Borland G+

Library Reference

Borland® C++

Version 4.0

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1987, 1993 by Borland International. All rights reserved. All Borland products
are trademarks or registered trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95067-3249

PRINTED IN THE UNITED STATES OF AMERICA

1EOR993
9394959697-9876543
W1

Contents

Introduction 1

Chapter 1 Library cross-reference 3
Reasons to access the run-time library source

code L. 3
The run-time libraries 4
The static libraries 4
The dynamic-link libraries 6
The Borland C++ header files 7
Library routines by category 9
C++ prototyped routines 9
Classification routines 10
ConsoleI/Oroutinesoo... 10
Conversionroutines 10
Diagnostic routines P 11
Directory control routines 1
EasyWinroutines 11
Inline routinesl 12
Input / outputroutines 12
Interfaceroutines0.... 13
International locale API routines 14
Manipulation routines 14
Mathroutinesl 15
Memory routinesl 16
Miscellaneous routines 16
Obsolete definitions 16
Process control routines 17
Time and dateroutines 18
Variable argument list routines 18
Chapter 2 The main function 19
Argumentstomainoiiii, 19
Examining arguments tomain 20
Wildcard arguments 21
Linking with WILDARGS.OBJ 21
Using —p (Pascal calling conventions) 22
The value mainreturnsooo. .. 22
Passing file information to child processes 22
Multithread programs 23
Chapter 3 Run-time functions 25
Sample functionentry 25
abort 27
ADS L e 27
access ..., e e e 28

acos,acosl ...l 28
alloca . oi i e 29
ASCHIME ... ittt i i e e 30
asin,asinl 0 i i e i 30
asserto ool e 31
atan,atanl o e 31
atan2,atan2l o e e 32
AteXit .. e 33
atof, _atold 33
=1 0) S 34
Aol .. e e e e 35
atodd .. e 35
bdos .o e 35
bdosptr 36
_beginthreadol 37
_beginthreadNToooiit, 37
biosequip ...l 39
_bios_equiplistol 40
bioskey P 41
biosmemoryl 42
_bios_memsize i, 42
biostime e FE 43
_bios_timeofdayo 43
bsearchcviiiiiiiii i 44
cabs,cabsl 45
CalloC .. e 46
ceil,ceill ..ovvii e 46
Lo =D« | P 47
COXIE v vi ittt it it i i i e e e e 47
Cgets .o 48
chain_intr, 48
chdir....covii i e e 49
chdrive ... e, 49
chmodcooiiiiii i i e 50
chmod ... e 50
chsize ... e 51
clear87 ... e e 51
Clearerr ...ttt i i e e, 52
CloCK o e e e 52
ClOSE + ittt 53
close ..o e 53
closedir ..ot e 53
creol L 54
SO et e e 54

_eontrol87 L e e 55
COS,CO8l vt e, 55
cosh,coshlcoviviiiii i, 56
COUNETY ..vtttiiit it 57
cprintf ... 58
CPULS oottt s 59

creat ... e e e, 59
Lo 1= X S 59
[= 1 o 1=) 3P 60
creattempl i 61
_crotl, _crotr e e, 62
CSCANS oottt ittt it it e e 63
cme.....ocoviiiiiiiie, e 63
ctrlbrk ... 64
CWall i e e, 65
dellineoiiiiiiii i 66
diffime ... i 66
disable, _disable, enable, _enable 67
6 67
dos_close .o e 68
_dos_commitc it 68
dos_creat ... e 69
_dos_creatnewoiiiiiiiiiiiiia 69
doseXterr . .vvvrit i e 70
_dos_findfirst i 71
_dos_findnextcoiiiii i 72

_dos_getdate, _dos_setdate, getdate, setdate ...73

_dos_getdiskfree il 74
_dos_getdrive, _dos_setdrive 75
_dos_getfileattr, _dos_setfileattr 75
_dos_getftime, _dos_setftime................. 76
_dos_gettime, _dos_settime 77
_dos_getvect i, 78
_dos_open ...l e 78
dos_readciiiii i 79
_dos_setdatec.ciiiiiii i 80
_dos_setdrivec.. i, 80
_dos_seffileattrc. i, 80
_dos_setftime e 81
_dos_settime oottt 81
_dos_setvect ...t 81
dostounixc.coiiiiiiiiiiiii e 81
dos_Write ... oi e e e 82
dup ..o 82
dup2 ... 83
T oa 7 P 84
emit L e 84
enable, enable, 86
_endthread i, 86

O e e e 86
execl, execle, execlp, execlpe, execv,
€XeCVe, EXECVD, EXECVPE .. vvrrinneannn 87
= | SN PP 89
eXit L e e 90
exp,expl ... 90
expand ... 91
fabs, fabslc. i 91
farcalloC . .o it e e e 92
farfree ... e 92
farmalloccoviii i e 93
farrealloccoviii i 93
fClOSE v vvt i e e 94
faloseall . .v e e 94
oVt o e e 95
fdopen ... 95
feOf i e e 96
fOITOr ittt e e 97
ffllush ... i 97
fgetc ... 98
fgetchar oo 98
fgetpos ..o 98
fgets .o 99
filelengthoooi i 99
fileno ..ovvi i e 100
findfirst ... e e 100
findnext e ene e 102
floor, floorl e e e, 103
flushalloivi i i i i e 103
_fmemccpy ... 103
fmemchr ... e 104
fmememp ... 104
_fmemcpy ... 104
_fmemiecmp 104
fmemmove ...t i e 104
fmemsetoiiiiii e 104
fmod, fmodl L. 104
fmovmemo 105
famerge ...l 105
fnsplit ... 106
fopen ... 107
FP_OFF,FP_SEG PO 108
_fpreset e PN 108
fprintfo 109
fputc......oo 110
fputchar.............. oo, 110
fputs......oo 110
freado e 111
free o 111

freopen....... ...l 112
frexp, frexpl, 113
fscanf 113
fseek ..o 114
fsetpos ... 115
fsopen ...l 115
fstat,stat ..ot i 116
D -1 5 RSP 118
ftell oo 118
fHMe .o 119
fullpath ..o 120
fwrite 120
OVt L e 121
geninterruptol i 121
gete oo e 122
getcbrk i 122
getch. 122
getchar ool 123
getchel 123
getcurdir, 124
getewd ... 124
getdate il 125
getdewd ... 125
getdfreeol 126
getdisk, setdisk oo ool 126
getdta i 127
getenV e 127
getfat ... 128
getfatdl 128
getftime, setftime L 129
EELPASS .\ttt 130
getpid ...l 130
BetPSP i e 130
gets ... 131
gettextl 131
gettextinfool il 132
gettime, settimel 133
getvect, setvecto it 134
getverifyl 134
getw ... 135
gmtimettt i 135
gotoXy ... 136
_heapadd ...l 137
heapcheckociiiiiiiinia, 137
heapcheckfreecoviiiiiiiiiin., 137
heapchecknode 138
_heapchk ... i 138
heapfillfreeol 139
Cheapmin..........oo ool 139

_heapset ...l 140
heapwalkooiiiiiiiilia 140
_heapwalk ... 141
highvideol 141
hypot, hypotl ...l 141
InitEasyWin ... 142
NP o 142
INPOTt o 143
inportb ...l 143
IPW Lt i e e 144
inslineo oo il 144
N8O ..ot 145
INt86X ..o 145
INEdOS « vt 146
INtdOSX .o 147
INEE o 147
foctl oo 148
isalnumoaoaoannnnn o 150
isalphaoooiiiiiin i 150
1SASCI v v v v v v 150
isatty ... 151
isentrl ..o 151
isdigit ..oou i 152
isgrapho i, 152
BSlOWer .o 152
isprinto i 153
ISpunct ... 153
ISSPACE v vt 154
ISUPPET vttt 154
isxdigit . ..ot iii i 154
0@ « e e 155
Kbhit......oovviiiiii 155
labs ..o 156
Idexp,Idexpl...... ...l 156
div. .o 157
find ...ooovviii 157
localeconVoovvinivii i, 158
localimec.ooviiiiiiiiiiiiiiia.. 160
ToCK .ot 161
locking ... 161
log,logl0.coiiiiii 162
logl0,logl0lovvvniii 163
longimpoovviiiii 164
lowvideo ...l 165
rotl, drotro 165
Isearchcoiiiiiiii i 166
Iseek ..o 166
Itoa . ovvn e 167
_makepathl 168

malloc ...t i e e e 169
_matherr,_matherrl 169
INAX & e tv vt eeneererneeaneaeeneaeeaeroeenns 171
mblen e e 172
mbstowes 172
MDEOWE ottt ittt i it et it 173
memccpy, _fmemeepy ...l 174
memchr, fmemchr 174
memcmp, _fmememp ... 175
memcpy, _fmemcpy ...l 175
memicmp, _fmemicmpo 176
memmove, _fmemmovevevviennnnn. 176
memset, _fmemsetciiiiiiin..n 177
o015 R 177
mKAir ... s 178
MK FP ..o e i 178
mktemp ... 179
MKHME . ..ottt i e e e e 179
modf, modfl 180
movedata...........oovvvunnn. e 180
movmem, _fmovmem &c.ovveveenennnnn. 181
moveteXt e e 181
IMNSIZE ottt e e i e 182
NOIMVIAEO . . vttt ii ittt iee it ennenns 182
Offsetof . ..ivv it i e 182
LOPEIL L, 183
0] o =1 4 P 183
opendir, 185
OULD o ittt e 185
outport,outportbl 186
OUtPW L.ttt i 186
parsfnm 187
pelose .. 187
peek ... 188
peekb ... 188
PeITOT . ittt iniieeeanen. ... 189
PIPE e 190
poke ... 191
pokeb ... 192
poly,polyl 192
CPOPEN . ottt e 192
Pow,powl ... 193
powl0, powl0lot 194
printf ... 195
PUtC e 201
PULCh o 201
putchar ol 202
PULENV . e 202
PULS oottt 203

puttext ... 203
PWW 204
010 o 204
= 1 1= O PPN 205
= 4T K A PN 206
=Y 0o (o) 1 AU 207
TandomiZe . . oo v vt e 207
=T U 207
read ..t e e e 207
readdir.......cooiiiiiiiiii i, PP 208
realloc ..ot e e 209
TEIMOVE .« vvvenvnessnnneaonnesasnsesonenss 210
TENAIMIE & v e et et ve e nenneesnnenennsoneanes 210
TEWINd o ooiie i e 211
rewinddircoi i e 211
iy 0 1 Uo 1§ (N 212
IMEMP oo 212
rotl, rotr e 213
rtlchmod ...ovvii 213
rtlclose ... e 214
rtlcreato e R 214
rtl heapwalkol 215
rtlopeno 216
rtlreado e 217
rtlwrite ... e 218
SCANS . ottt i e e e e 219
_SEATChENV ..ttt it ittt ee it 226
searchpath, 227
Searchstr . ..vvriii it i i i i 227
segreadiiiiiiiii i 228
setbuf ... e 228
setcbrk i, J 229
_Setcursortypeoiiiiiiiiiiiiien 230
setdateviiin i e i i e 230
setdiskviviii 230
setdta ..o e e e e 230
setftime ...ttt 231
SEMP ... 231
setlocale it e 232
SEEMEIM .\t vie i ie it ieen e ieernenennanns 235
setmode . ..ovv i i e e 235
sethime ..ot i i it i e 236
setvbuf ... e 236
SetVECt oo i i e e e e e 237
setverify, 237
signal ... 237
SIN, SINL o vt e i i i i i e e i 241
sinh,sinhlcoiiiiiiiiiiiiiinn., 241
sleep . 242

03 23 (L 242
spawnl, spawnle, spawnlp, spawnlpe, spawnv,

Spawnve, SpAWNVp, SPAWNVPEouvn... 244
splitpath ... 247
sprintf ... i 248
sqrt, sqrtl ..o 249
Y=Y 1 Uo AP 249
SSCANE .ottt it i i e e e 250
stackavail ...ttt i i e 250
3 - | A 251
status87 ... i e 251
Stime . ..o i e s 251
StPCPY tee e 251
strcat, fstrcatcoviiiiii it 252
strchr, _fstrchr....o.ooviiiiiiiiiiiiieenn 252
stremp, _fstremp ..o 253
strempi....ooo 253
cstrcoll Lo e 254
strepy, _fstrepy ..o 255
stresprm, _fstrespn .oiiiiini e 255
strdate ... e 255
strdup, _fstrdup ... 256
JE=15 <3y o) oAU AP 256
F519 45 & (o) (PP 257
strftime ...t e 257
stricmp, _fstricmp ool 259
strlen, fstrlencooviiiii i, 260
strlwr, fstrlwr ...ooeiii i 260
strneat, fstrncat ... i e 261
strnemp, _fstrnemp ...l 261
strnempi .o 262
strnepy, _fstrnepy ..., ... P 262
strnicmp, _fstrnicmp ... 263
strnset, _fstrnsetovviiiiiii i 263
strpbrk, fstrpbrk ... ool 264
strrchr, _fstrrchr ..o e i e 264
strrev, fStrrev ...t 265
strset, fstrsetciiiiiiiiiiiiiiin., 265
strspn, _fstrspn. ... 266
strstr, _fstrstr ..o vvni i i e 266
strtime ... e 266
strtod, _strtoldo 267
strtok, _fStrtokc.ciiiiiiiiiii 268
SOl oo e 269
strtold . e 270
strtoul e 270
strupr, _fstrupr ..., 270
strxfrm ... 271

27 | o S 272

system ... 272
tan,tanl ... e e e 273
tanh, tanhl......... ..., 273
tell L. i 274
tempnam oo 274
textattr .. .o e e e e 275
textbackgroundooiill 277
textcolor ..ot e e 278
textmode ..o.iiiii i i e e 279
e .ttt i i e e 280
tmpfile ... 280
tmpnam..............ocociiiiiiiea 281
[0T YL os § AP 282
tolower ... i e e 282
BOlOWEL o i i i i i e 282
_toupper ... 283
toupper 283
B /-1 A N 283
{51 - N 285
UINASK « vttt ittt i ettt e 285
UNZEEC .« vt viiiitt ittt enins 286
ungetch ... 286
unixtodos ... i e 287
unlink ... e 287
unlock ... e e 288
UHIME ot ie ittt tiie e 288
va_arg,va_end, va_start 289
viprintf ... 290
viscanf ... e 290
vprintf ... 291
VSCANE o ii i i i e 292
vsprintf ... e 293
VSSCANS « v et i e 293
WALl vit it i e e 294
westombs ... 295
WCtOMD . oo i i e i e 295
WhereX . ovvvve i e 296
wherey ... 296
WINAOW o i i e e 297
B2 0 1 =N PP 297
R0 1 (N 298
Chapter 4 Global variables 299
< 7/ 299
23 299
ATV ottt i 300
Ctype 300
_daylight ...l 300
_directvideo i e e 301

=417 6 (o) o NP 301
errno, _doserrno, _sys_errlist, _sys_nerr 302
floatconvertcviiviii i e 304
fmode ..o e e 305
new_handler................ 305
_0smajor, _0Sminor, _OSVersion 306
N o o 307
threadid ...t e 307
_ _throwExceptionName, _ _throwFileName,
_ _throwLineNumber e 307
HMEeZONE .ot e 308
ftzname ...l 308
=5 13 (o) W 308
wseroll L e 309
Chapter 5 The C++ iostream classes 311
conbufclassoviiiiiiii e 311
Publicconstructorccviviinn... 311
Public member functions 311
constream classottt i 313
Public constructor, 313
Public member functions 313
filebufclassovvviiviini i 313
Public constructorsc.ooeveveinnnn. 314
Publicdatamembers 314
Public member functions 314
fstreamclass ...oovvviiiiii e 315
Publicconstructorscooevuin... 316
Public member functions 316
fstreambaseclass o ... 316
Publicconstructors, 316
Public member functions 317
ifstreamclasscoviiiiiii i 317
Publicconstructorscciivenn... 317
Public member functions 318
10SClass vttt i i i i e e e 318
Publicdatamembers 318
Protected datamembers 319
Publicconstructorccvvvvvnann. 320
Protected constructor 320
Public member functions 320
Protected member functions 322
jostreamclassiiiiiiiiiii e 322
Publicconstructorcccevvvunnnn. 322
iostream_withassignclass 322
Publicconstructorccvvvunnnn. 323
Public member functions 323
istreamclasso i 323
Publicconstructoro n.L, 323

vi

Public member functions 323
Protected member functions 325
istream_withassignclass 325
Publicconstructorccoiiiiiiain. 325
Public member functions 325
istrstreamclasscoviii i i i e 325
Publicconstructorsocevnen.. 326
ofstreamclasscov ittt i i i 326
Publicconstructorsccoiveenen.. 326
Public member functions 327
ostream classcoiiiiiiiiiiieiee 327
Publicconstructorccvvvunnn.. 327
Public member functions 327
ostream_withassignclass 328
Publicconstructor 328
Public member functions 328
ostrstreamclasst 328
Public constructorscoovuiiennn. 328
Public member functions 329
streambufclasscciiiiiiiiiieann, 329
Public constructors 329
Public member functions 330
Protected member functions 331
strstreambaseclasscoiiieniiienn. 332
Public constructorsooiiinn 332
Public member functions 332
strstreambufclass ..., 332
Publicconstructorsccvvvnnn. 333
Public member functions 333
strstream classoviiiiii i i 334
Publicconstructorsccovvennnnn. 334
Public member function 334
Chapter 6 Persistent stream classes and
macros 335
The persistent streams class hierarchy 335
fpbaseclass ...l 336
ConStructors . . vvvvv e iieinneneroensenss 336
Public member functions 336
ifpstreamclass ...l 336
Public constructorsceviinn 337
Public member functions 337
ipstreamclass il 337
Public constructorscoviiiieina. 337
Public member functions 337
Protected constructorsc.ien... 339
Protected member functions 339
Friends ... 340
ofpstreamclassl 340

Public constructorsccovviiin... 340
Public member functions 341
opstream classiiiiiiiiniia.. 341
Public constructors and destructor 341
Public member functions 341
Protected constructors 343
Protected member functions 343
Friendscooiiiiiiii i 343
pstreamclassol 344
Type definitions 344
Public constructors and destructor 344
Public member functions 344
Operatorsccviiiiiiiiiiiininn, 345
Protected datamembers 345
Protected constructors 345
Protected member functions 346
TStreamableBaseclasscovvun.. 346
Type definitions0L 346
Publicdestructorciviniinnn. 346
Public member functions 346
TStreamableClassclassovonn.. 347
Public constructor 347
Friends ..o i 348
TStreamerclasscoovviviiinnen... 348
Public member functions 348
Protected constructors 348
Protected member functions 348
__DELTAMACIO ...vvviiieeeiiinenennnnn. 349
DECLARE_STREAMABLEmacro 349
DECLARE_STREAMABLE_FROM_BASE
210 = Uod o 1N 350
DECLARE_ABSTRACT_STREAMABLE
INACTO « ot e e tieeenrnennnsnonsoneeneneennns 350
DECLARE_STREAMER mMacro 350
DECLARE_STREAMER_FROM_BASE macro . 351
DECLARE_ABSTRACT_STREAMER macro .. 351
DECLARE_CASTABLEmacro 351
DECLARE_STREAMABLE_OPS macro 351
DECLARE_STREAMABLE_CTOR macro 351
IMPLEMENT_STREAMABLE macros 352
IMPLEMENT_STREAMABLE_CLASS macro . 352
IMPLEMENT_STREAMABLE_CTOR macros . 352
IMPLEMENT_STREAMABLE_POINTER
¢ F: Lod ¢ o TN 353
IMPLEMENT_CASTABLE_ID macro 353
IMPLEMENT_CASTABLEmacros 353
IMPLEMENT_STREAMER macro 353
IMPLEMENT_ABSTRACT_STREAMABLE
INACTOS « v v e eetere e nesennnennennennenenns 353

vii

IMPLEMENT_STREAMABLE_FROM_BASE

4 qF: (o4 ¢ o J0 PN 354
Chapter 7 The C++ container classes 355
TMArrayAsVector template 355
Typedefinitions 355
Public constructors 355
Public member functions 356
Protected member functions 358
Operators -......ovvviviiiiiiiiiennnn., 359
TMArrayAsVectorlterator template 359
Public constructorscou.... 359
Public member functions 359
Operatorscooiiiiinn... 359
TArrayAsVector template 360
Publicconstructorsccovievin... 360
TArrayAsVectorlterator template 360
Publicconstructorscoevinn.. 360
TMIArrayAsVector template 360
Type definitions 360
Public constructorsccovvunnn. 361
Public member functions 361
Protected member functions 363
Operatorsc.cooviiviininns, 364
TMIArrayAsVectorlterator template 364
Publicconstructors, 364
Public member functions 364
Operatorscocooiviiiiieiinnan. 365
TIArrayAsVector template 365
Public constructors 365
TIArrayAsVectorlterator template 365
Public constructorscceeivenn... 365
TMSArrayAsVector template 366
Public constructorsccoviiieinn... 366
TMSArrayAsVectorlterator template 366
Public constructorscoeveiiinnn.. 366
TSArrayAsVector template 366
Public constructorscouevvn... 366
TSArrayAsVectorlterator template 367
Public constructorscoun.. 367
TISArrayAsVector template 367
Publicconstructorsc.cevvivnn... 367
TISArray AsVectorlterator template 367
Public constructors 367
TMISArrayAsVector template 368
Public constructorsu.... 368
TMDDAssociation template 368
Publicconstructors 368
Public member functions 368

Operatorscooeiiiiiiiiiin.., 369
TDDAssociation template 369
Public constructorsoovu... 369
TMDIAssociation template 369
Public constructorscovi.... 370
Public member functions 370
Operatorscooiiiiiiia, 370
TDIAssociation template 370
Public constructorscc..... 370
TMIDAssociation template 371
Protected datamembers 371
Public constructors 371
Public member functions 371
Operatorsccovieiiiiiiiiin... 372
TIDAssociation template 372
Public constructorsccou.... 372
TMIIAssociation template 372
Public constructors 372
Public member functions 373
Operatorsccovveiiiiiiiiinne, 373
TIlAssociation template 373
Public constructorso.... 373
TMBagAsVector template 374
Type definitions 374
Public constructorscccoveeein.. 374
Public member functions 374
Protected member functions 375
TMBagAsVectorlterator template 375
Public constructors, 375
TBagAsVector template 376
Public constructorsoiiiu. 376
TBagAsVectorlterator template 376
Public constructors 376
TMIBagAsVector template 376
Type definitions 376
Public constructorsc.coiii..n 377
Public member functions 377
TMIBagAsVectorlterator template 378
Public constructors ..:............ 378
TIBagAsVector template 378
Public constructors 378
TIBagAsVectorlterator template 379
Public constructors 379
TBinarySearchTreeImp template 379
Public member functions 379
Protected member functions 380
TBinarySearchTreelteratorImp template 380
Public constructors 380
Public member functions 380

viii

Operatorsoooviiiiiiniininnnnn. 380
TIBinarySearchTreeImp template 381
Public member functions 381
Protected member functions 382
TIBinarySearchTreelteratorImp template 382
Public constructors 382
Public member functions 382
Operatorsocoviiiiiiiinnnn. 382
TMDequeAsVector template 383
Type definitions 383
Public constructorso.. 383
Public member functions 383
Protected datamembers 385
Protected member functions 385
TMDequeAsVectorlterator template 385
Public constructorsooui. 386
Public member functions 386
Operatorscccovviiiiiiiiinn... 386
TDequeAsVector template 386
Public constructors 386
TDequeAsVectorlterator template 387
Public constructors0ue.n. 387
TMIDequeAsVector template 387
Type definitions 387
Public constructorsoovviinan. 387
Public member functions 387
TMIDequeAsVectorlterator template 389
Public constructorsoooiil 389
TIDequeAsVector template 389
Public constructors 389
TIDequeAsVectorlterator template 390
Public conStructorsc..oeveneen.. 390
TMDequeAsDoubleList template 390
Type definitionsoociinat. 390
Public member functions 390
TMDequeAsDoubleListlterator template 392
Public constructors 392
TDequeAsDoubleList template 392
TDequeAsDoubleListlterator template 392
Public constructorsoiiue 392
TMIDequeAsDoubleList template 392
Type definitions 392
Public member functions 393

TMIDequeAsDoubleListlterator template

Public constructors 394
TIDequeAsDoubleList template 395
TIDequeAsDoubleListlterator template 395

Public constructors 395
TMDictionaryAsHashTable template 395

Protected datamembers 395
Public constructorscoiieunn. 395
Public member functions 395
TMDictionaryAsHashTablelterator template .. 396
Public constructorsciiinn. 396
Public member functions 396
Operatorscoiiiiiiiiiiinn, 397
TDictionaryAsHashTable template 397
Public constructorsco..... 397
TDictionary AsHashTablelterator template 397
Public constructorscoininnn. 398
TMIDictionary AsHashTable template 398
Public constructorsc.cu.... 398
Public member functions 398
TMIDictionary AsHashTablelterator template . 399
Public constructorsc.i.nn. 399
Public member functions 399
Operatorscocoiiiiiiiiin, 399
TIDictionaryAsHashTable template 400
Public constructorsovviun... 400
TIDictionaryAsHashTablelterator template . .. 400
Public constructorsot 400
TDictionary template 400
TDictionarylterator template 400
Public constructorscoiun.., 401
TMDoubleListElement template 401
Publicdatamembers 401
Public constructorsco0iian.. 401
Operatorscovviiiiiiiiiina, 401
TMDoubleListlmp template 402
Type definitions 402
Public constructorscovvvneun... 402
Public member functions 402
Protected data members 403
Protected member functions 403
TMDoubleListlteratorImp template 404
Public constructors 404
Public member functions 404
Operatorscooiviiiiiiiiiie.n, 404
TDoubleListimp template 405
Public constructorsccvuennn. 405
TDoubleListIteratorlmp template 405
Public constructorscoviun... 405
TMSDoubleListImp template 406
Protected member functions 406
TMSDoubleListlteratorImp template 406
Public constructorscoceiiiannn. 406
TSDoubleListimp template 406
TSDoubleListIteratorImp template 407

Publicconstructorscceiinnnn. 407
TMIDoubleListImp template................ 407
Type definitions 407
Public member functions 407
Protected member functions 409
TMIDoubleListIteratorImp template 409
Public constructors 409
Public member functions 409
Operatorsoviiiiiinnninnennnnn.. 409
TIDoubleListlmp template 410
TIDoubleListlteratorImp template 410
Public constructorscviviieinn.. 410
TMISDoubleListImp template............... 410
Protected member functions 410

- TMISDoubleListlteratorImp template 411
Public constructorsciiiian. 411
TISDoubleListlmp template 411
TISDoubleListlteratorImp template 411
Public constructorsco.ou.... 411
TMHashTableImp template 411
Public constructors and destructor 411
Public member functions 412
TMHashTablelteratorlmp template 412
Public constructors and destructor 412
Public member functions 413
Operatorsoovviiiiiiiieniinn, 413
THashTableImp template 413
Public constructors 413
THashTablelteratorImp template 414
Publicconstructorscciiiii. 414
TMIHashTableImp template 414
Public constructorsoi. 414
Public member functions 414
TMIHashTablelteratorImp template 415
Public constructorscoiiiniaann. 415
Public member functions: 415
Operatorsovvuiiiniiinnineinn 415
TIHashTableImp template 416
Public constructorsceiveunn.. 416
TIHashTablelteratorlmp template 416
Public constructorscoiiiin., 416
TMListElement template 416
Publicdatamembers 416
Public constructorscvciivvnn... 417
Operatorscovvviieeiineiaiieanns 417
TMListImp template 417
Type definitions 417
Publicconstructorscoiiien., 417
Public member functions 418

Protected datamembers 419

Protected member functions 419
TMListlteratorlmp template 419
Public constructors 419.
Public member functions 419
Operatorsoiieiiieiiiiiae.n, 419
TListImp templateooiiil. 420
TListlteratorImp template 420
Public constructors 420
TMSListImp template 420
TMSListIteratorImp template 420
Public constructors 421
TSListlmp template 421
TSListlteratorImp template 421
* TMIListlmp template 421
Type definitions 421
Public member functions 421
Protected member functions 422
TMIListlteratorImp template 422
Public constructorsooiiun 423
Public member functions 423
Operatorscoveviiieiiiininennnnns 423
TIListImp template 423
TIListIteratorImp template 423
Public constructorsl 423
TMISListlmp template 424
Public member functions 424
TMISListlteratorImp template 424
Public constructors 424
TISListImp template 424
TISListlteratorImp template 425
Public constructors 425
TMQueueAsVector template 425
Public constructors 425
Public member functions 425
TMQueueAsVectorlterator template 426
Public constructors 426
TQueueAsVector template 427
Public constructors 427
TQueueAsVectorlterator template 427
Public constructors 427
TMIQueueAsVector template 427
Public constructors 427
Public member functions 427
TMIQueueAsVectorlterator template 428
Public constructors 429
TIQueueAsVector template 429
Public constructors 429
TIQueueAsVectorlterator template 429

Public constructorsoiinn 429
TMQueueAsDoubleList template 429
Public member functions 429
TMQueueAsDoubleListlterator template 431
Public constructors 431
TQueueAsDoubleList template 431
TQueueAsDoubleListlterator template 431
Public constructors 431
TMIQueueAsDoubleList template 431
Public member functions 431

TMIQueueAsDoubleListIterator template

Public constructorsoooiina, 433
TIQueueAsDoubleList template 433
TIQueueAsDoubleListlterator template 433

Public constructorsoiun 433
TQueuetemplateoutt. 433
TQueuelterator template 433
TMSetAsVector template 433

Public constructors 434

Public member functions 434
TMSetAsVectorlterator template 434

Public constructorscoouat. 434
TSetAsVector template 434

Public constructors 434
TSetAsVectorlterator template 435

Public constructorsooun. 435
TMISetAsVector template 435

Public constructorsoooouann 435

Public member functions 435
TMISetAsVectorlterator template 435

Public constructors 436
TISetAsVector template 436

Public constructorsc..oo... 436
TISetAsVectorlterator template 436

Public constructorsooo.... 436
TSet template e 436
TSetlterator template 436
TMStackAsVector template 437

Type definitions 437

Public constructors 437

Public member functions 437
TMStackAsVectorlterator template 438

Public constructorsooiun.. 438
TStackAsVector template 439

Public constructors 439
TStackAsVectorlterator template 439
~ Public constructorsc.o.oeeun... 439
TMIStackAsVector template 439

Type definitionscoovel 439

Public constructorsoiiiin... 440
Public member functions 440
TMIStackAsVectorlterator template 441
Public constructorscoiieiinn.. 441
TIStackAsVector template 441
Public constructors 441
TIStackAsVectorlterator template 442
Public constructors, 442
TMStackAsList template 442
TMStackAsListlterator template 442
Public constructors 442
TStackAsList template- 442
TStackAsListlterator template 443
Public constructors 443
TMIStackAsList template 443
TMIStackAsListlterator template 443
Public constructorsoiiaunn. 443
TIStackAsList template 443
TiStackAsListlterator template 443
Public constructorscoiiiiiiann. 444
TStack templatel 444
TStacklterator template 444
TMVectorImp template 444
Type definitions 444
Public constructorscovvuvenn.. 444
Public member functions 445
Operatorscooviiiiiivinnnnn. 446
Protected datamembers 446
Protected member functions 446
TMVectorlteratorImp template 447
Public constructorsciiiiin.. 447
Public m:mber functions 447
Operatorscovevvieiiineneinneann 447
TVectorImp template 448
Public constructors 448
TVectorlteratorImp template 448
Public constructorsciieiin.. 448
TMCVectorlmp template 449
Public constructorsiveeenn.. 449
Public member functions 449
Protected datamembers 450
Protected member functions 450
TMCVectorlteratorImp template 450
Public constructors 450
TCVectorImp template 451
Public constructorscuvin... 451
TCVectorlteratorImp template 451
Public constructorsoiinnnn 451
TMSVectorImp template 451

Xi

Public constructorsc.ciiiinin. 452
TMSVectorlteratorlmp template 452
Public constructors 452
TSVectorlmp template 452
Public constructorscooviiii.. 452
TSVectorlteratorImp template 453
Publicconstructorscovvivinnan. 453
TMIVectorlmp template 453
Type definitionsot 453
Public constructors oiiiiin.. 453
Public member functions 454
Operatorscoiiiiiiiiiii.a.. 455
TMIVectorlteratorImp template 455
Public constructorscciiiiiin.. 455
Public member functions 455
Operatorscooviiiiiiiinianenan. 456
TIVectorImp template 456
Public constructorsc.coiiiiiin. 456
TIVectorlteratorImp template 456
Public constructorsccoviinunia.. 456
TMICVectorImp template 457
Public constructors 457
Public member functions 457
Protected member functions 457
TMICVectorlteratorImp template 458
Public constructors, 458
TICVectorImp template 458
Public constructors 458
TICVectorlteratorImp template 458
Public constructorsccovviiininn. 458
TMISVectorImp template 459
Public constructors 459
TMISVectorlteratorImp template 459
Public constructorsu.... 459
TISVectorImp template 460
Public constructorscoiiiiiinn 460
TISVectorlteratorlmp template 460
Public constructorsooiinn... 460
TShouldDeleteclass 460
Public datamembers 461
Public constructorsc..covvevinenn.. 461
Public member functions 461
Protected member functions 461
Chapter 8 The C++ mathematical classes 463
bed o e 463
Publicconstructors 464
Friend functionsooivnn. .. 465
complex ... 466

Public constructors -
Friend functions

Chapter 9 Class diagnostic macros
Default diagnostic macros
Extended diagnostic macros
Macro message output

Run-time macro control

Chapter 10 Run-time support
Bad_cast class ..
Bad_typeid class
set_new_handler function
set_terminate function
set_unexpected function
terminate function
Type_info class
Public constructor
Operators
Public member functions
unexpected function
xallocclass .. .vovveeiin i
Public constructors
Public member functions
xmsg class
Public constructor
Public member functions

...........................

..................

.......................
..............................

Chapter 11 C++ utility classes

TDateclassccoviiiiiineiineennenns.
Type definitions
Public constructors

.........................

Operators
TFileStatus structure
TFileclassccoveiiiiieniniinennnennes

Public data members

Public constructorsccovvvinnn.

Public member functions
String class

Type definitions

Xii

Public constructors and destructor 492
Public member functions 493
Protected member functions 500
Operatorsc.coviiiiiiiiiniinn... 501
Related global operators and functions 504
TSubStringclassoooiii 505
Public member functions 505
Protected member functions 505
OPperatorsc.oeeneueeunennennnn. 505
TCriticalSectionclassccivvvvvnnn. 507
Constructors and destructor 507
TCriticalSection::Lock class 507
Public constructors and destructor 507
TMutexclass........coooiiiiniinnnnn.. 508
Public constructors and destructor 508
Operators e i, 508
TMutex:Lockclasscoovivinivnnn.. 508
Public constructorsc..nn. 509
Public member functions 509
TSyncclasscovviiiiiii i, 509
Protected constructors 510
Protected operators 510
TSync:Lockclassovvvvvvinii i, 510
Public constructors and destructor 510
TThreadclasscoovviiennnnnenenn... 510
Typedefinitions 511
Protected constructors and destructor 512
Public member functions 512
Protected member functions 513
Protected operators 513
TThread::TThreadErrorclass 513
Type definitions 514
Public member functions 514
TTime type definitions 515
TTimeclass . .oovvev i i i e, 515
Public constructorsc.ocovvivnn.. 515
Public member functions 515
Protected member functions 517
Protected datamembers 517
Operatorsccovvviiiiniiiiin, 517
Index 519

Tables

11 Default run-time libraries 5 3.1 Locale monetary and numeric settings 158
1.2 Summary of static run-time libraries 5 3.2 These messages are generated in both Win 16
1.3 Summary of dynamic link libraries 7 andWin32. ...l 189
1.4 Obsolete global variables................. 17 3.3 These messages are generated only in

1.5 Obsolete functionnames 17 WIin32. ..o 190

xiii

Figufes

6.1 Streamable class hierarchy............... 335

Xiv

If you are developing
a 16-bit DOS-only
application, you can
also use the routines
described in the DOS
Reference

Introduction

Introduction

This manual contains definitions of the Borland C++ classes, nonprivate
class members, library routines, common variables, and common defined
types for windows programming,.

If you're new to C or C++ programming, or if you're looking for informa-
tion on the contents of the Borland C++ manuals, see the introduction in
the User’s Guide.

Here is a summary of the chapters in this manual:

Chapter 1: Library cross-reference provides an overview of the Borland
C++ library routines and header files. After describing the static and
dynamic-link libraries, this chapter lists the header files, and then groups
the library routines according to the tasks they commonly perform.

Chapter 2: The main function discusses arguments to main (including wild-
card arguments), provides some example programs, and describes Pascal
calling conventions and the value that main returns.

Chapter 3: Run-time functions is an alphabetical reference of Borland C++
library functions. Each entry gives syntax, portability information, an
operative description, and return values for the function, together with a
reference list of related functions.

Chapter 4: Global variables defines and discusses Borland C++% global
variables. You can use these to save yourself a great deal of programming
time on commonly needed variables (such as dates, time, error messages,
stack size, and so on).

Chapter 5: The C++ iostream classes describes the classes that provide
support for input and output in C++ programs.

Chapter 6: Persistent stream classes and macros deSCI'lbeS the persistent
streams classes and macros.

Chapter 7: The C++ container classes describes the container classes
provided by Borland C++ such as array, stack, and linked list.

Chapter 8: The C++ mathematical classes describes how to use bcd and
complex classes.

Chapter 9: Class diagnostic macros describes the classes and macros that
support object diagnostics.

Chapter 10: Run-time support describes functions and classes that let you
control the way your program executes at run time in case the program
runs out of memory or encounters some exception.

Chapter 11: C++ utility classes describes the C++ date, string, and time
classes.

Library Reference

Library cross-reference

Ifyou are developing ~ This chapter provides an overview of the Borland C++ library routines and
a16-bitDOS-only header files. Library routines are composed of classes, functions, and
application, you can L ‘
also use the routines ~ Macros that you can call from within your C and C++ programs to perform
describedinthe DOS a wide variety of tasks. These tasks include low- and high-level I/O, string
Reference and file manipulation, memory allocation, process control, data conversion,

mathematical calculations, and much more.

This chapter provides the following information:

m Names the static and dynamic-link libraries, files, and subdirectories
found in the LIB and BIN subdirectories, and describes their uses.

m Explains why you might want to obtain the source code for the Borland
C++ run-time library.

m Lists and describes the header files.

m Categorizes the library routines according to the type of tasks they
perform.

Reasons to access the run-time library source code

There are several good reasons you might want to obtain the source code
for the run-time library routines:

m A particular function you want to write might be similar to, but not the
same as, a Borland C++ function. With access to the run-time library
source code, you can tailor the library function to suit your needs, and
avoid having to write a separate function of your own.

m Sometimes, when you're debugging code, you might want to know more
about the internals of a library function.

m If you want to delete the leading underscores on C symbols, access to the
run-time library source code will let you do so.

m You can learn a lot from studying tight, professionally written library
source code.

Chapter 1, Library cross-reference * 3

For all these reasons, and more, you will want to have access to the Borland
C++ run-time library source code. Because Borland believes strongly in the
concept of “open architecture,” we have made the Borland C++ run-time
library source code available for licensing. All you have to do is fill out the
order form distributed with your Borland C++ package, include your pay-
ment, and we'll ship you the Borland C++ run-time library source code.

The run-time libraries

See the
ObjectWindows
Reference Guide for
information about the
libraries and DLLs
specific to
ObjectWindows.

The static
libraries

The run-time libraries are divided into static (OBJ and LIB) and dynamic-
link (DLL) versions. These different versions of the libraries are installed in
separate directories. The static and dynamic libraries are described in
separate tables.

Several versions of the run-time library are available. For example, there
are memory-model-specific versions, diagnostic versions, and 16- and 32-
bit-specific versions. There are also optional libraries that provide
mathematics, container, ObjectWindows development, and international
applications.

Here are some guidelines for sélecting which run-time libraries to use:

m Segmented memory-model libraries are supported only in 16-bit
programs. Tiny and huge memory models are not supported.

m 16-bit DLLs are supported only in the large memory model.

m For 32-bit programs, only the flat memory model is supported.

m 32-bit console and GUI programs require different startup code.

@ Multithread applications are supported only in 32-bit programs.

The static (OBJ and LIB) version of the Borland C++ run-time library is con-
tained in the LIB subdirectory of your installation. For each of the library
file names, the ‘?’ character represents one of the four (compact, small,
medium, and large) distinct memory models supported by Borland. Each
model has its own library file and math file, containing versions of the
routines written for that particular model.

The following table identifies the default run-time libraries used with each
compiler. See the User’s Guide for discussions about compiling and linking.

Library Reference

Table 1.1: Default run-time libraries

Compiler Application Default libraries

BCC.EXE 16-bit Windows COWS.0BJ, CWS.LIB, MATHWS.LIB, IMPORT.LIB
BCC32.EXE Win32 C0X32.0BJ, CW32.LIB, IMPORT32.LIB

BCW.EXE Same as BCC.EXE Same as BCC.EXE -

BCWS32.EXE Same as BCC32.EXE Same as BCC32.EXE

Table 1.2: Summary of static run-time libraries

The following table lists the names and uses of the Borland C++ static
libraries; it also lists the operating system under which each library item is
available. See the User’s Guide for information on linkers, linker options,
requirements, and selection of libraries.

File name Application Use

Directory of BC4\LIB

BIDSDL.LIB Win 16 16-bit diagnostic, dynamic BIDS import library for BIDS40D.DLL
BIDSI.LIB Win 16 16-bit dynamic BIDS import library for BIDS40.DLL

BIDSF.LIB Win32s, Win32 32-bit BIDS library

BIDSDF.LIB Win32s, Win32 32-bit diagnostic BIDS library

BIDSFI.LIB Win32s, Win32 32-bit dynamic BIDS import library for BIDS40F.DLL
BIDSDFI.LIB Win32s, Win32 32-bit diagnostic, dynamic BIDS import library for BIDS40DF.DLL
BIDSDB?.LIB Win 16 16-bit diagnostic BIDS library

BIDS?.LIB Win 16 16-bit BIDS library

BWCC.LIB Win 16 16-bit import library for BWCC.DLL

BWCC32.LIB Win32s, Win32 32-bit import library for BWCC32.DLL

C0D32.0BJ Win32s, Win32 " 32-bit DLL startup module

C0oD?7.0BJ Win 16 16-bit DLL startup module

Cow32.0BJ Win32s, Win32 32-bit GUI EXE startup module

Cow?2.0BJ Win 16 16-bit EXE startup module

C0X32.0BJ Win32 32-bit console-mode EXE startup module

CRTDLL.LIB Win 16 16-bit dynamic import library for BC4ORTL.DLL

cwaz.LB Win32s, Win32 32-bit GUI single-thread library ‘

cw2LiB Win 16 16-bit library

cwa2lLiB Win32s, Win32 32-bit single-thread, GUI, dynamic RTL import library for CW32.DLL
CW32MT.LIB Win32 32-bit GUI multithread library

Chapter 1, Library cross-reference

Table 1.2: Summary of static run-time libraries (continued)

CW32MTI.LIB
IMPORT.LIB
IMPORT32.LIB
MATHW?LIB
W32SUT16.LIB
W32SUT32.LIB
OBSOLETE.LIB

Win32

Win 16
Win32s, Win32
Win 16

Win 16
Win32s

Win 16, Win32, Win32s

32-bit multithread, GUI, dynamic RTL import library for CW32MT.DLL
16-bit import library for Windows 3.1

32-bit import library; use with IMPRTW32.LIB

16-bit math libraries

16-bit universal thunking library

32-bit universal thunking library :

Provides obsolete global variables.

Directory of BC4\LIB\16-BIT

FILES.C
FILES2.C
MATHERR.C

MATHERRL.C

Win 16
Win 16
Win 16

Win 16

Increases the number of file handles
Increases the number of file handles

Sample of a user-defined floating-point math exception handler for float and
double types .

Sample of a user-defined floating-point math exception handler for long double
type

Directory of BC4\LIB\32-BIT

FILES.C
FILES2.C
FILEINFO.0BJ
GP.0BJ
MATHERR.C

MATHERRL.C |

Win32s, Win32
Win32s, Win32
Win32s, Win32 -
Win32s, Win32
Win32s, Win32

Win32s, Win32

WILDARGS.OBJ Win32

increases the number of file handles

Increases the number of file handles

Passes open file-handle information to child processes
Prints register-dump information when an exception occurs

Sample of a user-defined floating-point math exception handler for float and
double types

Sample of a user-defined floating-point math exception handler for long double
type

Transforms wild-card arguments into an array of arguments to main in console-
mode applications

Directory of BC4\LIBISTARTUP

BUILD-CO.BAT
COD.ASM
COW.ASM
RULES.AS!

Win 16
Win 16
Win 16
Win 16

Batch file to build COD 2.0BJ, COF 2.0BJ, and COW 2.0BJ
Source for COD2.0BJ
Source for COW?.0BJ

~ Assembly rules for COD.ASM and COW.ASM

The dynamic-link

libraries

The dynamic-link (DLL) version of the run-time library is contained in the

BIN subdirectory of the installation. Several versions of the DLL libraries

Library Reference

are available. For example, there are diagnostic versions, 16- and 32-
bit-specific versions, and versions that support multithread applications.

In the 16-bit specific version, only the large-memory model DLL is pro-
vided. No other memory-model is supported in a 16-bit DLL.

The following table lists the Borland C++ DLL names and uses, and the
operating system under which the library item is available. See the User’s
Guide for information on linkers, linker options, requirements, and selection
of libraries.

Table 1.3: Summary of dynamic link libraries

File name Application Use

Directory of BC4\BIN

BC40RTL.DLL Win 16 16-bit, large-memory model
BIDS40.DLL Win 16 16-bit, BIDS

BIDS40D.DLL Win 16 16-bit, diagnostic BIDS
BIDS40F.DLL Win32s, Win32 32-bit BIDS
BIDS40DF.DLL Win32s, Win32 32-bit diagnostic BIDS
CW32.DLL Win32s, Win32 32-bit, single thread
CW32MT.DLL Win32 32-bit, multithread

LOCALEBLL Win 16, Win32s, Win32 Locale library

The Borland C++ header files

C++ header files, and
header files defined
by ANSI C, are
marked in the margin.

Header files provide function prototype declarations for library functions.
Data types and symbolic constants used with the library functions are also
defined in them, along with global variables defined by Borland C++ and
by the library functions. The Borland C++ library follows the ANSI C
standard on header-file names and their contents.

Header file Description

alloc.h Declares memory-management functions (allocation, deallocation, and so on).

assert.h! Defines the assert debugging macro.

bed.h? Declares the C++ class bed and the overloaded operators for bed and bed math functions.
bios.h Declares various functions used in calling IBM-PC ROM BIOS routines.

checks.h? Defines PRECONDITION, WARN, and TRACE diagnostic macros.

Chapter 1, Library cross-reference

complex.h? Declares the C++ complex math class.

conio.h Declares various functions used in calling the operating-system console I/O routines. The functions
defined in this header file cannot be used in GUI applications.

constrea.h? Declares C++ classes and methods to support console output.

cstring.h? Declares the ANSI C++ string class support.

ctype.h! Contains information used by the character classification and character conversion macros (such as
isalpha and toasci).

dirh Contains structures, macros, and functions for working with directories and path names.

directh Defines structures, macros, and functions for dealing with directories and path names.

dirent.h ’ Declares functions and structures for POSIX directory operations.

dos.h Defines various constants and gives declarations needed for DOS and 80x86-specific calls.

~ ermo.h’ Defines constant mnemonics for the error codes. ‘

except.h? Declares ANSI C++ exceptions support.

excpt.h Declares C exceptions support.

fentlh Defines symbolic constants used in connection with the library routine open.

float.n! Contains parameters for floating-point routines.

fstream.h? Declares the C++ stream classes that support file input and output.

generic.h - Contains macros for generic class declarations.

io.h Contains structures and declarations for low-level inputioutput routines.

iomanip.h? Declares the C++ streams 1/O manipulators and contains templates for creating parameterized
manipulators.

iostream.h? Declares the basic C++ streams (I/O) routines.

limits.h? Contains environmental parameters, information about compile-time limitations, and ranges of integral
quantities.

locale.h! Declares functions that provide country- and language-specific information.

sys\locking.h Definitions for mode parameter of locking function.

malloc.h Memory-management functions and variables.

math.h? Declares prototypes for the math functions and math error handlers.

mem.h Declares the memory-manipulation functions. (Many of these are also defined in string.h.)

memory.h Memory-manipulation functions.

new.h? Access to_new_handler and set_new_handler.

process.h Contains structures and declarations for the spawn... and exec... functions.

ref.h? Provides support for reference counting. Used with the string class.

regexp.h? Implements regular-expression searching.

8 » Library Reference

search.h
setjmp.h’

share.h
signal.h!
stdarg.h’

stddef.h'
stdio.h!

stdiostrh?
stdlib.h!

string.h!
strstrea.h?
sys\stat.h
time.h!

sys\ﬁmeb.h
sys\types.h
typeinfo.h?
utime.h
values.h
varargs.h

! Defined by ANSI C.
2 C++ header files.

Declares functions for searching and sorting.

Defines a type jmp_buf used by the longjmp and setjmp functions and declares the functions longjmp and
setjmp.

