Programmer’s Guide

‘Borland G-

Programmer’s Guide

Borland® C++

- Version 4.0

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1987, 1993 by Borland International. All rights reserved. All Borland products
are trademarks or registered trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95066-3249

PRINTED INTHE US.A.

_1EOR1093
9394959697-9876543
W1

Contents

Introduction 1 SCOPE « v et 29
What'sinthisbook..........cooviinivinnninn. 1 Namespacesc.ooveniinn... 30
_ An introduction to the formal definitions 2 Visibility <. 30
Syntax and terminology 2 Durationcciiiiiniiieiiinninn. 31
Chapter 1 Lexical elements | 5 itfcﬁ:::::::::::::::::::::::::::::::::g%
Whitespaceooiiiiiiiiii i 5 DYNAMiC ... eeeieaieanennn, 32
Line splicing with \oo L. 6 Translation units e 32
Comments ... 6 Linkagec.ooiiiiiiiiiiiiii 32
Ccommentsooooaiaa.. 6 Name manglingc..oooonn... 33
CH+comments ..ot 7 Declaration SyNtaxcooeereeen... 34
Nested comments 7 Tentative definitions 34
Delimiters and whitespace 7 Possible declarations e 35
Tokens e e 8 External declarations and definitions 37
Keywordsooiviiiiiinns 8 Type specifiersocovvviniininin.n. 39
Identifiers S P 10 Type CAtegOriesvvernurreeeenn.. 39
Naming and length restrictions 10 Typevoidc.oooiiiiiiiiins ... 40
Case sensitivity 11 The fundamental types 40
Uniqueness and scope 11 Integral typescooiiiiilt 41
ConstantS ... ooveevnne e ennn.. XER 11 Floating-point types 42
]nteggr constants e 1n Standard conversions e 42
Floatmg-pomt constants 14 Special char, int, and enum conversions . .. 43
Character constants 15 Initiaizationoouieeiiinneann. 43
String con§tants 18 Arrays, structures, and Unions 44
Enumeration constants 20 Declarations and declarators 45
Constants and internal representation 20 Use of storage class specifiers 47
Constant expressions 22 ‘ AUED v ie i e et e .. 47
Punctuatorsccoiiiiiiiinnn., 23 EXEITL « o v oo oo 47
Brackets e 23 e S 47

- Parentheses ... 23 SEAHC e 47
Braces e 24 typedef i 48
Commaooiiiiiiiiii, 24 Variable modifiers PO 48
Semicolon R 24 COMSE v veree ettt ... 50
Colonooveninns e 25 volatile i 50
Ellipsis25 Mixed-language calling conventions 51

. Asterisk (pointer declaration) 25 Multithread variables 53
Equal sign (initializer) 25 Pointer modifiers SR 53
Pound sign (preprocessor directive) 26 Function modifiers 54
Chapter 2 Language structure ' ’ 27 _ _interrupt functio.n.s 55
‘Declarationsoiiiiiiiiiiiaian.. 27 _ The__fastcall modifier 55
CODJECES « e et e 27 Pomt'ers """ AR R R LR 55
lvalues O 28 PoTnters to ob]e(:?s """""""""""" o6
IVAlUES © oottt e e i 28 Pomters to func’flons """"""""""" 56
Storage classes and types 28 Pointer declaratlons 57

Pointer constants

......................... 58

Pointer arithmetic -........ e 59
Pointer conversions 59
C-++ reference declarations 60
Arrays .. .o 60
Functionsol 62
Declarations and definitions 62
Declarations and prototypes 62
Definitionst 64
Formal parameter declarations 65
Function calls and argument conversions 66
Structuresol 67
Untagged structures and typedefs 67
Structure member declarations 67
Structures and functions 68
Structure membet access 68
Structure word alignment 70
Structure name spaces 71
Incomplete declarations 71
Bitfieldso i 72
Unions i e 73
Anonymous unions (C++only) 73
Union declarations 74
Enumerations 0 74
Expressionso, 77
Expressionsand C++...................... 80
Evaluationorder 80
Errorsand overflows 81
Operator semantics 81
Operator descriptionsc..o. ... 81
Primary expression operators 82
Postfix expression operators 84
Array subscript operator [] 84
Function call operators () 84
Member access operators . (dot) 85
Member access operator —> 85
Increment operator ++ 85
Decrement operator —— 85
Unary operatorsoo.nn. 85
Address operator &l 86
Indirection operator * 87
Plusoperator +, 87
Minus operator — ...l 87
Bitwise complement operator ~ 87.
Logical negation operator! 87
Increment operator ++ 88
Decrement operator —— 88
Binary operators..........................88

- Additive operators 89

Multiplicative operators

................. 90
Bitwise logic operators 91
Bitwise shift operators 92
Relational operators ".................... 93
Equality operators 94
Logical operators 95
Conditional ?:, 96
Assignment operators 97
Commaoperator 98
CH++operatorsccovviiiii.n. 98
The sizeof operator 99
Statementso oL 101
Blocks ...l 101
Labeled statements 102
Expression statements 102
Selection statements 102
ifstatements 102
switch statements 103
Iteration statements 104
while statements 104
do while statements 105
forstatement 105
Jumpstatements L 106
‘break statements 106
continue statements 106
gotostatements 107
returnstatements 107
Chapter 3 C++ specifics 109
New-style typecasting 109
const_cast typecast operator 109
dynamic_cast typecast operator 110
reinterpret_cast typecast operator 111
static_cast typecast operator 112
Run-time type identification 113
The typeid operator 113
. The _ _ rtti keyword and the -RT option 114
Referencingcvoviiiiiii i, 116
Simple references 0. 116
Reference arguments 117
Scope resolution operator:: 118
The new and delete operators 119
‘Handling errorsoooout 120
The operator new with arrays 120
The operator delete with arrays 121
The :operatornew122
Initializers with the new operator 122
Overloading new and delete 122
Classes ...icooovvvnnnn.. O

Class memory model specifications 125
Classnamesccoiveiiennnnn. 126
Classtypesocvvvvnviniiiiaiinn., 126
Classname scopec.oovuiunnnn.. 126
Classobjectscooiiiin... 127
Classmemberlist 127
Member functions 127
The keyword this 127
Inline functions 128
Inline functions and exceptions 128
Staticmembers ool 129
Memberscopeiiiiiiiiiii. 131
Nested typescooovviiiiv ., 132
Member access control 133
Base and derived class access 134
Virtual baseclasses 137
Friendsof classes 137
Constructors and destructors................ 139
Constructorsoooviiiiiii i, 140
Constructor defaults 141
The copy constructor 141
Overloading constructors 142
Order of calling constructors 142
Class initialization 144
Destructorso o 146
Invoking destructors 147
atexit, #pragma exit, and destructors 147
exit and destructors 147.
abort and destructors 147
virtual destructors 148
Operator overloading 149
Overloading operator functions 152
Overloaded operators and inheritance 153
Unary operatorscoevinnnn 153
Binary operatorso 153
Assignment operator= 153
Function call operator() 154
Subscript operator[] L 154
Class member access operator-> 154
Polymorphicclasses 155
virtual functions oo 155
virtual function return types 156
AbstractclassesoL 157
CH+scope ..o 158
© ClassS SCOPE . vvvvvirii i 159
HIdiNg ..o eeeeeiee e 159
C++ scoping rules summary 159 -
Templatescoo it 160
Function templates 161

Overriding a template function
Template function argument matching . ..
Class templates
Arguments
Angle brackets
Type-safe generic lists
Eliminating poiriters
Template compiler switches
Using template switches

Chapter 4 Exception handling
C++ exception handling
Exception declarations
Throwing an exception
Handling an exception
Exception specifications
Constructors and destructors
Unhandled exceptions
C-based structured exceptions
Using C-based exceptions in C-++

Chapter 5 The preprocessor
Null directive #
The #define and #undef directives
Simple #define macros
The #undef directive
The -D and -U options
The Define option
Keywords and protected words
Macros with parameters
File inclusion with #include
Header file search with <header_name>
Header file search with “header_name”
Conditional compilation
The #if, #elif, #else, and #endlf conditional
directives
The operator defined
The #ifdef and #ifndef conditional
directives
The #line line control directive
The #error directive
The #pragma directive
#pragma argsused
#pragma codeseg
#pragma comment
#pragma exit and #pragma startup
#pragma hdrfile
#pragma hdrstop
#pragma inline

#pragma intrinsic

Direct and indirect containers 221
Sorted containers 221
Memory management 222
Container naming conventions 223
ADT/FDS combinations in the 11brary 223
Container iterators 223
Objectownership 224
Using containers 224
A sorted array example 225
A dequeue example 226
Container directories 227
The LIBS and BIN directories 228
The INCLUDE directory 228
The SOURCE directory 228
The EXAMPLES directory 228
Debugging containers 229
The persistent streams class library 229
What's new with streaming 230
Object versioningc....... 230
Reading and writing base classes 231
Reading and writing integers 231
' Multiple inheritance and virtual base
SUPPOIt vt 232
Creating streamable objects 233
- Defining streamable classes 233
Implementing streamable classes 235
The nested class Streamer 237

Writing the Read and Write functions

......................... 200:
#pragmaoptionol 200
#pragma saveregsc0.... 201
#pragmawarnceiien.. 202
- Predefined macros 202
__BCOPT__ ...t n...:203
__BCPLUSPLUS__.............icoceee 203
__BORLANDC__coiiininnn. 203
. CDECL_ ..o 203
__CONSOLE_ _......ciiiiiniiniinnnns. 203
_cplusplus oo oo, 203
__DATE__ U 203
| 5 203
FILE__ oo 203
LINE_ _ ..o 204
MSDOS__ oo 204
. MT_ 204
Z__OVERLAY_ _ooiiiiiiiiiiinnnn, 204
.PASCAL _ ... 204
o STDC_ e 204
__TCPLUSPLUS__........coviniininnn. 204 -
__TEMPLATES_ _..............c¢vcias. 204
. TIME_ 204
JTLS 204
__TURBOC__ ...oivviiiiii i 205
C_WINB2 205
Windowso e 205
Chapter 6 Using C++ iostreams 207 . s \
Whatisastream?c.ovuns..t..207 Ob]ectverSIang """""""""""" 240
The iostream library 207 .Chapter 8 Windows programming 243
The streambufclass«........... 207 Resourcescriptfiles 244
Theiosclasscoovviiiiiiii .. 208 Module definitionfiles 245
Streamoutput....................... 209 Importlibraries 00 246
Fundamental types 210 WinMain ... 247
I/Oformatting 210 Prologsandepilogs.................. 0.0, 247
Manipulatorsl 210 The _exportkeyword. 248
Filling and padding 212 The _importkeyword 248
Streaminputol 213 Windows All Functions Exportable (- W,
1/0 of user-defined types 214 WO 248
SimplefileI/Oo L 214 Windows Exphc1t Functions Exported
String stream processing 215 (WE) i 249
Screen output streams i 217 Windows Smart Callbacks -WS) 249
Chapter 7 Using Borland class libraries 219 - g:ggf;ss %T;éitigu(bxgg)andEXphat 249
The container class library 219
Containers and templates 219
ADTsandFDSsc..ooiiinnt. 220
ChoosinganFDS0.c...... 221

Windows DLL All Functions Exportable (-WD,

SWED) v 250
Windows DLL Explicit Functions Exported
(-WDE, —WCDE) 250

Prologs, epilogs, and exports: A summary .. 250

Projectfileso il 251
The Borland heap manager 252
32-bit Windows programming 253
WiIin32 ... 253
The Win32 APL 253
Writing portable Windows code 253
STRICToiiiiiiiiiii i 254
The UINT and WORD types 257

The WINAPI and CALLBACK calling
conventionsl 258
Extracting messagedata 258
Message crackers 259
Porting DOS system calls 259
Common compiler errors and warnings . . 260
Building Win32 executables 262
Chapter 9 Writing dynamic-link libraries 265
WhatisaDLL?, 265
Dynamic linking 265
CreatingaDLLoi.t 266
LibMain, DIIEntryPoint, and WEP 266
Exporting and importing functions 267
Exporting functions 267
Importing functions 268

DLLs and 16-bit memory models 268
Exporting and importing classes 269
Staticdatain 16-bit DLLs 270

Using the Borland DLLs ~.. 270
Chapter 10 Using inline assembly 271
Inline assembly syntax and usage 271

Inline assembly references to data and func-

tions ...l e 273
Inline assembly and register variables 273
Inline assembly, offsets, and size

overridesl 273
Using C structure members 273
Using jump instructions and labels 274

Compiling with inline assembly 275
Using the built-in assembler (BASM) 275
Opcodesoiviiiiiiiiii 276

String instructions 277

Jump instructions 278

Assembly directives 278

Appendix A ANSI implementation-specific
standards 279.
index 291

Tables

11 All Borland C++ keywords 9
1.2 Borland C++ register pseudovariables 9
1.3 Borland C++ keyword extensions 10
1.4 Keywords specifictoC 10
1.5 Keywords specificto C++ 10
1.6 Constants—formal definitions 12
1.7 Borland C++ integer constants without L

orU .o 13
1.8 Borland C++ floating constant sizes

andranges ...l 15
1.9 Sizes of charactertypes 16
110 Borland C++ escape sequences 17
111 16-bit data types, sizes, and ranges 21
112 32-bit data types, sizes, and ranges 21
2.1 Borland C++ declaration syntax 36
2.2 Borland C++ declarator syntax 37
2.3 Borland C++ class declaration syntax (C++

only) ...oviiiii 38
24 Declaringtypescoiiiiiiii 40
2.5 Integraltypes ...l 41
2.6 Methods used in standard arithmetic

conversions O 43
2.7 Declaration syntax examples 46
2.8 Borland C++ modifiers 48
2.9 Calling conventions 51
210 External function definitions 64
211 Associativity and precedence of Borland C++

OPETALOTS « . v v eeeveeeeeeaaeneeen. 78

212 Borland C++ expressions................ 78
‘213 Unaryoperatorsco.oevonnn. 86
214 Binaryoperators 88
215 Bitwise operators truth table 91
216 Borland C++ statements 101
31 Class memory model specifications 125
5.1 Borland C++ preprocessing directives
SYIAX ettt 186
6.1 Stream manipulators 211
6.2 Console stream manipulators 217
71 Borland containers and header files 220
7.2 Container name abbreviations 223
7.3 ADT/FDS combinations 223
8.1 Compiler options and the _export
keywordol 251
8.2 STRICT compliant types, constants, helper
macrosand handles 255

vi

8.3 Int 21 and Win32 equivalent functions 259
8.4 Win32 options, start-up code, and libraries .263

10.1 BASM opcode mnemonics 276
10.2 BASM string instructions 277
10.3 Jump instructions 278
Al Identifying diagnosticsin C++ 279

A.2 Messages generated in both Win 16 and Win
32 288
A.3 Messages generated only in Win 32

Figures

11 Internal representations of numerical types . 22 81 Compiling and linking

6.1 Class streambuf and its derived classes ... 208
6.2 Class ios and its derived classes 209

vii

a Windows program

viii

For an overview of
the Borland C++
documentation set
read the Introduction
in the Users Guide.

lntroduction

This manual contains materials for the advanced programmer. If you
already know how to program well (whether in C, C++, or another
language), this manual is for you. It is a language reference, and provides
you with programming information on C++ streams, container classes,
persistent streams, inline assembly, and ANSI implementation details.

Typefaces and icons used in these books are described in the User’s Guide.

What’s in this book

See the DOS

- Reference for
information on DOS
programming.

Introduction

Chapters 1-5: Lexical elements, Language structure, C++ specifics,

. Exception handling, and The preprocesor, describe the Borland C++ lan-

guage. Any extensions to the ANSI C standard are noted in these chapters.-
These chapters provide a formal language definition, reference, and syntax
for both the C and C++ aspects of Borland C++. Some overall information
about Chapters 1 through 5 is included in the next section of this
introduction.

Chapter 6: Using C++ iostreams tells you how to program input and
output using the C++ stream library.

Chapter 7: Using Borland class libraries tells you how to use the Borland
C++ persistent streams and container class libraries.

Chapter 8: Windows programming explains the basics of programming
under Windows. :

Chapter 9: Writing dynamic-link libraries explains dynamic-link libraries
and dynamic linking. «

Chapter 10: Using inline assembly explains how to embed assembly
language instructions within your C/C++ code.

Appendix A: ANSI implementation-specific standards describes those
aspects of the ANSI C standard that have been left loosely defined or
undefined by ANSL This appendix tells how Borland C++ operates in
respect to each of these aspects.

An introduction to the formal definitions

Syntax and

terminology

Chapters 1-5 describe the C and C++ languages as implemented in Borland
C++. Together, they provide a formal language definition, reference, and
syntax for both the C++ and C aspects of Borland C++. They do not
provide a language tutorial. We use a modified Backus-Naur form notation
to indicate syntax, supplemented where necessary by brief explanations

-and program examples. The chapters are organized in this manner:

m Chapter 1: Lexical elements shows how the lexical tokens for Borland
C++ are categorized. It covers the different categories of word-like units,
known as tokens, recognized by a language.

m Chapter 2: Language structure explains how to use the elements of
Borland C++. It details the legal ways in which tokens can be grouped
together to form expressions, statements, and other significant units.

u Chapter 3: C++ specifics covers languagé aspects specific to C++.

m Chapter 4: Exception handling describes the exception-handling
mechanisms available to C and C++ programs.

= Chapter 5: The preprocessor covers the preprocessor, including macros,
includes, and pragmas, and many other easy yet useful items.

Borland C++ is a full implementation of AT&T’s C++ version 3.0 with
exception handling, the object-oriented superset of C developed by Bjarne
Stroustrup of AT&T Bell Laboratories. This manual refers to AT&T’s
previous version as C++ 2.1. In addition to offering many new features and
capabilities, C++ often veers from C in varying degrees. These differences
are noted. All the Borland C++ language features derived from C++ are
discussed in greater detail in Chapter 3.

Borland C++ also fully implements the ANSI C standard, with several
extensions as indicated in the text. You can set options in the compiler to
warn you if any such extensions are encountered. You can also set the
compiler to treat the Borland C++ extension keywords as normal identifiers
(see Chapter 3 in the User’s Guide).

There are also “conforming” extensions provided via the #pragma direc-
tives offered by ANSI C for handling nonstandard, implementation-
dependent features.

Syntactic definitions consist of the name of the nonterminal token or
symbol being defined, followed by a colon (:). Alternatives usually follow
on separate lines, but a single line of alternatives can be used if prefixed by
the phrase “one of.” For example,

Borland C++ Programmeré Guide

Introduction

external-definition:
function-definition
declaration

octal-digit: one of
01234567

Optional elements in a construct are printed within angle brackets:

integer-suffix:
unsigned-suffix <long-suffix>
Throughout this manual, the word “argument” is used to mean the actual

value passed in a call to a function. “Parameter” is used to mean the
variable defined in the function header to hold the value.

Borland C++ Programmer’s Guide

Whitespace

Lexical elements

This chapter provides a formal definition of the Borland C++ lexical
elements. It describes the different categories of word-like units (tokens)
recognized by a language.

The tokens in Borland C++ are derived from a series of operations per-
formed on your programs by the compiler and its built-in preprocessor.

A Borland C++ program starts as a sequence of ASCII characters represent-
ing the source code, created by keystrokes using a suitable text editor (such
as the Borland C++ editor). The basic program unit in Borland C++ is the
file. This usually corresponds to a named file located in RAM or on disk
and having the extension .C or .CPP.

The preprocessor first scans the program text for special preprocessor
directives (see the discussion starting on page 185). For example, the
directive #include <inc_file> adds (or includes) the contents of the file inc_file
to the program before the compilation phase. The preprocessor also
expands any macros found in the program and include files.

In the tokenizing phase of compilation, the source code file is parsed (that is,
broken down) into tokens and whitespace. Whitespace is the collective name
given to spaces (blanks), horizontal and vertical tabs, newline characters,
and comments. Whitespace can serve to indicate where tokens start and
end, but beyond this function, any surplus whitespace is discarded. For
example the two sequences

int i; float f;
and
int 1 ;
float £;

are lexically equivalent and parse identically to give the six tokens:

Chapter 1, Lexical elements 5

Line splicing
with \

Comments

C comments

See page 191 fora
description of token
pasting.

mint
mi

.;

m float
mf

";

The ASCII characters representing whitespace can occur within literal
strings, in which case they are protected from the normal parsing process
(they remain as part of the string). For example,

char name[] = "Borland International";

parses to seven tokens, including the single literal-string token “Borland
International”.

A épecial case occurs if the final newline character encountered is preceded
by a backslash (\). The backslash and new line are both discarded, allowing
two physical lines of text to be treated as one unit.

"Borland \
International"

is parsed as “Borland International” (see page 18, “String constants,” for
more information).

Comments are pieces of text used to annotate a program. Comments are for
the programmer’s use only; they are stripped from the source text before
parsing.

There are two ways to delineate comments: the C method and the C++
method. Both are supported by Borland C++, with an additional, optional
extension permitting nested comments. If you are not compiling for ANSI
compatibility, you can use any of these kinds of comments in both C and
C++ programs.

A C comment is any sequence of characters placed after the symbol pair /*..
The comment terminates at the first occurrence of the pair */ following the
initial /*. The entire sequence, including the four comment-delimiter
symbols, is replaced by one space after macro expansion. Note that some C
implementations remove comments without space replacements.

Borland C++ does not support the nonportable foken pasting strategy using

‘I**]. Token pasting in Borland C++ is performed with the ANSI-specified

pair ##, as follows:

Borland C++ Programmer’s Guide

C++ comments

You can also use // to
create comments in C
code. This is specific
to Borland C++.

Nested comments

Delimiters and
whitespace

Chapter 1, Lexical elements

#define VAR(1,j) (i/**/3) /* won't work */
#define VAR(i,]) (i##7) /* OK in Borland C++ */
#define VAR(i,j) (i ## J) /* Also OK */

In Borland C++,
int /* declaration */ i /* counter */;
parses as these three tokens:
int i ;
C++ allows a single-line comment using two adjacent slashes (/ /). The
comment can start in any position, and extends until the next new line:

class X { // this is a comment

- b

ANSI C doesn't allow nested comments. The attempt to comment out a line
/* int /* declaration */ i /* counter */; */

fails, because the scope of the first /* ends at the first */. This gives
i/ /

which would generate a syntax error.

By default, Borland C++ won't allow nested comments, but you can over-
ride this with compiler options. See the User’s Guide, Chapter 3, for
information on enabling nested comments.

In rare cases, some whitespace before /* and //, and after */, although not
syntactically mandatory, can avoid portability problems. For example, this
C++ code

int i = j//* divide by k*/k;
+m; i

parses as int 1 = j +m; not as
int 1 = 3/k;
+I0;

as expected under the C convention. The more legible

int i = j/ /* divide by k*/ k;
+m;

avoids this problem.

Tokens

Keywords

Borland C++ recognizes six classes of tokens. Here is the formal definition
of a token:

token.:
keyword
identifier
constant
string-literal
operator
punctuator (also known as separators)

As the source code is scanned, tokens are extracted in such a way that the
longest possible token from the character sequence is selected. For example,
external would be parsed as a single identifier, rather than as the keyword
extern followed by the identifier al.

See page 191 for a description of token pasting.

Keywords are words reserved for special purposes and must not be used as
normal identifier names. The following tables list the Borland C++ key-
words. You can use options to select ANSI keywords only, UNIX key-
words, and so on; see the User’s Guide, Chapters 1 and 3, for 1nformat10n on
these options.

If you use non-ANSI keywords in a program and you want the program to
be ANSI compliant, always use the non-ANSI keyword versions that are
prefixed with double underscores. Some keywords have a version prefixed
with only one underscore; these keywords are provided to facilitate porting
code developed with other compllers For ANSI-specified keywords there
is only one version.

Note that the keywords _ _try and try are an exception to the discussion

~above. The keyword try is required to match the catch keyword in the C++

exception-handling mechanism. try cannot be substituted by _ _try. The
keyword _ _try can only be used to match the _ _except or _ _finally
keywords. See the discussion of exception handling in Chapter 4 of this
book.

