource (icon, bitmap, cursor, or font),
Resource Workshop displays the resource in the Bitmap editor.

User-defined resources and two predefined resource types-rcdata and
VERSIONINFO-can be edited only with the internal text editor.

If the resource is in binary format (like a dialog box or menu), Resource
Workshop decompiles it to let you work with the resource script.

The internal text editor is similar to the Windows Notepad editor. It uses
the Del, Home, End, PgUp, PgDn, Tab, and Backspace keys as you would expect
and is always in insert mode.

When you enter text, don't spend any time formatting it, because Resource
Workshop is likely to rearrange the text for you when it compiles the
resource.

If Resource Workshop finds any errors, it tells you what they are and puts
you back in the text editor so you can correct them. .

If you want to edit the resource script directly without the assistance of
Resource Workshop, you can open the source file with an editor of your
choice and edit·that file.

When Resource Workshop loads the resource, it recompiles the file and
reformats the resource script. If it encounters any comments in the script
when you open the resource for editing, it displays a dialog box warning
you that the comments will be deleted.

You can add a resource directly to the project (an embedded resource) or as
a file reference (a linked resource).

Chapter 14, Working with projects, resources, and identifiers 205

Adding an
embedded resource

Adding a linked
resource

You can also enter
file search criteria by

. selecting the file type
from the File Type list

box.

206

To add a resource to your project, open the project you want to work with
and then

1. Choose Resource I New to display the New Resource dialog box.

2. Choose the header files you want the resource and its identifier to
appear in. Note that you can only choose from header files attached to
your project (use File I Add to project to add a new header file to your
project).

3. Double-click the type of resource you want to create.

• If you're creating an accelerator, menu, dialog box, or string table,
Resource Workshop puts an entry for the resource in the Project window
and opens the appropriate resource editor.

• If you're creating an rcdata or VERSIONINFO resource, Resource
Workshop puts an entry for the resource in the Project window and
opens the internal text editor.

• If you're creating a bitmapped resource (ari icon, cursor, bitmap, or font),
Resource Workshop asks if you want to save the resource as source text
or in binary format. Choose Source text to embed the object.

• If the type of resource you want to create isn't listed, you can press the
New Type button and create a user-defined type for your resource. See
Chapter 23 for information on user-defined resources.

You can add a resource by reference (linked). To add an existing resource
by reference,

1. Choose File I Add to Project. Resource Workshop displays the Add File
to Project dialog box.

2. Either type the name of the file containing the resource in the File Name
text box, or <:iouble-click the file name if it's listed in the Files box.

If the file isn't in the current directory or is of a different type from the
current type, you can select it in eith~r of these ways:

• You can type the file's full path and name into the File Name text box.

• You can change directories by using the Directories list box. Then
enter your search criteria in the File Name box and press Enter (for
example, use *.CUR to find all cursor files), or select a type from the
File Type list box. When the file name you want appears in the Files
list box, double-click to select the file.

Borland C++ Users Guide

I

Moving a
resource

Copying
resources
between projects

3. In the second drop-down list (under the File Type drop-down list), you
see the current project file listed, which is most likely where you will
put the reference to the new file. If your project contains more than one
.RC file and you want to put the reference elsewhere, scroll down the
list to find the name of the file in which you want to place the reference.

4. Press Enter or click OK to add the file to the project. Resource Workshop
puts an entry that points to this file in the Project window.

If you choose View I By File, you'll see the file name listed and under it
the resource name. Any changes you make in the project to this resource
are reflected in the original resource file.

To add a new resource by reference,

1. Enter the name of the file you want to create in the File Name box of the
Add File to Project dialog box. If you're not using one of the standard
resource file extensions (like .CUR), use the File Type box to identify the
type of resource you're creating.

2. Click OK. A dialog box appears saying the file doesn't exist, but asks if
you want to create it.

3. Click OK to create the file. Resource Workshop inserts a reference to the
file in the Project Window.

You can move resources from one file in a project to another file in that
project by using Resource I Move. Both files must be part of the same
project.

1. Select a resource in the project file by either editing it or highlighting it
in the project resources list.

2. Choose Resource I Move. A dialog box appears displaying the resource
name and the file that it is currently in (labeled Old).

3. Select a New file (the file you want the resource to appear in), then click
OK.

There are two ways you can copy a resource from the current project to
another project:

• One way is to save the resource as a file, close the current project, open
the other project, and add the resource as a file to the new project. If there
are any identifiers in the resource, you have to be careful that they're
preserved when you add the resource to the new project .

• An easier way is to have two copies of Resource Workshop open, one for
each project, and to use ~he Windows Clipboard to copy the resource

Chapter 14, Working with projects, resources, and identifiers 207

Don't use the Ctrl+lns
hot key-it won't copy
the resource properly.

Deleting a
resource

Renaming a
resource

See page 213 for a
discussion of creating

identifiers when you
rename resources.

208

from one project and paste it to the next. This method is not only faster
than the first method, but it also saves all the identifiers.

To copy a resource using the second method,

1. Open two copies of Resource Workshop, one with the project containing
the resource you want to copy (the source project) and another with the
project you want to copy the resource to (the target project).

2. Be sure the target project has a reference to an identifier file that will
receive any identifiers in the new resource. (If necessary, choose File I
Add to Project and add the appropriate type of identifier file.)

3. Select the source project, then select the resource you want to copy in
the Project window. Choose Edit I Copy to copy it to the Windows
Clipboard.

4. Select the target project and then, with the Project window active,
choose Edit I Paste to paste the resource into the project. Resource
Workshop displays the Paste Resource dialog box.

5. The Paste Resource Into list box should contain the name of the target
project. Make sure the Paste Identifiers Into list box contains the name
of the identifier file that will receive any identifiers in the resource (if
necessary, scroll the drop-down list and choose the correct file name),
then press Enter or click OK to paste in the new resource.

To delete a resource from a project, select the resource in the Project
window, then choose either Edit I Cut or Edit I Delete to remove it. (Edit I
Cut lets you paste the resource elsewhere.)

To rename a resource,

1. Choose Resource I Rename. Resource Workshop displays the Rename
Resource dialog box.

2. In the New Name text entry box, type the new resource name, then
press Enter.

3. Resource Workshop asks if you want to create a new identifier by that
name.

• If you click Yes, Resource Workshop renames the resource and
assigns it the identifier value you specify .

• If you click No, Resource Workshop renames the resource without
creating an identifier. See page 210 for a discussion of the advantages
of creating identifiers.

Borland C++ Users Guide

Specifying
resource memory
options

Resource Workshop lets you specify how each resource's memory is
managed. If you are a new Windows programmer, you might want to use
the defaults.,

To specify memory options, select the resource in the Project window and
then choose Resource I Memory Options. The Resource Memory Options
dialog box appears.

Uncheck any memory options you don't want. (See the description of the
four options in Table 14.1.)

.. If you set memory options for an Icon resource, those options apply to all
the images in that resource.

Table 14.1
Resource memory

options

Here's what each option in the Resource Memory Options dialog box does:

Option

Load on Call

Moveable

Discardable

Pure

Description

Loads the resource into memory only when it's needed. Choosing Load On
Call can reduce the amount of time required to load your program.

If you uncheck this option, you'll activate Prelo'ad, which means that
Windows will load the resource into memory when it first loads the program.
You need to preload a resource only if you know Windows needs the
resource as soon as the application begins to execute.

Lets Windows move the resource segment in memory to make room for
other memory allocations.

If you uncheck this option, the resource segment occupies a fixed block of
memory.

Lets Windows discard the resource segment from memory when it's no
longer needed. Windows can load the resource into memory again when
necessary.

If you uncheck this option, you'll activate Nondiscardable. Windows won't be
able to remove the cursor segment from memory while the application is
running, and, if Pure isn't checked, you'll be able to modify the resource from
within your application. Note that Nondiscardable is not compatible with the
RC.EXE.

Prevents the resource segment in memory from being modified.

Usually, you'll want to leave this option checked. See the Windows
documentation for information about this option.

Chapter,14, Working with projects, resources, and identifiers 209

Using identifiers

Components of
resource
identifiers

210

Windows requires that every resource be associated with a unique name or'
a unique integer (called a resource ID). By default, Resource Workshop
assigns a name to each new resource-for example, DIALOG_1 for a dialog
box or MENU _1 for a menu resource.

The default name isn't very descriptive, and referring to a resource by
name alone decreases the application's efficiency at run time. To overcome
these shortcomings, you can rename the resource and assign it an identifier
(a C #define or a Pascal constant). Using identifiers gives you both
descriptive !lames and run-time efficiency .

• You can rename the resource to an integer value. Using an integer value
has the same effect on the application's run-time efficiency as assigning
an identifier, with the drawback that the resource 10 still isn't very
descriptive. DIALOG: 225 doesn't tell you which dialog box it is .

• You can rename the resource, but elect not to create an identifier. The
result is a resource with a descriptiv~ name and code that is easier to
work with than an identifier (the Windows parameters expect a far
pointer to a char), but you'll lose some of the application's run-time
efficiency.

A resource identifier consists of two parts: a text literal (the identifier name)
and a value (typically an integer). For example, the following statement
declares an identifier with a name of dlg_OpenFile and a value of 100:

#define dlg_OpenFile 100

Resource Workshop lists t.he resource in the Project window as DIALOG:
dlg_ OpenFile, which readily identifies it as the Open File dialog box.

Identifiers must be unique within a resource type. Only the first 31
characters are significant; Resource Workshop ignores any characters past
the 31st character. You can change identifier values in text boxes. For
example, in the Menu editor you can type an Item Id as CM_FILENEW=12S.
When you move off the field, Resource Workshop changes the value of the
CM_FILENEW identifier to 125.

Assigning an integer value to an identifier speeds up calls to the resource at
run time, but you won't be able to use the short integer value directly as a
parameter. You must either typecast the integer into a long pointer to char
or use a macro to do the typecasting for you.

Borland C++ User's Guide

Identifier files

Creating identifier
files

C header files

If you write your program in C or C++, you can use the
MAKEINTRESOURCE macro. If you write your program in Pascal, you can
use the MakeIntResource type (a pointer to char).

The MAKEINTRESOURCE macro looks like a function call but actually
does a typecast on the identifier. For example, to use dlg_OpenFile as a
parameter in a C or C++ program, enter it as the following expression:

MAKEINTRESOURCE(dlg_OpenFile)

If you're working with a .RES file, an executable file, or a OLL, Resource
Workshop decompiles all resource IDs in the file into integer values. You
can't add identifiers to this type of file, but you can save the file as an .RC
file and then assign identifiers to its resources. See the section "Working
with binary files" on page 217.

When you open a new project, the first thing you should do is specify a file
ill which to store your identifiers.

Store your identifiers in one or more header (.H) files that 'use #defines to
assign values to the identifier names.

This manual refers to header files, units, and include files as identifier files.

You can use a text editor or word processor to create your identifier files,
but you can also create them with Resource Workshop, as described in the
next section and in the section" Adding identifiers" on page 213.

After you open a new project (File I New Project) and give it a name (File I
Save Project), add the identifier file by taking these steps:

1. Choose File I Add to Project. Resource Workshop displays the Add File
to Project dialog box.

2. Click the File Type list box down-arrow button to display a list of file
types you can add to your project.

3. If you are writing your applicationjn C, choose

H c header

4. In the File Name text box, type a name for the identifier file.

5. Click OK to exit the Add File to Project dialog box. Resource Workshop
creates the identifier file at this time.

If your program is written in C, store your identifiers in a .H header file.
The #defines in the file assign integer values to the identifier names.

Chapter 14, Working with projects, resources, and identifiers 211

Automatic
identifier
management

212

Table 14.2
Identifier prefixes

The following is a sample from a typical header file:

/**
* Selected #defines from RWCDEMOC.H *
**/

#define bmp_StatusBar 101
#define cm_About_CUA 145
#define id_ClearWindow 229
#define dig_About 104
#define dlg_FileNew 106
#define sth_Edit 15
#define men_Main 100
#define acc_Main 100
#define ico_RWCDemo 100
#define sth_EditClear 13
#define ScribbleWindow 100
#define FileWindow 101
#define GraphWindow 102

In addition to #defines, you can also store type and structure definitions,
program code, and comments in a header file. Resource Workshop ignores
all data in the header file except for the #defines and any preprocessor
directives.

Resource Workshop can automatically create and delete identifiers for you.
To turn on automatic identifier management, choose File I Preferences and
check Generate identifiers automatically. Note that if you're using
AppExpert from the Borland C++ IDE, Generate identifiers automatically
will be checked and unselectable; you won't be able to tum this option off
because AppExpert relies on the automatic identifiers syntax.

With automatic identifiers on, every time you create a resource item that
uses an identifier (menu items, for example), Resource Workshop creates a
unique identifier for that item and places it in the header file for that
resource (.RH or .RC). Also, if you delete any items, the identifier is
deleted.

Resource Workshop uses an identifier prefix, which you can change. Here's
a list of the default prefixes and the menu commands to change them (note
that you must be editing the resource type to get the correct menu to
display):

Resource Prefix

String table 10S_

Menu CM_

Menu command

String TablelChange identifier prefix

MenulChange identifier prefix

Borland C++ Users Guide

Working without
an identifier file

Adding identifiers

By renaming
resources

Table 14.2: Identifier prefixes (continued)

Accelerator CM_ AcceleratorlChange identifier prefix

Dialog I DC_ OptionslChange identifier prefix

If you don't add an identifier file to your project, you can still create
identifiers for your resources. Resource Workshop stores these identifiers in
the active project file-as #defines.

This practice is not recommended for the following reasons:

• If you decide later to use a separate identifier file, you'll have to use a
text editor to cut the #defines from the resource scripts and paste them
into the identifier file. "

• Because the resource script file supports only #defines, you'll have to
take an extra editing step to create a Pascal unit or constant file.

There are two ways to add identifiers to your project:

• By renaming your resource
• With the Identifiers dialog box

As described on page 208, you can rename your resources as you create
them. When Resource Workshop encounters a new resource name, it
automatically asks if you want to create an identifier for that name.

For example, let's say you've just added a new menu resource to your
project. By default, Resource Workshop gives it the name MENU_I. (It
happens to be the first menu in the project.) Because it's a file menu, you
decide to change its name to Menu_File, so you choose Resource I Rename
to display the Rename Resource dialog box.

When you enter a new name in the Rename Resource dialog box and click
OK, Resource Workshop asks if you want to create a new identifier for that
name. If you click OK, Resource Workshop displays the New Identifier
dialog box.

First, make sure the right identifier file name appears in the File list box.
Then type an appropriate integer value into the Value text box, and click
OK. The next time you save your project, the identifier name and value will ,
be saved to your .H,.P AS, or .INC file.

Chapter 14, Working with projects, resources, and identifiers 213

8yusing the
Identifiers dialog
box

Editing identifiers

Deleting
identifiers

214

Using the Identifiers dialog box, you can add an identifier to your project
before you create the resource it will be associated with. To add an
identifier,

1. Choose Resource I Identifiers to display the Identifiers dialog box.

2. Click the New button. Resource Workshop displays the New Identifier
dialog box.

3. Use the File list box to specify the file in which the identifier is to be
stored.

4. Type the resource name in the Name text box.

5. Type theID value in the Value text box.

6. Click the OK button.

Note that the new resource name now appears in the Identifiers list box,
and that its Value is given as (unused).

In addition to adding identifiers, you can use the Identifiers dialog box to
edit, delete, or list identifiers and to start a resource editor. To display the
Identifiers dialog box, choose Resource I Identifiers.

You can change an identifier value by following these steps:

1. Choose Resource I Identifiers to display the Identifiers dialog box.

2. Select the identifier whose value you want to change.

3. Click the Change button. Resource Workshop displays the Change
Identifier Value dialog box.

4. Type a new value in the New Value text box and click OK.

The new identifier value will be written to your .H, .P AS, or .INC file the
next time you choose File I Save Project.

You can also move and rename resources using the Identifiers dialog box.

If an identifier is not used in your project, you should delete it from the .H,
.P AS, or .INC file. Here are three reasons you might have an unused
identifier:

• You assigned an identifier to a resource and then deleted the resource.

• You added an identifier to the project and then never used it.

• You renamed a resource that already had an integer identifier value.

Borland C++ Users Guide

You can delete an
identifier that is still in

use.

Listing identifiers

Starting a
resource editor

To delete an identifier,

1. Choose Resource I Identifiers to display the Identifiers dialog box.

2. Select the identifier you want to delete.

If the selected identifier is not associated with a resource (either because
the resource was deleted or the identifier was never used), the Usage
box says (unused).

If, however, the identifier is still associated with a resource, the Usage
box automatically highlights the type and name of the associated
resource.

3. Click the Delete button.

If the identifier is unused, itis deleted immediately. No warning dialog
box is displayed.

If the identifier is still in use, Resource Workshop displays a warning
dialog box that says I/#define [or Constant] is used. Delete anyway?" To
delete the identifier, click the Yes button. If you don't want to delete the
identifier, click the No button.

4. The next time you choose File I Save Project, Resource Workshop
updates the identifier file, removing the deleted identifier.

To list the identifiers in your project,

1. Choose Resource I Identifiers to display the Identifiers dialog box.

2. Choose either All or Single File in the View group.

If you choose Single File, select the file whose identifiers you want to see
from the file name list box in the View group.

3. Scroll the Identifiers list box to the identifiers you want to see. When
you highlight an identifier in the list box, its name and integer value
appear in the Name and Value boxes above the list box.

You can use the Identifiers dialog box to start a resource editor with a
preselected resource already loaded.

To start a resource editor from the Identifiers dialog box,

1. Scroll the Identifiers list box until the resource you want is highlighted.

The resource's type and name appear in the Usage list box.

2. Double-click on the highlighted type and name in the Usage list box.

Resource Workshop starts the appropriate editor with that resource
already loaded.

Chapter 14, Working with projects, resources, and identifiers 215

Setting preferences

Undo Levels

Text Editor

Multi-Save

216

To set preferences" choose File I Preferences. See the online Help for
information on items not discussed in this section (click the Help button in
the Preferences dialog box).

Resource Workshop has a multilevel Undo and Redo feature that lets you
correct actions in any of the resource editors. Depending on the amount of
available memory in your computer, you can undo or redo up to 99 actions.
The default number of levels is ten.

For each undo, press Alt+Backspace or choose Edit I Undo; for each redo,
press Shift+Alt+Backspace or choose Edit I Redo. You can work your way back
and forth through your edit session this way through as many levels as you
have set in the Undo Levels option.

The number of undo levels can be limited by available system memory. A
memory-intensive resource-like a large bitmap with several flood fills
can cause fewer undo levels to be available.

When Resource Workshop loads a project file, it compiles all the resources
in the file. If the compiler encounters an error, it stops compiling, notifies
you there was an error, and asks if you want to edit the file by using the
external text editor you have specified in this option.

The default external text editor is the Windows Notepad editor. If you ~
specify another editor, it must be one that runs under Windows. (A DOS
editor with a .PIF file will work.)

The .RES and Executable preferences control how a project is to be saved
when you select File I Save Project. These preferences are enabled only
when a resource compiler (.RC or .DLG) project is open because they apply
only to a specific project. Regardless 6f the Multi-Save settings, the project
always gets saved in its original format as well. (For example, if the project
is an .RC file, the resources in the file are always saved as resource scripts
in addition to any Multi-Save options.)

• .RES. Compiles the current project's resources and saves them in .RES
format (in binary format).

• Executable. Compiles the current project's resources and binds them to the
executable file specified in this option (can be an .EXE or .DLL file).

• Make Backups When Saving Files. If you check the Backups option,
Resource Workshop creates an additional set of backup files each time
you save a project. Backup files have a tilde (,.,.) as the first character in

Borland C++ Users Guide

Target Windows
Version

the file extension. For example, when you save MYPROJ.BMP, the
backup file is called MYPROJ BM.

These radio buttons let you target your resource for specific versions of
Windows. Note, however, that .RES and .EXE files targeted for Windows
3.1 are not backward-compatible with Windows 3.0.

If the .RES file is targeted to Windows 3.1, you cannot use the Windows 3.0
version of RC.EXE to bind your resources to the application. You must use
Borland tools or version 3.1 of the Microsoft Resource Compiler.

.. This option is available only if no project is currently open.

Working with binary files

All resource IDs in
binary files must be

integers.

Resource Workshop lets you open executable files, .RES files, and DLLs as
projects so you can customize their user interfaces. For example, you might
want to translate your application interface into another language.

When you load one of these files, Resource Workshop decompiles the
resources in the file and shows them to you as though they were part of a
regular .RC file. When you're finished with your changes, Resource
Workshop compiles the resources again into binary code and stores them in
the original file.

Because the resources in a decompiled binary file aren't stored in resource
script form, you can't assign identifiers to the resource IDs.

You can, however, save the project as an .RC file. The resources can then be
saved as resource scripts, and you can assign identifiers to them.

If you're customizing the user interface of a program and have access only
to the executable file or DLL, you might also want to save your changes in a
separate .RC file so you can apply the changes to the next version of the
program. The resources in your .RC file must have the same resource IDs as
their counterparts in the new version and must otherwise be compatible
with the new version.

When you save the project as an .RC file, Resource Workshop doesn't
automatically save the resources back to the original file unless you've
entered the original file name as a Multi-Save option in the Preferences
dialog.

Chapter 14, Working with projects, resources, and identifiers 217

Be sure to preserve
the current integer

values of the
resource IDs.

To save a binary file as a project and add identifiers, do the following:'

1. Choose File I Open Project and select the executable, .RES, or DLL file
from the Open Project dialog box.

2. Choose File I Save File As. In the Save File As dialog box, select RC'
Resource Script from the File Type list box. Enter the name of the new
.RC file.

When you press click OK to save the file, Resource Workshop
automatically places you in the .RC file.

3. Choose File I Preferences and enter the name of the original binary file
as a Multi-Save option .

• If the original binary file was a .RES file, check .RES and enter the
name in that text box.,

• If the original binary file was an executable or DLL file, check
Executable and enter the name in that text box.

4. Choose File I Add to Project and specify an identifier file to hold the new
identifiers. If the file you specify doesn't exist, Resource Workshop ,
creates a new one for you. '

5. Make your changes to the resources and specify identifiers where you
want them. For each new identifier, Resource Workshop asks if you
want to save it in the identifier file.

6. When you quit and save the file, Resource Workshop saves both the .RC
file and the binary file. If the binary file is an executable file or a DLL,
the changed resources are bound into it and are available immediately
when you run that program.

Creating 32·bit resources

218

By default, Resource Workshop creates 16-bit resources if you're running
under 16-bit Windows or 32-bit resources if you're running under NT. You
can change the type of resources you create. For example, if you're running
under NT, you can also create 16-bit resources, and if you're running under
Windows, you can also create 32-bit resources.

To change the type of resource project you create, close any open projects,
then

1. Choose File I Preferences.

2. Check the Target Windows version option you want, then click OK.

Borland C++ Users Guide

3. Choose File I New project. Once you create a project, you can't change
the Target type (for example, you can't change from Win32 to
Windows 3.1).

You can also choose a major and minor language from the File I Preferences
dialog box if you're targeting Win32. Note that the language you choose
here must be the language used in NT, otherwise you might not view your
resources correctly. For example, if you choose French and German as your
resource languages, but you have NT set to English, you can build your
resources in Resource Workshop, but when you run your program, you
might not see your resources correctly. This is especially true for menu
resources.

Chapter 14, Working with projects, resources, and identifiers 219

220 Borland C++ Users Guide

Figure 15.1
A typical dialog box

c H A p T E R 15

Creating dialog boxes

Dialog boxes give the user a way to interact with your application. A dialog
box is a pop-up window that lets the user specify.information (files to open,
colors to display, text to search for, and so on).

The dialog box usually contains a number of controls, such as buttons, text
boxes, and scroll bars. Controls usually let the user specify information, but
can also be used to display static text and graphics in a dialog box.

Check boxes Title bar

Shape

@ Square

o Circle I:8l Yellow 0 White
o Triangle

Radio buttons Push buttons

Starting the Dialog editor

Creating a new
dialog box

Chapter 14 describes
how you open a

project.

Using the Dialog editor, you can create new dialog boxes or edit existing
ones. How you start the Dialog editor depends on which task you want to
perform.

To create a new dialog box,

1. Choose File I New Project to start a new project or File I Open Project to
load an existing project.

2. Choose Resource I New. The New Resource dialog box appears.

3. In the Resource Type list box, double-click DIALOG.

Chapter 15, Creating dialog boxes 221

Figure 15.2
Dialog editor with
empty dialog box

Editing an
existing dialog
box

4. Another dialog box appears where you specify a template for your
dialog box. Choose a dialog, type, then click OK.

5. The Dialog editor opens displaying a template dialog of the type you
chose in step 4. Figure 15.2 shows the components of the Dialog editor.

Menu bar

Status line

Empty dialog box
template Tools palette

To edit a dialog box that already exists in a project file,

1. Open the project that contains the d~alog box you want to edit.

2. Locate the dialog box you want to edit in the Project window and
double-click its name.

The Dialog editor appears as in Figure 15.2, except that the dialog box you
selected appears in place of the empty dialog box template.

Using the Dialog editor

222

When you create a new dialog box, the Dialog editor presents you with an
empty template. You can decide what type of window your dialog box will
be, specify a caption, choose which fonts will be displayed in it, and so on.
You can also add, change, group, reorder, move, resize, or delete dialog
controls so that your dialog box functions the way you want it to.

, .

Borland C++ Users Guide

Selecting a dialog
box

\.

Setting dialog box
attributes

Adding a caption

You can also change
captions using the

Properties box
(choose Optionsl

Show Properties).

To make changes to the dialog box window or to set the attributes of the
dialog box, you must first select it. To select the dialog box, click its title bar
or outer edge.

When a dialog box is selected, Resource Workshop displays a selection frame
around it, and you can

• Move the dialog box by using the mouse or the arrow keys.

• Resize the dialog box in either of the following ways:

• Drag the appropriate edge or corner .

• Select the dialog box by clicking its title bar, and then choose Align I
Size to display the Size Dialog dialog box. Enter width (CX) and height
(CY) values in dialog units. (In a dialog unit, y equals lis of the font
height, and x equals l~ of the font width.) The size values apply to the
outer dimensions of the dialog box.

Using the Window Style dialog box, you can set the attributes of your new
dialog box, including

• Caption, Class, and Menu
• Window type
• Frame style

• Dialog style
• Font

To display the Window Style dialog box, select the dialog box you want to
set attributes for, then press Enter. You can also double-click on the title bar
of the dialog box you're editing using the Selector tool (the mouse pointer
will appear as an arrow).

To add a caption,

1. Double-click the dialog box title bar to open the Window Style dialog
box.

2. Type the new name for your dialog box in the Caption box.

3. Under Frame Style, make sure Caption (the default) is selected.

4. Click OK.

The Window Style dialog box lets you choose a type for your dialog box:
"

• Popup. A pop-up window. Because most dialog boxes are popups, this is
the default.

• Child. A child of the current window.

Chapter 15, Creating dialog boxes 223

Choosing a frame
style

Choosing a dialog
style

224

• Overlapped. An overlapped pop-up window that can be covered or
partially covered by another. You'll want to define a dialog box as
overlapped only when it's the main window in the application.

The frame style of the dialog box determines the appearance of the dialog
box frame and' the title bar. Frame styles are defined as follows:

• Dialog Frame. A double border, without a title bar.

• Border. A single, thin border, without a title bar.

• Caption. A single, thin border and a title bar where a caption can be
displayed (default).

• No Border. No border and no title bar.

Dialog styles determine what the dialog box looks like and how the user
works with it. You can choose one or more of the following styles for your
dialog box:

• System Menu. Includes a System menu box on the left side of the title bar
(appears only if you've also chosen Caption).

If the dialog box is defined as a child window, you'll get a Close box
instead of a Control menu.

• Thick Frame. Places a thick frame around the dialog box. This option
defines what the user will see when the dialog box appears within an
application. If you want the dialog box to be resizable, use this option.

(Don't confuse this option with the Thick Frame option in the Dialog
editor Preferences command. That option defines what the dialog box
looks like when you select it in the Dialog editor.)

• Vertical Scroll. Adds a vertical scroll bar to the dialog box frame.

• Horizontal Scroll. Adds a horizontal scroll bar to the dialog box frame.

• Minimize Box. Adds a Minimize button on the right side of the title bar.
The Minimize button appears only if you've also chosen Caption for the
dialog box frame style.

• Maximize Box. Adds a Maximize button on the right side of the title bar.
The Maximize button appears only if you've also chosen Caption for the
dialog box frame style.

• Absolute Align. Makes ~he dialog box coordinates relative to the display
screen rather than the parent window.

• System Modal. Makes the dialog box system modal, meaning that the user
can't switch to anything else until the dialog box is put away.

• Local Edit. Allocates any edit text controls included in this dialog box to
the application's local heap.

Borland C++ Users Guide

Changing fonts

Including a menu

Choose Local Edit if your application needs to use EM_SETHANDLE
and EM_GETHANDLE messages.

• Modal Frame. Frames the window with a combination of the dialog frame
and caption styles (default). Choose Modal Frame if you want users to be
able to move the dialog box.

• No Idle Messages. Suppresses sending WM_ENTERIDLE messages to the
application's main window. The dialog box must be modal for this option
to take effect.

• Clip Children. Protects the client area of child windows from being drawn
on by the dialog box window.

• Clip Siblings. Protects the siblings of this window. Drawing is restricted to
this window. This option is not required for pop-up windows, but can be
useful for child dialog windows.

• Visible. Makes a modeless dialog box visible before the return from
CreateDialog. This option has no effect on modal dialog boxes (the usual
kind of dialog box). By default, this option is not checked (NOT
WS_ VISIBLE).

By default, dialog boxes use the 8-point MS Sans Serif font for text, but you
can change the font and the point size. To choose a font for your dialog box,

1. Open the Window Style dialog box.

2. Click the Fonts button to open the Select font dialog box.

3. Use the Select font dialog box to choose a typeface and size for the text
in your dialog box. The characters in the Text box at the bottom of the
dialog box show the currently selected typeface and size. (Note that
Windows accepts only bold text in dialog boxes.)

Because it's really a window, a dialog box can include a menu. For example,
some applications use a dialog box for their main window, in which case
the dialog box would need a menu. •

To include a menu in your dialog box,

1. Create the menu as a separate resource and make sure it's part of the
project (See Chapter 16). Note the resource name or numeric ID that
identifies the menu.

2. Open the Dialog editor and load the dialog box to get the menu.

3. Open the Window Style dialog box.

4. In the Menu input box, type the menu's resource name or numeric ID.

Chapter 15, Creating dialog boxes 225

Assigning a custom
class to a dialog
box

Setting dialog box
position

Working with
controls

Families of controls

226

In the standard drawing modes the Dialog editor doesn't display the menu.
When you test the dialog box (see page 253), Resource Workshop displays a
generic menu called "Menu" that includes a single menu item called
"Item."

If you're an experienced Windows programmer, you might want to assign
a custom class to a dialog box so you can process dialog box messages with
your own window procedures (instead of Windows procedures). Another
reason for assigning a custom class might be to make the dialog box a
Borland-style dialog box.

To assign a custom class to a dialog box,

1. Open the Window Style dialog box.

2. Type the class name in the Class input box.

If your dialog box uses the WS_OVERLAPPED style (you checked
Overlapped as the window type), you can let Windows position it on the
screen. This option is generally used for dialog box frames that function as
main windows. To give control of the dialog box's position to Windows,

1. Select the dialog box frame by clicking on its edge or the title bar.

2. Choose Align I Size.

3. In the Size Dialog dialog box, click the Set by Windows radio button.

Resource Workshop grays out the X-coordinate value in the dialog box,
indicating that Windows has control of the dialog box.

4. Click OK to exit the Size Controls dialog box.

Controls are the individual components of dialog boxes. They let users
provide information to your application or receive information from it.
Controls fall into these general categories:

• Buttons • Static controls
• Scroll bars • Combo boxes
• List boxes • Custom controls
• Edit text

Each control you use comes from one of five family groups:

• Standard Windows controls, like push buttons, check boxes, list boxes,
and radio buttons. Icons for the standard Windows controls appear in the

Borland C++ Users Guide

Tools palette

second and third columns of the Tools palette. Standard Windows
controls are always available.

• Borland Windows Custom Controls (BWCC), which are also always
available. These controls (including radio buttons, check boxes, and push
buttons) offer both visual and functional enhancements over the
standard Windows controls. Icons for BWCC appear in the fourth
column of the Tools palette. The BWCC controls are described in
Appendix B.

• Custom controls whose class is recognized by Resource Workshop. These
controls are stored in a dynamic-link library (DLL) that includes the
ListClasses function. When the DLL file is installed, the icons for these
controls appear in one or more additional columns in the Tools palette,
starting to the right of the BWCC icons. This type of control is described
on page 251.

• Custom controls whose class i~ recognized by the Windows SDK dialog
editor. These controls are stored in a DLL file that includes their bitmaps
but does not include the ListClasses function. They are not represented in
the Tools palette, but their names appear in the drop-down list of the
New Custom Control dialog box (see page 252). When you add one of
these controls to a dialog box, its bitmap appears on the screen when
Resource Workshop is in WYSIWYG display mode.

• Custom controls whose class is not recognized by Resource Workshop or
the Windows SDK dialog editor. Resource Workshop adds their names to
the drop-down list in the New Custom Control dialog box, but they
appear on the screen in WYSIWYG mode as gray rectangles.

The left column of the Tools palette contains tools that set the Dialog
editor's current operating mode. -

The remaining columns contain icons for the standard Windows controls,
the BWCC controls, and any custom controls you've loaded and that
Resource Workshop recognizes.

Chapter 15, Creating dialog boxes 227

228

Figure 15.3
Tools palette

Selector

Tab Set

Set Groups

Set Order

Test Dialog

Duplicate

Undo

Push Button

Horizontal
Scroll Bar

List Box

Group Box

Edit Control

Iconic Static
Control

Black Rectangle

Radio Button

Vertical
Scroll Bar

Check Box

Combo Box

Text Static
Control
Black Frame
Static Control

Custom Control

Group Shade

Horizontal Dip

Vertical Dip

Borland Push
Button
Borland
Radio Button

Borland
Check Box

Borland Text
Static Control

Here are brief descriptions of the standard Windows controls whose icons
appear in the second and third columns of the Tools palette:

Push button A rectangular button the user "presses" to select an
action. Because push buttons always contain text, you
must specify a caption for each one.

Radio button A circular button with text to its left or right. When
the button is selected, a solid dot fills the circle. Radio
buttons are used in groups to represent related but
mutually exclusive options.

Horizontal
scroll bar

• Vertical
scroll bar

List box

A horizontal rectangle with direction
arrows on each end.

A vertical rectangle with direction arrows
on each end.

A rectangle usually containing a list of text strings. If
you use the Owner-draw style, the list box can also
contain a visual representation of a list of data.
Usually, a user can browse through what's displayed

Borland C++ Users Guide

~ *--

[tJ
[!]
[IJ
~
D
• [B

Selecting controls

Checkbox

Group box

Combo box

Edit text control

Text static
control

Iconic static
control

Black frame
static control

Black rectangle

Custom control

in a list box, then select one or more items. You'll
often see list boxes used in a File Open dialog box.

A rectangular button with text to its left or right.
When a check box is selected, an X appears in the
square. When a check box is not selected, the square is
empty. Check boxes are often used to represent
Boolean (on/off) states for individual options.

A rectangular box used to visually group other
controls together. You can include a caption to display
in the upper left corner of the group box.

A combination of a list box and edit text control or a
list box and static control.

A rectangle into which the user can enter text from
the keyboard.

Text that appears in the dialog box.

An icon.

An empty, rectangular frame that takes the
color of the current window frame.

A static control icon appearing as a rectangle that's the
same color as the current window frame.

A control whose class is different from the standard
Windows or BWCC types and is not recognized by
Resource Workshop.

A number of Resource Workshop's editing options require that one or more
controls be selected. For example, you must select a control before you can
change its size, and you must select at least two controls before you can
align them relative to each other. When a control is selected, it is
surrounded by a selection frame.

To switch to selection mode so you can select controls, you must first click
the Selector tool. The mouse pointer cursor becomes an arrow.

To select a single control, click the Selector inside the control or on its edge,
depending on the current state of the Select Near Border check box in the
Options I Preferences dialog box.

Chapter 15, Creating dialog boxes 229

To see the sequence,
click the Set Order

tool.

230

To select more than one control, you have two options:

• You can drag a selection rectangle around the controls you want to select,
as follows:

,1. Choose the Selector tool.

2. Click on one of the controls to ensure that the control (and not the
entire dialog box) is selected.

3. Drag a selection rectangle. Depending on the current state of the
Selection Rectangle Surrounds check box in the Options I Preferences
dialog box, the selection rectangle must either entirely surround the
controls or just touch them.

Resource Workshop places a selection frame around the selected controls.
You can drag the selection frame to ~ove the selected controls.

• You can Shift-click to select controls that would not be selected by
dragging. (For example, a selection rectangle might include controls you
don't want to select.) To Shift-click, click the first control, and then hold
down the Shift key as you click the additional controls.

To add one or more controls to a group you've selected, or to delete one or
more controls from the group, Shift-click the controls you want to add or
delete.

To select all the controls in a dialog box, choose Edit I Select All. Resource
Workshop places frames around each control in the dialog box and a
selection frame around the group of controls. Edit I Select All does not
select the dialog box window frame.

You can also select controls with the Tab key.

• If a single control is selected, pressing Tab moves the selection to the next
control in the sequence in which the controls were added. Pressing Shift
Tab moves the selection to the previous control in the sequence.

In all cases, if the selected control is the last in the sequence, Tab moves
the selection to the dialog box frame.

• If you've selected a group of controls by dragging a selection rectangle,
Tab moves the selection to the next control in the sequence after the
highest one in the gr?up. The group is deselected.

For example, if the selection frame contains controls 4,5,9, and 10, Tab
moves the selection to control 11 (if it exists).

• If you selected a group of controls by Shift-clicking, Tab moves the
selection to the next control in the sequence after the last control you
selected. .

Borland C++ Users Guide

Adding controls

Adding multiple
I copies of a control

For example, if you group-selected controls 9, 10,4, and 5 in that order,
Tab would move the selection to control 6.

The easiest way to add a new control to your dialog box is to

1. Click the control you want in the Tools palette. Your cursor will change
to indicate the type of control you are placing.

2. Click where you want to place the control in the dialog box.

If you select a control from the Tools palette and then change your mind
about placing it, choose the Selector tool. Your cursor will return to the
familiar arrow shape, and you will be able to select controls in your dialog
box. Pressing Esc before you place a control also returns you to selection
mode.

You can also use the Dialog editor's Control menu (in the menu bar, not the
window border) to add controls to your dialog box.

1. Use your mouse or press AIt+C to open the Control menu.

2. Choose the control type you want to add to your dialog box.

3. Click in the dialog box where you want the control placed.

You can place multiple, identical copies of a control in rows or columns.
For example, you might want to place two columns of four check boxes in
your dialog box. You could place each check box individually, but Resource
Workshop gives you an easier way.

To place multiple copies of a control in rows or columns,

1. In your dialog box, select the control you want to duplicate.

2. Click the Duplicate tool or choose Edit I Duplicate. The Duplicate
Control dialog box appears.

3. Specify the number of rows and columns you want, as well as the
spacing in dialog units between the rows and columns.

For example, if you want eight check boxes placed in two columns, you
would specify four rows and two columns.

4. Choose OK. Neatly aligned, multiple copies of your control appear in
your dialog box.

.. When only a single control is selected, the Duplicate tool has the same
effect as Edit I Duplicate. For multiple selected controls, it has the same
effect as Align I Array (see page 239).

Chapter 15, Creating dialog boxes 231

Control properties
(. VBX controls)

Moving controls

Resizing controls

Dialog units are
defined on page 223.

Locating and sizing
controls at the
same time

232

You can view the properties for controls you add to dialog boxes by using
the Options I Show Properties menu. When Show Properties is on, a
Properties dialog box appears listing the properties for the selected control.

A .VBX control can be edited only with the Properties dialog box. You
should understand what properties your control uses so you can easily
change them.

If 'the Properties dialog box isn't displayed, you can double-click a . VBX
control to view it.

You can move a selected control by dragging anywhere inside its selection
frame. You can also move grouped controls in the same manner. As you
drag, the controls move together, maintaining their position relative to each
other.

To move a control with the keyboard, Tab to select the control, then use the
arrow keys to move the control, and press Enter. Press Esc instead of Enter to
undo the move.

You can change the size of a selected control by dragging the appropriate
edge or corner. You can use the keyboard and mouse together to "fine
tune" the size:

1. Select the control and move the mouse cursor over the appropriate part
cl~~~ \

2. When the mouse cursor becomes a double-headed arrow, hold the left
mouse button down.

3. Press the appropriate arrow key to move the mouse cursor and the
selection frame. Each press of the arrow moves the cursor a single
dialog unit.

Using the Size Controls dialog box, you can specify a control's position and
size at the same time.

1. Select the control you want.

2. Choose Align I Size or hold down the Alt key while double-clicking the
mouse. The Size Controls dialog box appears.

3. To set the position of the control's upper left corner, specify its X- and
Y-coordinates in dialog units. The coordinates 0,0 place the control in
the upper left corner of the dialog box window, directly below the title
bar.

Borland C++ Users Guide '

Figure 15.4
Dialog box

coordinates

Aligning controls
with a grid

Editing controls

To set the control's width and height, specify its CX and CYvalues in
dialog units. See Figure 15.4.

x,y ex

You can display a grid on your dialog box and use it to align your controls.

To display a grid,

1. Choose Align I Grid. The Set Grid Attributes dialog box appears.

2. Specify the width and height of a grid cell (in dialog units).

3. Select the Grid Type. There are two options:

• Absolute. Snaps the control to the nearest grid line .

• Relative. Moves the control only in increments of the grid width
horizontally and the grid height vertically. Therefore, if a control was
not placed o.n a grid line originally, you will not be able to move it to
a grid line with this option selected.

For example, if you set the grid to be 4 x 4 and have a control with a
position of (1,1), when you move the control, it will only go to
positions that are 4 units away in either dimension. Possible
coordinates would be (5,5), (5,9), (9,5), and so on.

4. Check the Show Grid option and choose OK.

To modify a control in your dialog box, double-click the control to display
its Style dialog box. The options in this dialog box vary according to the
type of control you're working with. For example, double-clicking a button
control brings up the Button Style dialog box.

If you're using the keyboard, use Tab to select the control you want to edit.
·Press Enter to display the Style dialog box for the selected control.

Although each control type has its own Style dialog box, the dialog boxes
have many options in common.

Chapter 15, Creating dialog boxes 233

Table 15.1 .
Common options in
Style dialog boxes

234

Table 15.2
Control attributes

Option

Caption

ControllD

Scroll Bar

Description

Lets you type the caption you want displayed with the control. Different type of
controls display captions in different areas. For example, in a group box, the
caption displays at the top left. In a push button, the caption displays inside the
button.

Not all controls display a caption. For example, a list box does not display the text
specified in ~ts caption.

\

To the right of where you type the caption, check either Text or Number. Choose
Text if you want the caption to be surrounded by quotation marks in the .RC or
dialog file source code. Select Number if you don't want quotation marks.

Lets you specify a unique identifier for the control. Control IDs can be a short
integer or an integer expression. Type the controllD you want to assign to this
control.

By convention, static controls that are not modified at run time are assigned a
controllD of -1.

If you type an alphanumeric ControllD, Resource Workshop checks to see if an
identifier exists as a #define or a constant declaration. If not, Resource Workshop
asks if you want to create an identifier. See Chapter 14 for more information about
identifiers.

Lets you choose whether you want horizontal or vertical scroll bars included with
your control.

Most controls have certain attributes in common:

Attribute

Tab Stop

Group I

Visible

Disabled

Border

Description

Lets the user press Tab to access this control.

Identifies the first control within a group. See page 236 for details about grouping
and accessing controls.

Determines whether the control is visible when the dialog box is first displayed. By
default, this option is checked (WS_ VISIBLE). If the option is not checked (NOT
WS_ VISIBLE), the control does not appear. The application can call the
ShowWindow function at run time to make the control appear.

Dims (grays) the control to indicate that it doesn't respond to user input.

Draws a border around the control.

Each type of control Style dialog box has options that are specific to a
particular type of control. These are mentioned in the discussion of the
various types of contro~s, beginning on page 241.

Borland C++ Users Guide

Adding captions to
controls

Changing a
controls class

For more about
custom controls, see

page 251.

Specifying controls
as tab stops

The Tab Set, Set
Groups, and Set

Order tools affect the
user's keyboard inter
action with the dialog

box.

Although you can use a Sty Ie dialog box to add a caption to a control, you
. can also use the Properties dialog box.

To add a caption to a c.ontrol, select the control and then do either of the
following:

• Choose Options I Show Properties, then type a caption in the top text box.

• Double-click the control (dialog box) you want to add a caption to, then
type a caption in the Caption text box.

If you are working with custom controls, you might find the Generic
Control Style dialog box helpful. Display it by holding down etrl and
double-clicking your control. Or use Tab to select the control, then hold
down etrl and press Enter.

In the Generic Control Style dialog box, you can change the class of a
control. You can also specify a caption, control ID, and style. If you type
anything next to Info, the dialog box won't be compatible with the
Microsoft Resource Compiler.

When using the keyboard, users typically press Tab to move from one
control (or group of controls) to another. Some types of controls are
automatically defined as tab stops when you add them to a dialog box. By
setting the tab stop state of a control, you can manage the user's movement
through the dialog box with the Tab key.

There are two ways to change tab stops:

• Use the Tab Set tool or the Set Tabs command.

• Use the Style dialog box.

To change or set tabs, you can use the Tab Set tool or the Set Tabs
command.

1. Click the Tab Set tool or choose Options I Set Tabs. The cursor changes
to the Tab Set icon. Resource Workshop surrounds any controls
currently set as tab stops with a shaded outline.

2. To set a tab stop, click any control that is not surrounded by a shaded
outline.

To remove a tab stop, click a control that is surrounded by a shaded
outline.

3. When you're through changing tab stops, click the Selector so you can
return to editing your dialog box.

Chapter 15, Creating dialog boxes 235

Grouping related
controls

Reordering controls
(tab order)

236

You can also use a Style dialog box to change a tab stop:

1. Open the Style dialog box for the control (double-click the control or
select it and press Enter).

2. Check Tab Stop under Attributes to set a tab stop, or uncheck Tab Stop
to toggle the setting off.

You can test your dialog box, as described on page 253, to see how your
new tab stops work.

You can define groups of controls. This lets the user move among related
controls using the arrow keys.

Defining groups is identical to specifying tab stops (described in the
previous section). If you use the Set Groups tool or the Options I Set Groups
command, Resource Workshop indicates that a control is marked as a
group by surrounding it with a shaded outline. You can also define a group
by setting the Group attribute in the control's Style dialog box.

Note, however, that you mark only the first control in each group with the
Group attribute. Following the sequence in which you adCled the controls,
Resource Workshop treats all subsequent controls as part of the group, until
it encounters another control with the Group attribute.

There are two important things to remember about groups:

• The order in which you add the controls is important.

• When you select a "group" of controls by dragging a selection frame or
by Shift-clicking, they are not a group in the sense used in this section;
they are simply multiple selected controls. The Group attribute can be set
only with the Set Group tool, the Options I Set Group command, or the
Group check box in the Style dialog box.

You can specify the tab order in which users can access the controls in a
dialog box. As noted in the previous section, the tab order is especially
important when you've defined groups of related controls.

To specify the tab order of the controls in your dialog box,

1. Select the controls whose tab order you want to change.

To specify the order for all controls in the dialog box, don't select any
controls.

2. Click the Set Order tool. The mouse cursor turns into a Set Order icon.

Borland C++ Users Guide

Aligning, resizing,
and arranging
controls

Aligning multiple
controls

Table 15.3
Alignment options

Each control is numbered to show its current place in the overall order.
If you chose just some of the controls in step 1, you'll see the order
numbers only for those controls.

Note the Next Item prompt at the bottom of the Dialog editor. It tells you
the order number that Resource Workshop assigns to the next control
you click.

3. Click the items you want to assign new order numbers to. The Dialog
editor displays a box around all the controls you've already picked.

While assigning new order numbers, you can "step back" by re-clicking
the last control you just clicked. The order will change to its previous
number. You can continue to backtrack by clicking the controls in the
reverse order that you originally clicked them.

4. When you finish assigning new order numbers, click the Selector so you
can continue editing.

You can also order your controls with the menu command Options I Set
Order. When you're done, choose Options I Modify Controls so you can
continue to edit your dialog box. (You won't need to choose this command
if you click all the selected controls.)

Once you've added controls to your dialog box, you can use the Dialog
editor menu to align or resize controls and arrange them in rows and
columns.

To align your controls with the Align command,

1. Select the controls you want to align.

Note that the selection frame surrounds all the selected controls. The
individual controls that will be affected by the alignment options are
indicated by shaded outlines.

2. Choose Align I Align. The Align controls dialog box appears.

3. Choose the Vertical Alignment and Horizontal Alignment options you
want, then click OK to move the selected controls.

Option

Horizontal Alignment

No Change

Left Sides

Description

There is no change in horizontal alignment.

Aligns the controls so their left sides are on the left side of the
selection frame.

Chapter 15, Creating dialog boxes 237

g!Alignment
~.~~~

·Ui .• ~ .. ' ,::rr .. g

238

Table 15.3: Alignment options (continued)

Centers Aligns the controls so their horizontal centers are in the center of the
selection frame.

Right Sides

Space Equally

Center in Dialog

Vertical Alignment

No Change

Tops

Centers

Bottoms

Space Equally

Center in Dialog

Aligns the controls so their right sides are on the right side of the.
selection frame.

Moves the controls horizontally within the selection frame so the
spaces between them are equal.

Moves the selection frame horizontally so its centered in the dialog
box. The relative position of the individual controls within the selection
frame is unchanged.

There is no change in vertical alignment.

Aligns the controls so their tops are at the top of the selection frame.

Aligns the controls so their vertical centers are in the center of the
selection frame.

Aligns the controls so their bottoms are at the bottom of the selection
frame.

Moves the controls vertically within the selection frame so the spaces
between them are equal.

Moves the selection frame vertically so its centered in the dialog box.
The relative position of the individual controls within the selection
frame is unchanged.

Instead of using Align I Align Controls, you can use the Alignment palette.
Select the controls you want to align and then choose a tool from the
Alignment palette.

The one alignment option that does not appear in the Alignment palette is
the Space Equally option. Of course, you can always use the Align Controls
dialog box, but you can also space controls equally by "stretching" the
selection frame:

1. Select the controls you want to space equally. A selection frame
surrounds your selected controls.

2. Expand or "stretch" the selection frame by holding down the etrl key
while dragging the edge of the selection frame in the direction you want
to space your controls:

• To space the controls equally in the horizontal direction, stretch the
right or left border of the selection frame.

Borland C++ Users Guide

Placing controls in
columns and rows

Figure 15.5
Control order options

• To space the controls equally in the vertical direction, stretch the top
or bottom border of the selection frame.

If you stretch a corner of the selection frame, the Form Controls into an
Array dialog box appears, ready for you to arrange your controls in rows
and columns.

The Align I Array command arranges controls in columns and rows,
aligning them horizontally or vertically, spacing them evenly horizontally
or vertically, and renumbering them so they are all in sequence.

To use the Array command:

1. Select the controls you want to arrange in columns and rows.

Note that the selection frame surrounds all the selected controls. The
individual controls that will be affected by the Array command are
indicated by shaded outlines.

2. If necessary, enlarge or reduce the size of the selection frame to enclose
the area you want to fit the columns and rows into. For example, if you
make the selection frame larger, the Array command will move the
controls out to the new boundaries set by the selection frame.

3. Choose Align I Array or click the Duplicate tool.

4. Under Array Layout, specify the number of rows and columns you
want.

5. Under Order, select how you want to order the controls in this group.
The following figure shows how the two Order options would arrange
nine controls into three columns. '

Ir".L2,"i"1 [[~73:::r'l (rr.';1':{,') IE:'w'~\~\1 [f'w'7'~""1

I'}:;F~.'.:'I [f:}.s~~":]1 [~'''7?''~.:') If,j''';''§;n [f}T"8~'TI

IFw~'~';.:J I[~~~'~"):il li:~':~~l:j II~r.it~"~'"1 (8~~~-'TI
Left to Right Top to Bottom

6. After you've chosen the options for the array, choose OK.

.. For multiple selected controls, the Duplicate tool has the same effect as
Align I Array. When only a single control is selected, it has the same effect
as Edit I Duplicate (see page 231).

Chapter 15, Creating.dialog boxes 239

Resizing multiple
controls

Figure 15.6
Size Controls dialog

box

240

Table 15.4
Size options

You can resize multiple selected controls with the options in the Size
Controls dialog box:

1. Select the controls you want to resize.

Note that the selection frame surrounds all the selected controls. The
individual controls that will be affected by the resizing options are
indicated by shaded outlines.

2. Choose Align I Size. Y ou'll see this dialog box:

Size controls

3. Choose the Vertical Size and Horizontal Size options you want and click
OK to resize the selected controls.

Option

Horizontal Size

No Change

Shrink to Smallest

Grow to Largest

Width of Size Box

Width of Dialog

Vertical Size

No Change

Description

There is no horizontal size change.

Reduces width of controls to match the least wide of the selected
controls.

Increases width of controls to match the widest of the selected
controls.