Defines parameters used in functions that make use of file-sharing.
Defines constants and declarations for use by the signal and raise functions.

Defines macros used for reading the argument list in functions declared to accept a variable number of ar-
guments (such as vprintf, vscanf, and so on).

Defines several common data types and macros.

Defines types and macros needed for the standard I/O package defined in Kernighan and Ritchie and
extended under UNIX System V. Defines the standard 1/O predefined streams stdin, stdout, stdprn, and
stderr, and declares stream-level I/O routines.

Declares the C++ (version 2.0) stream classes for use with stdio FILE structures. You should use
iostream.h for new code.

Declares several commonly used routines: conversion routines, search/sort routines, and other
miscellany.

Declares several string-manipulation and memory-manipulation routines.
Declares the C++ stream classes for use with byte arrays in memory.
Defines symbolic constants used for opening and creating files.

Defines a structure filled in by the time-conversion routines asctime, localtime, and gmtime, and a type
used by the routines ctime, difftime, gmtime, localtime, and stime; also provides prototypes for these
routines.

Declares the function ftime and the structure timeb that ftime retumns.

Declares the type time_t used with time functions.

Provides declarations for ANS| C++ run-time type identification (RTTI).

Declares the utime function and the utimbuf struct that it returns.

Defines important constants, including machine dependencies; provided for UNIX System V compatibility.

Definitions for accessing parameters in functions that accept a variable number of arguments. Provided for
UNIX compatibility; you should use stdarg.h for new code.

Library routines by category

Chapter 1, Library cross-reference

The Borland C++ library routines perform a variety of tasks. The routines,
along with the header files in which they are declared, are listed by
category of task performed.

C++ prototyped
routines

Classification
routines

Console I/0
routines

Conversion
routines

10

Certain routines described in this book have multiple declarations. You
must choose the prototype appropriate for your program. In general, the
multiple prototypes are required to support the original C implementation
and the stricter and sometimes different C++ function declaration syntax.
For example, some string-handling routines have multiple prototypes
because in addition to the ANSI-C specified prototype, Borland C++

provides prototypes consistent with the ANSI C++ draft.

getvect (dos.h)
max (stdlib.h)
memchr (string.h)
min (stdlib.h)
setvect (dos.h)

strchr
strpbrk
strrchr
strstr

(string.h)
(string.h)
(string.h)
(string.h)

These routines classify ASCII characters as letters, control characters,

punctuation, uppercase, and so on.

isalnum (ctype.h)
isalpha (ctype.h)
isascii (ctype.h)
iscntrl (ctype.h)
isdigit (ctype.h)
isgraph (ctype.h)

islower
isprint
ispunct
isspace
isupper
isxdigit

(ctype.h)
(ctype.h)
(ctype.h)
(ctype.h)
(ctype.h)
(ctype.h)

These routines output text to the screen or read from the keyboard. They

cannot be used in a GUI application.

cgets (conio.h)
clreol (conio.h)
clrscr (conio.h)
cprintf {conio.h)
cputs (conio.h)
delline (conio.h)
getpass (conio.h)
gettext (conio.h)
gettextinfo (conio.h)
gotoxy (conio.h)
highvideo (conio.h)
insline (conio.h)
lowvideo (conio.h)

movetext
normvideo
putch

puttext
_setcursortype
textattr
textbackground
textcolor
textmode
ungetc
wherex
wherey
window

(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(stdio.h)
(conio.h)
(conio.h)
(conio.h)

These routines convert characters and strings from alpha to different
numeric representations (floating-point, integers, longs) and vice versa, and
from uppercase to lowercase and vice versa.

Library Reference

atof : (stdlib.h) strtol (stdlib.h)

atoi (stdlib.h) _strtold (stdlib.h)
atol (stdlib.h) strtoul (stdlib.h)
ecut (stdlib.h) . toascii (ctype.h)
fevt (stdlib.h) _tolower (ctype.h)
geut (stdlib.h) - tolower © (ctype.h)
itoa (stdlib.h) _toupper (ctype.h)
Itoa (stdlib.h) toupper (ctype.h) -
strtod (stdlib.h) ultoa (stdlib.h)

Diagnostic These routines provide built-in troubleshooting capability.

routines
assert (assert.h) perror (errno.h)
CHECK (checks.h) PRECONDITION (checks.h)
_matherr (math.h) TRACE (checks.h)
_matherrl (math.h) WARN (checks.h)

. . ioul . . h]
Directory control These routines manipulate directories and path names

routines
chdir (dirh) _getdcwd (direct.h)
_chdrive (direct.h) getdisk _(dirh)
closedir (dirent.h) _makepath (stdlib.h)
_dos_findfirst (dos.h) mkdir © (dirh)
_dos_findnext ~ (dos.h) mktemp (dirh)
_dos_getdiskfree (dos.h) opendir (dirent.h)
_dos_getdrive (dos.h) readdir (dirent.h)
_dos_setdrive (dos.h) rewinddir (dirent.h)
findfirst (dich) rmdir (dirh)
findnext (dirh) _searchenv (stdlib.h)
frnmerge (dirh) searchpath (dirh)
fnsplit (dirh) _searchstr (stdlib.h)
_fullpath (stdlib.h) setdisk - (dirh)
getcurdir (dirh) : _splitpath (stdlib.h)
getcwd (dirh)

EasyWin routines These routines are portable to EasyWin programs but are not available in

Windows 16-bit programs. They are provided to ease porting of existing
code into a Windows 16-bit application.

clreol (conio.h) ~ getche (stdio.h)
clrscr (conio.h) gets (stdio.h)
fgetchar (stdio.h) gotoxy (conio.h)
getch (stdio.h) kbhit (conio.h)
getchar (stdio.h) perror (errno.h)

Chapter 1, Library cross-reference

Inline routines

Input / output
routines

12

printf
putch
putchar
puts
scanf

These routines have inline versions. The compiler will generate code for the
inline versions when you use #pragma intrinsic or if you specify program
optimization. See the User’s Guide for more details.

abs
alloca
_crotl
_crotr
_lrotl
_lrotr
memchr
memcmp
memcpy
memset
_rotl
_rotr

These routines provide stream- and operating-system level I/O capability.

access
_rtl_chmod
chmod

chsize

clearerr
_rtl_close
close
_rtl_creat
creat

creatnew
creattemp
cscanf
_dos_close
_dos_creat
_dos_creatnew
_dos_getfileattr
_dos_getftime
_dos_open
_dos_read
_dos_setfileattr
_dos_setftime

(stdio.h)
(conio.h)
(stdio.h)
(stdio.h)
(stdio.h)

(math.h)
(malloc.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(mem.h)
(mem.h)
(mem.h)
(mem.h)
(stdlib.h)
(stdlib.h)

(io.h)
(io.h)
(io.h)
(io.h)
(stdio.h)
(io.h)
(io.h)
(io.h)
(io.h)
(ioh)
(io.h)
(conio.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)

vprintf
vscanf
wherex
wherey

stpcpy
strcat
strchr
strcmp
strcpy
strlen
strncat
strncmp
strncpy
strnset
strrchr
strset

_dos_write
dup
dup?
eof
fclose
fcloseall
fdopen
feof
ferror
fflush
feete
fgetchar
fgetpos

feets
filelength:

fileno
flushall
fopen
fprintf
fputc
frutchar

(stdio.h)
(stdio.h)
(conio.h)
(conio.h)

(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)

(dos.h)
(io.h)
(io.h)
(io.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(io.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)

Library Reference

fputs
fread
freopen

fscanf
fseek

fsetpos
_fsopen
fstat
ftell
fwrite
getc
getch
getchar
getche
getftime
gets
getw
ioctl
isatty
kbhit
lock
locking
Iseek
_rtl_open
open
_pclose
perror
_pipe
_popen
printf
putc
putchar
puts

Interface routines e
capabilities.
bdos

bdosptr
biosequip
_bios_equiplist
biosmemory
biostime
_chain_intr
country
ctribrk
_disable
disable

Chapter 1, Library cross-reference

(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(sys\stat.h)
(stdio.h)
(stdio.h)
(stdio.h)
(conio.h)
(stdio.h)
(conio.h)
(io.h)
(stdio.h)
(stdio.h)
(io.h)
(io.h)

- (conio.h)

(io.h)
(io.h)
(io.h)
(io.h)
(io.h)
(stdio.h)
(stdio.h)
(io.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)

(dos.h)
(dos.h)
(bios.h)
(bios.h)
(bios.h)
(bios.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)

putw
_rtl_read
read
remove
rename
rewind
rimtinp
scanf
setbuf
setftime
setmode
sefvbuf
sopen
sprintf
sscanf
_strerror
strerror
tell
tempnam
TFile
tmpfile
tmpnam
umask
unlink
unlock
utime:
vfprintf
vfscanf
vprintf
vscanf
vsprintf
vsscanf
_rtl_write

dosexterr
_dos_getvect
_dos_setvect
_enable
enable
FP_OFF
FP_SEG
geninterrupt
getcbrk
getdfree
getdta

(stdio.h)
(io.h)
(io.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(io.h)
(io.h)
(stdio.h)
(io.h)
(stdio.h)
(stdio.h)

(string.h, stdio.h)

(stdio.h)
(io.h)
(stdio.h)
(file.h)
(stdio.h)
(stdio.h)
(io.h)
(dos.h)
(io.h)
(utime.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(io.h)
(io.h)

These routines provide operating-system BIOS and machine-specific

(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)

(dos.h)

13

getfat (dos.h) outpw (conio.h)

getfatd (dos.h) outport (dos.h)

gelpsp (dos.h) outportb (dos.h)

getvect - (dos.h) parsfam (dos.h)

getverify . (dos.h) peek (dos.h)

inp (conio.h peekb (dos.h)

inpw (conio.h poke (dos.h)

inport (dos.h) pokeb * (dos.h)

inportb "~ (dos.h) segread (dos.h)

int86 (dos.h) setcbrk (dos.h)
int86x (dos.h) _setcursortype (conio.h)
intdos (dos.h) setdta (dos.h)

intdosx (dos.h) setvect (dos.h)

intr (dos.h) ‘ setverify (dos.h)

MK_FP (dos.h) sleep (dos.h)

outp (conio.h) '

These routines are affected by the current locale. The current locale is

International specified by the setlocale function and is enabled by defining
Ioca!e API _ _USELOCALES_ _ with =D command line option. When you define
routines _USELOCALES_ _, only function versions of the following routines are

used in the run-time library rather than macros. See online Help fora
discussion of the International API

cprintf (stdio.h) scanf (stdio.h)
cscanf (stdio.h) setlocale (locale.h)
forintf. (stdio.h) sprintf (stdio.h)
fscanf (stdio.h) sscanf (stdio.h)
isalnum (ctype.h) streoll , (string.h)
isalpha (ctype.h) strftime (time.h)
iscntrl (ctype.h) striwr, _fstrlwr (string.h)
isdigit ' (ctype.h) strupr, _fstrupr (string.h)
isgraph (ctype.h) strxfrm (string.h)
islower (ctype.h) tolower (ctype.h)
isprint (ctype.h) toupper (ctype.h)
ispunct (ctype.h) vfprintf (stdio.h)
isspace (ctype.h) vfscanf (stdio.h)
isupper (ctype.h) vprintf (stdio.h)
isxdigit (ctype.h) vscanf (stdio.h)
localeconv (locale.h) vsprintf (stdio.h)
printf (stdio.h) vsscanf (stdio.h)

These routines handle strings and blocks of memory: copying, comparing,

Manipulation . converting, and searching.

routines
mblen (stdlib.h) : mbtowc (stdlib.h)
mbstowcs (stdlib.h) memccpy (mem.h, string.h)

14 Library Reference

memchr
memcmp
memcpy
memicmp
memmove
memset
movedata
movmem
setmem
stpcpy
strcat
strchr
stremp
strempi
streoll
strepy
strespn
strdup
strerror
stricmp

Math routines

abs

acos
acosl
arg

asin
asinl
atan
atan2
atan2l
atanl
atof
atoi

atol
_atold
bed

cabs
cabsl
ceil

ceill
_clear87
complex
conj
_control87
cos

cosh

Chapter 1, Library cross-reference

(mem.h, string.h)
(mem.h, string.h)
(mem.h, string.h)
(mem.h, string.h)
(mem.h, string.h)
(mem.h, string.h)
(mem.h, string.h)
(mem.h, string.h)
(mem.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)

(complex.h, stdlib.h)
(complex.h, math.h)
(math.h)
(complex.h)
(complex.h, math.h)
(math.h)
(complex.h, math.h)
(complex.h, math.h)
(math.h)

(math.h)

(stdlib.h, math.h)
(stdlib.h)

(stdlib.h)

(math.h)

(bcd.h)

{(math.h)

(math.h)

(math.h)

(math.h)

(float.h)
(complex.h)
(complex.h)
(float.h)

(complex.h, math.h)
(complex.h, math.h)

string
strlen
strlwr
strncat
strncmp
strncmpi
strncpy
strnicmp
strnset
strpbrk
strrchr
strrev
strset
strspn
strstr
strtok
strupr
strxfrm
westombs
wctomb

coshl
cosl
div
ecot
exp
expl
fabs
fabsl
fevt
floor
floorl
fmod
fmodl
_fpreset
frexp
frexpl
gevt
hypot
hypotl
imag
itoa
labs
Idexp
Idexpl
ldiv

(cstring.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
- (string.h)
(string.h)
(string.h)
(string.h)
(stdlib.h)
(stdlib.h)

These routines perform mathematical calculations and conversions.

(math.h)
(math.h)
(math.h)
(stdlib.h)
(complex.h, math.h)
(math.h)
(math.h)
(math.h)
(stdlib.h)
(math.h)
(math.h)
(math.h)
(math.h)
(float.h)
(math.h)
(math.h)
(stdlib.h)
(math.h)
(math.h)

(complex.h)

(stdlib.h)
(stdlib.h)
(math.h)
(math.h)
(math.h)

15

Memory routines

Miscellaneous
routines

Obsolete
definitions

16

log (complex.h, math.h) randomize (stdlib.h)

logl (math.h) real (complex.h)

log10 (complex.h, math.h) _rotl (stdlib.h)

log101 (math.h) _rotr (stdlib.h)

_lrotl (stdlib.h) sin (complex.h, math.h)
_lrotr (stdlib.h) sinh (complex.h, math.h)
ltoa (stdlib.h) sinhl (math.h)

_matherr (math.h) sinl (math.h).h, math.h)

_matherrl (math.h) sqrt (complex.h, math.h)
modf (math.h) sqril . (math.h)

modfl (math.h) srand (stdlib.h)

norm (complex.h) _status87 (float.h)

polar (complex.h) strtod (stdlib.h)

poly (math.h) striol (stdlib.h)

polyl (math.h) _strtold (stdlib.h)

pow (complex.h, math.h) strtoul (stdlib.h)

powl0 (math.h) tan (complex.h, math.h)
pow10! (math.h) tanh (complex.h, math.h)
powl (math.h) tanhl (complex.h, math.h)
rand (stdlib.h) tanl (math.h)

random (stdlib.h) ultoa (stdlib.h)

These routines provide dynamic memory allocation in the small-data and
large-data models.

alloca (malloc.h) heapcheckfree (alloc.h)
_bios_memsize (bios.h) heapchecknode (alloc.h)

calloc (alloc.h, stdlib.h) heapwalk (alloc.h)

farcalloc (alloc.h) malloc (alloc.h, stdlib.h)
farfree (alloc.h) realloc " (alloc.h, stdlib.h)
farmalloc (alloc.h) set_new_handler (new.h)

free (alloc.h, stdlib.h) stackavail (malloc.h)
heapcheck (alloc.h)

These routines provide nonlocal goto capabilities and locale.

localeconv (locale.h) setjmp (setjmp.h)
longjmp (setimp.h) setlocale (locale.h)

The following global variables have been renamed to comply with ANSI
naming requirements. You should always use the new names. If you link
with libraries that were compiled with Borland C++ 3.1 (or earlier) header
files, you will get the message

Error: undefined external varname in module LIBNAME.LIB

Library Reference

Table 1.4
Obsolete global
variables

Table 1.5
Obsolete function
names

Process control
routines

A library module that results in such an error should be recompiled. How-
ever, if you cannot recompile the code for such libraries, you can link with
OBSOLETE.LIB to resolve the external variable names.

The following global variables have been renamed:

Old name New name Header file
daylight _daylight time.h
directvideo _directvideo conio.h
environ - _environ " stdlib.h
sys_errlist _sys_erlist ermo.h
sys_nerr _sys_nerr ermo.h
timezone _timezone time.h
tzname _tzname time.h

The old names of the following functions are available. However, the

compiler will generate a warning that you are using an obsolete name.

Future versions of Borland C++ might not provide support for the old

function names.

The following function names have been changed:

Old name New name Header file
_chmod _itl_chmod io.h
_close _ntl_close io.h
_creat _ntl_creat io.h
_heapwalk _rtl_heapwalk malloc.h
_open _rtl_open io.h

_read _rtl_read io.h

_write _ril_write io.h

These routines invoke and terminate new processes from within another

routine.

abort
_beginthread
_beginthreadNT
_c_exit "
_cexit

cwait
_endthread
execl

execle

execlp

execlpe

execv

Chapter 1, Library cross-reference

(process.h)
(process.h)
(process.h)
(process.h)
(process.h)
(process.h)
(process.h)
(process.h)
(process.h)
(process.h)
(process.h)
(process.h)

execve
execvp
execupe
_exit
exit
_expand
getpid
_pclose
_popen
raise
signal
spawnl

(process.h)
(process.h)
(process.h)
(process.h)
(process.h)
(process.h)
- (process.h)
(stdio.h)
(stdio.h)
(signal.h)
(signal.h)
(process.h)

17

spawnle (process.h) spawnve (process.h)

spawnlp (process.h) spawnvp (process.h)
spawnlpe (process.h) spawnuvpe (process.h)
spawnv (process.h) v wait . (process.h)

These are time conversion and time manipulation routines.

Time and date
routines
asctime (time.h) gmtime (time.h)
_bios_timeofday (bios.h) localtime (time.h)
ctime (time.h) mktime © (time.h)
difftime (time.h) stime " (time.h)
_dos_getdate (dos.h) _strdate (time.h)
_dos_gettime (dos.h) strftime (time.h)
_dos_setdate (dos.h) _strtime (time.h)
_dos_settime (dos.h) TDate (date.h)
dostounix (dos.h) time (time.h)
ftime (sys\timeb.h) TTime (time.h)
getdate (dos.h) tzset (time.h)
gettime (dos.h) unixtodos (dos.h)
Variable argument Tl.lese routines are for use when accessing variable argument lists (such as
list routines with printf, vprintf, vscanf, and so on). -
va_arg (stdarg.h) va_start (stdarg.h)
va_end (stdarg.h)

18 ‘ ' Library Reference

The main function

Seethe Every C and C++ program must have a program-startup function.
Programmer$ Guide, Console-based programs call the main function at startup. Windows GUI
Chapter 8, for a . . . ,
discussionof programs call the WinMain function at startup. Where you place the startup
Windows function is a matter of preference. Some programmers place main at the
programming. peginning of the file, others at the end. Regardless of its location, the fol-

lowing points about main always apply.

Arguments to main

Three parameters (arguments) are passed to main by the Borland C++
startup routine: argc, argv, and env.

margc, an integer, is the number of command-line arguments passed to
main, including the name of the executable itself.
margu is an array of pointers to strings (char *[]).

o argu[0] is the full path name of the program being run.

e argu[1] points to the first string typed on the operating system
command line after the program name.

o argu[2] points to the second string typed after the program name.
e argulargc-1] points to the last argument passed to main.
o argulargc] contains NULL.

L4

m env is also an array of pointers to strings. Each element of env[] holds a
string of the form ENVVAR=value.

e ENVVAR is the name of an environment variable, such as PATH or
COMSPEC.

e value is the value to which ENVVAR is set, such as C:\ APPS;C:\
TOOLS; (for PATH) or CADOS\COMMAND.COM (for COMSPEC).

Chapter 2, The main function - 19

Refer to the getenv
and putenv entries in
Chapter 3, and the
environ entry in
Chapter 4 for more
information.

Examining -
arguments to
main

20

If you declare any of these parameters, you must declare them exactly in the
order given: argc, argv, env. For example, the following are all valid
declarations of main’s arguments:

int main()

int main(int argc) /* legal but very unlikely */
int main{int argc, char * argv[])

int main(int argc, char * argv([], char * env[])]

The declaration int main(int argc) is legal, but it’s very unlikely that you
would use argc in your program without also using the elements of argv.

The argument env is also available through the global variable _environ.

For all platforms, argc and argv are also available via the global variables
_argc and _argo.

Here is an example that demonstrates a simple way of using these
arguments passed to main:

/* Program ARGS.C */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv(], char *env[]) {
int i;
printf("The value of argc is %d \n\n", argc);

printf("These are the %d command-line arguments passed to"
" main:\n\n", argc);

for (i = 0; 1 < argc; i++)
printf (" argv(%d]: %s\n", i, argv([i]);

printf("\nThe environment string(s) on this system are:\n\n");

for (i = 0; env[i] != NULL; i++)
printf(" env([%d]: %s\n", i, env[i]);
return 0;
Suppose you run ARGS.EXE at the command prompt with the following
command line: '

C:> args first_arg "arg with blanks" 3 4 "last but one" stop!

Note that you can pass arguments with embedded blanks by surrounding
them with quotes, as shown by "argument with blanks" and "last but one"
in this example command line.

The output of ARGS.EXE (assuming that the environment variables are set
as shown here) would then be like this:

Library Reference

Wildcard
arguments |

Lt

Wildcard arguments
are used only in
console-mode
applications.

Linking with
WILDARGS.0BJ

The value of argc is 7
These are the 7 command-line arguments passed to main:

argv[0]: C:\BC4\ARGS.EXE
argv(1l): first_arg
argv([2]: arg with blanks
argv(3]: 3

argv(4): 4

argv(5]: last but one
argv(6]: stop!

The environment string(s) on this system are

env(0]: CQMSPEC:C:\COMMAND.COM
env[1]: PROMPT=$p $g
env(2]: PATH=C:\SPRINT;C:\DOS;C:\BC4

The maximum combined length of the command-line arguments passed to
main (including the space between adjacent arguments and the program
name itself) is 255; this is a Win32 limit.

Command-line arguments containing wildcard characters can be expanded
to all the matching file names, much the same way DOS expands wildcards
when used with commands like COPY. All you have to do to get wildcard
expansion is to link your program with the WILDARGS.OBJ object file,
which is included with Borland C++.

Once WILDARGS.OB] is linked into your program code, you can send
wildcard arguments of the type *.* to your main function. The argument
will be expanded (in the argv array) to all files matching the wildcard mask.
The maximum size of the argv array varies, depending on the amount of
memory available in your heap.

If no matching files are found, the argument is passed unchanged. (That is,
a string consisting of the wildcard mask is passed to main.)

"non

Arguments enclosed in quotes ("...") are not expanded.

The following commands compile the file ARGS.C and link it with the
wildcard expansion module WILDARGS.OB], then run the resulting
executable file ARGS.EXE:

BCC ARGS.C WILDARGS.OBJ
ARGS C:\BC4\INCLUDE*.H "*.C"

When you run ARGS.EXE, the first argument is expanded to the names of
all the *.H files in your Borland C++ INCLUDE directory. Note that the

Chapter 2, The main function 21

expanded argument strings include the entire path. The argument *.C is not
expanded because it is enclosed in quotes.

In the IDE, simply specify a project file (from the project menu) that
contains the following lines:

ARGS
WILDARGS.OBJ

W) If you prefer the wildcard expansion to be the default, modify your
standard CW32?.LIB library files to have WILDARGS.OB]J linked automati-
cally. To accomplish that, remove SETARGV and INITARGS from the
libraries and add WILDARGS. The following commands invoke the Turbo
librarian (TLIB) to modify all the standard library files (assuming the
current directory contains the standard C and C++ libraries and
WILDARGS.OBJ):

tlib CW32 -setargv +wildargs
tlib CW32MT - -setargv +wildargs
tlib -setargv +wildargs

Using —p (Pascal calling conventions)

If you compile your program using Pascal calling conventions (described in
the Programmer’s Guide, Chapter 2), you must remember to explicitly
declare main as a C type. Do this with the _ _cdecl keyword, like this:

int _ _cdecl main(int argc, char* argv(], char* envpl[])

The value main returns

The value returned by main is the status code of the program: an int. How-
ever, if your program uses the routine exit (or _exit) to terminate, the value
returned by main is the argument passed to the call to exit (or to _exit).

For example, if your program contains the call exit (1), the status is 1.

Passing file information to child processes

If your program uses the exec or spawn functions to create a new

process, the new process will normally inherit all of the open file handles
created by the original process. However, some information about these
handles will be lost, including the access mode used to open the file. For

22 , » Library Reference

example, if your program opens a file for read-only access in binary mode,
and then spawns a child process, the child process might corrupt the file by
writing to it, or by reading from it in text mode.

To allow child processes to inherit such information about open files, you
must link your program with the object file FILEINFO.OB]. For example:

BCC32 TEST.C \BC4\LIB\FILEINFO.OBJ

The file information is passed in the environment variable _C_FILE_INFO.
This variable contains encoded binary information, and your program
should not attempt to read or modify its value. The child program must
have been built with the C++ run-time library to inherit this information

Correctly. Other programs can ignore _C_FILE_INFO, and will not inherit
file information.

Multithread programs

-

32-bit programs can create more than one thread of execution. If your
program creates multiple threads, and these threads also use the C++ run-
time library, you must use the CW32MT.LIB or CW32MTI library instead.

Seetheonline Help The multithread libraries provide the _beginthread and _beginthreadNT

begin m%:‘é‘%esg functions, which you use to create threads. The multithread libraries also

“howtouse these provide the _endthread function, which terminates threads, and the global
functionsand ~ variable _threadid. This global variable contains the current thread’s
threadidina jdentification number (also known as the thread ID). The header file

PIOgraM. stddef.h contains the declaration of _threadid.

Slaaame

When you compile or link a program that uses multiple threads, you must
use the -WM compiler switch. For example:

BCC32 -WM THREAD.C

Special care must be taken when using the signal function in a multithread
program. See the description of the signal function for more information.

Chapter 2, The main function - 23

24

Library Reference‘

Programming
examples for each
function are available
in the online Help
system. You can
easily copy them from
Help and paste them
into your files.

Run-time functions

This chapter contains a detailed description of each function in the Borland
C++ library. The functions are listed in alphabetical order, although a few
of the routines are grouped by “family” (the exec... and spawn... functions,
for example) because they perform similar or related tasks.

Each function entry provides certain standard information. For instance,
the entry for free

m Tells you which header file(s) contains the prototype for free.

m Summarizes what free does.

m Gives the syntax for calling free.

m Gives a detailed description of how free is implemented and how it
relates to the other memory-allocation routines.

m Lists other language compilers that include similar functions.
m Refers you to related Borland C++ functions.

The following sample library entry lists each entry section and describes
the information it contains. The alphabetical listings start on page 27.

Sample function entry . header file name

Function
Syntax

The function is followed by the header file(s) containing the prototype for
function or definitions of constants, enumerated types, and so on used by
function.

Summary of what this function does.
function(modifier parameter[,...1);

This gives you the declaration syntax for function; parameter names are
italicized. The [, ...] indicates that other parameters and their modifiers can
follow.

Portability is indicated by marks (m) in the columns of the portability table.
A sample portability table is shown here:

Chapter 3, Run-time functions 25

Sample function entry

Remarks
Return value

See also

Example

26

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2

Each entry in the portability table is described in the following table. Any
additional restrictions are discussed in the Remarks section.

DOS Available for DOS.
UNIX . Available under UNIX andior POSIX.

Win 16 Compatible with 16-bit Windows programs running on Microsoft Windows 3.1, Windows
for Workgroups 3.1, and Windows for Workgroups 3.11. EasyWin users should see the -
Users Guide for information about using certain non-Windows functions (such as printf
and scanf) in programs that run under Windows.

Win 32 Available to 32-bit Windows programs running on Win32s 1.0, and Windows NT 3.1
applications.

ANSI C Defined by the ANSI C Standard.
ANSI C++ Included in the ANSI C++ proposal.
0S/2 Available for 0S/2.

If more than one function is discussed and their portability features are
identical, only one row is used. Otherwise, each function is represented in a
separate row. ‘

This section describes what function does, the parameters it takes, and any
details you need to use function and the related routines listed.

The value that function returns (if any) is given here. If function sets any
global variables, their values are also listed.

Routines related to function that you might want to read about are listed
here. If a routine name contains an ellipsis, it indicates that you should refer
to a family of functions (for example, exec... refers to the entire family of
exec functions: execl, execle, execlp, execlpe, execv, execve, execvp, and execvpe).

The function examples have been moved into online Help so that you can
easily cut-and-paste them to your own applications.

Library Reference

abort

abort | stdlib.h

Function Abnormally terminates a program.
Syntax void abort (void);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks abort causes an abnormal program termination by calling raise(SIGABRT). If
there is no signal handler for SIGABRT, then abort writes a termination
message (“Abnormal program termination”) on stderr, then aborts the
program by a call to _exit with exit code 3.

Return value abort returns the exit code 3 to the parent process or to the operating system
command processor.

See also assert, atexit, _exit, exit, raise, signal, spawn. ..

abs : stdlib.h

Function " Returns the absolute value of an integer.

Syntax int abs(int x); .

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks abs returns the absolute value of the integer argument x. If abs is called
when stdlib.h has been included, it’s treated as a macro that expands to
inline code.

If you want to use the abs function instead of the macro, include #undef abs
in your program, after the #include <stdlib.h>.

This function can be used with bed and complex types.

Return value The abs function returns an integer in the range of 0 to INT_MAX, with the
exception that an argument with the value INT_MIN is returned as
INT_MIN. The values for INT_MAX and INT_MIN are defined in header
file limits.h. :

See also bed, cabs, complex, fabs, labs

Chapter 3, Run-time functions 27

access

access

io.h
Function Determines accessibility of a file.
Syntax int access(const char *filename, int amode);
D0S UNIX Win 16 | Win 32 ANSI C | ANSI C++ | 0S/2
.
Remarks

Return value

See also

acos, acosl

access checks the file named by filename to determine if it exists, and
whether it can be read, written to, or executed.

The list of amode values is as follows:

06 Check for read and write permission
04 Check for read permission

02 Check for write permission

01 Execute (ignored)

00 Check for existence of file

Under DOS, OS/2, and Windows (16- and 32-bit) all existing files have read
access (amode equals 04), so 00 and 04 give the same result. Similarly, amode
values of 06 and 02 are equivalent because under DOS write access implies
read access.

If filename refers to a directory, access simply determines whether the
directory exists.

If the requested access is allowed, access returns 0; otherwise, it returns a
value of -1, and the global variable errno is set to one of the following
values:

EACCES DPermission denied
ENOENT Path or file name not found

chmod, fstat, stat

math.h

Function

28

Calculates the arc cosine.

Library Reference

acos, acosi

Syntax double acos (double x);
long double acosl{long double x);

acos DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2
acos! []] [[]]
[] [] n n
Remarks acos returns the arc cosine of the input value. acosl is the long double

version; it takes a long double argument and returns a long double result.
Arguments to acos and acosl must be in the range -1 to 1, or else acos and
acosl return NAN and set the global variable errno to

EDOM Domain error
This function can be used with bed and complex types.

Return value acos and acosl of an argument between -1 and +1 return a value in the range
0 to pi. Error handling for these routines can be modified through the
functions _matherr and _matherrl.

See also asin, atan, atan2, bed, complex, cos, _matherr, sin, tan
alloca malloc.h
Function Allocates temporary stack space.

void *alloca(size_t size);

Syntax

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0S/2

Remarks alloca allocates size bytes on the stack; the allocated space is automatically
freed up when the calling function exits.

Because alloca modifies the stack pointer, do not place calls to alloca in an-
expression that is an argument to a function.

@3@} The alloca function should not be used in the try-block of a C++ program. If
an exception is thrown any values placed on the stack by alloca will be
corrupted.

If the calling function does not contain any references to local variables in
the stack, the stack will not be restored correctly when the function exits,

Chapter 3, Run-time functions 29

alloca

resulting in a program crash. To ensure that the stack is restored correctly,
use the following code in the calling function:

char *p;
char dummy(5];

dummy [0] = 0;

p = alloca(nbytes);

Return value If enough stack space is available, alloca returns a pointer to the allocated
stack area. Otherwise, it returns NULL.
See also malloc
asctime time.h
Function Converts date and time to ASCIL
Syntax char *asctime(const struct tm *tblock);
DOS | UNIX | Win 16 | Win32 | ANSI C | ANSI C++ | 0S/2
| | L] L] | [] a a
Remarks asctime converts a time stored as a structure in *tblock to a 26-character
string of the same form as the ctime string:
Sun Sep 16 01:03:52 1973\n\0
Return value asctime returns a pointer to the character string containing the date and
time. This string is a static variable that is overwritten with each call to
asctime. \
See also ctime, difftime, ftime, gmtime, localtime, mktime, strftime, stime, time, tzset
asin, asinl math.h
Function Calculates the arc sine.
Syntax double asin(double x);
long double asinl(long double x);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C+ | 0S/2
asin L} L] " L} u L] u
asinl . ‘ ' '
30 Library Reference

Remarks

Return value

asin, asini

asin of a real argument returns the arc sine of the input value. sinl is the
long double version; it takes a long double argument and returns a long
double result. .

Real arguments to asin and asinl must be in the range —1 to 1, or else asin
and asinl return NAN and set the global variable errno to

EDOM Domain error
This function can be used with bcd and complex types.

asin and asinl of a real argument return a value in the range —pi/2 to pi/2.
Error handling for these functions can be modified through the functions
_matherr and _matherrl.

See also acos, atan, atan2, bed, complex, cos, _matherr, sin, tan

assert assert.h

Function Tests a condition and possibly aborts.

Syntax void assert(int test);

DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0s/2
a |] L] |] 1 . |]

Remarksl assert is a macro that expands to an if statement; if test evaluates to zero,
assert prints a message on stderr and aborts the program (by calling abort).
assert displays this message:

Assertion failed: test, file filename, line linenum
The filename and linenum listed in the message are the source file name and
line number where the assert macro appears.
If you place the #define NDEBUG directive (“no debugging”) in the source
code before the #include <assert.h> directive, the effect is to comment out
the assert statement. , '

Return value None.

See also abort

atan, atanl

math.h

Function

Calculates the arc tangent.

Chapter 3, Run-time functions 3

atan, atanl

Syntax double atan(double x);
long double atanl(long double x);
os | unix | win16 | Win32 | ANSIC [ANSI e+ [072
atan L] n u n [} n L]
atanf . N * "
Remarks atan calculates the arc tangent of the input value.
atanl is the long double version; it takes a long double argument and
returns a long double result. This function can be used with bcd and complex
types. ;
Return value atan and atanl of a real argument return a value in the range —pi/2 to pi/2.
Error handling for these functions can be modified through the functions
_matherr and _matherrl.
See also acos, asin, atan2, bed, complex, cos, _matherr, sin, tan
atan2, atan2| math.h
Function Calculates the arc tangent of y/x.
Syntax double atan2(double y, double x);
long double atan2l(long double y, long double x);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
atan2 L} u L} [] []]]
atan2| ' * * .
Remarks

Return value

See also

32

atan2 returns the arc tangent of y/x; it produces correct results even when
the resulting angle is near pi/2 or —pi/2 (x near 0). If both x and y are set to
0, the function sets the global variable errno to EDOM, indicating a domain
error. :

atan2l is the long double version; it takes long double arguments and
returns a long double result.

atan2 and atan2l return a value in the range —pi to pi. Error handling for
these functions can be modified through the functions _matherr and
_matherrl.

acos, asin, atan, cos, _matherr, sin, tan

Library Reference

atexit

atexit stdlib.h
Function Registers termination function.
Syntax int atexit(void (_USERENTRY * func) (void));
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2
.
Remarks

Return value

See also

atof, _atold

atexit registers the function pointed to by func as an exit function. Upon
normal termination of the program, exit calls func just before returning to
the operating system. func must be used with the USERENTRY calling
convention.

Each call to atexit registers another exit function. Up to 32 functions can be
registered. They are executed on a last-in, first-out basis (that is, the last
function registered is the first to be executed).

atexit returns 0 on success and nonzero on failure (no space left to register
the function).

abort, _exit, exit, spawn...

math.h

Function
Syntax
atof
_atold
Remarks

Converts a string to a floating-point number.

double atof (const char *s);
long double _atold(const char *s);

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2
] .]]] [])]
]] "]

atof converts a string pointed to by s to double; this function recognizes the
character representation of a floating-point number, made up of the
following;:

m An optional string of tabs and spaces

m An optional sign

m A string of digits and an optional decimal point (the digits can be on both-
sides of the decimal point)

m An optional e or E followed by an optional signed integer

Chapter 3, Run-time functions A 33

atof, _atold

The characters must match this generic format:
[whitespace] [sign] [ddd] [.] [ddd] [e | E[sign]ddd]

atof also recognizes +INF and -INF for plus and minus infinity, and +NAN
and -NAN for Not-a-Number.

-In this function, the first unrecognized character ends the conversion.

_atold is the long double version; it converts the string pointed to by s to a
long double.

strtod and _strtold are similar to atof and _atold; they provide better error
detection, and hence are preferred in some applications.

Return value atof and _atold return the converted value of the input string.
If there is an overflow, atof (or _atold) returns plus or minus HUGE_VAL (or
_LHUGE_VAL), errno is set to ERANGE (Result out of range), and _matherr
(or _matherrl) is not called.
See also atoi, atol, ecvt, fcvt, gcot, scanf, strtod
atoi stdlib.h
Function Converts a string to an integer.
Sy_ntax " int atoi (coﬁst char *s);
pos | unix | winie | win32 | ansrc | awsice+ | os/2
[| | L] |] n |] a
Remarks

Return value

34

atoi converts a string pointed to by s to int; afoi recognizes (in the following
order)

m An optional string of tabs and spaces
m An optional sign
m A string of digits

The characters must match this generic format:

[ws] [sn] [ddd]

In this function, the first unrecognized character ends the conversion. There
are no provisions for overflow in atoi (results are undefined).

atoi returns the converted value of the input string. If the string cannot be
converted to a number of the corresponding type (int), atoi returns 0.

Library Reference

atoi

See also atof, atol, ecvt, fcut, gcvt, scanf, strtod
atol stdlib.h
Function Converts a string to a long.
Syntax long atol (const char *s);
p0s | UNIX | Win16 | wWin32 | ANSIC |, ANSI C++ | 05/
Remarks atol converts the string pointed to by s to long. afol recognizes (in the
following order)
m An optional string of tabs and spaces
m An optional sign
m A string of digits
The characters must match this generic format:
[ws] [sn] [ddd]
In this function, the first unrecognized character ends the conversion. There
are no provisions for overflow in atol (results are undefined).
Return value atol returns the converted value of the input string. If the string cannot be
converted to a number of the corresponding type (long), atol returns 0.
See also atof, atoi, ecvt, fcut, gcvt, scanf, strtod, strtol, strtoul
_atold
See atof.
bdos dos.h
Function Accesses DOS system calls.
Syntax int bdos(int dosfun, unsigned dosdx, unsigned dosal);

DOS UNIX | Win 16 Win 32 ANSI C ANST C++ 0s/2

Chapter 3, Run-time functions , 35

bdos

Return value

See also

36

Remarks bdos provides direct access to many of the DOS system calls. See your DOS
reference manuals for details on each system call.
For system calls that require an integer argument, use bdos; if they require a
pointer argument, use bdosptr. In the large data models (compact, large, and
huge), it is important to use bdosptr instead of bdos for system calls that
require a pointer as the call argument.
dosfun is defined in your DOS reference manuals.
dosdx is the value of register DX.
dosal is the value of register AL.
Return value The return value of bdos is the value of AX set by the system call.
‘See also bdosptr, geninterrupt, int86, int86x, intdos, intdosx
bdosptr dos.h
Function Accesses DOS system calls.
Syntax int bdosptr(int dosfun, void *argument, unsigned dosal);
D0S | UNIX | Win16 | Win32 | ANSI C | ANSI C++ [0s/2
Remarks

bdosptr provides direct access to many of the DOS system calls. See your
DOS reference manuals for details of each system call.

For system calls that require an integer argument, use bdos; if calls require a
pointer argument, use bdosptr. In the large data models (compact, large, and
huge), it is important to use bdosptr for system calls that require a pointer as
the call argument. In the small data models, the argument parameter to
bdosptr specifies DX; in the large data models, it gives the DS:DX values to
be used by the system call.

dosfun is defined in your DOS reference manuals. dosal is the value of
register AL.

The return value of bdosptr is the value of AX on success or -1 on failure.
On failure, the global variables errno and _doserrno are set.

bdos, geninterrupt, int86, int86x, intdos, intdosx

Library Reference

_beginthread

_beginthread process.h

Function Starts execution of a new thread.

Syntax unsigned long _beginthread(_USERENTRY (*start_address)(void *),

unsigned stack_size, void *arglist)
DOS | UNIX | Win 16 | Win32 | ANSIC | ANSI C++ | 0s/2

Remarks The _beginthread function creates and starts a new thread. The thread starts
execution at start_address. (Note that start_address must be declared to be
_USERENTRY.)The size of its stack in bytes is stack_size; the stack is
allocated by the operating system after the stack size is rounded up to the
next multiple of 4096. The thread is passed arglist as its only parameter; it
can be NULL, but must be present. The thread terminates by simply
returning, or by calling _endthread.

W Either this function or _beginthreadNT must be used instead of the operating
system thread-creation API function because _beginthread and
_beginthreadNT perform initialization required for correct operation of the
run-time library functions.

This function is available only in the multithread libraries.
The function is also available for OS/2. However, under OS/2 the function
returns and int and does not require _USERENTRY.

Return value _beginthread returns the handle of the new thread. In the event of an error,
the function returns -1, and the global variable errno is set to one of the
following values: :

EAGAIN Too many threads
EINVAL Invalid request
See also the Win32 description of GetLastError.

See also _beginthreadNT, _endthread

_beginthreadNT process.h

Function Starts executi(;n of a new thread under Windows NT.

Chapter 3, Run-time functions ’ 37

" _beginthreadNT

Syntax

Remarks

Return value

See also

38

unsigned long _beginthreadNT(void (_USERENTRY *start_address) (void *),
unsigned stack_size, void *arglist,
void *security_attrib, unsigned long create_flags,
unsigned long *thread_id);

DOS UNIX Win 16 .| Win 32 ANSI C ANST C++ 0s/2

All multithread Windows NT programs must use _beginthreadNT or the
_beginthread function instead of the operating system thread-creation API
function because _beginthread and _beginthreadNT perform initialization
required for correct operation of the run-time library functions. The
_beginthreadNT function provides support for the operating system
security. These functions are available only in the multithread libraries.

The _beginthreadNT function creates and starts a new thread. The thread

starts execution at start_address. (Note that start_address must be declared to

be . USERENTRY.) The size of its stack in bytes is stack_size; the stack is

allocated by the operating system after the stack size is rounded up to the

next multiple of 4096. The thread arglist can be NULL, but must be present.
.The thread terminates by simply returning, or by calling _endthread.

The function uses the security_attr pointer to access the
SECURITY_ATTRIBUTES structure. The structure contains the security
attributes for the thread. If security_attr is NULL, the thread is created with
default security attributes. The thread handle is not inherited if security_attr
is NULL. ' ' ‘

The function reads the create_flags variable for flags that provide additional
information about the thread creation. This variable can be zero, specifying
that the thread will run immediately upon creation. The variable can also
be CREATE_SUSPENDED, in which case the thread will not run until the
ResumeThread function is called. ResumeThread is provided by the Win32
API. See the Win32 description of ResumeThread for additional information.

The function initializes the thread_id variable with the thread identifier.

_beginthreadNT returns the handle of the new thread. In the event of an
error, the function returns -1, and the global variable errno is set to one of
the following values:

EAGAIN Too many threads
EINVAL Invalid request

_beginthread, _endthread

Library Reference

biosequip

biosequip bios.h
Function Checks equipment.
Syntax int biosequip(void);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 05/2

Remarks biosequip uses BIOS interrupt 0x11 to return an integer describing the equip-
ment connected to the system.
Return value The return value is interpreted as a collection of bit-sized fields. The IBM

PC values follow:

Bits 14-15 Number of parallel printers installed
00 = 0 printers
01 =1 printer
10 = 2 printers
11 = 3 printers

Bit 13 Serial printer attached
Bit 12 Game I/0O attached

DOS only sees two Bits 9-11 Number of COM ports

ports but can be 000 = 0 ports
pushed to see four;

the IBM PS/2 can see 001 =1 port

up to eight. 010 = 2 ports

- 011 = 3 ports

100 = 4 ports

101 =5 ports

110 = 6 ports

111 =7 ports

Bit 8 Direct memory access (DMA)
0 = Machine has DMA ,
1 = Machine does not have DMA; for example, PC Jr.

Bits 6-7 Number of disk drives

00 =1 drive
01 = 2 drives
10 = 3 drives

11 = 4 drives, only if bit 0 is 1

Chapter 3, Run-time functions ‘ 39

biosequip

Bits 4-5 Initial video mode
00 = Unused
01 = 40x25 BW with color card
10 = 80x25 BW with color card
" 11 = 80x25 BW with mono card
Bits 2-3 Motherboard RAM size
00 =16K
01=32K
10 =48K
11 =64K
Bit1 Floating-point coprocessor
Bit 0 Boot from disk
_bios_equiplist bios.h
Function Checks equipment.
Syntax unsigned _bios_equiplist (void);
DOS | UNIX | Win 16 | Win32 | ANSIC | ANSI C++ | 0s/2
Remarks _bios_equiplist uses BIOS interrupt 0x11 to return an integer describing the
equipment connected to the system.
Return value The return value is interpreted as a collection of bit-sized fields. The IBM
' PC values follow:
Bits 14-15 Number of parallel printers installed
00 = 0 printers
01 =1 printer
10 = 2 printers
11 = 3 printers
Bit 13 Serial printer attached
Bit 12 Game I/0O attached
Bits 9-11 Number of COM ports
000 = 0 ports
001 =1 port
010 = 2 ports
011 =3 ports
100 = 4 ports
101 =5 ports
40 Library Reference

_bios_equiplist

110 = 6 ports | H
111 =7 ports '

Bit 8 Direct memory access (DMA)
0 = Machine has DMA
1 = Machine does not have DMA; for example, PC Jr.

Bits 6-7 Number of disk drives

00 =1 drive

01 =2 drives

10 = 3 drives

11 =4 drives, only if bit 0 is 1
Bit 4-5 Initial video mode

00 = Unused

01 = 40x25 BW with color card
10 = 80x25 BW with color card
11 = 80x25 BW with mono card

Bits 2-3 Motherboard RAM size
00 =16K
01 =32K
10 =48K
11 = 64K
Bit 1 Floating-point coprocessor
Bit0 Boot from disk
bioskey - bios.h
Function Keyboard interface, using BIOS services directly.
Syntax int bioskey(int cmd);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks bioskey performs various keyboard operations using BIOS interrupt 0x16.
The parameter cmd determines the exact operation.

Return value The value returned by bioskey depends on the task it performs, determined
by the value of cmd:

0 If the lower 8 bits are nonzero, bioskey returns the ASCII character
for the next keystroke waiting in the queue or the next key
pressed at the keyboard. If the lower 8 bits are zero, the upper 8

Chapter 3, Run-time functions ‘ 41

bioskey

bits are the extended keyboard codes defined in the IBM PC
Technical Reference Manual.

1 This tests whether a keystroke is available to be read. A return
value of zero means no key is available. The return value is
OXFFFFF (-1) if Cri-Brk has been pressed. Otherwise, the value of
the next keystroke is returned. The keystroke itself is kept to be
returned by the next call to bioskey that has a cmd value of zero.

2 Requests the current shift key status. The value is obtained by
ORing the following values together: :

Bit 7 0x80 Insert on

Bit6 0x40 Caps on

Bit 5 0x20 Num Lock on
Bit 4 0x10 Scroll Lock on
Bit 3 0x08 Alt pressed

Bit 2 0x04 Ctrl pressed

Bit 1 0x02 < Shift pressed
Bit 0 0x01 — Shift pressed

biosmemory bios.h
Function Returns memory size.
- Syntax int biosmemory (void);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks biosmemory returns the size of RAM memory using BIOS interrupt 0x12.
This does not include display adapter memory, extended memory, or
expanded memory.

Return value biosmemory returns the size of RAM memory in 1K blocks.
_bios_memsize bios.h
Function Returns memory size.

Syntax unsigned _bios_memsize(void);

42 : . . Library Reference

Remarks

Return value

_bios_memsize

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2

_bios_memsize returns the size of RAM memory using BIOS interrupt 0x12.
This does not include display adapter memory, extended memory, or
expanded memory.