Borland C++ Programmers Guide

Table 1.1 asm es interrupt short

All Borland C++ _asm _es _ _interrupt signed
keywords asm __except _interrupt sizeof
‘ auto _ _export _ _loadds __ss
break _export _loadds _ss
case extern v long static
catch far near . ___stdcall
_ _cdecl __far _hear _stdcall
_cdecl _far _ _hear struct
cdecl ~ _ fastcall ~ new switch
char _fasteall operator template
class _ _finally __pascal this
const float ~_pascal _ _thread
continue for pascal throw
__Cs friend private _try
_cs goto protected try
default huge public typedef
delete _ _huge register union
do _huge return ' unsigned
double if __nti virtual
__ds _ _import _ _saveregs void
_ds _import _saveregs volatile
else inline __seg ' while
enum int _seg
Table 1.2 _AH CL , _EAX! _ESP
Borland C++ register AL cS - . _EBPt ' _FLAGS
pseudovariables _AX CX _EBXt FS
_BH ‘ _DH _ECXt ' _Gst
_BL _DI- _EDIt _Sl
_BP _bL _EDXt _SP
_BX _DS _ES - 88
_CH _DX - _ESIf

1 These pseudovariables are always available to the 32-bit compiler. The 16-bit compiler can use these
only when you use the option to generate 80386 instructions.

Chapter 1, Lexical elements - - ’ , ‘ : -9

~ Table 1.3
Borland C++ keyword
extensions

Table 1.4
Keywords specific
toC

Table 1.5
Keywords specific to
C++

Identifiers

Naming and length
restrictions

10

asm _ _except _ _import? - pascal

_asm _ _export _import? _ _saveregs'

_ _cdecl _export __interrupt! _saveregs'

_cdecl _ _far! _interrupt! __seg'

cdecl _far! interrupt’ __seg’

__cs! far' __loadds’ _seg'

_cs' _ _fastcall ' _loadds' __ss!

__ds’ _fasteall _ _near’ _ss!

_ds’ _ _finally _near’ . .t

_ _es! ; _.huge’ near’ _ _thread?

_es' _huge' ; __pascal __try
huge' _pascal

! Available only with the 16-bit compilers.

" 2 pvailable only with the 32-bit compilers.

_ _finally __try
asm - friend protected - try
catch : inline public virtual
class) new template __ntic
delete - operator this

private throw

Here is the formal definition of an identifier:

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
abcdefghijklmnopqrstuvwxyz_
ABCDEFGHIJKLMNOPQRSTUVWXYZ

digit: one of
0123456789

Identifiers are arbitrary names of any length given to classes, objects,
functions, variables, user-defined data types, and so on. Identifiers can
contain the letters 2 to z and A to Z, the underscore character “_", and the
digits 0 to 9. There are only two restrictions:

m The first character must be a letter or an underscore.

Borland C++ Programmers Guide

Identifiers in C++
programs are
significant to 32
characters.

Case sensitivity

Uniqueness and
scope

Constants

Integer constants

m By default, Borland C++ recognizes only the first 32 characters as
significant. The number of significant characters can be reduced by menu
and command-line options, but not increased. See the User’s Guide,
Chapters 1 and 3, for information on these options.

Borland C++ identifiers are case sensitive, so that Sum, sum, and suM are
distinct identifiers.

Global identifiers imported from other modules follow the same naming
and significance rules as normal identifiers. However, Borland C++ offers
the option of suspending case sensitivity to allow compatibility when
linking with case-insensitive languages. With the case-insensitive option,
the globals Sum and sum are considered identical, resulting in a possible
“Duplicate symbol” warning during linking.

See the User’s Guide, Chapters 1 and 3, for information on linking and case-
sensitivity options.

An exception to these rules is that identifiers of type _ _pascal are always
converted to all uppercase for linking purposes.

Although identifier names are arbitrary (within the rules stated), errors
result if the same name is used for more than one identifier within the same
scope and sharing the same name space. Duplicate names are legal for
different name spaces regardless of scope. The scope rules are covered on
page 29. ’

Constants are tokens representing fixed numeric or character values.
Borland C++ supports four classes of constants: integer, floating point,
character (including strings), and enumeration. Figure 1.1 shows how these
types are represented internally.

- The data type of a constant is deduced by the compiler using such clues as

numeric value and the format used in the source code. The formal defmi-
tion of a constant is shown in Table 1.6.

Integer constants can be decimal (base 10), octal (base 8) or hexadecimal
(base 16). In the absence of any overriding suffixes, the data type of an
integer constant is derived from its value, as shown in Table 1.7. Note that
the rules vary between decimal and nondecimal constants.

Chapter 1, Lexical elements , ' i , 11

Table 1.6: Constants—formal definitions -

constant. nonzero-digit. one of
floating-constant 123456789
Integer-constant octal-digit. one of
enumeration-constant 01234567
character-constant
. : hexadecimal-digit. one of

floating-constant. . 0123456789
fractional-constant <exponent-part> <floating-suffix> abcdef
digit-sequence exponent-part <floating-suffix> ABCDEF

fractional-constant. integer-suffix.

<digit-sequence> . digit-sequence
digit-sequence .

exponent-part.
e <sigm> digit-sequence

unsigned-suffix <long-suffix>
long-suffix <unsigned-suffix>

unsigned-suffix. one of

E <sign> digit-sequence uu
sign: one of /ongl-iufflx one of
o enumeration-constant.
digit-sequence: identifier
digit
digit-sequence digit character-constant.
‘ c-char-sequence

floating-suffix. one of
flFL

integer-constant:
decimal-constant <integer-suffix>
octal-constant <integer-suffix>
hexadecimal-constant <integer-suffix>

c-char-sequence:
c-char
c-char-sequence c-char

c-char. -

Any character in thé source character set except the
single-quote (), backslash (), or newline character

decimal-constant:
nonzero-digt escape-sequence:
decimal-constant digit escape-sequence: one of
\r Y \? \\
octaé—constant \a b \ \n
. . ‘o \oo \ooo \r
octal-constant octal-digit \ \ v Wh. Wh.
hexadecimal-constant. »
0 x hexadecimal-digit
0 X hexadecimal-digit

hexadecimal-constant hexadecimal-digit

Decinial
-Decimal constants from 0 to 4,294,967,295 are allowed. Constants exceeding
this limit are truncated. Decimal constants must not use an initial zero. An

12 . o S Borland C++ Programmers Guide

Table 1.7

Borland C++ integer
‘constants without L
orlU

integer constant that has an initial zero is interpreted as an octal constant.

Thus,

int 1 = 10; /*decimal 10 */

int i = 010; /*decimal 8 */

int 1 = 0; /*decimal 0 = octal 0 */
Octal

~ All constants with an initial zero are taken to be octal. If an octal constant

contains the illegal digits 8 or 9, an error is reported. Octal constants
exceeding 037777777777 are truncated.

Hexadecimal

All constants starting with Ox (or 0X) are taken to be hexadecimal.
Hexadecimal constants exceeding OxFFFFFFFF are truncated.

long and unsigned suffixes

The suffix L (or I) attached to any constant forces the constant to be repre-
sented as a long. Similarly, the suffix U (or u) forces the constant to be
unsigned. It is unsigned long if the value of the number itself is greater
than decimal 65,535, regardless of which base is used. You can use both L

and U suffixes on the same constant in any order or case: ul, Iu, UL, and so
on. ‘

Decimal constants
0to 32,767
32,768 t0 2,147,483,647
2,147,483,648 to 4,294,967,295

> 4294967295

Octal constants
00 to 077777
010000 to 0177777
~ 02000000 to 017777777777
020000000000 to 037777777777

> 037777777777

Hexadecimal constants
0x0000 to Ox7FFF
0x8000 to OXFFFF

0x10000 to Ox7FFFFFFF
0x80000000 to OxFFFFFFFF

> OXFFFFFFFF

int
long
unsigned long

truncated
int
unsigned int

long
unsigned long

truncated

int

, unsignéd int

long
unsigned long

truncated

Chapter 1, Lexical elements

13

Floating-point
constants

14

The data type of a constant in the absence of any suffix (U, u, L, or) is the
first of the following types that can accommodate its value:

Decimal int, long int, unsigned long int
Octal int, unsigned int, long int, unsigned long int
Hexadecimal int, unsigned int, long int, unsigned long int

If the constant has a U or u suffix, its data type will be the first of unsigned
int, unsigned long int that can accommodate its value. '

If the constant has an L or I suffix, its data type will be the first of long int,
unsigned fong int that can accommodate its value.

If the constant has both « and ! suffixes (ul, Iu, Ul, IU, uL, Lu, LU, or UL), its
data type will be unsigned long int.

Table 1.7 summarizes the representations of integer constants in all three
bases. The data types indicated assume no overriding L or U suffix has been
used.

A floating constant consists of:

m Decimal integer

m Decimal point

m Decimal fraction

m e or E and a signed integer exponent (optional)

m Type suffix: for F or or L (optional)
You can omit either the decimal integer or the decimal fraction (but not
both). You can omit either the decimal point or the letter e (or E) and the

signed integer exponent (but not both). These rules allow for conventional
and scientific (exponent) notations.

Negative floating constants are taken as positive constants with the unary
operator minus (-) prefixed.

Here are some examples:

Constant Value

23.45e6 23.45x 108

0 0

0. 0

1. 1.0 x10°=1.0

Borland C++ Programmer’s Guide .

Consta_nt Value

-1.23 -1.23

2e-5 20 x10°%
3E+10 3.0 x10%
.09E34 0.09 x 10%

In the absence of any suffixes, floating-point constants are of type double.
However, you can coerce a floating constant to be of type float by adding
an f or F suffix to the constant. Similarly, the suffix I or L forces the constant
to be data type long double. The next table shows the ranges available for
float, double, and long double.

Table 1.8 Type Size (bits) Range
Borland C++ floating
constant sizes float 32 3.4x 10381034 x 10%
andranges — ouble 64 1.7 x 109% 10 1.7 x 10%%8
long double 80 3.4 x 1049219 11 x 109932
Character constants 2> Character constant is one or more characters enclosed in single quotes,

suchas ‘A’, '=',or '\n'. In C, single-character constants have data type
int. The number of bits used to internally represent a character constant is
sizeof(int). In a 16-bit program, the upper byte is zero or sign-extended. In
C++, a character constant has type char. Multicharacter constants in both C
and C++ have data type int. ‘

#include <stdio.h>

To Compare Sizes Of #define CH 'x' /* A CHARACTER CONSTANT */
character types, ~ void main(void) {
compile this as a C char ch = 'x'; /* A char VARIABLE */
program and then as ’
a C++ program. printf(*\nSizeof int = %d", sizeof(int));
: printf("\nSizeof char = %4", sizeof (char));
printf("\nSizeof ch = %d", sizeof(ch));
printf("\nSizeof CH = %d", sizeof(CH));
(

printf("\nSizeof wchar_t = %d", sizeof (wchar_t));

}

Chapter 1, Lexical elements ' ' 15

Table 1.9
Sizes of character

types

Sizes are in bytes.

To retain the old
behavior, use the ~K2
command-line option
and Borland C++ 3.1
header files.

16

Output when Output when

compiled as C program: compiled as C++ program:

16-bit 32-bit \ 16-bit 32-hit
Sizeof int =2 4 Sizeof int =2 4
Sizeof char =1 1 Sizeof char =1 1
Sizeof ch =1 1 Sizeof ch =1 1
Sizeof CH =2 4 Sizeof CH =1 1
Sizeof wchar_t = 2 2 Sizeof wchar_t = 2 2

The three char types

One-character constants, such as 'A’, '\t’, and ' \007", are represented as
int values. In this case, the low-order byte is sign extended into the high bit;
that is, if the value is greater than 127 (base 10), the upper bit is set to -1
(=0OxFF). This can be disabled by declaring that the default char type is
unsigned, which forces the high bit to be zero regardless of the value of the
low bit. See the User’s Guide, Chapters 1 and 3, for information on these
options. :

The three character types, char, signed char, and unsigned char, require an
8-bit (one byte) storage. In C and Borland C++ programs prior to version

Borland C++ 4.0, char is treated the same as signed char. The behavior of C
programs is unaffected by the distinction between the three character types.

In a C++ program, a function can be overloaded with arguments of type
char, signed char, or unsigned char. For example, the following function
prototypes are valid and distinct:

void func(char ch);
void func(signed char ch);
void func(unsigned char ch);

If only one of the above profotypes exists, it will accept any of the three
character types. For example, the following is acceptable:

- void func(unsigned char ch);
void main(void) {
signed char ch = 'x’;
func(ch);
}

_ See the User’s Guide, Chapters 1 and 3, for a description of code-generation

options.

Borland C++ Programmeré Guide

w Escape sequences
The backslash character (\) is used to introduce an escape sequence, which
allows the visual representation of certain nongraphic characters. For
example, the constant \n is used for the single newline character.

A backslash is used with octal or hexadecimal numbers to represent the
ASCII symbol or control code corresponding to that value; for example, '\
03’ for Ctrl-C or ' \x3F" for the question mark. You can use any string of up
to three octal or any number of hexadecimal numbers in an escape
sequence, provided that the value is within legal range for data type char (0
to Oxff for Borland C++). Larger numbers generate the compiler error
Numeric constant too large. For example, the octal number \777 is larger
than the maximum value allowed (\377) and will generate an error. The
first nonoctal or nonhexadecimal character encountered in an octal or
hexadecimal escape sequence marks the.end of the sequence.

Originally, Turbo C allowed only three digits in a hexadecimal escape
sequence. The ANSI C rules adopted in Borland C++ might cause problems
with old code that assumes only the first three characters are converted. For
example, using Turbo C 1.x to define a string with a bell (ASCII 7) followed
by numeric characters, a programmer might write:

printf("\x0072.1A Simple Operating System");

This is intended to be interpreted as \x007 and “2.1A Simple Operating

System”. However, Borland C++ compiles it as the hexadecimal number
\X0072 and the literal string “.1A Simple Operating System”.

To avoid such problems, rewrite your code like this:
printf("\x007" "2.1A Simple Operating System");

Ambiguities might also arise if an octal escape sequence is followed by a
nonoctal digit. For example, because 8 and 9 are not legal octal digits, the
constant \258 would be interpreted as a two-character constant made up of
the characters \25 and 8.

The next table shows the available escape sequences.

Table 1.10

Borland C++ escape Sequence Value Char What it does
e -
sequences \a 0x07 BEL Audible bell
The \\ must be usecll \b 0x08 BS Backspace
to represent a rea
ASCIi backslash, as \fk 0x0C FF Formfeed
used in operating \n OX0A LF Newline (linefeed)
system paths.

Chapter 1; Lexical elements . , , , 17

String constants

18

Table 1.10: Borland C++ escape sequences (continued)

\r 0x0D CR Carriage return

\t 0x09 HT Tab (horizontal)

W 0B VT Verticaltab

A\ 0Ox5¢c \ Backslash

\! , 0x27 ! Single quote (apostrophe)

\" 0x22 " Double quote

\? 0x3F ? Question mark

\0 ‘ any 0 = a string of up to three octal digits
\xH any H = a string of hex digits

\XH any - H = a string of hex digits

Wide-character constants

Wide-character types can be used to represent a character that does not fit
into the storage space allocated for a char type. A wide character is stored
in a two-byte space. A character constant preceded immediately by an L is a
wide-character constant of data type wchar_t (defined in stddef.h). For
example:

wchar_t ch = L'AB';

A string preceded immediately by an L is a wide-character string. The
memory allocation for a string is two bytes per character. For example:

wchar_t str = L"ABCD";

Multi-character constants ,
Borland C++ also supports multi-character constants. When using the 32-

- bit compiler, multi-character constants can consist of as many as four char-

acters. The 16-bit compiler is restricted to two-character constants. For
example, 'An’, '\n\t’, and '\007\007' are acceptable in a 16-bit program.
The constant, ' \006\007\008\009' is valid only in a 32-bit program. When
using the 16-bit compiler, these constants are represented as 16-bit int
values with the first character in the low-order byte and the second
character in the high-order byte. For 32-bit compilers, multi-character
constants are always 32-bit int values. These constants are not portable to
other C compilers.

String constants, also known as string literals, form a special category of
constants used to handle fixed sequences of characters. A string literal is of

‘Borland C++ Programmers Guide

data type array-of-char and storage class static, written as a sequence of
any number of characters surrounded by double quotes:

"This is literally a string!"
The null (empty) string is written *".
The characters inside the double quotes can include escape sequences (see
page 15). This code, for example,
"\t\t\"Name\"\\\tAddress\n\n"
prints out like this:
"Name"\ Address

“Name” is preceded by two tabs; Address is preceded by one tab. The line
is followed by two new lines. The \" provides interior double quotes.

If you compile with the —A option for ANSI compatibility, the escape char-
acter sequence “\\”, is translated to “\" by the compiler.

A literal string is stored internally as the given sequence of characters plus
a final null character ("\0"). A null string is stored as a single '\0’ character.

Adjacent string literals separated only by whitespace are concatenated
during the parsing phase. In the following example,

#include <stdio.h>
#include <windows.h>

#pragma argsused

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance, LPSTR lpszCmdParam,
int nCmdShow)
{

char *p;
_InitEasyWin();

p = "This is an example of how Borland C++"
" will automatically\ndo the concatenation for®
" you on very long strings,\nresulting in nicer"
" looking programs.";

printf(p);

return(0);

}
The output of the program is:

This is an example of how Borland C++ will automatically
do the concatenation for you on very long strings,
resulting in nicer looking programs.

Chapter 1, Lexical elements 19

Enumeration
constants

See page 74 fora
detailed look at enum
declarations.

Constants and \
internal
representation

20

You can also use the backslash (\) as a continuation character in order to

- extend a string constant across line boundaries:

puts("This is really \
a one-line string");

Enumeration constants are identifiers defined in enum type declarations.”
The identifiers are usually chosen as mnemonics to assist legibility.
Enumeration constants are integer data types. They can be used in any
expression where integer constants are valid. The identifiers used must be
unique within the scope of the enum declaration. Negative initializers are
allowed. ‘

" The values acquired by enumeration constants depend on the format of the

enumeration declaration and the presence of optional initializers. In this
example, :

. ehum team { giants, cubs, dodgers };

giants, cubs, and dodgers are enumeration constants of type team that can be
assigned to any variables of type team or to any other variable of integer
type. The values acquired by the enumeration constants are -

giants = 0, cubs = 1, dodgers = 2

in the absence of explicit initializers. In the following example,
enum team { giants, cubs=3, dodgers = giants + 1 };

the constants are set as follows:
giants = 0, cubs = 3, dodgers =1

The constant values need not be unique:

enum team { giants, cubs = 1, dodgers = cubs - 1 };

ANSI C acknowledges that the size and numeric range of the basic déta

types (and their various permutations) are implementation-specific and

usually derive from the architecture of the host computer. For Borland C++,
the target platform is the IBM PC family (and compatibles), so the
architecture of the Intel 8088 and 80x86 microprocessors governs the

choices of internal representations for the various data types.

The next table lists the sizes ahd resulting ranges of the data types for
Borland C++; see page 40 for more information on these data types. Figure
1.1 shows how these types are represented internally.

Borland C++ Programmers Guide

Table 1.11: 16-bit data types, sizes, and ranges

Type Size (bits) Range Sample applications

unsigned char 8 0to 255 Small numbers and full PC character set
char 8 -128 to 127 Very small numbers and ASCII characters
enum 16 -32,768 to 32,767 Ordered sets of values

unsigned int 16 0to 65,535 Larger numbers and loops

short int 16 -32,768 to 32,767 Counting, small numbers, loop control

int 16 -32,768 to 32,767 Counting, small numbers, loop control
unsigned long 32 010 4,294,967,295 Astronomical distances

long 32 -2,147,483,648 t0 2,147,483,647 Large numbers, populations

float 32 3.4 x10%® 1034 x 10% Scientific (7-digit precision)

double 64 1.7 x 10308 40 1,7 x 10508 Scientific (15-digit precision)

long double 80 3.4x 1048210 11 x 109982 Financial (19-digit precision)

near pointer 16 Not applicable Manipulating memory addresses

far pointer 32 Not applicable Manipulating addresses outside current segment

Table 1.12: 32-bit data types, sizes, and ranges

Type Size (bits) Range Sample applications

unsigned char 8 0to 255 Small numbers and full PC character set

char 8 -1281t0 127 Very small numbers and ASCHI characters

short int 16 -32,768 to 32,767 Counting, small numbers, loop control

unsigned int 32 010 4,294,967,295 Larger numbers and loops

int 32 -2,147,483,648 t0 2,147,483,647 Counting, small numbers, loop control

unsigned long 32 0t0 4,294,967,295 Astronomical distances \

enum 32 —-2,147,483,648 t0 2,147,483,647 Ordered séts of values

long 32 -2,147,483,648 t0 2,147,483,647 Large numbers, populations

float 32 3.4x10% 10 3.4 x 10% Scientific (7-digit precision)

double 64 1.7 x 1098 9 1.7 x 10308 Scientific (15-digit precision)

long double 80 3.4 x 109921 11 x 104932 Financial (19-digit precision)

near pointer 32 Not applicable Manipulating memoi’y addresses
“Manipulating addresses outside current segment

far pointer 32 Not applicable

Chapter 1) Lexical elements

21

Figure 1.1 ‘ 16-bit integers

Internal :
representations of int - (2's complement)

numerical types 15 3

(2's complement)

" long int H magnitude

3 Q

32-bit integers

short int H (2's complement)

15 . 0
int, long int SI magnitude (2's complement)
31 N 0
Floating-point types, always
it
biased N
float H exponent significand J
31 22 0
it
double [f| .09, signifcand B
63 51 0
fong double H Jfou |1 significand J
79 64 63 0

s = Sign bit (0 = positive, 1 = negative)
i = Position of implicit binary point
= Integer bit of significance:

Stored in long double

Implicit (always 1) in float, double
Exponent bias (normalized values):

float: 127 (7FH)

double: 1,023 (3FFH)
long double: 16,383 (3FFFH)

Constant A constant expression is an expression that always evaluates to a constant

expressions (and it must evaluate to a constant that is in the range of representable
values for its type). Constant expressions are evaluated just as regular
expressions are. You can use a constant expression anywhere that a
constant is legal. The syntax for constant expressions is

constant-expression:
Conditional-expression

Constant expressions cannot contain any of the following operators, unless
the operators are contained within the operand of a sizeof operator:

22 o , Borland C++ Programmer’s Guide

Punctuators

Brackets

Parentheses

m Assignment
m Comma

m Decrement

m Function call
m Increment

The punctuators (also known as separators) in Borland C++ are defined as
follows:

punctuator: one of

1)y, =#

[1 (open and close brackets) indicate single and multidimensional array
subscripts:

char ch, str[] = "Stan";
int mat([3}[4]; /* 3 x 4 matrix */

ch = str(3]; /* 4th element */

() (open and close parentheses) group expressions, isolate conditional
expressions, and indicate function calls and function parameters:

d=c* (a+b); /* override normal precedence */

if (d == z) ++x; /* essential with conditional statement */
func(); /* function call, no args */

int (*fptr){); /* function pointer declaration */

fptr = func; /* no () means func pointer */

void func2(int n); /* function declaration with parameters */

Parentheses are recommended in macro definitions to avoid potenhal
precedence problems during expansion:

#define CUBE(x) ((x) * (x) * (x))

The use of parentheses to alter the normal operator precedence and associa-
tivity rules is covered in the “Expressions” section starting on page 77.

Chapter 1, Lexical elements - : ' 23

Braces

Comma

Semicolon

24

{} (open and close braces) mdlcate the start and end of a compound
statement:

if (4 == z)
{
X
func();

}

The closing brace serves as a terminator for the compound statement, so a ;
(semicolon) is not required after the }, except in structure or class
declarations. Often, the semicolon is illegal, as in

if (statement)
{}; /*illegal semicolon*/
else

The comma (,) separates the elements of a function argument list:
void func{int n, float f, char ch);

The comma is also used as an operator in comma expressions. Mixing the two
uses of comma is legal, but you must use parentheses to distinguish them:

func(i, j); /* call func with two args */
func((expl, exp2), (exp3, expd, exp5)); /* also calls func with two args! */

The semicolon (;) is a statement terminator. Any legal C or C++ expression
(including the empty expression) followed by a semicolon is interpreted as
a statement, known as an expression statement. The expression is evaluated
and its value is discarded. If the expression statement has no 51de effects,
Borland C++ might ignore it.

a+ b; /* maybe evaluate a + b, but discard value */
++a; /* side effect on a, but discard value of ++a */
: /* empty expression = null statement */

Semicolons are often used to create an empty statement:

for (1 = 0; 1 < mn; i+4)

{

}

Borland C++ Programmer’s Guide

Colon

&

Ellipsis

Asterisk (pointer
declaration)

Equal sign
(initializer)

Use the colon (:) to indicate a labeled statement:

start: x=0;

goto Start;
Labels are discussed in the “Labeled statements” section on page 102.