Resizes controls so they are as wide as the selection frame.

Resizes controls so they are as wide as the dialog box.

There is no vertical size change.

Borland C++ Users Guide

Single-control
sizing options

Button controls

Table 15.4: Size options (continued)

Shrink to Smallest

Grow to Largest

Height of
Size Box

Height of Dialog

Reduces height of controls to match the least tall of the selected
controls.

Increases height of controls to match the tallest of the selected
controls.

Resizes controls so they are as tall as the selection frame.

Resizes controls so they are as tall as the dialog box.

After you choose the vertical and horizontal sizing options you want,
choose OK.

You can undo the sizing options by choosing Edit I Undo, by pressing
Alt+Backspace, or by s electing the Undo tool.

If you select a single control and then choose Align I Size, the following
options are available:

• No Change (Horizontal and Vertical)
• Width of Dialog (Horizontal)
• Height of Dialog (Vertical)
• Enter Values (Horizontal and Vertical)

The No Change, Width of Dialog, and Height of Dialog options work as
described in Table 15.4.

The Enter Values options let you specify both the size and position of the
selected control. The X and Y values set the distance of the upper left comer
of the control from the upper left corner of the dialog box (directly below
the title bar). The CX and CYvalues set the width and height of the control.
All values are measured in dialog units.

You can "undo" any editing you do in the Dialog editor, such as placing
controls, aligning them, deleting controls, and so on, with the Undo tool or
the Edit I Undo command. Undo works on commands that affect groups of
controls as well as commands that change single controls.

Button controls include radio buttons, push buttons, check boxes, and
group boxes. You add buttons to your dialog box with the Tools palette
(see page 228), and you use the Button Style dialog box to set the attributes
of new buttons or to modify existing button controls. To display the Button
Style dialog box, double-click the button control you want to modify.

Chapter 15, Creating dialog boxes 241

Table 15.5
Button types

Push button Control
ID values

242

Change the button type by choosing a new option under Button Type.

Button type Description

Push Button . A button containing text. The user clicks the button, which sends a
BN_CLlCKED message to the parent window.

Default Push Button Identical to a push button, but also includes a bold border indicating that
its the default response if the user presses Enter.

Check Box A rectangular button that can include text to the left or right of the button.
The box is marked with an Xwhen selected. Its the applications
responsibility to check and unch~ck the box.

Auto Check Box Identical to a check box, but Windows does the checking and unchecking
instead of the application.

'r

3-8tate Identical to a check box, but includes a third possible state: the button
can be dimmed to show that its state is unknown or indeterminate. It's the
applications responsibility to check, un check, and dim the box.

Auto 3-8tate Identical to a 3-8tate button, but Windows does the checking and
unchecking instead of the application program.

Radio Button A circular button that has identifying text to the left or right. The circle is
filled with a solid dot when selected. Its the applications responsibility to
fill or clear the dot.

Auto Radio Button

Group Box

User Button

Owner Draw

Radio buttons must appear in groups. Usually, a group of radio buttons
presents the user with a set of mutually exclusive options.

When the user clicks a radio button, it sends a BN_CLlCKED message to
the parent window.

Identical to a radio button, but Windows does the filling in or clearing of
the dot instead of the application.

A rectangular box that groups buttons together visually. You can "also
include a caption to display in the upper left corner of the group box.

Customized buttons for Windows 2.0 compatibility; we recommend that
you don't use user button controls with Windows 3.0. Instead, you should
use Owner Draw buttons.

An option that allows the application itself to paint the button. The button
sends a WM_DRAWITEM message to its parent when it needs painting.

The Alignment options determine if the text for the radio and check box
buttons appears to the left or right of the button.

Windows defines a set of control IO values for the standard push buttons
used to exit dialog boxes. You can enter the IO name (which must be in
uppercase letters) or IO value from Table 15.6. Note, however, that in

Borland C++ Users Guide

Table 15.6
Predefined Windows

button controls

Scroll bar
controls

contrast to the Borland Windows Custom Controls (described in Appendix
B), changing the control ID of a standard Windows button does not
automatically change the button text. For example, to create an OK button,
you must change the control ID to IDOK and change the Caption string to
OK. .

10 name 10 value Type

IDOK 1 OK
IDCANCEL 2 Cancel
IDABORT 3 Abort
IDRETRY 4 Retry
IDIGNORE 5 Ignore
IDYES 6 Yes
IDNO 7 No

Windows, dialog boxes, and list boxes use scroll bars to indicate when
there is more information than can currently be displayed. For example, if a
file name list box can display ten names and there are twenty file names in
the directory, a scroll bar indicates to the user the existence of the
additional file names.

A scroll bar is a rectangle with direction arrows at each end. Between the
arrows, a square icon (called the scroll box or thumb) indicates the
approximate position of the display relative to the full range of
information. For example, if the scroll box in a file name list box is halfway
down the scroll bar, the user is looking at the file names halfway down the
list of names.

You can add vertical and horizontal scroll bars anywhere you want in a
dialog box.

To place scroll bars in your dialog box, use the Tools palette or the two
scroll bar commands in the Controls menu. To set the scroll bars' attributes,
display the Scroll Bar Style dialog box by double-clicking the scroll bar
control you want to modify.

The Scroll Bar Style dialog box includes the common and the control
attribute options listed in Tables 15.1 and 15.2, as well as options that align
the scroll bar inside the selection frame.

Chapter 15, Creating dialog boxes 243

Table 15.7
Alignment options

List box controls

244

Table 15.8
Owner Drawing

options

Option

None

Top Left

Bottom Right

Description

The scroll bar fills the entire selection frame (default). If you resize the
selection frame, you can change the scroll bar's proportions, making the arrow
buttons and scroll box wider than usual.

A horizontal scroll bar displays at the top of the selection frame and extends
the full width of the frame. A vertical scroll bar displays at the left side of the
selection frame and extends the full height of the frame. The scroll bar always
appears in its standard width.

A horizontal scroll bar displays at the bottom of the selection frame and
extends the full width of th'e frame. A vertical scroll bar displays at the right
side of the selection frame and extends the full height of the frame. The scroll
bar always appears in its standard width.

A list box is a rectangle containing a list of text strings. Usually, a user can
browse through what's displayed in a list box, then select one or more
items. The list box sends a message to the parent window about the
selected item(s).

If the list of items exceeds the length or width of the list box, you can add
scroll bars to the list box.

Other than the common options described on page 233, the List Box Style
dialog box has Owner Drawing and List Box options.

Owner Drawing options let you determine whether the list contained in the
list box should be drawn by the list box or the application. Choose one of
the attributes in this table:

Option

Not Owner
Draw

Fixed

Variable

Description

The list box control draws the list (default).

The application draws the list box in response to WM_DRAWITEM messages. The
application can also respond to WM_COMPAREITEM, WM_DELETEITEM, and
WM_MEASUREITEM messages.

The list box control sends a WM_MEASUREITEM message to the application only
when the list box is initially drawn, which fixes the list box item height.

The application draws the list box in response to WM_DRAWITEM messages. The
application can also respond to WM_COMPAREITEM, WM_DELETEITEM, and
WM_MEASUREITEM messages.

The list box control sends a WM_MEASUREITEM message to the application for
each item in the list box; each item can vary in height.

Borland C++ Users Guide

Table 15.9
List Box options

List Box options let you further define the list box. Choose one or more of
the options in this table:

Option

Notify

Sort

Multiple Select

Don't Redraw

Tab Stops

Integral Height

Multi Column

Pass Keyboard
Input

Extend Select

Has Strings

Scroll Bar Always

Description

Sends an input message to the parent window when the user clicks on
an item in the list (default).

Sorts the list alphabetically.

Lets the user select more than one item at a time. The user can also
toggle individual items on and off.

Prevents the list box from being redrawn when it is changed.

Organizes the information in the list box in columns. The default column
width is 32 dialog units or 8 characters. You should use Tab characters
(\x09) to format the text.

(If you want to change the column width, the application should set its
own tab stops using the LB_SETIABSTOPS message.)

Causes the list box to ,decrease its height at run time, if necessary, to the
nearest integral multiple of the current font height (default).

For example, a list box might be drawn so that three items would display
completely, but a fourth would be partially cut off. If Integral Height is
turned on, the list box decreases its size at run time to the space required
for three items (three times the font height).

Creates a list box in which the text wraps from column to column. The
user scrolls the list box horizontally to display additional text.

If you turn this option on, the application must send the
LB_SETCOLUMNWIDTH message to set the width of all columns in
pixels.

Passes what the user types to the application.

When used with multiple-select list boxes, this attribute modifies the way
multiple selection works, so that the user can select more than one item
in the list.

If youve chosen either the Fixed or Variable Owner Drawing option, the
list box stores text for each list item with the LBJNSERTSTRING or
LB_ADDSTRING message. The list box can also retrieve list items from
the message LB_GETIEXT.

(Windows 3.1 only) The list box always displays a vertical scroll bar,
regardless of the number of items it contains. The WINDOWS.H constant
for this style is LBS_DISABLENOSCROLL.

Chapter 15, Creating dialog boxes 245

Edit text controls

Figure 15.7
Edit text control

Table 15.10
Edit Text Style dialog

box options

246

An edit text control lets the user enter text from the keyboard. A common
use of an edit text control is found in a File Open dialog box ..

To set the attributes of an edit text control, double-click it in the dialog box.
The Edit Text Style dialog box appears.

The Edit Text Style dialog box includes the common and control-attribute
options listed in the tables beginning on page 233, as well as the following
options:

• Alignment
• Scroll Bar
• Automatic Scroll
• Single- or multiple-line options
• Case sensitivity options
• Other options, including those specific to Windows 3.1

The following table describes the options in the Edit Text Style dialog box.

Option

Alignment

Left

Right

Center

Scrol/Bar options

Horizontal

Vertical

Description

Aligns multiple-line text to the left (default).

Aligns multiple-line text to the right.

Centers multiple-line text.

When this option is checked, the edit text control has a horizontal scroll
bar at the bottom of its window.

When this option is checked, the edit text control has a vertical scroll
bar at the right edge of its window.

Automatic Scrol/ options

Horizontal When the user types a character at the right edge of the edit text
boundary, the text automatically scrolls ten characters to the right.
When the user presses Enter, the text scrolls back to the zero position.

Vertical When the user presses Enteron the last line of the edit text control, the
text scrolls up a full page. For example, if the control is five lines long,

. pressing Enter on the last line causes text to scroll up five lines; the
cursor goes back to the top line.

Borland C++ Users Guide

Table 15.11
Windows 3.1 styles

Table 15.10: Edit Text Style dialog box options (continued)

Case options

Case Insensitive

Upper Case

Lower Case

Line options

Single Line

Multiple Line

Other options

Password

Convert OEM

Keep Selection

For this option to have any effect, you must also define the edit text
,control to allow for multiple lines.

Note: Pressing the Enter key has no effect when Resource Workshop
is in Test mode, but you will see this effect in your application.

Displays text exactly as typed (default).

Displays all text in uppercase letters, regardless of how it's typed.

Displays all text in lowercase letters, regardless of how it's typed.

Limits the edit text to a single line (default).

Lets the user type text on multiple lines. (To enable scrolling of
multiple-line text, set the Vertical Automatic Scroll option to on.)

When Password is on, the letters being typed are not displayed.
Instead, asterisks appear in their place. This is helpful for keeping
passwords secret.

Converts text typed into the control to the current OEM character set,
then reconverts the text to ANSI. This option is useful in file input boxes
because it ensures that any file name entered will be translatable into
the OEM character set, which is used by the DOS file system.

Keeps selected text highlighted, even when this control doesn't have
keyboard focus. For example, if a user highlights text in an edit text
control and then moves to another control, the text will no longer be
highlighted, unless the edit text control has the Keep Selection
attribute.

The following options are available only if you're running under
Windows 3.1.

Type

Read Only

Want Return

Description

The text is set to read-only. The WINDOWS.H constant for this style is
ES_READONL Y.

The Return key forces a line break in a multiline edit text control that has
keyboard focus. If the control doesn't have keyboard focus, the carriage
return goes to the default push button. If the control doesn't have this flag,
the user must press Ctrl+Retum to create a line break. The WINDOWS.H
constant for this style is ES_WANTRETURN.

Chapter 15, Creating dialog boxes 247

Static controls

The tools for these
controls are

illustrated in Figure
15.3 on page 228.

Table 15.12
Control Type options

248

A static control displays text or art the user can't change. You can use static
controls to label portions of your dialog box or to present information
graphically.

The static controls in the Tools palette include

• Static text • Frame

• Icon • Rectangle

You can set the attributes of static controls with the Static Style dialog box.
To display the Static Style dialog box, double-click the static control in the
dialog box.

The Static Style dialog box includes the common and control-attribute
options listed in the tables beginning on page 233 (except for the scroll bar
options), as well as several options specific to static controls.

The No Character Underline check box turns off character underlining. You
can underline a text character in your static control by preceding it with an
ampersand (&). If you check No Character Underline, underlining is
disabled and ampersands are displayed as literal characters.

The Control Type options let you further define which kind of static control
is displayed. Choose from the following options:

Option

Left Text

Description

Displays text flush left within the control border (default). If text would
extend past the edge of the frame, it automatically wraps to a new line.

The text in all these styles uses the current Window Text color from the
Control Panel.

Left Text-No Wrap Displays text flush left within the control border. Any line of text that
extends past the edge of the frame is clipped.

Centered Text Displays text centered within the control border. If text would extend past
the edge of.the frame, it automatically wraps to a new line.

Right Text Displays text flush right within the control border. If text would extend past
the edge of the frame, it automatically wraps to a new line.

In all static text but Simple Text, you can tab text by typing \ T, and you can
break text to a new line with \R.

Simple Text Displays a single line of flush-left text. Doesn't take tab characters and
can't be broken to a new line.

Simple Text doesn't process the WM_CTLCOLOR message. In addition to
receiving its text color from the Control Panel, its background uses the
current Window Background color.

Borland e++ Users Guide

Iconic static
controls

If the Caption text box
does not contain the

icon resources name
or identifier, the icon

will not display.

Table 15.12: Control Type options (continued)

White Rectangle Displays a filled rectangle that uses the current Window Background color
set in the Control Panel. The Windows default color for the Window
Background is white.

Gray Rectangle

Black Rectangle

White Frame

Gray Frame

Black Frame

Icon

Displays a filled rectangle that uses the current screen background
(Desktop) color set in the Control Panel. The Windows default color for the
Desktop is gray.

Displays a filled rectangle that uses the current Window Frame color set in
the Control Panel. The Windows default color for window frames is black.

Displays an empty frame with a solid outline that uses the current Window
Background color set in the Control Panel. The Windows default color for
the window background is white.

Displays an empty frame with a solid outline that uses the current screen
background (Desktop) color set in the Control Panel. The Windows default
color for the Desktop is gray.

Displays an empty frame with a solid outline that uses the current Window
Frame color set in the Control Panel. The Windows default color for
window frames is black.

Note: When you add a frame to your dialog box, it might appear to be
filled, using the current window background color. If you switch to Test
mode, you'll see the frame as it will display at run time.

Displays an icon. Use the Edit Icon button to start the Bitmap editor so you
can edit the icon.

Resource Wqrkshop lets you display icons in a dialog box. The icon must be
a part of the current project as an embedded or a linked resource.

To place an iconic static control in your dialog box,

1. Click the iconic static control in the Tools palette and drag it to your
dialog box. Place the frame where you want the icon to appear.

2.' Double-click inside the control's selection frame to display the Static
Sty Ie dialog box.

3. In the Static Style dialog box, enter the name or identifier of the icon
resource as the Caption and click the appropriate radio button-Text for
a name, Number for an identifier.

If you use an identifier-either its name or numeric value-as the
Caption, you must select the Number option. For exampl~, if you've
created an identifier called GLOBE with a value of 1300, you can enter
GLOBE or 1300 as the Caption, but in either case you must select Number.

If the icon is called GLOBE and you didn't create an identifier, type
GLOBE as the Caption and select the Text radio button.

Chapter 15, Creating dialog boxes 249

Combo box
controls

Figure 15.8
Combo box from

Open File dialog box

250

Table 15.13
Combo box Type

options

Table 15.14
Owner Drawing

options

4. Choose OK. The icon appears in your dialog box.

5. If you want to edit the icon, double-click the icon to display the Static
Style dialog box once again. The Edit Icon button is now enabled. Click
it to start the Bitmap editor so you can edit the icon.

A combo box combines a list box (a control that lets the user browse and
select strings) with either a static control (text a user can't change) or an
edit text control (an area where a user can type).

You can set the attributes of a combo box using the Combo Box Style dialog
box. To display the Combo Box Style dialog box, double-click the combo
box in your dialog box.

The three Type options let you define the combo box.

Option

Simple

Drop Down

Drop Down List

Description

The drop-down list is always expanded to display items in the list, and the
user can edit the items in the list (default).

When the dialog box is first displayed, the combo box consists of a single
line of editable text. The user can click the down arrow to expand the list,
and edit all items in the list.

This option works just like a drop down, but the list is static. The user can
select, but can't change anything in the list.

The Owner Drawing options let you determine whether the list contained
in thelist box should be drawn by the list box itself or by the application.

Option

No

Fixed

Description

The list box control draws the list (default).

The application draws the list box in response to WM_DRAWITEM
messages. The application can also respond to WM_COMPAREITEM,
WM_DELETEITEM, and WM_MEASUREITEM messages.

The list box control sends the WM_MEASUREITEM message to the
application only when the list box is initially drawn, which fixes the list box
size.

Borland C++ Users Guide '

Table 15.15
Combo box attributes

Custom controls

Table 15.14: Owner Drawing options (continued)

Variable The application draws the list box in response to WM_DRAWITEM
messages. The application can also respond to WM_COMPAREITEM,
WM_DELETEITEM, and WM_MEASUREITEM messages.

Has Strings

The list box control sends the WM_MEASUREITEM message to the
application for each item in the list box; the list box can therefore vary in
size.

If you've chosen either Fixed or Variable, the list box stores text for each
list item with the LB_SETTEXT message. The list box can also retrieve list
items from LB_GETTEXT.

The Combo Box Style dialog box includes the common and control
attribute options listed in the tables beginning on page 233, as well as
options specific to combo box controls.

Option

Vertical Scroll

Sorted

Integral Height

OEM Conversion

AutoHorizontal

Vertical Scroll Always

Description

Puts a vertical scroll bar in the list box.

Automatically sorts items in a list box in alphabetical order.

Sizes the list box at run time so all items in the list are completely
displayed (default). If you want to control the height of the list box
precisely, uncheck this option.

Converts text the user types in to the current OEM character set, then
reconverts the text to ANSI. This option is useful in file input boxes
because it ensures that any file name entered will be translatable into
the OEM character set, which is used by the DOS file system.

Scrolls text to the left automatically when it exceeds the width of the
control.

(Windows 3.1 only) The combo box always displays a vertical scroll
bar, regardless of the number of items it contains. The WINDOWS.H
constant for this style is CBS_DISABLENOSCROLL.

If you want to use a control that doesn't fit into one of the predefined
, Windows types, you can use a custom control. The predefined controls

discussed earlier in this chapter-list boxes, scroll bars, buttons, and so
on-are called standard controls. They were developed by Microsoft and
are part of Windows. A custom control, on the other hand, is any other
window class you want to include in your dialog boxes.

There are two types of custom controls: those that you can install and those
that are application-specific. You must implement installable custom
controls using a dynamic-link library. Custom controls specific to an

Chapter 15, Creating dialog boxes 251

Creating your own
custom controls

Installing a control
library (.DLL or
.VBX)

Displaying custom
controls

Adding a custom
control

252

application are implemented in the application itself. Resource Workshop
draws them as either gray boxes or empty frames.

If you want to create your own custom controls, you must design them and
store them in dynamic-link library (DLL) files. Creating custom control
classes is described in the online file CUSTCNTL.RW, which was copied to
your hard disk by the Resource Workshop installation program.

Custom controls are stored in DLLs. To add custom controls to your dialog
box, install the appropriate .DLL or .VBX files. Then the custom controls in
that DLL will be available just like any standard Windows control.

To install a DLL file containing a custom control library,

1. Choose File I Install Control Library. You'll see the Install a New Control
Library dialog box.

2. Specify the custom control.DLL or .VBX file.

3. Choose OK.

Now the controls contained in that DLL file are available for you to add to
your dialog box. To edit certain custom controls (such as .VBX controls)
display the Properties dialog box by either double-clicking the control or
choosing Options I Show Properties.

Before you add custom controls to your dialog box, choose Options I
Preferences to see how your dialog boxes will be displayed. If the Drawing
Type is set to Normal and the Draw Custom Controls as Frames option is
checked, your custom controls will display as rectangular outlines. In that
case, you might want to change either or both of these settings.

Once you've installed a DLL file containing custom controls, you can add
any of those custom controls to your dialog boxes.

If your custom controls are of the type recognized by Resource Workshop
(see page 227), their icons appear in the column (or columns) on the right.
side of the Tools palette, and you can select them directly from the palette.

If your custom controls are of the types not recognized by Resource
Workshop, you must follow these steps:

1. Click the Custom Control tool or choose Control I Custom. The New
Custom Control dialog box appears.

Borland C++ Users Guide

2. From the drop-down list next to class, choose the custom control you
want. Resource Workshop displays a sample of the custom control
you've selected in the middle of the dialog box.

3. When you've selected the custom control you want, choose OK. The
mouse cursor becomes a cross hair, indicating that it's ready to place the
custom control.

4. Click in the dialog box window where you want to place the custom
control.

Testing a dialog box

To test your dialog box to see the effect of any changes you've made, select
the Test tool or choose Options I Test Dialog.

You can press Tab and the arrow keys to see how you can move around
your dialog box, or you can type text to see how text is scrolled in an edit
text control. Check to see if your controls are in the order you want them.

When you test a dialog box, the status line at the bottom of the Dialog
editor says Test.

To leave test mode and return to edit mode, do any of the following:

• Click the dialog box's OK or Cancel button.
• Choose Options I Test Dialog again.
• Press Enter.
• Click the Selector twice. (The first click switches focus from the dialog

box to the Dialog editor.)

Viewing two dialog boxes

To view or compare two dialog boxes at the same time, follow these steps:

1. In the Project window, double-click the name of the first dialog box you
want to view. The Dialog editor starts up and displays that dialog box.

2. Click the Test tool or choose Options I Test Dialog.

3. Click the Minimize button of the Dialog editor twice. (The first click
switches focus from the dialog box to the Dialog editor window.) Your
dialog box is now a floating, modeless dialog box you can move around
like any window.

4. Return to the Project window and double-click the name of the second
dialog box you want to view. A second Dialog editor starts up.

Chapter 15, Creating dialog boxes 253

5. Again, click the Test tool or choose Options I Test Dialog in the second
Dialog editor.

6. Click the Minimize button of the second Dialog editor twice.

Now you have two floating dialog boxes you can put side by side.

To exit Test mode, click the OK or Cancel button of your dialog box, or
double-click its Control menu icon.

Customizing the Dialog editor

254

Resource Workshop lets you change the way some parts of the Dialog
editor work. Choose Options I Preferences to display the Preferences dialog
box.

• Status line units determine the unit of measurement the status line uses
to display information.

• Dialog. Uses the dialog unit as the· unit of measurement on the status
line. In a dialog unit, y equals % of the font height, and x equals ~ of
the font width.

• Screen. Uses a pixel as the unit of measurement on the status line.

• The Selection Border options let you change the appearance of the frame
that surrounds selected controls.

• Thick frame. The selection frame is thick, like the standard frame
around a Windows application or dialog box window (default).

• Handles. The selection frame is a rectangular outline with handles
(small squares) at each corner and at the midpoint of each side.

• Drawing Type options determine how elements of your dialog box are
displayed in the Dialog editor.

• Draft. Draws each control as a rectangle with its control 1D in the
center. This option also lets you see how, much space is occupied by the
control's selection frame.

• Normal. Draws standard Windows controls as they will appear at run
time. Drawing of custom controls is determined by the Draw Custom
Controls as Frames check box, described shortly.

• WYSIWYG (the default option). With this option selected, Resource
Workshop creates the dialog and control child windows and the
controls draw themselves. This option is slowest, but the most
accurate. 1nstallable custom controls draw themselves.

Borland C++ Users Guide

For more information
about the resource

script language, use
the Help system.

• The Selection options "set the rules" for how you select controls. If you're
working with closely spaced controls, you might want to tum these
options on for greater precision and to avoid selecting controls
inadvertently .

• Select Near Border. If this option is checked, you must click on the
control's border. If it is not checked, you can click anywhere inside the
control's border .

• Selection Rectangle Surrounds. If this option is checked, you must
entirely surround the control (or controls) with the selection rectangle.
If it is not checked, the selection rectangle need only touch the control
(or controls).

In the resource script language, each type of dialog control has a unique
syntax. For example, centered static text uses the CTEXT statement. The
CONTROL statement, however, can specify any type of dialog control. If
you want Resource Workshop to generate only CONTROL statements in
your resource script (rather than the specialized dialog control statements),
select the Generate CONTROL Statements Only option.

The Draw Custom Controls as Frames check box is available only when the
Drawing Type is set to Normal. When the option is checked, custom
controls are drawn as empty rectangular outlines. When the option is
unchecked, custom controls are drawn as gray rectangles with their text (if
any) in a white rectangle in the center. Drawing custom controls as frames
can speed up drawing of your dialog boxes on the screen.

If you check Ctl3d.dll, the Dialog editor uses the Windows 3-D look for
controls such as radio buttons and check boxes.

Chapter 15, Creating dialog boxes 255

256 Borland C++ Users Guide

c H A p T E R 16

Creating menus

Menus are lists of commands the user chooses from. Menu-driven
applications remove the need for the user to remember a complex
command-line syntax. Consequently, menus make an application easier to
use.

Most Windows applications have a menu bar across the top of the screen
that contains the names of the application's menus. Each menu contains a
set of commands. For example, most Windows programs include a File
menu with commands for creating, opening, saving, and printing files.

Resource Workshop's Menu editor makes it easy to create and edit menus
for your application. Working with menus involves four basic steps:

1. Starting the Menu editor.

If you are creating a new menu resource, the Menu editor presents you
with a menu "template" to work on. If you're modifying an existing
menu resource, it appears in the Menu editor.

2. Creating or:~diting the menu.
3. Testing the menu.

4. Saving the menu .

. Menu terminology

This chapter uses the following terms to describe the elements of a menu
resource:

• Pop-up commands. These commands cause menus to be displayed. Pop-up
commands can appear in the menu bar, like the standard Windows File
and Help menu names. They can also appear inside pop-tip menus,
where they cause another menu (called a "cascading menu") to be
displayed .

• Pop-up menus. The rectangular boxes containing lists of application
commands from which a user can choose. They come in two forms:

Chapter 16,· Creating menus 257

See your compiler
documentation for

information about the
TrackPopupMenu

function.

• Drop-down menus. These menus are displayed from the menu bar or
from within a menu. They are tied to a pop-up command and are
always displayed from that command's name. For example, the File
drop-down menu always appears directly below the File pop-up
command in the menu bar .

• Floating menus. These menus can appear anywhere in the application
window. Their position is controlled by the TrackPopupMenu function.

• Menu items; The commands that appear in the menus-like Open, Save,
or Print.

• Menu separators. The lines that divide the menu items into logical groups.
Separators don't do anything other than make the menu easier to read
and use. You can't edit menu separators.

Starting the Menu editor

Creating a new
menu

Chapter 14 describes
how to open a

project.

Editing an
existing menu

258

The next two sections describe how to start the Menu editor to create a new
menu or edit an existing one.

To create a new menu,

1. Make sure you've already opened the project you want to add the menu
to. You can choose File I New Project to create a new project or File I
Open Project to open an existing project.

2. Once you've opened a project, choose Resource I New to create a new
resource for that project. The New Resource dialog box appears.

3. In the New Resource dialog box, scroll the Resource Type list to MENU,
then either double-click MENU or click it and then click OK.

Resource Workshop displays the Menu editor' with a default menu in it that
you can begin editing.

To edit an existing menu, open the project in which the menu is stored and
do one of the following:

• Double-click the menu name in the Project window.

• Highlight the menu name and choose Resource I Edit.

Resource Workshop displays the Menu editor with the menu you have
chosen loaded into it.

Borland C++ Users Guide

Menu editor screen

Attribute pane

Test Menu pane

Table 16.1
View menu selections

~iew as Pop-up

Outline pane

The Menu editor uses three panes to display editing information: an
Outline pane that's similar to source script, a Test Menu pane, and an
Attribute pane that lets you edit the currently highlighted line in the
outline. You can change pane positions using the View command (see
Table 16.1).

The Attribute pane is where you edit pop-up commands and menu items,
assign ID values, and set attributes for your menus and menu items. You
can also define accelerator keys associated with each menu command. The
statement you're editing is highlighted in the Outline pane.

The Test Menu pane displays your menu and lets you test it.

The pop-up menu for the default Pop-up command contains a single
command, Item. The Menu editor automatically updates this test menu as
you make changes to the outline.

You can use the View menu to change how the test menu isdisplayed
both on the menu bar and relative to the other panes.

Menu choice Description

View as Pop-up Controls whether the pop-up commands in the test menu are displayed on the
menu bar or in a pop-up menu.

By default this option is unchecked, and the pop-up commands in the test
menu are displayed across the menu bar. Leave View as Pop-up unchecked if
your menu resource contains the application's entire menu structure and you
want it displayed as it would appear ,to the user.

If you're working on a floating menu, check this option to display the test menu
as it actually would appear. The command Pop-up appears on the menu bar,
and you select Pop-up to display the menu itself.

First graphic This graphic represents the default configuration of the panes, with the Test
Menu pane over the Outline pane and to the right of the Attribute pane.

Second graphic Check this graphic to put the Test Menu pane across the top of the edit
window, like a normal menu bar.

The Outline pane shows you the pop-up commands, menu items, and
separators of the new menu in pseudocode. The top line in the pane is the
name of the menu, and the other lines are statements defining pop-up
menus and menu items. You can right-click in this pane to view a
SpeedMenu (or press Alt+F10from the pane).

Chapter 16, Creating menus 259

Editing menus

Adding new
statements

For more information
on adding menu

items, see page 261.

260

The Outline pane's pseudocode is designed to make it easy for you to work
with the structure of the menu. To see the complete code with all
parameters for each statement, edit the menu's resource script (see "Editing
menu resource scripts" on page 267).

The actual editing of the menu takes place in the Attribute pane. To move
between the Outline pane and the Attribute pane, press F6.

To edit a statement, select it by doing any of the following:

• Press Ctrl+1' or Ctrl+..!-.

• Choose a menu item from the Test Menu pane.

• Click a line in the Outline pane and press F6.

• Press l' or ..!- in the Outline pane and then press F6.

To move around inside the Attribute pane, you can use the mouse to
position anywhere and make selections. Your selections take effect when
you do any of the following:

• Press Enter to enter the change.

• Press Ins or choose Menu I New Menu Item to enter the change and insert
anew item.

• Use Ctrl+1, Ctrl+..!-, or the mouse to move to another statement.

• Press Ctr/+Por choose Menu I New Pop-up to insert a new pop-up.

• Press Ctrl+S or choose Menu I New Separator to insert a new separator.

The Attribute pane options are described in Table 16.2.

Once you have a menu loaded into the Menu editor, you're ready to add
new menu commands, pop-up menus, and separators, or to move, copy,
and delete any part of the menu.

To add a new statement to a menu (a pop-up menu, menu item, or
separator), you must position the cursor in the Outline window on the line
preceding where the statement is to go. To insert a statement at the
beginning of the outline, highlight the top line (MENU _lor the name of the
menu resource).

When you've decided where the new statement is to go and you've
highlighted the appropriate line, you can add a new statement by choosing
one of the commands in the Menu menu.

Borland C++ Users Guide

Adding menu
items and
separators

Editing menu
items

Command

New Pop-up

New Menu Item

New Separator

New File Pop-up

New Edit Pop-up

New Help Pop-up

Check Duplicates

Action

Inserts a new pop-up menu with a single item.

Inserts a single item.

Inserts a single separator.

Adds a complete generic File menu.

Adds an Edit menu with Cut, Copy, and Paste commands.

Adds a predefined Help menu.

Described on page 266.

If you're adding a pop-up command that will appear first in the menu bar
(the position typically occupied by the File menu), highlight the first line of
the outline (MENU_lor the name of the menu resource).

To add a new menu item or separator to the menu,

1. Decide where you want the new statement to appear in the menu and
highlight the previous line in the Outline pane. The Menu editor inserts
the new menu item or separator below the highlighted line.

2. Press INS or choose Menu I New Menu Item.

3. Type the name for the new menu item.

4. Press Enter.

You can also add three default menus to your project:

• Menu I New file pop-up adds a File menu as the first menu command.
, The new File menu contains the commands New, Open, Save, Save As,

Print, Page Setup, Printer Setup, and Exit.

• Menu I New edit pop-up add an Edit menu as the second command from
the left on the menu bar. The new Edit menu contains the commands
Undo, Cut, Copy and Paste.

• Menu I New help pop-up add a Help menu as the last menu command
(far right on the menu bar). The new Help menu contains the commands
Index, Keyboard, Commands, Procedures, Using help, and About.

A newly added menu item has the generic designation "Item". To make it
useful, you must edit it.

When you first add a menu item,'it is automatically selected, and you can
edit it immediately. If you instead add other menu items, you must first
select a menu item before you can edit it.

Chapter 16, Creating menus 261

Using the Attribute
pane

Table 16.2
Menu editor Attribute

pane selections

262

In the Attribute pane, use the mouse, Tab, or Shift+Tab to position on the field
you want to edit.

The following table describes the selections you can make in the Attribute
pane.

Selection

Item Text

Item help

Item ID

Item Type

Break Before

- No Break

- Menu Bar Break

- Menu Break

- Help Break

Initial state

- Enabled

- Disabled

- Grayed

- Checked

Description

The name of a pop-up menu or a menu item (command), and an
optional description of its accelerator, if it has one.

A string that describes the menu item. This text is stored in the string
table for your project (if you don't have a string table resource, it is
added when you use this option). You can use this text as menu'help
on a status bar.

A unique ID for a menu item. This text box is not available when a
pop-up menu or menu separator is selected.

Can be a pop-up menu, a menu item, or a menu separator (a line).

Controls the format of menu commands in the menu bar and in pop
up menus. Choose one of the following options:

There is no break before this command.

Starts a new line in the menu bar. In a pop-up menu, starts a new
column and draws a vertical line to separate the columns.

Starts a new line in the menu bar or a new column in a pop-up menu.

Moves the pop-up command or menu item to the far right of the menu
bar. Use this option only with top-level statements that display in the
menu bar.

Controls the initial state of the menu command. Choose one of the
following options:

In its initial state, the command is enabled. Use the EnableMenultem
function to change the state of the menu item.

. In its initial state, the command is disabled. The user can't distinguish
between Enabled and Disabled commands; they look the same on
the menu. Use the EnableMenultem function to change the state of
the menu item.

In its initial state, the command is disabled and its text is grayed. The
shading lets the user know the command is not currently available.
Use the EnableMenultem function to change the state of the menu

·item.

Places a check next to the command. Choose this option if the item
will function as a toggle and you want the command to initially appear

Borland C++ User's Guide

Table 16.2: Menu editor Attribute pane selections (continued)

Key

Modifiers

- Alt

- Shift

- Control

- Invert

Key type

- ASCII

- Virtual key

Chapter 16, Creating menus

checked. Use the CheckMenultem function to change the state of the
command.

Controls the keyboard shortcut for the menu item. You can either type
a keyboard identifier (as defined in WINDOWS.H), or you can choose
MenulAccelerator key value (this is available on the SpeedMenu by
right-clicking the MENU ITEM) and press the key you want. For
example, to assign the Home key to a menu item, select the menu
item then right-click it. Choose Accelerator key value, then press the
Home key. VK_HOME appears in the Key box and the Invert menu
item modifier is checked. Press Esc or click the mouse to return to
normal editing.

Define the accelerator keys for a menu item. Choose one of the
following options:

Uses Alt for the accelerator key combination (for example, Alt+W).

Uses Shift for the accelerator combination (for example, Shift+F1).

Uses Control for the accelerator key combination (for example,
Ctrl+W).

Disables the flash feature-a built-in Windows function that flashes a
menu-bar command when the user presses the accelerator key
associated with that menu-bar command. This feature lets the user
know which menu the accelerator key is on. Invert Menu Item is on by
default when you create an accelerator.

Describes the type of key accelerator for a menu item. Choose one of
the following options:

Defines the key accelerator as a standard ASCII key. All ASCII keys
must be surrounded by quotation marks. A caret (") indicates that the
key is combined with the Ctrl key. Typically, you don't use single
ASCII characters as accelerator keys; instead you combine them with
Alt or Ctrl, such as Alt+R or Ctrl+L.

A virtual key is typically a function key, an arrow key, or an editing key
such as Home or End. Windows has predefined characters for virtual
keys. These identifiers all start with VK_ and are defined in
WINDOWS.H. You don't need to look up virtual key identifiers if you
use MenulAccelerator key value to insert the key. Virtual keys have
no provision for Ctrl, Shift, and Alt combinations. If you use these
keys, you need to check the appropriate Modifier check box in the
Accelerator editor dialog box.

263

Entering item text

See Chapter 17 for
more information on

accelerators.

Entering item IDs

See page 210 for a
detailed discussion of

identifiers.

Moving and
copying
statements

264

The item text is the menu name or command that appears in the menu bar
or the menu. When t~e Item Text selection is highlighted, you can type a
new text string directly into the box. You can also use the Home, End, and
arrow keys to move the cursor in the text box.

If you want the user to be able to choose the menu or command by typing a
letter in the menu or command name, put an ampersand (&) immediately
before that letter. Windows will display the text with that letter underlined.

To link the Ctrl+F4 accelerator to the new Stored Order command, add the
accelerator text to your menus.

• Use the tab character (\t) to separate the menu title from the accelerator
text with a tab (for example, &Stored Order\tCtrl+F4) .

• Use the right-align character (\a) to right-align accelerator text (for
example, &Stored Order\aCtrl+F4).

Windows applications generally use the plus sign to show key
combinations,like Shift+Delor Ctrl+Shift+F4.

All menu items must be uniquely identified. When you add a new item,
Resource Workshop automatically assigns an item 10 that's different from
all the other item IDs in this menu resource. You can accept this value, or
you can replace it with another unique number or unique name.

If you type a name, Resource Workshop checks to see if an identifier by that
name exists. If not, you see a dialog box asking if you want to create an
identifier. Click OK. If you want to use the name as an item IO,you must
create an identifier. From this point, create the new identifier as described
in Chapter 14 (page 213).

You can use Cut, Copy, and Paste on the Edit menu to move and copy the
statements in the outline of the Menu editor.

To move a statement, highlight the statement and choose Edit I Cut. Note
that you can't cut the last (or only) statement from the outline. There must
always be at least one menu item, pop-up command, or menu separator in
the outline. To insert the cut or copied statement into your menu, highlight
the statement immediately before the point at which you want the
statement to appear, and choose Edit I Paste.

To copy a statement, highlight it and choose Edit I Copy. The highlighted
statement remains in the outline.

Borland C++ Users Guide

Deleting menu
statements

Creating floating
menus

Highlight the statement you want to delete, then press Del, Edit I Delete, or
Edit I Cut.

Note the following about deleting menu statements:

• If you delete a POPUP statement, you delete the pop-up command it
defines and all the items contained in the pop-up menu.

• You can't delete _End popup_ statements.

• You can't delete the last (or only) statement from the outline. There must
always be at least one menu item, pop-up command, or menu separator
in the outline.

A floating menu can be displayed anywhere in the application's window
space; it is not tied to the menu bar.

Each floating menu must be saved as a separate menu resource within the
project file.

To create a floating menu, ..

1. Choose Resource I New and select Menu from the New Resource dialog
box.

2. Choose View I View as Pop-up to see the floating menu as it will appear
on the screen at run time.

When you view the menu in the Test Menu pane, it will still appear tied
to the menu bar, but as long as your code uses the TrackPopupMenu
function correctly, the menu will float at run time.

3. Select the first line of the outline (MENU_lor the name of the menu
resource).

4. Press the INS key to add at least one menu item at the top of the outline.

5. Select the string POPUP npop-upn in the outline.

6. Press the DEL key to delete the POPUP statement, its menu item, and the
End Popup statement.

7. Add any additional menu items you want.

8. Edit the menu items in the Attribute pane.

9. Save your project.

Chapter 16, Creating menus 265

Testing menus

To see the menu IDs
in your resource,

choose Resourcel
Edit as Text.

266

The Menu editor gives you immediate testing capability. The test menu is
updated as you make changes to your menu, and you can display the menu
at any time to check on its current appearance. As you choose menu items,
the item is highlighted in the Outline pane and its properties appear in the
Attributes pane. You can turn off this feature by unchecking Menu I Track
test menu.

The Menu editor also has a built-in debugging tool that you can use to test
for duplicate menu item IDs. If you choose Menu I Check Duplicates, the
Menu editor searches for duplicates and, if it finds any, displays a dialog
box with the message "Duplicate command value found."

When you close this message box, the Menu editor highlights the statement
that contains the duplicate value. You must do one of the following:

• If the item 10 is a number, enter a new number that doesn't conflict with
the other item IDs.

• If the item 10 is an identifier, the Item 10 box contains a text string, and
the box to the right of the Item 10 contains an integer. To change the
identifier value,

1. Choose Resource I Identifiers to display the Identifiers dialog box.

2. Scroll down the list of identifiers until you find the one you want.

3. Click the Change button and type a new value that doesn't conflict
with the other item IDs.

4. Click OK or press Enter to change the value.

5. Click in the Menu editor window to continue editing your menu.
(You can leave the Identifiers dialog box open for later use.)

For example, if you assign the value 101 to two identifiers, wmnu_List and
wmnu_Asc, Menu I Check Duplicates would return the message "Duplicate
command value found," and the Menu editor would highlight wmnu_Asc
(the second of the two identifiers). As described above, you would then
change the value of wmnu_Asc to something other than 101, 102, or 104 (the
values of the other identifiers in the menu).

Borland C++ Users Guide

Editing menu resource scripts

See page 205 for a
description of the

internal text editor.

See the online Help
index for a

description of the
resource script

options for menus.

You can also make
this change by

choosing Resourcel
Memory Options.

To work with the resource script of a menu, select the menu name from the
Project window by clicking it, then choose Resource I Edit As Text to
display the resource script in the internal text editor.

For example, to edit the resource script for the sample menu you'll create in
the next section, you can open the project containing that menu, highlight
the menu, and choose Resource I Edit As Text. Resource Workshop opens
its internal text editor and displays the source code as follows:

MENU_l MENU
BEGIN .

POPUP "&Widgets"
BEGIN

MENUITEM "&List\tCtrltL", wmnu_List
MENUITEM "&Add.~.\tCtrltA", wmnu_Add
MENUITEM SEPARATOR
POPUP "A&rrange List"
BEGIN

MENUITEM I&AScending\tCtrltF2", wmnu_Asc
MENUITEM "&Descending\tCtrltF3", wmnu_Desc

END
END

END

Use the editor to make changes directly to the resource script. For example,
to change two of the menu's memory options from LOAD ON CALL and
MOVEABLE (the defaults) to PRELOAD and FIXED,·

1. In the text editor, alter the first line of the script to read:

MENU_l MENU PRELOAD FIXED

2. To compile what you just entered and see if it's correct, choose
Compile I Compile Now.

The Compile menu is available only when you are in the text editor. If
you return to the Menu editor and then choose Resource I Edit as T ext to
switch to the text editor again, you'll see that Resource Workshop has
inserted one of the default memory options into the script. The first line
of the script now reads as follows:

MENU_l MENU PRELOAD FIXED DISCARDABLE

3. If you want to exit the Menu editor, choose the Close command from
the text editor window's Control-menu box. Resource Workshop asks if
you want to compile. When you click Yes, Resource Workshop compiles
the menu and exits to the Project window.

Chapter 16, Creating menus 267

-.. Don't spend any time inserting comments in your resource script or formatting the
text, because the Resource Workshop incremental compiler does its own formatting
and discards all comments.

Sample menu

Figure 16.1
Sample menu

Creating the
sample menu

268

This section takes you through the creation of a simple pop-up menu called
Widgets, first with the Menu editor, and then with a text editor.

I!escending CtrltF3

The first two commands in the menu (List and Add) let users look at a list
of existing widgets or add new widgets. The third command, Arrange List,
produces a pop-up menu with two additional commands (Ascending and
Descending) that let users choose the sort order of the list of widgets.

Widgets and Arrange List are pop-up commands. Widgets displays the
Widgets menu, and Arrange List displays the cascading menu that contains
the Ascending and Descending commands.

List, Add, Ascending, and Descending are menu items (or commands).
When the user clicks any of these commands, the application performs an
action. The ellipsis (three dots) after the Add command indicates that the
application displays a dialog box when the user chooses this command.
Note the menu separator that groups the List and Add commands
separately from the Arrange List pop-up command.

The Menu editor has several features that make creating the sample menu
much easier than creating it with a text editor. Among other things, the
Menu editor handles menu IDs for you and stores identifiers in a separate
identifier file (if you have created one). In addition, you can test the menu
as you create it. .

Borland C++ Users Guide

Chapter 14 describes
how to open a

project.

Adding commands
to the menu

To create the sample menu,

1. Make sure you've already opened a project.

2. With a project open, choose Resource I New.

3. Resource Workshop displays the New Resource dialog box. Scroll the
Resource Type list until you see MENU and then double-click.

Resource Workshop adds a new menu resource to the Project window,
then displays the new menu in the Menu editor with the first statement
in the outline (poPuP "pop-up") highlighted.

4. To rename the initial menu statement from Pop-up to Widgets, type
&Widgets in the Item Text text box in the Attribute pane and press Enter.

The Menu editor updates both the test menu and the outline.

In the test menu, note that the W in Widgets is underlined, indicating
that you can press AIt+W to display the Widgets menu.

Next, add the commands to the Widgets menu.

1. To rename the first menu item and add text indicating the accelerator,
press Ctrl+.!. to highlight the second line of the outline (MENUITEM "Item"),
and type &List \tCtrltL in the Item Text text box.

2. Tab to the Item ID text box and type wmnu_List to enter an identifier for
this command. Press Enter.

Resource Workshop asks if you want to create a new identifier. Press
Enter to display the New Identifier dialog box, and immediately press
Enter to accept the value displayed.

3. With the List command highlighted, add a new menu command either
by pressing Ins or by choosing Menu I New Menu Item.

4. Type &Add ... \tCtrltA in the Item Text box to change the text for the new
menu item.

5. Create an identifier for the item by tabbing to the Item ID field, typing
wmnu_Add, pressing Enter, and responding to the prompts as before.

6. Press Ctrl+S to put a separator after the Add command.

7. With the Add command highlighted, press Ctrl+P to add a new pop-up
menu. Change the text to A&rrange List.

Because you want additional commands to appear when the user
chooses Arrange List, you define it as a pop-up command rather than as
another menu item. A pop-up command in the middle of a menu
creates a cascading menu.

Chapter 16, Creating menus 269

Adding commands
to the Arrange
List menu

Testing the menu

270

To define the two menu commands in the Arrange List pop-up menu,

1. Press Ctrl+J. until the first menu item in the Arrange List menu is
highlighted.

2. Change·the menu item "Item" to "&Ascending\tCtrl+F2".

3. Create an identifier wmnu_Asc for this command.

4. Press Ins to add a new menu item after "&Ascending", then rename it
"&Descending\tCtrl+F3".

5. Create an identifier wmnu_Desc for this command.

6. Save the project.

Test the menu by clicking on the Widgets command in the Test Menu pane
and dragging down to the Arrange List command. Your menu should look
like Figure 16.1 on page 268.

You can also test for duplicate values in menu IDs by choosing Menu I
Check Duplicates .

• If there are no duplicates, you get the message "No duplicates found."

• If there are duplicates, you get the message "Duplicate command value
found." The "Testing menus" section on page 266 tells how to correct the
duplicate values.

Borland C++ Users Guide

See page 277 for an
example that shows

how to create an
accelerator table.

c H A p T E R 17

Creating accelerators

An accelerator is a hot key-a key combination the user presses to perform a
task with your application. It substitutes for a menu command and, just like
a menu command, creates a WM_COMMAND or WM_SYSCOMMAND
message that tells the application what to do next~

Usually you create accelerators to duplicate commands on pop-up menus.
For example, if you open the Edit menu in many Windows applications,
you see these accelerators: AIt+Backspace (Undo), Shift+De/ (Cut), Ctrl+/ns
(Copy), and Shift+lns (Paste).

You store accelerator definitions in an accelerator table (the accelerator
resource). Each entry in the table is an accelerator that defines the key
combination a user must press and the command it produces. If you like,
you can create multiple accelerator tables (or resources) for different parts
of your menu.

The Accelerator editor can create and edit accelerators for your application.
Working with accelerators involves five basic steps:

1. Starting the Accelerator editor.

2. Starting the Menu editor. The Menu editor lets you define accelerator
keys for menu items.

3. Creating or editing an accelerator table.

4. Testing the accelerator table for duplicate keys.

5. Saving the accelerator table.

Accelerator table key combinations

The key combinations in your accelerator table can use ASCII keys or virtual
keys .

• An ASCII key is one that can be displayed-typically an alphanumeric
character or punctuation mark.

Chapter 17, Creating accelerators 271

ASCII keys

Virtual keys

• A virtual key is a function key, an arrow key, or an editing key like Home
or PgOn. Although in some cases these keys might display characters on
the screen, there's no standard that specifies which characters appear.

All ASCII keys must be surrounded by quotation marks. A caret (/\)
indicates that the key is combined with the Ctr/key. The Alt check box in the
Attribute pane indicates if the key is combined with the Aft key.

For example, both Ctrl+Wand Ctrl+Alt+Ware represented in the Outline pane
as "/\ W", but there is also a check mark in the Alt check box in the Attribute
pane for Ctrl+Alt+W.

Typically, you wouldn't use a single ASCII character as an accelerator key;
instead, you'd combine it with Alt or Ctrl (Ctrl+L or Alt+L instead of Lalone).

Windows has predef~ned identifiers for virtual keys-such as VK_BACK
for Backspace and VK_Fl for F1. These identifiers, which all start with VK-,
are defined -in WINDOWS.H.

The Modifiers check boxes in the Attribute pane show if the key is
combined with Ctrl, Alt, Shift, or any combination of the three.

For example, you could have two VK_Fl accelerators in your table. The
first might be Ctrl+F1 (the Control check box is checked) and the second
Shift+F1 (the Shift check box is checked).

.. You needn't look up any of these virtual key identifiers if you use Key
Value mode to insert the key (see page 276), because the Accelerator editor
looks up the correct value and inserts it for you.

Starting the Accelerator editor

Creating a new
accelerator table

Chapter 14 describes
how to open a

project.

272

How you start the Accelerator editor depends on whether you're creating a
new accelerator table or editing an existing one.

You can create a new accelerator table in a new project or in an existing
one.

To start the Accelerator editor and create a new accelerator table,

1. Choose File I New Project to create a new project or File I Open Project to
open an existing project.

2. Choose Resource I New to display the New Resource dialog box.

Borland C++ Users Guide

Editing an
existing
accelerator table

Running the Menu
editor at the same
time

3. In the New Resource dialog box, double-click ACCELERATOR in the
Resource Type list.

Resource Workshop displays the Accelerator editor with an accelerator
table template you can begin editing.

To start the Accelerator editor and edit an existing accelerator resource,
open the project in which the accelerator resource is stored and do either of
the following:

• Double-click the accelerator resource name in the Project window.

• Highlight the accelerator resource name in the Project window and
choose Resource I Edit.

Resource Workshop displays the Accelerator editor with the accelerator
table you have chosen loaded into it.

When working with accelerators, it's a good idea to start the Menu editor
and load in the menu containing the associated commands. That way you
can see the command text and item IDs you'll need when you define the
accelerators. As explained in the section "Setting the command value"
(page 276), each accelerator must have an identifier that corresponds to a
command on the menu.

For a description of how you add accelerators to your menus, see "Entering
item text" on page 264 and" Adding commands to the Widgets menu" on
page 269.

Using the Accelerator editor

Outline pane

See page 271 for an
explanation of ASCII

and virtual keys.

The Accelerator editor screen is divided into two panes, the Outline pane
and the Attribute pane. You can move between these two panes by using
the mouse or the F6 key.

,The Outline pane shows you, in outline script form, all the accelerators
"defined in the table. The top line of this outline is the name of the
accelerator table. The lines below it are accelerator entries, which have two
parts:

• The first part identifies the key that is used as an accelerator. It is either
an ASCII key or a virtual key.

• The second part is the item ID of the command to which the accelerator is
associated. This ID is either an integer or the name of an identifier.

Chapter 17, Creating accelerators 273

To select an accelerator in the Outline pane, use the mouse or the arrow
keys. You can also right-click in the Outline pane to view a SpeedMenu (or
press Alt+F10 from within the pane).

Attribute pane Selecting an accelerator in the Outline pane shows its settings in the
Attribute pane. With an accelerator selected, you can make changes to it in
the Attribute pane, such as entering a new key combination or associating
the accelerator with another command.

274

From the Attribute pane, you can use the mouse or press Ctrl+ i or Ctrl+..t to
select an accelerator.

You can use the mouse to move around inside the Attribute pane and to
make selections. In addition, you can use the following keys:

• Tab moves you forward through the Attribute pane, and Shift+Tab reverses
direction. Note that each of the Modifiers check boxes is a tab stop.