_bios_memsize returns the size of RAM memory in 1K blocks.

biostime bios.h
Function Reads or sets the BIOS timer.
Syntax long biostime(int cmd, long newtime);
D0S | UNIX | Win16 | win32 [ANSIC | ANSI C++ | 0s/2
Remarks biostime either reads or sets the BIOS timer. This is a timer counting ticks
since midnight at a rate of roughly 18.2 ticks per second. biostime uses
BIOS interrupt Ox1A.
If cmd equals 0, biostime returns the current value of the timer. If cmd
.equals 1, the timer is set to the long value in newtime.
Return value When biostime reads the BIOS timer (cmd = 0), it returns the timer’s current
value. :
_bios_timeofday : ‘ bios.h
Function Reads or sets the BIOS timer.
Syntax unsigned _bios_timeofday (int cmd, long *timep);
DOS | UNIX | Win16 | Win32 | ANSIC. | ANSI C++ | 05/2
Remarks _bios_timeofday either reads or sets the BIOS timer. This is a timer counting

ticks since midnight at a rate of roughly 18.2 ticks per second.
_bios_timeofday uses BIOS interrupt Ox1A.

Chapter 3, Run-time functions ‘ 43

_bios_timeofday

Return value

hsearch

The cmd parameter can be either of the following values:

_TIME_GETCLOCK The function stores the current BIOS timer value into
the location pointed to by timep. If the timer has not
been read or written since midnight, the function
returns 1. Otherwise, the function returns 0.

_TIME_SETCLOCK The function sets the BIOS timer to the long value
pointed to by timep. The function does not return a
value.

The _bios_timeofday returns the value in AX that was set by the BIOS timer
call.

stdlib.h

Function
Syntax

Remarks

44

Binary search of an array.

void *bsearch(const void *key, const void *base, size_t nelem, size_t width,
int (_USERENTRY *fcmp) (const void *, const void *));

D0S UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

bsearch searches a table (array) of nelem elements in memory, and returns
the address of the first entry in the table that matches the search key. The

‘array must be in order. If no match is found, bsearch returns 0. Note that

because this is a binary search, the first matching entry is not necessarily
the first entry in the table.

The type size_t is defined in stddef.h header file.
m nelem gives the number of elements in the table.
m width specifies the number of bytes in each table entry.

The comparison routine fcmp must be used with the _'USERENTRY calling
convention.

femp is called with two arguments: elem1 and elem?2. Each argument points
to an item to be compared. The comparison function compares each of the
pointed-to items (*elem1 and *elem2), and returns an integer based on the
results of the comparison.

Library Reference

Return value

See also

cabs, cabsl

bsearch

For bsearch, the fcmp return value is

m< 0 if *eleml < *elem?2
m==0 if *elem1 == *elem2
u> 0 if *eleml > *elem?2

bsearch returns the address of the first entry in the table that matches the
search key. If no match is found, bsearch returns 0.

Ifind, Isearch, gsort

math.h

Function
Syntax
cabs
cabsl
Remarks

Calculates the absolute value of complex number.

double cabs(struct complex z);
long double cabsl(struct _complexl z);

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2

cabs is a macro that calculates the absolute value of z, a complex number. z
is a structure with type complex. The structure is defined in math.h as

struct complex {
double x, y;
};

struct _complexf {
long double x, y;
i

where x is the real part, and y is the imaginary part.

Calling cabs is equivalent to calling sqrt with the real and imaginary
components of z, as shown here:

sqrt(z.x * z.x + z.y * z.y)

cabsl is the long double version; it takes a structure with type _complexl as
an argument, and returns a long double result.

If you're using C++, you may also use the complex class defined in
complex.h, and use the function abs to get the absolute value of a complex
number.

Chapter 3, Run-time functions 45

cabs, cabsl!

Return value

See also

calloc

cabs (or cabsl) returns the absolute value of z, a double. Oﬁ overflow, cabs (or

~ cabsl) returns HUGE_VAL (or _LHUGE_VAL) and sets the global variable

errno to
ERANGE Result out of range

Error handling for these functions can be modified through the functions
_matherr and'_matherrl.

abs, complex, errno (global variable), fabs, labs, _matherr

stdlib.h

Function

Syntax

" Remarks

Memory models are
available only for 16-
bit applications.

Allocates main memory.

‘void *calloc(size_t nitems, size_t size);

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2

‘calloc provides access to the C memory heap. The heap is available for

dynamic allocation of variable-sized blocks of memory. Many data
structures, such as trees and lists, naturally employ heap memory
allocation.

All the space between the end of the data segment and the top of the
program stack is available for use in the small data models (small, and
medium), except for a small margin immediately before the top of the
stack. This margin allows room for the application to grow on the stack,
and provides a small amount of room needed by the operating system.

In the large data models (compact, large, and huge), all space beyond the
program stack to the end of physical memory is available for the heap.

calloc allocates a block of size nitems x size. The block is cleared to 0. If you
want to allocate a block larger-than 64K, you must use farcalloc.

Return value calloc returns a pointer to the newly allocated block. If not enough space
exists for the new block or if nitems or size is 0, calloc returns NULL.

See also farcalloc, free, malloc, realloc -

ceil, ceill math.h

Function Rounds up.

46 Library Reference

Syntax

Remarks

Return value

ceil

ceill

ceil, ceill

double ceil(double x);

long double ceill(long double x); (:
D0S UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2
[] | [] a n n n
a 1 § . | | |]

ceil finds the smallest integer not less than x. ceill is the long double version;
it takes a long double argument and returns a long double result.

These functions return the integer found as a double (ceil) or a long double
(ceill).

See also floor, fmod
_c_exit process.h
Function Performs _exit cleanup without terminating the program.
Syntax void _c_exit(void);
0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
n n n .
Remarks _c_exit performs the same cleanup as _exit, except that it does not terminate

the calling process.

Return value None.
See also abort, atexit, _cexit, exec..., _exit, exit, signal, spawn...
_cexit process.h
Function Performs exit cleanup without terminating the program.
Syntax void _cexit(void); |
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
Remarks _cexit performs the same cleanup as exit, except that it does not close files or

terminate the calling process. Buffered output (waiting to be output) is
written, and any registered “exit functions” (posted with atexit) are called.

Chapter 3, Run-time functions ' ' 47

_cexit

Return value None. ‘

See also abort, atexit, _c_exit,exec..., _exit, exit, signal, spawn...

cgets conio.h

Function Reads a string from the console.

Syntax char *cgets(char *str);

0s | unix | win16 | Win32 | ANSIC | ANSI C++ | 05/2
" a n

Remarks cgets reads a string of characters from the console, storing the string (and
the string length) in the location pointed to by str.
cgets reads characters until it encounters a carriage-return/linefeed
(CR/LF) combination, or until the maximum allowable number of char-
acters have been read. If cgets reads a CR/LF combination, it replaces the
combination with a \0 (null character) before storing the string.
Before cgets is called, set str[0] to the maximum length of the string to be
read. On return, str[1] is set to the number of characters actually read. The
characters read start at st7[2] and end with a null character. Thus, str must
be at least str[0] plus 2 bytes long. .

W This function should not be used in Win32s or Win32 GUI applications.
Return value On success, cgets returns a pointer to str{2].
See also

_chain_intr

cputs, fgets, getch, getche, gets

dos.h

Function

Syntax

Remarks

48

~ Chains to another interrupt handler.

void _chain_intr(void (interrupt far *newhandler)());

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

The _chain_intr function passes control from the currently executing
interrupt handler to the new interrupt handler whose address is
newhandler. The current register set is not passed to the new handler.
Instead, the new handler receives the registers that were stacked (and

Library Reference

_chain_intr

possibly modified in the stack) by the old handler. The new handler can
simply return, as if it were the original handler. The old handler is not C
entered again.

The _chain_intr function can be called only by C interrupt functions. It is
useful when writing a TSR that needs to insert itself in a chain of interrupt
handlers (such as the keyboard interrupt).

Return value - None.
See also _dos_getvect, _dos_setvect,
chdir dirh
Function Changes current directory.
Syntax int chdir({const char *path);

00s | unIx | win16 | Win32 | ANSIC | ANSI C++ | o05/2

] n | | |] B

Remarks chdir causes the directory specified by path to become the current working

Return value

directory. path must specify an existing directory.
A drive can also be specified in the path argument, such as
chdir ("a:\\BC")

but this changes only the current directory on that drive; it doesn’t change
the active drive.

. Only the current process is affected.

Upon successful completion, chdir returns a value of 0. Otherwise, it returns
a value of -1, and the global variable errno is set to

ENOENT . Path or file naine not found

See also getcurdir, getcwd, getdisk, mkdir, rmdir, setdisk, system
_chdrive direct.h
Function ‘Sets current disk drive.

int _chdrive(int drive); -

Syntax

Chapter 3, Run-time functions ' 49

_chdrive

Remarks

Return value

DoS UNIX Win 16 | Win 32 ANSI C ANSI C++ 0s/2

_chdrive sets the current drive to the one associated with drive: 1 for A,
2 for B, 3 for C, and so on.

This function changes the current drive of the parent process.

_chdrive returns 0 if the current drive was changed successfully; otherwise, -
it returns —1.

See also _dos_setdrive
_chmod dos.h, io.h
Obsolete function. See _rtl_chmod.
chmod sys\stat.h
Function Changes file access mode. .
Syntax int chmod(const char *path, int amode);
0 | UNIX | Win16 | Win32 [ANSIC | ANSI C++ | 05/2
chmod sets the file-access permissions of the file given by path according to

Remarks

Return value

50

-

the mask given by amode. path points to a string.

amode can contain one or both of the symbolic constants S_TWRITE and
S_IREAD (defined i in sys\stat.h).

Value of amode Access permission
S_IWRITE Permission to write
S_IREAD Permission to read
S_IREADIS_IWRITE - Permission to read and write

Write permission implies read permission.

Upon successfully changing the file access mode, chmod returns 0. Other-
wise, chmod returns a value of -1.

Library Reference

chmod

In the event of an error, the global variable errno is set to one of the
following values: C

EACCES Permission denied
ENOENT Path or file name not found

See also access, _rtl_chmod, fstat, open, sopen, stat
chsize io.h
Function Changes the file size.
Syntax int‘ chsize(int handle, long size);
D0S | UNIX | wWini16 | wWin32 [anstc | ansrces | o0s/2
Remarks chsize changes the size of the file associated with handle. It can truncate or
-extend the file, depending on the value of size compared to the file’s original
size. '
The mode in which you open the file must allow writing.
If chsize extends the file, it will append null characters (\0). If it truncates
the file, all data beyond the new end-of-file indicator is lost.
Return value On success, chsize returns 0. On failure,vit returns -1 and the global variable
errno is set to one of the following values:
EACCES . Permission denied
EBADF Bad file number -
ENOSPC No space left on device
See also close, _rtl_creat, creat, open
_clear87 float.h
Function Clears floating-point status word.
Syntax unsigned int _clear87 (void);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Chapter 3, Run-time functions 51

_clear87

Remarks

Return value

_clear87 clears the floating-point status word, which is a combination of the
80x87 status word and other conditions detected by the 80x87 exception
handler. ‘

The bits in the value returned indicate the floating-point status before it
was cleared. For information on the status word, refer to the constants
defined in float.h.

Return value

See also _control87, _fpreset, _status87
clearerr stdio.h
Function Resets error indication.
Syntax void clearerr (FILE *stream);
pos | unix | win16 | wWin32 | ANSIC | ANSI c++ | o0s/2
n 1 | L] | § |] n a
Remarks clearerr resets the named stream’s error and end-of-file indicators to 0. Once

the error indicator is set, stream operations continue to return error status
until a call is made to clearerr or rewind. The end-of-file indicator is reset
with each input operation.

None.

See also eof, feof, ferror, perror, rewind
clock time.h
Function Determines processor time.
Syntax clock_t clock(void);
pos | unix | wini6 | win32 | anstc | anstces | oss2
[n | L] n |
Remarks clock can be used to determine the time interval between two events. To

Return value

52

determine the time in seconds, the value returned by clock should be
divided by the value of the macro CLK_TCK.

The clock function returns the processor time elapsed since the beginning of

the program invocation. If the processor time is not available, or its value

cannot be represented, the function returns the value -1.

Library Reference

clock

See also time
_Close io.h
Obsolete function. See _rtl_close.
close io.h
Function Closes a file.
Syntax int close(int handle);
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2
L] 1 L] a L]
Remarks close closes the file associated with handle, a file handle obtained from a
_rtl_creat, creat, creatnew, creattemp, dup, dup2, _rtl_open, or open call.
WP The function does not write a Cir-Z character at the end of the file. If you
want to terminate the file with a Cir-Z, you must explicitly output one.
Return value Upon successful completion, close returns 0. Otherwise, the function returns
a value of 1.
close fais if handle is not the handle of a valid, open file, and the global
variable errno is set to
EBADF Bad file number
See also chsize, creat, creatnew, dup, fclose, open, _rtl_close, sopen
closedir dirent.h
Function Closes a directory stream.
Syntax int closedir(DIR *dirp);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
n n n L] |]
Remarks

On UNIX platforms, closedir is available on POSIX-compliant systems.

Chapter 3, Run-time functions - . 53

closedir

Return value

The closedir function closes the directory stream dirp, which must have been
opened by a previous call to opendir. After the stream is closed, dirp no
longer points to a valid directory stream.

If closedir is successful, it returns 0. Othe;wise, closedir returns ~1 and sets

the global variable errno to N
EBADF The dirp argument does not point to a valid open directory
stream

See also errno (global variable), opendir, readdir, rewinddir
clreol conio.h
Function Clears to end of line in text window.
Syntax void clreol(void);

DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2

[]] 1] L}

Remarks

-

Return value

clreol clears all characters from the cursor position to the end of the line
within the current text window, without moving the cursor.

This function should not be used in Win32s or Win32 GUI applications.

None.

See also clrscr, delline, window
clrscr conio.h
Function Clears the text-mode window.
Syntax void clrscr(void);
DOS | UNIX | Win 16 | Win32 | ANSI'C | ANSI C++ | 0S/2
[] [} [] ! []
Remarks clrscr clears the current text window and places the cursor in the upper
- left-hand corner (at position 1,1).

- mp This function should not be used in Win32s or Win32 GUI applications.
Return value None.
See also clreol, delline, window
54 Library Reference

_control87

_control87 C » © . float.h g
: | — I
Function Manipulates the floating-point control word.
Syntax unsigned int _control87(unsigned int newcw, unsigned int mask);
s | UNIX | Win16 | Win32 | ANsIC | ANSI ce+ | 0s/2

Remarks _control87 retrieves or changes the floating-point control word.

The floating-point control word is an unsigned int that, bit by bit, specifies
‘certain modes in the floating-point package; namely, the precision, infinity,
and rounding modes. Changing these modes lets you mask or unmask
floating-point exceptions.
_control87 matches the bits in mask to the bits in newcw. If a mask bit equals
1, the corresponding bit in newcw contains the new value for the same bit in
the floating-point control word, and _control87 sets that bit in the control
word to the new value. ’
Here's a simple illustration:

Original control word: . 0100 0011 0110 0011

mask: ' 1000 0001 0100 1111

newcw: - 1110 1001 .- 0000 0101

Changing bits: laxx xxx1 x0xx 0101
If mask equals 0, _control87 returns the floating-point control word w1thout

. altering it.

Return value The bits in the value returned reflect the new ﬂoatiﬁg-point control word.
For a complete definition of the bits returned by _control87, see the header
file float.h. _

See also _clear87, _fpreset, signal, _status87

cos, cosl ' | math.h

Function - Calculates the cosine of a value.

Chapter 3, Run-time functions o | 55

€os, cosl
Syntax

cos

cos!

Remarks

Return value

See also

cosh, coshl

double cos{double x);
long double cosl(long double x);

DOS UNIX Win 16 Win 32 ANST € “ANSI C++ 0s/2
[}] [} [] [] =
]]] .

cos computes the cosine of the input value. The angle is specified in radians.

cosl is the long double version; it takes a long double argument and returns
a long double result.

This function can be used with bcd and complex types.

cos of a real argument returns a value in the range -1 to 1. Error handling
for these functions can be modified through _matherr (or _matherrl).

acos, asin, atan, atan2, bed, complex, _matherr, sin, tan

math.h

Function
Syntax
cosh
coshl
Remarks

Return value

See also

56

Calculates the hyperbolic cosine of a value.

double cosh(double x);
long double coshl (long double x);

DOS UNIX - | Win 16 Win 32 ANST C ANST C++ 0s/2

cosh computes the hyperbolic cosine, (e* + €*)/2. coshl is the long double
version; it takes a long double argument and returns a long double result.

This function can be used with bcd and complex types.

cosh returns the hyperbolic cosine of the argument.

‘When the correct value would create an overflow, these functions return

the value HUGE_VAL (cosh) or _LHUGE_VAL (coshl) with the appropriate
sign, and the global variable errno is set to ERANGE. Error handling for
these functions can be modified through the functions _matherr and
_matherrl. :

acos, asin, atan, atan2, bed, complex, cos, _matherr, sin, sinh, tan, tanh

Library Reference

country

country dos.h
Function Returns country-dependent information.
Syntax struct COUNTRY *country(int xcode, struct COUNTRY *cp);
D0S | UNIX | Win16 | Win32 [ANSI C [ANSI C++ | 05/2
n [;]
Remarks country specifies how certain country-dependent data (such as dates, times,
) and currency) will be formatted. The values set by this function depend on
The country function . . .
isnotaffectedby the operating system version being used.
setlocale.

If cp has a value of -1, the current country is set to the value of xcode, which
must be nonzero. The COUNTRY structure pointed to by cp is filled with’
the country-dependent information of the current country (if xcode is set to

zero), or the country given by xcode.

The structure COUNTRY is defined as follows:

struct COUNTRY{

int co_date; /* date format */
char co_curr(5]; /* currency symbol */
char co_thsep[2]; /* thousands separator */
char co_desep(2]; /* decimal separator */
char co_dtsep(2]; /* date separator */
char co_tmsep(2]; /* time separator */
char co_currstyle; /* currency style */

.- char co_digits; /* significant digits in currency */
char co_time; /* time format */
long co_case; /* case map */
char co_dasep[2]; /* data separator */
char co_fill[10]; /% filler */

}i
The date format in co_date is

m 0 for the U.S. style of month, day, year.
m 1 for the European style of day, month, year.
m 2 for the Japanese style of year, month, day.

Chapter 3, Run-time functions

- 57

country

Return value

Curfency display style is given by co_currstyle as follows:
m 0 for the currency symbol to precede the value with no spaces between
the symbol and the number.

m 1 for the currency symbol to follow the value with no spaces between the
number and the symbol.

m 2 for the currency symbol to precede the value with a space after the
symbol. _

m 3 for the currency symbol to follow the number. with a space before the
symbol :

On success, country returns the pointer argument cp. On error, it returns
NULL.

See printffor details
on format specifiers.

b B

Return value

See also

58

cprintf conio.h
_ Function Writes formatted output to the screen.
Syntax int cprintf{const char *format [, argument, ...]);
D0s | uNix | Winl6 | Win32 | anstc | AnsI e+ | os/2
]) [. .
Remarks cprintf accepts a series of arguments, applies to each a format specifier

. contained in the format string pointed to by format, and outputs the

formatted data directly to the current text window on the screen. There
must be the same number of format specifiers as arguments.

~ The string is written either directly to screen memory or by way of a BIOS

call, depending on the value of the global variable directvideo.

. Unlike fprintf and printf, cprintf does not translate linefeed characters (\n)

into carriage-return/linefeed character pairs (\r\n). Tab characters
(spec1f1ed by \t) are not expanded into spaces.

This functlon should not be used in Win32s or Win32 GUI apphcatlons
cprintf returns the number of characters output.

dzrectmdeo (global varlable) fprintf, printf, putch, sprmtf vprintf

Library Reference

cputs

conio.h c

CpUtS
Function Writes a string to the screen.
Syntax int cputs(const char *str);
DOS | UNIX | Win 16 | Win32 | ANSI C | ANSI C++ | 05/2
Remarks cputs writes the null-terminated string str to the current text window. It
does not append a newline character.
The string is written either directly to screen memory or by way of a BIOS
call, depending on the value of the global variable directvideo. Unlike puts,
cputs does not translate linefeed characters (\n) into carriage-
return/linefeed character pairs (\r\n). '
WP This function should not be used in Win32s or Win32 GUI applications.
Return value cputs returns the last character printed.
See also cgets, _directvideo (global variable), fputs, putch, puts
_creat jo.h
Obsolete function. See _rtl_creat.
creat io.h
Function Creates a new file or overwrites an existing one.
Syntax .int creat(const char *path, int amode);
DOS | UNIX | Win 16 | Win32 | ANSI C | ANSI C++ | 0s/
[] . L | L] [] . |
Remarks creat creates a new file or prepares to rewrite an existing file given by path.

amode applies only to newly created files.

A file created with creat is always created in the translation mode specified
by the global variable _fmode (O_TEXT or O_BINARY).

Chapter 3, Run-time functions 59

creat

If the file exists and the write attribute is set, creat truncates the file to a

- length of 0 bytes, leaving the file attributes unchanged. If the existing file

has the read-only attribute set, the creat call fails and the file remains
unchanged.

The creat call examines only the S_IWRITE bit of the access-mode word
amode. If that bit is 1, the file can be written to. If the bit is 0, the file is
marked as read-only. All other operating system attributes are set to 0.

amode can be one of the following (defined in sys\stat.h):

Value of amode Access permission
S_IWRITE, Permission to write
S_IREAD Permission to read
S_IREADIS_IWRITE Permission to'read and write

Write permission implies read permission.

Return value Upon successful completion, creat returns the new file handle, a non-
negative integer; otherwise, it returns -1.
In the event of error, the global variable errno is set to one of the following:
EACCES Permission denied
EMFILE = Too many open files
ENOENT Path or file name not found
See also chmod, chsize, close, _rtl_creat, creatnew, creattemp, dup, dup2, _fmode (global
variable), fopen, open, sopen, write
creatnew io.h
Function Creates a new file.
Symax int creatnew(const char *path, int mode);
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | o0S/2
Remarks creatnew is identical to _rtl_creat with one exception: If the file exists,
creatnew returns an error and leaves the file untouched.
60 Library Reference

creatnew

The mode argument to creatnew can be zero or an OR-combination of any

one of the following constants (defined in dos.h): C
FA_HIDDEN Hidden file

FA_RDONLY Read-only attribute
FA_SYSTEM System file

Return value Upon successful completion, creat returns the new file handle, a non-
negative integer; otherwise, it returns -1.
In the event of error, the global variable errno is set to one of the following
values: .
EACCES Permission denied
EEXIST File already exists
EMFILE Too many open files
ENOENT Path or file name not found
See also close, _rtl_creat, creat, creattemp, _dos_creatnew, dup, _fmode (global variable),
open
creattemp io.h
Function Creates a unique file in the directory associated with the path name.
Syntax int creattemp(char *path, int attrib);
0S | UNIX | Win16 | wWin32 | ANSIC | ANSI C++ | 0s/2
Remarks A file created with creattemp is always created in the translation mode
specified by the global variable _fmode (O_TEXT or O_BINARY).
Rememberthata path is a path name ending with a backslash (\). A unique file name is
bac“"égﬁ;f’;gi{f’ selected in the directory given by path. The newly created file name is

stored in the path string supplied. path should be long enough to hold the
resulting file name. The file is not automatically deleted when the program
terminates.

creattemp accepts attrib, a DOS attribute word. Upon successful file
creation, the file pointer is set to the beginning of the file. The file is opened
for both reading and writing.

Chapter 3, Run-time functions ‘ 61

creattemp

Return value

See also

_crotl, _crotr

The attrib argument to creattemp can be zero or an OR-combination of any
one of the following constants (defined in dos.h):

FA_HIDDEN Hidden file
FA_RDONLY Read-only attribute
FA_SYSTEM System file

Upon successful completion, the new file handle, a nonnegative integer, is
returned; otherwise, ~1 is returned.

In the event of error, the global variable errno is set to one of the follbwing
values:

EACCES - Permission denied
EMFILE Too many open files
ENOENT Path or file name not found

close, _rtl_creat, creat, creatnew, dup, _fmode (global variable), open

stdlib.h

Function

Syntax

Remarks

Return value

See also

62

Rotates an unsigned char left or right.

unsigned char _crotl (unsigned char val, int count);
unsigned char _crotr(unsigned char val, int count);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

_crotl rotates the given val to the left count bits. _crotr rotates the given val to
the right count bits.

The argument val is an unsigned char, or its equivalent in decimal or hexa-
decimal form. '

The functions return the rotated val.

m _crotl returns the value of val left-rotated count bits.
m_crotr returns the value of val right-rotated count bits.

_lrotl, _lrotr, _rotl, _rotr

Library Reference

cscanf

C

See scanffor details
on format specifiers.

-

Return value

See also

ctime

cscanf conio.h
Function Scans and formats input from the console.
‘Syntax int cscanf(char *format[, address, ...]);
DOS | UNIX |. Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
[] [] . -
Remarks

cscanf scans a series of input fields one character at a time, reading directly
from the console. Then each field is formatted according to a format
specifier passed to cscanf in the format string pointed to by format. Finally,
cscanf stores the formatted input at an address passed to it as an argument
following format, and echoes the input directly to the screen. There must be
the same number of format specifiers and addresses as there are input
fields.

cscanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely for a
number of reasons. See scanf for a discussion of possible causes.

This function should not be used in Win32s or Win32 GUI applications.

cscanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not -
stored. If no fields were stored, the return value is 0. :

If cscanf attempts to read at end-of-file, the return value is EOF.

fscanf, getche, scanf, sscanf

time.h

Function
Syntax

‘Converts date and time to a string.

char *ctime(const time_t *time); .

DOS UNIX . | Win’'16 Win 32 ANSI C ANST C++ 0s/2

Chapter 3, Run-time functions - ‘ S 63

ctime

Remarks

Return value

'

ctime converts a time value pointed to by time (the value returned by the
function time) into a 26-character string in the following form, terminating
with'a newline character and a null character: '

Mon Nov 21 11:31:54 1983\n\0

- All the fields have constant width.

The global long variable timezone contains the difference in seconds
between GMT and local standard time (in PST, timezone is 8x60x60). The.
global variable daylight is nonzero if and only if the standard U.S. daylight
saving time conversion should be applied. These variables are set by the
tzset function, not by the user program directly.

ctime returns a pointer to the character string containing the date and time.
The return value points to static data that is overwritten with each call to
ctime. '

See also asctime, _daylight (global variable), difftime, ftime, getdate gmtzme, localtime,
settime, time, _timezone (global variable), tzset
ctribrk dos.h
Function Sets control-break handler.
Syntax void ctrlbrk(int (*handler) (void));
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
Remarks ctrlbrk sets a new control-break handler function pointed to by handler. The

Return value

See also

64

interrupt vector 0x23 is modified to call the named function.

ctrlbrk establishes a DOS interrupt handler that calls the named function;
the named function is not called directly.

The handler function can perform any number of operations and system
calls. The handler does not have to return; it can use longjmp to return to an
arbitrary point in the program. The handler function returns 0 to abort the

_current program; any other value causes the program to resume execution.

ctrlbrk returns nothing.

getcbrk, signal

Library Reference

cwait

C

cwait process.h
Function Waits for child process to terminate.
Syntax int cwait{int *statloc, int pid, int action);
0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
. .
Remarks

The cwait function waits for a child process to terminate. The process ID of
the child to wait for is pid. If statloc is not NULL, it points to the location
where cwait will store the termination status. The action specifies whether to
wait for the process alone, or for the process and all of its children.

If the child process terminated normally '(by calling exit, or returning from
main), the termination status word is defined as follows:

Bits 0-7 Zero.

Bits 8-15 The least significant byte of the return code from the child
; process. This is the value that is passed to exit, or is returned
from main. If the child process simply exited from main with-
out returning a value, this value will be unpredictable.

If the child process terminated abnormally, the termmatlon status word is
defined as follows:

Bits 0-7 Termination information about the child:

1 Critical error abort.

2 Execution fault, protection exception.

3 External termination signal.
Bits 8-15 Zero.

If pid is O, cwait waits for any child process to terminate. Otherwise, pid
specifies the process ID of the process to wait for; this value must have been
obtained by an earlier call to an asynchronous spawn function.

The acceptable values for action are WAIT_CHILD, which waits for the'
specified child only, and WAIT_GRANDCHILD, which waits for the
specified child and all of its children. These two values are defined in
process.h. :

Chapter 3, Ruh-ﬁme functions : | 65

cwait

~ Return value

When cwait returns after a normal child process termination, it returns the
process ID of the child.

- When cwait returns after an abnormal child termination, it returns -1 to the

parent and sets errno to EINTR (the child process terminated abnormally).

If cwait returns without a child process complenon, it returns a -1 value
and sets errno to one of the following values:

ECHILD . No child exists or the pid value is bad
. EINVAL . A bad action value was specified

See also spawn, wait -
delline conio.h
Function Deletes line in text window.
Syntax void delline(void);

pos | UNix | wWin16 | win32 | anstc [AnsI ce+ | o0s/2

] [] a |]
Remarks delline deletes the line containing the cursor and moves all linés below it
one line up. delline operates within the currently active text window.
W This function should not be used in Win32s or Win32 GUI applications.
Return value None. '
See also clreol, clrscr, inslirie, window
difftime time.h
 Function Computes the difference between two times.

Syntax double difftime(time_t time2, time_t timel);

D05 | NIX | Win 16 | Win 32 aNSI C | ANSI C++ | 0572

[] a [] n n | . |

Remarks di]j‘time calculates the elapsed time in seconds, from timel to time2.
66 Library Reference

difftime

Return value difftime returns the result of its calculation as a double.
See also asctime, ctime, _daylight (global variable), gmtime, localtime, time, _timezone
(global variable)
disable, _disable, enable, _enable dos.h
Function Disables and enables interrupts.
Syntax void disable(void);
void _disable(void);
void enable(void);
void _enable(void);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
Remarks These macros are designed to provide a programmer with flexible
hardware interrupt control.
The disable and _disable macros disable interrupts. Only the NMI (non-
maskable interrupt) is allowed from any external device.
The enable and _enable macros enable interrupts, allowing any device
interrupts to occur.
Return value None.
See also getvect
div stdlib.h
Function Divides two integers, returning quotient and remainder.
Syntax ' div_t div(int numer, int denom);
DS | UNIX | Win16 | wWin32 | ANSIC | ANSI C++ | 05/2
div divides two integers and returns both the quotient and the remainder as

Remarks

~adiv_t type. numer and denom are the numerator and denominator,

respectively. The div_t type is a structure of integers defined (with typedef)
in stdlib.h as follows:

Chapter 3, Run-time functions 67

div

Return value

typedef struct {

int quot; /* quotient */
int rem; /* remainder */
} div_t;

div returns a structure whose elements are quot (the quotient) and rem (the
remainder).

See also ldiv
_dos_close dos.h
Function Closes a file.
Syntax unsigned _dos_close(int handle);
DOS | UNIX | Win 16 | Win32 | ANSI C | ANSI C++ | 0S/2
Remarks _dos_close closes the file associated with handle. handle is a file handle
obtained from a _dos_creat, _dos_creatnew, or _dos_open call.
Return value Upon successful completion, _dos_close returns 0. Otherwise, it returns the
operating system error code and the global variable errno is set to
EBADEF Bad file number
See also

_dos_commit

_dos_creat, _dos_open, _dos_read, _dos_write

dos.h

Function
Syntax

Remarks

Return value

See also

68

Output a file to the disk.

unsigned _dos_commit (int handle);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

~ This function makes DOS flush any output that it has buffered for a specific |

handle to the disk.

The function returns zero on success. On failure the function returns the
DOS error code and sets errno to EBADF.

_rtl_close, _rtl_creat, _dos_creat, _dos_write

Library Reference

_dos_creat

_dos_creat dos.h, io.h
Function Creates a new file or overwrites an existing one. u
Syntax unsigned _dos_creat (const char *path,int attrib,int *handlep);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks _dos_creat opens the file specified by path. The file is always opened in
binary mode. Upon successful file creation, the file pointer is set to the
beginning of the file. _dos_creat stores the file handle in the location pointed
to by handlep. The file is opened for both reading and writing.

If the file already exists, its size is reset to 0. (This is essentially the same as
. deleting the file and creating a new file with the same name.)

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

The attrib argument is an ORed combination of one or more of the
following constants (defined in dos.h):

_A_NORMAL Normal file
_A_RDONLY Read-only file
_A_HIDDEN Hidden file
_A_SYSTEM System file

Return value Upon successful completion, _dos_creat returns 0. If an error occurs,
_dos_creat returns the operating system error code.

In the event of error, the global variable errno is set to one of the following
values:

EACCES Permission denied
EMFILE Too many open files
ENOENT Path or file name not found

See also chsize, close, creat, creatnew, creattemp, _rtl_chmod, _rtl_close
_dos_creatnew - dos.h
Function Creates a new file.

Chapter 3, Run-time functions o 69

_dos_creatnew

Syntax unsigned _dos_creatnew(const char *path, int attrib, int *handlep);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | o0s/2
Remarks _dos_creatnew creates and opens the new file path. The file is given the
access permission attrib, an operating-system attribute word. The file is
always opened in binary mode. Upon successful file creation, the file
handle is stored in the location pointed to by handlep, and the file pointer is
set to the beginning of the file. The file is opened for both reading and
writing. _
If the file already exists, _dos_creatnew returns an error and leaves the file
untouched. : .
The attrib argument to _dos_creatnew is an OR combination of one or more
of the following constants (defined in dos.h):
_A_NORMAL Normal file
_A_RDONLY Read-only file
_A_HIDDEN Hidden file
_A_SYSTEM System file
Return value Upon successful completion, _dos_creatnew returns 0. Otherwise, it returns
the operating system error code, and the global variable errno is set to one
of the following:
EACCES Permission denied
EEXIST File already exists
EMFILE Too many open files
ENOENT Path or file name not found
See also creatnew, _dos_close, _dos_creat, _dos_getfileattr, _dos_setfileattr
dosexterr dos.h
Function Gets extended DOS error information.
Syntax int dosexterr (struct DOSERROR *eblkp);
00S | UNIX | Win16 | win32 | anstc | ansice+ | os/2
70 Library Reference

dosexterr

Remarks This function fills in the DOSERROR structure pointed to by eblkp with
extended error information after a DOS call has failed. The structure is
defined as follows:

struct DOSERROR {

int de_exterror; /* extended error */
char de_class; /* error class */
char de_action; - /* action */

char de_locus; /* error locus */

}i

The values in this structure are obtained by way of DOS call 0x59. A
de_exterror value of 0 indicates that the prior DOS call did not result in an

, error.
Return value dosexterr returns the value de_exterror.
_dos_findfirst ' : dos.h
Function ‘Searches a disk directory.
Syntax unsigned _dos_findfirst(const char *pathname,-int attrib,
struct find_t *ffblk);
D0S | UNIX | Win16 | Win32 ‘| ANSIC | ANSI C++ | 0S/2
[" ’]

Remarks _dos_findfirst begins a search of a disk directory.

pathname is a string with an optional drive specifier, path, and file name of
the file to be found. The file name portion can contain wildcard match
characters (such as ? or *). If a matching file is found, the find_t structure
pointed to by ffblk is filled with the file-directory information.

The format of the find_t structure is as follows:

struct find_t {

char reserved(21]; /* reserved by the operating system */
char attrib; /* attribute found */ '
int wr_time; /* file time */

int wr_date; /% file date */

long size; ’ /* file size */

char name([13]; /* found file name */

i

attrib is an operating system file-attribute word used in selecting eligible -
files for the search. attrib is an OR combination of one or more of the
following constants (defined in dos.h):

Chapter 3, Run-time functions ‘ L ‘ . 8 -

_dos_findfirst

Return value

See also

_dos_fin;dnext

_A_NORMAL Normal file .
_A_RDONLY Read-only attribute
_A_HIDDEN Hidden file
_A_SYSTEM System file

_A_VOLID Volume label
- _A_SUBDIR Directory
_A_ARCH Archive

For more detailed information about these attributes, refer to your
operating system reference manuals.

Note that wr_time and wr_date contain bit fields for referring to the file’s
date and time. The structure of these fields was established by the operat-
ing system. c ‘

wr_time: :
Bits 0-4 The result of seconds divided by 2 (for example, 10
here means 20 seconds)
Bits 5-10 Minutes '
Bits 11-15 Hours
- wr_date:
Bits 0-4 Day
Bits 5-8 " Month
Bits 9-15 Years since 1980 (for example, 9 here means 1989)

_dos_findfirst returns 0 on successfully finding a file matching the search
pathname. When no more files can be found, or if there is some error in the
file name, the operating system error code is returned, and the global
variable errno is set to

ENOENT Path or file name not found
_dos_findnext

dos.h

Function
Syntax

Remarks

72

Continues _dos_findfirst search.

unsigned _dos_findnext (struct find_t *ffblk);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

_dos_findnext is used to fetch subsequent files that match the pathname given
in _dos_findfirst. fflk is the same block filled in by the _dos_findfirst call. This

Library Reference

_dos_findnext

block contains necessary information for continuing the search. One file
name for each call to _dos_findnext is returned until no more files are found
in the directory matching the pathname.

Return value . _dos_findnext returns 0 on successfully finding a file matching the search
pathname. When no more files can be found, or if there is some error in the
file name, the operating system error code is returned, and the global

variable errno is set to

ENOENT Path or file name not found

See also © _dos_findfirst
_dos_getdate, _dos_setdate, getdate, setdate dos.h
Function Gets and sets system date.
’Sy“tax ‘void _dos_getdate(struct dosdate_t *datep);
unsigned _dos_setdate(struct dosdate_t *datep);
void getdate(struct date *datep); ‘
void setdate(struct date *datep);
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI c++ | 05/2
n n |
Remarks getdate fills in the date structure (pointed to by datep) with the system’s

current date.

setdate sets the system date (month, day, and year) to that in the date

structure pointed to by datep.

The date structure is defined as follows:

struct date {

* int da_year; /* current year */
char da_day; /* day of the month */
= Jan) */

char da_mon; /* month (

}i

_dos_getdate fills in the dosdate_t structure (pointed to by datep) with the

system’s current date.

'

Chapter 3, Run-time functions

73

_dos getdate,

Return value

See also

_dos_setdate, getdate, setdate

The dosdate_t structure is defined as follows:

struct dosdate_t {

unsigned char day; /* 1-31 */
unsigned char month; /* 1-12 %/
unsigned int year; /* 1980 - 2099 */ -

unsigned char dayofweek; /* 0 - 6 (0=Sunday) */

hi

_dos_getdate, getdate, and setdate do not return a value.

1If the date is set successfully, dos_setdate returns 0. Otherw1se, it returns a
nonzero value and the global variable errno is set to

EINVAL Invahd date

ctime, gettime, settime

_dos_gefdiskfree

dos.h

Function
Syntax

Remarks

Return value

See also

74

Gets disk free space.

unsigned _dos_getdiskfree(unsigned char drive, struct diskfree_t *dtable);

DOS | UNIX Win 16 Win 32

ANST C ANST C++ 0s/2

_dos _getdi'skfree accepts a drive specifier in drive (0 for default, 1 for A, 2 for
B, and so on) and fills in the dzskfree t structure pointed to by dtable with

.disk characteristics.

 The diskfree_t structure is defined as follows:

‘struct diskfree_t {
unsigned avail_clusters;
unsigned total_clusters;
unsigned bytes_per_sector;
unsigned sectors_per_cluster;
}i :

/*
/*
/*
/*

available clusters */

total clusters */

bytes per sector */
sectors per cluster */

_dos_getdiskfree returns 0 if successful. Otherwise, it returns a nonzero value

and the global variable errno is set to

EINVAL Invalid drive spec1f1ed

getfat, getfatd

Library Reference

_dos_getdrive, _dos_setdrive dos.h

_dos_getdrive, _dos_setdrive

Function

Gets and sets the current drive number.

Syntax void _dos_getdrive(unsigned *drivep);
void _dos_setdrive(unsigned drivep, unsigned *ndrives);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C+#+ | 0S/2
|] |] a
Remarks _dos_getdrive gets the current drive number.
_dos_setdrive sets the current drive and stores the total number of drives at
the location pointed to by ndrives.
The drive numbers at the location pointed to by drivep are as follows: 1 for
A, 2 for B, 3 for C, and so on.
This function changes the current drive of the parent process.
Return value None. Use _dos_getdrive to verify that the current drive was changed
successfully.
See also getcwd,
_dos_getfileattr, _dos_setfileattr , ‘ dos.h
Function Changes file access mode.
Synta_x int _dos_getfileattr(const char *path, unsigned *attribp);
' int _dos_setfileattr(const char *path, unsigned attrib);
DoS | UNIX | win16 | win32 | anstc | aAnsI ce+ | o0s/2
n L] L]
Remarks

_dos_getfileattr fetches the file attributes for the file path. The attributes are
stored at the location pointed to by attribp. :

_dos_setfileattr sets the file attributes for the file pﬁth to the value attrib. The
file attributes can be an OR combination of the following symbolic
constants (defined in dos.h):

_A_RDONLY Read-only attribute
_A_HIDDEN Hidden file

Chapter 3, Run-time functions ' 75

_dos_geffileattr, _dos_setfileattr

_A_SYSTEM System file

~A_VOLID Volume label
_A_SUBDIR Directory
_A_ARCH Archive

_A_NORMAL Normal file (no attribute bits set)

Return value Upon successful completion, _dos _getfileattr and _dos_setfileattr return 0.
Otherwise, these functions return the operatmg system error code, and the
global variable errno is set to

ENOENT Path or file name not found

See also chmod, stat

_dos_getftime, _dos_setftime dos.h

Function Gets and sets file date and time.

Syntax unsigned _dos_getftime(int handle, unsigned *datep, unsigned *timep);
unsigned’ _dos_setftime(int handle, unsigned date, unsigned time);

D0s | UNIX | Win16 | wWin32 | ANSIC | ANSI C++ | o0s/2

Remarks _dos_getftime retrieves the file time and date for the disk file associated with
the open handle. The file must have been previously opened using
_dos_open, _dos_creat, or _dos_creatnew. _dos_getftime stores the date and
time at the locations pointed to by datep and timep.

_dos_setftime sets the file’s new date and time values as specified by date and
time. ; B
Note that the date and time values contain bit fields for referring to the file’s
date and time. The structure of these fields was established by the operat-
ing system.
Date:
Bits 0-4 Day
‘Bits 5-8 Month
Bits 9-15 Years since 1980 (for example, 9 here means 1989)
Time:
Bits 0-4 The result of seconds divided by 2 (for example, 10 here
means 20 seconds)
Bits 5-10 Minutes
Bits 11-15 Hours
76 Library Reference

_dos_getftime, _dos_setitime

Return value _dos_getftime and _dos_setftime return 0 on success.

In the event of an error return, the operating system error code is returned
and the global variable errno is set to one of the following values:

E’ACCES Permission denied
EBADF Bad file number

See also fstat, stat

_dos_gettime, _dos_settime dos.h
Function Gets and sets system time.

Syntax void _dos_gettime(struct dostime_t *timep);

unsigned _dos_settime(struct dostime_t *timep);

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2

Remarks _dos_gettime fills in the dostime_t structure pointed to by timep with the sys-
tem’s current time.

_dos_settime sets the system time to the values in the dostime_t structure
pointed to by timep.

The dostime_t structure is defined as follows:

struct dostime_t {

unsigned char hour; /* hours 0-23 */

unsigned char minute; /* minutes 0-59 */

unsigned char second; /* seconds 0-59 */

unsigned char hsecond; /* hundredths of seconds 0-99 */
}i

Return value _dos_gettime does not return a value.

If _dos_settime is successful, it returns 0. Otherwise, it returns the operating
system error code, and the global variable errno is set to:

EINVAL Invalid time

See also _dos_getdate, _dos_setdate, _dos_settime, stime, time

Chapter 3, Run-time functions 77

_dos_getvect

_dos_getvect

dos.h |

Function

Syntax

Remarks

Return value

See also

_dos_open

Gets interrupt vector.

void interrupt (*_dos_getvect (unsigned interruptno))'();

DOS UNIX - Win 16 Win 32 ANSI C ANST C++ 0s/2

Every processor of the 8086 family includes a set of interrupt vectors,
numbered 0 to 255. The 4-byte value in each vector is actually an address,
which is the location of an interrupt function.

_dos_getvect reads the value of the interrupt vector given by interruptno and
returns that value as a (far) pointer to an interrupt function. The value of
interruptno can be from 0 to 255.

_dos_getvect returns the current 4-byte value stored in the interrupt vector
named by interruptno.

_diéable, _enable, _dos_setvect

fentl.h, share.h, dos.h

Function
Syntax

Remarks

78

Opens a file for reading or writing.

unsigned _dos_open(const char *filename, unsigned oflags, int *handlep);

DOS UNIX Win 16 Win 32 ANSI C ANST Ct++ 0s/2

_dos_open opens the file specified by filename, then prepares it for reading or
writing, as determined by the value of oflags. The file is always opened in
binary mode. _dos_open stores the file handle at the location pointed to by
handlep.

oflags uses the flags from the following two lists. Only one flag from the
first list can be used (and one must be used); the remaining flags can be
used in any logical combination.

List 1: Read/write flags

O_RDONLY Open for reading.
O_WRONLY Open for writing.

O_RDWR Open for reading and writing.

Library Reference -

_dos_open

The following additional values can be included in oflags (usmg an OR
operation):

These symbolic List 2: Other access flags
?no?csgﬁlﬁsel ﬁges%?:gehd O_NOINHERIT The file is not passed to child programs.
: ' o SH_COMPAT Allow other opens with SH_COMPAT. The call will
fail if the file has already been opened in any other
‘ shared mode. .
SH_DENYRW Only the current handle can have access to the file.
SH_DENWR Allow only reads from any other open to the file.
SH_DENYRD Allow only writes from any other open to the file.
SH_DENYNO Allow other shared opens to the file, but not other
SH_COMPAT opens.

Only one of the SH_DENYxx values can be included in a single _dos_open.
These file-sharing attrlbutes are in addition to any locklng performed on
the files.

The maximum number of simultaneously open files is defined by
HANDLE_MAX. -

Return value - On successful completion, _dos_open returns 0, and stores the file handle at
' the location pointed to by handlep. The file pointer, which marks the current .
position in the file, is set to the beginning of the file.

On error, _dos_open returns the operating system error code. The global
variable errno is set to one of the following:

EACCES Permission denied
EINVACC Invalid access code
EMFILE Too many open files
ENOENT" Path or file not found

See also : open, _rtl_read, sopen

_dos_read io.h, dos.h
Function Reads from file.

SvnfaX, unsigned _dos_read(int handle, void far *buf, unsigned *nread);

[N UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Chapter 3, Run-time functions ' ‘ _79

_dos_read

Remarks

Return value

See also

_dos_setdate

_dos_read reads len bytes from the file associated with handle into buf. The
actual number of bytes read is stored at the location pointed to by nread;
when an error occurs, or the end-of-file is encountered, this number might
be less than len.

_dos_read does not remove carnage returns because it treats all files as
binary files.

handle is a file handle obtained from a _dos_creat, _dos_creatnew, or _dos_open
call.

‘On disk files, _dos_read begins reading at the current file pointer. When the

reading is complete, the function increments the file pointer by the number
of bytes read. On devices, the bytes are read directly from the device.

The maximum number of bytes that _dos_read can read is UINT_MAX -1,
because UINT_MAX is the same as -1, the error return indicator.
UINT_MAX is defined in limits.h.

On successful completion, _dos_read réturns 0. Otherwise, the function
returns the DOS error code and sets the global variable errno.

EACCES Permission denied
EBADF Bad file number

_rtl_open, read, _rtl_write

_dos_setdrive

See _dos_getdate.

See _dos_getdrive.

_dos_seffileattr

- 80

See _dos_getfileattr.

Library Reference

_dos_settime

_dos_setftime

See _dos_getftime.

_dos_settime

See _dos_gettime.

_dos_setvect dos.h
Function Sets interrupt vector entry.
Svntax void _dos_setvect (unsigned interruptno, void interrupt (*isr) ());

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Remarks Every processor of the 8086 family includes a set of interrupt vectors,
numbered 0 to 255. The 4-byte value in each vector is actually an address,
which is the location of an interrupt function.

_dos_setvect sets the value of the interrupt vector named by interruptno to a
new value, isr, which is a far pointer containing the address of a new
interrupt function. The address of a C routine can be passed to isr only if
that routine is declared to be an interrupt routine.

W If you use the prototypes declared in dos.h, pass the address of an interrupt
function to _dos_setvect in any memory model.

Return value None.

See also _dos_getvect

dostounix dos.h
Function Converts date and time to UNIX time format.

Syntax long dostounix(struct date *d, struct time *t);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Chapter 3, Run-time functions k ' , ' 81

dostounix

Remarks

Return value

dostounix converts a date and time as returned from’ getdate and gettime into
UNIX time format. d points to a date structure, and ¢ points to a time
structure containing valid date and time information.

The date and time must not be earlier than or equal to Jan 1 1980 00:00:00.

UNIX version of current date and time parameters: number of seconds
since 00:00:00 on January 1, 1970 (GMT).

See also getdate, gettime, unixtodos
_dos_write dos.h
Function Writes to a file.
Syntax unsigned _dos_write(int handle, const void _ _far *buf, unsigned len,
unsigned *nwritten); '
pos | UNIX | Win16 | wWin32 [NI c | ANSI C++ | 05/2
L] . a]
Remarks _dos_write writes len bytes from the buffer pointed to by the _ _far pointer

Return value

buf to the file associated with handle. _dos_write does not translate a linefeed
character (LF) to a CR/LF pair because it treats all files as bmary data.

The actual number of bytes written is stored at the location pointed to by
nwritten. If the number of bytes actually written is less than that requested,
the condition should be considered an error and probably indicates a full
disk. For disk files, writing always proceeds from the current file pointer.
On devices, bytes are directly sent to the device.