The use of the colon in class initialization is shown in the section beginning
on page 144.

The ellipsis (...) is three successive periods with no whitespace intervening.
Ellipses are used in the formal argument lists of function prototypes to
indicate a variable number of arguments, or arguments with varying types:

void func(int n, char ch,...);

This declaration indicates that func will be defined in such a way that calls
must have at least two arguments, an int and a char, but can also have any
number of additional arguments.

In C++, you can omit the comma preceding the ellipsis.

The * (asterisk) in a variable declaration denotes the creation of a pointer to
atype:
char *char_ptr; /* a pointer to char is declared */

Pointers with multiple levels of indirection can be declared by indicating a
pertinent number of asterisks:

int **int_ptr; /* a pointer to an integer array */
double ***double_ptr; /* a pointer to a matrix of doubles */

You can also use the asterisk as an operator to either dereference a pointer
or as the multiplication operator:

i = *int_ptr;
a=Db*3.14;

The = (equal sign) separates variable declarations from initialization lists:

char array[5] = { 1, 2, 3, 4, 5 };
int x = 5;

In C++, declarations of any type can appear (with some restrictions) at any
point within the code. In a C function, no code can precede any variable
declarations.

Chapter 1, Lexical elements o : , 25

Pound sign
(preprocessor
directive)

26

In a C++ function argument list, the equal sign indicates the default value
for a parameter:

int f(int i = 0) { ... } /* Parameter i has default value of zero.*/
The equal sign is also used as the assignment operator in expressions:

int a, b, ¢;
a=b+c;
float *ptr = (float *) malloc(sizeof (float) * 100);

The # (pound sign) indicates a preprocessor directive when it occurs as the
first nonwhitespace character on a line. It signifies a compiler action, not
necessarily associated with code generation. See page 185 for more on the
preprocessor directives.

and ## (double pound signs) are also used as operators to perform token
replacement and merging during the preprocessor scanning phase.

Boriand C++ Programmer's Guide

Declarations

Language structure

This chapter provides a formal definition of Borland C++’s language
structure. It describes the legal ways in which tokens can be grouped
together to form expressions, statements, and other significant units.

Objects

This section briefly reviews concepts related to declarations: objects, storage
classes, types, scope, visibility, duration, and linkage. A general knowledge
of these is essential before tackling the full declaration syntax. Scope,
visibility, duration, and linkage determine those portions of a program that
can make legal references to an identifier in order to access its object.

An object is an identifiable region of memory that can hold a fixed or
variable value (or set of values). (This use of the word object is different
from the more general term used in object-oriented languages.) Each value
has an associated name and type (also known as a data type). The name is
used to access the object. This name can be a simple identifier, or it can be a
complex expression that uniquely “points” to the object. The type is used

u To determine the correct memory allocation required initially.

m To interpret the bit patterns found in the object during subsequent
accesses.

m In many type-checking situations, to ensure that illegal assignments are
trapped.

Borland C++ supports many standard (predefined) and user-defined data
types, including signed and unsigned integers in various sizes, floating-
point numbers in various precisions, structures, unions, arrays, and classes.
In addition, pointers to most of these objects can be established and
manipulated in various memory models.

The Borland C++ standard libraries and your own program and header
files must provide unambiguous identifiers (or expressions derived from
them) and types so that Borland C++ can consistently access, interpret, and

Chapter 2, Language structure 27

Ivalues

rvalues

Storage classes
and types

28

(possibly) change the bit patterns in memory corresponding to each active
object in your program.

Declarations establish the necessary mapping between 1dent1f1ers and
objects. Each declaration associates an identifier with a data type. Most
declarations, known as defining declarations, also establish the creation
(where and when) of the object; that is, the allocation of physical memory
and its possible initialization. Other declarations, known as referencing
declarations, simply make their identifiers and types known to the compiler.
There can be many referencing declarations for the same identifier,
especially in a multifile program, but only one defining declaration for that
identifier is allowed.

Generally speaking, an identifier cannot be legally used in a program
before its declaration point in the source code. Legal exceptions to this rule
(known as forward references) are labels, calls to undeclared functions, and
class, struct, or union tags.

An lvalue is an object locator: an expression that designates an object. An
example of an Ivalue expression is *P, where P is any expression evaluating
to a non-null pointer. A modifiable lvalue is an identifier or expression that
relates to an object that can be accessed and legally changed in memory. A
const pointer to a constant, for example, is not a modifiable lvalue. A
pointer to a constant can be changed (but its dereferenced value cannot).

Historically, the I stood for “left,” meaning that an lvalue could legally
stand on the left (the receiving end) of an assignment statement. Now only
modifiable lvalues can legally stand to the left of an assignment statement.
For example, if 2 and b are nonconstant integer identifiers with properly
allocated memory storage, they are both modifiable lvalues, and
assignments such asa = 1; and b =a + b are legal.

The expression a + b is not an Ivalue: a + b = a is illegal because the

_expression on the left is not related to an object. Such expressmns are often

called rvalues (short for right values).

Associating identifiers with objects requires each identifier to have at least
two attributes: storage class and type (sometimes referred to as data type).
The Borland C++ compiler deduces these attributes from implicit or explicit
declarations in the source code.

Storage class dictates the location (data segment, register, heap, or stack) of
the object and its duration or lifetime (the entire running time of the
program, or during execution of some blocks of code). Storage class can be

Borland C++ Programmer’s Guide

Scope

established by the syntax of the declaration, by its placement in the source
code, or by both of these factors.

The type determines how much memory is allocated to an object and how
the program will interpret the bit patterns found in the object’s storage
allocation. A given data type can be viewed as the set of values (often
implementation-dependent) that identifiers of that type can assume,
together with the set of operations allowed on those values. The compile-
time operator, sizeof, lets you determine the size in bytes of any standard
or user-defined type; see page 99 for more on this operator.

The scope of an identifier is that part of the program in which the identifier
can be used to access its object. There are five categories of scope: block (or
local), function, function prototype, file, and class (C++ only). These depend on
how and where identifiers are declared.

m Block. The scope of an identifier with block (or local) scope starts at the
declaration point and ends at the end of the block containing the declara-
tion (such a block is known as the enclosing block). Parameter declara-
tions with a function definition also have block scope, limited to the
scope of the block that defines the function.

m Function. The only identifiers having function scope are statement labels.
Label names can be used with goto statements anywhere in the function
in which the label is declared. Labels are declared implicitly by writing
label_name: followed by a statement. Label names must be unique within
a function.

m Function prototype. Identifiers declared within the list of parameter
declarations in a function prototype (not part of a function definition)
have function prototype scope. This scope ends at the end of the function
prototype.

m File. File scope identifiers, also known as globals, are declared outside of
all blocks and classes; their scope is from the point of declaration to the
end of the source file.

m Class (C++). For now, think of a class as a named collection of members,
including data structures and functions that act on them. Class scope
applies to the names of the members of a particular class. Classes and
their objects have many special access and scoping rules; see pages
124-138.

Chapter 2, Language structure » ~ ‘ 29

Name spaces

Structures, classes,
and enumerations are
in the same name
space in C++.

Visibility

Visibility cannot
exceed scope, but
scope can exceed

visibility.

30

Name space is the scope within which an identifier must be unique. C uses
four distinct classes of identifiers:

m goto label names. These must be unique within the function in which
they are declared.

m Structure, union, and enumeration tags. These must be unique within the
block in which they are defined. Tags declared outside of any function
must be unique within all tags defined externally. '

‘m Structure and union member names. These must be unique within the
structure or union in which they are defined. There is no restriction on
the type or offset of members with the same member name in different
structures. '

m Variables, typedefs, functions, and enumeration members. These must be
unique within the scope in which they are defined. Externally declared
identifiers must be unique among externally declared variables.

The visibility of an identifier is that region of the program source code from
which legal access can be made to the identifier’s associated object.

Scope and visibility usually coincide, though there are circumstances under
which an object becomes temporarily hidden by the appearance of a
duplicate identifier: the object still exists but the original identifier cannot
be used to access it until the scope of the duplicate identifier is ended.

int 1; char ch; // auto by default

i=3; // int i and char ch in scope and visible
{
double 1i;
1= 3.0e3; // double 1 in scope and visible
// int i=3 in scope but hidden
ch = 'A’; // char ch in scope and visible

}
// double i out of scope
i+=1; // int 1 visible and = 4

// char ch still in scope & visible = 'A’
}

// int i and char ch out of scope

Borland C++ Programmers Guide

&

Duration

Static

Local

The Borland C++
compiler can ignore
requests for register

allocation. Register
allocation is based on
the compilers

analysis of how a

variable is used.

Again, special rules apply to hidden class names and class member names:
C++ operators allow hidden identifiers to be accessed under certain
conditions.

Duration, closely related to storage class, defines the period during which
the declared identifiers have real, physical objects allocated in memory. We
also distinguish between compile-time and run-time objects. Variables, for
instance, unlike typedefs and types, have real memory allocated during run
time. There are three kinds of duration: static, local, and dynamic.

Memory is allocated to objects with static duration as soon as execution is
underway; this storage allocation lasts until the program terminates. Static
duration objects usually reside in fixed data segments allocated according
to the memory model in force. All functions, wherever defined, are objects
with static duration. All variables with file scope have static duration.
Other variables can be given static duration by using the explicit static or
extern storage class specifiers.

Static duration objects are initialized to zero (or null) in the absence of any
explicit initializer or, in C++, constructor.

Don’t confuse static duration with file or global scope. An object can have
static duration and local scope.

Local duration objects, also known as automatic objects, lead a more
precarious existence. They are created on the stack (or in a register) when
the enclosing block or function is entered. They are deallocated when the
program exits that block or function. Local duration objects must be
explicitly initialized; otherwise, their contents are unpredictable. Local
duration objects must always have local or function scope. The storage class
specifier auto can be used when declaring local duration variables, but is
usually redundant, because auto is the default for variables declared within
a block. An object with local duration also has local scope, because it does
not exist outside of its enclosing block. The converse is not true: a local
scope object can have static duration.

When declaring variables (for example, int, char, float), the storage class
specifier register also implies auto; but a request (or hint) is passed to the
compiler that the object be allocated a register if possible. Borland C++ can
be set to allocate a register to a local integral or pointer variable, if one is
free. If no reglster is free, the variable is allocated as an auto, local object
with no warning or error.

Chapter 2, Language structure 31 ‘

Dynamic

Translation units

For more details, see
“External declarations

and definitions” on
page 37.

Linkage

32

Dynamic duration objects are created and destroyed by specific function
calls during a program. They are allocated storage from a special memory

‘reserve known as the heap, using either standard library functions such as

malloc, or by using the C++ operator new. The corresponding deallocations
are made using free or delete.

The term translation unit refers to a source code file together with any
included files, but less any source lines omitted by conditional preprocessor
directives. Syntactically, a translatlon unit is defined as a sequence of
external declarations:

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration
function-definition
declaration

‘The word external has several connotations in C; here it refers to

declarations made outside of any function, and which therefore have file
scope. (External linkage is a distinct property; see the following section,
“Linkage.”) Any declaration that also reserves storage for an object or
function is called a definition (or defining declaration).

An executable program is usually created by compiling several indepen-
dent translation units, then linking the resulting object files with
preexisting libraries. A problem arises when the same identifier is declared
in different scopes (for example, in different files), or declared more than
once in the same scope. Linkage is the process that allows each instance of
an identifier to be associated correctly with one particular object or
function. All identifiers have one of three linkage attributes, closely related
to their scope: external linkage, internal linkage, or no linkage. These
attributes are determined by the placement and format of your
declarations, together with the explicit (or implicit by default) use of the
storage class specifier static or extern

Each instance of a particular identifier with external linkage represents the
same object or function throughout the entire set of files and libraries
making up the program. Each instance of a particular identifier with
internal linkage represents the same object or function within one file only.
Identifiers with no linkage represent unique entities. ’

Borland C++ Programmers Guide

Name mangling

Here are the external and internal linkage rules:

m Any object or file identifier having file scope will have internal linkage if
its declaration contains the storage class specifier static.

For C++, if the same identifier appears with both internal and external
linkage within the same file, the identifier will have external linkage. In
C, it will have internal linkage.

m If the declaration of an object or function identifier contains the storage
class specifier extern, the identifier has the same linkage as any visible
declaration of the identifier with file scope. If there is no such visible
declaration, the identifier has external linkage.

m If a function is declared without a storage class specifier, its linkage is
determined as if the storage class specifier extern had been used.

m If an object identifier with file scope is declared without a storage class
specifier, the identifier has external linkage.

The following identifiers have no linkage attribute:

® Any identifier declared to be other than an object or a function (for
example, a typedef identifier)

m Function parameters

m Block scope identifiers for objects declared w1thout the storage class.
specifier extern

When a C++ module is compiled, the compiler generates function names
that include an encoding of the function’s argument types. This is known as
name mangling. It makes overloaded functions possible, and helps the
linker catch errors in calls to functions in other modules. However, there
are times when you won’t want name mangling. When compiling a C++
module to be linked with a module that does not have mangled names, the
C++ compiler has to be told not to mangle the names of the functions from
the other module. This situation typically arises when linking with 11brar1es
or .OBJ files compiled with a C compiler.

To tell the C++ compiler not to mangle the name of a function, declare the

function as extern "C", like this:
extern ."C" void Cfunc(int);

This declaration tells the compiler that references to the function Cfunc
should not be mangled.

Chapter 2, Language structure | 3 ’ v ‘ \ 33

You can also apply the extern "C" declaration to a block of names:

extern "C" {
void Cfuncl(int);
void Cfunc2(int);
void Cfunc3(int);
}i

As with the declaration for a single function, this declaration tells the
compiler that references to the functions Cfuncl, Cfunc2, and Cfunc3 should
not be mangled. You can also use this form of block declaration when the
block of function names is contained in a header file:

extern "C" {
#include "locallib.h"
1

Declaration syntax

Tentative
definitions

34

All six interrelated attributes (storage classes, types, scope, visibility,
duration, and linkage) are determined in diverse ways by declarations.

Declarations can be defining declarations (also known as definitions) or
referencing declarations (sometimes known as nondefining declarations). A
defining declaration, as the name implies, performs both the duties of
declaring and defining; the nondefining declarations require a definition to
be added somewhere in the program. A referencing declaration introduces
one or more identifier names into a program. A definition actually allocates

~memory to an object and associates an identifier with that object.

The ANSI C standard introduces a new concept: that of the tentative
definition. Any external data declaration that has no storage class specifier
and no initializer is considered a tentative definition. If the identifier
declared appears in a later definition, then the tentative definition is treated
as if the extern storage class specifier were present. In other words, the
tentative definition becomes a simple referencing declaration.

Borland C++ Progfammefs Guide

&

Possible
declarations

If the end of the translation unit is reached and no definition has appeared
with an initializer for the identifier, then the tentative definition becomes a
full definition, and the object defined has uninitialized (zero-filled) space
reserved for it. For example,

int x;

int x; /*legal, one copy of x is reserved */

int y;

int y = 4; /* legal, vy is initialized to 4 */

int z = 5;

int z = 6; /* not legal, both are initialized definitions */

Unlike ANSI C, C++ doesn’t have the concept of a tentative declaration; an
external data declaration without a storage class specifier is always a
definition.

The range of objects that can be declared includes

m Variables
m Functions
m Classes and class members (C++)
m Types
m Structure, union, and enumeratijon tags
m Structure members
m Union members
m Arrays of other types
m Enumeration constants
m Statement labels
m Preprocessor macros
The full syntax for declarations is shown in Tables 2.1 through 2.3. The

recursive nature of the declarator syntax allows complex declarators. You'll
probably want to use typedefs to improve legibility.

Chapter 2, Language structure 4 35

- Table 2.1
Borland C++
declaration syntax

declaration:
<decl-specifiers> <declarator-list>;
asm-declaration
function-declaration
linkage-specification

decl-specifier.
storage-class-specifier
type-specifier
function-specifier
friend (C++ specific)
typedef -

decl-specifiers:
<decl-specifiers> decl-specifier

storage-class-specifier.
auto '
register
static
extern

function-specifier. (C++ specific)
inline
virtual

type-specifier.
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
const :
volatile

simple-type-name:
class-name
typedef-name
char
short

int

long
signed
unsigned
float
double
void

elaborated-type-specifier.
class-key identifier
class-key class-name
.enum enum-name

class-key: (C++ specific)
class
struct
union

enum-specifier.
enum <identifiers { <enum-list> }

enum-list:
enumerator
enumerator-list, enumerator

enumerator.
identifier
identifier = constant-expression

constant-expression:
conditional-expression

linkage-specification: (C++ specific)
- extern string { <declaration-list> }
extern string declaration

declaration-list
declaration
declaration-list ; declaration

In Table 2.2, note the restrictions on the number and order of modifiers and
qualifiers. Also, the modifiers listed are the only addition to the declarator
syntax that are not ANSI C or C++. These modifiers are each discussed in
greater detail starting on page 48.

36 ‘, Borland C++ Programmers Guide

Table 2.2: Borland C++ declarator syntax

_ declarator-list.
init-declarator
declarator-list , init-declarator

init-declarator.
declarator <initializers

declarator.
dname
modifier-list
pointer-operator declarator
declarator (parameter-declaration-list) <cv-qualifier-list>
(The <cv-qualifier-list> is for C++ only.)
declarator | <constant-expression> |
(declarator)

modifier-list:
modifier
modifier-list modifier

modifier.
_ _cdecl
_ _pascal
_ _interrupt
_ _nhear
__far
__huge

pointer-operator.
* <cv-qualifier-list>
& <cv-qualifier-list> (C++ specific)
class-name :: * <cv-qualifier-list> (C++ specific)

cv-qualifier-list
cv-qualifier <cv-qualifier-list>

cv-qualifier
const
volatile

dname:
name
class-name (C++ specific)
~ class-name (C++ specific)

type-name:
type-specifier <abstract-declarator>

abstract-declarator.
pointer-operator <abstract-declarator>
<abstract-declarator> (argument-declaration-list) <cv-qualifier-list>
<abstract-declarator> [<constant-expression>]
(abstract-declarator)

argument-declaration-list:
<arg-declaration-list>
arg-declaration-list , ...
<arg-declaration-list> ... (C++ specific)

arg-declaration-list.
argument-declaration
arg-declaration-list, argument-declaration

argument-declaration:
decl-specifiers declarator
decl-specifiers declarator = expression (C++ specific)
decl-specifiers <abstract-declarator>
decl-specifiers <abstract-declarator> = expression (C++ specific)

function-definition:
<decl-specifiers> declarator <ctor-initializer> function-body

function-body.
compound-statement
initializer.
= expression
= { initializer-list }
(expression-list) (C++ specific)

initializer-list.
expression
initializer-list , expression
{ initializer-list <,> }

type-defined-name
External The storage class specifiers auto and register cannot appear in an external
declarations and declaration (see page 32). For each identifier in a translation unit declared
definitions with internal linkage, no more than one external definition can be given.

An external definition is an external declaration that also defines an object
or function; that is, it also allocates storage. If an identifier declared with
external linkage is used in an expression (other than as part of the operand

Chapter 2, Language structure

37

of sizeof), then exactly one external definition of that identifier must be
somewhere in the entire program.

Borland C++ allows later re-declarations of external names, such as arrays,
structures, and unions, to add information to earlier declarations. Here’s an

example: '
int af[l; // no size
struct mystruct; // tag only, no member declarators

int a[3] = {1, 2, 3}; // supply size and initialize
struct mystruct {

int 1, 3;)
}i // add member declarators

Table 2.3 covers class declaration syntax. In the section on classes (begin-
ning on page 124), you can find examples of how to declare a class. The
“Referencing” section on page 116 covers C++ reference types (closely
related to pointer types) in detail. Finally, see page 160 for a discussion of

template-type classes.

Table 2.3: Borland C++ class declaration syntax (C++ only)

class-specifier.
class-head { <member-list> }

class-head:
class-key <identifier> <base-specifiers
class-key class-name <base-specifier>

member-list.
member-declaration <member-list>
access-specifier : <member-list>

member-declaration:
<decl-specifiers> <member-declarator-list> ;
function-definition <;>
qualified-name ;

member-declarator-list.
member-declarator
member-declarator-list, member-declarator

member-declarator.
declarator <pure-specifiers
<identifier> : constant-expression
pure-specifier:
=0
base-specifier:
: base-list

38

base-list:
base-specifier
base-list , base-specifier

base-specifier.
class-name
virtual <access-specifiers. class-name
access-specifier <virtual> class-name

access-specifier.
private
protected
public

conversion-function-name:
operator conversion-type-name

conversion-fype-name:
type-specifiers <pointer-operator>
constructor-initializer.
: member-initializer-list

member-initializer-list.
member-initializer
member-initializer, member-initializer-list

Borland C++ Programmers Guide

Table 2.3: Borland C++ class declaration syntax (C++ only) (continued)

member-initializer. + - * / o A
class name (<argument-list>) & 1 ~ ! = <>
identifier (<argument-list>) += -= *= I= Yo= Az

) ! &= = << >> >>= <<=

operator-function-name: - 1= < = & I

operator operalor-name + e , ot - 0

operator-name: one of

[l !

new delete sizeof typeid

Type specifiers

Type categories

The type specifier with one or more optional modifiers is used to specify the
type of the declared identifier:

int 1i; // declare 1 as a signed integer
unsigned char chl, ch2; // declare two unsigned chars

By long-standing tradition, if the type specifier is omitted, type signed int
(or equivalently, int) is the assumed default. However, in C++, a missing
type specifier can lead to syntactic ambiguity, so C++ practice requires you
to explicitly declare all int type specifiers.

The four basic type categories (and their subcategories) are as follows:

m Aggregate

e Array
o struct
e union
o class (C++ only)

m Function
m Scalar

o Arithmetic

e Enumeration

o Pointer

o Reference (C++ only)

m void (discussed in the next section)

Types can also be viewed in another way: they can be fundamental or derived
types. The fundamental types are void, char, int, float, and double, together
with short, long, signed, and unsigned variants of some of these. The

Chapter 2, Language structure . ‘ ' 39

(€O

Table 2.4
Declaring types

type& var, type &var,
and type & var are all
equivalent.

Type void

C++ handles funcin a
special manner. See

- page 62 and code
examples on

page 64.

The fundamental
types '

40

 derived types include pointers and references to other types, arrays of other

types, function types, class types, structures, and unions.

A class object, for example, can hold a number of objects of different types
together with functions for manipulating these objects, plus a mechanism
to control access and inheritance from other classes.

Given any nonvoid type type (with some provisos), you can declare
derived types as follows:

Declaration Description

typet; An object of type type.

type array{10]; Ten types: array[0] - arrayf9].

type *ptr, ptris a pointer to type.

type &ref=t refis a reference to type (C++).
type func(void); func returns value of type type.

void funci(type 1); funct takes a type type parameter.

struct st {type t1; type t2}; structure st holds two types.

void is a special type specifier indicating the absence of any values. It is
used in the following situations: :
m When there is an empty parameter list in a function declaration:
int func(void); // func takes no arguments
m When the declared function does not return a value:
void func(int n); // return Valué
m As a generic pointer (a pointer to void is a generic pointer to anything):
void *ptr; // ptr can later be set to point to any object

m In typecasting expressions:
extern int errfunc(); ‘ // returns an error code

(}void) errfunc(); // discard return value

The fundamental type specifiers are built from the following keywords:

char int signed
double long unsigned
float short

From these keywords you can build the integral and floating-point types,
which are together known as the arithmetic types. The modifiers long, short,

Borland C++ Programmer’s Guide

‘ Integral types

Table 2.5
Integral types

These synonyms are
not valid in C++. See
page 16.

signed, and unsigned can be applied to the integral types. The include file
limits.h contains definitions of the value ranges for all the fundamental

types.

char, short, iﬁt, and long, together with their unsigned variants, are all
considered integral data types. Table 2.5 shows the integral type specifiers,
with synonyms listed on the same line.

char, signed char Synonyms if default char set to signed.
unsigned char '

char, unsigned char Synonyms if default char set to unsigned.
signed char

int, signed int

unsigned, unsigned int

4 short, short int, signed short int
unsigned short, unsigned short int
long, long int, signed long int
unsigned long, unsigned long int

Only signed or unsigned can be used with char, short, int, or long. The
keywords signed and unsigned, when used on their own, mean signed int
and unsigned int, respectively.