_ If you tab from the Command text box to the Key text box, the
Accelerator editor changes to Key Value mode, in which you can press
any key to enter it as an accelerator. To exit from this mode, click the
mouse or press Alt+Esc. Key Value mode is described on page 276 .

Table 17.1
Attribute pane

selections

• The arrow keys select among the Key Type radio buttons, and the
Spacebar toggles each of the Modifiers check boxes. '

Your selections take effect when you press Enter (to change the accelerator)
or Ins (to create a new accelerator), or when you move to another
accelerator in the outline.

The following table describes the selections you can make in the Attribute
pane.

Selection

Command

Key

Key Type

- ASCII

Description

The item 10 (integer or identifier) for the command the accelerator is
to execute. This value must match the value in the associated menu -
resource.

The accelerator key. You can enter the key manually (entering
quotation marks for ASCII keys and the proper syntax for virtual keys)
or in Key Value mode (the Accelerator editor decides if it's an ASCII
or virtual key and enters it for you in the appropriate format). If you
tab into this text box from the Command text box, you're auto
matically in Key Value mode. See page 276 for a description of Key
Value mode. '

Either ASCII or Virtual Key. In Key Value mode, the Accelerator editor
sets these radio buttons automatically.

The accelerator uses an ASCII key (see page 271).

Borland C++ Users Guide

Table 17.1: Attribute pane selections (continued)

- Virtual Key . The accelerator uses a virtual key (see page 271).

Modifiers

- Alt

- Shift

- Ctrl

- Invert Menu Item

The following descriptions of these check boxes tell what each option
means if its checked.

,The accelerator includes the Alt key (for example, AIt+W).

The accelerator includes the Shift key (for example, Shift+F1).

The accelerator includes the Ctrl key (for example, Ctrl+F3).

Using the accelerator causes the associated menu bar command to
flash (to invert momentarily).

Editing an accelerator table

Adding an
accelerator key

Selecting an
accelerator key

Using the
Attribute pane

Once you have an accelerator table loaded into the Accelerator editor,
you're ready to begin editing it. Using the Accelerator editor, you can
define and change accelerators, and you can specify an accelerator key
combination by pressing the desired key combination. You can also copy or
delete any accelerators in the table, and you can test the table for duplicate
identifier values.

To add a new accelerator to the accelerator table, press Ins or choose
Accelerator I New Item. The new key appears in the outline below the
currently selected line with the default values of 0 (zero) for the key value
and a unique integer value for the command rD.
When you add a new accelerator, the editing focus automatically switches
to the Attribute pane.

To select an accelerator, you can do any of the following:

• Press Ctr/+I or Ctr/+.j, to highlight the accelerator in the Outline pane and
automatically switch editing focus to the Attribute pane.

• Click the mouse on the accelerator in the Outline pane and then press F6
· to switch editing focus to the Attribute pane.

• If you're already in the Outline pane, use the arrow keys to select the
accelerator and then press F6 to switch editing focus to the Attribute
pane.

The Attribute pane has text boxes, radio buttons, and check boxes that let
you define the accelerator. The Attribute pane options are described in
Table 17.1.

Chapter 17, Creating accelerators 275

Setting the
command value

Specifying the
accelerator key

276

In the Command text box, type the item ID (either an integer or an
identifier) for the command the accelerator is to execute.

The Command string is automatically highlighted when you select an
accelerator with Ctrllt or Ctrl+-t or you add an accelerator with Ins. Type the
item ID directly into the text box.

If you're tying the accelerator to a command in an existing menu, start the
Menu editor and loaq. the menu resource. Note the command's item ID, and
use that sameID in the Command text box for the accelerator.

Note the following about identifiers:

• If you enter an existing identifier name and see the nCreate a new'
identifier:" dialog box, you've probably mistyped the name. Click No and
check your spelling .

• If you deliberately enter a new identifier because you intend to add the
associated menu item to the menu later, Resource Workshop asks if you
want to create a new identifier. Click Yes or press Enter, and then enter a
unique identifier value in the New Identifier dialog box.

If you don't see the "Create a new identifier:" dialog box, the identifier
already exists. Enter a unique identifier before you continue.

To specify the accelerator key combination, enter the key combination in
the Key text box.

Your accelerator should be consistent with the accelerators in other
Windows applications, so don't use any key combinations required by
Windows (such as Ctrl+Esc). For guidelines about choosing appropriate key
combinations, see IBM's Systems Application Architecture Common User Access
Advanced Interface Design Guide.

You can enter the key in either Key Value mode or manual mode.

Key Value mode. In Key Value mode, any key or key combination you press
is automatically entered in the Key text box as the accelerator. The
Accelerator editor determines if the key is an ASCII key or a virtual key
and selects the correct Key Type radio button. The Accelerator editor also
checks the appropriate Modifiers check boxes.

Manual mode. In Manual mode, you provide all the information that defines
the accelerator. You must decide if the key is an ASCII key or a virtual key.
If it's a virtual key, you have to know the correct Windows identifier and
type it in uppercase letters. You must also select the appropriate Key Type

Borland C++ Users Guide

Flash feature

radio button (ASCII or Virtual Key) and check the appropriate combination
of the Aft, Shift, and etrl check boxes.

Windows has a built-in function that flashes a menu-bar command when
the user presses an accelerator key for a command associated with the
menu-bar command.

For example, if you've selected a block of data in many Windows
applications, pressing ShifttOel (the equivalent of choosing Edit I Cut) causes
Windows to temporarily invert (flash) the Edit command on the menu bar.
This feature lets the user know which menu the accelerator is on.

The flash feature (also called invert menu item) is on by default when you
create an accelerator. You can disable this feature by unchecking the Invert
Menu Item option in the Accelerator editor Attribute pane.

Checking for duplicate key combinations

To ensure that you don't use the same key combination more than once,
Resource Workshop lets you debug an accelerator table by searching for
duplicate key combinations, as follows:

1. With an accelerator table open, choose Accelerator I Check Dup Keys.

2. If two accelerators use the same key combination, the Accelerator editor
displays the message "Duplicate key value found" and highlights the
second accelerator. Make your changes and continue debugging your
accelerator table with Check Dup Keys until you see the'message "No
duplicate key values found."

Creating a sample accelerator table

In this section you'll create an accelerator table for the Widgets menu
described on page 268. Without Resource Workshop, you'd have to use a
text editor or word processor to create the resource script in the previous
section.

-.. If you didn't save the sample menu from Chapter 16, you can still work
through this section. If you did save the sample menu, several of the steps
have additional or alternate instructions for you.

Chapter 17, Creating accelerators ' 277

Chapter 14 describes
how you open a

project.

278

To create an accelerator table with Resource Workshop is Accelerator editor,
. do the following:

1. Open a project file or, if you saved the sample menu from Chapter 16,
open the project that has your Widgets menu.

2. Choose Resource I New.

3. In the New Resource dialog box, double-click the ACCELERATOR
resource type. You see the Accelerator editor with one new entry in it.

If you saved the sample menu from Chapter 16, open the Menu editor
by double-clicking on its name in the Project window.

Resize the windows for the Menu editor and the Accelerator editor so
you can see both at the same time.

In the Menu editor Outline window, highlight the List menu item and
note its item ID (wmnu_List) and the accelerator you intended for it
(Ctrl+L).

Click on the new accelerator in the Accelerator editor. If necessary, press
F6 to highlight the Command text box.

4. In the Command· text box, enter the name of the identifier for the first
command in the menu (wmnu_List).

5. Tab to the Key text box.

Note that you are now in Key Value mode. Press Ctrl+L. The Accelerator
editor enters the ASCII value "/\L" and selects the ASCII radio button
for you.

6. Press Alt+Esc to exit from Key Value mode, then press Enterto cause these
settings to take effect on the highlighted accelerator key in the Outline
pane.

If you're not working with an existing project, Resource Workshop asks
if you want to create an identifier for this accelerator. Click Yes, and
then click OK in the New Identifier dialog box to accept the default
value.

7. Press Ins to create a new accelerator:

If you're working with the Widgets menu from Chapter 16, click on the
Menu editor, select the next command with an accelerator key, and note
its item ID and accelerator key. '

8. Add the remaining accelerators-wmnu_Add, wmnu_Asc, and
wmnu_Desc-substituting the appropriate identifier and key
combination, until all the accelerators are defined.

9. Save the project.

Borland C++ Users Guide

The accelerator table is now finished. In the next sequence of steps, you'll
deliberately create a duplicate key value so you can see how to debug your
accelerator table with the Accelerator editor.

1. Highlight the second accelerator and change its key value from Ctrl+A to
Ctrl+L. (iJ

Press Ctrl+ l' to highlight the accelerator, then press Tab to enter Key
Value mode.

2. Type Ctrl+L, press Alt+Esc, and press Enter to make the change take effect.

3. Choose Accelerator I Check Dup Keys. Resource Workshop displays the
"Duplicate key value found" dialog box. Press Enter to close it.

4~ Now highlight wmnu_Asc or wmnu_Desc in the Outline pane and press
Del.

5. Display the Edit menu. Note that there's a choice, Undo Delete Item,
that refers to your deletion of the last accelerator.

6. Choose Undo Delete Item to restore the deleted accelerator.

7. Display the Edit menu again. The Undo command now says Undo
Change Item. When you choose this coinmand, the accelerator for the
Add command changes from Ctrl+L back to Ctrl+A.

8. Choose Accelerator I Check Dup Keys again. You should get the
mess~ge, "No duplicate key values found."

~

This example shows you how easy it is to create accelerators by using both
the Menu editor and the Accelerator editor. You can switch back and forth
between the two editors to see which accelerator keys are associated with
which menu commands, and you can use Key Value mode to enter the
keys, letting the Accelerator editor do most of your work for you. When
you're done, you can check to ensure that you haven't created any
duplicate keys. If you have, it's easy to change them, both in the menu and
in the accelerator table.

Chapter 17, Creating accelerators 279

280 Borland C++ Users Guide

c H A p T E R 18

Creating a string table

A string table holds error messages, prompts, or any other text strings your
application needs to display. You can store multiple string tables in your
project file. Typically, you'll define a separate string table for each logical
grouping of your program, as described on page 283.

Defining strings of text as a separate resource makes it easy to edit the text
without changing your source code. For example, if you're translating a
Windows application into a foreign language, putting most of your text in
string tables simplifies the process. (You would still have to translate text in
other resources, such as dialog boxes.)

Working with string tables involves four basic tasks:

1. Starting the String editor.
2. Creating and editing string tables.
3. Saving the string table.
4. Compiling the resource into the executable file and testing the string

table. '

Beginning on page 285 you'll find a short tutorial that takes you through
the steps of creating and editing a string table.

Starting the String editor

To create a new
string table

How you start the String editor depends on whether you're creating a new
string table or editing an e)}isting one.

To start the String editor to create a new string table,

1. Open the project to which you want to add the string table.

2. Choose Resource I New. Resource Workshop displays the New Resource
dialog box.

3. Scroll the Resource Type list box and double-click STRINGT ABLE.

Chapter 18, Creating a string table 281

To edit an existing
string table

Resource Workshop opens the String editor and p~aces a reference to the
new string table in your Project window.

To start the String editor to edit an existing string table,

1. Open the project containing the string table you want to edit.

2. Find the string table in the Project window.

3. Double-click the string table entry or select it and choose Resource I Edit.

The string table you selected appears in the String editor.

Working with string tables

. Figure 18.1
String editor with

string table entries

282

When you open the String editor, a string table appears. If you're creating a
new string table, you'll see a single entry with the generic text "String:" If
you're editing an existing string table, you'll see string entries that look
something like this:

o:::al ·.· .. ····.·.;, ..• .STRINGTABLE:sthfileNew/;·
ID Source liD Value 1 String i.1
sth FileN~. ~.]I.H~!p..gD .. ~.!::~ ... !f-

::~:~~:~ii;~::~;::::::::::::::::::I:l:::I::4.:'i~::~~:~::~;::J:
sthJileSaveA.s \4 1 Help on SaveA.s i

If~~::~-:~ql~:~~~i.· •.
sth_EditCopy ! 11 ! Help on Copy 1:'

::~:i~:~:~ii~i~f::::::::::::::::r~:~::r~~i~::~:~::~:i~5:::::::::::::::::::::::::::::;::::::::::::::::::::::::::::::::::::.: .;

::~i~:~:~fi~~:~~~::::::'::::::I:~:;,::::::::::::::::::::::::::·:::::::::::::::r~~l~::;~:~:~it~:~:::12
sth_ ViewAll ! 16 ! Help on View All :-.

·+jSJ·:;;~::·:·:·;·············:·:····::·:·:::;;:·;·::·: .•.. ;: .. ;:.;;.(.;.;; .. ;:.; : .. :.::::.; ... :.; .. ;.::':":';';'i;'::;';;"';Ti; •. ~.~

Each string table entry requires an ID Source, an ID Value, and the string
itself.

• An ID Source contains an integer for the string. If you assign an identifier
as the ID,it appears here. Otherwise, you'll see the integer ID.

• An ID Value always contains the integer ID for the string.

• A String is stored as a text string with a maximum length of 255 text
characters.

Borland C++ User's Guide

Windows and
strings

For more information
about using identifiers

and identifier files,
see page 210.

Entering a new
string

You can right-click on an item in a string table to view a SpeedMenu, which
lets you perform tasks quickly (you can also select the item and press
Alt+F10). The next section describes how Windows handles string ID values
and suggests a way to make the most efficient use of memory.

Each string in a string table must have a unique integer ID. Windows
groups strings into segments that contain 16 strings each. Strings with IDs
from 0 to 15 make up the first segment, strings 16 to 31 are in the second
segment, and so on. When you compile your resources, the strings are
added to the executable file in segments that are loaded into memory at run
time.

Windows loads an entire string segment into memory each time your
application requires a particular string. If you plan how you assign string
IDs carefully, you can reduce the amount of memory your application
requires.

Suppose you define 32 strings for your application. If you assign IDs 0
. through 31 to these strings, your executable file will have two 16-string
segments. Each time your application needs a string and loads a segment, it
is probably loading several strings that are not needed.

To make better use of memory, group your strings logically. For example,
one part of your application might require five strings, and a second part
might require nine strings. If you number the first group 0 to 4 and the
second group 16 to 24, you create two segments, one with eleven unused
IDs and the other with seven. Each unused ID only takes up one byte of
memory, compared to the considerably greater amount of memory
consumed by strings that aren't used. By organizing your strings this way,
you allow Windows to load related strings without loading strings that
aren't needed.

When you specify a unique string ID, you can use an integer or an
alphanumeric identifier (a #define in C or C++, or a constant declaration in
Pascal) that stands for an integer. If you choose to use alphanumeric
identifiers to make the string IDs easier to remember, store your identifiers
in an identifier file (a header file for C and C++ or a unit or include file for
Pascal). Be sure one of these files exists before you try to add identifiers to it
from inside the String editor.

To enter a new string in a string table,

• If the table is a new one, start entering information for the string as
described in steps 3, 4, and 5, which follow .

• If you're adding a string to a table, start with step 1.

Chapter 18, Creating a string table 283

To restore the ID
Source to its original

setting, press Esc
before pressing Tab

or Enter.

To restore the String
field to its original
setting, press Esc

before pressing Tab
or Enter.

Editing existing
strings

Changing a string

284

1. Select the string above the line where you want to add the new string.

2. Press Ins or choose Stringtable I New Item.

3. You can accept the number the String editor puts in this field, or you
can type an integer or identifier ID Source.

If you type an integer, the String editor automatically enters it in the ID
Value field.

If you type an identifier, Resource Workshop checks to see if it already
exists. If it does, the String editor inserts the identifier's integer value in
the ID Value field when you tab to the String text field. If the identifier
doesn't exist, the String editor displays the "Create a new identifier?"
dialog box.

For more information about using identifiers and identifier files, see
page 210.

4. Press Tab or click in the box under String and type the text string.

Each string can be a maximum of 255 characters long and can contain
any C-type escape sequences, including the following: \n (newline),
\t (tab), \r (carriage return), \ \ (backslash),\" (double quote).

When the Resource Workshop compiler encounters a C-type escape
sequence in a string entry, it produces the corresponding ASCII
hexadecimal value in the object code, and it's up to your program to
interpret the value correctly. For example, when the compiler parses
\b\040\x7F, it produces the hex sequence 07207F. Your code might
interpret this sequence as the ASCII characters BEL, SPC, and DEL, or it
could assign another meaning to these hex values.

5. Press Enter (to accept the new value) or Ins (to accept the value and insert
anew one).

The String editor makes it easy to change individual strings. To select a
string with your mouse, click the string you want to edit. Using the
keyboard, press Tab, t ,or J, to move through the table. Place your cursor
on the string you want to edit.

You can erase the ID Source and String values for any string and then type
new values. You can't directly change what's displayed in the ID Value
field, but the String editor updates it depending on what you type in the ID
Source field.

Borland C++ User's Guide

Editing the
resource script of
a string table

Changing the string

You can use the internal text editor to edit the resource script of a string
table. To do so, select the string table in the Project window and choose·
Resource I Edit As Text.

The resource script text will appear, ready for you to edit.

To edit a string,

1. Find the string you want to edit and make the necessary changes to the
string. Change only the text that appears between the quotation marks.

2. To compile what you just entered and stay in the String editor, choose
Compile I Compile Now.

Note that the Compile menu is available only when you are in the text
editor.

3. If you want to exit the String editor, choose the Close command from
the text editor window's Control-menu box.

Resource Workshop asks if you want to compile. When you click Yes,
Resource Workshop compiles the menu and exits to the Project window.

If there's a syntax error, Resource Workshop puts you back in the text editor
so you can correct the error.

Creating a sample string table

These strings would
appear in the

Resource Workshop
Status line.

The example that follows creates a few strings that Resource Workshop
uses to describe menu options.

Without Resource Workshop, you'd use the following resource script to
create these strings:

STRINGTABLE
BEGIN

MENU_FILE, "Create, open, or close files"
MCFILENEW, "Create a new project, resource,. or file"
MCFILEOPEN, "Open a resource file"
MCFILESAVE, "Save this resource file"

END

The uppercase alphanumeric string preceding each string is a unique
identifier for the string. As with all Windows resources, each string
requires an integer ID. Without Resource Workshop, you'd have to
separately define the associated integer IDs for all these identifiers in a

Chapter 18, Crea.ting a string table 285

For more information
on identifiers and

identifier files, see
page 210.

For more information
about identifiers, see

page 211.

286

header file (for a C program) or in an include file or unit (for a Pascal
program).

Here's how to create these sample strings with the Resource Workshop
String editor:

1. Make sure you've already opened a project. If you've been doing the
examples using MYPROJ.RC, you can open that project.

2. If you don't already have an identifier file (a header file for C #defines,
or a unit or include file for Pascal constants) set up for the project, set
one up now and call itMYPROJ.H or MYPROJ.P AS.

3. Choose Resource I New and double-click STRINGTABLE to start the
String editor.

4. Backspace over the number in the text box under 10 Source and type the
identifier for the string. For the first string, it's MENU_FILE.

5. Press Tab to move to String.

Before the String editor lets you move to the String field, it checks for an
integer 10 for the current 'String. First, it checks what you typed under
10 Source. If you had entered an integer, the String editor would have
put the same integer under Ip Value and let you move to the String
field.

Since you entered an alphanumeric identifier (MENU_FILE in this case),
the String editor checks for a C #define or a Pascal constant declaration
that points to an integer identifier. Because there isn't one, you're asked
if you want to create a new identifier.

6. Click Yes to bring up the New Identifier dialog box.

7. Scroll down the File list until you find MYPR0J.H (or MYPROJ.PAS),
then double-click it to select it as the identifier file to which the new
identifier will be written.

8. Enter a unique integer 10 in the Value text box. For the first identifier,
type 768.

9. Press Return or click OK to accept the new identifier and put it in
MYPROJ.H or MYPROJ.PAS.

10. Now that you're done with the identifier, you're back in the String field.
Type the text of the string. For the first string, it's Create, open, or close
files.

11. To define the next string, press Insert or choose Stringtable I New
Stringtable Item.

Borland C++ User's Guide

Figure 18.2
String editor with four

strings defined

Repeat steps 4 through 11 to define the three other strings shown at the
start of this section: MI_FILENEW, MCFILEOPEN, and MI_FILESA VE (see
Figure 18.2).

You'll notice that for each new string, the String editor increments the
integer ID by 1 over the last integer ID. You needn't pick this number for
the integer ID; the String editor simply puts it there for your convenience.

When you've finished creating the four strings, your string table should
look like this:

STRINGTABLE: MENU FILE
ID Source ! ID Value i String ..

.. M.~.~.~.",E!.~.~!..?§~!..~.~~~~~.~ .. ?.P..~D.:.g.~ .. !?.!?..~~ .. !!!~~ ~
MIJILENEW i 769 . i Create a new project resource or file

::~E~ia~t.~~···::::::::::r;;~:::::::::::::::::::::::::::::::::::::::r~·~~:·;~·;;·~:s~·:·~~~i~;;~············· •
+J~J 1.+

As a last step, close the string table by choosing Close from the String
editor window's Control menu. The String editor gives the new table the
name of the first identifier in the table. If the first ID Source entry had been
a number, that number would have become the name of the string table. A
string table's name can be changed only by changing the first ID Source
entry in the table.

.. This naming convention makes sense if you recall that strings are loaded in
segments of 16 strings each, and the integer ID of a string indicates where
the string occurs in a segment. The integer ID of the first string in the table
indicates where the table starts in a segment.

Chapter 18, Creating a string table 287

288 Borland C++ Users Guide

Features specific to
the different resource

types are described
in Chapters 20

through ~2.

c H A p T E R 19

Using the Bitmap editor

The Resource Workshop Bitmap editor is the tool you use to create or edit
any bitmapped resource, including the following standard bitmapped
resources:

• Icons • Bitmaps
• Cursors • Fonts

This chapter describes the Bitmap editor tools and features whose
functionality is generally the same for all types of bitmapped resources. The
chapters on the individual resources describe the Bitmap editor tools and
features that are unique to each resource type.

Starting t~e Bitmap editor

Resource Workshop automatically starts the Bitmap editor when you create
a new bitmapped resource or edit an existing one. The specific steps for
starting the Bitmap editor are given in the chapters for the individual
resources.

If you create a new bitmap and there is a bitmap in the Windows clipboard,
the dimensions of the clipboard bitmap appear in the New Bitmap
attributes,dialog box. If there is no clipboard bitmap, the defqult size is 64
pixels width and height.

Pixels, foreground and background colors

See page 299 for
more information on

foreground and
background colors.

Bitmapped i~ages drawn with the Bitmap editor are created on a grid of
roughly square" dots" called pixels. You create the image by setting each
pixel to what is referred to as a foreground or background color. The pixels
assemble like a mosaic to form the bitmapped image.

Because the pixels exist side-by-side in a single plane, there is strictly
speaking no distinction between foreground and background. In simplest
terms, the foreground color is the color you select and draw with the left

Chapter 19, Using the Bitmap editor 289

\:

(

mouse button; the background color is the color you select and draw with
the right mouse button.

You can use a variety of selected foreground or background colors for the
features of your drawing (lines, boxes, shading, and so on), as well as for
the image's "background" (which is, after all, an illusion, given the two
dimensional nature of the image). The ability to assign colors to both mouse
buttons means you can have two colors at your disposal at any time.

_ There is one important difference between the foreground and background
color. When you delete or move a block of pixels in your image, the
currently selected background color replaces the color in the pixels no
longer occupied by the block.

If you're using the Eraser tool, the buttons are reversed: the left button
produces the background color and the right button produces the
foreground color.

The current foreground color is indicated by FG on the Colors palette, and
the current background color by BG. ("Current" is stressed here, because
you can change the foreground or background color whenever you want.)
If you select the same color as both foreground and background c()lor, the
Colors palette square reads FB. .

Using the Tools palette

290

When you open a resource in the Bitmap editor, the Tools palette is in the
upper right of the edit window. You use the Toqls palette to choose the
Bitmap editor tool you want to work with. At the bottom of the Tools
palette are four style selections for brush shapes, fill patterns, and line'
widths.

Borland C++ Users Guide

Figure 19.1
Bitmap editor Tools

palette

If you see FB in the
Colors palette, the

same color is
selected as the

current foreground
and background

color.

Pick Rectangle

Zoom

Pen

Airbrush

Line

Empty frames

Paintbrush
shape

Pen style

Scissors

Eraser

Paintbrush

Paint Can

Text

Filled frames

Airbrush
shape

Pattern

The Tools palette is similar to a window: you can move it, close it, and open
it.

Most paint tools let you paint with either the current foreground color or
the current background color .

• Use the left mouse button to paint using the current foreground color (FG
on the Colors palette).

• Use the right mouse button to paint using the current background' color
(BG on the Colors palette).

To select a tool from the palette, click the tool you want. The sections that
follow describe each tool.

Chapter 19, Using the Bitmap editor 291

Pick Rectangle
tool

Choose EditlSelect
All to select the entire

image.

Scissors tool

Zoom tool

The Bitmap editor
uses the center of the
image as a reference

when zooming the
entire image.

292

Table 19.1
Zoom commands

The Pick Rectangle tool selects a rectangular area of your image for
copying, moving, or deleting. To select an area, put the tip of the pointer at
one corner of the rectangle and drag to the diagonally opposite corner.
When the flashing outline includes the area you want, release the mouse
button. To deselect the area, click either mouse button outside the flashing
outline or press Enter or Esc.

When you select an area, you can use the commands in the Edit menu to
cut, copy, delete, duplicate, or paste the selected area, or you can use the
mouse to move or duplicate the area.

The Scissors tool performs basically the same function as the Pick Rectangle
tool: selecting an area of an image. However, with the Scissors you can
select and move areas of any shape, not just rectangles.

To select an area, drag with the Scissors until the outline includes the area
you want, then release the mouse button. The area you've selected is
indicated by a pulsating pattern. You can cut, copy, delete, duplicate, or
move the selected area just as you can with the Pick Rectangle tool.

You can use the Zoom tool to zoom in or out on the entire image or to
zoom in on a selected area.

To zoom in on the entire image, double-click on the Zoom icon in the Tools
palette. Resource Workshop zooms to the next higher magnification: 400%,
800%, or 1600%. You can also choose View I Zoom In to perform the same
function on the currently selected window.

When you zoom in on the image, use the Hand tool (page 297) or the scroll
bars to move the zoomed image around.

To zoom out on the entire image, hold down the Shift key and then double
click the Zoom icon. To zoom a portion of the image, select the area you

. want to magnify by dragging a rectangle with the Zoom tool, then release
the mouse button. Resource Workshop zooms out to the next lower
magnification: 800%, 400%, or 100%. You can also choose View I Zoom Out
to perform the same function ..

View command

Zoom in

Zoom out

Actual size

Accelerator key

Ctrl+Z

Ctrl+O

Ctrl+A

Mouse action on Zoom icon

Double-click

Shift+double-click

None

Borland C++ Users Guide

Eraser tool

f§J
If you see FB in the
Colors palette, the

same color is
selected as the

current foreground
and background

color. '

Pen tool

Paintbrush tool

To help you control images on a pixel-by-pixel basis, you can display a grid
on any zoomed image by choosing Options I Editor Options and clicking
the Grid On Zoomed Windows option. Each square of the grid highlights a
single pixel.

When you're working with two window panes (see page 297), zooming
affects only the current (active) window.

The Eraser tool can be used to erase the entire image, or it can be used as a
drawing tool. Note that, for the Eraser, the color assignments to the mouse
buttons are the reverse of the other drawing tools' assignments.

• If you double-click'the Eraser in the Tools palette, the entire image is
replaced with the current background color (BG on the Colors palette).

• If you drag with the left mouse button, the Eraser draws a line one pixel
wide using the current background color.

• If you drag with the right mouse button, the Eraser draws a line one pixel
wide using the current foreground color (FG on the Colors palette).

Before you use the Eraser, you can check the current colors in the Colors
palette.

The Pen tool paints free-form lines using the current pen style shown in the
Tools palette (see Figure 19.1). To sketch with the Pen tool, press a mouse
button and drag the cursor across your image. When you've finished
sketching, release the mouse button. (To paint absolutely straight lines, use
the Line tool instead of the Pen.)

The Paintbrush tool paints free-form patterns using the current brush style
and the current pattern shown in the Tools palette (see Figure 19.1). To
paint, drag the Paintbrush across your image. When you've finished
painting, release the mouse button.

When you select the Paintbrush, the cursor takes the current brush shape.
The area painted by the Paintbrush is always proportionally the same
relative to the size of the image frame. In other words, if the brush is half
the width of the image and you zoom in on the image, the brush is still half
the width of the now zoomed image.

Before you use the Paintbrush, you can specify the brush shape, pattern,
and colors.

Chapter 19, Using the Bitmap editor 293

Airbrush tool
The Airbrush tool paints free-form patterns using the current airbrush style
and the current pattern shown in the Tools palette (see Figure 19.1). To use
the Airbrush, you can use either of these techniques:

• You can drag it across the image. The Airbrush differs from the
Paintbrush in that if you drag it slowly, it paints a thick pattern, but if
you drag it quickly, it paints a scattered, thinner pattern .

• You can click it repeatedly, as if you were pressing the nozzle of a spray
can.

_ When you select the Airb~ush, the cursor takes the current brush shape.
The area painted by the Airbrush is always proportionally the same relative
to the size of the image frame. In other words, if the Airbrush is half the
width of the image and you zoom in on the image, the Airbrush is still half
the width of the now zoomed image.

Before you use the Airbrush, you can specify the brush shape, pattern, and
colors.

Paint Can tool
The Paint Can tool fills an area of your image with a selected color. To use
the Paint Can, place its cross hair in the portion of the image you want to
fill, then click a mouse button. The Paint Can replaces the color under the
cursor with the selected color and fills out around that point until it meets a
different color.

294

For example, if the selected color is red and you click on a blue square, all
the blue around that point will be replaced by red. The Paint Can will not
replace any other colors. If the blue square is part of a rectangular blue area
that is entirely surrounded by green, only the blue rectangle will be
changed to red.

_ If you click on an area that's not entirely surrounded by other colors, the
color will leak out into other parts of the image that are the same color as
the original area.

_ Because of problems inherent to display drivers, flood -filling a bitmapped
image with the Paint Can doesn't always work properly. To solve this
problem, Resource Workshop provides an alternative to the standard
flood-fill algorithm that's more reliable, but slower. To enable this algorithm
for any of the bitmapped resource editors, add the following line to the
[RWS_Icon] section of WORKSHOP.INI:

RWS_OwnFloodFill=l

Borland C++ Users Guide

Line tool

For free-form lines,
use the Pen.

Text tool<'~

The following example shows a sample of the edited RWS_Icon section:

[RWS_Icon]
RWS_OwnFloodFill=l
PercentLeft=69
ZoomLeft=8
ZoomRight=l
bVert=l

The Line tool paints straight lines. Press the mouse button and drag the
Line tool across your image. When you've finished drawing the line, release
the mouse button.

To constrain the lines to 45-degree increments (horizontal, vertical, or
diagonal), hold down Shift as you paint.

Before you use the Line tool, you can specify the line style and current
colors.

To add text to your image, choose the Text tool and click where you want
the text to begin. A flashing cursor indicates that you can begin typing text.

To specify how and where the text is displayed, you can

• Use Text I Font to specify the typeface, size, and style of the text.

• Use the Text I Align commands to specify how. the text is aligned.

For more information about using the Text menu commands, see 11 Adding
text to a bitmap"on page 303.

You don't need to choose any Text menu commands before you enter the
text; you can also choose them immediately after you enter tl1.e text (and
before you click the mouse again). For example, if you notice that the text
you're typing is too large to fit in your image, you can stop typing and
choose the Font command to decrease the size of the text.

Text is always displayed in the current foreground color. Beforeyou type
text, you can specify the foreground color by clicking the left mouse button
on the color you want in the Colors palette. Just as with the typeface and
size, you can change the current text color if you do so immediately after
you enter text.

Chapter 19, Using the Bitmap editor 295

Painting empty
frames

Painting filled
frames

296

There are three tools you can use to paint empty frames using the current
line color and style: the Rectangle, the Rounded Rectangle, and the Ellipse.

To paint an empty frame, select the tool you want and drag a frame in the
image. Place the cursor crossha'ir at one corner of the frame and drag to the
opposite corner. Release the mouse button when the frame is the way you
want. Press Shift to paint a true square or circle.

Before you paint a frame, you can specify the frame width and the color.

There are three tools you can use to paint filled frames in your image: the
Filled Rectangle, the Filled Rounded Rectangle, and the Filled Ellipse.

To paint a filled frame, select the tool you want and drag a frame in the
image. Place the cursor crosshair at one corner of the frame and drag to the
opposite corner. Release the mouse button when the frame is the way you
want.

These tools use the current line style for the outline. Specify a null pen
width if you don't want Resource Workshop to paint an outline around the
fill pattern.

The current pattern is displayed in the lower right corner of the Tools
Palette. If you drag with the left button, the outline and pattern take the
current foreground color (FC), and the pattern fill takes the current
background color (BC). If you drag with the right button, the colors are
reversed.

The Set Pattern dialog box also includes two solid patterns, one black and
one white .

• If you select the solid black pattern, the left button produces a solid fill of
the foreground color and an outline of the background color. (As usual,
theright button produces the reverse.) ,

• If you select the solid white pattern, the left button produces a solid fill of
the background color and an outline of the foreground color. (Again, the
right button produces the reverse.)

Before you paint a filled frame, you can specify the line style, color, and
pattern.

Borland C++ Users Guide

Hand tool

You can also use the
scroll bars to move
the image around.

Style selections

Sometimes when you display a zoomed image, not all of it fits in the
display. You can use the Hand tool to move the image around so you can
see other parts of it. Unlike other tools, the Hand tool isn't included in the
Tools palette, but you can temporarily change any tool (except the Text
tool) into a hand by holding down etrl. Using the hand, you can take hold
of the image and drag it in the direction you want it to move.

At the bottom of the Tools palette is a box that shows (clockwise from the
top left) the brush shape, the airbrush shape, the current pattern, and the
line style.

You can click any style you ~ant to change, or you can use menu
commands to choose styles. (For more information about choosing styles,
see "Choosing brush shapes" on page 304, "Choosing paint patterns" on
page 305, and "Choosing a line style" on page 306.)

Using the two window panes

In the Bitmap editor, you can look at two different views of the image
you're creating or editing. You can split the window vertically or
horizontally to show the two views side-by-side or one view above the
other. You can also choose how to zoom each view.

To split the window, choose View I Split Horizontal or View I Split Vertical.

When the window is split, one of the panes is active. The active pane is the
one in which you're working. To make a pane active, click the mouse in
that pane.

To see more of one view than the other, move the cursor to the line that
splits the images (the separator bar) and, when the cursor becomes a
double arrow, drag the separator bar. For example, with the windows split
vertically, you can drag the separator bar to the right to see more of a
zoomed image.

To remove the split window entirely and return to a single view, drag the
separator bar all the way to the left or right (for a vertical split) or to the top
or bottom (for a horizontal split).

Chapter 19, U~ing the Bitmap editor 297

Reading the status line

You can look at
palette index

numbers and RGB
values by double

clicking a color in the
Colors palette.

See page 301 for
more information on

RGB values and
palette indexes.

The status line at the bottom of the Bitmap editor window is divided into
two parts: the right side provides current paint tool information, and the
left side displays information about the Bitmap editor's menu commands.

As you click a menu or use accelerator keys to choose a menu command,
the left side of the Bitmap editor status line displays more information
about the currently highlighted command.

The right side of the status line tells you which paint tool you're using and
where it is on the screen. You might also see color information, depending
on the tool you're using.

The tool status message you see depends on which tool you've selected and
where the tool is on your screen. Here are two examples of messages with
accompanying explanations.

Line x: 18 y: 32
This message indicates that you've selected the Line tool, which is located
at the pixel coordinates 18,32. Pixel coordinates are counted fromthe upper
left corner of the image. As you move towards the right side of the image,
the X value increases; as you move towards the bottom of the image, the Y
value increases. '

Brush x: 20 y: 37 R: 128 G: 0 B: 0 Palette Index: 1
This message indicates that you've selected the Paintbrush, which is located
at the pixel coordinates 20,37. The R, G, and B values indicate the red,
green, and blue color values of the color at those coordinates. The color of
the image at 20,37 is currently the color 1 in the Colors palette index, which
has a value of 128 red, 0 (zero) green'. and 0 blue.

You can also see the palette index and RGB settings for the color at the
cursor if you select the Pen, the Airbrush, or the Paint Can.

Working with colors

298

To choose the colors you want as you edit a resource in the Bitmap editor,
use the Colors palette. You can.work with the Colors palette even if your
image is black and white, and you can hide or display the Colors palette at
anytime.

Borland C++ Users Guide

Figure 19.2
16-color Colors

palette

Choosing the
number of colors
for a resource

Using foreground
and background
colors

. If you see FB in the
Colors palette, the

same color is
selected as the

current foreground
and background

color.

You can use the Colors palette to

• Choose a foreground color
• Choose a background color
• Choose transparent and inverted areas (icon and cursor resources only)

When you create a new bitmap or icon, Resource Workshop displays the
New Bitmap Attributes dialog box that lets you choose how many colors
you want to include in your resource.

While you're editing a bitmap or icon, you can change the number of colors
in the iinage using the Size and Attributes command. This command is
located in the Bitmap menu or the Icon menu, depending on the type of
resource you're currently editing.

Some of the higher resolution Windows 3.1 drivers require more than 512K
of memory. For bitmap and icon resources, you can include up to 256 colors
in your resource. The number of colors you can use (and see in the Colors
palette) depends on the type of display driver you're using with Windows.

To use a foreground color,

1. Click the left mouse button on the color you want in the Colors palette.
The letters FG appear on that color. .

2. Select a tool that draws or paints, and click or drag with the left mouse
button to draw or paint with the foreground color.

To use a background color,

1. Click the right mouse button on the color you want in the Colors palette.
The letters BG appear .on that color.

2. Select a tool that draws or paints, and click or drag with the right mouse
button to draw or paint with the background color.

-.. The Eraser operates in the opposite fashion from the drawing tools.
Dragging it with the left mouse button produces the background color, and
dragging it with the right mouse button produces the foreground color.

Chapter 19, Using the Bitmap editor 299

Transparent and
inverted color
areas

Setting transparent
and inverted colors

300

The idea of a transparent or inverted color area is unique to icon and cursor
resources.

• A transparent area" drops out" at run time, allowing the desktop color
behind the icon or cursor to show through. This is especially useful in
cursors, where you will typically not use the entire image area for the
cursor itself.

• Using the inverted color in your icon or cursor causes that area to
"reverse" the desktop color at run time.

For example, if you create a cursor's cross hair from an inverted color, at
run time the cross hair will appear in the reverse color from the desktop
area underneath it. If you place the cursor over a black desktop area, the
cross hair will be white; if you move it to a red area, it will be a teal blue.

Using transparent and inverted color areas is described in detail in Chapter
20, "Creating icons," and Chapter 21, "Creating cursors."

The designated transparent and inverted colors do not appear in your icon
or cursor at run time. Instead, they are replaced by the desktop color
underneath or its inverse. The colors that you set as Transparent and
Inverted should be colors that you won't use in your icon or cursor.

The default transparent color is the current desktop color set in the
Windows Control Panel's color palette. If the desktop uses a dithered color,
the default transparent color is the nearest solid color that Resource
Workshop can provide. (If you have a 256-color device, this restriction does
not apply; the default transparent color will always match the desktop
color.)

You can change the transparent color to something other than the desktop
color, but it will always revert to the desktop color each time you start
Resource Workshop. Nevertheless, regions that you designate as
transparent-using the default color or a color you assign-remain
transparent and take on the current transparent color. Note, however, that
you can change colors so that you have transparent and nontransparent
regions that use the same color.

To change the colors the Bitmap editor displays for transparent and
inverted areas, do either of the following:

• IIi. the Colors palette, double-click the bar under either Transparent or
Inverted.

Borland C++ Users Guide

The dialog box is
always Set

Transparent Color,
regardless of whether

you started from the
Transparent color bar

or the Inverted color
bar.

Hiding and
showing the
Colors palette

• Select either Transparent or Inverted as the foreground or the
background color. Then choose either Icon I Edit Foreground Color or
Icon I Edit Background Color.

Resource Workshop displays the Set Transparent Color dialog box.

This dialog box works like the Edit Colors dialog box, except that it changes
both the transparent and the inverted color at the same time.

Note the three color boxes at the top of the dialog box. As you adjust the
RGB (Red, Green, Blue) values, the actual color created by those RGB
percentages is displayed in the Requested box. The Granted box displays
the closest available color (for devices that support 256 colors or more, it
will be the same as the Requested color), and the Inverse box automatically
shows its inverse.

The Granted color is assigned to the Transparent color bar, and the Inverse
color is assigned to the Inverted color bar.

To hide the Colors palette, close it by double-clicking the system menu icon
in the upper left corner of the palette.

You can also hide the Colors palette by choosing the Hide Palette
command. The name of the menu where you'll find this command depends
on the type of resource you're currently editing. For example, if you're
editing an icon, the Hide Palette command is in the Icon menu. If you're
editing a cursor, the menu is in the same position on the menu bar, but it is
called the Cursor menu.

After you've hidden the palette, the name of the command changes to Show
Palette so you can redisplay the palette.

Customizing colors

You can't edit colors
in cursors or fonts.

If you're editing a color bitmap or icon, you can modify the Colors palette
to include any colors supported by your display driver. It won't make sense
to do this if the Colors palette already includes all the colors supported by
your computer. But if your display driver is capable of displaying 256
colors and you're working with a 16-color image, you can include any of
the 256 colors in the 16-Colors palette.

The following sections describe how to edit any of the colors in the Colors
palette, including transparent and inverted.

Chapter 19, Using the Bitmap editor 301

Editing colors in
the Colors palette

Palette index

Figure 19.3
16-color palette index

Editing a color

On a device capable
of displaying 256

colors or more, the
Requested/Granted

distinction doesn't
apply. You see true
colors, not dithered

approximations.

302

To select a color for editing, do either of the following:

• Double-click it in the Colors palette .

• Select it as the foreground or the background color, then choose Edit
Foreground Color or Edit Background Color from the Icon or Bitmap
menu.

Resour~e Workshop brings up the Edit Color dialog box.

To help you identify where the selected color belongs in the Colors palette,
the Edit Color dialog box includes a palette index value. Each box in the
Colors palette is assigned an index number, starting with zero at the top left
and counting from left to right across each row. (Index values aren't
assigned to the Transparent and Inverted bars in the Colors palette.)

For example, in the default 16-color palette, the colors are numbered as
shown in the following figure:

o 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

When the selected tool is the Pen, Paintbrush, Airbrush, or Paint Can, the
right side of the status line displays the Palette index and RGB settings for
the color under the'cursor's position in the edit window.

To edit a color, you can change its RGB values either by typing new values
in the left column or using the slide bars on the right side of the dialog box.
Resource Workshop displays the closest matching color for the new RGB
values in the Requested color box. (For a 16-color device, you might see a
dithered color appear in this box.) In the Requested color box, Resource
Workshop displays the closest available color as determined by the limits of
the current device. You only see this right box change color if the closest
match is different from the current color.

When you're finished changing colors, click OK or press Enterto put the
new color in the Colors palette.

Before you leave the Bitmap editor you must turn off the Save with Default
Device Colors option to allow Resource Workshop to save your customized
palette. Choose Options I Editor Options and make sure there isn't a check
mark next to Save with Default Device Colors.

Borland C++ Users Guide

The Default button retrieves the color from the default palette (a Windows
stock object) that has the same index as the Palette index (shown at the top
of the dialog box).-

The System button retrieves the color from the systen.;t palette that has the
same index as the Palette index (shown at the top of the dialog box). This
button is disabled for standard VGA displays (which do not support logical
palettes) but is enabled for devices that support 256 colors or more.

Adding text to a bitmap

You can only enter
text or change its
color with the left

mouse button . ..
Aligning text

You can add text to any bitmap. For example, you can add text to an icon to
represent the program name.

To add text to a resource, click the Text tool (shown at the left) and then
click in the image where you want the text to start. Resource Workshop
displays a flashing text cursor. Then type the text you want.

To set default alignment, font, size, and style (bold, italic, or underlined),
choose Text I Align or Text I Font before you type. To change the alignment,
font, size, or style of your text, choose Text I Align or Text I Font
immediately, before you click the mouse again.

In addition, immediately after you type the text (and before you click the
mouse again), you can change its color by selecting a new color from the
Colors palette.

rfyou click another tool or click in another area of the image after entering
text, you can't change anything in the text you've just entered. At that
point, the text becomes just another part of the bitmap as though you had
painted it there.

To align text, use the Text I Align commands.

The Align commands control where the text is displayed in relation to
where you clicked the Text tool (the insertion point). You can use an_Align
command either before you type text or immediately after you finish
typing.

Chapter 19, Using the Bitmap editor 303

Figure 19.4
Aligning text

Choosing fonts,
size, and text
style _

original click original click original click

If If
align left align center align right

You can't change the alignment of text you've typed once you click to make
another selection.

To choose how text is displayed, use the Text I Font command either before
you type text or immediately after you finish typing.

You can't change the font of text you've typed once you click to make
another selection.

After you choose the Font command, Resource Workshop displays the
Select Font dialog box.

You can choose the typeface, size, and style of text that you want. For
example, you might want Arial as the typeface, 12 point as the size, and
bold italic as the style.

The alphabet characters displayed at the bottom of the Select Font dialog
, box change to show you the current typeface; style, and size you've
selected.

Choosing brush shapes

·304

You can paint images in a resource using the Paintbrush or the Airbrush.
Resource Workshop lets you choose the shape of the Paintbrush or
Airbrush.

The current brush shape and airbrush shape are always displayed at the
bottom of the Tools palette (see page 297).

Choose a brush shape or an airbrush shape in one of the following ways:

• For a brush shape, use Options I Brush Shape.

• For an airbrush shape, use Options I Airbrush shape.

• Click the brush or airbrush shape style selection.

Borland C++ Users Guide

You'll see a dialog box that shows you all the possible brush shapes you
can choose. At the top of the dialog box, Resource Workshop shows you the
shape that's currently selected.

The next time you use the Paintbrush or Airbrush, Resource Workshop uses
the shape you specify. This shape stays the same until you specify a new
one.

Choosing paint patterns

You can choose a pattern to paint on your image, using any of the
following tools:

• The Paintbrush • The filled rounded rectangle
• The Airbrush • The filled ellipse
• The filled rectangle

Most of the patterns consist of black lines or dots on a white "field." 1£ you
draw with the left mouse button, the lines or dots take the current
foreground color, and the field takes the current background color. 1£ you
draw with the right mouse button, the effect is reversed: the lines or dots
take the current background color, and the field takes the current
foreground color.

The current pattern is always displayed in the lower right corner of the
Tools palette.

You can choose a pattern in one of the following ways:

• Choose Options I Pattern.

• Click the style selection for the pattern.

You'll see a dialog box that shows you all the possible patterns you can
choose. At the top'of the dialog box, Resource Workshop shows you the
pattern that's currently selected. To select a new pattern, click one of the
patterns in the dialog box and click OK.

The next time you use a tool capable of fill~g with a pattern, Resource
Workshop uses the pattern you specify. This pattern stays the same until
you specify a new one.

Chapter 19, Using the Bitmap editor 305

Choosing a line style

You can control the line style produced by any of the following tools:

• The Pen • The empty rounded rectangle
• The Line tool • The empty ellipse
• The empty rectangle

You can choose a line style in one of the following ways:

• Choose Options I Pen Style.

• Click the line style selection in the Tools palette.

You'll see a dialog box that shows you all the possible styles you can
choose. At the top of the dialog box, Resource Workshop shows you the

. style that's currently selected.

Note the null chqice for a pen width. You can use null when you want to
paint a filled rectangle, rounded rectangle, or ellipse without a border.

The next time you use a tool capable of painting a line, Resource Workshop
uses the width you specified. The pen width you choose stays the same
until you specify a new one.

Aligning a selected area

306

You can align a selected area of an image with the top, bottom, sides, or
center of the current edit window. Aligning the selected area moves it to
the location you specify, just as if you had selected the area and moved it
with the mouse. To align an area you've selected, choose Options I Align
and choose the options you want from the Align Selection dialog box.

Choose the options under Vertical to align the selected area along the
vertical axis of the edit window and the options under Horizontal to align
it along the horizontal axis.

For example, if you choose Top and Left Side and click OK, the selected
area moves to the top left corner of the window. If you choose Vertical I
Center and Right Side and click OK, the selected area is centered between
the top and bottom of the window and is moved as far to the right as
possible.

The Bitmap editor uses the current background color to paint the area
where the selected area was located, just as it would have done had you
moved the selected area with the mouse.

',. Borland C++ Users Guide

Resizing a selected area

You can resize or move an area of an image you've selected with the Pick
Rectangle tool by choosing Options I Size. If you resize the area, the Bitmap
editor stretches or compresses the image inside the selection area
accordingly.

When you choose Options I Size, the Bitmap editor displays the Stretch
Selection dialog box.

The Left and Top values in this dialog box are the pixel coordinates of the
top left corner of the currently selected area, and the other values are its
current width and height in pixels. (When the dialog box is first displayed,
the same values appear in both the Old Position/Size and New
Position/Size columns.)

To move or resize the area (or both), pick pixel values that fall within the
current frame and enter them in the boxes under New Position/Size. Press
Tab to move from field to field.

For example, to move a rectangular area to the top left corner and make it
30 pixels wide and 5 pixels high, do the following:

1. Using the Pick Rectangle tool, select the area you want to move and
resize.

2. Enter 0 as the Left value and press Tab.

3. Enter 0 as the Top value and press Tab.

4. Enter 30 as the width and press Tab.

5. Enter 5 as the height.

6. Click OK or press Enter.

The box is now positioned in the top left corner of the frame, with the new
width and height. In addition, the Bitmap editor fills any open area left
behind with the current background color, just as if you had moved the
selection rectangle with the mouse ..

Setting global Bitmap editor options

To set the global Bitmap editor options, choose Options I Editor Options to
display the Set Bitmap editor Options dialo'g box.

Chapter 19, Using the Bitmap editor 307

Draw on both
images

Save with default
device colors

308

When you have two views of the same image displayed in the Bitmap
editor, you can choose to have Resource Workshop update each image as
you draw.

If you don't choose this option, Resource Workshop updates the other
image only after you finish drawing an element. For example, as you drag a
brush across the image, Resource Workshop shows the line only on the
image on which you're actually drawing. However, once you release the
mouse button, Resource Workshop then updates the other image.

On zoomed windows, you can display a grid that shows you how the
image is painted on a pixel-by-pixel basis.

Uncheck this option if you want to save a custom Colors palette you've
created. When this option is checked, any colors you've customized in the
Colors palette will revert to the default color when you close the Bitmap
editor.

You can save customized Colors palettes only if your display driver is
capable of displaying 256 colors and supports logical palettes. See page 301
for information about customizing the Colors palette.

Borland C++ Users Guide

c H A p T E R 20

Creating icons

Icons are small bitmapped images, 64x64, 32 x32, or 32x16 pixels in size.
Windows programs typically use special icons to represent minimized
windows.

To design your icons, use the Resource Workshop Bitmap editor.

The Bitmap editor includes various paint tools and an easy-to-use Colors
palette for selecting colors. It also lets you zoom your image and shows you
multiple views of the icon you're creating. Chapter 19 explains how to use
the Bitmap editor.

Working with icons involves four basic steps:

1. Starting the Bitmap editor.

If you are creating a new icon resource, the Bitmap editor presents you
with an empty icon grid to work on. If you are modifying an existing
icon, it appears in the Bitmap editor.

2. Creating or modifying the icon.

3. Testing the icon.

4. Saving the icon.

Creating a new icon

Adding an icon to
a project file

You can add a new icon to a project file, or you can create a standalone icon
file with the extension .ICO.

To add an icon to an .RC (or .DLG) file,

1. Open a new or existing project. (Chapter 14 describes how you open a
project.)

2. Choose Resource I New. Resource Workshop displays the New Resource
dialog box.

3. Scroll the Resource Type list box and select ICON.

Chapter 20, Creating icons 309

Embedded and linked
resources are

discussed on page
203.

See page 299 for a
description of color

formats.

Creating a
standalone icon
file

Binary format
option

310

The name of the current project file appears in the box under "Place
resource in." You can s~roll down this list to pick another file (if any is
listed) or click OK to accept the current project file.

4. -Resource Workshop next asks whether you want to create the icon in
source form or in Microsoft-compatible binary format.

Choose Source to create an icon that's embedded in the project file.
Resource Workshop then displays the New Icon Image dialog box.

If you choose Binary, you create a standalone .lCO file (see page 310).

5. The New Icon Image dialog box asks you to specify the size (in pixels)
of the new icon and the number of colors you want supported. If there
is a bitmap in the Windows clipboard, its size and color are used as the
default.

Choose the image size and color format you want, then click OK.
Resource Workshop puts the new icon name in the Project window and
starts the Bitmap editor.

You can create a standalone icon file by doing either of the following:

• Choosing Binary from the dialog box that asks if you want to create your
icon in' Source or Binary format.

• Choosing File I New Project and selecting .lCO from the New Project
dialog box.

To link a standalone icon file to a project file, open the project file and then
choose File I Add to' Project. (See page 205.)

