
or an ++

Programmers Guide

Borland® C++
, Version 4.0

Borland may have patents and,or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT ~ 1987, 1993 by Borland International. All rights reserved. All Borland products
are trademarks or registered trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95066-3249

PRINTED IN THE U.S.A.

1 EOR1093
9394959697-9876543
W1

Contents

Introduction 1
What's in this book ... " 1

Scope• '.29
Name spaces 30

An introduction to the formal definitions 2 Visibility 30
Syntax and terminology " 2 Duration 31

Chapter 1 Lexical elements 5
Static 31
Local 31

Whitespace 5
Line splicing with \ 6

Dynamic , 32
Translation units 32

Comments 6
C comments 6
C++ comments ' 7
Nested comments 7

Linkage 32
Name mangling 33

Declaration syntax 34
Tentative definitions 34

Delimiters and whitespace 7 Possible declarations 35
Tokens 8 External declarations and definitions 37

Keywords 8
Identifiers 10

Naming and length restrictions 10
Case sensitivity 11
Uniqueness and scope 11

Constants 11
Integer constants 11
Floating-point constants 14
Character constants 15

Type specifiers . 39
Type categories 39

Type void 40
The fundamental types 40

Integral types 41
Floating-point types 42
Standard conversions 42
Special char, int, and enum conversions .,. 43

Initialization 43
String constants 18
Enumeration constants ... " 20

Arrays, structures, and unions 44
Declarations and declarators 45

Constants and internal representation 20
Constant expressions 22

Use of storage class specifiers ; . 47
auto 47

Punctuators 23 extern 47
Brackets 23
Parentheses 23

register 47
static 47

Braces 24
Comma 24

typedef , 48
Variable modifiers " 48

Semicolon 24 const 50
Colon 25 volatile 50
Ellipsis' ~ 25
Asterisk (pointer declaration) 25

Mixed-language calling conventions 51
Multithread variables 53

Equal sign (initializer) 25 Pointer modifiers 53
Pound sign (preprocessor directive) 26 Function modifiers 54

Chapter 2 . Language structure 27
Declarations 27

,Objects 27
lvalues 28

__ interrupt functions 55
The fastcall modifier 55

Pointers ~:-................................. 55
Pointers to objects 56

rvalues 28 Pointers to functions . 56

Storage classes and types 28 Pointer declarations 57

Pointer constants 58 Multiplicative operators 90
Pointer arithmetic ' 59
Pointer conversions 59

Bitwise logic operators 91
Bitwise shift operators 92

C++ reference declarations 60 Relational operators 93
Arrays ' 60 Equality operators 94
Functions 62 Logical operators 95

Declarations and definitions 62 Conditional ?: 96
Declarations and prototypes 62 Assignment operators 97
Definitions 64 Comma operator 98
Formal parameter declarations 65 C++ operators 98
Function calls and argument conversions 66 The size of operator 99

Structures 67 Statements 101
Untagged structures and typedefs 67 Blocks 101
Structure member declarations 67 Labeled statements 102
Structures and functions 68 Expression statements '. 102
Structure member access 68 Selection statements 102
Structure word alignment " . 70 if statements 102
Structure name spaces 71 switch statements 103
Incomplete declarations 71 Iteration statements. 104
Bit fields 72 while statements 104

Unions ., ; 73 do while statements 105
Anonymous unions (C++ only) 73 for statement 105
Union declarations 74 Jump statements 106

Enumerations , , 74 break statements 106
Expressions ' 77 continue statements 106

Expressions and C++ 80 goto statements 107
Evaluation order 80 return statements ',' 107
Errors and overflows , 81

Operator semantics 81
Operator descriptions ; 81

Primary expression operators 82
Postfix expression operators 84

Array subscript operator [] 84
Function call operators () 84
Member access operators. (dot) 85
Member access operator -> 85
Increment operator ++ 85
Decrement operator - -85

Unary operators 85
Address operator & 86
Indirection operator * 87
Plus operator + 87
Minus operator - 87
Bitwise complement operator ~ 87
Logical negation operator! 87
Increment operator ++ 88
Decrement operator - - 88

Binary operators 88
Additive operators 89

Chapter 3 C++ specifics 109
New-style typecasting 109

consCcast typecast operator 109
dynamic_cast typecast operator 110
reinterpreCcast typecast operator 111
static_cast typecast operator 112

Run-time type identification ,.. 113
The typeid operator 113
The __ rtti keyword and the -RT option. . . . 114

Referencing ; 116
Simple references 116
Reference arguments 117

Scope resolution operator:: 118
The new and delete operators 119

Handling errors 120
The operator new with arrays 120
The operator delete with arrays 121
The ::operator new ,. 122
Initializers with the new operator 122
Overloading new'and delete 122

Classes '' ... 124

Class memory model specifications 125 Overriding a template function 162
Class names 126 Template function argument matching ... 163
Class types 126 Class templates 165
Class name scope 126 Arguments 166
Class objects 127 Angle brackets 166
Class member list 127 Type-safe generic lists 166
Member functions 127 Eliminating pointers 168
The keyword this 127 Template compiler switches 168
Inline functions 128 Using template switches 169

Inline functions and exceptions 128
Static members 129
Memberscope 131

Nested types 132
Member access control 133

Base and derived class access 134
Virtual base classes 137
Friends of classes 137

Constructors and destructors 139
Constructors 140

Constructor defaults 141

Chapter 4 Exception handling 173
C++ exception handling " 173

Exception declarations 174
Throwing an exception 175
Handling an exception 176

Exception specifications 177
Constructors and destructors 180
Unhandled exceptions 180

C-based structured exceptions 181
Using C-based exceptions in C++ 181

The copy constructor 141
Overloading constructors 142

Chapter 5 The preprocessor 185
Null directive # 186

Order of calling constructors 142 The #define and #undefdirectives 186
Class initialization 144

Destructors 146
Simple #define macros 186
The #Undef directive . 187

Invoking destructors 147
atexit, #pragma exit, and destructors 147
exit and destructors 147
abort and destructors 147
virtual destructors 148

The -D and -U options 189
The Define option 189
Keywords and protected words 189
Macros with parameters 189

File inclusion with #include 192
Operator overloading 149 Header file search with <header_name> 193
Overloading operator functions 152 Header file search with "header_name" 193

Overloaded operators and inheritance 153
Unary operators 153

Conditional compilation 193
The #if, #elif, #else, and #endif conditional

Binary operators 153 directives 193
Assignment operator= 153
Function call operator() 154

The operator defined 194
The #ifdef and #ifndef conditional

Subscript operator[] 154 directives 195
Class member access operator-> 154 The #line line control directive 196

Polymorphic classes 155 The #error directive 197
virtual functions 155

virtual function return types 156
Abstract classes ; 157

C++ scope 158
Class scope 159
Hiding 159
C++ scoping rules summary 159

Templates 160
Function templates 161

The #pragma directive 198
#pragma argsused 198
#pragma codeseg 198
#pragma comment 198
#pragma exit and #pragma startup 199
#pragma hdrfile 199
#pragma hdrstop 200
#pragma inline 200

iii

#pr~gma intrinsic 200 ~ Direct and indirect containers 221
#pragma option 200 Sorted containers 221
#pragma saveregs ' 201 Memory management 222
#pragma warn ' 202 Container naming conventions 223

Predefined macros 202 ADT /FDS combinations in the library 223
__ BCOPT __ 203 Container iterators 223
__ BCPLUSPLUS __ 203 Object ownership 224
__ BORLANDC __ 203 Using containers 224
__ CDECL __ 203
__ CONSOLE __ ' 203

A sorted array example 225
A dequeue example 226

_ ~cplusplus : 203 Container directories 227
__ DATE __ : ' 203 The LIBS and BIN directories 228
__ DLL __ 203 The INCLUDE directory 228
__ FILE_ _ 203 The SOURCE directory 228
__ LINE __ 204 The EXAMPLES directory ~ 228
__ MSDOS_ _ 204 Debugging containers 229
__ MT __ , ,.204 The persistent streams class library 229
__ OVERLAY __ 204 What's new with streaming 230
__ PASCAL __ 204 Object versioning 230
__ STDC_ _ 204 Reading and writing base classes 231
__ TCPLUSPLUS __ · 204 ' Reading and writing integers 231
__ TEMPLATES __ 204 Multiple inheritance and virtual base
__ TIME __ 204 support 232
__ TLS __ 204 Creating streamable objects -...... 233
__ TURBOC __ 205 Defining streamable classes 233
__ WIN32 205 Implementing streamable classes 235
_Windows' ; ... 205 The nested class Streamer 237

Chapter 6 Using C++ iostreams 207
What is a stream? : .. 207

Writing the Read and Write functions 238
Object versioning , 240

The iostream library 207 ,Chapter 8 Windows programming 243
The streambuf class 207 Resource script files 244
The ios class 208 Module definition files 245

Stream output 209 Import libraries 246
Fundamentaltypes 210 WinMain 247
I/O formatting 210 Prologs and epilogs ' 247
Manipulators 210 The _export keyword, ~ 248
Filling andpadding 212 The _import keyword 248

Stream input 213
I/O of user-defined types 214

Windows All Functions Exportable (-W,
-WC) ': ',' 248

Simple file I/O 214 Windows Explicit Functions Exported
String stream processing 215 (-WE) , 249
Screen output streams 217 Windows Smart Callbacks (-WS) 249

Chapter 7 Using Borland class libraries 219
The container class library 219

Containers and templates 219
ADTs and FDSs 220

Choosing an FDS 221

Windows Smart Callbacks and Explicit
Functions Exported (-WSE) ; .. 249
Windows DLL All ,Functions Exportable (-WD,
-WCD) 250
Windows DLL Explicit Functions Exported
(-WDE,-WCDE) 250

iv

Prologs, epilogs, and exports: A summary .. 250 DLLs and 16-bit memory models 268
Project files 251 Exporting and importing classes 269
The Borland heap manager 252 Static data in 16-bit DLLs 270
32-bit Windows programming 253 Using the Borland DLLs 270

Win32 253
The Win32 API 253

Writing portable Windows code 253
STRICT 254
The UINT and WORD types 257
The WIN API and CALLBACK calling
conventions 258
Extracting message data 258
Message crackers 259
Porting DOS system calls 259
Common compiler errors and warnings .. 260
Building Win32 executables . ; 262

Chapter 10 Using inline assembly 271
Inline assembly syntax and usage 271

Inline assembly references to data and func-
tions , 273

Inline assembly and register variables 273
Inline assembly, offsets, and size
overrides 273

Using C structure members 273
Using jump instructions and labels 274

Compiling with inline assembly 275
Using the built-in assembler CBASM) 275

Opcodes 276
Chapter 9 Writing dynamic-link libraries 265 String instructions . 277
What is a DLL? 265 Jump instructions 278

Dynamic linking 265 Assembly directives 278
Creating a DLL 266

LibMain, DllEntryPoint, and WEP 266
Exporting and importing functions 267

Appendix A ANSI implementation-specific
standards 279,

Exporting functions 267 Index 291
Importing functions 268

v

Tables

1.1 All Borland C++ keywords 9
1.2 Borland C++ register pseudovariables 9
1.3 Borland C++ keyword extensions 10
1.4 Keywords specific to C 10
1.5 Keywords specific to C++ 10
1.6 Constants-formal definitions 12
1.7 Borland C++ integer constants without L

orU 13
1.8 Borland C++ floating constant sizes

and ranges 15
1.9 Sizes of character types 16
1.10 Borland C++ escape sequences 17
1.11 16-bit data types, sizes, and ranges 21
1.12 32-bit data types, sizes, and ranges 21
2.1 Borland C++ declaration syntax 36
2.2 Borland C++ deClarator syntax 37
2.3 Borland C++ class declaration syntax (C++

only) 38
2.4 Declaring types 40
2.5 Integral types 41
2.6 Methods used in standard arithmetic

conversions 43
2.7 Declaration syntax examples 46
2.8 Borland C++ modifiers ., 48
2.9 Calling conventions 51
2.10 External function definitions 64
2.11 Associativity and precedence of Borland C++

operators 78

vi

2.12 Borland C++ expressions 78
2.13 Unary operators 86
2.14 Binaryoperators 88
2.15 Bitwise operators truth table 91
2.16 Borland C++ statements 101
3.1 Class memory model specifications. 125
5.1 Borland C++ preprocessing directives

syntax 186
6.1 Stream manipulators .. ,o •••••••••••••••• 211
6.2 Console stream manipulators 217
7.1 Borland containers and header files 220
7.2 Container name abbreviations 223
7.3 ADT /FDS combinations 223
8.1 Compiler options and the _export

keyword 251
8.2 STRICT compliant types, constants, helper

macros and handles 255
8.3 Int 21 and Win32 equivalent functions 259
8.4 Win32 options, start-up code, and libraries .263
10.1 BASM opcode mnemonics 276
10.2 BASM string instructions 277
10.3 Jump instructions 278
A.1 Identifying diagnostics in C++ 279
A.2 Messages generated in both Win 16 and Win

32 288
A.3 Messages generated only in Win 32 289

Figures

1.1 Internal representations of numerical types. 22 8.1 Compiling and linking
6.1 Class streambuf and its derived classes ... 208 a Windows program 244
6.2 Class ios and its derived classes 209

vii

viii

For an overview of
the Borland C++

documentation set
read the Introduction
in the Users Guide.

Introduction

This manual contains materials for the advanced programmer. If you
already know how to program well (whether in C, C++, or another
language), this manual is for you. It is a language reference, and provides
you with programming information on C++ streams, container classes,
persistent streams, inline assembly, and ANSI implementation details.

Typefaces and icons used in these books are described in the User's Guide.

Whats in this book

See the DOS
Reference for

information on DOS
programming.

Introduction

Chapters 1-5: Lexical elements, Language structure, C++ specifics,
, Exception handling, and The preprocesor, describe the Borland C++ lan­

guage. Any extensions to the ANSI C standard are noted in these chapters.
These chapters provide a formal language definition, reference, and syntax
for both the C and C++ aspects of Borland C++. Some overall information
about Chapters 1 through 5 is included in the next section of this
introduction.

Chapter 6: Using C++ iostreams tells you how to program input and
output using the C++ stream library.

Chapter 7: Using Borland class libraries tells you how to use the Borland
C++ persistent streams and container class libraries.

Chapter 8: Windows programming explains the basics of programming
under Windows.

Chapter 9: Writing dynamic-link libraries explains dynamic-link libraries
and dynamic linking.

Chapter 10: Using inline assembly explains how to embed assembly
language instructions within your C/C++ code.

Appendix A: ANSI implementation-specific standards describes those
aspects of the ANSI C standard that have been left loosely defined or
undefined by ANSI. This appendix tells how Borland C++ operates in
respect to each of these aspects.

An introduction to the formal definitions

Syntax and
terminology

2

Chapters 1-5 describe the C and C++ languages as implemented in Borland
C++. Together, they provide a formal language definition, reference, and
syntax for both the C++ and C aspects of Borland C++. They do not
provide a language tutorial. We use a modified Backus-Naur form notation
to indicate syntax, supplemented where necessary by brief explanations
and program examples. The chapters are organized in this manner:

• Chapter 1: Lexical elements shows how the lexical tokens for Borland
C++ are categorized. It covers the different categories of word-like units,
known as tokens, recognized by a language.

• Chapter 2: Language structure explains how to use the elements of
Borland C++. It details the legal ways in which tokens can be grouped
together to form expressions, statements, and other significant units.

• Chapter 3: C++ specifics covers language aspects specific to C++.

• Chapter 4: Exception handling describes the exception-handling
mechanisms available to C and C++ programs.

• Chapter 5: The preprocessor covers the preprocessor, including macros,
includes, and pragmas, and many other easy yet useful items.

Borland C++ is a full implementation of AT&T's C++ version 3.0 with
exception handling, the object-oriented superset of C developed by Bjarne
Stroustrup of AT&T Bell Laboratories. This manual refers to AT&T's
previous version as C++2.1. In addition to offering many new features and
capabilities, C++ often veers from C in varying degrees. These differences
are noted. All the Borland C++ language features derived from C++ are
discussed in greater detail in Chapter 3.

Borland C++ also fully implements the ANSI C standard, with several
extensions as indicated in the text. You can set options in the compiler to
warn you if any such extensions are encountered. You can also set the
compiler to treat the Borland C++ extension keywords as normal identifiers
(see Chapter 3 in the User's Guide).

There are also 1/ conforming" extensions provided via the #pragma direc­
tives offered by ANSI C for handling nonstandard, implementation­
dependent features.

Syntactic definitions consist of the name of the nonterminal token or
symbol being defined, followed by a colon (:). Alternatives usually follow
on separate lines, but a single line of alternatives can be used if prefixed by
the phrase "one of." For example,

Bor/and c++ Programmers Guide

Introduction

external-definition:
function-definition
declaration

octal-digit: one of
01234567

Optional elements in a construct are printed within angle brackets:

integer-suffix:
unsigned-suffix <long-suffix>

Throughout this manual, the word" argument" is used to mean the actual
value passed in a call to a function. "Parameter" is used to mean the
variable defined in the function header to hold the value.

3

4 Borland C++ Programmers Guide

Whitespace

c H A p T E R

Lexical elements

This chapter provides a formal definition of the Borland C++ lexical
elements. It describes the different categories of word-like units (tokens)
recognized by a language.

The tokens in Borland C++ are derived from a series of operations per­
formed on your programs by the compiler and its built-in preprocessor.

1

A Borland C++ program starts as a sequence of ASCII characters represent­
ing the source code, created by keystrokes using a suitable text editor (such
as the Borland C++ editor). The basic program unit in Borland C++ is the
file. This usually corresponds to a named file located in RAM or on disk
and having the extension .C or .CPP.

The preprocessor first scans the· program text for special preprocessor
directives (see the discussion starting on page 185). For example, the
directive #include <incJile> adds (or includes) the contents of the file incJile
to the program before the compilation phase. The preprocessor also
expands any macros found inthe program and include files.

In the tokenizing phase of compilation, the source code file is parsed (that is,
broken down) into tokens and whitespace. Whitespace is the collective name
given to spaces (blanks), horizontal and vertical tabs, newline characters,
and comments. Whitespace can serve to indicate where tokens start and
end, but beyond this function, any surplus whitespace is discarded. For
example, the two sequences

int ii float fi

and

int i
float f i

are lexically equivalent and parse identically to give the six tokens:

Chapter 1, Lexical elements 5

Line splicing
with \

Comments

Ccomments

6

See page 191 for a
description of token

pasting.

• int

.i

.;

• float

.f

•• ,
The ASCII characters representing whitespacecan occur within literal
strings, in which case they are protected from the normal parsing process
(they remain as part of the string). For example,

char narne[] = "Borland International"i

parses to seven tokens, including the single literal-string token "Borland
International".

A special case occurs if the final newline character encountered is preceded
by a backslash (\). The backslash and new line are both discarded, allowing
two physical lines of text to be treated as one unit.

"Borland \
International"

is parsed as "Borland International" (see page 18, "String constants," for
more information).

Comments are pieces of text used to annotate a program. Comments are for
the programmer's use only; they are stripped from the source text before
parsing.

There are two ways to delineate comments: the C method and the C++
method. Both are supported by Borland C++, with an additional, optional
extension permitting nested comments. If you are not compiling for ANSI
compatibility, you can use any of these kinds of comments in both C and
C++ programs.

A C comment is any sequence of characters placed after the symbol pair 1*.
The comment terminates at the first occurrence of the pair */ following the
initial 1*. The entire sequence, including the four comment-delimiter
symbols, is replaced by one space after macro expansion. Note that some C
implementations remove comments without space replacements.

Borland C++ does not support the nonportable token pasting strategy using
/**/. Token pasting in Borland C++ is performed with the ANSI-specified
pair ##, as follows:

Borland C-H Programmers Guide

c++ comments
You can also use / / to
create comments in C
code. This is specific

to Borland C++.

Nested comments

Delimiters and
whitespace

#define VAR(i,j)
#define VAR(i,j)
#define VAR (i, j)

In Borland C++,

(i/**/j)
(i##j)
(i ## j)

/* won't work */
/* OK in Borland e++ */
/* Also OK */

int /* declaration */ i /* counter */;

parses as these three tokens:

int i ;

c++ allows a single-line comment using two adjacent slashes (/ j). The
comment can start in any position, and extends until the next new line:

class x { // this is a comment
", };

ANSI C doesn't allow nested comments. The attempt to comment out a line

/* int /* declaration */ i /* counter */; */

fails, because the scope of the first /* ends at the first */. This gives

i ; * /

which would generate a syntax error.

By default, Borland C++ won't allow nested comments, but you can over­
ride this with compiler options. See the User's Guide, Chapter 3, for
information on enabling nested comments.

In rare cases, some whitespace before /* and II, and after */, although not
syntactically mandatory, can avoid portability problems. For example, this
C++ code

int i = j//* divide by k*/k;
+ID;

parses as int i = j +ffi; not as

int i = j/k;
+ID;

as expected under the C convention. The more legible

int i = j/ /* divide by k*/ k;
+ID;

avoids this problem.

Chapter 1, Lexical elements 7

Tokens

Keywords

8

Borland C++ recognizes six classes of tokens. Here is the formal definition
of a token:

token:
keyword
identifier
constant
string-literal
operator
punctuator (also known as separators)

As the source code is scanned, tokens are extracted in such a way that the
longest possible token from the character sequence is selected. For example,
external would be parsed as a single identifier, rather than as the keyword
extern followed by the identifier al.

See page 191 for a description of token pasting.

Keywords are words reserved for special purposes and must not be used as
normal identifier names. The following tables list the Borland C++ key­
words. You can use options to select ANSI keywords only, UNIX key­
words, and so on; see the User's Guide, Chapters 1 and 3, for information on
these options.

If you use non-ANSI keywords in a program and you want the program to
be ANSI compliant, always use the non-ANSI keyword versions that are
prefixed with double underscores. Some keywords have a version prefixed
with only one underscore; these keywords are provided to facilitate porting
code developed with other compilers. For ANSI-specified keywords there
is only one version.

Note that the keywords _ _ try and try are an exception to the discussion
above. The keyword try is required to match the catch keyword in the C++
exception-handling mechanism. try cannot be substituted by _ _ try. The
keyword _ _ try can only be used to match the _ _ except or _ _ finally
keywords. See the discussion of exception handling in Chapter 4 of this
book.

Borland C++ Programmers Guide

Table 1.1
All Borland C++

keywords

Table 1.2
Borland C++ register

pseudovariables

--asm __ es interrupt short
- asm _es _jnterrupt signed
asm __ except _ interrupt sizeof
auto __ export --loadds --ss
break _export - loadds _ss
case extern long static
catch far near stdcall --
--cdecl __ far - near stdcall
- cdecl _far --near struct
cdecl __ fastcall new switch
char _fastcall operator template
class __ finally __ pascal this
const float _pascal __ thread
continue for pascal throw
__ cs friend private __ try

- cs goto protected try
default huge public typedef
delete __ huge register union
do _huge return unsigned
double if rtti virtual --
--ds _jmport __ saveregs void
_ds jmport _saveregs volatile
else inline __ seg while
enum int _seg

- AH - CL - EAXt - ESP
_AL - CS -

EBpt - FLAGS

- AX - CX - EBXt - FS

- BH - OH - ECXt - Gst

- BL - 01· - EDit - SI

- BP - OL - EOXt _SP
- BX - OS - ES - SS
- CH - OX - ESlt

t These pseudovariables are always available to the 32-bit compiler. The 16-bit compiler can use these
only when you use the option to generate 80386 instructions.

Chapter 1, Lexical elements 9

Table 1.3
Borland C++ keyword

extensions

--asm __ except

- asm __ export
cdecl _export --

_cdecl __ far1

cdecl _far1

_-.:.cs1 far1

- cs1 __ fastcall
__ ds1 _fastcall
_ds1 __ finally
__ es1 _~huge1

- es1 _huge1

huge1

1 Available only with the 16-bit compilers.
2 Available only with the 32-bit compilers.

_jmport2 pascal
jmport2 __ saveregs 1

_ jnterrupt 1 _saveregs1

jnterrupt1 __ seg1

interrupt1 __ seg1

loadds1 _seg1

- loadds1 __ SS1
near1 SS1 -

near1 rtti
near1 __ thread2

__ pascal __ try
...:.pascal

Table 1.4 __ finally __ try
Keywords specific

toC

Table 1.5
Keywords specific to

C++

Identifiers

Naming and length
restrictions

10

asm
catch
class
delete

friend
inline
new
operator
private

protected
public
template
this
throw

Here is the formal definition of an identifier:

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of

abcdefghijklmnopqrstuvwxyz_

ABC DE F G HIJ K LMNO PQ RS TV VW X y Z

digit: one of

a 1 234 5 6 7 8 ~

try
virtual
__ rtti,

Identifiers are arbitrary names of any length given to classes, objects,
functions, variables, user-defined data types, and so on. Identifiers can
contain the letters a to z and A to Z, the underscore character" _", and the
digits 0 to 9. There are only two restrictions:

• The first character must be a letter or an underscore.

Bor/and c++ Programmers Guide

Identifiers in C++
programs are

significant to 32
characters.

Case sensitivity

Uniqueness and
scope

Constants

Integer constants

• By default, Borland C++ recognizes only the first 32 characters as
significant. The number of significant characters can be reduced by menu
and command-line options, but not increased. See the User's Guide,
Chapters 1 and 3, for information on these options.

Borland C++ identifiers are case sensitive, so that Sum, sum, and suM are
distinct identifiers.

Global identifiers imported from other modules follow the same naming
and significance rules as normal identifiers. However, Borland C++ offers
the option of suspending case sensitivity to allow compatibility when
linking with case-insensitive languages. With the case-insensitive option,
the globals Sum and sum are considered identical, resulting in a possible
"Duplicate symbol" warning during linking.

See the User's Guide, Chapters 1 and 3, for information on linking and case­
sensitivity options.

An exception to these rules is that identifiers of type _ _ pascal are always
converted to all uppercase for linking purposes.

Although identifier names are arbitrary (within the rules stated), errors
result if the same name is used for more than one identifier within the same
scope and sharing the same name space. Duplicate names are legal for
different name spaces regardless of scope. The scope rules are covered on
page 29.

Constants are tokens representing fixed numeric or character values.
Borland C++ supports four classes of constants: integer, floating point,
character (including strings), and enumeration. Figure 1.1 shows how these
types are represented internally.

The data type of a constant is deduced by the c'ompiler using such clues as
numeric value and the format used in the source code .. The formal defini­
tion of a constant is shown in Table 1.6.

Integer constants can be decimal (base 10), octal (base 8) or hexadecimal
(base 16). In the absence of any overriding suffixes, the data type of an
integer constant is derived from its value, as shown in Table 1.7. Note that
the rules vary between decimal and nondecimal constants.

Chapter 1, Lexical elements 11

Table 1.6: Constants-formal definitions

constant
floating-constant
integer-constant
enumeration-constant
character-constant

floating-constant
tractional-constant <exponent-part> <floating-suffix>
digit-sequence exponent-part <floating-suffix>

tractional-constant
<digit-sequence> . digit-sequence
digit-sequence.

exponent-part
e <sign> digit-sequence
E <sign> digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix one of
f I F L

integer-constant
decimal-constant <integer-suffix>
octal-constant <integer-suffix>
hexadecimal-constant <integer-suffix>

decimal-constant
nonzero-digit
decimal-constant digit

octal-constant
o
octal-constant octal-digit

hexadecimal-constant
o x hexadecimal-digit
o X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

Decimal

nonzero-digit one of
1 2 3 4 5 6 7 8 9

octal-digit one of
o 1 234 5 6 7

hexadecimal-digit one of
o 1 2 345 6 7 8 9
abcdef
ABCDEF

integer-suffix
unsigned-suffix <long-suffix>
long-suffix <unsigned-suffix>

unsigned-suffix one of
u U

long-suffix one of
I L

enumeration-constant
identifier

character-constant
c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char.
Any character in the source character set except the
single-quote (,), backslash (\), or newline character
escape-sequence.

escape-sequence: one of
\" \' \? \\
\a \b \f \n
\0 \00 \000 \r

. \t \v \Xh... \xh ...

Decimal constants from 0 to 4,294,967,295 are allowed. Constants exceeding
this limit are truncated. Decimal constants must not use an initial zero. An

12 Borland C++ Programmers Guide

Table 1.7
Borland C++ integer
constants without L

or U

integer constant that has an initial zero is interpreted as an octal constant.
Thus,

int i = 10i /*decimal 10 */
int i = 010i /*decimal 8 */
int i = Oi /*decimal 0 = octal 0 */

Octal
All constants with an initial zero are taken to be octal. If an octal constant
contains the illegal digits 8 or 9, an error is reported. Octal constants
exceeding 037777777777 are truncated.

Hexadecimal
All constants starting with Ox (or OX) are taken to be hexadecimal.
Hexadecimal constants exceeding OxFFFFFFFF are truncated.

long and unsigned suffixes
The suffix L (or 1) attached to any constant forces the constant to be repre­
sented as a long. Similarly, the suffix U (or u) forces the constant to be
unsigned. It is unsigned long if the value of the number itself is greater
than decimal 65,535, regardless of which base is used. You can use both L
and U suffixes on the same constant in any order or case: u1,lu, UL, and so
on.

Decimal constants
.0 to 32,767 int

32,768 to 2,147,483,647 long
2,147,483,648 to 4,294,967,295 unsigned long

> 4294967295 truncated

Octal constants
.0.0 to .077777 int

.01.0.0.0.0 to .0177777 unsigned int
.02.0.0.0.0.0.0 to .017777777777 long

.02.0.0.0.0.0.0.0.0.0.0 to .037777777777 unsigned long

> .037777777777 truncated

Hexadecimal constants
.Ox.O.O.O.O to .Ox7FFF int
.Ox8.O.O.O to .OxFFFF unsigned int

.Ox1'o'o'o'o to .Ox7FFFFFFF long
.Ox8.O.O.O.O.O.O.O to .OxFFFFFFFF unsigned long

> .OxFFFFFFFF truncated

Chapter 1, Lexical elements 13

Floating-point
constants

14

The data type of a constant in the absence of any suffix (U, u, L, or 1) is the
first of the following types that can accommodate its value:

Decimal int, long int, unsigned long int

Octal

Hexadecimal

int, unsigned int, long int, unsigned long int

int, unsigned int, long int, unsigned long int

If the constant has a U or u suffix, its data type will be the first of unsigned
int, unsigned long int that can accommodate its value.

If the constant has an L or I suffix, its data type will be the first of long int,
unsigned long int that can accommodate its value.

If the constant has both u and I suffixes (ul, lu, UI, IU, uL, Lu, LU, or UL), its
data type will be unsigned long int.

Table 1.7 summarizes the representations of integer constants in all three
bases. The data types indicated assume no overriding L or U suffix has been
used.

A floating constant consists of:

• Decimal integer

• Decimal point

• Decimal fraction

• e or E and a signed integer exponent (optional)

• Type suffix: for F or I or L (optional)

You can omit either the decimal integer or the decimal fraction (but not
both). You can omit either the decimal point or the letter e (or E) and the
signed integer exponent (but not both). These rules allow for conventional
and scientific (exponent) notations.

Negative floating constants are taken as positive constants with the unary
operator minus (-) prefixed.

Here are some examples:

Constant

23.45e6

.0

o.
1.

Value

23.45 X 106

o
o
1.0 x 10° = 1.0

Borland C++ Programmers Guide.

Table 1.8
Borland C++ floating

constant sizes
and ranges

Character constants

To compare sizes of
character types,

compile this as a C
program and then as

a C++ program.

Constant Value

-1.23 -1.23

2e-5 2.0 x 10-5

3E+10 3.0 x 1010

.09E34 0.09 x 1034

In the absence of any suffixes, floating-point constants are of type double.
However, you can coerce a floating constant to be of type float by adding
an f or F suffix to the constant. Similarly, the suffix 1 or L forces the constant
to be data type long double. The next table shows the ranges available for
float, double, and long double.

Type Size (bits) Range

float 32 3.4 x 10-38 to 3.4 x 1038

double 64 1.7 x 10-308 to 1 .7 x 1 0308

long double 80 3.4 x 10-4932 to 1.1 x 104932

A character constant is one or more characters enclosed in single quotes,
such as ' A', ' =' ,or ' \n' . In C, single-character constants have data type
int. The number of bits used to internally represent a character constant is
sizeof(int). In a 16-bit program, the upper byte is zero or sign-extended. In
C++, a character constant has type char. Multicharacter constants in both C
and C++ have data type int.

#include <stdio.h>
#define CH 'x' /* A CHARACTER CONSTANT */
void rnain(void) {

char ch = 'x'; /* A char VARIABLE */

printf("\nSizeof int
printf("\nSizeof char
printf("\nSizeof ch
printf("\nSizeof CH

= %d", sizeof(int));
= %d", sizeof(char));
= %d", sizeof (ch));
= %d", sizeof(CH));

printf (" \nSizeof wchar_t = %d", sizeof (wchar_t));
}

Chapter 1, Lexical elements 15

Table 1.9
Sizes of character

types

Sizes are in bytes.

To retain the old
behavior, use the -K2
command-line option
and Borland C++ 3.1

header files.

16

Output when Output when
compiled as C program: compiled as C++ program:

16-bit 32-bit 16-bit 32-bit
Sizeof int = 2 4 Sizeof int = 2 4
Sizeof char = 1 1 Sizeof char = 1 1
Sizeof ch = 1 1 Sizeof ch = 1 1
Sizeof CH = 2 4 Sizeof CH = 1 1
Sizeof wchar_t = 2 2 Sizeof wchar_t = 2 2

The three char types
One-character constants, such as 'A', '\t', and' \007', are represented as
int values. In this case, the low-order byte is sign extended into the high bit;
that is, if the value is greater than 127 (base 10), the upper bit is set to -1
(=OxFF). This can be disabled by declaring that the default char type is
unsigned, which forces the high bit to be zero regardless of the value of the
low bit. See the User's Guide, Chapters 1 and 3, for information on these
options.

The three character types, char, signed char, and unsigned char, require an
8-bit (one byte) storage. In C and Borland C++ programs prior to version
Borland C++ 4.0, char is treated the same as signed char. The behavior of C
programs is unaffected by the distinction between the three character types.

In a C++ program, a function can be overloaded with arguments of type
char, signed char, or unsigned char. For example, the following function
prototypes are valid and distinct:

void func(char ch);
void func(signed char ch);
void func(unsigned char ch);

If only one of the above prototypes exists, it will accept any of the three
character types. For example, the following is acceptable:

void func(unsigned char ch);
void main(void) {

signed char ch = 'x';
func (ch);
}

See the User's Guide, Chapters 1 and 3, for a description of code-generatiC?n
options.

Borland C++ Programmers Guide

Table 1,10
Borland C++ escape

sequences

The \\ must be used
to represent a real

ASCII backslash, as
used in operating

system paths.

Escape sequences
The backslash character (\) is used to introduce an escape sequence, which
allows the visual representation of certain nongraphic characters. For
example, the constant \n is used for the single newline character.

A backslash is used with octal or hexadecimal numbers to represent the
ASCII symbol or control code corresponding to that value; for example, ' \
03' for Ctrl-C or ' \x3F'· for the question mark. You can use any string of up
to three octal or any number of hexadecimal numbers in an escape
sequence, provided that the value is within legal range for data type char (0
to Oxff for Borland C++). Larger numbers generate the compiler error
Numeric constant too large. For example, the octal number \777 is larger
than the maximum value allowed (\377) and will generate an error. The
first nonoctal or nonhexadecimal character encountered in an octal or
hexadecimal escape sequence marks the· end of the sequence.

Originally, Turbo C allowed only three digits in a hexadecimal escape
sequence. The ANSI C rules adopted in Borland C++ might cause problems
with old code that assumes only the first three characters are converted. For
example, using Turbo C l.x to define a string with a bell (ASCII 7) followed
by numeric characters, a programmer might write:

printf (" \x0072 .1A Simple Operating System") i

This is intended to be interpreted as \x007 and 1/2.1A Simple Operating
System". However, Borland C++ compiles it as the hexadecimal number
\x0072 and the literal string 1/ .1A Simple Operating System".

To avoid such problems, rewrite your code like this:

printf("\x007" "2.1A Simple Operating System") i

Ambiguities might also arise if an octal escape sequence is followed by a
nonoctal digit. For example, because 8 and 9 are not legal octal digits, the
constant \258 would be interpreted as a two-character constant made up of
the characters \25 and 8.

The next table shows the available escape sequences.

Sequence Value Char What it does

\a Ox07 BEL Audible bell

\b Ox08 BS Backspace

\f OxOC FF Formfeed

\n OxOA LF Newline (Iinefeed)

Chapter 1 i Lexical elements 17

String constants

18

Table 1.10: Borland C++ escape sequences (continued)

~ OxOD CR Carriage return

Tab (horizontal)

Vertical tab

8ackslash

\t Ox09

\v Ox08

\\ Ox5c

\ ' Ox27

\ " Ox22

\? Ox3F

\0

\XH

\xH

Wide-character constants

HT

VT

\

Single quote (apostrophe)

Double quote

? Question mark

any 0 = a string of up to three octal digits

any H = a string of hex digits

any H = a string of hex digits

Wide-character types can be used to represent a character that does not fit
into the storage space allocated for a char type. A wide character is stored
in a two-byte space. A character constant preceded immediately by an L is a'
wide-character constant of data type wchar _t (defined in stddef.h). For
example:

A string preceded·immediately by an L is a wide-character string. The
memory allocation for a string is two bytes per character. For example:

wchar_t str = L"ABCD" i

Multi-character constants
Borland C++ also supports multi-character constants. When using the 32-
bit compiler, multi-character constants can consist of as many as four char­
acters.The 16-bit compiler is restricted to two-character constants. For
example, ' An', ' \n \t', and' \007\007' are acceptable in a 16-bit program.
The constant, ' \006\007\008\009' is valid only in a 32-bit program. When
using the 16-bit compiler, these constants are represented as 16-bit int
values with the first character in the low-order byte and the second
character in the high-order byte. For 32-bit compilers, multi-character
constants are always 32-bit intvalues. These constants are not portable to
other C compilers.

String constants, also known-as string literals, form a special category of
constants used to handle fixed sequences of characters. A string literal is of

Bor/and c++ Programmer's Guide

data type array-of-char and storage class static, written as a sequence of
any number of characters surrounded by double quotes:

"This is literally a string!"

The null (empty) string is written"".

The characters inside the double quotes can include escape sequences (see
page 15). This code, for example,

"\t\t\"Name\"\\\tAddress\n\n"

prints out like this:

"Name" \ Address

//Name" is preceded by two tabs; Address is preceded by one tab. The line
is followed by two new lines. The \" provides interior double quotes.

If you compile with the -A option for ANSI compatibility, the escape char­
acter sequence //\ \//, is translated to //\// by the compiler.

A literal string is stored internally as the given sequence of characters plus
a final null character ('\0'). A null string is stored as a single '\0' character.

Adjacent string literals separated only by whitespace are concatenated
during the parsing phase. In the following example,

#include <stdio.h>
#include <windows.h>

#pragma argsused

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance, LPSTR lpszCmdParam,
int nCmdShow)

char *p;

_InitEasyWin() ;

p = "This is an example of how Borland C++"
" will automatically\ndo the concatenation for"
" you on very long strings, \nresulting in nicer"
" looking programs.";

printf (p) ;
return(O) ;

The output of the program is:

Chapter 1, Lexical elements

This is an example of how Borland C++ will automatically
do the concatenation for you on very long strings,
resulting in nicer looking programs.

19

Enumeration
constants

See page 74 for a
detailed look at enum

declarations.

Constants and
internal
representation

20

You can also use the backslash (\) as a continuation character in order to
extend a string constant across line boundaries:

puts ("This is really \
a one-line string") i

Enumeration constants are identifiers defined in enum type declarations.
The identifiers are usually chosen as mnemonics to assist legibility.
Enumeration constants are integer data types. They can be used in any
expression where integer constants are valid. The identifiers used must be
unique within the scope of the en'urn declaration. Negative initializers are
allowed.

The values acquired by enumeration constants depend on the format of the
enumeration declaration and the presence of optional initializers. In this
example,

enum team { giants, cubs, dodgers }i

giants, cubs, and dodgers are enumeration constants of type team that can be
assigned to any variables of type team or to any other variable of integer
type. The values acquired by the enumeration constants are

giants = 0, cubs = I, dodgers = 2

in the absence of explicit initializers. In the following example,

enum team { giants, cubs=3, dodgers = giants + 1 }i

the constants are set as follows:

giants = 0, cubs = 3, dodgers = 1

The constant values need not be unique:

enum team { giants, cubs = I, dodgers = cubs - 1 }i

ANSI C acknowledges that the size and numeric range of the basic data
types (and their various permutations) 'are implementation-:specific and
usually derive from the architecture of the host computer. For Borland C++,
the target platform is the IBM PC family (and compatibles), so the
architecture of the Intel 8088 and 80x86 microprocessors governs the
choices of internal representations for the various data types.

The next table lists the sizes and resulting ranges of the data types for
Borland C++; see page 40 for more information on these data types. Figure
1.1 shows how these.types are represented internally. ,

Borland C++ Programmers Guide

Table 1.11: 16-bit data types, sizes, and ranges

Type Size (bits) Range Sample applications

unsigned char 8 o to 255 Small numbers and full PC character set

char 8 -128 to 127 Very small numbers and ASCII characters

enum 16 -32,768 to 32,767 Ordered sets of values

unsigned int 16 o to 65,535 Larger numbers and loops

short int 16 -32,768 to 32,767 Counting, small numbers, loop control

int 16 -32,768 to 32,767 Counting, small numbers, loop control

unsigned long 32 o to 4,294,967,295 Astronomical distances

long 32 -2,147,483,648 to 2,147,483,647 Large numbers, populations

float 32 3.4 x 10-38 to 3.4 x 1038 Scientific (7-digit precision)

double 64 1. 7 x 10-308 to 1.7 x 1 0308 Scientific (15-digit precision)

long double 80 3.4 x 10-4932 to 1.1 x 104932 Financial (19-digit precision)

near pointer 16 Not applicable Manipulating memory addresses

far pointer 32 Not applicable Manipulating addresses outside current segment

Table 1.12: 32-bit data types, sizes, and ranges

Type Size (bits) Range Sample applications

unsigned char 8 o to 255 Small numbers and full PC character set

char 8 -128 to 127 Very small numbers and ASCII characters

short int 16 -32,768 to 32,767 Counting, small numbers, loop control

unsigned int 32 o to 4,294,967,295 Larger numbers and loops

int 32 -2,147,483,648 to 2,147,483,647 Counting, small numbers, loop control
\

unsigned long 32 o to 4,294,967,295 Astronomical distances

enum 32 -2,147,483,648 to 2,147,483,647 Ordered sets of values

long 32 -2,147,483,648 to 2,147,483,647 Large numbers, populations

float 32 3.4 x 1 0-38 to 3.4 x 1 038 Scientific (7-digit precision)

double 64 1.7 x 10-308 to 1.7 x 10308 Scientific (15-digit precision)

long double 80 3.4 x 10-4932 to 1.1 x 104932 Financial (19-digit precision)

near pointer 32 Not applicable Manipulating memory addresses

far pointer 32 Not applicable Manipulating addresses outside current segment

Chapter 1, Lexical elements 21

Figure 1.1
Internal

representations of
numerical types

Constant
expressions

22

16-bit integers

int lsi magnitude (2's complement)

15

. long int lsi
3~1~----------------~·

(2's complement) magnitude

32-bit integers

short int lsi magnitude (2's complement)

15

int, long int lsi
3u1----------------~

(2's complement) magnitude

Floating-point types, always

significand

lsi biased I double exponent significand

63 51

significand long double lsi e~~~S~!t 111
~~--~---M~6~3----------------------------------~

s = Sign bit (0 = positive, 1 = negative)

i = Position of implicit binary point

1 = Integer bit of significance:

Stored in long double
Implicit (always 1) in float, double

Exponent bias (normalized values):

float: 127 (7FH)
double: 1 ,023 (3FFH)
long double: 16,383 (3FFFH)

A constant expression is an expression that always evaluates to a constant
(and it must evaluate to a constant that is in the range of representable
values for its type). Constant expressions are evaluated just as regular
expressions are. You can use a constant expression anywhere that a
constant is legal. The syntax for constant expressions is

constant -expression:
Conditional-expression

Constant expressions cannot contain any of the following operators, unless
the operators are contained within the operand of a sizeof operator:

Borland C++ Programmers Guide

Punctuators

Brackets

Parentheses

• Assignment

• Comma

• Decrement

• Function call

• Increment

The punctuators (also known as separators) in Borland C++ are defined as
follows:

punctuator: one of

[](){},;: ... *=#

[] (open and close brackets) indicate single and multidimensional array
subscripts:

char ch, str [l
int mat[3J[4];
ch = str[3];

"Stan" ;
/* 3 x 4 matrix */
/* 4th element */

() (open and close parentheses) group expressions, isolate conditional
expressions, and indicate function calls and function parameters:

d = c * (a + b);

if (d == z) ttX;

func () ;
int (*fptr) ();
fptr = func;

void 6mc2 (int n);

/* override normal precedence */

/* essential with conditional statement */

/* function call, no args */
/* function pointer declaration */
/* no () means func pointer */

/* function declaration with parameters */

Parentheses are recommended in macro definitions to avoid potential
precedence problems during expansion:

#define CUBE (x) ((x) * (x) * (x))

The use of parentheses to alter the normal operator precedence and associa­
tivity rules is covered in the "Expressions" section starting on page 77.

Chapter 1, Lexical elements 23

Braces

Comma

Semicolon

24

{} (open and close braces) indicate the start and end of a compound
statement:

if (d == z)
{

++X;

func();

The closing brace serves as a terminator for the compound statement, so a ;
(semicolon) is not required after the }, except in structure or class
declarations. Often, the semicolon is illegal, as in

if (statement)
{};

else
/*illegal semicolon*/

The comma (,) separates the elements of a function argument list:

void func(int n, float f, char ch);

The comma is also used as an operator in comma expressions. Mixing the two
uses of comma is legal, but you must use parentheses to distinguish them:

func(i, j); /* call func with two args */
func((expl, exp2), (exp3, exp4, exp5)); /* also calls func with two args! */

The semicolon (;) is a statement terminator. Any legal C or c++ expression
(including the empty expression) followed by a semicolon is interpreted as
a statement, known as an expression statement. The expression is evaluated
and its value is discarded. If the expression statement has no side effects,
Borland C++ might ignore it.

a + b;
++a;

/* maybe evaluate a + b, but discard value */
/* side effect on a, but discard value of ++a */
/* empty expression = null statement */

Semicolons are often used to create an empty statement:

for (i = 0; i < n; i++)
{

Borland C++ Programmers Guide

Colon

Ellipsis

Asterisk (pointer
declaration)

Equal sign
(initializer)

Use the colon (:) to indicate a labeled statement:

start: x=O;

goto start;

Labels are discussed in the "Labeled statements" section on page 102.

The use of the colon in class initialization is shown in the section beginning
on page 144.

The ellipsis (...) is three successive periods with no whitespace intervening.
Ellipses are used in the formal argument lists of function prototypes to
indicate a variable number of arguments, or arguments with varying types:

void func(int n, char ch, ...);

This declaration indicates that func will be defined in such a way that calls
must have at least two arguments, an int and a char, but can also have any
number of additional arguments.

In C++, you can omit the comma preceding the ellipsis.

The * (asterisk) in a variable declaration denotes the creation of a pointer to
a type:

char *char-ptr; /* a pointer to char is declared */

Pointers with multiple levels of indirection can be declared by indicating a
pertinent number of asterisks:

int * * int-ptr; / * a pointer to an integer array * /
double ***double-ptr; /* a pointer to a matrix of doubles */

You can also use the asterisk as an operator to either dereference a pointer
or as the multiplication operator:

i = *int-ptr;
a = b * 3.14;

The = (equal sign) separates variable declarations from initialization lists:

char array [5] = { 1, 2, 3, 4, 5 };
int x = 5;

In C++, declarations of any type can appear (with some restrictions) at any
point within the code. In a C function, no code can precede any variable
declarations.

Chapter 1, Lexical elements 25

Pound sign
(preprocessor
directive)

26

In a C++ function argument list, the equal sign indicates the default value
for a parameter:

int f(int i = 0) { ... } /* Parameter i has default value of zero */

The equal sign is also used as the assignment operator in expressions:

int a, b, Ci

a = b + Ci

float *ptr = (float *) malloc(sizeof(float) * 100) i

The # (pound sign) indicates a preprocessor directive when it occurs as the
first nonwhitespace character on a line. It signifies a compiler action, not
necessarily associated with code generation. See page 185 for more on the
preprocessor directives.

and ## (double pound signs) are also used as operators to perform token
replacement and merging during the preprocessor scanning phase.

Borland C++ Programmers Guide

Declarations

Objects

c H A p T E R

Lan'guage structure

This chapter provides a formal definition of Borland C++'s language
structure. It describes the legal ways in which tokens can be grouped
together to form expressions, statements, and other significant units.

2

This section briefly reviews concepts related to declarations: objects, storage
classes, types, scope, visibility, duration, and linkage. A general knowledge
of these is essential before tackling the full declaration syntax. Scope,
visibility, duration, and linkage determine those portions of a program that
can make legal references to an identifier in order to access its object.

An object is an identifiable region of memory that can hold a fixed or
variable value (or set of values). (This use of the word object is different
from the more general term used in object-oriented languages.) Each value
has an associated name and type (also known as a data type). The name is
used to access the object. This name can be a simple identifier, or it can be a
complex expression that uniquely "points" to the object. The type is used

• To determine the correct memory allocation required initially.

• To interpret the bit patterns found in the object during subsequent
accesses.

• In many type-checking situations, to ensure that illegal assignments are
trapped.

Borland C++ supports many standard (predefined) and user-defined data
types, including signed and unsigned integers in various sizes, floating­
point numbers in various precisions, structures, unions, arrays, and classes.
In addition, pointers to most of these objects can be established and
manipulated in various memory models.

The Borland C++ standard libraries and your own program and header
files must provide unambiguous identifiers (or expressions derived from
them) and types so that Borland C++ can consistently access, interpret, and

Chapter 2, Language structure 27

Ivalues

rvalues

Storage classes
and types

28

(possibly) change the bit patterns in memory corresponding to each active
object in your program.

Declarations establish the necessary mapping between identifiers and
objects. Each declaration associates an identifier with a data type. Most
declarations, known as defining declarations, also establish the creation
(where and when) of the object; that is, the allocation of physical memory
and its possible initialization. Other declarations, known as referencing
declarations, simply make their identifiers and types known to the compiler.
There can be many referencing declarations for the same identifier,
especially in a multifile program, but only one defining declaration for that
identifier is allowed.

Generally speaking, an identifier cannot be legally used in a program
before its declaration point in the source code. Legal exceptions to this rule
(known as forward references) are labels, calls to undeclared functions, and
class, struct, or union tags.

An lvalue is an object locator: an expression that designates an object. An
example of an lvalue expression is *P, where P is any expression evaluating
to a non-null pointer. A modifiable lvalue is an identifier or expression that
relates to an object that can be accessed and legally changed in memory. A
const pointer to a constant, for example, is not a modifiable lvalue. A
pointer to a constant can be changed (but its dereferenced value cannot).

Historically, the I stood for "left," meaning that an lvalue could legally
stand on the left (the receiving end) of an assignment statement. Now only
modifiable lvalues can legally stand to the left of an assignment statement.
For example, if a and bare nonconstant integer jdentifiers with properly
allocated memory storage, they are both modifiable lvalues, and J

assignments such as a = 1; and b = a + b are legal.

The expression a + b is not an lvalue: a + b = a is illegal because the
expression on the left is not related to an object. Such expressions are often
called rvalues (short for right values).

Associating identifiers with objects requires each identifier to have at least
two attributes: storage class and type (sometimes referred to as data type).
The Borland C++ compiler deduces these attributes from implicit or explicit
declarations in the source code.

Storage class dictates the location (data segment, register, heap, or stack) of
the object and its duration or lifetime (the entire running time of the
program, or during execution of some blocks of code). Storage class can be

Borland C++ Programmers Guide

Scope

established by the syntax of the declaration, by its placement in the source
code, or by both of these factors.

The type determines how much memory is allocated to an object and how
the program will interpret the bit patterns found in the object's storage
allocation. A given data type can be viewed as the set of values (often
implementation-dependent) that identifiers of that type can assume,
together with the set of operations allowed on those values. The compile­
time operator, sizeof,lets you determine the size in bytes of any standard
or user-defined type; see page 99 for more on this operator.

The scope of an identifier is that part of the program in which the identifier
can be used to access its object. There are five categories of scope: block (or
local), function, function prototype, file, and class (C++ only). These depend on
how and where identifiers are declared.

I

• Block. The scope of an identifier with block (or local) scope starts at the
declaration point and ends at the end of the block containing the declara­
tion (such a block is known as the enclosing block). Parameter declara­
tions with a function definition also have block scope,limited to the
scope of the block that defines the function.

• Function. The only identifiers having function scope are statement labels.
Label names can be used with goto statements anywhere in the function
in which the label is declared. Labels are declared implicitly by writing
label_name: followed by a statement. Label names must be unique within
a function.

• Function prototype. Identifiers declared within the list of parameter
declarations in a function prototype (not part of a function definition)
have function prototype scope. This scope ends at the end of the function
prototype.

• File. File scope identifiers, also known as globals, are declared outside of
all blocks and classes; their scope is from the point of declaration to the
end of the source file.

• Class (C++). For now/think of a class as a named collection of members,
including data structures and functions that act on them. Class scope
applies to the names of the members of a particular class. Classes and
their objects have many special access and scoping rules; see pages
124-138.

Chapter 2, Language structure 29

Name spaces

Structures, classes,
and enumerations are

in the same name
space in C++.

Visibility

30

Visibility cannot
exceed scope, but
scope can exceed

visibility.

Name space is the scope within which an identifier must be unique. C uses
four distinct classes of identifiers:

• goto label names. These must be unique within the function in which
they are declared.

• Structure, union, and enumeration tags. These must be unique within the
block in which they are defined. Tags declared outside of any function
must be unique within all tags defined externally. '

• Structure and union member names. These must be unique within the
structure or union in which they are defined. There is no restriction on
the type or offset of members with the same member name in different
structures.

• Variables, typedefs, functions, and enumeration members. These must be
unique within the scope in which they are defined. Externally declared
identifiers must be unique among externally declared variables.

The visibility of an identifier is that region of the program source code from
which legal access can be made to the identifier's associated object.

Scope and visibility usually coincide, though there are circumstances under
which an object becomes temporarily hidden by the appearance of a
duplicate identifier: the object still exists but the original identifier cannot
be used to access it until the scope of the duplicate identifier is ended.

int ii char Chi II auto by default
i = 3i II int i and char ch in scope and visible

double ii
i = 3.0e3i

ch = 'A'i

i += 1i

II double i in scope and visible
II int i=3 in scope but hidden
II char ch in scope and visible

II double i out of scope
II int i visible and = 4

II char ch still in scope & visible = 'A'
}

Ilint i and char ch out of scope

Borland C++ Programmer's Guide

Duration

Static

Local

The Borland C++
compiler can ignore
requests for register
allocation. Register

allocation is based on
the compiler's

analysis of how a
variable is used.

Again, special rules apply to hidden class names and class member names:
C++ operators allow hidden identifiers to be accessed under certain
conditions.

Duration, closely related to storage class, defines the period during which
the declared identifiers have real, physical objects allocated in memory. We
also distinguish between compile-time and run-time objects. Variables, for
instance, unlike typedefs and types, have real memory allocated during run
time. There are three kinds of duration: static, local, and dynamic.

Memory is allocated to objects with static duration as soon as execution is
underway; this storage allocation lasts until the program terminates. Static
duration objects usually reside in fixed data segments allocated according
to the memory model in force. All functions, wherever defined, are objects
with static duration. All variables with file scope have static duration.
Other variables can be given static duration by using the explicit static or
extern storage class specifiers.

Static duration objects are initialized to zero (or null) in the absence of any
explicit initializer or, in C++, constructor.

Don't confuse static duration with file or global scope. An object can have
static duration and local scope.

Local duration objects, also known as automatic objects, lead a more
precarious existence. They are created on the stack (or in a register) when
the enclosing block or function is entered. They are deallocated when the
program exits that block or function. Local duration objects must be
explicitly initialized; otherwise, their contents are unpredictable. Local
duration objects must always have local or function scope. The storage class
specifier auto can be used when declaring local duration variables, but is
usually redundant, because auto is the default for variables declared within
a block. An object with local duration also has local scope, because it does
not exist outside of its enclosing block. The converse is not true: a local
scope object can have static duration.

When declaring variables (for example, int, char, float), the storage class
specifier register also implies auto; but a request (or hint) is passed to the
compiler that the object be allocated a register if possible. Borland C++ can
be set to allocate a register to a local integral or pointer variable, if one is
free. If no register is free, the variable is allocated as an auto, local object
with no warning or error;

Chapter 2, Language structure 31

Dynamic

Translation units

For more details, see
"External declarations

and definitions" on
page 37.

Linkage

32

Dynamic duration objects are created and destroyed by specific function
calls during a program. They are allocated storage from a special memory
reserve known as the heap, using either standard library functions such as
malloc, or by using the C++ operator new. The corresponding deallocations
are made using free or delete.

The term translation unit refers to a source code file together with any
included files, but less any source lines omitted by conditional preprocessor
directives. Syntactically, a translation unit is defined as a sequence of
external declarations:

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration
function-definition
declaration

The word external has several connotations in C; here it refers to
declarations made outside of any function, and which therefore have file
scope. (External linkage is a distinct property; see the following section,
"Linkage.") Any declaration that also reserves storage for an object or
function is called a definition (or defining declaration).

An executable program is usually created by compiling several indepen­
dent translation units, then linking the resulting object files with
preexisting libraries. A problem arises when the same identifier is declared
in different scopes (for example, in different files), or declared more than
once in the same scope. Linkage is the process that allows each instance of
an identifier to be associated correctly with one particular object or
function. All identifiers have one of three linkage attributes, closely related
to their scope: external linkage, internal linkage, or no linkage. These
attributes are determined by the placement and format of your
declarations, together with the explicit (or implicit by default) use of the
storage class specifier static or extern.

Each instance of a particular identifier with external linkage represents the
same object or function throughout the entire set of files and libraries
making up the program. Each instance of a particular identifier with
internal linkage represents the same object or function within one file only.
Identifiers with no linkage represent unique entities. I

Borland C++ Programmers Guide

Name mangling

,Here are the external and internal linkage rules:

• Any object or file identifier having file scope will have internal linkage if
its declaration contains the storage class specifier static.

For C++, if the same identifier appears with both internal and external
linkage within the same file, the identifier will have external linkage. In
C, it will have internal linkage.

• If the declaration of an object or function identifier contains the storage
class specifier extern, the identifier has the same linkage as any visible
declaration of the identifier with file scope. If there is no such visible
declaration, the identifier has external linkage.

• If a function is declared without a storage class specifier, its linkage is
determined as if the storage class specifier extern had been used.

• If an object identifier with file scope is declared without a storage class
specifier, the identifier has external linkage.

The following identifiers have no linkage attribute:

• Any identifier declared to be other than an object or a function (for
example, a typedef identifier)

• Function parameters

• Block scope identifiers for objects declared without the storage class
specifier extern

When a C++ module is compiled, the compiler generates function names
that include an encodIng of the function's argument types. This is known as
name mangling. It makes overloaded functions possible, and helps the
linker catch errors in calls to functions in other modules. However, there
are times when you won't want name mangling. When compiling a C++
module to be linked with a module that does not have mangled names, the
C++ compiler has to be told not to mangle the names of the functions from
the other module. This situation typically arises when linking with libraries
or .OBJ files compiled with a C compiler.

To tell the C++ compiler not to mangle the name of a function, declare the'
function as extern "C", like this:

extern, "C" void Cfunc (int);

This declaration tells the compiler that references to the function Cfune
should not be mangled.

Chapter 2, Language structure 33

You can also apply the extern "e" declaration to a block of names:

extern "C" {

};

void Cfuncl(int);
void Cfunc2(int);
void Cfunc3(int);

As with the declaration for a single function, this declaration tells the
compiler that references to the functions Cfunc1, Cfunc2, and Cfunc3 should
not be mangled. You can also use this form of block declaration when the
block of function names is contained in a header file:

extern "C" {
#include "locallib.h"

};

Declaration syntax

Tentative
definitions

34

All six interrelated attributes (storage classes, types, scope, visibility,
duration, and linkage) are determinec;l in diverse ways by declarations.

Declarations can be defining declarations (also known as definitions) or
referencing declarations (sometimes known as nondefining declarations). A
defining declaration, as the name implies, performs both the duties of
declaring and defining; the nondefining declarations require a definition to
be added somewhere in the program. A referencing declaration introduces
one or more identifier names into a program. A definition actually allocates
memory to an object and associates an identifier with that object.

The ANSI C standard introduces a new concept: that of the tentative
definition. Any external data declaration that has no storage class specifier
and no initializer is considered a tentative definition. If the identifier
declared appears in a later definition, then the tentative definition is treated
as if the extern storage class specifier were present. In other words, the
tentative definition becomes a simple referencing declaration.

Borland C++ Programmers Guide

Possible
declarations

If the end of the translation unit is reached and no definition has appeared
with an initializer for the identifier, then the tentative definition becomes a
full definition, and the object defined has uninitialized (zero-filled) space
reserved for it. For example,

int Xi

int Xi

int Yi
int Y = 4i

int z = 5i
int z = 6i

/*legal, one copy of X is reserved */

/* legal, y is initialized to 4 */

/* not legal, both are initialized definitions */

Unlike ANSI C, C++ doesn't have the concept of a tentative declaration; an
external data declaration without a storage class specifier is always a
definition.

The range of objects that can be declared includes

• Variables
• Functions

• Classes and class members (C++)

• Types

• Structure, union, and enumeration tags

• Structure members

• Union members

• Arrays of other types

• Enumeration constants

• Statement labels

• Preprocessor macros

The full syntax for declarations is shown in Tables 2.1 through 2.3. The
recursive nature of the declarator syntax allows complex declarators. You'll
probably'want to use typedefs to improve legibility.