In the absence of unsigned, signed is usually assumed. An exception arises
with char. Borland C++ lets you set the default for char to be signed or
unsigned. (The default, if you don’t set it yourself, is signed.) If the default
is set to unsigned, then the declaration char ch declares ch as unsigned. You
would need to use signed char ch to override the default. Similarly, with a
signed default for char, you would need an explicit unsigned char ch to
declare an unsigned char.

Only long or short can be used with int. The keywords long and short used
on their own mean long int and short int.

ANSI C does not dictate the sizes or internal representations of these types,
except to indicate that short, int, and long form a nondecreasing sequence
with “short <= int <= long.” All three types can legally be the same. This is
important if you want to write portable code aimed at other platforms.

In a Borland C++ 16-bit program, the types int and short are equivélent,
both being 16 bits. In a Borland C++ 32-bit program, the types int and long
are equivalent, both being 32 bits. The signed varieties are all stored in ‘

Chapter 2, Language structure , » 41

Floating-point types

Standard
conversions

42

two’s complement format using the most significant bit (MSB) as a sign bit:
0 for positive, 1 for negative (which explains the ranges shown on page 21).
In the unsigned versions, all bits are used to give a range of 0 - (2" - 1),
where n is 8, 16, or 32.

The representations and sets of values for the floating-point types are
implementation dependent; that is, each implementation of C is free to
define them. Borland C++ uses the IEEE floating-point formats. Appendix
A tells more about implementation-specific items.

float and double are 32- and 64-bit floating-point data types, respectively.
long can be used with double to declare an 80-bit precision floating-point
identifier: long double fest_case, for example.

The table on page 21 indicates the storage allocations for the floating-point
types. '

When you use an arithmetic expression, such as a + b, where a and b are
different arithmetic types, Borland C++ performs certain internal conver-
sions before the expression is evaluated. These standard conversions
include promotions of “lower” types to “higher” types in the interests of
accuracy and consistency. :

Here are the steps Borland C++ uses to convert the operands in an
arithmetic expression:

1. Any small integral types are converted as shown in the next table. After
this, any two values associated with an operator are either int (including
the long and unsigned modifiers), or they are of type double, float, or
long double.

2. If either operand is of type long double, the other operand is converted
to long double.

3. Otherwise, if either operand is of type double, the other operand is
converted to double.

4. Otherwise, if either operand is of type float, the other operand is
converted to float.

5. Otherwise, if either operand is of type unsigned long, the other operand
is converted to unsigned long.

6. Otherwise, if either operand is of type long, then the other operand is

converted to long.

7. Otherwise, if either operand is of type unsigned, then the other operand
is converted to unsigned.

8. Otherwise, both operands are of type int.

Borland C++ Programmer’ Guide

Table 2.6

Methods used in
standard arithmetic
conversions

Special char, int,
and enum
conversions

The conversions
discussed in this
section are specific to
Borland C++.

Initialization

If the object has
automatic storage
duration, its value is
indeterminate.

&

The result of the expression is the same type as that of the two operands.

Type Converts to Method

char int Zero or sign-extended (depends on default char
type)

unsigned char int Zero-filled high byte (always)

signed char int Sign-extended (always)

short int Same value; sign extended

unsigned short unsigned int Same value; zero filled

enum int Same value

Assigning a signed character object (such as a variable) to an integral object
results in automatic sign extension. Objects of type signed char always use
sign extension; objects of type unsigned char always set the high byte to
zero when converted to int. '

Converting a longer integral type to a shorter type truncates the higher
order bits and leaves low-order bits unchanged. Converting a shorter
integral type to a longer type either sign-extends or zero-fills the extra bits
of the new value, depending on whether the shorter type is signed or
unsigned, respectively.

Initializers set the initial value that is stored in an object (variables, arrays,
structures, and so on). If you don’t initialize an object, and it has static
duration, it will be initialized by default in the following manner:

m To zero if it is an arithmetic type

m To null if it is a pointer type
The syntax for initializers is as follows:
initializer
= expression
= {initializer-list} <,>}
(expression list)
initializer-list
expression
initializer-list, expression
{initializer-list} <>}

Chapter 2, Language structure o 43

Arrays, siructures,

and unions

44

The rules governing initializers are

m The number of initializers in the initializer list cannot be larger than the
number of objects to be initialized. ‘

m The item to be initialized must be an object (for example, an array) of
unknown size.

m For C (not required for C++), all expressions must be constants if they
appear in one of these places:

o In an initializer for an object that has static duration.

e In an initializer list for an array, structure, or union (expressions usmg
sizeof are also allowed).

m If a declaration for an identifier has block scope, and the identifier has
external or internal linkage, the declaration cannot have an initializer for
the identifier. '

m If a brace-enclosed list has fewer initializers than members of a structure,
the remainder of the structure is initialized implicitly in the same way as
objects with static storage duration.

Scalar types are initialized with a single expression, which can optionally
be enclosed in braces. The initial value of the object is that of the
expression; the same constraints for type and conversions apply as for
simple assignments.

For unions, a brace-enclosed initializer initializes the member that first
appears in the union’s declaration list. For structures or unions with
automatic storage duration, the initializer must be one of the following:

m An initializer list (as described in the following section).

m A single expression with compatible union or structure type. In this case,
the initial value of the object is that of the expression.

You initialize arrays and structures (at declaration time, if you like) with a
brace-enclosed list of initializers for the members or elements of the object
in question. The initializers are g1ven in increasing array subscript or

“member order. You initialize unions with a brace-enclosed initializer for the

first member of the union. For example, you could declare an array days,
which counts how many times each day of the week appears in a month
(assuming that each day will appear at least once), as follows:

“int days(7] = {1, 1, 1,1, 1,1, 1}
The following rules initialize character arrays and wide character arrays:

m You can initialize arrays of character type with a literal string, optionally
enclosed in braces. Each character in the string, 1nc1ud1ng the null

Borland C++ Programmer$ Guidé

Declarations and
declarators

terminator, initializes successive elements in the array. For example, you
could declare

char name[] = { "Unknown" };

which sets up an eight-element array, whose elements are ‘U’ (for
name[Q]), 0" (for name[1]), and so on (and including a null terminator).

m You can initialize a wide character array (one that is compatible with
wchar_t) by using a wide string literal, optionally enclosed in braces. As
with character arrays, the codes of the wide string literal initialize -
successive elements of the array.

Here is an example of a structure initialization:

struct mystruct {
int i;
char str(2l];
double d;
Y s = { 20, "Borland", 3.141 };

Complex members of a structure, such as arrays or structures, can be
initialized with suitable expressions inside nested braces.

A declaration is a list of names. The names are sometimes referred to as
declarators or identifiers. The declaration begins with optional storage class
specifiers, type specifiers, and other modifiers. The identifiers are separated

‘by commas and the list is terminated by a semicolon.

Simple declarations of variable identifiers have the following pattern:
data-type varl <=initl>, var2 <=init2>, ...;

where varl, var2,... are any sequence of distinct identifiers with optional
initializers. Each of the variables is declared to be of type data-type. For
example,

int x =1,y = 2;
creates two integer variables called x and y (and initializes them to the

values 1 and 2, respectively).

These are all defining declarations; storage is allocated and any optional
initializers are applied.

The initializer for an automatic object can be any legal expression that
evaluates to an assignment-compatible value for the type of the variable
involved. Initializers for static objects must be constants or constant
expressions. "

Chapter 2, Language structure) , ‘ . 45

&

N

See Table 2.1 on

page 36 for the

declarator syntax.
The definition covers
both identifier and
function declarators.

In C++, an initializer for a static object can be any expression involving
constants and previously declared variables and functions.

The format of the declarator indicates how the declared name is to be
interpreted when used in an expression. If typeis any type, and storage class
specifier is any storage class specifier, and if DI and D2 are any two
declarators, then the declaration

storage-class-specifier type D1, D2;

indicates that each occurrence of D1 or D2 in an expression will be treated

as an object of type type and storage class storage class specifier. The type of

the name embedded in the declarator will be some phrase containing type,
such as “type,” “pointer to type,” “array of type,” “function returning type,
or “pointer to function returning type,” and so on.

7”7

For example, in the following table of declarations each of the declarators
could be used as rvalues (or possibly lvalues in some cases) in expressions
where a single int object would be appropriate. The types of the embedded
identifiers are derived from their declarators as follows:

Table 2.7: Declaration syntax examples

Declarator
syntax Implied type of name Example
type name; type s int count;
type name(]; (open) array of type) . int count[];
type name[3]; Fixed array of three elements, all of type ' int count([3];
(namel0], name[1], and name[2])
type *name; Pointer to fype int *count;
type *namel] ; (open) array of pointers to type : int *count[];
type *(name[]); Same as above int * (vcoubnt [1);
type (*name)|[]; Pointer to an (open) array of fype int (*count) [];
type &narﬁe; Reference to type (C++ only) int &count;
type name(); Function retuming type int count();
type *name(); Function returning pointer to type int *count(); v
type * (name()); .Same as above ‘ . int *(count());
type (*name) ()' ; Pointer to function returning type int (*count) ();
Note the need for parentheses in (*name)[] and (*name)(); this is because the
precedence of both the array declarator [] and the function declarator () is
46

Borland C++ Programmers Guide

Use of storage
class specifiers

auto

extern

register

The Borland C++
compiler can ignore
requests for register

allocation. Register
allocation is based on
the compilers

analysis of how a

variable is used.

static

higher than the pointer declarator *. The parentheses in *(name[]) are
optional.

A storage class specifier (also called a type specifier) must be present in a dec-
laration. The storage class specifiers can be one of the following: auto,
extern, register, static, or typedef.

The storage class specifier auto is used only with local scope variable
declarations. It conveys local (automatic) duration, but since this is the
default for all local scope variable declarations, its use is rare.

The storage class specifier extern can be used with function and variable
file scope and local scope declarations to indicate external linkage. With file
scope variables, the default storage class specifier is extern. When used
with variables, extern indicates that the variable has static duration.
(Remember that functions always have static duration.) See page 33 for
information on using extern to prevent name mangling when combining C
and C++ code.

The storage class specifier register is allowed only for local variable and
function parameter declarations. It is equivalent to auto, but it makes a
request to the compiler to allocate the variable to a register if possible. The
allocation of a register can significantly reduce the size and improve the
performance of programs in many situations. However, since Borland C++
does a good job of placing variables in registers, it is rarely necessary to use
the register keyword.

Borland C++ lets you request register variable optibns. See the User’s Guide,
Chapter 3, for a discussion of compiling optimizations including register
allocation, and passing this pointer with _ _fastThis.

See “The _ _fastcall modifier” section on page 55 for a discussion of
passing function parameters in registers.

The storage class specifier static can be used with function and variable file
scope and local scope declarations to indicate internal linkage. static also
indicates that the variable has static duration. In the absence of constructors
or explicit initializers, static variables are initialized with 0 or null.

In C++, a static data member of a class has the same value for all instances
of a class. A static member function of a class can be invoked indepen-
dently of any class instance.

Chapter 2, Language structure , ‘ 47

typedef

Important!

Variable modifiers

The keyword typedef indicates that you are defining a new data type
specifier rather than declaring an object. typedef is included as a storage
class specifier because of syntactical rather than functional similarities.

static long int biggy;
typedef long int BIGGY;

The first declaration creates a 32-bit, long int, static-duration object called
biggy. The second declaration establishes the identifier BIGGY as a new type
specifier, but does not create any run-time object. BIGGY can be used in any
subsequent declaration where a type specifier would be legal. Here’s an
example:

extern BIGGY salary;
has the same effect as
extern long int salary;

Although this simple example can be achieved by #define BIGGY long int,
more complex typedef applications achieve more than is possible with
textual substitutions.

typedef does not create new data types; it merely creates useful mnemonic
synonyms or aliases for existing types. It is especially valuable in simpli-
fying complex declarations: ’

typedef double (*PFD)();
PFD array_pfd[10]; » .
/* array_pfd is an array of 10 pointers to functions returning double */

You can’t use tybedef identifiers with other data-type specifiers:

unsigned BIGGY pay; /* ILLEGAL */

In addition to the storage class specifier keywords, a declaration can use
certain modifiers to alter some aspect of the identifier/ object mapping. The
modifiers available with Borland C++ are summarized in Table 2.8 and
discussed in the following sections.

Table 2.8: Borland C++ modifiers -

Modifier Use with Description
constt Variables ~ Prevents changes to object. ,
- volatilet - Variables Prevents register allocation and some optimization. Warns compiler that
object might be subject to outside change during evaluation.
48 Borland C++ Programmer’s Guide

Table 2.8: Borland C++ modifiers (continued)

Borland C++ extensions
_ _cdeclt+t

_ _cdecltt

_ _interrupt
 _pascal

_ _pascal
_ _hear,
_ _far,
__huge

- Cs,
—_— _dsi
__es,
_ _seg,
__Ss

_ _hear,
_ _far,
_ _huge

_ _hear,
_ _far

_ _export
_ _import

__loadds

_saveregs

_fastcall

_ _stdcall

Functions

Variables

Functions
Functions

Variables
Pointer types

Pointer types

Functions

Variables

Functiong/classes
Functiong/classes

Functions

‘Functions

Functions

Functions

Forces C argument-passing convention. Affects Linker and link-time
names. '

Forces global identifier case-sensitivity and leading underscores.

Function compiles with the additional register-housekeeping code needed
when writing interrupt handlers.

Forces Pascal argument-passing convention. Affects Linker and link-time
names.

Forces global identifier case-insensitivity with no leading underscores.
Overrides the default pointer type specified by the current memory model.

Segment pointers.

Overrides the default function type specified by the current memory model.

Directs the placement of the object in memory.

Tells the compiler which functions or classes to export.

Tells the compiler which functions or classes to import. (In 16-bit programs,
this keyword can be used only for class declarations.)

Sets DS to point to the current data segment.

Preserves all register values (except for return values) during execution of
the function.

Forces register parameter passing convention. Affects the linker and link-
time names. ' :

Forces the standard WIN32 argument-passing convention.

1 C++ extends const and volatile to inciude classes and member functions.

t1 This is the default.

'Chapter 2, Language structure

49

The const modifier prevents any assignments to the object or any other
side effects, such as increment or decrement. A const pointer cannot be
modified, though the object to which it points can be. Consider the
following examples: "

const

The modifier const const float pi =3.1415926;
used byﬁse"'s const ¢ maxint =32767;
eq%zﬁ;¥$;€ char *const str = "Hello, world"; // A constant pointer
char const *str2 ="Hello, world"; /* A pointer to a constant char */

Given these, the following statements are illegal:

pi = 3.0; - /* Assigns a value to a const */
1 = maxint++; /* Increments a const */
str = "Hi, there!"; /* Points str to something else */

Note, however, that the function call strcpy (str, "Hi, there!") islegal,
because it does a character-by-character copy from the string literal “Hi,
there!” into the memory locations pointed to by str.

@a} In C++, const also hides the const object and prevents external linkage.
You need to use extern const. A pointer to a const can’t be assigned to a
pointer to a non-const (otherwise, the const value could be assigned to
using the non-const pointer). Here’s an example:

char *str3 = str2 /* disallowed */

Only const member functions can be called for a const object.

The volatile modifier indicates that the object can be modified; not only by
you, but also by something outside of your program, such as an interrupt
: routine or an I/O port. Declaring an object to be volatile warns the com-
InC++, volatile hasa piler not to make assumptions concerning the value of the object while
special meaning for ey aluating expressions containing it, because the value could change at any
class member
functions. If youve ~ Moment. It also prevents the compiler from making the variable a register

declared a volatile variable.
object, you can use

volatile

O“tl)y ithV°t|,at"e volatile int ticks;
member functions. void _ _interrupt timer() {
ticks++;

}

void wait(int interval) {
ticks = 0;
while (ticks < interval); // Do nothing.

}

50 ' Borland C++ Programmer’s Guide -

Mixed-language
calling conventions

The section
beginning on page 32
tells how to use
extern, which allows
C names to be
referenced from a
C++ program.

Table 2.9
Calling conventions

main() must be
declared as _ _cdecl;
this is because the C
start-up code always
tries to call main()
with the C calling
convention.

Chapter 2, Language structure

These routines (assuming timer has been properly associated with a hard-
ware clock interrupt) implement a timed wait of ticks specified by the
argument interval. A highly optimizing compiler might not load the value
of ticks inside the test of the while loop, since the loop does not change the
value of ticks.

Borland C++ allows your programs to easily call routines written in other
languages, and vice versa. When you mix languages like this, you have to
deal with two important issues: identifiers and parameter passing.

By default, Borland C++ saves all global identifiers in their original case
(lower, upper, or mixed) with an underscore “_" prepended to the front of
the identifier. To remove the default, you have can select the —u—
command-line option, or uncheck the compiler option setting in the IDE.

The following table summarizes the effects of a modifier applied to a called
function. For every modifier, the table shows the order in which the
function parameters are pushed on the stack. Next, the table shows
whether the calling program (the caller) or the called function (the callee) is
responsible for popping the parameters off the stack. Finally, the table
shows the effect on the name of a global function.

Push Pop Name
Modifier parameters parameters change
_ _cdeclt Right first Caller ‘' prepended
_ _fastcall Left first Callee ‘@’ prepended
_ _pascal Left first Callee Uppercase
_ _stdcall Right first Callee No change

+ This is the default.

cdecl
You might want to ensure that certain identifiers have their case preserved
and keep the underscore on the front, especially if they’re C identifiers in a
separate file. You can do so by declaring those identifiers to be _ _cdecl.
(This also has an effect on parameter passing for functions).

Like _ _pascal, the _ _cdecl modifier is specific to Borland C++. It is used
with functions and pointers to functions. It overrides the compiler direc-
tives and IDE options and allows a function to be called as a regular C
function. For example, if you were to compile the previous program with
the Pascal calling option set but wanted to use printf, you might do some-
thing like this:)

51

52

extern _ _cdecl printf(const char *format, ...); // NOT REQUIRED IF YOU INCLUDE
stdio.h
void putnums(int i, int j, int k);

void _ _cdecl main()
{

putnums (1,4,9);
}

void putnums(int i, int j, int k)
{
printf("And the answers are: %d, %d, and %d\n",1i,3,k);

}

If you compile a program with Pascal calling conventions, all functions

. (except those with variable parameters) used from the run-time library will

need to use the _ _ cdecl modifier. Any function that uses variable parame-
ters must be declared with the _ _cdecl modifier. Every function in the
Borland C++ run-time libraries is properly defined in anticipation of this.

_ _pascal : .

In Pascal, global identifiers are not saved in their original case, nor are
underscores prepended to them. Borland C++ lets you declare any identi-
fier to be of type _ _pascal; the identifier is converted to uppercase, and no
underscore is prepended. (If the identifier is a function, this also affects the
parameter-passing sequence used; see the section on page 54 for more
details.)

The _ _pascal modifier is specific to Borland C++; it is intended for func-
tions (and pointers to functions) that use the Pascal parameter-passing
sequence. Also, functions declared to be of type _ _pascal can still be called
from C routines, as long as the C routine sees that the function is of type

_ _pascal. :

_ _pascal putnums(int i, int j, int k)
{
printf("And the answers are: %d, %d, and %d\n",i,3,k);

}

Functions of type _ _pascal cannot take a variable number of arguments,
unlike functions such as printf. For this reason, you cannot use an ellipsis
(...)ina __pascal function definition.

Most of the 16-bit Windows API functions are _ _pascal functions. Most
Win32 API functions are _ _stdcall functions.

Borland C++ Programmer’s Guide

Multithread
variables

Pointer modifiers

The keyword _ _thread is used in multithread programs to preserve a
unique copy of global and static class-variables. Each program thread
maintains a private copy of a _ _thread variable for each threaded process.

The syntax is Type_ _thread var_name. For example, int _ _thread x;
declares an integer type that will be global but private to each thread in the
program in which the statement occurs.

The _ _thread modifier can be used with global (file-scope) and static

" variables. The modifier cannot be used with pointers or functions.

(However, you can have pointers to _ _thread objects.) A program element
that requires run-time initialization or run-time finalization cannot be
declared to be a _ _thread type. The following declarations require run-
time initialization and are therefore illegal:

int £();
int _ _thread x = f(); // Illegal

Instantiation of a class with a user-defined constructor or destructor
requires run-time initialization and is therefore illegal.

class X { X(); ~X(); }
X _ _thread myclass; . // Illegal

Borland C++ has modifiers that affect the pointer declarator (*); that is, they
modify pointers to data. These are _ _near, _ _far, _ _huge, __cs, __ds,
__es,__seg,and __ss.

You can compile a program using one of several memory models. The
model you use determines (among other things) the internal format of
pointers. For example, if you use a small data model (small or medium), all
data pointers contain a 16-bit offset from the data segment (DS) register. If
you use a large data model (compact or large), all pointers to data are 32
bits long and give both a segment address and an offset.

Sometimes when you're using one size of data model, you want to declare
a pointer to be of a different size or format than the current default. You do
so using the pointer modifiers.

See the discussion in Chapter 8 for an in-depth explanation of _ _near,

_ _far, and _ _huge pointers, and a description of normalized pointers. The
chapter also presents additional discussions of _ _cs, _ _ds, _ _es, - _seg,
and __ss. '

Chapter 2, Language structure k 53

Function
modifiers

. Tiny and huge

memory models are

54

not supported.

This section presents descriptions of the Borland C++ function modifiers.

In addition to their use as pointer modifiers, the _ _near, _ _far, and

_ _huge modifiers can also be used as function type modifiers; that is, they
can modify functions and function pointers as well as data pointers. In
addition, you can use the _ _loadds, _ _export, _ _import, and _ _saveregs

modifiers to modify functions.
See also Section “Class memory model specifications” beginning page 125.

In a 16-bit program, the _ _import can be used only as a modifier for class
declarations. In 32-bit programs the keyword can be applied to class,
function, and variable declarations.

The _ _near far, and _ _huge function modifiers can be combined with

—_ A

_ _cdecl or _ _pascal, but not with _ _interrupt.

Functions of type _ _huge are useful when interfacing with code in assem-
bly language that doesn’t use the same memory allocation as Borland C++.

A function that is not an _ _interrupt type can be declared to be _ _near,
_ _far, or _ _huge in order to override the default settings for the current
memory model. ‘

_ _far call instructions.

A _ _near function uses _ _near calls; a _ _far or _ _huge function uses

In the small and compact memory models, an unqualified function
defaults to type _ _near. In the medium and large models, an unqualified
function defaults to type _ _far.

A _ _huge function is the same as a _ _far function, except that the DS
register is set to the data segment address of the source module when a
_ _huge function is entered, but left unset for a _ _far function.

The _ _export modifier makes the function exportable from Windows. The
_ _import modifier makes a function available to a Windows program. The
keywords are used in an executable (if you don’t use smart callbacks) or in
a DLL; see page 248 of Chapter 8 for details.

The _ _loadds modifier indicates that a function should set the DS register,
just as a _ _huge function does, but does not imply _ _near or _ _far calls.
Thus, _ _loadds _ _far is equivalent to _ _huge. ‘

The _ _saveregs modifier causes the function to preserve all register values
and restore them before returning (except for explicit return values passed
in registers such as AX or DX).

Borland C++ Programmer’s Guide

_ _interrupt
functions

The _ _fastcall
modifier

The 16-bit compiler
does not support

_ _fastcall with
virtual functions.

Pointers

The _ _loadds and _ _saveregs modifiers are useful for writing low-level

interface routines, such as mouse support routines.