When you choose Binary format, Resource Workshop displays the New File
Resource dialog box so you can name your icon file and specify the project
in which it will be referenced. When the selected resource type is an icon,
the File Name text box says *.lCO.

1. Enter a name for your .lCO file in the File Name text box. Make sure the
name of your project appears in the list box labeled" A reference to the
resource ... ". To change the directory the file is stored in, set the path by
double-clicking the appropriate icons in the Directories list box. The
path you have chosen is displayed in the Path text box.

2. When you've made your selections, click OK. Resource Workshop
displays a dialog box saying the file you've named does not exist and
asking if you want the file created. Click Yes.

3. When you exit the New File Resource dialog box, Resource Workshop
displays the New Icon Image dialog box. When you select the icon's size
and colors, Resource Workshop starts the Bitmap editor.

Borland C++ Users Guide

Icon project file

Editing icons

Viewing other
resolutions

Using transparent
and inverted color
areas

Inverted colors are
generally more useful

for cursors than for
icons.

You can also pick a file name from the Files list box. In that case, however,
you'll overwrite the existing file. As a precaution, Resource Workshop asks
you to verify that you want the file overwritten.

If you choose File I New Project and select .lCO from the New Project dialog
box, you automatically create a standalone icon file. Resource Workshop
immediately displays the New Icon Image dialog box. After you specify
size and colors, Resource Workshop starts the Bitmap editor.

The following sections describe several of the techniques you can use in
editing your icons.

The standard EGAjVGA resolution is 32x32, but you can create icons in
two other resolutions: 32x16 and 64x64. The View menu includes
commands that let you view the icon in other display resolutions.

• If you're creating the icon in 32x32 resolution, the command View I CGA
. Resolution [32x16] lets you see how the icon would look on a CGA

screen.

• If you're creating the icon in 32x16 (CGA) resolution, the command
View I EGAjVGA Resolution [32x32] lets you see how the icon would
look on an EGA or VGA screen.

• If you're creating the icon in 64x64 resolution, both commands are
available. You can see how the icon would look on a CGA screen or on
an EGA or VGA screen.

To get out of any of these view modes, choose View I Actual Size.

All you change with these commands is the view of the icon, not the icon
itself. It is still the same resolution.

As mentioned on page 300, you can use transparent and inverted color
areas in your icons. At run time, the transparent area "drops out" and h~ts
the desktop color show through from underneath. Any parts of the icon
painted with an inverted color take on the opposite color from the desktop
underneath: white over black or teal over red, for example.

When you start a new icon, it is initially a grid made up entirely of the
current transparent color. If you draw a single line of another color across
the grid and then test the icon, you see only that line against the desktop

Chapter 20, Creating icons 311

color; you don't see the grid outline or the area that is filled with the
transparent color.

Adding an image to an icon resource

312

In general, you create a new icon resource for each icon design (called
simply an icon), and you don't put different icons in the same icon resource.
However, itB likely you'll want to put different color formats of the same
icon in one icon resource. These color variations on the same icon are called
images~ For example, if you want a 2-color and a 16-color version of the
same design, you can store both versions in the same icon resource.

The reason the icon resource supports different color formats is that
Windows picks a color format based on the ability of the display hardware
to support the format. Windows picks a 2-color format for a monochrome
display driver and a 16-color format for the standard Windows VGA
driver.

.. Windows 3.x doesn't fully support the 256-color version of an icon, even if
your display hardware supports it. Your program must supply its own
support for 256 colors.

Figure 20.1
Icon window

To add a new image to an existing icon resource,

1. Open a project.

2. Double-click the ICON entry in the Project window, or select the ICON
entry and choose Resource I Edit. Resource Workshop displays the Icon
window.

,:,1' ··,CON:ICON.:J·
3 Images

32 X 32 8 Colors
32 X 32 2 Colors

3. To create a new: version of an existing icon, choose Images I New Image.
Resource Workshop displays the New Icon Image dialog box, from
which you can choose the image size and color format.

4. Choose the same size as the existing image and a new color format, then
click OK. Resource Workshop displays the new image entry in the Icon
window. .

Borland C++ Users Guide

5 .. Double-click the new icon, or select it and choose Images I Edit Image.
You'll see the Bitmap editor.

6. Typically, what you do next is open one of the existing icon images and
copy it into the new (still blank) image. You might also have to edit the
image if the colors are translated in a way that changes the form of the
icon.

Changing an icons attributes

Displaying device
information

To change the attributes-resolution or color format-of the current icon
image,

1. Choose Icon I Size and Attributes to display the Icon Image Attributes
dialog box.

Except for its having one additional push button (described next), the
Icon Image Attributes dialog box is identical to the New Icon Image
dialog box.

2. Select a resolution or color format and click OK.

Changing the icon's attributes actually changes the icon, as contrasted with
viewing the icon at other resolutions.

The additional push button in the Icon Image Attributes dialog box is
called Device Info. When you click this button, Resource Workshop
displays the Display Device Information dialog box, which give the
following information about your display device:

• Number of bits per pixel
• Number of color planes
• Number of colors supported
• Whether it is a palette device

If the device supports logical color palettes, the Display Device Information
dialog box lists the following information:

• The number of entries in the system palette
• The number of reserved entries in the system palette
• The color resolution of the device in bits per pixel

Chapter 20, Creating icons 313

Creating a sample icon

Chapter 14 describes
how you open a

project.

Drawing the
calculator

Be sure to leave two
pixels below the

calculator to put in
the shading.

314

This section describes how to create a sample icon, shown at left.

To create the new icon, you must first open a project, and then go through a
series of steps to bring up the Bitmap editor with the new, blank image in
it.

1. Choose File I New Project to create a new project or File I Open Project to
open an existing project.

2. Choose Resource I New and tell Resource Workshop to create a new
resource. When Resource Workshop asks what type of resource you
want, choose ICON.

3. Choose Source to store the icon as a resource script in the .RC file.

4. Resource Workshop opens the New Icon Image dialog box. Check 32x32
and 16 Colors, then clkk OK.

S. Resource Workshop opens the Bitmap editor ..

To draw the calculator icon,

1. Choose Options I Editor Options, check Grid On Zoomed Windows to
help you line up the calculator buttons, and click OK.

The grid shows you the individual pixels when you zoom your icon in
the Bitmap editor. It's easier to see what you're doing if you draw on a
zoomed-in view of the icon.

2. Leave the icon displayed at its actual size in the right window. To zoom
the image in the left window, double-click the Zoom icon in the Tools
Palette until the image is zoomed as large as you can get it with all of it
still visible onscreen. .

Each square of the grid on the zoomed view represents a single pixel.

Now you're ready to start drawing.

3. Choose the color dark red for the calculator. When you click in the
Colors palette, you see the letters FG (foreground) on the color dark red.

4. Click the filled rectangle in the Tools Palette. It's the square tool on the
right under the Text tool (the ~arge "T").

S. Draw the calculator in the bottom left part of the icon.

You can use the filled rectangle to draw all parts of the calculator-the
face, the display area, and the buttons. Choose different colors for the
calculator display and buttons by clicking in the Colors palette before

Borland C++ Users Guide

Figure 20.2
Calculator before

adding drop shading

drawing (try yellow for the keys.and dark cyan for the screen). When
you've finished, your calculator should look something like this:

If you make a mistake, you can use the Undo feature (Edit I Undo or
AIt+Backspace) to rectify it. You can also use the Pick Rectangle tool or the

, Scissors tool to outline an area and delete it (use the Del key or Edit I
Delete) or the Eraser to erase it.

If you want to erase evetything and start over again, just double-click
the Eraser tool in the Tools Palette.

Adding a three
dimensional effect

To add a three-dimensional effect to the calculator,

Chapter 20, Creating icons

1. Choose the color black for the shadow.

2. Use the Line tool to fill in a shaded line down the right side and across
the bottom of the calculator. The line should be two pixels wide and
should start two pixels below the top and end two pixels short of the
left side.

3. You can also make the calculator window look three-dimensional by
drawing a white line along the window's left edge and across its top.

315

Figure 20.3
Calculator with

shading

Drawing the
ledger page

Use the EditlUndo
command to correct

any errors.

316

Here's what the calculator should look like now:

When you finish drawing the calculator, choose File I Save Project to
save your new icon image. It's always a good idea to save early and
often.

To draw the ledger page,

1. Choose the color black and then choose the Line tool.

2. Use the Line tool to draw a vertical black line starting on the fifth pixel
to the left of the top, right comer of the calculator. Carry the line up to
the top of the edit window, across to its upper right comer, down to
within two pixels of the bottom of the Bitmap editor, and across to meet
the black shading to the right of the calculator. You've just drawn the
outline of the ledger page. '

3. Choose the color white and select the Paint Can tool. Click the Paint
Can on the ledger page to fill it with white.

4. Choose cyan (the lightest blue color) and the Line tool.

5. Click the Line style in the bottom right comer of the Tools Palette and,
in the-Current Pen Style dialog box, pick the two-pixel line width (the
one to the right of Null).

6. Starting two pixels up from the bottom of the ledger page and one pixel
in from where you want\the line to start (because it's two pixels wide),
draw a series of two-pixel-high lines across the width of the visible part
of the ledger page. Each line should be two pixels from the previous
line. (The bottom three lines will be bounded on the left by the
calculator shading.)

7. Choose light red and the Line tool.

Borland C++ Users Guide

Figure 20.4
Finished Home

Budget icon

8. Click on the Line style in the bottom right corner of the Tools Palette
and, in the Current Pen Style dialog box, pick the single-pixel line width
(the one directly above Null).

9. Starting three pixels from the right edge of the ledger, draw a vertical
line the length of theJedger page. Move four pixels to the left and draw
a second red vertical line.

10. Choose black and draw a horizontal line that starts immediately above
the topmost cyan area and goes the width 6f the ledger page.

11. When you've finished your icon, the Bitmap editor window should look
like the following:

Chapter 20, Creating icons 317

318 ' Borland C++ Users Guide

c H A p T E R 21

Creating cursors

Cursors are bitmapped images 32x32 pixels in size that represent the mouse
pointer's current location on the screen. A Windows application often has a
number of different cursors that represent different program functions.

Windows provides a set of standard cursors you can use in your programs.
In addition, you can create your own special cursors to represent different
functions of the program. One of these special cursors is the Resource
Workshop Paint Can cursor that displays when you choose the Paint Can
tool in the Bitmap editor.

To design your cursors, use the Resource Workshop Bitmap editor. See
Chapter 19.

Working with cursors involves four basic steps:

1. Starting the Bitmap editor.

If you are creating a new cursor resource, the Bitmap editor presents
you with an empty cursor grid to work on. If you are modifying an
existing cursor, it appears in the Bitmap editor.

2. Creating or modifying the cursor.

3. Testing the cursor.

4. Saving the cursor.

Creating a new cursor

Adding a cursor
to a project file

You can add a new cursor to a project file, or you can create a standalone
cursor file with the extension .CUR.

To add a cursor to an .RC (or .DLG) file,
\

1. Open a new or existing project. (Chapter 14 describes how you open a
project.)

Chapter 21, Creating cflrsors 319

Embedded and linked
resources are

discussed on page
203.

Creating a
standalone cursor
file

Binary format
option

320

2. Choose Resource I New. Resource Workshop displays the New Resource
dialog box.

3. Select CURSOR from the Resource Type list box.

The name of the current project file appears in the box under "Place
resource in." You can scroll down this list to pick another file (if any is
listed) or click OK to accept the current project file.

4. Resource Workshop next asks whether you want to create the cursor in
source form or in Microsoft-compatible binary format.

5. Choose Source to create a cursor that's embedded in the project file.
Resource Workshop then starts the Bitmap editor.

If you choose Binary, you create a standalone .CUR file (see page 320).

You can create a standalone cursor file by doing either of the following:

• Choosing Binary from the dialog box that asks if you want to create your
cursor in Source or Binary format.

• Choosing File I New Project and selecting .CUR from the New Project
dialog box.

To link a standalone cursor file to a project file, open the project file and
then choose File I Add to Project. (See page 205.)

When you choose Binary format, Resource Workshop displays the New File
Resource dialog box so you can name your cursor file and specify the
project in which it will be referenced. When the selected resource type is a
cursor, the File Name text box says *.CUR.

1. Enter a name for your .CUR file in the File Name text box. Make sure.
the name of your project appears in the list box labeled "A reference to
the resource ... ". To change the directory the file is stored in, set the path
by double-clicking on the appropriate icons in the Directories list box.
The path you have chosen is displayed in the Path text box.

2. When you've made your selections, clic'k OK. Resource Workshop
displays a dialog box saying the file you've named does not exist and
asking if you want the file created. Click Yes.

3. When you exit the New File Resource dialog box, Resource Workshop
starts the Bitmap editor.

You can also pick a file name from the Files list box. In that case, however,
you'll overwrite the existing file. As a precaution, Resource Workshop asks
you to verify that you want the file overwritten.

Borland C++ Users Guide

Cursor project file
If you choose File I New Project and select .CUR from the New Project
dialog box, you automatically create a standalone cursor file. Resource
Workshop immediately starts the Bitmap editor.

Editing cursors

Colors palette for
cursors

Working with
transparent and
inverted areas

Setting the
cursor's hot spot

The following sections describe several of the techniques you can use in
editing your cursors.

The Colors palette for cursors is different from the Colors palette for the
other bitmapped resources in one important respect: There are only two
available foreground and background colors-black and white. A typical
cursor is a white shape (an arrow or a question mark, for example) with a
black outline.

As mentioned on page 300, you can use transparent and inverted color
areas in your cursors. At run time, the transparent area "drops out" and'
lets the desktop color show through from underneath. Any parts of the
cursor painted with an inverted color take on the opposite color from the
desktop underneath: white over black or teal over red, for example.
Inverted colors are commonly used for the cursor's "hot spot."

When you start a new cursor, it is initially a grid made up entirely of the
current transparent color. If you draw a single line of another color across
the grid and then test the cursor, you see only that line against the desktop
color; you don't see the grid outline or the area that is filled with the
transparent color .

. Don't set your transparent or inverted colors to black or white, or your
cursor will either not be visible at run time or will be constantly changing
color as the user moves the mouse over the application surface.

An important consideration when you edit a cursor is where to put the hot
spot, the cursor's active area. The hot spot is the single pixel in the cursor
that fixes the location when the user places the cursor and clicks to make a
selection.

To set a hot spot, decide on the exact pixel coordinates for the hot spot.
Pixel coordinates are in horizontal (x) and vertical (y) units. The upper left
pixel of the cursor image is x=O and y=O. The lower right pixel for a 32x32
cursor is x=31 and y=31, and for a 32x16 cursor is x=31 and y=15.

Chapter 21, Creating cursors 321

322

To set the hot spot, do the following:

1. With the cursor in the Bitmap editor, zoom in on the cursor image until
it's big enough to let you precisely choose the pixel coordinates for the
hot spot.

2. Make sure the grid is displayed on the zoomed image. If necessary,
choose Options I Editor Options and check Grid On Zoomed Windows.

3 .. Select a paint tool that lets you precisely point to a pixel. The Line tool is
a good choice because it includes a cross hair to show exactly where its
hot spot is.

4. With the paint tool you've chosen, point to the location on the zoomed
image where you want the hot spot and look at the coordinates
displayed on the status line. Make a note oJ these coordinates.

5. Choose Cursor I Set Hot Spot and type the coordinates.

Borland C++ Users Guide

This manual uses
'iont" and "font

resource"
interchangeably.

Font types

c H A p T E R 22

Creating fonts

According to the standard definition, a font is a set of characters of a given
size and style. A font resource is a collection of data used by a computer to
draw individual bitmapped images (which might be letters or other
characters) on an output device such as a display monitor or a printer.

The font contains data that describes the overall collection of images, such
as the typeface name, the suggested size, the character set, the letters in the
font, and so on. The font also contains the information the computer needs
to draw each bitmapped image.

Working with font resources involves five basic steps:

1. Starting the Bitmap editqr by loading either a new font or an existing'
one.

2. Creating or editing a font image with the Bitmap editor.

3. Saving the font resource as part of a project file or in a separate file.

4. Exiting Resource Workshop and adding the font resource to a special
resource-only DLL with an .FON extension.

5. Inserting a call to the .FON file in your program, compiling it, and
. testing the font resource.

Windows supports two basic types of fonts: raster fonts and outline fonts.
Resource Workshop creates and edits Windows raster fonts only .

• Raster fonts contain a bitmapped image of each character .

• Outline fonts contain drawing commands for each character. Usually,
they also contain "hints" the computer uses to produce better quality
images at various sizes. The outline fonts that Windows supports lack
these hints. These limited outline fonts are called vector fonts, of which
Roman, Script, and Modern are examples. As a Windows user, more
sophisticated font technology is available to you through third-party font
rasterizers.

Chapter 22, Creating fonts 323

Why put bitmaps
in a font?

...

i
:-:·

Although you can use Resource Workshop to create customized letters,
you'll probably want to use a specialized font development package to do
that kind of work. You're more likely to use Resource Workshop to create
bitmapped image fonts: small bitmaps you want to group together.

In some cases, font resources and bitmap resources aren't interchangeable.
If you're creating a brush to paint an area onscreen, you must create it as a
bitmap resource. But for creating bitmapped images to simply display
onscreen, such as a bomb or a stop-sign bitmap image, you could use either
bitmap or font resources. For example, the bomb shown at left was created
as a font resource.

There are several reasons why you might want to define images as part of a
font resource instead of as separate bitmap resources:

• It's simpler to write Windows code to load a font into memory and paint
it than it is to load and paint the same image stored as a bitmap.

• A font can store up to 256 bitmaps. If your program typically uses a
certain set of bitmapped images at the same time, you can put these
images in a font resource, and then the program can load just this one
resource when it needs this set of images.

• A font can store multiple images more efficiently than the same images
stored as individual bitmap resources.

Note, however, that a font resource has a certain amount of memory
overhead; each time you load a font into memory, Windows also loads the
font header (see page 329). If you're creating a single image and are trying
to decide whether to create it as a font resource or as a bitmap resource,
you should define it as a bitmap if efficient memory use is important.

Creating a new font resource

Adding a font to a
project file

324

You can add a new font resource to a project file, or you can create a
standalone font file with the extension .FNT.

To add a font to an .RC (or .DLG) file,

1. Open a new or existing project. (Chapter 14 describes how you open a
project.)

2. Choose Resource I New. Resource Workshop displays the New Resource
dialog box.

3. Select FONT from the Resource Type list box.

Borland C++ Users Guide

Embedded and linked
resources are
discussed on

page 203.

Creating a
standalone font
file

Binary format
option

The name of the current project file appears in the box under "Place
resource in." You can scroll down this list to pick another file (if any is
listed) or click OK to accept the current project file.

4. Resource Workshop next asks whether you want to create the font in
source form or in Microsoft-compatible binary format.

Choose Source to create a font that's embedded in the project file.
Resource Workshop then starts the Bitmap editor.

If you choose Binary, you create a standalone .FNT file (see the next
section).

You can create a standalone font file by doing either of the following:

• Choosing Binary from the dialog box that asks if you want to create your
font in Source or Binary format.

• Choosing File I New Project and selecting .FNT from the New Project
dialog box.

To link a standalone font file to a project file, open the project file and then
choose File I Add to Project. (See page 205.)

When you choose Binary format, Resource Workshop displays the New File
Resource dialog box so you can name your font file and specify the project
in which it will be referenced. When the selected resource type is a font, the
File Name text box says *.FNT.

1. Enter a name for your .FNT file in the File Name text box. Make sure the
name of your project appears in the list box labeled" A reference to the
resource ... ". To change the directory the file is stored in, set the path by
double-clicking on the appropriate fonts in the Directories list box. The
path you have chosen is displayed in the Path text box.

2. When you've made your selections, click OK. Resource Workshop
displays a dialog box saying the file you've named does not exist and
asking if you want the file created. Click Yes.

3. When you exit the New File Resource dialog box, Resource Workshop
starts the Bitmap editor.

You can also pick a file name from the Files list box. In that case, however,
you'll overwrite the existing file. As a precaution, Resource Workshop asks
you to verify that you want the file overwritten.

Chapter 22, Creating fonts 325

Font project file
If you choose File I New Project and select .FNT from the New Project
dialog box, you automatically create a standalone font file. Resource
Workshop immediately starts the Bitmap editor.

Editing a font resource

Defining and
adding characters
for a font

Defining the font
size

See page 328 for
more information on
variable-width fonts.

326 .

When you open a new or existing font resource in the Bitmap editor, the
characters or images in the font you're editing are displayed in a "list" in
the right border of the window.

When you start the Bitmap editor, it automatically loads the first font image
in the list. To load another image for editing, click on it in the right border
of the Bitmap editor. Then use the Bitmap editor tools to make changes.

When you create a new font resource, it includes only one 8x8 pixel image.
Usually you'll want more than one image in your font resource. You also
might want to specify a different size for your font images. To specify more
than one image in a font resource and to change the size of font images, use
the Font I Font Size option.

To define the font size,

1. Choose Font I Font Size to display the Font Size Information dialog box.

2. Make your size choices among the Size options described in Table 22.1.
The images in a font resource can be variable~width or fixed-width.

• Fonts containing letters or images that can vary in width are called
variable-width or proportional fonts. For example, in a variable-width
font the letter "m" is considerably wider than the letter ilL" Books
(including this one) are almost always printed in a variable-width
font.

• Fonts in which the characters or images are all the same width are
called fixed.:.width or monospaced fonts. Most typewriters use fixed-
width fonts. .

Variable-width characters usually take less space and are more pleasing to
the eye than fixed-width font characters. Compare the following two lines,
especially the spacing around. the letter ilL"

Minimum (variable-width font)
Minimum (fixed-width £ont)

Borland C++ Users Guide

Table 22.1
Font size options

Setting the number
of characters

Mapping the
character set

Option

Width

Height

Average Width

Maximum Width

Stretch current
chars

Description

If you want all images to be the same width (fixed-width), type the width
in pixels. If you want the widths to vary (variable-width), type a 0 (zero)
here and specify a maximum width.

Type the height, in pixels, of the font images.

Resource Workshop calculates an average width for your font images if
you have specified 0 for Width (font is variable-width). Otherwise (font is
fixed-width), Average Width is the same as Width.

The Average Width is calculated when you open this dialog box. (You
won't see this value change if you type other changes into this dialog
box.)

For variable-width fonts, specify the maximum width in pixels. This option
is available only if you have typed 0 next to Width.

Check this option if you want the height or width of existing images to
increase or decrease, based on height and width changes you type into
this dialog box. Checking this option allows you to distort (stretch)
characters from their original shape.

The Font Size Information dialog box also lets you choose how many
images to include in your font resource. The First and Last values of the
Character options (see Table 22.2) determine how many characters the font
resource will hold.

If you set the number too low, you can change the values to increase the
number of available characters.

Choose a range of decimal codes to use in mapping your font images to the
ANSI character set. For example, to map a font image to the character a,
specify the decimal code 97. The image itself needn't be the character a,
unless you want it to be. In the sample font resource discussed at the end of
this chapter, a bomb image is mapped to a. The second font image would
then be mapped to the character b, decimal code 98. .

The ANSI values to which you map a set of bitmapped images are
arbitrary, but must be in the range 0 to 255. These ANSI values become
important when you load the font in your program and display the
bitmaps, because you use the ANSI value that corresponds to a bitmap to
display it, the same as you would use an ANSI value to display a character.

Use the following Character options to map the character set or images in
your font resource:

Chapter 22, Creating fonts 327

Table 22.2
Character options

Creating variable
width fonts

Setting the width of
a character or
image

Use Stretch Current
Chars to distort the

image from its normal
proportions.

328

Option

First

Last

Default

Break

Description

Type an ANSI decimal code to define the first image in your font. For example, if
you want the first image to correspond to a, type 97.

Type an ANSI decimal code to define the last image in your font. For example, if
you want the last image to correspond to z, type 122.

Type an ANSI decimal code to define the default font image that will be
displayed when you edit this font resource. The Default value must be within the
character range defined by the First and Last values. For example, if you've
typed 97 for.First and 122 for Last, you can't type 88 for Default.

Type an ANSI decimal code to define a break character for your font resource.
(A break character, typically the space character, is used to pad justified lines.)
The Break value must be within the character range defined by the First and
Last values.

To create variable-width images or characters in your font resource,

1. Choose Font I Font Size.

2. Next to Width, type 0 (zero).

3. Next to Maximum Width, type the maximum width (in pixels) for all
the images or <:haracters in the font resource.

After you've chosen a width of zero in the Font Size Information dialog
box, you can choose the width for an individual character or image using
the Font I Character Width command.

For example, suppose you've used the Font I Font Size option to define the
following sizes for your font resource, which contains bitmapped images:

Width a
Height 32
Maximum Width 32

Based on these sizes, all images will be 32 pixels high and a maximum of 32
pixels wide. As you're editing a particular image, you can use the Font I
Character Width option to define the width of that image.

Choosing Font I Character W~dth displays the Character Width dialog box.

Next to Width, type a value that's less than or equal to Maximum Width. In
addition, you can check the Stretch Current Chars option if you want the
existing image to stretch or shrink based on the width change you type into
this dialog box.

Borland C++ User's Guide

Defining a header
for a font
resource

Table 22.3
Font header options

Every font resource includes a header that describes general information
about the font, such as typeface name and copyright information. If you're
defining a font resource that consists of alphanumeric characters, the
header defines typestyle and size for all characters in the font.

To define the header for a font,

1. Display the font in the Bitmap editor by double-clicking the font name
, in the project window, or by using Resource I New to create a new font

resource.

2. Choose Font I Header to specify header information. You see the Font
Header Information dialog box.

3. Define the header for your customized fonts. The following table
describes your choices:

Option

Face Name

Device

Copyright

Font Version

Attributes

Italic

- Underline

- Strikeout

- Variable
Pitch

- Weight

- Family

- Char set

Description

Type a name that you want to assign to your font.

Type a device name for your font if you want to inform your programs that
this font can be used only on a particular device.

Type copyright information for your custom font.

Font version 2.00 is supported in all cases. You can use version 3.00 if
you're creating a Windows 3.x application that will run in a protected mode
environment (Standard mode or 386 Enhanced mode) on an 80386 (or later)
processor.

The font contains italicized characters.

The font contains underlined characters.

The font contains characters that are struck out.

The font is a variable-width font.

The font is of normal weight (400) or boldfaced (700).

Describes the font family. The acceptable values are

o Don't care
1 Roman
2 Swiss

3 Modern
4 Script
5 Decorative

Defines the character set. The value can be 0 through 255. 0, 2, and 255
have the following predefined meanings:

Chapter 22, Creating fonts 329

Changing size
and attributes

Table 22.3: Font header options (continued)

Sizes

- Harz Res

- Vert Res

- Points

- Internal
Leading

- External
Leading

- Ascent

o ANSI, the default Windows character set
2 Symbol, used for math and scientific formulas
255 OEM, a machine-specific character set

Horizontal number of pixels per logical inch on your video display.

Vertical number of pixels per logical inch on your video display.

Type size. A point is 1172 of an inch. A character is measured from the top of
the ascender to the bottom of the descender. The value you enter here
should not include space for diacritical marks.

The space in pixels reserved for diacritical marks.

The additional space in pixels between lines of
characters.

The height in pixels of the character above the baseline.

When you're editing a font resource in the Bitmap editor, the Font menu
has three commands that let you make changes to the font images.

• Header defines the header information for your font resource, including
the font version, the font name, copyright information, and so on. For
more information, see page 329.

• Font Size defines the character set in this font, and the width and height
of each character. For more information, see page 326.

• Character Width specifies the width for a particular image in a variable
width font resource. (This command won't be available unless you've
already defined a variable width font using Font I Font Size.) For more
information, see page 328. -

Using your fonts in your applications

330

With other resources, you use Resource Workshop or Borland Resourc~
Compiler (BRC) to bind your resources to your executable files. However,
fonts can't be bound to an executable file. What you must do instead is
create a special, resource-only OLL that has an .FON extension, and then
load it into your program by using the Windows function
AddFontResource.

You can create an .FON file using either C++ or Turbo Pascal and Turbo
Assembler.

Borland C++ Users Guide

'See Charles Petzold's
Programming

Windows for more
information on

metafiles.

c H A p T E R 23

Creating user-defined resources

In addition to the resource types discussed in previous chapters, you can
also define your own resources. After you create a ~ew resource type, you
can add any number of user-defined resources of this type to your project.

You might want to define your own resource types to contain data that
doesn't fit into one of the standard resource types. For example, if you want
to create a character string resource that's longer than the STRINGTABLE
limit of 255 characters, you can define your own resource type and store
your character strings there.

You can also include metafiles in your project as user-defined resources. A
metafile is a type of bitmap (in source form, it's a collection of Graphics
Device Interface (GDI) calls) that's not only easier to scale and more
device-independent than the standard Bitmap resource, but also often takes
up less storage space than a Bitmap resource.

When you define a new resource, you can store the data either as part of
the resource definition in a project file or as a separate file.· As with any
resource, Resource Workshop can compile the data and bind it to your
executable file to make the data available to your application at run time.

You can also use the RCDATA resource type to add data to your
application. See page 335 for more information.

Working with user-defined resources involves five basic steps:

1. Creating a user-defined resource type.
2. Adding the user-defined resource to your project.
3. Editing the user-defined resource.
4. Testing the user-defined resource.
5. Saving the user-defined resource.

Chapter 23, Creating user-defined resources ' 331

Creating a resource type

Chapter 14 describes
how you open a

project.

If you use a numeric
10, it must be greater

than 255, because
Windows reserves

the values 1 through
255 for standard

resources.

Before you can add a user-defined resource to your project, you must first
create a type for it, as follows:

1. Open a project.
2. Choose Resource I New.
3. In the New Resource dialog box, click the New Type button. Resource

Workshop displays the New Resource Type dialog box.

4. In the New Resource Type dialog box, type a name for the resource type
you're creating. For example, if you're creating a resource to contain a
large block of text, you could name your new type TEXT. Press Enter.

5. When asked if you want to create an identifier for the new resource
type, click Yes, then type a value for the identifier in the Value box of
the New Identifier dialog box. This value is the ID that Windows and
your program will associate with this identifier type.

Once you've defined a new resource type, whenever you create a new
resource, you'll see that resource type listed in the New Resource dialog
box with the standard resource types (BITMAP, DIALOG, and so on).

Adding user-defined resources

After you've created a resource type, you can add a resource of that type to
your project, as follows:

Chapter 14 describes 1. Open a proJ·ect.
how you open a

332

project. 2. Choose Resource I New. The New Resource dialog box appears.

3. In the New Resource dialog box, select your user-defined resource type.
Under "Place resource in", select the project file (probably the current
one) where you want to store the resource.

4. After you click OK in the New Resource dialog box, Resource Workshop
opens the text editor with a blank definition for your user-defined
resource. For example, if you add a user-defined resource called TEXT,
you see the following code in the text editor:

The next section describes how you edit a user-defined resource.

Borland C++ Users Guide

Editing user-defined resources

Chapter 14 describes
how you open a

project.

To edit a user-defined resource, you must have a project open. You can
either create the resource (see the previous section) or you can open an
already existing one in the Project window.

The resource name is listed in the Project window by its user-defined
resource type, just as any resource of a predefined type is listed. For
example, if you create a TEXT resource type and a Text resource, you see a
TEXT resource entry in the Project window.

To open the editor,

• Double-click the name of the resource you want to edit, or

• Select the resource name and then choose Resource I Edit or Resource I
Edit As Text (both start the text editor).

Once you've brought the resource up in the text editor, you can add data to
it or edit the data in it. Here's an example of what you'll see when you add
a new user-defined resource of type RESTYPE to your project:

RESTYPE_l RESTYPE
BEGIN

[data definitions]
END

The first line shows the resource name and type. Resource Workshop
constructs a default name for a new resource by appending to the resource
type an underscore and an integer. For example, the first RESTYPE resource
you add to your project becomes RESTYPE_l, the second becomes
RESTYPE_2, and so on.

To add data to your resource, do one of the following:

• Use the text editor to type data between the curly braces.
• Store the data in a separate file and add the file name to the end of the

first line of the resource script, as follows:

RESTYPE_l RESTYPE MYRES.FIL

You must also delete the lines containing the BEGIN and END
statements.

• Use the Add to Project command, as described in the next section.

-.. After you make any changes to the resource script, you must recompile the
resource to save your changes. If you exit without recompiling, the changes
will be lost.

Chapter 23, Creating user-defined resources 333

Embedding
resource data in
the project file

You can also enter
the full path and file

name into the File
Name text box.

Entering data in
the resource

. script

334

As noted in the previous section, you can add data to your resource by
storing the data in a separate file. The disadvantage to this approach is that,
if something happens to the file, the data is lost. Another option is to embed
the external data into the project file script. .

If, for example, you have a user-defined resource type called TEXT and a
resource data file called MY_RES.TXT, you can embed the data in the
project by doing the following:

1. Choose File I Add to Project. Resource Workshop displays the Add File
to Project dialog box.

2. Select "user Resource data" from the File Type list box.

3. Change the File Name text box to * . TXT.

,4. Change the directory (if necessary) until MY_RES. TXT is visible in the
File listing. Double-click MY_RES.TXT.

5. Resource Workshop displays the Custom Resource Type dialog box.
Double-click the entry for the TEXT resource type. A new TEXT
resource appears in the Project window.

If you select the new resource and choose Resource I Edit (or Edit as Text
the effect is the same), you'll see that the resource data has been converted
to hexadecimal format. For that reason, you should keep the external data
file available in case you want to edit the resource script later.

When you use the text editor, Tab, Del, Home, End, PgUp, PgDn, and Backspace·
function as usual. However, don't use this editor to do much formatting
because Resource Workshop is likely to rearrange the text when it compiles
or decompiles this resource.

Here are some guidelines for specifying data between the BEGIN and END
parameters:

• The data can include any combination of numeric values and strings .

• You can use hexadecimal, octal, or decimal notation to represent numeric
values .

• Use either Ox (a zero followed by the letter x) or $ (a dollar sign) as the
leading characters for hexadecimal notation. This notation supports
only 16-bit values. If you want to use an odd number of hexadecimal
values, use the hexstring data type (described in the next bullet) .

• Use 00 (a zero followed by the letter 0) or just 0 (zero) as the leading
characters for octal notation:

Borland C++ Users Guide

Handling data
stored in a
separate file

• You can also represent hexadecimal values by using a hexstring of
hexadecimal values enclosed in single quotation marks. The compiler
ignores any spaces you insert to make the hex codes more readable. For
example, you could represent the ASCII values of the characters in the
word string as ' 73 74 72 69 6E 67' and the hex number 06E07 A as
, 06E07A'.

• If you include text strings in your resource, enclose the strings in
quotation marks, like this: "string". Strings aren't automatically null
terminated. To terminate a string with a null character, type \ 0 (backslash
zero) at the end of the string.

For example, your resource script with data added could look like:

RESTYPE_1 RESTYPE
BEGIN

"This is a string."
OxFFAA 007076 01077
'54 68 69 73 20 69 73 OD OA 73 6F 6D 65 20 73 61'
'6D 70 6C 65 OD 64 61 74 61 2E'

END

If the data is stored in a separate file, you must use an external editor to
edit the file. To add a reference to the data file to the resource script,

• On the first line of the script, following the name of the resource type,
enter the complete path name of the file.

• Delete the BEGIN and END statements.

The following resource script for the resource RESTYPE_l indicates that the
data is stored in the file C:\RW\MYDATA.TXT: RESTYPE_l RESTYPE
c:\rw\mydata.txt

Using the RCDATA resource type

RCDATA resources
have been included in

Resource Workshop
,for compatibility

purposes.

You can use the predefined RCDATA resource type to add a data resource
to your application. It works the same as a user-defined resource type. The
main difference between the two is address ability: you might prefer to have
many different types of user-defined resources rather than just one.

If you do use an RCDATA resource, add it to the project by choosing File I
New and a~ding a new resource whose type is RCDATA. You'll see a blank
RCDATA definition in the text editor, and you can type the data between
the BEGIN and END parameters. Use the same rules for typing data as
described for user-defined resources.

Chapter 23, Creating user-defined resources 335

336 Borland C++ Users Guide

A p p E N o I x A

Error messages

This 'appendix describes the error messages that can be generated by
Borland C++. The error messages in this appendix include messages that
can be generated by the compiler, the MAKE utility, the librarian (TLIB),
the linker (TLINK), and the Windows Help compiler. This appendix alsq
lists the errors that you can receive when you run your program (run-time
errors).

Messages are listed in ASCII alphabetic order. Messages beginning with
symbols come first, then messages beginning with numbers, and then
messages beginning with letters of the alphabet. Messages that begin with
symbols are alphabetized by the first word in the message that follows the
symbols. For example, you might receive the following error message if
you incorrectly declared your function myJunc:

my_func must be declared with no parameters

To find this error message, look under the alphabetized listing of "must."

'Message classes

Fatal errors

Messages fall into three categories: fatal errors, errors, and warnings.

Fatal errors can be generated by the compiler, the linker, and the MAKE
utility. Fatal errors cause the compilation to stop immediately; you must
take appropriate action to fix the error before you can resume compiling.

If the compiler or MAKE utility issues a fatal error, no .EXE file is created., If
the linker issues a fatal error, any .EXE file that might have been created by
the linker is deleted before the linker returns.

Appendix A, Error messages 337

Errors

Warnings

Errors can be generated by the compiler, the linker, the MAKE utility, and
the librarian. In addition, errors can be generated by your program at run
time.

Errors generated by the compiler indicate program syntax errors,
command-line errors, and disk or memory access errors. Compiler errors
don't cause the compilation to stop-the compiler completes the current
phase of the compilation and then stops and reports the errors
encountered. The compiler attempts to find as many real errors in the
source program as possible during each phase (preprocessing, parsing,
optimizing, and code-generating).

Errors generated by the linker don't cause the linker to delete the .EXE or
.MAP files. However, you shouldn't execute any .EXE file that was lirlked
with errors. Linker errors are treated like fatal errors if you're compiling
from the Integrated Development Environment (IDE).

The MAKE utility generates errors when there is a syntax or semantic error
in the source makefile. You must edit the makefile to fix these types of
errors.

Run-time errors are usually caused by logic errors in your program code. If
you receive a run-time error, you must fix the error in your source code and
recompile the program for the fix to take effect.

Warnings can be issued by the compiler, the linker, and the librarian.
Warnings do not prevent the compilation from finishing. However, they do
indicate conditions that are suspicious, even if the condition that caused the
warning is legitimate within the language. The compiler also produces
warnings if you use machine-dependent constructs in your source files.

Help compiler messages

338

The Help compiler displays messages when it encounters errors or
warnings while building the Help resource file. Messages generated during
the processing of the project file begin with the letter P and are followed by
an error number. Messages that occur during the processing of the RTF
topicfile(s) begin with the letter R and are followed by an error number.

Whenever possible, the Help compiler displays the topic number and/or
the file name that contains the error. If you've numbered your topics, the
topic number is given with an error message that refers to that topic's
sequential position in your RTF file (first, second, and so on). These

Borland C++ Users Guide

numbers might be identical to the page number shown by your word
processor. In your Help source files, topics are separated by hard page
breaks even though there are no "pages" in the Help system.

Messages beginning with the. word "Error" are fatal errors. Errors are
always reported, and no usable Help resource file will result from the
build. Messages beginning with the word "Waming" are less serious in
nature. A build with warnings produces a valid Help resource file that
loads under Windows, but the file might contain operational errors.

Message listings

Messages are written with the message class first, followed by the source
file name and line number where the error was detected, and finally with
the text of the message itself.

Some messages include a symbol (such as a variable, file name, or module)
that is taken from your program. Symbols in the message explanations are
shown in italics to indicate that they're variable in nature.

Be aware that the compiler generates messages as they are detected.
Because C and C++ don't force any restrictions on placing statements on a
line of text, the true cause of the error might be one or more lines before or .
after the line number mentioned inthe error message.

Message explanations

")' miSSing in macro invocation MAKE error
A left parenthesis is required to invoke a macro.

(expected Compiler error
A left parenthesis was expected before a parameter list.

) expected Compiler error
. A right parenthesis was expected at the end of a parameter list.

, expected Compiler error
A comma was expected in a list of declarations, initializations, or parameters.

: expected after private/protected/public Compiler error
When used to begin a private/protected/public section of a C++ class, these reserved words must be followed by a colon.

< expected Compiler error
The keyword template was not followed by a left angle bracket (<). Every template declaration must include the template
formal parameters enclosed within angle brackets (< >), immediately following the template keyword.

Appendix A, Error messages 339

> expected Compiler error
A new-style cast (for example, dynamic_cast) is missing a closing ">".

@ seen, expected a response-files name Librarian error
The response file is not given immediately after @.

{ expected Compiler error
A left brace ({) was expected at the start of a block or initialization.

} expected Compiler error
A right brace (}) was expected at the end of a block or initialization.

16-bit segments not supported in module module Linker error
16-bit segments aren't supported in 32-bit applications. Check to make sure that you haven't inadvertently compiled your 32-
bit application using the 16-bit compiler.

286/287 instructions not enabled Compiler error
Use the -2 command-line compiler option or the 80286 options from the OptionslCompilerlCode GenerationlAdvanced Code
Generation dialog box to enable 286/287 opcodes. The resulting code cannot be run on 8086- and 8088-based machines.

32·bit record encountered Linker error
An object file that contains 80386 32-bit records was encountered, and the 13 option had not been used.

Abnormal program termination Run-time error
The program called abort because there wasn't enough memory to execute. This can happen as a result of memory
overwrites.

Access can only be changed to public or protected Compiler error
A C++ derived class can modify the access rights of a base class member, but only to public or protected. A base class
m.ember cannot be made private.

Added file filename does not begin correctly, ignored Librarian warning
The librarian has decided that the file being added is not an object module, so it will not try to add it to the library. The library
is created anyway.

Address of overloaded function function doesn't match type Compiler error
A variable or parameter is assigned/initialized with the address of an overloaded function, and the type of the
variable/parameter doesn't match any of the overloaded functions with the specified name.

module already in LIB, not changed! Librarian warning
An attempt to use the + action on the library has been made, but there is already an object with the same name in the library.
If an update of the module is desired, the action should be +-. The library has not been modified.

Ambiguity between function1 and function2 Compiler error
Both of the named overloaded functions could be used with the supplied parameters. This ambiguity is not allowed.

Ambiguous member name name Compiler error
A structure member name used in inline assembly must be unique. If it is defined in more than one structure all of the
definitions must agree in type and offset within the structures. The member name in this case is ambiguous. Use the syntax
(struct xxx) .yyyinstead.

Ambiguous Override of Virtual Base Member func1: func2 Compiler error
A virtual function in a virtual base class was overridden with two or more different functions along different paths in the
inheritance hierarchy.

340 Borland C++ UserS Guide

Ambiguous operators need parentheses Compiler warning
This warning is displayed whenever two shift, relational, or bitwise-Boolean operators are used together without parentheses.
Also, an addition or subtraction operator that appears unparenthesized with a shift operator will produce this warning.
Programmers frequently confuse the precedence of these operators.

Ambiguous override of virtual base member base_function: derived_function Compiler error
This error message is issued when a virtual function that is defined in a virtual base class is overridden with different
functions having two derived classes in the same inheritance hierarchy. For example,

struct VB
{

virtual f()i
} i

struct A:virtual VB
{

virtual f()i
}i

struct B:virtual VB
virtual f()i

}i

struct D:A,B
{

} //errors here

The above code will be flagged with the following errors:

Error: Ambiguous override of virtual base member VB: :f() :A::f()
Error: Ambiguous override' 'of virtual base member VB:: f () : B: : f ()

Application load & execute error 0001
Application load & execute error FFEO

There was insufficient extended memory available for the protected-mode command-line tool to load.

Compiler error
Compiler error

Array allocated using new may not have an initializer Compiler error
When initializing a vector (array) of classes, you must use the default constructor (the constructor that has no arguments).

Array bounds missing] Compiler error
Your source file declared an array in which the array bounds were not terminated by a right bracket.

Array must have at least one element Compiler error
ANSI C and C++ require that an array be defined to have at least one element (objects of zero size are not allowed). An old
programming trick declares an array element of a structure to have zero size, then allocates the space actually needed with
mal/oc. You can still use this trick, but you must declare the array element to have (at least) one element if you are compiling
in strict ANSI mode. Declarations (as opposed to definitions) of arrays of unknown size are still allowed.

For example,

char ray[] i

char ray[O] i

extern char raY[]i

Appendix A, Error messages

/* definition of unknown size -- illegal */
/* definition of 0 size -- illegal */
/* declaration of unknown size -- ok */

341

Array of references is not allowed Compiler error
It is illegal to have an array of references because pointers to references are not allowed and array names are coerced into
pointers.

Array size for 'delete' ignored Compiler warning

\

With the latest specification of C++, it is no longer necessary to specify the array size when deleting an array; to allow older
code to compile, Borland C++ ignores this construct and issues this warning.

Array size too large Compiler error
The declared array is larger than 64K.

Array variable identifier is near Compiler warning
Whenever you use either the -Ff or -Fm command-line options to set threshold limit, global variables larger than the
threshold size are automatically made far by the compiler. However, when the variable is an initialized array with an
unspecified size, its total size is not known when the decision whether to make it near or far has to be made by the compiler,
and so it is made near. If the number of initializers given for the array causes the total variable size to exceed the data size
threshold, the compiler issues this warning. If problems are caused by having the variable made near (for example, if the
linker reports a group overflow due to too much global data), you must make the offending variable explicitly far by inserting
the keyword far immediately to the left of the variable name in its definition.

Assembler statement too long Compiler error
Inline assembly statements cannot be longer than 480 bytes.

Assigning type to enumeration Compiler warning
Assigning an integer value to an enum type. This is an error in C++, but is reduced to a warning to give existing programs a
chance to work.

Assignment to this not allowed, use X: :operator new instead Compiler error
In early versions of C++, the only way to control allocation of a class of objects was to use the this parameter inside a
constructor. This practice is no longer allowed because a better, safer, and more general technique is to instead define a
member function operator new.

Attempt to export non-public symbol symbol Linker error
This error usually occurs when a .DEF file specifies an EXPORT for a symbol that you either forgot to define or misspelled.

Attempt to grant or reduce access to identifier Compiler error
A C++ derived class can modify the access rights of a base class member, but only by restoring it to the rights in the base

. class. It cannot add or reduce access rights.

Attempting to return a reference to a local object Compiler error
In a function returning a reference type, you attempted to return a reference to a temporary object (perhaps the result of a
constructor or a function call). Because this object will disappear when the function returns, the reference will then be illegal.

Attempting to return a reference to local variable identifier Compiler error
This C++ function returns a reference type, and you are trying to return a reference to a local (auto) variable. This is illegal
because the variable referred to disappears when the function exits. You can return a reference to any static or global
variable, or you can change the function to return a value instead.

Bad call of intrinsic function Compiler error
You have used an intrinsic function without supplying a prototype, or you supplied a prototype for an intrinsic function that
was not what the compiler expected.

342 Borland C++ Users Guide

Bad character in parameters -> char Linker error
One of the following characters (or any control character other than horizontal tab, linefeed, carriage return, or Ctrl+Z) was
encountered in the command line or in a response file:

"*<=>?[]I

Bad define directive syntax Compiler error
A macro definition starts or ends with the ## operator, or contains the # operator that is not followed by a macro argument
name.

Bad field list in debug information in module module Linker error
This is typically caused by bad debug information in the OBJ file. Borland Technical Support should be informed.

Bad file name filename Linker error
An invalid file name was passed to the linker.

Bad file name format in include directive Compiler error
Include file names must be surrounded by quotes ("FILENAME.H") or angle brackets «FILENAME.H». The file name was
missing the opening quote or angle bracket. If a macro was used, the resulting expansion text is incorrect; that is, it is not
surrounded by < > or" ".

Bad filename format in include statement MAKE error
Include file names must be surrounded by quotes or angle brackets. The file name was missing the opening quote or angle
bracket.

Bad file name format in line directive Compiler error
Line directive file names mustbe surrounded by quotes ("FILENAME.H") or angle brackets «FILENAME.H». The file name
was missing the opening quote or angle bracket. If a macro was used, the resulting expansion text is incorrect; that is, it is
not surrounded by quote marks.

Bad GCD type in GRPDEF, e)(tended dictionary aborted Librarian warning
Bad GRPDEF type encountered, extended dictionary aborted Librarian warning

The librarian has encountered an invalid entry in a group definition (GRPDEF) record in an object module while creating an
extended dictionary. The only type of GRPDEF record that the librarian (and linker) supports is segment index type. If any
other type of GRPDEF is encountered, the librarian won't be able to create an extended dictionary. Its possible that an object
module created by products other than Borland tools can create GRPDEF records of other types. It's also possible for a
corrupt object module to generate this warning.

Bad header in input LIB Librarian error
When adding object modules to an existing library, the librarian has determined that it has a bad library header. Rebuild the
library.

Bad ifdef directive syntax Compiler error
An #ifdef directive must contain a single identifier (and nothing else) as the body of the directive.

Bad LF _POINTER in module module Linker error
This is typically caused by bad debug information in the OBJ file. Borland Technical Support should be informed.

Bad macro output translator MAKE error
Invalid syntax for substitution within macros.

Bad object file filename near file offset offset Linker error
The linker has found a bad OBJ file. This is usually caused by a translator error.

Appendix A, Error messages 343

Bad object file record Linker error
Bad object file file near file offset offset Linker error

An ill-formed object file was encountered. This is most commonly caused by naming a source file or by naming an object file
that was not completely built. This can occur if the machine was rebooted during a compile, or if a compiler did not delete its
output object file when a Ctrl+Breakwas pressed.

Bad OMF record type type encountered in module module Librarian error
The librarian encountered a bad Object Module Format (OMF) record while reading through the object module. The librarian
has already read and verified the header records on the module, so this usually indicates that the object module has become
corrupt in some way and should be re-created.

Bad syntax for pure function definition Compiler error
Pure virtual functions are specified by appending U= 0" to the declaration. You wrote something similar, but not quite the
same.

Bad undef directive syntax Compiler error
An #undef directive must contain a single identifier (and nothing else) as the body of the directive.

Bad undef statement syntax MAKE error
An !undef statement must contain a single iqentifier and nothing else as the body of the statement.

Bad version number in parameter block Linker error
This error indicates an internal inconsistency in the IDE. If it occurs, exit and restart the IDE. This error does not occur in the
standalone version.

Base class class contains dynamically dispatchable func,tions Compiler error
Currently, dynamically dispatched virtual tables do not support the use of multiple inheritance. This error occurs because a
class that contains DDVT functions attempted to inherit DDVT functions from multiple parent classes.

Base class class is inaccessible because also in class Compiler warning
It is not legal to use a class as both a direct and indirect base class because the members are automatically ambiguous. Try
making the base class virtual in both locations.

Base class class is included more than once Compiler error
A C++ class can be derived from any number of base classes, but can be directly derived from a given class only once.

Base class class is initialized more than once Compiler error
In a C++ class constructor, the list of initializations following the constructor header includes base class class more than
once.

Base initialization without a class name is now obsolete Compiler error
Early versions of C++ provided for initialization of a base class by following the constructor header with just the base class
constructor parameter list. It is now recommended that you include the base class name: this makes the code much clearer,
and is required when there are multiple base classes.

Old way:

derived: :derived(int i) (i, 10) { ... }

New way:

derived::derived(inti) : base(i, 10) { ... }

Bit field cannot be static Compiler error
Only ordinary C++ class data members can be declared static, not bit fields.

344 Borland C++ Users Guide

Bit field too large Compiler error
This error .occurs when you supply a bit field with more than 32 bits.

Bit fields must be signed or unsigned int Compiler error
In ANSI C, bit fields can only be signed or unsigned int (not char or long, for example).

Bit fields must be signed or unsigned int Compiler warning
In ANSI C, bit fields cannot be of type signed char or unsigned char. When not compiling in strict ANSI mode, the compiler
allows such constructs, but flags them with this warning.

Bit fields must contain at least one bit Compiler error
You cannot declare a named bit field to have 0 (or less than 0) bits. You can declare an unnamed bit field to have 0 bits, a
convention used to force alignment of the following bit field to a byte boundary (or word boundary, if you select Word
Alignment). In C++, bit fields must have an integral type; this includes enumerations.

Bit fields must have integral type Compiler error
In C++, bit fields must have an integral type; this includes enumerations.

Body has already been defined for function function Compiler error
A function with this name and type was previously supplied a function body. A function body can be supplied only once.

I

Both return and return with a value used Compiler warning
The current function has return statements with and without values. This is legal in C, but is almost always an error. Possibly
a return statement was omitted from the end of the function.

Call of nonfunction Compiler error
The name being called is not declared as a function. This is commonly caused by incorrectly declaring the function or by
misspelling the function name.

Call to function function with no prototype _ Compiler warning
The "Prototypes required" warning was enabled and you called function function without first giving a prototype for it.

Call to undefined function function Compiler error
Your source file declared the current function to return some type other than void in C++ (or int in C), but the compiler
encountered a return with no value. This is usually some sort of error. int functions are exempt in C because in old versions
of C there was no void type to indicate functions that return nothing.

virtual can only be used with member functions
A data member has been declared with the virtual specifier. Only member functions can be declared virtual.

Cannot access an inactive scope Compiler error
You have tried to evaluate or inspect a variable local to a function that is currently not active. (This is an integrated debugger
expression evaluation message.)