Chapter 2, Language structure 35

36

Table 2.1
Borland C++

declaration syntax
declaration:

<decl-specifiers> <declarator-list>;
asm-declaration
function-declaration
linkage-specification

decl-specifier.
storage-class-specifier
type-specifier
function-specifier
friend (C++ specific)
typedef

decl-specifiers:
<decl-specifiers> decl-specifier

storage-class-specifier.
auto
register
static
extern

function-specifier. (C++ specific)
inline
virtual

type-specifier.
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
const
volatile

simple-type-name:
class-name
typedef-name
char
short

int
long
signed
unsigned
float
double
void

elaborated-type-specifier.
class-key identifier
class-key class-name
enum enum-name

class-key (C++ specific)
class
struct
union

enum-specifier.
enum <identifier> { <enum-list> }

enum-list
enumerator
enumerator-list, enumerator

enumerator.
identifier
identifier = constant-expression

constant-expression:
conditional-expression

linkage-specification: (C++ specific)
extern string { <declaration-list> }
extern string declaration

declaration-list
declaration
declaration-list; declaration

In Table 2.2, note the restrictions on the number and order of modifiers and
qualifiers. Also, the modifiers listed are the only addition to the declarator
syntax that are not ANSI C or C++. These modifiers are each discussed in
greater detail starting on page 48.

Bor/and c++ Programmers Guide

Table 2.2: Borland C++ declarator syntax

declarator-list
init-declarator
declarator-list , init-declarator

init-declarator.
declarator <initializer>

declarator.
dname
modifier-list
pointer-operator declarator
declarator (parameter-declaration-list) <cv-qualifier-list>

(The <cv-qualifier-list> is for C++ only.)
declarator [<constant-expression> 1
(declarator)

modifier-list
modifier
modifier-list modifier

modifier.
__ cdecl
__ pascal
_jnterrupt
__ near
__ far
__ huge

pointer-operator.
* <cv-qualifier-list>
& <cv-qualifier-list> (C++ specific)
class-name:: * <cv-qualifier-list> (C++ specific)

cv-qualifier-list
cv-qualifier <cv-qualifier-list>

cv-qualifier
const
volatile

dname:
name
class-name (C++ specific)
- class-name (C++ specific)
type-defined-name

type-name:
type-specifier <abstract-declarator>

abstract-declarator.
pointer-operator <abstract-declarator>
<abstract-declarator> (argument-declaration-list) <cv-qualifier-list>
<abstract-declarator> [<constant-expression> 1
(abstract-declarator)

argument-declaration-list
<arg-declaration-list>
arg-declaration-list , ...
<arg-declaration-list> ... (C++ specific)

arg-declaration-list
argument-declaration
arg-declaration-list, argument-declaration

argument-declaration:
decl-specifiers declarator
decl-specifiers declarator = expression (C++ specific)
decl-specifiers <abstract-declarator>
decl-specifiers <abstract-declarator> = expression (C++ specific)

function-definition:
<decl-specifiers> declarator <ctor-initializer> function-body

function-body:
compound-statement

initializer.
= expression
= { initializer-list}
(expression-list) (C++ specific)

initializer-list
expression
initializer-list, expression
{ initializer-Iist <,> }

External
declarations and
definitions

The storage class specifiers auto and register cannot appear in an external
declaration (see page 32). For each identifier in a translation unit declared
with internal linkage, no more than one external definition can be given.

An external definition is an external declaration that also defines an object
or function; that is, it also allocates storage. If an identifier declared with
external linkage is used in an expression (other than as part of the operand

Chapter 2, Language structure 37

of sizeof), then exactly one external definition of that identifier must be
somewhere in the entire program.

Borland C++ allows later re-declarations of external names, such as arrays,
structures, and unions, to add information to earlier declarations. Here's an
example:

int all i // no size
struct mystructi 1/ tag only, no member declarators

int a[3l = {I, 2, 3}i /1 supply size and initialize
struct mystruct {

int i, j i
}i /1 add member declarators

Table 2.3 covers class declaration syntax. In the section on classes (begin­
ning on page 124), you can find examples of how to declare a class. The
"Referencing" section on page 116 covers C++ reference types (closely
relq.ted to pointer types) in detail. Finally, see page 160 for a discussion of
template-type classes.

Table 2.3: Borland C++ class declaration syntax (C++ only)

class-specifier.
class-head { <member-list> }

class-head:
class-key <identifier> <base-specifier>
class-key class-name <base-specifier>

member-list
member-declaration <member-list>
access-specifier: <member-list>

member"declaration:
<decl-specifiers> <member-declarator-list> ;
function-definition <;>
qualified-name;

member-declarator-list
member-declarator
member-declarator-list, member-declarator

member-declarator.
declarator <pure-specifier>
<identifier> : constant-expression

pure-specifier:
=0

base-specifier.
: base-list

38

base-list
base~specifier
base-list, base-specifier

base-specifier.
class-name
virtual <access-specifier> class-name
access-specifier <virtual> class-name

access-specifier.
private
protected
public

conversion-function-name:
operator conversion-type-name

conversion-type-name:
type-specifiers <pointer-operator>

constructor-initializer.
: member-initializer-list

member-initializer-list
member-initializer
member-Initializer·, member-initializer-list

Bor/and C++ Programmers Guide

Table 2.3: Borland C++ class declaration syntax (C++ only) (continued)

member-initializer. + % A
class name (<argument-list>) & = <>
identifier (<argument-list>) += -= *= 1= %= A=

operator-function-name: &= 1= « » »= «=

operator operator-name -- != <= >= && II
++ ->* -> ()

operator-name: one of []
new delete sizeof typeid

Type specifiers

Type categories

The type specifier with one or more optional modifiers is used to specify the
type of the declared identifier:

int i; II declare i as a signed integer
unsigned char chl, ch2; II declare two unsigned chars

By long-standing tradition, if the type specifier is omitted, type signed int
(or equivalently, int) is the assumed default. However, in C++, a missing
type specifier can lead to syntactic ambiguity, so C++ practice requires you
to explicitly declare all int type specifiers.

The four basic type categories (and their subcategories) are as follows:

• Aggregate

• Array
• struct
• union
• class (C++ only)

• Function

• Scalar

• Arithmetic
• Enumeration
• Pointer
• Reference (C++ only)

• void (discussed in the next section)

Types can also be viewed in another way: they can be fundamental or derived
types. The fundamental types are void, char, int, float, and double, together
with short, long, signed, and unsigned variants of some of these. The

Chapter 2, Language structure 39

Table 2.4
Declaring types

type& var, type &var,
and type & var are all

equivalent.

Type void

c++ handles func in a
special manner. See

page 62 and code
examples on

page 64.

The fundamental
types

40

derived types include pointers and references to other types, arrays of other
types, function types, class types, structures, and unions.

A class object, for example, can hold a number of objects of different types
together with functions for manipulating these objects, plus a mechanism
to control access and inheritance from other classes.

Given any nonvoid type type (with some provisos), you can declare
derived types as follows:

Declaration

typet,

type array[1 0];

type*ptr,

type &ref= t,

type func(void);

void func1(type t);

struct st {type t1; type t2};

Description

An object of type type.

Ten types: array[O] - array[9].

ptr is a pointer to type.

refis a reference to type (C++).

func returns value of type· type.

func1 takes a type type parameter.

structure st holds two types.

void is a special type specifier indicating the absence of any values. It is
used in the following situations:

• When there is an empty parameter list in a function declaration:

int func(void); II func takes no arguments

• When the declared function does not return a value:

void func(int n); II return value

• As a generic pointer (a pointer to void is a generic pointer to anything):

void *ptr; II ptr can later be set to point to any object

• In typecasting expressions:

e~tern int errfunc();

(void) errfunc();

II returns an error code

II discard return value

The fundamental type specifiers are built from the following keywords:

char
double
float

int
long
short

signed
unsigned

From these keywords you can build the integral and floating-point types,
which are together known as the arithmetic types. The.modifiers long, short,

Bar/and C++ Programmers Guide

Integral types

Table 2.5
Integral types

These synonyms are
not valid in C++. See

page 16.

signed, and unsigned can be applied to the integral types. The include file
limits.h contains definitions of the value ranges for all the fundamental
types.

char, short, int, and long, together with their unsigned variants, are all
considered integral data types. Table 2.5 shows the integral type specifiers,
with synonyms listed on the same line.

char, signed char

unsigned char

char, unsigned char

signed char

int, signed int

unsigned, unsigned int

Synonyms if default char set to signed.

Synonyms if default char set to unsigned.

short, short int, Signed short int

unsigned short, unsigned short int

long, long int, signed long int

unsigned long, unsigned long int

Only Signed or unsigned can be used with char, short, int, or long. The
keywords signed and unsigned, when used on their own, mean signed int
and unsigned int, respectively.

In the absence of unsigned, signed is usually assumed. An exception arises
with char. Borland C++ lets you set the default forchar to be signed or
unsigned. (The default, if you don't set it yourself, is signed.) If the default
is set to unsigned, then the declaration char ch declares ch as unsigned. You
would need to use signed char ch to override the default. Similarly, with a
signed default for char, you would need an explicit unsigned char ch to
declare an unsigned char.

Only long or short can be used with int. The keywords long and short used
on their own mean long int and short int.

ANSI C does not dictate the sizes or internal representations of these types,
except to indicate that short, int, and long form a nondecreasing sequence
with "short <= int <= long." All three types can legally be the same. This is
important if you want to write portable code aimed at other platforms.

In a Borland C++ 16-bit program, the types int and short are equivalent,
both being 16 bits. In a Borland C++ 32-bit program, the types int and long
are equivalent, both being 32 bits. The signed varieties are all stored in

Chapter 2, Language structure 41

Floating-point types

Standard
conversions

42

two's complement format using the most significant bit (MSB) as a sign bit:
a for positive, 1 for negative (which explains the ranges shown on page 21).
In the unsigned versions, all bits are used to give a range of 0- (2n -1),
where n is 8, 16, or 32.

The representations and sets of values for the floating-point types are
implementation dependent; that is, each implementation of C is free to
define them. Borland C++ uses the IEEE floating-point formats. Appendix
A tells more about implementation-specific items.

float and double are 32- and 64-bit floating-point data types, respectively.
long can be used with double to declare an 80-bit precision floating-point
identifier: long double test _case, for example.

The table on page 21 indicates the storage allocations for the floating-point
types.

When you use an arithmetic expression, such as a + b, where a and bare
different arithmetic types, Borland C++ performs certain internal conver­
sions before the expression is evaluated. These standard conversions
include promotions of "lower" types to "higher" types in the interests of
accuracy and consistency.

Here are the steps Borland C++ uses to convert the operands in an
arithmetic expression:

1. Any small integral types are converted as shown in the next table. After
this, any two values associated with an operator are either int (including
the long and unsigned modifiers), or they are of type double, float, or
long double.

2. If either operand is of type long double, the other operand is converted
to long double.

3. Otherwise, if either operand is of type double, the other operand is
converted to double.

4. Otherwise, if either operand is of type float, the other operand is
converted to float.

5. Otherwise, if either operand is of type unsigned long, the other operand
is converted to unsigned long.

6. Otherwise, if either operand is of type long, then the other operand is
converted to long.

7. Otherwise, if either operand is of type unsigned, then the other operand
is converted to unsigned.

8. Otherwise, both operands are of type int.

Borland C++ Programmers Guide

Table 2.6
Methods used in

standard arithmetic
conversions

Special char, int,
andenum
conversions

The conversions
discussed in this

section are specific to
Borland C++.

Initialization

If the object has
automatic storage

duration, its value is
indeterminate.

The result of the expression is the same type as that of the two operands.

Type Converts to Method

char int Zero or sign-extended (depends on default char
type)

unsigned char int Zero-filled high byte (always)

signed char int Sign-extended (always)

short int Same value; sign extended

unsigned short unsigned int Same value; zero filled

enum int Same value

Assigning a signed character object (such as a variable) to an integral object
results in automatic sign extension. Objects of type signed char always use
sign extension; objects of type unsigned char always set the high byte to
zero when converted to int.

Converting a longer integral type to a shorter type truncates the higher
order bits and leaves low-order bits unchanged. Converting a shorter
integral type to a longer type either sign-extends or zero-fills the extra bits
of the new value, depending on whether the shorter type is signed or
unsigned, respectively.

Initializers set the initial value that is stored in an object (variables, arrays,
structures, and so on). If you don't initialize an object, and it has static
duration, it will be initialized by default in the following manner:

• To zero if it is an arithmetic type

• To null if it is a pointer type

The syntax for initializers is as follows:

initializer
= expression
= {initializer-list} <,>}
(expression list)

initializer-list
expression
initializer-list, expression
{initializer-list} <,>}

Chapter 2, Language structure 43

Arrays, structures,
and unions

44

The rules governing initializers are

• The number of initializers in the initializer list cannot be larger than the
number of objects to be initialized.

• The item to be initialized must be an object (for example, an array) of
unknown size.

• For C (not required for C++), all expressions must be constants if they
appear inane of these places:

• In an initializer for an object that has static duration .

• In an initializer list for an array, structure, or union (expressions using
sizeof are also allowed).

• If a declaration for an identifier has block scope, and the identifier has
external or internal linkage, the declaration cannot have an initializer for
the identifier.

• If a brace-enclosed list has fewer initializers than members of a structure,
the remainder of the structure is initialized implicitly in the same way as
objects with static storage duration.

Scalar types are initialized with a single expression, which can optionally
be enclosed in braces. The initial value of the object is that of the
expression; the same constraints for type and conversions apply as for
simple assignments.

For unions, a brace-enclosed initializer initializes the member that first
appears in the union's declaration list. For structures or unions with
automatic storage duration, the initializer must be one of the following:

• An initializer list (as described in the following section).

• A single expression with compatible union or structure type. In this case,
the initial value of the object is that of the expression.

You initialize arrays and structures (at declaration time, if you like) with a
brace-enclosed list of initializers for the members or elements of the object
in question. The initializers are given in increasing array subscript or
member order. You initialize unions with a brace-enclosed initializer for the
first member of the union. For example, you could declare an array days,
which counts how many times each day of the week appears in a month
(assuming that each day will appear at least once), as follows:

int days[7] = { I, I, 1, I, I, 1, 1 }

The following rules initialize character arrays and wide character arrays:

• You can initialize arrays of character type with a literal string, optionally
enclosed in braces. Each character in the string, including the null

Borland C++ Programmers Guide

Declarations and
declarators

terminator, initializes successive elements in the array. For example, you
could declare

char name [] = { "Unknown" } i

which sets up an eight-element array, whose elements are IU' (for
name[OD, In' (for name[lD, and so on (and including a null terminator) .

• You can initialize a wide charader array (one that is compatible with
wchar _t) by using a wide string literal, optionally enclosed in braces. As
with character arrays, the codes of the wide string literal initialize
successive elements of the array.

Here is an example of a structure initialization:

struct mystruct {
int i;
char str[21] i
double d;
'} s = { 20, "Borland", 3.141 }i

Complex members of a structure, such as arrays or structures, can be
initialized with suitable expressions inside nested braces.

A declaration is a list of names. The names are sometimes referred to as
declarators or identifiers. The declaration begins with optional storage class
specifiers, type specifiers, and other modifiers. The identifiers are separated
by commas and the list is terminated by a semicolon.

Simple declarations of variable identifiers have the following pattern:

data-type varl <=init1>, var2 <=init2>, ... ;

where varl, var2, ... are any sequence of distinct identifiers with optional
initializers. Each of the variables is declared to be of type data-type. For
example,

int x = l,y = 2;

creates two integer variables called x and y (and initializes them to the
values 1 and 2, respectively).

These are all defining declarations; storage is allocated and any optional
initializers are applied.

The initializer for an automatic object can be any legal expression that
evaluates to an assignment-compatible value for the type of the variable
involved. Initializers for static objects must be constants or constant
expressions.

Chapter 2, Language structure 45

See Table 2.1 on
page 36 for the

declarator syntax.
The definition covers

both identifier and
function declarators.

In C++, an initializer for a static object can be any expression involving
constants and previously declared variables and functions.

The format of the declarator indicates how the declared name is to be
interpreted when used in an expression. If type is any type, and storage class
specifier is any storage class specifier, and if Dl and D2 are any two
declarators, then the declaration

storage-class-specifier type Dl, D2;

indicates that each occurrence of Dl or D2 in an expression will be treated
as an object of type type and storage class storage class specifier. The type of
the name embedded in the declarator will be some phrase containing type,
such as "type," "pointer to type," "array of type," "function returning type,"
or "pointer to function returning type," and so on.

For example, in the following table of declarations each of the declarators
could be used as rvalues (or possibly lvalues in some cases) in expressions
where a single int object would be appropriate. The types of the embedded
identifiers are derived from their declarators as follows:

Table 2.7: Declaration syntax examples

Declarator
syntax

type name;

type name [] ;

type name [3] ;

type * name;

type * name [] ;

type * (name []) ;

type (*name) [];

type &name;

type name();

type * name () ;

type * (name ()) ;

type (*name)();

46

Implied type of name Example

type int count;

(open) array of type int count[];

Fixed array of three elements, all of type int count [3] ;
(name[O], name[1], and name[2])

Pointer to type int *count;

(open) array of pointers to type int *count[] ;

Same as above int *(count[]);

Pointer to an (open) array of type int (*count) [] ;

Reference to type (C++ only) int &count;

Function returning type int count();

Function returning pointer to type int *count() ;

Same as above int *(count());

Pointer to function returning type int (*count) () ;

Note the need for parentheses in (*name)[] and (*name)O; this is because the
precedence of both the array declarator [] and the function declarator () is

Borland C++ Programmers Guide

Use of storage
class specifiers

auto

extern

register
The Borland C++

compiler can ignore
requests for register
allocation. Register

allocation is based on
the compilers

analysis of how a
variable is used.

static

higher than the pointer declarator *. The parentheses in *(name[]) are
optional.

A storage class specifier (also called a type specifier) must be present in a dec­
laration. The storage class specifiers can be one of the following: auto,
extern, register, static, or typedef.

The storage class specifier auto is used only with local scope variable
declarations. It conveys local (automatic) duration, but since this is the
default for all local scope variable declarations, its use is rare.

The storage class specifier extern can be used with function and variable
file scope and local scope declarations to indicate external linkage. With file
scope variables, the default storage class specifier is extern. When used
with variables, extern indicates that the variable has static duration.
(Remember that functions always have static duration.) See page 33 for
information on using extern to prevent name mangling when combining C
and c++ code.

The storage class specifier register is allowed only for local variable and
function parameter declarations. It is equivalent to auto, but itmakes a
request to the compiler to allocate the variable to a register if possible. The
allocation of a register can significantly reduce the size and improve the
performance of programs in many situations. However, since Borland C++
does a good job of placing variables in registers, it is rarely necessary to use
the register keyword.

Borland C++ lets you request register variable options. See the User's Guide,
Chapter 3, for a discussion of compiling optimizations including register
allocation, and passing this pointer with __ fastThis.

See "The _ _ fastcall modifier" section on page 55 for a discussion of
passing function parameters in registers.

The storage class specifier static can be used with function and variable file
scope and local scope declarations to indicate intemallinkage. static also
indicates that the variable has static duration. In the absence of constructors
or explicit initializers, static variables are initialized with 0 or null.

In C++, a static data member of a class has the same value for all instances
of a class. A static member function of a class can be invoked indepen­
dently of any class instance.

Chapter 2, Language structure 47

typedef
The keyword typedef indicates that you are defining a new data type
specifier rather than declaring an object. typedef is included as a storage
class specifier because of syntactical rather than functional similarities.

static long int biggy;
typedef long int BIGGY;

The first declaration creates a 32-bit, long int, static-duration object called
biggy. The second declaration establishes the identifier BlGGY as a new type
specifier, but does not create any run-time object. BlGGY can be used in any
subsequent declaration where a type specifier would be legal. Here's an
example:

extern BIGGY salary;

has the same effect as

extern long int salary;

Although this simple example can be achieved by #define BIGGY long int,
more complex typedef applications achieve more than is possible with
textual substitutions.

Important! typedef does not create new data types; it merely creates useful mnemonic
synonyms or aliases for existing types. It is especially valuable in simpli­
fying complex declarations:

typedef double (*PFD) () ;
PFD array-pfd[10] ;
/* array-pfd is an array of 10 pointers to functions returning double */

You can't use typedef identifiers with other data-type specifiers:

unsigned BIGGY pay; /* ILLEGAL */

Variable modifiers In addition to the storage class specifier keywords, a declaration can use
certain modifiers to alter some aspect of the identifier/object mapping. The
modifiers available with Borland C++ are summarized in Table 2.8 and
discussed in the following sections.

Table 2.8: Borland C++ modifiers

Modifier

constt

volatilet

48

Use with

Variables

Variables

Description

Prevents changes to object.

Prevents register allocation and some optimization. Warns compiler that
object might be subject to outside change during evaluation.

Borland C++ Programmers Guide

Table 2.8: Borland C++ modifiers (continued)

Borland C++ extensions

__ cdecltt

__ cdecltt

_jnterrupt

:..-_pascal

__ pascal
__ near,
__ far,
__ huge

__ cs,
__ ds,
__ es,
__ seg,
__ ss

__ near,
__ far,
__ huge

__ near,
__ far

__ export

_jmport

_Joadds

__ saveregs

__ fastcall

__ stdcall

Functions

Variables

Functions

Functions

Variables
Pointer types

Pointer types

Functions

Variables

Functions'classes

Functions'classes

Functions

Functions

Functions

Functions

Forces C argument-passing convention. Affects Linker and link-time
names.

Forces global identifier case-sensitivity and leading underscores.

Function compiles with the additional register-housekeeping code needed
when writing interrupt handlers.

Forces Pascal argument-passing convention. Affects Linker and link-time
names.

Forces global identifier case-insensitivity with no leading underscores.
Overrides the default pointer type specified by the current memory model.

Segment pointers.

Overrides the default function type specified by the current memory model.

Directs the placement of the object in memory.

Tells the compiler which functions or classes to export.

Tells the compiler which functions or classes to import. (In 16-bit programs,
this keyword can be used only for class declarations.)
Sets DS to point to the current data segment.

Preserves all register values (except for return values) during execution of
the function.

Forces register parameter passing convention. Affects the linker and link­
time names.

Forces the standard WIN32 argument-passing convention.

t C++ extends const and volatile to include Classes and member functions.

tt This is the default.

Chapter 2, Language structure 49

const

The modifier const
used by itself is

equivalent to
const into

vo/atile

In C++, volatile has a
special meaning for

class member
functions. If you've
declared a volatile
object, you can use

50

only its volatile
member functions.

The const modifier prevents any assignments to the object or any other
side effects, such as increment or decrement. A const pointer cannot be
modified, though the object to which it points can be. Consider the
following examples:

const float pi =3.1415926;
const maxint = 32767;
char *const str = "Hello, world"; II A constant pointer
char const *str2 = "Hello, world"; 1* A pointer to a constant

Given these, the following statements are illegal:

pi = 3.0;
= maxint++;

str = "Hi, there!";

1* Assigns a value to a const *1
1* Increments a const *1
1* Points str to something else *1

char *1

N ate, however, that the function call s trcpy (s tr I "Hi, there!") is legal,
because it does a character-by-character copy from the string literal "Hi,
there!" into the memory locations pointed to by str.

In C++, const also hides the const object and prevents external linkage.
You need to use extern const. A pointer to a const can't be assigned to a
pointer to a non-const (otherwise, the const value could be assigned to
using the non-const pointer). Here's an example:

char *str3 = str2 1* disallowed *1

Only const member functions can be called for a const object.

The volatile modifier indicates that the object can be modified; not only by
you, but also by something outside of your program, such as an interrupt
routine or an I/O port. Declaring an object to be volatile warns the com­
piler not to make assumptions concerning the value of the object while
evaluating expressions containing it, because the value could change at any
moment. It also prevents the compiler from making the variable a register
variable.

volatile int ticks;
void __ interrupt timer()

ticks++i

void wait (int interval) {
ticks = 0;
while (ticks < interval); II Do nothing

Borla~d C++ Programmers Guide

Mixed-language
calling conventions

The section
beginning on page 32

tells how to use
extern, which allows

C names to be
referenced from a

C++ program.

Table 2.9
Calling conventions

main() must be
declared as __ cdecl;
this is because the C
start-up code always

tries to call main()
with the C calling

convention.

These routines (assuming timer has been properly associated with a hard­
ware clock interrupt) implement a timed wait of ticks specified by the
argument interval. A highly optimizing compiler might not load the value
of ticks inside the test of the while loop, since the loop does not change the
value of ticks.

Borland C++ allows your programs to easily call routines written in other
languages, and vice versa. When you mix languages like this, you have to
deal with two important issues: identifiers and parameter passing.

By default, Borland C++ saves all global identifiers in their original case
(lower, upper, or mixed) with an underscore 1/_" prep ended to the front of
the identifier. To remove the default, you have can select the -u­
command-line option, or uncheck the compiler option setting in the IDE.

The following table summarizes the effects of a modifier applied to a called
function. For every modifier, the table shows the order in which the
function parameters are pushed on the stack. Next, the table shows
whether the calling program (the caller) or the called function (the callee) is
responsible for popping the parameters off the stack. Finally, the table
shows the effect on the name of a global function.

Push Pop Name
Modifier parameters parameters change

--cdeclt Right first Caller "_' prepended

__ fastcall Left first Callee I @' prepended

__ pascal Left first Callee Uppercase

--stdcall Right first Callee No change

t This is the default.

cdecl --
You might want to ensure that certain identifiers have their case preserved
and keep the underscore on the front, especially if they're C identifiers in a
separate file. You can do so by declaring those identifiers to be __ cdecl.
(This also has an effect on parameter passing for functions).

Like __ pascal, the __ cdecl modifier is specific to Borland C++. It is used
with functions and pointers to functions. It overrides the compiler direc­
tives and IDE options and allows a function to be called as a regular C
function. For example, if you were to compile the previous program with
the Pascal calling option set but wanted to use printJ, you might do some­
thing like this:

Chapter 2, Language structure 51

extern __ cdecl printf(const char *format, ...); II NOT REQUIRED IF YOU INCLUDE

void putnums(int i, int j, int k);

void __ cdecl main()
{

putnums (1,4,9) ;

void putnums(int i, int j, int k)
{

stdio.h

printf("And the answers are: %d, %d, and %d\n",i,j,k);

If you compile a program with Pascal calling conventions, all functions
(except those with variable parameters) used from the run-time library will
need to use the __ cdecl modifier. Any function that uses variable parame­
ters must be declared with the _ _ cdecl modifier. Every function in the
Borland C++ run-time libraries is properly defined in anticipation of this.

__ pascal
In Pascal, global identifiers are not saved in their original case, nor are
underscores prepended to them. Borland C++ lets you declare any identi­
fier to be of type _ _ pascal; the identifier is converted to uppercase, and no
underscore is prepended. (If the identifier is a function, this also affects the
parameter-passing sequence used; see the section on page 54 for more
details.)

The _ _ pascal modifier is specific to Borland C++; it is intended for func­
tions (and pointers to functions) that use the Pascal parameter-passing
sequence. Also, functions declared to be of type _ _ pascal can still be called
from C routines, as long as the C routine sees that the function is of type
__ pascal.

~ -pascal putnums(int i, int j, int k)
{

printf("And the answers are: %d, %d, and %d\n",i,j,k);

Functions of type _ _ pascal cannot take a variable number of arguments,
unlike functions such as printf. For this reason, you cannot use an ellipsis
(...) in a _ _ pascal function definition.

.. Most of the 16-bit Windows API functions are _ _ pascal functions. Most
Win32 API functions are _ _ stdcall functions.

52 Bor/and c++ Programmers Guide

Multithread
variables

Pointer modifiers

The keyword __ thread is used in multithread programs to preserve a
unique copy of global and static class-variables. Each program thread
maintains a private copy of a __ thread variable for each threaded process.

The syntax is Type _ _ thread var _name. For example, int __ thread Xi

declares an integer type that will be global but private to each thread in the
program in which the statement occurs.

The __ thread modifier can be used with global (file-scope) and static
variables. The modifier cannot be used with pointers or functions.
(However, you can have pointers to __ thread objects.) A program element
that requires run-time initialization or run-time finalization cannot be
declared to be a __ thread type. The following declarations require run­
time initialization and are therefore illegal:

int f () i
int __ thread x = f() i II Illegal

Instantiation of a class with a user-defined constructor or destructor
requires run-time initialization and is therefore illegal.

class X { X() i -X() i
X __ thread rnyclassi I I Illegal

Borland C++ has modifiers that affect the pointer declarator (*); that is, they
modify pointers to data. These are __ near, __ far, __ huge, __ cs, __ ds,
__ es, __ seg, and __ ss.

You can compile a program using one of several memory models. The
model you use determines (among other things) the internal format of
pointers. For exaJllple, if you use a small data model (small or medium), all
data pointers contain a 16-bit offset from the data segment (DS) register. If
you use a large data model (compact or large), all pointers to data are 32
bits long and give both a segment address and an offset.

Sometimes when you're using one size of data model, you want to declare
a pointer to be of a different size or format than the current default. You do
so using the pointer modifiers.

See the discussion in Chapter 8 for an in-depth explanation of __ near,
__ far, and __ huge pointers, and a description of normalized pointers. The
chapter also presents additional discussions of __ cs, __ ds, __ es, __ seg,
and __ ss.

Chapter 2, Language structure 53

Function
modifiers

Tiny and huge
memory models are

not supported.

54 '

This section presents descriptions of the Borland C++ function modifie~s.

In addition to their use as pointer modifiers, the __ near, __ far, and
__ huge modifiers can also be used as function type modifiers; that is, they
can modify functions and function pointers as well as data pointers. In
addition, you can use the __ Ioadds, __ export, __ import, and __ saveregs
m~difiers to modify functions.

See also Section "Class memory model specifications" beginning page 125.

In a 16-bit program, the __ import can be used only as a modifier for class
declarations. In 32-bit programs the keyword can be applied to class, .
function, and variable declarations.

The __ near, __ far, and __ huge function modifiers can be combined with
__ cdecl or __ pascal, but not with __ interrupt.

Functions of type __ huge are useful when interfacing with code in assem­
bly language that doesn't use the same memory allocation as Borland C++.

A function that is not an __ interrupt type can be declared to be __ near,
__ far, or __ huge in order to override the default settings for the current
memory model.

A __ near function uses __ near calls; a __ far or __ huge function uses
__ far call instructions.

In the small and compact memory models, an unqualified function
defaults to type __ near. In the medium and large models, an unqualified
function defaults to type __ far.

A __ huge function is the same as a __ far function, except that the DS
register is set to the data segment address of the source module when a
__ huge function is entered, but left unset for a -; _far function.

The __ export modifier makes the function exportable from Windows. The
__ import modifier makes a function available to a Windows program. The
keywords are used in an executable (if you don't use smart callbacks) or in
a DLL; see page 248 of Chapter 8 for details.

The __ Ioadds modifier indicates that a function should set the DS register,
just as a __ huge function does, but does not imply __ near or __ far calls.
Thus, __ Ioadds __ far is equivalent to __ huge.

The __ saveregs modifier causes the function to preserve all register values
and restore them before returning (except for explicit return values passed
in registers such as AX or DX).

Borland C++ Programmers Guide

__ interrupt
functions

The fastcall
modifier

The 16-bit compiler
does not support

fastcall with
virtual functions.

Pointers

See pages 86 and 98
for discussions of

referencing and
dereferencing.

The _ _ Ioadds and _ _ saveregs modifiers are useful for writing low-level
interface routines, such as mouse support routines.

Functions declared with the __ fastcall modifier have different names than
their non-__ fastcall counterparts. The compiler prefixes the __ fastcall
function name with an @. This prefix applies to both unmangled C function
names and to mangled C++ function names.

The _ _ interrupt modifier is specific to Borland C++. _ _ interrupt functions
are designed to be used with the 8086/8088 interrupt vectors. Borland C++
will compile an _ _ interrupt function with extra function entry and exit
code so that registers AX, BX, CX, DX, SI, DI, ES, and DS are preserved. The
other registers (BP, SP, SS, CS, and IP) are preserved as part of the C-calling
sequence or as part of the interrupt handling itself. The function will use an
iret instruction to return, so that the function can be used to service
hardware or software interrupts. Here is an example of a typical
_ _ interrupt declaration:

void __ interrupt myhandler()i

You should declare interrupt functions to be of type void. __ interrupt
functions can be declared in any memory model. For all memory models,
DS is set to the program data segment.

You can request the Borland C++ compiler to use registers for parameter
passing. Such a request is made by using the _ _ fastcall function modifier,
or by selecting compiler optimization __ fastThis. See the User's Guide,
Chapter 3, for a discussion of __ fastThis.

The compiler treats this calling convention as a language specifier, along
the lines of _ _ cdecl and _ _ pascal. Functions declared with either of these
two languages modifiers cannot also have the _ _ fastcall modifier since
they use the stack to pass parameters. Likewise, the _ _ fastcall modifier
cannot be used together with _ _ Ioadds. The compiler generates a warning
if you try to mix functions of these types.

Pointers fall into two main categories: pointers to objects and pointers to
functions. Both types of pointers are special objects for holding memory
addresses.

Chapter 2, Language structure 55

Pointers to
objects

Pointers to
functions

56

The two pointer classes have distinct properties, purposes, and rules for
manipulation, although they do share certain Borland C++ operations.
Generally speaking, pointers to functions are used to access functions and
to pass functions as arguments to other functions; performing arithmetic on
pointers to functions is not allowed. Pointers to objects, on the other hand,
are regularly incremented and decremented as you scan arrays or more
complex data structures in memory .

. Although pointers contain numbers with most of the characteristics of
unsigned integers, they have their own rules and restrictions for
assignments, conversions, and arithmetic. The examples in the next few
sections illustrate these rules and restrictions.

A pointer of type "pointer to object of type" holds the address of (that is,
points to) an object of type. Since pointers are objects, you can have a
pointer pointing to a pointer (and so on). Other objects commonly pointed
at include arrays, structures, unions, and classes.

The size of pointers to objects is dependent on the memory model and the
size and disposition of your data segments, possibly influenced by the
optional pointer modifiers (discussed starting on page 53).

A pointer to a function is best thought of as an address, usually in a code
segment, where that function's executable code is stored; that is, the
address to which control is transferred when that function is called. The
size and disposition of your code segments is determined by the memory
model in force, which in turn dictates thesize of the function pointers
needed to call your functions.

A pointer to a function has a type called "pointer to function returning
type," where type is the functions return type. For example,

void (*func) () ;

In C++, this is a pointer to a function taking no arguments, and returning
void. In C, it's a pointer to a function taking an unspecified number of
arguments and returning void. In this example,

void (*func) (int);

*func is a pointer to a function taking an int argument and returning void.

For C++, such a pointer can be used to access static member functions.
Pointers to class members must use pointer-to-member operators. See
page 98.

Borland C++ Programmers Guide

Pointer
declarations

See page 40 for
details on void.

Warning! You need
to initialize pointers
before using them.

A pointer mus.t be declared as pointing to some particular type, even if that
type is void (which really means a pointer to anything). Once declared,
though, a pointer can usually be reassigned so that it points to an object of
another type. Borland C++ lets you reassign pointers like this without type­
casting, but the compiler will warn you unless the pointer was originally
declared to be of type pointer to void. And in C, but not C++, you can
assign a void* pointer to a non-void* pointer.

If type is any predefined or user-defined type, including void, the
declaration

type *ptri /* Uninitialized pointer */

declares ptr to be of type "pointer to type." All the scoping, duration, and
visibility rules apply to the ptr object just declared.

A null pointer value is an address that is guaranteed to be different from
any valid pointer in use in a program. Assigning the integer constant 0 to a
pointer assigns a null pointer value to it.

The mnemonic NULL (defined in the standard library header files, such as
stdio.h) can be used for legihility. All pointers can be successfully tested for
equality or inequality to NULL.

The pointer type "pointer to void" must not be confused with the null
pointer. The declaration

void *vptri

declares that vptr is a generic pointer capable of being assigned to by any
"pointer to type" value, including null, without complaint. Assignments
without proper casting between a "pointer to type1" and a "pointer to
type2," where type1 and type2 are different types, can invoke a compiler
warning or error. If type1 is a function and type2 isn't (or vice versa),
pointer assignments are illegal. If type1 is a pointer to void, no cast is
needed. Under C, if type2 is a pointer to void, no cast is needed.

Assignment restrictions also apply to pointers of different sizes (__ near,
__ far, and __ huge). You can assign a smaller pointer to a larger one
without error, but you can't assign a larger pointer to a smaller one unless
you are using an explicit cast. For example,

char __ near*ncpi
char __ far *fCPi
char __ huge *hCPi
fcp = nCPi
hcp = fCPi

II legal
II legal

Chapter 2, Language structure 57

Pointer constants

58

fcp = hCPi
ncp = fCPi
ncp = (char __ near*)fcpi

II not legal
II not legal
II now legal

A pointer or the pointed-at object can be declared with the const modifier.
Anything declared as a const cannot be have its value changed. It is also
illegal to create a pointer that might violate the nonassignability of a
constant object. Consider the following examples:

int ii

int * pi;

int * const cp = &ii

const int ci = 7i

const int * pci;

II i is an int

II pi is a pointer to int (uninitialized)

II cp is a constant pointer to int

II ci is a constant int

II pci is a pointer to constant int

const int * const cpc = &Cii II cpc is a constant pointer to a
II constant int

The following assignments are legal:

i = cii

*cp = ci;

ttpci;

pci = cpc;

II Assign const-int to int

II Assign const-int to
Ilobject-pointed-at-by-a-const-pointer

II Increment a pointer-to-const

II Assign a const-pointer-to-a-const to a
II pointer-to-const

The following assignments are illegal:

ci = 0;

ci--;

*pci = 3;

cp &ci;

CpCtt ;

pi = pci;

II NO--cannot assign to a const-int

II NO--cannot change a const-int

II NO--cannot assign to an object
II pointed at by pointer-to-const

II NO--cannot assign to a const~pointer,
II even if value would be unchanged

II NO--cannot change const-pointer

II NO--if this assignment were allowed,
II you would be able to assign to *pci
II (a const value) by assigning to *pi.

Similar rules apply to the volatile modifier. Note that const and volatile can
both appear as modifiers to the same identifier.

Borland C++ Programmers Guide

Pointer arithmetic

The internal
arithmetic performed
on pointers depends

on the memory model
in force and the
presence of any

overriding pointer
modifiers.

The difference
between two pointers

has meaning only if
both pointers point

into the same array.

Pointer
conversions

Pointer arithmetic is limited to addition, subtraction, and comparison.
Arithmetical operations on object pointers of type "pointer to type" auto­
matically take into account the size of type; that is, the number of bytes
needed to store a type object.

When performing arithmetic with pointers, it is assumed that the pointer
points to an array of objects. Thus, if a pointer is declared to point to type,
adding an integral value to the pointer advances the pointer by that
number of objects of type. If type has size 10 bytes, then adding an integer 5
to a pointer to type advances the pointer 50 bytes in memory. The differ­
ence has as its value the number of array elements separating the two
pointer values. For example, if ptrl points to the third element of an array,
and ptr2 points to the tenth element, then the result of ptr2 - ptrl would
be 7.

When an integral value is added to or subtracted from a "pointer to type,"
the result is also of type "pointer to type."

There is no such element as "one past the last element," of course, but a
pointer is allowed to assume such a value. If P points to the last array
element, P + 1 is legal, but P + 2 is undefined. If P points to one past the last
array element, P -1 is legal, giving a pointer to the last element. However,
applying the indirection operator * to a "pointer to one past the last
element" leads to undefined behavior.

Informally, you can think of P + n as advancing the pointer by
(n * sizeof(type» bytes, as long as the pointer remains within the legal
range (first element to one beyond the last element).

Subtracting two pointers to elements of the same arrayobject gives an
integral value of type ptrdiff_t defined in stddef.h (signed long for __ huge
and __ far pointers; signed int for all others). This value represents the
difference between the subscripts of the two referenced elements, provided
it is in the range of ptrdiff_t. In the expression Pl - P2, where Pl and P2 are
of type pointer to type (or pointer to qualified type), Pl and P2 must point
to existing elements or to one past the last element. If Pl points to the i-th
element, and P2 points to the j-th element, Pl - P2 has the value (i - j).

Pointer types can be converted to other pointer types using the typecasting
mechanism:

char *stri
int *iPi
str = (char *)iPi

Chapter 2, Language structure 59

c++ reference
declarations

Arrays

See the Library
Reference, Chapter

3, for a description of
cal/oc, free, and

printf.

60

More generally, the cast (type*) will convert a pointer to type "pointer to
type." See page 109 for a discussion of C++ typecast mechanisms.

C++ reference types are closely related to pointer types. Reference types
create aliases for objects and let you pass arguments to functioris by
reference. C passes arguments only by value. In C++ you can pass
arguments by value or by reference. See page 116 for complete details.

The de clara tion

type declarator [<constant-expression>]

declares an array composed of elements of type. An array consists of a
contiguous region of storage exactly large enough to hold all of its
elements.

If an expression is given in an array declarator, it must evaluate to a
positive constant integer. The value is the number of elements in the array.
Each of the elements of an array is numbered from 0 through the number of
elements minus one.

Multidimensional arrays are constructed by declaring arrays of array type.
The following example shows one way to declare a two-dimensional array.
The implemention is for three rows and five columns but it can be very
easily modified to accept run-time user input.

Setup
rows

o 4 bytes

m-1 4 bytes

Setup columns
o 1

_ 110 bytes 1 10 bytes 1

o 1

_'10 bytes' 10 bytes' ...

n-1

110 bytes 1

n-1

110 bytes I

/* DYNAMIC MEMORY ALLOCATION FOR A MULTIDIMENSIONAL OBJECT. */
#include <stdio.h>
#include <stdlib.h>

typedef long double TYPEi
typedef TYPE **OBJECTi

unsigned int rows = 3, columns = 5i

void de_allocate(OBJECT)i

Borland C++ Programmers Guide

int main (void) {
OBJECT matrixi
unsigned int i, j;

/* STEP 1: SET UP THE ROWS. */
matrix = (OBJECT) calloc(rows, sizeof(TYPE *));

/* STEP 2: SET UP THE COLUMNS. */
for (i = 0; i < rows; tti)

matrix[i] = (TYPE *) calloc(columns, sizeof(TYPE));

for (i = 0; i < rows; itt)
for (j = 0; j < columns; jtt)

matrix[i][j] = it j;

for (i = 0; i < rows; tti) {
printf("\n\n")i
for (j = 0; j < columns; ttj)
printf (II %5. 2Lf ", matrix [i] [j]) ;
}

de_allocate (matrix) ;
return 0;

void de_allocate(OBJECT x)
int i;

/* INITIALIZE */

for (i = 0; i < rows; itt)
free(x[i]);

/* STEP 1: DELETE THE COLUMNS. */

free(x); /* STEP 2: DELETE THE ROWS. */
}

This code produces the following output:

0.00 1.00 2.00 3.00 4.00

1.00 2.00 3.00 4.00 5.00

2.00 3.00 4.00 5.00 6.00

In certain contexts, the first array declarator of a series might have no
expression inside the brackets. Such an array is of indeterminate size. This
is legitimate in contexts where the size of the array is not needed to reserve
space.

For example, an extern declaration of an array object does not need the
exact dimension of the array; neither does an array function parameter. As
a special extension to ANSI C, Borland C++ also allows an array of
indeterminate size as the final member of a structure. Such an array does
not increase the size of the structure, except that padding can be added to
ensure that the array is properly aligned. These structures are normally
used in dynamic allocation, and the size of the actual array needed must be

Chapter 2, Language structure. 61

Functions

Declarations and
definitions

In c++ you must
always use function

prototypes. We
recommend that you
also use them in C.

Declarations and
prototypes

62

In C++, this
declaration means
<type> func(void)

explicitly added to the size of the structure in order to properly reserve
space.

Except when it is the operand of a sizeof or & operator, an array type
expression is converted to a pointer to the first element of the array.

Functions are central to C and C++ programming. Languages such as
Pascal distinguish between procedure and function. For C and C++,
functions play both roles.

Each program must have a single external function named main marking
the entry point of the program. Functions are usually declared as proto­
types in standard or user-supplied header files, or within program files.
Functions are external by default and are normally accessible from any file
in the program. They can be restricted by using the static storage class
specifier (see page 32).

Functions are defined in your source files or made available by linking
precompiled libraries.

A given function can be declared several times in a program, provided the
declarations are compatible. Nondefining function declarations using the

l, function prototype format provide Borland C++ with detailed parameter
information, allowing better control over argument number and type
checking, and type conversions.

Excluding C++ function overloading, only one definition of any given
function is allowed. The declarations, if any, must also match this
definition. (The essential difference between a definition and a declaration
is that the definition has a function body.)

In the Kernighan and Ritchie style of declaration, a function could be
implicitly declared by its appearance in a function call, or explicitly
declared as follows:

<type> funcO

where type is the optional return type defaulting to int. A function can be
declared to return any type except an array or function type. This approach
does not allow the compiler to check that the type or number of arguments
used in a function call match the declaration.

Borland C++ Programmers Guide

You can enable a
warning within the

IDE or with the
command-line

compiler: "Function
called without

a prototype."

This problem was eased by the introduction of function prototypes with the
following declaration syntax:

< type> func(parameter-declarator-list);

Declarators specify the type of each function parameter. The compiler uses
this information to check function calls for validity. The compiler is also
able to coerce arguments to the proper type. Suppose you have the
following code fragment:

extern long lmax(long vl, long v2) i /* prototype */

foo()
{

int limit = 32;
char ch = 'A';

long'mval;

mval = lmax(limit,ch); /* function call */

Since it has the function prototype for lmax, this program converts limit and
ch to long, using the standard rules of assignment, before it places them on
the stack for the call to lmax. Without the function prototype, limit and ch
would have been placed on the stack as an integer and a character, respec­
tively; in that case, the stack passed to lmax would not match in size or
content what lmax was expecting, leading to problems. The classic declara­
tion style does not allow any checking of parameter type or number, so
using function prototypes aids greatly in tracking down programming
errors.

Function prototypes also aid in documenting code. For example, the
function strcpy takes two parameters: a source string and a destination
string. The question i~, which is which? The function prototype

char *strcpy(char/~est, const char *source);

makes it clear. If a header file contains function prototypes, then you can
print that file to get most of the information you need for writing programs
that call those functions. If you include an identifier in a prototype
parameter, it is used only for any later error messages involving that
parameter; it has no other effect.

A function declarator with parentheses containing the single word void
indicates a function that takes no arguments at all:

func (void) ;

~ In C++, func() also declares a function taking no arguments.

Chapter 2, Language structure 63

stdarg.h and
varargs.h contain

macros that you can
use in user-defined

functions with
variable numbers of

parameters.

Definitions

64

Table 2.10
External function

definitions

A function prototype normally declares a function as accepting a fixed
number of parameters. For functions that accept a variable number of
parameters (such as print/), a function prototype can end with an ellipsis
(...), like this:

f (int *count, long total, ... j

With this form of prototype, the fixed parameters are checked at compile
time, and the variable parameters are passed with no type checking.

Here are some more examples of function de clara tors and prototypes:

int f () ;

int f ();

int f (void) ;

int p(int,long);

int _ -pascal q(void);

/* In C, a function returning an int with no
information about parameters. This is the K&R
"classic style." */

/* In Ctt, a function taking no arguments */

/* A function returning an int that takes no
parameters. */

/* A function returning an int that accepts two
parameters: the first, an int; the second, a
long. * /

/* A pascal function returning an int that takes
no parameters at all. */

char __ far *s(char *source, int kind); /* A function returning a far pointer to
a char and accepting two parameters:
'the first, a pointer to a char; the
second, an into */

int printf(char *format, ...); 1* A function returning an int and accepting a
pointer to a char fixed parameter and any
number of additional parameters of unknown
type. * /

int (*fp) (int); /* A pointer to a function returning an int and
accepting a single int parameter. */

Table 2.10 gives the general syntax for external function definitions.

file
external-definition
file external-definition

external-definition:
function-definition
declaration
asm-statement

Borland C++ Programmers Guide

You can mix
elements

from 1 and 2.

Formal parameter
declarations

Table 2.10: External function definitions (continued)

function-definition:
<declaration-specifiers> declarator <declaration-list>

compound-statement

In general, a function definition consists of the following sections (the
grammar allows for more complicated cases):

1. Optional storage class specifiers: extern or static. The default is extern.

2. A return type, possibly void. The default is int.

3. Optional modifiers: __ pascal, __ cdecl, __ export, __ interrupt, __ near,
__ far, __ huge, __ Ioadds, __ saveregs. The defaults depend on the
memory model and compiler option settings.

4. The name of the function.

5. A parameter declaration list, possibly empty, enclosed in parentheses. In
C, the preferred way of showing an empty list is func (void). The old
style of func is legal in C but antiquated and possibly unsafe.

6. A function body representing the code to be executed when the function
is called.

The formal parameter declaration list follows a syntax similar to that of the
de clara tors found in normal identifier declarations. Here are a few
examples:

int func(void)

int func(Ti ti, T2 t2, T3 t3=1)

int func(Ti* ptri, T2& tref)

int func(register int i) {

II no args

II three simple parameters, one
II with default argument

II A pointer and a reference arg

II Request register for arg

int func(char *str, ...) { 1* One string arg with a variable number of
other args, or with a fixed number of argswith varying types *1

In C++, you can give default arguments as shown. Parameters with default
values must be the last arguments in the parameter list. The arguments'
types can be scalars, structures, unions, or enumerations; pointers or
references to structures and unions; or pointers to functions or classes.

The ellipsis (.,.) indicates that the function will be called with different sets
of arguments on different occasions. The ellipsis can follow a sub list of
known argument declarations. This form of prototype reduces the amount
of checking the compiler can make.

Chapter 2, Language structure 65

Function calls and
argument
conversions

The parameters declared all have automatic scope and duration for the
duration of the function. The only legal storage class specifier is register.

The const and volatile modifiers can be used with formal parameter
declarators.

A function is called with actual arguments placed in the same sequence as
their matching formal parameters. The actual arguments are converted as if
by initialization to the declared types of the formal parameters.

Here is a summary of the rules governing how Borland C++ deals with
language modifiers and formal parameters in function calls, both with and
without prototypes:

• The language modifiers for a function definition must match the
modifiers used in the declaration of the function at all calls to the
function .

• A function can modify the values of its formal parameters, but this has
no effect on the actual arguments in the calling routine, except for
reference arguments in C++.

When a function prototype has not been previously declared, Borland C++
converts integral arguments to a function call according to the integral
widening (expansion) rules described in the section "Standard
conversions," starting on page 42. When a function prototype is in scope,
Borland C++ converts the given argument to the type of the declared
parameter as if by assignment.

When a function prototype includes an ellipsis (...), Borland C++ converts
all given function arguments as in any other prototype (up to.the ellipsis).
The compiler widens any arguments given beyond the fixed parameters,
according to the normal rules for function arguments without prototypes.

If a prototype is present, the number of arguments must match (unless an
ellipsis is present in the prototype). The types need to be compatible only to
the extent that an assignment can legally convert them. You can always use
an explicit cast to convert an argument to a type that is acceptable to a
function prototype.

Important! If your function prototype does not match the actual function definition,
Borland C++ will detect this if and only if that definition is in the same
compilation unit as the prototype. If you create a library of routines with a
corresponding header file of prototypes, consider including that header file
when you compile the library, so that any discrepancies between the
prototypes and the actual definitions will be caught. C++ provides type­
safe linkage, so differences between expected and actual parameters will be
caught by the linker.

66 Borland C++ Programmers Guide

Structures

Structure initialization
is discussed on

page 43.

Untagged
structures and
typedefs

Untagged structure
and union members

are ignored during
initialization.

Structure, member
declarations

A structure is a derived type usually representing a user-defined collection
of named members (or components). The members can be of any type,
either fundamental or derived (with some restrictions to be noted later), in
any sequence. In addition, a structure member can be a bit field type not
allowed elsewhere. The Borland C++ structure type lets you handle
complex data structures almost as easily as single variables.

In C++, a structure type is treated as a class type with certain differences:
default access is public, and the default for the base class is also public. This
allows more sophisticated control over access to structure members by
using the c++ access specifiers: public (the default), private, and protected.
Apart from these optional access mechanisms, and from exceptions as
noted, the following discussion on structure syntax and usage applies
equally to C and C++ structures.

Structures are declared using the keyword struct. For example,

struct mystruct { ... }i II mystruct is the structure tag

struct mystruct s, *ps, arrs[lO]i
1* s is type struct mystructi ps is type pointer to struct mystructi

arrs is array of struct, mystruct. *1

If you omit the structure tag, you can get an untagged structure. You can
use untagged structures to declare the identifiers in the comma-delimited
struct-id-list to be of the given structure type (or derived from it), but you
cannot declare additional objects of this type elsewhere:

struct { .,. } s, *ps, arrs[lO] i II untagged structure

It is possible to create a typedef while declaring a structure, with or without
a tag:

typedef struct mystruct { ... } MYSTRUCTi ,
MYSTRUCT s, *ps, arrs[lO] i II same as struct mystruct s, etc.
typedef struct { ... } YRSTRUCTi II no tag
YRSTRUCT y, *yp, arry[20]i

Usually, you don't need both a tag and a typedef: either can be used in
structure declarations.

The member-decl-list within the braces declares the types and names of the
structure members using the declarator syntax shown in Table 2.2 on
page 37.

Chapter 2, Language structure 67

You can omit the
struct keyword in

C++.

Structures and
functions

Structure member
access

68

A structure member can be of any type, with two exceptions:

• The member type cannot be the same as the struct type being currently
declared:

struct mystruct { mystruct s } sl, s2; II illegal

However, a member can be a pointer to the structure being declared, as
in the following example:

struct mystruct { mystruct *ps } sl, s2; II OK

Also, a structure can contain previously defined structure types when
declaring an instance of a declared structure .

• Except in C++, a member cannot have the type "function returning.; .,"
but the type "pointer to function returning ... " is allowed. In C++, a
struct can have member functions. ./

A function can return a structure type or a pointer to a structure type:

mystruct funcl(void); II funcl() returns a structure
mystruct *func2(void); II func2() returns pointer to structure

A structure can be passed as an argument to. a function in the following
ways:

void funcl(mystruct s);
void func2(mystruct *sptr);
void func3(mystruct &sref);

II directly
II via a pointer
II as a reference (e++ only)

Structure and union members are accessed using the following two
selection operators:

•. (period)

.-> (right arrow)

Suppose that the object s is of struct type 5, and sptr is a pointer to 5. Then
if m is a member identifier of type M declared in 5, the expressions s.m and
sptr->m are of type M, and both represent the member object min 5. The
expression sptr->m is a convenient synonym for (*sptr) .m.

The operator. is called the direct member selec;tor and the operator -> is
called the indirect (or pointer) member selector. For example:

struct mystruct
{

int i;
char str[21];
double d;

Borland C++ Programmers Guide

} s, *sptr = &Si

s.i = 3i II assign to the i member of mystruct s
sptr -> d = 1.23i II assign to the d member of mystruct s

The expression 8.m is an lvalue, provided that 8 is an lvalue and m is not an
array type. The expression 8ptr->m is an lvalue unless m is an array type.

If structure B contains a field whose type is structure A, the members of A
can be accessed by two applications of the member selectors: .

struct A {
int ji
double Xi

}i

struct B {
int ii
strutt Aai
double di

s, *sptri

s.i = 3i
s.a.j = 2;
sptr->d = 1.23;
(sptr->a).x = 3.14

II assign to the i member of,B
II assign to the j member of A
II assign to the d member of B
II assign to X member of A

Each structure declaration introduces a unique structure type, so that in

struct A {
int 1, j i
double d;

a, a1;

struct B {
int 1, j;
double d;

b;

the objects a and al are both of type struct A, but the objects a and b are of
different structure types. Structures can be assigned only if the source and
destination have the same type:

a = a1; II OK: same type, so member by member assignment
a = b; II ILLEGAL: different types
a.i = b.i; a.j = b.j; a.d = b.d 1* but you can assign member-by-member *1

Chapter 2, Language structure 69

Structure word
alignment

Word alignment is off
by default.

70

Memory is allocated to a structure member-by-member from left to right,
from low to high memory address. In this example,

struct mystruct {
int ii
char str[21Ji
double di

S i

the object s occupies sufficient memory to hold a 2-byte integer for a 16-bit
program, or a 4-byte integer for a 32-bit program, a 21-byte string, and an
8-byte double. The format of this object in memory is determined by
selecting the word alignment option. Without word alignment, s will be
allocated 31 coiltiguous bytes (by the 16-bit compiler) or 33 cuntiguous
bytes (by the 32-bit compiler).

If you turn on word alignment, Borland C++ pads the structure with bytes
to ensure the structure is aligned as follows:

1. The structure will start on a word boundary (even address).

2. Any non-char member will have an even byte offset from the start of
the structure.

3. A final byte is added (if necessary) at the end to ensure that the whole
structure contains an even number of bytes.

1. The structure boundaries are defined by 4-byte multiples.

2. For any non-char member, the offset will be a multiple of the member
size. A short will be at an offset that is some multiple of 2 ints from the
start of the structure.

3. One to three bytes can be added (if necessary) at the end to ensure that
the whole structure contains a 4-byte multiple.

For the 16-bit compiler, with word alignment on, the structure would
therefore have a byte added before the double, making a 32-byte object.

For the 32-bit compiler, with word alignment on, three bytes would be
added before the double, making a 36-byte object.

Borland C++ Programmers Guide

Structure name
spaces

Incomplete
declarations

Structure tag names share the same name space with union tags and
enumeration tags (but enums within a structure are in a different name
space in C++). This means that such tags must be uniquely named within
the same scope. However, tag names need not differ from identifiers in the
other three name spaces: the label name space, the member name space(s),
and the single name space (which consists of variables, functions, typedef
names, and enumerators).

Member names within a given structure or union must be unique, but they
can share the names of members in other structures or unions. For example,

goto Si

s:
struct s

int Si
float Si

Si

union s
int Si
float fi

fi

struct t
int Si

Si

II Label
II OK: tag and label name spaces different
II OK: label, tag and member name spaces different
II ILLEGAL: member name duplicated
II OK: var name space different. In ett, this can only
II be done if s does not have a constructor.

II ILLEGAL: tag space duplicate
II OK: new member space

II OK: var name space

II OK: different member space

II ILLEGAL: var name duplicate

A pointer to a structure type A can legally appear in the declaration of
another structure B before A has been declared:

struct Ai II incomplete
struct B { struct A *pa }i
struct A { struct B *pb }i

The first appearance of A is called incomplete because there is no definition
for it at that point. An incomplete declaration is allowed here, because the
definition of B doesn't need the size of A.

Chapter 2, Language structure 71

Bit fields
You can declare signed or unsigned integer members as bit fields from 1 to
16 bits wide. You specify the bit-field width and optional identifier as
follows:

A structure can
contain any mixture
of bit-field and non­

bit-field types.

type-specifier <bitfield-id> : width;

where type-specifier is char, unsigned char,int, or unsigned into Bit fields are
allocated from low-order to high~order bits within a word. The expression
width must be present and must evaluate to a constant integer in the range

72

1 to 16.

If the bit field identifier is omitted, the number of bits specified in width is
allocated, but the field is not accessible. This lets you match bit patterns in,
say, hardware registers where some bits are unused. For example,

struct mystruct {

int 2· ,
unsigned j : 5;
int 4;
int k : 1;
unsigned m : 4 ;

} a, b, c;

produces the following layout:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x x x x x x x x x x x x x x

.. #11;~"~'''''''''''''''''''''''' """,""'"'''''' ''''''''''''''1ft., .. • .. •
m k (unused) j i

Integer fields are stored in two;s-complement form, with the leftmost bit
being the MSB (most significant bit). With int (for example, signed) bit
fields, the MSB is interpreted as a sign bit. A bit field of width 2 holding
binary 11, therefore, would be interpreted as 3 if unSigned, but as -1 if int.
In the previous example, the legal assignment a. i = 6 would leave binary
10 = -2 in a.i with no warning. The signed int field k of width 1 can hold
only the values -1 and 0, because the bit pattern 1 is interpreted as-l.

-.. Bit fields can be declared only in structures, unions, and classes. They are
accessed with the same member selectors (. and -» used for non-bit-field
members. Also, bit fields pose several problems when writing portable
code, sirce the organization of bits-within-bytes and bytes-within-words is
machine dependent.

The expression &mystruct.x is illegal if x is a bit field identifier, because there
is no guarantee that mystruct,x lies at a byte address.

Borland C++ Programmer's Guide

Unions

Unions correspond to
the variant record

types of Pascal and
Modula-2.

Anonymous
unions (C++ only)

Union types are derived types sharing many of the syntactical and
functional features of structure types. The key difference is that a union
allows only one of its members to be "active" at anyone time. The size of a
union is the size of its largest member. The value of only one of its members
can be stored at any time. In the following simple case,

union rnyunion
int ii
double di
char Chi

} rnu, *rnuptr=&rnu;

1* union tag = rnyunion *1

the identifier mu, of type unionmyunion, can be used to hold a 2-byte int, an
8-byte double, or a single-byte char, but only one of these at the same time.

sizeof(union myunion) and sizeof(mu) both return 8, but 6 bytes are unused
(padded) when mu holds an int object, and 7 bytes are unused when mu
holds a char. You access union members with the structure member
selectors (. and -», but care is needed:

rnu.d = 4.016;
printf("rnu.d = %f\n",rnu.d); II OK: displays rnu.d = 4.016
printf("rnu.i = %d\n",rnu.i); II peculiar result
rnu . ch = 'A';
printf("rnu.ch = %c\n",rnu.ch); II OK: displays rnu.ch = A
printf("rnu.d = %f\n",rnu.d); II peculiar result
rnuptr->i = 3;
printf("rnu.i = %d\n",rnu.i)i II OK: displays rnu:i = 3

The second print! is legal, since mu.i is an integer type. However, the bit
pattern in mu.i corresponds to parts of the double previously assigned, and
will not usually provide a useful integer interpretation.

When properly converted, a pointer to a union points to each of its
members, and vice versa.

A union that doesn't have a tag and is not used to declare a named object
(or other type) is called an anonymous union. It has the following form:

union { member-list };

Its members can be accessed directly in the scope where this union is
declared, without using the x.y or p->y syntax.

Chapter 2, Language structure 73

Union
declarations

Enumerations

74

Anonymous unions can't have member functions and at file level must be
declared static. In other words, an anonymous union cannot have external
linkage.

The general declaration syntax for unions is similar to that for structures.
The differences are

• Unions can contain bit fields, but only one can be active. They all start at
the beginning of the union. (Note that, because bit fields are machine
dependent, they can pose problems when writing portable code.)

• Unlike C++ structures, C++ union types cannot use the class access
specifiers: public, private, and protected. All fields of a union are public.

• Unions can be initialized only through their first declared member:

union loca187
int i;
double d;
} a = { 20 };

• A union can't participate in a class hierarchy. It can't be derived from any
class, nor can it be a base class. A union can have a constructor.

An enumeration data type is used to provide mnemonic identifiers for a set
of integer values. For example, the following declaration,

enum days { sun, mon, tues, wed, thur, fri,sat } anyday;

establishes a unique integral type, enum days, a variable anyday of this
type, and a set of enumerators (sun, man, ...) with constant integer values.