Functions declared with the __fastcall modifier have different names than
their non-__fastcall counterparts. The compiler prefixes the __fastcall
function name with an €. This prefix applies to both unmangled C function
names and to mangled C++ function names.

The _ _interrupt modifier is specific to Borland C++. _ _interrupt functions
are designed to be used with the 8086/8088 interrupt vectors. Borland C++
will compile an _ _interrupt function with extra function entry and exit
code so that registers AX, BX, CX, DX, SI, D], ES, and DS are preserved. The
other registers (BP, SP, SS, CS, and IP) are preserved as part of the C-calling
sequence or as part of the interrupt handling itself. The function will use an
iret instruction to return, so that the function can be used to service
hardware or software interrupts. Here is an example of a typical

_ _interrupt declaration:

void _ _interrupt myhandler();

You should declare interrupt functions to be of type void. _ _interrupt
functions can be declared in any memory model. For all memory models,
DS is set to the program data segment.

You can request the Borland C++ compiler to use registers for parameter
passing. Such a request is made by using the _ _fastcall function modifier,
or by selecting compiler optimization _ _fastThis. See the User’s Guide,
Chapter 3, for a discussion of _ _fastThis.

The compiler treats this calling convention as a language specifier, along
the lines of _ _cdecl and _ _pascal. Functions declared with either of these
two languages modifiers cannot also have the _ _fastcall modifier since
they use the stack to pass parameters. Likewise, the _ _fastcall modifier
cannot be used together with _ _loadds. The compiler generates a warning
if you try to mix functions of these types. :

See pages 86 and 98
. for discussions of
referencing and
dereferencing.

Pointers fall into two main categories: pointers to objects and pointers to
functions. Both types of pointers are special objects for holding memory
addresses.

Chapter 2, Language structure - , 55

Pointers to
objects

Pointers to
functions

56

The two pointer classes have distinct properties, purposes, and rules for
manipulation, although they do share certain Borland C++ operations.
Generally speaking, pointers to functions are used to access functions and
to pass functions as arguments to other functions; performing arithmetic on
pointers to functions is not allowed. Pointers to objects, on the other hand,
are regularly incremented and decremented as you scan arrays or more
complex data structures in memory.

*Although pointers contain numbers with most of the characteristics of

unsigned integers, they have their own rules and restrictions for
assignments, conversions, and arithmetic. The examples in the next few
sections illustrate these rules and restrictions.

A pointer of type “pointer to object of type” holds the address of (that is,
points to) an object of type. Since pointers are objects, you can have a
pointer pointing to a pointer (and so on). Other objects commonly pointed
at include arrays, structures, unions, and classes.

The size of pointers to objects is dependent on the memory model and the
size and disposition of your data segments, possibly influenced by the
optional pointer modifiers (discussed starting on page 53).

A pointer to a function is best thought of as an address, usually in a code
segment, where that function’s executable code is stored; that is, the
address to which control is transferred when that function is called. The
size and disposition of your code segments is determined by the memory
model in force, which in turn dictates the size of the function pointers
needed to call your functions.

A pointer to a function has a type called “pointer to function returning
type,” where type is the function5 return type. For example,

© void (*func)();

In C++, this is a pointer to a function taking no arguments, and returning
void. In C, it’s a pointer to a function taking an unspecified number of
arguments and returning void. In this example,

void (*func) (int);
*func is a pointer to a function taking an int argument and returning void.

For C++, such a pointer can be used to access static member functions.
Pointers to class members must use pointer-to-member operators. See
page 98.

Borland C++ Programmers Guide

Pointer
declarations

See page 40 for
details on void.

Warning! You need
to initialize pointers
before using them.

A pointer must be declared as pointing to some particular type, even if that
type is void (which really means a pointer to anything). Once declared,
though, a pointer can usually be reassigned so that it points to an object of
another type. Borland C++ lets you reassign pointers like this without type-
casting, but the compiler will warn you unless the pointer was originally
declared to be of type pointer to void. And in C, but not C++, you can
assign a void* pointer to a non-void* pointer.

If type is any predefined or user-defined type, ihcluding void, the
declaration

type *ptr; /* Uninitialized pointer */

declares ptr to be of type “pointer to type.” All the scoping, duration, and
visibility rules apply to the ptr object just declared.

A null pointer value is an address that is guaranteed to be different from
any valid pointer in use in a program. Assigning the integer constant 0 to a
pointer assigns a null pointer value to it.

The mnemonic NULL (defined in the standard library header files, such as
stdio.h) can be used for legibility. All pointers can be successfully tested for
equality or inequality to NULL.

The pointer type “pointer to void” must not be confused with the null
pointer. The declaration

void *vptr;

declares that vptr is a generic pointer capable of being assigned to by any
“pointer to type” value, including null, without complaint. Assignments
without proper casting between a “pointer to type1” and a “pointer to
type2,” where type1 and type2 are different types, can invoke a compiler
warning or error. If type1 is a function and type2isn’t (or vice versa),
pointer assignments are illegal. If type1 is a pointer tovoid, no cast is
needed. Under C, if type2is a pointer tovoid, no cast is needed.

Assignment restrictions also apply to pointers of different sizes (_ _near,
_ _far, and _ _huge). You can assign a smaller pointer to a larger one
without error, but you can’t assign a larger pointer to a smaller one unless
you are using an explicit cast. For example,

char _ _near *ncp;
char _ _far *fcp;

char _ _huge *hcp;
fcp = nep; /] legal
hep = fep; /] legal

Chapter 2, Language structure \ 57

fcp = hep; . // not legal
ncp = fep; // not legal
ncp = (char _ _near*)fcp; // now legal

Pointer constants A pointer or the pointed-at object can be declared with the const modifier.

Anything declared as a const cannot be have its value changed. It is also
illegal to create a pointer that might violate the nonassignability of a
constant object. Consider the following examples:

int i; // 1 is an int

int * pi; // pi is a pointer to int (uninitialized)
int * const cp = &i; // cp is a constant pointer to int

‘const int ci = 7; // ci 1s a constant int

const int * pci; // pci is a pointer to constant int

const int * const cpc = &ci; // cpc 1s a constant pointer to a
// constant int

The following assignments are legal:

i=ci; // Assign const-int to int
*cp = ci; // Assign const-int to
) // object-pointed-at-by-a-const-pointer
+4pCi; i Increment'a pointer-to-const
pci = cpc; // Assign a const-pointer-to-a-const to a

// pointer-to-const

The following assignments are illegal:

cl = 0; // NO--cannot assign to a const-int
ci--; . // NO--cannot change a const-int
*pei = 3; - // NO--cannot assign to an object

// pointed at by pointer-to-const

cp = &ci;) // NO--cannot assign to a const-pointer,
// even if value would be unchanged

CpC++; // NO--cannot change const-pointer

pi = pci; ‘ // NO--if this assignment were allowed,
// you would be able to assign to *pci
// (a const value) by assigning to *pi.

Similar rules apply to the volatile modifier. Note that const and volatile can
both appear as modifiers to the same identifier.

58 : ‘ Borland C++ Programmers Guide

Pointer arithmetic

The internal
arithmetic performed
on pointers depends

on the memory model
in force and the
presence of any
overriding pointer
modifiers.

The difference
between two pointers
has meaning only if
both pointers point
into the same array.

Pointer
conversions

Pointer arithmetic is limited to addition, subtraction, and comparison.
Arithmetical operations on object pointers of type “pointer to type” auto-
matically take into account the size of type; that is, the number of bytes
needed to store a type object.

When performing arithmetic with pointers, it is assumed that the pointer
points to an array of objects. Thus, if a pointer is declared to point to type,
adding an integral value to the pointer advances the pointer by that
number of objects of type. If type has size 10 bytes, then adding an integer 5
to a pointer to type advances the pointer 50 bytes in memory. The differ-
ence has as its value the number of array elements separating the two
pointer values. For example, if ptr1 points to the third element of an array,
and ptr2 points to the tenth element, then the result of ptr2 - ptrl would
be 7.

When an integral value is added to or subtracted from a “pointer to type,”
the result is also of type “pointer to type.”

There is no such element as “one past the last element,” of course, but a
pointer is allowed to assume such a value. If P points to the last array
element, P + 1 is legal, but P + 2 is undefined. If P points to one past the last
array element, P — 1 is legal, giving a pointer to the last element. However,
applying the indirection operator * to a “pointer to one past the last
element” leads to undefined behavior.

Informally, you can think of P + n as advancing the pointer by
(n * sizeof(type)) bytes, as long as the pointer remains within the legal
range (first element to one beyond the last element).

Subtracting two pointers to elements of the same array object gives an
integral value of type ptrdiff t defined in stddef.h (signed long for _ _huge
and _ _far pointers; signed int for all others). This value represents the
difference between the subscripts of the two referenced elements, provided
it is in the range of ptrdiff_t. In the expression P1 — P2, where P1 and P2 are
of type pointer to type (or pointer to qualified type), P1 and P2 must point
to existing elements or to one past the last element. If P1 points to the i-th
element, and P2 points to the j-th element, P1 — P2 has the value (i —j).

Pointer types can be converted to other pointer types using the typecasting
mechanism:

char *str;
int *ip;
str = (char *)ip;

Chapter 2, Language structure ~ 59

More generally, the cast (type*) will convert a pointer to type “pointer to
type.” See page 109 for a discussion of C-++ typecast mechanisms.

C++ reference types are closely related to pointer types. Reference types
create aliases for objects and let you pass arguments to functions by
reference. C passes arguments only by value. In C++ you can pass
arguments by value or by reference. See page 116 for complete details.

C++ reference
declarations

Arrays

The declaration
type declarator [<constant—expréssion>]

declares an arfay composed of elements of type. An array consists of a
contiguous region of storage exactly large enough to hold all of its
elements. '

If an expression is given in an array declarator, it must evaluate to a
positive constant integer. The value is the number of elements in the array.
Each of the elements of an array is numbered from 0 through the number of
elements minus one.

Multidimensional arrays are constructed by declaring arrays of array type.
The following example shows one way to declare a two-dimensional array.
The implemention is for three rows and five columns but it can be very
easily modified to accept run-time user input.

Setup Setup columns
rows i
0| 4 bytes | e ’10 bytes|10 bytesl |1o by;l
0 1 n-1
m-1{ 4 bytes | =i FO byte:rw bytssl |10 byles'

/* DYNAMIC MEMORY ALLOCATION FOR A MULTIDIMENSIONAL OBJECT. */
#include <stdio.h>
#include <stdlib.h>

See the Library typedef long double TYPE:
Reforance, Chapter - typzdif T(S)(gg *igBJECTf I
3, for a description of P i

calloc, free, and . unsigned int rows = 3, columns = 5;
printf.

void de_allocate (OBJECT);

60 ‘ ‘ ‘ Borland C++ Programmer’s Guide

int main(void) {
OBJECT matrix;
unsigned int i, j;
/* STEP 1: SET UP THE ROWS. */
matrix = (OBJECT) calloc(rows, sizeof (TYPE *));

/* STEP 2: SET UP THE COLUMNS. */
for (i = 0; 1 < rows; ++1)
matrix[i] = (TYPE *) calloc(columns, sizeof (TYPE));

for (1 = 0; 1 < rows; i++)
for (j = 0; j < columns; j++)
matrix([i](j] = 1 + J; /* INITIALIZE */

for (i = 0; 1 < rows; ++1) {
printf("\n\n");
for (j = 0; j < columns; ++3)
printf("%5.2Lf", matrix([i][j});
}

de_allocate(matrix);

return 0;

}
void de_allocate(OBJECT x) {

int i;

for (i = 0; 1 < rows; i++) /* STEP 1: DELETE THE COLUMNS. */
free(x[1]);

free(x); /* STEP 2: DELETE THE ROWS. */

J ;
This code produces the following output:

0.00 1.00 2.00 3.00 4.00
1.00 2.00 3.00 4.00 5.00
2.00 3.00 4.00 5.00 6.00

In certain contexts, the first array declarator of a series might have no
expression inside the brackets. Such an array is of indeterminate size. This
is legitimate in contexts where the size of the array is not needed to reserve
space.

For example, an extern declaration of an array object does not need the
exact dimension of the array; neither does an array function parameter. As
a special extension to ANSI C, Borland C++ also allows an array of
indeterminate size as the final member of a structure. Such an array does
not increase the size of the structure, except that padding can be added to
ensure that the array is properly aligned. These structures are normally
used in dynamic allocation, and the size of the actual array needed must be

Chapter 2, Language structure (v 61

explicitly added to the size of the structure in order to properly reserve
space.

Except when it is the operand of a sizeof or & operator, an array type
expression is converted to a pointer to the first element of the array.

Functions
Functions are central to C and C++ programming. Languages such as
Pascal distinguish between procedure and function. For C and C++,
functions play both roles.
. Each program must have a single external function named main marking
Declarations and . .
definitions the entry point of the program. Functions are usually declared as proto-

In C++ you must

always use function

recommend that you ¢,

prototypes. We

also use themin C.

Declarations and
prototypes

62

In C++, this
declaration means
<type> func(void)

types in standard or user-supplied header files, or within program files.
Functions are external by default and are normally accessible from any file
in the program. They can be restricted by using the static storage class
specifier (see page 32). :

Functions are defined in your source files or made available by linking
precompiled libraries.

A given function can be declared several times in a program, provided the
declarations are compatible. Nondefining function declarations using the
function prototype format provide Borland C++ with detailed parameter
information, allowing better control over argument number and type
checking, and type conversions.

Excluding C++ function overloading, only one definition of any given
function is allowed. The declarations, if any, must also match this
definition. (The essential difference between a definition and a declaration
is that the definition has a function body.)

In the Kernighan and Ritchie style of declaration, a function could be
implicitly declared by its appearance in a function call, or explicitly
declared as follows:

<type> func()

where type is the optional return type defaulting to int. A function can be
declared to return any type except an array or function type. This approach
does not allow the compiler to check that the type or number of arguments
used in a function call match the declaration.

Borland C++ Programmer’s Guide

You can enable a
warning within the
IDE or with the
command-line
compiler: “Function
called without

a prototype.”

This problem was eased by the introduction of function prototypes with the
following declaration syntax:

<type> func(parameter-declarator-list);

Declarators specify the type of each function parameter. The compiler uses
this information to check function calls for validity. The compiler is also
able to coerce arguments to the proper type. Suppose you have the
following code fragment:

extern long lmax({long vl, long v2); /* prototype */

foo()

{
int limit = 32;
char ch = ‘A’;

long mval;

mval = lmax(limit,ch); /* function call */

}

Since it has the function prototype for Imax, this program converts limit and
ch to long, using the standard rules of assignment, before it places them on
the stack for the call to Imax. Without the function prototype, limit and ch
would have been placed on the stack as an integer and a character, respec-
tively; in that case, the stack passed to Imax would not match in size or
content what Imax was expecting, leading to problems. The classic declara-
tion style does not allow any checking of parameter type or number, so
using function prototypes aids greatly in tracking down programming
errors.

Function prototypes also aid in documenting code. For example, the
function strcpy takes two parameters: a source string and a destination
string. The question is, which is which? The function prototype

char *strcpy(char *dest, const char *source);

makes it clear. If a header file contains function prototypes, then you can
print that file to get most of the information you need for writing programs
that call those functions. If you include an identifier in a prototype
parameter, it is used only for any later error messages involving that
parameter; it has no other effect.

A function declarator with parentheses containing the single word void
indicates a function that takes no arguments at all:

func (void);

@3@} In C++, func() also declares a function taking no arguments.

Chapter 2, Language structure

63

A function profotype normally declares a function as accepting a fixed

stdarghand number of parameters. For functions that accept a variable number of
varargs.h contain

macros that you can paran}eters‘(such as printf), a function prototype can end with an ellipsis
use in user.deﬁned (. .), like this: .
functions with)
variable numbers of f(int *count, long total, ...)
parameters.
With this form of prototype, the fixed parameters are checked at compile
time, and the variable parameters are passed with no type checking.
Here are some more examples of function declarators and prototypes:
int £(); - /* In C, a function returning an int with no
- information about parameters. This is the K&R
"classic style." */
int £(); /* In C++, a function taking no arguments */
int f{void); /* A function returning an int that takes no
parameters. */
int p(int,long); /* A function returning an int that accepts two
- parameters: the first, an int; the second, a
long. */
int _ _pascal g(void); /* A pascal function returning an int that takes
no parameters at all. */
char _ _far *s(char *source, int kind); /* A function returning a far pointer to
a char and accepting two parameters:
‘the first, a pointer to a char; the
second, an int. */ ‘
int printf(char *format,...); /* A fuhction returning an int and accepting a
pointer to a char fixed parameter and any
number of additional parameters of unknown
type. */
int (*fp) (int); /* A pointer to a function returning an int and
accepting a single int parameter. */
P Table 210 gives the general syntax for external function definitions.
Definitions . '
Table 2.10 file
Extemgl ff?”,‘?t'on - external-definition
efinitions file extemal-definition
external-definition:
function-definition
declaration

asm-slatement

64 o | Borland C++ Pro_gfammérS Guide

+

Table 2.10: External function definitions (continued)

function-definition:
<declaration-specifiers> declarator <declaration-list>
compound-statement

In general, a function definition consists of the following sections (the
grammar allows for more complicated cases):

You lcan mx 1. Optional storage class specifiers: extern or static. The default is extern.
ments . . ik
frome1ean%n2' 2. A return type, possibly void. The default is int.

3. Optional modifiers: _ _pascal, _ _cdecl, _ _export, _ _interrupt, _ _near,
_ _far, __huge, _ _loadds, _ _saveregs. The defaults depend on the
memory mode] and compiler option settings.

4. The name of the function.

5. A parameter declaration list, possibly empty, enclosed in parentheses. In
C, the preferred way of showing an empty list is func(void). The old
style of func is legal in C but antiquated and possibly unsafe.

6. A function body representing the code to be executed when the function
is called.

Formal parameter The formal parameter declaration list follows a syntax similar to that of the

declarations declarators found in normal identifier declarations. Here are a few
examples:
int func(void) { // no args

int func(Tl t1, T2 t2, T3 t3=1) { // three simple parameters, one

// with default argument

@} int func(Tl* ptrl, T2& tref) { // A pointef and a reference arg
int func(register int i) { .|/ Request registervfor arg
int func(char *str,...} { ~/* One string arg with a variable number of

other args, or with a fixed number of args with varying types */

@P In C++, you can give default arguments as shown. Parameters with default
values must be the last arguments in the parameter list. The arguments’
types can be scalars, structures, unions, or enumerations; pointers or
references to structures and unions; or pointers to functions or classes.

The ellipsis (...) indicates that the function will be called with different sets
of arguments on different occasions. The ellipsis can follow a sublist of
known argument declarations. This form of prototype reduces the amount
of checking the compiler can make.

Chapter 2, Language structure . / 65

Function calls and

argument
conversions

66

Important!

*

The parameters declared all have automatic scope and duration for the
duration of the function. The only legal storage class specifier is register.

The const and volatile modifiers can be used with formal parameter
declarators.

A function is called with actual arguments placed in the same sequence as
their matching formal parameters. The actual arguments are converted as if
by initialization to the declared types of the formal parameters.

Here is a summary of the rules governing how Borland C++ deals with
language modifiers and formal parameters in function calls, both with and
without prototypes:

m The language modifiers for a function definition must match the
modifiers used in the declaration of the function at all calls to the
function.

m A function can modify the values of its formal parameters, but this has
no effect on the actual arguments in the calling routine, except for
reference arguments in C++.

When a function prototype has not been previously declared, Borland C++
converts integral arguments to a function call according to the integral
widening (expansion) rules described in the section “Standard
conversions,” starting on page 42. When a function prototype is in scope,
Borland C++ converts the given argument to the type of the declared
parameter as if by assignment.

When a function prototype includes an ellipsis (...), Borland C++ converts
all given function arguments as in any other prototype (up to the ellipsis).
The compiler widens any arguments given beyond the fixed parameters,

according to the normal rules for function arguments without prototypes.

If a prototype is present, the number of arguments must match (unless an
ellipsis is present in the prototype). The types need to be compatible only to
the extent that an assignment can legally convert them. You can always use
an explicit cast to convert an argument to a type that is acceptable to a
function prototype.

If your function prototype does not match the actual function definition,
Borland C++ will detect this if and only if that definition is in the same
compilation unit as the prototype. If you create a library of routines with a
corresponding header file of prototypes, consider including that header file
when you compile the library, so that any discrepancies between the
prototypes and the actual definitions will be caught. C++ provides type-
safe linkage, so differences between expected and actual parameters will be
caught by the linker.

Borland C++ Programmers Guide

Structures

Structure initialization
is discussed on
page 43.

(©0

Untagged
structures and
typedefs

Untagged structure
and union members
are ignored during
initialization.

Structure member
declarations

A structure is a derived type usually representing a user-defined collection
of named members (or components). The members can be of any type,
either fundamental or derived (with some restrictions to be noted later), in
any sequence. In addition, a structure member can be a bit field type not
allowed elsewhere. The Borland C++ structure type lets you handle
complex data structures almost as easily as single variables.

In C++, a structure type is treated as a class type with certain differences:
default access is public, and the default for the base class is also public. This
allows more sophisticated control over access to structure members by
using the C++ access specifiers: public (the default), private, and protected.
Apart from these optional access mechanisms, and from exceptions as
noted, the following discussion on structure syntax and usage applies
equally to C and C++ structures.

Structures are declared using the keyword struct. For exémple,

struct mystruct { ... }; // mystruct is the structure tag

struct mystruct s, *ps, arrs{10];
/* s is type struct mystruct; ps is type pointer to struct mystruct;
arrs is array of struct mystruct. */

If you omit the structure tag, you can get an untagged structure. You can
use untagged structures to declare the identifiers in the comma-delimited
struct-id-list to be of the given structure type (or derived from it), but you
cannot declare additional objects of this type elsewhere:

struct { ... } s, *ps, arrs[10]; // untagged structure

It is possible to create a typedef while declaring a structure, with or without
a tag:

typedef struct mystruct { ... } MYSTRUCT; ’
MYSTRUCT s, *ps, arrs[10]; // same as struct mystruct s, etc.
typedef struct { ... } YRSTRUCT; // no tag

YRSTRUCT y, *yp, arry[20];

Usually, you don’t need both a tag and a typedef: either can be used in
structure declarations.

The member-decl-list within the braces declares the types and names of the
structure members using the declarator syntax shown in Table 2.2 on
page 37.

Chapter 2, Language structure : 4 67

A structure member can be of any type, with two exceptionsf

m The member type cannot be the same as the struct type being currently
declared:

You can omit the struct mystruct { mystruct s } sl, s2; // illegal

struct keywo(rgis " However, a member can be a pointer to the structure being declared, as

in the following example:
struct mystruct { mystruct *ps } sl, s2; // OK

Also, a structure can contain previously defined structure types when
declaring an instance of a declared structure. '

m Except in C++, a member cannot have the type “function returning...,”
but the type “pointer to function returning...” is allowed. In C++, a
struct can have member functions. v 7

Structures and A function can return a structure type or a pointer to a struc“rure type:

fun0ﬁ°ns. mystruct funcl(void); // funcl{) returns a structure

mystruct *func2(void); // func2() returns pointer to structure

A structure can be passed as an argument to a function in the following
ways: ‘

void funcl(mystruct s); // direcﬁiy
void func2(mystruct *sptr); // via a pointer
void func3 (mystruct &sref); // as a reference (C++ only)

tructure and union members are accessed using the following two
Structure member - ucture and union members are accessed using owing
access selection operators:

m. (period)
B —> (right arrow)

Suppose that the object s is of struct type S, and sptr is a pointer to S. Then
if m is a member identifier of type M declared in S, the expressions s.m and
sptr->m are of type M, and both represent the member object m in S. The
expression sptr->m is a convenient synonym for (*sptr) .m.

The operator . is called the direct member selector and the operator —> is
called the indirect (or pointer) member selector. For example:

struct mystruct
{
int i;
char str[21];
double d;

68 Borland C++ Programmers Guide

} s, *sptr = &s;

s.i=3; // assign to the i member of mystruct s
sptr -> d = 1.23; // assign to the d member of mystruct s

The expression s.m is an lvalue, provided that s is an Ivalue and m is not an
array type. The expression sptr->m is an Ivalue unless m is an array type.