Cannot add or subtract relocatablE! symbols Compiler error
The only arithmetic operation that can be performed on a relocatable symbol in an assembler operand is addition or
subtraction of a constant. Variables, procedures, functions, and labels are relocatable symbols. Assuming that Var is a
variable and Const is a constant, then the instructions

MOV AX,Const+Const

and

MOV AX,Var+Const

are valid, but MOV AX, VartVar is not.

Appendix A, Error messages 345

Cannot allocate a reference Compiler error ,
An attempt to create a reference using the new operator has been made; this is illegal because references are not objects
and cannot be created through new.

identifier cannot be declared in an anonymous union \ Compiler error
The compiler found a declaration for a member function or static member in an anonymous union. Such unions can contain
data members only.

function1 cannot be distinguished from function2 Compiler error
The parameter type lists in the declarations of these two functions do not differ enough to tell them apart. Try changing the
order of parameters or the type of a parameter in one declaration.

Cannot call main from within the program Compiler error
C++ does not allow recursive calls of the function main.

Cannot call near class member function with a pointer of type type Compiler error
Member functions of near classes (classes are near by default in the tiny, small, and medium memory models) cannot be
called using far or huge member pointers. (Note that this also applies to calls using pointers to members.) Either change the
pointer to be near, or declare the class as far.

Cannot cast from type1 to type2 Compiler error
A cast from type type 1 to type type2 is not allowed. In C, a pointer can be cast to an integral type or to another pointer. An
integral type can be cast to any integral, floating, or pointer type. A floating type can be cast to an integral or floating type.
Structures and arrays cannot be cast to or from. You cannot cast from a void type.

C++ checks for user-defined conversions and constructors, and if one cannot be found, then the preceding rules apply
(except for pointers to class members). Among integral types, only a constant zero can be cast to a member pointer. A
member pointer can be cast to an integral type or to a similar member pointer. A similar member pointer points to a data
member if the original does, or to a function member if the original does; the qualifying class of the type being cast to must be
the same as or a base class of the original.

Cannot convert type1 to type2 Compiler error
An assignment, initialization, or expression requires the specified type conversion to be performed, but the conversion is not
legal.

Cannot create instance of abstract class class Compiler error
Abstract classes-those with pure virtual functions-cannot be used directly, only derived from.

Cannot define a pointer or reference to a reference Compiler error
It is illegal to have a pointer to a reference or a reference to a reference.

Cannot find class::class(class &) to copy a vector Compiler error
When a C++ class class1 contains a vector (array) of class class2, and you want to construct an object of type class 1 from
another object of type class1, there must be a constructor class2: : class2 (class2&) so that the elements of the vector
can be constructed. This constructor, called a copy constructor, takes just one parameter (a reference to its class).

Usually the compiler supplies a copy constructor automatically. However, if you have defined a constructor for class class2
that has a parameter of type class2& and has additional parameters with default values, the copy constructor cannot be
created by the compiler. (This is because class2: : class2 (class2&) and class2: : class2 (class2& lint = 1)
cannot be distinguished.) You must redefine this constructor so that not all parameters have default values. You can then
define a copy constructor or let the compiler create one.

346 Borland C++ Users Guide

Cannot find class::operator=(class&) to copy a vector Compiler error
When a C++ class class 1 contains a vector (array) of class class2, and you want to copy a class of type class1, there must
be an assignment operator class2: : operator= (class2&) so that the elements of the vector can be copied. Usually the
compiler supplies such an operator automatically. However, if you have defined an operator= for class c/ass2, but not one
that takes a parameter of type class2&, the compiler will not supply it automatically-you must suppl~ one.

Cannot find default constructor to initialize array element of type class Compiler error
When declaring an array of a class that has constructors, you must either explicitly initialize every element of the array, or the
class must have a default constructor (it will be used to initialize the array elements that don't have explicit initializers). The
compiler will define a default constructor for a class unless you have defined any constructors for the class.

I

Cannot find default constructor to initialize base class class Compiler error
Whenever a C++ derived class class2 is constructed, each base class class1 must first be constructed. If the constructor for
class2 does not specify a constructor for class1 (as part of c1ass2s header), there must be a constructor
classl: : classl () for the base class. This constructor without parameters is called the default constructor. The compiler
will supply a default constructor automatically unless you have defined any constructor for class c1ass1; in that case, the
compiler will not supply the default constructor automatically-you must supply one.

Cannot find default constructor to initialize member identifier Compiler error
When a C++ class class1 contains a member of class class2, and you want to construct an object of type class1 but not from
another object of type class1, there must be a constructor class2 : : class2 () so that the member can be constructed.
This constructor without parameters is called the default constructor. The compiler supplies a default constructor
automatically unless you've defined a constructor for class c1ass2. If you have, the compiler won't supply the default
constructor automatically-you must supply one.

Cannot find MAKE.EXE MAKE error
The MAKE command-line tool cannot be found. Be sure that MAKE.EXE is in either the current directory or in a directory
contained in your directory path,

Cannot generate COM file: data below initial CS:IP defined Linker error
This error results from trying to generate data or code below the starting address (usually 100) of a .GOM file. Be sure that
the starting address is set to 100 by using the (ORG 100H) instruction. This error message should not occur for programs
written in a high-level language. If it does, ensure that the correct startup (COx) object module is being linked in.

Cannot generate COM file: invalid initial entry point address Linker error
You used the fTdc or It option, but the program starting address is not equal to 100H, which is required with .COM files.

Cannot generate COM file: program exceeds 64K Linker error
You used the fTdc or It option, but the total program size exceeds the .COM file limit.

Cannot generate COM file: segment-relocatable items present Linker error
You used the fTdc or It option, but the program contains segment-relative fixups, which are not allowed with .COM files.

Cannot generate COM file: stack segment present Linker error
You used the fTdc or It option, but the program declares a stack segment, which is not allowed with .COM files.

Cannot generate function from template function template Compiler error
A call to a template function was found, but a matching template function cannot be generated from the function template.

Cannot have a non-in line function in a local class Compiler error
Cannot have a static data member in a local class Compiler error

All members of classes declared local to a function must be entirely defined in the class definition. This means that such local
classes cannot contain any static data members, and all of their member functions must have bodies defined within the class
definition.

Appendix A, Error messages 347

Cannot have multiple paths for implicit rule MAKE error'
You can have only one path for each of the extensions in an implicit rule; for example, {path} . c. obj. Multiple path lists
are allowed only for dependents in an explicit rule.

Cannot have path list for target
You can only specify a path list for dependents of an explicit rule. For example:

{pathlipath2}prog.exe: prog.obj
pfog. exe: {pathl i: ath2 }prog. obj

Invalid
Valid

MAKE error

Cannot initialize a class member here Compiler error
Individual members of structs, unions, and C++ classes cannot have initializers. A struct or union can be initialized as a
whole using initializers inside braces. A C++ class can be initialized only by the use of a constructor.

Cannot initialize type1 with type2 Compiler error
You are attempting to initialize an object of type type 1 with a value of type type2, which is not allowed. The rules for
initialization are essentially the same as for assignment.

Cannot modify a const object Compiler error
This indicates an illegal operation on an object declared to be const, such as an assignment to the object.

Cannot overload 'main' Compiler error
main is the only function that cannot be overloaded.

function cannot return a value Compiler error
A function with a return type void contains a return statement that returns a value; for example, an int.

identifier cannot start a parameter declaration Compiler error
An undefined 'identifier' was found at the start of an argument in a function declarator. This error usually occurs because the
wrong header file was used. If that isn't the cause, check to see if the type name is misspelled or if the type declaration is
missing. '

identifier cannot start an argument declaration Compiler error
Undefined identifierfound at the start of an argument in a function declarator. This error usually occurs because the wrong
header file was used. If that isn't the cause, check to see if the type name is misspelled or if the type declaration is missing.

Cannot take address of main Compiler error
In C++ it is illegal to take the address of the main function.

Cannot throw type - ambiguous base class base Compiler error
It is not legal to throw a class that contains more than one copy of a (nonvirtual) base class.

Cannot write a string option MAKE error
the -W MAKE option writes a character option to MAKE.EXE. If there's any string option (for example, -Dxxxx="Myjoo" or
-Uxxxxx), this error message is generated.

Cannot write GRPDEF list, extended dictionary aborted Librarian error
The librarian cannot write the extended dictionary to the tail end of the library file~ This usually indicates lack of space on the
disk.

Can't grow LEiLlDATA record buffer Librarian error
Command-line error. See the out of memory reading LEiLlDATA record from object module message.

Case bypasses initialization of a local variable Compiler error
In C++ it is illegal to bypass the initialization of a local variable in any way. In this instance, there is a case label that can
transfer control past this local variable.

348 Borland C++ Users Guide

Case outside of switch Compiler error
The compiler encountered a case statement outside a switch statement. This is often caused by mismatched braces.

Case statement missing: Compiler error
A case statement must have a constant expression followed by a colon. The expression in the case statement either is
missing a colon or has an extra symbol before the colon.

catch expected Compiler error
In a C++ program, a try block must be ,followed by at least one catch block.

Character constant must be one or two characters long
Character constants can be only one or two characters long.

Character constant too long
A char constant in an expression is too long.

Compiler error

MAKE error

Circular dependency exists in makefile MAKE error
The makefile indicates that a file needs to be up-to-date before it can be built. Take, for example, the explicit rules:

filea: fileb
fileb: filee
filee: filea

I

This implies that filea depends on fileb, which depends on filec, and filec depends on filea. This is illegal because a file
cannot depend on itself, indirectly or directly.

Class class may not contain pure functions Compiler error
The class being declared cannot be abstract; it therefore cannot contain any pure functions.

Class member member declared outside its class Compiler error
C++ class member functions can be declared inside the class declaration only. Unlike nonmember functions, they cannot be
declared multiple times or at other locations.

Code has no effect
The compiler encountered a statement with operators that have no effect. For example, the statement

a + b;

has no effect on either variable. The operation is unnecessary and probably indicates a bug in your file.

Colon expected
Your implicit rule is missing a colon at the end .

. c.obj:

.c.Qbj
Correct
Incorrect

Command arguments too long
The arguments to a command were more than the 511-character limit imposed by DOS.

Command syntax error
This message occurs if

• The first rule line of the makefile contained any leading whitespace.

• An implicit rule did not consist of .ext.ext:.

• An explicit rule did not contain a name before the : character.

• A macro definition did not contain a name before the = character.

Appendix A, Error messages

Compiler warning

MAKE error

MAKE error

MAKE error

349

Command too long MAKE error
The length of a command has exceeded 512 characters. You might want to use a response file.

Common segment exceeds 64K Linker error
The program had more than 64K of near uninitialized data. Try declaring some un initialized data as far.

Compiler could not generate copy constructor for class class Compiler error
The compiler cannot generate a needed copy constructor due to language rules.

Compiler could not generate default constructor for class class Compiler error
The compiler cannot generate a needed default constructor due to language rules.

Compiler could not generate operator= for class class Compiler error
The compiler cannot generate a needed assignment operator due to language rules.

Compiler table limit exceeded Compiler error
One of the compilers internal tables overflowed. This usually means that the module being compiled contains too many
function bodies. Making more memory available to the compiler will not help with such a limitation; simplifying the file being
compiled is usually the only remedy.

Compound statement missing} Compiler error
The compiler reached the end of the source file and found no closing brace. This is often caused by mismatched braces.

Condition is always false
Condition is always true

The compiler encountered a comparison of values where the result is always true or false. For example:

void proc(unsigned x)
if (x >= 0) { 1* always ,'true' *1
}

Compiler warning
Compiler warning

Conflicting type modifiers Compiler error
This occurs when a declaration is given that includes, for example, both near and far keywords on the same pointer. Only
one addressing modifier can be given for a single pointer, and only one language modifier (cdecl, pascal, or interrupt) can
be given for a function.

symbol conflicts with module module Linker warning
This indicates an inconsistency in the definition of symbol; TLINK found one virtual function and one common definition with
the same name. .

Constant expression required Compiler error
Arrays must be declared with constant size. This error is commonly caused by misspelling a #define constant.

Constant is long Compiler warning
The compiler encountered either a decimal constant greater than 32767 or an octal (or hexadecimal) constant greater than
65535 without a letter lor L following it. The constant is treated as a long.

Constant member member in class without constructors Compiler error
A class that contains constant members must have at least one user-defined constructor; otherwise, there would be no way
to initialize such members. '

Constant member member is not initialized Compiler warning
This C++ class contains a constant member member, which does not have an initialization. Constant members can only be
initialized; they cannot be assigned to.

350 Borland C++ User's Guide

Constant out of range in comparison Compiler warning
Your source file includes a comparison involving a constant subexpression that was outside the range allowed by the other
subexpressions type. For example, comparing an unsigned quantity to -1 makes no sense. To get an unsigned constant
greater than 32767 (in decimal), you should either cast the constant to unsigned or append a letter u or U to the constant.

When this message is issued, the compiler still generates code to do the comparison. If this code ends up always giving the
same result, such as comparing a char expression to 4000, the code still performs the test.

Constant variable variable must be initialized Compiler error
This C++ object is declared const, but is not initialized. Because no value can be assigned to it, it must be initialized at the
point of declaration. .

. Constructor cannot be declared const or volatile Compiler error
A constructor has been declared as const andbr volatile, and this is not allowed.

Constructor cannot have a return type specification Compiler error
C++ constructors have an implicit return type used by the compiler, but you cannot declare a return type or return a value.

Conversion may lose significant digits Compiler warning
For an assignment operator or some other circumstance, your source file requires a conversion from long or unsigned long
to int, or unsigned int type. Because int type and long type variables don't have the same size, this kind of conversion can
alter the behavior of a program.

Conversion of near pointer not allowed Compiler error
A near pointer cannot be converted to a far pOinter in the expression evaluation box when a program is not currently running.
This is because the conversion needs the current value of OS in the user program, which doesn't exist.

Conversion operator cannot have a return type speCification Compiler error
This C++ type conversion member function specifies a return type different from the type itself. A declaration for conversion
function operator cannot specify any return type.

Conversion to type will fail for members of virtual base class Compiler error
This warning can occur when a member pointer (whose class contains virtual bases) is cast to another member-pointer type
and you use the -Vv option. This error indicates that if the member pointer being cast happens to point (at the time of the
cast) to a member of class, the conversion cannot be completed, and the result of the cast will be a NULL member pointer.

Could not allocate memory for per module data Librarian error
The librarian has run out of memory.

Could not create list file filename Librarian error
The librarian could not create a list file for the library. This could be due to lack of disk space.

Could not find a match for argument(s) Compiler error
No C++ function ~ould be found with param~ters matching the supplied arguments.

Could not find file filename ' Compiler error
The compiler is unable to find the file supplied on the command line.

Could not get procedure address from DLL filename Linker error
The linker was not able to get a procedure from the specified OLL. Check to make sure that you have the correct OLL
version.

Could no~ load DLL filename Linker error
The linker was not able to load the specified OLL. Check to make sure the OLL is on your path.·

Appendix A, Error messages 351

Could not write output Librarian error
The librarian could not write the output file.

Couldn't alloc memory for per module data Librarian error
The librarian has run out of memory.

filename couldn't be created, original won't be changed Librarian warning
An attempt has been made to extract an object ('*' action) but the librarian cannot create the object file to extract the module
into. Either the object already exists and is read only, or the disk is full.

Couldn't get LElLIDATA record buffer Librarian error
Command-line error. See the Out of memory reading LElLIDATA record from object module message.

Couldn't get procedure address from dll d/l Linker error
The linker wasn't able to get a procedure from the specified DLL. Check to make sure you have the correct version of the
DLL.

Couldn't load dll dll ' Linker error
The linker wasn't able to load the specified DLL. Check to make sure the DLL is on your path.

Cycle in include files: filename MAKE error
This error message is issued if ~ makefile includes itself in the make script.

Debug info switch ignored for .COM files Linker warning
Borland C++ does not include debug information for .COM files.

Deb~g information enabled, but no debug information found in OBJs Linker warning
No part of the application was compiled with debug information, but you requested that debug information be turned on in the
link. .

Debug information in module module will be ignored Linker warning
Object files compiled with debug information now have a version record. The major version of this record is higher than what
TLINK currently supports and TLINK did not generate debug information for the module in question.

. Debugging information overflow; try fewer modules with debug info Linker error
Too many modules containing debugging information are included in the link. Recompile your program with fewer modules
marked for debug information.

Declaration does not specify a tag or an identifier Compiler error
This declaration doesn't declare anything. This might be a struct or union without a tag or a variable in the declaration. C++
requires that something be declared.

Declaration is not allowed here Compiler error
Declarations cannot be used as the control statement for while, for, do, if, or switch statements.

Declaration missing; Compiler error
Your source file contained a declaration that was not followed by a semicolon.

Declaration syntax error Compiler error
Your source file contained a declaration that was missing some symbol or had some extra symbol added to it.

Declaration terminated incorrectly Compiler error
A declaration has an extra or incorrect termination symbol, such as a semicolon placed after a function body. A C++ member
function declared in a class ~ith a semicolon between the header and the opening left brace also generates this error.

352 Borland C++ Users Guide

Declaration was expected Compiler error
A declaration was expected here but not found. This is usually caused by a missing delimiter such as a comma, semicolon,
right parenthesis, or right brace.

Declare operator delete (void*) or (void*, size_t) Compiler error
Declare the operator delete with a single void* parameter or with a second parameter of type SiZEU. If you use the second
version, it will be used in preference to the first version. The global operator delete can be declared using the single
parameter form only.

Declare operator delete[] (void*) or (void*, size_t) Compiler error
Declare the operator delete with one of the following:

• A single void* parameter

• A second parameter of type size_t

If you use the second version, it will be used in preference to the first version. The global operator delete can be declared
using the single-parameter form only.

Declare type type prior to use in prototype Compiler warning
When a function prototype refers to a structure type that has not previously been declared, the declaration inside the
prototype is not the same as a declaration outside the prototype. For example,

int func(struct s *ps) i

struct s { /* ... */ }i

Because there is no struct s in scope at the prototype for func, the type of parameter ps is a pointer to undefined struct s,
and is not the same as the struct s that is later declared. This results in warning and error messages about incompatible
types, which would be mysterious without this warning message. To fix the problem, you can move the declaration for struct
s ahead of any prototype that references it, or add the incomplete type declaration struct s i ahead of any prototype that
references struct s. If the function parameter is a struct, rather than a pointer to struct, the incomplete declaration is not
sufficient; you must then place the struct declaration ahead of the prototype.

Default argument value redeclared Compiler error
When a parameter of a C++ function is declared to have a default value, this value can't be changed, redeclared, or omitted
in any other declaration for the same function.

Default argument value redeclared for parameter parameter Compiler error
When a parameter of a C++ function is declared to have a default value, this value cannot be changed, redeclared, or
omitted in any other declaration for the same function.

Default expression may not use local variables Compiler error
A default argument expression is not allowed to use any local variables or other parameters.

Default outside of switch Compiler error
The compiler encountered a default statement outside a switch statement. This is most commonly caused by mismatched
braces.

Default value missing Compiler error
When a C++ function declares a parameter with a default value, all of the following parameters must also have default
values. In this declaration, a parameter with a default value was followed by a parameter without a default value.

Default value missing following parameter parameter Compiler error
All parameters following the first parameter with a default value must also have defaults specified.

Appendix A, Error messages 353

Define directive needs an identifier Compiler error
The first non-whitespace character after a #define must be an identifier. The compiler found some other character.

symbol defined in module module is duplicated Linker error
There is a conflict between two symbols (either public or communal). This usually means that a symbol is defined in two
modules. An error occurs if both are encountered in the .OBJ file(s), because TLINK doesn't know which is valid. A warning
results if TLINK finds one of the duplicated symbols in a library and finds the other in an .OBJ file; in this case, TLINK uses
the one in the .OBJ file.

Delete array size missing]
The array specifier in an operator is missing a right bracket.

Destructor cannot be declared const or volatile
A destructor has been declared as const andtbr volatile, and this is not allowed.

Destructor cannot have a return type specification
It is illegal to specify the return type for a destructor.

Compiler error

Compiler error

Compiler error

Destructor for class is not accessible Compiler error
The destructor for this C++ class is protected or private, and cannot be accessed here to destroy the class. If a class
destructor is private, the class cannot be destroyed, and thus can never be used. This is probably an error. A protected
destructor can be accessed only from derived classes. This is a useful way to ensure that no instance of a base class is ever
created, but only classes derived from it.

Destructor for class required in conditional expression Compiler error
If the compiler must create a temporary local variable in a conditional expression, it has no good place to call the destructor,
because the variable might or might not have been initialized. The temporary variable can be explicitly created, as with
classname (val, val), or implicitly created by some other code. Recast your code to eliminate this temporary value.

Destructor name must match the class name Compiler error
In a C++ class, the tilde (-) introduces a declaration for the class destructor. The name of the destructor must be the same as
the class name. In your source file, the tilde (-) preceded some other name.

Divide error Run-time error
Youve tried to divide an integer by zero. You can trap this error with the signal function. Otherwise, Borland C++ calls abort
and your pr9gram terminates.

Division by zero Compiler error
Your source file contained a division or remainder operator in a constant expression with a zero divisor.

Division by zero Compiler warning
A division or remainder operator expression had a literal zero as a divisor.

Division by zero MAKE error
A division or remainder operator in an !if statement has a zero divisor.

do statement must have while Compiler error
Your source file contained a do statement that was missing the closing while keyword.

filename does not exist - don't know how to make it MAKE error
There is a nonexistent file name in the build sequence, and no rule "exists that would allow the file name to be built.

354 Borland C++ User's Guide

DOS error, ax = number Linker error
This error occurs if a DOS call returned an unexpected error. The ax value printed is the resulting error code. This could
indicate a TUNK internal error or a DOS error. The only DOS calls TUNK makes in which this error could occur are read,
write, seek, and close.

do-while statement missing (Compiler error
In a do statement, the compiler found no left parenthesis after the while keyword.

do-while statement missing) Compiler error
In a do statement, the compiler found no right parenthesis after the test expression.

do-while statement missing; Compiler error
In a do statement test expression, the compiler found no semicolon after the right parenthesis.

Duplicate case Compiler error
Each case of a switch statement must have a unique constant expression value.

Duplicate Handler for type1, already had type2 Compiler error
Its illegal to specify two handlers for the same type.

Duplicate ordinal for exports: string (ordval1) and string (ordval2) Linker error
Two exports have been found for the same symbol, but with differing.ordinal values. You must use the same ordinal value or
remove one of the exports.

Empty LEDATA record in module module Linker warning
This warning can happen if the translator emits a data record containing data. If this should happen, report the occurrence to
the translator vendor; there should be no bad side effects from the record.

Enum syntax error Compiler error
An enum declaration did not contain a properly formed list of identifiers.

Error changing file buffer size Librarian error
The librarian is attempting to adjust the size of a buffer used while reading or writing a file, but there is not enough memory. It
is likely that quite a bit of system memory will have to be freed up to resolve this error.

Error directive: message Compiler error
The text of the #error directive being processed in the source file is displayed.

Error directive: message MAKE error
MAKE has processed an #error directive in the source file, and the text of the directive is displayed in the message.

Error opening filename Librarian error
librarian cannot open the specified file,for some reason.

Error opening filename for output Librarian error
librarian cannot open the specified file for output. This is usually due to lack of disk space for the target library, or a listing file.
This error occurs when the target file exists but is marked as a read-only file.

Error renaming filename to filename Librarian error
The librarian builds a library into a temporary file and then renames the temporary file to the target library file name. If there is
an error, usually due to lack of disk space, this message is posted.

Error writing output file Compiler error
A DOS error that prevents Borland C++ from writing an .OBJ, .EXE, or temporary file. Check the output directory and make
sure that this is a valid directory. Also check that there is enough free disk space.

Appendix A, Error messages 355

__ except or _ jinal/yexpected following __ try Compiler error
In C, a __ try block must be followed by an _ _ except or __ finally handler block.

Exception handling variable may not be used here Compiler error
An attempt has been made to use one of the exception handling values that are restricted to particular exception handling
constructs, such as GetExceptionCode().

Exception speCification not allowed here Compiler error
Function pointer type declarations are not allowed to contain exception specifications.

Explicit stacks are ignored for PE images Linker warning
Windows 32-bit applic~tions are PE format applications, which do not have explicit stacks. The stack segment will be linked
into the image, but it will not be used as the application stack. Instead, the stack size parameter will be used to set the stack
size, and the operating system will allocate a stack for the application.

Export symbol is duplicated Linker warning
This warning occurs if two different symbols with the same name are exported by the use of _export. The linker cannot
determine which definition it should export, and therefore uses the first symbol.

Expression expected Compiler error
An expression was expected here, but the current symbol cannot begin an expression. This message can occur where the
controlling expression of an if or while clause is expected or where a variable is being initialized. It is often due to an
accidentally inserted or deleted symbol in the source code.

Expression of scalar type expected Compiler error
The not (!), increment (++), and decrement (. -) operators require an expression of scalar type. Only types char, short, int,
long, enum, float, double, long double, and pointer types are allowed.

Expression syntax Compiler error
This is a catchall error message when the compiler parses an expression and encounters a serious error. This is most
commonly caused by two consecutive operators, mismatched or missing parentheses,or a missing semicolon on the
previous statement.

Expression syntax error in !if statement MAKE error
The expression in an !if statement is badly formed-it contains a mismatched parentheSiS, an extra or missing operator, or a
missing or extra constant.

reason - extended dictionary not created Librarian warning
The librarian could not produce the extended dictionary because of the reason given in the warning message.

Extended dictionary not found in library library, extended dictionaries ignored Linker warning

The IE option for TLiNK requires that all libraries in the link have extended dictionaries. When a library without an extended
dictionary is encountered during a link operation in which the IE option is specified, the linker abandons extended dictionary
processing and proceeds to link with a default link.

Extern variable cannot be initialized Compiler error
The storage class extern applied to a variable means that the variable is being declared but not defined here-no storage is
being allocated for it. Therefore, you can't initialize the variable as part of the declaration.

Extern symbol was not qualified with _ jmport in module module Linker warning
Windows 32-bit applications which reference imported symbols need to make indirections to get to the data. For calls, this is
handled automatically by the linker. For references to imported DATA, the compiler must generate an indirection, or the
application will function incorrectly. The compiler knows to generate the indirection when the symbol is qualified with

356 , Borland C++ User's Guide

_ jmport. If the linker sees a segment relative reference to a symbol that is imported, and if the symbol was not qualified with
_ jmport, you will get this message.

Extra argument in template class name template Compiler error
A template class name specified too many actual values for its formal parameters.

Extra parameter in call Compiler error
A call to a function, via a pointer defined with a prototype, had too many arguments given.

Extra parameter in call to function Compiler error
A call to the named function (which was defined with a prototype) had too many arguments given in the call.

Failed to locate DPMI server (DPMI16BI.OVL) Compiler error
Failed to locate protected mode loader (DPMILOAD.EXE) Compiler error

Make sure that DPMI16BI,OVL and DPMILOAD.EXE are somewhere on your path or in the same directory as the protected
mode command-line tool you were attempting to use.

Failed read from filename Linker error
The linker was unable to read from the file.

Failed write to filename Linker error
The Linker was unable to write to the file.

__ far16 may only be used with __ pascal or __ cdecl Compiler error
When you use __ far16 to make calls to functions or reference data in a 16-bit DLL, such functions and data can be modified
only by __ pascal or __ cdecl.}]

File must contain at least one external declaration Compiler error
This compilation unit was logically empty, containing no external declarations. ANSI C and C++ require that something be
declared in the compilation unit.

Filename too long Compiler error
The file name given in an #include directive was too long for the compiler to process. Path names must be no longer than
260 characters.

File name too long . MAKE error
The path name in an !include directive overflowed MAKE's internal buffer (512 bytes).

filename file not found Librarian warning
The command-line librarian attempted to add a nonexisting object but created the library anyway.

filename file not found Librarian error
The IDE creates the library by first removing the existing library and then rebuilding. If any objects do not exist, the library is
considered incomplete and TUB generates this error. If the IDE reports that an object does not exist, either the source
module has not been compiled or there were errors during compilation. Rebuilding your project should resolve the problem or
indicate where the errors have occurred.

filename (linenum): File read error Linker error
A DOS error occurred while TUNK read the module definition file. This usually means that a premature end of file occurred.

Fixup to zero length segment in module module Linker error
A reference has been made past the end of an image segment. This reference would end up accessing an invalid address,
and has been flagged as an error.

Fixup overflow at address, target = address Linker warning
These messages indicate an incorrect data or code reference in an object file that TUNK must fix up at link time.

Appendix A, Error messages 357

The cause is often a mismatch of memory models. A near call to a function in a different code segment is the most likely
cause. These errors can also result if you generate a near call to a data variable or a data reference to a function. In either
case the symbol named as the target in the error message is the referenced variable or function. The reference is in the
named module, so look in the source file of that module for the offending reference.

In an assembly language program, a fixup overflow frequently occurs if you have declared an external variable within a
segment definition, but this variable actually exists in a different segment.

If this technique does not identify the cause of the failure, or if you are programming in assembly language or in a high-level
language other than Borland C++, there might be othe~ possible causes for this message. Even in Borland C++, this -
message could be generated if you are using different segment or group names than the default values for a given memory
mode/.

Fixup to zero length segment in module module Linker error
This error usually occurs if you make a reference to a segment that doesn't contain any data. If the segment isn't grouped
with other segments, the result is a zero-length physical segment, which cannot exist. The linker therefore cannot make a
reference to it.

Floating point error: Divide by O.
Floating point error: Domain.
Floating point error: Overflow.

These fatal errors result from a floating-point operation for which the result is not finite.

• "Divide by 0" means the result is +INF or -INF exactly, such as 1.0/0.0.

• "Domain" means the result ,is NAN (not a number).

Run-time error
Run-time error
Run-time error

• "Overflow" means the result is +INF (infinity) or -INF with complete loss of precision, such as assigning 1 e200*1 e200
to a double.

Floating point error: Partial loss of precision. Run-time error
Floating point error: Underflow. , Run-time error

These exceptions are masked by default, and the error messages do not occur. Underflows are converted to zero and losses
of precision are ignored. They can be unmasked by calling _controI87.

Floating point error: Stack fault. Run-time error
The floating-point stack has been overrun. This error does not normally occur and might be due to assembly code using too
many registers or to a misdeclaration of a floating-point function.

These floating-point errors can be avoided by masking the exception so that it doesn't occur, or by catching the exception
with signal. See the functions _control87 and signal for details.

for statement missing (Compiler error
In a for statement, the compiler found no left parenthesis after the for keyword.

for statement missing) Compiler error
In a for statement, the compiler found no right parenthesis after the control expressions.

for statement missing; Compiler error
In a for statement, the compiler found no semicolon after one of the expressions.

Friends must be functions or classes Compiler error
A friend of a C++ class must be a function or another class.

Function call missing} Compiler error
The function call argument list had some sort of syntax error, such as a missing or mismatched right parenthesis.

358 Borland C++ Users Guide

Function calls not supported Compiler error
In integrated debugger expression evaluation, calls to functions (including implicit conversion functions, constructors, destruc
tors, overloaded operators, and inline functions) are not supported.

Function defined inline after use as extern Compiler error
Functions cannot become inline after they have already been used. Either move the inline definition forward in the file or
delete it entirely.

Function definition cannot be a Typedef'ed declaration Compiler error
In ANSI C a function body cannot be defined using a typedef with a function Type.

Function function cannot be static Compiler error
Only ordinary member functions and the operators new and delete can be declared static. Constructors, destructors, and
other operators must not be static.

Function function should have a prototype Compiler error
A function was called with no prototype in scope.

In C, into faa () i is not a prototype, but int faa (int) i is, and so is int faa (void) ;. In C++, int faa () ; is a
prototype, and is the same as int faa (void) i .In C, prototypes are recommended for all functions. In C++, prototypes
are required for all functions. In C and C++, a function definition (a function header with its body) serves as a prototype if it
appears before any other mention of the function.

Function should return a value Compiler warning
This function was declared (perhaps implicitly) to return a value. A return statement was found without a return value or the
end of the function was reached without a return statement being found. Either return a value or declare the function as
void.

Functions function1 and function2 both use the same dispatch number Compiler error
This error is the result of a dynamically dispatched virtual table (ODVT) problem. When you override a dynamically
dispatchable function in a derived class, use the same dispatch index. Each function within the same class hierarchy must
use a different dispatch index. .

Functions cannot return arrays or functions Compiler error
A function cannot return an array or a function. Only pointers or references to arrays or functions can be returned ..

Functions containing local destructors are not expanded inline in function function Compiler warning
You've created an in line function for which Borland C++ turns off inlining. You can ignore this warning if you like; the function
will be generated out of line.

Functions containing reserved word are not expanded inline Compiler warning
Functions containing any of the reserved words do, for, while, goto, switch, break, continue, and case cannot be
expanded inline, even when specified as inline. The function is still perfectly legal, but will be treated as an ordinary static
(not global) function.

Functions may not be part of a struct or union Compiler error
This C struct or union field was declared to be of type function rather than pOinter to function. Functions as fields are
allowed only in C++.

General error Linker error
General error in library file filename in module module near module file offset Oxyyyyyyyy. Linker error
General error in module module near module file offset Oxyyyyyyyy Linker error

The linker gives as much information as possible about what processing was happening at the time of the unknown fatal
error. Call Technical Support with information about .OBJ or .L1B files.

Appendix A, Error messages 359

Global anonymous union not static Compiler error
In CH, a global anonymous union at the file level must be static.

Goto bypasses initialization of a local variable Compiler error
In CH it is illegal to bypass the initialization of a local variable in any way. You'll get this error when there is a goto that tries
to transfer control past this local variable.

Goto into an exception handler is not allowed Compiler error
Its illegal to jump into a try block or an exception handler that's attached to a try block.

Goto statement missing label Compiler error
The goto keyword must be followed by an identifier.

Group group exceeds 64KI Linker error
A group exceeded 64K bytes when the segments of the group were combined.

Group overflowed maximum size: group Compiler error
The total size of the segments in a group (for example, DGROUP) exceeded 64K.

Group group1 overlaps group group2 Linker warning
This means that TLiNK has encountered nested groups. This warning occurs only when overlays are used.

Handler for type1 hidden by previous handler for type2 Compiler warning
This warning is issued when a handler for a type 0 that is derived from type B is specified after a handler for B, since the
handler for 0 will never be invoked.

specifier has already been included Compiler error
This type specifier occurs more than once in this declaration. Delete or change one of the occurrences.

Hexadecimal value contains more than 3 digits Compiler warning
Under older versipns of C, a hexadecimal escape sequence could contain no more than three digits. The ANSI standard
allows any number of digits to appear as long as the value fits in a byte. This warning results when you have a long
hexadecimal escape sequence with many leading zero digits (such as "\x00045"). Older versions of C would interpret such a
string differently.

function1 hides virtual function function2 Compiler warning
A virtual function in a base class is usually overridden by a declaration in a derived class. In this case, a declaration with the
same name but different argument types makes the virtual functions inaccessible to further derived classes.

Identifier expected Compiler error
An identifier was expected here, but not found. In C, this error occurs in a list of parameters in an Old-style function header,
after the reserved words struct or union when the braces are not present, and as the name of a member in a structure or
union (except for bit fields of width 0). In C++, an identifier is also expected in a list of base classes from which another class
is derived, following a double colon (::), and after the reserved word operator when no operator symbol is present.

Identifier identifier cannot have a type qualifier Compiler error
A CH qualifier class:: identifier cannot be applied here. A qualifier is not allowed on typedef names, on function declarations
(except definitions at the file level), on local variables or parameters of functions, or on a class member except to use its own
class as a qualifier (which is redundant but legal). .

If statement missing (Compiler error
In an if statement, the compiler found no left parenthesis after the if keyword.

If statement missing) Compiler error
In an if statement, the compiler found no right parenthesis after the test expression.

360 Borland C++ Users Guide

If statement too long
Ifdef statement too long
Ifndef statement too long

An If, Ifdef,'or Ifndef statement has exceeded 4,096 characters.

MAKE error
MAKE error
MAKE error

Ignored module, path is too long Librarian warning
The path to a specified .OBJ or .LlB file is greater than 64 characters. The max path to a file for librarian is 64 characters.

Illegal ACBP byte in SEGOEF Linker error
This is usually a translator error.

Illegal character character (Ox value) Compiler error
The compiler encountered some invalid character in the input file. The hexadecimal value of the offending character is
printed. ,This can also be caused by extra parameters passed to a function macro.

Illegal character in constant expression expression MAKE error
MAKE encountered a character not allowed in a constant expression. If the character is a letter, this probably indicates a
misspelled identifier.

Illegal component to GRPOEF Linker error
This is usually a translator error.

Illegal group definition: group Linker error
This error is caused by a malformed GRPDEF record in an .OBJ file. This could result from custom-built .OBJ files or a bug in
the translator used to generate the .OBJ file. If this occurs in a file created by Borland C++, recompile the file. If the error
persists, contact Borland Technical Support.

Illegal initialization Compiler error
In C, initializations must be either a constant expression, or else the address of a global extern or static variable plus or
minus a constant.

Illegal octal digit Compiler error
An octal constant containing a digit of 8 or 9 was found.

Illegal parameter to __ ~miC_ . Compiler error
You supplied an argument to _ _ emil _ that is not a constant or an address.

Illegal pointer subtraction Compiler error
-This is caused by attempting to subtract a pointer from a nonpointer.

Illegal structure operation Compiler error
In C or C++, structures can be used with dot (.), address-of (&), or assignment (=) operators, or can be passed to or from
functions as parameters. In C or C++, structures can also be used with overloaded operators. The compiler encountered a
structure being used with some other operator.

Illegal to take address of bit field Compiler error
It is not legal to take the address of a bit field, although you can take the address of other kinds of fields.

Illegal use of floating point Compiler error
Floating-point operands are not allowed in shift, bitwise Boolean, indirection (*), or certain other operators. The compiler
found a floating-point operand with one of these prohibited operators.

Illegal use of member pointer Compiler error
Pointers to class members can be used only with assignment, comparison, the .*, ->*, ?:, &&, and II operators, or passed as
arguments to functions. The compiler has encountered a member pointer being used with a different operator.

Appendix A, Error messages 361

Illegal use of pointer Compiler error
Pointers can be used only with addition, subtraction, assignment, comparison, indirection (*) or arrow (-» operators. Your>
source file used a pointer with some other operator. '

III-formed pragma Compiler warning
A pragma does not match one of the pragmas expected by the Borland C++ compiler.

Image base address must be a multiple of Ox10000 Linker error
Based images must be aligned on 64k boundaries.

Images fixed at specific addresses typically will not run underWin32s Linker warning
Windows 32s loads all applications in a single address space. Its impossible to predict where you application is going to be
loaded, because other 32-bit applications might have been loaded before yours. Fixed images must be loaded at their
requested base address or the loader will fail to run them.

Implicit conversion of type1 to type2 not allowed Compiler error
When a member function of a class is called using a pointer to a derived class, the pointer value must be implicitly converted
to point to the appropriate base class. In this case, such an implicit conversion is illegal.

Improper use of typedef identifier Compiler error
Your source file used a typedef symbol where a variable should appear in an expression. Check for the declaration of the
symbol and possible misspellings. ' -

Include files nested too deep Compiler error
When the compiler detects that header files are nested more than 1,000 levels deep, it assumes that the header file is
recursive, and stops compilation with this (fatal) error.

filename (linenum): Incompatible attribute Linker error
The linker encountered incompatible segment attributes in a CODE or DATA statement. For instance, both PRELOAD and
LOADONCALL can't be attributes for the same segment.

Incompatible type conversion Compiler error
The cast requested can't be done. Check the types.

Incorrect command·line argument: argument MAKE error
You've used incorrect command-line arguments.

Incorrect command·line option: option Compiler error
The compiler did not recognize the command-line parameter as legal.

Incorrect configuration file option: option Compiler error
The compiler did not recognize the configuration file parameter as legal; check for a preceding hyphen (-).

Incorrect number format Compiler error
The compiler encountered a decimal point in a hexadecimal number.

Incorrect use of default Compiler error
The compiler found no colon after the default keyword in a case statement.

Incorrect version of RLlNK32.DLL Linker error
The RLlNK32.DLL used was not the correct version. Check to make sure you have the correct version of the DLL.

Initializing enumeration with type Compiler warning
You're trying to initialize an enum variable to a different type. For example,

enurn count { zero, one, two} x = 2;

362 Borland C++ Users Guide

results in this warning, because 2 is of type int, not type enum count. It is better programming practice to use an enum
identifier instead of a literal integer when assigning to or initializing enum types.

This is an error, but is reduced to a warning to give existing programs a chance to work.

Inline assembly not allowed Compiler error
Your source file contains inline assembly-language statements and you're trying to compile it from within the integrated
environment. You must use BCC to compile source files that contain inline assembly.

Inline assembly not allowed in inline and template functions Compiler error
The compiler cannot handle inline assembly statements in a c++ inline or template function. You could eliminate the inline
assembly code or, in case of an inline function, make this a macro or remove the inline storage class.

int and string types compared MAKE error
You have tried to compare an integer operand with a string operand in an !if or !elif expression.

Internal linker error errorcode Linker error
An error occurred in the internal logic of TLINK. This error shouldn't occur in practice, but is listed here for completeness in
the event that a more specific error isn't generated. If this error persists, write down the errorcode number and contact
Borland Technical Support.

Invalid combination of opcode and operands Compiler error
The built-in assembler does not accept this combination of operands. Possible causes are the following:

• There are too many or too few operands for this assembler opcode .

• The number of operands is correct, but their types or order do not match the opcode; for example DEC 1, MOV AX, or
MOV 1 ,A~. Try prefacing the operands with type overrides; for example MOV AX, WORD PTR foo.

Invalid entry pOint offset ' Linker error
This message occurs only when modules with 32-bit records are linked. It means that the initial program entry point offset
exceeds the DOS limit of 64K.

Invalid indirection Compiler error
The indirection operator (*) requires a non-void pointer as the operand.

Invalid initial stack offset Linker error
This message occurs only when modules with 32-bit records are linked. It means that the initial stack pointer value exceeds
the DOS limit of 64K.

Invalid macro argument separator· Compiler error
In a macro definition, arguments must be separated by commas. The compiler encountered some other character after an
argument name.

Invalid page size value ignored Librarian warning
Invalid page size is given. The page size must be a power of 2, and it cannot be smaller than 16 or larger than 32,768.

Invalid pointer addition Compiler error
Your source file attempted to add two pointers together.

Invalid register combination (e.g. [BP+BX]) Compiler error
The built-in assembler detected an illegal combination of registers in an instruction. Valid index register combinations are
[BX], [BP], [SI], [01], [BX+SI], [BX+DI], [BP+SI], and [BP+DI]. Other index register combinations (such as [AX], [BP+BX],
and [SI+DX]) are not allowed.

Appendix A, Error messages 363

Local variables (variables declared in procedures and functions) are usually allocated on the stack and accessed via the BP
register. The assembler automatically adds [BP] in references to such variables, so even though a construct like Local[EBX]
(where Local is a local variable) appears valid, it is not, because the final operand would become Local[BP+EBX].

Invalid segment definition Linker error
The compiler produced a flawed object file. If this occurs in a file created by Borland C++, recompile the file. If the problem
persists, contact Borland Technical Support.

Invalid template argument list Compiler error
In a template declaration, the keyword template must be followed by a list of formal arguments enclosed within the < and>
delimiters; an illegal template argument list was found.

Invalid template qualified name template::name Compiler error
When defining a template class member, the actual arguments in the template class name that is used as the left operand for
the :: operator must match the formal arguments of the template class. For example:

template <class T> class X
{

void f () i

};

template <class T> void X<T>::f(){}

The following would be illegal:

template <class T> void X<int>::f(){}

Invalid use of dot Compiler error
An identifier must immediately follow a period operator (.).

Invalid use of template template Compiler error
Outside of a template definition, it is illegal to use a template class name without specifying its actual arguments. For
example, you can use vector<int> but not vector.

Irreducible expression tree Compiler error
This is a sign of some form of compiler error. An expression on the indicated line of the source file has caused the code
generator to be unable to generate code. The offending expression should be avoided. Notify Borland Technical Support if
the compiler encounters this error.

base is an indirect virtual base class of class Compiler error
A pointer to a C++ member of the given virtual base class cannot be created; an attempt has been made to create such a
pointer (either directly or through a cast).

identifier is assigned a value that is never used Compiler warning
The variable appears in an assignment, but is never used anywhere else in the function just ending. The warning is indicated
only when the compiler encounters the closing brace.

identifier is declared as both external and static Compiler warning
This identifier appeared in a declaration that implicitly or explicitly marked it as global or external, and also in a static
declaration. The identifier is taken as static. You should review all declarations for this identifier.

identifier is declared but never used Compiler warning
Your source file declared the named variable as part of the block just ending, but the variable was never used. The warning is
indicated when the compiler encounters the closing brace of. the compound statement or function. The declaration of the
variable occurs at the beginning of the compound statement or function.

364 Borland C++. Users Guide

constructor is not a base class of class Compiler error
A C++ class constructor class is trying to call a base class constructor constructor, or you are trying to change the access
rights of class: : constructor. constructor is not a base class of class. Check your declarations.

identifier is not a member of struct Compiler error
You are trying to reference identifier as a member of struct, but it is not a member. Check your declarations.

identifier is not a non-static data member and can't be initialized here Compiler error
Only data members can be initialized in the initializers of a constructor. This message means that the list includes a static
member or function member.

identifier is not a parameter Compiler error
In the parameter declaration section of an old-style function definition, identifier is declared but is not listed as a parameter.
Either remove the declaration or add identifier as a parameter. .

type is not a polymorphic class type Compiler error
A dynamic_cast was used with a pointer to a class that was compiled with the -RT compiler option disabled.

identifier is not a public base class of class type Compiler error
The right operand of a.*, ->*, or ::operator was not a pointer to a member of a class that is either identical to or an
unambiguous accessible base class of the left operand's class type.

filename is not a valid library Linker warning
This error occurs if a file that wasn't a valid library module was passed to the linker in the library section.

member is not accessible Compiler error
You are trying to reference C++ class member member, but it is private or protected and cannot be referenced from this
function. This sometimes happens when attempting to call one accessible overloaded member function (or constructor), but
the arguments match an inaccessible function. The check for overload resolution is always made before checking for
accessibility. If this is the problem, try an explicit cast of one or more parameters to select the desired accessible function.

Last parameter of operator must have type int Compiler error
When a postfix operator++ or operator- - is declared, the last parameter must be declared with the type int.

Library contains COMDEF records - extended dictionary not created Librarian warning
An object record being added to a library contains a COMDEF record. This is not compatible with the extended dictionary
option.

Library too large, restart with library page size size Librarian error
The library being created could not be built with the current library page size.

Linkage specification not allowed Compiler error
Linkage specifications such as extern "C" are allowed only at the file level. Move this function declaration out to the file level.

Linker name conflict for function Compiler error
When the mangled name of a C++ inline function or a virtual table is too long and has to be truncated (this happens most
often with templates), and the truncated name matches a previously generated function or virtual table, this error is issued by
the compiler. The problem can be fixed by changing the name of the class or function, or by compiling with the -Vs option.

Appendix A, Error messages 365

Linker stack overflow Linker error
The linker uses a recursive procedure for marking modules to be included in an executable image from libraries. This
procedure can cause stack overflows in extreme circumstances. If you get this error message, remove some modules from
libraries, include them with the object files in the link, and try again.

Lvalue required Compiler error
The left hand side of an assignment operator must be an addressable expression. These include numeric or pointer
variables, structure field references or indirection through a pointer, or a subscripted array element.

Macro argument syntax error Compiler error
An argument in a macro definition must be an identifier. The compiler encountered some non-identifier character where an
argument was expected.

Macro expansion too long Compiler error
A macro cannot expand to more than 4,096 characters.

Macro expansion too long MAKE error
A macro cannot expand to more than 4,096 characters. This error often occurs if a macro recursively expands itself. A macro
cannot legally expand to itself.

Macro substitute text string is too long
Macro replace text string is too long

The macro substitution or replacement text string overflowed MAKE's internal buffer of 512 bytes.

MAKE error
MAKE error

main must have a return type of int Compiler error
In C++, function main has special requirements,one of which is that it cannot be declared with any return type other than int.

Malformed command-line Compiler error
. An invalid entry in the command line was found.

Matching base class function for function has different dispatch number. Compiler error
If a DDVT function is declared in a derived class, the matching base class function must have the same dispatch number as
the derived function.

Matching base class function for function is not dynamic Compiler error
If a DDVT function is declared in a derived class, the matching base class function must also be dynamic.

Maximum precision used for member pointer type type Compiler warning
When you use the -Vmd option, the compiler has to use the most general (and the least efficient) representation for that
member pointer type when it is declared and its class hasn't been fully defined. This can cause less efficient code to be
generated (and make the member pointer type unnecessarily large), and can also cause problems with separate compilation.

Member function must be called or its address taken Compiler error
When a member function is used in an expression, either it must be called or its address must be taken using the & operator.
In this case, a member function has been used in an illegal co~text.

Member identifier expected Compiler error
The name of a structure or C++ class member was expected here, but not found. The right side of a dot (.) or arrow (-»
operator must be the name of a member in the structure or class on the left of the operator.

Member is ambiguous: member1 and member2 Compiler error
You must qualify the member reference with the appropriate base class name. In C++ class class, member membercan be
found in more than one base class, and was not qualified to indicate which was meant This happens only in multiple
inheritance, where the member name in each base class is not hidden by the same member name in a derived class on the
same path. The C++ language rules require that this test for ambiguity be made before checking for access rights {private,

366 Borland C++ Users Guide

protected, public). It is therefore possible to get this message even though only one (or none) of the members can be
accessed.

Member member cannot be used without an object Compiler error
This means that the user has written class: : member where member is an ordinary (nonstatic) member, and there is no
class to associate with that member. For example, it is legal to write obj . class: : member, but not to write
class: :member.

Member member has the same name as its class Compiler error
A static data member, enumerator, member of an anonymous union, or nested type cannot have the same name as its class.
Only a member function or a nonstatic member can have a name that is identical to its class.

Member member is initialized more than once Compiler error
In a C++ class constructor, the list of initializations following the constructor header includes the same member name more
than once.

Member pointer required on right side of .* or ->* Compiler error
The right side of a C++ dot-star (.*) or an arrow-star (->*) operator must be declared as a pointer to a member of the class
specified by the left side of the operator. In this case, the right side is not a member pointer.

Memory full listing truncated! Librarian warning
The librarian has run out of memory creating a library listing file. A list file will be created but is not complete.

Memory reference expected Compiler error
The built-in assembler requires a memory reference. Most likely you have forgotten to put square brackets around an index .
register operand; for example, MOV AX,BX+SI instead of MOV AX,[BX+SI].

Misplaced break Compiler error
The compiler encountered a break statement outside a switch or looping construct.

Misplaced continue Compiler error
The compiler encountered a continue statement outside a looping construct.

Misplaced decimal point Compiler error
The compiler encountered a decimal point in a floating-point constant as part of the exponent.

Misplaced elif directive Compiler error
The compiler encountered an #elif directive without any matching #if, #ifdef, or #ifndef directive.

Misplaced elif statement MAKE error
An !elit directive is missing a matching !it directive.

Misplaced else Compiler error
The compiler encountered an else statement without a matching if statement. An extra else statement could cause this _
message, but it could also be caused by an extra semicolon, missing braces, or some syntax error in a previous if statement.

Misplaced else directive Compiler error
The compiler encountered an #else directive without any matching #if, #ifdef, or #ifndef directive.

Misplaced else statement MAKE error
. An !else directive does not have a matching lif directive.

Misplaced endif directive Compiler error
The compiler encountered an #endif directive without a matching #if, #ifdef, or #ifndef directive.

Appendix A, Error messages . 367

Misplaced endif statement MAKE error
An !endif directive does have a matching !if directive.

filename'(linenum): Missing internal name Linker error
In the IMPORTS section of the module definition file there was a reference to an entry specified via module name and ordinal
number. When an entry is specified by ordinal number an internal name must be assigned to this import definition. Your
program uses this internal name to refer to the imported definition. The syntax in the module definition file should be:

<internalnarne>=<rnodulenarne>.<ordinal>

Mixed common types in module module. Cannot mix COMDEFs and VIRDEFs. Linker error
You cannot mix both COMDEFs and VIRDEFs. Turn off the -Fc switch to stop generating COMDEFs, or turn on the -Vs
switch to stop generating VIRDEFs.

Mixing pointers to different 'char' types Compiler warning
You converted a signed char pointer to an unsigned char pointer, or vice versa, without using an explicit cast. (Strictly
speaking, this is incorrect, but it is often harmless.)

Multiple base classes require explicit class names Compiler error
In a C++ class constructor, each base class constructor call in the constructor header must include the base class name
when there is more than one immediate base class.

Multiple declaration for identifier Compiler error
This identifier was improperly declared more than once. This might be caused by conflicting declarations such as in t a;
double a;, by a function declared two different ways, by a label repeated in the same function, or by some declaration
repeated other than an extern function or a simple variable (in C).