Borland C++ is free to store enumerators in a single byte when Treat enums
as ints is unchecked (0 I C I Code Generation) or the -b flag is used. The
default is on (meaning enums are always ints) if the range of values
permits, but the value is always promoted to an int when used in
expressions. The identifiers used in an enumerator list are implicitly of type
signed char, unsigned char, or int, depending on the values of the
enumerators. If all values can be represented in a signed or unsigned char,
that is the type of each enumerator.

In C, a variable of an enumerated type can be assigned any value of type
int-no type checking beyond that is enforced. In C++, a variable of an
enumerated type can be assigned only one of its enumerators. That is,

Borland C++ Programmers Guide

See page 20 for more
on enumeration

constants.

any day = mon i
anyday = li

II OK
II illegal, even though mon == 1

The identifier days is the optional enumeration tag that can be used in
subsequent declarations of enumeration variables of type enum days:

enum days payday, holidaYi II declare two variables

In C++, you can omit the enum keyword if days is not the name of
anything else in the same scope.

As with struct and union declarations, you can omit the tag if no further
variables of this enum type are required:

enum { sun, mon, tues, wed, thur, fri, sat} anydaYi
1* anonymous enum type *1

The enumerators listed inside the braces are also known as enumeration
constants. Each is assigned a fixed integral value. In the absence of explicit
initializers, the first enumerator (sun) is set to zero, and each succeeding
enumerator is set to one more than its predecessor (man = 1, tues = 2, and so
on).

With explicit integral initializers, you can set one or more enumerators to
specific values. Any subsequent names without initializers will then
increase by one. For example, in the following declaration,

1* Initializer expression can include previously declared enumerators *1
enum coins { penny = 1, tuppence, nickel = penny + 4, dime = 10,

quarter = nickel * nickel } smallchangei

tuppence would acquire the value 2, nickel the value 5, and quarter the
value 25.

The initializer can be any expression yielding a positive or negative integer
value (after possible integer promotions). These values are usually unique,
but duplicates are legal.

enum types can appear wherever int types are permitted.

enum days { sun, mon, tues, wed, thur, fri, sat} anydaYi
enum days paydaYi
typedef enum days DAYSi
DAYS *daysptri
int i = tuesi
anyday = moni II OK
*daysptr = anydaYi II OK
mon = tuesi II ILLEGAL: mon is a constant

Chapter 2, Language structure 75

76

Enu_meration tags share the same name space as structure and union tags.
Enumerators share the same name space as ordinary variable identifiers:

int mon = 11;
{

enum days { sun, mon,tues, wed, thur, fri, sat} anyday;
1* enumerator mon hides outer declaration of int mon *1
struct days { int i, j;}; II ILLEGAL: days duplicate tag
double sat; II ILLEGAL: redefinition of sat

mon = 12; II back in int mon scope

~ In C++, enumerators declared within a class are in the scope of that class.

~ In C++ it is possible to overload most operators for an enumeration. How­
ever, because the =,. [], (), and ...::> operators must be overloaded as member
functions, it is not possible to overload them for an enum. The following
example shows how to overload the postfix and prefix increment operators.

II OVERLOAD THE POSTFIX AND PREFIX INCREMENT OPERATORS FOR enum
#include <iostream.h>

enum _SEASON { spring, summer, fall, winter };

_SEASON operatortt(_SEASON &s)
_SEASON tmp = s;

II PREFIX INCREMENT
II SAVE THE ORIGINAL VALUE

II DO MODULAR ARITHMETIC AND CAST THE RESULT TO _SEASON TYPE
s = _SEASON((s t 1) % 4); II INCREMENT THE ORIGINAL
return tmp;
}

II UNNAMED int ARGUMENT IS NOT USED

II RETURN THE OLD VALUE I

_SEASON operatortt(_SEASON &s, int) { II POSTFIX INCREMENT
switch (s) {

case spring: s = summer; break;
case summer: s = fall; break;
case fall: s = winter; break;
case winter: s = spring; break;

return (s);

Borland C++ Programmers Guide

Expressions

Table 2.12 (on page
78) shows how
identifiers and
operators are

combined to form
grammatically legal

"phrases."
The standard

conversions are
detailed in Table 2.6

on page 43.

int main(voidl {
_SEASON season = falli

cout « "\nThe season is " « seasoni
cout « "\nSeason is unchanged: " « ++seasoni
cout « "\nFinally:" « season++i
return 0 i
}

An expression is a sequence of operators, operands, and punctuators that
specifies a computation. The formal syntax, listed in Table 2.12, indicates
that expressions are defined recursively: subexpressions can be nested
without formal limit. (However, the compiler will report an out-of-memory
error if it can't compile an expression that is too complex.)

Expressions are evaluated according to certain conversion, grouping,
associativity, and precedence rules that depend on the operators used, the
presence of parentheses, and the data types of the operands. The way
operands and sub expressions are grouped does not necessarily specify the
actual order in which they are evaluated by Borland C++ (see "Evaluation
order" on page 80).

Expressions can produce an lvalue, an rvalue, or no value. Expressions
might cause side effects whether they produce a value or not.

The precedence and associativity of the operators are summarized in
Table 2.11. The grammar in Table 2.12 on page 78 completely defines the
precedence and associativity of the operators.

There are 16 precedence categories, some of which contain only one
operator. Operators in the same category have equal precedence with each
other.

Where duplicates of operators appear in the table, the first occurrence is
unary, the second binary. Each category has an associativity rule: left to
right, or right to left. In the absence of parentheses, these rules resolve the
grouping of expressions with operators of equal precedence.

The precedence of each operator category in the following table is indicated
by its order in the table. The first category (the first line) has the highest
precedence.

Chapter 2, Language structure 77

Table 2.11
Associativity and

precedence of
Borland C++

operators

Operators

() [] ->::

! - + - ++ -- & * (typecas~
sizeof new delete typeid

.* ->*

* I %

+ -

« »

«=»=

== !=

&

1\

&&
II

?: (conditional expression)

Associativity

= *= 1= %= += -= &= 1\= 1= «= »=

Left to right

Right to left

Right to left

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Right to left

Right to left

Left to right

Table 2.12: Borland C++ expressions

primary-expression:
literal
this (C++ specific)
:: identifier (C++ specific)
:: operator-function-name (C++ specific)
::qualified-name (C++ specific)
(expression)
name

literal:

78

integer-constant
character-constant
floating-constant
string-literal

name:
identifier
operator-function-name (C++ specific)
conversion-function-name (C++ specific)
- class-name (C++ specific)
qualified-name (C++ specific)

qualified-name: (C++ specific)
qualified-class-name:: name

postfix-expression:
primary-expression
postfix-expression [expression 1
postfix-expression «expression-list>)
simple-type-name «expression-list» (C++ specific)
postfix~expression . name
postfix-expression -> name
postfix-expression ++
postfix-expression --

Borland C++ Programmer's Guide

Table 2.12: Borland C++ expressions (continued)

consCcast < type-id> (expression) (C++ specific)
dynamic_cast < type-id> (expression) (C++ specific)
reinterpreCcast < type-id> (expression) (C++ specific)
static_cast < type-id> (expression) (C++ specific)
typeid (expression) (C++ specific)
typeid (type-name) (C++ specific)

expression-list
assignment-expression
expression-list , assignment-expression

unary-expression:
postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
allocation-expression (C++ specific)
deallocation-expression (C++ specific)

unary-operator. one of
. & *+--!

allocation-expression: (C++ specific)
<::> new <placement> new-type-name <initializel>
<::> new <placement> (type-name) <initializel>

placement (C++ specific)
(expression-list)

new-type-name: (C++ specific)
type-specifiers <new-declaratol>

new-declarator. (C++ specific)
ptr-operator <new-declaratol>
new-declarator [<expression> 1

deallocation-expression: (C++ specific)
<::> delete cast-expression
<::> delete [1 cast-expression

cast-expression:
unary-expression
(type-name) cast-expression

pm-expression:
cast-expression
pm-expression.* cast-expression (C++ specific)
pm-expression ->* cast-expression (C++ specific)

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression 1 pm-expression
,multiplicative-expression % pm-expression

additive-expression:
multiplicative-expression

Chapter 2, Language structure

additive-expression + multiplicative-expression
additive-expression - mUltiplicative-expression

shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression » additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression:
relational-expression
equality expression == relational-expression
equality expression != relational-expression

AND-expression:
equality-expression
AND-expression & equality-expression

exclusive-OR-expression:
AND-expression
exclusive-OR-expression " AND-expression

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression I exclusive-OR-expression

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

logical-OR-expression:
logical-AND-expression
logical-OR-expression II logical-AND-expression

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator. one of

= *= 1=
«= »= &=

expression:
assignment-expression

+=
1=

expression, assignment-expression

constant-expression:
conditional-expression

79

Expressions and
C++

Evaluation order

80

c++ allows the overloading of certain standard C operators, as explained
starting on page 152. An overloaded operator is defined to behave in a
special way when applied to expressions of class type. For instance, the
equality operator == might be defined in class complex to test the equality of
two complex numbers without changing its normal usage with non-class
data types.

An overloaded operator is implemented as a function; this ftinction
determines the operand type,lvalue, and evaluation order to be applied
when the overloaded operator is used. However, overloading cannot
change the precedence of an operator. Similarly, C++ allows user-defined
conversions between class objects and fundamental types. Keep in mind,
then, that some of the C language rules for operators and conversions
might not apply to expressions in C++.

The order in which Borland C++ evaluates the operands of an expression is
not specified, except where an operator specifically states otherwise. The
compiler will try to rearrange the expression in order to improve the
quality of the generated code. Care is therefore needed with expressions in
which a value is modified more than once. In general, avoid writing
expressions that both modify and use the value of the same object. For
example, consider the expression

i = v[i++]; II i is undefined

The value of i depends on whether i is incremented before or after the
assignment. Similarly,

int total = 0;
sum = (total = 3)+ (tttotal); II sum = 4 or sum = 7 ??

is ambiguous for sum and total. The solution is to revamp the expression,
using a temporary variable:

int temp, total = 0;
temp = tttotal;
sum = (total = 3) + temp;

Where the syntax does enforce an evaluation sequence, it is safe to have
multiple evaluations:

sum = (i = 3, itt, itt); II OK: sum = 4, i = 5

Each sub expression of the comma expression is evaluated from left to right,
and the whole expression evaluates to the rightmost value.

Borland C++ Programmers Guide

Errors.and
overflows

See matherr and
signa/Tn the Library

Reference.

Borland C++ regroups expressions, rearranging associative and commuta­
tive operators regardless of parentheses, in order to create an efficiently
compiled expression; in no case will the rearrangement affect the value of
the expression.

You can use parentheses to force the order of evaluation in expressions. For
example, if you have the variables a, b, c, and f, then the expression f = a + (b
+ c) forces (b + c) to be evaluated before adding the result to a.

Table 2.11 (on page 78) summarizes the precedence and associativity of the
operators. During the evaluation of an expression, Borland C++ can
encounter many problematic situations, such as division by zero or out-of­
range floating-point values. Integer overflow is ignored (C uses modulo 2 n

arithmetic on n-bit registers), but errors detected by math library functions
can be handled by standard or user-defined routines.

Operator semantics

The Borland C++
operators described

here are the standard
ANSI C operators.

Unless the operators are overloaded, the following information is true in
both C and C++. In C++ you can overload all of these operators with the
exception of. (member access operator), ?: (conditional operator), :: and .*
(scope access operators).

If an operator is overloaded, the discussion might not be true for it
anymore. Table 2.12 on page 78 gives the syntax for all operators and
operator expressions.

Operator descriptions

Overloading is
discussed starting on

page 149.

Operators are tokens that trigger some computation when applied to
variables and other objects in an expression. Borland C++ is especially rich
in operators, offering not only the common arithmetical and logical
operators, but also many for bit-level manipulations, structure and union
component access, and pointer operations (referencing and dereferencing).

C++ extensions offer additional operators for accessing class members and
their objects, together with a mechanism for overloading operators.
Overloading .lets you redefine the action ~f any standard operators when
applied to the objects of a givendass. In this section, the discussion is
confined to the standard operator definitions.

After defining the standard operators, data types and declarations are
discussed and an explanation is provided about how these affect the

Chapter 2, Language structure 81

The operators # and
are used only by

the preprocessor (see
page 185).

Primary
expression
operators

82

actions of each operator. Then the syntax for building expressions from
operators, punctuators, and object is provided.

The operators in Borland C++ are defined as follows:

operator: one of

[] () -> ++
& * +
sizeof 1 % « » <
> <= >= -- != A
1 && II ?: = *=
1= %= += -= «= »=
&= A= 1= # ##

The following operators are specific to C++:

* ->* ..
Except for [], (), and ?:, which bracket expressions, themulticharacter
operators are considered as single tokens. The same operator token can
have more than one interpretation, depending on the context. For example,

A * B Multiplication
*ptr Dereference (indirection)

A & B

&A
int &

label:
a ? x : y

void func(int n);
a = (btc) *d;

a, b, c;
func (a, b, c);

a = -b;
-func() {delete a;}

Bitwise AND
Address operation
Reference modifier (C++)

Statement label
Conditional statement

Function declaration
Parenthesized expression

Comma expression
Function call

Bitwise negation (one's complement)
Destructor (C++)

For ANSI C, the primary expressions are literal (also sometimes referred to
as constant), identifier, and (expression). The C++ language extends this list
of primary expressions to include the keyword this, scope resolution
operator ::, name, and the class destructor ... (tilde).

The Borland C++ primary expressions are summarized in the following list.
The complete list of expressions and operators is shown in Table 2.12 on
page 78.

Borland C++ Programmers Guide

primary-expression:
literal
this (C++ specific)
:: identifier (C++ specific)
:: operator-function-name (C++ specific)
:: qualified-name (C++ specific)
(expression)
name

literal:
integer-constant
character-constant
floating-constant
string-literal

name:
identifier
operator-function-name (C++ specific)
conversion-function-name (C++ specific)
- class-name (C++ specific)
qualified-name (C++ specific)

qualified-name: (C++ specific)
qualified-class-name :: name

For a description of literals, see page 58. A complete list of formal
definitions of literals is shown in Table 1.6 on page 58.

For a discussion of the primary expression this, see the section beginning
on page 127. The keyword this cannot be used outside a class member
function body.

The discussion of the scope resolution operator :: begins on page 118. The
scope resolution operator allows reference to a type, object, function, or
enumerator even though its identifier is hidden.

The discussion of :: identifier and:: qualified-function-name begins on
page 133. You can find a summary on the use of operator:: on page 159.

The parenthesis surrounding an expression do not change the unadorned
expression itself.

The primary expression name is restricted to the category of primary
expressions that sometimes appear after the member access operators .
(dot) and -> . Therefore, name must be either an lvalue or a function (see
page 28). See also the discussion of member access operators beginning on
page 85.

Chapter 2, Language structure 83

Postfix
expression
operators

See the
"Typecasting" section

beginning on page
109 for a description

of these operators.

Array subscript
operator []

Function call
operators ()

84

An identifier is a primary expression, provided it has been suitably declared.
The description and formal definition of identifiers is shown on page 10.

The discussion on how to use the destructor operator - (tilde), begins on
page 138 and continues on page 146.

The six postfix expression operators [] () . -> ++ and - - are used to
build postfix expressions as shown in the expressions syntax table (Table
2.12 on page 78). Postfix expression operators group from left to right.

The following postfix expressions let you make safe, explicit typecasts in a
C++ program.

const_cast < T> (expression)
dynamic_cast < T> (expression)
reinterpret_cast < T> (expression)
static_cast < T> (expression)

To obtain run-time type information (RTTI), use the typeidO operator. The
syntax is as follows:

typeid(expression)
typeid(type-name)

In the expression

postfix-expression [expression]

either postfix-expression or expression must be a pointer and the other an
integral type.

In C, but not necessarily in C++, the expression expl[exp2J is defined as

* ((expl) + (exp2))

where either expl is a pointer and exp2 is an integer, or expl is an integer
and exp2 is a pointer. The punctuators [], *, and + can be individually
overloaded in C++.

The expression

postfix -expression (<arg-expression-list»

is a call to the function given by the postfix expression. The arg-expression­
list is a comma-delimited list of expressions of any type representing the
actual (or real) function arguments. The value of the function call
expression, if any, is determined by the return statement in the function
definition. See page 66 for more information on function calls.

Borland C++ Programmers Guide

Member access
operators. (dot)

Ivalues are defined
on page 28.

Member access
operator->

Increment operator
++

Decrement operator

Unary operators

In the expression

postfix-expression. name

the postfix expression must be of type structure or union; the identifier
must be the name of a member of that structure or union type. The
expression designates a member of a structure or union object. The value of
the expression is the value of the selected member; it will be an lvalue if
and only if the postfix expression is an lvalue. Detailed examples of the use
of. (dot) and -> for structures are given starting on page 68.

In the expression

postfix-expression -> name

the postfix expression must be of type pointer to structure or pointer to
union; the identifier must be the name of a member of that structure or
union type. The expression designates a member of a structure or union
object. The value of the expression is the value of the selected member; it
will be an lvalue if the selected member is an lvalue.

In the expression

postfix-expression ++

the postfix expression is the operand; it must be of scalar type (arithmetic
or pointer types) and must be a lvalue (see page 28 for more on modifiable
lvalues). The postfix ++ is also known as the postincrement operator. The
value of the whole expression is the value of the postfix expression before
the increment is applied. After the postfix expression is evaluated, the
operand is incremented by 1. The increment value is appropriate to the
type of the operand. Pointer types are subject to the rules for pointer
arithmetic.

The postfix decrement, also known as the postdecrement, operator follows
the same rules as the postfix increment, except that 1 is subtracted from the
operand after the evaluation.

The unary operators are described in the following table. Each operator is
described in more detail in the sections following the table.

Chapter 2, Language structure 85

Table 2.13
Unary operators

Address operator &

The symbol & is also
used in e++ to

specify reference
types; see page 116.

86

Unary
operator

&

+

Description

Address operator
Indirection operator
Unary plus
Unary minus
Bitwise complement (ones complement)
Logical negation

++ Prefix: preincrement; Postfix: postincrement
Prefix: predecrement; Postfix: postdecrement

The syntax is

unary-operator cast-expression

cast-expression:
unary-expression
(type-name) cast-expression

In C++, an explicit type cast can also be accomplished with cast operators.
See page 109.

The & operator and * operator (the * operator is described in the next
section) work together as the referencing and dereferencing operators. In the
expression

& cast-expression

the cast-expression operand must be either a function designator or an lvalue
designating an object that is not a bit field and is not declared ,with the
register storage class specifier. If the operand is of type T, the result is of
type pointer to T.

Some non-lvalue identifiers, such as function names and array names, are
automatically converted into "pointer to X" types when appearing in
certain contexts. The & operator can be used with such objects, but its use is
redundant and therefore discouraged.

Consider the following extract:

T tl = 1, t2 = 2;
T *ptr = &t1; II initialized pointer
*ptr = t2; II same effect as tl = t2

T *ptr = &t1 is treated as

T *ptr;
ptr = &ti;

Borland C++ Programmers Guide

Indirection
operator *

Plus operator +

Minus operator -

Bitwise complement
operator -

Logical negation
operator! .

so it is ptr, not *ptr, that gets assigned. Once ptr has been initialized with the
address &t1, it can be safely dereferenced to give the lvalue *ptr.

In the expression

* cast-expression

the cast-expression operand must have type "pointer to T," where Tis any
type. The result of the indirection is of type T. If the operand is of type
"pointer to function," the result is a function designator; if the operand is a
pointer to an object, the result is an lvalue designating that object. In the
following situations, the result of indirection is undefined:

• The cast-expression is a null pointer .

• The cast-expression is the address of an automatic variable and execution
of its block has terminated.

In the expression

+ cast-expression

the cast-expression operand must be of arithmetic type. The result is the
value of the operand after any required integral promotions.

In the expression

- cast -expression

the cast-expression operand must be of arithmetic type. The result is the
negative of the value of the operand after any required integral promotions.

In the expression

- cast-expression

the cast-expression operand must be of integral type. The result is the bitwise
complement of the operand after any required integral promotions. Each 0
bit in the operand is set to I, and each 1 bit in the operand is set to O.

In the expression

! cast-expression

the cast-expression operand must be of scalar type. The result is of type int
and is the logical negation of the operand: 0 if the operand is nonzero; 1 if
the operand is zero. The expression IE is equivalent to (0 == E).

Chapter 21 Language structure 87

Increment operator
++

Decrement operator

Binary operators

88

Table 2.14
Binary operators

In the expressions

++ unary-expression
unary-expression ++

the unary expression is the operand; it must be of scalar type and must be a
modifiable lvalue. The first expression shows the syntax for the prefix
increment operator, also known as the preincrement operator. The operand is
incremented by 1 before the expression is evaluated; the value of the whole
expression is the incremented value of the operand. The 1 used to incre­
ment is the appropriate value for the type of the operand. Pointer types
follow the rules of pointer arithmetic.

The second expression shows the syntax for the postfix increment operator
(also known as the postincrement operator). The operand is incremented by
1 after the expression is evaluated.

The following expressions show the syntax for prefix and postfix decre­
mentation. The prefix decrement is also known as the predecrement; the
postfix decrement is also known as the postdecrement.

- - unary-expression
unary-expression - -

The operator follows the same rules as the increment operator, except that
the operand is decremented by 1.

This section presents the binary operators, which are operators that require
two operands.

Type of
operator

Additive

Multiplicative

Shift

Bitwise

Binary
operator

+

%

«
»

&
A

Description

Binary plus (addition)
Binary minus (subtraction)

Multiply
Divide
Remainder

Shift left
Shift right

Bitwise AND
Bitwise XOR (exclusive OR)
Bitwise inclusive OR

Borland C++ Programmer's Guide

Additive operators

Table 2.14: Binary operators (continued)

Logical && Logical AND
II Logical OR

Assignment = Assignment
*= Assign product
1= Assign quotient
%= Assign remainder (modulus)
+= Assign sum
- Assign difference

«= Assign left shift
»= Assign right shift
&= Assign bitwise AND
A= Assign bitwise XOR
1= Assign bitwise OR

Relational < Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

Equality -- Equal to
!= Not equal to

Component Direct component selector
selection

-> Indirect component selector

C++ operators .. Scope accessresolution
Dereference pointer to class member

->* Dereference pointer to class member
Class initializer

Conditional a? x: y "if a then X; else 'I'
Comma Evaluate; for example, a, b, C i from left to

right

The operator functions, as well as their syntax, precedences, and
associativities, are covered starting on page 77.

There are two additive operators: + and -. The syntax is

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Chapter 2, Language structure 89

Multiplicative
operators

90

Addition +
The legal operand types for opl + op2 are

• Both opl and op2 are of arithmetic type.

• opl is of integral type, and op2 is of pointer to object type .

• op2 is of integral type, and opl is of pointer to object type.

In the first case, the operands are subjected to the standard arithmetical
conversions, and the result is the arithmetical sum of the operands. In the
second and third cases, the rules of pointer arithmetic apply. (Pointer
arithmetic is covered on page 59.)

Subtraction -
The legal operand types for opl - op2 are

• Both opl and op2 are of arithmetic type.

• Both opl and op2 are pointers to compatible object types. The unqualified
type type is considered to be compatible with the qualified types const
type, volatile type, and const volatile type.

• opl is of pointer to object type, and op2 is integral type.

In the first case, the operands are subjected to the standard arithmetic
conversions, and the result is the arithmetic difference of the operands. In
the second a~d third cases, the rules of pointer arithmetic apply.

There are three multiplicative operators: * ! and %. The syntax is

multiplicative-expression:
cast -expression
multiplicative-expression * cast-expression·
multiplicative-expression! cast-expression
multiplicative-expression % cast-expression

The operands for * (multiplication) and! (division) must be of arithmetical
type. The operands for % (modulus, or remainder) must be of integral type.
The usual arithmetic conversions are made on the operands (see page 42).

The result of (opl * op2) is the product of the two operands. The results of
(opl! op2) and (opl % op2) are the quotient and remainder, respectively,
when opl is divided by op2, provided that op2 is nonzero. Use of! or % with
a zero second operand results in an error.

Borland C++ Programmers Guide

Rounding is always
toward zero.

Bitwise logic
operators

When opl and op2 are integers and the quotient is not an integer, the results
are as follows:

• If opl and op2 have the same sign, opl lop2 is the largest integer less than
the true quotient, and op1 % op2 has the sign of opl .

• If op1 and op2 have opposite signs, opll op2 is the smallest integer greater
than the true quotient, and opl % op2 has the sign of opl.

There are three bitwise logical operators: &, A and I.

AND &
The syntax is

AND-expression:
equality-expression
AND-expression & equality-expression

In the expression E1 & E2, both operands must be of integral type. The
usual arithmetical conversions are performed on El and E2, and the result
is the bitwise AND of El and E2. Each bit in the result is determined as
shown in Table 2.15.

exclusive-OR -expression:
AND-expression
exclusive-OR -expression A AND-expression

In the expression El A E2, both operands must be of integral type. The
usual arithmetic conversions are performed on El and E2, and the result is
the bitwise exclusive OR of El and E2. Each bit in the result is determined
as shown in Table 2.15.

Chapter 2, Language structure 91

Bitwise shift
operators

92

The constants
ULONG MAX and

UINfMAX are
defined In limits.h.

Inclusive OR I
The syntax is

incl usive-O R -expression:
exclusive-OR -expression
inclusive-OR-expression I exclusive-OR-expression

In the expression E1 I E2, both operands must be of integral type. The usual
arithmetic conversions are performed on El and E2, and the result is the
bitwise inclusive OR of El and E2. Each bit in the result is determined as
shown in Table 2.15.

There are two bitwise shift operators: « and ». The syntax is

shift -expression:
additive-expression
shift-expression «additive-expression
shift-expression »additive-expression

Shift «< and »)
In the expressions El « E2 and El » E2, the operands El and E2 must be
of integral type. The normal integral promotions are performed on El and
E2, and the type of the result is the type of the promoted El. If E2 is
negative or is greater than or equal to the width in bits of El, the operation
is undefined.

The result of El «E2 is the value of Elleft-shifted by E2 bit positions,
zero-filled from the right if necessary. Left shifts of an unsigned long El are
equivalent to multiplying El by 2E2, reduced modulo ULONG_MAX + 1;
left shifts of unsigned ints are equivalent to multiplying by 2£2 reduced
modulo UINT _MAX + 1. If El is a signed integer, the result must be
interpreted with care, because the sign bit might change.

The result of El » E2 is the value of El right-shifted by E2bit positions. If
El is of unsigned type, zero-fill occurs from the left if necessary. If El is of
Signed type, the fill from the left uses the sign bit (0 for positive, 1 for
negative El). This sign-bit extension ensures that the sign of El »E2 is the
same as the sign of El. Except for signed types, the value of El »E2 is the
integral part of the quotient El /2E2.

Borland C++ Programmer's Guide

Relational operators

Qualified names are
defined on page 132.

There are four relational operators: < > <= and >=. The syntax for these
opera tors is

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression> shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Less-than <
In the expression El < E2, the operands must conform to one of the
following sets of conditions:

• Both El and E2 are of arithmetic type.

• Both El and E2 are pointers to qualified or unqualified versions of
compatible object types.

• Both El and E2 are pointers to qualified or unqualified versions of
compatible incomplete types.

In the first case, the usual arithmetic conversions are performed. The result
of El < E2 is of type int. If the value of El is less than the value of E2, the
result is 1 (true); otherwise, the result is zero (false).

In the second and third cases, in which El and E2 are pointers to
compatible types, the result of El < E2 depends on the relative locations
(addresses) of the two objects being pointed at. When comparing structure
members within the same structure, the "higher" pointer indicates a later
declaration. Within arrays, the "higher" pointer indicates a larger subscript
value. All pointers to members of the same union object compare as equal.

Normally, the comparison of pointers to different structure, array, or union
objects, or the comparison of pointers outside the range of an array object
give undefined results; however, an exception is made for the "pointer
beyond the last element" situation as discussed in the "Pointer arithmetic"
section on page 59. If P points to an element of an array object, and Q points
to the last element, the expression P < Q + 1 is allowed, evaluating to 1
(true), even though Q + 1 does not point to an element of the array object.

. Greater-than>
The expression El > E2 gives 1 (true) if the value of El is greater than the
value of E2; otherwise, the result is 0 (false), using the same interpretations

Chapter 2, Language structure 93

Equality operators

94

for arithmetic and pointer comparisons as are defined for the less-than
operator. The same operand rules and restrictions also apply.

Less-than or equal-to <=
Similarly, the expression El <= E2 gives 1 (true) if the value of El is less
than or equal to the value of E2. Otherwise, the result is 0 (false), using the
same interpretations for arithmetic and pointer comparisons as are defined
for the less-than operator. The same operand rules and restrictions also
apply.

Greater-than or equal-to >=
Finally, the expression El >= E2 gives 1 (true) if the value of El is greater
than or equal to the value of E2. Otherwise, the result is 0 (false), using the
same interpretations for arithmetic and pointer comparisons as are defined
for the less-than operator. The same operand rules and restrictions also
apply.

There are two equality operators: == and !=. They test for equality and
inequality between arithmetic or pointer values, following rules very
similar to those for the relational operators.

Notice that == and != have a lower precedence than the relational operators
< and >, <=, and >=. Also, == and != can compare certain pointer types for
equality and inequality where the relational operators would not be
allowed.

The syntax is

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Equal-to ==
In the;expression El == E2, the operands must conform to one of the
following sets of conditions:

• Both El and E2 are of arithmetic type.

• Both El and E2 are pointers to qualified or unqualified versions of
compatible types.

, • One of El and E2 is a pointer to an object or incomplete type, and the
other is a pointer to a qualified or unqualified version of void.

• One of El or E2 is a pointer and the other is a null pointer constant.

Borland C++ Programmers Guide

Logical operators

If E1 and E2 have types that are valid operand types for a relational
operator, the same comparison rules just detailed for E1 < E2, E1 <= E2, and
so on, apply.

In the first case, for example, the usual arithmetic conversions are per­
formed, and the result of E1 == E2 is of type int. If the value of E1 is equal to
the value of E2, the result is 1 (true); otherwise, the result is zero (false).

In the second case, E1 == E2 gives 1 (true) if E1 and E2 point to the same
object, or both point" one past the last element" of the same array object, or
both are null pointers.

If E1 and E2 are pointers to function types, E1 == E2 gives 1 (true) if they
are both null or if they both point to the same function. Conversely, if
E1 == E2 gives 1 (true), then either E1 and E2 point to the same function, or
they are both null.

In the fourth case, the pointer to an object or incomplete type is converted
to the type of the other operand (pointer to a qualified or unqualified
version of void).

Inequality !=
The expression E1 != E2 follows the same rules as those for E1 == E2, except
that the result is 1 (true) if the operands are unequal, and a (false) if the
operands are equal.

There are two logical operators: && and II.

AND&&
The syntax is

logical-AND-expression:
incl usive-O R-expression
logical-AND-expression && inclusive-OR-expression

In the expression E1 && E2, both operands must be of scalar type. The
result is of type int, and the result is 1 (true) if the values of E1 and E2 are
both nonzero; otherwise, the result is a (false).

Unlike the bitwise & operator, && guarantees left-to-right evaluation. E1 is
evaluated first; if E1 is zero, E1 && E2 gives a (false), and E2 is not
evaluated.

Chapter 2, Language structure 95

Conditional? :

In C++, the result is
an Ivalue.

96

OR II
The syntax is

logical-OR -expression:
logical-AND-expression
logical-OR-expression " logical-AND-expression

In the expression E1 II E2, both operands must be of scalar type. The result
is of type int, and the result is 1 (true) if either of the values of £1 and £2 are
nonzero. Otherwise, the result is 0 (false).

Unlike the bitwise I operator, II guarantees left-to-right evaluation. £1 is
evaluated first; if £1 is nonzero, £1 II £2 gives 1 (true), and £2 is not
evaluated.

The syntax is

conditional-expression
logical-OR -expression
logical-DR-expression ? expression: conditional-expression

In the expression £1 ? £2 : E3, the operand £1 must be of scalar type. The
operands £2 and £3 must obey one of the following rules:

• Rule 1: Both are of arithmetic type.

• Rule 2: Both are of compatible structure or union types.

• Rule 3: Both are of void type.

• Rule 4: Both are of type pointer to qualified or unqualified versions of
compatible types.

• Rule 5: One operand is of pointer type, the other is a null pointer
constant.

• Rule 6: One operand is of type pointer to an object or incomplete type,
the other is of type pointer to a' qualified or unqualified version of void.

First, £1 is evaluated; if its value is nonzero (true), then £2 is evaluated and
£3 is ignored. If £1 evaluates to zero (false), then £3 is evaluated and £2 is
ignored. The result of £1 ? £2 : £3 will be the value of whichever of £2 and
£3 is evaluated.

In rule I, both £2 and £3 are subject to the usual arithmetic conversions,
and the type of the result is the common type resulting from these conver­
sions. In rule 2, the type of the result is the structure or union type of £2
and £3. In rule 3, the result is of type void.

Borland C++ Programmers Guide

Assignment
operators

..
In rules 4 and 5, the type of the result is a pointer to a type qualified with
all the type qualifiers of the types pointed to by both operands. In rule 6,
the type of the result is that of the nonpointer-to-void operand.

There are 11 assignment operators. The = operator is the simple assignment
operator; the other 10 are known as compound assignment operators.

The syntax is

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

= *= 1= 0/0= += -=
«= »= &= J\= 1=

Simple assignment =
In the expression El = E2, El must be a modifiable lvalue. The value of E2,
after conversion to the type of El, is stored in the object designated by El
(replacing El's previous value). The value of the assignment expression is

, the value of El after the assignment. The assignment expression is not itself
an lvalue.

In C++, the result is The operands El and E2 must obey one of the following rules:
an Ivalue.

• Rule 1: El is of qualified or unqualified arithmetic type and E2 is of
arithmetic type.

• Rule 2: El has a qualified or unqualified version of a structure or union
type compatible with the type of E2.

• Rule 3: El and E2 are pointers to qualified or unqualified versions of
compatible types, and the type pointed to by the left has all the qualifiers
of the type pointed to by the right.

• Rule 4: One of El or E2 is a pointer to an object or incomplete type and
the other is a pointer to a qualified or unqualified version of void. The
type pointed to by the left has all the qualifiers of the type pointed to by
the right.

• Rule 5: El is a pointer and E2 is a null pointer constant.

Compound assignment
The compound assignments op=, where op can be anyone of the 10 operator
symbols * 1 % + - « » & J\ I, are interpreted as follows:

El op= E2

Chapter 2, Language structure 97

Comma operator

has the same effect as

£1 = E1 op E2

except that the lvalue E1 is evaluated only once. (For example, E1 += E2 is
the same as E1 = E1 + E2.)

The rules for compound assignment are therefore covered in the previous
section (on the simple assignment operator =).

The syntax is

expression:
assignment-expression
expression, assignment-expression

In C++, the result is ,In the comma expression
an Ivalue.

C++ operators

See page 118 for
information on the

scope access
operator ::. See also

page 144 for a
discussion of : class

initializer.

98

E1,E2

the left operand E1 is evaluated as a void expression, then E2 is evaluated
to give the result and type of the comma expression. By recursion, the
expression

E1, E2, ... , En

results in the left-to-right evaluation of each Ei, with the value and type of
En giving the result of the whole expression. To avoid potential ambiguity
(which might arise from the commas being used in both function
arguments and in initializer lists), parentheses must be used. For example,

func(i, (j = 1, j + 4), k)i

calls June with three arguments, not four. The arguments are i, 5, and k.

The operators specific to C++ are as follows:

• .. (scope resolution)

•. * (dereference pointer)

• ->* (dereference pointer)

• : (class initializer)

The syntax for the .* and ->* operators is as follows:

pm-expression
cast -expression
pm expression. * cast-expression
pm expression ->* cast-expression

Borland C++ Programmers Guide

The sizeof
operator

The amount of space
that is reserved for
each type depends

on the machine.

The .* operator dereferences pointers to class members. It binds the cast­
expression, which must be of type "pointer to member of class type", to the
pm-expression, which must be of class type or of a class publicly derived
from class type. The result is an object or function of the type specified by
the cast-expression.

The ->* operator dereferences pointers to pointers to class members (this
isn't a typographical error; it does indeed dereference pointers to pointers).
It binds the cast-expression, which must be of type "pointer to member of
type," to the pm-expression, which must be of type pointer to type or of type
"pointer to class publicly derived from type." The result is an object or
function of the type specified by the cast-expression.

If the result of either of these operators is a function, you can only use that
result as the operand for the function call operator (). For example,

#include <iostream.h>

class B {
public:

void g(int i = 0) { cout « "\nInput = " « i; };
};

int main(void)
B Binst; II Instantiate class B

II pf is a pointer to a B member function that takes an integer and returns void
void (B::*pf) (int);
pf = B:: g;
(Binst. *pf) (21);
return 0;

II Initialize pf to the B: :g() member function.
II Call g() and give it the argument 21.

The sizeof operator has two distinct uses:

sizeof unary-expression
sizeof (type-name)

The result in both cases is an integer constant that gives the size in bytes of
how much memory space is used by the operand (determined by its type,
with some exceptions). In the first use, the type of the operand expression is
determined without evaluating the expression (and therefore without side
effects). When the operand is of type char (signed or unsigned), sizeof
gives the result 1. When the operand is a non-parameter of array type, the
result is the total number of bytes in the array (in other words, an array
name is not converted to a pointer type). The number of elements in an
array equals sizeof array / sizeof array[O].

Chapter 2, Language structure 99

Source

100

If the operand is a parameter declared as array type or function type, sizeof
gives the size of the pointer. When applied to structures arid unions, sizeof
gives the total number of bytes, including any padding.

sizeof cannot be used with expressions of function type, incomplete types,
parenthesized names of such types, or with an lvalue that designates a bit
field object.

The integer type of the result of sizeof is size_t, defined as unsigned int in
stddef.h.

You can use sizeof in preprocessor directives; this is specific to Borland
C++.

In C++, sizeof(classtype), where classtype is derived from some base class,­
returns the size of the object (remember, this includes the size of the base
class).

/* USE THE sizeof OPERATOR TO GET SIZES OF DIFFERENT DATA TYPES. */
#include <stdio.h>

struct st {
char*name; /* 2 BYTES IN SMALL-DATA MODELS; 4 BYTES IN LARGE-DATA MODEL

*/
int age; /* 2 BYTES IN SMALL-DATA MODELS; 4 BYTES IN LARGE-DATA MODEL

*/
double height; /* EIGHT BYTES */
};

struct st St_Array[]= { /* AN ARRAY OF structs */
{ "Jr.", 4, 34.20 L /* ST_Array[O] */
{"Suzie", 23, 69.75 L /* ST_Array[1] */
};

int main() {
long double LD_Array[] = { 1.3, 501.09, 0.0007, 90.1, 17.08 };

printf (" \nNumber of elements in LD_Array = %d",
sizeof(LD_Array) / sizeof(LD_Array[O]));

/**** THE NUMBER OF ELEMENTS IN THE ST_Array. ****/
printf (" \nSt_Array has %d elements",

sizeof(St_Array)/sizeof(St_Array[O])) ;

/**** THE NUMBER OF BYTES IN EACH ST_Array ELEMENT. ****/
printf("\nSt_Array[O] = %d", sizeof(St_Array[O]));

/**** THE TOTAL NUMBER OF BYTES IN ST_Array. ****/
printf (" \nSt_Array= %d", sizeof (SLArray)) ;

return 0;

Borland C++ Programmers Guide

Output

Statements

Number of elements in LD_Array =
St_Array has 2 elements
St_Array[Ol = 12
St_Array= 24

Statements specify the flow of control as a program executes. In the absence
of specific jump and selection statements, statements are executed
sequentially in the order of appearance in the source code. The following
table shows the syntax for statements.

Table 2.16: Borland C++ statements

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
asm-statement
declaration (C++ specific)

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

compound-statement:
{ <declaration-list> <statement-list> }

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

expression-statement:
<expression> ;

asm-statement
asm tokens newline
asm tokens;
asm { tokens; <tokens;>=

<tokens;>
}

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement:
while (expression) statement
do statement while (expression);
for (for-init-statement <expression> ; <expression» statement

for-init-statement
expression-statement
declaration (C++ specific)

jump-statement
goto identifier;
continue;
break;
return <expression>;

Blocks A compound statement, or block, is a list (possibly empty) of statements
enclosed in matching braces ({ }). Syntactically, a block can be considered to
be a single statement, but it also plays a role in the scoping of identifiers.
An identifier declared within a block has a scope starting at the point of

Chapter 2, Language structure 101

Labeled
statements

Expression
statements

Selection
statements

if statements

102

The parentheses
around cond­

expression are
essential.

declaration and ending at the closing brace. Blocks can be nested to any
depth.

A statement can be labeled in two ways:

• label-identifier: statement
The label identifier serves as a target for the unconditional goto
statement. Label identifiers have their own name space and have
function scope. In C++ you can label both declaration and non­
declaration statements .

• case constant-expression: statement
default: statement
Case and default labeled statements are used only in conjunction with
switch statements.

Any expression followed by a semicolon forms an expression statement:

<expression> ;

Borland C++ executes an expression statement by evaluating the expres­
sion. All side effects from this evaluation are completed before the next
statement is executed. Most expression statements are assignment
statements or function calls.

The null statement is a special case, consisting of a single semicolon (;). The
null statement does nothing, and is therefore useful in situations where the
Borland C++ syntax expects a statement but your program does not need
one.

Selection or flow-control statements select from alternative courses of
action by testing certain values. There are two types of selection statements:
the if ... else and the switch. .

The basic if statement has the following pattern:

if (eond-expression) t-st <else f-st>

The eond-expression must be of scalar type. The expression is evaluated. If
the value is zero (or null for pointer types), eond-expression is false;
otherwise, it is true.

If there is no else clause and eond-expression is true, t-st is executed;
otherwise, t-st is ignored.

Borland C++ Programmers Guide

If the optional else f-st is present and eond-expression is true, t-st is executed;
otherwise, t-st is ignored and f-st is executed.

... Unlike Pascal, for example, Borland C++ does not have a specific Boolean
data type. Any expression of integer or pointer type can serve a Boolean
role in conditional tests. The relational expression (a > b) (if legal) evaluates
to int 1 (true) if (a > b), and to int 0 (false) if (a <= b). Pointer conversions are
such that a pointer can always be correctly compared to a constant
expression evaluating to O. That is, the test for null pointers can be written
if (!ptr) ... or if (ptr == 0)

switch statements

It is illegal to have
duplicate case

constants in the same
switch statement.

The f-st and t-st statements can themselves be if statements, allowing for a
series of conditional tests nested to any depth. Care is needed with nested
if ... else constructs to ensure that the correct statements are selected. There
is no endif statement: any "else" ambiguity is resolved by matching an else
with the last encountered if-without-an-else at the same block level. For
example,

if (x == 1)

if (y == 1) puts(" x=l andy=l")i
else putS("X != 1") i

draws the wrong conclusion. The else matches with the second if, despite
the indentation. The correct conclusion is that x = 1 and y != 1. Note the
effect of braces:

if (x == 1) {

if (y == 1) putS(" X = 1 and y = 1") i

else putS("X != 1") i II correct conclusion

The switch statement uses the following basic format:

switch (sw-expression) ease-st

A switch statement lets you transfer control to one of several case-labeled
statements, depending on the value of sw-expression. The latter must be of
integral type (in C++, it can be of class type, provided that there is an
unambiguous conversion to integral type available). Any statement in ease­
st (including empty statements) can be labeled with one or more case labels:

case const-exp-i : ease-st-i

where each case constant, eonst-exp-i, is a constant expression with a unique
integer value (converted to the type of the controlling expression) within its
enclosing switch statement.

Chapter 2, Language structure 103

Iteration
statements

while statements

The parentheses are
essential.

104

There can also be at most one default label:

default: default-st

After evaluating sw-expression, a match is sought with one of the const-exp-i.
If a match is found, control passes to the statement case-st-i with the
matching case label.

If no match is found and there is a default label, control passes to default-st.
If no match is found and there is no default label, none of the statements in
case-st is executed. Program execution is not affected when case and
default labels are encountered. Control simply passes through the labels to
the following statement or switch. To stop execution at the end of a group
of statements for a particular case, use· break.

/* THIS ILLUSTRATES THE USE OF KEYWORDS switch, case, AND default. */
#include <stdio.h>

int rnain(void) {
int Chi

printf("\tPRESS a, b, OR c. ANY OTHER CHOICE WILL"
"TERMINATE THIS PROGRAM.");

for (/* FOREVER */; ((ch = getch(stdin)) != EOF);)
switch (ch) {

case 'a' : /* THE CHOICE OF a HAS ITS OWN ACTION. */
printf ("\nOption a was selected. \n") ;
break;

case 'b' :
case 'c' :

/* BOTH b AND c GET THE SAME RESULTS. */

printf ("\nOption b or c was selected. \n") ;
break;

default :
printf ("\nNOT A VALID CHOICE! Bye ... ");
return(-l) ;

return(O) ;
}

Iteration statements let you loop a set of statements. There are three forms
of iteration in Borland C++: while, do while, and for loops.

The general format for this statement is

while (cond-exp) t-st

The loop statement, t-st, is executed repeatedly until the conditional
expression, cond-exp, compares equal to zero (false).

Borland C++ Programmers Guide

do while statements

for statement

The cond-exp is evaluated and tested first (as described on page 102). If this
value is nonzero (true), t-st is executed; if no jump statements that exit from
the loop are encountered, cond-exp is evaluated again. This cycle repeats
until cond-exp is zero.

As with if statements, pointer type expressions can be compared with the
null pointer, so that while (ptr) ... is equivalent to while (ptr ! = NULL)

The while loop offers a concise method for scanning strings and other null­
terminated data structures:

char str[lO]="Borland";
char *ptr=&str[O];
int count=O;

while (*ptr++) II loop until end of string
count++;

In the absence of jump statements, t-st must affect the value of cond-exp in
some way, or cond-exp itself must change during evaluation in order to
prevent unwanted endless loops.

The general format is

do do-st while (cond-exp);

The do-st statement is executed repeatedly until cond-exp compares equal to
zero (false). The key difference from the while statement is that cond-exp is
tested after, rather than before, each execution of the loop statement. At
least one execution of do-st is assured. The same restrictions apply to the·
type of cond -exp (scalar).

The for statement format in Cis

for «init-exp>; <test-exp>; <increment-exp» statement
For C++, <init-exp>

can be an expression
or a declaration. The sequence of events is as follows:

1. The initializing expression init-exp, if any, is executed. As the name
implies, this usually initializes one or more loop counters, but the
syntax allows an expression of any degree of complexity (including
declarations in C++)-hence the claim that any C program can be
written as a single for loop.

2. The expression test-exp is evaluated following the rules of the while
loop. If test-exp is nonzero (true), the loop statement is executed. An

Chapter 2, Language structure 105

Jump statements

break statements

continue statements

106

empty expression here is taken as while (1); that is, always true. If the
value of test-exp is zero (false), the for loop terminates.

3. increment-exp advances one or more counters.

4. The expression statement (possibly empty) is evaluated and control
returns to step 2.

If any of the optional elements are empty, appropriate semicolons are
required:

for (;;) II same as for (; 1;)
II loop forever

The C rules for for statements apply in C++. However, the init-exp in C++
can also be a declaration. The scope of a declared identifier extends through
the enclosing loop. For example,

for (int i = 1; i < 3; Hi) {
if (i ...)

for (int x = 0;;;)

if (i ...)
if (x ...)

II ok to refer to i here

II do nothing

II legal
II illegal; x is now out of scope

A jump statement, when executed, transfers control unconditionally. There
are four such statements: break, continue, goto, and return.

The syntax is

break;

A break statement can be used only inside an iteration (while, do, and for
loops) or a switch statement. It terminates the iteration or switch statement.
Because iteration and switch statements can be intermixed and nested to
any depth, you must ensure that your break exits from the correct loop or
switch. The rule is that a break terminates the nearest enclosing iteration or
switch statement.

The syntax is

continue;

A continue statement can be used only inside an iteration statement; it
transfers control to the test condition for while and do loops, and to the
increment expression in a for loop.

Borland C++ Programmers Guide

goto statements

return statements

With nested iteration loops, a continue statement is taken as belonging to
the nearest enclosing iteration.

The syntax is

goto label;

The goto statement transfers control to the statement labeled label (see page
102), which must be in the same function.

In C++, it is illegal to bypass a declaration having an explicit or implicit
initializer unless that declaration is within an inner block that is also
bypassed.

Unless the function return type is void, a function body must contain at
least one return statement with the following format:

return return-expression;

where return-expression must be of type type or of a type that is convertible
to type by assignment. The value of the return-expression is the value
returned by the function. An expression that calls the function, such as
func (actual-arg-list), is an rvalue of type type, not an lvalue:

t = func (arg) ;
func(arg) = t;

(func(arg))tt;

II OK
1* illegal in C; legal in Ctt if return type of func is a

reference *1
1* illegal in C; legal in Ctt if return type of func is a

reference *1

The execution of a function call terminates if a return statement is
encountered; if no return is met, execution continues, ending at the final
closing brace of the function body.

If the return type is void, the return statement can be written as

return;

with no return expression; alternatively, the return statement can be
omitted.

Chapter 2, Language structure 107

108 Borland C++ Programmers Guide

See Chapter 4 for
details on compiling

C and C++ programs
with exception

handling.

c H A p T E R 3

c++ specifics

c++ is an object-oriented programming language based on C. Generally
speaking, you can compile C programs under C++, but you can't compile a
C++ program under C if the program uses any constructs specific to C++.
Some situations require special care. For example, the same function June
declared twice in C with different argument types invokes a duplicated
name error. Under C++, however, tunc will be interpreted as an overloaded
function; whether or not this is legal depends on other circumstances.

Although C++ introduces new keywords and operators to handle classes,
some of the capabilities of C++ have applications outside of any class
context. This chapter reviews the aspects of C++ that can be used
independently of classes, then describes the specifics of classes and class
mechanisms.

New-style typecasting

consCcast
typecast operator

Chapter 3, C++ specifics

This section presents a discussion of alternate methods for making a type­
cast. The methods presented here augment the earlier cast expressions
available in the C language.

Types cannot be defined in a cast.

Use the const_cast operator to add or remove the const or volatile
modifier from a type.

In the statement, const_cast< T > (arg), T and arg must be of the same type
except for const and volatile modifiers. The cast is resolved at compile
time. The result is of type T. Any number of const or volatile modifiers can
be added or removed with a single const_cast expression.

A pointer to const can be converted to a pointer to non-const that is in all
other respects an identical type. If successful, the resulting pointer refers to
the original object.

109

dynamic_cast
typecast operator

Run-time type
identification (Rnl) is

required for
dynamic_cast. See

the description of
class Type_info in the

Library Reference,
Chapter 10. See also

the discussion of
RTTI on page 113.

This program must be
compiled with the

-RT (Generate Rnl)
option.

110

A const object or a reference to const cast results in a non-const object or
reference that is otherwise an identical type.

The const_cast operator performs similar typecasts on the volatile
modifier. A pointer to volatile object can be cast to a pointer to non-volatile
object without otherwise changing the object's type. The result is a pointer
to the original object. A volatile-type object or a reference to volatile-type
can be converted into an identical non-volatile type.

In the expression dynamic_cast< T > (ptr), T must be a pointer or a
reference to a defined class type or void*. The argument pty must be an
expression that resolves to a pointer or reference.

If Tis void* then pty must also be a pointer. In this case, the resulting
pointer can access any element of the class that is the most derived element
in the hierarchy. Such a class cannot be a base for any other class.

Conversions from a derived class to a base class, or from one derived class
to another, are as follows: if T is a pointer and pty is a pointer to a non-base
class that is an element of a class hierarchy, the result is a pointer to the
unique subclass. References are treated similarly. If T is a reference and pty
is a reference to a non-base class, the result is a reference to the unique
subclass.

A conversion from a base class to a derived class can be performed only if
the base is a polymorphic type. See page 155 for a discussion of
polymorphic types.

The conversion to a base class is resolved at compile time. A conversion
from a base class to a derived class, or a conversion across a hierarchy is
resolved at run time.

If successful, dynamic_cast< T > (ptr) converts pty to the desired type. If a
pointer cast fails, the returned pointer is valued O. If a cast to a reference
type fails, the Bad_cast exception is thrown.

II HOW TO MAKE DYNAMIC CASTS
#include <iostream.h>
#include <typeinfo.h>

class Basel

II For the RTTI mechanism to function correctly,
II a base class must be polymorphic.
virtual void f(void) { 1* A virtual function makes the class polymorphic *1 }

}i

class Base2 { }i

class Derived: public Basel, public Base2 { }i

Bor/and C++ Programmers Guide

reinterpreCcast
typecast operator

Chapter 3, C++ specifics

int main (void) {
try {

Derived d, *pd;
Basel *bl = &d;

II Perform a downcast from a Basel to a Derived.
if ((pd = dynamic_cast<Derived *>(b1)) != 0) {

cout « "The resulting pointer is of type "
« typeid(pd) .name() « endl;

else throw Bad_cast();

II Attempt cast across the hierarchy. That is, cast from
II the first base to the most derived class and then back
II to another accessible base.
Base2 *b2;
if ((b2 = dynamic_cast<Base2 *>(b1)) != 0) {

cout « "The resulting pointer is of type "
« typeid(b2) .name() « endl;

else throw Bad_cast();
}

catch (Bad_cast) '{
cout « "dynamic_cast failed" « endl;
return 1;

catch (...) {
cout « "Exception handling error." « endl;
return 1;

return 0;

In the statement reinterpret_cast< T > (arg), T must be a pointer, reference,
arithmetic type, pointer to function, or pointer to member.

A pointer can be explicitly converted to an integral type.

An integral arg can be converted to a pointer. Converting a pointer to an
integral type and back to the same pointer type results in the original value.

A yet undefined class can be used in a pointer or reference conversion.

A pointer to a function can be explicitly converted to a pointer to an object
type provided the object pointer type has enough bits to hold the function
pointer. A pointer to an object type can be explicitly converted to a pointer
to a function only if the function pointer type is large enough to hold the
object pointer.

111

static_cast
typecast operator

112

II Use reinterpret_cast<Type>(expr) to replace (Type)expr casts
II for conversions that are unsafe or implementation dependent.

void func(void *v) {
II Cast from pointer type to integral type.
int i = reinterpret_cast<int>(v);

void main ()
II Cast from an integral type to pointer type.
func(reinterpret_cast<void *>(5));

II Cast from a pointer to function of one type to
II pointer to function of another type.
typedef void (* PFV) ();

PFV pfunc = reinterpret_cast<PFV>(func);

pfunc () ;
}

In the statement static_cast< T > (arg), T must be a pointer, reference,
arithmetic type, or enum type. The arg-type must match the T-type. Both T
and arg must be fully known at compile time.

If a complete type can be converted to another type by some conversion
method already provided by the language, then making such a conversion
by using static_cast achieves exactly the same thing.

Integral types can be converted to enum types. A request to convert arg to a
value that is not an element of enum is undefined.

The null pointer is converted to itself.

A pointer to one object type can be converted to a pointer to another object
type. Note that merely pointing to similar types can cause access problems
if the similar types are not similarly aligned.

You can explicitly convert a pointer to a class X to a pointer to some class Y
if X is a base class for Y. A static conversion can be made only under the
following conditions:

• If an unambiguous conversion exists from Y to X

• If X is not a virtual base class

See'page 137 for a discussion of virtual base classes.

An object can be explicitly converted to a reference type X& if a pointer to
that object can be explicitly converted to an X*. The result of the conversion

Borland C++ Programmers Guide

is an lvalue. No constructors or conversion functions are called as the result
of a cast to a reference.

An object or a value can be converted to a class object only if an appropriate
constructor or conversion operator has been declared.

A pointer to a member can be explicitly converted into a different pointer­
to-member type only if both types are pointers to members of the same
class or pointers to members of two classes, one of which is unambiguously
derived from the other.

When T is a reference the result of static_cast< T > (arg) is an lvalue. The
result of a pointer or reference cast refers to the original expression.

Run-time type identification

The typeid
operator

To use the typeid
operator you must

include the typeinfo.h
header file.

Chapter 3, C++ specifics

The recent addition of run-time type identification (RTTI) into the ANSI/
ISO C++ working paper makes it possible to write portable code that can
determine the actual type of a data object at run time even when the code
has access only to a pointer or reference to that object. This makes it
possible, for example, to convert a pointer to a virtual base class into a
pointer to the derived type of the actual object. See page 110 for a
description of the dynamic_cast operator, which uses run-time type
information.

The RTTI mechanism also lets you check whether an object is of some
particular type and whether two objects are of the same type. You can do
this with typeid operator, which determines the actual type of its argument
and returns a reference to an object of type const Type_info, which describes
that type. You can also use a type name as the argument to typeid, and
typeid will return a reference to a const Type_info object for that type. The
class Type_info provides an operator== and an operator!= that you can use
to determine whether two objects are of the same type. Class Type_info also
provides a member function name that returns a pointer to a char array that
holds the name of the type. See the Library Reference, Chapter 10, for a
description of class Type_info.

You can use typeid to get run-time information about types or expressions.
A call to typeid returns a reference to an object of type constType_info. The
returned object represents the type of the typeid operand.

If the typeid operand is a dereferenced pointer or a reference to a poly­
morphic type, typeid returns the dynamic type of the actual object pointed

113

Example

Program output

The __ rtti
keyword and the
-RToption

114

or referred to. If the operand is non-polymorphic, typeid returns an object
that represents the static type.

You can use the typeid operator with fundamental data types as well as
user-defined types.

II HOW TO USE typeid, Type_info::before() , and Type_info::name().
#include <iostream.h>
#include <string.h>
#include <typeinfo.h>

class A { };
class B : A { };
char *true = "true";
char *false = "false";

void main()
char C;
float X;

if (typeid(C) == typeid(X))
cout « "C and X are the same type." « endl;

else cout « "C and X are NOT the same type." « endl;

cout « typeid(int) .name() i

cout « " before" « typeid(double) .name() « ": " «
(typeid(int) .before(typeid(double)) ? true: false) « endl;

cout « typeid(double) .name();
cout « " before" « typeid(int) .name() « ": " «

(typeid(double) .before(typeid(int)) ? true: false) « endl;

cout « typeid(A) .name()i
cout « " before" « typeid(B) .name() « ": " «

(typeid(AJ .before(typeid(B)) ? true: false) « endl;

C and X are ,NOT the same type.
int before double: false
double before int: true
A before B: true

If the typeid operand is a dereferenced NULL pointer, the Bad _typeid
exception is thrown. See the Library Reference, Chapter 10, for a description
of Bad _typeid.

RTTI is enabled by default in Borland C++. You can use the -RT
command-line option to disable it (-RT-) or to enable it (-RT). If RTTI is
disabled, or if the argument to typeid is a pointer or a reference to a non­
polymorphic class (see page 155 for a discussion of polymorphic classes),
typeid returns a reference to a const Type_info object that describes the

Borland C++ Programmers Guide

Example

Chapter 3, C++ specifics

declared type of the pointer or reference, and not the actual object that the
pointer or reference is bound to.

In addition, even when RTTI is disabled, you can force all instances of a
particular class and all classes derived from that class to provide polymor­
phic run-time type identification (where appropriate) by using the Borland
C++ keyword __ rtti in the class definition.

When you use the -RT - compiler option, if any base class is declared __ rtti,
then all polymorphic base classes must also be declared __ rtti.

struct __ rtti 81 { virtual slfunc() i}i II Polymorphic

struct __ rtti 82 { virtual s2func() i}i II Polymorphic

struct X : 81, 82 { } i

If you turn off the RTTI mechanism (by using the -RT- compiler option),
RTTI might not be available for derived classes. When a class is derived
from multiple classes, the order and type of base classes determines
whether or not the class inherits the RTTI capability.

When you have polymorphic and non-polymorphic classes, the order of
inheritance is important. If you compile the following declarations with
-RT-, you should declare X with the __ rtti modifier. Otherwise, switching
the order of the base classes for the class X results in the compile-time error
Can't inherit non-RTTI class from RTTI base 'Sl'.

Note that the class X is explicitly declared with __ rtti. This makes it safe to
mix the order and type of classes.

struct __ rtti 81 { virtual func() i}i II Polymorphic class

struct 82 { }i II Non-polymorphic class

struct __ rtti X : 81, 82 { }i

In this example, class X inherits only non-polymorphic classes. Class X
does not need to be declared rtti.

struct rtti 81 { }i II Non-polymorphic class

struct 82 { }i

struct X : 82, Sl {}i II The order is not essential

Applying either __ rtti or using the -RT compiler option will not make a
static class into a polymorphic class. See page 155 for a discussion of poly­
morphic classes.

II HOW TO GET RUN-TIME TYPE INFORMATION FOR POLYMORPHIC CLASSES.
#include <iostream.h>
#include <typeinfo.h>

115

Program output

Referencing

c++ specific pointer
referencing and
dereferencing is

discussed on
page 98.

Simple references

Note that type& var,
type &var, and type &
var are all equivalent.

116

class __ rtti Alpha { II Provide RTTI for this class and
II all classes derived from it

virtual void func() {}i II A virtual function makes Alpha a polymorphic class.
}i

class B : public Alpha {}i

int main (void)
B Binsti
B *Bptri
Bptr = &Binsti

II Instantiate class B
II Declare a B-type pointer
II Initialize the pointer

II THESE TESTS ARE DONE AT RUN TIME
try {

if (typeid(*Bptr) == typeid(B))
II Ask "WHAT IS THE TYPE FOR *Bptr?"
cout « "Name is " « typeid(*Bptr) .name() i

if (typeid(*Bptr) != typeid(Alpha))
cout « "\nPointer is not an Alpha-type."i

return Oi

catch (Bad_typeid)
cout « "typeid() has failed."i
return Ii

Name is B
Pointer is not an Alpha-type.

While in C, you pass arguments only by value; in C++, you can pass
arguments by value or by reference. C++ reference types, closely related to
pointer types, create aliases for objects and let you pass arguments to func­
tions by reference.

The reference declarator can be used to declare references outside
functions:

int i = Oi
int &ir = ii
ir = 2i

II ir is an alias for i
II same effect as i = 2

This creates the lvalue ir as an alias for i, provided the initializer is the same
type as the reference. Any operations on ir have precisely the same effect as

Borland C++ Programmers Guide

Reference
arguments

Implementation 1

Implementation 2

Chapter 3, C++ specifics

operations on i. For example, ir = 2 assigns 2 to i, and &ir returns the
address of i.

The reference declarator can also be used to declare reference type
parameters within a function:

void funcl (int i);
void func2 (int &ir);

int sum=3;
func1 (sum) ;
func2 (&sum) ;

II ir is type "reference to int"

II sum passed by value
II sum passed by reference

The sum argument passed by reference can be changed directly by func2.
On the other hand, func1 gets a copy of the sum argument (passed by
value), so sum itself cannot be altered by func1.