If structure B contains a field whose type is structure A, the members of A
can be accessed by two applications of the member selectors:

struct A {
int j;
double x;

bi

struct B {
int 1i;
struct A a;
double d;

} s, *sptr;

s.i = 3; // assign to the i member of .B
s.a.j = 2; // assign to the j member of A
sptr->d = 1.23; // assign to the d member of B
(sptr->a).x = 3.14 // assign to x member of A

Each structure declaration introduces a unique structure type, so that in

struct A {
int 1,73;
double d;
} a, al;

struct B {
int 1,73;
double d&;
} b;

the objects a and a1 are both of type struct A, but the objects a and b are of
different structure types. Structures can be assigned only if the source and
destination have the same type:

a=al; // OK: same type, so member by member assignment
a=b; // TLLEGAL: different types
a.i=Db.i; a.j = b.j; a.d = b.d /* but you can assign member-by-member */

Chapter 2, Language structure 69

Structure word
alignment

Word alignment is off
by default.

70

Memory is allocated to a structure member-by-member from left to right,
from low to high memory address. In this example,

struct mystruct {
int i;
char str[21];
double d;j

}os;

the object s occupies sufficient memory to hold a 2-byte integer for a 16-bit
program, or a 4-byte integer for a 32-bit program, a 21-byte string, and an
8-byte double. The format of this object in memory is determined by
selecting the word alignment option. Without word alignment, s will be
allocated 31 contiguous bytes (by the 16-bit compiler) or 33 contiguous
bytes (by the 32-bit compiler).

If you turn on word alignment, Borland C++ pads the structure with bytes
to ensure the structure is aligned as follows:

1. The structure will start on a word boundary (even address).

2. Any non-char member will have an even byte offset from the start of
the structure.

3. A final byte is added (if necessary) at the end to ensure that the whole
structure contains an even number of bytes.

1. The structure boundaries are defined by 4-byte multiples.

2. For any non-char member, the offset will be a multiple of the member
size. A short will be at an offset that is some multiple of 2 ints from the
start of the structure.

3. One to three bytes can be added (if necessary) at the end to ensure that
the whole structure contains a 4-byte multiple.

For the 16-bit compiler, with word alignment on, the structure would
therefore have a byte added before the double, making a 32-byte object.

For the 32-bit compiler, with word alignment on, three bytes would be
added before the double, making a 36-byte object.

Borland C++ Programmer’s Guide

Structure name
spaces

Incomplete
declarations

Structure tag names share the same name space with union tags and
enumeration tags (but enums within a structure are in a different name
space in C++). This means that such tags must be uniquely named within
the same scope. However, tag names need not differ from identifiers in the
other three name spaces: the label name space, the member name space(s),
and the single name space (which consists of variables, functions, typedef
names, and enumerators).

Member names within a given structure or union must be unique, but they
can share the names of members in other structures or unions. For example,

goto s;

st // Label

struct s { // OK: tag and label name spaces different
int s; /] OK: label, tag and member name spaces different
float s; // ILLEGAL: member name duplicated

}os; // OK: var name space different. In C++, this can only

// be done if s does not have a constructor.

union s { // ILLEGAL: tag space duplicate

int s; // OK: new member space
float f; :
} £ // OK: var name space
struct t {
int s; // OK: different member space
Y os; // ILLEGAL: var name duplicate

A pointer to a structure type A can legally appear in the declaration of
another structure B before A has been declared:

struct A; // incomplete
struct B { struct A *pa };
struct A { struct B *pb };

The first appearance of A is called incomplete because there is no definition
for it at that point. An incomplete declaration is allowed here, because the
definition of B doesn’t need the size of A.

Chapter 2, Language structure ' 7

You can declare signed or unsigned integer members as bit fields from 1 to
16 bits wide. You specify the bit-field w1dth and optional identifier as
follows:

Bit fields

A structure can :
contain any mixture type-specifier <bitfield-id> : width;
of bit-field and non-)
bit-field types. where type-specifier is char, unsigned char, int, or unsigned int. Bit fields are

allocated from low-order to high-order bits within a word. The expression
width must be present and must evaluate to a constant integer in the range
1 to 16.

If the bit field identifier is omitted, the number of bits specified in width is
allocated, but the field is not accessible. This lets you match bit patterns in,
say, hardware registers where some bits are unused. For example,

struct mystruct {

int i:2;

unsigned Jj : 5;

int : 4

int k:1;

unsigned m : 4;
}a, b, c;

produces the following layout:

15(14 (13 (1211|109 |8 (7 (6 (5[4 |3 2]1]0

X | x X X X X X X | X | X X X X X X X

»
y o

A
Y
A
Y

s ~ »ld
<« gl e}

m k (ﬁnused) | ' i

Integer fields are stored in two'é—complement form, with the leftmost bit
being the MSB (most significant bit). With int (for example, signed) bit
fields, the MSB is interpreted as a sign bit. A bit field of width 2 holding
binary 11, therefore, would be interpreted as 3 if unsigned, but as -1 if int.-
In the previous example, the legal assignment a.i = 6 would leave binary
10 = -2 in a.i with no warning. The signed int field k of width 1 can hold
only the values -1 and 0, because the bit pattern 1 is interpreted as —1.

W Bt fields can be declared only in structures, unions, and classes. They are
accessed with the same member selectors (. and —=>) used for non-bit-field
members. Also, bit fields pose several problems when writing portable
code, since the organization of bits-within-bytes and bytes-w1th1n—words is
machine dependent.

The expression &mystruct.x is illegal if x is a bit field identifier, becauSe there
is no guarantee that mystruct.x lies at a byte address.

72 ~ Borland C++ Programmers Guide

Unions

Unions correspond to
the variant record
types of Pascal and
Modula-2.

Anonymous
unions (C++ only)

Union types are derived types sharing many of the syntactical and
functional features of structure types. The key difference is that a union
allows only one of its members to be “active” at any one time. The size of a
union is the size of its largest member. The value of only one of its members
can be stored at any time. In the following simple case,

union myunion { /* union tag = myunion */
int i;
double 4;
char ch;

} mu, *muptr=μ

the identifier mu, of type union myunion, can be used to hold a 2-byte int, an
8-byte double, or a single-byte char, but only one of these at the same time.

sizeof(union myunion) and sizeof(mu) both return 8, but 6 bytes are unused
(padded) when mu holds an int object, and 7 bytes are unused when mu
holds a char. You access union members with the structure member
selectors (. and —=>), but care is needed:

mu.d = 4.016;

printf("mu.d = $f\n",mu.d); // OK: displays mu.d = 4.016
printf('mu.i = %d\n",mu.1i); // peculiar result

mu.ch = 'A’; .
printf("mu.ch = %c\n",mu.ch); // OK: displays mu.ch = A
printf("mu.d = $f\n",mu.d); // peculiar result

muptr->i = 3;

printf('mu.i = %d\n",mu.i); // OK: displays mu.i = 3

The second printf is legal, since mu.i is an integer type. However, the bit
pattern in mu.i corresponds to parts of the double previously assigned, and
will not usually provide a useful integer interpretation.

When properly converted, a pointer to a union points to each of its
members, and vice versa.

A union that doesn’t have a tag and is not used to declare a named object
(or other type) is called an anonymous union. It has the following form:

union { member-list };

Its members can be accessed directly in the scope where this union is
declared, without using the x.y or p->y syntax.

Chapter 2, Lén’guage structure ' ‘ 73

Union
declarations

&

&

Enumerations

Anonymous unions can’t have member functions and at file level must be
declared static. In other words, an anonymous union cannot have external
linkage.

The general declaration syntax for unions is similar to that for structures.
The differences are

m Unions can contain bit fields, but only one can be active. They all start at
the beginning of the union. (Note that, because bit fields are machine
dependent, they can pose problems when writing portable code.)

m Unlike C++ structures, C++ union types cannot use the class access
specifiers: public, private, and protected. All fields of a union are public.
m Unions can be initialized only through their first declared member:
union local87 {
int 1;
double d;
ta=1{201};

® A union can’t participate in a class hlerarchy It can’t be derived from any
class, nor can it be a base class. A union can have a constructor.

74

An enumeration data type is used to provide mnemonic identifiers for a set
of integer values. For example, the following declaration,

enum days { sun, mon, tues, wed, thur, fri, sat } anyday;

establishes a unique integral type, enum days, a variable anyday of this
type, and a set of enumerators (sun, mon,...) with constant integer values.

Borland C++ is free to store enumerators in a single byte when Treat enums
as ints is unchecked (O|Cl|Code Generation) or the —b flag is used. The
default is on (meaning enums are always ints) if the range of values
permits, but the value is always promoted to an int when used in
expressions. The identifiers used in an enumerator list are implicitly of type
signed char, unsigned char, or int, depending on the values of the
enumerators. If all values can be represented in a SIQned or unsigned char,
that is the type of each enumerator.

In C, a variable of an enumerated type can be assigned any value of type
int—no type checking beyond that is enforced. In C++, a variable of an
enumerated type can be assigned only one of its enumerators. That is,

Borland C++ Programmer’s Guide

See page 20 for more
on enumeration
constants.

anyday = mon; // OK
anyday = 1; // illegal, even though mon ==

The identifier days is the optional enumeration tag that can be used in
subsequent declarations of enumeration variables of type enum days:

enum days payday, holiday; // declare two variables

In C++, you can omit the enum keyword if days is not the name of
anything else in the same scope.

As with struct and union declarations, you can omit the tag if no further
variables of this enum type are required:

enum { sun, mon, tues, wed, thur, fri, sat } anyday;
/* anonymous enum type */

The enumerators listed inside the braces are also known as enumeration
constants. Each is assigned a fixed integral value. In the absence of explicit
injtializers, the first enumerator (sun) is set to zero, and each succeeding
enumerator is set to one more than its predecessor (mon =1, tues = 2, and so
on).

With explicit integral initializers, you can set one or more enumerators to
specific values. Any subsequent names without initializers will then
increase by one. For example, in the following declaration,

/* Initializer expression can include previously declared enumerators */
enum coins { penny = 1, tuppence, nickel = penny + 4, dime = 10,
quarter = nickel * nickel } smallchange;

tuppence would acquire the value 2, nickel the value 5, and quarter the
value 25.

The initializer can be any expression yielding a positive or negative integer
value (after possible integer promotions). These values are usually unique,
but duplicates are legal. '

enum types can appear wherever int types are permitted.

enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
enun days payday;

typedef enum days'DAYS;

DAYS *daysptr;

int 1 = tues;

anyday = mon; // OK
*daysptr = anyday; // OK
mon = tues; : // ILLEGAL: mon is a constant

Chapter 2, Language structure 75

Enumeration tags share the same name space as structure and union tags.
Enumerators share the same name space as ordinary variable identifiers:

int mon = 11;

{
enum days { sun, mon, -tues, wed, thur, fri, sat } anyday;
/* enumerator mon hides outer declaration of int mon */
struct days { int i, j;}; // ILLEGAL: days duplicate tag
double sat; - // ILLEGAL: redefinition of sat

}

mon = 12; ’// back in int mon scope

@} In C++, enumerators declared within a class are in the scope of that class.

w In C++ it is possible to overload most operators for an enumeration. How-
ever, because the =,[], (), and => operators must be overloaded as member
functions, it is not possible to overload them for an enum. The following
example shows how to overload the postfix and prefix increment operators.

// OVERLOAD THE POSTFIX AND PREFIX INCREMENT OPERATORS FOR enum
#include <iostream.h>

enum _SEASON { spring, summer, fall, winter };

_SEASON operator++ (_SEASON &s) { // PREFIX INCREMENT
_SEASON tmp = s; // SAVE THE ORIGINAL VALUE
// DO MODULAR ARITHMETIC AND CAST THE RESULT TO _SEASON TYPE
s = _SEASON((s + 1) %4); // INCREMENT THE ORIGINAL
return tmp; // RETURN THE OLD VALUE ,

}

// UNNAMED int ARGUMENT IS NOT USED
_SEASON operator++(_SEASON &s, int} { // POSTFIX INCREMENT
switch (s) {
case spring:
case summer:
- case fall:
case winter:
}
return (s);

}

summer; break;
= fall; break;

winter; break;
spring; break;

w m n n
" 1

i

7% » ‘ © Borland C++ Programmerk Guide -

Expressions

int main(void) {
_SEASON season = fall;

cout << "\nThe season is " << geason;

cout << "\nSeason is unchanged: " << ++season;
cout << "\nFinally:" << seasont++;

return 0;

)

Table 2.12 (on page
78) shows how
identifiers and
operators are
combined to form
grammatically legal
“phrases.”

The standard
conversions are
detailed in Table 2.6
on page 43.

An expression is a sequence of operators, operands, and punctuators that
specifies a computation. The formal syntax, listed in Table 2.12, indicates
that expressions are defined recursively: subexpressions can be nested
without formal limit. (However, the compiler will report an out-of-memory
error if it can’t compile an expression that is too complex.)

Expressions are evaluated according to certain conversion, grouping,
associativity, and precedence rules that depend on the operators used, the
presence of parentheses, and the data types of the operands. The way
operands and subexpressions are grouped does not necessarily specify the
actual order in which they are evaluated by Borland C++ (see “Evaluation
order” on page 80).

Expressions can produce an Ivalue, an rvalue, or no value. Expressions
might cause side effects whether they produce a value or not.

The precedence and associativity of the operators are summarized in
Table 2.11. The grammar in Table 2.12 on page 78 completely defines the
precedence and associativity of the operators.

There are 16 precedence categories, some of which contain only one
operator. Operators in the same category have equal precedence with each

other.

Where duplicates of operators appear in the table, the first occurrence is
unary, the second binary. Each category has an associativity rule: left to
right, or right to left. In the absence of parentheses, these rules resolve the
grouping of expressions with operators of equal precedence.

The precedence of each operator category in the following table is indicated
by its order in the table. The first category (the first line) has the highest
precedence. '

Chapter 2, Language structure _ 77 -

Table 2.11
Associativity and
precedence of
Borland C++
operators

Associativity

Operators
()[] = = Left to right
'~ 4 - ++ -~ & * (typecasi) Right to left
" sizeof new delete typeid Right to left
Kot Left to right
| % Left to right
+ - Left to right
<«< > Left to right
< <= > >z Left to right
== I= Left to right
& Left to right
A Left to right
| Left to right
&& Left to right
I ‘ Left to right
?: (conditional expression) Right to left
=*= [z %= 4= == &= = |= <<= >>= Right to left
; Left td right

Table 2.12; Borland C++ expressions

primary-expression:
literal
this (C++ specific)

11 identifier (C++ specific)

:: operator-function-name (C++ specific)
::qualified-name (C++ specific)

(expression)
name

literal:
integer-constant
character-constant
floating-constant
string-literal

78

name:
identifier
operator-function-name (C++ specific)
conversion-function-name (C++ specific)
~ class-name (C++ specific)
qualified-name (C++ specific)

qualified-name: (C++ specific)
qualified-class-name :: name

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (<expression-list>)

simple-type-name (<expression-list>) (C++ specific)

postfix-expression . name
postfix-expression => name
postfix-expression ++
postfix-expression — -

" Borland C++ Programmers Guide

Table 2.12: Borland C++ expressions (continued)

const_cast < type-id > (expression) (C++ specific)
dynamic_cast < type-id > (expression) (C++ specific)
reinterpret_cast < type-id > (expression) (C++ specific)
static_cast < fype-id > (expression) (C++ specific)
typeid (expression) (C++ specific)

typeid (type-name) (C++ specific)

expression-list:
assignment-expression
expression-list , assignment-expression

unary-expression:
postfix-expression
++ Unary-expression
- = Unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
allocation-expression (C++ specific)
deallocation-expression (C++ specific)

unary-operator, one of
&t - A

allocation-expression: (C++ specific)
<> new <placement> new-type-name <initializer>
<> new <placement> (type-name) <initializer>

placement: (C++ specific)
(expression-list)

new-type-name: (C++ specific)
type-specifiers <new-declarator>

new-declarator. (C++ specific)
ptr-operator <new-declarator>
new-declarator | <expression> |

deallocation-expression: (C++ specific)
<::> delete cast-expression
<> delete [] cast-expression

cast-expression:
unary-expression
(type-name) cast-expression

pm-expression:
cast-expression
pm-expression .* cast-expression (C++ specific)
pm-expression ->* cast-expression (C++ specific)

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression.| pm-expression
multiplicative-expression % pm-expression

additive-expression:
multiplicative-expression

additive-expression + mulliplicative-expression
additive-expression - multiplicative-expression

shift-expression.
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

relational-expression:
shift-expression .
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression.
relational-expression
equality expression == relattonal-express:on
equality expression = relational-expression

AND-expression:
equality-expression
AND-expression & equality-expression

exclusive-OR-expression:
AND-expression
exclusive-OR-expression » AND-expression

inclusive-OR-expression.
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

logical-OR-expression:
logical-AND-expression
logical-OR-expression | logical- AND -expression

conditional-expression:

logical-OR-expression

logical-OR-expression ? expression : conditional-expression
assignment-expression:

conditional-expression
unary-expression assignment-operator ass:gnment expression

assignment-operator. one of

= *= /: %: += -
<«= >»>= &= A= =
expression;

assignment-expression
expression , assignment-expression

constant-expression:
conditional-expression

Chapter 2, Language structure

79

Expressions and
C++

Evaluation order

80

C++ allows the overloading of certain standard C operators, as explained
starting on page 152. An overloaded operator is defined to behave in a
special way when applied to expressions of class type. For instance, the
equality operator == might be defined in class complex to test the equality of
two complex numbers without changing its normal usage with non-class
data types.

An overloaded operator is implemented as a function; this function
determines the operand type, lvalue, and evaluation order to be applied
when the overloaded operator is used. However, overloading cannot
change the precedence of an operator. Similarly, C++ allows user-defined
conversions between class objects and fundamental types. Keep in mind,
then, that some of the C language rules for operators and conversions
might not apply to expressions in C++.

The order in which Borland C++ evaluates the operands of an expression is
not specified, except where an operator specifically states otherwise. The
compiler will try to rearrange the expression in order to improve the
quality of the generated code. Care is therefore needed with expressions in
which a value is modified more than once. In general, avoid writing
expressions that both modify and use the value of the same object. For
example, consider the expression

1 = v[i++]; // 1 is undefined

The value of i depends on whether i is incremented before or after the
assignment. Similarly, '

int total = 0;
sum = (total = 3) + (++total); // sum = 4 or sum = 7 ?2?

is ambiguous for sum and total. The solution is to revamp the expression,
using a temporary variable:

int temp, total = 0;
temp = ++total;

sum = (total = 3) + temp; '

Where the syntax does enforce an evaluation sequence, it is safe to have
multiple evaluations:

sum = (i =3, i++, i+4); // OK: sum = 4, 1 =5

* Each subexpression of the comma expression is evaluated from left to right,
" and the whole expression evaluates to the rightmost value.

Borland C++ Programmer’s Guide

Borland C++ regroups expressions, rearranging associative and commuta-
tive operators regardless of parentheses, in order to create an efficiently
compiled expression; in no case will the rearrangement affect the value of
the expression.

You can use parentheses to force the order of evaluation in expressions. For
example, if you have the variables 4, b, ¢, and f, then the expression f=a + (b
+ ¢) forces (b + c) to be evaluated before adding the result to a.

Table 2.11 (on page 78) summarizes the precedence and associativity of the
Errors and . X .
overflows operators. During the evaluation of an expression, Borland C++ can
encounter many problematic situations, such as division by zero or out-of-
See_matfierrand range floating-point values. Integer overflow is ignored (C uses modulo 2"
signalinthe Library arithmetic on n-bit registers), but errors detected by math library functions
Reference. can be handled by standard or user-defined routines.

Operator semantics

The Borland C++ Unless the operators are overloaded, the following information is true in
hgr%eél;?éotﬁedggﬂégerg both C and C++. In C++ you can overload all of these operators with the
ANSI C operators. ~ €Xxception of . (member access operator), ?: (conditional operator), :: and .*

(scope access operators).

If an operator is overloaded, the discussion might not be true for it
anymore. Table 2.12 on page 78 gives the syntax for all operators and
operator expressions. ‘

Operator descriptions

Operators are tokens that trigger some computation when applied to
variables and other objects in an expression. Borland C++ is especially rich
in operators, offering not only the common arithmetical and logical
operators, but also many for bit-level manipulations, structure and union
component access, and pointer operations (referencing and dereferencing).

@3@} C++ extensions offer additional operators for accessing class members and
their objects, together with a mechanism for overloading operators.
~ Overloadingis ~ Overloading lets you redefine the action of any standard operators when
discussed starting on 5 ryplied to the objects of a given class. In this section, the discussion is
page 149. . s
confined to the standard operator definitions.

After defining the standard operators, data types and declarations are
discussed and an explanation is provided about how these affect the

" Chapter 2, Language structure ‘ 81

The operators # and
are used only by
the preprocessor (see
page 185).

Primary
expression
operators

82

actions of each operator. Then the syntax for building expressions from
operators, punctuators, and object is provided.

The operators in Borland C++ are defined as follows:

operator: one of

[] () . -> ++ -—
& * + - ~ !
sizeof / % << >> <

> L= >= == !: A

| ' && 1l ?: = *=
/= Y%= += -= <<= >>=
&= Az I= , # ##

The following operators are specific to C++:
e

Except for [], (), and ?:, which bracket expressions, the multicharacter

operators are considered as single tokens. The same operator token can

have more than one interpretation, depending on the context. For example,

A% B Muitiplication

*ptr Dereference (indirection)
A& B Bitwise AND

&A Address operation

int & Reference modifier (C++)
label: Statement label
a?x:y - Conditional statement
void func{int n); Function declaration

a = (b+c)*d; Parenthesized expression
a, b, ¢ Comma expression
func(a, b, ¢); Function call

a = ~b; Bitwise negation (one’s complement)

~func() {delete a;} Destructor (C++)

For ANSI C, the primary expressions are literal (also sometimes referred to
as constant), identifier, and (expression). The C++ language extends this list
of primary expressions to include the keyword this, scope resolution
operator ::, name, and the class destructor ~ (tilde).

The Borland C++ primary expressions are summarized in the following list.
The complete list of expressions and operators is shown in Table 2.12 on
page 78. '

Borland C++ Programmers Guide

primary-expression:
literal
this (C++ specific)
it identifier (C++ specific)
:: operator-function-name (C-++ specific)
:: qualified-name (C++ specific)
(expression)
name

literal:
integer-constant
character-constant
floating-constant
string-literal

name:
identifier
operator-function-name (C++ specific)
conversion-function-name (C++ specific)
~ class-name (C++ specific)
qualified-name (C++ specific)

qualified-name: (C++ specific)
qualified-class-name :: name

For a description of literals, see page 58. A complete list of formal
definitions of literals is shown in Table 1.6 on page 58.

For a discussion of the primary expression this, see the section beginning
on page 127. The keyword this cannot be used outside a class member
function body.

The discussion of the scope resolution operator :: begins on page 118. The
scope resolution operator allows reference to a type, object, function, or
enumerator even though its identifier is hidden.

The discussion of :: identifier and :: qualified-function-name begins on
page 133. You can find a summary on the use of operator :: on page 159.

The parenthesis surrounding an expression do not change the unadorned
expression itself.

The primary expression name is restricted to the category of primary
expressions that sometimes appear after the member access operators .
(dot) and —> . Therefore, name must be either an lvalue or a function (see
page 28). See also the discussion of member access operators beginning on

page 85.

Chapter 2, Language structure ‘ o _ 83

Postfix
expression -
operators

See the
“Typecasting” section
beginning on page
109 for a description
of these operators.

Array subscript
operator|]

Function call
operators ()

84

An identifier is a primary expression, prdvided it has been suitably declared.
The description and formal definition of identifiers is shown on page 10.

The discussion on how to use the destructor operator ~ (tilde), begins on
page 138 and continues on page 146.

The six postfix expression operators [1 () . => ++and — - are used to
build postfix expressions as shown in the expressions syntax table (Table
2.12 on page 78). Postfix expression operators group from left to right.