On successful completion, _dos_write returns 0. Otherwise, it returns the
operating system error code and the global variable errno is set to one of the
following values:

EACCES Permission denied

EBADF Bad file number
See also _dos_open, _dos_creat, _dos_read
dup io.h
Function Duplicates a file handle.
Syntax int dup(int handle);
82 Library Reference

dup

D0S UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks dup creates a new file handle that has the following in common with the
‘ original file handle:

m Same open file or device

m Same file pointer (that is, changing the file pointer of one changes the
- other)

~ mSame access mode (read, write, read /write)

handle is a file handle obtained from a _rtl_creat, creat, _rtl_open, open, dup,
or dup?2 call.

Return value Upon successful completion, dup returns the new file handle, a nonnegative
integer; otherwise, dup returns —1.

In the event of error, the global variable errno is set to one of the following
values:

EBADF Bad file number
EMFILE = Too many open files

See also _rtl_close, close, _rtl_creat, creat, creatnew, creattemp, dup?2, fopen, _rtl_open,

open ‘
dup2 : ' io.h
Function Duplicates a file handle (oldhandle) onto an existing file handle (newhandle). X
Syntax ‘ int qup2(int oldhandle, int newhandle);

DOS UNIX Win 16 "| Win 32 ANSI C ANST C++ 0s/2

Remarks - dup2 creates a new file handle that has the following in common with the
original file handle: : '

m Same open file or device

m Same file pointer (that is, changing the file pointer of one changes the
other)

m Same access mode (read, write, read /write)

dup?2 creates a new handle with the value of newhandle. If the file associated
with newhandle is open when dup?2 is called, the file is closed.

Chapter 3, Run-time functions o 83

dup2

Return value

newhandle and oldhandle are file handles obtained from a creat, open, dup, or
dup? call.

dup? returns 0 on successful completion, —1 otherwise.

In the event of error, the global variable errno is set to one of the following

-values:

EBADF Bad file number

EMFILE = Too many open files
See also _rtl_close, close, _rtl_creat, creat, creatnew, creattemp, dup, fopen, _rtl_open, open
ecvt stdlib.h
Function Converts a floating-point number to a string.
Syntax char *ecvt (double value, int ndig, int *dec, int *sign);

DOS | UNIX | Win 16 | Win32 | ANSIC | ANSI C++ | 0s/2

L] |] L] a |]

Remarks

Return value

ecvt converts value to a null-terminated string of ndig digits, starting with
the leftmost significant digit, and returns a pointer to the string. The
position of the decimal point relative to the beginning of the string is stored
indirectly through dec (a negative value for dec means that the decimal lies
to the left of the returhed digits). There is no decimal point in the string
itself. If the sign of value is negative, the word pointed to by sign is nonzero;
otherwise, it’s 0. The low-order digit is rounded.

The return value of ecvt points to static data for the string of digits whose
content is overwritten by each call to ecvt and fcvt.

See also feot, gevt, sprintf
__emit__ dos.h
Function Inserts literal values directly into code.
Syntax void . _emit_ _(argumeﬁt, L)
00s | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | os/2
84 Library Reference

__emit__

Description __emit_ _is an inline function that lets you insert literal values directly into
object code as it is compiling. It is used to generate machine language
instructions without using inline assembly language or an assembler.

Generally the arguments of an _ _emit_ _ call are single-byte machine
instructions. However, because of the capabilities of this function, more

~complex instructions, complete with references to C variables, can be
constructed.

WP You should use this function only if you are familiar with the machine
language of the 80x86 processor family. You can use this function to place
arbitrary bytes in the instruction code of a function; if any of these bytes is
incorrect, the program misbehaves and can easily crash your machine.
Borland C++ does not attempt to analyze your calls for correctness in any
way. If you encode instructions that change machine registers or memory,
Borland C++ will not be aware of it and might not properly preserve
registers, as it would in many cases with inline assembly language (for
example, it recognizes the usage of SI and DI registers in inline
instructions). You are completely on your own with this function.

You must pass at least one argumentto _ _emif_ _; any number can be
given. The arguments to this function are not treated like any other
function call arguments in the language. An argument passed to _ _emit_ _
will not be converted in any way.

There are special restrictions on the form of the argumentsto _ _emit_ _
Arguments must be in the form of expressions that can be used to initialize
a static object. This means that integer and floating-point constants and the

- addresses of static objects can be used. The values of such expressions are
written to the object code at the point of the call, exactly as if they were
being used to initialize data. The address of a parameter or auto variable,
plus or minus a constant offset, can also be used. For these arguments, the
offset of the variable from BP is stored.

The number of bytes placed in the object code is determined from the type
of the argument, except in the following cases:

m If a signed integer constant (that is 0x90) appears that fits within the
range of 0 to 255, it is treated as if it were a character.

m If the address of an auto or parameter variable is used, a byte is written if
the offset of the variable from BP is between —128 and 127; otherwise, a
word is written. :

Simple bytes are written as follows:

_ _emit_ _{0x90);

Chapter 3, Run-time functions o ; 85

__emit__

If you want a word written, but the value you are passing is under 255,
simply cast it to unsigned using one of these methods:

_ _emit_ _(0xB8, (unsigned)17);
_ _emit_ _(0xB8, 17u); -

Two- or four-byte address values can be forced by casting an address to
void near * or void far *, respectively.

Return value None.

enable, _enable:

See disable.
_endthread o . | process.h
Function Terminates exécution of a thread.
Syntax void _endthread (void);

0S| UNIX | Win16 | wWin32 | ANSIC | ANSI Cs+ | 0S/2
n n
Remarks The _endthread function terminates the currently executing thread. The
: thread must have been started by an earlier call to _beginthread.
~ This function is available in the multithread libraries; it is not in the single-

thread libraries.
Return value - The function does not return a value.
Seealso _beginthread
eof - ioh
Function Checks for end-of-file.
Syntax int eof (int handle); ‘

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

86 , : : » | ‘ Library Reference

Remarks

Return value

See also

eof

eof determines whether the file associated with handle has reached end-of-
file.

If the current position is end-of-file, eof returns the value 1; otherwise, it
returns 0. A return value of -1 indicates an error; the global variable errno is
set to .

EBADF‘ Bad file number

clearerr, feof, ferror, perror

execl, execle, execlp, execlpe, execv, execve, execvp, execvpe process.h

Function
Syntax

Remarks

Loads and runs other programs.

int execl(char *path, char *arg0 *argl, ..., *argn, NULL};
int execle(char *path, char *arg0, *argl, ..., *argn, NULL, char **env);
int execlp(char *path, char *argO,*afgl, ..., *argn, NULL);
int execlpe(char *path, char *arg0, *argl, ..., *argn, NULL, char **env);

int execv(char *path, char *argv[]);
int execve(char *path, char *argv(], char **env);

int execvp(char *path, char *argv(]);
int execvpe(char *path, char *argv[], char **env);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

The functions in the exec... family load and run (execute) other programs,
known as child processes. When an exec... call succeeds, the child process
overlays the parent process. There must be sufficient memory available for
loading and executing the child process.

path is the file name of the called child process. The exec... functions search
for path using the standard search algorithm:

m If no explicit extension is given, the functions search for the file as given.
If the file is not found, they add .EXE and search again. If not found, they
add .COM and search again. If still not found, they add .BAT and search
once more. The command processor COMSPEC is used to run the
executable file. ’

m If an explicit extension or a period is given, the functions search for the
file exactly as given. '

Chapter 3, Run-time functions : ‘ 87

execl, execle, execlp, execlpe, execv, execve, execvp, execvpe

The suffixes I, v, p, and e added to the exec... “family name” specify that the
named function operates with certain capabilities.

m [specifies that the argument pointeré (arg0, argl, ..., argn) are passed as
separate arguments. Typically, the I suffix is used when you know in
advance the number of arguments to be passed.

m v specifies that the argument pointers (argu[0] ..., arg[n]) are passed as an
array of pointers. Typically, the v suffix is used when a variable number
of arguments is to be passed.

m p specifies that the function searches for the file in those directories
specified by the PATH environment variable (without the p suffix, the
function searches only the current working directory). If the path parame-
ter does not contain an explicit directory, the function searches first the
current directory, then the directories set with the PATH environment
variable.

m e specifies that the argument env can be passed to the child process,
letting you alter the environment for the child process. Without the e
suffix, child processes inherit the environment of the parent process.

Each function in the exec... family must have one of the two argument- |
specifying suffixes (either I or v). The path search and environment
inheritance suffixes (p and e) are optional; for example,

mexecl is an exec... function that takes separate arguments, searches only
the root or current directory for the child, and passes on the parent’s
environment to the child.

m execvpe is an exec... function that takes an array of argument pointers,
incorporates PATH in its search for the child process, and accepts the env
argument for altering the child’s environment.

+ The exec... functions must pass at least one argument to the child process
(arg0 or argu[0]); this argument is, by convention, a copy of path. (Using a
different value for this Oth argument won’t produce an error.)

path is available for the child process.

When the [suffix is used, arg0 usually points to path, and arg1, ..., argn
point to character strings that form the new list of arguments. A mandatory
null following argn marks the end of the list.

When the e suffix is used, you pass a list of new environment settings

through the argument env. This environment argument is an array of

character pointers. Each element points to a null-terminated character
string of the form

envvar = value

88 : Library Reference

execl, execle, execlp, execlpe, execv, execve, execvp, execvpe

where envvar is the name of an environment variable, and value is the string - '
value to which envvar is set. The last element in env is null. When env is
null, the child inherits the parents’ environment settings.

The combined length of arg0 + arg1 + ... + argn (or of argu[0] + argv[1] + ...
+ argn[n]), including space characters that separate the arguments, must be
less than 128 bytes for a 16-bit application, or 260 bytes for Win32
application. Null characters are not counted.

When an exec... function call is made, any open files remain open in the

child process.

Return value If successful, the exec... functions do not return. On error, the exec...
functions return -1, and the global variable errno is set to one of the
following values:

EACCES -~ Permission denied

EMFILE Too many open files
ENOENT Path or file name not found
ENOEXEC Exec format error
ENOMEM Not enough memory

See also abort, atexit, _exit, exit, _fpreset, searchpath, spawn..., system

_exit stdlib.h
Function Terminates program.

Syntax void _exit (int status);

D0S UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks _exit terminates execution without closing any files, flushing any output, or
calling any exit functions.

The calling process uses status as the exit status of the process. Typically a
value of 0 is used to indicate a normal exit, and a nonzero value indicates

some error.
- Return value None.
See also abort, atexit, exec..., exit, spawn...

Chapter 3, Run-time functions ‘ 89

exit

exit stdlib.h
Function Terminates program.
Syntax void exit(int status);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
| | [] [] » |] |] n
Remarks exit terminates the calling process. Before termination, all files are closed,
buffered output (waiting to be output) is written, and any registered “exit
functions” (posted with atexit) are called.
status is provided for the calling process as the exit status of the process.
Typically a value of 0 is used to indicate a normal exit, and a nonzero value
indicates some error. It can be, but is not required, to be set with one of the
following: ' :
EXIT_FAILURE Abnormal program termination; signal to operating
system that program has terminated with an error.
EXIT_SUCCESS Normal program termination
Return value None. '
See also abort, atexit, exec..., _exit, keep, signal, spawn...
exp, expl math.h
Function Calculates the exponential e to the x.
Syntax double exp(double x);
long double expl(long double x);
pos | unIx | win1s | win32 | NI C | ANSI C++ | o0s/2
exp [] =] n []] " .
expl . . . x
Remarks

Return value

90

exp calculates the exponential function e*.

expl is the long double version; it takes a long double argument and returns
a long double result.

This function can be used with bed and complex types.

exp returns e*.

Library Reference

exp, expl

Sometimes the arguments passed to these functions produce results that
overflow or are incalculable. When the correct value overflows, exp returns
the value HUGE_VAL and expl returns _LHUGE_VAL. Results of exces-
sively large magnitude cause the global variable errno to be set to

ERANGE Result out of range

On underflow, these functions return 0.0, and the global variable errno is
not changed. Error handling for these functions can be modified through
the functions _matherr and _matherrl. ~

Syntax

fabs
' fabs!

See also frexp, ldexp, log, log10, _matherr, pow, pow10, sqrt
_expand malloc.h
Function Grows or shrinks a heap block in place.
Syntax »void *_expand(void *block, size_t size);
‘ pos | uvix [win16 [win32 [src [anstce [0s/2
Remarks This function attempts to change the size of an allocated memory block
without moving the block’s location in the heap. The data in the block are
not changed, up to the smaller of the old and new sizes of the block. The
block must have been allocated earlier with malloc, calloc, or realloc, and
must not have been freed.
~ Return value If _expand is able to resize the block without moving it, _expand returns a
pointer to the block, whose address is unchanged. If _expand is unsuccess-
ful, it returns a NULL pointer and does not modify or resize the block.
- See also calloc, malloc, realloc'
fabs, fabsl math.h
Function ‘Returns the absolute value of a floating-point number.
double fabs(double x);

long double fabsl(long double x);

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Chapter 3, Run-time functioné ‘ ‘ 9

fabs, fabs!

Remarks * fabs calculates the absolute value of x, a double. fabsl is the long double
version; it takes a long double argument and returns a long double result.
Return value fabs and fabsl return the absolute value of x.
See also abs, cabs, labs
farcalloc alloc.h
Function Allocates memory from the far heap.
Syntax . void far *farcalléc (unsigned long nunits, unsigned long unitsz);
D0S | UNIX | Win 16 | Win32 | ANSIC | ANSI C++ | 05/2
Remarks farcalloc allocates memory from the far heap for an array containing nunits
elements, each unitsz bytes long. ‘
For allocating from the far heap, note that
m All available RAM can be allocated.
m Blocks larger than 64K can be allocated.
m Far pointers (or huge pointers if blocks are larger than 64K) are used to
access the allocated blocks.
In the compact and large memory models, farcalloc is similar, though not
identical, to calloc. It takes unsigned long parameters, while calloc takes
unsigned parameters.
Return value farcalloc returns a pointer to the newly allocated block, or NULL if not .
enough space exists for the new block.
See also - calloc, farﬁ'ee, farmalloc, malloc
farfree alloc.h
Function Frees a block from far heap.
‘SV"taX void farfree(void far * block);
pos | UNIx | wWin16 | wWin32 | anszC [ANSI c++ | 0S/2
Remarks farfree releases a block of memory previously allocated from the far heap.
92 Library Reference

farfree

In the small and medium memory models, blocks allocated by farmalloc
cannot be freed with normal free, and blocks allocated with malloc cannot be
freed with farfree. In these models, the two heaps are completely distinct.

Return value None.
See also farcalloc, farmalloc .
F
farmalloc alloc.h
Function Allocates from far heap.
Syntax void far *farmalloc (‘,unsigned long nbytes);
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2
Remarks - farmalloc allocates a block of memory nbytes bytes long from the far heap.
For allocating from the far heap, note that
m All available RAM can be allocated.
m Blocks larger than 64K can be allocated.
m Far pointers are used to access the allocated blocks.
In the compact and large memory models, farmalloc is similar though not |
identical to malloc. It takes unsigned long parameters, while malloc takes
unsigned parameters. t
Return value farmalloc returns a pointer to the newly allocated block, or NULL if not
enough space exists for the new block.
See also farcalloc, farfree, farrealloc, malloc’
farrealloc alloc.h
Function Adjusts allocated block in far heap.
Syntax void far *farrealloc(void far *oldblock, unsigned long nbytes);
Dos | uNix | win16 | win32 | ANsIC | ANSI ce+ [0572
Remarks -~ farrealloc adjusts the size of the allocated block to nbytes, copying the

contents to a new location, if necessary.

Chapter 3, Run-time functions o 93

tarrealloc

Return value

For allocating from the far heap, note that

‘m All available RAM can be allocated.
m Blocks larger than 64K can be allocated.
m Far pointers are used to access the allocated blocks.

farrealloc returns the address of the reallocated block, which might be
different than the address of the original block. If the block cannot be
reallocated, farrealloc returns NULL. ’

See also farmalloc, realloc
Function Closes a stream.
Syntax " int fclose(FILE *stream);
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2
[[} [[} [} n [}
Remarks fclose closes the named stream. All buffers associated with the stream are

Return value

flushed before closing. System-allocated buffers are freed upon closing.
Buffers assigned with setbuf or setvbuf are not automatically freed. (But if
setvbuf is passed null for the buffer pointer, it will free it upon close.)

fclose returns 0 on success. It returns EOF if any errors were detected.

94

See also close, fcloseall, fdopen, fflush, flushall, fopen, freopen
fcloseall stdio.h
Function Closes open streams.
Syntax int feloseall (void);
DOS | UNIX | Win16 | Win32 | ANSIC [ANSI C++ [o0S/2
a L} X []]) . |]
Remarks fcloseall closes all open streams except stdin, stdout, stdprn, stderr, and .
stdaux. stdprn and stdaux streams are not available on OS/2 and Win32.
Library Reference

Return value

fcloseall

fcloseall returns the total number of streams it closed. It returns EOF if any
errors were detected.

F

See also fclose, fdopen, flushall, fopen, freopen

fovt stdlib.h

Function Converts a floating-point number to a string.

Syntax char *fcvt(double value, int ndig, int *dec, int *sign);

DS | UNIX | Win16 | Win32 [aNsIC | ANSI C++ | 05/2

Remarks fevt converts value to a null-terminated string digit, starting with the
leftmost significant digit, with ndig digits to the right of the decimal point.
feut then returns a pointer to the string. The position of the decimal point
relative to the beginning of the string is stored indirectly through dec (a
negative value for dec means to the left of the returned digits). There is no
decimal point in the string itself. If the sign of value is negative, the word
pointed to by sign is nonzero; otherwise, it is 0.
The correct digit has been rounded for the number of digits to the right of
the decimal point specified by ndig.

Return value The return value of fcvt points to static data whose content is overwritten
by each call to fcot and ecut.

See also ecvt, gevt, sprintf

fdopen stdio.h

Function Associates a stream with a file handle.

Sy"tax FILE *fdopen(int handle, char *type);

0s | UNIX | Win16 | Win3z | ANSIC | ANSI C++ | 0S/2
| n n [] n
" Remarks

fdopen associates a stream with a file handle obtained from creat, dup, dup2,
or open. The type of stream must match the mode of the open handle.

The type string used in a call to fdopen is one of the following values:

Chapter 3, Run-time functions ' 95

fdopen

Value Description
r Open for reading only.
w Create for writing. | v
a Append; open for writing at end-of-file, or create for writing if the file does not exist.
r+ Open an existing file for update (reading and writing).
w+ Create a new file for update. ,
ar Open for append; open (or create if the file does not exist) for update at the end of

the file.

To specify that a given file is being opened or created in text mode, append
a t to the value of the type string (rt, w+t, and so on); similarly, to specify
binary mode, append a b to the type string (wb, a+b, and so on).

If a f or b is not given in the fype string, the mode is governed by the global
variable _fmode. If _fmode is set to O_BINARY, files will be opened in binary
mode. If _fmode is set to O_TEXT, they will be opened in text mode. These
O_... constants are defined in fentlh.

When a file is opened for update, both input and output can be done on the
resulting stream. However, output cannot be directly followed by input
without an intervening fseek or rewind, and input cannot be directly
followed by output without an intervening fseek, rewind, or an input that
encounters end-of-file.

Return value On successful completion, fdopen returns a pointer to the newly opened
stream. In the event of error, it returns NULL.
See also fclose, fopen, freopen, open
feof stdio.h
Function Detects end-of-file on a stream.
Syntax int feof (FILE *stream);
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
n " [] " n] n
Remarks * feof is a macro that tests the given stream for an end-of-file indicator. Once
the indicator is set, read operations on the file return the indicator until
rewind is called, or the file is closed. '
96 Library Reference

feof

The end-of-file indicator is reset with each input operation.

Return value feof returns nonzero if an end-of-file indicator was detected on the last input
operation on the named stream, and 0 if end-of-file has not been reached.
See also clearerr, eof, ferror, perror
ferror stdio.h
Function Detects errors on stream.
Syntax int ferror(FILE *stream);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
] n n |] |]] n
Remarks

Return value

ferror is a macro that tests the given stream for a read or write error. If the
stream’s error indicator has been set, it remains set until clearerr or rewind is
called, or until the stream is closed.

ferror returns nonzero if an error was detected on the named stream.

See also clearerr, eof, feof, fopen, gets, perror
fflush stdio.h
Function Flushes a stream.
Syntax int fflush(FILE *stream);
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0s/2
n n n L] |] 2 L]
Remarks If the given stream has buffered output, fflush writes the output for stream
to the associated file.
The stream remains open after fflush has executed. fflush has no effect on an
unbuffered stream.
Return value fflush returns 0 on success. It returns EOF if any errors were detected.
See also ‘

fclose, flushall, setbuf, setvbuf

Chapter 3, Run-time functions 97

fgetc

fgetc stdio.h
Function Gets character from stream.
Syntax int fgetc(FILE *stream);
005 | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
n n . [] L] u L} [}
Remarks fgetc returns the next character on the named input stream.
Return value On success, fgetc returns the character read, after converting it to an int
without sign extension. On end-of-file or error, it returns EOF.
See also feetchar, foutc, getc, getch, getchar, getche, ungetc, ungetch
fgetchar stdio.h
Function Gets character from stdin. ‘
Syntax int fgetchar (void);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
L] [] [} [] n
Remarks fgetchar returns the next character from stdin. It is defined as fgetc(stdin).
For Win32s or Win32 GUI applications, stdin must be redirected.
Return value On success, fgetchar returns the character read, after converting it to an int
without sign extension. On end-of-file or error, it returns EOF.
See also fsetc, fputchar, freopen, getchar
fgetpos stdio.h
Function Gets the current file pointer.
Syntax int fgetpos(FILE *stream, fpos_t *pos);
oS | UNIX | wWin16 | Win32 | ANsIcC | ANSICe | 0572
n | [] [] n |]
98

Library Reference

Remarks

Return value

fgetpos

fgetpos stores the position of the file pointer associated with the given
stream in the location pointed to by pos. The exact value is unimportant; its
value is opaque except as a parameter to subsequent fsetpos calls.

On success, fgetpos returns 0. On failure, it returns a nonzero value and sets
the global variable errno to

EBADF Bad file number ‘ - F
EINVAL Invalid number '
See also fseek, fsetpos, ftell, tell
fgets stdio.h
Function Gets a string from a stream.
Syntax char *fgets(char *s, int n, FILE *stream);
p0s | UNIX | wWin16 .| Win32 | aNsIc | ANSI e+ [o0s/2
| n |] [I u " []
Remarks fgets reads characters from stream into the string s. The function stops

Return value

reading when it reads either 1 - 1 characters or a newline character, which-
ever comes first. fgets retains the newline character at the end of s. A null
byte is appended to s to mark the end of the string.

On success, fgets returns the strmg pomted to by s, it returns NULL on
end-of-file or error.

See also cgets, fputs, gets
filelength io.h
Function Gets file size in bytes.
Syntax long filelength(int handle);
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
|] 1] [] L]

Remarks

 filelength returns the length (in bytes) of the file associated with handle.

Chapter 3, Run-time functions v \ 99

filelength

Return value

On success, filelength returns a long value, the file length in bytes. On error,
it returns -1 and the global variable errno is set to

. EBADF Bad file number

- Seealso fopen, Iseck, open

fileno stdio.h

Function Gets file handle.

Syntax int fileno(FILE *stream);

pos [uvix | Win16 | wWin32 [src | ANST e+ | 0s/2

Remarks fileno is a macro that returns the file handle for the given stream. If stream

has more than one handle, fileno returns the handle a551gned to the stream
‘ when it was first opened.

Return value fileno returns the integer file handle associated with stream.

See also fdopen, fopen, freopen

findfirst dirh

Function Searches a disk directory.

Syntax .int findfirst(const char *pathname, struct ffblk *ffblk, int attrib);

DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2

Remarks findfirst begins a search of a disk directory for files spec1f1ed by attributes or
wildcards. _
pathname is a string with an optional drive specifier, path, and file name of
the file to be found. Only the file name portion can contain wildcard match
characters (such ds ? or *). If a matching file is found, the ffblk structure is
filled with the file-directory information.

100 . Library Reference

finarirst

The format of the structure ffblk is as follows:

struct ffblk {

char ff_reserved(21]; /* reserved by DOS */

char ff_attrib; /* attribute found */

int ff_ftime; /* file time */

int ff_fdate; /* file date */

long ff_fsize; /* file size */

char ff_name(13]; /* found file name .*/ F:

}i
struct ffblk {

long ff_reserved;

long ff_fsize; /* file size */
~unsigned long ff_attrib; /* attribute found */

unsigned short ff_ftime; /* file time */

unsigned short ff_fdate; /* file date */

char ff_name{256]; /* found file name */

b

attrib is a file-attribute byte used in selecting eligible files for the search.
attrib should be selected from the following constants defined in dos.h:

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file
FA_LABEL Volume label
FA_DIREC Directory
FA_ARCH Archive

A combination of constants can be ORed together.

For more detailed information about these attributes, refer to your operat-
ing system reference manuals. :

Note that ff_ftime and ff_fdate contain bit fields for referring to the current
date and time. The structure of these fields was established by the operat-
ing system. Both are 16-bit structures divided into three fields.

ff_ftime:

Bits 0 to 4 The result of seconds divided by 2 (for example, 10 here
means 20 seconds)

Bits 5 to 10 Minutes

Bits11t0o15 Hours

ff_fdate:

Bits 0-4 Day

Bits5-8 =~ . Month :
Bits 9-15 Years since 1980 (for example, 9 here means 1989)

Chapter 3, Run-time functions . ’ A 101

nnanrst

Return value

The structure ftime declared in io.h uses time and date bit fields similar in
structure to ff_ftime, and ff_fdate.

findfirst returns 0 on successfully finding a file matching the search
pathname. When no more files can be found, or if there is some error in the
file name, -1 is returned, and the global variable errno is set to »

ENOENT Pathor file- name not found

and _doserrno is set to one of the following values:

ENMFILE - No more files
ENOENT Path or file name not found

~ Seealso * findnext, getftime, setftime

findnext dirh

Function Continues findfirst search. .

Syntax int findnext (struct £fblk *£fblk);

D05 | WD | win 16 Win32 | AmNSIC | ANSI C++ | 0S/2

Remarks findnext is used to fetch subsequent files that match the pathname given in
findfirst. ffblk is the same block filled in by the findfirst call. This block
contains necessary information for continuing the search. One file name for
each call to findnext will be returned until no more flles are found in the

: directory matching the pathname.

Return value findnext returns 0 on successfully finding a file matching the search
pathname. When no more files can be found, or if there is some error in the
file name, -1 is returned and the global Varlable errno is set to

ENOENT Path or file name not found
and _doserrno is set to one of the following values:
ENMFILE No more files
ENOENT Path or file name not found
See also findfirst
102 " Library Reference

floor, floorl

floor, floorl

math.h
Function Rounds down.
Syntax double floor{double x);
long double floorl(long double x); F
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
[] [] | n | n []
floor
L} [}]) n
floor! :
Remarks floor finds the largest integer not greater than x. floor! is the long double
version; it takes a long double argument and returns a long double result.
Return value floor returns the integer found as a double. floor] returns the integer found
as a long double.
See also ceil, fmod
flushall stdio.h
Function Flushes all streams.
Syntax int flushall(void);
Dos | unix | win16 [win3z | awstc | AnsIces | 0572
L] [] " n L
Remarks flushall clears all buffers associated with open input streams, and writes all

Return value

See also

_fmemcdpy

buffers associated with open output streams to their respective files. Any
read operation following flushall reads new data into the buffers from the
input files. Streams stay open after flushall executes.

flushall returns an integer, the number of open input and output streams.
felose, fcloseall, fflush

See memccpy.

Chapter 3, Run-time functions . 103

_fmemchr

_fmemchr
See memchr.
_fmemcmp
See memcmp.
_fmemcpy
See memcpy.
_fmemicmp
See memicmp.
_fmemmove
See memmove.
_fmemset
See memset.
fmod, fmodl math.h
Function Calculates x modulo y, the remainder of x/y.
Syntax double fmod(double x, double y);
long double fmodl(long double x, long double y);
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
fmod .] .]] . .
fmod! " . " *
104 Library Reference

Remarks

Return value

See also

_fmovmem

fmod, fmodi

fmod calculates x modulo y (the remainder f, where x = ay + f for some
integer a and 0 < f < y). fmodl is the long double version; it takes long
double arguments and returns a long double result.

fmod and fmodl return the remainder f, where x = ay + f (as described).
Where y = 0, finod and fmodl return 0.

ceil, floor, modf

fnmerge

See movmem.

dirh

Function

Syntax

Remarks

Return value
See also

Builds a path from component parts.

void fnmerge(char *path, const char *drive, const char *dir, const char *name,
const char *ext);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

fnmerge makes a path name from its components. The new path name is
X:\DIR\SUBDIR\NAME . EXT

where

drive X:

dir \DIR\SUBDIR\
name = NAME

ext = ,EXT

fnmerge assumes there is enough space in path for the constructed path
name. The maximum constructed length is MAXPATH. MAXPATH is
defined in dir.h.

fnmerge and fnsplit are invertible; if you split a given path with fnsplit, then
merge the resultant components with fnmerge, you end up with path.

None.
fusplit

Chapter 3, Run-time functions 105

fnsplit

fnsplit dirh
Function Splits a full path name into its components.
Syntax int fnsplit(const char *path, char *drive, char *dir, char *name, char *ext);
oS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2
[] n n L]
Remarks fnsplit takes a file’s full path name (path) as a string in the form
X:\DIR\SUBDIR\NAME.EXT
and splits path into its four components. It then stores those components in
the strings pointed to by drive, dir, name, and ext. (All five components must
be passed, but any of them can be a null, which means the corresponding
component will be parsed but not stored.)
The maximum sizes for these strings are given by the constants MAXDRIVE,
MAXDIR, MAXPATH, MAXFILE, and MAXEXT (defined in dir.h), and each size
includes space for the null character.
Max Max
Constant 16-bit 32-bit String
MAXPATH 80 260 path
MAXDRIVE 3 3 drive; includes colon (:)
MAXDIR 66 260 dir, includes leading and trailing backslashes (\)
MAXFILE 9 260 name
MAXEXT 5 260 ext includes leading dot (.)
fnsplit assumes that there is enough space to store each non-null
component.
When fnsplit splits path, it treats the punctuation as follows:
m drive includes the colon (C:, A:, and so on).
m dir includes the leading and trailing backslashes (\BC\include\,
\source\, and so on).
m name includes the file name.
mext includes the dot preceding the extension (.C, .EXE, and so on).
fnmerge and fusplit are invertible; if you split a given path with fusplit, then
merge the resultant components with fnumerge, you end up with path.
106 Library Reference

Return value

fnsplit

fnsplit returns an integer (composed of five flags, defined in dir.h)
indicating which of the full path name components were present in path.
These flags and the components they represent are

'EXTENSION An extension ,
FILENAME A file name :

DIRECTORY A directory (and possibly subdirectories) N F
DRIVE A drive specification (see dir.h)
WILDCARDS Wildcards (* or ?) :
See also fnmerge
fopen stdio.h
Function Opens a stream.
Syntax FILE *fopen (coflst char *filename, const char *mode);
pos | UNIX | wWin16 | win32 | ANsIC | ANSI C++ | 05/2
Remarks fopen opens the file named by filename and associates a stream with it. fopen

returns a pointer to be used to identify the stream in subsequent

- operations.

The mode string used in calls to fopen is one of the following values:

\

Value Description

r Open for reading only.

w Create for writing. If a file by that name already exists, it will be overwritten.

a Append; open for writing at end of file, or create for writing if the file does not exist.

r+ Open an existing file for update (reading and writing).

w+ Create a new file for update (reading and writing). If a file by that name already
exists, it will be overwritten.

ar Open for append; open for update at the end of the file, or create if the file does not
exist.

To specify that a given file is being opened or created in text mode, append
a t to the mode string (rt, w+t, and so on). Similarly, to specify binary mode,
append a b to the mode string (wb, a+b, and so on). fopen also allows the t or

Chapter 3, Run-time functions . : l 107

fopen

b to be inserted between the letter and the + character in the mode string;

for example, rt+ is equivalent to r+t.

- Ifatorbisnot given in the mode string, the mode is governed by the global

variable _fmode. If _fmode is set to O_BINARY, files are opened in binary
mode. If _fmode is set to O_TEXT, they are opened in text mode. These O_...
constants are defined in fcntlh.

When a file'is opened for update, both input and output can be done on the
resulting stream. However, output cannot be followed directly by input
without an intervening fseek or rewind, and input cannot be directly
followed by output without an intervening fseek, rewind, or an input that
encounters end-of-file.

Return value On successful completion, fopen returns a pointer to the newly opened-
stream. In the event of error, it returns NULL.

See also creat, dup, fclose, fdopen ferror, _fmode (global variable), fread, freopen, fseek,
fwrite, open, rewind, setbuf, setmode

~ FP_OFF, FP_SEG | »- | dos.h

Function Gets a far address offset or segment.

Syntax unsigned FP_OFF (void far *p);
unsigned FP_SEG(void far *p);

os | unix | win16 | win32 | ANSIC | ANsI C++ | 0s/2

Remarks The FP_OFF macro can be used to get or set the offset of the far pointer p.
FP_SEG is a macro that gets or sets the segment value of the far pointer p.

Return value FP_OFF returns an unsigned integer value representing an offset value.

. FP_SEG returns an unsigned integer representing a segment value.

See also MK_FP, movedata, segread

_fpreset float.h

Function Reinitializes ;ﬂoating-point math package.

Syntax ~ void _fpreset(void); /

108 Library Reference

Remarks

_fpreset

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ .| 0S/2

_fpreset reinitializes the floating-point math package. This function is
usually used in conjunction with system or the exec... or spawn... functions.
It is also used to recover from floating-point errors before calling longjmp.

If an 80x87 coprocessor is used in a program, a child process (executed by F
system or by an exec... or spawn... function) might alter the parent process’
floating-point state.

If you use an 80x87, take the following precautions:

m Do not call system or an exec... or spawn... function while a floating-point
expression is being evaluated.

m Call _fpreset to reset the floating-point state after using system, exec..., or
spawn... if there is any chance that the child process performed a
floating-point operation with the 80x87.

See printffor details
on format specifiers.

Return value

See also

Return value None.
- See also _clear87, _control87, _status87
fprintf stdio.h
Function Writes formatted output to a stream.
Syntax . int fprintf(FILE *stream, const char *fbrmat[, argument, ...]);
oS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
n "] 1 " |] 1
Remarks fprintf accepts a series of arguments, applies to each a format specifier

contained in the format string pointed to by format, and outputs the
formatted data to a stream. There must be the same number of format
specifiers as arguments.

fprintf returns the number of bytes output. In the event of error, it returns

EOF.

cprintf, fscanf, printf, putc, sprintf

Chapter 3, Run-time functions S ; 109

“fpute

fputc

stdio.h
Function Puts a character on a stream.
, Syntax int fputc(int ¢, FILE *stream);
Dos | unix | win16 | win'32 | AnsL.c | awsce+ [oss2
] []] [] .]
Remarks fputc outputs character-c to the named stream. '
W) For Win32s or Win32 GUI applications, stdout must be redirected.
Return value On success, fputc returns the character ¢. On error, it returns EOF.
See also fgetc, putc
fputchar stdio.h
Function Outputs a character on stdout.
Syntax int fputchar (int c);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0s/2
]] . LI [])]
Remarks fputchar outputs character c to stdout. fputchar(c) is the same as
frutc(c, stdout).
W For Win32s or Win32 GUI applications, stdout must be redirected.
 Return value On success, fputchar returns the character c. On error, it returns EOF.
See also fgetchar, freopen, putchar
fputs stdio.h
Function Outputs a string on a stream.
Syntax int fputs(const char *s, FILE *stream);.
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0572
L]] [] |] | °] []
110

. Library Reference

Remarks

Return value

fputs

fruts copies the null-terminated string s to the given output stream; it does
not append a newline character, and the terminating null character is not
copied. ~

On successful completion, fputs returns a non-negative value. Otherwise, it
returns a value of EOF.

See also fgets, gets, puts
fread stdio.h
Function Reads data from a stream.
Syntax size_t fread(void *ptr, size_t size, size_t n, FILE *stream);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
| n n n n |] n

Remarks fread reads n items of data, each of length size bytes, from the given input

stream into a block pointed to by pir.

The total number of bytes read is (n X size).
Return value On successful completion, fread returns the number of items (not bytes)

actually read. It returns a short count (possibly 0) on end-of-file or error.
See also fopen, fwrite, printf, read
free stdlib.h
Function Frees allocated block.
Syntax void free(void *block);

DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
n n n I n n []

Remarks free deallocates a memory block allocated by a previous call to calloc, malloc,

or realloc.
Return value None.
See also

calloc, malloc, realloc, strdup

Chapter 3, Run-time functions 7 111

freopen

freopen stdio.h
Function Associates a new file with an open stream.
Syntax FILE *freopen{const char *filename, const char *mode, FILE *stream);
D0S | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 05/2
[] |] [] [] [] n .
Remarks freopen substitutes the named file in place of the open stream. It closes

Return value

See also

112

stream, regardless of whether the open succeeds. freopen is useful for
changing the file attached to stdin, stdout, or stderr.

The mode string used in calls to fopen is one of the following values:

Value Description
r Open for reading only.
w Create for writing.

Append; open for writing at end-of-file, or create for writing if the file does not exist.

r+ Open an existing file for update (reading and writing).

w+ Create a new file for update.

ar Open for append; open (or create if the file does not exist) for update at the end of
the file.

To specify that a given file is being opened or created in text mode, append
a t to the mode string (rt, w+t, and so on); similarly, to specify binary mode,
append a b to the mode string (wb, a+b, and so on).

If a t or b is not given in the mode string, the mode is governed by the global
variable _fmode. If _fmode is set to O_BINARY, files are opened in binary
mode. If _fmode is set to O_TEXT, they are opened in text mode. These O_...
constants are defined in fentlh.

When a file is opened for update, both input and output can be done on the
resulting stream. However, output cannot be directly followed by input
without an intervening fseek or rewind, and input cannot be directly
followed by output without an intervening fseek, rewind, or an input that
encounters end-of-file.

On successful completion, freopen returns the argument stream. In the event
of error, it returns NULL.

fclose, fdopen, fopen, open, setmode

Library Reference

frexp, frexpl -

frexp, frexpl math.h
Function Splits a number into mantissa and exponent.
Syntax double frexp(double x, int *exponent);
long double frexpl(long double x, int *exponent);
os | unIx | wWin16 | Win32 | ANSIC | ANSI C++ | 0S/2
frexp) L] . L}] L} L] L]
frexpl ' " " '
Remarks frexp calculates the mantissa m (a double greater than or equal to 0.5 and

Return value

less than 1) and the integer value 7, such that x (the original double value)
equals m x 2". frexp stores n in the integer that exponent points to.

frexpl is the long double version; it takes a long double argument for x and
returns a long double result.

frexp and frexpl return the mantissa . Error handling for these routines can

. be modified through the functions _matherr and _matherrl.

See also exp, ldexp, _matherr, -
fscanf stdio.h
Function ' Scans and formats input from a stream.
Sy“tax int fscanf(FILE *stream, const char *format[, address, ...l);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ [0S/2
[] a a n n n |
Remarks fscanf scans a series of input fields, one character at a time, reading from a

. See scanffor details

on format specifiers.

‘Return value

stream. Then each field is formatted according to a format specifier passed
to fscanf in the format string pointed to by format. Finally, fscanf stores the
formatted input at an address passed to it as an argument following format.
The number of format specifiers and addresses must be the same as the
number of input fields.

fscanf can stop scanning a particular field before it reaches the normal end-
of-field character (whitespace), or it can terminate entirely for a number of
reasons. See scanf for a discussion of possible causes.

fscanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. '

Chapter 3, Hun;time functions ‘ ‘ 113

fscanf

If fscanf attempts to read at end-of- file, the return value is EOF. If no fields
were stored, the return value is 0.

See also atof, cscanf, fprintf, printf, scanf, sscanf, vfscanf, vscanf, vssbanf

fseek ' , ‘» - stdio.h
Function Repositions a file pointer on a stream.

Syntax int fseek(FILE *stream, long offset, int whence) ;

DOS UNIX Win 16 Win 32 ANSI C | ANSI C++ 0s/2

Remarks . feeek sets the file pointer associated with stream to a new position that is
offset bytes from the file location given by whence. For text mode streams,
offset should be 0 or a value returned by ftell.

whence must be one of the values 0, 1, or 2, which represent three symbolic
constants (defined in stdio.h) as follows:

Constant whence, File location

SEEK_SET ' 0 File beginning '
SEEK_CUR 1 Current file pointer position
SEEK_END 2 End-of-file

fseek discards any character pushed back using ungetc fseek is used with
stream 1/0; for file handle I/0O, use Iseek.

After fseek, the next operation on an update file can be elther input or
output.

Return value fseek returns 0 if the pointer is successfully moved and nonzero on failure.

W) fseck might return a 0, indicating that the pomter has been moved success-
fully, when in fact it has not been. This is because DOS, which actually
resets the pointer, does not verify the setting. fseek returns an error code
only on an unopened file or device. »

In the event of an error return, the global variable errno is set to one of the
following values:

EBADF Bad file pointef
EINVAL Invalid argument
ESPIPE Illegal seek on device

1l14 o : _ ; ; : Library Reference

fseek

See also fgetpos, fopen, fsetpos, ftell, Iseck, rewind, setbuf, tell
fsetpos stdio.h
Function Positions the file pointer of a stream.
Syntax int fsetpos(FILE *stream, const fpos_t *pos); F
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 05/2
[] ‘ ‘0 []]] []
Remarks fsetpos sets the file pointer associated with stream to a new position. The

Return value

new position is the value obtained by a previous call to fgetpos on that
stream. It also clears the end-of-file indicator on the file that stream points to
and undoes any effects of ungetc on that file. After a call to fsetpos, the next
operation on the file can be input or output.

On success, fsetpos returns 0. On failure, it returns a nonzero value and also
sets the global variable errno to a nonzero value.

Seealso - faetpos, fseek, ftell
_fsopen stdio.h, share.h
Function Opens a stream with file sharing.
Syntax ' FILE *_fsopen(const char *filename, const char *mode, int shflag);
DOS | UNIX | Win 16 | Win32 | ANSIC | ANSI C++ | 0S/2
] n] n
Remarks

_fsopen opens the file named by filename and associates a stream with it.
_fsopen returns a pointer that is used to identify the stream i in subsequent
operations.

The mode string used in calls to _fsopen is one of the following values:

Mode Description
r Open for reading only.
W Create for writing. If a file by that name already exists, it will be overwritten.

Append; open for writing at end of file, or create for writing if the file does not exist.

Chapter 3, Run-time functions ‘ o ' i 115

_fsopen

Return value

See also -

fstat, stat

r+ Open an existing file for update (reading and writing).

w+ Create a new file for update (reading and writing). If a file by that name already
exists, it will be overwritten.

a+ Open for appand; open for update at the end of the file, or create if the file does not
exist.

To specify that a given file is being opened or created in text mode, append
a t to the mode string (rf, w+t, and so on). Similarly, to specify binary mode,

-append a b to the mode string (wb, a+b, and so on). _fsopen also allows the ¢

or b to be inserted between the letter and the + character in the mode string;
for example, rt+ is equivalent to r+t.

If a t or b is not given in the mode string, the mode is governed by the global

" variable _fmode. If _fmode is set to O_BINARY, files are opened in binary

mode. If _fmode is set to O_TEXT, they are opened in text mode. These O_...
constants are defined in fentl.h.

When a file is opened for update, both input and output can be done on the
resulting stream. However, output cannot be followed directly by input
without an intervening fseek-or rewind, and input cannot be directly
followed by output without an intervening fseek, rewind, or an input that
encounters end-of-file.

shflag speéifies the type of file-sharing allowed on the file filename. Symbolic
constants for shflag are defined in share.h.

Value of shflag Description

SH_COMPAT Sets compatibility mode
SH_DENYRW Denies read/write access
SH_DENYWR Denies write access
SH_DENYRD Denies read access
SH_DENYNONE Permits read/write access .
SH_DENYNO Permits read/write access

On successful completion, _fsopen returns a pointer to the newly opened
stream. In the event of error, it returns NULL.

creat, _dos_open, dup, fclose, fdopen, ferror, _fmode (global variable), fopen,
fread, freopen, fseek, fwrite, open, rewind, setbuf, setmode, sopen

sys\stat.h

Function

116

Gets open file information.

Library Reference

Syntax

Remarks

fstat, stat

int fstat(int handle, struct stat *statbuf);
int stat(char *path, struct stat *statbuf);

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

fstat stores information in the stat structure about the file or directory
associated with handle.

stat stores information about a given file or directory in the stat structure.

" The name of the file is path.

statbuf points to the stat structure (defined in sys\stat.h). That structure
contains the following fields:

st_mode Bit mask giving information about the file’s mode

st_dev Drive number of disk containing the file, or file handle if the
fileisona device_

st_rdev Same as st_dev
st_nlink Set to the integer constant 1
- st_size Size of the file in bytes
st_atime Mos‘_t recent access
st_mtime ‘ Same as st_atime
st_ctime Same as st_atime -

The stat structure contains three more fields not mentioned here. They
contain values that are meaningful only in UNIX.

The st_mode bit mask that gives informétion about the mode of the open file
includes the following bits:

One of the following bits will be set:

S_IFCHR 1If handle refers to a device.
S_IFREG If an ordinary file is referred to by hundle

One or both of the following bits will be set:

S_IWRITE If user has permission to write to file.
S_IREAD If user has permission to read to file.

The HPFS and NTFS f1le-management systems make the following
distinctions:

Chapter 3, Run-time functions , o o 117

~ fstat, stat

st_atime Most recent access.
st_mtime Most recent modify.
st_ctime Creation time.

string function returns
anint or size_t, the
return is never
modified by the far
keyword.

Return value -

- Return value fstat and stat return 0 if they successfully retrieved the information about
' the open file. On error (failure to get the information), these functions
return -1 and set the global variable errno to
. EBADF Bad file handle
Seealso - access, chmod
_fstr* string.h
Function Provides strihg operations in a large-code model.
Syntax far string functions
pos | UNIX | Win16 | Win32 | ANSI C | ANSI C++ [0S/2 -
Remarks The See also section below provides a list of string functions that have a far
Note that when a far version. The far version of a string function is prefixed with _fstr. The

behavior of a far string function is identical to the behavior of the standard
function to which it corresponds. The only difference is that for a far string
function, the arguments and return value (only when the return value is of
type ‘char far *') are each modified by the far keyword. The entry for each
of the functions provides a description that applies to the far version. .

When an _fstr-type function returns a char pointer, the return is a far type.

See also strcat, s‘\trchr, strcmp, strepy, strcspn, strdup, s‘tric'mp, strlen, strlwr, strncat,
strncmp, strncpy, strnicmp, strnset, strpbrk, strrchr, strrev, strset, strspn, strstr,
strtok, strupr '

ftell stdio.h -

Function Returns the current file pointer.

Syntax long int ftell(FILE *stream);

DOS UNIX Win 16 Win 32 ANSI € ANSI C++ 0s/2
]] n L] n |] . - |
118 Library Reference

Remarks

ftell

ftell returns the current file pointer for stream. The offset is measured in’

" bytes from the beginning of the file (if the file is binary). The value returned

by ftell can be used in a subsequent call to fseek.

Remarks

Return value ftell returns the current file pointer position on success. It returns ~1L on
error and sets the global variable errno to a positive value. ,
In the event of an error return, the global variable errno is set to one of the
following values: '
EBADF Bad file pointer
ESPIPE Illegal seek on device
See also faetpos, fseek, fsetpos, Iseek, rewind, tell ‘
ftime sys\timeb.h
Function Stores current time in fimeb structure.
Syntax void ftime(struct timeb *buf)
oS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2

On UNIX platforms, ftime is available only on System V systems.

ftime determines the current time and fills in the fields in the timeb structure -
pointed to by buf. The timeb structure contains four fields: time, millitm,
_timezone, and dstflag:

struct timeb {
long time ; . .
short millitm ; " ‘
short _timezone ;
short dstflag ;)
b . :
m time provides the time in seconds since 00 00:00 Greenw1ch mean time
(GMT), January 1, 1970.
m millitm is the fractional part of a second in milliseconds.

m _timezone is the difference in minutes between GMT and the local time.
This value is computed going west from GMT. ftime gets this field from
the global variable _timezone, which is set by tzset.

m dstflag is used to indicate whether daylight saving time will be taken into
account during time calculations.

Chapter 3, Run-time functions ' , 119

ftime

v

-y

ftime calls tzset. Therefore, it isn’t necessary to call tzset explicitly when you
use ftime.