Multiple entry points defined Linker error
More than one entry point was defined for the application. You can only have one entry point.

identifier must be a member function Compiler error
Most C++ operator functions can be members of classes or ordinary nonmember functions, but certain ones are required to
be members of classes. These are operator =, operator ->, operator (), and type conversions; This operator function is not
a member function but should be.

identifier must be a member function or have a parameter of class type Compiler error
Most C++ operator functions must have an implicit or explicit parameter of class type. This operator function was declared
outside a class and does not have an explicit parameter of class type.

identifier must be a previously defined class or struct .compiler error
You are attempting to declare identifier to be a base class, but either it is not a class or it has not yet been fully defined.
Correct the name or rearrange the declarations.

identifier must be a previously defined enumeration tag Compiler error
This declaration is attempting to reference identifier as the tag of an enum type, but it has not been so declared. Correct the
name, or rearrange the declarations.

identifier must be declared with no parameters Compiler error
This C++ operator function was incorrectly declared with parameters.

identifier must be declared with one parameter
. This C++ operator function was incorrectly declared with more than one parameter.

Compiler error

368 Borland C++ Users Guide

operator must be declared with one or no parameters Compiler error
When operator++ or operator - - is declared as a member function, it must be declared to take either no parameters (for
the prefix version of the operator) or one parameter of type int (for the postfix version).

operator must be declared with one or two parameters Compiler error
When operator++ or operator - - is declared as a nonmember function, it must be declared to take either one parameter
(for the prefix version of the operator) or two parameters (for the postfix version).

identifier must be declared with two parameters Compiler error
This C++ operator function was incorrectly declared with other than two parameters.

Must take address of a memory location Compiler error
Your source file used the address-of operator (&) with an expression that cannot be used that way; for example, a register
variable (in C).

Need an identifier to declare Compiler error
In this context, an identifier was expected to complete the declaration. This might be a typedef with no name, or an extra
semicolon at file level. In C++, it might be a class name improperly used as another kind of identifier.

No : following the? Compiler error
The question mark (?) and colon (:) operators do not match in this expression. The colon might have been omitted, or
parentheses might be improp~rly nested or missing.

No base class to initialize Compiler error
This C++ class constructor is trying to implicitly call a base class constructor, but this class was declared with no base
classes. Check your declarations ..

No clOSing quote MAKE error
There is no closing quote for a string expression in a !if or !elif expression.

No declaration for function function Compiler warning
You called a function without first declaring that function. In C, you can declare a function without presenting a prototype, as
in int func C) ; .In C++, every function declaration is also a prototype; this example is equivalent to int func (void) i.
The declaration can be either classic or modern (prototype) style. -

No module definition file specified; using defaults Linker warning
This warning occurs when you do not specify a .DEF file for the link.

No file name ending Compiler error
The file name in an #include statement was missing the correct closing quote or angle bracket.

No filename ending MAKE error
The file name in an !include statement is missing the correct closing quote or angle bracket.

No file names given Compiler error
The command line of the Borland C++ command-line compiler (BCC) contained no file names. You must specify a source file
name.

No internal name for IMPORT in .DEF file Linker error
The .DEF file has a semantic error. You probably forgot to put the internal name for an import before the module name. For
example:

IMPORTS
_foo.l

Appendix A, Error messages 369

The proper syntax is:

IMPORTS
, _foo=rnydll.l

No macro before = ~ MAKE error
You must give a macro a name before you can assign it a value.

No match found for wildcard expression MAKE error
There are no files matching the wildcard expression for MAKE to expand. For example, if you write

prog.exe: *.obj

MAKE sends this error message if there are no files with the extension .OBJ in the current directory.

No output file specified Linker error
No EXE or DLL file was specified. Because the linker defaults to the first .OBJ name, this error is usually caused because no
object object files were included.

No program starting address defined Linker warning
This warning means that no module defined the initial starting address of the program. This is probably caused by forgetting
to link in the initialization module COx.OBJ.

No stack Linker warning
This warning is issued if no stack segment is defined in any of the object files or in any of the libraries included in the link.
This is a normal message for the tiny memory model in Borland C++, or for any application program that will be converted to
a .COM file. Except for DLLs, this indicates an error.

If a Borland C++ program produces this message for any but the tiny memory model, make sure you are using the correct
COx startup object files.

No stub for fixup at address Linker warning
This error occurs when the target for a fixup is in an overlay segment, but no stub is found for a target external. This is
usually the result of not making public a symbol in an overlay that is referenced from the same module.

No terminator specified for in-line file operator MAKE error
The makefile contains either the && or « command-line operators to start an inline file, but the file is not terminated.

Non-const function function called for const object Compiler warning
A non-const member function was called for a const object. This is an error, but was reduced to a warning to give existing
programs a chance to work.

Nonportable pointer comparison Compiler warning
Your source file compared a pointer to a nonpointer other than the constant zero. You should use a cast to suppress this
warning if the comparison is proper. '

Nonportable pointer conversion Compiler error
An implicit conversion between a pointer and an integral type is required, but the types are not the same size. This cannot be
done without an explicit cast. This conversion might not make any sense, so be sure this is what you want to do.

Nonportable pointer conversion Compiler warning
A nonzero integral value is used in a context where a pointer is needed or where an integral value is needed; the sizes of the
integral type and pointer are the same. Use an explicit cast if this is what you rea,lIy meant to do.

370 Borland C++ Users Guide

Nonresident Name Table is greater than 64K Linker warning
The maximum size of the Nonresident name table is 64K (in accordance with the industry-wide executable specification
standard). The linker continues with the link but ignores any subsequent Nonresident names encountered during linking.

Nontype template argument must be of scalar type Compiler error
A nontype formal template argument must have scalar type; it can have an integral, enumeration, or pointer type.

Non-ANSI Keyword Used: keyword Compiler error
A non-ANSI keyword (such as __ fastcall) was used when strict ANSI conformance was requested via the -A option.

Non-virtual function function declared pure Compiler error
Only virtual functions can be declared pure, because derived classes must be able to override them.

Non-volatile function function called for volatile object Compiler warning
In C++, a class member function was called for a volatile object of the class type, but the function was not declared with
volatile following the function header. Only a volatile member function can be called for a volatile object.

filename not a MAKE MAKE error
The file you specified with the -f option is not a makefile.

Not an allowed type Compiler error
Your source file declared some sort of forbidden type; for example, a function returning a function or array.

Not enough memory MAKE error
All your working storage has been exhausted .

. Not enough memory to run application Linker error
There is not enough memory to run TLiNK. Try reducing the size of any RAM disk or disk cache currently active. If you're
running real mode, try using the MAKE -S option, or removing TSRs and network drivers.

Not enough memory for command-line buffer Librarian error
This error occurs when the librarian runs out of memory.

module not found in library Librarian warning
An attempt to perform either a '_' or '*' on a library has been made and the indicated object does not exist in the library.

Null pointer assignment Run-time error
When a small or medium memory model program exits, a check is made to determine if the contents of the first few bytes
within the programs data segment have changed. These bytes would never be altered by a working program. If they have
been changed, the message "Null pointer assignment" is displayed to inform you that (most likely) a value was stored to an
uninitialized pointer. The program might appear to work properly in all other respects; however, this is a serious bug which
should be attended to immediately. Failure to correct an un.initialized pointer can lead to unpredictable behavior (including
"locking" the computer up in the large, compact, and huge memory models). You can use the integrated debugger to track
down null pointers.

Numeric constant too large Compiler error
String and character escape sequences larger than.hexadecimal \XFF or octal \377 cannot be generated. Two-byte character
constants can be specified by using a second backslash. For example, \XOO\XOA represents a two-byte constant. A numeric
literal following an escape sequence should be broken up like this:

printf("\xOD" "12345");

This prints a carriage return followed by 12345.

Appendix A, Error messages 371

Object module filename is invalid Librarian error'
The librarian could not understand the header record of the object module being added to the library and has assumed that it
is an invalid module.

Objects of type type cannot be initialized with {} Compiler error
Ordinary C structures can be initialized with a set of values inside braces. C++ classes can be initialized with constructors
only if the class has constructors, private members, functions, or base classes that are virtual. '

Old debug information in module module will be ignored Linker warning
Debug information in the .OBJ file is incompatible with this linker, and it will be ignored.

Only «KEEP or «NOKEEP MAKE error
You have specified something besides KEEP or NOKEEP when closing a temporary inline file.

Only member functions may be 'const' or 'volatile' Compiler error
Something other than a class member function has been declared const and/or volatile.

Only one of a set of overloaded functions can be "e" Compiler error
C++ functions are by default overloaded, and the compiler assigns a new name to each function. If you want to override the
compilers assigning a new name by declaring the function extern "C", you can do this for only one of a set of functions with
the same name. (Otherwise the linker would find more than one global function with the same name.)

Operand of delete must be non-const pointer Compiler error
It is illegal to delete a constant pointer value using operator delete.

Operator [] missing] Compiler error
The C++ operator[] was declared as operator [. You must add the missing] or otherwise fix the declaration.

Operator -> must return a pointer or a class Compiler error
The C++ operator-> function must be declared to either return a class or a pointer to a class (or struct or union). In either
case, it must be something to which the -> operator can be applied.

Operator delete must return void Compiler error
This C++ overloaded operator delete was declared in some other way.

Operator delete[] must return void Compiler error
This C++ overloaded operator delete was declared in some other way. Declare the delete with one of the following:

• A single void* parameter

• A second parameter of type size_t

If you use the second version, it will be used in preference to the first version. The global operator delete can be declared
using the single-parameter form only.

Operator must be declared as function Compiler error
An overloaded operator was declared with something other than function type.

Operator new must have an initial parameter of type size_t Compiler error
Operator new can be declared with an arbitrary number of parameters, but it must always have at least one parameter that
specifies the amount of space to allocate.

Operator newn must have an initial parameter of type size_t Compiler error
Operator new can be declared with an arbitrary number of parameters. It must always have at least one parameter that
specifies the amount of space to allocate.

372 Borland C++ Users Guide

Operator new must return an object of type void * Compiler error
The C++ overloaded operator new was declared another way.

Operator new[] must return an object of type void * Compiler error
This C++ overloaded operator new was declared another way.

Operators may not have default argument values Compiler error
It is illegal for overloaded operators to have default argument values.

Out of memory Compiler error
The total working storage is exhausted. Compile the file on a machine with more memory.

Out of memory Librarian error
For any number of reasons, the librarian or Borland C++ ran out of memory while building the library. For many specific
cases a more detailed message is reported, leaving "Out of memory" to be the basic catchall for general low-memory
situations.

If you get this message because the public symbol tables have grown too large, you must free up memory. For the command
line this could involve removing TSR's or device drivers using real mode memory or close windows. In the IDE, some
additional memory can be gained by closing editors.

Out of memory Linker error
The linker has run out of dynamically allocated memory needed during the link process. This error is a catchall for running
into a TLiNK limit on memory usage. This usually means that too many modules, externals, groups, or segments have been
defined by the object files being linked together. You can try reducing the size of RAM disks andbr disk caches that might be
active.

Out of memory creating extended dictionary Librarian error
The librarian has run out of memory creating an extended dictionary for a library. The library is created but will not have an
extended dictionary. .

Out of memory for block block Linker error
This error should not occur. If it does, call Borland Technical Support and give them the text of the message, including the
block name. .

Out of memory reading LElLIDATA record from object module Librarian error
The librarian is attempting to read a record of data from the object module, but it cannot get a large enough block of memory.
If the module that is being added has a large data segment or segments, it is possible that adding the module before any
other modules might resolve the problem. By adding the module first, there will be memory available for holding public
symbol and module lists later.

Out of space allocating per module debug struct Librarian error
The librarian ran out of memory while allocating space for the debug information associated with a particular object module.
Removing debugging information from some modules being added to the library might resolve the problem.

Output device is full Librarian error
Usually this error means that no space is left on the disk.

Overlays generated and no overlay manager included Linker warning
This warning is issued if overlays are created but the symbol __ OVRTRAP __ is not defined in any of the object modules or
libraries linked in. The standard overlay library (OVERLAY.L1B) defines this symbol.

Overlays only supported in medium, large, and huge memory models Compiler error
Only programs using the medium, large, or huge memory models can be overlaid.

Appendix A, Error messages 373.

Overload able operator expected Compiler error
Almost all C++ operators can be overloaded. The only ones that can't be overloaded are the field-selection dot (.), dot-star
(.*), double colon (::), and conditional expression (?:). The preprocessor operators (# and ##) are not C or C++ language
operators and thus cannot be overloaded. Other nonoperator punctuation, such as a semicolon (;) cannot be overloaded.

Overloaded function name ambiguous in this context Compiler error
The only time an overloaded function name can be used without actually calling the function is when a variable or parameter
of an appropriate type is initialized or assigned. This error was issued because an overloaded function name has been used
in some other context.

Overloaded prefix 'operator opera to; used as a postfix operator Compiler warning
With the latest specification of C++, it is now possible to overload both the prefix and postfix versions of the ++ and -
operators. To allow older code to compile, Borland C++ uses the prefix operator and issues this warning whenever only the
prefix operator is overloaded, but is used in a postfix context.

P1001 Unable to read file filename Help project error
The file specified in the project file is unreadable. This is a DOS file error.

P1003 Invalid path specified in Root option Help project error
The path specified by the Root option cannot be found. The compiler uses the current working directory.

P1005 Path and filename exceed limit of 79 characters Help project error
The absolute path name, or the combined root and relative pathname, exceed the DOS limit of 79 characters. The file is
skipped.

P1007 Root path exceeds maximum limit of 66 characters Help project error
The specified root path name exceeds the DOS limit of 66 characters. The path name is ignored and the compiler uses the
current working directory.

P1009 [FILES] section missing Help project error
The [Files] section is required. The compilation is aborted.

P1011 Optionoptionname previously defined Help project error
The specified option was defined previously. The compiler ignores the attempted redefinition.

P1013 Project file extension cannot be .HLP Help project error
You cannot specifY that the compiler use a project file with the .HLP extension. Normally, project files are given the .HPJ
extension.

P1 015 Unexpected end-of-file Help project error
The compiler has unexpectedly come to the end of the project file. There might be an open comment in the project file or an
included file.

P1017 Parameter exceeds maximum length of 128 characters Helpproject error
An option, context name or number, build tag, or other parameter on the specified line exceeds the limit of 128 characters.
The line is ignored. .

P1021 Context number already used in [MAP] section Help project error
. The context number on the specified line in the project file was previously mapped to a different context string. The line is
ignored.

P1023 Include statements nested too deeply Help project error
The #include statement on the specified line has exceeded the maximum of five include levels.

P1025 Section heading sectionname unrecognized I Help project error
A section heading that is not supported by the compiler has been used. The line is skipped.

374 Borlahd C++ Users Guide

P1027 Bracket missing from section heading section name Help project error
The right bracket (]) is missing from the specified section heading. Insert the bracket and compile again.

P1029 Section heading missing Help project error
The section heading on the specified line is not complete. This error is also reported if the first entry in the project file is not a
section heading. The compiler continues with the next line.

P1030 Section sectionname previously defined Help project error
A duplicate section has been found in the project file. The lines under the duplicated section heading are ignored and the
compiler continues from the next valid section heading.

P1031 Maximum number of build tags exceeded Help project error
The maximum number of build tags that can be defined is 30. The excess tags are ignored.

P1033 Duplicate build tag in [BUILDTAGS] section Help project error
A build tag in the [BUILDTAGS] section has been repeated unnecessarily .

P1035 Build tag length exceeds maximum Help project error
The build tag on the specified line exceeds the maximum of 32 characters. The compiler skips this entry.

P1037 Build tag tagname contains invalid characters Help project error
Build tags can contain only alphanumeric characters or the underscore U character. The line is skipped.

P1039 [BUILDTAGS] section missing Help project error
The BUILD option declared a conditional build, but there is no [BuildTags] section in the project file. All topics are included in
the build.

P1043 Too many tags in Build expression Help project error
The Build expression on the specified line has used more than the maximum of 20 build tags. The compiler ignores the line.

P1045 [ALIAS] section found after [MAP] section Help project error
When used, the [Alias] section must precede the [Map] section in the project file. The [Alias] section is skipped otherwise.

P1047 Context string contextname already assigned an alias Help project error
You cannot do: a=b then a=c<_>(A context string can only have one alias.)

The specified context string has previously been aliased in the [Alias] section. The attempted reassignment on this line is
ignored.

P1049 Alias string alias name already assigned Help project error
You cannot do: a=b then b=c

An alias string cannot, in turn, be assigned another alias.

P1051 Context string contextname cannot be used as alias string
You cannot do: a=b then c=a

A context string that has been assigned an alias cannot be used later as an alias for another context string.

Help project error

P1053 Maxim\um number of font ranges e}(ceeded Help project error
The maximum number of font ranges that can be specified is five. The rest are ignored.

P1055 Current font range overlaps previously defined range Help project error
A font size range overlaps a previously defined mapping. Adjust either font range to remove any overlaps. The second
mapping is ignored.

Appendix A, Error messages 375 ,

P1056 Unrecognized font name in Forcefontoption Help project error
A font name not supported by the compiler has been encountered. The font name is ignored and the compiler uses the
default Helvetica font.

P1057 Font name too long Help project error
, Font names cannot exceed 20 characters. The font is ignored.

P1 059 Invalid multiple-key syntax Help project error
The syntax used with a MUL TIKEY option is unrecognized.

P1061 Character already used
The specified keyword-table identifier is already in use. Choose another character.

Help project, error

P1063 Characters 'K' and 'k' cannot be used Help project error
These characters are reserved for Help's normal keyword table. Choose another character.

P1065 Maximum number of keyword tables exceeded Help project error
The limit of five keyword tables has been exceeded. Reduce the number. The excess tables are ignored.

P1067 Equal sign missing Help project error
An option is missing its required equal sign on the specified line. Check the syntax for the option.

P1069 Context string missing Help project error
The, line specified is missing a context string before an equal sign.

P1071 Incomplete line in sectionname section Help project error
The entry on the specified line is not complete. The line is skipped.

P1073 Unrecognized option in [OPTIONS] section Help project error
An option has been used that is not supported by the compiler. The line is skipped.

P1075 Invalid build expression Help project error
The syntax used in the build expression on the specified line contains one or more logical or syntax errors.

P1077 Warning level must be 1, 2, or 3 Help project error
The WARNING reporting level can only be set to 1, 2, or 3. The compiler will default to full reporting (level 3).

P1079 Invalid compression option Help project error
The COMPRESS option can only be set to TRUE or FALSE. The compilation continues without compression.

P1081 Invalid title string Help project error
The TITLE option defines a string that is null or contains more than 32 characters. The title is truncated.

P1083 Invalid context identification number Help project error
The context number on the specified line is null or contains invalid characters.

P1085 Unrecognized text Help project error
The unrecognizable text that follows valid text in the specified line is ignored.

P1086 Invalid font-range syntax Help project error
The font-range definition on the specified line contains invalid syntax. The compiler ignores the line. Check the syntax for the
MAPFONTSIZE option.

P1089 Unrecognized sort ordering Help project error
You have specified an ordering that is not supported by the compiler. Contact Borland Technical Support for clarification of
the error.

376 Borland C++ Users Guide '

Parameter names are used only with a function body Compiler error
When declaring a function (not defining it with a function body), you must use either empty parentheses or a function
prototype. A list of parameter names only is not allowed.

Example declarations include:

int func(); II declaration without prototype--OK
int func(int, int); II declaration with prototype--OK
int func(int i, int j); II parameter names in prototype--OK
int func(i, j); II parameter names only--illegal

Parameter number missing name Compiler error
In a function definition header, this parameter consisted only of a type specifier number with no parameter name. This is not

, legal in C. (It is allowed in C++, but there's no way to refer to the parameter in the function.)

Parameter parameter is never used Compiler warning
The named parameter, declared in the function, was never used in the body of the function. This might or might not be an
error and is often caused by misspelling the parameter. This warning can also occur if the identifier is redeclared as an
automatic (local) variable in the body of the function. The parameter is masked by the auJomatic variable and remains
unused.

path - path is too long Librarian error
This error occurs when the length of any of the library file or module file's path is greater than 64 characters.

Pointer to structure required on left side of -> or ->* Compiler error
Nothing but a pointer is allowed on the left side of the arrow (-» in Cor C+t. In C++ a ->* operator is allowed.

Possible reference to undefined extern xxxx::i in module module . Linker warning
Static data member has been declared but not defined in your application.

Possible unresolved external sym referenced from module mod Linker warning
This warning appears only for static data members of classes that have been declared but not defined.

Possible use of identifier before definition Compiler warning
Your source file used the named variable in an expression before'it was assigned a value. The compiler uses a simple scan
of the program to determine this condition. If the use of a variable occurs physically before any assignment, this warning will
be generated. Of course, the actual flow of the program might assign the value before the program uses it.

Possibly incorrect assignment Compiler warning
This warning is generated when the compiler encounters an assignment operator as the main operator of a conditional
expression (that is, as part of an if, while or do-while statement). More often than not, this is a typographical error for the
equality operator. If you want to suppress this warning, enclose the assignment in parentheses and compare the whole thing
to zero explicitly. Thus,

if (a = b) ...

should be rewritten as

if ((a = b) != 0)

Program entry point may not reside in an overlay Linker error
Although almost all of an application can be overlaid, the initial starting address cannot reside in an overlay. This error usually
means that an attempt was made to overlay the initialization module (COx.OBJ, for instance) by specifying the /0 option
before the startup module.

Appendix A, Error messages 377

Public symbol in module module1 clashes with prior module module2 Librarian error
A public symbol can appear only once in a library file. A module that is being added to the library contains a public symbol
that is already in a module of the library and cannot be added. The command-line message reports the module2 name.

Public symbol in module filename clashes with prior module , Librarian error
A public symbol can appear only once in a library file. A module that is being added to the library contains a public symbol
that is already in a module of the library and cannot be added.

R2001 Unable to open bitmap file filename Help RTF error
The specified bitmap file is unreadable. This is a DOS file error.

R2003 Unable to include·bitmap file filename Help RTF error
The specified bitmap file could not be found or is unreadable. This is a DOS file error or an out-of-memory condition.

R2005 Disk full Help RTF error
The Help resource file could not be written to disk. Create more space on the destinatiOn drive.

R2009 Cannot' use reserved DOS device name for file filename Help RTF error
A file has been referred to as COM1, lPT2, PRN, etc. Rename the file.

R2013 Output file filename already exists as a directory Help RTF error
There is a subdirectory in the Help project root with the same name as the desired Help resource file. Move or rename the
subdirectory.

R2015 Output file filename already exists as read-only Help RTF error
The specified filename cannot be overwritten by the Help resource file because the file has a read-only attribute. Rename the
project file or change the files attribute.

R2017 Path for file filename exceeds limit of 79 characters Help RTF error
The absolute pathname, or the combined root and relative pathname, to the specified file exceed the DOS limit of 79
characters. The file is ignored.

R2019 Cannot open file filename Help RTF error
The specified file is unreadable. This is a DOS file error.

R2021 Cannot find file filename Help RTF error
The specified file could not be found or is unreadable. This is a DOS file error or an out-of-memory condition.

R2023 Not enough memory to build Help file Help RTF error
To free up memory, unload any unneeded applications, device drivers, and memory-resident programs.

R2025 File environment error Help RTF error
The compiler has insufficient available file handles to continue. Increase the values for FilES= and BUFFERS= in your
CONFIG.SYS file and reboot.

R2027 Build tag tagname not defined in [BUILDTAGS] section of project file Help RTF error
The specified build tag has been assigned to a topic, but not declared in the project file. The tag is ignored for the topic.

R2033 Context string in Map section not defined in any topic Help RTF error
There are one or more context strings defined in the project file that the compiler could not find topics for.

R2035 Build expression' missing from project file Help RTF error
The topics have build tags, but there is no Build= expression in the project file. The compiler includes all topics in the build.

R2037 File filename cannot be created, due to previous error(s) Help RTF error
The Help resource file could not be created because the compiler has no topics remaining to be processed. ~orrect the
errors that preceded this error and recompile.

378 Borland C++ Users Guide

R2039 Unrecognized table formatting in topic topicnumber of file filename Help RTF error
The compiler ignores table formatting that is unsupported in Help. Reformat the entries as linear text if possible.

R2041 Jump contexLstring unresolved in topic topicnumber of f,le filename Help RTF error
The specified topic contains a context string that identifies a nonexistent topic. Check spelling, and that the desired topic is
included in the build.

R2043 Hotspot text cannot spread over paragraphs Help RTF error
A jump term spans two paragraphs. Remove the formatting from the paragraph mark.

R2045 Maximum number of tab stops reached in topic topicnumber of file filename Help RTF error
The limit of 32 tab stops has been exceeded in the specified topic. The default stops are used after the 32nd tab.

R2047 File filename not created Help RTF error
There are no topics to compile, or the build expression is false for all topics. There is no Help resource file created.

R2049 Context string text too long in topic topicnumber of file filename Help RTF error
Context string hidden text cannot exceed 64 characters. The string is ignored.

R2051 File filename is not a valid RTF topic file ' Help RTF error
The specified file is not an RTF file. Check that you have saved the topic as RTF from your word processor.

R2053 Font fontname in file filename not in RTF font table Help RTF error
A font not defined in t_he RTF header has been entered into the topic. The compiler uses the default system font.

R2055 File filename is not a usable RTF topic file Help RTF error
The specified file contains a valid RTF header, but the content is not RTF or is corrupted.

R2057 Unrecognized graphic format in topic topicnumber of file filename Help RTF error
The compiler supports only Windows bitmaps. Check that metafiles or Macintosh formats have not been used. The graphic is
ignored.

R2059 Context string identifier already defined in topic topicnumber of file filename Help RTF error
There is more than one context-string identifier footnote for the specified topic. The compiler uses the identifier defined in the
first # footnote.

R2061 Context string contextname already used in file filename Help RTF error
The specified context string was previously assigned to another topic. The compiler ignores the latter string and the topic has
no identifier.

R2063 Invalid context-string identifier for topic topicnumber of file filename Help RTF error
The context-string footnote contains nonalphanumeric characters or is null. The topic is not assigned an identifier.

R2065 Context string defined for index topic is unresolved Help RTF error
The index topic defined in the project file could not be found. The compiler uses the first topic in the build as the index.

R2067 Footnote text too long in topic topicnumber of file filename Help RTF error
Footnote text cannot exceed the limit of 1000 characters. The footnote is ignored.

R2069 Build tag footnote not at beginning of topic topicnumber of file filename Help RTF error
The specified topic contains a build tag footnote that is not the first character in the topic. The topic is not assigned a build
tag.

R2071 Footnote text missing in topic topicnumber of file filename
The specified topic contains a'footnote that has no characters.

Appendix A, Error messages

Help RTF error

379

R2073 Keyword string is null in topic topicnumber of file filename Help RTF error
A keyword footnote exists for the specified topic, but contains no characters.

R2075 Keyword string too long in topic topicnumber of file filename Help RTF error
The text in the keyword footnote in the specified topic exceeds the limit of 255 characters. The excess characters are
ignored.

R20n Keyword(s) defined without title in topic topicnumberof file filename Help RTF error
Keyword(s) have been defined for the specified topic, but the topic has no title assigned. Search Topics Found displays
Untitled Topic« for the topic.

R2079 Browse sequence string is null in topic topicnumber of file filename Help RTF error
The, browse-sequence footnote for the specified topic contains no sequence characters.

R2081 Browse sequence string too long in topic topicnumber of file filename Help RTF error
The browse-sequence footnote for the specified topic exceeds the limit of 128 characters. The sequence is ignored.

R2083 Missing sequence number in topic topicnumber of file filename Help RTF error
A browse-sequence number ends in a colon (:) for the specified topic. Remove the colon, or enter a "minor" sequence
number.

R2085 Sequence number already defined in topic topicnumber of file filename Help RTF error
There is already a browse-sequence footnote for the specified topic. The latter sequence is ignored.

R2087 Build tag too long Help RTF error
A build tag for the specified topic exceeds the maximum of 32 characters. The tag is ignored for the topic.

R2089 Title string null in topic topicnumber of file filename Help RTF error
The title footnote for the specified topic contains no characters. The topic is not assigned a title.

R2091 Title too long in topic topicnumber of file filename Help RTF error
The title for the specified topic exceeds the limit of 128 characters. The excess characters are ignored.

R2093 Title titlename in topic topicnumber of file filename used previously Help RTF error
The specified title has previously been assigned to another topic.

R2095 Title defined more than once in topic topicnumber of file filename Help RTF error
There is more than one title footnote in the specified topic. The compiler uses the first title string.

R2501 Using old key-phrase table Help RTF error
Maximum compression can only result by deleting the .PH file before each recompilation of the Help topics.

R2503 Out of memory during text compression Help RTF error
The compiler encountered a memory limitation during compression. Compilation continues with the Help resource file not
compressed. Unload any unneeded applications, device drivers, and memory-resident programs.

R2505 File environment error during text compression Help RTF error
The compiler has insufficient available file handles for compression. Compilation continues with the Help resource file not
compressed. Inc~ease the values for FILES= and BUFFERS= in your CONFIG.SYS file and reboot.

R2507 DOS file error during text compression Help RTF error
The compiler encountered a problem accessing a disk file during compression. Compilation continues with the Help resource
file not compressed.

R2509 Error during text compression Help RTF error
> One of the three compression errors~R2503, R2505, or R2507-has occurred. Compilation continues with the Help
resource file not compressed.

380 Borland C++ Users Guide

R2701 Internal error
R2703 Internal error
R2705 Internal error
R2707 Internal error
R2709 Internal error

Contact Borland Technical Support for clarification of the error.

Help RTF error
Help RTF error
Help RTF error
Help RTF error
Help RTF error

Record kind num found, expected theadr or Iheadr in module filename Librarian error
The librarian could not understand the header record of the object module being added to the library and has assumed that it
is an invalid module.

Record length len exceeds available buffer in module module Librarian error
This error occurs when the record length len exceeds the available buffer to load the buffer in module module. This occurs
when librarian runs out of dynamic memory.

Record type type found, expected theadr or Iheadr in module Librarian error
The librarian encountered an unexpected type type instead of the expected THEADR or LHEADER record in module module.

I

Redefinition of macro is not identical Compiler warning
Your source file redefined the named macro using text that was not exactly the same as the first definition of the macro. The
new text replaces the old.

Redefinition of target filename MAKE error
The named file occurs on the left side of more than one explicit rule.

Reference initialized with type1, needs Ivalue of type type2 Compiler error
A reference variable or parameter that is not declared constant must be initialized with an Ivalue of the appropriate type. This
error was issued either because the initializer wasn't an Ivalue or because its type didn't match the reference being initialized.

Reference member member in class without constructors Compiler error
A class that contains reference members must have at least one user-defined constructor; o'therwise, there would be no way
to initialize such members.

Reference member member initialized with a non-reference parameter Compiler error
An attempt has been made to bind a reference member to a parameter in a constructor. Because the parameter object
ceases to exist the moment the constructor returns, the reference member is then left referring to an undefined object. (This
is a common mistake that causes crashes and erratic program behavior.) I

Reference member member is not initialized Compiler error
References must always be initialized. A class member of reference type must have an initializer provided in all constructors
for that class. This means that you cannot depend on the compiler to generate constructors for such a class, because it has
no way of knowing how to initialize the references.

Reference member member needs a temporary for initialization Compiler error
You provided an initial value for a reference type that was not an Ivalue of the referenced type. This requires the compiler to
create a temporary for the initialization. Because there is no obvious place to store this temporary, the initialization is illegal.

Reference variable variable must be initialized Compiler error
This C++ object is declared as a reference but is not initialized. All references must be initialized at their point of declaration.

Register allocation failure Compiler error
This is a sign of some form of compiler error. Some expression in the indicated function was so complicated that the code
generator could not generate code for it. Try to simplify the offending function. Notify Borland Technical Support if the
compiler encounters this error.

Appendix A, Error messages 381

Relocation item exceeds 1 M8 DOS limit Linker error
The DOS executable file format doesn't support relocation items for locations exceeding 1 MS. Although DOS could never
load an image this big, DOS extenders can, and thus TLiNK supports generating images greater than DOS could load. Even
if the image is loaded with a DOS extender, the DOS executable file format is limited to describing relocation items in the first
1 MB of the image.

Relocation offset overflow Linker error
This error occurs only for 32-bit object modules and indicates a relocation (segment fixup) offset greater than the DOS limit of
64K.

Relocation table overflow Linker error
This error occurs only for 32-bit object modules. The file being linked contains more base fixups than the standard DOS
relocation table can hold (base fixups are created mostly by calls to far functions).

Resident Name Table is greater than 64K Linker warning
The maximum size of the Resident name table is 64K (in accordance with the industry-wide executable specification
standard). The linker continues with the link but ignores any subsequent Resident names encountered during linking.

Restarting compile using assembly Compiler warning
The compiler encountered an ASM with an accompanying -8 command-line option or #pragma inline statement. The
compile restarts using assembly language capabilities.

Results are safe in file filename Librarian warning
The librarian has successfully built the library into a temporary file, but cannot rename the file to the desired library name.
The temporary file will not be removed (so that the library can be preserved).

Rule line too long MAKE error
An implicit or explicit rule was longer than 4,096 characters.

Segment segment exceeds 64K Linker error
This message occurs if too much data is defined for a given data or code segment when TLiNK combines segments with the
same name from different source files.

Segment segment is in two groups: group1 and group2. Linker warning
The linker found conflicting claims by the two named groups. Usually, this happens only in assembly language programs. It
means that two modules assigned the segment to two different groups.

Self relative fixup overflowed in module module Linker warning
This message appears if a self-relative reference (usually a call) is made from one physical segment to another. It usually
happens only when employing assembler code, but can occur if you use the segment-naming options in the compiler. If the
reference is from one code segment to another, you are safe. If, however, the reference is from a code segment to a data
segment, you have probably made a mistake in some assembler code.

Size of identifier is unknown or zero Compiler error
This identifier was used in a context where its size was needed. For example, a struct tag might only be declared (with the
struct not defined yet), or an extern array might be declared wjthout a size. If so, it's illegal to have references to such an
item (like sizeof) or to dereference a pointer to this type. Rearrange your declaration so that the size of identifier is available.

sizeof may not be applied to a bit field Compiler error
sizeof returns the size of a data object in bytes, which does not apply to a bit field .

. sizeof may not be applied to a function Compiler error
sizeof can be applied only to data objects, not functions. You can request the size of a pointer toa function.

382 Borland C++ Users Guide

Size of the type is unknown or zero Compiler error
This type was used in a context where its size was needed. For example, a struct tag might only be declared (with the struct
not defined yet). If so, its illegal to have references to such an item (like sizeof) or to dereference a pointer to this type.
Rearrange your declarations so that the size of this type is available.

identifier specifies multiple or duplicate access Compiler error
A base class can be declared public or private, but not both. This access specifier can appear no more than once for a base
class.

Stack overflow Run-time error
The default stack size for Borland C++ programs is 5120 bytes. This should be enough for most programs, but those which
execute recursive functions or store a great deal of local data can overflow_ the stack. You will get this message only if you
have stack checking enabled. If you do get this message, you can try increasing the stack size or decreasing your program's
dependence on the stack. Change the stack size by altering the global variable _stklen. Try switching to a larger memory
model to fit the larger stack.

To decrease the amount of local data used by a function, look at the example below. The variable buffer has been declared
static and does not consume stack space like list does.

void anyfunction(void) {
static int buffer[2000]i
int list[2000]i

/* resides in the data segment */
/* resides on the stack */

There are two disadvantages to declaring local variables as static.

1. It now takes permanent space away from global variables and the heap. This is usually only a minor disadvantage.

,2. The function can no longer be reentrant. If the function is called rE;lcursively or asynchronously and it is important that each
call to the function have its own unique copy of the variable, you cannot make it static. This is because every time the
function is called, it will use the same exact memory space for the variable, rather than allocating new space for it on each
call. You could have a sharing problem if the function is trying to execute from within itself (recursively) or at the same time
as itself (asynchronously). For most DOS programs this is not a problem.

Statement missing; Compiler error
The compiler encountered an expression statement without a semicolon following it.

Storage class storage class is not allowed here Compiler error
The given storage class is n~t allowed here. Probably two storage classes were specified, and only one can be given.

String type not allowed with this operand MAKE error
You have tried to use an operand that is not allowed for comparing string types. Valid operands are ==, !=, <, >, <=, and >=. -

Structure passed by value Compiler warning
A structure was passed by value as an argument to a function without a prototype. It is a frequent programming mistake to
leave an address-of operator (&) off a structure when passing it as an argument. Because structures can be passed by value,
this omission is acceptable. This warning provides 'a way for the compiler to warn you of this mistake.

Structure required on left side of • or.* ' Compiler error
The left side of a dot (.) operator (or C++ dot-star operator) must evaluate to a structure type. In this case it did not.

Structure size too large Compiler error
Your source file declared a structure larger than 64K.

Appendix A, Error messages 383

Style of function definition is now obsolete
In C++jthis old C style of function definition is illegal:

int func(pl, p2J
int pI, p2;
{ ... }

Compiler warning

Subscripting missing] Compiler error
The compiler encountered a subscripting expression that was missing its closing bracket. This could be caused by a missing
or extra operator, or by mismatched parentheses.

Superfluous & with function Compiler warning
An address-of operator (&) is not needed with function name; any such operators are discarded.

Suspicious pointer conversion Compiler warning
The compiler encountered some conversion of a pointer that caused the pointer to point to a different type. You should use a
cast to suppress this warning if the conversion is proper. '

Switch selection expression must be of integral type Compiler error
The selection expression in parentheses in a switch statement must evaluate to an integral type (char, short, int, long,
enum). You might be able to use an explicit cast to satisfy this requirement. ' (

Switch statement missing (Compiler error
In a switch statement, the compiler found no left parenthesis after the switch keyword.

Switch statement missing) Compiler error
In a switch statement, the compiler found no right parenthesis after the test expression.

filename (linenum): Syntax error Linker error
The linker found a syntax error in the module definition file. The file name and line number tell you where the syntax error
occurred.

Table limit exceeded Linker error
One of linkers intern,!1 tables overflowed. This usually means that the programs being linked have exceeded the linker's
capacity for public symbols, external symbols, or for logical segment definitions. Each instance of a distinct segment name in
an object file counts as a logical segment; if two object files define this segment, then this results in two logical segments.

Target index of FIXUP is 0 in module module Linker error
This is a translator error.

Template argument must be a constant expression Compiler error
A non-type actual template class argument must be a constant expression (of the appropriate type); this includes constant
integral expressions, and addresses of objects or functions with external linkage or members.

Template class nesting too deep: 'class' Compiler error
The compiler imposes a certain limit on the level of template class nesting; this limit is usually exceeded only through a
recursive template class dependency. When this nesting limit is exceeded, the compiler issues this error message for all of
the nested template classes, which usually makes it easy to spot the recursion. This is always followed by the fatal error Qut
of memory.

384 Borland C++ User's Guide

For example, consider the following set of template classes:

template<class T> class A
{

friend class B<T*>i
}i

template<class T> class B
{

friend class A<T>i
}i

A<int> Xi

This code will be flagged with the following errors:

Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Error: Template class nesting too deep:
Fatal: Out of memory

'B<int * * * * *>'
' A<int * * * *>'
'B<int * * * *>'
'A<int * * *>'
'B<int * * *>'
'A<int * *>'
'B<int * *>'
'A<int *>'
'B<int *>'
'A<int>'

Template function argument argument not used in argument types Compiler error
The given argument was not used in the argument list of the function. The argument list of a template function must use all of
the template formal arguments; otherwise, there is no way to generate a template function instance based on actual
argument types.

Template functions may only have type-arguments Compiler error
A function template was declared with a non-type argument. This is not allowed with a template function because there is no
way to specify the value when calling it.

Templates can only be declared at file level Compiler error
Templates cannot be declared inside classes or functions; they are allowed only in the global scope (file level).

Templates must be classes or functions Compiler error
The declaration in a template declaration must specify either a classtype or a function.

Temporary used to initialize identifier Compiler warning
Temporary used for parameter number in call to function Compiler warning
Temporary used for parameter number Compiler warning
Temporary used for parameter parameter Compiler warning

In C++, a variable or parameter of reference type must be assigned a reference to an object of the same type. If the types do
not match, the actual value is aSSigned to a temporary of the correct type, and the address of the temporary is assigned to
the reference variable or parameter. The warning means that the reference variable or parameter does not refer to what you
expect, but to a temporary variable, otherwise unused.

Appendix A, Error messages 385

In the following example, function {requires a reference to an int, and c is a char: .

f (int&) i

char Ci

f (c) ;

Instead of calling {with the address of c, the compiler generates code equivalent to the C++ source code:

int x = C, f(X)i

Terminated by user
You canceled the link.

Linker error

The' ... ' handler must be last Compiler error
In a list of catch handlers, if the' ... ' handler is present, it must be the last handler in the list (that is, it cannot be followed by
any more catch handlers).

The combinations '+*' or '*+' are not allowed _ Librarian error
It is not legal to add and extract an object module from a library in one action. The action probably desired is a '+-'.

The constructor constructor is not allowed Compiler error
Constructors of the form X::(X) are not allowed. The correct way to write a copy constructor is X::(const X&).

The value for' identifier is not within the range of an int Compiler error
All enumerators must have values that can be represented as an integer. You attempted to assign a value that is out of the
range of an integer. In C++ if you need a constant of this value, use a const integer.

'this' can be used only within a member function Compiler error
In C++, this is a reserved word t~,~t can be used only within class member functions.

This initialization is only partly bracketed . , Compiler warning
When structures are initialized, braces can be used to mark the initialization of each member of the st'ructure. If a member
itself is anarray or structure, nested pairs of braces can be used. When some of the optional braces are omitted, the
compiler issu~s this warning.

Too few arguments in template class name template Compiler error
A template class name was missing actual values for some of its formal parameters.

Too few parameters in call Compiler error
. A call to a function with a prototype (via a function pointer) had too few arguments. Prototypes require that all parameters be
given.

Too few parameters in call to function Compiler error
A call to the named function (declared using a prototype) had too few arguments.

Too many commas on command·line Linker error
An invalid entry in the command-line was found.

Too many decimal points Compiler error
The compiler encountered a floating-point constant with more than one decimal point.

Too many default cases , Compiler error
The compiler encountered more than one default statement in a single switch.

Too many default libraries Compiler error
The linker can handle a maximum of 128 default libraries.

386 Borland C++ User's Guide

Too many error or warning messages Compiler error
A maximum of 255 errors and warnings can be set before the compiler stops.

Too many error or warning messages' Linker error
The number of messages reported by the compiler has exceeded its limit. This error indicates that TLiNK reached its limit.

Too many errors Linker error
The linker encountered more errors than the -E switch will permit.

Too many exponents Compiler error
. The compiler encountered more than one exponent in a floating-point constant.

Too many initializers Compiler error
The compiler encountered more initializers than were allowed by the declaration being initialized.

Too many LNAMEs Linker error
TLiNK has a limit of 256 LNAMES in a single .OBJ file.

Too many rules for target target MAKE error
MAKE can't determine which rules to follow when building a target because you've created too many rules for the target. For
example, the following makefile generates this error message:

abe.exe : a.obj
bee -e a.e

abe.exe : b.obj

abe.exe : e.obj
bee -e b.e e.e

Too many storage classes in declaration
A declaration can nev'er have more than one storage class.

Too many suffixes in ,SUFFIXES list
The limit of 255 allowable suffixes in the suffixes list has been exceeded.

Compiler error

MAKE error

Too many types in declaration Compiler error
A declaration can never have more than one of the basic types: char, int, float, double, struct, union, enum, or
typedef-name.

Too much global data defined in file Compiler error
The sum of the global data declara~ions exceeds 64K bytes. Check the declarations for any array that might be too large.
Also consider reorganizing the program or using far variables if all the declarations are needed.

Trying to derive a far class from the huge base base Compiler error
If a class is declared (or defaults to) huge, all derived classes must also be huge.

Trying to derive a far class from the near base base Compiler error
If a class is declared (or defaults to) near, all derived classes must also be near.

Trying to derive a huge class from the far base base , Compiler error
If a class is declared (or defaults to) far, all derived clas~es must also be far.

Trying to derive a huge class from the near base base Compiler error
If a class is declared (or defaults to) near, all derived classes must also be near.

Appendix A, Error messages 387

Trying to derive a near class from the far base base Compiler error
If a class is declared (or defaults to) far, all derived classes must also be far.

Trying to derive a near class from the huge base base Compiler error
If a class is declared (or defaults to) huge, all derived classes must also be huge.

Two consecutive dots Compiler error
Because an ellipsis contains three dots (...), and a decimal point or member selection operator uses one dot{.), two
consecutive dots cannot legally occur in a C program.

Two operands must evaluate to the same type Compiler error
The types of the expressions on both sides of the colon in the conditional expression operator (?:) must be the same, except
for the usual conversions like char to int, or float to double, or void* to a particular pointer. In this expression, the two sides
evaluate to different types that are not automatically converted. This might be an error or you might merely need to cast one
side to the type of the other. '

Type type is not a defined class with virtual functions Compiler error
A dynamic_cast was used with a pointer to a class type that is either undefined or doesn't have any virtual member functions.

Note on type-mismatch errors: When compiling C++ programs, the following type-mismatch error messages are always
preceded by another message that explains the exact reason for the type mismatch; this is usually "Cannot convert type1 to
type2' but the mismatch could also be due to many other reasons.

Type mismatch in default argument value Compiler error
Type mismatch in default value for parameter parameter Compiler error

The default parameter value given could not be converted to the type of the parameter. The first message is used when the
parameter was not given a name. See the previous note on type-mismatch errors.

Type mismatch in parameter number Compiler error
The function called, via a function pointer, was declared with a prototype; the given parameter number (counting left to right
from 1) could not be converted to the declared parameter type. See the previous note on type-mismatch errors.

Type mismatch in parameter number in call to function Compiler error
Your source file declared the named function with a prototype, and the given parameter number (counting left to right from 1)
could not be converted to the declared parameter type. See the previous note on type-mismatch errors.

Type mismatch in parameter parameter Compiler error
Your source. file declared the function called via a function pointer with a prototype, and the named parameter could not be
converted tothe declared parameter type. See the previous note on type-mismatch errors~

Type mismatch in parameter parameter in call to function Compiler error
Your source file declared the named function with a prototype, and the named parameter could not be converted to the
declared parameter type. See entry for Type mismatch in parameter parameter and the previous note on type-mismatch
errors.

Type mismatch in parameter parameter in template class name template Compiler error
Type mismatch in parameter number in template class name template Compiler error

The actual template argument value supplied for the given parameter did not exactly match the formal template parameter
type. See the previous note on type-mismatch errors.

Type mismatch in redeclaration of identifier - Compiler error
Your source file redeclared with a different type than was originally declared. This can occur if a function is called and
subsequently declared to return something other than an integer. If this has happened,you must declare the function before
the first call to it. See the previous note on type-mismatch errors.

388 Borland C++ Users Guide

Type name expected Compiler error
One of these errors has occurred:

• In declaring a file-level variable or a struct field, neither a type name nor a storage class was given.

• In declaring a typedef, no type for the name was supplied.

• In declaring a destructor for a C++ class, the destructor name was not a type name (it must be the same name as its
class).

• In supplying a C++ base class name, the name was not the name of a class.

Type qualifier identifier must be a struct or class name Compiler error
The C++ qualifier in the construction qual: : identifier is not the name of a struct or class.

Unable to create output file filename Compiler error
The work disk is full or write-protected or the output directory does not exist. If the disk is full, try deleting unneeded files and -
restarting the compilation. If the disk is write-protected, move the source files to a writable disk and restart the compilation.

Unable to create turboc.$ln Compiler error
The compiler cannot create the temporary file TURBOC.$LN because it cannot access the disk or the disk is full.

Unable to execute command: command MAKE error
A command failed to execute; this might be because the command file could not be found or was misspelled, because there
was no disk space left in the specified swap directory, because the swap directory does not exist, or (less likely) because the
command itself exists but has been corrupted.

Unable to execute command command
TLiNK or TASM cannot be found, or possibly the disk is bad.

Unable to open file filename
Unable to open filename

This occurs if the named file does not exist or is misspelled.

Compiler error

MAKE error
Linker error

Unable to open filename for output Librarian error
The librarian cannot open the specified file for output. This is usually due to lack of disk space for the target library, or a listing
-file.

Unable to open include file filename Compiler error
The compiler could not find the named file. This error can also be caused if an #include file included itself, or if you do not
have FILES set in CONFIG.SYS on your root directory (tryFILES=2 0). Check whether the named file exists.

Unable to open include file filename MAKE error
The compiler could not find the named file. This error can also be caused if an !include file included itself, or if you do not
have FILES set in CONFIG.SYS on your root dire,ctory (try FILES=20). Check whether the named file exists.

Unable to open input file filename Compiler error
This error occurs if the source file cannot be found. Check the spelling of the name and whether the file is on the proper disk -
or directory.

Unable to open makefile MAKE error
The current directory does not contain a file named MAKEFILE or MAKEFILE.MAK, or it does not contain the file you
specified with -f.

Unable to redirect input or output MAKE error
MAKE was unable to open the temporary files necessary to redirect input or output. If you are on a network, make sure you
have rights to the current directory.

Appendix A, Error messages 389

Unable to rename filename to filename Librarian error
The librarian builds a library into a temporary file and then renames the temporary file to the target library file name. If there is
an error, usually due to lack of disk space, this message is posted.

'\ Undefined label identifier Compiler error
The named label has a goto in the function, but no label definition.

Undefined structure identifier Compiler warning
The named structure was used in the source file, probably on a pointer to a structure, but had no definition in the source file.
This is probably caused by a misspelled structure name or a missing declaration. .

Undefined structure structure Compiler error
Your source file used the named structure on some line before where the error is indicated (probably on a pointer to a
structure) but had no definition for the structure. This is. probably caused by a misspelled structure name or a missing
declaration.

Undefined symbol identifier Compiler error
The named identifier has no declaration. This could be caused by a misspelling either at this point or at the declaration. This
could also be caused if there was an error in the declaration of the identifier.

Undefined symbol symbol Linker error
The named symbol is referenced in the given module but is not defined anywhere in the set of object files and libraries
included in the link. Check to make sure the symbol is spelled correctly. .

You will usually see this error from TLiNK for Borland C++ sy~bols if you did not properly match a symbol's declarations of
pascal and cdecltype in different source files, or if you have omitted the name of an .OBJ file your program needs. If you are
linking C++ code with C modules, you might have forgotten to wrap C external declarations in ext ern "C" { •.. }. You
might have a case mismatch between two symbols. See the Ie and Ic switches.

Unexpected} Compiler error
An extra right brace was encountered where none was expected. Check for a missing {.

Unexpected char X in command line Librarian error
The librarian encountered a syntactical error while parsing the command line.

Unexpected end of file MAKE error
The end of the makefile was reached without a temporary inline file having been closed.

Unexpected end of file in comment started on line number MAKE error
The source file ended in the middle of a comment. This is normally caused by a missing close of comment (*n.

Unexpected endof file in conditional started on lin~ line number Compiler error
The source file ended before the compiler (or MAKE) encountered an !endif. The !endif was either missing or misspelled.

Union cannot be a base type Compiler error
A union cannot be used as a base type for another class type.

Union cannot have a base type Compiler error
A union cannot be derived from any other class.

Union member member is of type class with constructor Compiler error
Union member member is of type class with destructor Compiler error
Union member member is of type class with operator= Compiler error

A union cannot contain members that are of type class with user-defined constructors, destructors, or operator=.

390 Borland C++ Users Guide

Unions cannot have virtual member functions Compiler error
A union cannot have virtual functions as its members ..

Unknown assembler instruction Compiler warning
The compiler encountered an inline assembly statement.

Unknown command line switch X ignored Librarian warning
A forward slash character W was encountered on the command line or in a response file without being followed by one of the
allowed options.

Unknown language, must be C or C++
In the C++ construction

Compiler error

extern "name" type func (/* ... * /) ;

the name given in quotes must be "c" or "C++"; other language names are not recognized. For example, you can declare an
external Pascal function without having the compiler rename it like this:

extern "e" int pascal func(/* ... */) ;

A C++ (possibly overloaded) function can be declared Pascal and allow the usual compiler renaming (to allow overloading)
like this:

extern int pascal func(/* ... */);

Unknown option -> option Linker error
A forward slash character (I), hyphen (-), or DOS switch character was encountered on the command line or in-a response
file without being followed by one of the allowed options. You might have used the wrong case to specify an option.

Unknown preprocessor directive: identifier Compiler error
The compiler encountered a # character at the beginning of a line, and the name following was not a legal directive name or
the rest of the directive was not well formed.

Unknown preprocessor statement MAKE error
A! character was encountered at the beginning of a line, and the statement name following was not error, undef, if, elif,
include, else, or end if.

Unreachable code Compiler warning
A break, continue, goto or return statement was not followed by a label or the end of a loop or function. The compiler
checks while, do and for loops with a constant test condition, and attempts to recognize loops that cannot fall through.

Unsupported option string Linker error
You have specified an invalid option to the linker.

Unterminated string or character constant Compiler error
The compiler found no terminating quote after the beginning of a string or character constant.

Use '> >' for nested templates instead of '»' Compiler warning
Whitespace is required to separate the closing ">" in a nested template name, but since it is a common mistake to leave out
the space, the compiler accepts a "»" with this warning.

Use. or -> to call function _ Compiler error
You tried to call a ·member function without giving an object.

Use. or -> to call member, or & to take its address Compiler error
A reference to a nonstatic class member without an object was encountered. Such a member must be used with an object, or
its address must be taken with the & operator.

Appendix A, Error messages 391

Use :: to take the address of a member function Compiler error
If f is a member function of class c, you take its address with the syntax &c::f. Note the use of the class type name, rather
than the name of an object, and the :: separating the class name from the function name. (Member function pointers are not
true pointer types, and do not refer to any particular instance of a class.)