" The following postflx express1ons let you make safe, explicit typecasts in a

C++ program.

const_cast < T> (expression)
dynamic_cast < T> (expression)
reinterpret_cast < T> (expression)
static_cast < T> (expression)

To obtain run-time type information (RTTI), use the typeid() operator. The
syntax is as follows:

typeid(expression)
- typeid(type-name)

In the expression
postfix-expression [expression]

either postﬁx-expresszon or expression must be a pomter and the other an
integral type.

In C, but not necessarily in C++, the expression expl[exp?] is defined as
* ({expl) + (exp2))

where either exp] is a pointer and exp2 is an integer, or expl is an integer
and exp? is a pointer. The punctuators [], *, and + can be individually
overloaded in C++.

The expression
 postfix-expression(<arg-expression-list>)

is a call to the function given by the postfix expression. The arg-expression-
list is a comma-delimited list of expressions of any type representing the
actual (or real) function arguments. The value of the function call
expression, if any, is determined by the return statement in the function
definition. See page 66 for more information on function calls.

quland C++ Programmer’s Guide

Member access
operators . (dot)

Ivalues are defined
on page 28.

Member access
operator —>

Increment operator
++

Decrement operator

Unary operators

In the expression
postfix-expression . name

the postfix expression must be of type structure or union; the identifier
must be the name of a member of that structure or union type. The
expression designates a member of a structure or union object. The value of
the expression is the value of the selected member; it will be an lvalue if
and only if the postfix expression is an Ivalue. Detailed examples of the use
of . (dot) and —> for structures are given starting on page 68.

In the expression
postfix-expression —> name

the postfix expression must be of type pointer to structure or pointer to
union; the identifier must be the name of a member of that structure or
union type. The expression designates a member of a structure or union
object. The value of the expression is the value of the selected member; it
will be an lvalue if the selected member is an lvalue.

In the expression
postfix-expression ++

the postfix expression is the operand; it must be of scalar type (arithmetic
or pointer types) and must be a Ivalue (see page 28 for more on modifiable
Ivalues). The postfix ++ is also known as the postincrement operator. The
value of the whole expression is the value of the postfix expression before
the increment is applied. After the postfix expression is evaluated, the
operand is incremented by 1. The increment value is appropriate to the
type of the operand. Pointer types are subject to the rules for pointer

-arithmetic.

The postfix decrement, also known as the postdecrement, operator follows
the same rules as the postfix increment, except that 1 is subtracted from the
operand after the evaluation.

The unary operators are described in the following table. Each operator is
described in more detail in the sections following the table.

Chapter 2, Language structure . k 85

Table 2.13
Unary operators

Address operator &

The symbol & is also
used in C++ to
specify reference
types; see page 116.

-

86

Unary

operator Description
& Address operator
* Indirection operator
+ Unary plus
- Unary minus
~ ~ Bitwise complement (one’s complement)
! Logical negation
++ Prefix: preincrement; Postfix: postincrement

- Prefix: predecrement; Postfix: postdecrement

The syntax is
unary-operator cast-expression

cast-expression:
unary-expression
(type-name) cast-expression

In C++, an explicit type cast can also be accomplished with cast operators.
See page 109.

The & operator and * operator (the * operator is described in the next
section) work together as the referencing and dereferencing operators. In the
expression

& cast-expression

the cast-expression operand must be either a function designator or an Ivalue
designating an object that is not a bit field and is not declared with the
register storage class specifier. If the operand is of type T, the result is of
type pointer to T.

Some non-lvalue identifiers, such as function names and array names, are
automatically converted into “pointer to X” types when appearing in
certain contexts. The & operator can be used with such objects, but its use is
redundant and therefore discouraged.

Consider the following extract:

Ttl=1, t2 =2;

T *ptr = &t1; // initialized pointer

*ptr = t2; // same effect as tl = t2
T *ptr = &tlis treated as

T *ptr;

ptr = &ti;

Borland C++ Programmer’s Guide

Indirection
operator *

Plus operator +

Minus operator -

Bitwise complement
operator ~

Logical negation
operator !

so it is ptr, not *ptr, that gets assigned. Once ptr has been initialized with the
address &t1, it can be safely dereferenced to give the lvalue *ptr.

In the expression
* cast-expression

the cast-expression operand must have type “pointer to T,” where Tis any
type. The result of the indirection is of type T. If the operand is of type
“pointer to function,” the result is a function designator; if the operand is a
pointer to an object, the result is an lvalue designating that object. In the
following situations, the result of indirection is undefined:

m The cast-expression is a null pointer.

m The cast-expression is the address of an automatic variable and execution
of its block has terminated.

In the expression
+ cast-expression

the cast-expression operand must be of arithmetic type. The result is the
value of the operand after any required integral promotions.

In the expression
— cast-expression

the cast-expression operand must be of arithmetic type. The result is the
negative of the value of the operand after any required integral promotions.

In the expression
~ cast-expression

the cast-expression operand must be of integral type. The result is the bitwise
complement of the operand after any required integral promotions. Each 0
bit in the operand is set to 1, and each 1 bit in the operand is set to 0.

In the expression
! cast-expression

the cast-expression operand must be of scalar type. The result is of type int
and is the logical negation of the operand: 0 if the operand is nonzero; 1 if

the operand is zero. The expression /E is equivalent to (0 == E).

Chapter 2, Language structure ' . 87

Increment operator

++

Decrement operator

Binary operators

88

Table 2.14
Binary operators

In the expressions

++ Unary-expression
Unary-expression ++

the unary expression is the operand; it must be of scalar type and must be a

modifiable Ivalue. The first expression shows the syntax for the prefix
increment operator, also known as the preincrement operator. The operand is
incremented by 1 before the expression is evaluated; the value of the whole
expression is the incremented value of the operand. The 1 used to incre-
ment is the appropriate value for the type of the operand. Pointer types
follow the rules of pointer arithmetic.

The second expression shows the syntax for the postfix increment operator
(also known as the postincrement operator). The operand is incremented by
1 after the expression is evaluated.

The following expressions show the syntax for prefix and postfix decre-
mentation. The prefix decrement is also known as the predecrement the
postfix decrement is also known as the postdecrement.

— — unary-expression
unary-expression — —

The operator follows the same rules as the increment operator, except that
the operand is decremented by 1.

This section presents the binary operators, which are operators that require
two operands.

Type of Binary
operator operator Description
Additive + Binary plus (addition)
- Binary minus (subtraction)
Multiplicative - * Multiply
/ : : Divide
% Remainder
Shift <«< Shift left '
>> Shift right

Bitwise XOR (exclusive OR)

Bitwise & Bitwise AND
A
| Bitwise inclusive OR

Borland C++ Programmer’s Guide

Table 2:14: Binary operators (continued)

Logical && Logical AND
il Logical OR
Assignment = : , Assignment
*= , Assign product
= Assign quotient
Y%= Assign remainder (modulus)
4= Assign sum
-= Assign difference
<<= Assign left shift
>>= Assign right shift
= Assign bitwise AND
Az Assign bitwise XOR
I= Assign bitwise OR
Relational < Less than
. > Greater than
<= Less than or equal to
>= Greater than or equal to
Equality == Equal to
1= Not equal to
Component . Direct component selector
selection
: -> Indirect component selector
C++ operators = Scope access/resolution
o Dereference pointer to class member
->* Dereference pointer to class member
: ‘ Class initializer
Conditional a?x:y “if athen x; else y’
Comma , Evaluate; for example, a, b, c; from leftto
! right

The operator functions, as well as their syntax, precedences, and
associativities, are covered starting on page 77.

Additive operators There are two additive operators: + and —. The syntax is

additive-expression:
multiplicative-expression ‘
additive-expression + multiplicative-expression
additive-expression — multiplicative-expression

Chapter 2, Language structure) , 89

Multiplicative
operators

90

Addition + E

The legal operand types for op1 + op2 are

m Both op1 and op2 are of arithmetic type.

mopl is of integral type, and op2 is of pointer to object type.

mop2 is of integral type, and op1 is of pointer to object type.

In the first case, the operands are subjected to the standard arithmetical
conversions, and the result is the arithmetical sum of the operands. In the

second and third cases, the rules of pointer arithmetic apply. (Pointer
arithmetic is covered on page 59.)

Subtraction -
The legal operand types for op1 — op2 are
m Both opI and op2 are of arithmetic type.

m Both op1 and op2 are pointers to compatible object types. The unqualified
type type is considered to be compatible with the qualified types const
type, volatile type, and const volatile type.

mop1 is of pointer to object type, and op2 is integral type.

In the first case, the operands are subjected to the standard arithmetic
conversions, and the result is the arithmetic difference of the operands. In

‘the second and third cases, the rules of pointer arithmetic apply.

There are three multiplicative operators: * / and %. The syntax is

multiplicative-expression:
cast-expression _
multiplicative-expression * cast-expression
multiplicative-expression | cast-expression
multiplicative-expression % cast-expression

The opérands for * (multiplication) and / (division) must be of arithmetical
type. The operands for % (modulus, or remainder) must be of integral type.

-The usual arithmetic conversions are made on the operands (see page 42).

The result of (op1 * op2) is the product of the two operands. The results of
(op1 1 op2) and (opl % op2) are the quotient and remainder, respectively,
when op1 is divided by op2, provided that op2 is nonzero. Use of / or % with
a zero second operand results in an error.

Borland C++ Programmer’s Guide

When opl and op2 are integers and the quotient is not an integer, the results
are as follows:
Roundingis always ~ m If opI and op2 have the same sign, op1 / op2 is the largest integer less than
toward zero. the true quotient, and op1 % op2 has the sign of op1.

m If opl and op2 have opposite signs, opl / op2 is the smallest integer greater
than the true quotient, and op1 % op2 has the sign of opl.

There are three bitwise logical operators: &, * and .

Bitwise logic
operators
AND &
The syntaxis
AND-expression:
equality-expression
AND-expression & equality-expression
In the expression E1 & E2, both operands must be of integral type. The
usual arithmetical conversions are performed on EI and E2, and the result
is the bitwise AND of E1 and E2. Each bit in the result is determined as
shown in Table 2.15. ‘
; Table 2.15 . .
Bitwise operators B|t Va‘ue Bit value
truth table in E1 in E2 E1&E2 E17E2 E11E2
0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 0 1

1 1

Exclusive OR
The syntax is

exclusive-OR-expression:
AND-expression
exclusive-OR-expression » AND-expression

In the expression E1 * E2, both operands must be of integral type. The
usual arithmetic conversions are performed on E1 and E2, and the result is
the bitwise exclusive OR of E1 and E2. Each bit in the result is determined

as shown in Table 2.15.

Chapter 2, Language structure ‘ ‘ ' 91

Bitwise shift
operators

92

The constants
ULONG_MAX and
UINT_MAX are
defined in limits.h.

Inclusive OR |
The syntax is

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

In the expression E1 | E2, both operands must be of integral type. The usual
arithmetic conversions are performed on E1 and E2, and the result is the
bitwise inclusive OR of E1 and E2. Each bit in the result is determined as
shown in Table 2.15.

There are two bitwise shift operators: << and >>. The syntax is

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Shift (<< and >>)

In the expressions E1 << E2 and EI >> E2, the operands E1 and E2 must be
of integral type. The normal integral promotions are performed on EI and
E2, and the type of the result is the type of the promoted E1. If E2 is
negatlve or is greater than or equal to the width in bits of EI, the operation
is undefined.

The result of E1 << E2 is the value of E1 left-shifted by E2 bit positions,
zero-filled from the right if necessary. Left shifts of an unsigned long E1 are
equivalent to multiplying E1 by 2E2, reduced modulo ULONG_MAX + 1;
left shifts of unsigned ints are equivalent to multiplying by 2F? reduced
modulo UINT_MAX + 1. If E1 is a signed integer, the result must be
interpreted with care, because the sign bit might change.

The result of E1 >> E2 is the value of EI right-shifted by E2 bit positions. If
E1 is of unsigned type, zero-fill occurs from the left if necessary. If E1 is of
signed type, the fill from the left uses the sign bit (0 for positive, 1 for
negative EI). This sign-bit extension ensures that the sign of EI >> E2 is the
same as the sign of E1. Except for signed types, the Value of EI >> E2'is the
integral part of the quotient E1/ 282,

Borland C++ Programmer’s Guide

Relational operators

Qualified names are
defined on page 132.

There are four relational operators: < > <= and >=. The syntax for these
operators is

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Less-than < ‘
In the expression E1 < E2, the operands must conform to one of the
following sets of conditions:

m Both E1 and E2 are of arithmetic type.

m Both E1 and E2 are pointers to qualified or unqualified versions of
compatible object types.

m Both E1 and E2 are pointers to qualified or unqualified versions of
compatible incomplete types.

In the first case, the usual arithmetic conversions are performed. The result
of E1 < E2 is of type int. If the value of E1 is less than the value of E2, the
result is 1 (true); otherwise, the result is zero (false).

In the second and third cases, in which E1 and E2 are pointers to
compatible types, the result of E1 < E2 depends on the relative locations
(addresses) of the two objects being pointed at. When comparing structure
members within the same structure, the “higher” pointer indicates a later
declaration. Within arrays, the “higher” pointer indicates a larger subscript
value. All pointers to members of the same union object compare as equal.

Normally, the comparison of pointers to different structure, array, or union
objects, or the comparison of pointers outside the range of an array object
give undefined results; however, an exception is made for the “pointer
beyond the last element” situation as discussed in the “Pointer arithmetic”
section on page 59. If P points to an element of an array object, and Q points
to the last element, the expression P < Q + 1is allowed, evaluating to 1
(true), even though Q + 1 does not point to an element of the array object.

‘Greater-than >

The expression E1 > E2 gives 1 (true) if the value of EI is greater than the
value of E2; otherwise, the result is O (false), using the same interpretations

Chapter 2, Language structure 93

Equality operators

94

-

for arithmetic and pointer comparisons as are defined for the less-than
operator. The same operand rules and restrictions also apply.

Less-than or equal-to <=

Similarly, the expression E1 <= E2 gives 1 (true) if the value of E1 is less
than or equal to the value of E2. Otherwise, the result is 0 (false), using the
same interpretations for arithmetic and pointer comparisons as are defined
for the less-than operator. The same operand rules and restrictions also

apply.

Greater-than or equal-to >=

Finally, the expression E1 >= E2 gives 1 (true) if the value of E1 is greater
than or equal to the value of E2. Otherwise, the result is 0 (false), using the
same interpretations for arithmetic and pointer comparisons as are defined
for the less-than operator. The same operand rules and restrictions also

apply.

There are two equality operators: == and !=. They test for equality and
inequality between arithmetic or pointer values, following rules very
similar to those for the relational operators.

Notice that == and != have a lower precedence than the relational operators
<and >, <=, and >=. Also, == and != can compare certain pointer types for
equality and inequality where the relational operators would not be
allowed.

The syntax is

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression 1= relational-expression

Equal-to == ‘
In the expression E1 == E2, the operands must conform to one of the
following sets of conditions:

m Both E1 and E2 are of arithmetic type.

m Both E1 and E2 are pointers to qualified or unqualifiéd versions of
compatible types.

- mOne of EI and E2 is a pointer to an object or incomplete type, and the

other is a pointer to a qualified or unqualified version of void. -
m One of E1 or E2 is a pointer and the other is a null pointer constant.

Borland C++ Programmer’s Guide

Logical operators

If E1 and E2 have types that are valid operand types for a relational
operator, the same comparison rules just detailed for E1 < E2, E1 <= E2, and
so on, apply.

In the first case, for example, the usual arithmetic conversions are per-
formed, and the result of E1 == E2 is of type int. If the value of E1 is equal to
the value of E2, the result is 1 (true); otherwise, the result is zero (false).

In the second case, E1 == E2 gives 1 (true) if E1 and E2 point to the same
object, or both point “one past the last element” of the same array object, or
both are null pointers.

If E1 and E2 are pointers to function types, E1 == E2 gives 1 (true) if they
are both null or if they both point to the same function. Conversely, if

E1 == E2 gives 1 (true), then either E1 and E2 point to the same function, or
they are both null.

In the fourth case, the pointer to an object or incomplete type is converted
to the type of the other operand (pointer to a qualified or unqualified
version of void).

Inequality !=

The expression E1 != E2 follows the same rules as those for E1 == E2, except
that the result is 1 (true) if the operands are unequal, and 0 (false) if the
operands are equal.

There are two logical operators: && and |l.

AND &&
The syntax is

logical—AND—expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

In the expression E1 && E2, both operands must be of scalar type. The
result is of type int, and the result is 1 (true) if the values of E1 and E2 are
both nonzero; otherwise, the result is 0 (false).

Unlike the bitwise & operator, && guarantees left-to-right evaluation. E1 is
evaluated first; if E1 is zero, E1 && E2 gives 0 (false), and E2 is not
evaluated.

Chapter 2, Language structure ‘ ' 95

Conditional ? :

In C++, the result is
an Ivalue.

- 96

ORIl
The syntax is

~ logical-OR-expression:
logical-AND-expression
logical-OR-expression N logical-AND-expression

In the expression E1 |l E2, both operands must be of scalar type. The result
is of type int, and the result is 1 (true) if either of the values of EI and E2 are
nonzero. Otherwise, the result is 0 (false).

Unlike the bitwise | operator, |l guarantees left-to-right evaluation. E1 is
evaluated first; if E1 is nonzero, E1 Il E2 gives 1 (true), and E2 is not
evaluated. '

The syntax is

conditional-expression
logical-OR-expression
logical-OR-expression ? expression : conditional-expression
In the expression E1 ? E2 : E3, the operand E1 must be of scalar type. The
operands E2 and E3 must obey one of the following rules:
m Rule 1: Both are of arithmetic type.)
m Rule 2: Both are of compatible structure or union types.
m Rule 3: Both are of void type.

m Rule 4: Both are of type pointer to qualified or unqualified versions of
compatible types.

m Rule 5: One operand is of pointer type, the other is a null pointer
constant.

m Rule 6: One operand is of type pointer to an object or incomplete type,
the other is of type pointer to a qualified or unqualified version of void.

First, E1 is evaluated; if its value is nonzero (true), then E2 is evaluated and
E3 is ignored. If E1 evaluates to zero (false), then E3 is evaluated and E2 is
ignored. The result of E1 ? E2 : E3 will be the value of whichever of E2 and
E3 is evaluated.

In rule 1, both E2 and E3 are subject to the usual arithmetic conversions,
and the type of the result is the common type resulting from these conver-
sions. In rule 2, the type of the result is the structure or union type of E2
and E3. In rule 3, the result is of type void.

Borland C++ Programmer’s Guide

In rules 4 and 5, the type of the result isa pointer to a type qualified with
all the type qualifiers of the types pointed to by both operands. In rule 6,
the type of the result is that of the nonpointer-to-void operand.

; There are 11 assignment operators. The = operator is the simple assignment
Assignment &I p p ; p g
operators operator; the other 10 are known as compound assignment operators.

The syntax is

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

= = = %= += —=

<<= >>= &= "= =

Simple assignment = ‘

' In the expression E1 = E2, E1 must be a modifiable lvalue. The value of E2,
after conversion to the type of E1, is stored in the object designated by E1
(replacing E1’s previous value). The value of the assignment expression is

" the value of E1 after the assignment. The assignment expression is not itself
an Ivalue.

In C++, the r?sullt is. The operands E1 and E2 must obey one of the following rules:
an Ivalue.

m Rule 1: E1 is of qualified or unqualified arlthmetlc type and E2 is of
arithmetic type.

s Rule 2: E1 has a qualified or unqualified version of a structure or union
type compatible with the type of E2.

m Rule 3: E1 and E2 are pointers to qualified or unqualified versions of
compatible types, and the type pointed to by the left has all the qualifiers
of the type pointed to by the right.

m Rule 4: One of EI or E2 is a pointer to an object or incomplete type and
the other is a pointer to a qualified or unqualified version of void. The
type pointed to by the left has all the qualifiers of the type pomted to by
the right.

m Rule 5: E1 is a pointer and E2 is a null pointer constant.

Compound assignment
The compound assignments op=, where op can be any one of the 10 operator
symbols * / % + — << >> & * |, are interpreted as follows:

E1 op= E2

. Chapter 2, Language structure) 97

“has the same effect as
El1=ElopE2

except that the lvalue E1 is evaluated only once. (For example, E1 += E2 is
the same as E1 = E1 + E2.)

The rules for compound assignment are therefore covered in the previous
section (on the simple assignment operator =).

Comma operator The syntax s

expressio:
assignment-expression
expression , assignment-expression

InC++, the resultis * In the comma expression

an Ivalue.
E1,E2

the left operand E1 is evaluated as a void expression, then E2 is evaluated
to give the result and type of the comma expression. By recursion, the
expression

E1,E2,..,En

results in the left-to-right evaluation of each Ei, with the value and type of
En giving the result of the whole expression. To avoid potential ambiguity
(which might arise from the commas being used in both function

arguments and in initializer lists), parentheses must be used. For example,

func(i, (j =1, 7 + 4}, k);

calls func with three arguments, not four. The arguments are i, 5, and k.

The operators specific to C++ are as follows:

C++ operators
m: (scope resolution)
. .
‘See page 118 for u. (dereference pointer)
information onthe - m—>* (dereference pointer)
SCope access 1
operator::. Seealso M: (class initializer)
age 144 for a
discugsign of:class The syntax for the .* and —>* operators is as follows:
initializer.

pm-expression
cast-expression
pm expression .* cast-expression
pm expression —=>* cast-expression

98 v Borland C++ Programmer$ Guide

The sizeof
operator

The amount of space
that is reserved for
each type depends

on the machine.

The .* operator dereferences pointers to class members. It binds the cast-
expression, which must be of type “pointer to member of class type”, to the
pm-expression, which must be of class type or of a class publicly derived
from class type. The result is an object or function of the type specified by
the cast-expression.

The —>* operator dereferences pointers to pointers to class members (this
isn’t a typographical error; it does indeed dereference pointers to pointers).
It binds the cast-expression, which must be of type “pointer to member of
type,” to the pm-expression, which must be of type pointer to type or of type
“pointer to class publicly derived from type.” The result is an object or
function of the type specified by the cast-expression.

If the result of either of these operators is a function, you can only use that
result as the operand for the function call operator (). For example,

#include <iostream.h>

class B {
public:
void g(int 1 = 0) { cout << "\nInput = " << i; };

}i

int main(void) {
B Binst; // Instantiate class B

// pf is a pointer to a B member function that takes an integer and returns void
void (B::*pf) (int);

pf = B::g; // Tnitialize pf to the B::g() member function.
(Binst.*pf) (21); // Call g() and give it the argument 21.
return 0;

}

The sizeof operator has two distinct uses:

sizeof unary-expression
sizeof (type-name)

The result in both cases is an integer constant that gives the size in bytes of
how much memory space is used by the operand (determined by its type,
with some exceptions). In the first use, the type of the operand expression is
determined without evaluating the expression (and therefore without side
effects). When the operand is of type char (signed or unsigned), sizeof
gives the result 1. When the operand is a non-parameter of array type, the
result is the total number of bytes in the array (in other words, an array
name is not converted to a pointer type). The number of elements in an
array equals sizeof array / sizeof array[0].

Chapter 2, Language structure , / 99

If the operand is a parameter declared as array type or function type, sizeof
gives the size of the pointer. When applied to structures and unions, sizeof
gives the total number of bytes, including any padding.

sizeof cannot be used with expressions of function type, incomplete types,
parenthesized names of such types, or with an lvalue that des1gnates a bit
field object.

The integer type of the result of sizeof is size_t, defined as unS|gned intin
stddef.h.

You can use sizeof in preprocessor directives; this is specific to Borland
C++.

@} In C++, sizeof(classtype), where classtype is derived from some base class, -
. returns the size of the object (remember, this includes the size of the base
class).