Return value None.
See also asctime, ctime, gmtime, localtime, stime, iime, tzset
_fullpath stdlib.h
Function Converts a path name from relative to absolute.
Syntax char * _fullpath(char *buffer, const char *path, ‘int buflen);
pos | unix [win16 | win3z | ANsIC [ANSI Ce+ | 072
Remarks _fullpath converts the relative path name in path to an absolute path name
that is stored in the array of characters pointed to by buffer. The maximum
number of characters that can be stored at buffer is buflen. The function
returns NULL if the buffer isn’t big enough to store the absolute path name,
or if the path contains an invalid drive letter.
If buffer is NULL, _fullpath allocates a buffer of up to _MAX_PATH charac-
ters. This buffer should be freed using free when it is no longer needed.
_MAX_PATH is defined in stdlib.h
Return value If successful, the _fullpath function returns a pointer to the buffer containing
the absolute path name. Otherwise, it returns NULL.
See also _makepath, _splitpath
fwrite stdio.h
Function Writes to a stream.
Syntax] size_t fwrite(const void *ptr, size_t size, size_t n, FILE *stream);
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2
L] n .] a [} []
Remarks fwrite appends n items of data, each of length size bytes, to the given output
file. The data written begins at ptr. The total number of bytes written is (1 x
- size). ptr in the declarations is a pointer to any object.
120 Library Reference

fwrite

Return value On successful completion, fwrite returns the number of items (not bytes)
actually written. It returns a short count on error.

See also fopen, fread
gevt stdlib.h
Function Converts floating-point number to a string.
Symax char *gcvt (double value, int ndec, char *buf);

D0s | UNIX | Win16 | win32 | ANSIC | ANSI C++ | 0s/2

] R 1 [[) []

Remarks gcvt converts value to a null-terminated ASCII string and stores the string in

Return value

buf. It produces ndec significant digits in FORTRAN F format, if possible;
otherwise, it returns the value in the printf E format (ready for printing). It
might suppress trailing zeros. - :

gcot returns the address of the string pointed to by buf.

See also ecvt, fevt, sprintf

geninterrupt dos.h

Function Generates a‘software interrupt.

Syntax void geninterrupt (int intr_num);

p0s | UNIX | Win16 | Win32 | aNsIcC | ANsICe+ | 05/2.
]]] '

Remarks The geninterrupt macro triggers a software trap for the interrupt given by
intr_num. The state of all registers after the call depends on the interrupt
called. ‘

‘ W) Interrupts can leave registers in unpredictable states.

Return value None.

See also

bdos, bdosptr, disable, enable, getvect, int86, int86x, intdos, intdosx, intr

Chapter 3, Run-time functions 121

getc

Return value .

getc stdio.h -
Function Gets character from stream.
Syntax int getc(FILE *stream);
DS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
[[[} [} [[} [}
Remarks getc is a macro that returns the next character on the given input stream and

increments the stream’s file pointer to point to the next character.

On success, getc returns the character read, after converting it to an int |
without sign extension. On end-of-file or error, it returns EOF.

Return value

See also fgetc, getch, getchar, getche, gets, putc, putchar, ungetc
getcbrk dos.h
Function Gets control-break setting.
Syntax " int getcbrk(void);
pos | UNIX | wWin16 | win32 | ansic | ANsI C++ | o0s/2
Remarks

getcbrk uses the DOS system call 0x33 to return the current setting of
control-break checking.

getcbrk returns 0 if control-break checking is off, or 1 if checking is on.

399 also ctrlbrk, setcbrk
getch conio.h
Function Gets character from keyboard, does not echo to screen.
Syntax int getch(void);

DOS | UNIX | wWin16 | wWin32 | ANsI ¢ | ANSI C+ [0572

L] . - L] "
Remarks getch reads a single character directly from the keyboard, without echoing
to the screen.

122 Library Reference

getch

wp This function should not be used in Win32s or Win32 GUI applications.

Return value getch returns the character read from the keyboard.

See also cgets, cscanf, fgetc, getc, geichar, getche, getpass, kbhit, putch, ungetch

S;EEt‘:'\EIr . ' Sit(ii().ll
Function Gets character from stdin.

Syntax int getchar(void);

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Remarks getchar is a macro that returns the next character on the named input stream
stdin. It is defined to be getc(stdin).

WP . For Win32s or Win32 GUI applications, stdin must be redirected.

Return value On success, getchar returns the character read, after converting it to an int
without sign extension. On end-of-file or error, it returns EOF.

See also fgetc, fgetchar, freopen, getc, getch, getche, géts, putc, putchar, scanf, i[ngetc

getche , “conio.h

Function Gets character from the keyboard, echoes to screen.

Symax ‘ int getche(void);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks getche reads a single character from the keyboard and echoes it to the
current text window using direct video or BIOS.

WP This function should not be used in Win32s or Win32 GUI apphcatlons.
Return value getche returns the character read from the keyboard.

See also cgets, cscanf, fgetc, getc, getch, gefchur, kbhit, putch, ungetch

v Chapter 3, Run-time functions 4 , , o 123

getcurdir

Return value

124

getcurdir dirh
Function Gets current directory for specified drive.
Syntax int getcurdir(int drive, char *directory);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
Remarks getcurdir gets the name of the current working directory for the drive
indicated by drive. drive specifies a drive number (0 for default, 1 for A, and
so on). directory points to an area of memory of length MAXDIR where the
null-terminated directory name will be placed. The name does not contain
the drive specification and does not begin with a backslash.
Return value getcurdir returns 0 on success or -1 in the event of error.
See also chdir, getcwd, getdisk, mkdir, rmdir
getcwd dirh
Function Gets current working directory.
Syntax char *getcwd(char *buf, int buflen);
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
| n [n
~Remarks getcwd gets the full path name (including the drive) of the current working

directory, up to buflen bytes long and stores it in buf. If the full path name
length (including the null character) is longer than buflen bytes, an error
occurs.

If buf is NULL, a buffer buflen bytes long is allocated for you with malloc.
You can later free the allocated buffer by passing the return value of getcwd
to the function free. ‘ |

getcwd returns the following values:

‘mIf buf is not NULL on input, getcwd returns buf on success, NULL on

error.

- mIf buf is NULL on input, getcwd returns a pointer to the allocated buffer.

Library Reference

getewd

In the event of an error return, the global variable errno is set to one of the
following values:

ENODEV No such device
ENOMEM Not enough memory to allocate a buffer (bufis NULL)
ERANGE Directory name longer than buflen (buf is not NULL)

Seealso - chdir, getcurdir, _getdcwd, getdisk, mkdir, rmdir

getdate

See _dos_getdate.

_getdcwd , | , : direct.h
Function Gets current directory for specified drive.
Syntax char * _getdewd(int drive, char *buffer, int buflen);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks _getdcwd gets the full path name of the working directory of the specified
drive (including the drive name), up to buflen bytes long, and stores it in
buffer. If the full path name length (including the null character) is longer
than buflen, an error occurs. The drive is 0 for the default drive, 1=A, 2=B;
and so on. :

If buffer is NULL, _getdcwd allocates a buffer at least buflen bytes long. You

can later free the allocated buffer by passing the _getdcwd return value to
the free function.

Return value If successful, _getdcwd returns a pointer to the buffer containing the current
directory for the specified drive. Otherwise it returns NULL, and sets the
global variable errno to one of the following values:

ENOMEM Not enough memory to allocate a buffer (buffer is NULL)
ERANGE Directory name longer than buflen (buffer is not NULL)

See also chdir, getcwd, mkdir, rmdir

Chapter 3, Run-time functions . 125

getdfree

getdfree dos.h
Function Gets disk free space.
Syntax void getdfree{unsigned char drive, struct dfree *dtable);
D0s | UNIX | Win16 | wWin32 | AnsIC [ANsI c++ | os/2
n] |] []
Remarks getdfree accepts a drive specifier in drive (0 for default, 1 for A, and so on)

- Return value

and fills the dfree structure pointed to by dtable with disk attributes.
The dfree structure is defined as follows: ‘

struct dfree {

unsigned df_avail; /* available clusters */

unsigned df_total; /* total clusters */

unsigned df_bsec; /* bytes per sector */

unsigned df_sclus; /* sectors per cluster */ \

}i

getdfree returns no value. In the event of an error, df sclus in the dfree
structure is set to (unS|gned) -1.

-See also getfat, getfatd

getdisk, setdisk | dirh
Function Gets or sets the current drive number.
Syntax int getdisk (void); '

int setdisk(int drive);

00s | UNIx | Win16 | win32 | asrc | awsIce | 052
L] n) u]
Remarks getdzsk gets the current drive number. It returns an integer: 0 for A, 1 for B, 2 -.
' for C, and so on. setdisk sets the current drive to the one associated with '

drive: 0 for A, 1 for B, 2 for C, and so on.

The setdisk function changes the current drive of the parent process.
Return value getdzsk returns the current drive number. setdisk returns the total number of

o drives available. <

See also getcurdir, getcwd
126 Library Reference

getdta

getdta , dos.h
Function Gets disk transfer address. |
Syntax char far *getdta(void);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks getdta returns the current setting of the disk transfer address (DT A). -

In the small and medium memory models, it’s assumed the segment is the
current data segment. If you use C or C++ exclusively, this will be the case,
but assembly routines can set the DTA to any hardware address.

In the compact or large models, the address returned by getdta is the correct
hardware address and can be located outside the program. ‘

RetUrn value getdta returns a far pointer to the current DTA.

See also setdta

getenv] ‘ stdlib.h
Function Gets a string from environment.

Synt_ax ' char *gétenv (consf char *name);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

\

Remarks - getenv returns the value of a specified variable. On DOS and OS/2, name
’ must be uppercase. On other systems, name can be either uppercase or low- -
_ercase. name must not include the equal sign (=). If the specified
environment variable does not exist, getenv returns a NULL pointer.

To delete the variable from the environment, use getenv("name=").

WP Environment entries must not be changed directly. If you want to change
an environment value, you must use putenv.

Return value On success, getenv returns the value associated with name. If the specified
name is not defined in the environment, getenv returns a NULL pointer.

Seealso _environ (global variable), getpsp, putenv

Chapter 3, Run-time functions ‘ ‘ C 127 -

getfat

dos.h |

getfat

Function Gets file allocation table information for given drive.

Syntax void getfat (unsigned char drive, struct fatinfo *dtable);:

DOS | UNIX | Win 16 | Win32 | ANSIC | ANSI C++ | 0S/2
[] "

_Remarks getfat gets information from the file allocation table (FAT) for the drive
specified by drive (0 for default, 1 for A, 2 for B, and so on). dtable points to
the fatinfo structure to be filled in. The fatinfo structure filled in by getfat is
defined as follows:

struct fatinfo {
char fi_sclus; /* sectors per cluster */
char fi_fatid; /* the FAT id byte */
unsigned fi_nclus; . /* number of clusters */
int fi_bysec; /* bytes per sector */

}i ‘

Return value None.

See also getdfree, getfatd

getfatd dos.h

Function Gets file allocation table information.

Syntax void getfatd(struct fatinfo *dtable);

DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
[] "
Remarks getfatd gets information from the file allocation table (FAT) of the default
drive. dtable points to the fatinfo structure to be filled in.
The fatinfo structure filled in by getfatd is defined as follows:
‘struct fatinfo {
char fi_sclus; - /* sectors per cluster */
char fi_fatid; /* the FAT id byte */
int fi_nclus; /* number of clusters */
int fi_bysec; /* bytes per sector */
}i ' ‘
~ Return value None.
128 Library Reference

Seealso getdfree, getfat

getftime, setftime

gettata

Function Gets and sets the file date and time.

Syntax int getftime(int handle, struct ftime *ftimep);
int setftime(int handle, struct ftime *ftimep);

D0S | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2
| L] [] "
Remarks getftime retrieves the file time and date for the disk file associated with the

open handle. The ftime structure pointed to by ftimep is filled in with the-

file’s time and date.

setftime sets the file date and time of the disk file associated with the open
handle to the date and time in the ftime structure pointed to by ftimep. The
file must not be written to after the setftime call or the changed information
will be lost. The file must be open for writing; an EACCES error will occur

if the file is open for read-only access.
The ftime structure is defined as follows:

struct ftime {

unsigned ft_tsec: 5; /* two seconds */ .-
. unsigned ft_min: 6; . . /* minutes */
unsigned ft_hour: 5; /* hours */
unsigned ft_day: 5; /* days */
unsigned ft_month: 4; /* months */
unsigned ft_year: 7; /* year - 1980%*/
-k
Return value getftime and setftime return 0 on success.

In the event of an error return, —1 is returned and the global variable errno

is set to one of the following values:

EACCES Permission denied
EBADF Bad file number
EINVENC ' Inyalid function number

See also fflush, open

Chapter 3, Run-time functions

129

getpass

getpass conio.h -
Function Reads a password.
Symax char *getpass(const chaf *prompt) ;
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2

Remarks getpass reads a password from the system console, after prompting with the

null-terminated string prompt and disabling the echo. A pointer is returned

"to a null-terminated string of up to eight characters (not counting the null

character).
WP This function should not be used in Win32s or Win32 GUI applications.
Return value The return value is a pointer to a static strmg, which is overwritten with
each call.
* See also getch
getpid process.h
Function Gets the process ID of a program.
Syntax unsigned getpid(void) .
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2°
Remarks This function returns the current process ID—an integer that umquely
* identifies the process.
-Return value getpid returns the identification number of the current process.

getpsp, _psp (global variable)
See also
getpsp dos.h
Function Gets the program segment prefix (PSP).
130 Library Reference

getpsp

Syntax unsigned getpsp(void);
pos | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
[] [}
Remarks getpsp gets the segment address of the PSP using DOS call 0x62.
Return value getpsp returns the address of the PSP.
See also getenv, _psp (global variable)
gets stdio.h
Function Gets a string from stdin.
Syntax char *gets(char *s);
DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2
n n " u []]
Remarks gets collects a string of characters terminated by a new line from the
standard input stream stdin and puts it into s. The new line is replaced by a
null character ('\0’) in s.
gets allows input strings to contain certain whitespace characters (spaces,
tabs). gets returns when it encounters a new line; everythmg up to the new
line is copied into s.
, b For Win32s or Win32 GUI apphcatlons, stdin must be redirected.
"Return value On success, gets returns the string argument s; it returns NULL on end-of-
file or error. :
See also cgets, ferror, fgets, fopen, fputs, fread, freopen, getc, puts, scanf
gettext conio.h
Function Copies text from text mode screen to memory.

Chapier 3, Run-time functions , 13

getiext

Syntax

Remarks

int gettext (int left, int top, int right, int bottom, void *destin);

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2

gettext stores the contents of an onscreen text rectangle defined by left, top,
right, and bottom into the area of memory pointed to by destin.

All coordinates are absolute screen coordinates, not window-relative. The
upper left corner is (1,1).

- gettext reads the contents of the rectangle into memory sequentially from

left to right and top to bottom.

Each position onscreen takes 2 bytes of memory: The first byte is the
character in the cell, and the second is the cell’s video attribute. The space
required for a rectangle w columns wide by & rows high is defined as

bytes = (h rows) X (w columns) x 2

W) This function should not be used in Win32s or Win32 GUI applications.
Return value gettext returns 1 if the operation succeeds. It returns 0 if it fails (for example,
if you gave coordinates outside the range of the current screen mode).
See also movetext, puttext
gettextinfo conio.h
Function Gets text mode video information.
Syntax void gettextinfo(struct text_info *r);
DOS | UNIX | Win 16 | Win32 | ANSI C | ANSI C++ | 0S/2
‘s .]]
Remarks gettextinfo fills in the text_info structure pointed to by r with the current text
video information.
The text_info structure is defined in conio.h as follows:
struct text_info {
unsigned char winleft; /* left windo~ coordinate */
unsigned char wintop; - /* top window coordinate */
‘unsigned char winright; . /* right window coordinate */
unsigned char winbottom; /* bottom window coordinate */
unsigned char attribute; /* text attribute */
132 Library Reference

gettextinfo

unsigned char normattr; /* normal attribute */

unsigned char currmode; /* BW40, BW80, C40, C80, or C4350 */
unsigned char screenheight; /* text screen’s height */ ‘
unsigned char screenwidth; /* text screen’s width */

unsigned char curx; ‘ /* x-coordinate in current window */
unsigned char cury; /* y-coordinate in current window */

¥
W This function should not be used in Win32s or Win32 GUI applications.

Return value gettextinfo returns nothing; the results are returned in the structure pointed
‘ to by r.
See also ‘ textattr, textbackground, textcolor, textmode, wherex, wherey, window
gettime, settime ' dos.h
Function - Gets and sets the system time.
Syntax void gettime(struct time *timep);

void settime(struct time *timep);

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2 .

gettime
settime " * .
Remarks gettime fills in the time structure pointed to by timep with the system’s

current time.

settime sets the system time to the values in the time structure pointed to by
timep.

The time structure is' defined as follows:

struct time {

unsigned char ti_min; /* minutes */ - ' :
unsigned char ti_hour; /* hours */ v '
unsigned char ti_hund; /* hundredths of seconds */
unsigned char ti_sec; /* seconds */
}i '
Return value ‘None.
- Seealso _dos_gettime, _dos_settime, getdate, setdate, stime, time

Chapter 3, Run-time functions » ‘ o 133

getvect, setvect

getvect, setvect ' , dos.h

Function Gets and sets interrupt vector.

Syntax void inferrupt (*getvect (int interruptno)) (); /* C version */
void interrupt(*getvect (int interruptno)) (...); : // C++ version
void setvect (int interruptno, void interrupt (*isr) ()); /* C version */
void setvect (int interruptno, void interrupt (*isr) (...)); /] C++ veljsion

DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
] n

Remarks Every processor of the 8086 'fam’ily includes a set of interrupt vectors,
numbered 0 to 255. The 4-byte value in each vector is actually an address,
which is the location of an interrupt function.
getvect reads the value of the interrupt vector given by mterruptno and
returns that value as a (far) pointer to an interrupt function. The value of

" interruptno can be from 0 to 255.

setvect sets the value of the interrupt vector named by interruptno to a new
value, isr, which is a far pointer containing the address of a new interrupt
function. The address of a C routine can be passed to isr only if that routine
is declared to be an interrupt routine.

w In C++ only static member functions or non-member functions can be

' declared to be an interrupt routine.

W If you use the prototypes declared in dos h, simply pass the address of an

interrupt function 'to setvect in any memory model. »

Return value - getvect returns the current 4-byte value stored in the interrupt vector named
by interruptno.

~ setvect does not return a value.

See also disable, _dos_getvect, _dos_setvect, enable, geninterrupt’

- getverify " dos.h

Function Returns the state of the operating system verify flag.

Syntax int getverify(void);

DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ [05/2
[n L]
134 Library Reference

getverify

- Returnvalue

Remarks getverify gets the current state of the verify flag.
The verify flag controls output to the disk. When verify is off, writes are not
verified; when verify is on, all disk writes are verified to ensure proper
writing of the data.
Return value getverify returns the current state of the verify flag, either 0 (off) or 1 (on).
See also setverify v '
getw stdio.h
Function Gets integer from stream.
Syntax int getw(FILE *stream);
D0S [UNIX | Win16 | Win32 [ANSIC | ANSI C++ | 0572
]] |]] ' [
Remarks getw returns the next integer in the named input stream. It assumes no

special alignment in the file.
getw should not be used when the stream is opened in text mode.

getw returns the next integer on the input stream. On end-of-file or error,
getw returns EOF. Because EOF is a legitimate value for getw to return, feof
or ferror should be used to detect end-of-file or error.

Seealso putw
gmtime time.h
Function Converts date and time to Greenwich mean time (GMT).
Syntax struct tm *gmtime(const time_t *timer);
0s | unix | win16 [wWin32 | anstc | ANSI Ce+ | 0572
[]] L I] |] L]
Remarks gmtime accepts the address of a value returned by time and returns a

pointer to the structure of type tm containing the time elements. gmtime
converts directly to GMT.

The global long variable _timezone should be set to the difference in seconds
between GMT and local standard time (in PST, _timezone is 8x60x60). The

Chapter 3, Run-time functions : T 135

gmtime

Return value

"~ See also

global variable daylzght should be set to nonzero only if the standard uUs.
daylight saving time conversion should be applied.

This is the tm structure declaration from the time.h header file:

struct tm {
int tm_sec; /* Seconds */
int tm_min; /* Minutes */
int tm_hour; ' /* Hour (0 - 23) */
int tm_mday; /* Day of month (1 - 31) */
int tm_mon; . /* Month (0 - 11) */
int tm_year; /* Year (calendar year minus 1900) */
int tm_wday; /* Weekday (0 - 6; Sunday is 0) */
int tm_yday; ‘ /* Day of year (0 -365) */
int tm_isdst; /* Nonzero if daylight saving time is in effect. */

b

These quantities give the time on a 24-hour clock, day of month (1 to 31),
month (0 to 11), weekday (Sunday equals 0), year — 1900, day of year (0 to
365), and a flag that is nonzero if daylight saving time is in effect.

gmtime returns a pointer to the structure containing the time elements. This
structure is a static that is overwritten with each call.

asctimé, ctime, ftime, localtime, stime, time, tzset
gotoxy conio.h
Function Positions cursor in text window:..
Syntax void gotoxy(int x, int y);
pos | unIX | win16 | win32 | Ansrc | ANSI c++ | 0s/2
[]]) L]
Remarks gotoxy moves the cursor to the given position in the current text window. If
" the coordinates are in any way invalid, the call to gotoxy is ignored. An
example of this is a call to gotoxy(40 30), when (35,25) is the bottom rlght
position in the window. .
Neither argument to gotoxy can be zero.
W This function should not be used in Win32s or Win32 GUI applications.
Return value None.
See also wherex, wherey, window
136 Library Reference

_heapadd

_heapadd | | malloc.h
Function Add a block to the heap.
Syntax " int _heapadd (void *block, size_t size);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks This function adds a new block of memory to the heap. The block must not
‘have been previously allocated from the heap. _heapadd is typically used to
add large static data areas to the heap. '

Return value _heapadd returns 0 if it is successful, and -1 if it is unsuccessful.

See also free, malloc '

heapcheck . : alloc.h
Function Checks and verifies the heap.

Syntax int heapcheck(void);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks heapcheck walks through the heap and examines each block, checking its
pointers, size, and other critical attributes. '

Return value The return value is less than 0 for an error and greater than 0 for success.
' The return values and their meaning are as follows:

- _HEAPCORRUPT Heap has been corrupted
_HEAPEMPTY No heap

_HEAPOK Heap is verified
heapcheckfree | , -~ alloc.h
Function Checks the free blocks on the heap for a constant value.
Syntax) int heapcheckfree(unsigned int fillvalue);

Chapter 3, Run-time functions : v) ' : 137

heapcheckfree

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Return value The return value is less then 0 for an error and greater than 0 for success.
The return values and their meaning are as follows:
_BADVALUE A value other than the f111 value was found
_HEAPCORRUPT Heap has been corrupted
_HEAPEMPTY No heap
_HEAPOK Heap is accurate
heapchecknode : : alloc.h
Function Checks and verifies a single node on the heap.
S_yntax ‘ int heapchecknode (Void *node) ;
Dos [uNIX | Win16 | Win32 | ANSI C | ANSI C++ [o05/2
Remarks If a node has been freed and heapchecknode is called with a pointer to the
freed block, heapchecknode can return _BADNODE rather than the expected
_FREEENTRY. This is because adjacent free blocks on the heap are merged,
and the block in question no longer exists.
Return value One of the following values: -
_BADNODE Node could not be found
_FREEENTRY Node is a free block
_HEAPCORRUPT Heap has been corrupted
_HEAPEMPTY No heap
_USEDENTRY Node is a used block
_heapchk malloc.h
Function Checks and verifies the heap.
Syntax int _heapchk(void);
os | UNIX | win16 | win3z | ansrc | ANSI C++ | os/2
138 Library Reference

Remarks

Return value

_heapchk -

_heapchk walks through the heap and examines each block, checking its
pointers, size, and other critical attributes. ,

~ One of the following values:

_HEAPBADNODE A corrupted heap block has been found

Return value

_HEAPEMPTY No heap exists

_HEAPOK The heap appears to be uncorrupted
See also _heapset, _rtl_heapwalk
heapfillfree alloc.h u
Function Fills the free blocks on the heap with a constant value. '
Syntax

int heapfillfree(unsigned int fillvalue);

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0S/2

One of the following values:

_HEAPCORRUPT Heap has been corrupted

Remarks

Return value

_HEAPEMPTY No heap
_HEAPOK Heap is accurate
_heapmin malloc.h
Function . Release unused heap areas.
Syntax int _heapmin(void);
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
The _heapmin function returns unused areas of the heap to the operating

system. This allows blocks that have been allocated and then freed to be
used by other processes. Due to fragmentation of the heap, _heapmin might
not always be able to return unused memory to the operating system; this
is not an error. '

_heapmin returns 0 if it is successful, or -1 if an error occurs.

Chapter 3, Run-time functions 139

_heapmin

See also free, malloc
_heapset malloc.h
Function Fills the free blocks on the heap with a constant value.
Syntax int _heapset (unsigned int fillvalue);
pos | unx | win16 | win3z | ansrc | ansice | 0s/2
L] []
Remarks _heapset checks the heap for consistency using the same methods as

Return value

_heapchk. It then fills each free block in the heap with the value contained in
the least significant byte of fillvalue. This function can be used to find heap-
related problems. It does not guarantee that subsequently allocated blocks
will be filled with the specified value. .

One of the following values:

_HEAPOK The heap appeai's to be uncorrupted
_HEAPEMPTY No heap exists
_HEAPBADNODE A corrupted heap block has been found

See also _heapchk, _rtl_heapwalk
heapwalk alloc.h
Function heapwalk is used to “walk” through the heap, node by node.
Syntax int heapwalk(struct heapinfo *hi);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
Remarks heapwalk assumes the heap is correct. Use heapcheck to verify the heap before
‘ using heapwalk. _HEAPOK is returned with the last block on the heap.
_HEAPEND will be returned on the next call to heapwalk.
heapwalk receives a pointer to a structure of type heapinfo (declared in
alloc.h). For the first call to heapwalk, set the hi.ptr field to null. heapwalk
140 Library Reference

heapwalk

returns with hi.ptr containing the address of the first block. hi.size holds
the size of the block in bytes. hi.in_use is a flag that’s set if the block is
currently in use.

Return value One of the following values:

_HEAPEMPTY No heap

_HEAPEND End of the heap has been reached
_HEAPOK Heapinfo block contains valid data
Seealso . farheapwalk, _rtl_heapwalk
_heapwalk | | ; ' ~ malloc.h u
~ Remarks Obsolete . 'nction. See _rtl_heapwalk.
highvideo : ~conio.h
Function ‘Selects high-intensity characters.
Syntax void highvideo(void);

DoS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Remarks highvideo selects high-intensity characters by setting the high-intensity bit of
' the currently selected foreground color.

This function does not affect any characters currently onscreen, but does
affect those displayed by functions (such as cprintf) that perform direct
video, text mode output after highvideo is called.

Wb This function should not be used in Win32s or Win32 GUI applications.
Return value None.

See also . cprintf, cputs, gettextinfo, lowvideo, normuideo, textattr, textcolor
hypot, hypotl , | math.h
Function - Calculates hypotenuse of a right triangle.

Chaptér 3, Run-time functions | ' : 141

hypot, hypotl

Syntax

hypot
hypot!

Remarks

Return value

double hypot (double x, double y);
long double hypotl{long double x, long double y);

DOS UNIX Win 16 | Win 32 ANSI C ANST C++ 0s/2
. [.. .) n
]]] -]

hypot calculates the value z where
2=x>+y? and z>=0

This is equivalent to the length of the hypotenuse of a right triangle, if the

- lengths of the two sides arexand y.

hypotl is the long double version; it takes long double arguments and
returns a long double result. :

On succeés, these functions return z, a double (hypbt) or a long double)
(hypotl). On error (such as an overflow), they set the global variable errno to

ERANGE Result out of range

and return ‘the value HUGE_VAL (hypot) or _LHUGE_VAL (hypotl). Error
handling for these routines can be modified through the functions _matherr
and _matherrl. - '

. 142

_InitEasyWin io.h
Function Initializes Easy Windows.
Syntax ‘void _InitEasyWin(void); i
D0s | UNIX | win16 | win32 | ANSI C | ANSI C++ | o0s/2
n
Remarks _InitEasyWin allows programs to use functions which perform' console I/O
within 16-bit Windows. -
Return value None. /
inp conio.h
Function Reads a byfe from a hardware port.
Syntax int inp{unsigned portid);
Library Reference

Remarks

Return value

inp

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

inp is a macro that reads a byte from the input port specified by portid. If inp
is called when conio.h has been included, it will be treated as a macro that
expands to inline code. If you don’t include conio.h, or if you do include
conio.h and undefine the macro inp, you get the inp function.

inp returns the value read.

Return value

See also inpw, outp, outpw
inport dos.h
Function Reads a word from a hardware port.
Syntax int inport (int portid); ’
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
Remarks inport works just like the 80x86 instruction IN. It reads the low byte of a -
word from the input port spec1f1ed by portid; it reads the high byte from
portid + 1.
Return value inport returns the value read. -
See also inportb, outport, outportb
inportb dos.h
. Function Reads a byte from a hardware port.
Syntax unsigned char inportb(int portid);
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
[] n
Remarks

inportb is a macro that reads a byte from the input port speafled by portzd

If inportb is called when dos.h has been included, it will be treated as a
macro that expands to inline code. If you don’t include dos.h, or if you do
include dos.h and #undef the macro inportb, you get the inportb function.

inportb returns the value read.

Chapter 3, Run-time functions : ' 143

inportb

144 -

See also inport, outport, outportb
inpw conio.h
Function Reads a word from a hardware port.
Syn_tax unsigned inpw(unsigned portid);
p0s | unix | wWin16 | win32 | ansrc | ANSI c++ | o0s/2
L n
Remarks inpw is a macro that reads a 16-bit word from the inport port specified by
portid. It reads the low byte of the word from portid, and the high byte from
portid + 1.
If inpw is called when conio.h has been included, it will be treated as a
macro that expands to inline code. If you don’t include conio.h, or if you do
include conio.h and #undef the macro inpw, you get the inpw function.
Return value inpw returns the value read.
See also inp, outp, outpw
insline conio.h
Function Inserts a blank line in the text window.
Syntax. void insline(void);
pos | UNIX | win 16| win32 | aNsIc | ANSI ce+ | o0S/2
" n "

Remarks. insline inserts an empty line in the text window at the cursor posiﬁon using

the current text background color. All lines below the empty one move

~down one line, and the bottom line scrolls off the bottom of the window.

WP This function should not be used in Win32s or Win32 GUI applications.
Return value None. ‘
See also clreol, delline, window
Library Reference

int86

int86 dos.h
Function General 8086 software interrupt.
Syntax int int86({int intno, union REGS *inregs, union REGS *outregs);
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
[] n
Remarks int86 executes an 8086 software interrupt specified by the argument intno.

Return value

" Before executing the software interrupt, it copies register values from inregs

into the registers.

After the software interrupt returns, int86 copies the current register values
to outregs, copies the status of the carry flag to the x.cflag field in outregs,
and copies the value of the 8086 flags register to the x.flags field in outregs. If
the carry flag is set, it usually indicates that an error has occurred.

Note that inregs can point to the same structure that outregs points to.

int86 returns the value of AX after completion of the software interrupt. If

~the carry flag is set (outregs -> x.cflag != 0), indicating an error, this

function sets the global variable _doserrno to the error code. Note that when
the carry flag is not set (outregs -> x.cflag = 0), you may or may not have
an error. To be certain, always check _doserrno.

See also bdos, bdosptr, geninterrupt, int86x, intdos, intdosx, intr
int86x dos.h
Function General 8086 software interrupt interface.
Syntax int int86x(int intno, union REGS *inregs, union REGS *outregs,
. struct SREGS *segregs);
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2
L] |]
Remarks

int86x executes an 8086 software interrupt specified by the argument intno.
Before executing the software interrupt, it copies register values from inregs
into the registers. ’

In addition, int86x copies the segregs ->ds and segregs ->es values into the
corresponding registers before executing the software interrupt. This

Chapter 3, Run-time functions . ~ | ‘ 145

int86x

Return value

See also

intdos

feature allows programs that use far pointers or a large data memory
model to specify which segment is to be used for the software interrupt.

" After the software interrupt returns, int86x copies the current register

values to outregs, the status of the carry flag to the x.cflag field in outregs,
and the value of the 8086 flags register to the x.flags field in outregs. In
addition, int86x restores DS and sets the segregs ->es and segregs ->ds fields
to the values of the corresponding segment registers. If the carry flag is set,
it usually indicates that an error has occurred.

int86x lets you invoke an 8086 software interrupt that takes a value of DS
different from the default data segment, and/or takes an argument in ES.

Note that inregs can point to the same structure that outregs points to.

int86x returns the value of AX after completion of the software interrupt. If
the carry flag is set (outregs -> x.cflag !=.0), indicating an error, this
function sets the global variable _doserrno to the error code. Note that when
the carry flag is not set (outregs -> x.cflag = 0), you may or may not have
an error. To be certain, always check doserrno

bdos, bdosptr gemnterrupt intdos, intdosx, int86, mtr segread

dos.h

Function

Syntax

Remarks

Return value

146

General DOS interrupt interface.

int intdos(union REGS *inregs, union REGS *outregs);

DOS UNIX Win 16 Win 32 ANSI C [ANSI C++ 0s/2

intdos executes DOS interrupt 0x21 to invoke a specified DOS function. The
value of inregs -> h.ah specifies the DOS function to be invoked.

After the interrupt 0x21 returns, intdos copies the current register values to

- outregs, copies the status of the carry flag to the x.cflag field in outregs, and

copies the value of the 8086 flags register to the x.flags field in outregs. If the
carry flag is set, it indicates that an error has occurred.

- Note that inregs can point to the same structure that outregs points to.

intdos returns the value of AX after completion of the DOS function call. If

the carry flag is set (outregs -> x.cflag != 0), indicating an error, it sets the
global variable _doserrno to the error code. Note that when the carry flag is
not set (outregs -> x.cflag = 0), you may or may not have an error. To be

certain, always check _doserrno.

Library Reference

See also

intdosx

intdos

‘bdos, bdosptr, geninterrupt, int86, int86x, intdosx, intr

dos.h

Function

Syntax

Remarks

Return value

See also

intr

In addition, intdosx copies the segregs ->ds and segregs ->es values into the

General DOS interrupt interface.

int intdosx(union REGS *inregs, union REGS *outregs, struct SREGS *segregs);

DOS UNIX. | Win 16 Win 32 ANSI C ANSI C++ 0s/2

intdosx executes DOS interrupt 0x21 to invoke a specified DOS function.
The value of inregs -> h.ah specifies the DOS function to be invoked.

corresponding registers before invoking the DOS function. This feature
allows programs that use far pointers or a large data memory model to
specify which segment is to be used for the function execution.

After the interrupt 0x21 returns, intdosx copies the current register values to
outregs, copies the status of the carry flag to the x.cflag field in outregs, and
copies the value of the 8086 flags register to the x.flags field in outregs. In
addition, intdosx sets the segregs ->es and segregs ->ds fields to the values of
the corresponding segment registers and then restores DS. If the carry flag
is set, it indicates that an error occurred.

intdosx lets you invoke a DOS function that takes a value of DS different
from the default data segment and /or takes an argument in ES.

Note that inregs can point to the same structure that outregs points to.

intdosx returns the value of AX after completion of the DOS function call. If
the carry flag is set (outregs -> x.cflag != 0), indicating an error, it sets the
global variable - doserrno to the error code. Note that when the carry flag is
not set (outregs -> x.cflag = 0), youmay or may not have an error. To be
certain, always check _doserrno. '

bdos, bdosptr, geninterrupt, int86, int86x, intdos, intr, segread -

dos.h

Function
Syntax

Alternate 8086 software interrupt interface.

void intr(int intno, struct REGPACK *preg);

Chapter 3, Run-time functions ' ‘ 147

intr

Remarks

Return value

See also

ioctl

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

The intr function is an alternate interface for executing software interrupts.
It generates an 8086 software interrupt specified by the argument intno.

intr copies register values from the REGPACK structure *preg into the
registers before executing the software interrupt. After the software
interrupt completes, intr copies the current register values into *preg,
including the flags.

The arguments passed to intr are as follows:

intno Interrupt number to be executed
preg Address of a structure containing

(a) the input registers before the interrupt call
(b) the value of the registers after the interrupt call

The REGPACK structure (defined in dos.h) has the following format:

struct REGPACK {

unsigned r_ax, r_bx, r_cx, r_dx;

unsigned r_bp, r_si, r di, r_ds, r_es, r_flags;
i

No value is returned The REGPACK structure *preg contams the value of
the registers after the interrupt call.

geninterrupt, int86, int86x, intdos, intdosx

Function
Syntax

Remarks

148

Controls I/0 device.

int ioctl(int handle, int func' [, void *argdx, int argcx]);

DOS UNIX Win 16 Win 32 ANST € ANST C++ 0s/2

ioctl is available on UNIX systems, but not with these parameters or
functionality. UNIX version 7 and System III differ from each other in their
use of ioctl. ioctl calls are not portable to UNIX and are rarely portable
across DOS machines. ’

DOS 3.0 extends joct with func values of 8 and 11.

Library Reference

ioctl

This is a direct interface to the DOS call 0x44 (IOCTL).

The exact function depends on the value of func as follows:

Get device information.

Set device information (in argdx).

Read argcx bytes into the address pointed to by argdx.

Wrrite argcx bytes from the address pointed to by argdx.

Same as 2 except handle is treated as a drive number (0 equals
default, 1 equals A, and so on).

Same as 3 except handle is a drive number (0 equals default, 1
equals A, and so on).

Get input status. '
Get output status.
Test removability; DOS 3.0 only.

Set sharing conflict retry count; DOS 3.0 only.

= WhNh-=OoO

64

1

ioctl can be used to get information about device channels. Regular files can
also be used, but only func values 0, 6, and 7 are defined for them. All other
calls return an EINVAL error for files.

=00 N o

See the documentation for system call 0x44 in your DOS reference manuals
for detailed information on argument or return values.

The arguments argdx and argcx are optional.

ioctl provides a direct interface to DOS device drivers for special functions.
As a result, the exact behavior of this function varies across different
vendors’ hardware and in different devices. Also, several vendors do not
follow the interfaces described here. Refer to the vendor BIOS
documentation for exact use of ioctl.

Return value For func 0 or 1, the return value is the device information (DX of the ioct!
call). For func values of 2 through 5, the return value is the number of bytes
actually transferred. For func values of 6 or 7, the return value is the device

~ status.

In any event, if an error is detected, a value of -1 is returned and the global
variable errno is set to one of the followmg

EBADF Bad file number
EINVAL Invalid argument -
EINVDAT Invalid data

Chapter 3, Run-time functions) ’ 149

isalnum

Return value-

isalnum ctype.h-
- Function ‘Tests for an alphanumeric character.
* Syntax int isalnum(int c);
D05 | ONIX | Win1s | Winsz | ANSIC | AWSIcre 0s/2
Remarks isalnum is a macro that classifies ASCII-coded integer values by table
lookup. The macro is affected by the current locale’s LC_CTYPE category.
For the default C locale, c is a letter (A to Z or a to z) or a digit (0'to 9).
R You can make this macro available as a function by undefining (#undef) it.
Return value It is a predicate returning nonzero for true and 0 for false. isalnum returns |
nonzero if c is a letter or a digit. '
isalpha ctype.h
Function Classifies an alphabetical character.
Syntax int isalphd(int c);
0s | unix | win16 | Win32 | ANSIC | ANSI c++ | 0S/2
Remarks

isalpha is a macro that classifies ASCII-coded integer values by table lookup.
The macro is affected by the current locale’s LC_CTYPE category. For the
default C locale, c is a letter (A to Z or a to z).

You can make this macro available as a function by undefining (#undef) it.

isalpha returns nonzero if c is a letter. .
isascii ctype.h
Function Character classification macro.

Syntax int isascii{int c);
00S | UNIX | wWin'16 | win32 | ANSIC | ANSI C++ | o0s/2
]]]) | L]
150 Library Reference

isascii

Remarks isascii is a macro that classifies ASCII-coded integer values by table lookup.
It is a predicate returning nonzero for true and 0 for false.
isascii is defined on all integer values.
Return value isascii returns nonzero if the low order byte of c is in the range 0 to 127
(0x00-0x7F).
isatty io.h
Function Checks for device type.
Syntax int isatty(int handle); |
oS | uNIX | wWin16 | wWin32 | ANSI C | ANSI C+ | 0s/2
] [] L] n n
Remarks isatty determines whether handle is associated w1th any one of the following
character devices:
m A terminal
m A console
m A printer
m A serial port
Return value If the device is one of the four character devices listed above, isatty returns
_anonzero integer. If it is not such a device, isatty returns 0.
iscntrl ctype.h
Function - Tests for a control character.
Syntax int iscntrl(int c);
0s | uNix | Win16 | Win32 | AaNsTC | ANSI C++ [0S/2
L] [] [] [] [1 | T
Remarks - iscntrl is a macro that classifies ASCII-Coded integer values by table lookup

The macro is affected by the current locale’s LC_CTYPE category. For the
default C locale, ¢ is a delete character or control character (0x7F or 0x00 to
0x1F). :

You can make this macro available as a function by undefining (#undef)vit/.

Chapter 3, Run-time functions : ‘) 151

iscntr]

Return value

iscntrl returns nonzero if ¢ is a delete character or ordinary control
character. .

152

isdigit ctype.h
Function Tests for decimal-digit character.
Syntax int isdigit (int c); |
oos | unix | wini6 | win3sz | anstc | ansice | os/2
Remarks isdigit is a macro that classifies ASCII-coded integer values by table lookup.
The macro is affected by the current locale’s LC_CTYPE category For the
default C locale, c is a digit (0 to 9).
You can make this macro available as a function by undefining (#undef) it.
Return value isdigit returns nonzero if ¢ is a digit. .
isgraph ctype.h
Function Tests for printing character.
Syntax int isgraph(int c);
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2
Remarks _ isgraph is a macro that classifies ASClI-coded integer values by table ‘
lookup. The macro is affected by the current locale’s LC_CTYPE category.
For the default C locale, c is a printing character except blank space (" *).
You can make this macro available as a function by undefining (#undef) it.
Return value isgraph returns nonzero if ¢ is a printing character.
islower ctype.h
Function Tests for lowercase character.
Syntax int islower(int c);
Library Reference

islower

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks islower is a macro that classifies ASCII-coded integer values by table
“lookup. The macro is affected by the current locale’s LC_CTYPE category.
For the default C locale, ¢ is a lowercase letter (a to z).
You can make this macro available as a function by undefining (#undef) it.
Return value islower returns nonzero if ¢ is a lowercase letter.
isprint ctype.h
Function Tests for printing character.
Syntax int isprint(int c);
D0S | UNIX | Win16 [Win32 | ANSIC | ANSI Ce+ | 05/2
Remarks isprint is a macro that classifies ASCII-coded integer values by table lookup.
‘The macro is affected by the current locale’s LC_CTYPE category. For the
default C locale, c is a printing character including the blank space (" *).
v You can make this macro available as a function by undefining (#undef) it.
Return value isprint returns nonzero if ¢ is a printing character.
ispunct ctype.h
Function Tests for punctuation character.
- Syntax int ispunct(int c);
205 | UNIX | Win 16 Win32 | ANSIC | ANSI C++ | 0S/2
Remarks ispunct is a macro that classifies ASCII-coded integer values by table
lookup. The macro is affected by the current locale’s LC_CTYPE category.
For the default C locale, c is any printing character that is neither an alpha-
numeric nor a blank space (" *). -)
You can make this macro available as a function by undefining (#undef) it.
Return value ispunct returns nonzero if cis a punctuation character. '

Chapter 3, Run-time functions ‘ : 153

isspace

isspace

ctype.h
Function Tests for space character.
Syntax int isspace{int c); .
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 05/2
L]] ' L] L] n n L)
Remarks isspace is a macro that classifies ASCII-coded integer values by table lookup.
The macro is affected by the current locale’s LC_CTYPE category.
You can make this macro available as a function by undefining (#undef) it.
Return yalue isspace returns nonzero if ¢ is a space, tab, carriage return, new line, vertical
 tab, formfeed (0x09 to 0xOD, 0x20), or any other locale-defined space
character. : ‘ ‘
isupper ctype.h
Function ‘ Tests for uppercase character.
Syntax . int isupper(int c);)
os | unix | win16 | win32 | anszc | ANsI ce+ | o0s/2
[} = [] |] L} |] []
isupper is a macro that classifies ASCII-coded integer values by table

Remarks

Return value

lookup: The macro is affected by the current locale’s LC_CTYPE category. .
For the default C locale, ¢ is an uppercase letter (A to Z).

You can make this macro available as a function by ﬁndeﬁning (#undef) it.

isupper returns nonzero if ¢ is an uppercase letter.

isxdigit - ctype.h
Function Tests for hexadecimal character.
- Syntax int isxdigit(int c);
00s | UNIX | Win16 | Win3z | ANSIC | ANSI C++ | o0s/2
" I] B ‘"] n L |
154

Library Reference

Remarks

Return value

isxdigit

isxdigit is a macro that classifies ASCII-coded integer values by table
lookup. The macro is affected by the current locale’s LC_CTYPE category.

You can make this macro available as a function by undefining (#undef) it.

isxdigit returns nonzero if c is a hexadecimal digit (0to 9, A to F, a to f) or
any other hexadecimal digit defined by the locale.

itoa stdlib.h
Function Converts an integer to a string.
Syntax char *itoa(int value, char *string, int radix);
p0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ [0S/2
[] [] n n
Remarks itoa converts value to a null-terminated string and stores the result in string.
With itoa, value is an integer.
radix specifies the base to be used in converting value; it must be between 2
and 36, inclusive. If value is negative and mdix’is 10, the first character of
string is the minus sign (-). _
W) The space allocated for string must be large enough to hold the returned
string, including the terminating null character (\0). itoa can return up to 17
bytes.
Return value itoa returns a pointer to string.
See also ltoa, ultoa
kbhit conio.h
Function Checks for currently available keystrokes.
Syntax int kbhit (void); |

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2

Chapter 3, Run-time functions o 155

kbhit

Remarks kbhit checks to see if a keystroke is currently available. Any available
keystrokes can be retrieved with getch or getche.

WP This function should not be used in Win32s or Win32 GUI applications.

Return value | If a keystroke is available, kbhit returns a nonzero value. Otherwise, it
returns 0.

See also getch, getche

labs math.h

Function Gives long absolute value.

Syntax long labs(long int x);

00s | UNIX | win16 | wWwin32 | ansIc | ANSI C++ | o0s/2
" L] " n n [] L

Remarks labs computes the absolute value of the parameter x.

Return value labs returns the absolute value of x.

See also abs, cabs, fabs

Idexp, Idexpl math.h

Function Calculates x x 27,

Syntax double ldexp(double x, int exp);
long double ldexpl(long double x, int exp);

0s | UNIX | Wwin16 | wWin32 | ANSI C | ANSI c++ [o0s/2
Idexp L]]] L] o |]]
' Idexpl " . " * *

Remarks Idexp calculates the double value x x 2°.
expl is the long double version; it takes a long double argument for x and
returns a long double result.

Return value On success, ldexp (or ldexpl) returns the value it calculated, x x 27, Error
handling for these routines can be modified through the functions _matherr
and _matherrl.

See also exp, frexp, modf

156 Library Reference

Idiv .

Idiv ’ ' ~ stdlib.h
Function Divides two longs, returning quotient and remainder.
Syntax 1div_t 1div(long int numer, long int denom);

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2

Remarks Idiv divides two longs and returns both the quotient and the remainder as
an Ildiv_t type. numer and denom are the numerator and denominator,
respectively. The Idiv_t type is a structure of longs defined in stdlib.h as
follows:

typedef struct {

long int quot; /* quotient */
long int rem; /* remainder */
} 1div_t;
Return value Idiv returns a structure whose elements are quot (the quotient) and rem (the
remainder).
See also div
Ifind stdlib.h
Function Performs a linear search.
Syntax void *1find(const void *key, const void *base, size_t *num, size_t width,

int (_USERENTRY *fcmp) (const void *, const void *));

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks . Ifind makes a linear search for the value of key in an array of sequential
records. It uses a user-defined comparison routine fcmp. The fcmp functlon
must be used with the _USERENTRY calling convention.

The array is described as having *num records that are width bytes wide,
and begins at the memory location pointed to by base.

Return value Ifind returns the address of the first entry in the table that matches the
search key. If no match is found, lfind returns NULL. The comparison

Chapter 3, Run-time functions 157

Ifind

routine must return 0 if *elem1 == *elem2, and nonzero otherwise (elem1 and
elem?2 are its two parameters). :

See also bsearch, Isearch, gsort .
localeconv locale.h
Function Queries the locale for numeric format.
-Syntax struct lconv *localeconv(void);
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI c++ | o0S/2
n L]] n L] l‘
Remarks

This function provides information about the monetary and other numeric

formats for the current locale. The information is stored in a struct Iconv
type. The structure can only be modified by the setlocale. Subsequent calls to
localeconv will update the Iconv structure.

The Iconv structure is defined in locale.h. It contains the following fields:

Table 3.1: Locale monetary and numeric settings

Field

Application

char *decimal_point,

char *thousands;sep,'
‘char *grouping;
char *int_curr_symbol;

char “currency_symbol;
char “mon_decimal_point;
char *mon_thousands_éep;
char *mon_grouping;

char *positive_sign;

char *negative_sign;

char int_frac_digits;

158

Decimal point used in nonmonetary formats. This can never be an empty string.

Separator used to group digits to the left of the decimal point. Not used with monetary
quantities. '

Size of each group of digits. Not used with monetary quantities. See the value listing table
below.