Use Ie with TUNK to obtain debug information from library Librarian warning
The library was built with an extended dictionary and also includes debugging information. TUNK will not extract debugging
information if it links using an extended dictionary, so to obtain debugging information in an executable from this library, the
linker must be told to ignore the extended dictionary using the Ie switch. Note: The IDE linker does not support extended

.' dictionaries; therefore no settings need to be altered in the IDE.

Use of: and :: dependents for target target MAKE error
You have tried to use the target in both single and multiple description blocks (using both the: and :: operators). Examples:

filea: fileb
filea:: filee

Use qualified name to access nested type type Compiler warning
In older versions of the C++ specification, typedef and tag names declared inside classes were directly visible in the global'
scope. With the latest specification of C++, these names must be prefixed with a class:: qualifier if they are to be used
outside their class' scope. To allow older code to compile, whenever such a name is uniquely defined in one single class,
Borland C++ allows its usage without class:: and issues this warning.

User break Compiler error
You pressed Ctrl+Breakwhile compiling or linking in the IDE, thus aborting the process. (This is not an error, just a
confirmation.)

Value of type void is not allowed Compiler error
A value of type void is really not a value at all, and thus cannot appear in any context where an actual value is required.
Such contexts include the right side of an assignment, an argument of a function, and the controlling expression of an if, for,
or while statement.

VIRDEF Name Conflict for function Compiler error
The compiler must truncate mangled names to a certain length because of a name length . limit that is imposed by the linker.
This truncation might (in rare cases) cause two names to mangle to the same linker name. If these names happen to both be
VIRDEF names, the compiler issues this error message. The simplest workaround for this problem is to change the name of
function so that the conflict is avoided.

Variable identifier is initialized more than once Compiler error
This variable has more than one initialization. It is legal to declare a file level variable more than once, but it can have only
one initialization (even if two are the same).

'virtual' can only be used with member functions Compiler error
A data member has been declared with the virtual specifier; only member functions can be declared virtual.

Virtual function function1 conflicts with base class base Compiler error
The compiler encountered a virtual function that has the same argument types as a function in its base class, but the two
functions have different return types. This is illegal.

Virtual specified more than once Compiler error
The C++ reserved word virtual can appear only once in a member function declaration.

void & is not a valid type Compiler error
A reference always refers'to an object, but an object cannot have the type void. Thus the type void is not allowed.

392 Borland C++ Users Guide

Void functions may not return a value Compiler warning
Your source file declared the current function as returning void, but the compiler encountered a return statement with a
value. The value of the return statement will be ignored.

function was previously declared with the language language Compiler error
Only one language can be used with extern for a given function. This function has been declared with different languages in
different locations in the same module.

While statement missing (Compiler error
In a while statement, the compiler found no left parenthesis after the while keyword.

While statement missing) Compiler error
In a while statement, the compiler found no right parenthesis after the test expression.

This occurs if TLiNK could not write all of the data it attempted to write. This is almost certainly caused by the disk being full.

Write error on file filename MAKE error
MAKE couldn't open or write to the file specified in the makefile. Check to ensure that there's enough space left on your disk,
and that you have write access to the disk.

Wrong number of arguments in call of macro mac Compiler error
Your source file called the named macro with an incorrect number of arguments.

Appendix A, Error messages 393

394 Borland C++ Users Guide

A p p E N D x B

Borland Windows Custom Controls

Before reading this appendix you should be familiar with dialog box
controls and the Dialog editor. For a description of these topics, see
Chapter 15.

The Borland Windows Custom Controls (BWCC) library contains a custom
dialog class and a set of custom dialog controls (buttons, check boxes,
group shading boxes, and the like). BWCC adds to the visual impact of
your dialog boxes and optimizes their functionality.

Two of the online files included with Resource Workshop provide
additional information about BWCC:

• BWCCAPLRW provides technical information about the BWCC
application program interface.

• BWCCSTYL.RW provides some style suggestions for designing Borland
style dialog boxes.

Using the Borland custom dialog class

The custom dialog class, BORDLG, works on both a visual and a functional
level: .

• It improves the appearance of your dialog window by painting the
background with a brush that varies according to the target display
device. For screens of VGA and higher resolution, the background is a
fine grid of perpendicular white lines, giving the effect of 1/ chiseled
steel." For EGA and monochrome'screens, the background is white.

• It optimizes the drawing of dialog boxes by calling the custom control
drawing routines directly instead of waiting for Windows to paint the
controls. This eliminates the typically sluggish drawing of dialog boxes.

Appendix B, Borland Windows Custom Controls 395

To use the custom dialog class,

1. Open the dialog resource you want to convert.

2. Double-click the title bar of the dialog to display the Window Style
dialog box.

3. Enter "bordlg" as the Class and click OK.

Using Borland controls

396

Borland controls add a three-dimensional effect to your dialog boxes and
give them more visual impact. To the end-user, they appear to function in
the same manner as the standard Windows controls, although they include
several technical enhancements (described later).

The following figure shows a dialog box converted to BWCC. It uses
several Borland controls.

Figure B.1 Borland Borland
check boxes Dialog box with radio buttons

Borland controls

Background

-------------;.~Group shade

Borland
push buttons

The following list briefly describes each Borland control and shows its
corresponding tool icon. As with standard Windows controls, you can
insert Borland controls in your dialogs by picking them from the Tools
palette in the Dialog editor.

The description of each control includes its class. To see the class and other
settings of any of these controls, display the Generic Control Style dialog
box by holding down the etrl key and doub,le-clicking on the control.

Borland C++ Users Guide

Button and
check box
enchancements

Group shade

Horizontal dip

Vertical dip

Borland
push button:

Borland
radio button

Borland
checkbox

Borland
static text

A shaded rectangular box that groups other controls
visually. It can appear recessed into the dialog box or·
raised above its surface. Its class is BorShade.

A horizontal dividing line that gives the impression of
being etched into the surface of the dialog box. (You can
convert a dip to a bump that appears to be raised above the
surface of the dialog box.) Its class is BorShade.

Same as horizontal dip, except it's vertical. Its class is
BorShade.

A family of push buttons with symbols that have
high visual impact, plus an owner-draw option. The
Borland push buttons are larger than most standard
Windows push buttons. Their class is BorBtn.

A raised, diamond-shaped radio button. When
the button is clicked, a black diamond appears in its center
and the button shading reverses, giving the impression
that the button has been pushed down. There is also an
owner-draw option. Its class is BorRadio.

A raised check box that displays a check mark
instead of an "X." There is also an owner-draw option. Its
class is BorCheck.

A fixed text string used principally for labeling
parts of the dialog box. Its class is BorStatic.

The Borland push buttons, radio buttons, and check boxes have the
following functional enhancements over standard Windows controls:

• An additional level of parent window notification and control over
keyboard focus and tab movement. If you choose the Parent Notify
option in the control's style dialog box, the control sends the appropriate
messages from the following list at run time:

• BBN_SETFOCUS indicates to the parent window that the push button,
radio button, or check box has gained keyboard focus through an
action other than a mouse click.

• BBN_SETFOCUSMOUSE indicates to the parent window that the push
button, radio button, or check box has gained keyboard focus through
a mouse click.

• BBN_GOTATAB indicates to the parent window that the user has
pressed the Tab)<ey while the push button, radio button, or check box

Appendix B, Borland Windows Custom Controls 397

Using the BWCC
style dialog boxes

Borland Button
Style dialog box

398

has keyboard focus. The parent can intervene in the processing of the
keystroke by returning a nonzero value. .

• BBN_GOTABTAB indicates to the parent window that the user has
pressed Shift-Tab (back-tab) while the push button, radio button, or
check box has keyboard focus. The parent can intervene in the
processing of the keystroke by returning a nonzero value.

• An owner-draw option that allows the parent window to draw the push
button, radio button, or check box. Because your application handles .
drawing the control, it won't necessarily look like a Borland control, but
it will have the standard behavior of that class of control.

Four dialog boxes set the style of the BWCC controls:

• Borland Button Style
• Borland Radio Button Style
• Borland Check Box Style
• Borland Shade Style

To display one of the Style dialog boxes, double-click on the control whose
style you want to set.

Each has a control window for entering a caption and a control ID. The
button style, radio button style, and check box style dialog boxes have
Attributes options for Tab Stop, Disabled, Group, Visible, and Border, as
well as Parent Notify and Owner Draw (described earlier in this appendix).

The next four sections describe the features unique to each of the style
dialog boxes. '

This dialog box lets you choose from the three button types: Pushbutton,
Defpushbutton, and Bitmap.

Pushbutton and Defpushbutton
By default, Pushbutton is the selected option. A Defpushbutton has a bold
border to identify it to the end-user as the default button, which is executed
when the user presses the Enter key. (The one exception occurs when
keyboard focus is in an Edit Text control for which the Want Return flag

. has been set. See page 247 for a description of the Want Return flag.)

When you first place a Borland button in your dialog box, its text is Button'
and it takes the next available control ID. To change the button to one of the
standard Borland buttons, change the control ID to one of the preset values
in the following table: . ,

Borland C++ Users Guide

Table B.1
Predefined BWCC

button controls

The bitmap won't
display in the Dialog
editor until you close

the Bitmap Editor.

Table B.2 '
Bitmap offsets

10 name 10 value Type Image

IDOK 1 OK Green check mark
IDCANCEL 2 Cancel Red X
IDABORT 3 Abort Panic button
IDRETRY 4 Retry Slot machine
IDIGNORE 5 Ignore 55 mph speed-limit sign
IDYES 6 Yes Green check mark
IDNO 7 No Red circle and slash
IDHELP 998 Help Blue question mark

Bitmap
If you choose the Bitmap option, you can insert a bitmap image (based on
its control ID) into the button. To read in a bitmap:

1. Use the Button control to add the generic BWCC button to your dialog'
box. Note its control ID.

2. Switch to the Bitmap Editor and create a bitmap image. ,(See Chapter 19
for irlformation about creating bitmaps.)

3. In the Bitmap Editor, choose Resource I Rename to display the Rename
Resource dialog box and then do either of the following:

• In the New Name text box, enter an integer value that equals the
control ID of the button plus the appropriate offset from Table B.2 .

• Rename the bitmap and then assign it an identifier whose value
equals the control ID of the button plus the appropriate offset from
Table B.2. (Creating identifiers is described in Chapter 14.)

4. Close the Bitmap Editor.

5. Return to the Dialog Editor. If the bitmap doesn't immediately appear in
the BWCC button, resize the button. ,The bitmap should then appear.

Offset for Offset for
Button state VGAlhigher EGAImonochrome

Standard 1000 2000
Pressed 3000 4000
Keyboard focus 5000 6000

For example, to display the keyboard focus bitmap for a button whose
control ID is 276, enter 5276 for a VGA system or 6276 for an EGA system.

Appendix B, Borland Windows Custom Controls 399

Borland Radio
Button Style dialog
box '

Borland Check Box
Style dialog box

Borland Shade Style
dialog box

Borland Static Text
Style dialog box

400

This dialog box lists two button styles:

• Radio button. Highlighting and deselection don't happen automatically.
The application must call the CheckRadioButton function to send a
BM_SETCHECK message to highlight the selected button and deselect
the other buttons.

• Auto radio button. BWCC and Windows combine to handle highlighting
the selected button and d~selecting the other buttons. This is the default
option.

This dialog box lists four check box styles:

• Check box. The box is not checked automatically. The application must
call the CheckDlgButton function to send a BM_SETCHECK message to
check the selected box.

• Autocheck box. BWCC and Windows combine to handle checking the
selected box. This is the default option.

il3-state. The box is not checked automatically. The application must call
the CheckDlgButton function to send a BM_SETCHECK message to
check the selected box.

The button's three states are on, off, and "indeterminate," which is
displayed as a checkerboard pattern. The application determines what is
meant by "indeterminate."

• Auto 3-state. BWCC and Windows combine to handle checking the
selected box.

This dialog box sets the style for controls you add with any of these three
tools: Group Shade, Horizontal Dip, and Vertical Dip. Using the Shade
Style radio buttons, you can make the following conversions:

• Group Shade to Raised Shade. Group shades and raised shades are used to
enclose controls with related functions-like radio buttons and check
boxes. Group shades appear recessed below the surface of the dialog box;
raised shades appear raised above the surface.

• Horizontal Dip to Horizontal Bump, Vertical Dip to Vertical Bump. Dips are
intended to act as separators in the dialog box background or in raised
shades; bumps are intended as separators in recessed gray shade boxes.

Use this dialog box to enter the text and set attributes and control style for
Borland static text.

In addition to the standard attributes (Disabled, Group, and Visible), static
text has two additional attributes.

Borland C++ Users Guide

• When the Border option is checked, the static text is surrounded by a
standard Windows border that uses the current color for the Window
Frame (see the Windows Control Panel) .

• When the No Underline option is checked, an ampersand (&) appears as
a literal character, instead of underlining the next character.

The Control Style options are described in Table 15.12 on page 248. There is
one significant difference, however: all BWCC static text, including Simple
Text, uses the standard BWCC gray background. '

Modifying existing applications for BWCC

The sections that
follow describe these

. steps in greater
detail.

Loading BWCC

Using BWCC in C
and C++ programs

Resource Workshop lets you modify existing Windows applications with
Borland-style custom controls (3D buttons, dialog boxes with the" chiseled
steel" look, and so on). There are two steps to this process:

1. Modify your WIN.INI file to load the Borland Windows Custom
Control (BWCC) library each time you start Windows.

2. Edit the application in Resource Workshop to change user interface
features like dialog boxes, menus, icons, and so on.

The BWCC library, which provides support for Borland-style custom
controls, must be loaded before an application can use BWCC's features.

Edit the WIN.INI file (located in the Windows main directory) so that
Windows loads the file LOADBWCC.EXEinto memory at start up. (The
installation program puts LOADBWCC.EXE into the compiler's executable
file directory and adds this directory to your PATH.)

Add LOADBWCC.EXE to the beginning of the list of files that appears after
the "LOAD=" statement. It must appear first in the statement to ensure that
BWCC is loaded into memory before any modified applications are
executed,

For example, if the LOAD statement in your WIN.INI file is
LOAD=NWPOPUP . EXE AD. EXE, the statement must be changed to
LOAD=loadbwcc.exe NWPOPUP.EXE AD.EXE.

If you use the Borland C++ IDE, check BWCC when you create a project
target (see Chapter 2 for information on projects in the IDE). You'll also
need to add BWCCGetVersion () ; to WinMain. '

Appendix B, Borland Windows Custom Controls 401

Tips on editing
resources

402

If you don't use the IDE, you must do all of the following:

• Add a #include for BWCC.H to your .C or .CPP file.

• Add BWCC.LIB to your C or c++ IDE project, or insert it in the TLINK
Library area before IMPORT. LIB.

• Add BWCCGetVersion () ; to WinMain.

This section discusses considerations to keep in mind when editing
resources of existing applications ..

• Accelerators If you add an accelerator, make sure it returns the same ID
value as its corresponding menu command. If you don't, the accelerator
will either execute the wrong command or do nothing.

• Bitmaps, cursors, and icons You can modify existing bitmaps, cursors,
and icons. Don't delete bitmaps, cursors, or icons, and don't try to add
new ones. In most cases the application won't be able to use them.

• Dialog boxes You can reposition items ina dialog box and convert
controls to their Borland custom control counterparts. As you edit, be
sure not to change the type of control associated with each control ID
value. For example, if control ID 100 is a check box, don't change it to a
radio button, because the',application will still treat it as a check box.
In most cases you can remove controls that aren't directly tied to the
application's functionality. For example, you can usually remove a
caption, a static text item that has no effect on how the application works.
Don't remove an edit control; it does affect how the application works.
Don't add new controls; the application won't be able to use them.

• Menus With most applications, you can safely move commands within a
menu. Don't, however, move commands from one menu to another. (For
example,.don't move the Open command from the File menu to the Edit
menu.) If you do, the application might be unable to display context
sensitive Help or to check or uncheck the menu commands. Never
change the order of the menus in the menu bar. For example, if File is the
first menu, don't make it the second.

• String tables Use caution when editing existing string tables. Some
programs load the strings into buffers of fixed size, and adding text to an
existing string could cause the buffer to overflow. Don't add new strings;
the application won't be able to use them.

Borland C++ Users Guide

How they work

A p p E N D x c

Precompiled head,ers

Borland c++ can generate and subsequently use precompiled headers for
your projects. Precompiled headers can greatly speed up compilation times.

When compiling large C and c++ programs, the compiler can spend up to,
half of its time parsing header files. When the compiler parses a header file,
it enters declarations and definitions into its symbol table. If ten of your
source files include the same header file, this header file is parsed ten times,
producing the same symbol table every time.

Precompiled header files cut this proce~s short. During one compilation,
BCC.EXE stores an image of the symbol table on disk in a file called
BCDEF.CSM by default (BC32DEF.CSM for BCC32.EXE). (BCDEF.CSM is
stored in the same directory as the compiler.) Later, when the same source
file is recompiled (or another source file that includes the same header
files), the compiler reloads BCDEF.CSM from disk instead of parsing all the
header files again. Directly loading the symbol table from disk is over ten
times faster than parsing the text of the header files.

Precompiled headers are used only if the second compilation uses one or
more of the same header files, the same compiler options, defined macros
and so on, as the first compilation.

If, while compiling a source file, Borland c++ discovers that the first
#includes are identical to those of a previous compilation (of the same
source or a different source), it loads the binary image for those #includes
and parses the remaining #includes.

For a given module, either all or none of the precompiled headers are used:
if compilation of any included header file fails, the'precompiled header file
,isn't updated for that module.

Appendix C, Precompiled headers 403

Drawbacks
When using precompiled headers, BCDEF.CSM can become very big,
because it contains symbol table images for all sets of includes encountered
in your sourc~s. If you don't have sufficient disk space, you'll get a warning
saying the write failed because of the precompiled headers. To fix this, free
more disk space and retry the compile. For information on reducing the
size of the BCDEF.CSM file, see "Optimizing precompiled headers" on
page 405.

If you're using large macros in a makefile in addition to using precompiled
headers, there is a limit on the macro size: 4K for 16-bit applications and
16K for 32-bit applications.

If a header contains any code, it can't be precompiled. For example,
although C++ class definitions can appear in header files, you should
ensure that only inline member functions are defined in the header and
heed warnings such as "Functions containing for are not expanded inline".

Using precompiled headers

Setting file names

Caution!

404

You can control the use of precompiled headers in any of the following
ways:

• From within the IDE, using the Project Options dialog box. The IDE bases
the name of the precompiled header file on the project name, creating
PRO]ECT.CSM.

• From the command line, using the -H, -H=filename,-Hc, -H"filename"
and -Hu options (see page 61).

• From within your code, using the pragmas hdrfile and hdrstop (see
Chapter 5 in the Programmer's Guide).

The compiler uses just one file to store all precompiled headers. The default
file name is BCDEF.CSM. You can explicitly set the name with the
-H=filename command-line option or the #pragmahdrfile directive.

If you notice that your .CSM file is smaller than it should be, the compiler
might have run out of disk space when writing to the .CSM file. When this
happens, the compiler deletes the .CSM to make room for the .OBJ file, then
starts creating a new (and therefore shorter) .CSM file. If this happens, free
up some disk space before compiling.

Borland C++ Users Guide

Establishing
identity

Optimizing
precompiled
headers

The following conditions must be identical for a previously generated
precompiled header to be loaded for a subsequent compilation.

The second or later source file must:

• Have the same set of include files in the same order

• Have the same macros defined to identical values

• Use the same language (C or C++)

• Use header files with identical time stamps; these header files can be
included either directly or indirectly

In addition, you must compile the subsequent source file using the same
settings for the following options (for example, if you compiled the first file
with the small model, the second file must be compiled as small):

• Memory model, including SS != DS (-mx)

• Underscores on externs (-u)

• Maximum identifier length (-iL)

• Target DOS (default) or Windows (-W or -Wx)

• DOS overlay-compatible code (-V)

• Virtual table control (-Vx and -Vmx)

• Expand intrinsic functions inline (-Oi)

• Templates (-Jx)

• String literals in code segment (-dc, 16-bit only)

• Debugging information (-v, -vi, and -R)

• Far variables (-Fx)

• Generate word alignment (-a)

• Pascal calls (-p)
II Treat enums as integers (-b)

• Default char is unsigned (-K)

• Language compliance (-A)

• C++ compile (-P)

For Borland C++ to most efficiently compile using precompiled headers,
follow these rules:

• Arrange your header files in the same sequence in all source files.

• Put the largest header files first.

• Prime BCDEF:CSM with often-used initial sequences of header files.

Appendix C, Precompiled headers 405

406

ASOURCEC

BSOURCE.C

Revised
BSOURCEC

PREFIX.C

• Use #pragma hdrstop to terminate the list of header files at well-chosen
places. This lets you make the list of header files in different sources look
similar to the compiler. #pragma hdrstop is described in more detail in
Chapter 5 in the Programmer's Guide.

For example, given the two source files ASOURCE.C and BSOURCE.C,
both of which include windows.h and myhdr.h,

#include <windows.h>
#include "myhdr.h"
#include "xxx.h"
< ... >

#include "zz.h"
#include <string.h>
#include "rnyhdr.h"
#include <windows.h>
< ... >

you would rearrange the beginning of BSOURCE.C to:

#include <windows.h>
#include "myhdr.h"
#include "zz.h"
#include.<string.h>
< ... >

Note that windows.h and myhdr.h are in the same order in BSOURCE.C as
they are in ASOURCE.C. You could also make a new source called
PREFIX.C containing only the header files, like this:

#include <windows.h>
#include "myhdr.h"

If you compile PREFIX.C first (or insert a #pragmahdrstop in both
ASOURCE.C and BSOURCE.C after the #include "myhdr .h" statement) the
net effect is that after the initial compilation of PREFIX.C, both
ASOURCE.C and BSOURCE.C will be able to load the symbol table
produced by PREFIX.C. The compiler will then orily need to parse xxx.h for
ASOURCE.C and zz.h and string.h for BSOURCE.C.

Borland C++ Users Guide

A p p E N o x D

EasyWin is a feature of Borland C++ that lets you compile standard DOS
applications that use traditional UTTY style" input and output so they run
as true Windows programs. EasyWin does not require you to make any
changes to a DOS program in order to run it under Windows.

ConsoleD OS to Windows made easy

_lnitEasyWin()

To convert your console-based applications that use standard files or
iostream functions, check the EasyWin Target Type in TargetExpert in the
IDE. If you are using the command-line compiler, use the compiler switch
-w. Borland C++ notes that your program doesn't contain a WinMain
function (normally required for Windows applications) and links the
EasyWin library. When you run your program in Windows, a standard
window is created, and your program takes input and produces output for
that window exactly as if it were the standard screen.

Example C program: Example C++ program:

#include <stdio.h>
main ()
{

printf("Hello, world\n");
return 0;

#include <iostream.h>
main ()
{

cout « "Hello, world\n";
return 0;

The EasyWin window can be used any time input or output is requested
from or to a TTY device. This means that in addition to stdin and stdout,
the stderr, stdaux, and cerr udevices" are all connected to this window.

EasyWin's purpose is to cpnvert DOS applications to Windows programs,
quickly and easily. However, you might occasionally want to use EasyWin
from within a Utrue" Windows program. For example, you might want to

Appendix 0, Using EasyWin 407

You can find the
prototype for

_lnitEasyWin in
stdio.h and
iostream.h.

Added functions

See the Library
. Reference, Chapter
3, for a description of

the functions
available to EasyWin

programs.

408

add printf functions to your program code to help you debug your
Windows program.

To use EasyWin from within a Windows program, make a call to the
_In it Easy Win function before doing any standard input or output.

For example:
#include <windows.h>
#include <stdio.h>

#pragma argsused
int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevlnstance,

LPSTR lpszCmdLine, int cmdShow)

_InitEasyWin();

/* Normal windows setup */
printf("Hello, world\n");
return 0;

For your convenience, EasyWin also includes five additional functions that
let you specify the X and Y window coordinates for input and output, clear
the window or clear to the end of the current line:

clreol
clrscr·
gotoxy

(conio.h)
(conio.h)
(conio.h)

wherex
. wherey

(conio.h)
(conio.h)

These functions have the same names (and uses) as functions in conio.h
header file. Classes in constrea.h provide conio functionality for use with
C++ streams. See the Programmer's Guide, Chapter 6, for a complete discus
sion of constreams and iostreams.

The follovving routines are portable to EasyWin programs but are not avail
able in 16-bit Windows programs. They are provided to ease porting of
existing code into a Windows 16-bit application.

fgetchar (stdio.h) printf
getch (stdio.h) putch
getchar (stdio.h) putchar
getche (stdio.h) puts
gets (stdio.h) scanf
kbhit (conio.h) vprintf
perror (errno.h) vscanf

(stdio.h)
(conio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h) .

Borland C++ Users Guide

Index

+
AppExpert topics and 84
dialog boxes and 11

AppExpert topics and 84
dialog boxes and 11

80286 instructions
16-bit 61

80386 instructions
16-bit 61
32-bit 68

80486 instructions
16-bit 61
32-bit 68

-1 (generate 80186 code) 79
- + and + - (TUB action symbols) 174
-2 BCC option (80286 instructions) 61
-3 BCC option (80386 instructions) 61,68
-4 BCC option (80486 instructions) 61,68
-5 BCC option (Pentium instructions) 68
-* and *- (TLIB action symbols) 174
-, backup file symbol 216
32-bit

resol;lrces (Resource Workshop) 2,18
16-bit applications

creating 27
32-bit applications

creating 27
multithreads and 28

16-bit compiler
described 44

32-bit compiler
described 44

16-bit Compiler I Calling Convention options 62
32-bit Compiler I Calling Convention options 68
16-bit Compiler I Entry I Exit Code options 66
16-bit Compiler I Memory Model options 62
16-bit Compiler I Processor options 61
32-bit Compiler I Processor options 68
16-bit Compiler I Segment Names Code options 66
16-bit Compiler I Segment Names Data options 65
16-bit Compiler I Segment Names Far Data options

65

Index

16-bit DPMI programs
problems with 21

&, in menu command text 264
$* MAKE macro

compatibilty with NMAKE 179
-? MAKE option 177
* (TLIB action symbol) 174
+ (TUB action symbol) 174
- (TUB action symbol) 174
3-D controls

using in Resource Workshop 255
& MAKE command option 183
@ MAKE command option 183
32RTM.EXE 21
10 TLIB option (comment record) 173
80x86 processors

32-bit instructions 68
instructions 61

\a, right-align character in menus 264 {
$d MAKE macro

compatibility with NMAKE 179
"Out of Memory" error

32-bit tools and 21
IP TLINK option (pack code segments) 151
.RSP files

defined 46
\ t, tab character in menus 264

A
-a BCC.EXE option (align integers) 62, 68
-A BCC.EXE option (ANSI keywords) 59
-a MAKE option 178, 189
I A TLINK option (align pages) 149
la TLINK option (application type) 149
Absolute Align style, dialog boxes 224
Absolute grid option (dialog boxes) 233
ACBP field 151
Accelerator editor 271-279

Attribute pane 274-275
Command text box 276
Key Value mode 274, 276
Manual mode 276

409

Outline pane 273
starting 272
using with Menu editor 273

accelerators 197
adding 264, 275
aligning controls 238
ASCII keys 272
checking for duplicate identifiers 277
creating 272-277
debugging 277
defining 271
editing 275-277
flashing menu commands 277
identifiers 273, 277
item ID 273
right-aligning 264
sample project 277-279
searching for duplicates 277
selecting 275
tabbing 264
tips and restrictions 276, 402
virtual keys 272
Windows, predefined 276

active window pane, Bitmap editor 297
add (TUB action symbol) 174
Add to Project command 206
adding characters, font resource 327
adding identifiers 213-214
adding watch to Watch window 110
address, base 149
Advanced button

TargetExpert and 28
Airbrush Shape command 304
Airbrush tool 294

brush shape, choosing 304
patterns 305

Align command 237
Align Controls dialog box

accelerator keys 238
aligning controls 233
aligning selected areas (Bitmap editor) 306
aligning words and integers 62, 68
Alignment options (Edit Text Style dialog box) 246
Alignment palette 238
Allocate enums and ints (IDE option) 57
Alt+F716
Alt+FB 16

410

Alt+F943
Alt+FlO (SpeedMenus) 16
Alternate startup 27

COFx.OBJ 80
American National Standards Institute See ANSI
ampersand, in menu command text 264
ANSI

. compatible code 59
floating point conversion rules 58
language compliance (Borland C++,
implementation-specific), option 59

ANSI character set 247, 251
mapping fonts to 327

Append New Report option 134
AppExpert

+ and - with topics 84
application options 85
classes

adding 94
viewing 93

deleting classes from projects 100
files created 83
handlers

adding 96
deleting 97

importing classes 101
instance variable

adding 97
deleting 98

instance variables
deleting 97

moving classes from projects 100
ObjectWindows and 83
process described 83
rebuilding projects 99
renaming classes from projects 100
Resource Workshop and 212

AppExpert Application Generation Options dialog
box 84

AppExpert projects
renaming elements in 100

Application I Admin Options 87
Application I Advanced Options 86
Application I Basic Options 86
Application I Code Gen Control 87
Application options

AppExpert and 85

Borland C++ Users Guide

applications See also executable files
adding to projects 33
AppExpert

defaults 85
creating (AppExpert) 83
creating with AppExpert 84
existing, modifying for BWCC 401-402
passing arguments to 105

.APX files
AppExpert and Rescan 99
rebuilding 101

arguments
passing to program to debug 105
viewing passed 109

arguments variable list 69
Array command 239
ASCII keys (accelerators) 272
.ASM files

BCC and 45
assembly language

compiling 79
directory 55
inline routines 79
options

passing 81
removing 81

output files 81
assembly language, debugging 108
-AT.BCCEXE option (Borland C++ keywords) 59
AttrIbute pane (Accelerator editor) 274
Attribute pane (Menu editor) 259
attributes 151

syntax highlighting and 15
-AU BCC.EXE option (UNIX compliance) 60
Auto 3-state check box (BWCC) 400
Auto check box (BWCC) 400
Auto Check Box control 242
Auto radio button (BWCC) 400
Auto Radio Button control 242
Auto 3-state button control 242
.autodepend MAKE directive 188, 189
Autodependency information (IDE option) 59
AUTOEXECBAT

installation and 9
memory and 21

Automatic (IDE option)
register variables 58

Index

"
automatic dependenCies

information, disabling 59
automatic error tracking 16
Automatic far data (IDE option) 64
Automatic Scroll options (Edit Text Style dialog

box) 246
AUX Summary option 134

8
-b BCCEXE option (allocate whole word for

enums) 57
-B BCCEXE option (process assembler code) 79
-B MAKE option 177
/B TLINK32 option (base address) 149
background colors 290, 299
backup files 216
Backward compatibility options 81
base address 149
BBN_GOTABTAB message 398
BBN_ GOTATAB message 397
BBN_SETFOCUS message 397
BBN_SETFOCUSMOUSE message 397
BBS segment See segments
BC32DEF.CSM 61
BCC

macros, defining 56
BCC32.EXE See also BCC

BCCEXE and 44
options

turning off 45
TLINK and 146

BCCEXE See also BCC
BCC32.EXE and 44
command-line help for 45
option rules for 46
options

command-line view of 45
in files 45
overriding 45, 46
turning off 45

syntax of 44, 45
TLINK and 146
using 44

BCCONFIG. BCW 11~ 13
BCDEF.CSM 61, 403, 404
BCWDEF.DSW 13
BG in Colors palette 290

411

BGI
projects and 27

big attribute 151
Binary format

cursors 320
fonts 200, 325
icons 310

binding resources 199
Bitmap dialog control 397
Bitmap editor

active window pane 297
Airbrush tool 294
aligning selected areas 306
BG in Colors palette 290
brush shape 304
changing proportions of selected areas 307
color information (status line) 298
colors 298-303

bitmaps 299
icons 299

Colors palette, index 302
Ellipse tool

empty frame 296
filled frame 296

Eraser tool 293
FB in Colors palette 290
FG in Colors palette 290
Hand tool 297
line styles 306
Line tool 295
multiple views 297
options, setting global 307
Paint Can tool 294
Paintbrush tool 293
palette index 298
patterns 305
Pen tool 293
Pick Rectangle tool 292
pixel coordinates

cursors 321
status line 298

Rectangle tool
empty frame 296
filled frame 296

resizing selected areas 307
resource types edited 289
RGB values 301

412

setting 302
status line 298

Rounded Rectangle tool
empty frame 296
filled frame 296

Scissors tool 292
selecting tools 291
starting 250,289
status line 298
stretching selected areas 307
style selections 297
text 295, 303-304
Text tool 295
tool information (status line) 298
tools 292-297
Tools palette 290-297
windows 297
Zoom tool 292

bitmap offsets (BWCC) 399
bitmapped images

adding text 295
colors

background 290
foreground 289

erasing 293
fillirig with color 294
flood-fill problems 294
fonts, stored in 323-324
pixels 289
selecting irregular areas 292
selecting rectangular areas 292
style selections 297
viewing

multiple views 297
zoomed 297

zooming 292
bitmapped resources See also specific resource

type
fonts vs. bitmaps 324
memory, and 324
types 289

bitmaps 198
adding to BWCC buttons 399
.BMP file type 200
color options 299
multiple, as fonts 324
tips and restrictions 402

Borland C++ User's Guide

width, setting in font resource 328
BIX, JOIN BORLAND 3
black frame (dialog box control) 229
Black Frame (static control type) 249
black rectangle (dialog box control) 229
Black Rectangle (static control type) 249
blocks

aligning in Bitmap editor 306
resizing in Bitmap editor 307

BM_SETCHECK message (BWCC) 400
.BMP files 200
BN_CLICKED message 242
Boolean expression

condition for a breakpoint 119
Border (control attribute) 234
Border frame style, dialog boxes 224
borders See frames
BORDLG class 395
Borland

contacting 2
Borland Button Style dialog box 398
Borland C++

description of 1, 7
installing 7
old project files and 29
what's new in this version 1

Borland C++ 3.1
using 21

Borland C and C++ See C language
Borland check box dialog control 397
Borland Check Box Style dialog box 400
Borland check box tool 397
Borland extensions (IDE option) 59
Borland Pascal See Pascal language
Borland push button dialog control 397
Borland push button tool 397
Borland radio button dialog control 397
Borland Radio Button Style dialog box 400
Borland radio button tool 397
Borland Shade Style dialog box 400
Borland Static Text Style dialog box 400
Borland static text tool 397
Borland Windows Custom Controls See BWCC
BRC (resource tool driver) 161, 164

invoking 164
BRCC (Borland resource compiler) 161, 162

invoking 162

Index

Break Before options (menus) 262
Breakpoint (SpeedMenu) command 116
Breakpoint Properties dialog box 116
breakpoints 116-121, See also debugging; watch

expressions
changing 119
changing properties of 118
conditional 119
customizing display of 120
defined 116
deleting 116, 117
disabling 117
enabling 117
invalid 118
setting 116

after execution begins 119
in unopened file 118

Breakpoints window 116
Brief text editor '

editor shortcuts 14
emulating 14

Browse
new project and 26

Browser
activating 16
class definition and 16
fea tures in 16
filters in 17
SpeedBar 16
in the Windows IDE 16-20

Browser reference information in OBJs (IDE
option) 61

Browser reference information in OBJs option 16
browser symbols

list of 19
Browser windows, using 16
browsing

global symbols 18
in the Windows IDE 16-20

objects 17
symbols in code 20

Brush Shape comma~d 304
brush shapes, selector palette 297
bugs 103-105
building

options for 37

413

building projects
options for 36

BUILDSYM
and BP.SYM 142
creating .SYM files 142

BUILTINS.MAK
described 176
text of 176

bulletin board, Borland 3
bumps, vertical and horizontal (BWCC) 400
button controls 241

auto check boxes 242
auto radio buttons 242
auto 3-state check box 242
check boxes 242
default push buttons 242
group boxes 242
owner draw buttons 242
predefined control ID values (Windows) 242
push buttons 242
radio buttons 242
text alignment 242
3-state check box 242
user button 242

button controls (BWCC) 399
Button Style dialog box 241
buttons See also specific type

adding (SpeedBar) 12
Browser 16
changing for the Speedbar 12
customized 242
deleting (SpeedBar) 12
SpeedBar and 11

BWCC 395-402
Auto 3-state check box 400
Auto check box 400
Auto radio button 400
BBN_ GOTABTAB message· 398
BBN_GOTATAB message 397
BBN_SETFOCUS message 397
BBN_SETFOCUSMOUSE message 397
bitmaps

adding to buttons 399
offsets 399

BORDLG class 395
Borland Button Style dialog box 398
Borland Check Box Style dialog box 400

414

Borland Radio Button Style dialog box 400
Borland Shade Style dialog box 400
button controls 399
C language programs, using in 401
controls 396

Borland check box 397
Borland push button 397
Borland radio button 397
bumps, converting 400
dips, converting 400
Group Shade 397, 400
Horizontal Dip 397
static text 397
Vertical Dip 397

messages, buttons and check boxes 397
modifying existing applications 401-402
owner-draw option 398
projects and 27
3-state check box 400

BWCCAPI.RW 395
described 195

BWCCSTYL.RW 395
described 195

c
c++

errors 78
exception handling .71
inefficient code 78
obsolete code 78

C++ Options I C++ Compatibility options B9
C++ Options I Exception handling/RTTI options

71
C++ Options I Member Pointer options 69
C++ Options I Templates options 71
C++ Options I Virtual Tables options 70
-c BCC.EXE option (compile but don't link) 79
-C BCC.EXE option (nested co~ments) 59
.C files

compiling 45
-c MAKE option 178
Ic TLINK32 option (case sensitivity) 149
IC TLINK option (case sensitivity) 149
Ic TLINK option (case sensitivity) 149
C calling conventions 62, 68
COFx.OBJ 27

Borland C++ Users Guide

C language
#defines 211
escape sequences 284
header files 211

IC TLIB option (case sensitivity) 171, 172
Call Stack

menu command 108
window 108

calling conventions
__ cdecl 62, 68
__ fastcall 62, 68
__ pascal 62, 68
C 62, 68
fastca1l57
Pascal 62, 68
Register 57, 62, 68

Caption (control Style option) 234
Caption frame style, dialog boxes 224
captions

adding to controls 234, 235
adding to dialog boxes 223

cascading menus 257
Case options (Edit Text Style dialog box) 247
case sensitivity

TLIB option 171, 172
TLINK 149

module-definition files and 149
TLINK32149

CBS_DISABLENOSCROLL style 251
__ cdecl

command-line option 62, 68
__ cdecl calling convention 62, 68
__ cdecl statement 69
.CFG files See configuration files
CGA Resolution command (Icon editor) 311
changing

breakpoints 119
properties of breakpoints 118
variable values 113

Character options (fonts) 328
character sets

defining 326
mapping fonts to 327

character strings, user-defined resources 334
character underlining in menus 264 .
characters

adding to a font resource 327

Index

setting widths in font resource 328
check boxes 229, 242

BWCC 400
options 241

Check Dup Keys command (Accelerator editor)
277

Check Duplicates command (Menu editor) 266
CheckDlgButton function (BWCC) 400
Checked option (menus) 262
checkmarks

events and (ClassExpert) 97
CheckMenuItem function 262
CheckRadioButton function (BWCC) 400
child windows 223, See also controls

protecting client area 225
.CKB files

described 14
Class Library

projects and 27
Class List 124
Class List (WinSight) 124
classes

adding (ClassExpert) 94
ClassExpert and 93
deleting from AppExpert projects 100
importing from AppExpertprojects 101
moving from AppExpert projects 100
renaming 100
sharing objects 64
viewing 93

classes, DLLs and 169
classes arguments, passing by value 69
Classes pane (ClassExpert)

described 94
Class Expert

checkmarks in 97
classes

adding 94
viewing 93

creating document types 95
described 93
handlers

adding 96
deleting 97

instance variable
adding 97
deleting 98

415

instance variables
deleting 97

jumping to source 98
panes in 93
parts of 93
Resource Workshop and 98
source

viewing 98
clearing

breakpoints 116
click selection technique 229
client area (dialog boxes) 225
Clip Children style, dialog boxes 225
Clip Siblings style, dialog boxes 225
Clipboard

copying resources 207
code

inefficient (warnings for) 79
optimizing 72

code generation
16-bit results 44
32-bit results 44
command-line compiler options 57

code segment
group 66
naming and renaming 65, 66

, storing virtual tables in 64
CODE statement

module-definition files and 154
color

syntax highlighting and 15
text in editor 14

color options
Eraser tool 293
filled frame tools 296
Pen tool 291
Text tool 295

color palettes, customized 302, 308
coloring text 14
colors

Bitmap editor 298-303
background 290, 299
bitmaps 299

416

editing 302
foreground 289, 299
icons 299
inverted 311, 321

palette index 302
predefined 308
transparent 311, 321

cursors 321
icons 312

Colors palette 298
displaying 301
hiding 301
index 302
showing 301

.COMfiles
TLINK and 152

combining attribute 151
combo box (dialog box control) 229
Combo Box Style dialog box 250
combo boxes 250-251
COMDEFs

generating 59
command-line arguments

passing to programs 105
command-line compiler

described 44
macros, defining 56
options

emulate 80x87 (-f) 58
-f (emulate 80x87) 58

TLINK and 146
using 43

command-line options 79
placing in files 45

command-line tools
DOS boxes (from Windows) and 21
DPMIand20
MAKESWAP.EXE and 21
memory and 20
protected mode and 21
run-time manager and 21
using 20

command sets
using IDE 14

commands See also specific command
adding to menus 261
linking to accelerators 276
menu, accelerator keys 271
menu resource

accelerators 264
deleting 265

Borland C++ Users Guide

disabling 262
editing 261
enabling 262
graying 262
identifiers 264
right-aligning accelerators 264
tabs 264

pop-up 257
adding to menus 261

toggling 262
commands (MAKE)

rules for 183
comment records

removing from libraries 173
comments, in resource scripts 205
comments, nested 59
communal variables 59
Compact (IDE option)

memory models and 63
compilation See also compiler

rules for 44
Compile Now command 267
compile-time errors

common causes 104
defined 103

Compile via assembler command 79
compiled resource files 199
compiler

configuration files
overriding 45

default compile for files 45
file extensions and compiling 45
optimizations 72
options

defaults 45
IDE 44
turning off 45

using 43
Compiler I Code-generation options 57
Compiler I Compiler Output options 59
Compiler I Debugging options 60
Compiler I Defines options 56
Compiler I Floating Point options 58
compiler options

rules for 46
table of 46, 47

Compiler I Precompiled headers options 61

Index

Compiler I Source options 59
compilers

command line See command-line compiler
configuration files See configuration files
options See compiler options

compiling
IDE 43, 44
option rules 46
options

table of 47
compiling errors

finding in code 15
compiling resources 162
CompuServe, GO BORLAND 3
conditional

breakpoints 119
CONFIG.NT

installation and 9
CONFIG.5YS

files and buffers needed 9
configuration files

command-line compiler 45
overriding 45, 46
priority rules 46

overriding 45
TURBOC.CFG 45

configuration options 218
configuring

shortcut keys 14
the IDE 11
the IDE editor 14

constants
manifest See macros
viewing 204

constants, symbolic See identifiers
contents ofWINSPCTR.LOG 135
control class (dialog boxes), changing 235
control ID See also identifiers

predefined BWCC values, push buttons 399
predefined Windows values, push buttons 242

Control ID (control Style option) 234
Control menu (dialog boxes) 224
control statements, generating 255
Control Type options (Static Style dialog box) 248
controls 221, 226-253, See also specific control type

3-D
using in Resource Workshop 255

417

adding 231
adding captions to 234, 235
adding scroll bars 234
additional, selecting 230
aligning 237-239

with grid 233
assigning control ID 234
black frame 229
black rectangle 229
border 234
button style options 241
BWCC 227, 396

Borland check box 397
Borland push button 397
Borland radio button 397
Group Shade 397, 400
Horizontal Dip 397
static text397
Vertical Dip 397

canceling addition 231
changing size 232
check boxes 229
combo boxes 229
common attributes 234'
common Style options 234
coordinates, setting 232
custom 227, 229, 235, 251-253
defined 226
deleting from selected group 230
disabling 234
displaying Style dialog boxes 233 .
edit text 229
editing 233
group boxes 229
grouping 234, 236
height, specifyihg 232
horizontal scroll bars 228
list boxes 228
modifying 233
moving 232
push buttons 228
radio buttons 228
resizing 232, 240-241
scroll bars 243
selecting 229

with Tab key 230
setting order 239

418

setting tab order 236
show properties 252
spacing equally 238, 239
testing 253
text static 229
Tools palette 227
types 226-229

. vertical scroll bars 228
width, specifying 232
Windows 226

conventions
calling 62, 68

conversions
floating point, ANSI rules 58
pointers, suspicious 77

Convert OEM option (Edit Text Style dialog box)
247, 251

converting projects 29
converting projects to makefiles 29
coordinates, specifying, controls 232
copies (nodes)

font and 35
coprocessors See numeric coprocessors
Copy command 208
copying resources between projects 207
Cpp (preprocessor) See The online document

UTIL.DOC
.CPP files See also C++

compiling 45
creating dialog boxes 222
creating identifier files 211
.CSM files 403, 404

default names 404
disk space and 404
smaller than expected 404

Ctl3d.dll .
use in Resource Workshop 255

.CUR files 200, 320, 321
cursor

position of (displayed in status bar) 14
positioning to errors in code 15

cursors 198, 319-322
active area 321
Binary format 320
colors of 300-301
Colors palette 321
creating 319-321

Bor/and c++ User's Guide

.CUR file type 200
Edit Background Color command 300, 302
Edit Foreground Color command 300, 302
inverted colors 321
saving 320

as resource scripts 320
standalone .CUR file 321
tips and restrictions 402
transparent colors 321

cursors, Windows programs 319
CUSTCNTL.RW 252

described 195
custom classes 226, 395
Custom command 252
custom controls 227, 229, 235, 251-253, See also

controls
drawing options 255

Customize
SpeedBar and 12

Cut command (Project window) 208

o
-D BCC.EXE option (macro definitiC?ns) 56
-d BCC.EXE option (merge literal strings) 57
-D MAKE option 177
-d MAKE option 178
data, adding to user-defined resources 333
data elements
, inspecting 114

modifying value of 114
Data Inspector window 110, 114
data segments

group 65
naming and renaming 65
removing virtual tables from 64

DATA statement
module-definition files and 155

data types·
char 57
floating point See floating point
integers See integers

data types, hexstring 335
databases

rebuilding .APX files 101
date-time stamp

changing 177

Index

-dc BCC.EXE option (move string literals to code
segment) 64

Debug information in OBJs (IDE option) 61
Debug information in OBJs option 16, 105
debuggers

WinSpector and 133
debugging 103-122

accelerator tables 277
assembly language 108
breakpoints See breakpoints
command-line arguments 105
compiler options 60
DLLs121
external code 108
in hard mode 122
in soft mode 122
information 105

command-line compiler option 61
.EXE or .OBJ files 69
TLINK and 150

line numbers in .OBJ files 60
map files 150
member functions 107
menu resources 266
passing arguments to programs 105
restarting 109
TLINK and 153
watch expressions See watch expressions
WinSight and 123
WinSpector and 133

decompiling resources 200
default application

AppExpert 85
default assembler 80
Default for model (IDE option) 63
default push button (BWCC) 398
Default Push Button control 242
defaults

module-definition files and 159
options

turning off 45
#define directive

command-line compiler options 56
separating 57 '

Defines (IDE) 56
#defines 211

viewing 204

419

Defpushbutton option (BWCC) 398
Delete All Breakpoints command 117
Delete Breakpoint command 117
Delete command (Project window) 208
deleting

breakpoints 117
watch expressions 112

deleting identifiers 214
dependencies

changing in project tree 34
project manager and 26

DESCRIPTION statement
module-definition files and 155

Detail window (WinSight) 124
device driver files, Windows (.DRV) 200
Device Info push button (Icon Image Attributes

dialog box) 313
DF A used with Turbo Debugger 140
Diagnostic libraries

using in projects 28
dialog box styles 224
dialog boxes 197, See also specific dialog box

names
Absolute Align style 224
Absolute grid option 233
assigning custom classes 226, 395
attributes, setting 223-226
black frame controls 229
black rectangle controls 229
Border frame style 224
Borland Check Box Style 400
Borland Shade Style·400
Borland Static Text Style 400
Caption frame style 224
Caption style option 234
captions, adding 223
changing control class 235
check box controls 229
Child window style 223
client area 225
Clip Children style 225
Clip Siblings style 225
combo box controls 229
comparing 253 '
components (illustrated) 221
Control ID style option 234

420

controls 226-253
properties and 232
types 226-229

coordinates (illustrated) 233
creating 222
custom controls 229
defined 221
Dialog Frame frame style 224
dialog'styles 224
.DLG file type 200
edit text controls 229
editing 222
fonts 225
frame styles 224
grid options 233
group box controls 229
horizontal scroll bar controls 228
Horizontal Scroll style 224
iconic static controls 229
list box controls 228
Local Edit style 224
Maximize Box style 224
menus 225
Minimize Box style 224
Modal Frame style 225
modeless 225
moving 223

enabling 225
No Border frame style 224
No Idle Messages style 225
Overlapped window style 224
Popup window style 223

, position set by Windows 226
protecting sibling windows 225
push button controls 228
radio button controls 228
Relative grid option 233
resizing 223, 224
screen placement 224
Scroll Bar style option 234
selecting 223
specifying controls as groups 236
specifying controls as tab stops 235
Style (controls) 233
System Menu style 224
System Modal style 224
testing 253

Borland C++ Users Guide

text, user input 246
text static controls 229
Thick Frame style 224
tips and restrictions 402
vertical scroll bar controls 228
Vertical Scroll style 224
viewing two at the same time 253
Visible style 225

dialog boxes (illustrated)
Size Controls 240

dialog control class, changing 235
dialog controls See controls
Dialog editor

Alignment palette 222, 238
Caption window 222
customizing 254-255
display options 252, 254
modes 227
Parent Notify option 397
right mouse button for additional controls 231
Selection Border options 254
selection options 255
starting 221
status line 222

units of measurement 254
Tools palette 222
window components 222

Dialog Frame frame style, dialog boxes 224
Dialog Style options (Window Style dialog box)

224
dialog units 254

defined 223
dimmed

buttons on SpeedBar 11
dimming controls 234
dips, vertical and horizontal (BWCC) 400
directories

.ASM and .OBJ command-line options 55
include files 55
libraries 56

command-line option 55
Directories list box (Open Project dialog box) 202
Disabled (control attribute) 234
Disabled options (menus) 262
disabling controls 234
disabling menu commands 262
Discardable memory option 209

Index

disk space, running out of 404
display drivers, color support 299
display options in Dialog editor 252
Display Warnings options 103
.DLG files 200
DLL files 199

editing resources 217
installing 252

DLLs See also import libraries
classes and 169
debugging 121
export functions, hiding 170
import libraries and 167, 169
including in projects 28
mangled names and 169
packing code segments 151

document types
creating 95

document/view See also Object Windows
Programmer's Guide
creating document types 95

documentation
printing conventions 2

Don't Redraw (List Box style option) 245
DOS

applications, creating 27
boxes and command-line tools 21
overlays and the linker 151

DOS Overlay applications
creating 27

DPMI
command-line tools and 20

DPMIMEM21
Draft display option 254
Draw Custom Controls as Frames (Dialog editor

preferences) 255
Draw on Both Images option 308
drawing type options 254
drivers, color support 299
drop-down menus 257, See also menus

, drop shading 315
.DRV files 200
Duplicate command (Dialog editor) 231
Duplicate strings merged (IDE option) 57
Duplicate tool 231
dynamic-link libraries See DLLs

421

dynamic-link libraries
debugging 12.1

E
-E BCC.EXE option (assembler to use) 80
-e BCC.EXE option (EXE program name) 79
-e MAKE option 178
IE TLINK32 option (maximum errors) 149
IE TLINK option (extended dictionaries) 150
Ie TLINK option (ignore extended dictionaries)

150
IS TLINK option (stack size) 152
IE TLIB option (extended dictionary) 171 172
EasyWin 407 '
Edit as Text command 205
Edit Background Color command 300 302
Edit command 205 '
Edit Foreground Color command 300 302
Edit Icon button (Static Style dialog b~x)

starting Bitmap editor 250
Edit,Image command 312
Edit local options command 36
Edit pane (ClassExpert) .

described 94
Edit Source command 117
edit text (dialog box control) 229
edit text controls 246-247

allocating to local heap 224
in combo boxes 250
OEM text conversion 251

Edit Text Style dialog box 246
editing

accelerator tables 275-277
dialog boxes 222
identifiers 214
menus 260-265
user-defined resources 333-335

editor
ClassExpert and 94
cursor position with errors 15
Edit pane and (ClassExpert) 94
highlighting text" 14 "
syntax highlighting 14
text color 14

Editor Options command (Bit~ap editor) 307

422

editor windows
compiling 43
configuring 14

editors See also resource editors; text editor
(internal)

EGA/VGA Resolution command (Icon editor) 311
elements

syntax highlighting and 15
!elifMAKE directive 188, 190
Ellipse tool

empty frame 296
line styles 306

filled frame 296
colors 296
patterns 296, 305

!else MAKE directive 188, 190
EM_SETHANDLE/EM_GETHANDLE messages

224
embedded resources 203
emulation, 80x87 58
'Enabled option (menus) 262
EnableMenuItem function 262
enabling menu commands 262
!endif MAKE directive 188, 190