Source /* USE THE sizeof OPERATOR TO GET SIZES OF DIFFERENT DATA TYPES. */
#include <stdio.h>)

struct st { ,)
char *name; /* 2 BYTES IN SMALL-DATA MODELS; 4 BYTES IN LARGE-DATA MODEL
*/
int age; ‘ /* 2 BYTES IN SMALL-DATA MODELS; 4 BYTES IN LARGE-DATA MODEL
*/

double height; /* EIGHT BYTES */
}i

struct st St_Array[]= { /* AN ARRAY OF structs */
{ "Jgr.", 4, 34.20 }, /* ST _Array[0] */
{ "Suzie", 23, 69.75 1}, /* ST Array[l] */
}i

int main() {
long double LD_Array(] = { 1.3, 501.09, 0.0007, 90.1, 17.08 };

printf("\nNumbef of elements in LD_Array = %d",
sizeof (LD_Array) / sizeof(LD_Array(0]));

/**%* THE NUMBER OF ELEMENTS IN THE ST Array. ****/
printf("\nSt_Array has %d elements",
sizeof (St Array)/sizeof (St_Array[0]));

/*%%%* THE NUMBER OF BYTES IN EACH ST Array ELEMENT. ****/
printf ("\nSt_Array[0] = %d", sizeof (St_Array[0]));

/***% THE TOTAL NUMBER OF BYTES IN ST Array. ****/
printf("\nSt_Array= %d", sizeof (St_Array));
return 0;

)

100 : ' Borland C++ Programmer’s Guide

Output
St_Array has 2 elements
St_Array[0] = 12
St_Array= 24

Statements

Number of elements in LD_Array = 5

Statements specify the flow of control as a program executes. In the absence
of specific jump and selection statements, statements are executed
sequentially in the order of appearance in the source code. The following
table shows the syntax for statements.

Table 2.16: Borland C++ statements

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
asm-statement
declaration (C++ specific)

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

compound-statement:
{ <declaration-list> <statement-list> }

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

expression-statement:
<expression> ;

asm-statement.
asm fokens newline
asm fokens,
asm { tokens; <tokens;>=
<tokens;>

}

Selection-statement:
if (expression) statement
if (expression) statementelse statement
switch (expression) statement

iteration-statement:
while (expression) statement

do statement while (expression);
for (for-init-statement <expression> ; <expression>) statement

for-init-statement
expression-statement
declaration (C++ specific)

jump-statement:
goto identifier;
continue ;
break ;
return <expression> ;

Blocks

A compound statement, or block, is a list (possibly empty) of statements
enclosed in matching braces ({ }). Syntactically, a block can be considered to

be a single statement, but it also plays a role in the scoping of identifiers.
An identifier declared within a block has a scope starting at the point of

7/

Chapter 2, Language structure

101

Labeled
statements

Expression
statements

Selection
statements

if statements

The parentheses
around cond-

expression are -

essential.

102

declaration and ending at the closing brace. Blocks can be nested to any
depth.

A statement can be labeled in two ways:

m label-identifier : statement

The label identifier serves as a target for the unconditional goto
statement. Label identifiers have their own name space and have
function scope. In C++ you can label both declaration and non-
declaration statements.

m case constant-expression : statement
default : statement

Case and default labeled statements are used only in con]unctlon with
switch statements.

Any expression followed by a semicolon forms an expression statement:
<expression>; "

Borland C++ executes an expression statement by evaluating the expres-
sion. All side effects from this evaluation are completed before the next
statement is executed. Most expression statements are assignment
statements or function calls. :

The null statement is a special case, consisting of a single semicolon (;). The
null statement does nothing, and is therefore useful in situations where the
Borland C++ syntax expects a statement but your program does not need
one.

Selection or flow-control statements select from alternative courses of
action by testing certain values. There are two types of selection statements:
the if...else and the switch.

The basic if statement has the following pattern:
if (cond-expression) t-st <else f-st>

The cond-expression must be of scalar type. The expression is evaluated. If
the value is zero (or null for pointer types), cond-expression is false;
otherwise, it is true.

If there is no else clause and cond-expression is true, t-st is executed;

otherwise, t-st is ignored.

Borland C++ Programmer’s Guide

switch statements

Itis illegal fo have
duplicate case
constants in the same
switch statement.

If the optional else f-st is present and cond-expression is true, t-st is executed;
otherwise, -st is ignored and f-st is executed.

Unlike Pascal, for example, Borland C++ does not have a specific Boolean
data type. Any expression of integer or pointer type can serve a Boolean
role in conditional tests. The relational expression (2 > b) (if legal) evaluates
to int 1 (true) if (¢ > b), and to int 0 (false) if (a <= b). Pointer conversions are
such that a pointer can always be correctly compared to a constant
expression evaluating to 0. That is, the test for null pointers can be written
if (!ptr)...orif (ptr == 0).... o

The f-st and t-st statements can themselves be if statements, allowing for a
series of conditional tests nested to any depth. Care is needed with nested
if...else constructs to ensure that the correct statements are selected. There
is no endif statement: any “else” ambiguity is resolved by matching an else
with the last encountered if-without-an-else at the same block level. For
example,

if (x == 1)
if (y == 1) puts("x=1 and y=1");
else puts("x != 1");)

draws the wrong conclusion. The else matches with the second if, despite
the indentation. The correct conclusion is that x = 1 and y != 1. Note the
effect of braces:

if (x == 1) {
if (y == 1) puts("x = 1l andy = 1");
}

else puts("x != 1"); // correct conclusion

The switch statement uses the following basic format:
switch (sw-expression) case-st

A switch statement lets you transfer control to one of several case-labeled
statements, depending on the value of sw-expression. The latter must be of
integral type (in C++, it can be of class type, provided that there is an
unambiguous conversion to integral type available). Any statement in case-
st (including empty statements) can be labeled with one or more case labels:

case const-exp-i : case-st-i

where each case constant, const-exp-i, is a constant expression with a unique
integer value (converted to the type of the controlling expression) within its
enclosing switch statement.

Chapter 2, Language structure » ' 103

There can also be at most one default label:
default : default-st

After evaluating sw-expression, amatch is sought with one of the const-exp-i.
If a match is found, control passes to the statement case-st-i with the
matching case label.

If no match is found and there is a default label, control passes to default-st.
If no match is found and there is no default label, none of the statements in
case-st is executed. Program execution is not affected when case and
default labels are encountered. Control simply passes through the labels to
the following statement or switch. To stop execution at the end of a group
of statements for a particular case, use break.

/* THIS ILLUSTRATES THE USE OF KEYWORDS switch, case, AND default. */
#include <stdio.h>

int main(void) {
int ch;

printf ("\tPRESS a, b, OR c. ANY OTHER CHOICE WILL "
"TERMINATE THIS PROGRAM.");

for (/* FOREVER */; ((ch = getch(stdin)) != EOF);)
switch (ch) {
case 'a’ : /* THE CHOICE OF a HAS ITS OWN ACTION. */
printf("\nOption a was selected.\n");
break;
case 'b’ : /* BOTH b AND ¢ GET THE SAME RESULTS. */
case ‘¢’
printf ("\nOption b or c was selected.\n");
break;
default :
printf ("\nNOT A VALID CHOICE! Bye ...");
return(-1);
}
return(0) ;

}

Iteration statements let you loop a set of statements. There are three forms

gfartaetllr?gnts of iteration in Borland C++: while, do while, and for loops.
while statements The general format for this statement is

while (cond-exp) t-st
The parentheses are

essential. The loop statement, t-st, is executed repeatedly until the conditional
/ expression, cond-exp, compares equal to zero (false).

104 k Borland C++ Programmers Guide

do while statements

for statement

For C++, <init-exp>
can be an expression
or a declaration.

The cond-exp is evaluated and tested first (as described on page 102). If this
value is nonzero (true), t-st is executed; if no jump statements that exit from
the loop are encountered, cond-exp is evaluated again. This cycle repeats
until cond-exp is zero.

As with if statements, pointer type expressions can be compared with the
null pointer, so that while (ptr)... is equivalent to while (ptr != NULL)....

The while loop offers a concise method for scanning strings and other null-
terminated data structures:

char str{10)="Borland";
char *ptr=&stril];
int count=0;

while (*ptr++) // loop until end of string
count++;

In the absence of jump statements, t-st must affect the value of cond-exp in
some way, or cond-exp itself must change during evaluation i in order to
prevent unwanted endless loops.

The general format is
do do-st while (cond-exp);

The do-st statement is executed repeatedly until cond-exp compares equal to
zero (false). The key difference from the while statement is that cond-exp is
tested after, rather than before, each execution of the loop statement. At
least one execution of do-st is assured. The same restrictions apply to the
type of cond-exp (scalar).

The for statement format in C is

for (<init-exp>; <test-exp>; <increment-exp>) statement

The sequence of events is as follows:

1. The initializing expression init-exp, if any, is executed. As the name
implies, this usually initializes one or more loop counters, but the
syntax allows an expression of any degree of complexity (including
declarations in C++)—hence the claim that any C program can be
written as a single for loop.

2. The expression test-exp is evaluated following the rules of the whlle
loop. If test-exp is nonzero (true), the loop statement is executed. An

. Chapter 2, Language structure) - 106

Jump statements

break statements

continue statements

106

empty expression here is taken as while (1);thatis, always true. If the
value of test-exp is zero (false), the for loop terminates.

3. increment-exp advances one or more counters.

4. The expression statement (possibly empty) is evaluated and control
returns to step 2.

If any of the optional elements are empty, appropriate semicolons are
required:

for (;;) { // same as for (; 1;)
// loop forever

}

The C rules for for statements apply in C++. However, the init-exp in C++
can also be a declaration. The scope of a declared identifier extends through
the enclosing loop. For example,

for (int 1 = 1; 1 < 3; ++1) {

if (1 ...) // ok to refer to i here
for (int x = 0;;;) ; // do nothing
} .
if (1...) // legal
if (x...) // illegal; x is-now out of scope

A jump statement, when executed, transfers control unconditionally. There
are four such statements: break, continue, goto, and return.

The syntax is
break;

A break statement can be used only inside an iteration (while, do, and for
loops) or a switch statement. It terminates the iteration or switch statement.
Because iteration and switch statements can be intermixed and nested to
any depth, you must ensure that your break exits from the correct loop or
switch. The rule is that a break terminates the nearest enclosing iteration or
switch statement.

The syntax is
continue;

A continue statement can be used only inside an iteration statement; it
transfers control to the test condition for while and do loops, and to the
increment.expression in a for loop.

Borland C++ Programmer’ Guide

goto statements

(€0

return statements

With nested iteration loops, a continue statement is taken as belonging to
the nearest enclosing iteration.

The syntax is
goto label;

The goto statement transfers control to the statement labeled Iabel (see page
102), which must be in the same function.

In C++, it is illegal to bypass a declaration having an explicit or implicit
initializer unless that declaration is within an inner block that is also
bypassed.

Unless the function return type is void, a function body must contain at
least one return statement with the following format:

return return-expression;

where return-expression must be of type type or of a type that is convertible
to type by assignment. The value of the return-expression is the value
returned by the function. An expression that calls the function, such as
func (actual-arg-list), is an rvalue of type type, not an Ivalue:

t = func(arg); // OK

func(arg) = t; /* illegal in C; legal in C++ if return type of func is a
reference */

(func (arg)) ++; /* illegal in C; legal in C++ if return type of func is a
reference */

The execution of a function call terminates if a return statement is
encountered; if no return is met, execution continues, ending at the final
closing brace of the function body.

If the return type is void, the return statement can be written as

{

return;

}

with no return expression; alternatively, the return statement can be
omitted.

Chapter 2, Language structure . ~ 1‘ 07

108 ' Borland C++ Programmer’s Guide

See Chapter 4 for
details on compiling
C and C++ programs
with exception
handling.

C++ specifics

C++ is an object-oriented programming language based on C. Generally
speaking, you can compile C programs under C++, but you can’t compile a
C++ program under C if the program uses any constructs specific to C++.
Some situations require special care. For example, the same function func
declared twice in C with different argument types invokes a duplicated
name error. Under C++, however, func will be interpreted as an overloaded
function; whether or not this is legal depends on other circumstances.

Although C++ introduces new keywords and operators to handle classes,
some of the capabilities of C++ have applications outside of any class
context. This chapter reviews the aspects of C++ that can be used
independently of classes, then describes the specifics of classes and class
mechanisms.

New-style typecasting

const_cast
typecast operator

Chapter 3, C++ specifics

This section presents a discussion of alternate methods for making a type-
cast. The methods presented here augment the earlier cast expressions
available in the C language. :

Types cannot be defined in a cast.

Use the const_cast operator to add or remove the const or volatile
modifier from a type.

In the statement, const_cast< T > (arg), T and arg must be of the same type
except for const and volatile modifiers. The cast is resolved at compile
time. The result is of type T. Any number of const or volatile modifiers can
be added or removed with a single const_cast expression.

A pointer to const can be converted to a pointer to non-const that is in all
other respects an identical type. If successful, the resulting pointer refers to
the original object.

109

dynamic_cast
typecast operator

Run-time type
identification (RTTI) is
required for
dynamic_cast. See
the description of
class Type_infoin the
Library Reference,
Chapter 10. See also
the discussion of
RTTI on page 113.

This program must be
compiled with the

-RT (Generate RTTI) -
option.

110

A const object or a reference to const cast results in a non-const object or
reference that is otherwise an identical type.

The const_cast operator performs similar typecasts on the volatile
modifier. A pointer to volatile object can be cast to a pointer to non-volatile
object without otherwise changing the object’s type. The result is a pointer
to the original object. A volatile-type object or a reference to volatile-type
can be converted into an identical non-volatile type.

In the expression dynamic_cast< T > (ptr), T must be a pointer or a

' reference to a defined class type or void*. The argument ptr must be an

expression that resolves to a pointer or reference.

If T is void* then ptr must also be a pointer. In this case, the resulting
pointer can access any element of the class that is the most derived element
in the hierarchy. Such a class cannot be a base for any other class.

Conversions from a derived class to a base class, or from one derived class
to another, are as follows: if T is a pointer and pfr is a pointer to a non-base
class that is an element of a class hierarchy, the result is a pointer to the
unique subclass. References are treated similarly. If T is a reference and ptr
is a reference to a non-base class, the result is a reference to the unique
subclass.

A conversion from a base class to a derived class can be performed only if
the base is a polymorphic type. See page 155 for a discussion of

polymorphic types.
The conversion to a base class is resolved at compile time. A conversion

from a base class to a derived class, or a conversion across a hierarchy is
resolved at run time.

If successful, dynamic_cast< T > (ptr) converts ptr to the desired type. If a
pointer cast fails, the returned pointer is valued 0. If a cast to a reference
type fails, the Bad_cast exception is thrown.

// HOW TO MAKE DYNAMIC CASTS
#include <iostream.h>
#include <typeinfo.h>

class Basel
{
// For the RTTI mechanism to function correctly,
~// a base class must be polymorphic. .
virtual void f(void) { /* A virtual function makes the class polymorphic */
}i ‘

class Base2 { };
class Derived : public Basel, public Base2 { };

‘Borland C++ Programmér’s Guide

reinterpret_cast
typecast operator

Chapter 3, C++ specifics

int main(void) {
try {
Derived d, *pd;
Basel *bl = &d;

// Perform a downcast from a Basel to a Derived.
if ({pd = dynamic_cast<Derived *>(bl)) != 0) {
cout << "The resulting pointer is.of type "
<< typeid(pd).name() << endl;
}
else throw Bad_cast();

/| Attempt cast across the hierarchy. That is, cast from
// the first base to the most derived class and then back
/] to another accessible base.
Base2 *b2;
if ((b2 = dynamic_cast<Base2 *>(bl)) != 0) {

cout << "The resulting pointer is of type "

<< typeid(b2).name() << endl;
}

else throw Bad_cast();
}
catch (Bad_cast) {
cout << "dynamic_cast failed" << endl;
return 1;
}
catch (...) {
cout << "Exception handling error." << endl;
return 1;

}

return 0;

In the statement reinterpret_cast< T > (arg), T must be a pointer, reference,
arithmetic type, pointer to function, or pointer to member.

A pointer can be explicitly converted to an integral type.

An integral arg can be converted to a pointer. Converting a pointer to an
integral type and back to the same pointer type results in the original value.

A yet undefined class can be used in a pointer or reference conversion.

A pointer to a function can be explicitly converted to a pointer to an object
type provided the object pointer type has enough bits to hold the function
pointer. A pointer to an object type can be explicitly converted to a pointer
to a function only if the function pointer type is large enough to hold the
object pointer.

111

static_cast
typecast operator

112

// Use reinterpret_cast<Type>(expr) to replace (Type)expr casts
// for conversions that are unsafe or implementation dependent.

void func(void *v) {
// Cast from pointer type to integral type.
int i = reinterpret_cast<int>(v);

}

void main() {
// Cast from an integral type to pointer type.
func (reinterpret_cast<void *>(5));

// Cast from a pointer to function of one type to
// pointer to function of another type.
typedef void (* PFV)();

PFV pfunc = reinterpret_cast<PFV>(func);

pfunc();
}

In the statement static_cast< T > (arg), T must be a pointer, reference,
arithmetic type, or enum type. The arg-type must match the T-type. Both T
and arg must be fully known at compile time.

If a complete type can be converted to another type by some conversion
method already provided by the language, then making such a conversion
by using static_cast achieves exactly the same thing.

Integral types can be converted to enum types. A request to convert arg to a
value that is not an element of enum is undefined. -

The null pointer is converted to itself.

A pointer to one object type can be converted to a pointer to another object
type. Note that merely pointing to similar types can cause access problems
if the similar types are not similarly aligned.

You can explicitly convert a pointer to a class X to a pointer to some class Y
if X is a base class for Y. A static conversion can be made only under the
following conditions:

m If an unambiguous conversion exists from Y to X

mIf X is not a virtual base class
See page 137 for a discussion of virtual base classes.

An object can be explicitly converted to a reference type X& if a pointer to
that object can be explicitly converted to an X*. The result of the conversion

Borland C++ Programmer’s Guide

is an lvalue. No constructors or conversion functions are called as the result
of a cast to a reference. '

An object or a value can be converted to a class object only if an appropriate
constructor or conversion operator has been declared.

A pointer to a member can be explicitly converted into a different pointer-
to-member type only if both types are pointers to members of the same
class or pointers to members of two classes, one of which is unambiguously
derived from the other.

When T is a reference the result of static_cast< T > (arg) is an lvalue. The
result of a pointer or reference cast refers to the original expression.

Run-time type identification

The recent addition of run-time type identification (RTTI) into the ANSI/
ISO C++ working paper makes it possible to write portable code that can
determine the actual type of a data object at run time even when the code
has access only to a pointer or reference to that object. This makes it
possible, for example, to convert a pointer to a virtual base class into a
pointer to the derived type of the actual object. See page 110 for a
description of the dynamic_cast operator, which uses run-time type
information.

The RTTI mechanism also lets you check whether an object is of some
particular type and whether two objects are of the same type. You can do
this with typeid operator, which determines the actual type of its argument
and returns a reference to an object of type const Type_info, which describes
that type. You can also use a type name as the argument to typeid, and
typeid will return a reference to a const Type_info object for that type. The
class Type_info provides an operator== and an operator!= that you can use
to determine whether two objects are of the same type. Class Type_info also
provides a member function name that returns a pointer to a char array that
holds the name of the type. See the Library Reference, Chapter 10, for a
description of class Type_info. '

You can use typeid to get run-time information about types or expressions.
A call to typeid returns a reference to an object of type const Type_info. The -
returned object represents the type of the typeid operand.

The typeid
operator

Touse the typeid ~ 1f the typeid operand is a dereferenced pointer or a reference to a poly-

operator youmust morphic type, typeid returns the dynamic type of the actual object pointed
include the typeinfo.h
header file.

. Chapter 3, C++ specifics 113

Example

Program output

The _ _ riti
keyword and the
-RT option

114

or referred to. If the operand is non-polymorphic, typeid returns an object
that represents the static type.

You can use the typeid operator with fundamental data types as well as
user-defined types.

// HOW TO USE typeid, Type_info::before(), and Type_info::namef().
#include <iostream.h>

#include <string.h>

#include <typeinfo.h>

class A { };

class B : A { };

char *true = "true";
char *false = "false";

void main() {
char C;
float X;

if (typeid(C) == typeid(X))
cout << "C and X are the same type." << endl;
else cout << "C and X are NOT the same type." << endl;

cout << typeid{int).name();
cout << " before " << typeid(double).name() << ": " <<
(typeid(int).before(typeid(double)) ? true : false) << endl;

cout << typeid(double).hame();
cout << " before " << typeid(int).name() << ": " <<
(typeid(double) .before(typeid(int)) ? true : false) << endl;

cout << typeid(A).name();

cout << " before " << typeid(B).name() << ": " <<
(typeid(A) .before(typeid(B)} ? true : false) << endl;

}

C and X are NOT the same type.
int before double: false
double before int: true

A before B: true

If the typeid operand is a dereferenced NULL pointer, the Bad_typeid
exception is thrown. See the Library Reference, Chapter 10, for a description
of Bad_typeid.

RTTI is enabled by default in Borland C++. You can use the -RT
command-line option to disable it (-RT-) or to enable it (—RT). If RTTI is
disabled, or if the argument to typeid is a pointer or a reference to a non-
polymorphic class (see page 155 for a discussion of polymorphic classes),
typeid returns a reference to a const Type_info object that describes the

Borland C++ Programmer’s Guide

Example

Chapter 3, C++ specifics

declared type of the pointer or reference, and not the actual object that the
pointer or reference is bound to.

In addition, even when RTTI is disabled, you can force all instances of a
particular class and all classes derived from that class to provide polymor-
phic run-time type identification (where appropriate) by using the Borland
C++ keyword _ _rtti in the class definition.

When you use the —RT- compiler option, if any base class is declared _ _rtti,
then all polymorphic base classes must also be declared _ _rtti.

struct __rtti S1 { virtual slfunc(); }; // Polymorphic
struct _ rtti $2 { virtual s2func(); }; // Polymorphic

struct X : 81, 82 { };
If you turn off the RTTI mechanism (by using the —RT- compiler option),
RTTI might not be available for derived classes. When a class is derived

from multiple classes, the order and type of base classes determines
whether or not the class inherits the RTTI capability.

When you have polymorphic and non-polymorphic classes, the order of
inheritance is important. If you compile the following declarations with
-RT-, you should declare X with the _ _rtti modifier. Otherwise, switching
the order of the base classes for the class X results in the compile-time error
Can’t inherit non-RTTI class from RTTI base ‘Sl’.

Note that the class X is explicitly declared with _ _rtti. This makes it safe to
mix the order and type of classes.

struct _ _rtti S1 { virtual func(); }; // Polymorphic class
struct S2 { }; // Non-polymorphic class
struct _ _rtti X : 81, S2 { }; k

In this example, class X inherits only non-polymorphic classes. Class X
does not need to be declared _ _rtti.

struct _ _rtti S1 { }; // Non-polymorphic class
struct 82 { };

struct X : 82, S1 { }; // The order is not essential

Applying either _ _rtti or using the ~RT compiler option will not make a
static class into a polymorphic class. See page 155 for a discussion of poly-
morphic classes.

// HOW TO GET RUN-TIME TYPE INFORMATION FOR POLYMORPHIC CLASSES.
#include <iostream.h>
#include <typeinfo.h>

115

class _ _rtti Alpha { // Provide RTTI for this class and
‘ // all classes derived from it
virtual void func() {}; // A virtual function makes Alpha a polymorphic class.
¥

class B : public Alpha {};

int main(void) {
B Binst; // Instantiate class B
B *Bptr; // Declare a B-type pointer
Bptr = &Binst; // Initialize the pointer

// THESE TESTS ARE DONE AT RUN TIME
try {
if (typeid(*Bptr) == typeid(B))
// Ask "WHAT IS THE TYPE FOR *Bptr?"
cout << "Name is " << typeid(*Bptr).namef{);

if (typeid(*Bptr } != typeid(Alpha })
cout << "\nPointer is not an Alpha-type.";
return 0;

}
catch (Bad_typeid) {
cout << "typeid() has failed.";

return 1;
}
}
Program output Name is B
Pointer is not an Alpha-type.
Referencing
C++ specific pointer ~ While in C, you pass arguments only by value; in C++, you can pass
ézfr%;?e?gm:?nanig arguments by value or by reference. C++ reference types, closely related to
discussedgdn pointer types, create aliases for objects and let you pass arguments to func-
page 98. tions by reference.

Simple references

Note that type& var,
type &var, and type &
var are all equivalent.

116

The reference declarato