International monetary symbol in the current locale. The symbol format is specified in the /SO
4217 Codes for the Representation of Currency and Funds.

Local monetary symbol for the current locale.

Decimal point used to format monetary quantities. ‘

Separator used to group digits to the left of the decimal point for monetary quantities.
Size of each group of digits used in monetary quantities. See the value listing table below.
String indicating nonﬁegative monetary quantities. '

String indicating negative monetary quantities. /

Number of digits after the decimal point that are to be displayed in an internationally formatted
monetary quantity.

Library Reference

localeconv

Table 3.1: Locale monetary and numeric settings (cominuéd) .
~ char frac_digits; Number of digits after the decimal point that are to be displayedin a iormatted monetary

quantity.
char p_cs_precedes; Setto 1 if currency_symbol precedes a nonnegative formatted monetary quantity. if
: currency_symbol is after the quantity, itis set to 0.
char p_sep_by_space; Setto 1 if currency_symbolis to be separated from the nonnegative formatted monetary
: * quantity by a space. Set to 0 if there is no space separation. 4
char n_cs_precedes; Setto 1 if currency_symbol precedes a negative formatted monetary quantity. If
' currency_symbolis after the quantity, set to 0.
char n_sep_by_space; Set to 1if currency_symbolis to be separated from the negative formatted monetary quantity .
by a space. Set to 0 if there is no space separation.
char p_sign_posn; Indicate where to position the positive sign in a nonnegative formatted monetary quantity.

* char n_sign_posn; Indicate where to position the positive sign in a negative formatted monetary quantity.

“Hn

Any of the above strings (except decimal_point) that is empty “” is not
supported in the current locale. The nonstring char elements are nonnega-
tive numbers. Any nonstring char element that is set to CHAR_MAX
indicates that the element is not supported in the current locale.

The grouping and mon_grouping elements are set and interpreted as follows:

Value . Meaning

CHAR_MAX o No further grouping is to be performed.

0 The previous element is to be used repeatedly for the remainder
~ of the digits.

any other integer Indicates how many digits make up the current group. The next

element is read to determine the size of the next group of digits
before the current group. :

The p_sign_posn and n_sign_posn elements are set and mterpreted as

follows:
Value Meaning
0 ‘ ‘ Use parentheses to surround the quantity and currency_symbol
1 : Sign string precedes the quantity and currency_symbol.
2 . Sign string succeeds the quantity and currency_symbol.

Chapter 3, Run-time functions 7, _ . 159

localeconv

Return value

See also

localtime

Value .) Meaning

-3 Sign string immediately precedes the quantity and
currency_ symbol.

4 , Sign string immediately succeeds the quantlty and
‘ : currency_symbol.

Returns a pointer to the filled-in structure of type struct Iconv. The values in
the structure will change whenever setlocale modlfles the LC_MONETARY

‘or LC_NUMERIC categories.

* setlocale

' time.h

Function
- Syntax

- Remarks

160

Converts date and time to a structure.

struct tm *localtime(const time_t *timer);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2 -

localtime accepts the address of a value returned by time and returns a
pointer to the structure of type tm containing the time elements. It corrects
for the time zone and possible daylight saving time.

The global long variable timezone contains the difference in seconds be-
tween GMT and local standard time (in PST, timezone is 8x60x60). The
global variable daylight contains nonzero only if the standard U.S. daylight

~saving time conversion should be applied. These values are set by tzset, not

by the user program dlrectly
This is the tm structure declaratlon from the time.h header file:

struct tm {

-~ int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

}i

Library Reference

localtime

These quantities give the time on a 24-hour clock, day of month (1 to 31),
month (0 to 11), weekday (Sunday equals 0), year — 1900, day of year (0 to
365), and a flag that is nonzero if daylight saving time is in effect.

Return value localtime returns a pointer to the structure containing the time elements.
This structure is a static that is overwritten with each call.

See also asctime, ctime, ftime, gmtime, stime, time, tzset

lock | | io.h

Function - Sets file-sharing locks.

Syntax int lock(int handle, long offset, long length);

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Remarks lock provides an interface to the operating system file-sharing mechanism.

A lock can be placed on arbitrary, nonoverlapping regions of any file. A
program attempting to read or write into a locked region will retry the
operation three times. If all three retries fail, the call fails with an error.

Return value lock returns 0 on success. On error, lock returns -1 and sets the global
variable errno to :

EACCES Locking violation

See also locking, open, sopen, unlock

locking io.h, sys\locking.h
Function | Sets or resets file-sharing locks.

Syntax int locking(int handle, int cnd, long length);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks locking provides an interface to the operating system file-sharing
mechanism. The file to be locked or unlocked is the open file specified by
handle. The region to be locked or unlocked starts at the current file
position, and is length bytes long.

Chapter 3, Run-time functions . - ' : 161

locking

Return value

Locks can be placed on arbitrary, nonoverlapping regions of any file. A
program attempting to read or write into a locked region will retry the
operation three times. If all three retries fail, the call fails with an error.

The cmd speC1f1es the action to be taken (the values are defined in
sys\locking.h):

LK_LOCK Lock the region. If the lock is unsuccessful, fry once a
: second for 10 seconds before giving up.

LK_RLCK Same as LK_LOCK.

LK_NBLCK Lock the region. If the lock if unsuccessful, g1ve up
immediately.

LK_NBRLCK Same as LK_NBLCK.

LK_UNLCK Unlock the region, which must have been previously
~ locked.

. On successful operat1ons, locking returns 0. Otherwise, it returns -1, and the

global variable errno is set to one of the followmg values:

162

EACCES File already locked or unlocked
EBADF Bad file number
EDEADLOCK File cannot be locked after 10 retrles (emd is LK_LOCK"
or LK_RLCK)
EINVAL - Invalid cmd, or SHARE.EXE not loaded
, See»also ' _fsopen, lock, open, sopen, unlock
log, logl math.h
Function Calculates the natural logarithm of x.
Syntax double 'log(double x);
long double logl(long double x);
DOS | UNIX | Win ‘16 Win 32 | ANSI C | ANSI C++ | 0S/2
Iog [] n []) n [] n]
/Ogl |] . l’] . []
Remarks log calculates the natural logarithm of x. .
logl is the long double version; it takes a long double argument and returns
a long double result.
Library Reference

log, logl

This function can be used with bed and complex types.
Return value On success, log and logl return the value calculated, In(x).

If the argument x passed to these functions is real and less than 0, the
global variable errno is set to

EDOM Domain error

If x is 0, the functions return the value negative HUGE_VAL (log) or
negative _LHUGE_VAL (logl), and set errno to ERANGE. Error handling for
these routines can be modified through the functions _matherr and

_matherrl.
See a|50_ bed, complex, exp, log10, sqrt
log10, log10l . | ' - math.h
Function Calculates log 14(x). w
Syntax , double 1ogl0(double x);

long double logl0l(long double x);

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

10g10]] . L} L} [| L]
. Iog101 L] 1 L] N n
Remarks log10 calculates the base 10 logarithm of x.

log10l is the long double version; it takes a long double argument and
returns a long double result.

This function can be used with bed and complex types.
Return value 'On success, log10 (or log10l) returns the value calculated, log;o(x).

If the argument x passed to these functlons is real and less than 0, the
global variable errno is set to

EDOM Domain error

If x is 0, these functions return the value negative HUGE_VAL (log10) or
_LHUGE_VAL (log10I). Error handling for these routines can be mod1f1ed
through the functions _matherr and mutherrl

See also bed, complex, exp, log

Chapter 3, Run-time functions ‘ o 163

longjmp

longjmp ~ | ‘ / setjmp.h

Function Performs nonlocal goto.
Syntax . void longjmp (jmp_buf jmpb, int retval);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks A call to longjmp restores the task state captured by the last call to setjmp
with the argument jmpb. It then returns in such a way that setjmp appears to
have returned with the value refval.

A task state includes:

Win 16 Win 32

All segment registers No segment registers
CS, DS, ES, SS are saved

Register variables Register variables

Dl and SI EBX, EDI, ESI

Stack pointer SP Stack pointer ESP
Frame pointer BP Frame pointer EBP
Flags Flags are not saved

A task state is complete enough that setjmp and longjmp can be used to
implement co-routines.

setjmp must be called before longjmp. The routine that cailed setjmp and set
up jmpb must still be active and cannot have returned before the longjmp is
called. If this happens, the results are unpredictable.

longjmp cannot pass the value 0; if 0 is passed in retval, longjmp will
substitute 1.

You can not use longjmp to switch between different threads in a
multithread process. That is, do not jump to a jmp_buf that was saved by a
setjmp call in a different thread.

Return value None.

See also ctrlbrk, setjmp, signal

164 ' Library Reference

lowvideo

lowvideo conio.h
Function Selects low-intensity characters. ‘
~ Syntax void lowvideo(void);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks lowvideo selects low-intensity characters by clearing the high-intensity bit of
the currently selected foreground color.

This function does not affect any characters currently onscreen. It affects
only those characters displayed by functions that perform text mode, direct
console output after this function is called.

W) This function should not be used in Win32s or Win32 GUI applications.
Return value None. |

See also , highvideo, normvideo, textattr, textcolor

_lrotl, _Irotr ‘ | stdlib.h
Function Rotates an unsigned long integer value to the left or right.

Syntax unsigned long _lrotl(unsigned long val, int count);

unsigned long _lrotr(unsigned long val, int count);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks _Irotl rotates the given val to the left count bits. _Irotr rotates the given val to
the right count bits.
Return value The functions return the rotated integer:

m _Irotl returns the value of val left-rotated count bits.
m _Irotr returns the value of val right-rotated count bits.

See also _ _crotr, _crotl, _rotl, _rotr

Chapter 3, Run-time functions , ‘ 165

Isearch

Isearch

stdlib.h

Function
Syntax

Remarks

Return value

See also

Iseek

Performs a linear search.

void *1search(const void *key, void *base, size_t *num, size_t width,
int (_USERENTRY *fcmp) (const void *, const void *));

DOS* UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2

Isearch searches a table for information. Because this is a linear search, the
table entries do not need to be sorted before a call to Isearch. If the item that
key points to is not in the table, Isearch appends that item to the table.

m base points to the base (Oth element) of the search table.

m num points to an integer containing the number of entries in the table.
m width contains the number of bytes in each entry.

m key points to the item to be searched for (the search key).

The function fcmp must be used with the _USERENTRY calling convention.

The argument fcmp points to a user-written comparison routine, that
compares two items and returns a value based on the comparison.

To search the table, Isearch makes repeated calls to the routine whose
address is passed in fcmp. '

On each call to the comparison routine, Isearch passes two arguments: key, a
pointer to the item being searched for, and elem, a pointer to the element of
base being compared.

femp is free to interpret the search key and the table entries in any way.

Isearch returns the address of the first entry in the table that matches the
search key.

If the search key is not identical to *elem, fcmp returns a nonzero integer. If
the search key is identical to *elem, fcmp returns 0.

bsearch, Ifind, gsort

io.h

Function
' Syntéx

166

Moves file pointer.

long lseek(int handle, long offset, int fromwhere);

Library Reference

Iseek

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Remarks Iseek sets the file pointer associated with handle to a new position offset bytes
‘ beyond the file location given by fromwhere fromwhere must be one of the
following symbolic constants (defined in io.h): '

fromwhere File location
SEEK_CUR Current file pointer position
SEEK_END End-of-file
SEEK_SET File beginning
Returnvalue -~ [seek returns the offset of the pointer’s new position measured in bytes from

the file beginning. Iseek returns —1L on error, and the global variable errno is
set to one of the following values:

EBADF Bad file handle
EINVAL Invalid argument
ESPIPE Illegal seek on device

On devices incapable of seekmg (such as terminals and printers), the return -
value is undefined.

See also . filelength, fseek, ftell, getc, open, soper, ungetc, _rtl_write, write

ltoa : - stdlib.h
Function Converts a long to a string.

Syntax char *1ltoa(long value, char *string, int ~radi‘x); ,

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks Itoa converts value to a null-terminated string and stores the result in strmg
value is a long integer.

radix specifies the base to be used in converting value; it must be between 2
and 36, inclusive. If value is negative and radix is 10, the first character of.
string is the minus sign (-).

Chapter 3, Run-time functions , ’ ' v 167

ltoa

-

The space allocated for string must be large enough to hold the returned
string, including the terminating null character (\O) Itoa can return up to 33
bytes.

168

- Return value Itoa returns a pointer to string.
See also itoa, ultoa
_makepath stdlib.h
Function' _Builds a path from component parts.
Syntax void _makepath(char *path, const char *drive, const char *dir,
const char *name, const char *ext);
os | unix | wini6 | win32 [ansic | ansrce | os/2
|] n L] n
Remarks _makepath makes a path name from its components. The new path name is
" X:\DIR\SUBDIR\NAME, EXT |
where
drive = X:
dir = \DIR\SUBDIR\
name = NAME
ext = ,EXT
If drive is empty or NULL, no drive is inserted in the path name. If it is
missing a trailing colon (:), a colon is inserted in the path name.
If dir is empty or NULL, no directory is inserted in the path name. If it is
missing a trailing slash (\ or /), a backslash is inserted in the path name.
If name is empty or NULL, no file name is inserted in the path name.
If ext is empty or NULL, no extension is inserted in the path name. If it is
missing a leading period (.), a period is inserted in the path name.
_makepath assumes there is enough space in path for the constructed path
name. The maximum constructed length is _MAX_PATH. _MAX_PATH is
defined in stdlib.h.
_makepath and _splitpath are invertible; if you split a given,path with
_splitpath, then merge the resultant components with _makepath, you end up
: with path. (:
Return value None.
Library Reference

_makepath

See also _fullpath, _splitpath
malloc stdlib.h
Function Allocates main memory.
Syntax void *malloc(size_t size);
00s | unIX | win16 | Win32 | ANSIC | ANSI C++ | 05/2
Remarks malloc allocates a block of size bytes from the memory heap. It allows a

Return value

See also

program to allocate memory explicitly as it's needed, and

amounts needed.

in the exact

The heap is used for dynamic allocation of variable-sized blocks of
memory. Many data structures, for example, trees and lists, naturally
employ heap memory allocation.

All the space between the end of the data segment and the top of the

addition to a small amount needed by DOS.

- program stack is available for use in the small data models, except for a
small margin immediately before the top of the stack. This marginis .
intended to allow the application some room to make the stack larger, in

In the large data models, all the space beyond the program stack to the end
of available memory is available for the heap.

On success, malloc returns a pointer to the newly allocated block of
memory. If not enough space exists for the new block, it returns NULL. The

contents of the block are left unchanged. If the argument size == 0, malloc
returns NULL.

calloc, farcalloc, farmalloc, free, realloc

_matherr, _matherri math.h
Function User-modifiable math error handler.
Syntax int _matherr(struct _exception *e);
int _matherrl(struct _exceptionl *e);
DOS | UNIX | win16 | Win32 | ANSIC | ANSI C+ | 0s/2
. . ") .
Chapter 3, Run-time functions 169

_matherr, _matherrl

Remarks _matherr is called when an error is generated by the math library.

_matherrl is the long double version; it is called when an error is generated
by the long double math functions. :

_matherr and-_matherrl each serve as a user hook (a function that can'be
customized by the user) that you can replace by writing your own math
error handling routine. The example shows a user-defined _matherr
implementation. :)

_matherr and _matherrl are useful for trapping domain and range errors
. caused by the math functions. They do not trap floating-point exceptions,
such as division by zero. See signal for information on trapping such errors.

You can define your own _matherr or _matherrl routine to be a custom error
handler (such as one that catches and resolves certain types of errors); this
customized function overrides the default version in the C library. The
customized _matherr or _matherrl should return 0 if it fails to resolve the
error, or nonzero if the error is resolved. If nonzero is returned, no error
message is printed and the global variable errno is not changed.

Here are the _exception and _exceptionl structures (defined in math.h):

struct _exception {

.int type;

char *name;

double argl, arg2, retval;
}i

struct _exceptionl {

int type;

char ~ *name;

long double argl, arg2, retval;
i

The members of the _exception and _exceptionl structures are shown in the
following table:

Member What it is (or represents)
- type * The type of mathematical error that occurred; an enum type defined in the typedef
©_mexcep (see definition after this list).
name A pointer to a null-terminated string holding the name of the math library function
that resulted in an error. »
argt, The arguments (passed to the function that name points to) caused the error; -
arg2 if only one argument was passed to the function, it is stored in arg1.
retval The default return value for _matherr (or _matherri); you can modify this value.

170 ’ | . ‘ ; ’ - Library Reference

Return value .

- max

_matherr, _matherri

The typedef _mexcep, also defined in math.h, enumerates the following
symbolic constants representing possible mathematical errors:

Symbolic

constant Mathematical error

DOMAIN Argument was not in domain of function, such as log(-1).

SING Argument would result in a singularity, such as pow(0, —2).
OVERFLOW Argument would produce a function result greater than DBL_MAX (or

LDBL_MAX), such as exp(1000).

UNDERFLOW - Argument would produce a function result less than DBL_MIN (or
LDBL_MIN), such as exp(-1000).

TLOSS ‘ Argument would produce function result with total loss of significant digits,
such as sin(10e70).

The macros DBL_MAX, DBL_MIN, LDBL_MAX, and LDBL_MIN are
defined in float.h.

The source code to the default _matherr and _matherrl is on the Borland C++
distribution disks.

The UNIX-style _matherr and _matherrl default behavior (printing a
message and terminating) is not ANSI compatible. If you want a UNIX-
style version of these routines, use MATHERR.C and MATHERRL.C -
provided on the Borland C++ distribution disks.

The default return value for _matherr and _matherrl is 1 if the error is
UNDERFLOW or TLOSS, 0 otherwise. _matherr and _matherrl can also
modify e —> retval, which propagates back to the original caller.

. When'_matherr and _matherrl return 0 (indicating that they were not able to

resolve the error), the global variable errno is set to 0 and an error message
is printed. ’

When _matherr and _matherrl return nonzero (indicating that they were able
to resolve the error), the global variable errno is not set and no messages are
printed. ' :

stdlib.h

Fuhction

Syntax

Returns the larger of two values.

(type) max(a, b);

@}k template <class T> T max(T tl, T t2);

Chapter 3, Run-time functions : ' 171

max .

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks The C macro and the C++ template function compare two values and
return the larger of the two. Both arguments and the routine declaration
must be of the same type.

Return value max returns the larger of two values.

See also min

mblen stdlib.h

Function " Determines the length of a multibyte character.

Syntax int mblen(const char *s, size_t n); ‘

DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
a L " n | []

Remarks If s is not null, mblen determines the number of bytes in the multibyte char-
acter pointed to by s. The maximum number of bytes examined is specified
by n.

The behavior of mblen is affected by the setting of LC_CTYPE category of
the current locale.

Return value If s is null, mblen returns a nonzero value if multibyte characters have -
state-dependent encodings. Otherwise, mblen returns 0.

If s is not null, mblen returns 0 if s points to the null character, and -1 if the
next n bytes do not comprise a valid multibyte character; the number of
bytes that comprise a valid multibyte character.

See also mbstowcs, mbtowc, setlocale

mbstowcs stdlib.h

Function Converts a multibyte string to a wchar_t array.

Syntax size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

0s | UNIX | Win16 | wWin32 | ANSIC | ANSI C++ | 0S/2
" n [] [] |]]
172 Library Reference

Remarks

Return value

mbstowcs

The function converts the multibyte string s into the array pointed to by
pwcs. No more than n values are stored in the array. If an invalid multibyte
sequence is encountered, mbstowcs returns (size_t) —1.

~ The pwcs array will not be terminated with a zero value if mbstowcs

returns n.

- The behavior of mbstowcs is affected by the setting of LC_CTYPE category

of the current locale.

If an invalid multibyte sequence is encountered, mbstowcs returns (size_t)
—1. Otherwise, the function returns the number of array elements modified,
not including the terminating code, if any.

See also mblen, mbtowc, setlocale
mbtowc stdlib.h
Function Converts a multibyte character to wchar_t code.
Syntax int mbtowc(wchar_t *pwc, const char *s, size_t n);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
L] [] n] u |
Remarks If s is not null, mbtowc determines the number of bytes that comprise the

Return value

See also

multibyte character pointed to by s. Next, mbtowc determines the value of
the type wchar_t that corresponds to that multibyte character. If there is a
successful match between wchar_t and the multibyte character, and pwc is
not null, the wchar_t value is stored in the array pointed to by pwc. At most
n characters are examined. ,

When s points to an invalid multibyte character, -1 is returned. When s
points to the null character, 0 is returned. Otherwise, mbtowc returns the
number of bytes that comprise the converted multibyte character.

The return value never exceeds MB_CUR_MAX or the value of 7.

The behavior of mbtowc is affected by the setting of LC_CTYPE category of
the current locale. '

mblen, mbstowcs, setlocale

Chapter 3, Run-time functions | , . 173

memccpy, _fmemccpy

memccpy, _fmemccpy . mem.h
Function Copies a block of 7 bytes.
Syntax void *memccpy (void *dest, const void *src, int ¢, size_t n);

. void far * far _fmemccpy(void far *dest, const void far *src, int ¢, size_t n)

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

memccpy [] | u | []
_fmemccpy " .
Remarks memccpy is available on UNIX System V systems.

memccpy copies a block of n bytes from src to dest. The copying stops as
soon as either of the following occurs:

m The character c is first copied into dest.
m 1 bytes have been copied into dest.

Return value memccpy returns a pointer to the byte in dest immediately following c, if ¢
, was copied; otherwise, memccpy returns NULL.

See also memcpy, memmove, memset

memchr, _fmemchr ; mem.h

Function Searches n bytes for character c.

Syntax void *memchr (const void *s, int ¢, sizet n); - /* C only */

‘ void far * far _fmemchr(const void far *s, int c, size_t n); /* C and C++ */

const void *memchr (const void *s, int c, size_t n); // C++ only
void *memchr(void *s, int ¢, size_t n); // C++ only

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2

memchr L n L} oon L} u L]
_fmemchr -t !
Remarks memchr is available on UNIX System V systems.

‘memchr searches the first n bytes of the block pointed to by s for character c.

174 Library Reference

memchr, _fmemchr

Return value On success, memchr returns a pointer to the first occurrence of c in s;
otherwise, it returns NULL.

- If you are using the intrinsic version of these functions, the case of n=0 will
return NULL. ' ‘

memcmp, _fmemcmp | : ' mem.h

Function Compares two blocks for a length of exactly # bytes.
Syntax

int memcmp(const void *sl, const void *s2, size_t n); _
int far _fmemcmp(const void far *sl, const void far *s2, size_t n)

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

memcmp L] n [|]) L] [

_fmememp . ' .

Remarks Memcmp is available on UNIX System V systems. :

memcmp compares the first n bytes of the blocks s1 and s2 as unsigned
chars.

Return value Because it compares bytes as unsigned chars, memcmp returns a value that
is »

m < 0 if s1 is less than s2
m = 0 if 51 is the same as s2
m > (if s1 is greater than s2

For example,
mememp ("\xFF", "\x7F", 1)
returns a value greater than 0.

W If you are using the intrinsic version of these functions, the case of n=0 will
return NULL. . _ ‘

Seé‘also memicmp

memcpy, _fmemcpy o - mem.h

Function - Copies a block of 1 bytes.

Chapter 3, Run-time functions . - ‘ : 175

memcpy, _fmemcpy

Syntax
 memcpy
_fmemcpy
Remarks
Return value
See also

memicmp, _fmemicmp

void *memcpy(void *dest, const void *src, size_t n);
void far *far _fmemcpy(void far *dest, const void far *src, size_t n};

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2
[]] []]] ’]]
[] L]

memcpy is available on UNIX System V systems.

" memcpy copies a block of n bytes from src to dest. If src and dest overlap, the

behavior of memcpy is undefined.
memcpy returns dest.

memccpy, memmove, memset, movedata, movmerm

mem.h

Function
Syntax

memicmp

_fmemicmp

Remarks

Return value

See also

memmove, _fmemmove

Compares n bytes of two character arrays, ignoring case.

int memicmp(const void *sl, const void *s2, size_t n);
int far _fmemicmp(const void far *s1, const void far *s2, size_t n)

DOS UNIX _Win 16 Win 32 ANSI C ANSI C++ 0S/2
] []] [] :]
[] []

memicmp is available on UNIX System V systems.

memicmp compares the first n bytes of the blocks s1 and s2, ignoring
character case (upper or lower).

memicmp returns a value that is

m < 0if s1 is less than s2.
m = 0 if s1 is the same as s2
m > 0 if s1 is greater than s2

memcmp

mem.h

Function -

176

Copies a block of 1 bytes.

Library Reference

Syntax

memmove

_fmemmove

Remarks

Return value

memmove, _fmemmove

void *memmove (void *dest, const void, *src, size_t n);
void far * far _fmemmove (void far *dest, const void far *src, size_t n)

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2 R

memmove copies a block of 1 bytes from src to dest. Even when the source
and destination blocks overlap, bytes in the overlapping locations are

copied correctly.

memmove returns dest.

See also memccpy, memcpy, movmem
memset, _fmemset mem.h
Function Sets n bytes of a block of memory to byte c.
Syntax void *memset (void *s, int ¢, size_t n);
void far * far _fmemset (void far *s, int c, size_t n)
D0S | UNIX | .Win16 | Win32 | ANSI C | ANSI C++ | 05/2
memset n] [} []] n u
_fmemset " "

Remarks memset sets the first n bytes of the array s to the character c.

Return value

memset returns s.

See also memccpy, memcpy, setmem

min stdlib.h
Function Returns the smaller of two values.

Syntax {type) min(a, b);

(€GeS

‘template <class T> T min{ T t1, T t2 };

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Chapter 3, Run-time functions . . 77

min

Return value

178

Remarks The C macro and the C++ template function compare two values and
‘ return the smaller of the two. Both arguments and the routine declaration
must be of the same type.
Return value min returns the smaller of two values.
See also max
mkdir . dirh
_Function Creates a directory.
Syntax int mkdir(const char *path};
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 05/2
[] n n n n
Remarks mkdir is available on UNIX, though it then takes an additional parameter.
mkdir creates a new directory from the given path name path.
Return value mkdir returns the value 0 if the new directory was created.
A return value of -1 indicates an error, and the global variable errno is set to
one of the following values:
- EACCES Permission denied
ENOENT No such file or directory
See also chdir, getcurdir, getcwd, rmdir
MK_FP dos.h
Function Makes a far pointer.
Syntax void far * MK_FP(unsigned seg, unsigned ofs);
‘ os | unix | win16 | Win32 | ANt c [ansrce | os/2
|] n
Remarks

MK_FP is a macro that makes a far pointer from its component segment
(seg) and offset (ofs) parts. : :

MK_FP returns a far pointer.

Library Reference

MK_FP

See also FP_OFF, FP_SEG, movedata, segread

mktemp dirh
Function Makes a unique file name.
Syntax char *mktemp(char *template);

Dos UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks mktemp replaces the string pointed to by template with a uruque file name
and returns template. .

template should be a null-terminated string with six trailing Xs. These Xs
are replaced with a unique collection of letters plus a period, so that there
are two letters, a period, and three suffix letters in the new file name.

Starting with AA.AAA, the new file name is assigned by looking up the
name on the disk and avoiding pre-existing names of the same format.

Return value If template is well-formed, mktemp returns the address of the template string.
Otherwise, it returns null.

mktime ‘ o , ~ time.h
Function Converts time to calendar format.

Syntax time_t mktime(struct tm *t);

DOS UNIX MWin 16 Win 32 ANSI C ANST C++ 0s/2

Remarks Converts the time in the structure pointed to by ¢ into a calendar time with
the same format used by the time function. The original values of the fields
tm_sec, tm_min, tm_hour, tm_mday, and tm_mon are not restricted to the
ranges described in the tm structure. If the fields are not in their proper
ranges, they are adjusted. Values for fields tm_wday and tm_yday are
computed after the other fields have been adjusted. If the calendar time
cannot be represented, mktime returns —1. :

The allowable range of calendar times is Jan 1 1970 00:00:00 to Ian 19 2038
03:14:07. »

Return value See Remarks.

Chapter 3, Run-time functions ‘ o 179

mktime

See also

modf, modfi

localtime, strftime, time

math.h

Function

Syntax
modf
modl
Remarks

Return value

Splits a double or long double into integer and fractional parts.

double modf (double x, double *ipart);
long double modfl (long double x, long double *ipart);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

modf breaks the double x into two parts: the integer and the fraction. modf
stores the integer in ipart and returns the fraction.

modfl is the long double version; it takes long double arguments and
returns a long double result.

modf and modfl return the fractional part of x.

See also fmod, ldexp
movedata mem.h
Function Copies 1 bytes.
Syntax void movedata(unsigned srcseg, unsigned srcoff, unsigned dstseg, unsigned dstoff,
size_t n);
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2
[i ['

Remarks movedata copies n bytes from the source address (srcseg:srcoff) to the

Return value

See also

180

destination address (dstseg:dstoff). movedata provides a memory-model inde-
pendent means for moving blocks of data.

None.

FP_OFF, memcpy, MK_FP,movmem, segread

Library Reference

movmem, _fmovmem

movmem, _fmovmem | ' mem.h
Function ‘Moves a block of length bytes.
Syntax . void movmem(const void *src, void *dest, unsigned length);

void _fmovmenm(const void far *src, void far *dest, unsigned length);

DOS _UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks movmem moves a block of length bytes from src to dest. Even if the source
and destination blocks overlap, the move direction is chosen so that the
data is always moved correctly. _fmovmem provides the same functionality
in a large memory model as movmem does in small memory model.

Return value None.

See also memcpy, memmove, movedata

movetext conio.h
Function Copies text onscreen from one rectangle to another.

Syntax ’ int movetext (int left, int top, int right, int bottom, int destleft, int desttop);

DOS UNIX Win 16 Win 32 ANST C ANSI C++ | 0S/2

Remarks movetext copies the contents of the onscreen rectangle defined by left, top,
right, and bottom to a new rectangle of the same dimensions. The new
rectangle’s upper left corner is position (destleft, desttop).

All coordinates are absolute screen coordinates. Rectangles that overlap are
moved correctly. \

movetext is a text mode function performing direct video output.
W This function should not be used in Win32s or Win32 GUI applications.

Return value movetext returns nonzero if the operation succeeded. If the operation failed
(for example, if you gave coordinates outside the range of the current
screen mode), movetext returns 0.

Seealso gettext, puttext

Chapter 3, Run-time functions ; . 181

_msize

-

-Return value

_msize malloc.h
Function Returns the size of a heap block.
- Syntax size_t _msize(void *block);
DOS | UNIX | Win16 | Win32 [ANSIC | ANSI C++ | 0S/2
] L]

Remarks _msize returns the size of the allocated heap block whose address is block.
The block must have been allocated with malloc, calloc, or realloc. The
returned size can be larger than the number of bytes originally requested
when the block was allocated.

Return value _msize returns the size of the block in byfes.

Seealso malloc, free, realloc

normvideo conio.h

Function Selects normal-intensity characters.

Syntax void normvideo(void);

DOS | UNIX | Win16 | Win32 | ANSI C .| ANSI C++ | 05/2
Remarks normuideo selects normal characters by returning the text attribute

~ (foreground and background) to the value it had when the program.

started.

This function does not affect any characters currently on the screen, only
those displayed by functions (such as cprintf) performing direct console
output functions after normvideo is called. :

This function should not be used in Win32s or Win32 GUI applications.

None.

See also k highvideo, lowvideo, textattr, textcolor

offsetof stddef.h
Function Gets the byte offset to a structure member.

182 Library Reference

offsetof

Syntax size_t offsetof (struct_type, struct_member);

Dos UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks " offsetof is available only as a macro. The argument struct_fype is a struct
type. struct_member is any element of the struct that can be accessed
through the member selection operators or pointers.

If struct_member is a bit field, the result is undefined.

See also Chapter 2 in the Progmmmers Guide for a discussion of the sizeof
operator, memory allocation, and alignment of structures.

Return value offsetof returns the number of bytes from the start of the structure to the
' start of the named structure member.

_open | ~ fentl.h, share.h, dos.h
Remarks Obsolete function. See _rtl_open.

open | fentlh, io.h
Function Opens a file for reading or writing.

Syntax . int open(const char *path, int access [, unsigned mode]);

v

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks open opens the file specified by path, then prepares it for reading and / or
writing as determined by the value of access.

To create a file in a particular mode, you can either assign to the global
_variable _fmode or call open with the O_CREAT and O_TRUNC options
ORed with the translation mode desired. For example, the call '

open("XMP",0_CREAT|O_TRUNC|O_BINARY, S_IREAD)

- creates a binary-mode, read-only file named XMP, truncating its length to 0
bytes if it already existed. -

For open, access is constructed by bitwise ORing flags from the following
two lists. Only one flag from the first list can be used (and one must be
used); the remaining flags can be used in any logical combination.

Chapter 3, Run-time functions : ' 183

open

These symbolic -

constants are defined
in fentl.h.

Return value

184

List 1: Read/write flags

' O_RDONLY
~ O_WRONLY
O_RDWR

Open for reading only
Open for writing only.
Open for reading and writing.

List 2: Other access flags

O_NDELAY
O_APPEND

O_CREAT

O_TRUNC
O_EXCL
O_BINARY

O_TEXT

Not used; for UNIX .compatibility.

If set, the file pointer will be set to the end of the file
prior to each write.

If the file exists, this flag has no effect. If the file does
not exist, the file is created, and the bits of mode are
used to set the file attribute bits as in chmod.

If the file exists, its length is truncated to 0. The file
attributes remain unchanged. ‘
Used only with O_CREAT. If the file already exists,
an error is returned.

Can be given to explicitly open the file in binary
mode. _

Can be given to explicitly open the file in text mode.

If neither. O_BINARY nor O_TEXT is given, the file is op'ened in the
translation mode set by the global variable _fmode.

If the O_CREAT flag is used in constructing access, you need to supply the
mode argument to open from the following symbohc constants defined in

sys\stat.h.
Value of mode Access permission
S_IWRITE "Permission to write
S_IREAD Permissionto read -

S_IREADIS_IWRITE

Permission to read and write

On successful completion, open returns a nonnegative integer (the file
handle). The file pointer, which marks the current position in the file, is set
to the beginning of the file. On error, open returns -1 and the global variable
errno is set to one of the following values:

EACCES Permission denied
EINVACC Invalid access code
EMFILE Too many open files
ENOENT No such file or directory

. Library Reference

open

See also chmod, chsize, close, _rtl_creat, creat, creatnew, creattemp, dup, dup2, fdopen,
filelength, fopen, freopen, getftime, Iseek, lock, _rtl_open, read, sopen, _rtl_write,
write

opendir dirent.h

Function Opens a directory stream for reading.
Syntax DIR *opendir{char *dirname);
p0S | UNIX | Win16 | wWin32 | ANSIC | ANSI C++ | o0S/2
n u n n n

Remarks opendir is available on POSIX-compliant UNIX systems.

The opendir function opens a directory stream for reading. The name of the-
directory to read is dirname. The stream is set to read the first entry in the
directory.

A directory stream is represented by the DIR structure, defined in dirent.h.
This structure contains no user-accessible fields. Multiple directory streams
can be opened and read simultaneously. Directory entries can be created or
deleted while a directory stream is being read.

Use the readdir function to read successive entries from a directory stream.
Use the closedir function to remove a directory stream when it is no longer
needed. ’

* Return value If successful, opendir returns a pointer to a directory stream that can be used
in calls to readdir, rewinddir, and closedir. If the directory cannot be opened,
opendir returns NULL and sets the global variable errno to

ENOENT The directory does not exist
v ENOMEM ' Not enough memory to allocate a DIR object

See also closedir, readdir, rewinddir

outp conio.h

Function Outputs a byte to a hardware port. ,

Syntax int outp(unsigned portid, int value);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Chapter 3, Run-time functions 185

outp

Remarks

Return value

outp is a macro that writes the low byte of value to the output port specified
by portid. :

. If outp is called when conio.h has been included, it will be treated as a

macro that expands to inline code. If you don’t include conio.h, or if you do

_include conio.h and #undef the macro outp, you'll get the outp function.

outp returns value.

Return value

See also inp, inpw, outpw
outport, outportb dos.h
Function Outputs a word or byte to a hardware port.
Syntax void outport (int portid, -int value);

void outportb(int portid, unsigned char value);

0os | unix | Win16 | Win32 | ANSIC | ANSI C++ | o0S/2
L] 1]

Remarks

outport works just like the 80x86 instruction OUT. It writes the low byte of
the word given by value to the output port specified by portid and writes the
high byte of the word to portid +1.

outportb is a macro that writes the byte given by value to the output port

specified by portid.

If outportb is called when dos.h has been included, it will be treated as a
macro that expands to inline code. If you don’t include dos.h, or if you do
include dos.h and #undef the macro outportb, you'll get the outportb
function. ‘ ‘ ‘

None. '

- Seealso inport, inportb

outpw conio.h

Function Outputs a word to a hardware port.

i Syntax unsigned outpw(unsigned portid, unsigned value);

DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
[o= ’
186 Library Reference

outpw

Remarks outpw is a macro that writes the 16-bit word given by value to the output -
port specified by portid. It writes the low byte of value to portid, and the high
byte of the word to portid +1, using a single 16-bit OUT instruction.

If outpw is called when conio.h has been included, it will be treated as a
macro that expands to inline code. If you don’t include conio.h, or if you do
include conio.h and #undef the macro outpw, you'll get the outpw function.

Return value “outpw returns value.

See also inp, inpw, outp

parsfnm dos.h

Function Parses file name.

; Symax) char fparsfnm (éonst char *cmdline, struct fcb *fcb, int opt);
0s | unix | win16 | win32 | ANsI C | ANSI C++ | 05/2
Remarks parsfnm parses a string pointed to by cmdline for a file name. The string is

‘ normally a command line. The file name is placed in a file control block
(FCB) as a drive, file name, and extension. The FCB is pointed to by fcb.
The opt parameter is the value documented for AL in the DOS parse system
call. See your DOS reference manuals under system call 0x29 for a
description of the parsing operations performed on the file name.

Return value On success, parsfnm returns a pointer to the next byte after the end of the
file name. If there is any error in parsing the file name, parsfnm returns null.

_pclose stdio.h

Function Waits for piped command to complete.

Syntax int _pclose(FILE * stream);

00S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ T o
" n
Remarks This function is not available in Win32s programs.

_pclose closes a pipé stream created by a previous call to _popen, and then
waits for the associated child command to complete.

Chapter 3, Run-time functions . ' 187

_pclose

Return value

See also

If it is successful, _pclose returns the termination status of the child
command. This is the same value as the termination status returned by
cwait, except that the high and low order bytes of the low word are
swapped. If _pclose is unsuccessful, it returns -1.

_pipe, _popen
peek dos.h
Function Returns the word at memory location specified by segment:offset.
Syntax int peek(unsigned segment, unsigned of’fset)‘;
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
[] . n
Remarks peek returns the word at the memory location segment:offset.
If peek is called when dos.h has been included, it is treated as a macro that
expands to inline code. If you don’t include dos.h, or if you do include it
and #undef peek, you'll get the function rather than the macro.
Return value peek returns the word of data stored at the memory location segment.offset.
See also peekb, poke
peekb dos.h
Function Returns the byte of memory specified by segment:offset.
Syntax . char peekb(unsigned segment, unsigned offset);
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI.C++ | 0S/2
Remarks peekb returns the byte at the memory location addressed by segment:offset.
If peekb is called when dos.h has been included, it is treated as a macro that
expands to inline code. If you don’t include dos.h, or if you do include it
and #undef peekb, you'll get the function rather than the macro.
Return value- peekb returns the byte of information stored at the memory location
segment:offset. . _ , '
See also peek, pokgb
188 Library Reference

perror

perror | | . stdio.h
Function Prints a system error message. -
Syntax void perror(const char *s);

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2

Remarks perror prints to the stderr stream (normally the console) the system error
message for the last library routine that set errno.

First the argument s is printed, then a colon, then the message corre-
sponding to the current value of the global variable errno, and finally a
newline. The convention is to pass the file name of the program as the
argument string. '

The array of error message strings is accessed through the global variable
_sys_errlist. The global variable errno can be used as an index into the array
to find the string corresponding to the error number. None of the strings
include a newline character.

The global variable _sys_nerr contains the number of entries in the array.

Refer to errno, _sys_errlist, and _sys_nerr in Chapter 4 for more information.

The following messages are generated by perror:

These mes;?;'ﬁ 2§§ Win 16 and Win 32 messages
generated in both .) .

Win 16 and Win 32. Arg list too big Is a directory

Attempted to remove current Math argument
directory Memory arena trashed
Bad address Name too long
Bad file number ‘No child processes
Block device required ~ No more files
Broken pipe - No space left on device
Cross-device link No such device
Error 0 , No such device or address
Exec format error No such file or directory
Executable file in use No such process
File already exists : Not a directory
File too large Not enough memory.
llegal seek Not same device
Inappropriate 1/0 control Operation not permitted
operation Path not found

Inputbutput error ‘ Permission denied
Interrupted function call Possible deadlock

Chapter 3, Run-time functions : 2 - 189

perror

Table 3.3

These messages are
generated only in
Win 32.

-

Table 3.2: These messages are generated in both Win 16 and Win 32. (continued)

Invalid access code

. Invalid argument

Invalid data
Invalid environment

Invalid format

‘Invalid function number
Invalid memory block address

. Read-only file system

Resource busy

Resource temporarily unavailable

Result too large
Too many links

Too many open files

Win 32-only messages

Bad address

Block device required
Broken pipe
Executable file in use

File too large

Ilegal seek

Inappropriate I/O control
operation
- Inputbutput error

Interrupted function call

Is a directory
Name too long

No child processes

No space left on device

No such device or address
No such process '
Not a directory
Operation not permitted
Possible deadiock '

Read-only file system

Resource busy

Resource temporarily unavailable

Too many links

For Win32s or Win32 GUI applications, stderr must be redirected.

Return value None.
See also clearerr, eof, freopen, _strérror, strerror
_pipe fentl.h, io.h
Function Creates a read /write pipe.
_ Syntax “int _pipe(int *handles, unsigned int size, int mode);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | o0S/2°
] om
Remarks - This function is not available in Win32s programs.
The _pipe function creates an anonymous pipe that can be used to pass
information between processes. The pipe is opened for both reading and
writing. Like a disk file, a pipe can be read from and written to, but it does
not have a name or permanent storage associated with it; data written to
190 Library Reference

_pipe

and from the pipe exist only in a memory buffer managed By the operating

system.

The read handle is returned to handles[0], and the write handle is returned
to handles[1]. The program can use these handles in subsequent calls to read,

write, dup, dup2, or close. When all

destroyed.

pipe handles are closed, the pipe is

The size of the internal pipe buffer is size. A recommended minimum value

~ is 512 bytes.

The translation mode is specified by mode, as follows:

O_BINARY The pipe is opened in binary mode -

O_TEXT The pipe is opened in text mode
If mode is zero, the translation mode is determined by the external variable
_fmode. _

Return value On successful completion, _pipe returns 0 and returns the pipe handles to
handles[0] and handles[1]. Otherwise it returns 1 and sets errno to one of the
following values:

EMFILE “Too many open files
ENOMEM Out of memory

See also _pclose, _popen

poke dos.h

Function Stores an integer value at a memory location given by segment:offset.

Syntax void poke(unsigned segment, unsigned offset, int value);

DOS UNIX Win 16 Win 32 ANSI C ANST C++, 0s/2

Remarks

Return value
See also

poke stores the integer value at the memory location segment:offset.

If this routine is called when dos.h has been included, it will be treated as a
macro that expands to inline code. If you don’t include dos.h, or if you do
include it and #undef poke, you’ll get the function rather than the macro.

None.

peek, pokéb

Chapter 3, Run-timé functions

191

pokeb

pokeb dos.h
Function ~ Stores a byte value at memory location segment:offset.
Syntax void pokeb(unsigned segment, unsigned offset, char value);
oS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0s/2
[] L]
Remarks pokeb stores the byte value at the memory location segment:offset.
If this routine is called when dos.h has been included, it will be treated as a
macro that expands to inline code. If you don’t include dos.h, or if you do
include it and #undef pokeb, you'll get the function rather than the macro.
* Return value None.
See also peekb, pokg
poly, polyl math.h
Function Generates a polynomial from arguments.
Syntax double poly(double %, int degree, double coeffs[]);
long double polyl{long double x, int degree, long double coeffs[]);
DOS | UNIX' | Win 16 | Win32 | ANSIC | ANSI C++ | 0S/2
POI_V] N]] L]
polyl [[[)]
Remarks ~ poly generates a polynomial in x, of degree degree, with coefficients coeffs[0],

coeffs[1], ..., coeffs[degree]. For example, if n = 4, the generated polynomial is.
coeffs[4]x* + coeffs[3]x3 + coeffs[2]x* + coeffs[1]x + coeffs[0]

| polyl is the long double version; it takes long double arguments and returns

- along double result.

Return value

poly and polyl return the value of the polynomial as evaluated for the
given x. ‘ c

_popen stdio.h
Function Creates a command processor pipe.
192 Library Reference

_popen

Syntax FILE *_popen (const char *command, const char *mode);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks This function is not available in Win32s programs.

The _popen function creates a pipe to the command processor. The
command processor is executed asynchronously, and is passed the
command line in command. The mode string specifies whether the pipe is
connected to the command processor’s standard input or output, and
whether the pipe is to be opened in binary or text mode.

The mode string can take one of the following values:

Value Description

I Read child command’s standard output (text).

b Read child commands standard output (binary).
wt White to child commands standard input (text).
wb Write to child commands standard input (binary).

The terminating f or b is optional; if missing, the translation mode is
determined by the external variable _fmode.

Use the _pclose function to close the pipe and obtain the return code of the
command.

Return value If _popen is successful it returns a FILE pointer that can be used to read the
standard output of the command, or to write to the standard input of the
command, depending on the mode string. If _popen is unsuccessful, it

returns NULL.
See also _pclose, _pipe
pow, powl : math.h
Function Calculates x to the power of y.

Chapter 3, Run-time functions y - - 193

pow, powl

Syntax double pow(double x, double y); ;
long double powl(long double x, double y);

DOS UNIX “Win 16 Win 32 ANSI C ANSI C++ 0s/2

pow " . . " ' . -
powl ' . ' \ !
Remarks pow calculates xV.

powl is the long double versmn it takes Iong double arguments and returns
a long double result.

This function can be used with bed and complex types.
Return value On success, pow and pow! return the value calculated, xV.

Sometimes the arguments passed to these functions produce results that

“overflow or are incalculable. When the correct value would overflow, the
functions return the value HUGE_VAL (pow) or _LHUGE_VAL (powl).
Results of excessively large magnitude can cause the global varlable errno
tobe set to

ERANGE Result out of range

If the argument x passed to pow or powl is real and less than 0, and y is not a
whole number, or you call pow(0, 0), the global variable errno is set to

EDOM Domain error

Error handling for these functions can be modified through the functions
_matherr and _matherrl.

See also bed, complex,\v exp, powl0, sqrt

pow10, pow10l | / math.h
Function Calculates 10 to the power of p.

Syntax ‘double powld(int p);

long double powl0l(int p);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

pow10 ' o . ' '
powtol | ® . : !
Remarks 4ow10 computes 107.

194 , ' : _ Library Reference

pow10, pow10l

Return value On success, pow10 returns the value calculated, 107.
The result is actuaily calculated to long double accuracy. All arguments are .
valid, although some can cause an underflow or overflow.
powl is the long double version; it returns a long double result.
See also exp, pow)
printf stdio.h
Function Writes formatted output to stdout.
Syntax int printf(const char *format(, argument, ...]);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
L] [n n 7] B
Remarks printf accepts a series of arguments, applies to each a format specifier
contained in the format string given by format, and outputs the formatted
data to stdout. There must be the same number of format specifiers as
arguments.
W For Win32s or Win32 GUI applications, stdout must be redirected.
The format string, present in each of the ...printf function calls, controls

The format string

how each function will convert, format, and print its arguments. There must
be enough arguments for the format; if not, the results will be unpredictable and

possibly disastrous. Excess arguments (more than requlred by the format) are

ignored.