When an actual argument x is passed by value, the matching formal
argument in the function receives a copy of x. Any changes to this copy
within the function body are not reflected in the value of x itself. Of course,
the function can return a value that could be used later to change x, but the
function cannot directly alter a parameter passed by value.

The C method for changing x uses the actual argument &x, the address of x,
rather than x itself. Although &X is passed by value, the function can access
x through the copy of &X it receives. Even if the function does not need to
change x, it is still useful (though subject to potentially dangerous side
effects) to pass &x, especially if x is a large data structure. Passing x directly
by value involves wasteful copying of the data structure.

Compare the three implementations of the function treble:

int treble_l(int n)
{

return 3 * n;

int X, i = 4;
X = treble_l(i);

void treble_2(int* np)
{

*np = (*np) * 3;

treble_2(int& i);

II X now = 12, i = 4

II i now = 12

117

Implementation 3 void treble_3(int& n)
{

n = 3 * n;

II n is a reference type

II i now = 36

The formal argument declaration type& t(or equivalently, type& t)
establishes t as type "reference to type." So, when treble_3 is called with the
real argument i, i is used to initialize the formal reference argument n. n
therefore acts as an alias for i, so n = 3 *n also assigns 3 * ito i.

If the initializer is a constant or an object of a different type than the
reference type, Borland C++ creates a temporary object for which the
reference acts as an alias:

int& ir = 6; 1* temporary int object created, aliased by ir, gets value 6 *1
float f;
int& ir2 = f; 1* creates temporary int object aliased by ir2; f converted

before assignment *1
ir2 = 2.0 II ir2 now = 2, but f is unchanged

The automatic creation of temporary objects permits the conversion of
reference types when formal and actual arguments have different (but
assignment-compatible) types. When passing by value, of course, there are
fewer conversion problems, since the copy of the actual argument can be
physically changed before assignment to the formal argument.

Scope resolution operator::

This code also works
if the global i is a file­

level static.

118

The scope access (or resolution) operator :: (two colons) lets you access a
global (or file duration) name even if it is hidden by a local redeclaration of
that name (see page 29 for more on scope):

int i;

void func(void)
int i=O;
i = 3;
::i = 4;
printf ("%d",i);

II global i

II local i hides global i
II this i is the local i
II this i is the global i
II prints out 3

The :: operator has other uses with class types, as discussed throughout
this chapter.

Bar/and C++ Programmers Guide

The new and delete operators

Arrays of classes
require the default

constructor.

Chapter 3, C++ specifics

The new and delete operators offer dynamic storage allocation and
deallocation, similar but superior to the standard library functions malloe
and free. See the Library Reference for information on malloe and free.

Syntax for a new-expression is one of the following:

<::> new <new-args> type-name «initializer»
<::> new <new-args> (type-name) «initializer»

Syntax for a delete-expression is one of the following:

<::> delete cast-expression
<::> delete [] cast-expression

The new operator must always be supplied with a data type in place of
type-name. Items surrounded by angle brackets are optional. The optional
arguments can be as follows:

• The :: operator invokes the global version of new.

• new-args can be used to supply additional arguments to new. You can use
this syntax only if you have an overloaded version of new that matches
the optional arguments.

• initializer, if present, is used to initialize the allocation.

A request for non-array allocation uses the appropriate operator newO
function. Any request for array allocation calls the appropriate operator
new[]() function. The selection of an operator with which to allocate class
Type is done as follows:

Allocation of arrays of Type:

1. Attempts to use a class-specific array allocator:
Type: :operator new[]()

2. If the class-specific array allocator is not defined, the global version is
used:
::operator new[]()

Allocation of non-arrays:

1. Memory for a non-array object of Type is allocated using Type: :operator
new()

2. If the above is not defined, the global ::operator new() is used

new tries to create an object of type Type by allocating (if possible)
sizeof(Type) bytes in free store (also called the heap). new calculates the size

119

Handling errors

The operator new
with arrays

120

of Type without the need for an explicit sizeof operator. Further, the pointer
returned is of the correct type, "pointer to Type," without the need for
explicit casting. The storage duration of the new object is from the point of
creation until the operator delete destroys it by deallocating its memory, or
until the end of the program.

If successful, new returns a pointer to the new object. By default, an alloca­
tion failure (such as insufficient or fragmented heap memory) results in the
predefined exception xalloc being thrown. Your program should always be
prepared to catch the xalloc exception before trying to access the new object
(unless you use a new-handler; see the following section for details).

A request for allocation of a bytes returns a non-null pointer. Repeated
requests for zero-size allocations return distinct, non-null pointers.

You can define a function to be called if the new operator fails. To tell the
new operator about the new-handler function, use set_new_handler and
supply a pointer to the new-handler. If you want new to return null on
failure, you must use set_new_handler(O). See the Library Reference,
Chapter 10, for discussions of set_new_handler, _new_handler, and the
predefined exception xalloc.

If Type is an array, the pointer returned by operator new[]() points to the
first element of the array. When creating multidimensional arrays with
new, all array sizes must be supplied (although the leftmost dimension
doesn't have to be a compile-time constant):

mat-ptr = new int[3] [10] [12];
mat-ptr = new int[n] [10] [12];
mat-ptr = new int[3] [] [12];
mat-ptr = new int[] [10] [12];

II OK
II OK
I I illegal
I I illegal

Although the first array dimension can be a variable, all following
dimensions must be constants.

The following example shows you one way to allocate and delete memory
for a two-dimensional array. The order of operations taken to allocate the
space must be reversed when you delete the space. The illustration shows
the amout of space allocated for 32-bit programs.

Setup
rows

o 4 bytes

m-1 4 bytes

Setup columns
o 1

_110 bytes 1 10 bytes 1

o 1

_110 bytes 1 10 bytes 1

n-1

n-1

Borland C++ Programmers Guide

See the Library
Reference, Chapter
10, for a description

of xal/oc.

Chapter 3, C++ specifics

1* ALLOCATE A TWO-DIMENSIONAL SPACE, INITIALIZE, AND DELETE IT. *1
#include <except.h>
#include <iostream.h>

void display(long double **);
void de_allocate(long double **);

int m = 3; II THE NUMBER OF ROWS.
int n·= 5; II THE NUMBER OF COLUMNS.
int main(void)

long double **data;

try { II TEST FOR EXCEPTIONS.
data = new long double*[m]; II STEP 1: SET UP THE ROWS.
for (int j = 0; j < m; j++)

data[j] = new long double[n]; II STEP 2: SET UP THE COLUMNS

catch (xalloc) { II ENTER THIS BLOCK ONLY IF xalloc IS THROWN.
II YOU COULD REQUEST OTHER ACTIONS BEFORE TERMINATING
cout « "Could not allocate. Bye ... ";
exit (-1) i

}

for (int i = Oi i < mi iff)
for (int j = 0; j < ni j++)

data[i][j] = i + ji

display (data) ;
de_allocate(data)i
return Oi

void display(long double **data)
for (int i = 0; i < mi i++) {

for (int j = 0; j < ni j++)
cout « data [i] [j] « " ";

cout « "\n" «endli

void de_allocate(long double **data)
for (int i = 0; i < m; iff)

delete[] data[i];

delete[] data;
}

produces this output:

01234

1 2 3 4 5

2 345 6

II ARBITRARY INITIALIZATION

II STtp 1: DELETE THE COLUMNS

II STEP 2: DELETE THE ROWS

121

The operator
delete with arrays

The ::operator
new

Initializers with
the new operator

Overloading new
and delete

122

Arrays are deleted by operator delete[](). You must use the syntax delete
[] expr when deleting an array. After C++ 2.1, the array dimension should
not be specified within the brackets:

char * Pi

void func ()
{

P = new char[10] i
de1ete[] Pi

II allocate 10 chars
II delete,10 chars

C++ 2.0 code required the array size. To allow 2.0 code to compile, Borland
C++ issues a warning and ignores any size that is specified. For example, if
the preceding example reads delete [10] p and is compiled, the warning is
as follows:

warning: Array size for 'delete' ignored in function func()

By default, if there is no overloaded version of new, a request for dynamic
memory allocation always uses the global version of new, ::operator new().
A request for array allocation calls : :operator new[](). With class objects of
type name, a specific operator called name::operator new() or name::operator
new[]() can be defined. new applied to class name objects invokes the
appropriate name: :operator new if it is present; otherwise, the global
::operator new is used.

Only the operator new{) function accepts an optional initializer. The array
allocator version, operator new[]{), does not accept initializers. In the
absence of explicit initializers, the object created by new contains unpredict­
able data (garbage). The objects allocated by new, other than arrays, can be
initialized with a suitable expression between parentheses:

int-ptr = new int(3) i

Arrays of classes with constructors are initialized with the default construc­
tor (see page 140). The user-defined new operator with customized initial­
ization plays a key role in C++ constructors for class-type objects.

The global: :operator new() and: :operator new[]() can be overloaded. Each
overloaded instance must have a unique signature. Therefore, multiple
instances of a global allocation operator can coexist in a single program.

Class-specific new operators can also be overloaded. The operator new can
be implemented to provide alternative free storage (heap) memory-

Borland C++ Programmers Guide

The type size_t is
defined in stdlib.h

Destructors are called
only if you use the

-xd compiler option
and an exception is

thrown.

Chapter 3, C++ specifics

management routines, or implemented to accept additional arguments. A
user-defined operator new must return a void* and must have a size_t as its
first argument. To overload the new operators, use the following
prototypes:

• void * operator new(size_t Type_size); II For non-array

• void * operator new[] (size_t Type_size); II For arrays

The Borland C++ compiler provides Type_size to the new operatorAny
data type can be substituted for Type except function names (although a
pointer to function is permitted), class declarations, enumeration declar,a­
tions, const, and volatile.

The global operators: :operator delete() and: :operator delete[]() cannot be
overloaded. However, you can override the default version of each of these
operators with your own implementation. Only one instance of the global
delete function can exist in the program.

The user-defined operator delete must have a void return type and void* as
its first argument; a second argument of type size _t is optional. A class T
can define at most one version of each of T: :operator delete[]() and
T::operator delete(). To overload the delete operators, use the following
prototypes:

• void operator delete(void *Type-ptr, [size_t Type_size]); II For non-array

• void operator delete[] (size_t Type-ptr, [size_t Type_size]); II For arrays

For example,

#include <stdlib.h>

class X

pUblic:

};

void* operator new(size_t size) { return newalloc(size);}
void operator delete(void* p) { newfree(p); }
X() { 1* initialize here *1 }
X(char ch) { 1* and here *1 }

-X() { 1* clean up here *1 }

The size argument gives the size of the object being created, and newalloc
and newfree are user-supplied memory allocation and deallocation
functions. Constructor and destructor calls for objects of class X (or objects
of classes derived from X that do not have their own overloaded operators
new and delete) invoke the matching user-defined X::operator new() and
X::operator delete(), respectively.

123

Classes

124

The X::operator newO, X::operator new[]O, X::operator delete() and
X::operator delete[]() operator functions are static members of X whether
explicitly declared as static or not, so they cannot be virtual functions.

The standard, predefined (global) new(), new[]O, deleteO, and delete[]O
operators can still be used within the scope of X, either explicitly with the
global scope operator (::operator new(), ::operator new[]O, ::operator
delete(), and ::operator delete[]O), or implicitly when creating and
destroying non-X or non-X-derived class objects. For example, you could
use the standard new and delete when defining the overloaded versions:

void* x: : operator new(size_t s)
{

void* ptr = new char[s]; II standard new called

return ptr;

void X::operator delete(void* ptr)
{

delete (void*) ptr; II standard delete called

The reason for the size argument is that classes derived from X inherit the
X::operator new() and X::operator new[]O. The size of a derived class object
might differ from that of the base class.

C++ classes offer extensions to the predefined type system. Each class type
represents a unique set of objects and the operations (methods) and
conversions available to create, manipulate, and destroy such objects.
Derived classes can be declared that inherit the .members of one or more
base (or parent) classes.

In C++, structures and unions are considered as classes with certain access
defaults.

A simplified, "first-look" syntax for class declarations is

class-key {<distance-attrib> <distance-attrib>} <type-info> class-name
<: base-list> { <member-list> };

class-key is one of class, struct, or union.

Borland C++ Programmers Guide

Class memory
model
specifications

Table 3.1
Class memory model

specifications

Chapter 3, C++ specifics

The optional type-info indicates a request fot run-time type information
about the class. You can compile with the -RT compiler option, or you can
use the __ rtti keyword. See the discussion of class Type_info in the Library
Reference, Chapter 10.

The optional base-list lists the base class or classes from which the class
class-name will derive (or inherit) objects and methods. If any base classes
are specified, the class class-name is called a derived class (see page 134).
The base-list has default and optional overriding access specifiers 'that can
modify the access rights of the derived class to members of the base classes
(see page 133).

The optional member-list declares the class members (data and functions) of
class-name with default and optional overriding access specifiers that can
affect which functions can access which members.

For 16-bit applications only, distance modifiers can be applied to a class
declaration. The modifier(s) applied to a class declaration determine the
addressing of the class's this pointer and the class's table of virtual
functions (vtable). The distance modifiers allowed for class declarations,
and their effect on the addressing of this and the vtable are as follows:

Modifier *this vtable

near near near

__ far far near

__ huge far far

__ huge __ near near far

__ export far far

_jmport far far

If you're importing classes that are declared with the modifier __ huge, you
must change the modifier to the keyword __ import. The __ huge modifier
merely causes far addressing of the virtual tables (the same effect as the -Vf
compiler option). The __ import modifier makes all function and static
addresses default to far.

See Chapter 8 for a discussion of declaration of classes used in DLLs.

125

Class names

Class types

Class name scope

126

class-name is any identifier unique within its scope. With structures, classes,
and unions, class-name can be omitted. See page 67 for discussion of
untagged structures.

The declaration creates a unique type, class type class-name. This lets you
declare further class objects (or instances) of this type, and objects derived
from this type (such as pointers to, references to, arrays of class-name, and
so on):

class X { .. , } i
X x, &xr, *xptr, xarray[lOl i

1* four objects: type X, reference to X, pointer to X and array of X*I

struct Y { .,. } i

Y y, &yr, *yptr, yarray[lOl i

II C would have
II struct Y y, *yptr, yarray[lOl i

union z { ... }i

Z z, &zr, *zptr, ,zarray[lOl i
II C would have
II union Z z, *zptr, zarray[lOl i

Note the difference between C and C++ structure and union declarations:
The keywords struct and union are essential in C, but in C++, they are
needed only when the class names, Y and Z, are hidden (see the following
section).

The scope of a class name is local. There are some special requirements if
the class name appears more than once in the same scope. Class name
scope starts at the point of declaration and ends with the enclosing block. A
class name hides any class, object, enumerator, or function with the same
name in the enclosing scope. If a class name is declared in a scope
containing the declaration of an object, function, or enumerator of the same
name, the class can be referred to only by using the elaborated type specifier.
This means that the class key, class, struct, or union, must be used with the
class name. For example,

struct S { .,. }i

int S(struct S *Sptr)i

void func(void)
S ti
struct S Si

S(&S)i

II ILLEGAL declaration: no class key and function S in scope
II OK: elaborated with class key
II OK: this is a function call

Borland C++ Programmers Guide

Class objects

Class member list

Member functions

The keyword this

Chapter 3, C++ specifics

C++ also allows an incomplete class declaration:

class X; II no members, yet!

Incomplete declarations permit certain references to class name X (usually
references to pointers to class objects) before the class has been fully
defined. See the discussion of structure member declarations beginning
page 67. Of course, you must make a complete class declaration with
members before you can define and use class objects.

Class objects can be assigned (unless copying has been restricted), passed
as arguments to functions, returned by functions (with some exceptions),
and so on. Other operations on class objects and members can be user­
defined in many ways, including definition of member and friend functions
and the redefinition of standard functions and operators when used with
objects of a certain class. Redefined functions and operators are said to be
overloaded. Operators and functions that are restricted to objects of a certain
class (or related group of classes) are called member functions for that class.
C++ offers the overloading mechanism that allows the same function or
operator name can be called to perform different tasks, depending on the
type or number of arguments or operands.

The optional member-list is a sequence of data declarations (of any type,
including enumerations, bit fields and other classes), function declarations,
and definitions, all with optional storage class specifiers and access
modifiers. The objects thus defined are called class members. The storage
class specifiers auto, extern, and register are not allowed. Members can be
declared with the static storage class specifiers.

A function declared without the friend specifier is known as a member
function of the class. Functions declared with the friend modifier are called
friend functions.

The same name can be used to denote more than one function, provided
they differ in argument type or number of arguments.

Nonstatic member functions operate on the class type object they are called
with. For example, if x is an object of class X and fO is a member function of
X, the function call x. f () operates on x. Similarly, if xptr is a pointer to an X
object, the function call xptr->f () operates on *xptr. But how does fknow
which instance of X it is operating on? C++ provides fwith a pointer to x
called this. this is passed as a hidden argument in all calls to nonstatic
member functions.

127

Inline functions

The Borland C++
compiler can ignore

requests for inline
expansion.

Inline functions and
exceptions

128

this is a local variable available in the body of any nonstatic member
function. this does not need to be declared and is rarely referred to
explicitly in a function definition. However, it is used implicitly within the
function for member references. If x.f(y) is called, for example, where y is a
member of X, this is set to &x and y is set to this->y, which is equivalent to
x.y.

You can declare a member ftinction within its class and define it elsewhere.
Alternatively, you can both declare and define a member function within its
class, in which case it is called an in line function.

Borland C++ can sometimes reduce the normal function call overhead by
substituting the function call directly with the compiled code of the
function body. This process, called an in line expansion of the function body,
does not affect the scope of the function name or its arguments. Inline
expansion is not always possible or feasible. The inline specifier indicates to
the compiler you would like an inline expansion.

Explicit and implicit inline requests are best reserved for small, frequently
used functions, such as the operator functions that implement overloaded
operators. For example, the following class declaration of func:

int i;

class X {
pUblic:

II global int

char* func(void) { return i;} II inline by default
char* i;

};

is equivalent to:

inline char* X::func(void) { return i; }

func is defined outside the class with an explicit inline specifier. The i
returned by func is the char* i of class X (see page 131).

An inline function with an exception-specification will never be expanded
inline by Borland C++. For example,

inline void fI() throw(int)
{

II Warning: Functions with exception specifications are not expanded inline
}

Borland C++ Programmers Guide

Destructors are called
by default. See the

Users Guide, Chapter
3, for information
about exception­

handling switches.

Static members

Chapter 3, C++ specifics

The remaining restrictions (those listed below) apply only when destructor
cleanup is enabled.

An inline function that takes at least one parameter that is of type 'class
with a destructor' will not be expanded inline. Note that this restriction
does not apply to classes that are passed by reference. Example:

struct foo
foot);
-foo () ;
};

inline void f2(foo& x)
II no warning, f2() can be expanded inline
}

inline void f3(foo x) (
II Warning: Functions taking class-by-value argument(s) are
I I not expanded inl ine in function f3 (foo)
}

An inline function that returns a class with a destructor by value will not be
expanded inline whenever there are variables or temporaries that need to
be destructed within the return expression:

struct foo
foo ();
-foo() ;
};

inline foo f4 ()
return foo();
II no warning, f4() can be expanded inline
}

inline foo f5() (
foo X;
return foo(); II Object X needs to be destructed
II Warning: Functions containing some return statements are
II not expanded inline in function f5()
}

inline foo f6() {
return (foo(), foot)); II temporary in return value
II Warning: Functions containing some return statements are
II not expanded inline in function f6()
}

The storage class specifier static can be used in class declarations of data
and function members. Such members are called static members and have

129

130

distinct properties from nonstatic members. With nonstatic members, a
distinct copy 1/ exists" for each instance of the class; with static members,
only one copy exists, and it can be accessed without reference to any
particular object in its class. If x is a static member of class X, it can be
referenced as X::x (even if objects of class X haven't been created yet). It is
still possible to access x using the normal member access operators. For
example, y.x and yptr->x, where y is an object of class X and yptr is a pointer
to an object of class X, although the expressions y and yptr are not
evaluated. In particular, a static member function can be called with or
without the special member function syntax:

class X {
int member_inti

public:
static void func(int i, X* ptr)i

}i

void g (void) i
{

X obji
func(l, &Obj)i

X::func(l, &Obj)i

obj.func(l, &obj) i

II error unless there is a global func()
II defined elsewhere

II calls the static func() in X
II OK for static functions only
II so does this (OK for static and
II nonstatic functions)

Because static member functions can be called with no particular object in
mind, they don't have a this pointer, and therefore cannot access nonstatic
members without explicitly specifying an object with. or ->. For example,
with the declarations of the previous example, Junc might be defined as
follows:

void X::func(int i, X* ptr)
{

member_int = ii II which object does member_int
II refer to? Error

ptr->member_int = ii II OK: now we know!

Apart from inline functions, static member functions of global classes have
external linkage. Static member functions cannot be virtual functions. It is
illegal to have a static and nonstatic member function with the same name
and argument types. '

Borland C++ Programmers Guide

Member scope

Chapter 3, C++ specifics

The declaration of a static data member in its class declaration is not a
definition, so a definition must be provided elsewhere to allocate storage
and provide initialization.

Static members of a class declared local to some function have no linkage
and cannot be initialized. Static members of a global class can be initialized
like ordinary global objects, but only in file scope. Static members, nested to
any level, obey the usual class member access rules, except they can be
initialized.

class X {

}i

static int Xi

class inner {
static float f i
void func (void) i

}i

int X::x = 1;

// nested declaration

float X: :inner::f = 3.14i" // initialization of nested static
X::inner: :func(void) { /* define the nested function */ }

The principal use for static members is to keep track of data common to all
objects of a class, such as the number of objects created, or the last-used
resource from a pool shared by all such objects. Static members are also
used to

• Reduce the number of visible global names

• Make obvious which static objects logically belong to which class

• Permit access control to their names

The expression X: : func () in the example in the "Inline functions" section on
page 128 uses the class name X with the scope access modifier to signify
that June, although defined "outside" the class, is indeed a member
function of X and exists within the scope of X. The influence of X:: extends
into the body of the definition. This explains why the i returned by tunc
refers to X::i, the char* i of X, rather than the global int i. Without the X::
modifier, the function June would represent an ordinary non-class function,
returning the global int i.

All member functions, then, are in the scope of their class, even if defined
outside the class.

Data members of class X can be referenced using the selection operators
. and -> (as with C structures). Member functions can also be called using
the selection operators (see page 127). For example,

131

Nested types

class X {

public:
int ii

};

char narne[20];
X *ptrli
X *ptr2i
void Xfunc(char*data, X* left, X* right); II define elsewhere

void f (void) ;
{

X xl,x2, *xptr=&x1;
xl. i = 0;
x2. i = xLi i
xptr->i = 1;
x1.Xfunc ("stan", &x2, xptr);

If m is a member or base member of class X, the expression X::m is called a
qualified name; it has the same type as m, and it is an lvalue only if m is an
lvalue. It is important to note that, even if the class name X is hidden by a
non-type name, the qualified name X::m will access the correct class
member,m.

Class members cannot be added to a class by another section of your
program. The class X cannot contain objects of class X, but can contain
pointers or references to objects of class X (note the similarity with C's
structure and union types).

Tag or typedef names declared inside a class lexically belong to the scope of
that class. Such names can, in general, be accessed only by using the
xxx::yyynotation, except when in the scope of the appropriate class.

A class declared within another class is called a nested class. Its name is local
to the enclosing class; the nested class is in the scope of the enclosing class.
This is a purely lexical nesting. The nested class has no additional
privileges in accessing members of the enclosing class (and vice versa).

_ Classes can be nested in this way to an arbitrary level. Nested classes can be
declared inside some class and defined later. For example,

132 Borland C++ Programmers Guide

Member access
control

struct outer

typedef int ti II 'outer::t' is a typedef name
struct inner II 'outer: :inner' is a class

static int Xi
}i

static int Xi
int f () i

class. deepi II nested declaration
}i

int outer: :Xi II define static data member

int outer:: f ()
t Xi II 't' visible directly here
return Xi

int outer: :inner::xi
outer::t Xi
class outer::deep { }i

II define static data member
II have to use 'outer::t' here
II define the nested class here

With C++ 2.0, any tags or typedef names declared inside a class actually
belong to the global (file) scope. For example,

struct foo

enum bar { X}i II 2.0 rules: 'bar' belongs to file scope
II 2.1 rules: 'bar' belongs to 'foo' scope

}i

bar Xi

The preceding fragment compiles without errors. But because the code is
illegal under the 2.1 rules, a warning is issued as follows:

Warning: Use qualified name to access nested type 'foo::.bar'

Members of a class acquire access attribut~s either by default (depending
on class key and declaration placement) or by the use of one of the three
access specifiers: public, private, and protected. The significance of these
attributes is as follows:

public The member can be used by any function.
Friend function

declarations are not private The member can be used only by member functions and
friends of the class it's declared in. affected by access

specifiers (see
page 137).

Chapter 3, C++ specifics 133

The access specifiers
can be listed and

grouped in any
convenient sequence.

You can save typing
effort by declaring all
the private members
together, and so on.

Base and derived
class access

134

protected Same as for private. Additionally, the member can be used by
member functions and friends of classes derived from the
declared class, but only in objects of the derived type. (Derived
classes are explained in the next section.)

Members of a class are private by default, so you need explicit public or
protected access specifiers to override the default. .

Members of a struct are public by default, but you can override this with
the private or protected access specifier.

Members of a union are public by default; this cannot be changed. All three
access specifiers are illegal with union members.

A default or overriding access modifier remains effective for all subsequent
member declarations until a different access modifier is encountered. For
example,

class X
int i;
char Chi

pUblic:
int j;
int k;

protected:
int 1;

};

struct Y {
int i;

private:
int j;

pUblic:
int k;

};

union z {

II x::i is private by default
IlsoisX::ch

II next two are public

II X::l is protected

II Y::i is public by default

II Y::j is private

II Y::k is public

int i; II public by default; no other choice
double d;

};

When you declare a derived class D, you list the base classes Bl, B2, ... in a
comma-delimited base-list:

class-key D : base-list { <member-list> }

Borland C++ Programmers Guide

Since a base class
can itself be a derived

class, the access
attribute question is

recursive: you
backtrack until you
reach the basest of

the base classes,
those that do not

inherit.

Unions cannot have
base classes, and
unions cannot be

used as base
classes.

Chapter 3, C++ specifics

D inherits all the members of these base classes. (Redefined base class
members are inherited and can be accessed using scope overrides, if
needed.) D can use only the public and protected members of its base
classes. But, what will be the access attributes of the inherited members as
viewed by D? D might want to use a public member from a base class, but
make it private as far as outside functions are concerned. The solution is to
use access specifiers in the base-list.

When declaring D, you can use the access specifier public, protected, or
private in front of the classes in the base-list:

class D : public Bl, private B2, ... {

These modifiers do not alter the access attributes of base members as
viewed by the base class, though they can alter the access attributes of base
members as viewed by the derived class.

The default is private if D is a class declaration, and public if D is a struct
declaration.

The derived class inherits access attributes from a base class as follows:

• public base class: public members of the base class are public members of
the derived class. protected members of the base class are protected
members of the derived class. private members of the base class remain
private to the base class.

• protected base class: Both public and protected members of the base
class are protected members of the derived class. private members of the
base class remain private to the base class.

• private base class: Both public and protected members of the base class
are private members of the derived class. private members of the base
class remain private to the base class.

Note that private members of a base class are always inaccessible to
member functions of the derived class unless friend declarations are
explicitly declared in the base class granting access. For example,

1* class X is derived from class A *1
class X : A { II default for class is private A

135

136

I~ class Y is derived (multiple inheritance) from Band C
B defaults to private B *1

class Y : B, public C { II override default for C

1* struct S is derived from D *1
struct S : D { II default for struct is public D

1* struct T is derived (multiple inheritance) from D and E
E defaults to public E *1

struct T : private D, E { II override default for D
II E is public bY,default

The effect of access specifiers in the base list can be adjusted by using a
qualified-name in the public or protected declarations of the derived class.
For example,

class B {
int ai

public:
int b, Ci

int Bfunc (void) i

}i

class X : private B
int di

public:

} i

B: :Ci

int ei

int Xfunc (void) i

int Efunc(X& Xli

II private b,y default

II a, b, c, Bfunc are now private in X
II private by default, NOTE: a is not
II accessible in X

II c was private, now is public

II external to B and X

The function EfuncO can use only the public names c, e, and XfuncO.

The function XfuncO is in X, which is derived from private B, so it has
access to

• The II adjusted-to-public" c

• The "private-to-X" members from B: band BfuncO
• X's own private and public members: d, e, and XfuncO

However, XfuncO cannot access the "private-to-B" member, a.

Bor/and C++ Programmers Guide

Virtual base
classes

Friends of classes

Chapter 3, C++ specifics

With multiple inheritance, a base class can't be specified more than once in
a derived class:

class B { ... };

class D : B, B { '" }; I I Illegal

However, a base class can be indirectly passed to the derived class more
than once:

class X public B { ... }
class Y public B { .. , }
class Z public X, public Y { ... } II OK

In this case, each object of class Z will have two sub-objects of class B. If this
causes problems, the keyword virtual can be added to a base class specifier.
For example,

class X virtual public B { '" }
class Y : virtual public B { ... }
class Z : public X, public Y { .,.

B is now a virtual base class, and class Z has only one sub-object of class B.

A friend F of a class X is a function or class, although not a member
function of X, with full access rights to the private and protected members
of X. In all other respects, F is a normal function with respect to scope,
declarations, and definitions.

Since F is not a member of X, it is not in the scope of X, and it cannot be
called with the x.F and xptr->F selector operators (where x is an X object
and xptr is a pointer to an X object).

If the specifier friend is used with a function declaration or definition
within the class X, it becomes a friend of X.

friend functions defined within a class obey the same inline rules as
member functions (see page 128). Friend functions are not affected by their
position within the class or by any access specifiers. For example,

class X {
int i; II private to X
friend void friend_func{X*, int);

1* friend_func is not private, even though it's declared in the private section
*1

public:
void member_func{int);

};

137

138

1* definitions; note both functions access private int i *1
void friend_func(X* xptr, int a) { xptr->i = a; }
void X::member_func(int a) { i = a; }

x xobj;

1* note difference in function calls *1
friend_func(&xobj, 6);
xobj.member_func(6);

You can make all the functions of class Y into friends of class·X with a
single declaration:

class Y;
class X {

friend Y;
int i;
void member_funcX();

};

class Y; {

};

void friend_xl (X&) ;
void friend_X2(X*);

II incomplete declaration

II complete the declaration

The functions declared in Yare friends of X, although they have no friend
specifiers. They can access the private members of X, such as i and
member _funcX.

It is also possible for an individual member function of class X to be a .
friend of class Y:

class X {

void member_funcX();

class Y {
int i;
friend void X::member_funcX();

};

Class friendship is not transitive: X friend of Y and Y friend of Z does not
imply X friend of Z. Friendship is not inherited.

Borland C++ Programmers Guide

Constructors and destructors

Chapter 3, C++ specifics

There are several special member functions that determine how the objects
of a class are created, initialized, copied, and destroyed. Constructors and
destructors are the most important of these. They have many of the
characteristics of normal member functions-you declare and define them
within the class, or declare them within the class and define them outside­
but they have some unique features:

• They do not have return value declarations (not even void).

• They ,cannot be inherited, though a derived class can call the base class's
constructors and destructors.

• Constructors,like most C++ functions, can have default arguments or
use member initialization lists.

• Destructors can be virtual, but constructors cannot. (See page 148.)

• You can't take their addresses.

int main(void)
{

void *ptr = base: :basei I I illegal

• Constructors and destructors can be generated by Borland C++ if they
haven't been explicitly defined; they are also invoked on many occasions
without explicit calls in your program. Any constructor or destructor
generated by the compiler will be public.

• You cannot call constructors the way you call a normal function.
Destructors can be called if you use their fully qualified name.

{

X *Pi

p->X: :-X() i

x: :X() i

II legal call of destructor
II illegal call of constructor

• The compiler automatically calls constructors and destructors when
defining and destroying objects.

• Constructors and destructors can make implicit calls to operator new and
operator delete if allocation is required for an object.

139

Constructors

140

• An object with a constructor or destructor cannot be used as a member of
a union .

• If no constructor has been defined for some class X to accept a given
type, no attempt is made to find other constructors or conversion
functions to convert the assigned value into a type acceptable to a con­
structorfor class X. Note that this rule applies only to any constructor
with one parameter and no initializers that use the "=" syntax.

class X {/* *1 X(int)i }i
class Y {/* .,. *1 Y(X)i}i
Y a = Ii II illegal: Y(X(l)) not tried

If class X has one or more constructors, one of them is invoked each time
you define an object x of class X. The constructor creates x and initializes it.
Destructors reverse the process by destroying the class objects created by
constructors.

Constructors are also invoked when local or temporary objects of a class are
created; destructors are invoked when these objects go out of scope.

Constructors are distinguished from all other member functions by having
the same name as the class they belong to. When an object of that class is
created or is being copied, the appropriate constructor is called implicitly.

Constructors for global variables are called before the main function is
called. When the #pragma startup directive is used to install a function
prior to the main function, global variable constructors are called prior to
the startup functions.

Local objects are created as the scope of the variable becomes active. A
constructor is also invoked when a temporary object of the class is created.

class X {
public:

X() i II class X constructor
}i

A class X constructor cannot take X as an argument:

class X {
public:

X(X) i

}i

I I illegal

The parameters to the constructor can be of any type except that of the class
it's a member of. The constructor can acc~pt a reference to its own class as a
parameter; when it does so, it is called the copy constructor. A constructor
that accepts no parameters is called the default constructor. The default

Borland C++ Programmers Guide

Constructor
defaults

The copy
constructor

Chapter 3, C++ specifics

constructor and the copy constructor are discussed in the following
sections.

The default constructor for class X is one that takes no arguments; it
usually has the form X: : X () . If no user-defined constructors exist for a class,
Borland C++ generates a default constructor. On a declaration such as X x,
the default constructor creates the object x.

Like all functions, constructors can have default arguments. For example,
the constructor

X: :X(int, int = 0)

can take one or two arguments. When presented with one argument, the
missing second argument is assumed to be a zero int. Similarly, the
constructor

X: :X(int = 5, int = 6)

could take two, one, or no arguments, with appropriate defaults. However,
the default constructor X: : X () takes no arguments and must not be confused
with, say, x: : X (int = 0), which can be called with no arguments as a default
constructor, or can take an argument.

You should avoid ambiguity in c;alling constructors. In the following case,
the two default constructors are ambiguous:

class X

public:
X();
X(int i = 0);

};

int main ()
{

X one(lO); II OK; uses X::X(int)
X two; II illegal; ambiguous whether to call X::X() or

/I X::X(int = 0)
return 0;

A copy constructor for class X is one that can be called with a single
argument of type X, as follows:

X::X(const X&)
or

X::X(const X&, int = 0)

141

Overloading .
constructors

Order of calling
constructors

142

Default arguments are also allowed in a copy constructor. Copy construc­
tors are invoked when initializing a class object, typically when you declare
with initialization by another class object:

X xl;
X x2 = xl;
X x3(x1);

Borland C++ generates a copy constructor for class X if one is needed and
no other constructor has been defined in class X. The copy constructor that
is generated by the Borland C++ compiler lets you safely start program­
ming with simple data types. You need to make your own definition of the
copy constructor only if your program creates aggregate, complex types
such as class, struct, and arrays.

See also the discussion of member-by-member class assignment beginning
on page 154. You should define the copy constructor if you overload the
assignment operator.

Constructors can be overloaded, allowing objects to be created, depending
on the values being used for initialization.

class X {
int integer-part;
double double-part;

public:
X (int i) integer-part = i;
X(double d) double-part = di }

};

int main() {
X one(10); II invokes X::X(int) and sets integer-part to 10
X one(3.14)i II invokes X::X(double) setting double-part to 3.14
return Oi

In the case where a class has one or more base classes, the base class
constructors are invoked before the derived class constructor. The base
class constructors are called in the order they are declared.

For example, in this setup,

class Y { ... }
class X : public Y { ... }
X onei

the constructors are called in this order:

Borland C++ Programmers Guide

Chapter 3, C++ specifics

Y(); II base class constructor
X(); II derived class constructor

For the case of multiple base classes,

class X : public Y, public Z
X one;

the constructors are called in the order of declaration:

Y(); II base class constructors come first
Z();
X() ;

Constructors for virtual base classes are invoked before any nonvirtual base
classes. If the hierarchy contains multiple virtual base classes, the virtual
base class constructors are invoked in the order in which they were
declared. Any nonvirtual bases are then constructed before the derived
class constructor is called.

If a virtual class is derived from a nonvirtual base, that nonvirtual base will
be first so that the virtual base class can be properly constructed. The code

class X : public Y, virtual public Z
X one;

produces this order:

Z(); II virtual base class initialization
Y(); II nonvirtual base class
X(); II derived class

Or, for a more complicated example:

class base;
class base2;
class levell : public base2, virtual public base;
class leve12 : public base2, virtual public base;
class toplevel : public levell, virtual public leve12;
toplevel view;

The construction order of view would be as follows:

base();

base2() ;

leve12() ;
base2() ;
levell() ;
toplevel() ;

II virtual base class highest in hierarchy
II base is constructed only once
II nonvirtual base of virtual base leve12
II must be called to construct leve12
II virtual base class
II nonvirtual base of levell
II other nonvirtual base

143

Class initialization

144

If a class hierarchy contains multiple instances of a virtual base class, that
base class is cOllstructed only once. If, however, there exist both virtual and
nonvirtual instances of the base class, the class constructor is invoked a
single time for all virtual instances and then once for each nonvirtual
occurrence of the base class.

Constructors for elements of an array are called in increasing order of the
subscript.

An object of a class with only public members and no constructors or base
classes (typically a structure) can be initialized with an initializer list. If a
class has a constructor, its objects must be either initialized or have a
default constructor. The latter is used for objects not explicitly initialized.

Objects of classes with constructors can be initialized with an expression
list in parentheses. This list is used as an argument list to the constructor.
An alternative is to use an equal sign followed by a single value. The single
value can be the same type as the first argument accepted by a constructor
of that class, in which case either there are no additional arguments, or the
remaining arguments have default values. It could also be an object of that
class type. In the former case, the matching constructor is called to create
the object. In the latter case, the copy constructor is called to initialize the
object.

class X

int ii
public:

X()i II function bodies omitted for clarity

}i

X(int Xli
X(const X&) i

void main ()
{

X onei
X two(l) i
X three = 1i

II default constructor invoked
II constructor X: :X(int) is used
II calls X: :X(int)

X four = onei II invokes X::X(const X&) for copy
X five(two)i II calls X: :X(const X&)

The constructor can assign values to its members in two ways:

• It can accept the values as parameters and make assignments to the
member variables within the function body of the constructor:

Borland C++ Programmer's Guide

class X
{

int a, bi
pUblic:

X (int i, int j) { a = i i b = j }
}i

• An initializer list can be used prior to the function body:

class X

int a, b, &Ci II Note the reference variable.
pUblic:

X(int i, int j) : a(i), b(j), c(a) {}
}i

.. The initializer list is the only place to initialize a reference variable.

Base class
constructors must be

declared as either
public or protected

to be called from a
derived class.

Chapter 3, C++ specifics

In both cases, an initialization of X x (1, 2) assigns a value of 1 to x::a and 2
to x::b. The second method, the initializer list, provides a mechanism for
passing values along to base class constructors.

class basel
{

int Xi
public:

basel (int i) { X = ii }
} i

class base2
{

int Xi
public:

base2(int i) : x(i) {}
}i

class top: public basel, public base2
{

int a, bi
public:

top(int i, int j) : base1(i*5), base2(j+i), a(i) {b = ji}
}i

With this class hierarchy, a declaration of top one (1, 2) would result in the
initialization of basel with the value 5 and base2 with the value 3. The
methods of initialization can be intermixed.

As described previously, the base classes are initialized in declaration order.
Then the members are initialized, also in declaration order, independent of
the initialization list.

145

Destructors

146

class X

int a, bi
pUblic:

X(int i, j) : a(i), b(a+j) {}
}i

With this class, a declaration of X x (1,1) results in an assignment of 1 to x::a
and 2 to x::b.

Base class constructors are called prior to the construction of any of the
derived classes members. If the values of the derived class are changed,
they will have no effect on the creation of the base class.

class base

int Xi

pUblic:
base (int i) : X (i) {}

}i

class derived : base

int ai

pUblic:
derived(int i) a(i*10), base(a) { } II Watch out! Base will be

II passed an uninitialized a
}i

With this class setup, a call of derived d (1) will not result in a value of 10 for
the base class member x. The value passed to the base class constructor will
be undefined.

When you want an initializer list in a non-inline constructor, don't place the
list in the class definition. Instead, put it at the point at which the function
is defined.

derived: :derived(int i) : ali)
{

The destructor for a class is called to free members of an object before the
object is itself destroyed. The destructor is a member function whose name
is that of the class preceded by a tilde (-). A destructor cannot accept any
parameters, nor will it have a return type or value declared.

Borland C++ Programmers Guide

Invoking
destructors

atexit, #pragma exit,
and destructors

exit and destructors

abort and
destructors

Chapter 3, C++ specifics

#include <stdlib.h>
class X

public:
-X() {}i II destructor for class X

};

If a destructor isn't explicitly defined for a class, the compiler generates
one.

A destructor is called implicitly when a variable goes out of its declared
scope. Destructors for local variables are called when the block they are
declared in is no longer active. In the case of global variables, destructors
are called as part of the exit procedure after the main function.

When pointers to objects go out of scope, a destructor is not implicitly
called. This means that the delete operator must be called to destroy such
an object.

Destructors are called in the exact opposite order from which their
corresponding constructors were called (see page 142).

All global objects are active until the code in all exit procedures has
executed. Local variables, including those declared in the main function, are
destroyed as they go out of scope. The order of execution at the end of a
Borland C++ program is as follows:

• atexitO functions are executed in the order they were inserted.

• #pragma exit functions are executed in the order of their priority codes.

• Destructors for global variables are called.

When you call exit from within a program, destructors are not called for
any local variables in the current scope. Global variables are destroyed in
their normal order.

If you call abort anywhere in a program, no destructors are called, not even
for variables with a global scope.

A destructor can also be invoked explicitly in one of two ways: indirectly
through a call to delete, or directly by using the destructor's fully qualified
name. You can use delete to destroy objects that have been allocated using
new. Explicit calls to the destructor are necessary only for objects allocated
a specific address through calls to new.

147

virtual destructors

148

#include <stdlib.h>
class X {
public:

-X () {} i

}i

void* operator new(size_t size, void *ptr)

return ptri

char buffer[sizeof(X)] i

void main() {
X* pointer = new Xi
X* exact-pointeri

exact-pointer = new(&buffer) X; II pointer initialized at
II address of buffer

delete pointer;
exact-pointer->X::-X() ;

II delete used to destroy pointer
II direct call used to deallocate

A destructor can be declared as virtual, This allows a pointer to a base class
object to call the correct destructor in the event that the pointer actually
refers to a derived class object. The destructor of a class derived from a
class with a virtual destructor is itself virtual.

class color

public:
virtual -color()i II virtual destructor for color

};

class red : public color

public:
-red () i

};

II destructor for red is also virtual

class brightred: public red
{

public:
-brightred() ;

}i

II brightred's destructor also virtual

Borland C++ Programmers Guide

The previously listed classes and these declarations:

color *palette[3];

palette[O] = new red;
palette[l] = new brightred;
palette[2] = new color;

produce these results:

delete palette[O];
II The destructor for red is called, followed by the
II destructor for color.

delete palette[l];
II The destructor for brightred is called, followed by -red
II and -color.

delete palette[2];
II The destructor for color is invoked.

However, if no destructors are declared as virtual, delete palette[O], delete
palette[1], and delete palette[2] would all call only the destructor for class
color. This would incorrectly destruct the first two elements, which were
actually of type red and brightred.

Operator overloading

Chapter 3, C++ specifics

c++ lets you redefine the actions of most operators, so that they perform
specified functions when used with objects of a particular class. As with
overloaded c++ functions in general, the compiler distinguishes the
different functions by noting the context of the call: the number and types
of the arguments or operands.

The keyword operator followed by the operator symbol is called the
operator function name; it is used like a normal function name when defining
the new (overloaded) action of the operator.

All the operators listed on page 81 can be overloaded except for:

.. * :: ?:

The preprocessing symbols # and ## also cannot be overloaded.

The =, [1 (), and -> operators can be overloaded only as nonstatic member
functions. These operators cannot be overloaded for enum types. Any
attempt to overload a global version of these operators is a compile-time
error.

149

Source

See the Library
Reference, Chapter

8, for a description of
class complex.

150

A function operator called with arguments behaves like an operator work­
ing on its operands in an expression. The operator function can't alter the
number of arguments or the precedence and associativity rules (see
Table 2.11 on page 78) applying to normal operator use.

The following example extends the class complex to create complex-type
vectors. Several of the most useful operators are overloaded to provide
some customary mathematical operations in a natural syntax.

Some of the issues illustrated by the example are

• The default constructor is defined. This is provided by the compiler only
if you have not defined it or any other constructor.

• The copy constructor is defined explicitly. Normally, if you have not
defined any constructors, the compiler will provide one. You should
define the copy constructor if you are overloading the assignment
operator.

• The assignment operator is overloaded. If you do not overload the
assignment operator, the compiler calls a default assignment operator
when required. By overloading assignment of cvector types, you specify
exactly the actions to be taken.

• The subscript operator is defined as a member function (a requirement
when overloading) with a single argument. The const version assures the
caller that it will not modify its argument-this is useful when copying
or assigning. This operator should check that the index value is within
range-a good place to implement exception handling.

• The addition operator is defined as a member function. It allows addition
only for cvector types. Addition should always check that the operands'
sizes are compatible.

• The multiplication operator is declared a friend. This lets you define the
order of the operands. An attempt to reverse the order of the operands is
a compile-time error.

• The stream insertion operator is overloaded to naturally display a cvector.
Large objects that don't display well on a limited size screen might
require a different display strategy.

1* HOW TO EXTEND THE complex CLASS AND OVERLOAD THE REQUIRED OPERATORS. *1
#pragma warn -inl II IGNORE not expanded inline WARNINGS.
#include <complex.h> II THIS ALREADY INCLUDES iostream.h

II COMPLEX VECTORS
class cvector {

int size;
complex *data;

Borland C++ Programmers Guide

Chapter 3, C++ specifics

public:
cvector() size = 0; data = NULL; };
cvector(int i = 5) : size(i) { II DEFAULT VECTOR SIZE.

data = new complex[size];
for (int j = 0; j < size; jtt)

data[j] = j t (0.1 * j); II ARBITRARY INITIALIZATION.
};

1* THIS VERSION IS CALLED IN main() *1
complex& operator [] (int i) { return data[i]; };
1* THIS VERSION IS CALLED IN ASSIGNMENT OPERATOR AND COpy THE CONSTRUCTOR *1
const complex& operator [] (int i) const { return data[i]; };

cvector operator t(cvector& A) II ADDITION OPERATOR
cvector result(A.size); II DO NOT MODIFY THE ORIGINAL
for (int i = 0; i < size; itt)

result[i] = data[i] t A.data[i];
return result;
};

1* BECAUSE scalar * vector MULTIPLICATION IS NOT COMMUTATIVE, THE ORDER OF
THE ELEMENTS MUST BE SPECIFIED. THIS FRIEND OPERATOR FUNCTION WILL ENSURE
PROPER MULTIPLICATION. *1

friend cvector operator *(int scalar, cvector& A) {
cvector result(A.size); II DO NOT MODIFY THE ORIGINAL
for (int i = 0; i < A.size; itt)

result.data[i] = scalar * A.data[i];
return result;

1* TH~ STREAM INSERTION OPERATOR. *1
friend ostream& operator «(ostream& out_data, cvector& C) {

for (int i = 0; i < C.size; itt)
out_data« "[" «i« "]=" «C.data[i] «" ";

cout « end 1 ;
return out_data;
};

cvector(const cvector &C) { II COpy CONSTRUCTOR
size = C.size;
data = new complex[size] i

for (int i = 0; i < size; itt)
data[i] = C[i];

cvector& operator =(const cvector &C) { II ASSIGNMENT OPERATOR.
if (this == &C) return *this;

delete[] data;
size = C.size;
data = new complex[size] i

for (int i = 0; i < size; itt)

151

Output

};

data [i] = C [i] ;
return *this;

virtual -cvector() { delete[] data; }; II DESTRUCTOR
};

int main(void) { 1* A FEW OPERATIONS WITH complex VECTORS. *1
cvector cvectorl(4) , cvectot2(4) , result(4);

II CREATE complex NUMBERS AND ASSIGN THEM TO complex VECTORS
cv~ctorl[3] = complex(3.3, 102.8);
cout « "Here is cvectorl:" « endl;
cout « cvectorl;

cvector2[3] = complex(33.3, 81);
cout « "Here is cvector2:" « endl;
cout « cvector2;

result = cvectorl + cvector2;
cout « "The result of vector addition:" « endl;
cout « result;

result = 10 * cvector2;
cout « "The result of 10 * cvector2:" « endl;
cout « result;
return 0;

Here is cvectorl:
[0] = (0, 0) [1]=(1.1, 0) [2]=(2.2, 0) [3]=(3.3, 102.8)
Here is cvector2:
[0] = (0, 0) [1]=(1.1, 0) [2]=(2.2, 0) [3]=(33.3, 81)
The result of vector addition:
[0]=(0, 0) [1]=(2.2, 0) [2]=(4.4, 0) [3]=(36.6, 183.8)
The result of 10 * cvector2:
[0]=(0, 0) [1]=(11, 0) [2]=(22, 0) [3]=(333, 810)

Overloading operator functions

152

Operator functions can be called directly, although they are usually
invoked indirectly by the use of the overload operator:

c3 = cl.operator + (c2); II same as c3 = cl + c2

Apart from new and delete, which have their own rules (see page 122), an
operator function must either be a nonstatic member function or have at
least one argument of class type. The operator functions =, (), [] and ->
must be nonstatic member functions.

Borland C++ Programmers Guide

Overloaded
operators and
inheritance

Unary operators

Binary operators

Chapter 3, C++ specifics

With the exception of the assignment function operator =() (see the section
beginning on page 154), all overloaded operator functions for class X are
inherited by classes derived from X, with the standard resolution rules for
overloaded functions. If X is a base class for Y, an overloaded operator
function for X could be further overloaded for Y.

You can overload a prefix or postfix unary operator by declaring a non­
static member function taking no arguments, or by declaring a nonmember
function taking one argument. If @ represents a unary operator, @x and
x@ can both be interpreted as either x.operator@() or operator@(x),
depending on the declarations made. If both forms have been declared,
standard argument matching is applied to resolve any ambiguity.

Beginning with C++ 2.1, when an operator++ or operator- - is declared as a
member function with no parameters, or as a nonmember function with
one parameter, it only overloads the prefix operator++ or operator- -. You
can only overload a postfix operator++ or operator- - by defining it as a
member function taking an int parameter or as a nonmember function
taking one class and one int parameter. The int parameter is used by the
compiler only to distinguish operator prototypes-it is not used in the
operator definition. See page 76 for an example of postfix and prefix
increment operator overloading.

When only the prefix version of an operator++ or operator- - is overloaded
and the operator is applied to a class object as a postfix operator, the
compiler issues a warning and calls the prefix operator. If a function fune
calls the postfiX operator the compiler issues the following warnings:

Warning: Overloaded prefix 'operator ++' used as a postfix operator in function
func ()

Warning: Overloaded prefix 'operator --' used as a postfix operator in function
func ()

You can overload a binary operator by declaring a nonstatic member
function taking one argument, or by declaring a nonmember function
(usually friend) taking two arguments. If @ represents a binary operator,
x@y can be interpreted as either x.operator@(y) or operator@(x,y)
depending on the declarations made. If both forms have been declared,
standard argument matching is applied to resolve any ambiguity.

153

Assignment
operator=

Function call
operator()

Subscript
operator[]

154

The assignment operator=() can be overloaded by declaring a nonstatic
member function. For example,

class String {

String&operator = (String& str) i

String (String&) i
-String()i

This code, with suitable definitions of String::operator =0, allows string
assignments strl = str2 just like other languages. Unlike the other operator
functions, the assignment operator function cannot be inherited by derived
classes. If, for any class X, there is no user-defined operator =, the operator
= is defined by default as a member-by-member assignment of the
members of class X:

X& x: : operator = (const X& source)
{

/ / memberwise a'ssignment

The function call

primary-expression (<expression-list>)

is considered a binary operator with operands primary-expression and
expression-list (possibly empty). The corresponding operator function is
operatorO. This function can be user-defined for a class X (and any derived
classes) only by means of a nonstatic member function. A call X(argl, arg2),
where X is an object of class X, is interpreted as X.operatorO(argl,arg2).

Similarly, the subscripting operation

primary-expression [expression]

is considered a binary operator with operands primary-expression and
expression. The corresponding operator function is operator[]; this can be
user-defined for a class X (and any derived classes) only by means of a
nonstatic member function. The expression X[y], where X is an object of
class,X, is interpreted as x.operator[](y).

Borland C++ Programmer's Guide

Class member
access operator->

Class member access using

primary-expression -> expression

is considered a unary operator. The function operator-> must be a nonstatic
member function. The expression x->m, where x is a class X object, is
interpreted as (x.operator->(»)->m, so that the function operator->() must
either return a pointer to a class object or return an object of a class for
which operator-> is defined.

Polymorphic classes

virtual functions

See the following
section for a

_ discussion of pure
virtual functions.

Chapter 3, C++ specifics

Classes that provide an identical interface, but can be implemented to serve
different specific requirements, are referred to as polymorphic classes. A
class is polymorphic if it declares or inherits at least one virtual (or pure
virtual) function. The only types that can support polymorphism are class
and struct.

virtual functions allow derived classes to provide different versions of a
base class function. You can use the virtual keyword to declare a virtual
function in a base class. By declaring the function prototype in the usual
way ~nd then prefixing the declaration with the virtual keyword. To declare
a pure function' (which automatically declares an abstract class), prefix the
prototype with the virtual keyword, and set the function equal to zero.

virtual int functl(void)i II A virtual function declaration.
virtual int funct2(void) = Oi II A pure function declaration.

virtual void funct3(void) = 0 II This is a valid declaration.
II Some code in here.
}i

When you declare virtual functions, keep these guidelines in mind:

• They can be member functions only.

• They can be declared a friend of another class.

• They cannot be a static member.

A virtual function does not need to be redefined in a derived class. You can
supply one definition in the base class so that all calls will access the base
function.

To redefine a virtual function in any derived class, the number and type of
arguments must be the same in the base class declaration and in the

155

virtual function
return types

derived class declaration. (The case for redefined virtual functions differing
only in return type is discussed below.) A redefined function is said to
override the base class function.

You can also declare the functions int Base:: Fun (int) and int
Derived: :Fun(int) even when they are not virtual. In such a case, int
Deri ved: : Fun(int) is said to hide any other versions of Fun (int) that exist in
any base classes. In addition, if class Derived defines other versions of FunO,
(that is, versions of FunO with different signatures) such versions are said
to be overloaded versions of FunO.

Generally, when redefining a virtual function, you cannot change just the
function return type. To redefine a virtual function, the new definition (in
some derived class) must exactly match the return type and formal
parameters of the initial declaration. If two functions with the same name
have different formal parameters, C++ considers them different, and the
virtual function mechanism is ignored.

However, for certain virtual functions in a base class, their overriding
version in a derived class can have a return type that is different from the
overridden function. This is possible only when both of the following
conditions are met:

• The overridden virtual function returns a pointer or reference to the base
class .

• The overriding function returns a pointer or reference to the derived
class.

If a base class B and class D (derived publicly from B) each contain a virtual
function vf, then if vf is called for an object d of D, the call made is D: : vf (),
even when the access is via a pointer or reference to B. For example,

struct X {};
struct Y : X {};

struct B {
virtual void vfl();
virtual void vf2();
virtual void vf3();
void f();

II Base class.
II Derived class.

virtual X* pf(); II Return type is a pointer to base. This can
II be overridden.

};

class D public B {

156 Borland C++ Programmers Guide

Abstract classes

Chapter 3, C++ specifics

public:
virtual void vfl(); II Virtual specifier is legal but redundant.
void vf2(int); II Not virtual, since it's using a different

I I char vf3 () ;
void f () ;
y* pf();

};

void extf ()

II arg list. This hides B::vf2().
II Illegal: return-type-only change!

II Overriding function differs only
II in return type. Returns a pointer to
II the derived class.

D d; II Instantiate D
B* bp = &d; II Standard conversion from D* to B*

II Initialize bp with the table of functions
II provided for object d. If there is no entry for a
II function in the d-table, use the function
II in the B-table.

bp->vfl(); II Calls D: :vfl
bp->vf2(); II Calls B: :vf2 since D's vf2 has different args
bp->f(); II Calls B::f (not virtual)

X* xptr = bp->pf(); II Calls D::pf() and converts the result
II to a pointer to X.

D* dptr = &d;
y* yptr = dptr->pf(); II Calls D::pf() and initializes yptr.

II No further conversion is done.

The overriding function vfi in D is automatically virtual. The virtual
specifier can be used with an overriding function declaration in the derived
class. If other classes will be derived from D, the virtual keyword is
required. If no further classes will be derived from D, the use of virtual is
redundant.

The interpretation of a virtual function call depends on the type of the
object it is called for; with nonvirtual function calls, the interpretation
depends only on the type of the pointer or reference denoting the object it is
called for.

virtual functions exact a price for their versatility: each object in the derived
class needs to carry a pointer to a table of functions in order to select the
correct one at run time (late binding).

An abstract class is a class with at least one pure virtual function. A virtual
function is specified as pure by setting it equal to zero.

An abstract class can be used only as a base class for other classes. No
objects of an abstract class can be created. An abstract class cannot be used

157

c++ scope

158

as an argument type or as a function return type. However, you can declare
pointers to an abstract class. References to an abstract class are allowed,
provided that a temporary object is not needed in the initialization. For
example,

class shape
point center;

public:

II abstract class

where() { return center; }
move(point p) { center = p; draw(); }
virtual void rotate(int) = 0; II pure virtual function
virtual void draw() = 0; II pure virtual function
virtual void hilite() = 0; II pure virtual function

shape x;
shape* sptr;
shape f();

int g (shape s) i

shape& h(shape&);

II ERROR: attempt to create an object of an abstract class
II pointer to abstract class is OK
II ERROR: abstract class cannot be a return type
II ERROR: abstract class cannot be a function argument type
II reference to abstract class as return
II value or function argument is OK

Suppose that D is a derived class with the abstract class B as its immediate
base class. Then for each pure virtual function pvf in B, if D doesn't provide
a definition for pvf, pvf becomes a pure member function of D, and D will
also be an abstract class.

For example, using the class shape previously outlined,

class circle : public shape { II circle derived from abstract class
int radiusi II private

public:
void rotate (int) { }

void draw () ;

II virtual function defined: no action
II to rotate a circle
II circle: : draw must be defined somewhere

Member functions can be called from a constructor of an abstract class, but
calling a pure virtual function directly or indirectly from such a constructor
provokes a run-time error.

The lexical scoping rules for C++, apart from class scope, follow the general
rules for C, with the proviso that C++, unlike C, permits both data and

Borland C++ Programmers Guide

Class scope

Hiding

C++ scoping rules
summary

Chapter 3, C++ specifics

function declarations to appear wherever a statement might appear. The
latter flexibility means that care is needed when interpreting such phrases
as "enclosing scope" and "point of declaration."

The name M of a member of a class X has class scope "local to X"; it can be
used only in the following situations:

• In member functions of X

• In expressions such as x.M, where x is an object of X

• In expressions such as xptr->M, where xptr is a pointer to an object of X

• In expressions such as x: : M or D: : M, where D is a derived class of X

• In forward references within the class of which it is a member

Names of functions declared as friends of X are not members of X; their
names simply have enclosing scope.

A name can be hidden by an explicit declaration of the same name in an
enclosed block or in a class. A hidden class member is still accessible using
the scope modifier with a class name: X: :M. A hidden file scope (global)
name can be referenced with the unary operator :: (for example, ::g). A
class name X can be hidden by the name of an object, function, or
enumerator declared within the scope of X, regardless of the order in which
the names are declared. However, the hidden class name X can still be
accessed by prefixing X with the appropriate keyword: class, struct, or
union.

The point of declaration for a name x is immediately after its complete
declaration but before its initializer, if one exists.

The following rules apply to all names, including typedef names and class
names, provided that C++ allows such names in the particular context
discussed:

• The name itself is tested for ambiguity. If no ambiguities are detected
within its scope, the access sequence is initiated.

• If no access control errors occur, the type of the object, function, class,
typedef, and so on, is tested.

• If the name is used outside any function and class, or is prefixed by the
unary scope access operator::, and if the name is not qualified by the
binary:: operator or the member selection operators. and ->, then the
name must be a global object, function, or enumerator.

• If the name n appears in any of the forms X::n, x.n (where x is an object of
X or a reference to X), or ptr->n (where ptr is a pointer to X), then n is the

159

Templates

160

name of a member of X or the member of a class from which X is
derived.

• Any name that hasn't been discussed yet and that is used in a static
member function must either be declared in the block it occurs in or in an
enclosing block, or be a global name. The declaration of a local name n
hides declarations of n in enclosing blocks and global declarations of n.
N ames in different scopes are not overloaded.

• Any name that hasn't been discussed yet and that is used in a nonstatic
member function of class X must either be declared in the block it occurs
in or in an enclosing block, be a member of class X or a base class of X, or
be a global name. The declaration of a local name n hides declarations of
n in enclosing blocks, members of the function's class, and global
declarations of n. The declaration of a member name hides declarations
of the same name in base classes.

• The name of a function argument in a function definition is in the scope
of the outermost block, of the function. The name of a function argument
in a nondefining function declaration has no scope at all. The scope of a
default a,rgument is determined by the point of declaration of its
argument, but it can't access local variables or nonstatic class members.
Default arguments are evaluated at each point of call.

• A constructor initializer (see ctor-initializer in the class declarator syntax
in Table 2.3 on page 38) is evaluated in the scope of the outermost block
of its constructor, so it can refer to the constructor's argument names.