" Entry I Exit Code options 66-68
enumerations (enum)

assigning integers to 77
treating as integers 57

Environment Options dialog box 11
preferences 13

environment variables
DPMland21
MAKE and 178

Epsilon
editor shortcuts 14

Epsilon text editor
emulating 14

Eraser tool 293
color assignments 290, 299
color options 293

!error MAKE directive 188
described 189

error messages 339-393
defined 338
fatal 337
in string tables 281

Borland C++ Users Guide

errors 103-105
ANSI violations 77
compile-time (syntax) 103

common causes 104
finding in code 15
limiting number displayed 104
locating 103
logic 104
message window

tracking 16
reporting command-line compiler options 77
run-time (semantic)

common causes 104
types of 103

ES_READONL Y style 247
ES_WANTRETURN style 247
escape sequences, C type (String editor) 284
Evaluate Expression dialog box 110
Evaluate/Modify dialog box 112
evaluation order

command-line compiler options 46
event handlers

renaming 100
Event Log window 119
events

listed in ClassExpert 94
Events pane (ClassExpert)·

described 94
Exception Handling compiler option 71
.EXE files

debugging information 153
TLINK and 152

executable files 199, See also .EXE files
editing resources 217
identifiers 211
saving resources in

File Preferences dialog box 216
execution point 106

customizing display of 120
going to the 108

EXEMAP.EXE
using to generate .MAP files 141

EXEMAP used with WinSpector 141
EXETYPE statement

module-definition files and 155
expanded memory

TLINK and 153

Index

EXPORTS statement
module-definition files and 156

expressions 110-114
defined 110
evaluating 112
format of 113
logging 119
watching 110-112

Extend Select (List Box style option) 245
extended dictionary, TLIB and 171, 172
extended memory

command-line tools and 22
TLINK and 154

extension keywords, ANSI and 59
extensions

compiler and 45
file

supplied by TLINK 144
External Virtual Tables

command-line option 70
extract and remove (TLIB action) 174

F
Fl11
F943
-f287 (80287 hardware) 80
-f87 (8087 hardware) 80
-f BCC option (emulate 80x87) 58
-f MAKE option 177
If TLINK option (inhibit far optimizations) 150
Far Data Class (IDE option) 65
Far Data Group (IDE option) 65
Far Data Segment (IDE option) 65
Far Data Threshold (IDE option) 65
far variables 64
far virtual table segment

naming and renaming 66
Far Virtual Tables Class (IDE option) 66
Far Virtual Tables Segment (IDE option) 66
Fast floating point (IDE option) 58
fast huge pointers 64
__ fastcall

command-line option 62, 68
__ fastcall calling convention 62, 68
fastthis

command-line option 57
fastthis calling convention 57

423

FB in Colors palette 290
-Fc BCC option (generate COMDEFs) 59
features

Borland C++ and 1
Browser and 16
project manager and 25

-f£ BCC.EXE option (fast floating point) 58
-Ff BCC option (far global variables) 64
FG in Colors palette 290
file extensions

compiler and 45
File Manager

using with projects (nodes) 33
file types

choosing 201
.CUR320
.FNT 325
.ICO 310

FILELIST.TXT 9
files See also individual file-name extensions;

specific file types
adding to projects 33
AppExpert created 83
backing up 216
building with other programs 41
changing date-time stamp of 177
compiling 43, 81
compiling for C or C++ 45
copying in projects 34
extensions 144
external, storing user-defined resources in 335
header 211
identifier

adding to projects 211
C language 211

names, new user-defined resource 333
projects and 25
response 144, 174
syntax highlighting and 14
viewing from ClassExpert 94

filters, Windows Browser 17
finding a function 108
Fixed (list box Owner Drawing option) 244
Fixed memory option 209 .
fixed-width fonts 326
flashing menu items 277
floating menus 258

424

creating 265
testing 259

floating point
ANSI conversion rules 58
fast 58
libraries 58
math libraries and 147

. Floating Point display option 111
flood-fill problems, bitmapped images 294
-Fm BCC option (enable -F options) 80
.FNT files 200

creating new fonts 325
.FNT project file 325
.FON files 200
Font command 304
Font Size command 326, 328, 330
Font Version option (font headers) 329
fonts 198, 200, See also bitmapped images

assigning to text 304
attributes, setting 329,330
Attributes options 329
Average Width option 327
Binary format 325
bitmaps

multiple, storing 324
setting width 328

Break option 328
character, setting width 328
character options 328
character sets

defining 326
characters, adding 327
copyright information 329
Copyright option 329
creating 324-325
Default option 328
defined 323-324
describing 329
Device option 329
Face Name option 329
fixed-width 326
header, contents of 329-330
Height option 327
image, setting width 328
Last option 328
loading 326
mapping character sets to 327

Borland C++ Users Guide

Maximum Width option 327
nodes and 35
number of characters, setting 327
outline 323

" raster 323
size, setting 326-327
Source format 325
standalone .FNT file 325
Stretch Current Chars option 327
used in IDE windows 15
variable-width 326

creating 328
fonts, specifying, dialog boxes 225
foreground colors 289, 299
format specifiers

hexadecimal 284, 334
octal 334

format specifiers, expressions 113
formatting

expressions 113
watch expressions 111

Frame Style options (Window Style dialog box)
224

frames
dialog boxes 224
painting 296

-Fs BCC option (assume DS = SS) 80
full link map 80
function

finding a 108
functions

G

browsing through Windows 18
calling conventions 62, 68, 69
inline, precompiled headers and C++ 404
listed in ClassExpert 94
void, returning a value 77

/ Gx TLINK option 150
GDI (graphics device interface) in

WINSPCTR.LOG 139
General Protection Exception dialog box 120
general protection faults 120
Generate and use (IDE option)

precompiled headers 61
generate button 85
generate button, described 84

Index

Generate COMDEFs (IDE option) 59
Generate underscores (IDE option) 59
generating applications

AppExpert and 84
GEnie, BORLAND 3
global variables, word-aligning 62, 68
-gn BCC.EXE option (stop on n warnings) 77
GP faults 120
grabbing im,ages 297
graphics See bitmapped images
Graphics Device Interface (GDI) 331
Gray Frame (static control type) 249
Gray Rectangle (static control type) 249
Grayed option (menus) 262
graying controls 234
graying menu commands 262
grid

aligning controls 233
displaying 233
options 233

Grid command 233
Grid on Zoomed Images option 308
Group (control attribute) 234,236
group box (dialog box control) 229
Group Box control 242
group boxes

options 241
Group Shade dialog control 397
Group Shade tool 397
grouping controls 234
groups (dialog box controls) 236

contrasted with multiple selections 236

H
.H files 211
-H BCC.EXE option (precompiled headers) 61
-h BCC option (fast huge pointers) 64
-h MAKE option 177
Hand tool 297
handlers

adding (ClassExpert) 96
deleting (ClassExpert) 97

hard mode 122
hardware

needed for Borland C++ 7
Has Strings (List Box style option) 245

425

HC.EXE (Help compiler) See the Online Help file
for the IDE

-Hc (cache precompiled headers) 80
hdrfile pragma 404
hdrstop pragma 404, 406
Header command 329, 330
header files 211, See also include files

precompiled See precompiled headers
resources in 206
searching for 56

headers (fonts) 329-330
Help

getting 11
resource scripts 205

Help Break option 262
Help compiler See the Online Help file for the IDE
Hex Values (WinSight option) 128
hexadecimal format specifiers 284, 334
hexadecimal values

string tables 284
user-defined resources 335

hexstring data type 335
Hide Palette command 301
highlighting text 14
.HLP files

creating 84
Honor precision of member pointers (IDE options)

69
Horizontal Dip dialog control 397

I Horizontal Dip tool 397
horizontal lines See lines
horizontal scroll bar See also scroll bars
horizontal scroll bar (dialog box control) 228
Horizontal Scroll style, dialog boxes 224
hot keys See accelerators
hot spots

setting 321
.HPJ files

creating 84
Huge (IDE option)

memory models and 63
huge pointers 64

-i BCC.EXE option (identifier length) 59
-I BCC.EXE option (include files directory) 55
-I MAKE option 177

426

-i MAKE option 178
Ii TLINK option (uninitialized trailing segments)

150
.ICO files 200

creating new icons 310
.ICO project file 311
Icon Image Attributes dialog box 313
iconic static (dialog box control) 229
icons 198, See also bitmapped images

as static controls in dialog boxes 249
Binary format 310
CGA Resolution command 311
changing attributes 313
changing color palette 313
changing resolution 313
color options 299,312
colors of 300-301
creating 309-311, 314

three-dimensional 315
display device information 313
display options 312
drawing 314, 316

sample calculator 314
Edit Background Color command 300, 302
Edit Foreground Color command 300, 302
EGAIVGA Resolution command 311
erasing 315
.ICO file type 200
images

adding 312
inverted colors 311
multiple images

adding 312
sample project 314-317
Source format 310
standalone .leo file 311
tips and restrictions 402
transparent colors 311

icons, used in documentation 2
ID Source and Value fields 283-284
IDE

components of 10
configuring 11
figure of 10
macros, defining 56
menus in 10 -
other programs and 22

Borland C++ User's Guide

specifying multiple directories 56
starting 10
tools

adding 22
using 7
windows in 10

.IDE files
converting to makefiles (.MAK) 29

identifiers 210-215
accelerators 273
adding 213-214
adding automatically 212
automatic creation of (Resource Workshop) 212
changing values of 210
checking for duplicates

accelerators 277
menus 266

components 210
control IDs 234
deleting 214
deleting automatically 212
editing 214
executable files and compiled resources 211
files 211-213
icon static controls 249
listing 215
MAKEINTRESOURCE macro 211
MakeIntResource type 211
menu commands 262

adding to accelerators 276
menus 264
moving 214
placing in header files 206
renaming 214
significant length of 57,59
starting a resource editor 215
string tables 283, 284, 285-287
typecasting 210
undefining 81
underscore for 59
unique characters required 210
user-defined resources 332 .
viewing 204
virtual keys 272

Identifiers command 214
Identifiers dialog box

adding identifiers 214

Index

IDs See also identifiers
menu commands and accelerators 276
string tables 282, 283

!if MAKE directive 188, 190
Jifdef MAKE directive 188, 190
!ifndef MAKE directive 188, 190
.ignore MAKE directive 188
images See bitmapped images; zoomed images
IMPDEF (module definition files) 169-170
IMPDEF (module definition files), IMPLIB and 168
IMPLIB (import librarian) '167-168

defined 167
IMPDEF and 168
input to 167
switches 168

$IMPLIB See import libraries
IMPLIB program See import libraries
import libraries 167-168, See also DLLs
. customizing 168
IMPORTS statement

module-definition files and 157
Include debug information (option) 16
Include Debug Information option 105
#include directive

angle brackets «» and 56
quotes and 56

include files See also header files
command-line compiler options 56
directories 55
searching for 56
user-specified 55

!include MAKE directive 188
described 191

information
technical support 2

Initialized Data Class (IDE option) 65
Initialized Data Group (IDE option) 65
Initialized Data Segment (IDE option) 65
inline code See assembly language, inline routines
inspecting

data elements 114 -
Install Control Library command 252
installation 7

computer requirements for 7
disk compression and 8
steps for 8

427

instance variable
adding (Class Expert) 97
deleting (ClassExpert) 98

instance variables
renaming 100

instruction pointer register 108
integer IDs See identifiers
integers 62

aligned on word boundary 62
Integral Height (Combo Box style option) 251
Integral Height (List Box style option) 245
integrated debugger 103-122
Intel

ACBP field definition 151
internal text editor See text editor
Interpret Values (WinSight option) 128
intrinsic pragma 74
Invalid Breakpoints dialog box 118
Invert Menu Item option (Accelerator editor) 277
inverted colors

cursors 300-301, 321
icons 311

inverting menu items 277
Item ID (menus) 262, 264,266
Item Text (menus) 262
Item Type (menus) 262

J
-Jg BCCEXE options (template generation

options) 71
-jn BCCEXE option (stop on n errors) 77

K
-k BCCEXE option (standard stack frame) 60
-K BCCEXE option (unsigned characters) 57
-K MAKE option 177
KEEP MAKE option 179
Keep Selection option (Edit Text Style dialog box)

247
Kernighan And Ritchie

keywords 60
Key options (menus) 263
Key Value command (Accelerator editor) 276
Key Value mode (Accelerator editor) 274,276
keyboard accelerators See accelerators
keyboard focus in dialog boxes 235

428

Keymapper See also online Help
keys .

defining as accelerators 271
text editor 334

keywords

L

Borland C++ 59
Kernighan and Ritchie, using 60
UNIX, using 60

-1 (suppress linker option) 80
-1 BCCEXE option (linker options) 80
-L BCCEXE option (object code and library

directory) 55
/1 TLINK option (line numbers) 150
Large (IDE option)

memory models and 63
LB ADDSTRING message 245
LB=GETTEXT message 245, 251
LB INSERTSTRING message 245
LB - SETCOLUMNWIDTH message 245
LB - SETTABSTOPS message 245
LB=SETTEXT message 251
LBS_DISABLENOSCROLL style 245
.LIB files See also libraries

BCCand45
libname (TLIB option) 171
libraries 146, 147

command-line compiler options 56
directories 55

command-line option 55
DPMI applications and 147
dynamic link (DLL) See DLLs
files 55
floating point 58
import See import libraries
math 147
object files 167, 170

creating 174
page size 172
rebuilding 59
removing comment records 173
searching for 56
TLINK32 and 147
TLINK and 146

ignoring 151
Win32 applications and 147

Borland C++ Users Guide

Windows 3.x applications and 146
library contents 171
LIBRARY statement

module-definition files and 157
line break (static text) 248
line numbers See lines, numbering

displayed in status bar 14
Line numbers (IDE option) 60
Line options (Edit Text Style dialog box) 247
line patterns See patterns
line styles (Bitmap editor) 306

selector palette 297
Line tool 295, 322

styles 306
lines

freehand 293
jumping to 10
numbering

in object files 60
TLINK and 150

straight 295
link map, full 80
linked dependency

defined 176
linked resources 203
linking

command-line compiler and 146
command-line compiler options 80

, link map, creating 80
non-C modules and 151
options

table of 147
options, from command-line compiler 80

linking resources 163
list box (dialog box control) 228
List Box Style dialog box options 244
list boxes 244-245

in combo boxes 250
sorting items 251

ListClasses function 227
listfile (TLIB option) 171
lists

collapsing (-) 11
expanding (+) 11

Load on Call memory option 209
Load Symbol Table command 121
LOADBWCC.EXE 401

Index

Local Edit style, dialog boxes 224
Local Override

defined 36
Local Virtual Tables

command-line option 70
Locate Function menu command 108
logging expressions 119
logic errors, defined 104
logical color pah~ttes 313

M
-M BCC.EXE option (link map) 80
-m MAKE option 178
macros

defining 56
MAKE and 185

Main Window I Basic Options 88
Main Window I MDI Client 90
Main Window options

AppExpert and 88
Main Window I SDI Client 89
.MAKfiles

from project files 29
MAKE

auto dependency option 178
building all targets 177
building targets 179
BUILTINS.MAK 176

ignoring rule in 178
BUILTINS.MAK description 176
cache autodependency option 178
changing directory used by 178
command-line help for 175
command-line operators 184

&& (create temp file) 184
command modifiers 183

@ (inhibit output) 183
& (macro expansion) 184
- (process error codes) 184

command ,operators
list of 184

command prefixes 183
commands

rules for 183
commands for 181
compatibility with NMAKE 177

429

components
:: (multiple explicit rules) 181

conditional ~perators 191
debugging 184
default rules 176
default tasks for 176
defining macros for· 177
definition of 175
description of 175
directives 188

conditional rules for 190
!error 189
!include 191
list of 188
!message 191
.path.ext 192
.precious MAKE directive 192
.suffixes 192
iundef 193
using macros in 193

environment variables and 178
error checking controls 189
errors 337
expanded text and 185
explicit rules 180

multiple 181
syntax 180
without commands 182

files
displaying date-time stamp of 178

forcing a build 177
ignoring program exit status option 178
implicit rules 180

sytax 182
use with explicit rules 182

instructions for 179
KEEP option 179
linked dependency

defined 176
macro names

parentheses and 186
macros

430

$d (test macro) 193
command-line versus makefile 186
default (modifying) 187
default macros described 186
defining 185

definition 185
expanding 185
file-name 187
modifiers

list of 187
modifying 187
null 193
string substitution in 186
substitution in 186
syntax 185
using 186

MAKEFILE and 175
makefiles

creating 179
makefiles with different names 177
NMAKE compatibility and 178
NOKEEP option 179
null macros 193
onscreen display (turning off) 178
options

setting as defaults 178
options help 175
program exit status and 178
rules

format of 180
ignoring option 178

Share and 178
stopping 176
suppressing onscreen display 178
swapping out of memory 178
symbolic targets 179

rules for 180
syntax of 175
targets

multiple 179
targets and 179
temporary files

debugging with 184
keeping 177, 179

TOUCH.EXE and 177
turning on options as defaults 177
undefining macros 177
using makefiles with 177

MAKE directives 188-193
conditionals 190

MAKE options
getting help 177

Borland C++ User's Guide

list of 177
-N (NMAKE compatibility) 178
using 177

Make options 79
MAKEFILE

using 179
make files

commands in 181, 183
converting from project files 29
debugging 184
implicit rules and 182
KEEP option 179
line continuation in 181
NOKEEP option 179
specifying 177

MAKEINTRESOURCE macro 211
MakelntResource type 211
MAKEREXE

defined 175
memory and 178

MAKESWAP.EXE 21
mangled names, DLLs and 169
Manual mode (Accelerator editor) 276
Map File I Segments 150
map files 80

debugging 150
generated by TLINK 150

math coprocessors See numeric coprocessors
math libraries 147
Maximize Box style, dialog boxes 224
MDI Child/View options 90
MDI Child/View options I Basic Options 90
Medium (IDE option)

memory models and 63
member functions

debugging 107
member pointers, controlling 69
memory

32-bit command-line tools and 21
bitmapped resources, and 324
command-line tools and 20
effect on undo levels 216
options 209

menus 267
setting limits for tools 21

memory models
command-line options 62

Index

projects and 28
Memory Options command 209
menu bar See also menus
menu bar, line break 262
Menu Bar Break option (menus) 262
Menu Break option (menus) 262
Menu editor

Attribute pane 259
Break Before option 262
Checked option 262
Disabled option 262
editing menu items 261
Enabled option 262
Grayed option 262
Help Break option 262
Item ID option 262
Item Text option 262
Item Type option 262
Key option 263
Menu Bar Break option 262
Menu Break option 262
No Break option 262
Outline pane 259
setting Test Menu display 259
starting 258
Test Menu pane 259, 266
using with Accelerator editor 273
View as Pop-up command 259

menu items 258
adding 261
selecting 260

Menu I Track test menu 266
menu tracking (Resource Workshop)

turning off 266
menus 197, 257-270, See also SpeedMenus

accelerator keys 271 .
adding

accelerators 264
commands 261
pop-up commands 261
separators 261
statements 260
to dialog boxes 225

cascading 257
. checking for duplicate item IDs 266

columns 262
commands 258

431

linking to accelerators 27~
tabs 264

copying statements 264
creating 258
debugging 266
deleting pop-up commands 265 '
disabling commands 262
displaying as floating menus 259
displaying ID values 266
drop-down 257
editing 260-265

menu items 261
resource script 267

enabling commands 262
flashing 277
floating 258

creating 265
testing 259

graying commands 262
Help break in menu bar 262
identifiers 264
invert menu item 277
local

opening 10
memory options 267
moving statements 264
pop-up 257
resource script 267
separators 258
statements 259

deleting 265
test, displaying as pop-up ?59
testing 259, 266
tips and restrictions 402
toggling commands 262
underlining characters 264

!message MAKE directive 188
described 191

message queue section of WINSPCTR.LOG. 137
message text

editing 281
translating 281

Message Trace 124
Message Trace Options dialog box (WinSight) 128
Message window

display errors and warnings in 103
working with 15

432

message window
error tracking and 16

messages
debugging information on 123

messages (WinSight) 127
tracing 127
turning off tracing of 124

Messages I ANSI Violations options 77
Messages I General 79
Messages I General options 79
Messages I Inefficient C++ Coding 78
Messages I Inefficient C++ Coding options 78
Messages I Inefficient Coding 79
Messages I Inefficient Coding options 79
Messages I Obsolete C++ 78
Messages I Obsolete C++ options 78
Messages options 76
Messages I Options 128
Messages I Portability options 77
Messages I Potential C++ Errors 78
Messages I Potential C++ Errors options 78
Messages I Potential errors options 78
metafiles 331
Microsoft Resource Compiler

Resource Workshop, incompatibilities 235
Microsoft Windows See Windows
Microsoft Windows applications

code segments 151
Minimize Box style, dialog boxes 224
Modal Frame style, dialog boxes 225
modeless dialog boxes 225
modes (Dialog editor) 227

selection 229
test 253

modifying
breakpoints 119
value of data elements 114

module-definition files 154-159
case sensitivity and 149
CODE statement and 154
DATA statement and 155
defaults for 159
described 154
DESCRIPTION statement and 155
EXETYPE statement and 155
EXPORTS statement and 156

- IMPORTS statement and 157

Borland C++ Users Guide

LIBRARY statement and 157
NAME

missing 158
NAME statement and 158
SEGMENTS statement and 158
STACKSIZE statement and 159
STUB statement and 159
TLINK and 154
ITw TLINK option and 152

module definition files (.DEF)
example of 168, 169
IMPDEF and 168

module names, TLIB 173
modules section of WINSPCTR.LOG 138
monospaced fonts See fixed-width fonts
mouse

right button (Bitmap editor) 290
right button (Dialog editor) 231

Move resource dialog box (Resource Workshop)
207

Moveable memory option 209
moving dialog boxes 223
Multi Column (List Box style option) 245
Multi-Save (File Preferences dialog box) 216,218
multiple inheritance

member pointers and 69
multiple listings

command-line compiler options
#define 57
include and library 56
macro definition 57

Multiple Select (List Box style option) 245
multithread

using in projects 28
-ffiX options (memory models) 63

N
-n BCC.EXE option (.OB} and .ASM directory) 55
-N BCC.EXE option (stack overflow logic) 60
-N MAKE option 177
-n MAKE option 178
In TLINK option (ignore default libraries) 151
NAME statement

module-definition files and 158
nested comments 59
New button (Identifiers dialog box) 214
New command (Resource menu) 206

Index

New Edit Pop-up command (Menu editor) 261
New File Pop-up command (Menu editor) 261
New File Resource dialog box

cursors 320
fonts 325
icons 310

New Help Pop-up command (Menu editor) 261
New Image command 312
New Item command (String editor) 286 '
New Menu Item command (Menu editor) 261
New Pop-up command (Menu editor) 261
New Project command 201
New Resource Type dialog box 332
New Separator command (Menu editor) 261
NMAKE (Microsoft)

using MAKE instead 177
No Border frame style, dialog boxes 224
No Break option (menus) 262
No Character Underline option (Static Style dialog

box) 248
No floating point (IDE option) 58
No Idle Messages style, dialog boxes 225
.noautodepend MAKE directive 188
node attributes

editing 32
nodes

adding 33
adding with drag and drop 33
build options and 36
copying in projects 34
deleting 33
dependent 28
described 26
editing 32
figure of 26
light font (copy) 35
moving 34
options and 40
Style Sheets and 32, 37
translating 31
viewing options for 40

.noIgnore MAKE directive 188
NOKEEP MAKE option 179
Nondiscardable memory option 209
nonstandard resources See user-defined resources
Normal display option 254
.nosilent MAKE directive 188

433

.noswap MAKE directive 188
Not Owner Draw (list box Owner Drawing option)

244
NOT WS_ VISIBLE style 234
Notepad editor (Windows) 205
Notify (List Box style option) 245
NT

Resource Workshop and 218
number of passes

for a breakpoint 119
numbers See also floating point; integers
numeric coprocessors

emulating 58
generating code for 58

numeric IDs See identifiers
numeric values, notation for, user-defined resources

334

o
-0 BCC.EXE option (object files) 80
/0 TLINK option (overlays) 151
.OBJ files

BCCand 45
COFx.OBJ 27
compiling 80
directories 55
line numbers in 60

.OBJ files (object files)
libraries

advantages of using 170
creating 174
TUB and 167

object
hierarchy

viewing an 17
view details of 18

object library contents 171
ObjectBrowser See Browser
objects

browsing
in the Windows IDE 17

ObjectWindows
applications

AppExpert 83
classes

viewing 93

434

creating applications using 84
IDE projects and 27

OBJXREF See the online document UTILS.TXT
octal format specifiers 334
OEM character set 247, 251
online files

BWCCAPI.RW 195, 395
BWCCSTYL.RW 195, 395
CUSTCNTL.RW 195, 252
RWINI.RW 195

online Help See Help
starting 11

Open Project command 202
operations, precedence 171
operations (TLIB option) 171
optimiza tions

command-line compiler options 72
IDE 72
precompiled headers 405
registers, usage 58

Optimizations options 72
Optimizations I Size options 73
Optimizations I Specific options 72
Optimizations I Speed options 74
optimizing (Windows) 72-74
options See also specific option name

backward compatibility 81
BCC.EXE 44
C++ template generation

command-line option 71
compiler

IDE 44
table of 46, 47

creating collections of 38
files and 36
hierarchy of (in projects) 40
IDE editor 14
overriding 36, 46
placing in files 45
project

changing 29
projects and 36
setting for projects 36
TLINK

table of 147
using collections of 37
viewing for nodes 40

Borland C++ Users Guide

Options I Preferences (Resource Workshop)
Ctl3d.dll 255

Options I Save 13
Options I Show Properties (Resource Workshop)

232
using 252

Options I Style Sheets 38
Options I Tools 22,41
Out-of-line inline functions (IDE options) 60
outline fonts 323
Outline pane (Accelerator editor) 273
Outline pane (Menu editor) 259
outliner (AppExpert)

described 84
outlines See frames
output

watching program 106
Overlapped windows, dialog boxes 224
overlays 82

the linker and 151
Owner Draw button control 242
owner-draw option (BWCC) 398
Owner Drawing options

p

combo boxes 250
list boxes 244

-p- BCC.EXE option C _stdcall conventions) 62
-P BCC.EXE option (C++ and C compilation) 81
-p BCC.EXE option (Pascal calling conventions)

62,68
-p MAKE option 178
IP TLIB option (page size) 172
page size (libraries) 172
pages, aligning 149
Paint Can tool 294

flood-fill problems 294
Paint editor

tools See specific tool names
Paintbrush tOQI 293

. brush shape, choosing 304
patterns 305

palette index 298
palettes

Alignment 238
Colors 298

Index

, index 302
Tools (Bitmap editor) 291

. Tools (Dialog editor) 228
panes See window panes
parameters

passing to programs for debugging 105
__ pascal

command-line option 62, 68
__ pascal calling convention 62, 68
Pascal calling conventions 62, 68
pass counts 119
Pass Keyboard Input (List Box style option) 245
Password option (Edit Text Style dialog box) 247 .
Paste command (Project window) 208
.path.ext MAKE directive 188

described 192
Pattern command 305
patterns

Airbrush tool 294
filled frame tools 296
Paintbrush tool 293
selecting 305
selector palette 297

Pause Program command 109
-pc BCC32.EXE option (C conventions) 68
-pc BCC.EXE option (C conventions) 62
.PDL files

projects and 39
Pen Style command 306
Pen tool 293

color options 291
line styles 306

Pentium instructions
32-bit 68

Pick Rectangle tool 292
PIF files

command-line tools and 21
pixel coordinates

Bitmap editor status line 298
cursors 321

pixels 289
unit of measure in Dialog editor 254

-po BCC.EXE option (fastthis calling convention)
57

pointers
fast huge 64
suspicious conversion 77

435

virtual table
32-bit 64

pop-up commands 257
pop-up menus 257
popup menus See SpeedMenus
POPUP statement

deleting 265
Popup windows, dialog boxes 223
porting

options for 59
postmortem dump option 134
-pr BCC.EXE option L _fastcall calling

convention) 62, 68
, #pragma hdrfile 404

#pragma hdrstop 404, 406
#pragma

warn 77
precedence

command-line compiler options 46
precedence, TLIB commands 173
.precious MAKE directive 188

described 192
precompiled headers 403-406

command-line options 61
controlling 404
drawbacks 404
inline member functions and 404
optimizing use of 405
rules for 405

predefined colors 308
preferences

setting 13
preferences (Dialog editor)

Draw Custom Controls as Frames 255
Drawing Type 254
Generate CONTROL Statements 255
Selection Border 254
Selection Options 255
Status Line Units 254

preferences (File menu)
Multi-Save 218

Preferences command (Dialog editor) 254
preferences dialog box 135
Preload memory option 209
printing conventions (documentation) 2
.PRJ files See also projects

converting to .IDE files 29

436

procedures See functions
program functions See functions
programs See executable files

adding to Borland C++ 41
adding to IDE 42
adding to projects 33
multi-source See projects
passing arguments to 105
running from the IDE 22

Project I Build all 30, 44
Project I Compile 31, 43
Project I Generate Makefile 29
Project I Make all 43
project manager

defined 25
dependent nodes and 28
features of 25
installing translators 41
nodes

adding 33
drag and drop 33

using 25-42
Project I New 26
Project I New target 33
project node

defined 26
project options

chaging 36
changing 36

project tree
changing nodes in 28
display of 29
editing 31, 34
figure of 26

project view
changing 29

Project window 202-204
project window

figure of 26
Project window (Resource Workshop)

contents 203
'display options 203-204
resource preview and 203
resources, selecting 204

projects
adding files to 33
adding nodes to 33

Borland C++ Users Guide

adding programs to 42
adding resources 205-207
building 30, 44

described 25
building parts of 30
converting PRJ to IDE 29
converting to makefiles 29
copying resources between 207
creating 26-28, 201
creating (multiple targets) 28
deleting AppExpert classes from 100
e~bedded resources, adding 206
file types, choosing 201
files and 25
fonts and nodes 35
importing AppExpert classes from 101
linked resources, adding 206
management process 25
managing 25-42
moving AppExpert classes from 100
multiple targets and 28
opening 202
options

changing 29
hierarchy arid 40

options and 36
renaming AppExpert classes from 100
sharing Style Sheets and 39
syntax highlighting for 14
targets anq. 33, 34
targets in 26
user-defined resources, adding 332

prompts, in string tables 281
properties

controls
editing 252

protected mode
command-line tools and 20
program problems and 21

Pure memory option 209
push buttons 228, 242

BWCC398
options 241
predefined control IDs (BWCC) 399
predefined control IDs (Windows) 242

Put strings in. code segments (IDE option) 64

Index

Q
-q MAKE option 178

R
-R BCC.EXE option (include browser information)

61
-r BeC option (register variables) 58
-r MAKE option 178

BUILTINS.MAK and 176
radio buttons 228, 242

BWeC400
options 241

range of data elements displayed, changing 115
raster fonts 323
RC 161
.RC files 199
RC_INVOKED 162
.RC files 161
RCDATA resource type 335
rcdata resources 198
-rd compiler option 58
Read Only option (Edit Text Style dialog box) 247
real memory

command-line tools and 22
rebuilding libraries 59
Rectangle tool

empty frame 296
line styles 306

filled frame 296
colors 296
patterns 296, 305

redo levels (File Preferences dialog box) 216
redoing 216
Register calling conventions 57, 62, 68
Register keyword (IDE option) 58
register section in log file 137
register values 115
registers I

variables
explicit 58
keyword 58
suppressed 58
toggle 58

Registers window 115
registration (product)

by phone 2

437

regular expressions
Browser and 19

Relative grid option (dialog boxes) 233
remove (TUB action) 174
Rename command 208
renaming

resources 208
Repeat Count option 111
replace (TUB action) 174
.RES files 199

identifiers 211
saving resources in

File Preferences dialog box 216
.RES files 161
Rescan

using 99
resetting a program 109
resizing dialog boxes 223
resizing selected areas (Bitmap editor) 307
resource compiler files 199
resource editors See also specific editors

Accelerator editor 271-279
Cursor editor 319-322
graphics-oriented 205
starting with Identifiers dialog box 215
String editor 281-287

resource file types
choosing 201

resource IDs 210
Resource I Move 207
resource preview (Resource Workshop) 203
resource script (.RC) files 161, 199
resource scripts

comments in 205
cursors

saving as 320
dialogs 255
format specifiers 284
language 205
menus 267
string table 285
user-defined resources, creating 334

Resource Workshop
AppExpert and 98
changes with AppExpert and 99
ClassExpert and 99
fea tures 195

438

installing 7
Microsoft Resource Compiler, incompatibilities
235
starting from the IDE 98, 99

resources 161, 197-199,201-219, See also specific
types
accelerators 271-279
adding to project 205-207
binding 199
compiling 162, 199
copying between projects 207
creating, new types 332
cutting 208
decompiling 200
default names 210
defined 197
deleting 208
display options 203-204
editing in executable and DLL files 217
embedded 203
embedding in project 206
fonts vs. bitmaps 324
identifiers 210-215
linked 203
linking 163
linking to project 206
loading 204
memory options 209

table of 209,212
menus 257-270
moving from project 207
NT and 218
'placing in header files 206
RCDATA335
relationship to program code 197
removing from project 208
renaming 208
saving 216

File Preferences dialog 218
selecting 204
types 197-199
user-defined 331-335

adding to project 332
metafiles and 331

.VBX controls 232
response files

defined for BCC.EXE 45

Borland C++ User's Guide

defined for TLINK 145
MAKE and 185
overriding 46
TLIB 171
TLINK and 145

return character (static text) 248
RGB values 301

setting 302
status line 298

right-align character, menus 264
right mouse button

Bitmap editor 290
Dialog editor 231

RLINK 163
invoking 163

RLINK.DLL
defined 143

RLINK.EXE
defined 143

.RLK command file 164
Rounded Rectangle tool

empty frame 296
line styles 306

filled frame 296
colors 296
patterns 296, 305

.RTF files
creating 84

RTM environment variable 21
RTM.EXE21
Run Arguments option 105
run-time

errors
causes of 104
defined 104

run-time font files 200
run-time manager 21

controlling the memory used by 21
options and 22
setting memory 22

run-time node
defined 26

Run to Cursor menu command 108
running other programs 22
Runtime libraries

using in projects 27

Index

RWINI.RW'
described 195

RWS_Icon section (WORKSHOP.INI) 294
RWS_OwnFloodFill (WORKSHOP.INI) 294

s
. -S BCC.EXE option (produce .ASM but don't

assemble) 81
-S MAKE option 178
-s MAKE option 1.78
sample projects

accelerators 277-279
menus 268-270

Save with Default Device Colors option 302, 308
saving

IDE windows and 13
resources 216

Scissors tool 292
screen drivers, color support 299
scripts See resource scripts
Scroll Bar (control Style option) 234
Scroll Bar Always (List Box style option) 245
scroll bar options 244
Scroll Bar options (Edit Text Style dialog box) 246
Scroll Bar Style dialog box 243
scroll bars 243

adding to controls 234
adding to dialog box frame 224
list boxes 244

searching
for include files 56
for libraries 56

second monitor
using with WinSpedor 134

segment-naming control
command-line compiler options 65

segments
code

minimizing 151
packing 151

controlling 65
uninitialized

TLINK and 150
segments, map of

ACBP field and 151
TLINK and 151

segments (string tables) 283, 287

439

SEGMENTS statement
module-definition files and 158

Select All command
Bitmap editor 292
Dialog editor 230

selecting an entire image 292
selecting controls 229
selecting dialog boxes 223
selecting menu items 260
selection border 254
selection frame 223, 229
selection mode 229
selection options 255 .
selection rectangle 230
Selector tool 230
semantic errors, defined 104
separators (menus) 258

adding 261
Set Groups command 236
Set Groups tool 236
Set Hot Spot command 322
Set Order command 237

, Set Order tool 236
Set Tabs command 235
setting breakpoints 116

after execution begins 119
settings

Word Alignment 62, 68
shading See drop shading
Share (DOS)

MAKE and 178
Shift-click selection technique 230
shortcut keys

configuring 14
Show Identifiers command 204
Show Items command 204
Show Palette command 301
Show Resources command 204
Show Unused Types command 204
ShowWindow function 234
.silent MAKE directive 188
Simple Text (static control type)· 248
single inheritance

member pointers and 69
Size and Attributes command 299
Size and Attributes command (Icon editor) 313
Size command (Dialog editor) 223, 226, 232, 240

440

Size Controls dialog box 240
Enter Values option 241

Small (IDE option)
memory models and 63

Smart Virtual Tables
command-line option 70

soft mode 122
software

needed for Borland C++ 7
Sort (List Box style option) 245
source code See resource scripts
source files, separately compiled 170
Source format

fonts 325
icons 310

Source Pools
defined 35
using 35

speed, optimization 72
SpeedBar

Browser 16
changing 12
dimmed buttons 11
types of 11, 12
using 11

SpeedMenus
Special command 42
tools and 23
using 10

Split Horizontal command 297
Split Vertical command 297
splitting, Bitmap editor window 297

undoing 297
Spy I Open Detail (WinSight) 124
stack

overflow 60
standard frame, generating 60

stack frame data option 134
stack point~r 136
stack segment

data segment and 80
data segment and (Advanced TargetExpert
button) 28

stack switched message 136
stack trace iriformation in WINSPCTR.LOG 136
STACKSIZE statement

module-definition files and 159

Borland C++ Users Guide

Standard call (IDE option) 69
Standard calling conventions 68
standard library files See libraries
Standard stack frame

command 60
generating 60

Start! command (WinSight) 123
starting Borland C++ 10
starting resource editors

Accelerator editor 272
Bitmap editor 289
Dialog editor 221
Menu editor 258
String editor 281

starting TLINK (linker) 143
statements in menu outlines 259
static controls 229, 248-250

control IDs 234
Static Style dialog box 248
static text 229

options 248
status bar

text displayed in 14
status line

Bitmap editor 298
Dialog editor 222, 254

step, defined 106
Step Over menu command 106
stepping through a program 106
Stop! command (WinSight) 123
stopping a program 109
straight lines See lines
String editor

activating 282
fields 284
illustrated 282
starting 281, 282

string IDs 283
string resources See string tables
string tables 198

changing 284
hexadecimal values 284
ID values 283
identifiers 284, 285-287
memory usage 283
moving around in 284
naming 287

Index

resource script 285
segments 283
String Editor screen 282
tips and restrictions 402

strings
character, user-defined resources 334
literal, merging 57
move literals to code segment 64
text See also string tables

null-terminated 335
structures

ANSI violations 77
undefined 77
zero length 77

STUB statement
module-definition files and 159

Style dialog boxes (controls) 233
Style Sheets

attaching to nodes 37
copying 38
creating 38
defined 37
deleting 39
editing 38
files and 37
nodes and 32
renaming 39
sharing between projects 39
using 37-39

styles, Bitmap editor 297
.suffixes MAKE directive 188

described 192
Support all cases (IDE option)

member pointers 69
Support multiple inheritance (IDE option) 69
Support single inheritance (IDE option) 69
.swap MAKE directive 188
switches See options
SYM files, WinSpector 137
symbol tables 105

DLLsand 121
switching 121

symbolic constants See identifiers
symbols

browser
list of 19

browsing in source code 20

441

viewing declarations of 18'
'syntax

TLIB 171
TLINK 143

syntax errors
defined 103

Syntax Extensions
adding to 14

syntax highlighting
adding files for display with 14
modifying 15
turning off 14
using 14

system information in log file 139
SYSTEM.lNI

installation and 9
System Menu style, dialog boxes 224
System Modal style, dialog boxes 224

T
- T - BCC.EXE option (remove assembler options)

81
It TLINK option (DOS .COM target) 152
lTd TLINK option (DOS target) 152
ITp TLINK32 option (target option) 152
tab character

menus 264
static text 248

Tab Set tool 235
Tab Stop (control attribute) 234,236
tab stops, dialog box controls 235
Tab Stops (List Box style option) 245
tables

compiler options 47
target node

defined 26
Target Windows Version (File Preferences dialog

box) 217
TargetExpert 32

using 32
targets

adding to projects 33
defining 26
deleting 34
editing 32
moving 34

tasks section of WINSPCTR.LOG 138

442

TCCONFIG.TC See also configuration files, IDE
explained 45

-tD (DOS £XE) 81
-tDc (DOS .COM) 81
-tDe (DOS .EXE) 81
Technical Support See also Borland Support and

Services Guide
contacting 2

TEditView 95
TEMC See the online text file UTIL.DOC
TEML See the online text file UTIL.DOC
templates, generation 71
Terminate Program command 109
terminating a program 109
Test Dialog command 253
Test Menu pane (Menu editor) 259, 266
Test Menu window

changing display 259
pop-up menu, displaying as 259

Test stack overflow (IDE option) 60
testing

dialog boxes 253
menus 266

tracking of 266
text

aligning in button controls 242
Bitmap editor 295, 303-304
bitmapped images 295
blocks See editor
color of 14
strings See also string tables

null-terminated 335
syntax highlighting (coloring) 14

text controls, case sensiti~ity 247
text editor

keys 334
user-defined resources, using with 332

Text Editor (File Preferences dialog box) 216
text editor, internal

Compile Now command 267
selecting 205
using 205

text static (dialog box control) 229
text strings See also string tables

null-terminated 335
Text tool 295

color options 295

Borland C++ Users Guide

Thick Frame style, dialog boxes 224
'this' pointer in 'pascal' member functions 70
three-dimensional icons 315
3-State check box 242
3-state check box (BWCC) 400
threshold size

far global variables, setting 64
tilde (-), backup file symbol 216
Tiny (IDE option)

memory models and 63
tiny model

.COM files and 152
title bar (dialog box), adding caption 223
TUB

capabilities 170
errors 337

TUB (librarian)
action symbols 173-174
examples 174
module names 173
operations 173, 174

precedence 173
options

case sensitivity (lc) 171, 172
IE 171, 172
extended dictionary (IE) 171, 172
libname 171
operations 171
page size (lP) 172
purge comment record (10) 173
using 171

response files, using 171
syntax 171

TUNK
errors 337
math libraries and 147
overlays and 151
RLINK and 143

TLINK32
RUNK and 143

TLINK32 (linker)
configuration file 144
libraries 147
options

Index

base address (lB) 149
case sensitivity (lc) 149
maximum errors (lEnn) 149

target option (lTp) 152
TLINK32.CFG 144
TLINK (linker)

ACBP field and 151
command-line compiler and 146
configuration file 144

example of 145
debug information in .0BJs and 150
debugging information 153
errors

startupfile and 143
executable file map generated by 150
libraries 146
non-C modules and 151
options 147

.COM target (It) 152
align pages (I A) 149
application type (la) 149
case sensitivity (Ie) 149
case sensitivity (I c) 149
debugging information (Iv) 153
DLLs (lTwe) 152
executable files (lTw) 152
expanded memory (lye) 153
extended dictionaries (IE) 149
extended dictionaries (I e) 150
extended memory (lyx) 154
file-extension 144
IGx ("Goodies") 150
Ii (uninitialized trailing segments) 150
ignore extended dictionaries (Ie) 150
II (source code line numbers) 150
libraries, ignoring (In) 151
map files (1m) 150

segments in 151
In (ignore defaultlibraries) 151
10 (overlays) 151
pack code segments (lP) 151
stack size (IS) 152
target files 152
target option (lTd) 152
ITw (target files) 152
uninitialized trailing segments (I i) 150
Iv (debugging information) 153
Iw (warning control) 153
warning control (lw) 153
Windows executable (lTw) 152

443

Ix 153
lye (expanded memory) 153
Iyx (extended memory) 154

response files 145
starting 143
syntax 143
target file options (/Tw) 152
warning control 153

TLINK.CFG 144
example of 145

TLINK options
table of 147

TListView 95
TMAPSYM

using to generate .SYM files 142
toggles (menu commands) 262
tool palettes . See palettes
toolbar See SpeedBar
TOOLHELP.DLL 133
tools See also command-line tools

adding to IDE 22, 42
Bitmap editor

selecting 291
BWCC 397
Dialog editor 227-229
IDE and 22
SpeedMenus and 23
using 20

Tools palette
Dialog editor 228

topics
choosing in dialog boxes 11

TOUCH.EXE
described 177

Trace Into menu command 107
tracing (WinSight)

controlling 124
messages 127
turning off 124

tracking
test menus and 266

TrackPopupMenu function 258
trailing segments, uninitialized 150
transfer buffers

ClassExpert and 97
translate

defined 25

444

translating message text 281
translators

defined 40
installing 41
overriding defaults 32
using 40

transparent colors
cursors 300-301, 321
icons 311

-Tstring BCCEXE option (pass string to assembler)
81

Turbo Assembler
default 80

Turbo Debugger
WinSpector and 133

TURBOCCFG
explained 45

-tW BCC.EXE option (compile with all far
functions exportable) 66

-tW option 66
/Tw TLINK options (target file) 152
-tWD BCCEXE option (compile as a DLL with all

functions exportable) 67
-tWDE BCC.EXE option (compile as a DLL with

. with explicit _export functions exportable) 67
-tWE BCCEXE option (compile with explicit

_export functions exportable) 67
TWindowView 95
-tWS BCCEXE option (compile using smart

callbacks) 67
-tWSE BCCEXE option (compile using smart

callbacks) 67
typecasting resource IDs 210
typefaces See fonts
typestyles 329, See also fonts
typographic conventions (documentation) 2

u
-U BCCEXE option (undefine) 81
-u BCCEXE option (underscores) 59
-U MAKE option 177
UAE Debugger 133
!undef MAKE directive 188

described 193
cL

underlining characters
in menus 264
in static controls 248

Borland C++ Users Guide

underscores
generating automatically 59

Undo Levels (File Preferences dialog box) 216
undoing 216
Uninitialized Data Class (IDE option) 65
Uninitialized Data Group (IDE option) 65
Uninitialized Data Segment (IDE option) 65
UNIX

language compliance 60
porting files to 59

Unsigned characters (IDE option) 57
USER and GDI information in WINSPCTR.LOG

139
User Button control 242
user-defined resources 198,331-335

adding to project 332
data, adding to 333
data formats 334
editing 333-335
hexadecimal values 335
identifiers 332
metafiles and 331
storing in external files 335
text strings, null-terminated 335

user interface, translating 217

v
-V and -Vn BCC.EXE options (C++ virtual tables)

70
-v BCC.EXE option (C++ inline functions) 60
-v BCC.EXE option (debugging information) 61
Iv TLINK option (debugging information) 153
-Va BCC option (class argument compatibility) 69
-Vb BCC option (virtual base class pointer

compatibility) 69
-Vc BCC option 70
-Vp BCC option ('this' pointer in 'pascal' member

functions compatibility) 70
-Vt BCC option (virtual table pointers) 70
- Vv BCC option 70
values

examining 109
Variable (list box Owner Drawing option) 244
variable argument list 69
variable-width fonts 326

creating 328

Index

variables
automatic word-aligning 62, 68
communal 59
global, far 64
modifying value of 113
register 58
watching 110-112

.VBX controls
adding to Resource Workshop 252
installing (Resource Workshop) 252
Resource Workshop and 232

Version information 199
Vertical Dip dialog control 397
Vertical Dip tool 397
vertical lines See lines
vertical scroll bars See scroll bars
Vertical Scroll style, dialog boxes 224
-vi BCC.EXE option (C++ inline functions) 60
video drivers, color support 299
View as Pop-up command (Menu editor) 259, 265
View I Globals 18
View menu

Menu editor 259
View I Show horizontal preview (Resource

Workshop) 203
View I Show vertical preview (Resource Workshop)

203
View Source command 117
View I Split Horizontal (WinSight) 123
View I Split Vertical (WinSight) 123
viewers

adding to IDE 42
defined 42
Resource Workshop and 98

viewing
declarations of symbols 18
details of an object 18
object hierarchy 17
source code 117

Views (WinSight)
choosing 124

virtual base class, hidden pointer to 69
virtual functions

hidden members in derived classes with
pointers to 70

virtual keys (accelerators) 272
virtual table pointers, compatibility 70

445

virtual tables
32-bit pointers and 64
command-line option 70
controlling 70
storing in the code segment 64

Visible (control attribute) 234
Visible style, dialog boxes 225
visual application generation 83
-Vm BCCEXE options (C++ member pointers) 69

w
-W- BCC32.EXE option (NT single-thread console)

81
-W BCCEXE option (compile with all far functions

exportable) 66
-W MAKE option 177

setting defaults with 178
-Woption 66
/w TLINK option (warning control) 153
-wxxx BCCEXE options (warnings) 77
Want Return flag (BWCC) 398
Want Return option (Edit Text Style dialog box)

247
warn pragma 77
warning control, TLINK and 153
warning messages 339-393

defined 338
display 103
limit number of 104
selecting 103

warnings See also errors
enabling and disabling 77
general 79
message window

tracking 16
Watch (Debug menu) command 110
watch expressions

adding 110
changing display format of 111
changing properties of 112
deleting 112
disabling 112
enabling 112

Watch Properties dialog box 110
Watch window 110
watching expressions 110

446

-WC option 66
-WCD- BCC32.EXE option (NT single-thread

console DLL) 81
-WCDE- BCC32.EXE option (NT single-thread

console DLL) 81
-WD BCCEXE option (compile as a DLL with all

functions exportable) 67
-WDE BCCEXE option (compile as a DLL with

with explicit _export functions exportable) 67
-WE BCCEXE option (compile with explicit

_export functions exportable) 67
White Frame (static control type) 249
White Rectangle (static control type) 248
Width option (fonts) 327
Win32

Resource Workshop and 218
Win32s

description of 8
Win32s application

creating 27
W1N.lN1

"LOAD=" statement 401
editing for BWCC 401
installation and 9

W1N.lN1 file 133
window classes 123

debugging information on 123
window panes

Bitmap editor 297
Window Style dialog box

Caption (Frame Style) 223
Dialog Style options 224
Fonts button 225
Frame Style options 224

Window Tree 124
Window Tree (WinSight) 125
Windows "

Clipboard
copying resources 207

debugging problems 122
Notepad editor 205
possible problems with 122
predefined accelerators 276
string table 1D values 283
targeting 66

windows
Project See Project window

Borland C++ User's Guide

windows (in IDE)
number of limited by memory 14

Windows all functions exportable (IDE option) 66
Windows applications

creating with AppExpert 84
Windows DLL

all functions exportable (IDE option) 67
Windows expliciHunctions exported (IDE option)

67
WINDOWS.H 272
Windows IDE

editing 14
Windows NT

Borland C++ and 8
installation and 9

Windows NT applications
creating 27

Windows smat:t callbacks (IDE option) 67
Windows Unrecoverable Application Errors

(UAEs) 133
WinSight

choosing views in 124
Class List 124, 125
description of 123
exiting 124
messages 129
starting 123
starting and stopping tracing 124
views in 123, 124

WinSight messages
auxiliary monitor and 128
Hex Values and 128
Interpret Values and 128
printing 128
saving to file 128

WINSPCTRBIN 133
WINSPCTR.lNI file 134
WINSPCTRLOG

register section 137
stack trace information 136

WinSpector
append new reports 134
AUX Summary option 134
contents of WINSPCTRLOG 135
debugging and 133
DFA utility .

DF A.OUT file contents 140

Index

stack trace 140
used with WINSPCTRLOG 140

EXEMAP 141
EXEMAP.EXE

using 141
message queue section ofWINSPCTRLOG 137
modules section of WINSPCTRLOG 138
overwrite previous log file 134
preferences dialog box 134
setting preferences 135
stack frame data .134
stack pointer 136
SYM files 137
system information

in log file 134
mode and windows version 139

tasks section ofWINSPCTR.LOG 138
TMAPSYM.EXE

creating a .5YM file 142
UAE Debugger 133
USER and GDI information 139
WIN.lNI file 133

WM_COMMAND message 271
WM_COMPAREITEM message 244, 250
WM_CTLCOLOR message 248
WM_DELETEITEM message 244, 250
WM_DRA WITEM message 242, 244, 250
WM_ENTERIDLE message 225
WM_MEASUREITEM message 244, 250
WM_SYSCOMMAND message.271
-WM- BCC32.EXE option (NT single-thread

console DLL) 81
Word Alignment setting 62, 68
WORKSHOP.lNI

fixing flood-fill problems 294
WORKSHOP_INVOKED 162
WS_OVERLAPPED style 226
WS_ VISIBLE style 234
-WS BCC.EXE option (compile using smart

callbacks) 67
-WSE BCC.EXE option (compile using smart

callbacks) 67
WYSIWYG display option 254

x
-X BCC.EXE option (disable autodependency

information) 59

447

-x BCC.EXE option (handle exceptions) 71

v
, -Y (DOS overlay) 82

-y BCC.EXE option (line numbers) 60
lye TLINK option (expanded memory) 153
-Yo (DOS overlay) 82
Iyx TLINKoption (extended memory) 154

Z
Zoom In command 292
Zoom Out command 292

448

Zoom tool 292
zoomed images

Airbrush tool 294
moving 297
Paintbrush tool 293

zooming images 292
accelerators 292
mouse 292

-zV BCC.EXE options (far virtual table segments)
66

-zX82
-zX BCC.EXE options (code and data segments) 65

Borland efT Users Guide

Borland
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Canada,
Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, New Zealand, Singapore, Spain,
Sweden, Taiwan, and United Kingdom · Part # BCP1240WW21770 • BOR 6270