The format string is a character string that contains two types of objects—
plain characters and conversion specifications:

m Plain characters are copied verbatim to the output stream.

m Conversion specifications fetch arguments from the argument list and
apply formatting to them. ~

Format specifiers
...printf format specifiers have the following form:

% [flags] [width] [.prec]) (FINIhILIL] type

Chapter 3, Run-time functions ‘ o 195

printf

Optional format

t

" Each format specifier begins with the percent character (%). After the % |
. come the following, in this order: '

® An optional sequence of flag characters, [flags]

B An optional width specifier, [width] -

m An optional precision specifier, [.prec]

m An optional input-size modifier, [FIN[h|1|L]

& The conversion-type character, [type]

These are the general aspects of output formatting controlled by the

string components o tional characters, specifiers, and modifiers in the format string:
Character ‘
or specifier What it controls or specifies ,
" Flags Output justification, numeric signs, decimal points, trailing zeros, octal and hex
prefixes
Width Minimum number of characters to print, padding with blanks or zeros
Precision Maximum number of characters to print; for integers, minimum number of
' digits to print
Size Override default size of argument:
N = near pointer
F = far pointer
‘h =short int
I=long
L =long double
-printf The following table lists the ...printf conversion-type characters, the type of
°°"Ve;ﬁ£_22£: input argument accépted by each, and in what format the output appears.
The information in this table of type characters is based on the assumption
that no flag characters, width specifiers, precision specifiers, or input-size
modifiers were included in the format specifiers. To see how the addition of
the optional characters and specifiers affects the ...printf output, refer to the
tables following this one.
" Type :
character Input argument Format of output
Numerics v .
d Integer ~ signed decimal int.
i integer signed decimal int.
o Integer unsigned octal int.
u’ Integer . - unsigned decimal int.
196 . Library Reference

printf

X Integer unsigned hexadecimal int (with a, b, ¢, d, e, f).
X Integer unsigned hexadecimal int (with A, B, C, D, E, F).
f Floating-point signed value of the form [-]dddd.dddd.
e Floating-point signed value of the form [-]d.dddd or e [+/]ddd.
g Floating-point signed value in either e or f form, based on given value and precision.
Trailing zeros and the decimal point are printed only if necessary. i
E Floating-point Same as e, but-with E for exponent.
Floating-point Same as g, but with E for exponent if e format used.
Characters
c Character Single character.
s String pointer Prints characters until a null-terminator is pressed or precision is reached.
% None The % character is printed.
Pointers :
n Pointer to int Stores (in the location pointed to by the input argument) a count of the
~ characters written so far.
p Pointer ‘ Prints the input argument as a pointer; format depends on which memory model

was used. It will be either XXXX:YYYY or YYYY (offset only).

Conventions Certain conventions accompany some of these specifications. The decimal-
point character used in the output is determined by the current locale’s
LC_NUMERIC category. The conventions are summarized in the following
table: ‘ .

Characters Conventions

eorE - The argument is converted to match the style [-] d.ddd...e[+/-]ddd, where

m One digit precedes the decimal point. 4
m The number of digits after the decimal point is equal to the precision.
m The exponent always contains at least two digits.

f The argument is converted to decimal notation in the style [-] ddd.ddd..., where
the number of digits after the decimal point is equal to the precision (if a nonzero
precision was given).

gorG The argument is printed in style e, E or f, with the precision specifying the

number of significant digits. Trailing zeros are removed from the result, and a
decimal point appears only if necessary.

Chapter 3, Run-time functions : 197

printf

~Characters Conventions

The argument is printed in style e or f (with some restraints) if g is the -
conversion character, and in style E if the character is G. Style e is used only if
the exponent that results from the conversion is either greater than the precision
or less than —4.

. oxorX For x conversions, the letters a, b, ¢, d, e, and f appear in the output; for X
conversions, the‘ letters A, B, C, D, E, and F appear.

W) Infinite floating-point numbers are printed as +INF and ~INF. An IEEE
Not-a-Number is printed as +NAN or -NAN.

Flag characters . The flag characters are minus (-), plus (+), sharp (#), and blank (). They can
appear in any order and combination.

Flag What it specifies

- Left-justifies the result, pads on the right with blanks. If not given, it right-justifies the
‘ result, pads on the left with zeros or blanks.

+ Signed convetsion results always begin with a plus (+) or minus (-) sign.

blank If value is nonnegative, the output begins with a blank instead of a plus; negative
values still begin with a minus.

Specifies that arg s to be converted using an “alternate form.” See the following table.

W Plus (+) takes precedence over blank () if both are given. |

Alternate forms If the # flag is used with a conversion character, it has the following effect
' on the argument (arg) being converted: '

Conversion

character How # affects arg

c,sdiu ~ No effect.

0 - 0 is prepended to a nonzero arg.

xorX 0Ox (or 0X) is prepended to arg. ;

e Eorf The result always contains a decimal point even if no digits follow the point.”
‘ Normally, a decimal point appears in these results only if a digit follows it.

gorG - S8ame as e and E, with the addition that trailing zeros are not removed.

Width specifiers ~ The width specifier sets the minimum field width for an output value.

Width is specified in one of two ways: directly, through a decimal digit
string, or indirectly, through an asterisk (*). If you use an asterisk for the
width specifier, the next argument in the call (which must be an int)
specifies the minimum output field width.

198 ; . ' . , Library Reference

printf

In no case does a nonexistent or small field width cause truncation of a
field. If the result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result. :

Width .
specifier How output width is affected
n At least n characters are printed. If the output value has less than n characters,
the output is padded with blanks (rtght-padded if - flag given, left- padded
otherwise).
On At least n characters are prlnted If the output value has less than n characters, it
is filled on the left with zeros.

* ~ The argument list supplies the width specifier, which must preced_e the actual
argument being formatted. :

Precision specifiers A precision specification always begins with a period (.) to separate it from -
any preceding width specifier. Then, like width, precision is specified either .
directly through a decimal digit string, or indirectly through an asterisk (*).
If you use an asterisk for the precision specifier, the next argument in the
call (treated as an int) specifies the precision.

If ybu use asterisks for the width or the precision, or for both, the width
argument must immediately follow the specifiers, followed by the precision
argument, then the argument for the data to be converted.

Precision \ o
specifier How output precision is affected
(none given) Precision set to default:
' default=1for d, i, 0, u, x, X types
default =6 for e, E, ftypes -
default = all significant digits for g, G types
default print to first null character for s types; no effect on ctypes

0 For d, i, o, u, xtypes, precision set to default; tor e, E, ftypes, no decimal pomt

‘ is printed.

.0~ ncharacters or ndecimal places are printed. If the output value has more than
n characters, the output might be truncated or rounded. (Whether this happens
depends on the type character.)

A The argument list supplies the precision specifier, which must precede the

actual argument being formatted.

W) If an explicit precision of zero is specified, and the format specifier for the
field is one of the integer formats (that is, d, i, o, u, x), and the value to be
printed is 0, no numeric characters will be output for that field (that is, the
field w111 be blank). . :

Chapter 3, Run-time functions ‘ - o ‘ , 199

printf

Input-size modifier

200

Conversion
character How precision specification (.n) affects conversion

o

.n specifies that at least n digits are
printed. If the input argument has less
than n digits, the output value is left-
padded with zeros. If the input argument
has more than n digits, the output value
is not truncated. ‘

.n specifies that n characters are printed
after.the decimal point, and the last digit
printed is rounded.

.n specifies that at most n significant
digits are printed.

.nhas no effect on the output.

(/] (2] D " MmMD® XX o= o0 —

.n specifies that no more than n characters
are printed.

The input-size modifier character (F, N, , I, or L) gives the size of the
subsequent input argument: - ‘

F = far pointer
N = near pointer
h = short int
I=long

L =long double

The input-size modifiers (F, N, , I, and L) affect how the ...printf functions
interpret the data type of the corresponding input argument arg. F and N
apply only to input args that are pointers (%p, %s, and %n). h, L, and L
apply to input args that are numeric (integers and floating-point).

Both F and N reinterpret the input arg. Normally, the arg for a %p, %s, or
%n conversion is a pointer of the default size for the memory model. F
means “interpret arg as a far pointer.” N means “interpret arg as a near

* pointer.”

| h,1, and L override the default size of the numeric data input arguments: |
“and L apply to integer (d, i, 0, u, x, X) and floating-point (e, E, f, g, and G)

types, while h applies to integer types only. Neither h nor I affect character
(c, 5) or pointer (p, n) types.

Library Reference

Return value

printf

Input-size

modifier How arg is interpreted
F argis read as a far pointer.
N argis read as a near pointer. N cannot be used with any conversion in huge

: model.
h ~ argis interpreted as a short int for d, j, o, u, x, or X.
| argis interpreted as a long int for d, J, o, u, x, or X; argis interpreted as a
double fore, E, f, g, or G. ‘

L argis interpreted as a long double for ¢, E, f, g, or G.

printf returns the number of bytes output. In the event of error, printf
returns EOF. ‘

See also _ cprintf, ecvt, fprintf, fread, freopen, fscanf, putc, puts, putw, scanf, sprintf, vprintf,
~ vsprintf
putc stdio.h
F““Ctioﬂ Outputs a character to a stream.
Syntax " int putc(int c, FILE *stream);
D05 | WX | Winis | W32 | Al c | msrcs | os2
Remarks

Return value

putc is a macro that outputs the character c to the stream given by stream.

On success, putc returns the character printed, c. On error, putc returns EOF.

See also fprintf, fputc, fputchar, fputs, fwrite, getc, getchar, printf, putch, putchar, putw,
vprintf C

‘putch conio.h

Function Outputs character to screen.

Syntax ' int putch(int c);

DOS UNIX Win 16 Win 32 ANSI C | ANSI C++ 0s/2

Chapter 3, Run-time functions 201

putch

Remarks

Return value

-

putch outputs the character c to the current text window. It is a text mode
function performing direct video output to the console. putch does not
translate linefeed characters (\n) into carriage-return/linefeed pairs.

The string is written either directly to screen memory or by way of a BIOS
call, depending on the value of the global variable directvideo.

This function should not be used in Win32s or Win32 GUI applications.

On success, putch returns t’he character printed, c. On error, it returns EOF.

See also cprintf, cputs, getch, getche, putc, putchar
putchar stdio.h
Function Outputs character on stdout.
Syntax int putchar(int c);
pos | unix | win16 | Win32 | ANSIC | ANSICe+ | 05/2
|] 1] . [] a n n []
- Remarks putchar(c) is a macro defined to be putc(c, stdout).
W) For Win32s or Win32 GUI applications, stdout must be redirected.
Return value On success, putchar returns the character c. On error, putchar returns EOF.
See also fputchar, getc, getchar, printf, putc, putch, puts, putw, freopen, vprintf
putenv stdlib.h
Function Adds string to current environment.
Syntax int putenv(const char *name);
DOS | UNIX | Win 16 Win 32 ANST C ANST C++ 0s/2
Remarks ; pﬂtenv accepts the string name and adds it to the environment of the current
~ process. For example,
" putenv ("PATH=C:\\BC"); , _ ;

putenv can also be used to modi\fy an existing name. On DOS and OS/2, ,

name must be uppercase. On other systems, name can be either uppercase or
202 Library Reference

putenv

lowercase. name must not include the equal sign (=). You can set a variable
to an empty value by specifying an empty string on the right side of the ‘=’
sign. This effectively removes the environment variable. Environment
variables created by putenv can be lower or upper case.

putenv can be used only to modify the current program’s environment.
Once the program ends, the old environment is restored. The environment:
of the current process is passed to child processes, including any changes
made by putenv.

Note that the string given to putenv must be static or global. Unpredictable
results will occur if a local or dynamic string given to putenv is used after
the string memory is released.

- Return value _ On success, putenv returns 0; on failure, -1.
See also ‘ getenv
Function Outputs a string to stdout.
Syntax int puts(const char *s);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks puts copies the null-terminated string s to the standard output stream
stdout and appends a newline character. .

W) For Win32s or Win32 GUI applications, stdout must be redirected.

Return value On successful completion, puts returns a nonnegative value. Otherwise, it
returns a value of EOF.
‘Seealso cputs, fputs, gets, printf, putchar, freopen
puttext - ~conio.h
Function ~ Copies text from memory to the text mode screen.
Syntax , int puttext(int left, int top, int right ,. int bottom, void *source);

N UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

.Chapter 3, Run-time functions 203

puttext

Remarks

Return value

-

puttext writes the contents of the memory area pointed to by source out to
the onscreen rectangle defined by left, top, right, and bottom.

All coordinates are absolute screen coordinates, not window-relative. The
upper left corner is (1,1).

puttext places the contents of a memory area into the defined rectangle
sequentially from left to right and top to bottom.

Each position onscreen takes 2 bytes of memory: The first byte is the
character in the cell, and the second is the cell’s video attribute. The space
required for a rectangle w columns wide by k rows high is defined as

bytes = (h rows) X (w columns) X 2
puttext is a text mode function performing direct video output.
This function should not be used in Win32s or Win32 GUI applications.

puttext returns a nonzero value if the operation succeeds; it returns 0 if it
fails (for example, if you gave coordinates outside the range of the current
screen mode).

See also gettext, movetext, window
putw stdio.h
Function Puts an integer on a stream. -
Syntax int putw(int w, FILE *stream);
Dos | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | o0S/2
[] n [] LN n
Remarks

Return value

putw outputs the integer w to the given stream. putw neither expects nor
causes special alignment in the file.

On success, putw returns the integer w. On error, putw returns EOF. Because
EOF is a legitimate integer, use ferror to detect errors with putw.

See also getw, printf

gsort stdlib.h
Function - Sorts using the quicksort algorithm.

204 Libralj/ Reference

Syntax

Remarks

gsort

void gsort (void *base, size_t nelem, size_t width,
int (_USERENTRY *fcmp) (const void *, const void *));

00S UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

gsort is an implementation of the “median of three” variant of the quicksort
algorithm. gsort sorts the entries in a table by repeatedly calling the user-
defined comparison function pointed to by fcmp.

m base points to the base (Oth element) of the table to be sorted.

m nelem is the number of entries in the table.

m width is the size of each entry in the table, in bytes.

femp, the comparison function, must be used with the _'USERENTRY calling

- convention. ‘

femp accepts two arguments, elem1 and elem2, each a pointer to an entry in
the table. The comparison function compares each of the pointed-to items
(*elem] and *elem?2), and returns an integer based on the result of the
comparison.

m*eleml < *elem2 femp returns an integer < 0
m *elem] == *elem2 femp returns 0
m *eleml > *elem? femp returns an integer > 0

In the comparison, the less-than symbol (<) means the left element should
appear before the right element in the final, sorted sequence. Similarly, the
greater-than (>) symbol means the left element should appear after the
right element in the final, sorted sequence. .

Return value None.

See also bsearch, Isearch

raise signal.h
Function Sends a software signal to the executing program.

Syntax int raise(int sig); |

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ | 0S/2

Chapter 3, Run-time functions _ 205

raise

Remarks

Return value

raise sends a signal of type sig to the program. If the program has installed a
signal handler for the signal type specified by sig, that handler will be
executed. If no handler has been installed, the default action for that signal
type will be taken.

The signal types currently defined in signal.h are noted here:

Signal Description

SIGABRT Abnormal termination

SIGFPE Bad floating-point operation
SIGILL lllegal instruction

SIGINT " Ctr-Cinterrupt

SIGSEGV Invalid access to storage
SIGTERM Request for program termination
SIGUSR1 User-defined signal

SIGUSR2 . " User-defined signal

SIGUSR3 User-defined signal

SIGBREAK ~ Ctrl-Breakinterrupt

. ’ ‘ '
SIGABRT isn’t generated by Borland C++ during normal operation.
However, it can be generated by abort, raise, or unhandled exceptions.

raise returns 0 if successful, nonzero otherwise.

See also _ abort, signal
rand stdlib.h
Function Random number generator.
»Syntax‘ int rand(void);
oS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0s/2
Remarks rand uses a multiplicative congruent1al random number generator with
period 232 to return successive pseudorandom numbers in the range from 0
to RAND_MAX. The symbolic constant RAND_MAX is defined in stdlib.h.
Return value rand returns the generated pseudorandom number.
See also random, randomize, srand
206 Library Reference’

random

Return value

random stdlib.h
Function Random number generator.
Syntax - int random(int num);
DOS | UNIX | Win'16 | Win32 | ANSI C | ANSI C++ | 0S/2
|]] n |]

’ Remarks random returns a random number between 0 and (num-1). random(num) is a
macro defined in stdlib.h. Both num and the random number returned are
integers.

Return value random returns a number between 0 and (num-1).
See also rand, randomize, srand
randomize stdlib.h, time.h
Function Initializes random number generator.
Syntax void randomize({void); !

DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2

[] |] | | . []

Remarks

randomize initializes the random number generator with a random value.

None.

See also rand, random, srand

_read io.h, dos.h
Remarks Obsolete function. éee _rtl_read.

read io.h
Function Reads from file.

Syntax

int read(int handie, void *buf, unsigned len);

Chapter 3, Run-time functions . : . ; , ‘ 207

read

Remarks

Return value

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

read attempts to read len bytes from the file associated with handle into the

buffer pointed to by buf.

For a file opened in text mode, read removes carriage returns and reports
end-of-file when it reaches a Ctr-Z.

The file handle handle is obtained from a creat, open, dup, or dup2 call.

On disk files, read begins reading at the current file pointer. When the
reading is complete, it increments the file pointer by the number of bytes
read. On devices, the bytes are read directly from the device.

The maximum number of bytes that read can read is UINT_MAX -1,
because UINT_MAX is the same as -1, the error return indicator.
UINT_MAX is defined in limits.h.

- On successful completion, read returns an integer indicating the number of

bytes placed in the buffer. If the file was opened in text mode, read does not
count carriage returns or Ctri-Z characters in the number of bytes read.

On end-of-file, read returns 0. On error, read returns -1 and sets the global

variable errno to one of the following values: '
EACCES Permission denied

EBADF Bad file number

See also open, ;rtl_read, write
readdir dirent.h
Function Reads the current entry from a directory stream.
Syntax struct dirent *readdir (DIR *dirp); v
D0S | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | o0S/2
n n L] [] n
Remarks readdir is available on POSIX-compliant UNIX systems.
The readdir function reads the current directory entry in the directory
stream pointed to by dirp. The directory stream is advanced to the next
entry.
208 Library Reference

readdir

. ¥
The readdir function returns a pointer to a dirent structure that is overwrit-
ten by each call to the function on the same directory stream. The structure
is not overwritten by a readdir call on a different directory stream.

The dirent structure corresponds to a single directory entry. It is defined in
dirent.h, and contains (in addition to other non-accessible members) the
following member:

char d_name[];

where d_name is an array of characters containing the null-terminated file
name for the current directory entry. The size of the array is indeterminate;
use strlen to determine the length of the file name.

H ”

All valid directory entries are returned, including subdirectories, “.” and
“..” entries, system files, hidden files, and volume labels. Unused or deleted
dlrectory entries are skipped.

A directory entry can be created or deleted while a directory stream is
being read, but readdir might or might not return the affected directory
entry. Rewinding the directory with rewinddir or reopening it with opendir
ensures that readdir will reflect the current state of the directory.

Return value If successful, readdir returns a pointer to the current directory entry for the
directory stream. If the end of the directory has been reached, or dirp does
not refer to an open directory stream, readdir returns NULL.

See also closedir, opendir, rewinddir

realloc stdlib.h

Function Reallocates main memory.

Syntax void *realloc(void *block, size_t size);

oS | UNIX | wWin16 | Win32 | ANSIC | ANSI C++ | 0s/2
n n n n = n []
Remarks

realloc attempts to shrink or expand the previously allocated block to size
bytes. If size is zero, the memory block is freed and NULL is returned. The
block argument points to a memory block previously obtained by calling
malloc, calloc, or realloc. If block is a NULL pointer, realloc works just like
malloc.

realloc adjusts the size of the allocated block to size, copylng the contents to
a new location if necessary.

Chaptef 3, Run-time functions 209

realloc

Return value

realloc returns the address of the reallocated block, which can be different
than the address of the original block. If the block cannot be reallocated,
realloc returns NULL.
If the value of size is 0, the memory block is freed and realloc returns NULL.
See also calloc, farrealloc, free, malloc
remove stdio.h
Function Removes a file.
Syntax int remove(const char *filename);
os | unix | win16 | win3z [ansrc | ansIce+ | os/2
Remarks

-

" remove deletes the file specified by filename. It is a macro that simply

translates its call to a call to unlink. If your file is open, be sure to close it
before removing it.

The filename string can include a full path.

Return value On successful completion, remove returns 0. On error, it returns -1, and the
global variable errno is set to one of the following values:
EACCES Permission denied
ENOENT No such file or directory
See also unlink
rename stdio.h
Function Renames a file.
Syntax int rename(const char *oldname, const char *newname);
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
] L L] I’ [u
Remarks rename changes the name of a file from oldname to newname. If a drive
specifier is given in newname, the spec1f1er must be the same as that given in
oldname.
210 Library Reference

Return value

rename

Directories in oldname and newname need not be the same, so rename can be
used to move a file from one directory to another. Wildcards are not
allowed. g

This function will fail (EACCES) if either file is currently open in any
process.

On successfully renaming the file, rename returns 0. In the event of error, -1
is returned, and the global variable errno is set to one of the following
values:

EACCES Permission denied: filename already exists or has an
invalid path

ENOENT No such file or directory

ENOTSAM Not same device

rewind stdio.h
Function Repositions a file pointer to the beginning of a stream.
Syntax void rewind(FILE *stream);
D0S | UNIX | Win 16 | Win32 | ANSIC | ANSI C++ | 05/2
n [] n u n |] |]
Remarks

rewind(stream) is equivalent to fseek(stream, OL, SEEK_SET), except that
rewind clears the end-of-file and error indicators, while fseek clears the end-
of-file indicator only.

After rewind, the next operation on an update file can be either input or
output.

Return value None.

See also fopen, fseek, ftell

rewinddir dirent.h
Function Resets a directory stream to the first entry.

Syntax void rewinddir (DIR *dirp);

DOS UNEX Win 16 Win 32 ANST C ANST C++ 0s/2

Chapter 3, Run-time functions 211

rewinddir

Remarks rewinddir is available on POSIX-compliant UNIX systems.
The rewinddir function repositions the directory stream dirp at the first entry
in the directory. It also ensures that the directory stream accurately reflects
any directory entries that might have been created or deleted since the last
. opendir or rewinddir on that directory stream.
Return value None.
See also closedir, opendir, readdir
rmdir dirh
Function Removes a directory.
Syntax int rmdir(const char *path);
DOS | UNIX | Win16 | Win32 | ANSI C [ANSI C++ | 05/2
Remarks rmdir deletes the directory whose path is given by path. The directory

Return value

named by path

m Must be empty
m Must not be the current working directory
B Must not be the root directory

rmdir returns 0 if the directory is successfully deleted. A return value of -1
indicates an error, and the global variable errno is set to one of the following
values:

EACCES Permission denied
ENOENT Path or file function not found

See also chdir, getcurdir, getcwd, mkdir
rmtmp stdio.h
Function Removes temporary files.
Syntax int rmtmp(void);
D0s | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
a n " a
212 Library Reference

rmtmp

Remarks The rmtmp function closes and deletes all open temporary file streams,
which were previously created with tmpfile. The current directory must the
same as when the files were created, or the files will not be deleted.

Return value rmimp returns the total number of temporary files it closed and deleted.

See also tmpfile

_rotl, _rotr stdlib.h

Function Bit-rotates an unsigned short integer value to the left or right.

Syntax unsigned short _rotl{unsigned short value, int count);
unsigned short _rotr(unsigned short value, int count);

DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2
] a n]
Remarks _rotl rotates the given value to the left count bits.
_rotr rotates the given value to the right count bits.
Return value The functions return the rotated integer:
m_rotl returns the value of value left-rotated count bits.
m_rotr returns the value of value right-rotated count bits.

See also _crotl, _crotr, _lrotl, _lrotr

_rtl_chmod dos.h, io.h

Function Gets or sets file attributes.

Syntax int _rtl chmod{const char *path, int func [, int attrib]};

DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
[]] []
Remarks _rtl_chmod can either fetch or set file attributes. If func is 0, _rtl_chmod

returns the current attributes for the file. If func is 1, the attribute is set to
attrib.

attrib can be one of the following symbolic constants (defined in dos.h):

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file

Chapter 3, Run-time functions ' 213

_rtl_chmod

Return value

See also

_rtl_close

FA_SYSTEM
FA_LABEL
FA_DIREC
FA_ARCH

System file
Volume label
Directory
Archive

Upon successful completion, _rtl_chmod returns the file attribute word;
otherwise, it returns a value of -1.

In the event of an error, the global variable errno is set to one of the
following: '

EACCES Pernﬁssion denied
ENOENT Path or file name not found

chmod, _rtl_creat

io.h

Function
Syntax

Remarks

Return value

Closes a file.

int _rtl_close(int handle);

DoS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

_rtl_close closes the file associated with handle, a file handle obtained from a
_rtl_creat, creat, creatnew, creattemp, dup, dup2, _rtl_open, or open call.

The function does not write a Cirl-Z character at the end of the file. If you
want to terminate the file with a Cir-Z, you must explicitly output one.

Upon successful completion, _rtl_close returns 0. Otherwise, the function
returns a value of -1.

_rtl_close fails if handle is not the handle of a valid, open file, and the global
variable errno is set to

EBADF Bad file number

See also chsize, close, creatnew, dup, fclose, _rtl_creat, _rtl_open, sopen

_rtl_creat dos.h, io.h
Function Creates a new file or overwrites an existing one.

Syntax int _rtl_creat(const char *path, int attrib);

214 Library Reference

DOS

UNIX

Win 16

Win 32

ANSI C

ANST C++

0s/2

_rtl_creat

Remarks _rtl_creat opens the file specified by path. The file is always opened in
binary mode. Upon successful file creation, the file pointer is set to the
beginning of the file. The file is opened for both reading and writing.

If the file already exists, its size is reset to 0. (This is essentially the same as

deleting the file and creating a new file with the same name.)

The attrib argument is an ORed combination of one or more of the

following constants (defined in dos.h):

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Return value Upon successful completion, _rtl_creat returns the new file handle, a non-
-negative integer; otherwise, it returns 1.
In the event of error, the global variable errno is set to one of the following
values:
EACCES Permission denied
EMFILE Too many open files
ENOENT Path or file name not found
See also chsize, close, creat, creatnew, creattemp, _rtl_chmod, _rtl_close
_rtl_heapwalk “malloc.h W
Function Inspects the heap, node by node. _
Syntax int _rtl_heapwalk (_HEAPINFO *hi);
pos | unix | win16 | win3z | anstc | anstce [o5/2
Remarks _rtl_heapwalk assumes the heap is correct. Use _heapchk to verify the heap

before using _rtl_heapwalk. _HEAPOK is returned with the last block on the .
heap. _HEAPEND will be returned on the next call to _rtl_heapwalk.

_rtl_heapwalk receives a pointer to a structure of type HEAPINFO (declared

in malloc.h).

Chapter 3, Run-time functions

215

_nl_heapwalk

Return value

For the first call to _rtl_heapwalk, set the hi._pentry field to NULL.
_rtl_heapwalk returns with hi._pentry containing the address of the first
block.

hi._size holds the size of the block in bytes.

hi._useflag is a flag that is set to _USEDENTRY if the block is currently in
use. If the block is free, hi._useflag is set to _FREEENTRY.

One of the following values:

_HEAPBADNODE A corrﬁpted heap block has been found
_HEAPBADPTR The _pentry field does not point to a valid heap

block
_HEAPEMPTY No heap exists
_HEAPEND The end of the heap has been reached
-HEAPOK The _heapinfo block contains valid information

about the next heap block

See also _heapchk, _heapset
_rtl_open fentl.h, share.h, io.h
Function Opens an existing file for reading or writing.
Syntax int _rtl_open(const char *filename, int oflags);
D0 | UNIX | win16 | Win32z | ANsIC | ANSI C++ | 0S/2
Remarks _rtl_open opens the file specified by filename, then prepares it for reading or
writing, as determined by the value of oflags. The file is always opened in
binary mode.
oflags uses the flags from the following two lists. Only one flag from the
first list can be used (and one must be used); the remaining flags can be
used in any logical combination.
List 1: Read/write flags
O_RDONLY Open for reading.
O_WRONLY Open for writing.
O_RDWR Open for reading and writing.
The following additional values can be included in oflags (using an OR
operation): :
216 Library Reference

These symbolic
constants are defined
in fcnil.h and share.h.

_rtl_open

List 2: Other access flags

O_NOINHERIT The file is not passed to child programs.

SH_COMPAT Allow other opens with SH_COMPAT. The call will
fail if the file has already been opened in any other
shared mode.

SH_DENYRW Only the current handle can have access to the file.

SH_DENWR Allow only reads from any other open to the file.

SH_DENYRD Allow only writes from any other open to the file.

SH_DENYNO Allow other shared opens to the file, but not other
SH_COMPAT opens.

Only one of the SH_DENYxx values can be included in a single _rtl_open.
These file-sharing attributes are in addition to any locking performed on
the files.

The maximum number of simultaneously open files is defined by
HANDLE_MAX.

Return value On successful completion, _rtl_open returns a nonnegative integer (the file
' handle). The file pointer, which marks the current position in the file, is set
to the beginning of the file.
On error, _rtl_open returns —1. The global variable errno is set to one of the
following:
EACCES Permission denied
EINVACC Invalid access code
EMFILE Too many open files
ENOENT Path or file not found
See also open, _rtl_read, sopen
_rtl_read io.h, dos.h
Function Reads from file.
Syntax int _rtl_read(int handle, void *buf, unsigned len);
DOS | UNIX | Win 16 | Win32 | ANSI C | ANSI C++ | 0S/2
Remarks _rtl_read attempts to read len bytes from the file assoc1ated with handle into

the buffer pointed to by buf.

When a file is opened in text mode, _rtl_read does not remove carriage
returns. ’

Chapter 3, Run-time functions ' v 217

_rtl_read

Return value

See also

_rtl_write

* The argument handle is a file handle obtained from a creat, open, dup, or dup2

call.

On disk files _rtl_read begins reading at the current file pointer. When the
reading is complete, the function increments the file pointer by the number

- of bytes read. On devices, the bytes are read directly from the device.

The maximum number of bytes that _rtl_read can read is UINT_MAX -1,
because UINT.MAX is the same as —1, the error return indicator.
UINT_MAX is defined in limits.h. '

On successful completion, _rtl_read returns a positive integer indicating the
number of bytes placed in the buffer. On end-of-file, _rtl_read returns zero.
On error, it returns -1, and the global variable errno is set to one of the
following values:

EACCES Permission denied
EBADF Bad file number

read, _rtl_open, _rtl_write

io.h

Function-
Syntax

Remarks

218

Wirites to a file.

int _rtl_write(int handle, void *buf, unsigned len);

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 08/2

_rtl_write attempts to write len bytes from the buffer pointed to by buf to the
file associated with handle. The maximum number of bytes that _rtl_write
can write is UINT_MAX -1, because UINT_MAX is the same as -1, which is
the error return indicator for _rtl_write. UINT_MAX is defined in limits.h.
_rtl_write does not translate a linefeed character (LF) to a CR/LF pair
because all its files are binary files.

If the number of bytes actually written is less than that requested, the
condition should be considered an error and probably indicates a full disk.

For disk files, writing always proceeds from the current file pointer. On
devices, bytes are directly sent to the device. -

For files opened with the O_APPEND option, the file pointer is not

positioned to EOF by _rtl_write before writing the data.

Library Reference

_ril_write

Return value _rtl_write returns the number of bytes written. In case of error, _rtl_write
returns -1 and sets the global variable errno to one of the following values:

EACCES Permission denied
EBADF Bad file number

See also Iseek, _rtl_read, write

scanf stdio.h
Function Scans and formats input from the stdin stream.

sy“tax int scanf(const char *format(, address, ...]);

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Remarks ; scanf scans a series of input fields, one character at a time, reading from the
stdin stream. Then each field is formatted according to a format specifier
passed to scanf in the format string pointed to by format. Finally, scanf stores
the formatted input at an address passed to it as an argument following
format. There must be the same number of format specifiers and addresses
as there are input fields.

W For Win32s or Win32 GUI applications, stdin must be redirected.

The formatstring The format string present in scanf and the related functions cscanf, fscanf,
sscanf, vscanf, vfscanf, and vsscanf controls how each function scans,
converts, and stores its input fields. There must be enough address arguments
for the given format specifiers; if not, the results will be unpredictable and possibly
disastrous. Excess address arguments (more than required by the format)
are ignored.

W scanfoften leads to unexpected results if you diverge from an expected
pattern. You need to remember to teach scanf how to synchronize at the end
of a line. The combination of gets or fgets followed by sscanf is safe and easy,
and therefore preferred.

The format string is a character string that contains three types of objects:
whitespace characters, non-whitespace characters, and format specifiers.

m The whitespace characters are blank, tab (t) or newline (\n). If a ...scanf
function encounters a whitespace character in the format string, it will
read, but not store, all consecutive whitespace characters up-to the next
non-whitespace character in the input.

Chapter 3, Run-time functions 219

scanf.

Optional format
string components

220

m The non-whitespace characters are all other ASCII characters except the
percent sign (%). If a ...scanf function encounters a non-whitespace
character in the format string, it will read, but not store, a matching non-
whitespace character.

m The format specifiers direct the ...scanf functions to read and convert
characters from the input field into specific types of values, then store
them in the locations given by the address arguments.

Trailing whitespace is left unread (including a newline), unless explicitly
matched in the format string.

Format specifiers
...scanf format specifiers have the following form:
% [*] [width] [FIN] [h|1|L] type_character
Each format specifier begins with the percent character (%). After the %
come the following, in this order:
m An optional assignment-suppression character, [*]
m An optional width specifier, [width]
m An optional pointer size modifier, [F|N]
m An optional argument-type modifier, [h|11L]
m The type character

These are the general aspects of input formatting controlled by the optional
characters and specifiers in the ...scanf format string:

Character
or specifier ~What it controls or specifies
* Suppresses assignment of the next input field.
width Maximum number of characters to read; fewer characters might be read if
the ...scanffunction encounters a whitespace or unconvertible character.
size Overrides default size of address argument:
N= near pointer
F =far pointer
argument Overrides default type of address argument:
type

h=short int

/=1long int (if the type character specifies an integer conversion)

/= double (if the type character specifies a floating-point conversion)
L =long double (valid only with floating-point conversions)

Library Reference

scanf

..scanftype The following table lists the ...scanf type characters, the type of input
characters expected by each, and in what format the input will be stored.

The mformatlon in this table is based on the assumption that no optional
characters, specifiers, or modifiers (*, width, or size) were included in the
format specifier.

To see how the addition of the optional elements affects the ...scanf input,
refer to the tables following this one.

Type
character Expected input Type of argument
Numerics
d Decimal integer Pointer to int (int *arg).
D Decimal integer Pointer to long {long *arg).
o Octal integer Pointer to int (int *arg).
o Octal integer Pointer to long (long *arg).
i Decimal, octal, or Pointer to int (int *arg).
hexadecimal integer
I Decimal, octal, or Pointer to long (long *arg).
hexadecimal integer
u Unsigned decimal Pointer to unsigned int (unsigned int *arg).
integer
U Unsigned decimal Pointer to unsigned long (unsigned long *arg).
integer
X Hexadecimal integer Pointer to int (int *arg).
X Hexadecimal integer Pointer to int (int *arg).
e E Floating point Pointer to float (float *arg).
f Floating point Pointer to float (float *arg).
g9,G Floating point Pointer to float (float *arg).
Characters
s Character string Pointer to array of characters (char arg)).
c Character Pointer to character (char *arg) if a field width Wis given along with the ¢-
type character (such as %5c).
Pointer to array of W characters (char arg{W)).
% % character : No conversion done; % is stored.

Chapter 3, Run-time functions ' 221

scanf

Type
character

Expected input Type of argument

Pointers

n

Pointer to int (int *arg). The number of characters read successfully up to %n
is stored in this int.

Hexadecimal form Pointer to an object. (far* or near®)
YYYY:222Z or %p conversions default to the

2777 pointer size native to the memory model.

222

- Input fields

Conventions

Any one of the following is an input field:

m All characters up to (but not including) the next whitéspace character

m All characters up to the first one that cannot be converted under the
current format specifier (such as an 8 or 9 under octal format)

m Up to n characters, where 7 is the specified field width

Certain conventions accompany some of these format specifiers. The
decimal-point character used in the output is determined by the current
locale’s LC_NUMERIC category. The conventions are summarized here.

%c conversion

This specification reads the next character, including a whltespace charac-
ter. To skip one whitespace character and read the next non-whitespace
character, use %1s.

%Wec conversion (W = width specification)
The address argument is a pointer to an array of characters; the array
consists of W elements (char arg[W]).

%s conversion
The address argument is a pointer to an array of characters (char arg[]).

The array size must be at least (n+1) bytes, where n equals the length of
string s (in characters). A space or newline terminates the input field; the
terminator is not scanned or stored. A null-terminator is automatically
appended to the string and stored as the last element in the array.

%[search_set] conversion

The set of characters surrounded by square brackets can be substituted for
the s-type character. The address argument is a pointer to an array of
characters (char argf[]).

These square brackets surround a set of characters that define a search set of
possible characters making up the string (the input field).

Library Reference

scant

If the first character in the brackets is a caret (*), the search set is inverted to
include all ASCII characters except those between the square brackets.
(Normally, a caret will be included in the inverted search set unless
explicitly listed somewhere after the first caret.)

The input field is a string not delimited by whitespace. ...scanf reads the
corresponding input field up to the first character it reaches that does not
appear in the search set (or in the inverted search set). Two examples of this
type of conversion are

$labcd] Searches for any of the characters 4, b, ¢, and d in the input
field. ‘

$(*abcd] Searches for any characters except a, b, ¢, and d in the input
field.

You can also use a range facility shortcut to define a range of characters
(numerals or letters) in the search set. For example, to catch all decimal
digits, you could define the search set by using %[0123456789], or you could
use the shortcut to define the same search set by using %[0-9].

To catch alphanumeric characters, use the following shortcuts:

3(a-2] Catches all uppercase letters.
$[0-9A-zZa-z] Catches all decimal digits and all letters (uppercase and
' lowercase).
$[A-FT-7] Catches all uppercase letters from A through F and from
T through Z.

The rules covering these search set ranges are straightforward:

® The character prior to the hyphen (-) must be lexically less than the one
afterit. o

m The hyphen must not be the first nor the last character in the set. (If it is
first or last, it is considered to be the hyphen character, not a range
definer.) H

m The characters on either side of the hyphen must be the ends of the range
and not part of some other range.

Here are some examples where the hyphen just means the hyphen
character, not a range between two ends:

$[-+%/] The four arithmetic operations. -

%[z-a] The characters z, —, and a.

$[+0-9-2-2] The characters + and — and the ranges 0-9 and A-Z.

$[+0-93-2-] Also the characters + and - and the ranges 0-9 and A-Z.

$(*-0-9+A-z] All characters except + and — and those in the ranges 0-9
- and A-Z. '

Chapter 3, Run-time functions ‘ ' _ ' 223

scanf

INF =

224

INFinity; NAN =
Not-A-Number

Assignment-
suppression
character

Width specifiers

%e, %E. %f, %g, and %G (floating-point) conversions

_ Floating-point numbers in the input field must conform to the following

generic format:
(+/-] ddddddddd ({.] dddd [E | e] [+/-] ddd

where [item] indicates that item is optlonal and ddd represents decimal,
octal, or hexadecimal digits.

In addition, +INF, -INF, +NAN, and —-NAN are recognized as floating-
point numbers. Note that the sign and capitalization are required.

%d, %i, %0, %x, %D, %I, %0, %X, %c, %n conversions

A pointer to unsigned character, unsigned integer, or unsigned long can be
used in any conversmn where a pointer to a character, integer, or long is
allowed.

The assignment-suppression character is an asterisk (*); it is not to be
confused with the C indirection (pointer) operator (also an asterisk).

If the asterisk follows the percent sign (%) in a format specifier, the next
input field will be scanned but not assigned to the next address argument. -
The suppressed input data is assumed to be of the type specified by the
type character that follows the asterisk character.

The success of literal matches and suppressed assignments is not directly
determinable.

The width specifier (1), a decimal integer, controls the maximum number of
characters that will be read from the current input field.

If the input field contains fewer than # characters, ...scanf reads all the
characters in the field, then proceeds with the next field and format
specifier.

If a whitespace or nonconvertible character occurs before width characters
are read, the characters up to that character are read, converted, and stored,
then the function attends to the next format specifier.

A nonconvertible character is one that cannot be converted according to the
given format (such as an 8 or 9 when the format is octal, or a] or K when
the format is hexadecimal or decimal).

Width ‘)
specifier How width of stored input is affected
n Up to n characters are read, converted, and stored in the current address

argument.

Library Reference

scanr

Input-sizeand The input-size modifiers (N and F) and argument-type modifiers (k, I, and
argument-type) affect how the ...scanf functions interpret the corresponding address

modifiers

argument arg|f].

F and N override the default or declared size of arg.

h, I, and L indicate which type (version) of the following input data is to be
used (h = short, = long, L = long double). The input data will be converted
 to the specified version, and the arg for that input data should point to an
object of the corresponding size (short object for %h, long or double object
for %I, and long double object for %L).

Modifier

How conversion is affected

F
N

Overrides default or declared size; arg interpreted as far pointer.

Overrides default or declared size; arg interpreted as near pointer. Gannot be
used with any conversion in huge model.

For d, i, 0, u, xtypes, convert input to short int, store in short object.
For D, I, O, U, X types, no effect. '
For e, f, ¢, s, n, p types, no effect.

For d, i, o, u, xtypes, convert input to long int, store in long object.
For g, f, g types, convert input to double, store in double object.

“For D, I, 0, U, Xtypes, no effect.

For ¢, s, n, p types, no effect.

For e, f, gtypes, convert input to a long double, store in long double object. L

has no effect on other formats.

When scanf stops scanf might stop scanning a particular field before reaching the normal
scanning field-end character (whitespace), or might terminate entirely, for a variety

of reasons.

scanf stops scanning and storing the current field and proceed to the next
input field if any of the following occurs:

m An assignment-suppression character (*) appears after the percent

character in the format specifier; the current input field is scanned but
not stored.

m width characters have been read (width = width specification, a positive
decimal integer in the format specifier). o

" mThe next character read cannot be converted under the current format

(for example, an A when the format is decimal).

Chapter 3, Run-time functions

225

scant

m The next character in the input field does not appear in the search set (or
does appear in an inverted search set).

When scanf stops scanning the current input field for one of these reasons,
the next character is assumed to be unread and to be the first character of
the following input field, or the first character in a subsequent read
operation on the input.

scanf will terminate under the following circumstances:

u The next character in the input field conflicts with a corresponding non-
whitespace character in the format string.

m The next character in the input field is EOF.

m The format string has been exhausted.

If a character sequence that is not part of a format specifier occurs in the

format string, it must match the current sequence of characters in the input

field; scanf will scan but not store the matched characters. When a

conflicting character occurs, it remains in the input field as if it were never
read. ’

Return value scanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If scanf attempts to read at end-of-file, the return value is EOF. If no
fields were stored, the return value is 0. .

See also atof, cscanf, fscanf, freopen, getc, printf, sscanf, vfscanf, vscanf, vsscanf .

_searchenv stdlib.h

Function Searches an environment path for a file.

Syntax void _searchenv(const char *file, const char *varname, char *buf);

DS | UNIX | Win16 | Win32z | ANSIC | ansICH+ | o0s/2

Remarks _searchenv attempts to locate file, searching along the path specified by the
operating system environment variable varname. Typical environment
variables that contain paths are PATH, LIB, and INCLUDE.

_searchenv searches for the file in the current directory of the current drive
first. If the file is not found there, the environment variable varname is
fetched, and each directory in the path it specifies is searched in turn until
the file is found, or the path is exhausted.

226 Library Reference

_searchenv

When the file is located, the full path name is stored in the buffer pointed to
by buf. This string can be used in a call to access the file (for example, with
fopen or exec...). The buffer is assumed to be large enough to store any
possible file name. If the file cannot be successfully located, an empty string
(consisting of only a null character) will be stored at buf.

Return value None.

See also _dos_findfirst, _dos_findnext, exec..., spawn..., system

searchpath | | dirh
Function Searches the operating system path for a file.

Syntax char *searchpath(const char *file);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks searchpath attempts to locate file, searching along the operating system path,
which is the PATH=... string in the environment. A pointer to the complete
path-name string is returned as the function value.

searchpath searches for the file in the current directory of the current drive
first. If the file is not found there, the PATH environment variable is
fetched, and each directory in the path is searched in turn until the file is
found, or the path is exhausted.

When the file is located, a string is returned containing the full path name.
This string can be used in a call to access the file (for example, with fopen or
exec...).

The string returned is located in a static buffer and is overwritten on each
subsequent call to searchpath.

Return value searchpath returns a pointer to a file name string if the file is successfully
located; otherwise, searchpath returns null.

See also exec..., findfirst, findnext, spawn..., system

_searchstr stdlib.h

Function Searches a list of directories for a file.

Syntax void _searchstr(const char *file, const char *ipath, char *buf);

Chapter 3, Run-time functions 227

_searchstr

. .Remarks

Return value

See also

segread

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

_searchstr attempt to locate file, searching along the path specified by the
string ipath.

_searchstr searches for the file in the current directory of the current drive
first. If the file is not found there, each directory in ipath is searched in turn
until the file is found, or the path is exhausted. The directories in ipath must
be separated by semicolons.

When the file is located, the full path name is stored in the buffer pointed
by by buf. This string can be used in a call to access the file (for example,
with fopen or exec...). The buffer is assumed to be large enough to store any
possible file name. The constant _MAX_PATH, defined in stdlib.h, is the
size of the largest file name. If the file cannot be successfully located, an
empty string (consisting of only a null character) will be stored at buf.

None.

_searchenv

dos.h

Function

Syntax

Remarks

Return value

Reads segment registers.

void segread(struct SREGS *segp);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

segread places the current values of the segment registers into the structure
pointed to by segp.

This call is intended for use with intdosx and int86x.

None.

See also FP_OFF, int86, int86x, intdos, intdosx, MK_FP, movedatd

setbuf stdio.h
Function Assigns buffering to a stream.

Syntax void setbuf (FILE’ *stream, char *buf);

228 Library Reference

setbuf

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Remarks setbuf causes the buffer buf to be used for I/O buffering instead of an
- automatically allocated buffer. It is used after stream has been opened.

If buf is null, I/O will be unbuffered; otherwise, it will be fully buffered.
The buffer must be BUFSIZ bytes long (specified in stdio.h).

stdin and stdout are unbuffered if they are not redirected; otherwise, they
are fully buffered. setbuf can be used to change the buffering style used.

Unbuffered means that characters written to a stream are immediately
output to the file or device, while buffered means that the characters are
accumulated and written as a block.

setbuf produces unpredictable results unless it is called immediately after
opening stream or after a call to fseek. Calling setbuf after stream has been
unbuffered is legal and will not cause problems.

A common cause for error is to allocate the buffer as an automatic (local)
variable and then fail to close the file before returning from the function
where the buffer was declared.

Return value None.

See also fflush, fopen, fseek, setvbuf

setcbrk dos.h
Function Sets control-break setting.

Syntax int setcbrk({int cbrkvalue);

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Remarks setcbrk uses the DOS system call 0x33 to turn control-break checking on or
off.

cbrkvalue =0 Turns checking off (check only during I/0O to console,
printer, or communications devices).

cbrkvalue=1 Turns checking on (check at every system call).
Return value setcbrk returns cbrkvalue, the value passed.
See also getchbrk

Chapter 3, Run-time functions 229

_setcursortype

_setcursortype conio.h
Function Selects cursor appearance.
Syntax bvoid _setcursortype(int cur_t);

DOS UNIX Win 16 Win 32 ANST € ANST C++ 0s/2

Remarks Sets the cursor type to
_NOCURSOR Turns off the cursor
_NORMALCURSOR Normal underscore cursor
- SOLIDCURSOR Solid block cursor

W This function should not be used in Win32s or Win32 GUI applications.
Return value None. '

setdate
See _dos_getdate.
setdisk
See getdisk.
setdta | dos.h
Function : Sets disk-transfer address.
- Syntax void setdta(char far *dta);
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2
Remarks setdta changes the current setting of the DOS disk-transfer address (DTA) to
the value given by dta. '
Return value None.
See also getdta

230 Library Reference

setftime

setftime
See getftime.

setjmp setjmp.h
Function Sets up for nonlocal goto.
Syntax int setjmp(jmp_buf jmpb);

pos | UNIX | Win16 | Win32 [ANsiC | ansIce [0s/2

] n \ | L] n L]]

Remarks

Return value

See also

setjmp captures the complete task state in jmpb and returns 0.

A later call to longjmp with jmpb restores the captured task state and returns
in such a way that setjmp appears to have returned with the value val.

A task state includes:

Win 16 Win 32

All segment registers No segment registers
CS, DS, ES, SS _ are saved

Register variables Register variables
Dl.and Sl EBX, EDI, ESI

Stack pointer SP Stack pointer ESP
Frame pointer BP : Frame pointer EBP '

Flags Flags are not saved

A task state is complete enough that setjmp can be used to implemen
coroutines. '

setimp must be called before longjmp. The routine that calls setjmp and sets
up jmpb must still be active and cannot have returned before the longjmp is
called. If it has returned, the results are unpredictable.

setjmp is useful for dealing with errors and exceptions encountered ina
low-level subroutine of a program.

setjmp returns 0 when it is initially called. If the return is from a call to
longjmp, setjmp returns a nonzero value (as in the example).

longjmp, signal

Chapter 3, Run-time functions’ : ' 231

setlocale

of locales supported.

232

setlocale locale.h
Function Selects or queries a locale.
- Syntax char *setlocale(int category, const char *locale);
DOS | UNIX | Win 16 | Win 32 | ANSIC | ANSI C++ | 0S/2
" | B] L] | L

Remarks Borland C++ supports the following locales at present:

Module Locale supported
Future releases of de_DE German
Borland C++ will fr_FR French
increase the number

en_GB English (Great Britain)
en_US English (United States)

For each locale, the following character sets are supported:

DOS437 English
DOS850 Multilingual (Latin I)
WIN1252 Windows, Multilingual

For a description of DOS character sets, see MS-DOS User’s Guide and
Reference. See also MS Windows 3.1 Programmer’s Reference, Volume 4 for a
discussion of the WIN1252 character set.