Templates, also called generics or parameterized types, let you construct a
family of related functions or classes. This section introduces the basic
concept of templates, then provides some specific points. The template
syntax is shown below:

Template-declaration:
template < template-argument-list > declaration

tfmplate-argument-list:
template-argument
template-argument-list, template argument

template-argument:
type-argument
argument-declaration

Borland C++ Programmers Guide

Function
templates

Chapter 3, C++ specifics

type-argument:
class identifier

template-class-name:
template-name < template-arg-list >

template-arg-list:
template-arg
template-arg-list , template-arg

template-arg:
expression
type-name

Consider a function max(x, y) that returns the larger of its two arguments. x
and y can be of any type that has the ability to be ordered. But, since C++ is
a strongly typed language, it expects the types of the parameters x and y to
be declared at compile time. Without using templates, many overloaded
versions of max are required, one for each data type to be supported even
though the code for each version is essentially identical. Each version com­
pares the arguments and returns the larger. For example, the following
code could be followed by yet other versions of max:

int max(int x, int Y) {
return (x > y) ? x : Yi
}

long max (long x, long Y) {
return (x > y) ? x : Yi

One way around this problem is to use a macro:

#define max(x,Y) ((x> y) ? x : Y)

However, using the #define circumvents the type-checking mechanism that
makes C++ such an improvement over C. In fact, this use of macros is
almost obsolete in C++. Clearly, the intent of max (x, y) is to compare
compatible types. Unfortunately, using the macro allows a comparison
between an int and a struct, which are incompatible.

Another problem with the macro approach is that substitution will be
performed where you don't want it to be:

161

Function template
definition

Overriding a
template function

162

class Compare
{

public:

}i

int max(int, int); II Results in syntax error;
II this gets expanded!!!

By using a template instead, you can define a pattern for a family of related
overloaded functions by letting the data type itself be a parameter:

template <class T> T max(T x, T y)
{

return (x > y) ? x : Yi
};

The data type is represented by the template argument <class T>. When
used in an application, the compiler generates the appropriate function
according to the data type actually used in the call:

int ii
Myclass a, bi

int j = max(i,O); II arguments are integers
Myclass m = max(a,b)i II arguments are type Myclass

Any data type (not just a class) can be used for <class T>. The compiler
takes care of calling the appropriate operator>O, so you can use max with
arguments of any type for which operator>O is defined.

The previous example is called a function template (or generic function r A
specific instantiation of a function template is called a template function.
Template function instantiation occurs when you take the function address,
or when you call the function with defined (nongeneric) data types. You
can override the generation of a template function for a specific type with a
nontemplate function:

#include <string.h>

char *max(char *x, char *y)
{

return(strcmp(x,y»O) ?X:Yi

If you call the function with string arguments, it's executed in place of the
automatic template function. In this case, calling the function avoided a
meaningless comparison between two pointers. I

Only trivial argument conversions are performed with compiler-generated
template functions.

Borland C++ Programmers Guide

Template function
argument matching

Explicit template
function

Chapter 3, C++ specifics

The argument type(s) of a template function must use all of the template
formal arguments. If it doesn't, there is no way of deducing the actual
values for the unused template arguments when the function is called.

When doing overload resolution (following the steps of looking for an exact
match), the compiler ignores template functions that have been generated
implicitly by the compiler.

template<class T> T max(T a, T b)
{

return (a > b) ? a : bi

void f(int i, char c)

max (1, i) i
max(c, c) i

max(1, c) i

max(c, i) i

II calls max(int ,int)
I I calls max(char,char)'
II no match for max(int,char)
II no match for max(char,int)

This code results in the following error messages:

Could not find a match for 'max{int,char), in function f{int,char)
Could not find a match for 'max{char,int)' in function f{int,char)

If the user ~xplicitly declares a template function, however, this function,
participates fully in overload resolution. For example,

template<class T> T max(T a, T b)
{

return (a > b) ? a : bi

int max(int,int) i II declare max(int,int)

void f(int i, char c)

max(i, i) i II calls max(int ,int)
max(c, c) i II calls max(char,char)
max(i, c) i II calls max(int,int)
max(c, i) i II calls max(int,int)

explicitly

163

164

When searching for an exact match for template function parameters trivial
conversions are considered to be exact matches. For example:

template<class T> void func(const T a)
{

func(O).; II This is illegal under ANSI C++: unresolved func(int).
II However, Borland C++ now allows func(const int) to be called.

Template functions with derived class pointer or reference arguments are
permitted to match their public base classes. For example:

template<class T> class B
{

};

template<class T> class D public B<T>
{

};

template<class T> void func(B<T> *b)
{

func(new D<int»; II This is illegal under ANSI C++:
II unresolved func(D<int> *).
II However, Borland C++ calls func(B<int> *).

The conversion from derived class to base class is allowed only for template
parameters, non-template parameters still require exact matches. For
example:

class B
{

};

class D public B

};

template<class T> void bar(T ignored, B *b)
{

} ;

Borland C++ Programmers Guide

Class templates

Class template
definition

Chapter 3, C++ specifics

bartO, new D) i II Illegal under CFRONT 3.0, ANSI Ctt and Borland Ctt:
II unresolved external bar(int, D *), D * -> B *
II is not considered an exact match.

A class template (also called a generic class or class generator) lets you define
a pattern for class definitions. Generic container classes are good examples.
Consider the following example of a vector class (a one-dimensional array).
Whether you have a vector of integers or any other type, the basic
operations performed on the type are the same (insert, delete, index, and so
on). With the element type treated as a Tparameter to the class, the system
will generate type-safe class definitions on the fly:

#include <iostream.h>

template <class T> class Vector
{

T *datai
int sizei

public:
Vector (int) i
-Vector() {delete[] data;}
T& operator[] (int i) {return data[i];}

};

II Note the syntax for out-of-line definitions:
template <class T> Vector<T>: :Vector(int n)
{

}i

data = new T [n] i

size = ni

int main ()
{

Vector<int> x(5) ill Generate a vector of ints

for (int i = Oi i < 5i tti)
xli] = ii

for (i = Oi i < 5i tti)
cout « xli] « ' 'i

cout « '\n' i
return Oi

II Output will be: 0 1 2 3 4

As with function templates, an explicit template class definition can be
provided to override the automatic definition for a given type:

class Vector<char *> { ... }i

165

Arguments

Angle brackets

This is a compile-time
error if you compile

with -A option.

166

The symbol Vector must always be accompanied by a data type in angle
brackets. It cannot appear alone, except in some cases in the original
template definition.

For a more complete implementation of a vector class, see the file vectimp.h
in the container class library source code, found in the BC4 \ INCLUDE \
CLASS LIB subdirectory. Also see Chapter 7.

Although these examples use only one template argument, multiple argu­
ments are allowed. Template arguments can also represent values in addi­
tion to data types:

template<class T, int size = 64> class Buffer { ... };

Nontype template arguments such as size can have default values. The
value supplied for a nontype template argument must be a constant
expression:

const int N = 128;
int i = 256;

Buffer<int, 2*N> b1;// OK
Buffer<float, i> b2;// Error: i is not constant

Since each instantiation of a template class is indeed a class, it receives its
own copy of static members. Similarly, template functions get their own
copy of static local variables.

Be careful when using the right angle-bracket character upon instantiation:

Buffer<char, (x > 100 ? 1024 : 64) > buf;

In the preceding example, without the parentheses around the second
argument, the> between x and 100 would prematurely close the template
argument list.

Nested templates also require careful use of angle brackets. It is a common
error to omit a space between multiple '>' closing delimiters of a nested
template class name.

Note the use of delimiters in the following example:

template <class T> struct foo{};
foodoo<int» x;

The Borland C++ compiler allows such a construct with the following
warning:

Warning myfile.cpp: Use '> >' for nested templates instead of '»'

Borland C++ Programmers Guide

Type-safe generic
lists

Type-safe generic list
class definition

Chapter 3, C++ specifics

In general, when you need to write lots of nearly identical things, consider
using templates. The problems with the following class definition (a generic
list class) are that it isn't type-safe and common solutions need repeated
class definitions. Since there's no type checking on what gets inserted, you
have no way of knowing what results you'll get:

class GList

public:

}i

void insert (void *) i
void *peek() i

You can solve the type-safe problem by writing a wrapper class:

class FooList : public GList

pUblic:

}i

void insert (Foo *f) { GList: :insert(f); }
Foo *peek() { return (Foa *)GList::peek()i }

This is type-safe. insert will only take arguments of type pointer-to-Foo or
object-derived-from-Foo, so the underlying container will hold only
pointers that in fact point to something of type Foo. This means that the cast
in FooList::peekO is always safe, and you've created a true FooList. To do the
same for a BarList, a BazList, and so on, you need repeated separate class
definitions. To solve the problem of repeated class definitions and be type­
safe, you can once again use templates:

template <class T> class List : public GList
{

public:

} i

void insert (T *t) { GList::insert(t) i
T *peek() { return (T *)GList::peek() i }

List<Foo> fListi II create a FooList class and an instance
named fList.

List<Bar> bListi II create a BarList class and an instance
named bList.

List<Baz> zListi II create a BazList class and an instance
named zList.

167

Eliminating pointers

Template definition
that eliminates

pointers

Template
compiler switches

See the User's Guide,
Chapter 3, for a

summary of template
options and switches.

168

By using templates, you can create whatever type-safe lists you want, as
needed, with a simple declaration. Because there's no code generated by the
type conversions from each wrapper class, there's no run-time overhead
imposed by this type safety.

Another design technique is to include actual objects, making pointers
unnecessary. This can also reduce the number of virtual function calls
required, since the compiler knows the actual types of the objects. This is
beneficial if the virtual functions are small enough to be effectively inlined.
It's difficult to inline virtual functions when called through pointers,
because the compiler doesn't know the actual types of the objects being
pointed to.

template <class T> aBase
{

private:
T bufferi

}i

class anObject public aSubject, public aBase<aFilebuf>
{

}i

All the functions in aBase can call functions defined in aFilebuf directly,
without having to go through a pointer. And if any of the functions in
aFilebuf can be inlined, you'll get a speed improvement, because templates
allow them to be inlined.

The -Jg family of switches control how instances of templates are
generated by the compiler. Every template instance encountered by the
compiler will be affected by the value of the switch at the point where the
first occurrence of that particular instance is seen by the compiler. For
template functions the switch applies to the function instances; for template
classes, it applies to all member functions and static data members of the
template class. In all cases, this switch applies only to compiler-generated
template instances and never to user-defined instances. It can be used,
however, to tell the compiler which instances will be user-defined so that
they aren't generated from the template.

-Jg Default value of the switch. All template instances first encountered
when this switch value is in effect will be generated, such that if
several compilation units generate the same template instance, the
linker will merge them to produce a single copy of the instance. This
is the most convenient approach to generating template instances

Borland C++ Programmers Guide

Using template
switches

Chapter 3, C++ specifics

because it's almost entirely automatic. Note, though, that to be able to
generate the template instances, the compiler must have the function
body (in case of a template function) or bodies of member functions
and definitions for static data members (in case of a template class).

-Jgd Instructs the compiler to generate public definitions for template
instances. This is similar to -Jg, but if more than one compilation
unit generates a definition for the same template instance, the linker
will report public symbol redefinition errors.

-Jgx Instructs the compiler to generate external references to template
instances. Some other compilation unit must generate a public
definition for that template instance (using the -Jgd switch) so that
the external references can be satisfied.

When using the -Jg family of switches, there are two basic approaches for
generating template instances:

The first approach is to include the function body (for a function template)
or member function and static data member definitions (for a template
class) in the header file that defines the particular template, and use the
default setting of the template switch (-Jg). If some instances of the
template are user-defined, the declarations (prototypes, for example) for
them should be included in the same header but preceded by #pragma
option -Jgx. This lets the compiler know it should not generate those
particular instances.

Here's an example of a template function header file:

II Declare a template function along with its body

template<class T> void sort(T* array, int size)
{

body of template function goes here

II Sorting of 'int' elements done by user-defined instance

#pragma. option -Jgx

extern void sort(int* array, int size);

II Restore the template switch to its original state

#pragma option -Jg.

If the preceding header file is included in a C++ source file, the sort
template can be used without worrying about how the various instances

169

170

are generated (with the exception of sort for int arrays, which is declared as
a user-defined instance, and whose definition must be provided by the
user).

The second approach is to compile all of the source files comprising the
program with the -Jgx switch (causing external references to templates to
be generated); this way, template bodies don't need to appear in header
files. To provide the definitions for all of the template instances, add a file
(or files) to the program that includes the template bodies (including any
user-defined instance definitions), and list all the template instances needed
in the rest of the program to provide the necessary public symbol
definitions. Compile the file (or files) with the -Jgd switch.

Here's an example:

II vector.h

template <class elem, int size> class vector
{

elem * value;

public:

vector();

elem & operator[] (int index) { return value[index]; }
} ;

II MAIN.CPP

#include "vector.h"

II Tell the compiler that the template instances that follow
II will be defined elsewhere.

#pragma option -Jgx

II Use two instances of the 'vector' template class.

vector<int,lOO> int_100;
vector<char,lO> char_10;

int main ()
{

return int_100[O] + char_10[O];

II TEMPLATE.CPP

#include <string.h>

#include "vector.h"

Bor/and c++ Programmers Guide

Chapter 3, C++ specifics

II Define any template bodies

template <class elem, int size> vector<elem, size>::vector()
{

value = new elem[size]i
memset(value, 0, size * sizeof(elem));

II Generate the necessary instances

#pragma option -Jgd

typedef vector<int,lOO> fake_int_100i
typedef vector<char,lO> fake_char_10;

171

172 Borland C++ Programmers Guide

c H A p T E R 4

Exception handling

This chapter describes the Borland C++ error-handling mechanisms
generally referred to as exception handling. All exception handling constructs
are available for 16- and 32-bit implementations. The Borland C++ imple­
mentation of C++ exception handling is consistent with the proposed ANSI
specification. The exception-handling mechanisms that are available in C
programs are referred to as structured exceptions. Borland C++ provides full
compiling, linking, and debugging support for C programs with structured
exceptions. See the section "C-based structured exceptions" on page 181,
and the User's Guide, Chapter 3, for a discussion of compiler options for
programming with exceptions.

c++ exception handling

c++ exceptions can
be handled only in a
try/catch construct.

The C++ language defines a standard for exception handling. The standard
ensures that the power of object-oriented design is supported throughout
your program.

In accordance with the specifications of the ANSI/ISO C++ working paper,
Borland C++ supports the termination exception-handling model. When an
abnormal situation arises at run time, the program could terminate.
However, throwing an exception lets you gather information at the throw
point that could be useful in diagnosing the causes that led to failure. You
can also specify in the exception handler the actions to be taken before the
program terminates. Only synchronous exceptions are handled, meaning
that the cause of failure is generated from within the program. An event
such as Ctrl-C (which is generated from outside the program) is not
considered to be an exception.

Chapter 4, Exception handling 173

The catch and throw
keywords are not

allowed in a C
program.

Exception
declarations

174

Syntax:

try-block:
try compound-statement handler-list

handler-list:
handler handler-list opt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-list declarator
type-specifier-list abstract-declarator
type-specifier -list

throw-expression:
throw assignment-expression opt

The try-block is a statement that specifies the flow of control as the program
executes. The try-block is designated by the try keyword. Braces after the
keyword surround a program block that can generate exceptions. The
language structure specifies that any exceptions that occur should be raised
within the try-block. See page 101 for a discussion about statements.

The handler is a block of code designed to handle an exception. The C++
language requires that at least one handler be available immediately after
the try-block. There should be a handler for each exception that the
program can generate.

When the program encounters an abnormal situation for which it is not
designed, you can transfer control to some other part of the program that is
designed to deal with the problem. This is done by throwing an exception.

The exception-handling mechanism requires the use of three keywords: try,
catch, and throw. The try-block specified by try must be followed immedi­
ately by the handler specified by catch. If an exception is thrown in the try­
block, program control is transferred to the appropriate exception handler.
The program should attempt to catch any exception that is thrown by any
function. Failure to do so could result in abnormal termination of the
program.

Although C++ allows an exception to be of almost any type, it is useful to
make exception classes. The exception object is treated exactly the way any
object would be treated. An exception carries information from the point

Bor/and c++ Programmers Guide

Throwing an
exception

where the exception is thrown to the point where the exception is caught.
This is information that the program user will want to know when the
program encounters some anomaly at run time.

Predefined exceptions, specified by the c++ language, are documented in
the Library Reference, Chapter 10. Borland C++ provides additional support
for exceptions. These extensions are documented in the Library Reference,
Chapter 4. See also page 120 for a discussion of the new operator and the
predefined xalloc exception.

A block of code in which an exception can occur must be prefixed by the
keyword try. Following the try keyword is a block of code enclosed by
braces. This indicates that the program is prepared to test for the existence
of exceptions. If an exception occurs, the program flow is interrupted. The
sequence of steps taken is as follows:

1. The program searches for a matching handler

2. If a handler is found, the stack is unwound to that point

3. Program control is transferred to the handler

If no handler is found, the program will call the terminate function. If no
exceptions are thrown, the program executes in the normal fashion.

A throw expression is also referred to as a throw-point. You can specify
whether an exception can be thrown by using one of the following syntax
specifications:

l. throw throw_expression;

2. throw;

3. void my _func1 () throw (A, B)
{

II Body of function.
}

4. void my _func2 () throw ()

{

II Body of this function.
}

The first case specifies that throw _expression is to be passed to a handler.

The second case specifies that the exception currently being handler is to be
thrown again. An exception must currently exist. Otherwise, terminate is
called.

The third case specifies a list of exceptions that my_func1 can throw. No
other exceptions should propagate out of my_func1. If an exception other

Chapter 4, Exception handling 175

Handling an
exception

176

than A or B is generated within myJunc1, it is considered to be an
unexpected exception and program control will be transferred to the
unexpected function. By default, the unexpected function ends with a call to
aborfbut it can throw an exception. See the Library Reference, Chapter 10, for
a description of unexpected.

The final case specifies that my_func2 should throw no exceptions. If some
other function (for example, operator new) in the body of my_func2 throws
an exception, such an exception should be caught and handled within the
body of mY_func2. Otherwise, such an exception is a violation of my_func2
exception specification. The unexpected function is then called.

When an exception occurs, the throw expression initializ~s a temporary
object of the type T (to match the type of argument arg) used in throw(T arg).
Other copies can be generated as required by the compiler. Consequently, it
can be useful to define a copy constructor for the exception object.

The exception handler is indicated by the catch keyword. The handler must
be placed immediately after the try-block. The keyword catch can also
occur immediately after another catch. Each handler will only handle an
exception that matches, or can be converted to, the type specified in its
argument list. The possible conversions are listed after the try-block
syntaxes.

The following syntaxes, following the try-block, are valid:

try {
II Include any code that might throw an exception

1. catch (T X)

II Take some actions
}

2. catch (.. ,)
{

II Take some actions
}

The first statement is specifically defined to handle an object of type T. If
the argument is T, T&, const T, or const T&, the handler will accept an
object of type X if any of the following are true:

• T and X are of the same type

• T is an accessible base class for X in the throw expression

Borland C++ Programmer's Guide

Exception
specifications

• T is a pointer type and X is a pointer type that can be converted to Tby a
standard pointer conversion at the throw point

The statement catch (...) will handle any exception, regardless of type.
This statement, if used, must be the last handler for its. try-block.

Every exception thrown by the program must be caught and processed by
the exception handler. If the program fails to provide an exception handler
for a thrown exception, the program will call terminate.

Exception handlers are evaluated in the order that they are encountered.
An exception is caught when its type matches the type in the catch state­
ment. Once a type match is made, program control is transferred to the
handler. The stack will haye been unwound upon entering the handler. The
handler specifies what actions should be taken to deal with the program
anomaly.

A goto statement can be used to transfer program control out of a handler
or try-block but such a statement can never be used to enter a handler or
try-block.

After the handler has executed, the program can continue at the point after
the last handler for the current try-block. No other handlers are evaluated
for the current exception.

The C++ language makes it possible for you to specify any exceptions that a
function can throw. This exception specification can be used as a suffix to the
function declaration. The syntax for exception specification is as follows:

exception-specification:
throw (type-id-list opt)

type-id-list:
type-id
type-id-list, type-id

The function suffix is not considered to be part of the function's type.
Consequently, a pointer to a function is not affected by the function's excep­
tion specification. Such a pointer checks only the function's return' and
argument types. Therefore, the following is legal:

Chapter 4, Exception handling 177

Source

178

void f2(void) throw()i
void f3(void) throw (BETA) i

void (* fptr) ()i
fptr = f2i
fptr = f3;

II Should not throw exceptions
II Should only throw BETA objects
II Pointer to a function returning void

Extreme care should be taken when overriding virtual functions. Again,
because the exception specification is not considered part of the function
type, it is possible to violate the program design. In the following example,
the derived class BET A: :vfunc is defined so that it throws an exception-a
departure from the original function declaration.

class ALPHA {
public:

virtual void vfunc(void) throw () {}i II Exception specification
}i

class BETA : public ALPHA {
struct BETA_ERR {}i

void vfunc(void) throw (BETA_ERR) {}i II Exception specification is changed
};

The following are examples of functions with exception specifications.

void f1 () ;

void f2() throw()i

II The function can throw any exception

II Should not throw any exceptions

void f3() throw (A, B*); II Can throw exceptions publicly derived from A,

II or a pointer to publicly derived B

The definition and all declarations of such a function must have an excep­
tion specification containing the same set of type-id's. If a function throws
an exception not listed in its specification, the program will call unexpected.
This is a run-time issue-it will not be flagged at compile time. Therefore,
care must be taken to handle any exceptions that can be thrown by
elements called within a function.

II HOW TO MAKE EXCEPTION-SPECIFICATIONS AND HANDLE ALL EXCEPTIONS
#include <iostream.h>

class ALPHA { } i II EXCEPTION DECLARATION
ALPHA _ai
void f3(void) throw (ALPHA) { II WILL THROW ONLY TYPE-ALPHA OBJECTS

cout « "f3() was called" « endl;
throw(_a) i

}

Borland C++ Programmers Guide

Output

Program behavior
when a function is

registered with
setunexpectedO

void f2(void) throw() {
try {

II SHOULD NOT THROW EXCEPTIONS
II WRAP ALL CODE IN A TRY-BLOCK

cout « "f2() was called" « endl;
f3 ();
}

1* IF MORE FUNCTIONS ARE ADDED, ANY OF WHICH THROW EXCEPTIONS, THE FOLLOWING
HANDLER WILL CATCH ALL OF THEM. *1

catch (...) { II TRAP ALL EXCEPTIONS
cout « "An exception was caught in f2 () !" « endl;

int main (void)
try {

f2 () ;
return 0;

catch (...)
cout « "Need more handlers!";
return 1;
}

f2 () was called
f3 () was called
An exception was caught in f2()!

If an exception is thrown that is not listed in the exception specification, the
unexpected function will be called. The following diagrams illustrate the
sequence of events that can occur when unexpected is called. See the Library
Reference, Chapter 10, for a description of the set_terminate, set_unexpected,
and unexexpected functions. The chapter also describes the
terminate_function and unexpected_function types.

unexpected 0 / / CALLED AUTOMATICALLY

my_unexpected 0 ;

/ / DEFINE YOUR UNEXPECTED HANDLER
unexpected function.W!iiiM"4'ml(void)
{ -

/ / DEFINE ACTIONS TO TAKE
/ / POSSIBLY MAKE ADJUSTMENTS

/ / REGISTER YOUR HANDLER
set_unexpected (W.'ii!¥i":tiMI);

Chapter 4, Exception handling 179

Program behavior
when no function is

registered with
seLunexpected() but

there is a function
registered with
seC terminate()

Constructors and
destructors

Destructors are called
by default. See the

Users Guide, Chapter
3, for information
about exception­

handling switches.

Unhandled
exceptions

Default program
behavior for

unhandled exceptions

180

unexpected 0 / / CALLED AUTOMATICALLY
I

terminateO

/ / DEFINE YOUR TERMINATION SCHEME
terminate functionWi§ii €iG< void)

{ -
/ / TAKE ACTIONS BEFORE TERMINATING
/ / SHOULD NOT THROW EXCEPTIONS
ex it (1); / / MUST END SOMEHOW.
}

/ / REGISTER YOUR TERMINATION FUNCTION
set_terminate(my_terminate)

my termi nate 0
/ rPROGRAM ENDS.

When an exception is thrown, the copy constructor is called for the thrown
value. The copy constructor is used to initialize a temporary object at the
throw point. Other copies can be generated by the program. See page 3 for
a discussion of the copy constructor.

When program flow is interrupted by an exception, destructors are called
for all automatic objects that were constructed since the beginning of the
try-block was entered. If the exception was thrown during construction of
some object, destructors will be called only for those objects that were fully
constructed. For example, if an array of objects was under construction
when an exception was thrown, destructors will be called only for the array
elements that were already fully constructed.

When a C++ exception is thrown, the stack is unwound. By default, during
stack unwinding, destructors are called for automatic objects. You can use
the -xd compiler option to switch the default off.

If an exception is thrown and no handler is found it, the program will call
the terminate function. The following diagram illustrates the series of events
that can occur when the program encounters an exception for which no
handler can be found. See the Library Reference, Chapter 10, for a descrip­
tion of the functions named in the diagram.

termi nate 0 ;

I
abortO;
/ / PROGRAM ENDS.

Borland C++ Programmers Guide

C-based structured exceptions

For portability, you
can use the try and

except macros
defined in excpt.h.

Using C-based
exceptions in C++

Borland C++ provides support for program development that makes use of
structured exceptions. You can compile and link a C source file that
contains an implementation of structured exceptions. In a C program, the
ANSI-compatible keywords used to implement structured exceptions are
__ except, __ finally, and __ try. Note that the __ finally and __ try
keywords can appear only in C programs.

For try-except exception-handling implementations the syntax is as follows:

try-block:
__ try compound-statement (in a C module)
try compound-statement (in a C++ module)

handler:
__ except (expression) compound-statement

For try-finally termination implementations the syntax is as follows:

try-block:
__ try compound-statement

termination:
__ finally compound-statement

See your Win32 documentation for additional details on the implemen­
tation of structured exceptions for 16- and 32-bit platforms.

Borland C++ allows substantial interaction between C and C++ error
handling mechanisms. The following interactions are supported:

• C structured exceptions can be used in C++ programs.

• C++ exceptions cannot be used in a C program because C++ exceptions
require that their handler be specified by the catch keyword and catch is
not allowed in a C program.

• An exception generated by a call to the RaiseException function is handled
by a try / __ except or __ try / __ except block. All handlers of try / catch
blocks are ignored when RaiseException is called.

• The following C exception helper functions can be used in C and C++
programs:

• GetExceptionCode

• GetExceptionlnformation

Chapter 4, Exception handling 181

182

• SetUnhandledExceptionFilter
• UnhandledExceptionFilter
• Borland C++ does not require that the UnhandledExceptionFilter

function be used only in the except filter of __ try / _ _ except or
try / _ _ except blocks. However, program behavior is undefined when
this function is called outside of the __ try / _ _ except or try / _ _ except
block.

See your Win32 documentation for a description of the exception helper
functions and RaiseException.

The full functionality of an __ except block is allowed in C++. If an
exception is generated in a C module, it is possible to provide a handler­
block in a separate calling C++ module.

If a handler can be found for the genera ted structured exception, the
following actions can be taken:

. • Execute the actions specified by the handler

• Ignore the generated exception and resume program execution

• Continue the search for some other handler (regenerate the exception)

These actions are consistent with the design of structured exceptions .

. 1* In PROG.C *1
void func(void) {

1* generate an exception *1
RaiseException(1* specify your arguments *1)i

II In CALLER.CPP
II How to test for Ctt or C-based exceptions.
#include <excpt.h>
#include <iostream.h>

int main(void)
try
{ II test for Ctt exceptions

try
{ II test for C-based structured exceptions

func () i

__ except (1* filter-expression *1)
{

~out « "A structured exception was generated."i

1* specify actions to take for this structured exception *1

Borland C++ Programmer's Guide

Destructors are called
by default. See the

Users Guide, Chapter
3, for information
about exception­

handling switches.

return -li

return Oi

catch (...)
{

II handler for any Ctt exception
cout « "A Ctt exception was thrown."i
return 1i

The _ _ try / _ _ finally ensures that the code in the _ _ finally block is
executed no matter how the flow within the _ _ try exits. The _ _ finally
keyword is not allowed in a C++ program and the _ _ try / _ _ finally block is
not supported in a C++ program.

Even though the _ _ try / _ _ finally block is not supported in a C++ program,
a C-based exception generated by the operating system or the program can
still result in proper stack unwinding by using local objects within
destructors. Any module compiled with the -xd compiler option will have
destructors invoked for all objects with auto storage. Stack unwinding
occurs from the point where the exception is thrown to the point where the
exception is caught.

Chapter 4, Exception handling 183

184 Bor/and c++ Programmers Guide

The preprocessor
detects preprocessor

directives (also
known as control

lines) and parses the
tokens embedded in

them.

Preprocessor direc­
tives are usually

placed at the
beginning of your

source code, but they
can legally appear at

any point in a
program.

c H A p T E R 5

The preprocessor

Although Borland C++ uses an integrated single-pass compiler for its IDE
and command-line versions, it is useful to retain the terminology associated
with earlier multipass compilers.

With a multipass compiler, a first pass of the source text pulls in any
include files, tests for any conditional compilation directives, expands any
macros, and produces an intermediate file for further compiler passes.
Since the IDE and command-line versions of the Borland C++ compiler
perform this first pass with no intermediate output, Borland C++ provides
independent preprocessors, CPP.EXE and CPP32.EXE, that produce such
an output file. The independent preprocessor is useful as a debugging aid
because it lets you see the net result of include directives, conditional com­
pilation directives, and complex macro expansions.

The following discussion, therefore, applies both to the CPP and CPP32
preprocessors and to the preprocessor functionality built into the Borland
C++ compiler.

The Borland C++ preprocessor includes a sophisticated macro processor
that scans your source code before the compiler itself gets to work. The pre­
processor gives you great power and flexibility in the following areas:

• Defining macros that reduce programming-effort and improve your
source code legibility. Some macros can also eliminate the overhead of
function calls.

• Including text from other files, such as header files containing standard
library and user-supplied function prototypes and manifest constants.

• Setting up conditional compilations for improved portability and for
debugging sessions.

Any line with a leading # is taken as a preprocessing directive, unless the #
is within a string literal, in a character constant, or embedded in a
comment. The initial # can be preceded or followed by whitespace
(excluding new lines).

The full syntax for Borland C++'s preprocessor directives is given in the
next table.

Chapter 5, The preprocessor 185

Table 5.1: Borland C++ preprocessing directives syntax

preprocessing-file:
group

group:
group-part
group group-part

group-part:
<pp-tokens> newline
if-section
control-line

if-section:
if-group <e/if-groups> <else-group> endif-line

if-group:
#if constant-expression newline <group>
#ifdef identifier newline· <group>
#ifndef identifier newline <group>

e/if-groups:
elit-group
elit-groups elif-group

elif-group:
#elif constant-expression newline <group>

else-group:
#else newline <group>

endif-line:
#endif newline

control-line:
#include
#define
#define
#undef
#line
#error
#pragma

pp-tokens newline
identifier replacement-list newline
identifier Iparen <identifier-list» replacement-list newline
identifier newline
pp-tokens newline
<pp-tokens> newline
<pp-tokens> newline

Null directive #

#pragma warn action abbreviation newline
#pragma inline newline
newline

action: one of
+ - .

abbreviation:
nondigit nondigit nondigit

Iparen:
the left parenthesis character without preceding whitespace

replacement-list:
<pp-tokens>

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

preprocessing~token:
header-name (only within an #include directive)
identifier (no keyword distinction)
constant
string-literal
operator
punctuator
each non-whitespace character that cannot be one of the preceding

header-name:
<h-char-sequence>

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any character in the source character set except the newline (In) or greater
than (» character

newline:
the newline character

The null directive consists of a line containing the single character #. This
directive is always ignored.

The #define and #undef directives

186

The #define directive defines a macro. Macros provide a mechanism for
token replacement with or without a set of formal, function-like
parameters.

Bor/apd c++ Programmers Guide

Simple #define
macros

The#undef
directive

In the simple case with no parameters, the syntax is as follows:

#define macro_identifier <token_sequence>

Each occurrence of macro _identifier in your source code following this
control line will be replaced in the original position with the possibly
empty token_sequence (there are some exceptions, which are noted later).
Such replacements are known as macro expansions. The token sequence is
sometimes called the body of the macro.

Any occurrences of the macro identifier found within literal strings,
character constants, or comments in the source code are not expanded.

An empty token sequence results in the effective removal of each affected
macro identifier from the source code:

#define HI "Have a nice day! II

#define empty
#define NIL

puts(HI) i

puts (NIL) i

/* expands to puts ("Have a nice day! ") i * /
/* expands to putS("") i */

puts("emptY")i /* NO expansion of empty! */
/* NOR any expansion of the empty within comments! */

After each individual macro expansion, a further scan is made of the newly
expanded text. This allows for the possibility of nested macros: the expanded
text can contain macro identifiers that are subject to replacement. However,
if the macro expands into what looks like a preprocessing directive, such a
directive will not be recognized by the preprocessor:

#define GETSTD #include <stdio.h>

GETSTD /* compiler error */

GETSTD will expand to #include <stdio.h>. However, the preprocessor
itself will not obey this apparently legal directive, but will pass it verbatim
to the compiler. The compiler will reject #include <stdio. h> as illegal input.
A macro won't be expanded during its own expansion (so #define A A

won't expand indefinitely).

You can undefine a macro using the #undef directive:

#u ndef macro_identifier

Chapter 5, The preprocessor 187

188

This line detaches any previous token sequence from the macro identifier;
the macro definition has been forgotten, and the macro identifier is
undefined.

No macro expansion occurs within #undef lines.

The state of being defined or undefined is an important property of an
identifier, regardless of the actual definition. The #ifdef and #ifndef
conditional directives, used to test whether any identifier is currently
defined or not, offer a flexible mechanism for controlling many aspects of a
compilation.

After a macro identifier has been undefined, it can be redefined with
#define, using the same or a different token sequence.

#define BLOCK_SIZE 512

buff = BLOCK_SIZE*blks; 1* expands as 512*blks *

#undef BLOCK_SIZE
1* use of BLOCK_SIZE now would be illegal "unknown" identifier *1

#define BLOCK_SIZE 128 1* redefinition, * I

buf = BLOCK_SIZE*blksi 1* expands as 128*blks *1

Attempting to redefine an already defined macro identifier results in a
warning unless the new definition is exactly the same token-by-token
definition as the existing one. The preferred strategy where definitions
might exist in other header files is as follows:

#ifndef BLOCK_SIZE
#define BLOCK_SIZE 512

#endif

The middle line is bypassed if BLOCK_SIZE is currently defined; if
BLOCK_SIZE isn't currently defined, the middle line is invoked to define it.

No semicolon (;) is needed to terminate a preprocessor directive. Any
character found in the token sequence, including semicolons, will appear in
the macro expansion. The token sequence terminates at the first non­
backslashed new line encountered. Any sequence of whitespace, including
comments in the token sequence, is replaced with a single-space character.

Assembly language programmers must resist the temptation to write:

#define BLOCK_SIZE = 512 1* ?? token sequence includes the = *1

Borland C++ Programmers Guide

The-D and-U
options

The Define option

Keywords and
protected words

Note the double
underscores, leading

and trailing.

Macros with
parameters

Any comma within
parentheses in an

argument list is
treated as part of the
argument, not as an
argument delimiter.

Identifiers can be defined and undefined using the command-line compiler
options -0 and -U. See the User's Guide, Chapter 3.

The command line

Bec -Ddebug=li paradox=Oi X -Urnysyrn rnyprog.c

is equivalent to placing

#define debug 1
#define paradox 0
#define X
#undef rnysyrn

in the program.

Identifiers can be defined, but not explicitly undefined, from the IDE. Use
the Define option to explicitly define a macro.

Identifiers can be defined, but not explicitly undefined, from the IDE. See
the User's Guide, Chapter 3. .

It is legal but not recommended to use Borland C++ keywords as macro
identifiers:

#define int long
#define INT long

/* legal but probably catastrophic */
/* legal and possibly useful */

The following predefined global identifiers cannot appear immediately
following a #define or #undef directive:

__ STOC __
__ FILE __

LlNE __

The following syntax is used to define a macro with parameters:

#define macro _identifier(<arg_list» token _sequence

Note there can be no whitespace between the macro identifier and the (.
The optional arg_list is a sequence of identifiers separated by commas, not
unlike the argument list of a C function. Each comma-delimited identifier
plays the role of a formal argument or placeholder.

Such macros are called by writing

macro _identifier<whitespace>(<actual_arg_list»

Chapter 5, The preprocessor 189

190

in the subsequent source code. The syntax is identical to that of a function
call; indeed, many standard library C "functions" are implemented as
macros. However, there are some important semantic differences, side
effects, and potential pitfalls (see page 192).

The optional actuaCarg_list must contain the same number of comma­
delimited token sequences, known as actual arguments, as found in the
formal arg_list of the #define line: there must be an actual argument for
each formal argument. An error will be reported if the number of
arguments in the two lists is different.

A macro call results in two sets of replacements. First, the macro identifier
and the parenthesis-enclosed arguments are replaced by the token
sequence. Next, any formal arguments occurring in the token sequence are
replaced by the corresponding real arguments appearing in the
actuaCarg_list. For example,

#define CUBE (x) ((x) * (x) * (x))

int n,y;

n = CUBE(y);

results in the following replacement:

n = ((y) * (y) * (y));

Similarly, the last line of

#define SUM (a, b) ((a) + (b))

int i,j,sum;

sum = SUM (i, j) ;

expands to sum = ((i) + (j)). The reason for the apparent glut of parentheses
will be clear if you consider the call

n = CUBE(y+1);

Without the inner parentheses in the definition, this would expand as
n = y+ 1 *y+ 1 *y+ 1, which is parsed as

n = y + (l*y) + (l*y) + 1; II!= (y+1) cubed unless y=O or y = -3!

As with simple macro definitions, rescanning occurs to detect any
embedded macro identifiers eligible for expansion.

Note the following points when using macros with argument lists:

• Nested parentheses and commas. The actuaCarg_list can contain nested
parentheses provided that they are balanced; also, commas appearing
within quotes or parentheses are not treated like argument delimiters:

Borland C++ Programmer's Guide

#define ERRMSG (x, str) showerr ("Error" ,x, str)
#define SUM(x,y) ((x) + (y))

ERRMSG(2, "Press Enter, then Esc");
/* expands to showerr("Error",2, "Press Enter, then Esc");
return SUM(f(i,j), g(k,l));
/* expands to return ((f(i,j)) + (g(k,l))); */

• Token pasting with ##. You can paste (or merge) two tokens together by
separating them with ## (plus optional whitespace on either side). The
preprocessor removes the whitespace and the ##, combining the separate
tokens into one new token. You can use this to construct identifiers; for
example, given the definition

#define VAR(i,j) (i##j)

the call VAR (x, 6) would expand to (x6). This replaces the older
(nonportable) method of using (i/** /j).

• Converting to strings with #. The # symbol can be placed in front of a
formal macro argument to convert the actual argument to a string after
replacement. So, given the following macro definition:

#define TRACE (flag) printf (#flag "=%d\n", flag)

the code fragment

int highval = 1024;
TRACE (highval) ;

becomes

int highval = 1024;
printf("highval" "= %d\n", highval);

which, in turn, is treated as

int highval = 1024;
printf ("highval=%d\n", highval);

• The backslash for line continuation. A long token sequence can straddle
a line by using a backslash (\). The backslash and the following newline
are both stripped to provide the actual token sequence used in
expansions:

#define WARN "This is really a single-\
line warning"

puts (WARN) ;
/* screen will show: This is really a single-line warning */

• Side effects and other dangers. The similarities between function and
macro calls often obscure their differences. A macro call has no built-in
type checking, so a mismatch between formal and actual argument data

Chapter 5, The preprocessor 191

Final value of b
depends on what

your compiler does to
the expanded

expression.

types can produce bizarre, hard-to-debug results with no immediate
warning. Macro calls can also give rise to unwanted side effects,
especially when an actual argument is evaluated more than once.
Compare CUBE and cube in the following example:

int cube(int x) {
return x*x*x;

#d~fine CUBE (x) ((x)*(x)*(x))

int b = 0, a = 3;
b = cube (a ++) ;

/* cube() is passed actual arg = 3; so b = 27; a now = 4 */
a = 3;
b = CUBE (a ++) ;

/* expands as ((a++)*(a++)*(a++)); a now = 6 */

File inclusion with #include

The angle brackets
are real tokens, not

metasymbols that
imply headecname

is optional.

192

The #include directive pulls in other named files, known as include files,
header files, or headers, into the source code. The syntax has three versions:

#include <header _name>
#include "header _name"

#include macro _identifier

The first and second versions imply that no macro expansion will be
attempted; in other words, header _name is never scanned for macro
identifiers. header _name must be a valid file name with an extension
(traditionally .h for header) and optional path name and path delimiters.

The third version assumes that neither < nor" appears as the first non­
whitespace character following #include. Further, it assumes the existence
of a macro definition that will expand the macro identifier into a valid
delimited header name with either of the <header _name> or "header_name"
formats.

The preprocessor removes the #include line and replaces it with the entire
text of the header file at that point in the source code. The source code itself
isn't changed, but the compiler "sees" the enlarged text. The placement of
the #include can therefore influence the scope and duration of any
identifiers in the included file.

If you place an explicit path in the header _name, only that directory will be
searched.

Borland C++ Programmers Guide

Header file search
with
<header_name>

Header file search
with
"header_name"

The difference between the <header _name> and "header _name" formats lies in
the searching algorithm employed in trying to locate the include file; these
algorithms are described in the following two sections.

The <header _name> version specifies a standard include file; the search is
made successively in each of the include directories in the order they are
defined. If the file isn't located in any of the default directories, an error
message is issued.

The "header _name" version specifies a user-supplied include file; the file is
sought first in the current directory (usually the directory holding the
source file being compiled). If the file isn't found there, the search continues
in the include directories as in the <header _name> situation.

The following example clarifies these differences:

#include <stdio.h>
/*,header in standard include directory */

#define myinclud "C:\BC4\INCLUDE\MYSTUFF.H"
/* Note: Single backslashes OK here; within a C statement you would

need "C:\\BC4\\INCLUDE\\MYSTUFF.H" */

#include myinclud
/* macro expansion */

#include "myinclud.h"
/* no macro expansion */

After expansion, the second #include statement causes the preprocessor to
look in C: \BC4 \ INCLUDE \ MYSTUFF.H and nowhere else. The third
#include causes it to look for MYINCLUD.H in the current directory, then
in the default directories.

Conditional compilation

Borland C++ supports conditional compilation by replacing the appropri­
ate source-code lines with a blank line. The lines thus ignored are those
beginning with # (except the #if, #ifdef, #ifndef, #else, #elif, and #endif
directives), as well as any lines that are nofto be compiled as a result of the
directives. All conditional compilation directives must be completed in the
source or include file in which they are begun.

Chapter 5, The preprocessor 193

The #if, #elif,
#else, and #endif
conditional
directives

The operator
defined

194

The conditional directives #if, #elif, #else, and #endif work like the normal
C conditional operators. They are used as follows:

#if constant-expression-l
<section-l >
<#elif constant-expression-2 newline secfion-2>

<#elif constant-expression-n newline section-n>

<#else <newline> final-section>

#endif

If the constant-expression-1 (subject to macro expansion) evaluates to
nonzero (true), the lines of code (possibly empty) represented by section-1,
whether preprocessor command lines or normal source lines, are
preprocessed and, as appropriate, passed to the Borland C++ compiler.
Otherwise, if constant-expression-1 evaluates to zero (false), section-1 is
ignored (no macro expansion and no compilation).

In the true case, after section-1 has been preprocessed, control passes to the
matching #endif (which ends this conditional sequence) and continues with
next-section. In the false case, control passes to the next #elif line (if any)
where constant-expression-2 is evaluated. If true, section-2 is processed, after
which control moves on to the matching #endif. Otherwise, if constant­
expression-2 is false, control passes to the next #elif, and so on, until either
#else or #endif is reached. The optional #else is used as an alternative
condition for which all previous tests have proved false. The #endif ends
the conditional sequence.

The processed section can contain further conditional clauses, nested to any
depth; each #if must be carefully balanced with a closing #endif.

The net result of the preceding scenario is that only one section (possibly
empty) is passed on for further processing. The bypassed sections are
relevant only for keeping track of any nested conditionals, so that each #if
can be matched with its correct #endif.

The constant expressions to be tested must evaluate to a constant integral
value.

The defined operator offers an alternative, more flexible way of testing if
combinations of identifiers are defined. It is valid only in #if and #elif
expressions.

Borland C++ Programmers Guide

The #ifdef and
#ifndef
conditional
directives

The expression defined(identifier) or defined identifier (the parentheses are
optional) evaluates to 1 (true) if the symbol has been previously defined
(using #define) and has not been subsequently undefined (using #undef);
otherwise, it evaluates to 0 (false). The following two directives are
therefore the same:

#if defined (mysym)

#ifdef mysym

The advantage is that you can use defined repeatedly in a complex
expression following the #if directive; for example,

#if defined (mysym) && !defined(yoursym)

The #ifdef and #ifndef conditional directives let you test whether an
identifier is currently defined or not; that is, whether a previous #define
command has been processed for that identifier and is still in force. The line

#ifdef identifier

has exactly the same effect as

#if 1

if identifier is currently defined, and the same effect as

#if 0

if identifier is currently undefined.

#ifndef tests true for the "not-defined" condition, so the line

#ifndef identifier

has exactly the same effect as

#if 0

if identifier is currently defined, and the same effect as

#if 1

if identifier is currently undefined.

The syntax thereafter follows that of the #if, #elif, #else, and #endif given in
the previous section.

An identifier defined as NULL is considered to be defined.

Chapter 5, The preprocessor 195

The #line line control directive

The inclusion of
stdio.h means that

the preprocessor
output will be

somewhat large.

Most of the stdio.h
portion has been

eliminated.

196

You can use the #line command to supply line numbers to a program for
cross-reference and error reporting. If your program consists of sections
derived from some other program file, it is often useful to mark such
sections with the line numbers of the original source rather than the normal
sequential line numbers derived from the composite program. The syntax

#line integer _constant <"filename">

indicates that the following source line originally came from line number
integer _constant of filename. Once the filename has been registered,
subsequent #line commands relating to that file can omit the explicit
filename argument.

/* TEMP.C: An example of the #line directive */

#inelude <8tdio.h>

#line 4 "junk.e"
void main ()
{

printf (" in line %d of %8 II , __ LINE __ ,_]ILE __) ;
#line 12 "temp.e"

printf("\n") ;
printf (" in line %d of %8 II ,..:... _LINE __ , __ FILE __) ;

#line 8
printf("\n") ;
printf(" in line %d of %8", __ LINE __ , __ FILE __);

If you run TEMP. C through CPP (cpp temp. c), you'll get an output file
TEMP.!; that looks something like this:

temp.e 1:
C:\BC4\INCLUDE\STDIO.H 1:
C:\BC4\INCLUDE\STDIO.H 2:
C:\BC4\INCLUDE\STDIO.H 3:

C:\BC4\INCLUDE\STDIO.H 212:
C:\BC4\INCLUDE\STDIO.H 213:
temp.e 2:
temp.e 3:
junk.e 4: void main()
junk. e 5: {
junk.e 6: printf(" in line %d of %8",6, "junk.e");
junk.e 7:
temp. e 12: printf (II \n ") ;

Borland C++ Programmers Guide

temp. c 13: printf (" in line %d of %s", 13, "temp. c") i
temp.c 14:
temp. c 8: printf ("\n") i

temp.c 9: printf(" in line %d of %s",9, "temp.c") i

temp.c 10: }
temp. c 11:

If you then compile and run TEMP.C, you'll get this output:

in line 6 of junk.c
in line 13 of temp.c
in line 9 of temp.c

Macros are expanded in #line arguments as they are in the #include
directive.

The #line directive is primarily used by utilities that produce C code as
output, and not in human-written code.

The #error directive

The #error directive has the following syntax:

#error errmsg

This generates the message:

Error: filename line# : Error directive: errmsg

This directive is usually embedded in a preprocessor conditional statement
that catches some undesired compile-time condition. In the normal case,
that condition will be false. If the condition is true, you want the compiler
to print an error message and stop the compile. You do this by putting an
#error directive within a conditional statement that is true for the undesired
case.

For example, suppose you #define MYV AL, which must be either 0 or 1.
You could then include the following conditional statement in your source
code to test for an incorrect value of MYV AL:

Chapter 5, The preprocessor

#if (MYVAL != 0 && MYVAL != 1)
#error MYVAL must be defined to either 0 or 1
#endif

197

The #pragma directive

#pragma
argsused

#pragma codeseg

#pragma
comment

198

The #pragma directive permits implementation-specific directives of the
form:

#pragma directive-name

With #pragma, Borland C++ can define the directives it wants without
interfering with other compilers that support #pragma. If the compiler
doesn't recognize directive-name, it ignores the #pragma directive without
any error or warning message.

Borland C++ supports the following #pragma directives:

• #pragma argsused • #pragma inline

• #pragma codeseg • #pragma intrinsic

• #pragma comment • #pragma option

• #pragma exit • #pragma save regs

• #pragma hdrfile • #pragma startup

• #pragma hdrstop • #pragma warn

The argsused pragma is allowed only between function definitions, and it
affects only the next function. It disables the warning message

"Parameter name is never used in function func-name"

The codeseg directive lets you name the segment, class, or group where
functions are allocated.

The syntax is as follows:

#pragma codeseg <seg_name> <" seg_class"> <group>

If the pragma is used without any of its optional arguments, the default
code segment is used for function allocation.

The comment directive lets you write a comment record into an OBJ file. A
library module that is not specified in the linker's response-file can be
specified by the comment LIB directive.

Use the following syntax to make comment records:

#pragma comment(LIB, "lib_module_name")

This causes the linker to include the lib_module_name module as the last
library.

Borland C++ Programmers Guide

#pragma exit and
#pragma startup

Priorities from 0 to 63
are used by the C

libraries, and should
not be used by the

user.

Note that the function
name used in

pragma startup or
exit must be defined
(or declared) before

the pragma line is
reached.

#pragma hdrfile

These two pragmas allow the program to specify function(s) that should be
called either upon program startup (before the main function is called) or
upon program exit Gust before the program terminates through _exit).

The syntax is as follows:

#pragma startup function-name <priority>
#pragma exit function-name <priority>

The specified function-name must be a previously declared function taking
no arguments and returning void:

void func (void) ;

The optional priority parameter should be an integer in the range 64 to 255.
The highest priority is O. Functions with higher priorities are called first at
startup and last at exit. If you don't specify a priority, it defaults to 100. For
example,

#include <stdio.h>
#include <windows.h>

void startFunc(void)
{

printf ("Startup function. \n") ;

#pragma startup startFunc 64
/* priority 64 --> called first at startup */

void exitFunc(void)
{

printf ("Wrapping up execution. \n") ;

#pragma exit exitFunc
/* default priority is 100 */

void main(void)
{

#if defined (_Windows)
_InitEasyWin () ;

#endif
printf ("This is main. \n") i

This directive sets the name of the file in which to store precompiled
headers. The syntax is

#pragma hdrfile "FILENAME.CSM"

Chapter 5, The preprocessor 199

See Appendix C in
the User's Guide for

more details.

#pragma hdrstop

#pragma inline

#pragma intrinsic

#pragma option

The command-line
compiler options are
defined in Chapter 3
in the UserS Guide.

200

If you aren't using precompiled headers, this directive has no effect. You
can use the command-line compiler option -H=filename to change the name
of the file used to store precompiled headers.

This directive terminates the list of header files eligible for precompilation.
You can use it to reduce the amount of disk space used by precompiled
headers. See the User's Guide, Appendix C for more on precompiled
headers.

This directive is equivalent to the -8 command-line compiler option or the
IDE inline option. It tells the compiler there is inline assembly language
code in your program (see Chapter 10). The syntax is

#pragma inline

This is best placed at the top of the file, because the compiler restarts itself
with the -8 option when it encounters #pragma inline.

#pragma intrinsic is documented in Chapter 3 of the User's Guide.

Use #pragma option to include command-line options within your program
code. The syntax is

#pragma option [options ...]

options can be any command-line option (except those listed in the follow­
ing paragraph). Any number of options can appear in one directive. Any of
the toggle options (such as -a or -K) can be turned on and off (as on the
command line). For these toggle options, you can also put a period follow­
ing the option to return the option to its command-line, configuration file,
or option-menu setting. This lets you temporarily change an option, then
return it to its default, without having to remember (or even needing to
know) what the exact default setting was.

Options that cannot appear in a pragma option include

-8 -H -Q
-c -I filename -5
-dname -Lfilename -T
-Dname = string -Ixset -Uname
-efilename -M -v
-E -0 -x
-Fx -p -v

Borland C++ Programmers Guide

The options can
appear followed by a

dot (.) to reset the
option to its

command-line state.

#pragma
saveregs

Note

You can use #pragmas, #includes, #define, and some #ifs in the following
cases:

• Before the use of any macro name that begins with two underscores (and
is therefore a possible built-in macro) in an #if, #ifdef, #ifndef or #elif
directive .

• Before the occurrence of the first real token (the first C or c++
declaration).

Certain command-line options can appear only in a #pragma option
command before these events. These options are

-Efilename -m* -u
-f* -npath -z*
-i# -0 filename

Other options can be changed anywhere. The following options affect the
compiler only if they get changed between functions or object declarations:

-1 -ff -p
-2 -G -r
-3 -h -rd
-4 -k -v
-5 -N -y
-a -0 -z

The following options can be changed at any time and take effect
immediately:

-A (see Note) -gn -zE
-b -jn -zF
-c -K ~H
-d -wxxx

The #pragma option -A statement isn't equivalent to the command-line
option -A. The command-line option recognizes only ANSI-specified key­
words. The #pragma option -A prefixes non-ANSI keywords with double
underscores. In effect, this causes such keywords to comply with ANSI
requirements.

The saveregs pragma guarantees that a huge function will not change the
value of any of the registers when it is entered. This directive is sometimes
needed for interfacing with assembly language code. The directive should
be placed immediately before the function definition. It applies to that
function alone.

Chapter 5, The preprocessor 201

#pragma warn
The warn pragma lets you override specific -wxxx command-line options or
check Display Warnings settings in the Options I Compiler I Messages
dialog boxes.

For example, if your source code contains the directives

#pragma warn +xxx
#pragma warn -yyy
#pragma warn .zzz

the xxx warning will be turned on, the yyy warning will be turned off, and
the zzz warning will be restored to the value it had when compilation of the
file began.

A complete list of the three-letter abbreviations and the warnings to which
they apply is given in Chapter 3 in the User's Guide. Note that you must use
only the three letters that identify warning; do not use the prefix -w, which
is intended for the command -line option.

Predefined macros

202

Borland C++ predefines certain global identifiers, each of which is
discussed in this section. These predefined macros are also known as
manifest constants. Except for __ cplusplus and _Windows, each of the
global identifiers starts and ends with two underscore characters (__).

The following symbols are defined based on the memory model chosen at
compile time:

__ COMPACT __
__ HUGE __
__ LARGE __

__MEDIUM __
__SMALL __
__TINY __

Only one symbol is defined for any given compilation; the others, by defini­
tion, are undefined. For example, if you compile with the small model, the
__ SMALL __ macro is defined and the rest are not, so that the directive

#if defined(__ SMALL __)

will be true, while

#if defined(__ LARGE __)

(or any of the others) will be false. The actual value for any of these defined
macros is 1.

Borland C++ Programmers Guide

__ BCOPT __
This macro is defined (to the string 1/1") in any compiler that has an
optimizer.

__ BCPLUSPLUS_ _ This macro is specific to Borland's C and c++ family of compilers. It is
defined for C++ compilation only. If you've selected C++ compilation, it is
defined as Ox320, a hexadecimal constant. This numeric value will increase
in later releases.

__ CDECL __

__ CONSOLE __

__ cplusplus

This macro is specific to Borland's C and C++ family of compilers. It is
defined as Ox400, a hexadecimal constant. This numeric value will increase
in later releases.

This macro is specific to Borland's C and C++ family of compilers. It signals
that the Pascal calling convention isn't being used. The macro is set to the
integer constant 1 if calling was not used; otherwise, it is undefined.

This macro is available only for the 32-bit compiler. When defined, the
macro indicates that the program is a console application.

This macro is defined as 1 if in C++ mode; otherwise it is undefined. This
lets you write a module that will be compiled sometimes as C and
sometimes as C++. Using conditional compilation, you can control which C
and C++ parts are included.

This macro provides the date the preprocessor began processing the
current source file (as a string literal). Each inclusion of __ DATE __ in a
given file contains the same value, regardless of how long the processing
takes. The date appears in the format mmm dd yyyy, where mmm equals the
month (Jan, Feb, and so forth), dd equals the day (1 to 31, with the first
character of dd a blank if the value is less than 10), and yyyy equals the year
(1990, 1991, and so forth).

This macro is specific to Borland's C and C++ family of compilers. It is
defined as 1 if you compile a module to generate code for Windows DLLs;
otherwise it remains undefined.

This macro provides the name of the current source file being processed (as
a string literal). This macro changes whenever the compiler processes an
#include directive or a #line directive, or when the include file is complete.

Chapter 5, The preprocessor 203

This macro provides the number of the current source-file line being
processed (as a decimal constant). Normally, the first line of a source file is

\ defined as I, though the #line directive can affect this. See page 196 for
information on the #line directive.

This macro is true for the 16-bit compiler and always false for the 32-bit
compiler.

This macro is available only for the 32-bit compiler. The macro is defined as
1 if -WM option is used. It specifies that the multithread library is to be
linked.

This macro is specific to Borland's C and C++ family of compilers. It is
predefined as 1 if you compile a module with the -Y option (enable overlay
support). If you don't enable overlay support, this macro is undefined.

This macro is specific to Borland's family of compilers. It signals that the
Pascal calling convention has been used. The macro is set to the integer
constant 1 if used; otherwise, it remains undefined.

This macro is defined as the constant 1 if you compile for ANSI
compatibility; otherwise, it is undefined.

__ TCPLUSPLUS_ _ This macro is specific to Borland's family of compilers. It is defined for C++
compilation only. If you've selected C++ compilation, it is defined as
Ox0320, a hexadecimal constant. This numeric value will increase in later
releases.

_ _ TEMPLATES __

204

This macro is specific to Borland's family of compilers. It is defined as 1 for
C++ files (meaning that Borland C++ supports templates); otherwise, it is
undefined.

This macro keeps track of the time the preprocessor began processing the
current source file (as a string literal).

As with __ DATE_ -' each inclusion of __ TIME __ contains the same value,
regardless of how long the processing takes. It takes the format hh:mm:ss,
where hh equals the hour (00 to 23), mm equals minutes (00 to 59), and ss
equals seconds (00 to 59).

Borland C++ Programmers Guide

The thread local storage macro is always true when the 32-bit compiler is
used. See page 53 for a discussion of the _ _ thread keyword.

This macro is specific to Borland's C and c++ family of compilers. It is
defined as Ox0400, a hexadecimal constant. This numeric value will increase
in later releases.

This macro is always defined for the 32-bit compiler. It is defined for
console and GUI applications.

This macro indicates that Windows-specific code is being generated. It is
defined by default for Borland c++. The macro is always defined for
console and GUI applications.

Chapter 5, The preprocessor 205

206 Borland C++ Programmers Guide

c H A p T E R 6

Using C++ iostreams

This chapter provides a brief, practical overview of how to use C++ stream
I/O. For specific details on the C++ stream classes and their member
functions, see the Library Reference.

Stream input/ output in C++ (commonly referred to as iostreams, or just
streams) provide all the functionality of the stdio library in ANSI C.
Iostreams are used to convert typed objects into readable text, and vice
versa. Streams can also read and write binary data. The C++ language lets
you define or overload I/O functions and operators that are then called
automatically for corresponding user-defined types.

What is a stream?

A stream is an abstraction referring to any flow of data from a source (or
producer) to a sink (or consumer). We also use the synonyms extracting,
getting, and fetching when speaking of inputting characters from a source;
and inserting, putting, or storing when speaking of outputting characters to a
sink. Classes are provided that support console output (constrea.h),
memory buffers (iostream.h), files (fstream.h), and strings (strstrea.h) as
sources or sinks (or both).

The iostream library

The streambuf
class

The iostream library has two parallel families of classes: those derived from
streambuf, and those derived from ios. Both are low-level classes, each doing
a different set of jobs. All stream classes have at least one of these two
classes as a base class. Access from ios-based classes to streambuf-based
classes is through a pointer.

The streambuf class provides an interface to memory and physical devices.
streambuf provides underlying methods for buffering and handling streams
when little or no formatting is required. The member functions of the

Chapter 6, Using C++ iostreams 207

Figure 6.1
Class streambuf and

its derived classes

The ios class

streambuf family of classes are used by the ios-based classes. You can also
derive classes from streambuf for your own functions and libraries. The
buffering classes conbuf, filebuf, and strstreambuf are derived from streambuf.

The class ios (and hence any of its derived classes) contains a pointer to a
streambuf. It performs formatted I/O with error-checking using a streambuf.

An inheritance diagram for all the ios family of classes is found in
Figure 6.2. For example, the ifstream class is derived from the istream and
fstreambase classes, and istrstream is derived from istream and strstreambase.
This diagram is not a simple hierarchy because of the generous use of
multiple inheritance. With multiple inheritance, a single class can inherit
from more than one base class. (The C++ language provides for virtual
inheritance to avoid multiple declarations.) This means, for example, that all
the members (data and functions) of iostream, istream, ostream, fstreambase,
and ios are part of objects of the fstream class. All classes in the ios-based tree
use a streambuf (or a filebuf or strstreambuf, which are special cases of a
streambuf) as its source and/or sink.

C++ programs start with four predefined open streams, declared as objects '
of withassign classes as follows:

extern istrearn_withassign cin; II Corresponds to stdin; file descriptor O.
extern ostrearn_withassign cout; II Corresponds to stdout; file descriptor 1.
extern ostrearn_withassign cerr; II Corresponds to stderr; file descriptor 2.
extern ostrearn_withassign clog; II A buffered cerri file descriptor 2.

208 Borland C++ Programmer's Guide

Figure 6.2
Class ios and its
derived classes

By accepted practice,
the arrows point from

the derived class to
the base class.

Stream output

Stream output is accomplished with the insertion (or put to) operator, «.
The standard left shift operator, «, is overloaded for output operations. Its
left operand is an object of type ostream. Its right operand is any type for
which stream output has been defined (that is, fundamental types or any
types you have overloaded it for). For example,

cout « "Hello!\n";

writes the string "Hello!" to cout (the standard output stream, normally
your screen) followed by a new line.

The « operator associates from left to right and returns a reference to the
ostream object it is invoked for. This allows several insertions to be cascaded
as follows:

Chapter 6, Using C++ iostreams 209

Fundamental
types

I/O formatting

Manipulators

Parameterized
manipulators must be

called for each
stream operation.

210

int i = 8;
double d = 2 .3~;

cout ~< "i = " « i « ", d = " « d « "\n";

This will write the following to standard output:

i = 8, d = 2.34

The fundamental data types directly supported are char, short,int, long,
char* (treated as a string), float, double, long double, and void*. Integral
types are formatted according to the default rules for printf (unless you've
changed these rules by setting various ios flags). For example, the following
two output statements give the same result:

int i;
long 1;
cout « i « " " « 1;
printf("%d %ld", i, 1);

The pointer (void *) inserter is used to display pointer addresses:

int i;
cout « &i; II display pointer address in hex

Read the description of ostream in the Library Reference for other output
functions.

Formatting for both input and output is determined by various format state
flags contained in the class ios. The flags are read and set with the flags, setf,
and unsetf member functions.

Output formatting can also be affected by the use of the fill, width, and
precision member functions of class ios.

The format flags are detailed in the description of class ios in the Library
Reference.

A simple way to change some of the format variables is to use a special
function-like operator called a manipulator. Manipulators take a stream
reference as an argument and return a reference to the same stream. You
can embed manipulators in a chain of insertions (or extractions) to alter
stream states as a side effect without actually performing any insertions (or
extractions). For example,

#include <iostream.h>
#include <iomanip.h> II Required for parameterized manipulators.

int main(void) {
int i = 6789, j = 1234, k = 10;

Borland C++ Programmers Guide

Table 6.1
Stream manipulators

cout « setw(6) « i « j « i « k « j;
cout « "\n";
cout « setw(6) « i « setw(6) « j « setw(6) « k;
return(O);
}

produces this output:

678912346789101234
6789 1234 10

setw is a parameterized manipulator declared in iomanip.h. Other
parameterized manipulators, setbase, setfill, setprecision, setiosflags and
resetiosflags, work in the same way. To make use of these, your program
must include iomanip.h. You can write your own manipulators without
parameters:

#include <iostream.h>

II Tab and prefix the output with a dollar sign.
ostream& money (ostream& output) {

return output « "\t$";
}

int main(void) {
float owed = 1.35, earned = 23.1;
cout « money « owed « money « earned;
return(O) ;
}

produces the following output:

$1.35 $23.1

The non-parameterized manipulators dec, hex, and oct (declared in
iostream.h) take no arguments and simply change the conversion base (and
leave it changed):

int i = 36;
cout « dec « i « " " « hex « i « " " « oct « i « endl;
cout «dec; II Must reset to use decimal base.
II displays 36 24 44

Manipulator

dec
hex
oct
ws
endl

Action

Set decimal conversion base format flag.
Set hexadecimal conversion base format flag.
Set octal conversion base format flag.
Extract whitespace characters.
Insert newline and flush stream.

Chapter 6, Using C++ iostreams 211

Filling and
padding

212

Table 6.1: Stream manipulators (continued)

ends Insert terminal null in string.
flush Flush an ostream.
setbase(int n) Set conversion base format to base n (0,8, 10, or 16). ° means the

resetiosflags(long ~
setiosflags(long ~
setfil/(int c)
setprecision(int n)
setw(int n)

default: decimal on output, ANSI C rules for literal integers on input.
Clear the format bits specified by f.
Set the format bits specified by f.
Set the fill character to c.
Set the floating-point precision to n.
Set field width to n.

The manipulator endl inserts a newline character and flushes the stream.
You can also flush an ostream at any time with

ostream « flush;

The fill character and the direction of the padding depend on the setting of
the fill character and the left, right, and internal flags.

The default fill character is a space. You can vary this by using the function
fill:

int i = 123;
cout.fill('*');
cout.width(6) ;
cout « i; II display ***123

The default direction of padding gives right-alignment (pad on the left).
You can vary these defaults (and other format flags) with the functions setf
and unsetf:

int i = 56;

cout.width(6) ;
couto fill ('#');
cout.setf(ios: :left,ios: :adjustfield);
cout « i; II display 56####

The second argument, ios: :adjustfield, tells setf which bits to set. The first
argument, ios::left, tells setfwhat to set those bits to. Alternatively, you can
use the manipulators set fill, setiosflags, and resetiosflags to modify the fill
character and padding mode. See ios data members in the Library Reference
for a list of masks used by setf.

Borland C++ Programmers Guide

Stream input

Stream input is similar to output but uses the overloaded right shift
operator, », known as the extraction (get from) operator Dr extractor. The
left operand of » is an object of type class istream. As with output, the
right operand can be of any type for which stream input has been defined.

By default,» skips whitespace (as defined by the isspace function in
ctype.h), then reads in characters appropriate to the type of the input object.
Whitespace skipping is controlled by the ios::skipws flag in the format
state's enumeration. The skipws flag is normally set to give whitespace
skipping. Clearing this flag (with setf, for example) turns off whitespace
skipping. There is also a special "sink" manipulator, ws, that lets you
discard whitespace.

Consider the following example:

int i;
double d;
cin » i » d;

When the last line is executed, the program skips any leading whitespace.
The integer value (i) is then read. Any whitespace following the integer is
ignored. Finally, the floating-point value (d) is read.

For type char (signed or unsigned), the effect of the» operator is to skip
whitespace and store the next (non-whitespace) character. If you need to
read the next character, whether it is whitespace or not, you can use one of
the get member functions (see the discussion of istream in the Library
Reference).

For type char* (treated as a string), the effect of the » operator is to skip
whitespace and store the next (non-whitespace) characters until another
whitespace character is found. A final null character is then appended. Care
is needed to avoid" overflowing" a string. You can alter the default width
of zero (meaning no limit) using width as follows:

char array [SIZE] ;
cin.width(sizeof(array}} ;
cin » array; II Avoids overflow.

For all input of fundamental types, if only whitespace is encountered,
nothing is stored in the target, and the istream state is set to fail. The target
will retain its previous value; if it was uninitialized, it remains
uninitialized.

Chapter 6, Using C++ iostreams 213

1/0 of user-defined types

Simple file 1/0

214

To input or output your own defined types, you must overload the
extraction and insertion operators. Here is an example:

#include <iostream.h>

struct info {
char *name;
double val;
char *units;
};

II You can overload « for output as follows:
ostream& operator « (ostream& s, info& m) {

s « m.name « " " « m.val « " " « m.units;
return s;
}i

II You can overload » for input as follows:
istream& operator » (istream& s, info& m) {

s » m.name » m.val » m.unitsi
return Si
}i

int main(void)
info Xi
x.name = new char[15li
x.units = new char[lOli

cout « "\nlnput name, value and units:"i
cin » Xi
cout « "\nMy input:" « Xi
return(O)i
}

The class ofstream inherits the insertion operations from ostream, while
ifstream inherits the extraction operations from istream. The file-stream
classes also provide constructors and member functions for creating files
and handling file I/O. You must include fstream.h in all programs using
these classes.

Consider the following example that copies the file FILE.IN to the file
FILE. OUT:

Borland C++ Programmers Guide

#include <fstream.h>

int main (void) {
char ch;
ifstream f1("FILE.IN");
of stream f2("FILE.OUT");

if (!f1) cerr « "Cannot open FILE.IN for input";
if (!f2) cerr « "Cannot open FILE.OUT for output";
while (f2 && f1.get(ch))

f2 .put (ch);
return(O);
}

Note that if the ifstream or ofstream constructors are unable to open the
specified files, the appropriate stream error state is set.

The constructors let you declare a file stream without specifying a named
file. Later, you can associate the file stream with a particular file:

of stream ofile; II creates output file stream

ofile. open ("payroll") ; I I ofile connects to file "payroll"
II do some payrolling ...

ofile.close() ; II close the ofile stream
ofile.open("employee"); II ofile can be reused ...

By default, files are opened in text mode. This means that on input,
carriage-return/linefeed sequences are converted to the '\n' character. On
output, the '\n' character is converted to a carriage-return/linefeed
sequence. These translations are not done in binary mode. The file-opening
mode is set with an optional second parameter to the open function or in
some file-stream constructors. The file opening-mode constants can be used
alone or they can be logically ORed together. See the description of class ios
data members in the Library Reference.

String stream processing

The functions defined in strstrea.h support in-memory formatting, similar
to sscanf and sprintf, but much more flexible. All of the istream member
functions are available for class istrstream (input string stream). This is the
same for output: ostrstream inherits from ostream.

Given a text file with the following format:

101 191 Cedar Chest
102 1999.99 Livingroom Set

Chapter 6, Using C++ iostreams 215

216

Each line can be parsed into three components: an integer ID, a floating­
point price, and a description. The output produced is

1: 101 191.00 Cedar Chest
2: 102 1999.99 Livingroom Set

Here is the program:

#include <fstream.h>
#include <strstrea.h>
#include <iomanip.h>
#include<string.h>

int main(intargc, char **argv) {
int id;
float amount;
char description[41];

if (argc == 1) {
cout « "\nlnput file name required.";
ret urn (-1);
}

ifstream inf(argv[1]);

if (inf) {
char inbuf[81];
int lineno = 0;

II Want floats to print as fixed po'int
cout.setf(ios::fixed, ios::floatfield);

II Want floats to always have decimal point
cout.setf(ios::showpoint) ;

while (inf.getline(inbuf,81)) {
II 'ins' is the string stream:
istrstream ins(inbuf,strlen(inbuf));
ins » id » amount » ws;
ins.getline(description,41); II Linefeed not copied.
cout « ttlineno « ": "

« id « '\t'
« setprecision(2) « amount « '\t'
« description « "\n";

return(O);

Note the use of format flags and manipulators in this example. The calls to
setf coupled with setprecision allow floating-point numbers to be printed in a
money format. The manipulator ws skips whitespace before the description
string is read.

Borland C++ Programmers Guide

Screen output streams

As with conio.h
functions, constreams

are not available for
GUI applications. The

screen area created
by constream is not

bordered or
otherwise

distinguished from
the surrounding

screen.
Table 6.2

Console stream
manipulators

Typical use of
parameterized

manipulators. See the
Library Reference for
a description of class

constream.

The class constream, derived from ostream and defined in constrea.h,
provides the functionality of conio.h for use with C++ streams. This lets
you create output streams that write to specified areas of the screen, in
specified colors, and at specific locations.

Console stream manipulators are provided to facilitate formatting of
console streams. These manipulators work in the same way as the
corresponding function provided by conio.h. For a detailed description of
the manipulators' behavior and valid arguments, see the Library Reference.

Manipulator conio function

clreol clreol
delline delline
high video high video
insline insline
lowvideo lowvideo
normvideo normvideo
setatt~int) textattr
setbk(int) textcolor
setc/~int) textcolor
setcrsrtype(int) _setcursortype
setxy(int, int) gotoxy

#include <constrea.h>

int main(void) {
constream winl;

Action

Clears to end of line in text window.
Deletes line in the text window.
Selects high-intensity characters.
Inserts a blank line in the text window.
Selects low-intensity characters.
Selects normal-intensity characters.
Sets screen attributes.
Sets new character color.
Sets the color.
Selects cursor appearance.
Positions the cursor at the specified position.

win1.window(l, 1, 40, 20) i II Initialize the desired space.
win1.clrscr(); II Clear this rectangle.

II Use the parameterized manipulator to set screen attributes.
win1 « setattr((BLUE«4) I WHITE)

« "This text is white on blue.";

II Use this parameterized manipulator to specify output area.
win1 « setxy(10, 10)

« "This text is in the middle of the window.";
return(O) i
}

Chapter 6, Using C++ iostreams 217

You can create
multiple constreams,

each writing to its
own portion of the
screen. Then, you

can output to any of
them without having
to reset the window

each time.

218

#include <constrea.h>

int main(void) {
constream demol, demo2;

demol.window(1, 2, 40, 10);
demo2.window(1, 12, 40, 20);

demol. clrscr () ;
demo2.clrscr();

demol « "Text in first window" « endl;
demo2 « "Text in second window" « endl;
demol « "Back to the first window" « endl;
demo2 « "And back to the second window" « endl;
return(O)i
}

Borland C++ Programmers Guide

c H A p T E R

Using Borland class libraries

This chapter describes Borland's container class library and persistent
streams class library. Reference material for each of these classes can be
found in the Library Reference.

7

The container class library

Containers and
templates

See Chapter 3 for a
description of

templates.

This section describes the Borland International Data Structures (BIDS),
also known as the container class library.

Containers are objects that implement common data structures, offering
member functions for adding and accessing each container's data elements
'while hiding the inner details from the user. Containers can hold integers,
real numbers, strings, structures, classes, user-defined types, or any C++
object.

Borland containers are implemented using templates. This means you pass
in to the template the type of the object you want the container to hold. For
example, an array container that holds floats would be instantiated like
this:

TArrayAsVector<float> FloatArray(lO) i

FloatArray can hold 10 floats. The TArrayAsVector template class describes
the member functions for accessing and maintaining the array. Most
containers have Add and Detach member functions, and the array classes
also have the usual [] operators for indexing into the array.

Here's another example of an array container that holds a class object:

class Myclass {

II class description

}i

TArrayAsVector<MyClass> MyClassArray(lO)i

Chapter 7, Using Borland class libraries 219

ADTs and FDSs

Table 7.1
Borland containers

and header files

220

The container class library can be divided into two categories: Fundamental
Data Structures (FDS) and Abstract Data Types (ADT).

Container Header file

Borland FOSs

Binary tree binimp.h
Hashtable hashimp.h
Linked list listimp.h
Double-linked list dlistimp.h
Vector vectimp.h

Borland AOTs

Array arrays.h
Association assoc.h
Dequeue deques.h
Dictionary dict.h
Queue queues.h
Set sets.h
Stack stacks.h

FDSs are lower-level containers that implement storage constructs. Each
FDS has fundamental add and detach member functions. ADTs (for
example T ArrayAs Vector) are commonly used data-processing constructs.
They are higher-level containers that implement more abstract constructs
than lists and vectors, such as stacks and sets. Each ADT has operations
(methods) that are particular to that ADT; for example, the stack containers
have Push and Pop member functions.

Each ADT is based on an FDS. For example, T ArrayAs Vector implements an
array, using a vector as the underlying FDS. Here is an example of a stack
ADT implemented with a linked-list FDS:

TStackAsList<int> IntStack(lO)i

Here, a stack ADT is implemented using a vector FDS:

TStackAsVector<int> IntStack(lO) i

ADT containers use the storage characteristics of the underlying FDS, and
add the specific access methods that make each ADT unique (for example
Push and Pop for stacks).

Borland C++ Programmers Guide

Choosing an FDS

Direct and indirect
containers

Sorted containers

A vector-based stack is appropriate when the maximum number of
elements to be stored on the stack is known in advance, and when speed is
critical. A vector allocates space for all its elements when it is created, and
the operations on a vector-based stack are simple and fast. The list-based
stack is appropriate when there is no reasonable upper bound to the size of
the stack, and speed is not as critical.

Containers can store copies of objects (direct containers) or pointers to
objects (indirect containers). TArrayAsVector<char> is a direct array that
stores a copy of a character. The following container is an indirect array that
stores pointers to floats:

TIArrayAsVector<float> FloatPtrArray(lO);

The I in a template name indicates an indirect container.

The type of object you need to store helps determine whether you need to
use a direct or indirect container. A stack of floats, for example, would
probably use a direct container. A stack of large structs would probably use
an indirect container to reduce copying time. This choice, though, is not
often easy. Performance tuning requires the comparison of different con­
tainer implementations. Traditionally this entails drastic recoding. Using
containers makes it much easier.

For direct object storage, the contained type must have a valid == operator,
a default constructor, and meaningful copy semantics. Indirect containers
also need a valid == operator and a default constructor; because indirect
containers hold pointers to objects, and pointers always have good copy
semantics, indirect containers also always have meaningful copy semantics.
This means that indirect containers can contain objects of any type.

Several containers keep their contents in sorted order. For example,

TSArrayAsVector<MyClass> SortMyClassArray(lO);

instantiates a sorted array of MyClass objects, with a vector as the
underlying FDS.

Sorted containers (both direct and indirect) require that the type of object
passed into the container must have a valid < operator so that the
containers' add functions can determine the ordering of the elements. These
operations are provided for predefined types; for user-defined types, such
as classes, you must provide this operator. Here's a simple example of a
class with the == and < operators overloaded:

Chapter 7, Using Borland class libraries 221

Memory
management

222

class MyClass

private:
int ai

/ / ...

public:

II ...

//overloaded operators necessary for use with a sorted container

int operator«const MyClass& mc) const {
return a < mC.a ? 1 : Oi

int operator==(const MyClass& mc) const {
return a == mC.a ? 1 : Oi

};//end MyClass

For indirect containers the objects are sorted, not the pointers the container
holds.

Containers have versions that give you control over memory management.
Here is a container that lets you pass in a memory-management object of
your choice:

TMQueueAsVector<MyClass, MyMemManage> MyQueue(lOO) i

TMQueueAs Vector takes two type parameters. One is the type of object that
the queue will hold (MyClass), the other is the name of a memory­
management class (MyMemManag) that you want to use. The M in a
template name means that you must specify a memory manager to
implement that container. Container template names without the M use the
standard memory allocator TStandardAllocator found in alloctr.h. The
following two container declarations are equivalent:

TMQueueAsVector<MyClass, TStandardAllocator> MyQueue(lOO)i

TQueueAsVector<MyClass> MyQueue(lOO) i

Both use TStandardAllocator to manage memory. TStandardAllocator
provides operators new, new[], delete, and delete[], which call their global
counterparts. No specialized behavior is provided.

User-supplied memory management must provide a class-specific new
operator, a placement new operator that takes a void * argument as its

Borland C++ Programmers Guide

Container naming
conventions

Table 7.2
Container name

abbreviations

ADT/FDS
combinations in
the library

Table 7.3
ADT/FDS

combinations

Container
iterators

second parameter, and a delete operator. Use the allocators in alloctr.h as an
example for building your own.

The characteristics of each container class are encoded in the container
name. For example, TMIArrayAs Vector is a "managed, indirect array
implemented as a vector." That is, this template takes a memory
management scheme as a parameter, is an indirect container, and is
implemented using a vector. TDequeAsDoubleList is a direct container that
uses the system memory-management scheme and which is implemented
as a double-linked list. Table 7.2 summarizes these abbreviations.

Abbreviation

T
M
I
C
S

Description

Borland class library prefix
User supplied memory-management container
Indirect container
Counted container
Sorted container

The BIDS libraries do not contain all possible combinations of ADT /FDS
combinations. Table 7.3 lists the ADT /FDS combinations supplied.

ADT Sorted
FDS Stack Queue Dequeue Bag Set Array Array Dictionary

Vector x x x x x x x
List x
DoubleList x x
Hashtable x
Binary tree

You can use the template classes to develop your own ADT /FDS imple­
mentations.

Each container class has a corresponding container iterator class, which are
classes dedicated to iterating over a particular kind of container. For
example, T ArrayAs Vector has a corresponding iterator called
TArrayAsVectorIterator that is responsible for iterating over all the items in
the array.

Container iterators implement the ++ pre- and post-increment operators for
that container. They also implement the Current member function (which
returns the current object) and the Restart member function (which restarts
iteration).

CMpter 7, Using Borland class libraries 223

Object ownership

Using containers

224

Here is an iterator example:

#include <iostream.h>
#include <classlib\arrays.h>

typedef TArrayAsVector<float> floatArray;
typedef TArrayAsVectorlterator<float> floatArraylterator;

int main (void) {

Ilcreate an array of integers
floatArray FloatArray(lO);

int count = 0;

Iladd items to the array using Add member function
Ilfor (int i=O; i <= FloatArray.ArraySize(); itt)
while (count <= FloatArray.ArraySize())

FloatArray.Add(float(count++)) ;

Ilcreate an iterator - the constructor takes the array name
lias a parameter
floatArraylterator nextFloat(FloatArray);

cout « "FloatArray contents:" « endl;

while (nextFloat !=O) {
cout « FloatArray [count++ 1 «" ";
cout « endl;
++nextFloati

Indirect containers inherit the OwnsElements member function from
TShouldDelete (shddel.h). OwnsElements lets you indicate whether the
default action of the container is to delete objects when using member
functions Detach andFlush. Detach and Flush each take a parameter that
indicates whether or not they should delete the object, use the default.

Using templatized containers lets you develop a stack-based application
(for example, using vectors as the underlying structure) that you can
change to a linked-list implementation without major recoding. Often it
involves only a change to a typedef.

For example:

IICreate a stack of integers, load the stack, and output contents
#include <classlib\stacks.h>
#include <iostream.h>

Borland C++ Programmers Guide

liThe recommended way of declaring container types
typedef TStackAsVector<int> IntStacki

int main ()
{

IntStack intStacki
for (int i = Oi i < 10i itt

intStack.Push(i) i
for (i = Oi i < 10i itt

cout « intStack.Pop() «" "i

cout « endli
return(O)i

}

Output
987 654 3 2 1 0

This implements a stack of ints using a vector as the underlying FDS. If you
later determine that a list would be a more suitable implementation for the
stack, you can replace the typedef with the following:

typedef TStackAsList<int> IntStacki

After recompiling, the stack implementation is changed from a vector to a
linked list. With only the typedef changed, the code continues to work
properly.

When changing to an indirect container, a few more changes are required:

IICreate a stack of integer pointers, load the stack, and output Ilcontents
#include <classlib\stacks.h>
#include <iostream.h>

IIChanged typedef as usual
typedef TIStackAsVector<int> IntStacki

int main()
{

IntStack intStacki

for (int i = Oi i < 10i itt)
IIIndirect Push takes pointer arg
intStack. Push (&i)i

for (i = Oi i < 10i itt)
IIIndirect Pop returns pointer - need to dereference
cout « *intStack.Pop() «" "i

cout « endl i
return(O)i

}

Output
987 6 5 4 3 2 1 0

Chapter 7, Using Borland class libraries 225

A sorted array
example

If you used
TlArrayAsVector<String>,

the elements would
appear in the order
they were added to

the array.

A dequeue example

226

The following example uses a sorted, indirect array containing strings.

#include <iostream.h>
#include <strstrea.h>
#include <classlib\arrays.h>
#include <cstring.h>

int main ()
{

typedef TISArrayAsVector<string> lArray;
lArraya(2);
for (int i = a.ArraySize(); i; i--)
{

ostrstream as;
as « "string" « (10 - i) « ends;
a.Add((new string(os.str())));

cout « "array elements: \n";

IIIn the sorted array container, the index of a particular array
Ilelement depends on its value, not on the order it was entered

for (i = 0; 'i < a.ArraySize(); tti)
cout« *a[iJ « endl;

return(O);

Output
array elements:
string 7
string 8
string 9

The following example illustrates an indirect dequeue, implemented as a
double-linked list.

#include <iostream.h>
#include <strstrea.h>
#include <classlib\deques.h>
#include <cstring.h>

Borland C++ Programmers Guide

Pointers to string
objects in the

dequeue container
must be de referenced
when extracting from

the dequeue.

Container
directories

To use the BIDS
libraries you must
explicitly add the

appropriate
BIDS[DB]x.LlB library

to your project or
makefile.

typedef TIDequeAsDoubleList<string> lDequei

int main()
{

lDeque di
for (int i = 1i i < 5i itt)
{

ostrstream OSi

os « "string" « i « endsi
II use alternating left, right insertions
if(i&l)

d.PutLeft(new string(os.str()))i
else

d.PutRight(new string(os.str()))i

cout « "Dequeue Contents:" « endli
while (! d. IsEmpty ())

IIMust dereference when using indirect container
cout « *d.GetLeft() « endli

return(O) i

Output
Dequeue Contents:
string 3
string 1
string 2
string 4

The libraries for the template-based container classes are distinguished by
the prefix BIDS: BIDSx.LIB, where x represents the memory model, and
BIDSDBx.LIB. for the diagnostic version.

Container class support includes directories containing:

• Header files

• Libraries

• Source files
• Examples

The following sections describe the directories containing each.

Chapter 7, Using Borland class libraries 227

The LlBS and BIN
directories

The INCLUDE
directory

The SOURCE
directory

The EXAMPLES
directory

228

The following table lists the container libraries:

File name

BIDSF.LlB
BIDSDF.LlB
BIDS40F.DLL
BIDS40DF.DLL
BIDSFI,LlB
BIDSDFI,LlB
BIDSS.LlB
BIDSDBS.LlB
BIDSM.LlB
BIDSDBM.LlB
BIDSC.LlB
BIDSDBC.LlB
BIDSL.LlB
BIDSDBL.LlB
BIDS40.DLL
BIDS40D.DLL
BIDSI,LlB
BIDSDI,LlB

Description

32-bit (flat model)
32-bit (flat model) diagnostic version
32-bit (flat model) DLL
32-bit (flat model) DLL diagnostic version
32-bit (flat model) import library
32-bit (flat model) import library diagnostic version
16-bit small model
16-bit small model diagnostic version
16-bit medium model
16-bit medium model diagnostic version
16-bit compact model
16-bit compact model diagnostic version
16-bit large model
16-bit large model diagnostic version
16-bit DLL
16-bit DLL diagnostic version
16-bit import library
16-bit import library diagnostic version

The INCLUDE\CLASSLIB directory contains the header files necessary to
compile a program that uses container classes. For each ADT or FDS there
is a corresponding header file in this directory. Make sure the INCLUDE
directory is on your include path, and then reference header files with an
explicit CLASSLIB. For example:

#include <classlib\stacks.h>

The SOURCE \ CLASS LIB directory contains the source files that implement
many of the member functions of the classes in the library. You will need
these source files if you want to build a library. The supplied MAKEFILE
builds a class library of the specified memory model and places that library
in the LIB directory.

The EXAMPLES\CLASSLIB\BIDS directory has several example programs
that use container classes. Here is a list of the example programs and the
classes they use:

Borland C++ Programmers Guide

Debugging
containers

• STRNGMAX: A string collating example.

• REVERSE: An intermediate example using TStack (an alias for
TStackAs Vector) and String. This example lets the user input strings, then
outputs the strings in reverse order.

• LOOKUP: An intermediate example using TDictionaryAsHashTable and
TDDAssociation.

• QUEUETST: An intermediate example using TQueue (an alias for
TQueueAsVector) and a nonhierarchical class, TTime.

• DIRECTRY: An advanced example illustrating derived user classes with
TISArrayAsVector, and using source files FILEDATA.CPP and
TESTDIR.CPP.

Borland provides macros for debugging classes. Chapter 9 of the Library
Reference describes how to use these class diagnostic macros.

The persistent streams class library

See Chapter 6 of the
Library Reference for

more on persistent
streams.

This section describes what's new with Borland's object streaming support,
then explains how to make your objects streamable.

Objects that you create when an application runs-windows, dialog boxes,
collections, and so on-are temporary. They are constructed, used, and
destroyed as the application proceeds. Objects can appear and disappear as
they enter and leave their scope, or when the program terminates. By
making your objects streamable you save these objects, either in memory or
file streams, so that they persist beyond their normal lifespan.

There are many applications for persistent objects. When saved in shared
memory they can provide interprocess communication. They can be
transmitted via modems to other systems. And, most significantly, objects
can be saved permanently on disk using file streams. They can then be read
back and restored by the same application, by other instances of the same
application, or by other applications. Efficient, consistent, and safe
streamability is available to all objects.

Building your own streamable classes is straightforward and incurs little
overhead. To make your class streamable you need to add specific data
members, member functions, and operators. You also must derive your
class, either directly or indirectly, from the TStreamableBase class. Any
derived class is also streamable.

Chapter 7, Using Borland class libraries 229

Whats new with
streaming

Object versioning

230

To simplify creating streamable objects, the persistent streams library
contains macros that add all the routines necessary to make your classes
streamable. The two most important are

• DECLARE_STREAMABLE

• IMPLEMENT _STREAMABLE

These macros add the boilerplate code necessary to make your objects
streamable. In most cases you can make your objects streamable by adding
these two macros at appropriate places in your code, as explained later.

Object streaming has been significantly changed for Borland C++ 4.0 to
make it easier to use and more powerful. These changes are compatible
with existing ObjectWindows and Turbo Vision code.

The new streaming code is easier to use because it provides macros that
relieve the programmer of the burden of remembering most of the details
needed to create a streamable class. Its other new features include support
for multiple inheritance, class versioning, and better system isolation. In
addition, the streaming code has been reorganized to make it easier to
write libraries that won't force streaming code to be linked in if it isn't
used.

Streaming has been moved from the ObjectWindows library to the class
library. This makes streaming more easily usable in applications that don't
use ObjectWindows.

There have been several additions to the streaming capabilities. These
changes are intended to be backward compatible, so if you compile a
working application with the new streaming code, your application should
be able to read streams that were written with the old code. There is no
provision for writing the old stream format, however. We assume that
you'll like the new features so much that you won't want to be without
them.

The following sections describe the changes and new capabilities of
streaming. Each of these changes is made for you when you use the
DECLARE_STREAMABLE and IMPLEMENT_STREAMABLE macros.

Objects in streams now have a version number associated with them. An
object version number is a 32-bit value that should not be o. Whenever an
object is written to a stream, its version number will also be written. With
versioning you can recognize if there's an older version of the stream you're
reading in, so you can interpret the stream appropriately.

Borland C++ Programmers Guide

Reading and writing
base classes

Reading and writing
integers

In your current code, you might be reading and writing base classes
directly, as shown here:

void Derived::write(opstrearn& out
{

Base: :write(out);
/I ...
}

void *Derived::read(ipstrearn& in)
{

Base::read(in);
II ...
}

This method will continue to work, but it won't write out any version
numbers for the base class. To take full advantage of versioning, you
should change these calls to use the new template functions that
understand about versions:

void Derived: :Write(opstrearn& out)
{

WriteBaseObject((Base *)this, out)i

II ...
}

void *Derived::Read(ipstrearn& in, uint32 ver
{

ReadBaseObject((Base *)this, in);
II ...
}

The cast to a pointer to the base class is essential. If you leave it out your
program may crash.

Old streams wrote int and unsigned data types as 2-byte values. To move
easily to 32-bit platforms, the new streams write int and unsigned values as
4-byte values. The new streams can read old streams, and will handle the
2-byte values correctly.

The old streams provide two member functions for reading and writing
integer values:

void writeWord(unsigned) ;

unsigned readWord();

Chapter 7, Using Borland class libraries 231

Use of these four
functions is preferred.

Multiple inheritance
and virtual base
support

232

These have been changed in the new streams:

void writeWord(uint32) i

uint32 readWord()i

Existing code that uses these functions will continue to work correctly if it
is recompiled and relinked, although calls to read Word will generate
warnings about a loss of precision when the return value is assigned to an
jnt or unsigned in a 16-bit application. But in new code all of these
functions should be avoided. In general, you probably know the true size of
the data being written, so the streaming library now provides separate
functions for each data size:

void writeWord16 (uint16) ;

void writeWord32 (uint32) ;

uint16 readWord16(uint16);

uint32 writeword32 (uint32);

The streaming code now provides four function templates that support
virtual base classes and multiple inheritance. The following sections
describe these functions.

The ReadVirtualBase and WriteVirtualBase function templates
Any class that has a direct virtual base should use the new ReadVirtualBase
and WriteVirtualBase function templates:

void Derived: :write(opstrearn& out)
{

WriteVirtualBase((VirtualBase *)this, out);
/ / .. ,

}

void *Derived: :Read(ipstrearn& in, uint32 ver)
{

ReadVirtualBase((VirtualBase *)this, in);
/ / ...
}

A class derived from a class with virtual bases does not need to do
anything special to deal with those virtual bases. Each class is responsible
only for its direct bases.

Borland C++ Programmer's Guide

Creating
streamable
objects

Defining streamable
classes

The ReadBaseObject and WriteBaseObject function templates
Object streams now support multiple inheritance. To read and write
multiple bases, use the new WriteBaseObject and ReadBaseObject function
templates for each base:

void Derived: :Write(opstrearn& out)
{

WriteBaseObject((Basel *)this, out) i
WriteBaseObject((Base2 *)this, out):

I I ."
}

void *Derived::Read(ipstrearn& in, uint32 ver)
{

II
}

ReadBaseObject((Basel *)this, in) i
ReadBaseObject((Base2 *)this, in)i

The easiest way to make a class streamable is by using the macros supplied
in the persistent streams library. The following steps will work for most
classes:

1. Make TStreamableBase a virtual base of your class, either directly or
indirectly.

2. Add the DECLARE_STREAMABLE macro to your class definition.

3. Add the IMPLEMENT_STREAMABLE macro to one of your source
files. Adding the IMPLEMENT _ CAST ABLE macro is also
recommended.

4. Write the Read and Write member function definitions in one of your
source files.

The following sections provide details about defining and implementing
streamable classes.

To define a streamable class you need to

• Include objstrm.h

• Base your class on the TStreamableBase class

Chapter 7, Using Borland class libraries 233

234

• Include macro DECLARE_STREAMABLE into your class definition. For
example,

#include <objstrm.h>

class Sample : public TStreamableBase
{

public:
II member functions, etc.

private:
int i;

DECLARE_STREAMABLE(IMPEXPMACRO, Sample, 1);
};

Header file objstrm.h provides the classes, templates, and macros that are
needed to define a streamable class.

Every streamable class must inherit, directly or indirectly, from the class
TStreamableBase. In this example, the class Sample inherits directly from
TStreamableBase. A class derived from Sample would not need to explicitly
inherit from TStreamableBase because Sample already does. If you are using
multiple inheritance, you should make TStreamableBase a virtual base
instead of a nonvirtual base as shown here. This will make your classes
slightly larger, but won't have any other adverse affect on them.

In most cases the DECLARE_STREAMABLE macro is all you need to use
when you're defining a streamable class. This macro takes three
parameters. The first parameter is used when compiling DLLs. This
parameter takes a macro that is meant to expand to either _ _ import,
_ _ export, or nothing, depending on how the class is to be used in the DLL.
See Chapters 6 and 9 of the Library Reference for further explanation. The
second parameter is the name of the class that you're defining, and the
third is the version number of that class. The streaming code doesn't pay
any attention to the version number, so it can be anything that has some
significance to you. See the discussion of the nested class Streamer for
details.

DECLARE_STREAMABLE adds a constructor to your class that takes a
pa~ameter of type StreamableInit. This is for use by the streaming code; you
won't need to use it directly. DECLARE_STREAMABLE also creates two
inserters and two extractors for your class so that you can write objects to
and read them from persistent streams. For the class Sample (shown earlier
in this section), these functions have the following prototypes:

opstream& operator « (opstream&, const Sample&);
opstream& operator « (opstream&, const Sample*);
ipstream& operator » (ipstream&, Sample&);
ipstream& operator » (ipstream&, Sample*&);

Bor/and c++ Programmers Guide

Implementing
streamable classes

The first inserter writes out objects of type Sample. The second inserter
writes out objects pointed to by a pointer to Sample. This inserter gives you
the full power of object streaming, because it understands about
polymorphism. That is, it will correctly write objects of types derived from
Sample, and when those objects are read back in using the pointer extractor
(the last extractor) they will be read in as their actual types. The extractors
are the inverse of the inserters.

Finally, DECLARE_STREAMABLE creates a nested class named Streamer,
based on the TStreamer class, which defines the core of the streaming code.

Most of the members added to your class by the DECLARE_STREAMABLE
macro are inline functions. There are a few, however, that aren't inline;
these must be implemented outside of the class. Once again, there are
macros to handle these definitions.

The IMPLEMENT_ CASTABLE macro provides a rudimentary typesafe
downcast mechanism. If you are building with Borland C++ 4.0 you don't
need to use this because Borland C++ 4.0 supports run-time type
information. However, if you need to build your code with a compiler that
does not support run-time type information, you will need to use the
IMPLEMENT_CASTABLE macro to provide the support that object
streaming requires. Although it isn't necessary to use
IMPLEMENT_ CASTABLE when using Borland C++ 4.0, you ought to do
so anyway if you're concerned about being able to compile your code with
another compiler.

IMPLEMENT _ CASTABLE has several variants:

IMPLEMENT_CASTABLE(cls)
IMPLEMENT_CASTABLE1(cls, basel)
IMPLEMENT_CASTABLE2(cls, basel, base2
IMPLEMENT_CASTABLE3(cls, basel, base2, base3
IMPLEMENT_CASTABLE4(cls, basel, base2, base3, base4
IMPLEMENT_CASTABLES(cls, basel, base2, base3, base4, baseS)

At some point in your source code you should invoke this macro with the
name of your streamable class as its first parameter and the name of all its
streamable base classes other than TStreamableBase as the succeeding
parameters. For example,

class Basel : public virtual TStreamableBase
{

I I ...
DECLARE_STREAMABLE(IMPEXPMACRO, Basel, 1)i

}i

IMPLEMENT_CASTABLE(Basel)i II no streamable bases

Chapter 7, Using Borland class libraries 235

236

class Base2 public virtual TStreamableBase
{

I I .,.
DECLARE_STREAMABLE(IMPEXPMACRO, Base2, 1);
};

IMPLEMENT_CASTABLE(Basel); II no streamable bases

class Derived : public Basel, public virtual Base2
{

I I ...
DECLARE_STREAMABLE(IMPEXPMACRO, Derived, 1);
};

IMPLEMENT_CASTABLE2(Derived, Basel, Base2); Iitwo streamable bases

class MostDerived : public Derived·
{

DECLARE_STREAMABLE(IMPEXPMACRO, MostDerived, 1);
} ;

IMPLEMENT_CASTABLEl(MostDerived, Derived); Iione streamable base

The class Derived uses IMPLEMENT_CAST ABLE2 because it has two
streamable base classes.

In addition to the IMPLEMENT_CASTABLE macros, you should invoke
the appropriate IMPLEMENT_STREAMABLE macro somewhere in your
code. The IMPLEMENT _STREAMABLE macro looks like the
IMPLEMENT _ CASTABLE macros:

IMPLEMENT_STREAMABLE(cIs)
IMPLEMENT_STREAMABLEl(cIs, basel)
IMPLEMENT_STREAMABLE2(cIs, basel, base2
IMPLEMENT_STREAMABLE3(cIs, basel, base2, base3
IMPLEMENT_STREAMABLE4(cIs, basel, base2, base3, base4
IMPLEMENT_STREAMABLES(cIs, basel, base2, base3, base4, baseS

The IMPLEMENT _STREAMABLE macros have one important difference
from the IMPLEMENT _CASTABLE macros: when using the
IMPLEMENT _STREAMABLE macros you must list all the streamable base
classes of your class in the parameter list, and you must list all virtual base
classes that are streamable. This is because the
IMPLEMENT _STREAMABLE macros define the special constructor that
the object streaming code uses; that constructor must call the
corresponding constructor for all of its direct base classes and all of its
virtual bases. For example,

Borland C++ Programmers Guide

The nested class
Streamer

class Basel public virtual TStrearnableBase
{

1/ ...
DECLARE_STREAMABLE(IMPEXPMACRO, Basel, 1) i
}i

IMPLEMENT_CASTABLE(Basel) i II no strearnable bases
IMPLEMENT_STREAMABLE(Basel)i II no strearnable bases

class Base2 : public virtual TStrearnableBase
{

1/ ...
DECLARE_STREAMABLE(IMPEXPMACRO, Base2, 1);
};

IMPLEMENT_CASTABLE(Basel)i II no strearnable bases
IMPLEMENT_STREAMABLE(Basel); II no strearnable bases

class Derived : public Basel, public virtual Base2
{

I I ..
DECLARE_STREAMABLE(IMPEXPMACRO, Derived, 1) i
} i

IMPLEMENT_CASTABLE2(Derived, Basel, Base2) i
IMPLEMENT_STREAMABLE2(Derived, Basel, Base2);

class MostDerived : public Derived
{

I I ...
DECLARE_STREAMABLE(IMPEXPMACRO, MostDerived, 1)i

}i

IMPLEMENT_CASTABLEl(MostDerived, Derived);
IMPLEMENT~STREAMABLE2(MostDerived, Derived, Base2) i

The nested class Streamer is the core of the streaming code for your objects.
The DECLARE_STREAMABLE macro creates Streamer inside your class. It
is a protected member, so classes derived from your class can access it.
Streamer inherits from TNewStreamer, which is internal to the object
streaming system. It inherits the following two pure virtual functions:

virtual void Write (opstrearn&) const = Oi
virtual void *Read(ipstrearn&, uint32) const = 0;

Streamer overrides these two functions, but does not provide definitions for
them. You must write these two functions: Write should write any data that
needs to be read back in to reconstruct the object, and Read should read that
data. Streamer::GetObject returns a pointer to the object being streamed. For
example,

Chapter 7, Using Borland class libraries 237

Writing the Read
and Write functions

238

class Demo public TStreamableBase

int i;
int j;

pUblic:
Demo (int iL int jj): i(ii), j(jj) {}

DECLARE_STREAMABLE(IMPEXPMACRO, Demo, 1);
};

IMPLEMENT_CASTABLE(Demo);
IMPLEMENT_STREAMABLE(Demo);

void *Demo::Streamer: :Read(ipstream& in, uint32) canst
{

in » GetObject()->i » GetObject()->j;
return GetObject();

void Demo:.: Streamer: : Wri te (opstream& out canst
{

out « GetObject()->i « GetObject()->j;

It is usually easiest to implement the Read function before implementing the
Write function. To implement Read you need to

• Know what data you need in order to reconstruct the new streamable
object

• Devise a sensible way of reading that data into the new streamable
object.

Then implement Write to work in parallel with Read so that it sets up the
data that Read will later read. The streaming classes provide several
operators to make this easier. For example, opstream provides inserters for
all the built-in types, just as ostream does. 50 all you need to do to write out
any of the built-in types is to insert them into the stream.

You also need to write out base classes. In the old ObjectWindows and
Turbo Vision streaming, this was done by calling the base's Read and Write
functions directly. This doesn't work with code that uses the new streams,
because of the way class versioning is handled.

The streaming library provides template functions to use when reading and
writing base classes. ReadVirtualBase and WriteVirtualBase are used for
virtual base classes, and ReadBaseObject and WriteBaseObject are used for
nonvirtual bases. Just like IMPLEMENT_CA5TABLE, you only need to
deal with direct bases. Virtual bases of your base classes will be handled by
the base class, as shown in this example:

Borland C++ Programmers Guide

class Basel public virtual TStreamableBase

int i;
DECLARE_STREAMABLE(IMPEXPMACRO, Basel, 1);
};

IMPLEMENT_CASTABLE(Basel); II no streamable bases
IMPLEMENT_STREAMABLE(Basel); II no streamable bases
void Basel: :Streamer::Write(opstream& out) const
{

out « GetObject()->i;

class Base2 public virtual TStreamableBase

int j;
DECLARE_STREAMABLE(IMPEXPMACRO, Base2, 1);
};

IMPLEMENT_CASTABLE(Basel); II no streamable bases
IMPLEMENT_STREAMABLE(Basel); II no streamable bases
void Base2::Streamer::Write(opstream& out) canst
{

out « GetObject()->j;

class Derived : public Basel, public virtual Base2

int k;
DECLARE_STREAMABLE(IMPEXPMACRO, Derived, 1);
};

IMPLEMENT_CASTABLE2(Derived, Basel, Base2);
IMPLEMENT_STREAMABLE2(Derived, Basel, Base2);
void Derived::Streamer::Write(opstream& out) canst
{

WriteBaseObject((Basel *)this, out);
WriteVirtualBase((Base2 *)this, out);
out « GetObject()->k;

class MostDerived : public Derived

int m;
DECLARE_STREAMABLE(IMPEXPMACRO, MostDerived, 1);
};

IMPLEMENT_CASTABLE1(MostDerived, Derived);
IMPLEMENT_STREAMABLE2(MostDerived, Derived, Base2);
void MostDerived::Streamer::Write(opstream& out) canst
{

WriteBaseObject((Derived *)this, out);
out « GetObject()->m;

Chapter 7, Using Borland class libraries 239

Object versioning

240

When you're writing out a base class, don't forget to cast the this pointer.
Without the cast, the template function will think it's writing out your class
and not the base class. The result will be that it calls your Write or Read
function rather than the base's. This results in a lengthy series of recursive
calls, which will eventually crash.

You can assign version numbers to different implementations of the same
class as you change them in the course of maintenance. This doesn't mean
that you can use different versions of the same class in the same program,
but it lets you write your streaming code in such a way that a program
using the newer version of a class can read a stream that contains the data
for an older version of a class. For example:

class Sample : public TStreamableBase
{

int ii
DECLARE_STREAMABLE(IMPEXPMACRO, Sample, 1)i
}i

IMPLEMENT_CASTABLE(Sample) i
IMPLEMENT_STREAMABLE(Sample) i
void Sample::Streamer: :Write(opstream& out) canst
{

out « GetObject()->ii

void *Sample: :Streamer::Read(ipstream& in, uint32) canst
{

in » GetObject()->ii
return GetObject() i

Suppose you've written out several objects of this type into a file and you
discover that you need to change the class definition. You'd do it
something like this:

class Sample : public TStreamableBase
{

int ii
int ji II new data member
DECLARE_STREAMABLE(IMPEXPMACRO, Sample, 2) ill new version number
}i

IMPLEMENT_CASTABLE(Sample)i
IMPLEMENT_STREAMABLE(Sample)i
void Sample: :Streamer::Write(opstream& out) canst
{

out « GetObject()->ii
out « GetObject()->ji

Borland C++ Programmers Guide

void *Sample::Streamer::Read(ipstream& in, uint32 ver) const
{

in » GetObject()->i;
if(ver > 1)

in » GetObject()->j;
else

GetObject()->j = 0;
return GetObject();

Streams written with the old version of Sample will have a version number
of 1 for all objects of type Sample. Streams written with the new version will
have a version number of 2 for all objects of type Sample. The code in Read
checks that version number to determine what data is present in the
stream.

The streaming library used in the previous versions of ObjectWindows and
Turbo Vision doesn't support object versioning. If you use the new library
to read files created with that library, your Read function will be passed a
version number of o. Other than that, the version number has no
significance to the streaming library, and you can use it however you want.

Chapter 7, Using Borland class libraries 241

242 Borland C++ Programmers Guide

See page 253 for 32-
bit Windows (Win32)

information.

The intricacies of
designing and

developing Windows
applications go

beyond the scope of
this chapter.

c H A p T E R 8

Windows programming

This chapter describes a variety of 16-bit and 32-bit Windows programming
topics, including

• Resource script files

• Module definition files

• Import libraries

• Project files and the project manager

• The Borland heap manager

• 32-bit Windows programming

In addition to compiling source code and linking .OBJ files, a Windows
programmer must compile resource script files and bind resources to an
executable. A Windows programmer must also know about dynamic
linking, dynamic link libraries (DLLs), and import libraries. Also, if you're
using the Borland C++ IDE, it's helpful to know how to use the Borland
project manager, which uses project files to automate and manage
application building. Figure 8.1 illustrates the process of building a
Windows application.

Chapter 8, Windows programming 243

Figure 8.1
Compiling and linking
a Windows program

These are the steps to compiling and linking a Windows program:

1. Source code is compiled or assembled, producing .OBJ files.

2. Module definition files (.DEF) tell the linker what kind of executable
you want to produce.

3. Resource Workshop (or some other resource editor) creates resources,
like icons or bitmaps. A resource file (.RC) is produced. See the User's
Guide documentation for more information on using Resource
Workshop, and Chapter 10 in the User's Guide for more information on
using resource tools.

4. The .RC file is compiled by a resource compiler or Resource Workshop,
and a binary .RES file is output.

5. Linking produces an .EXE file with bound resources.

Resource script files

244

Windows applications typically use resources. Resources are icons, menus,
dialog boxes, fonts, cursors, bitmaps, or other user-defined resources.

Borland C++ Programmers Guide

See Chapter 10 in the
Users Guide for a

complete discussion
of BRC.

Resources are defined in a file called a resource script file, also known as a
resource file. These files have the file-name extension .RC.

To use resources, you must use the Borland Resource Compiler (BRC or
BRC32) to compile your .RC file into a binary format. Resource compilation
creates a .RES file. TLINK or TLINK32 then binds the .RES file to the .EXE
file output by the linker. This process also marks the .EXE file as a Windows
executable.

Module definition files

Module definition files
are described in

detail in Chapter 9 of
the Users Guide.

A module definition (.DEF) file provides information to the linker about the
contents and system requirements of a Windows application. This
information includes heap and stack size, and code and data characteristics .
. DEF files also list functions that are to be made available for other modules
(export functions), and functions that are needed from other modules
(import functions). Because Borland linkers have other ways of finding out
the information contained in a module definition file, module definition
files are not always required for Borland C++'s linker to create a Windows
application.

Here's the module definition file for the WHELLO example:

NAME WHELLO
DESCRIPTION 'C++ Windows Hello World:
EXETYPE WINDOWS
CODE PRELOAD MOVEABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 5120

Let's take this file apart, statement by statement:

• NAME specifies a name for a program. If you want to build a DLL
instead of a program, you would use the LIBRARY statement. Every
module definition file should have either a NAME statement or a
LIBRARY statement, but never both. The name specified must be the
same name as the executable file. WINDOW API identifies this program
as a Windows executable.

• DESCRIPTION lets you specify a string that describes your application
or library.

• EXETYPE marks the executable as a Windows executable. This is
necessary for all Windows executables.

• CODE describes attributes of the executable's code segment. The
PRELOAD option instructs the loader to load this portion of the image

Chapter 8, Windows programming 245

The _export keyword
should immediately

precede the function
name.

Import libraries

246

when the application is loaded into memory. The MOVEABLE option
means Windows can move the code around in memory.

• DATA defines the default attributes of data segments. The MULTIPLE
option ensures that each instance of the application has its own data

· segment.

• HEAP SIZE specifies the size of the application's local heap.

• STACKSIZE specifies the size of the application's local stack. You can't
use the STACKSIZE statement to create a stack for a DLL.

Two important statements not used in this .DEF file are the EXPORTS and
IMPORTS statements.

The EXPORTS statement lists functions in a program or DLL that will be
called by other applications or by Windows. These functions are known as
export functions, callbacks, or callback functions. Exported functions are
identified by the linker and entered into an export table.

To help you avoid having to create and maintain long EXPORTS sections in
your module definition files, Borland C++ provides the _export keyword.
Functions flagged with _export will be identified by the linker and entered
into the export table for the module. This is why the WHELLO example has
no EXPORT statement in its module definition file.

The WHELLO application doesn't have an IMPORTS statement either
because the only functions it calls from other modules are those from the
Windows Application Program Interface (API); those functions are
imported via the automatic inclusion of the IMPORT. LIB, IMPORT32.LIB,
or IMPRTW32.LIB import libraries. When an application needs to call other
external functions, these functions must be listed in the IMPORTS
statement or included via an import library.

When you use DLLs, you must give the linker definitions of the functions
you want to import from DLLs. This information temporarily satisfies the
external references to the functions called by the compiled code, and tells
the Windows loader where to find the functions at run time.

There are two ways to tell the linker about import functions:

• You can add an IMPORTS section to the module definition file and list
every DLL function that the module will use.

• You can include an import library for the DLLs when you link the
module.

Bor/and c++ Programmers Guide

See Chapter 11 in the
Users Guide for an

explanation of how to
use import library

tools.

WinMain

WINAPI,
HINSTANCE and

LPSTR are defined in
windows.h.

An import library contains import definitions for some or all of the
exported functions for one or more DLLs. A utility called IMPLIB creates
import libraries for DLLs. IMPLIB creates import libraries directly from
DLLs or from a DLL's module definition files, or from a combination of the
two.

Import libraries can be substituted for all or part of the IMPORTS section of
a module definition file;

You must supply the WinMain function as the main entry point for
Windows applications. Some applications, the Borland ObjectWindows
library for example, encapsulate the WinMain entry point.

The following parameters are passed to WinMain:

WINAPI WinMain(HINSTANCE hlnstance, HINSTANCE hPrevlnstance,
LPSTR lpCrndLine, int nCrndShow)

• hlnstance is the instance handle of the application. Each instance of a
Windows application has a unique instance handle that's used as an
argument to several Windows functions and can be used to distinguish
between multiple instances of a given application.

• hPrevlnstance is the handle of the previous instance of this application.
hPrevlnstance is NULL if this is the first instance, and is always 0 under
Win32 .

• ZpCmdLine is a pointer (a far pointer in 16-bit Windows) to a null­
terminated command-line string. This value can be specified when
invoking the application from the program manager or from a call to
WinExec.

• nCmdShow is an integer that specifies how to display the application's
window (for example iconized).

The return value from WinMain is not currently used by Windows.
However, it can be useful during debugging because Turbo Debugger can
display this value when your program terminates.

Prologs and epi logs

When you compile a module for Windows, the compiler needs to know
what kind of prolog and epilog to create for each of a module's functions.

Chapter 8, Windows programming 247

The _export
keyword

For 16-bit Windows,
exported functions

must be declared far;
you can use the FAR

type, defined in
windows.h.

Thejmport
keyword

Windows All
Functions
Exportable (-W,
-We)

248

IDE settings and command-line compiler options control the creation of the'
prolog and epilog. The prolog and epilog perform several functions,
including ensuring that the correct data segment is active during callback
functions, and marking stack frames for the Windows stack-crawling
mechanism.

The prolog and epilog code is automatically generated by the compiler,
though various compiler options or IDE settings dictate which sets of
instructions are contained in the generated code.

The following sections describe the _export and _import keywords, and the
effects of the different prolog/ epilog code-generation options and their
corresponding command-line compiler options.

The keyword _export in a function definition tells the compiler to compile
the function as exportable and tells the linker to export the function. In the
function or class declaration, _export immediately precedes the function or
class name; for example,

LRESULT CALLBACK ~export MainWindowProc(HWND hWnd, UINT iMessage,
WPARAM wParam, LPARAM lParam)

For more information on _export, see Chapter 2. See Chapter 9 for
information on using _export with C++ class definitions.

The keyword _import in a function or class tells the compiler that the
function or class will be imported from a DLL. Like _export, _import is
used before the function or class name. For more information on _import,
see Chapter 2. See Chapter 9 for information on using _import with C++
class definitions.

This option creates a Windows application object module with all functions
exportable.

" The -W option is the most general kind of Windows application module,
although not necessarily the most efficient. The compiler generates a prolog
and epilog for every function, making each function exportable. This
doesn't mean that all the functions actually will be exported; ~t only means
that all the functions can be exported. To actually export one of these
functions, you must either use the _export keyword or add an entry for the
function name in the EXPORTS section of the module definition file. -we is
the equivalent switch for 32-bit console mode applications.

Borland C++ Programmer's Guide

Windows Explicit
Functions
Exported (-WE)

Windows Smart
Callbacks (-WS)

BCC32 doesn't use
the -WS switch.

There are no smart
callbacks for DLLs

because DLLs
assume DS != SS.

The -WE option creates an object module containing only those functions
marked as _export exportable.

Since, in any given application module, many of the functions won't be
exported, it isn't necessary for the compiler to include the special prolog
and epilog for exportable functions unless a particular function is known to
be exported. The _export keyword in a function definition tells the
compiler to use the special prolog and epilog required for exported
functions. All functions not flagged with _export receive abbreviated
prolog and epilog code, resulting in a smaller object file and slightly faster
execution.

The -WE option works only in conjunction with the _export keyword. This
option doesn't export those functions listed in the EXPORTS section of a
module definition file. In fact, you can't use this option and provide the
names of the exported functions in the EXPORTS section. If you do, the
compiler will generate prolog and epilog code that is incompatible with
exported functions; incorrect behavior will result when these functions are
called.

The -WS option creates an object module with functions using smart
. callbacks.

This form of prolog and epilog assumes that DS == SS; that is, it assumes
the default data segment is the same as the stack segment. This eliminates
the need for the special Windows code (called a thunk) created for exported
functions. Using smart callbacks can improve performance because calls to
functions in the module don't have to be redirected through the thunks.

Exported functions that use this option don't need the _export keyword or
need to be listed in the EXPORTS section of the module definition file,
because the linker doesn't need to create an export entry for them in the
executable.

When you use functions compiled and linked with smart callbacks, you
don't need to precede them with a call to MakeProcInstance (which rewrites
the function's prolog in such a way that it uses a smart callback).

Because of the assumption that DS == SS, you can use this option only for
applications, not for DLLs. Furthermore, you must not explicitly change DS
in your program (which is an unsafe practice under Windows in any
circumstance).

Chapter 8, Windows programming 249

Windows Smart
Callbacks and
Explicit Functions
Exported (-WSE)

Windows DLL All
Functions
Exportable (-WD,
-WCD)

Windows DLL
Explicit Functions
Exported (-WOE,
-WCDE)

Prologs, epilogs,
and exports: A
summary

250

The -WSE option creates an object module with functions that use smart
callbacks, and with explicit functions exported. This is a BCC (16-bit) only
switch.

This option creates a DLL object module with all functions exportable. This
prolog and epilog 'Code is used for functions that will reside in a DLL. It
also supports the exporting of these functions. This is similar to the
corresponding non-DLL option. -WCD is the equivalent for 32-bit console
mode applications.

This prolog and epilog code is also used for functions that will reside in a
DLL. However, any functions that will be exported must explicitly specify
_export in the function definition. This is similar to the corresponding non­
DLL option. -WCDE is the equivalent switch for 32-bit console mode
applications.

There are two steps to exporting a function. First, the compiler must create
the correct prolog and epilog for the function; at this point, the function is
called exportable. Second, the linker must create an entry for every export
function in the header section of the executable. This occurs in 16-bit
Windows so that the correct data segment can be bound to the function at
runtime. In 32-bit Windows the binding of data segments does not apply.
However, DLLs must have entries in the header so the loader can find the
function to link to when an .EXE loads the DLL.

If a function is flagged with the _export keyword and any of the Windows
compiler options are used, the function is compiled as exportable and
linked as an export.

If a function is not flagged with the _export keyword, Borland C++ will
take one of the following actions:

• If you compile with the -W / -WC or -WD / -WCD option (or with the IDE
equivalent of either option), the function will be compiled as exportable.

If the function is listed in the EXPORTS section of the module definition
file, the function will be linked as an export. If it is not listed in the
module definition file, or if no module definition file is linked, then it
won't be linked as an export.

• If you compile with the -WE or -WDE/ -WCDE option (or with the IDE
equivalent of either option), the function will not be compiled as

Borland C++ Programmers Guide

exportable. Including this function in the EXPORTS section of the
module definition file will cause it be exported, but, because the prolog is
incorrect, the program will run incorrectly. You might get a Windows
error message in the 16-bit environment.

Table 8.1 summarizes the effect of the combination of the Windows
compiler options and the _export keyword:

Table 8.1: Compiler options and the _export keyword

Function flagged
with _export? Yes Yes Yes Yes No No No No

Function listed
in EXPORTS? Yes Yes No No Yes Yes No No

The compiler -Wor -WE or -Wor -WE or -Wor -WE or -Wor -WE or
option1 is: -WO -WOE -WO -WOE -WO -WOE -WO -WOE

Is function
exportable? Yes Yes Yes Yes Yes No Yes No

Will function
be exported? Yes Yes Yes Yes Yes Yes2 No3 No

1 Or the 32-bit console mode application equivalents.
2 The function will be exported in some sense, but because the prolog and epilog won't be correct, the function won't work as expected.
3 This combination also makes little sense. Its inefficient to compile all functions as exportable if you don't actually export some of them.

Project files

Project files automate the process of building Windows applications when
you're using the Borland C++ IDE. Project files, which have the file-name
extension .PR}, contain information about how to build a particular
application. Using a tool called the project manager, you can create and
maintain project files that describe each of the applications you are
developing, and that build the projects into applications. Project files
contain a list of the files to be processed and the switch settings for each
tool used. This information is used by the project manager to automatically
build the application. Project files and the project manager are the IDE
equivalent of makefiles and the make utility, but project files are easier to
maintain and use than makefiles.

For example, if you enter HELLO.CPP, HELLO.RC, and HELLO.DEF into a
project file, the Borland C++ project manager

• Creates HELLO.OB} by compiling HELLO.CPP with the C++ compiler

• Creates HELLO.RES by compiling HELLO.RC with the resource
compiler (BRC or BRC32) or Resource Workshop

Chapter 8, Windows programming 251

• Creates HELLO.EXE by linking HELLO.OBJ with appropriate libraries,
using information contained in HELLO.DEF, and by linking the
resources contained in HELLO.RES.

Use the Project Options dialog box in the IDE to set project options. This is
fully explained in the User's Guide.

The Borland heap manager

252

Windows supports dynamic memory allocations on two different heaps:
the global heap and the local heap.

The global heap is a pool of memory available to all applications. Although
global memory blocks of any size can be allocated, the global heap is
intended only for large memory blocks (256 bytes or more). Each global
memory block carries an overhead of at least 20 bytes. Under the Windows
standard and 386 enhanced modes, there is a system-wide limit of 8192
global memory blocks, only some of which are available to any given
application.

The local heap is a pool of memory available only to your application. It
exists in the upper part of an application's data segment. The total size of
local memory blocks that can be allocated on the local heap is 64K minus
the size of the application's stack and static data. For this reason, the local
heap is best suited for small memory blocks (256 bytes or less). The default
size of the local heap is 4K, but you can change this in your application's
.DEF file.

Borland C++ includes a heap manager that implements the new, delete, malloc,
and free functions. The heap manager uses the global heap for all
allocations. Because the global heap has a system-wide limit of 8192
memory blocks, Borland C++'s heap manager includes a sub-allocator
algorithm to enhance performance and allow a substantially larger number
of blocks to be allocated.

This is how the segment sub-allocator works: when allocating a large block,
the heap manager allocates a global memory block using the Windows
GlobalAlloc routine. When allocating a small block, the heap manager
allocates a larger global memory block and then divides (sub-allocates) that
block into smaller blocks as required. Allocations of small blocks reuse all
available sub-allocation space before the heap manager allocates a new
global memory block, which, in turn, is further sub-allocated.

The HeapLimit variable defines the threshold between small and large heap
blocks. HeapLimit is set at 64K bytes. The HeapBlock variable defines the size

Borland C++ Programmer's Guide

the heap manager uses when allocating blocks to be assigned to the sub­
allocator. HeapBlock is set at 4096 bytes.

32-bit Windows programming

See page 263 for 32-
bit tool names,

options, and libraries.

Win32

The Win32 API

For complete
descriptions of Win32

API functions, see
online help.

The following sections briefly describe the Win32 and Windows
programming environment, and explain how to port your code to this
environment. This port makes your code compilabl~ to run on both 16 and
32-bit versions of Windows, and compilable for future processors hosting
Windows.

Borland C++ 32-bit tools support the production of 32-bit .OBJ and .EXE
files in the portable executable (PE) file format, which is the executable file
format for Win32 and Windows NT programs. Win32 conforming
executables will run unchanged on Windows NT.

Win32 is an operating-system extension to Windows 3.1 that provides
support for developing and running 32-bit Windows executables. Win32 is
a set of DLLs that handle mapping 32-bit application program interface
(API) calls to their 16-bit counterparts, a virtual device driver (VxD) to
handle memory management, and a revised API called the Win32 API. The
DLL and VxD are transparent.

To make sure your code will compile and run under Win32, you should

• Make sure your code adheres to the Win32 API.

• Write portable code using types and macros provided in the windows.h,
and windowsx.h files.

The following sections descripe the Win32 API, and explain how to write
portable Windows code.

The Win32 API widens most of the existing 16-bit Windows API to 32 bits,
and adds new API calls compatible with Windows NT. The Win32s API is a
subset of the Win32 API for Windows NT. The Win32 API is made up of
16:..bit API calls that have been converted to and are callable in the 32-bit
environment, and 32-bit API calls that are implementable in the 16-bit
Windows environment.

If a Win32 executable calls any of the Win32 API functions not supported
under Win32, appropriate error codes are returned at run time. If you write
applications that conform to the Win32 API and use the porting tips
described in the next section, your application will be portable across 16
and 32-bit Windows environments.

Chapter 8, Windows programming 253

Writing portable
Windows code

STRICT

254

This section discusses portability constructs (which were introduced in
Windows 3.1) that will assist you in producing portable Windows code.
Existing 16-bit Windows code can be ported to Win32 and Windows NT
with minimal changes. Most changes involve substituting new macros and
types for old, and replacing any 16-bit specific API calls with analogous
Win32 API calls. Once these changes have been made, your code can
compile and run under 16 or 32-bit Windows.

A compile-time environment variable, STRICT, has been provided to assist
you in producing portable code.

Windows 3.1 introduced support in windows.h for defining STRICT.
Defining STRICT enables strict compiler error checking. For example, if
STRICT is not defined, passing an HWND to a function that requires an
HDC will not cause a compiler warning. If you define STRICT, you get a
compiler error.

Using STRICT enables

• Strict handle type checking

• Correct and consistent parameter and return-value type declarations

• Fully prototyped type definitions for callback function types (window,
dialog, and hook procedures)

• ANSI-compliant declaration of COMM, DCB, and COMSTAT structures

STRICT is Windows 3.0 backward compatible. It can be used with the 3.1
WINDOWS.H for creating applications that will run under Windows 3.0.

Defining STRICT will help you locate and correct type incompatibilities
that arise when migrating your code to 32 bits, and will aid portability
between 16 and 32-bit Windows.

New types, constants, and macros have been provided so you can change
your source code to be STRICT compliant. Table 8.2 lists the types, macros,
and handle types you can use to make your application STRICT compliant.

Borland C++ Programmers Guide

Table 8.2: STRICT compliant types, constants, helper macros and handles

Types and constants

CALLBACK

LPARAM
LPCSTR
LRESULT
UINT

WINAPI

WPARAM

Macros

Fl ELDOFFSET(type, field)

MAKELP(se/,oft)
MAKELPARAM(low,high)
MAKELRESUL T(low,high)
OFFSETOF(lp)
SELECTOROF(lp)

Handles

HACCEL
HDRVR
HDWP
HFILE
HGDIOBJ
HGLOBAL
HINSTANCE
HLOCAL
HMETAFILE
HMODULE
HRSRC
HTASK

Chapter 8, Windows programming

Description

Use instead of FAR PASCAL in your callback routines (for example, window and dialog
procedures).
Declares all 32-bit polymorphic parameters.
Same as LPSTR, except that it is used for read-only string pointers.
Declares all 32-bit polymorphic return values.
Portable unsigned integer type whose size is determined by the targeted environment.
Represents a 16-bitvalue on Windows 3.1, and a 32-bit value on Win32.
Use instead of FAR PASCAL for API declarations. If you are writing a DLL with exported
API entry points, you can use this for the API declarations.
Declares all 16-bit polymorphic parameters.

Description

Calculates the field offsets in a structure. type is the structure type, and field is the field
name.
Takes a selector and offset and produces a FAR VO/D*.
Makes an LPARAM out of two 16-bit values.
Makes an LRESUL T out of two 16-bit values.
Extracts the offset of a far pointer and returns a UINT.
Extracts the selector for a far pointer and returns a UlNT.

Description

Accelerator table handle
Driver handle (Windows 3.1 only)
DeferWindowPostO handle
File handle
Generic GDI object handle
Global handle
Instance handle
Local handle
Metafile handle
Module handle
Resource handle
Task handle

255

Because of C++
type-safe linking,

linking STRICT and
non-STRICT modules

might cause linker
errors in C++
applications.

256

Making your code STRICT compliant
To make your application STRICT compliant,

1. Decide what code you want to be STRICT compliant. Converting your
code to STRICT can be done in stages.

2. Turn on the compiler's highest error /warning level. In the IDE, use
Options I Compiler I Messages I Display I All. With BCC32 use the -w
switch. You might want to compile at this stage, before taking the next
step.

3. #define STRICT before including windows.h and compile, or use·
-DSTRICT on the command line.

STRICT conversion hints
This section describes some common coding practices you should use when
converting your code to STRICT compliance.

• Change HANDLE to the appropriate specific handle type; for example,
HMODULE, HINST ANCE, and so on.

• Change WORD to UINT except where you specifically want a 16-bit
value on a 32-bit platform .

• Change WORD to WPARAM.

• Change LONG to LP ARAM or LRESULT as appropriate.

• Change FARPROC to WNDPROC, DLGPROC, or HOOKPROC as
appropriate.

• For 16-bit Windows, always declare function pointers with the proper
function type rather than with FARPROC. You'll need to cast function
pointers to and from the proper function type when using
MakeProcInstance, FreeProcInstance, and other functions that take or return
a FARPROC; for example,

BOOL CALLBACK DlgProc(HWND hwnd, UINT msg,
WPARAM wParam,
LPARAM lParam) ;
DLGPROC lpfnDlg;

lpfnDlg= (DLGPROC) MakeProcInstance (DlgProc, hinst);

FreeProcInstance((FARPROC)lpfnDlg) ;

• Take special care with HMODULEs and HINST ANCEs. The Kernel
module-management functions generally use HINST ANCEs, but a few
APIs return or accept only HMODULEs.

Borland C++ Programmers Guide

See page 259 for a
description of

message crackers.

The UlNTand
WORDfypes

• If you've copied any API function declarations from WINDOWS.H, they
might have changed, and your local declaration might be out of date.
Remove your local declarations. ,"'

• Cast the results of LocalLock and GlobalLock to the proper kind of data
pointer. Parameters to these and other memory management functions
should be cast to LOCALHANDLE or GLOBALHANDLE, as appropriate.

• Cast the result of Get Window Word and Get WindowLong and the
. parameters to Set Window Word and SetWindowLong.

• When casting SendMessage, DefWindowProc, and SendDlgItemMsg or any
other function that returns an LRESULTor LONG to a handle of some
kind, you must first cast the result to a UINT:

HBRUSH hbr;
hbr = (HBRUSH) (UINT)SendMessage(hwnd, WM_CTLCOLOR, ... , ...);

• The CreateWindow and CreateWindowEx hmenu parameter is sometimes
used to pass an integer control ID. In this case you must cast this to an
HMENU:

HWND hwnd;
int id;
hwnd = CreateWindow("Button", "Ok", BS_PUSHBUTTON;

x, y, ex, cy, hwndParent,
(HMENU)id, //Cast required here
hinst, NULL);

• Polymorphic data types (WPARAM, LPARAM, LRESULT, void FAR*)
should be assigned to variables as soon as possible. Avoid using them in
your own code when the type of the value is known; this will minimize
the number of potentially unsafe and non-32-bit-portable casting you will
have to do in your code. The macro APIs and message cracker
mechanisms provided in windowsx.h will take care of almost all packing
and unpacking of these data types, in a 32-bit portable way.

• Become familiar with the common compiler warnings and errors that
you're likely to encounter as you convert to STRICT.

Some of the most common compiler errors and warnings you might
encounter are described on page 260.

The type UINT has been created and used extensively in the API to create a
data type portable from Windows 3.x. UINT is defined as

typedef unsigned int UINT;

UINT is needed because of the difference in int sizes between 16-bit
Windows and Win32. For 16-bit Windows, int is a 16-bit unsigned integer;

Chapter 8, Windows programming 257

The WINAPI and
CALLBACK calling
conventions

Extracting message
data

258

for Win32, int is a 32-bit unsigned integer. Use UINT to declare integer
(objects expected to widen from 16 to 32 bits when compiling 32-bit
applicatfbns.

The type WORD is defined as

typedef unsigned short WORD;

WORD declares a16-bit value on both 16-bit Windows and Win32. Use
WORD to create objects that will remain 16 bits wide across both platforms.
Note that because Win32 handles are widened to 32 bits, WORD can no
longer be used for handles.

The windows.h macro WINAPI defines the calling convention. WINAPI
resolves to the appropriate calling convention for the targeted platform.
WINAPI should be used in place of FAR PASCAL.

For example, here is an important change necessary for window procedure
definitions. The following is code as it would appear in 16-bit Windows:

LONG FAR PASCAL windowProc(HANDLE hWnd, unsigned message
WORD wParam, LONG IParam)

Here is the Win32 version:
LONG WINAPI WindowProc(HWND hWnd, DINT message

DINT wParam, LONG IParam)

Using WINAPI allows specifying alternative calling conventions. Currently
Win32 uses _stdcall. The fundamental type unsigned is changed to the
more portable UINT. WORD is also changed to UINT, in this case
illustrating the expansion of wParam to 32 bits. If this change to wParam
isn't made, the result will be application failure during initial window
creation.

Use the CALLBACK calling convention in your callback function·
declarations. This replaces FAR PASCAL.

In 32-bit Windows code you need to change the way you unpack message
data from IParam and wParam. In Win32, wParam grows from 16 to 32 bits
in size, while IParam remains 32 bits wide. But since IParam frequently
contains a handle and another value in 16-bit Windows, and a handle
grows to 32 bits under Win32, a new wParam and IParam packing scheme
was necessary.

For example, WM_ COMMAND is one of the messages affected by the
changes to extra parameter size. Under Windows 3.x, wParam contains a
16-bit identifier and IParam contains both a 16-bit window handle and a 16-
bit command.

Borland C++ Programmers Guide

Message crackers

Porting DOS system
calls

Table 8.3
Int 21 and Win32

equivalent functions

Under Win32, lParam contains only the window handle because window
. handles are now 32 bits. Therefore, the 16-bit command is moved from
lParam to the low-order 16 bits of wParam (now 32 bits), with the high-order
16 bits of wParam containing the identifier. This repacking means you need
to change the way you extract information from these parameters; for
example, by using message crackers, which are described in the next section.

Message crackers are a portable way of extracting messages from wParam
and lParam. Depending on your environment (16-bit Windows or Win32)
message crackers use a different technique for extracting the message data.
Each Windows message has a set of message crackers.

For example, here is the 32-bit version of the WM_COMMAND message
crackers:

#define GET_WM_COMMAND_ID(wp, lp)
#define GET_WM_COMMAND_HWND(wp, lp)
#define GET_WM_COMMAND_CMD(wp, lp)
#define GET_WM_COMMAND_MPS(id, hwnd, cmd)

(WPARAM)MAKELONG(id, cmd) , (LONG) (hwnd)

LOWORD(wp)
(HWND) (lp)
HIWORD(wp)

And here is the 16-bit version of the WM_ COMMAND message crackers:

#define GET_WM_COMMAND_ID(wp, lp)
#define GET_WM_COMMAND_HWND(wp, lp)
#define GET_WM_COMMAND_CMD(wp, lp)
#define GET_WM_COMMAND_MPS(id, hwnd, cmd)

(WPARAM) (id), MAKELONG(hwnd, cmd)

(wp)
(HWND) LOWORD (lp)
HIWORD(lp)

Using these message-cracker macros ensures that your message extraction
code is portable to either platform.

Windows 3.0 provided the DOS3Call API function for calling DOS file IIO
functions. This API function, and other INT 21H DOS functions, are
replaced in Win32 by named 32-bit calls. Table 8.3 lists DOS INT 21H calls
and their equivalent Win32 API function.

INT21H DOS Win32 API
function operation equivalent

OEH Select disk SetCurrentDirectory
19H Get current disk GetCurrentDirectory
2AH Get date GetDateAndTime
2BH Set date SetDateAndTime
2CH Get time GetDateAndTime
2DH Set time SetDateAndTime
36H Get disk free space GetDiskFreeSpace

Chapter 8, Windows programming 259

Common compiler
errors and warnings

260

Table 8.3: Int 21 and Win32 equivalent functions (continued)

39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
43H
43H
47H
4EH
4FH
56H
57H
57H
59H
5AH
5BH
5CH
5CH
67H

Create directory
Remove directory
Set current directory
Create handle
Open handle
Close handle
Read handle
Write handle
Delete file
Move file pointer
Get file attributes
Set file attributes
Get current directory
Find first file
Find next file
Change directory entry
Get file date/time
Set file date/time
Get extended error
Create unique file
Create new file
Lock file
Unlock file
Set handle count .

Create Directory
RemoveDirectory
SetCurrentDirectory
CreateFile
CreateFile
CloseHandle
ReadFile
WriteFile
DeleteFile
SetFilePointer
GetAttributesFile
SetAttributesFile
GetCurrentDirectory
FindFirstFile
FindNextFile
MoveFile
GetDateAndTimeFile
SetDateAndTimeFile
GetLastError
GetTempFileName
CreateFile
LockFile
UnlockFile
SetHandleCount

This section describes some of the common compiler errors and warnings
you might get when trying to compile your application with all messages
enabled and with or without STRICT defined.

Call to function funcname with no prototype (warning)
A function was used before it was prototyped or declared. This warning
can also arise when a function that takes no arguments is not prototyped
with void:

void bart); /* Should be: bar (void) */
void rnain(void)
{

bar () ;
}

Conversion may lose significant digits (warning)
This warning results when a value is converted by the compiler, such as
from LONG to int. You're being warned because you might lose
information from this cast. If you're sure there are no information-loss
problems, you can suppress this warning with the appropriate explicit cast
to the smaller type.

Borland C++ Programmers Guide

Function should return a value (warning)
A function declared to return a value does not return a value. In older,
non-ANSI C code, it was common for functions that didn't return a value to
have no return type:

faa (i)
int ii

Functions declared in this manner are treated by the compiler as being
declared to return an int. If the function doesn't return anything, it should
be declared void:

void faa (int i)
{

Lvalue required (error)
Type mismatch in parameter (error)
These errors mdicate that you are trying to assign or pass a nonpointer type
when a pointer type is required. With STRICT defined, all handle types as
well as LRESULT, WPARAM, and LPARAM are internally declared as
pointer types, so trying to pass an int, WORD, or LONG as a handle will
result in these errors.

These errors should be fixed by properly declaring the nonpointer values
you're assigning or passing. In the case of special constants such as (HWND) 1

to indicate "insert at bottom" to the window-positioning functions, you
should use the new macros (such as HWND _BOTTOM). Only in rare cases
should you suppress a type-mismatch error with a cast (because this can
often generate incorrect code).

Non-portable pointer conversion (warning)
You cast a near pointer or a handle to a 32-bit value such as LRESULT,
LPARAM, LONG, or DWORD. This warning almost always represents a
bug, because the high-order 16 bits of the value will contain a nonzero
value. The compiler first converts the 16-bit near pointer to a 32-bit far
pointer by placing the current data segment value in the high 16 bits; it
then converts this far pointer to the 32-bit value.

To avoid this warning and ensure that a a is placed in the high 16 bits, you
must first cast the handle to a UINT:

'HWND hwndi
LRESULT result = (LRESULT) (UINT)hwndi

Chapter 8, Windows programming 261

Building Win32
executables

262

In cases where you do want the 32-bit value to contain a far pointer, you
can avoid the warning with an explicit cast to a far pointer:

char near* pch;
LPARAM IParam = (LPARAM) (LPSTR)pch;

Not an allowed type (error)
This error typically results from trying to dereference a void pointer. It
usually results from directly using the return value of GlobalLock or
LocalLock as a pointer. To solve this problem, assign the return value to a
variable of the appropriate type (with the appropriate cast) before using the
pointer:

BYTE FAR* Ipb = (BYTE FAR*)GlobalLock(h);
*lpb = 0;

Parameter paramname is never used (warning)
This message can result in callback functions when your code does not use
certain parameters. You can either turn off this warning, use #pragma
argsused to suppress it, or omit the name of the parameter in the function
definition.

Size of the type is unknown or zero (error)
You are trying to change the value ofa void pointer with + or +=. This error
typically results from the fact that certain Windows functions that return
pointers to arbitrary types (such as GlobalLock and LocalLock) are defined to
return void FAR* rather than LPSTR.

To solve these problems, assign the void* value to a properly declared
variable (with the appropriate cast):

BYTE FAR* Ipb = (BYTE FAR*) GlobalLock (h) ;
Ipb += sizeof(DWORD) i

Type mismatch in redeclaration of paramname (error)
You have inconsistent declarations of a variable, parameter, or function in
your source code.

By adhering to the Win32 API, and using STRICT to make code changes
you will make your Windows code portable. The next few sections describe
some of the new types and macros and how to use them.

You must use the proper tools, switches, libraries, and start-up code to
build a Win32 application. Table 8.4 lists the compiler (BCC32) and linker
(TLINK32) switches, libraries and start-up code needed when linking, and
the resulting executable type (.DLL or .EXE).

Borland C++ Programmers Guide

Table 8.4 BCC32 TLlNK32 Start-up Creates this Win32 options, start-
up code, and libraries options option Libraries code executable type

-W,-WE ffpe cW32.lib cOw32.obj GUI.EXE
import32.1ib

-WD,-WDE ffpd cW32.lib cOd32.obj GUI.DLL
imprtw32.lib

-WC ffpe lap cx32.lib cOx32.obj Console. EXE
import32.lib

-WCD,-WCDE ffpd lap cx32.lib cOd32.obj Console.DLL
imprtw32.1ib

Chapter 8, Windows programming 263

264 Borland C++ Programmers Guide

See the
ObjectWindows

Programmers Guide
for more information

on DLLs.

What is a DLL?

Dynamic linking

Windows supports
both dynamic and

static linking.

c H A p T E R

Writing dynamic-link libraries

This chapter defines dynamic-link libraries (DLLs) and describes how to
write them. Using DLLs in your applications reduces .EXE file size,
conserves system memory, and provides more flexibility in changing,
extending, or upgrading your applications.

9

A DLL is an executable library module containing functions or resources
for use by applications or other DLL&. DLLs have no main function, which
is the usual entry point for an application. Instead, DLLs have multiple
entry points, one for each exported function.

When a DLL is loaded by the operating system, the DLL can be shared
among multiple applications; one loaded copy of the DLL is all that's
necessary.

To fully understand DLLs, it is helpful to understand how dynamic linking
and static linking differ.

When an application uses a function from a static-link library (for example,
the C run-time library), a copy of that function is bound to your application
by TLINK at link time. Two simultaneously running applications that are
using the same function would each have their own copy of that function.
It would be more efficient, however, if the applications shared a single copy
of the function. Dynamic linking provides this capability by resolving your
application's references to external functions at run time.

When a program uses a function from a DLL, the function code isn't linked
into the .EXE. Dynamic linking uses a different, two-step method:

1. At link time, TLINK binds import records (which contain DLL and
procedure-location information) to your .EXE. This temporarily satisfies
any external references to DLL functions in your code. These import
records are supplied by module-definition files or import libraries.

Chapter 9, Writing dynamic-link libraries 265

Creating a DLL

LibMain,
DIIEntryPoint, and
WEP

2. At run time, the import-record information is used to locate and bind
the DLL functions to your program.

With dynamic linking, your applications are smaller because copies of the
function's code aren't linked into your application. And because the DLL's
code and resources are shared among applications, system memory is
conserved.

DLLs are created similarly to .EXEs: source files containing your code are
compiled, then the .OBJs are linked together. The DLL, however, has no
main function, and is therefore linked differently. The following sections
describe how to write a DLL.

You must supply the LibMain function (for 16-bit programs) or the
DllEntryPoint function (for 32-bit programs) as the main entry point for a
DLL.

For 16-bit programs, Windows calls LibMain once, when the library is first
loaded. LibMain performs initialization for the DLL. For 32-bit programs,
Windows calls DllEntryPoint each time the DLL is loaded and unloaded (it
replaces WEP for 32-bit applications), each time an additional process
attaches to or detaches from the DLL, or each time a thread within the
process is created or destroyed. For more on DllEntryPoint, see online Help.

DLL initialization depends almost entirely on the function of the particular
DLL, but might include the following typical tasks:

• Unlocking the data segment with UnlockData, if it has been declared as
MOVEABLE. (16-bit only.)

• Setting up global variables for the DLL, if it uses any.

The initialization code is executed only for the first application using the
DLL.

_ The DLL startup code initializes the local heap automatically; you don't
need to include code in LibMain to do this. (16-bit only.)

HINSTANCE,
WORD, and LPSTR

are defined in
windows.h.

266

The following parameters are passed to LibMain:

int FAR PASCAL LibMain (HINSTANCE hlnstance, WORD wDataSeg, WORD cbHeapSize,
LPSTR IpCmdLine)

• hlnstance is the instance handle of the DLL.

• wDataSeg is the value of the data segment (DS) register.

Borland C++ Programmers Guide

Exporting and
importing
functions

Exporting functions

See Chapter 9 in the
Users Guide for more

information on
module-definition

files.

• cbHeapSize is the size of the local heap specified in the module-definition
file for the DLL.

• IpCmdLine is a far pointer to the command line specified when the DLL
was loaded. This is almost always null because DLLs are typically loaded
automatically with no parameters. It is possible, however, to supply a
command line to a DLL when it is loaded explicitly.

The return value for LibMain is either 1 (successful initialization) or 0
(failure in initialization). If LibMain is 0, Windows unloads the DLL from
memory.

The exit point for a 16-bit DLL is the functiqn WEP (Windows Exit
Procedure). This function isn't required in a DLL (because the Borland C++
run-time libraries provide a default) but you can supply your own WEP to
perform any DLL cleanup before the DLL is unloaded from memory.
Windows calls WEP just prior to unloading the DLL.

Under Borland C++, WEP doesn't need to be exported. Borland C++
defines its own WEP that calls your WEP (if you've defined one), and then
performs system cleanup. This is the prototype for WEP:

int FAR PASCAL WEP (int nParameter)

nParameter is either WEP _SYSTEMEXIT or WEP _FREE_DLL.
WEP _SYSTEMEXIT indicates that all of Windows is shutting down and
WEP _FREE_DLL indicates that only this DLL is being unloaded.

WEP returns 1 to indicate success. Windows currently doesn't do anything
with this return value.

To make your DLL functions accessible to other applications (.EXEs or
other DLLs) the function names must be exported. To use exported
functions, the function names must be imported. The following sections
describe how to export and import function names with Borland C++.

There are two ways to export functions:

• Create a module-definition file with an EXPORTS section listing all
functions that will be used by other applications. The IMPDEF tool can
help you do this; see Chapter 11 in the User's Guide.

• Precede every function name to be exported in the DLL with the
keyword _export in the function definition. In addition, when you build
or link the DLL, you must choose the correct code-generation option in
the IDE (see Chapter 1 of the User's Guide), or the correct command-line
compiler option (see Chapter 3 of the User's Guide).

Chapter 9, Writing dynamic-link libraries 267

Importing functions

For more information
on exporting and

importing functions,
see Chapter 11 in the

Users Guide.

DLLs and 16·bit
memory models

268

A function must be exported from a DLL before it can be imported to
another DLL or application.

If a Windows application module or another DLL uses functions from a
DLL, you must tell the linker that you want to import the functions. There
are three ways to do this:

• Add an IMPORTS section to the module-definition file and list every
DLL function that the module will use.

• Include the import library for the DLLs when you link the module. The
IMPLIB tool creates an import library for one or more DLLs.

• Define your function using the _import keyword (32-bit applications
only).

For more information on the _export and _import keywords, see Chapter 1.

Functions in a DLL are not linked directly into a Windows application;
instead, they are called at run time. This means that calls to DLL func~ions
will be far calls, because the DLL will have a different code segment than
the application. The data used by called DLL functions will also need to be
far.

Let's suppose you have a Windows application called, APPl, a DLL defined
by LSOURCE1.C, and a header file for that DLL called lsourcel.h. Function
[1, which operates on a string, is called by the application.

If you want the function to work correctly regardless of the memory model
the DLL will be compiled under, you need to explicitly make the function
and its data far. In the header file lsourcel.h, the function prototype would
take this form:

extern int _export FAR f(char FAR *dstring) i

In the DLL source LSOURCEl.C, the implementation of the function would
take this form:

int FAR fl(char far *dstring)
{

For the function to be used by the application, the function would also need
to be compiled as exportable and then exported. To accomplish this, you
can either compile the DLL with all functions exportable (-WO) and list [1 in
the EXPORTS section of the module-definition file, or you can flag the
function with the _export keyword, like this:

Borland C++ Programmers Guide

See Chapter 11 in the
Users Guide for more

information about
import libraries.

Exporting and
importing classes

For more on
exporting and

importing .classes,
see Chapter 3.

int FAR _export fl(char far *dstring)
{

If you compile the DLL under the large model (far data, far code), then you
don't need to explicitly define the function or its data far in the DLL. In the
header file, the prototype would still take the form shown here because the
prototype would need to be correct for a module compiled with a smaller .
memory model:

extern int FAR fl(char FAR *dstring)i

In the DLL, however, the function could be defined like this:

int _export fl(char *dstring)
{

Remember that before an application can use fl, it has to be imported into
the application, either by listing fl in the IMPORTS section of a module­
definition file or by linking with an import library for the DLL.

To use classes in a DLL, the class must be exported from the .DLL file and
imported by the .EXE file. Conditionalized macro expansion can be used to
support both of these circumstances. For example, include something
similar 'to the following code in a header file:

#if defined (BUILDING_YOUR_DLL)
#define _YOURCLASS _export

#elif defined (USING_YOUR_DLL)
#define _YOURCLASS _import

#else
#define _YOURCLASS

#endif

In your definitions, define your classes like this:

class _YOURCLASS classl

II

}i

Define BUILDING_YOUR_DLL (with the -0 option, for example) when
you are building your DLL. The _ YOURCLASS macro will expand to
import. Define USING YOUR_DLL when you are building the .EXE that
will use the DLL. The _ YOURCLASS macro will expand to _import.

Chapter 9, Writing dynamic-link libraries 269

Static data in
16-bit DLLs

For additional information on exporting and importing, see Chapters 1 and
3 in the User's Guide. .

Through a DLL's functions, all applications using the DLL have access to
that DLL's global data. In 16-bit DLLs, a particular function will use the
same data, regardless of the application that called it (unlike 32-bit DLLs,
where all data is private to the process). If you want a 16-bit DLL's global
data to be protected for use by a single application, you need to write that
protection yourself. The DLL itself does not have a mechanism for making
global data available to a single application. If you need data to be private
for a given caller of a DLL, you need to dynamically allocate the data and
manage the access to that data manually. Static data in a 16-bit DLL is
global to all callers of a DLL. See Chapter 9 for more information on data in
DLLs.

Using the Borland DLLs

270

General forms of compiler and linker command lines that use the DLL
versions of the Borland run-time libraries and class libraries are described
below.

Here is a 16-bit compile and link using the DLL version of the run-time
library:

bcc -c -D_RTLDLL -ml source.cpp

tlink -c -Twe cOwl source, source, , import crtldll

Note that the macro _RTLDLL and the -ml switch are used. Here is the
32-bit version:

bcc32 -c -D_RTLDLL source.epp

tlink32 -Tpe -ap cOx32 source, source, , import32 cw32i

Here is a 16-bit compile and link using the DLL version of the class library:
bce -c -D_BIDSDLL -ml source.cpp

tlink -c -Twe cOwl source, source, , import bidsi crtldll

Here is a 32-bit compile and link using the DLL version of the class library:
bcc32 -c -D_BIDSDLL source,cpp

tlink32 -Tpe -ap cOx32 source, source, , import32 bidsfi cw32i

Borland C++ ~rogrammer's Guide

See Chapter 3 of the
Users Guide for the

IDE equivalents of
command-line

options

c H A p T E R 10

Using inline assembly

Inline assembly is assembly-language instructions embedded within your
C or C++ code. Inline assembly instructions are compiled or assembled
along with your code rather than being assembled in separate assembly
modules.

This chapter describes how to use inline assembly with Borland C++. The
following topics are discussed:

• Wine assembly syntax and usage

• Using the asm keyword to place an assembly instruction within your
CjC++ code

• Using C symbols in your asm statements to reference data and
functions

• Using register variables, offsets, and size overrides

• Using C structure members

• Using jump instructions and labels

• Using the -8 compiler option and #pragma inline statement to compile
inline assembly

• Using the built-in assembler (BASM)

Inline assembly syntax and usage

This section describes inline assembly syntax, and how to use inline
assembly instructions with C++ structures, pointers, and identifiers.

To place an assembly instruction in your CjC++ code, use the asm
keyword. The format is

asm opcode operands; or newline

where

• opcode is a valid 80x86 instruction.

Chapter 10, Using inline assembly 271

Three 8sm
statements are

shown here; two on
one line, and one

below them.

272

• operands contains the operand(s) acceptable to the opcode, and can
reference C constants, variables, and labels .

• The end of the asm statement is signaled by either; (semicolon) or by
newline (a new line).

A new asm statement can be placed on the same line, following a
semicolon, but no asm statement can continue to the next line.
To include multiple asm statements, surround them with braces. The initial
brace must appear on the same line as the asm keyword.

asm {
pop aXi pop ds
iret

Semicolons are not used to start comments (as they are in T ASM). When
commenting asm statements, use C-style comments, like this:

asm mov ax,dSi
asm {pop aXi pop dSi ireti}
asm push ds

/* This comment is OK */
/* This comment is also legal */
iTHIS COMMENT IS INVALID!!

The assembly-language portion of the statement is copied straight to the
output, embedded in the assembly language that Borland C++ is
generating from your C or C++ instructions. Any C symbols are replaced
with appropriate assembly language equivalents.

Each asm statement is considered to be a C statement. For example, the
following construct is a valid C if statement:

myfunc ()
{

int ii
int Xi

if (i > 0)

asm mav x,4
else

i = 7;

Note that a semicolon isn't needed after the mav x,4 instruction. asm
statements are the only statements in C that depend on the occurrence of a
new line to indicate that they have ended. Although this isn't in keeping
with the rest of the C language, it is the convention adopted by several
UNIX-based compilers.

An asm statement can be used as an executable statement inside a function,
or as an external declaration outside of a function. asm statements located

Bor/and c++ Programmers Guide

Inline assembly
references to data
and functions

Inline assembly and
register variables

Inline assembly,
offsets, and size
overrides

Using C structure
members

inside functions are placed in the code segment, and asm statements
located outside functions are placed in the data segment.

You can use any C symbol in your asm statements, including automatic
(local) variables, register variables, and function parameters. Borland C++
automatically converts these symbols to the appropriate assembly­
language operands and appends underscores onto identifier names.

In general, you can use a C symbol in any position where an address
operand would be legal. Of course, you can use a register variable
wherever a register would be a legal operand.

If the assembler encounters an identifier while parsing the operands of an
inline-assembly instruction, it searches for the identifier in the C symbol
table. The names of the 80x86 registers are excluded from this search. Either
uppercase or lowercase forms of the register names can be used.

Inline assembly code can freely use 51 or DI as scratch registers. If you use
51 or DI in inline assembly code, the compiler won't use these registers for
register variables.

When programming, you don't need to be concerned with the exact offsets
of local variables: using the variable name will include the correct offsets.

It might be necessary, however, to include appropriate WORD PTR,. BYTE
PTR, or other size overrides on assembly instruction. A DWORD PTR
override is needed on LE5 or indirect far call instructions.

You can reference structure members in an inline-assembly statement in the
usual way (that is, with variable.member). When you do this, you are
working with variables, and you can store or retrieve values in these
structure members. However, you can also directly reference the member
name (without the variable name) as a form of numeric constant. In this
situation, the constant equals the offset (in bytes) from the start of the
structure containing that member. Consider the following program
fragment:

struct myStruct
int a_a;
int a_b;
int a_c;

} my A ;

myfunc ()
{

Chapter 10, Using inline assembly 273

Using jump
instructions and
labels

274

asm {mov ax, WORD PTR myA.a_b
mov bx, WORD PTR myA.a_c

This fragment declares a structure type named myStruct with three mem­
bers: a_a, a_b, and a_c. It also declares a variable my A of type myStruct. The
first inline-assembly statement moves the value contained in myA.a_b into
the register AX. The second moves the value at the address [di] + offset(a_c)
into the register BX (it takes the address stored in DI and adds to it the
offset of a_c from the start of myStruct). In this sequence, these assembler
statements produce the following code:

mov ax, DGROUP : myA+2
mov bx, [di+4]

This way, if you load a register (such as DI) with the address of a structure
of type myStruct, you can use the member names to directly reference the
members. The member name can be used in any position where a numeric
constant is allowed in an assembly-statement operand.

The structure member must be preceded by a dot (.) to signal that a
member name, rather than a normal C symbol, is being used. Member
names are replaced in the assembly output by the numeric offset of the
structure member (the numeric offset of a_c is 4), but no type information is
retained. Thus members can be used as compile-time constants in assembly
statements.

There is one restriction, however: if two structures that you're using in
inline assembly have the same member name, you must distinguish
between them. Insert the structure type (in parentheses) b~tween the dot
and the member name, as if it were a cast. For example,

asm mov bx, [di] . (struct tm)tm_hour

You can use any of the conditional and unconditional jump instructions,
plus the loop instructions, in inline assembly. These instructions are valid
only inside a function. Since no labels can be defined in the 8sm statements,
jump instructions must use C goto labels as the object of the jump. If the
label is too far away, the jump will not be automatically converted to a
long-distance jump. For this reason, you should be careful when inserting
conditional jumps. You can use the -8 switch to check your jumps. Direct
far jumps cannot be generated.

In the following code, the jump goes to the C goto label a.

Borland C++ Programmers Guide

int x()

a: /* This is the goto label "a" */

asrn jrnp a /* Goes to label "a" */

Indirect jumps are also allowed. To use an indirect jump, use a register
name as the operand of the jump instruction.

Compiling with inline assembly

By default -8 invokes
TASM or TASM32.
You can override it
with -Exxx, where

xxx is another
assembler. See
Chapter 3 in the
Users Guide for

. details.

There are two ways Borland C++ can handle inline assembly code in your
C or C++ code .

• Borland C++ can convert your C or C++ code into assembly language,
then transfer to TASM to produce an .OBJ file. (This method is described
in this section.)

• Borland C++ can use its built-in assembler (BASM) to insert your
assembly statements directly into the compiler's instruction stream (16-bit
compiler only). (This method is described in the following section.)

You can use the -8 compiler option for inline assembly in your C or C++
program. If you use this option, the compiler first generates an assembly
file, then invokes TASM on that file to produce the .OBJ file.

You can invoke TASM while omitting the -8 option if you include the
#pragma inline statement in your source code. This statement enables the
-8 option for you when the compiler encounters it. You will save compile
time if you put #pragma inline at the top of your source file.

The -8 option and #pragma inline tell the compiler to produce an .ASM
file, which might contain your inline assembly instructions, and then
transfer to TASM to assemble the .OBJ file. The 16-bit Borland C++
compiler has another method, BASM, that allows the compiler, not TASM,
to assemble your inline assembly code.

Using the built-in assembler (BASM)

The 16-bit compiler can assemble your inline assembly instructions using
the built-In assembler (BASM). This assembler is part of the compiler, and
can do most of the things TASM can do, with the following restrictions:

Chapter 10, Using inline assembly 275

Opcodes

Table 10.1
BASM opcode

mnemonics

276

• It can't use assembler macros.

• It can't handle 80386 or 80486 instructions.

• It doesn't permit Ideal mode syntax.

• It allows only a limited set of assembler directives (see page 278).

Because BASM isn't a complete assembler, it might not accept some
assembly-language constructs. If this happens, Borland C++ will issue an
error message. You then have two choices: you can simplify your inline
assembly-language code so the assembler will accept it, or you can use the
-8 option to invoke TASM to catch whatever errors there might be. T ASM
might not identify the location of errors, however, because the original C
source line number is lost.

You can include any of the 80x86 instruction opcodes as inline-assembly
statements. There are four classes of instructions allowed by the Borland
C++ compiler:

• Normal instructions-the regular 80x86 opcode set

• String instructions-special string-handling codes

• Jump instructions-various jump opcodes

• Assembly directives-data allocation and definition

All operands are allowed by the compiler, even if they are erroneous or
disallowed by the assembler. The exact format of the operands is not
enforced by the compiler.

Table 10.1 lists all allowable BASM opcodes. For 80286 instructions, use the
-2 command-line compiler option.

aaa fdivrp fpatan lsi
aad feni fprem mov
aam ffree* fptan mul
aas fiadd frndint neg
adc ficom frstor nop
add ficomp fsave not
and fidiv fscale or
bound fidivr fsqrt out
call fild fst pop
cbw fimul fstcw popa
clc fincstp* fstenv popf
cld finit fstp push
cli fist fstsw pusha
cme fistp fsub pushf
emp fisub fsubp rcl
ewd fisubr fsubr rer

Borland C++ Programmers Guide

String instructions

Table 10.2
BASM string
instructions

Table 10.1: BASM opcode mnemonics (continued)

daa fld fsubrp ret
das fld1 ftst rol
dec fldcw fwait ror
div fldenv fxam sahf
enter fldl2e fxch sal
f2xm1 fldl2t fxtract sar
fabs fldlg2 fyl2x sbb
fadd fldln2 fyl2xp1 shl
faddp fldpi hit shr
fbld fldz idiv smsw
fbstp fmul imul stc
fchs fmulp in std
fclex fnclex inc sti
fcom fndisi int sub
fcomp fneni into test
fcompp fninit iret verr
fdecstp* fnop lahf verw
fdisi fnsave Ids wait
fdiv fnstcw lea xchg
fdivp fnstenv leave xlat
fdivr fnstsw les xor

* Not supported if you're using inline assembly in routines that use floating-point emulation (the
command-line compiler option -1).

When using 80186 instruction mnemonics in your inline-assembly
statements, you must include the -1 command-line option. This forces
appropriate statements into the assembly-language compiler output so that
the assembler will expect the mnemonics. If you're using an older
assembler, these mnemonics might not be supported.

In addition to the opcodes listed in Table 1.1, the string instructions given
in Table 1.2 can be used alone or with repeat prefixes.

crnps insw rnovsb outsw stos
crnpsb lods rnovsw scas stosb
crnpsw lodsb scasb stosw
lodsw outsb scasw
insb rnovs

The following prefixes can be used with the string <instructions:

lock rep repe repne repnz repz

Chapter 10, Using inline assembly 277

Jump instructions

Table 10.3
Jump instructions

Assembly directives

278

Jump instructions are treated specially. Because a label can't be
included on the instruction itself, jumps must go to C labels· (see
the "Using jump instructions and labels" section on page 274).
The allowed jump instructions are given in the next table.

ja jge jnc jns loop
jae jl jne jnz loope
jb jle jng jo loopne
jbe jrnp jnge jp loopnz
jc jna jnl jpe loopz
jcxz jnae jnle jpo
je jnb jno js
jg jnbe jnp jz

The following assembly directives are allowed in Borland C++
inline-assembly statements:

db dd dw extrn

Borland C++ Programmers Guide

A p p E N D

ANSI implementation-specific
standards

x

Certain aspects of the ANSI C standard are not defined exactly by ANSI.
Instead, each implementor of a C compiler is free to define these aspects
individually. This chapter tells how Borland has chosen to define these
implementation-specific standards. The section numbers refer to the
February 1990 ANSI Standard. Remember that there are differences
between C and C++; this appendix addresses Conly.

A

2.1.1.3 How to identify a diagnostic.

Table A.1
Identifying

diagnostics in C++

When the compiler runs with the correct combination of options, any
messages it issues beginning with the words Fatal, Error, or Warning are
diagnostics in the sense that ANSI specifies. The options needed to ensure
this interpretation are as follows:

Option

-A
-C-
-i32
-p-
-w-
-wbei
-wbig
-wcpt
-wdcl
-wdup
-wext
-wfdt
-wrpt
-wstu
-wsus
-wucp
-wvrt

Action

Enable only ANSI keywords.
No nested comments allowed.
At least 32 significant characters in identifiers ..
Use C calling conventions.
Turn off all warnings except the following.
Turn on warning about inappropriate initializers.
Turn on warning about constants being too large.
Turn on warning about nonportable pointer comparisons.
Turn on warning about declarations without type or storage class.
Turn on warning about duplicate nonidentical macro definitions.
Turn on warning about variables declared both as external and as static.
Turn on warning about function definitions using a typedef.
Turn on warning about nonportable pointer conversion.
Turn on warning ahout undefined structures.
Turn on warning about suspicious pointer conversion.
Turn on warning about mixing pointers to signed and unsigned char.
Turn on warning about void functions returning a value.

The following options cannot be used:

Appendix A, ANSI implementation-specific standards 279

280

-ms!
-mm!
-mt!
-zGxx
-zSxx

SS must be the same as DS for small data models.
SS must be the same as DS for small data models.
SS must be the same as DS for small data models.
The BSS group name cannot be changed.
The data group name cannot be changed.

Other options not specifically mentioned here can be set to whatever you
want.

2.1.2.2.1 The semantics of the arguments to main~

The value of argv[O] is a pointer to a null byte when the program is run on
DOS versions prior to version 3.0. For DOS version 3.0 or later, argv[O]
points to the program name.

The remaining argv strings point to each component of the command-line
arguments. Whitespace separating arguments is removed, and each
sequence of contiguous non-whitespace characters is treated as a single
argument. Quoted strings are handled correctly (that is, as one string
containing spaces).

2.1.2.3 What constitutes an interactive device.

An interactive device is any device that looks like the console.

2.2.1 The collation sequence of the execution character set.

The collation sequence for the execution character set uses the signed value
of the character in ASCII.

2.2.1 Members of the source and execution character sets.

The source and execution character sets are the extended ASCII set
supported by the IBM PC. Any character other than AZ (Control-Z) can
appear in string literals, character constants, or comments.

2.2.1.2 Multibyte characters.

Multibyte characters are supported in Borland C++.

2.2.2 The direction of printing.

Printing is from left-to-right, the normal direction for the PC.

2.2.4.2 The number of bits in a character in the execution character set.

There are 8 bits per character in the execution character set.

3.1.2 The number of significant initial characters in identifiers.

The first 32 characters are significant, although you can use a cori:unand­
line option (-i) to change that number. Both internal and external identifiers

Borland e++ Programmers Guide

use the same number of significant characters. (The number of significant
characters in c++ identifiers is unlimited.)

3.1.2 Whether case distinctions are significant in external identifiers.

The compiler will normally force the linker to distinguish between upper­
case and lowercase. You can use a command-line option (-I-c) to suppress
the distinction.

3.1.2.5 The representations and sets of values of the various types of integers.

16·bit 16-bit 32·bit 32·bit
Type minimum value maximum value minimum value maximum value

signed char -128 127 -128 127

unsigned char 0 255 0 255

signed short -32,768 32,767 -32,768 32,767

unsigned short 0 65,535 0 65,535

signed int -32,768 32,767 -2,147,483,648 -2,147,483,647

unsigned int 0 65,5350 0, 4,294,967,295

signed long -2,147,483,648 2,147,483,647 -2,147,483,648 2,147,483,647

unsigned long 0 4,294,967,295 0 4,294,967,295

All char types use one 8-bit byte for storage.

All short and int types use 2 bytes (in· 16-bit programs).

All short and int types use 4 bytes (in 32-bit programs).

All long types use 4 bytes.

If alignment is requested (-a), all nonchar integer type objects will be
aligned to even byte boundaries. If the requested alignment is -a4, the
result is 4-:byte alignment. Character types are never aligned.

3;1.2.5 The representations and sets of values of the various types of floating­
point numbers.

The IEEE floating-point formats as used by the Intel 8087 are used for all
Borland C++ floating-point types. The float type uses 32-bit IEEE real
format. The double type uses 64-bit IEEE real format. The long double type
uses 80-bit IEEE extended real format.

3.1.3.4 The mapping between source and execution character sets.

Appendix A, ANSI implementation-specific standards 281

282

Any characters in string literals or character constants will remain
unchanged in the executing program. The source and execution character
sets are the same.

3.1.3.4 The value of an integer character constant that contains a character or
escape sequence not represented in the basic execution character set or
the extended character set for a wide character constant.

Wide characters are supported ..

3.1.3.4 The current locale used to convert multibyte characters into
corresponding wide characters for a wide character constant.

Wide character constants are recognized.

3.1.3.4 The value of an integer constant that' contains more than one character, or
a wide character constant that contains more than one multibyte
character.

Character constants can contain one or two characters. If two characters are
included, the first character occupies the low-order byte of the constant,
and the second character occupies the high-order byte.

3.2.1.2 The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented.

These conversions are performed by simply truncating the high-order bits.
Signed integers are stored as two's complement values, so the resulting
number is interpreted as such a value. If the high-order bit of the smaller
integer is nonzero, the value is interpreted as a negative value; otherwise, it
is positive.

3.2.1.3 The direction of truncation when an integral number is converted to a
floating-point number that cannot exactly represent the original value.

The integer value is rounded to the nearest representable value. Thus, for
example, the long value (231 -1) is converted to the float value 231. Ties are
broken according to the rules of IEEE standard arithmetic.

3.2.1.4 The direction of truncation or rounding when a floating-point number is
converted to a narrower floating-point number.

The value is rounded to the nearest representable value. Ties are broken
according to the rules of IEEE standard arithmetic.

3.3 The results of bitwise oper~tions on signed integers.

The bitwise operators apply to signed integers as if they were their
corresponding unsigned types. The sign bit is treated as a normal data bit.
The result is then interpreted as a normal two's complement signed integer.

Borland C++ Programmers Guide

3.3.2.3 What happens when a member of a union object is accessed using a
member of a different type.

The access'is allowed and will simply access the bits stored there. You'll
need a detailed understanding of the bit encodings of floating-point values
in order to und~rstand how to access a floating-type member using a
different member. If the member stored is shorter than the member used to
access the value, the excess bits have the value they had before the short
member was stored.

3.3.3.4 The type of integer required to hold the maximum size of an array.

For a normal array, the type is unsigned int, and for huge arrays the type is
signed long.

3.3.4 The result of casting a pOinter to an integer or vice versa.

When converting between integers and pointers of the same size, no bits
are changed. When converting from a longer type to a shorter type, the
high-order bits are truncated. When converting from a shorter integer type
to a longer pointer type, the integer is first widened to an intege_r type the
same size as the pointer type. Thus, signed integers will sign-extend to fill
the new bytes. Similarly, smaller pointer types being converted to larger
integer types will first be widened to a pointer type as wide as the integer
type.

3.3.5 The sign of the remainder on integer division.

The sign of the remainder is negative when only one of the operands is
negative. If neither or both operands are negative, the remainder is
positive.

3.3.6 The type of integer required to hold the difference between two pOinters to
ele,ments of the same array, ptrdiff_t.

The type is signed int when the pointers are near (or the program is a 32-bit
application), or signed long when the pointers are far or huge. The type of
ptrdiff_t depends on the memory model in use. In small data models, the
type is int. In large data models, the type is long.

3.3.7 The result of a right shift of a negative signed integral type.

A negative signed value is sign extended when right shifted.

3.5.1 The extent to which objects can actually be placed in registers by using
the register storage-class specifier

Objects declared with any two-byte integer or pointer types can be placed
in registers. The compiler will place any small auto objects into registers,

Appendix A, ANSI implementation-specific standards

but objects explicitly declared as register will take precedence. At least two
and as many as six registers are available. The number of registers actually
used depends on what registers are needed for temporary values in the
function.

3.5.2.1 Whether a plain int bit-field is treated as a signed int or as an unsigned int
bit field.

Plain int bit fields are treated as signed int bit fields.

3.5.2.1 The order of allocation of bit fields within an int.

Bit fields are allocated from the low-order bit position to the high-order.

3.5.2.1 The padding and alignment of members of structures.

By default, no padding is used in structures. If you use the word alignment
option (-a), structures are padded to even size, and any members that do
not have character or character array type will be aligned to an even
multiple offset.

3.5.2.1 Whether a bit-field can straddle a storage-unit boundary.

When alignment (-a) is not requested, bit fields can straddle word
boundaries, but are never stored in more than two adjacent bytes.

3.5.2.2 The integer type chosen to represent the values of an enumeration type.

If all enumerators can fit in an unsigned char, that is the type chosen.
Otherwise, the type is signed int.

3.5.3 What constitutes an access to an object that has volatile-qualified type.

Any reference to a volatile object will access the object. Whether accessing
adjacent memory locations will also access an object depends on how the
memory is constructed in the hardware. For special device memory, such as
video display memory, it depends on how the device is constructed. For
normal PC memory, volatile objects are used only for memory that might
be accessed by asynchronous interrupts, so accessing adjacent objects has
no effect.

3.5.4 The maximum number of declarators that can modify an arithmetic,
structure, or union type.

There is no specific limit on the number of declarators. The number of
declarators allowed is fairly large, but when nested deeply within a set of
blocks in a function, the number of declarators will be reduced. The
number allowed at file level is at least 50.

3.6.4.2 The maximum number of case values in a switch statement.

284 Borland C++ Programmers Guide

There is no specific limit on the number of cases in a switch. As long as
there is enough memory to hold the case information, the compiler will
accept them.

3.8.1 Whether the value of a single-character character constant in a constant
expression that controls conditional inclusion matches the value of the
same character constant in the execution character set:-Whether such a
character constant can have a negative value.

All character constants, even constants in conditional directives, use the
same character set (execution). Single-character charader constants will be
negative if the character type is signed (default and -K not requested).

3.8.2 The method for locating includable source files.

For include file names given with angle brackets, if include directories are
given in the command line, then the file is searched for in each of the
include directories. Include directories are searched in this order: first,
using directories specified·on the command line, then using directories
specified in TURBOC.CFG or BCC32.CFG. If no include directories are
specified, then only the current directory is searched.

3.8.2 The support for quoted names for includable source files.

For quoted file names, the file is first searched for in the current directory. If
not found, Borland c++ searches for the file as if it were in angle brackets.

3.8.2 The mapping of source file name character sequences.

Backslashes in include file names are treated as distinct characters, not as
escape characters. Case differences are ignored for letters.

3.8.8 The definitions for __ DATE __ and __ TIME __ when they are unavailable.

The date and time are always available and will use the operating system
date and time.

4.1.1 The decimal point character.

The decimal point character is a period (.).

4.1.5 The type of the sizeof operator, size_to

The type size_t is unsigned into

4.1.5 The null pointer constant to which the macro NULL expands.

For a 16-bit application, an integer or a long 0, depending on the memory
model.

For 32-bit applications, NULL expands to an int zero or a long zero. Both
are 32-bit signed numbers.

Appendix A, ANSI implementation-specific standards 285

286

4.2 The diagnostic printed by and the termination behavior of the assert
function.

The diagnostic message printed is" Assertion failed: expression, file filename,
line nn", where expression is the asserted expression that failed, filename is
the source file name, and nn is the line number where the assertion took
place.

abort is called immediately after the assertion message is displayed.

4.3 The implementation-defined aspects of character testing and case­
mapping functions.

None, other than what is mentioned in 4.3.1.

4.3.1 The sets of characters tested for by the isalnum, isalpha, iscntrl, islowe~
isprint, and isupper functions.

First 128 ASCII characters for the default C locale. Otherwise, all 256
characters.

4.5.1 The values returned by the mathematics functions on domain errors.

An IEEE NAN (not a number).

4.5.1 Whether the mathematics functions set the integer expression errno to the
value of the macro ERANGE on underflow range errors.

No, only for the other errors-domain, singularity, overflow, and total loss
of precision.

4.5.6.4 Whether a domain error occurs 0 .. zero is returned when the fmod function
has a second argument of zero.

No; fmod (x, 0) returns O.

4.7.1.1 The set of signals for the signal function.

SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTERM.

4.7.1.1 The semantics for each signal recognized by the signal function.

See the description of signal in the Library Reference.

4.7.1.1 The default handling and the handling at program startup for each signal
recognized by the signal function.

See the description of signal in the Library Reference.

4.7.1.1 If the equivalent of signal(sig, SIG_DFL); is not executed prior to the call of
a signal handler, the blocking of the signal that is performed.

The equivalent of signal(sig, SIG_DFL) is always executed.

Borland C++ Programmers Guide

4.7.1.1 Whether the default handling is reset if the SIGILL signal is received by a
handler specified to the signal function.

No, it is not.

4.9.2 Whether the last line of a text stream requires a terminating newline
character.

No, none is required.

4.9.2 Whether space characters that are written out to a text stream immediately
before a newline character appear when read in.

Yes, they do.

4.9.2 The number of null characters that may be appended to data written to a
binary stream.

None.

4.9.3 Whether the file position indicator of an append mode stream is initially
positioned at the beginning or end of the file.

The file position indicator of an append-mode stream is initially placed at
the beginning of the file. It is reset to the end of the file before each write.

4.9.3 Whether a write on a text stream causes the associated file to be truncated
beyond that point.

A write of 0 bytes might or might not truncate the file, depending on how
the file is buffered. It is safest to classify a zero-length write as having
indeterminate behavior.

4.9.3 The characteristics of file buffering.

Files can be fully buffered, line buffered, or unbuffered. If a file is buffered,
a default buffer of 512 bytes is created upon opening the file.

4.9.3 Whether a zero-length file actually exists.

Yes, it does.

4.9.3 Whether the same file can be open multiple times.

Yes, it can.

4.9.4.1 The effect of the remove function on an open file.

No special checking for an already open file is performed; the responsibility
is left up to the programmer.

Appendix A, ANSI implementation-specific standards 287

4.9.4.2 The effect if a file with the new name exists prior to a call to rename.

rename will return a -1 and errno will be set to EEXIST.

4.9.6.1 The output for %p conversion in fprintf.

In near data models, four hex digits (XXXX). In far data models, four hex
digits, colon, four hex digits (XXXX:XXXX). (For 16-bit programs.)

Eight hex digits (XXXXXXXX). (For 32-bit programs.)

4.9.6.2 The input for %p conversion in fscanf.

See 4.9.6.1.

4.9.6.2 The interpretation of a - (hyphen) character that is neither the first nor the
last character in the scan list for a %[conversion in fscanf.

See the description of scanf in the Library Reference.

4.9.9.1 The value the macro errno is set to by the fgetpos or ftell function on
failure.

EBADF Bad file number

4.9.10.4 The messages generated by perror.

Table A.2
Messages generated

in both Win 16 and
Win 32

Arg list too big
Attempted to remove current

directory

Is a directory
Math argument
Memory arena trashed
Name too long

288

Bad address
Bad file number
Block device required
Broken pipe
Cross-device link
Error 0
Exec format error
Executable file in use
File already exists
File too large
Illegal seek
I nappropriate I/O control

operation
Inputbutput error
Interrupted function call
Invalid access code
Invalid argument
Invalid data
Invalid environment
Invalid format

No child processes
No more files
No space left on device
No such device
No such device or address
No such file or directory
No such process
Not a directory
Not enough memory
Not same device
Operation not permitted
Path not found
Permission denied
Possible deadlock
Read-only file system
Resource busy
Resource temporarily unavailable
Result too large
Too many links

Borland C++ Programmers Guide

Table A.3
Messages generated

only in Win 32

Table A.2: Messages generated in both Win 16 and Win 32 (continued)

Invalid function number Too many open files
Invalid memory block address

Bad address
Block device required
Broken pipe
Executable file in use
File too large
Illegal seek
Inappropriate 1/0 control

operation
Inputbutput error
Interrupted function call
Is a directory
Name too long

No child processes
No space left on device
No such device or address
No such process
Not a directory
Operation not permitted
Possible deadlock
Read-only file system
Resource busy
Resource temporarily unavailable
Too many links

4.10.3 The behavior of calloc, malloc, or realloc if the size requested is zero.

calloc and malloc will ignore the request and return O. realloc will free the
block.

4.10.4.1 The behavior of the abort function with regard to open and temporary
files.

The file buffers are not flushed and the files are not closed.

4.10.4.3 The status returned by exit if the value of the argument is other than zero,
EXIT_SUCCESS, or EXIT_FAILURE.

Nothing special. The status is returned exactly as it is passed. The status is
represented as a Signed char.

4.10.4.4 The set of environment names and the method for altering the
environment list used by getenv.

The environment strings are those defined in the operating system with the
SET command. putenv can be used to change the strings for the duration of
the current program, but the SET command must be used to change an
environment string permanently. .

4.10.4.5 The contents and mode of execution of the string IlY the system function.

The string is interpreted as an operating system command. COMSPEC is
used or COMMAND.COM is executed (for 16-bit programs) or CMD.EXE
(for 32-bit programs) and the argument string is passed as a command to
execute. Any operating system built-in command, as well as batch files and
executable programs, can be executed.

Appendix A, ANSI implementation-specific standards 289

290

4.11.6.2 The contents of the error message strings returned by strerror.

See 4.9.10.4.

4.12.1 The local time zone and Daylight Saving Time.

Defined as local PC time and date.

4.12.2.1 The era for clock.

Represented as clock ticks, with the origin being the beginning of the
program execution.

4.12.3.5 The formats for date and time.

Borland C++ implements ANSI formats.

Borland C++ Programmers Guide

Index

1* * 1 (comments) 6
1** 1 (token pasting) 6
< > (angle brackets), in syntax 3, 192
80x86 processors

instruction opcodes 276, 277
registers 273

80x87 coprocessors
floating-point formats 281

8086/8088 interrupt vectors 55
II (comments) 7
\ "escape sequence (display double quote) 18
\ 'escape sequence (display single quote) 18
? : operator (conditional expression) 96
- - operator (decrement) 85, 88
.* and ->* operators (dereference pointers) 98
32-bit Windows executable See Windows
\ \ escape sequence (backslash character) 18
\? escape sequence (question mark) 18
: (initializer list) 145 ~

: (labeled statement) 25
« operator

put to
stream output 209

shift bits left 92
== operator

equal to 94
relational operators vs. 94

» operator
get from

stream input 213
shift bits right 92

>= operator (greater than or equal to) 94
++ operator (increment) 85,88,223
<= operator (less than or equal to) 94
&& operator (logical AND) 95
I I operator (logical OR) 96
!= operator (not equal to) 94, 95

relational operators vs. 94
:: operator (scope resolution) 118, 122, 159
-> operator (selection) 89

member access 73, 85, 131
overloading 154

-1 option (opcode mnemonics) 277

Index

* (pointer declarator) 25
; (semicolon), null statements 102
\ (string continuation character) 19
##symboI82

overloading 149
token pasting 6, 191

~ (tilde), in syntax 146
% operator

modulus 90
remainder 90

& operator
address 86
bitwise AND 91
declarations 40

* operator
indirection 59, 87
multiplication 90

+ operator
addition 90
unary plus 87

, operator
evaluation 98
function argument lists and 24

- operator
subtraction 90
unary minus 87

= operator
assignment 97

compound 97
overloading 153

initializer 25
/\ operator

bitwise XOR 88
exclusive OR 91

I operator
bitwise inclusive OR 91, 92

~ operator (bitwise complement) 87
1 operator (division) 90
> oper;ator (greater than) 93
< operator (less than) 93
! operator (logical negation) 87
& operator (reference declarator) 116, 117
. operator (selection) 89

291

member access 73, 131
l's complement (~) 87
; semicolon

null statement 24
statement terminator 24

symbol 82

A

conditional compilation 193
converting strings 191
null directive 186
overloading 149
preprocessor directives 26, 185

-a compiler option (align integers) 284
-A compiler option (ANSI keywords) 19,201
\a escape sequence (audible bell) 17
abbreviations, container names 223
abort (function) 286

destructors and 147
open files 289
temporary files 289

abstract classes 155, 157
Abstract Data Types (ADT) 220
access

base classes 135
by converted pointers 112
class members 110, See also access specifiers

controlling 133
friends 135, 137
nested classes and 132
nonstatic 130
operator 154
static 129, 131

derived classes 135
DLLs267
functions 55
memory regions 27, 29, 30, 284
scope 118
stack, maximizing 221
streams 207

persistent 234
structures 67

default 135
members 68, 85

unions 134
members 85

with different types 283

292

visibility vs. 30
access specifiers 67

classes 125, 133
base 135, 136
restrictions 134
unions and 74

addition operator (+) 90
address operator (&) 86
addresses

iostreams, pointers to 210
memory See memory

aggregate data types 39, 142
alert (\a) 17
al?orithms, search (#include directive) 193
ahases See referencing and dereferencing
alignment

default, iostreams 212
integer types 281
structure members 284
word 70,284

32-bit compiler 70
allocation, memory See memory
alloctr.h (header file) 222
ancestors See base classes
AND operator (&) 91
AND operator (&&) 95
angle brackets « » 192

optional elements 3
anonymous unions 73
ANSIC

conforming extensions 2
diagnostics 279, 286
hyphens, interpreting 288
internal representations 41
keywords 19

pragma directives and 201
using as identifiers 2

primary expressions 82
standards, implementing 2,279-290
__ STDC __ macro 204
stdio library 207
string literals 19
tentative definitions 34

applications
DLLs and 265
macros, predefined 205, 255
Windows See Windows

Borland C++ Programmers Guide

argsused pragma directive 198
arguments See also parameters

actual, calling sequence 66
class pointer 164
class reference 164
command -line See command-line compiler
constructors 140, 144

default 141
conversions See conversions
delete operator 119, 123
directives

conditional 194
#define 187, 189
#include 192
#line 196

functions as 16, 55,150
functions taking no 40, 56, 63
macros 187, 189,190
~atching number of 66
members 127, 134

nonstatic 127
new operator 119
parameters vs. 3
primary expressions 83
references 117
templates 162, 166
type checking 63, 64
variable number of 25, 64

pascal keyword and 52
predefined macros 63

arithmetic data types 40
arithmetic ~xpressions 42, 43

equality / inequality 94
operators 89, 90
pointers and 55, 59

array declarator [] 46, 60
arrays

allocation 119, 122
failing 122

character 44
classes 219, 225

initializing 122
converting to pointers 62
declaring 60
deleting 121
elements 60

comparing 93

Index

constructors 144
exception handling 180
indeterminate 61
initializing 44
integer types 283

pointers to 283
memory allocation 60, 120
multidimensional 120

creating 60
one-dimensional 165
pointers 120
sizeof operator and 99
subscripts 23,84

overloading 154
templates and 219

example 225
ASCII codes, extended characters 280
asm (keyword) 101,271,272

nesting 272
.ASM files See assembly language
assembly language

calling conventions 273
comments 272
compiling 276

options 275, 277
directives 200, 201, 278

defining 188
floating-point emulation and 277
huge functions 54, 201
identifying in source code 200
instructions 271, 275

jump 274
table of 278

mnemonics 277
opcodes 276, 277

defined 271
repeat prefixes 277

size overrides 273
string 277

loops and 274
newlines 272
operands 271, 276

parsing 273
references 273

data 273
registers 273

loading 274

293

saving '201
statements 272

C symbols and 273, 274
nesting 272

structures 273
restrictions 274

syntax 101, 271
braces and 272

variable offsets in 273
assert (function) 286
assignment operators 79, 97

compound 97
overloading 153
simple 97

assignment statements 102
associativity 77, See also precedence
asterisk (*) 25
atexit (function) 147
attributes

class, access 133
recursive 135

identifiers 28
linkage 32
screen, setting 217

auto (keyword) 31,47, 127
external declarations 37
register keyword vs. 47

automatic objects
classes, exception handling 180
memory regions 31, 45

automatic sign extension 43
automatic storage duration 43, 44, 47

B
\ b (backspace character) 17
-b compiler option (enumerations) 74
-B compiler option (inline assembler) 200, 275
backslash characters (\) 18

hexadecimal and octal numbers 17
include files 285
line continuation 191

backspace characters (\b) 17
Bad_cast (exception) 110
Bad_typeid (exception) 114
base classes 134-136

access specifiers 135, 136
constructors 142, 145, 146

294

converting to derived 110
declaring 125, 208
derived classes vs. 155
hierarchies 135, 143
inheritance 134, 137, 208, 233
multiple instances and 142, 143
redefining 134
streamable See streamable classes
unions and 135
virtual keyword and 137

BASM (inline assembler) 275, 276, See also
assembly language
restrictions 275

batch files, executing 289
__ BCOPT __ macro 203
__ BCPLUSPLUS __ macro 203
bell (\a) 17
binary data 207
binary operators 88

overloading 153, 154
binary streams, null characters 287
bit fields 72, 74, 284

allocation 72
omitting identifiers 72
straddling word boundaries 284

bits, shifting 92
bitwise operators 282

complement 87
logical 91
relational 93
shift 92
truth table 91

block
local duration and 31
scope, identifiers 29, 30

declarations and 44
linkage and 33

statements 101
exception handling 174

blocks, memory 252
enlarging 252

Boolean data types 103
Borland International Data Structures (BIDS) 219
Borland Resource Compiler See Resource

Compiler
__ BORLANDC __ macro 203
braces 24

Borland C++ Programmers Guide

asm keyword and 272
nesting 45

brackets 23
angle, in syntax 3, 192
arrays and 61, 84, 122.
templates 166

break statements 106
buffered files 287
buffered streams 207
buffers, memory 207
built-in assembler See BASM

c
C language See also ANSI C

C++ declarations vs. 126
conditional operators 194
expressions 80
inline assembly and 272, 273
keywords specific to 10
linking programs 33
modules 203
parameter passing 49, 60
prototypes 62
variables, enumerated types 74

callback functions See export functions
calloc (function), memory allocation 289
calls

far, functions using 54
fastcall, functions using 55
huge, functions using 54
near, functions using 54

-carriage returns
literal 17
opening files 215

case (keyword) 104
case sensitivity 11

pascal keyword and 11, 52
preserving 51
suppressing 281

case statements See switch statements
cast expressions 79, 109, See also typecasting

address 86
bitwise complement 87
indirection 87
logical 87
restrictions 109

Index

unary 86, 87
catch (keyword) 174, 176
__ CDECL __ macro 203
cdecl (keyword) 49, 51

function type modifiers and 54, 55
char (keyword) 41
character arrays 44
character constants See constants
character sets

constants 285
execution

collation sequence 280
number of bits in 280
valid 280

extended 280
mapping 281
testing for 286

characters
char See data types
decimal point, default 285
fill, setting 212
internal representation 15
literal, escape sequences 17
multibyte 280, 282
null, binary stream 287
storing copies 221
unsigned char See data types, char

class
import declarations 49, 54, 125

class (keyword) 126
polymorphic classes 155

class generator 165, Seealso templates
class scope 29
class templates

as arguments 164
classes 124-138, See also individual class names

abstract 155, 157
arrays 219, 225

initializating 122
base See base classes
container See container classes
data types 40
declarations See declarations
default constructors 141
defining 165

repeatedly 167
with no constructors 141, 142, 144

295

derived See derived classes
distance attibutes 125
exporting 49, 269
global vs. local 131
hidden 126, 132
hierarchies See hierarchies
huge 125
identical interfaces and 155
importing 269
inheritance See inheritance
members, defined 127, See also data members;

member functions
memory-model specific 125
naming 126
nested 132
objects See objects
pointers 110, 112

members 113
polymorphic 155
referencing 110, 111
related 160
returning runtime information on 124
scope See scope
sizeof operator and 100
streamable See streamable classes
structures vs, 67
syntax 124

base-list argument 134
member-list argument 127

undefined 111
wrapper 167, 168

classes import 125
clock 290, See also time
clreol (manipulator) 217
code See source code
code segments, memory models 56
codeseg pragma directive 198
colons 25
comma operator 98
comma separator 24, 45

nested, macros and 189, 190
command-line compiler

directives, overriding 51
inline expansion and 128
optimization 55
options See also specific switch

ANSI compliant 19,279

296

restrictions 279
including in source code 200

comment pragma directive 198
comments 6-7, 187

ANSI compliant 280
nested 7
token pasting and 6
as whitespace 5, 7

__ COMPACT __ macro 202
. compilation 33, 185, See also command-line

compiler
ANSI C compliant 204
conditional 193

macros, predefined 203
container class libraries 228
controlling 188
defaults 139
inline assembly See assembly language
memory models and 53, 202
predefined macros 203, 204, 205
prototypes and 66
speeding up 199, 200
templates and 168, 169
terminating 197
Windows programs See Windows

complement, bitwise 87
complex data types 142

pointers and 56
complex vectors, example 150
component selection See operators, selection
compound assignment operators 97
concatenating strings 19
conditional compilation See comp~lation
conditional directives 193, 197

nesting 194
conditional operator (? :) 96
conditional tests 103
conforming extensions 2
__ CONSOLE __ macro 203
console stream manipulators 2.17
consoles 280
const (keyword) 49, 50

pointers and 58
removing from types 109

const_cast operator 109
constant expressions 22
constants 11, 49, 50, See also numbers

Borland C++ Programmers Guide

assigning to pointers 28, 57, 58, 109
character 12, 15

ANSI compliant 280, 281
extending 16
multi-character 18
values 282, 2~5
wide 18,282

conditional directives 194
data types 13

with no suffixes 14
decimal 12

suffixes 14
enumerated types 75
floating point 12, 14, 15
fractional 12
hexadecimal 12, 13
integer 11, 12
internal representations of 20
macros and 187
manifest 202
octal 12, 13
string 18, See also strings, literal
suffixes and 13
switch statements, duplicate 103
syntax 12
ULONG_MAX and UINT_MAX 92
volatile qualifiers 37

constrea.h (header file) 207, 217
restrictions 217

constructors 139-146, See also initialization
arguments 140, 144
arrays 119

order of calling 144
base classes 142

calling 146
from derived class 145

calling 139, 140, 141, 142
copy See copy constructor
defaults 141
defining 139, 140
derived classes 142, 146
exception handling 176, 180
global variables 140
inheritance. 139
initializer lists and 144
multithread 53
naming 140

Index

non-inline 146
not defined 141, 142, 144
overloading 142
referencing 140
streams 234

ifstream 215
of stream 215

unions 74
virtual classes 143

consumer (streams) 207 '
container class libraries 219-229

building 228
categories 220
compiling 228 ,
example programs 228
predefined combinations 223

container classes 219
controlling memory with 222
debugging 229
declaring 221
direct 221
generic 165
indirect 221

implementing 225
iterator class 223
member functions 224

implementing 228
naming 223
object types 221

sorting 221
ownership 224
prefixes 223
stack 220
templates 219, 224

continue statements 106
continuing lines 6, 19, 191
control lines See directives
conversions 118

arguments 66
to strings 191

arrays 62
data types 42, 43

floating-point 282
integers 112, 282

to pointers 283
iostreams 207, 211
multibyte characters 282

297

setting base for 212
sign extension and 43
typecasting 109
wide character constants 282

identifiers, restrictions 86 .
of class arguments 164
of template arguments 164
pointers 59, 109, 111

to integers 283
reference types 110, 112
runtime 110
template functions 162

coprocessors See numeric coprocessors
copy constructor 141

defaults 141
defining 142
exception handling 176, 180
object initialization and 144

__ cplusplus macro 203
CPP32.EXE (preprocessor) 185
CPP.EXE (preprocessor) 185
cs (keyword) 49
cv-qualifier 37

o
-D compiler option (define identifier) 189
data

pointers, modifying 54
protecting 270
static, DLLs 270
tracking 131

data members See also member functions
accessing See access, class members
adding 132
assigning values to 144
declaring See declarations, classes
default 134

base classes 135
overriding 134

defining 130, 133
dereferencing 98
freeing 146
hidden 159
in nested class 131'
naming 132, 136
scope See scope, classes
static 47, 129, 130

298

linkage 131
data segments 54, 55

fixed, static duration and 31
pointers 49, 56
register 53

setting 54
setting equal to stack segment 249
Windows programs 249, 250

data structures 220
implementing 219
null-terminated 105

data types 27, 39, See also constants; floating point;
integers; numbers.
aggregate 39, 142
arithmetic 40
Boolean 103
casting See typecasting
char 16,41

range 21
signed 16
unsigned 16, 21

complex 142
pointers and 56

conversions See conversions
declaring See declarations
default 39

overriding 41
defining

cast expressions 109
new 48

derived 39
enumerations See enum (keyword)
fundamental 39, 40-43

ranges 41
identifiers and 28
incompatible, Windows applications 254
initializing 43, 44
internal representations 41
iostreams

input 213
output 210
redefining 214

new, defining 48
parameterized See templates
pointers 25, 221
polymorphic 257
referencing 48

Borland C++ Programmers Guide

scalar 39, 44
size_t 100,285
sizes 21
specifiers See type specifiers
storage 281
streamable classes 231
table of 21
DINT 257
user-defined 27, 214
void 40
wchar_t 18, 45

__ DATE __ macro 189,203
dates 203, See also time

formatting 290
local 290 /
setting 285

deallocation, memory See memory
debugging 185

container classes 229
Windows applications 247

dec (manipulator) 211
decimal

constants 12
suffixes 14

conversions 211
decimal point character 285
declarations 27, 28, 35

32-bit executable See Windows
arrays 46, 60
classes 124, 126

base 125
container 221
derived 134, 137
friends 135, 137
incomplete 126
members 125, 127, 134

inline functions and 128
multiple ·132
nonstatic 127
static 129, 130

nested 132
streamable 235, 236, 238
virtual functions 155, 157

complex 48
examples 46

constructors 140, 141
default arguments 141

Index

objects 144
order of calling 142

data types 28, 39
derived 40
syntax 46

defining 34, 45
definitions vs. 34, 62
destructors 146, 148
enumerations 74, 75

within classes 76
exception handling 174
expressions 78
external 30, 32, 34, 37
formal parameters 65, 66
forward references and 28
functions 62, 117, 158

as arguments 55
declarator 46, 54, 63
explicit 62
external 116, 131
multiple 62
pascal keyword and 52
precedence 46
register keyword and 47
return statements and 107
virtual 125
with no arguments 40, 56, 63

identifiers 58
attributes 28
block scope and 44
classes of 30
external 30, 34

iostreams 211
manipulators 210

mixed language conventions 51
modifiers 36, 48, 53, 66

memory models and 125
multiple 38

avoiding 132, 208
multithread programs 53
nested 132
pointers 46, 57, 58

indirection operator and 59
modifiers 53

portability 126
prototypes 29
qualifiers 36, 37

299

referencing 34
simple 34

restrictions 107
scope and 29,44, 158
simple 45
storage class specifiers 37, 47

extern keyword and 33
static keyword and 33
syntax 46

structures 67
incomplete 71
members 67

syntax 34, 35
tentative definitions and 34
translation units and 32, 35
unions 74
variables 31

asterisks in 25
default, local scope 47
register keyword and 47
volatile keyword and 50

declarators 45
nesting 284
number of 284

DECLARE_STREAMABLE macro 234, 237
decrement 50, 56
decrement operator (- -) 85, 88
.DEF files See module definition files
default (keyword) 104
default constructors 141
default data types 39

overriding 41
default labels 104
default statements 104
#define directive 186, 189

arguments 187, 189
keywords and 189
redefining macros 188
testing for 195
with no parameters 186

defined operator 194
defining declarations 28, See also declarations
definitions 62

declarations vs. 34
external 37

functions 64
tentative 34

300

delete (fun<:tion) 123, 252
delete operator 32, 119

constructors and 139
destructors and. 139, 147
overloading 123

prototypes 123
syntax 119, 121

delline (manipulator) 217
dereferencing See referencing and dereferencing
derived classes 134-136

constructors 142, 146
converting to base 110
declaring 124, 134, 137
inheritance 135
streamable 208

1/0214
consoles 217
formatted 208, 209

libraries 207
values, changing 146
virtual bases and 232
virtual functions and 155

derived data types 39
descendants See derived classes
destructors 139, 146-149, See also initialization

calling 139, 146, 147, 148
explicitly 147

defining 139
delete operator vs. 147
exception handling 180
exit procedures and 147
global variables 147
inheritance 139
initializer lists and 144
inline expansion and 129
local variables 147
multithread 53
virtual 148

Detach (function) 224
devices 207

interactive 280
diagnostic messages 279, 286
digits

hexadecimal See hexadecimal
nonzero 12
octal See octal

direct containers See container classes

Borland C++ Programmers Guide

direct member selector See operators, selection
directives 185-205, See also individual directive

names; macros
##symbo182

overloading 149
symbol 26, 82

overloading 149
compiler, overriding 51
conditional 193, 197

nesting 194
error messages 197
ignored 187
implementation-specific 198-202
keywords and 189
line control 196
null 186
placing 185
pragma See pragma directives
sizeof operator and 100
syntax 186
terminating 188

division operator (/) 90
__ DLL __ macro 203
DllEntryPoint (function) 266
DLLs265

_RTLDLL macro 270
_ USEDLL macro 270
accessing 267
building 269
classes and 269
compiler options 268
creating 266
data, protecting 270
exiting 267
exporting and importing 269
functions

calling 246, 268
exporting 267, 268
importing 246, 268
referencing 265
smart callbacks 249

initializing 266
loading 250
object modules 250
pointers 268
using Borland 270
Windows applications 203, 246

Index

do while loops See loops
domain errors 286
DOS

macros, predefined 204
SET command 289

DOS3Call API function 259
dot operator (selection) See operators, selection
double (keyword) 42
double quote character, displaying 18
ds (keyword) 49
duplicate case constants 103
duplicate identifiers 30
duration 27, 28, 31

automatic storage 43, 44, 47
dynamic 32
local 31
static 31, 43, 47

extern keyword and 47
dynamic_cast operator 110
dynamic duration 32
dynamic-link libraries See DLLs
dynamic memory allocation See memory

E
elaborated type specifiers 126
elements

arrays See arrays
optional 3
parsing 5

#elif directive 193
defined operator and 194

ellipsis (...) 25
function definitions 65

Pascal 52
prototypes and 64, 66

#else directive 193
empty statements 102

loops 106
empty strings 19
emulation, floating-point

inline assembly 277
enclosing blocks 29, See also scope, identifiers

local duration and 31
#endif directive 193
endl (manipulator) 211, 212
ends (manipulator) 211

301

enum (keyword) See also enumerations
cast expressions 112
constants 12, 20

default values 20
int keyword and 75
omitting 75
range 21

enumerations 3D, 74-77, 284, See also enum
(keyword)
class names and 126
declaring 74, 75

within classes 76
initializing 75
overloaded operators and 76, 149
scope 30,76

members 30
tags 71, 75, 76

omitting 75
types, default 74
variables, C vs. c++ 74

environment, altering 289
environment variables

STRICT (Win32) 254, 256
epilogs See Windows
equal-to operator (==) 94

relational operators vs. 94
equal-to or greater-than operator (>=) 94
equal-to or less-than operator «=) 94
equality expressions 79
ermo (macro) 288
#error directive 197
error functions 288, 290

diagnostic 286
error-handling See exception handling
errors

domain 286
expressions 81
messages 197,288,290

diagnostic 286
perror function 288

reporting 196
underflow range 286

es (keyword) 49
escape sequences 12, 17, 282, 285
evaluation operators 98
evaluation order See precedence
example programs, container class libraries 228

302

__ except (keyword) 182
exception handler 174, 177

missing 180 '
setting 120, 176

exception handling 173
C source files 181
constructors 176
declarations 174
destructors 180
disabling 176, 177
GetExceptionCode (function) 181
GetExceptionlnformation (function) 181
inline functions 128
RaiseException (function) 181
SetUnhandledExceptionFilter (function) 182
specifications 177

prototypes 178
viblations 179.

statements 174
catch 176
throw 175

syntax 174, 175
UnhandledExceptionFilter (function) 182
Win32254

exceptions
Bad_cast 110
Bad_ typeid 114
catching 177
defined 174
delimiting 175
terminating 177, 180
testing for 175
throwing 175, 177, 179

copy constructor and 180
turning off 176, 177
unexpected 176, 179
unhandled 180
xalloc 120

exclusive OR operator (") 91
exclusive XOR operator (") 88
executable files (.EXE)

marking as Windows 245
PE file formats 253

executable library module 265
executable programs 32
execution character sets See character sets
exit (function), destructors and 147

Borland C++ Programmers Guide

exitfunctions 147,286
status returned 289

exit pragma directive 199
exit procedures 147, 199

DLLs267
expansion, macros See macros
explicit typecasting 84, 86
exponents 12
export (keyword) 49

function type modifiers 54, 55
_export 269
_export (keyword) 267, 268

Windows programs 246, 248, 250
export functions 246

compiler options 248-250
prologs and epilogs 248, 250

exporting
classes 49
functions 49

DLL267,268
expressions 24,59, 77-81, 102

arithmetic See arithmetic expressions
arrays 60, 61
cast See cast expressions
constant 22
conversions See conversions
decrementing 88
defined 77
empty (null statement) 24
equality 79
errors and overflows 81
evaluating 42, 77, 80, 102
grouping 23
incrementing 88
literal 83
lvalues and 28
nesting 77
postfix See postfix expressions
precedence, operators 78, 80
prefix 82 .
primary 82

arguments 83
restrictions 100
syntax 78

typeid 84
values, modifying 80
with no parentheses 77

Index

extended character sets 280
extensions 10

language, conforming 2
extent See duration
extern (keyword) 33, 47, 127

arrays and 61
const keyword and 50
duration 31
header files and 34
linkage 32, 33

external declarations 30, 32, 37
tentative definitions and 34

external definitions 37, 64
external functions 32, 265

calling 116, 131
declaring 47
definitions 64

external identifiers See extern (keyword)
external linkage See linkage
extraction operator (») See overloaded operators
extractors 213

F
\f escape sequence (formfeed) 17
far (keyword) 49, 54

assignment restrictions 57
far pointers 21
fastcall (keyword) 55
fgetpos (function), errno macro 288
__ FILE __ macro 189, 203
file scope

external linkage and 47
identifiers 29
internal linkage and 47

files 207, See also individual file-name extensions
abort function and 289
batch, executing 289
buffering 287
creating 214
current, processing 203
dating 203
executable

marking as Windows 245
PE file formats 253

file position indicator 287
header See header files
I/O, handling 214

303

include See include files
including in source code 192
module definition 245, 246, 247

import libraries 246
names, searching for 285
opening 287

default mode 215
printing 63
project 251, 252
remove function and 287
renaming 288

,resource script 244
scope See scope
time stamp 204
tracking 203
zero-length 287

fill (member function) 210,212
fill characters 212
__ finally (keyword) 182
flags

format state 210, 211
ios class 210, 213

setting 212
flags (member function) 210
float (keyword) 42
floating point See also constants; data types;

integers; numbers
conversions See conversions
emulation

inline assembly 277
identifiers 42
numbers

range 21
rounding 282

pointers 221
precision, setting 212
types

building 40, 42
formatting 281

flow-control statements 102, See also if statements;
switch statements

Flush (function) 224
flush (manipulator) 212
fmod (function), multiple arguments 286
for loops See loops
formal parameters See parameters
format state flags 210, 211

304

formatting 215
1/0210

classes 208
console streams 217
field width, setting 212
fill character 212
manipulators Se~ manipulators
padding 212
variables, changing 210

streams, clearing 212
formfeed characters (\f) 17
forward references 28
£printf (function) 288
free (function) 119, 252

dynamic duration and 32
friend (keyword) 127, 137

base classes and 135
friends See member functions
fscanf (function) 288
fstream.h (header file) '207, 214
ftell (function), ermo macro 288
function call operator See parentheses
function declarator () 46, 54, 63
function prototype scope, identifiers 29
function scope, identifiers 29
function template 162, See also templates
functions 62-66, See also specific functions

accessing 55
assembly language See assembly language
calling 29, 66, 102, See also parentheses

DLL268
external 116, 131
function declarator and 63
operators () 84
priority 199
reducing ove:rhead 128
type checking 62
undeclared 28
Windows-compatible 246, 258

cdecl keyword and 51
class names and 126
comparing 95
declarations See declarations
default type 54

overriding 49
defiriing 62

Borland C++ Programmer's Guide

error See error functions
exception specification 177
exit See exit functions
export See export functions
exporting 49
external See external functions
far See far (keyword)
fastcall55
friend See member functions
generic 162
hidden 126
huge See huge (keyword)
initializing 118

new operator and 122
inline See member functions
input 288
interrupt 55

void keyword and 55
main 51,62

arguments 280
mathematical See math
member See member functions
memory allocation/ de allocation 32
multithread 53
near See near (keyword)
not returning values 40
operator See operator functions
overloaded See overloaded functions
parameters 51

and modifiers 51
pointers See pointers
prototypes See prototypes
redefining 127
return statements and 62,68, 107
scope See scope
size of operator and 99
startup 140, 199
static 32, 47
type

checking 62
default 49, 54

undeclared 28, 66
unqualified 54
user-defined 64
virtual See virtual functions
with no arguments 40, 56, 63
with variable number of arguments 52, 63, 64

Index

Fundamental Data Structures (FDS) 220, 221
fundamental data types See data types

G
generic class 165, See also templates
generic functions 162, See also templates
generic pointers 40, 57
generic types 160, See also templates
get from operator (»)

stream input 213
getenv (function) 289
GetExceptionCode (function) 181
GetExceptionlnformation (function) 181
global allocation operator 122
global heap 252
global identifiers See identifiers
global variables See variables
globals, scope 29
goto

exceptions and 177
goto (keyword) 102

inline assembly 274
goto statements 29, 107

exception handling 177
labels, name space 30

grammar, tokens See tokens
greater-than operator (» 93
greater-than or equal to operator (>=) 94

H
-H compiler option (precompile header file) 199
handlers See exception handler; interrupt handler
handles (Win32) 255
hardware interrupts 55
hardware registers, bit fields and 72
hdrfile pragma directive 199
hdrstop pragma directive 200
header files 27, 169, 170, See also include files

extern keyword and 34
including in source code 192

. iostreams 207, 215
manipulators 211

non-parameterized 211
precompiled 199, 200
prototypes 63, 66
user-defined functions 64

305

heap 32
DLLs266
global 252
local 252
manager 252
memory, fragmented 120
new operator and 122
objects See memory, regions
threshold, defining 252

hex (manipulator) 211
hexadecimal

conversions 211
digits 12

displaying 18
numbers, backslash characters and 17

hidden objects, memory regions 30
hierarchies

accessing class elements 110
base classes 135, 143
members 132

friends 138
streamable classes 208, 209
virtual classes 143

highvideo (manipulator) 217
horizontal tabs 5 '

literal 18
__ HUGE __ macro 202
huge (keyword) 49,54

assignment restrictions 57
_loadds keyword vs. 54
memory allocation and 54

huge functions See huge (keyword)

I/O See input; output
formatting See formatting

IDE
identifiers and 189
options

inline assembler 200
overriding 51
warning override 202

project manager 251
storing enumerators 74
Windows programs 243,247

identifiers 10, 27, 28, 45
case sensitivity 51, 281

306

preserving 51
suppressing 11

cdecl keyword and 51
container class 223
creating 10
declaring See declarations
defining 188, 191

command-line options 189
from the IDE 189
restrictions 189

definitions
multiple 28
testing for 188, 194, 195

duplicate 30
duration 31
enumeration constants 20
external 33, See also extern (keyword)
floating-point 42
global 5'1, 52

accessing 118
predefined 189, 202

integers 74
keywords as 2
labels 102
length 10, 280
linkage 32

no linkage attributes 33
mixed languages 51,273
modifying 48
name spaces See name spaces
non-Ivalue, converting 86
null 195
omitting 126.
pascal (keyword) and 11,52
scope See scope
significant characters in 280
undefining 188

command-line options 189
from the IDE 189

unique 32
warning 202

IEEE
floating-point formats 42,281
NAN return values 286

#if directive 193
defined operator and 194

if statements 102

Borland C++ Programmers Guide

nested 103
#ifdef directive 188, 195
#ifndef directive 188, 195
ifstream (class) 214

constructors 215
IMPLEMENT_CAST ABLE macro 235
IMPLEMENT_STREAMABLE macro 236
implementation-specific standards (ANSI) 2,

279-290
IMPLIB32 utility 246
IMPLIB utility 246
__ import

class declarations and 49, 54, 125
__ import (keyword) 49, 54, 125
import (keyword)

function type modifiers 54, 55
_import 269
_import (keyword)

Windows programs 248
import libraries 246

creating 246
DLLs268

importing DLL functions 246, 268
include files 285, See also header files

including in source code 192
searching for 193, 285

#include directive 192
search algorithm 193

inclusive OR operator (I) 91, 92
incomplete declarations 71

classes 126
increment 50, 56
increment operator (++) 85, 88
indeterminate arrays, structures and 61
indeterminate values 43
indirect containers See container classes
indirect member selector See operators, selection
indirection, undefined 87
indirection operator (*) 59,87
inequality operator (!=) 94,95

relational operators vs. 94
inheritance

base classes 134, 137, 208
constructors and destructors 139
derived classes 135
friends 138
multiple 137, 208, 233

Index

overloaded operators 153, 154
RTTI and 115
streamable classes 208, 214, 234

virtual bases 232
virtual 208

initialization 31, See also constructors; destructors
arrays 44
classes 144-146
declarations and 28
DLLs266
enumerations 75
functions 118

new operator and 122
initial values, setting 43
memory allocation 119
memory regions 45
objects 144
operator 25
pointers 57
structures 44, 144

example 45
untagged 67

unions 44, 67, 74
variables, static 47

initializers 43
(:) 144

inline (keyword) 128
inline assembly, defined 271, See also assembly

language
inline expansion 128

friends and 137
inline functions See member functions
inline pragma directive 200, 275
inline statements 200, 275
input 207,213

formatting 208,210
functions 288

Windows programs 259
streams, data types 213

redefining 214
inserters 209

types, iostreams 210
insertion operator «<) See overloaded operators
insline (manipulator) 217
instances See objects
instantiation

classes 53

307

member functions 127
templates 162, 166

" instructions
assembly language" See assembly language

int (keyword) 41
integers 40, 41, 283, See also constants, data types;

floating point; numbers
alignment 281
arrays 283
casting to pointer 283
conversions See conversions
division, sign of remainder 283
long 41

range 21
memory use 41
right shifted 283
rounding 282
setting values 74, 75
short 41

range 21
signed 41, 282
sizes 41
streams 210, 231
suffix 12
unsigned 41

range 21
values, ANSI compliant 281, 282, 284

integral data types See characters; integers
integrated development environment See IDE
interactive devices 280
interface routines 54
internal linkage See linkage
internal representations of data types 41
interprocess communication 229
interrupt (keyword) 49, 55

function type modifiers and 54
interrupt handler 49
interrupts 55

functions 55
void keyword and 55

routines 50
intrinsic pragma directive 200
ios (class) 207, 208

derived classes 209
flags 210, 213

setting 212
iostream.h (header file) 207,211

308

iostream library 207
iostreams See also streams

binary, null characters 287
classes 207, 208, 214

memory buffers 207
clearing 212
data types 210, 213
declarations 210, 211
default alignplent 212
error-checking 208, 215
flushing 211, 212
format state flags 211
input 213
manipulators See manipulators
output 209
predefined file descriptors 208
referencing and dereferencing 210
text, outputting 287

isalnum (function) 286
isalpha (function) 286
iscntrl (function) 286
islower (function) 286
isprint (functiqn) 286
istream (class) 215

derived classes 214
istrstream (class) 215
isupper (function) 286
iteration 104

container classes 223
continue statements and 106
restarting 223
statements See loops

iterator class (containers) 223

J
-Jgxxx compiler options (templates) 168, 169
jump instructions See assembly language
jump statements See break statements; continue

statements; goto statements; return statements
justification See alignment

K
keywords 8, See also individual keyword names

fundamental data types 40
macros and 189
making ANSI compliant 201

Bar/and C++ Programmers Guide

L

specific to C 10
specific to C++ 10
table of 9
using as ident~fiers 2

labeled statements 25, 29, 102
transferring control to 103, 107

labels 29, 30
creating 25
default 104
forward references and 28
identifiers 102

languages See also specific language
extensions, conforming 2
mixing 51

__ LARGE __ macro 202
late binding 157
leading underscores See underscores
less-than operator «) 93
less-than or equal-to operator «=) 94
lexical grammar See elements
LibMain (function) 266

return values 267
libraries 27, 33, 66

container class See container class libraries
import 246

creating 246
DLLs268

iostream 207
linking 62
multithread 204
precompiled 62
static-link (DLLs) 265
streamable classes

predefined macros 229, 233
restrictions 241

streams 207
template-based, using 227

limits.h (header file) 41, 92
__ LINE __ macro 189, 204
#line directive 196
linefeed characters

literal 17
opening files 215

lines
continuing 6, 19, .191

Index

ignored during compilation 193
numbering 196

linkage 27, 32, 33
dynamic vs. static (DLLs) 265
external 32, 44

anonymous unions 74
. C vs. C++ 33

declaring 37, 47
preventing 50

internal 32, 37, 44
Cvs.C++ 33
declaring 47

libraries
multithread 204
precompiled 62

no attribute 32, 33
static members 130, 131
storage class specifiers 32
type-safe 165, 167, 256
Windows programs See Windows

list-based stack 221, 225
example 226

literal expressions 83
literal strings 6, 18

ANSI compliant 280, 281
arrays and 44

loadds (keyword) 49
function type modifiers 54, 55
huge functions and 54
low-level interface routines 54

local duration 31
local heap 252
local scope

auto keyword and 47
external linkage and 47
identifiers 29, 30

static duration and 31
internal linkage and 47

local variables See variables
logical operators 95

bitwise 91
negation 87

long (keyword) 41
assignment 41, 42

long integers See integers
loops 104

break statements 106

309

continue statements 106
do while 105
for 105
while 104

lowvideo (manipulator) 217
IParam parameter, Windows programs 258, 259
lvalues 28, 46, See also rvalues

M

example 116
expressions and 77, 80
modifiable 28

macro processor 185
macros 185, See also directives

argument lists 187, 189, 190
calling 189

precautions 191
defining 186, 189

conflicts 188
keywords and 189
with no parameters 186

errno288
expansion 187, 188, 190

#include directives 192, 193
#line directives .197
#Undef directives 188

identifiers, removing 187
nested 187
precedence in, controlling 23 .
predefined 202-205, See also individual macro

310

names
compilation 203, 204, 205

conditional 203
consoles 203, 205
container class libraries 229, 233
current file 203
current line number 204
DOS 204
memory models 202
multithread library 204
overlays 204
Pascal calling conventions 204
preprocessing

date 203
time 204

templates 204
thread 204

user-defined functions 64
Windows See also Windows

redefining 188
templates vs. 161
undefining 187

main (function) 62
arguments 280
calling 51

MakeProcInstance (function) 249
malloc (function) 119, 252

duration and 32
memory allocation 289

mangled names 33
disabling 33

manifest constants 202
manipulators 210, See also formatting; individual

manipulator names
embedding 210
example using 217
I/O 210,211

console streams 217
table of 211

text windows 217
without parameters 211

math
coprocessors See numeric coprocessors
functions

domain errors 286
underflow range errors 286

__ MEDIUM __ macro 202
member access operators 85
member functions 127, 139

abstract classes and 158
accessing See access; access specifiers
adding 132
assigning values to 144
calling 131

external 131
const keyword and 50
constructors See constructors
container classes See container classes
declaring 125, 128, 132, 137
default 134

base classes 135
overriding 134

defined 127
defining 128, 133

Borland C++ Programmers Guide

destructors See destructors
freeing 146
friends 127, 137-138

base classes and 135
hidden 159
in nested class 131
inline 128, 168

exception handling 128
limitations 128

naming 127, 130, 132, 136
nonstatic 127, 130, 149
pure 155, 157
referencing 127, 131
related 160
scope See scope, classes
static 47, 129, 166

linkage 130
pointers 56

structures 68
this keyword and 127, 130
type, modifying 125, 133
virtual See virtual functions
volatile keyword and 50

members See structures; unions
classes See data members; member functions

memory 207
addresses 55
allocation 28, 32, 34, 119

arrays 60
containers 222, 223
data types 29
duration 31
dynamic 122
enhancing 252
example 120, 123
failing 120
global operator 122
huge keyword and 54
initializing 119
non-array 119
objects 139
structures 70
zero size 289

blocks 252
enlarging 252

buffers 207
conserving 266

Index

controlling 222
deallocation 32, 119, 183 .

example 120, 123
heap 32
management routines 122
regions 27, 28

accessing 27, 29, 30, 284
automatic objects 31, 45,283
const keyword and 50
default 43
designating 28,49
hidden 30
initializing 45
object locator 28
volatile keyword and 50

size of operator and 99
structures, word alignment and 70

memory models 53
classes 125
default type, overriding 49, 54
interrupt functions and 55
large 228

DLLs and 269
macros, predefined 202
pointers 56

modifiers and 53
unqualified functions 54

message crackers 259, See also Windows
messages

diagnostic 279, 286
error, creating 197,288,290

methods See member functions
Microsoft Windows See Windows
modifiable lvalues 28
modifiers, declarations 36, 48, 66

functions 125
pointers 53

Modula-2, variant record types 73
module definition files (.DEF) 245

import libraries 246
statements 245, 246, 247

modules
C language 203
compiling 33
executable library 265
overlay support 204
Windows programs See Windows

311

modulus operator (%) 90
mouse support routines 55
__ MSDOS __ macro 204
__ MT __ macro 204
multibyte characters 280, 282
multicharacterconstants 15
multicharacter operators 82
multidimensional arrays 120

creating 60
multiple inheritance 208, 233
multiplication operator (*) 90
multithread libraries 204

macros, predefined 204
multithread programs 53

N
\n (newline) 17

opening files 215
name spaces 30

enumerations 76
structures 71

names 27,45, See also identifiers
accessing 118
constructors 140
data members 132, 136
defining 83
labels 29, 30
mangled 33
member functions 127, 132
nested classes and 132
reducing 131
structures 30
unions 30

NAN (IEEE return value) 286
near (keyword) 49, 54

assignment restrictions 57
near pointers 21
negation, logical 87
negative signed values 283
nested

classes 132
comments 7
conditional directives 194
declarators 284
expressions 77
macros 187

312

statements 102, 103, 106
templates 166
types 132

new (function) 252
new operator 119, 122

arrays 120
constructors and 139
destructors and 139, 147
duration and 32
optional initializers and 122
overloading 119, 122

prototypes 123
returning errors 120
sizeof operator vs. 119
syntax 119

newlines 5
ignored 6
inserting 17, 211
opening files 215
text streams 287

no linkage attribute 32, 33
non-array memory allocation 119
non-inline constructors 146
nondefining declarations See declarations,

referencing
nonstatic member functions 127

accessing 130
static vs. 129

nonzero digits 12
normvideo (manipulator) 217
not equal to operator (!=) 94, 95

relational operators vs. 94
NOT operator (!) 87
null 31

characters, binary streams 287
directives 186
identifiers 195
inserting in strings 211
pointers 57, 285

testing for 103, 105
typecasting 112

statements 24, 102
loops 106

strings 19
NULL (mnemonic) 57

expansion 285

Borland C++ Programmers Guide

numbers See also constants; data types; digits;
floating point; integers
base, setting for conversion 212
binary See BCD
converting See conversions
decimal See decimal
hexadecimal See hexadeCimal
large 21
line, adding 196
octal See octal
rounding 282

numeric coprocessors
floating-point formats 281

o
\0 escape sequence (display octal digits) 18
.OBJ files, 32-bit programs and 253
object, memory regions 27, 283, See also memory,

regions
initialization and 43
referencing 284

objects 126, 127, See also classes; container classes
accessing 129
aliases 116, 118
automatic 180
const keyword and 50
converting to reference types 112
copying 140

restricted 127
creating See constructors
current, returning 223
data types 40
deleting 224
destroying See destructors
duration 120
exception handling 174, 176, 180
exit procedures and 147
hidden 126
initializing 140, 144

new operator and 122
local 140
memory allocation 139
nonstatic members and 127, 129
persistent 229
pointers 56, 111, 112,221

functions pointers vs. 55
size 56

Index

referencing 127, 130
restoring 229
saving 229
static members and 129, 131
storing 221
streamable See streamable objects
temporary 118, 140
unions and 139
volatile keyword and 50

objstrm.h (header file) 233
oct (manipulator) 211
octal

conversions 211
digits 12

backslash characters and 17
displaying 18

escape sequence 17
of stream (class) 214

constructors 215
one-dimensional arrays 165
opcodes See assembly language
open mode, default 215, See also files, opening
operands 77

arithmetic expressions 42
a~sembly language See assembly language
bmary operators 88
bitwise complement 87
evaluating 80
logical negation 87
memory use 99
returning values 87
types, overloaded operators and 80

operator (keyword) 149
operator function name, defined 149
operator functions 149, See also overloaded

operators
calling 152, 154

operators 77, 82
l's complement (~) 87
addition (+) 90
additive 89
address (&) 86
AND (&) 91
AND (&&) 95
assignment 79,97

compound 97
overloading 153

313

binary 88
overloading 153, 154

bitwise 282
complement (-) 87
logical 91
relational 93
shift 92
truth table 91

conditional (? :) 96
decrement (- -) 85, 88
delete See delete operator
dereference pointers 98
division (I) 90
equal to (==) 94

relational operators vs. 94
equal-to «=) 94
equal-to or greater-than (>=) 94
evaluation (comma) 98
exclusive OR (I') 91
exclusive XOR (/\) 88
function call () 84
greater-than (» 93
greater-than or equal to (>=) 94
hidden identifiers and 31
inclusive OR (I) 91, 92

, increment (++) 85, 88
indirection (*) 59, 87
inequality (!=) 94, 95

relational operators vs. 94
less-than «) 93
less-than or equal-to «=) 94
logical 95

bitwise 91
negation (!) 87

manipulators See manipulators
modulus (%) 90
multicharacter 82
multiplication (*) 90
new See new operator

. operator defined 194
OR (/\) 91
OR(I) 92
OR (I I) 96
overloading 81, See also overloaded operators
postfix 84

arrays 84
decrement 85, 88

function calls 84
increment 85, 88
member access 85

precedence 77, 78, 80
prefix

decrement 88
increment 88

redefining 81, 127, 149
referencing and dereferencing 86
relational 93

equality /inequality operators vs. 94
remainder (%) 90
scope resolution (::) 118, 122, 159
selection (. and -» 89

member access 73, 85, 131
shift bits «< alld ») 92
size of 29, 73, 99

restrictions 100
type 285

specific to C++ 82, 98
subscripting 122
subtraction (-) 90
truth table 91
typeid

syntax 84
unary 85-88

scope access 159
syntax 86

optimization
compiler 55

option pragma directive 200
OR operator

bitwise inclusive (I) 92
logical (I I) 96

ostream (class) 215
derived classes 214
flushing 212

ostrstream (class) 215
output 207, 209

console 217
formatting 208, 210
functions 259, 288
inserters 210 '
null characters, binary streams 287
padding 212
printing 280
screen 217

Bor/and C++ Programmers Guide

streams
data types 210

redefining 214
text 287

newline characters 287
space characters 287

overflows, expressions and 81
OVERLAY macro 204
overlays, predefined macro 204
overloaded constructors 142
overloaded functions 33, 207

arguments 16
creating 152
defined 127
related 162
templates 162

overloaded operators 80, 149-155
> > (get from)

p

streams 213
«(put to)

streams 209
arrays 119
assignment 153
binary 153, 154
creating 128
defined 127
delete See delete operator
enumeration 76
functions and 80
global 149
inheritance 153, 154
new See new operator
operator keyword and 149
postfix increment 76, 153, 223
precedence 80
prefix increment 76, 153, 223
restrictions 81, 149
selection (-» 154
subscripts 154
syntax 154
unary 153, 155
warnings 153

padding
output, default direction 212
structures 62, 70, 284

Index

parameterized manipulators See manipulators
parameterized types 160, See also templates
parameters See also arguments

arguments vs. 3
default values and 65
ellipsis and 25
empty lists 40, 56
fixed 64
formal 65

actual arguments and 66
function calls and 29
LibMain function (DLLs) 266
LParam, Windows programs 258, 259
passing 49, 51

by reference 60, 116, 129
by value 116, 117, 118
_fastcall and 55
functions as arguments 55
Pascal conventions See Pascal
registers 55

priority 199
stream manipulators 210, 211
variable 64
wParam, Windows programs 258, 259

parentheses 23, 46
as function call operator 84
commas and 98, 189
expressions 80, 83

with no 77
nested, macros and 190
overloading 154

parsing 5,6
Pascal

calling conventions 52
interrupt keyword and 54

functions 52
compiling 204

identifiers, case sensitivity 11, 52
parameter-passing sequence 52, 55

forcing 49
variant record types 73

__ P ASCAL __ macro 204
pascal (keyword) 49,52

function type modifiers and 54, 55
pass-by-address, pass-by-value, and pass-by-var

See parameters; referencing and dereferencing
period as an operator See operators, selection

315

perror (function) 288
messages generated by 288

persistent streams
accessing 234
class library

predefined macros 229, 233
restrictions 241

objects 229
phrase structure grammar See elements
pointer declarator *

indirection operator and 59
pointer declarator (*) 46, 53
pointer-to-member operator 98
pointers 27, 55, See also referencing and

dereferencing
abstract classes 158
address, displaying 210
advancing 59
arrays 62, 120

elements, one past the last 59
assignment 57, 58
casting to integer 283
classes 110, 112,221
comparing 93, 95, 103, 105
constants 28, 50, 58

typecasting 109
conversions See conversions
data, modifying 54
data types 25, 283

floating point 221
declaring 57, 58
default, overriding 49
dereferencing 28
derived class 164
DLLs268
eliminating 168
equality linequility 94
far 21,49
functions 51, 56

exception handling 177
modifying 125
object pointers vs. 55
typecasting 111
void 56, 57

generic 40, 57
huge 49
illegal 57, 58

316

initializing 57
internal arithmetic 59
members 113

dereference 98
static 56
this keyword and 127, 130

. modifiers 53
multithread 53
near 21, 49
non-null, returning 120
null 57, 112; 285

testing for 103, 105
objects 111, 112, 127, 148,221

destroying 147
operators See operators, selection
pointers to 56
reassigning 57
reference types 110
referencing vs. 116
segments 49

data 49
sizes 57
streams 208, 210
structures 68, 85

incomplete declarations and 71
members as 68

testing 57
typecasting 59
unions 73, 85
virtual functions and 156, 157

polymorphic classes 155
polymorphic data types

Windows programs 257
portability See source code
postfix expressions 78, See also postfix operators
postfix operators 84

arrays 84
decrement 85, 88
function calls 84
increment 85, 88, 223
member access 85
overloading 76, 153

pragma directives 2, 198-202
command-line options 200
exit functions 199
exit procedures 147
ignored 198

Borland C++ Programmers Guide

inline statements 275
intrinsic 200
precompiled headers 199, 200
startup functions 140, 199
templates and 169
warnings

disabling 198
overriding 202

#pragma (keyword) See pragma directives
precedence 77, 78, 80 .

controlling 23
declarators 46
operator functions 150
overloaded operators 80, 209

precision (member function) 210
precompiled headers 199

reducing disk space for 200
predefined macros See macros
prefix expressions 82
prefix operators

decrement 88
increment 88, 223
overloading 76, 153

prefixes
container classes 223
opcodes (inline assembly) 277

preprocessor
directives See directives
output 185

primary expressions 82
arguments 83

printing
files 63
output 280

priority parameters 199
private (keyword) 133

base classes and 135
derived classes and 135
unions 74

private members 133
.PRJ files 251
procedures See also functions

exit 147, 199
DLLs267

Windows 258
producer (streams) 207
Programmer's Platform See IDE

Index

programs 5
annotating 6
creating 27

executable 32
debugging 185
entry point 62
executing 101, 289
exiting 147
flow, interrupting 175, 180
improving performance 47
multithread 53
reducing size 47
terminating 147

exception handling 173
Windows See Windows

project files (.PRJ) 251
project manager 251
prologs See Windows
promotions See conversions
protected (keyword) 134

base classes and 134
derived classes and 135
unions 74

protected members 134
prototypes 62-64

delete operator, overloading 123
DLLs 267, 269
examples 63, 64
exception specifications 178
fixed parameters 64
function 62, 63

definitions not matching 66
undeclared 66

header files and 63, 66
identifiers and 29
libraries and 66
new operator, overloading 123
scope See scope
templates and 169
typecasting and 66

pseudovariables, register 9
public (keyword) 133

base classes and 134
derived classes and 135
unions 74

public members 133
punctuators 77

317

pure specifiers 38
put to operator «<)

stream output 209
putenv (function) 289

Q
qualified names 132, 136

defining 83
qualifiers, declarations 36, 37
question mark

character, displaying 18
conditiona~ operator 96

quotation marks, displaying 18

R
\ r (carriage returns) 17
ranges

data types 21
floating-point constants 15

.RC files 244
Read (function), streams, compatibility 238
ReadBaseObject (member function) 233
ReadVirtualBase (function) 232,238
readWord (function) 231
realloc (function), memory allocation 289
records See structures
reference types 60

converting objects to 112
pointers 110
specifying 86

referencing and dereferencing 27, 116, See also
pointers
& operator and 40
abstract classes 158
asterisk and 25'
classes 110, 111
constructors and destructors 140
conversions 118
data types 48, 109
declarator 25
DLLs265
forward references 28
functions 117, 118

external 116, 265
incomplete declarations and 127
iostreams 210

318

members 98, 127, 131
memory regions 284
objects 127, 130
operators 86
pointers 28, 98
simple 116
templates 169
variables 145
virtual functions and 156

referencing declarations 28, See also declarations
register (keyword) 31,47, 127

external declarations 37
registers 31, 55

allocation 47, 50
data segments (DS) 53

setting 54
hardware, bit fields and 72
inline assembly See assembly language
interrupts and 55
placing objects in 283
preserving 54, 55
pseudovariables 9
scratch' 273
values

restoring 54
saving 49

variables in 47, 50
reinterpret_cast operator 111
relational operators 93

equality / inequality operators vs. 94
remove (function) 287
rename (function) 288
repeat prefix opcodes (inline assembly) 277
resetiosflags (manipulator) 211, 212
Resource Compiler 245
resource script files (.RC) 244
resources, defined 244, See also Windows
return statements 107
rounding

direction, division 91
routines

assembly language See assembly language
calling 51
interrupt 50
low-level interface 54
mouse support 55

-RT compiler option (runtime type) 124

Borland C++ Programmers Guide

__ rtti (keyword) 124
RTTI (run-time type information)

obtaining 84
RTTI (runtime type information) 110
rvalues 28, 46, 77, See also lvalues

s
saveregs (keyword) 49, 54

function type modifier 54
low-level interface routines 54

saveregs pragma directive 201
scalar data types 39

initializing 44
scope 27, 29-30, 158-160, See also visibility

categories 29
classes 30, 76, 126

friends 137
members 131-134
nested 132

duration and 31
enclosing 158
enumerations 30, 76
functions 30

external 32
identifiers 11, 29, 30

duplicate, and 30
loops 106
statements and 101

inline expansion and 128
local 29, 30, 47

external linkage and 47
internal linkage and 47
static duration and 31

names 126
hiding 159

resolution operator (::) 118, 159
new operator and 122

structures 30
unions 30

members 30
. variables 30, 140

visibility and 30
screens

attributes, setting 217
writing to 217, See also output

searches, #include directive algorithm 193
seg (keyword) 49

Index

segments
code, memory models 56
data See data segments
pointers 49
stack 249

selection operators See operators
selection statements See if statements; switch

statements
semicolons 24, 45, 102
sequence, classes See classes
SET command (DOS) 289
set_new _handler 120
setattr (manipulator) 217
setbase (manipulator) 211,212
setbk (manipulator) 217
setclr (manipulator) 217
setcrsrtype (manipulator) 217
setf (member function) 210, 212
setfill (manipulator) 211, 212
setiosflags (manipulator) 211, 212
setprecision (manipulator) 211, 212
SetUnhandledExceptionFilter (function) 182
setw (manipulator) 211,212
setxy (manipulator) 217
shddel.h (header file) 224
shift bits operators «<and») 92
short (keyword) 41

assignment 41
short integers See integers
sign 12

extending 16, 43, 283
automatic 43

signal (function), signals 286
default handling 286, 287

blocking 286
signed (keyword) 41, 43

declaring as bit fields 72
signed integers See integers
single-character constants 15
single quote character, displaying 18
sink (streams) 207
size_t (data type) 100

default 285 \
sizeof operator 29, 73, 99

new operator vs. 119
restrictions 100
type 285

319

__ SMALL __ macro 202
smart callbacks See DLLs; Windows
software interrupts 55
source (streams) 207
source code 5

adding line numbers 196
documenting 63
including files 192
portability 7

32-bit Windows executable 253, 259
bit fields and 72
internal representations, types 41
PE file format 253

processing 204
type-safe lists 167

source files See files
specifiers See access specifiers; type specifiers
splicing lines 6, 19
ss (keyword) 49
stack 51

containers 220
crawling, Windows programs 248
exception handling 177, 183
list-based 221,225

example 226
local duration and 31
maximizing access 221
segments, Windows programs 249
unwinding 177, 180, 183
vector-based 221,224

standard conversions See conversions
startup functions 140, 199
startup pragma directive 199
statements 101-107, See also individual statement

names
assembly language See assembly language
assignment 28
block 101

marking start and end 24
default 104
do while See loops
empty 102, 106
exception handling

catch 176
throw 175
try-block 174

expression 24, 102

320

for See loops
if See if statements
iteration See loops
jump See break statements; continue statements;

goto statements; return statements
labeled 25, 29, 102

transferring control to 103, 107
lvalues and 28
module definition files 245,246; 247
nested 102, 103, 106
null 102, 106
selection 102
while See loops

static (keyword) 47, 127, 129
duration 31
linkage 32, 33

static_cast operator 112
static data, DLLs 270
static duration 31, 43, 47

extern keyword and 47
static functions 32, 47
static members 129, 166

linking 130
pointers 56
unions 73

__ STDC __ macro 189, 204
stdcall (keyword) 49,51,52
stdio.h (header file) 196
stdio library 207
storage

allocation 37, 119
floating-point types 42

automatic duration 43, 44, 47
data types 281
deallocation 119

storage class specifiers 127, 129
declarations 46,47

external 37
duration 31
linkage 32, 33
local scope 47
register, objects and 283
typedef keyword and 48
types 47

storage classes 28
streamable classes

base 231

Borland C++ Programmers Guide

declaring 238
reading/writing 238

building 229
constructors 234
creating 229, 233, 237
data types 231
declaring 235, 236, 238
defining 233
hierarchies 208, 209
I/O

consoles 217
formatted 208, 209, 214

inheritance 208, 214, 234
virtual bases 232

libraries 207
member functions 231, 232, 238

adding 235
new features 230
Streamer 237
templates 231, 232, 238
version numbers 230, 240
virtual functions 237, 238

streamable objects 229
creating 233, 237

streambuf (class) 207
derived classes 208

Streamer class 237
streams 207, See also iostreams

buffering 207
error states 215
field width, setting 212
fill character 212
flushing 211,212
manipulators See manipulators
open, predefined 208
persistent 234

class library
predefineq macros 229, 233
restrictions 241

objects 229
pointers 208
states, altering 210

strerror (function), messages generated by 290
STRICT environment variable (Win32) 254, 256

comman.d-line option 256
string instructions (inlme assembly) 277

Index

strings 207
concatenating 19
constants 18, See also strings, literal
continuing across line boundaries 19
converting arguments to 191
empty 19
I/O streams 215

default width, changing 213
overflowing 213

inserting terminal null into 211
litera16, 18

ANSI compliant 19,280,281
arrays and 44

macros and 187
null 19
scanning 105
wchar_t 18

strstrea.h (header file) 207,215
struct (keyword) 67, 126, See also structures

omitting 68
polymorphic classes 155

structured exceptions 181
structures 67-72, 124

accessing 67, 135
arrays and 61
assignment 69
bit fields See bit fields
classes vs. 67
data 220

implementing 219
declarations 67, 126

incomplete 71
defined 67
functions returning 68
initializing 44, 144

example 45
inline assembly See assembly language
member functions and 68
members 67

accessing 68, 85
as pointers 68
comparing 93
naming 71

memory allocation 70
naming 126
padding 62, 70

ANSI standards 284

321

pointers 68
incomplete declarations and 71

scope 30
tags 67, 71

nested classes and 132
omitting 67

typedef keyword and 67
unions vs. 73
untagged 67
within structures 68
word alignment 70, 284

subscripting operator 122
subscripts for arrays 23, 84

overloading 154
subtraction operator (-) 90
switch (keyword) 104
switch statements 102, 103

_ case values, number of allowed 284
; default label 104

restrictions 103
symbolic constants See constants
syntax 2, See also declarations

C-based exceptions 181
classes 124

base-list argument 134
member-list argument 127

data types 46
declarations 34,35
delete operator 119

arrays 121
directives 186
exception handling 174, 175

specifications 177
expressions 78

typeid 84
external functions 64
formal parameters 65
initializers 43
multithread programs 53
new operator 119
optional elements 3
overloaded operators 154
statements 101
storage class specifiers 46
templates 160, 166

system (function) 289

322

T
\t (horizontal tab character) 18
tab characters 5

literal 18
tags 30

declaring inside classes 132
enumerations 75

omitting 75
forward references and 28
structure See structures

T~rrayAsVector (template class) 219,221
Iterator 223

__ TCPLUSPLUS __ macro 204
TDequeAsDoubleList (container class) 223
TEMP.C 196
template

function
argument conversions 164
arguments 164

templates 160-171, See also syntax
arguments 162, 166
arrays 219

example 225
class 165

overriding 165
compile errors 166
compiler switches 168, 169
container classes 219, 224
data types 162
dequeues, example 226
external references 169
function 161

arguments 162
explicit 163
implicit 163
instantiation 162, 166

syntax 166
overloaded 162
overriding 162

including objects in 168
instances, generating 168, 169
macros, predefined 204
macros vs. _161
nested 166
streamable classes 231, 232, 238
user-defined 169
Vector symbol 165

Borland C++ Programmers Guide

with class arguments 164
__ TEMPLATES __ macro 204
temporary objects 118
tentative definitions 34
terminate (function) 177, 180
terminate_function (type) 179
text streams 287
text windows, manipulators 217
this (keyword) 127

static member functions 130
streamable classes and 239

__ thread (keyword) 53
thread, local storage 204
throw (keyword) 174
throw expressions 175

violations 179
throw-point 175, See also exception handling
tildes (~), in syntax 146
time 204, See also dates

formatting 290
local 290
setting 285

__ TIME __ macro 189,204
__ TINY __ macro 202
TLINK See linkage
TLINK32 See linkage
__ TLS __ macro 204
TMIArrayAsVector (container class) 223
TMQueueAsVector (container class) 222
tokens 5

continuing long lines of 191
kinds of 8
macro expansion and 187, 188, 190
multicharacter operators 82
pasting 6, 191
replacing and merging 26, 186
sequence 187

empty 187
translation units 32, 35
true / false conditions 102
truncation 282
truth table, bitwise operators 91
__ try (keyword) 8, 182
try (keyword) 174, 175
try-block statements (exceptions). 174
TShouldDelete (container class) 224
TStandardAllocator (container class) 222

Index

TStreamable (streamable class) 229
TStreamableBase (streamable class) 234
__ TURBOC __ macro 205
type categories See data types
type checking 64

function calls 62
macros and 191
reducing 65

type-safe linkage 165, 167
Windows programs 256

type-safe lists 167
type specifiers See also storage class specifiers

bit fields 72
declaring 39, 47
elaborated 126
integers 41
missing 39
pure 38
typedef keyword and 48
undefined 140
void 40

typecasting See also cast expressions
alternative methods 109

. const keyword and 109
dynamic 110
enum keyword and 112
explicit 84,86
new operator and 119
pointers and 57, 59
pointers to integers 283
prototypes 66
reference types 110, 112
static 112
void keyword and 40, 110
volatile keyword and 110

typed constants See constants
typedef (keyword) 30, 35, 48

nested classes and 132
structures 67

typeid operator
syntax 84

types See data types

u
-U compiler option (undefine identifier) 189
UINT data type 257
UINT_MAX constant 92

323

ULONG_MAX constant 92
unary operators 85-88

overloading 153, 155
scope resolution (::) 159
syntax 86

undeclared functions 66
calling 28

#undef directive 187
global identifiers and 189

undefined classes 111
underbars See underscores
underflow range errors 286
underscores

generating 51
ignoring 49

unexpected exceptions 176, 179
unexpected_function (type) 179
UnhandledExceptionFilter (function) 182
union (keyword) 126
unions 30, 73, 124

anonymous 73
base classes and 135
bit fields See bit fields
declaring 74, 126
initializing 44, 67, 74
members 73, 139

accessing 73, 85, 134
with different types 283

initializing 44, 67
scope 30

naming 126
objects and 139
pointers 73
structures vs. 73
tags 71

unsetf (member function) 210,212
unsigned (keyword) 41, 43
unsigned data types

declaring as bit fields 72
range 21

unsigned integers See integers
untagged structures 67
user-defined functions 64
user-defined templates 169
user-defined types 27

iostreams 214

324

v
\ v (vertical tab character) 18
values 27, 29, See also floating point; integers

assigning to class members 144
case, maximum in switch statements 284
changing, derived classes and 146
character constants 285
comparing 93
enumerations 74,75,284
expressions 77

modifying 80
indeterminate 43
integers, ANSI compliant 281,282,284
lvalues See lvalues
negative 283
not representable 282
parameters with default 65
passing by See parameters
rvalues See rvalues
setting initial 43
templates 162, 166
temporary 283

/.
testmg 102
void keyword and 40
volatile keyword and 50

var, passing by See parameters
variable number of arguments 25, 52, 64

predefined macros 63
variables 48

assignment 43
automatic See auto (keyword)
creating 45
declaring 31, 47, 50

default, local scope 47
enumerated types, C vs. C++ 74
external 30

duration 47
global

constructors 140
destructors 147
multithread programs 53
preserving 53

I/O, formatting 210
initializing 47
local 166

destroying 147
referencing 145

Borland C++ Programmers Guide

register 47, 50
scope 30
static 47

variant record types See unions
vectimp.h 166
Vector (symbol) 165
vector-based stack 221, 224
vectors 221

8086/8088 interrupt 55
class 165
complex, example 150

version numbers
streamable classes 240
streamable objects 230

vertical tabs 5
literal 18

-Vf compiler option 125
virtual (keyword) 155

abstract classes and 155, 157
base classes and 137
destructors and 148

virtual classes 137
constructors 143
hierarchies 143
inheritance 232

virtual destructor 148
virtual functions

calling 157
reducing number of 168

declaring 125, 155, 157
exception handling 178
inline 168
overriding 156, 178
polymorphic classes 155
redefining 155
restrictions 130
return types 156
streamable classes 237, 238
Streamer 237

virtual inheritance 208
virtual tables

addressing 125
visibility 27, 30, See also scope
void (keyword) 40,63

cast expressions 40
interrupt functions 55
pointers and 56, 57

Index

return statements and 107
volatile (keyword) 49, 50,58

removing from types 109
volatile qualifiers 37

w
-W option (export functions) 248
-we option (export functions) 248
-W x compiler options (Windows) 248-250
warn pragma directive 202
warnings

audible bell 17
disabling 198
overriding 202

wchaCt (wide character constants) 18,45,282
-WD option (export all DLL functions) 250,268
-WDE option (DLLs with explicit exports) 250
WEP (function) 267

return values 267
while loops See loops
whitespace 5, 189

comments as 5, 7
discarding 213
extracting 211
skipping 213
tokens and 188, 191

wide character arrays 44
wide character constants 18, 282

conversions 282
wide character strings 18
width (member function) 210,213
__ WIN32 __ macro 205
Win32 operating systems 253

compiling and running under 253, 254
portability constructs 253, 259

WINAPI macro 258
Windows

applications 247
32-bit executable 70, 253-263

building 262
calling 258, 259
compiling and running 253, 254
errors and warnings 260
type incompatibilities 254

building 251,262
debugging 247
error checking 254

325

macros, predefined 205, 255
NT 253
portability 253, 256
running 246

Borland Resource Compiler and 245
compiler options 248-250
environment variables, STRICT 254, 256
functions

API 52,253
exporting 246, 248, 250

all 248, 250 '
explicit 249, 250

1/0259
MakeProcInstance 249
smart callbacks 249
WinMain247

return values 247
GlobalAlloc routine 252
memory management 252
memory models 252
message crackers 259
message data, unpacking 258
modules 203

compiling and linking 243, 245,247
32-bit executables 262
predefined macros 203

porting DOS system calls 259
procedures 258
stack-crawling mechanism 248
thunks 249

windows, text, manipulating 217
windows.h 247, 253, 254
_Windows macro 205

326

windowsx.h 253, 257
WinMain (function) 247
WINMEM.DOC 252
withassign (class) 208
-WN compiler option (explicit exports) 249
word

alignment 70, 284
32-bit compiler 70

bit fields 72
wParam parameter, Windows programs 258, 259
wrapper classes 167, 168
Write (function), streams, compatibility 238
WriteBaseObject (member function) 233
WriteVirtualBase (function) 232,238
writeWord (function) 231
ws (manipulator) 211,213
-WS option (smart callback) 249
-WSE option 249
-wxxx compiler options (warnings) 202

X
xalloc (exception) 120
:-xd compiler option (calling destructors) 123, 183
\XH (display hexadecimal digits) 18
\xH (display hexadecimal digits) 18
XOR operator (1\) 88

v
-y compiler option (overlays) 204

Z
zero-length files 2f37

Borland C++ Programmers Guide

Borland
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in : Australia, Belgium, Canada,
Denmark, France, Germany, Hong Kong, ltaly,"Japan, Korea, Latin America, Malaysia, Netherlands, New Zealand, Singapore, Spain,
Sweden, Taiwan, and United Kingdom· Part # BCP1240WW21771 • BaR 6271