The possible values for the category argument are as follows:

Value Description

LC_ALL Affects all the following categories.

LC_COLLATE Affects strcoll and strxfrm.

LC_CTYPE Affects single-byte character handling functions. The mbstowes and mbtowe

functions are not affected.
LC_MONETARY Affects monetary formatting by the /ocaleconv function.

LC_NUMERIC Affects the decimal point of non-monetary data formatting. This includes the
printf family of functions, and the information returned by localeconv.
LC_TIME Affects strftime.

The locale argument is a pointer to the name of the locale or named locale
category. Passing a NULL pointer returns the current locale in effect.
Passing a pointer that points to a null string requests setlocale to look for

Library Reference

setlocale

environment variables to determine which locale to set. The locale names
are case sensitive. '

The LOCALEBLLfile If you specify a locale other than the default C locale, setlocale tries to access
s msltsal|ll\legi:'2thc?4\ the locale library file named LOCALE.BLL to obtain the locale data. This
V' file is located using the following strategies:

1. Searching the directory where the application’s executable resides.
2. Searching in the current default directory.

3. Accessing the “PATH” environment variable and searching in each of
the specified directories.

If the locale library is not found, setlocale terminates.

When setlocale is unable to honor a locale request, the preexisting locale in
effect is unchanged and a null pointer is returned.

If the locale argument is a NULL pointer, the locale string for the category is
returned. If category is LC_ALL, a complete locale string is returned. The
structure of the complete locale string consists of the names of all the
categories in the current locale concatenated and separated by semicolons.
This string can be used as the locale parameter when calling setlocale with
LC_ALL. This will reinstate all the locale categories that are named in the
complete locale string, and allows saving and restoring of locale states. If
the complete locale string is used with a single category, for example,
LC_TIME, only that category will be restored from the locale string.

ANSI C states that if an empty string “” is used as the locale parameter an
implementation defined locale is used. setlocale has been implemented to
look for corresponding environment variables in this instance as POSIX
suggests. '

If the environment variable LC_ALL exists, the category will be set
according to this variable. If the variable does not exist, the environment
variable that has the same name as the requested category is looked for and
the category is set accordingly.

If none of the above are satisfied, the environment variable named LANG is
used. Otherwise, setlocale fails and returns a NULL pointer.

Seethe To take advantage of dynamically loadable locales in your application,
Progr a’gﬂ’:’ {Z ?é”‘f’g; define _ _USELOCALES_ _ for each module. If _ _USELOCALES_ _ is not
informat[i)on about defined, all locale-sensitive functions and macros will work only with the

defining options. ~ default C locale.

If a NULL pointer is used as the argument for the locale parameter, setlocale
returns a string that specifies the current locale in effect. If the category
parameter specifies a single category, such as LC_COLLATE, the string

Chapter 3, Run-time functions _ 233

setlocale

The default collation
is named dbase.
Therefore, whether
you specify dbase or
nothing at all, you get
the same collation.
However, dbase
might not be the
default in future
releases.

234

pointed to will be the name of that category. If LC_ALL is used as the
category parameter then the string pointed to will be a full locale string that

“will indicate the name of each category in effect.

localenameptr = setlocale(LC_COLLATE, NULL);

if (localenameptr)
printf("$s\n", localenameptr };

The output here will be one of the module names together with the
specified code page. For example, the output could be fr_FR.D0S850@dbase.

localenameptr = setlocale(LC_ALL, NULL);

if (localenameptr)
printf("$s\n", localenameptr);

An example of the output here could be the following;:
fr_FR.D0S850@dbase; fr_FR.D0S850; fr_FR.D0S850; fr_FR.D0S850;
fr_FR.DOS850;fr_FR.D0OS850; ;

Each category in this full string is delimited by a semicolon. This string can
be copied and saved by an application and then used again to restore the -

same locale categories at another time. Each delimited name corresponds to
the locale category constants defined in locale.h. Therefore, the first name is

- the name of the LC_COLLATE category, the second is the LC_CTYPE

category, and so on. Any other categories named in the locale.h header file
are reserved for future implementation.

Here are some examples of setting locales by using setlocale:

Set all default categories for the specified French locale:
setlocale(LC_ALL, "fr_FR.DOS850");

Set French locale to named collation dbase:
setlocale(LC_COLLATE, "fr_FR.D0S850@dbase")

When a category is loaded from the locale library, the default category is
the one that will be loaded unless a modifier name is used. For example:

setlocale(LC_COLLATE, "fr_FR.D0S850")

causes the défault LC_COLLATE category to be loaded. It might or might
not have a specific name.

setlocale(LC_COLLATE, 'fr_FR.DOS850@dbase")

Library Reference

Return value

setlocale

specifies that the LC_COLLATE category named dbase to be loaded. This
might or might not be the default.

setlocale updates the Iconv locale structure when a request has been fulfilled.

When an application exits, any allocated memory used for the locale object
is deallocated.

If selection is successful, setlocale returns a pointer to a string that is associ-
ated with the selected category (or possibly all categories) for the new
locale.

On failure, a NULL pointer is returned and the locale is unchanged. All
other possible returns are discussed in the Remarks section above.

See also localeconv
setmem mem.h
Function Assigns a value to a range of memory.
Syntax void setmem(void *dest, unsigned length, char value);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
L] L] L] a) |]
Remarks

Return value

setmem sets a block of length bytes, pointed to by dest, to the byte value.

None.

See also memset, strset
setmode fentl.h
Function Sets mode of an open file.
Syntax int setmode({int handle, int amode);
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2
1 } 1]] "
Remarks

setmode sets the mode of the open file associated with handle to either binary
or text. The argument amode must have a value of either O_BINARY or
O_TEXT, never both. (These symbolic constants are defined in fentlh.)

Chapter 3, Run-time functions , 235

setmode

Return value

See also

settime

setmode returns the previous translation mode if successful. On error it
returns -1 and sets the global variable errno to

EINVAL Invalid argument

_rtl_creat, creat, _rtl_open, open

setvbuf

See gettime on page 133.

stdio.h

Function
Syntax

Remarks

236

Assigns buffering to a stream.

int setvbuf (FILE *stream, char *buf, int type, size_t size);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

setvbuf causes the buffer buf to be used for I/O buffering instead of an
automatically allocated buffer. It is used after the given stream is opened.

If buf is null, a buffer will be allocated using malloc; the buffer will use size
as the amount allocated. The buffer will be automatically freed on close.
The size parameter specifies the buffer size and must be greater than zero.

The parameter size is limited by the constant UINT_MAX as defined in
limits.h.

stdin and stdout are unbuffered if they are not redirected; otherwise, they
are fully buffered. Unbuffered means that characters written to a stream are
immediately output to the file or device, while buffered means that the
characters are accumulated and written as a block.

The type parameter is one of the foilowing:

m_IOFBF The file is fully buffered. When a buffer is empty, the next
input operation will attempt to fill the entire buffer. On
output, the buffer will be completely filled before any data is
written to the file. ‘

m_IOLBF The file is line buffered. When a buffer is empty, the next input
operation will still attempt to fill the entire buffer. On output,

Library Reference

m_IONBF

setvbuf

however, the buffer will be flushed whenever a newline
character is written to the file.

The file is unbuffered. The buf and size parameters are
ignored. Each input operation will read directly from the
file, and each output operation will immediately write the

data to the file.

A common cause for error is to allocate the buffer as an automatic (local)
variable and then fail to close the file before returning from the function

where the buffer was declared.

Return value setvbuf returns 0 on success. It returns nonzero if an invalid value is given
for type or size, or if there is not enough space to allocate a buffer.
See also fflush, fopen, setbuf ‘
setvect
See getvect.
setverify dos.h
Function Sets the state of the verify flag in the operating system.
Syntax void setverify(int value);
pos | UNIX | Win16 | Win32 | ANSIC | ANSI c++ | 0572
n n []
Remarks setverify sets the current state of the verify flag to value, which can be either
0 (off) or 1 (on). ’
The verify flag controls output to the disk. When verify is off, writes are not
verified; when verify is on, all disk writes are verified to ensure proper
writing of the data.
Return value None.
See also getverify
signal signal.h
Function Specifies signal-handling actions.
Chapter 3, Run-time functions 237

signal

Syntax

Remarks

238

void (_USERENTRY *signal (int sig, void (_USERENTRY *func)
(int sigl, int subcode]))}) (int);

DOS UNIX Win 16 . Win 32 ANST C ANSI C++ 0s/2

signal determines how receipt of signal number sig will subsequently be
treated. You can install a user-specified handler routine (specified by the
argument func) or use one of the two predefined handlers, SIG_DFL and
SIG_IGN, in signal.h. The function func must be used with the
_USERENTRY calling convention.

Function pointer Description

SIG_DFL Terminates the program

SIG_ERR Indicates an error return from signal
SIG_IGN Ignore this type signal

The signal types and their defaults are as follows:

Signal type Description

SIGBREAK Keyboard must be in raw mode.

SIGABRT Abnormal termination. Default action is equivalent to calling
_exif(3).

SIGFPE Arithmetic error caused by division by 0, invalid operation, and
the like. Default action is equivalent to calling _exit(1).

SIGILL lllegal operation. Default action is equivalent to calling _exi{(1).

SIGINT Cirl-Cinterrupt. Default action is to do an INT 23h.

SIGSEGV lllegal storage access. Default action is equivalent to calling
_exit(1).

SIGTERM Request for program termination. Default action is equivalent to
calling _exit(1).

SIGUSR1, User-defined signals that can be generated only

SIGUSR2, by calling raise. Default action is to ignore

SIGUSR3 the signal.

signal.h defines a type called sig_atomic_t, the largest integer type the
processor can load or store atomically in the presence of asynchronous
interrupts (for the 8086 family, this is a 16-bit word; for 80386 and higher
number processors, it is a 32-bit word—a Borland C++ integer).

When a signal is generated by the raise function or by an external event, the
following two things happen: :

Library Reference

signal

m If a user-specified handler has been installed for the signal, the action for
that signal type is set to SIG_DFL.

m The user-specified function is called with the 31gnal type as the
parameter.

User-specified handler functions can terminate by a return or by a call to -
abort, _exit, exit, or longjmp. If your handler function is expected to continue
to receive and handle more signals, you must have the handler function call
signal again.

Borland C++ implements an extension to ANSI C when the signal type is
SIGFPE, SIGSEGYV, or SIGILL. The user-specified handler function is called
with one or two extra parameters. If SIGFPE, SIGSEGV, or SIGILL has been
raised as the result of an explicit call to the raise function, the user-specified
handler is called with one extra parameter, an integer specifying that the
“handler is being explicitly invoked. The explicit activation values for
SIGFPE, SIGSEGYV and SIGILL are as follows (see declarations in float.h):

Signal Meaning

SIGFPE FPE_EXPLICITGEN
SIGSEGV SEGV_EXPLICITGEN
SIGILL ILL_EXPLICITGEN

If SIGFPE is raised because of a floating-point exception, the user handler is
called with one extra parameter that specifies the FPE_xxx type of the
signal. If SIGSEGV, SIGILL, or the integer-related variants of SIGFPE
signals (FPE_INTOVFLOW or FPE_INTDIVO) are raised as the result of a
processor exception, the user handler is called with two extra parameters:

1. The SIGFPE, SIGSEGYV, or SIGILL exceptidn type (see float.h for all

_ these types). This first parameter is the usual ANSI signal type.
2. An integer pointer into the stack of the interrupt handler that called the
user-specified handler. This pointer points to a list of the processor
registers saved when the exception occurred. The registers are in the
same order as the parameters to an interrupt function; that is, BP, DI, SI,
DS, ES, DX, CX, BX, AX, IP, CS, FLAGS. To have a register value
changed when the handler returns, change one of the locations in this
list. For example, to have a new SI value on return, do something like
this:
“*((int*)1list_pointer + 2) = new_SI_value;
In this way, the handler can examine and make any adjustments to the
registers that you want.

Chapter 3, Run-time functions v ’ 239

- signal

240

The following SIGFPE-type signals can occur (or be generated). They
correspond to the exceptions that the 8087 family is capable of detecting, as
well as the “INTEGER DIVIDE BY ZERO” and the “INTERRUPT ON
OVERFLOW” on the main CPU. (The declarations for these are in float.h.)

SIGFPE signal Meaning

FPE_INTOVFLOW INTO executed with OF flag set
FPE_INTDIVO : Integer divide by zero

FPE_INVALID Invalid operation

FPE_ZERODIVIDE Division by zero

FPE_OVERFLOW Numeric overflow

FPE_UNDERFLOW - Numeric underflow

FPE_INEXACT Precision

FPE_EXPLICITGEN User program executed raise(SIGFPE)
FPE_STACKFAULT Floating-point stack overflow or underflow

The FPE_INTOVFLOW and FPE_INTDIVO signals are generated by integer
operations, and the others are generated by floating-point operations.
Whether the floating-point exceptions are generated depends on the
coprocessor control word, which can be modified with _control87.
Denormal exceptions are handled by Borland C++ and not passed to a
signal handler.

The following SIGSEGV-type signals can occur:

SEGV_BOUND Bound constraint exception
SEGV_EXPLICITGEN raise(SIGSEGV) was executed

The 8088 and 8086 processors don’t have a bound instruction. The 186, 286,
386, and NEC V series processors do have this instruction. So, on the 8088
and 8086 processors, the SEGV_BOUND type of SIGSEGV signal won’t
occur. Borland C++ doesn’t generate bound instructions, but they can be
used in inline code and separately compiled assembler routines that are
linked in.

The following SIGILL-type signals can occur:

ILL_EXECUTION Illegal operation attempted
ILL_EXPLICITGEN raise(SIGILL) was executed

The 8088, 8086, NEC V20, and NEC V30 processors don’t have an illegal
operation exception. The 186, 286, 386, NEC V40, and NEC V50 processors
do have this exception type. So, on 8088, 8086, NEC V20, and NEC V30

“processors, the ILL_EXECUTION type of SIGILL won’t occur.

When the signal type is SIGFPE, SIGSEGV, or SIGILL, a return from a
signal handler is generally not advisable if the state of the 8087 is corrupt,
the results of an integer division are wrong, an operation that shouldn’t

Library Reference

Return value

See also

sin, sinl

signal

have overflowed did, a bound instruction failed, or an illegal operation was
attempted. The only time a return is reasonable is when the handler alters
the registers so that a reasonable return context exists or the signal type in-
dicates that the signal was generated explicitly (for example,
FPE_EXPLICITGEN, SEGV_EXPLICITGEN, or ILL_EXPLICITGEN).
Generally in this case you would print an error message and terminate the
program using _exit, exit, or abort. If a return is executed under any other

" conditions, the program’s action will probably be unpredictable upon

resuming.

If the call succeeds, signal returns a pointer to the previous handler routine
for the specified signal type. If the call fails, signal returns SIG_ERR, and the
external variable errno is set to EINVAL.

abort, _control87, ctribrk, exit, longjmp, raise, setjmp

math.h

Function

Syntax

sin
sinl

Remarks

Return value

See also

sinh, sinhl

Calculates sine.

double sin(double x);
long double sinl{long double x);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2
" [l [" []]
" . [} [

sin computes the sine of the input value. Angles are specified in radians.

sinl is the long double version; it takes a long double argument and returns
a long double result. Error handling for these functions can be modified
through the functions _matherr and _matherrl.

This function can be used with bed and complex types.
sin and sinl return the sine of the input value.

acos, asin, atan, atan2, bed, complex, cos, tan

math.h

Function

Calculates hyperbolic sine.

Chapter 3, Run-time functions 241

sinh, sinhl
Syntax

sinh
sinhl

Remarks

Return value

double sinh(double x);
long double sinhl(long double x);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

sinh computes the hyperbolic sine, (e*—e™)/2.

sinl is the long double version; it takes a long double argument and returns
a long double result. Error handling for sinh and sinhl can be modified
through the functions _matherr and _matherrl.

This function can be used with bcd and complex types.
sinh and sinhl return the hyperbolic sine of x.

When the correct value overflows, these functions return the value
HUGE_VAL (sinh) or _LHUGE_VAL (sinhl) of appropriate sign. Also, the
global variable errno is set to ERANGE.

See also acos, asin, atan, atan2, bed, complex, cos, cosh, sin, tan, tanh
sleep dos.h
Function Suspends execution for an interval (seconds).
Syntax void sleep(unsigned seconds);
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2
[] | L) a
Remarks

Return value

With a call to sleep, the current program is suspended from execution for
the number of seconds specified by the argument seconds. The interval is
accurate only to the nearest hundredth of a second or to the accuracy of the
operating system clock, whichever is less accurate.

None.
sopen fentl.h, sys\stat.h, share.h, io.h
Function Opens a shared file.
Syntax int sopen(char *path, int 'access, int shflag[, int mode]);
242 Library Reference

pos | UNIX | Win16 | win32 | awsrc | ANsI c++ | 0s/2
n " [] L] []
Remarks sopen opens the file given by path and prepares it for shared reading or

writing, as determined by access, shflag, and mode.

sopen

For sopen, access is constructed by ORing flags bitwise from the following
two lists. Only one flag from the first list can be used; the remaining flags
can be used in any logical combination.

List 1: Read/write flags
O_RDONLY
O_WRONLY

O_RDWR

Open for reading only.
Open for writing only.

Open for reading and writing.

List 2: Other access flags

O_NDELAY
O_APPEND

O_CREAT

O_TRUNC
O_EXCL
O_BINARY
O_TEXT

O_NOINHE

RIT

Not used; for UNIX compatibility.

If set, the file pointer is set to the end of the file prior

to each write.

If the file exists, this flag has no effect. If the file does
not exist, the file is created, and the bits of mode are

used to set the file attribute bits as in chmod.

If the file exists, its length is truncated to 0. The file
attributes remain unchanged. ‘
Used only with O_CREAT. If the file already exists,

an error is returned.

This flag can be given to explicitly open the file in

binary mode.

This flag can be given to explicitly open the file in

text mode.

The file is not passed to child programs.

These O_... symbolic constants are defined in fentl.h.

If neither O_BINARY nor O_TEXT is given, the file is opened in the transla-
tion mode set by the global variable _fmode.

If the O_CREAT flag is used in constructing access, you need to supply the
mode argument to sopen from the following symbolic constants defined in
sys\stat.h.

Value of mode

Access permission

S_IWRITE
S_IREAD

S_IREADIS_IWRITE

~ Permission to write
Permission to read
Permission to read/write

Chapter 3, Run-time functions

243

sopen

Return value

See also

shflag specifies the type of file-sharing allowed on the file path. Symbolic
constants for shflag are defined in share.h.

Value of shflag What it does
SH_COMPAT Sets compatibility mode.
SH_DENYRW Denies read/write access.
SH_DENYWR Denies write access.
SH_DENYRD Denies read access.
SH_DENYNONE Permits read/write access.
SH_DENYNO Permits read/write access.

On successful completion, sopen returns a nonnegative integer (the file
handle), and the file pointer (that marks the current position in the file) is
set to the beginning of the file. On error, it returns -1, and the global
variable errno is set to

EACCES Permission denied

EINVACC Invalid access code

EMFILE Too many open files
ENOENT Path or file function not found

chmod, close, creat, lock, Iseek, _rtl_open, open, unlock, umask

spawnl, spawnle, spawnip, spawnipe, spawnv, spawnve, spawnvp,

spawnvpe process.h, stdio.h
Function Creates and runs child processes.
Syntax int spawnl (int mode, char *path, char *arg0, argl, ..., argn, NULL);
int spawnle{int mode, char *path, char *arg0, argl, ..., argn, NULL, char *envp[]);
int spawnlp(int mode, char *path, char *arg0, argl, ..., argn, NULL);
int spawnlpe(int mode, char *path, char *arg0, argl, ..., argn, NULL,
char *envp(]);

The last string must

be NULL in functions

spawnle,

spawnlpe,

spawnv, spawnve,
spawnvp, and

Remarks

244

spawnvpe.

int spawnv(int mode, char *path, char *argv(]);
int spawnve(int mode, char *path, char *argv([], char *envp(]);
int spawnvp(int mode, char *path, char *argv[]);
int spawnvpe(int mode, char *path, char *argv[], char *envp[]);

DOS UNIX | Win 16 Win 32 ANSI C .| ANSI C++ 0s/2

The functions in the spawn... family create child processes that run
(execute) their own files. There must be sufficient memory available for
loading and executing a child process.

Library Reference

spawnl, spawnle, spawnlp, spawnlpe, spawnv, spawnve, spawnvp, spawnvpe

The value of mode determines what action the calling function (the parent
process) takes after the spawn... call. The possible values of mode are

P_WAIT Puts parent process “on hold” until child process
completes execution. '
P_NOWAIT Continues to run parent process while child process

runs. The child process ID is returned, so that the
parent can wait for completion using cwait or wait.

' P__NOWAITO‘ Identical to P_NOWAIT except that the child process
ID isn’t saved by the operating system, so the parent
process can’t wait for it using cwait or wait.

P_DETACH Identical to P_NOWAITO, except that the child
process is executed in the background with no access
to the keyboard or the display.

P_OVERLAY Opverlays child process in memory location formerly
occupied by parent. Same as an exec... call.

path is the file name of the called child process. The spawn... function calls
search for path using the standard operating system search algorithm:

m If no explicit extension is given, the functions search for the file as given.
If the file is not found, they add .EXE and search again. If not found, they
add .COM and search again. If still not found, they add .BAT and search
once more. The command processor COMSPEC is used to run the
executable file.

m If an extension is given, they search only for the exact file name.

mIf only a period is given, they search only for the file name with no
extension. :

m If path does not contain an explicit directory, spawn... functions that have
the p suffix search the current directory, then the directories set with the
operating system PATH environment variable.

The suffixes p, I, and v, and e added to the spawn... “family name” specify
that the named function operates with certain capabilities.

p The function searches for the file in those directories specified by the
PATH environment variable. Without the p suffix, the function
searches only the current working directory.

I The argument pointers arg0, argl, ..., argn are passed as separate
arguments. Typically, the I suffix is used when you know in advance
the number of arguments to be passed.

Chapter 3, Run-time functions 245

spawnl, spawnle, spawnip, spawnipe, spawnv, spawnve, spawnvp, spawnvpe

246

v The argument pointers argv[0], ..., arg[n] are passed as an array of
pointers. Typically, the v suffix is used when a variable number of
arguments is to be passed.

e The argument envp can be passed to the child process, letting you
alter the environment for the child process. Without the e suffix,
child processes inherit the environment of the parent process.

Each function in the spawn. .. family must have one of the two argument-
specifying suffixes (either I or v). The path search and environment
inheritance suffixes (p and e) are optional.

For example,

m spawnl takes separate arguments, searches only the current directory for
the child, and passes on the parent’s environment to the child.

m spawnvpe takes an array of argument pointers, incorporates PATH in its
search for the child process, and accepts the envp argument for altering
the child’s environment.

The spawn... functions must pass at least one argument to the child process
(arg0 or argu[0]). This argument is, by convention, a copy of path. (Using a
different value for this 0! argument won’t produce an error.) If you want to
pass an empty argument list to the child process, then arg0 or argv[0] must
be NULL.

Under DOS 3.x, path is available for the child process; under earlier
versions, the child process cannot use the passed value of the 0% argument
(arg0 or argvl[0]).

When the [suffix is used, arg0 usually points to path, and argl,, argn
point to character strings that form the new list of arguments. A mandatory
null following argn marks the end of the list.

When the e suffix is used, you pass a list of new environment settings
through the argument envp. This environment argument is an array of
character pointers. Each element points to a null-terminated character
string of the form

envvar = value

where envvar is the name of an environment variable, and value is the string -
value to which envvar is set. The last element in envp[] is null. When envp is
null, the child inherits the parents’ environment settings.

The combined length of arg0 + argl + ... + argn (or of argv[0] + argu[1] + .
+ argu[n]), including space characters that separate the arguments, must be
< 260 bytes. Null-terminators are not counted.

Library Reference

Return value

spawnl, spawnle, spawnip, spawnlpe, spawnv, spawnve, spawnvp, spawnvpe

When a spawn... function call is made, any open files remain open in the
child process.

On a successful execution, the spawn... functions where mode is P_W AIT
return the child process’ exit status (0 for a normal termination). If the child
specifically calls exit with a nonzero argument, its exit status can be set to a
nonzero value. If mode is P_NOWAIT or P_NOWAITO, the spawn
functions return the process ID of the child process. This ID can be passed
to cwait. ‘

On error, the spawn... functions return -1, and the global variable errno is
set to one of the following;:

E2BIG Arg list too long

EINVAL Invalid argument
ENOENT Path or file name not found
ENOEXEC Exec format error
ENOMEM Not enough memory

See also abort, atexit, cwait, _exit, exit, exec..., _fpreset, searchpath, system, wait
_splitpath stdlib.h
Function Splits a full path name into its components.
Syntax void _splitpath(const char *path, char *drive, char *dir, char *name, char *ext);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
" L L] "
Remarks _splitpath takes a file’s full path name (path) as a string in the form

X:\DIR\SUBDIR\NAME.EXT

and splits path into its four components. It then stores those components in
the strings pointed to by drive, dir, name, and ext. (All five components must
be passed, but any of them can be a null, which means the corresponding
component will be parsed but not stored.) The maximum sizes for these
strings are given by the constants _MAX_DRIVE _MAX_DIR _MAX_PATH
_MAX_FNAME and _MAX_EXT) (defined in stdlib.h), and each size
includes space for the null-terminator. These constants are defined in
stdlib.h. ‘ :

Chapter 3, Run-time functions o 247

_splitpath

Constant String

_MAX_PATH path

_MAX_DRIVE drive; includes colon (:)

_MAX_DIR dir, includes leading and trailing backslashes (\)
_MAX_FNAME name

_MAX_EXT ext, includes leading dot (.)

_splitpath assumes that there is enough space to store each non-null
component.

When _splitpath splits path, it treats the punctuation as follows:

m drive includes the colon (C:, A:, and so on).

m dir includes the leading and trailing backslashes
(ABC\include\, \source\, and so on).

m name includes the file name.
mext includes the dot preceding the extension (.C, .EXE, and so on).
_makepath and _splitpath are invertible; if you split a given path with

_splitpath, then merge the resultant components with _makepath, you end up
with path.

Return value None.
See also _fullpath, _makepath
sprintf stdio.h
Function Writes formatted output to a string.
Syntax int sprintf(char *buffer, const char *format[, argument, ...l);

D0S | UNIX | wWin16 | Win32 | ANSI C | ANSI C++ | 0s/2

n L] a] | | a

Remarks éprintf accepts a series of arguments, applies to each a format specifier

See printffor details
on format specifiers.

Return value

248

contained in the format string pointed to by format, and outputs the
formatted data to a string.

sprintf applies the first format specifier to the first argument, the second to
the second, and so on. There must be the same number of format specifiers
as arguments.

sprintf returns the number of bytes output. sprintf does not include the
terminating null byte in the count. In the event of error, sprintf returns EOF.

Library Reference

sprintf

See also forintf, printf

sqrt, sqril math.h
Function Calculates the positive square root.

Syntax double sqrt (double x);

long double sqrtl(long double x);

DOS UNIX Win 16 Win-32 ANSI C ANST C++ 0s/2

sqr{ . L} a2 u [L]
sqrtl ' . . .
Remarks sqrt calculates the positive square root of the argument x.

sqrtl is the long double version; it takes a long double argument and returns
a long double result. Error handling for these functions can be modified
through the functions _matherr and _matherrl.

This function can be used with bed and complex types.

Return value On success, sqrt and sqrtl return the value calculated, the square root of x. If
x is real and positive, the result is positive. If x is real and negative, the
global variable errno is set to

EDOM Domain error

See also bed, complex, exp, log, pow

srand : stdlib.h
Function Initializes random number generator.

Syntax void srand(unsigned seed);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks The random number generator is reinitialized by calling srand with an
argument value of 1. It can be set to a new starting point by calling srand
with a given seed number.

Return value None.

See also rand, random, randomize

Chapter 3, Run-time functions 249

sscanf

stdio.h

sscanf

Function Scans and formats input from a string.

Syntax int sscanf(const char *buffer, const char *format(, address, ...]);

D0s | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 05/2
L]] [} [] [] [] []

Remarks sscanf scans a series of input fields, one character at a time, reading from a

string. Then each field is formatted according to a format specifier passed
See scanffor defails on to sscanf in the format string pointed to by format. Finally, sscanf stores the
format specifiers. formatted input at an address passed to it as an argument following format.

There must be the same number of format specifiers and addresses as there
are input fields.
sscanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely, for a
number of reasons. See scanf for a discussion of possible causes.

Return value sscanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If no fields were stored, the return value is 0.
If sscanf attempts to read at end-of-string, the return value is EOF.

See also fscanf, scanf

stackavail malloc.h

~ Function Gets the amount of available stack memory.
Syntax size_t stackavail (void);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
[] L] [] L]

Remarks stackavail returns the number of bytes available on the stack. This is the
amount of dynamic memory that alloca can access.

Return value stackavail returns a size_t value indicating the number of bytes available.

See also alloca

250 Library Reference

stat

stat
See fstat.

_status87 | float.h

Function Gets floating-point status.

Syntax unsigned int _status87 (void);

D0S | UNIX | Win16 | wWin32 | ANSIC | ANSI C++ | 0S/2
L " " []

Remarks _status87 gets the floating-point status word, which is a combination of the
80x87 status word and other conditions detected by the 80x87 exception
handler. |

Return value The bits in the return value give the floating-point status. See float.h for a

’ complete definition of the bits returned by _status87.

stime \ time.h

‘Function Sets system date and time.

Syntax int stime(time_t *tp);

pos | unix | Win16 | wWwin32 | ANSIC | ANSI C++ | o0S/2

Remarks stime sets the system time and date. tp points to the value of the time as
measured in seconds from OO:OO:OO GMT, January 1, 1970.

Return value stime returns a value of 0.

See also asctime, ftime, gettime, gmtime, localtime, time, tzset

stpepy : string.h

Function Copies one string into another.

Chapter 3, Run-time functions k 251

stpcpy

Syntax

Remarks

Return value
See also

strecat, _fstrcat

char *stpcpy(char *dest, const char *src);

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2

stpcpy copies the string src to dest, stopping after the terminating null
character of src has been reached.

stpcpy returns dest + strlen(src).

strcpy

string.h

Function
Syntax

Remarks

Return value

See also

Appends one string to another.

char *strcat(char *dest, const char *src);
char far * far _fstrcat(char far *dest, const char far *src)

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

strcat appends a copy of src to the end of dest. The length of the resulting
string is strlen(dest) + strlen(src).

strcat returns a pointer to the concatenated strings.

_fstr*

strchr, _fstrchr string.h

Function Scans a string for the first occurrence of a given character.

Syntax char *strchr(const char *s, int c); /* C only */
char far * far _fstrchr(const char far *s, int c) /* C and C++ */
‘const char *strchr(const char *s, int c¢); // C++ only
char *strchr(char *s, int c); ‘ // C++ only

252 Library Reference

strchr, _fstrchr

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks strchr scans a string in the forward direction, looking for a specific
character. strchr finds the first occurrence of the character ¢ in the string s.
The null-terminator is considered to be part of the string, so that, for
example,

strchr(strs,0)

returns a pointer to the terminating null character of the string strs.

Return value strchr returns a pointer to the first occurrence of the character c in s; if ¢ does
not occur in s, strchr returns null.

See also _fstr*, strespn, strrchr

strcmp, _fstremp string.h

Function - Compares one string to another.

Syntax int strcmp(const char *sl, const char *s2);

int far _fstrcmp(const char far *sl, const char far *s2);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks strcmp performs an unsigned comparison of s1 to s2, starting with the first
character in each string and continuing with subsequent characters until
the corresponding characters differ or until the end of the strings is
reached.

Return value strcmp returns a value that is

m < 0if s1 is less than s2
m == 0 if s is the same as 52 ,
m > 0 if 51 is greater than s2

See also _fstr*, strempi, streoll, stricmp, strncmp, strncmpi, strnicmp
strempi | string.h
Function Compares one string to another, without case sensitivity.

Chapter 3, Run-time functions ' \ 253

strempi -+

Syntax int strempi(const char *sl, const char *s2);
00s | unix | win1e | win32 [Anszc | AnsIces | o0s/2
L [] L] n
Remarks strcmpi performs an unsigned comparison of s1 to s2, without case
sensitivity (same as stricmp—implemented as a macro).
It returns a value (< 0, 0, or > 0) based on the result of comparmg s1 (or part
- of it) to s2 (or part of it).
The routine strcmpi is the same as stricmp. strcmpi is implemented throﬁgh a
macro in string.h and translates calls from strcmpi to stricmp. Therefore, to
use strempi, you must include the header file string.h for the macro to be
available. This macro is provided for compatibility with other C compilers.
Return value strempi returns an int value that is
® < 0if s1 is less than 52
m == 0if sI is the same as s2
‘ m> 0 if sI is greater than s2
See also stremp, streoll, stricmp, strncmp, strncmpi, strnicmp
strcoll - string.h
Function Compares two strings.
Syntax int strcoll(char *sl, char *s2);
0s | unix | Win16 | win32 | ANSIC | ANSI C++ | 0s/2
n n n . n a L]
Remarks strcoll compares the string pointed to by s1 to the string pointed to by s2,
according to the current locale’s LC_COLLATE category.
Return value strcoll returns a value that is
m < 0 if 51 is less than s2
m == (if sI is the same as 52
m > 0 if s1 is greater than s2
‘ See also stremp, strempi, stricmp, strncmp, strncmpi, strnicmp, strxfrm
254

Library Reference

strepy, _fstrepy

Return value

strepy, _fstrepy string.h
Function Copies one string into another.
Syntax char *strcpy(char *dest, const char *src);
char far * far _fstrcpy(char far *dest, const char far *src);
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0s/2
n [| n 1 } 1 n L]
Remarks Copies string src to dest, stopping after the terminating null character has
been moved.
Return value strcpy returns dest.
See also _fstr*’ stpcpy
strcspn, _fstrcspn ‘ string.h
Function Scans a string for the initial segment not containing any subset of a given
set of characters.
Syntax size_t strcspn(const char *sl, const char *s2);
size_t far *far _fstrcspn(const char far *sl, const char far *s2)
DOS | UNIX | Win 16 | Win32 | ANSI C | ANSI C++ | 0S/2
n | a] [] L] | }
Remarks The strcspn functions search s2 until any one of the characters contained in

51 is found. The number of characters which were read in s2 is the return
value. The string termination character is not counted. Nelther string is
altered during the search..

strcspn returns the length of the initial segment of string s1 that consists
entirely of characters not from string s2.

See a|SO _fstr*, strchr, strrchr

_strdate time.h
Function Converts current date to string.

Syntax char *_strdate(char *buf);

Chapter 3, Run-time functions 255

_strdate

Remarks

Return value

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

k_strdate converts the current date to a string, storing the string in the buffer

buf. The buffer must be at least 9 characters long.

The string has the form 14/DD/vY where MM, DD, and YY are all two-digit
numbers representing the month, day, and year. The string is terminated by
a null character.

_strdate returns buf, the address of the date string.

See also asctime, ctime, localtime, strftime, _strtime, time
strdup, _fstrdup string.h
Function Copies a string into a newly created location.
Syntax char *strdup{const char *s);
char far * far _fstrdup(const char far *s)
Dos | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0s/2
Remarks strdup makes a duplicate of string s, obtaining space with a call to malloc.
The allocated space is (strlen(s) + 1) bytes long. The user is responsible for
freeing the space allocated by strdup when it is no longer needed.
Return value strdup returns a pointer to the storage location containing the duplicated
string, or returns null if space could not be allocated.
See also free ,_fstr*
_strerror ‘ string.h
Function Builds a customized error message.
Syntax char *_strerror(const char *s);
p0s | UNIX | Win16 | Win32 | ANSIC [ANSI C++ | 05/2
|] n " L]
Remarks _strerror lets you generate customized error messages; it returns a pointer
to a null-terminated string containing an error message.
256 Library Reference

_strerror

m If s is null, the return value points to the most recent error message.

m If s is not null, the return value contains s (your customized error
message), acolon, a space, the most—recently generated system error
message, and a new line. s should be 94 characters or less.

Return value _strerror returns a pointer to a constructed error string. The error message
~ string is constructed in a static buffer that is overwritten with each call to
_strerror.
See also perror, strerror
strerror string.h
Function Returns a pointer to an error message string.
Syntax char *strerror(int errnum);
DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2
1 [] n] n n
Remarks

Return value

strerror takes an int parameter errnum, an error number, and returns a

. pointer to an error message string associated with errnum.

strerror returns a pointer to a constructed error string. The error message
string is constructed in a static buffer that is overwritten with each call to
strerror.

See also perror, _strerror
strftime time.h
Function Formats time for output.
Svntax size_t strftime(char *s, size_t maxsize, const char *fmt, const struct tm *t);
oS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0s/2
|] L} L} [] n |
Remarks strftime formats the time in the argument ¢ into the array pointed to by the

argument s according to the fmt specifications. The format string consists of
zero or more directives and ordinary characters. Like printf, a directive
consists of the % character followed by a character that determines the
substitution that is to take place. All ordinary characters are copied
unchanged. No more than maxsize characters are placed in s.

Chapter 3, Run-time functions . 257

stritime

You must define

_ _USELOCALES_

in order to use these

258

descriptors.

The time is formatted according to the current locale’s LC_TIME category.

The following table describes the ANSI-defined format specifiers.

Format specifier Substitutes
%% Character %
%a Abbreviated weekday name
%A Full weekday name
%b Abbreviated month name
%B Full month name
%C Date and time
%d Two-digit day of the month (01 to 31)
%H Two-digit hour (00 to 23)
%l Two-digit hour (01 to 12) ‘
%j Three-digit day of the year (001 to 366)
%m Two-digit month as a decimal number (1 - 12)
%M Two-digit minute (00 to 59)
%p AM or PM '
%S Two-digit second (00 to 59)
%U Two-digit week number where Sunday is the first day of the week (00
to 53) :
%W Weekday where 0 is Sunday (0 to 6)
%W Two-digit week number where Monday is the first day of the week (00
to 53)
%X Date
%X Time
%Y Two-digit year without century (00 to 99)
%Y Year with century
 %Z Time zone name, or no characters if no time zone

In addition to the ANSI C-defined format descriptors, the following
POSIX-defined descriptors are also supported. Each format specifier begins
with the percent character (%).

Format specifier Substitutes
%C Century as a decimal number (00-99). For example, 1992 => 19
%D Date in the format mm/dd/yy
%e Day of the month as a decimal number in a two-digit field with leading
space (1-31)
%h A synonym for %b
%en ~Newline character
%r 12-hour time (01-12) format with am/pm string i.e: “%[:%M:%S %p”
%t Tab character
%T 24-hour time (00-23) in the format “HH:MM:SS”
%u Weekday as a decimal number (1 Monday ~ 7 Sunday)

Library Reference

stritime

In addition to these descriptors, strftime also supports the descriptor modi-
fiers as defined by POSIX on the following descriptors:

Descriptor modifier ~ Substitutes

t defi
B _USYEESEJ XLEGSTE %0d Day of the month using alternate numeric symbols

in order to use these ° %0e Day of the month using alternate numeric symbols

descriptors. %0H Hour (24 hour) using alternate numeric symbols
%0l Hour (12 hour) using alternate numeric symbols
%0m Month using alternate numeric symbols
%0M Minutes using alternate numeric symbols
%0S " Seconds using alternate numeric symbols
%0u Weekday as a number using alternate numeric symbols
%0U Week number of the year using alternate numeric symbols
%0w Weekday as number using alternate numeric symbols
%OW Week number of the year using alternate numeric symbols
%0y Year (offset from %C) using alternate numeric symbols -

%0 modifier — when this modifier is used before any of the above sup-
ported numeric format descriptors, for example %0Od, the numeric value is
converted to the corresponding ordinal string, if it exists. If an ordinal
string does not exist then the basic format descriptor is used unmodified.

For example, on 8/20/88 a %d format descriptor would produce 20 but
%QOd on the same day would produce 20t

Return value strftime returns the number of characters placed into s. If the number of
characters required is greater than maxsize, strftime returns 0.

See also localtime, mktime, time

stricmp, _fstricmp : string.h

Function Compares one string to another, without case sensitivity.
Syntax

int stricmp(const char *sl, const char *s2);
int far _fstricmp(const char far *sl, const char far *s2)

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks . stricmp performs an unsigned comparison of s1 to s2, starting with the first
character in each string and continuing with subsequent characters until
the corresponding characters differ or until the end of the strings is
reached. The comparison is not case sensitive.

Chapter 3, Run-time functions ' . 259

stricmp, _fstricmp

Return value

See also

It returns a value (< 0, 0, or > 0) based on the result of comparing s1 (or part
of it) to s2 (or part of it).

The routines stricmp and strcmpi are the same; strempi is implemented
through a macro in string.h that translates calls from strcmpi to stricmp.
Therefore, in order to use strcmpi, you must include the header file string.h
for the macro to be available. ’

stricmp returns an int value that is

m < 0 if s1 is less than s2
m == 0 if s1 is the same as s2
m > 0 if s1 is greater than s2

_fstr*, stremp, strempi, strcoll, strnemp, strucmpi, strnicmp

strlen, _fstrien string.h
Function Calculates the length of a string.
Syntax size_t strlen(const char *s);
size_t far _fstrlen(const char far *s)
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
L] L]] u L} L}
Remarks strlen calculates the length of s.
Return value strlen returns the number of characters in s, not counting the null-
terminating character.
See also _fstr*
striwr, _fstrlwr string.h

Function

Syntax

Remarks

260

Converts uppercase letters in a string to lowercase.

char *sterr(char *s);
char far * far _fstrlwr(char char far *s)

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

strlwr converts uppercase letters in string s to lowercase according to the
current locale’s LC_CTYPE category. For the C locale, the conversion is

Library Reference

Return value

strlwr, _fstrlwr

from uppercase letters (A to Z) to lowercase letters (a to z). No other charac-
ters are changed. :

strlwr returns a pointer to the string s.

See also _fstr*, strupr

strncat, _fstrncat string.h

Function Appends a portion of one string to another.

Syntax char *strncat(char *dest, const char *src, size_t maxlen);
char far * far _fstrncat(char far *dest, const char far *src, size_t maxlen)

oS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ [o0S/2
n [] 1] |] | [] |

Remarks strncat copies at most maxlen characters of src to the end of dest and then
appends a null character. The maximum length of the resulting string is
strlen(dest) + maxlen.

Return value strncat returns dest.

See also _fstr*

strnemp, _fstrncmp string.h

Function Compares a portion of one string to a portion of another.

Syntax int strncmp(const char *sl, const char *s2, size_t maxlen);
int far _fstrncmp(const char far *sl, const char far *s2, size_t maxlen)

DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2
] |] L] n | | n]

Remarks strncmp makes the same unsigned comparison as strcmp, but looks at no
more than maxlen characters. It starts with the first character in each string
and continues with subsequent characters until the corresponding charac-
ters differ or until it has examined maxlen characters.

Return value strncmp returns an int value based on the result of comparing s1 (or part of

it) to s2 (or part of it):

B < 0 if s1 is less than 52

m == () if sI is the same as 52
m > 0 if s1 is greater than 52

Chapter 3, Run-time functions ‘ 261

strnemp, _fstrnemp

See also _fstr*, stremp, streoll, stricmp, strncmpi, strnicmp
strncmpi string.h
Function Compares a portion of one string to a portion of another, without case
sensitivity.
Syntax int strncmpi(const char *sl, const char *s2, size_t n);
D0s | UNIX | win16 | win32 | ANsTC | ANSI c++ [o0s/2
n n |
Remarks strncmpi performs a signed comparison of s1 to s2, for a maximum length of

Return value

n bytes, starting with the first character in each string and continuing with
subsequent characters until the corresponding characters differ or until #
characters have been examined. The comparison is not case sensitive.
(strncmpi is the same as strnicmp—implemented as a macro). It returns a
value (<0, 0, or > 0) based on the result of comparing s (or part of it) to s2
(or part of it). : '

The routines strnicmp and strncmpi are the same; strncmpi is implemented
through a macro in string.h that translates calls from strncmpi to strnicmp.

‘Therefore, in order to use strncmpi, you must include the header file
_ string.h for the macro to be available. This macro is provided for compati-

bility with other C compilers.
strncmpi returns an int value that is

m < 0 if 51 is less than s2 .
m == if 51 is the same as 52
m > 0 if sT is greater than s2

strnepy, _fstrncpy string.h

Function Copies a given number of bytes from one string into another, truncating or
padding as necessary.
Syntax char *strncpy(char *dest, const char *src, size_t maxlen);
char far * far _fstrncpy(char far *dest, const char far *src, size_t maxlen)
DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2
n [| | | 1 [] n
262 Library Reference

Remarks

Return value

strncpy, _fstrncpy

strncpy copies up to maxlen characters from src into dest, truncating or null-
padding dest. The target string, dest, mlght not be null-terminated if the
length of src is maxlen or more.

strncpy returns dest.

See also _fstr*
strnicmp, _fstrmcmp string.h
Function Compares a portion of one string to a portion of another, without case
sensitivity.
Syntax int strnicmp(const char *sl, const char *s2, size_t maxlen);
int far _fstrnicmp(const char far *sl, const char far *s2, size_t maxlen)
00s | UNIX | Win16 | wWin3z | AnsIc | AnsT e+ | o0s/2
n » " . n
Remarks strnicmp performs a signed comparison of s1 to s2, for a maximum length of

Return value

maxlen bytes, starting with the first character in each string and continuing
with subsequent characters until the corresponding characters differ or
until the end of the strings is reached. The comparison is not case sensitive.

It returns a value (< 0, 0, or > 0) based on the result of comparing s1 (or part
of it) to s2 (or part of it).

strnicmp returns an int value that is

m < 0 if s is less than s2
== if s1 is the same as 52
m > 0if s1 is greater than s2

See also _fstr*

strnset, _fstrnset string.h
Function - Sets a specified number of characters in a string to a given character.

Syntax char *strnset(char *s, int ch, size_t n);

char far * far _fstrnset(char far *s, int ch, size_t n)

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Chapter 3, Run-time functions - 263

stmset, _fstrnset

Remarks

Return value

strnset copies the character ch into the first n bytes of the string s. If
n > strlen(s), then strlen(s) replaces n. It stops when n characters have been
set, or when a null character is found.

strnset returns s.

See also _fstr* "

strpbrk, _fstrpbrk string.h

Function Scans a string for the first occurrence of any character from a given set.

Syntax char *strpbrk(const char *sl, const char *s2); /* C only */
char far *far _fstrpbrk(const char far *sl, const char far *s2) /* C and C++ */
const char *strpbrk(const char *sl, const char *s2); // C++ only
char *strpbrk(char *sl, const char *s2); // C++ only

pos | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
] | [] [] a a]

Remarks strpbrk scans a string, s1, for the first occurrence of any character appearing
ins2.

Return value strpbrk returns a pointer to the first occurrence of any of the characters in s2.
If none of the s2 characters occur in s1, strpbrk returns null.

See also _fstr*

strrchr, _fstrrchr ~ string.h

Function Scans a string for the last occurrence of a given character.

Syntax char *strrchr(const char *s, int c); /* C only */
char far * far _fstrrchr(const char far *s, int c) /* C and C++ */
const char *strrchr(const char *s, int c); // C++ only
char *strrchr(char *s, int c); // C++ only

DoS | UNIX | Win16 | Win32 | ANSI C | ANSI ¢+ | 0S/2
|] L] |] 1]] |] n
264 Library Reference

strrchr, _fstrrchr

Remarks strrchr scans a string in the reverse direction, looking for a specific
character. strrchr finds the last occurrence of the character c in the string s.
The null-terminator is considered to be part of the string.

Returnvalue strrchr returns a pointer to the last occurrence of the character c. If c does
not occur in s, strrchr returns null.

See also _fstr*, strespn, strchr

strrev, _fstrrev string.h

Function Reverses a string.

Syntax char *strrev(char *s);

char far * far _fstrrev(char far *s)

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

[] n [] u

Remarks strrev changes all characters in a string to reverse order, except the
terminating null character. (For example, it would change string\0 to
gnirts\0.)

Return value strrev returns a pointer to the reversed string.

See also _fetr*

strset, _fstrset string.h

Function Sets all characters in a string to a given character.

Syntax char *strset(char *s, int ch);

char far * far _fstrset(char far *s, int ch)

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

[a . .

Remarks strset sets all characters in the string s to the character ch. It quits when the
terminating null character is found.

Return value strset returns s.

See also _fstr*, setmem

Chapter 3, Run-time functions v 265

strspn, _fstrspn

strspn, _fstrspn

N

string.h

Function

Syntax

Remarks

Return value

Scans a string for the first segment that is a subset of a given set of
characters.

size_t strspn(const char *sl, const char *s2);
size_t far _fstrspn(const char far *sl, const char far *s2);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

strspn finds the initial segment of string s1 that consists entirely of
characters from string s2.

strsph returns the length of the initial segment of s1 that consists entirely of
characters from s2.

See also _fstr*

strstr, _fstrstr string.h

Function Scans a string for the occurrence of a given substring.

Syntax char *strstr(const char *sl, const char *s2); /* C only */
char far * far _fstrstr(const char far *sl, const char far *s2); /* C and C++ */
const char *strstr{const char *sl, const char *s2); // C++ only
char *strstr(char *sl, const char *s2); // C++ only

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2)
[] n B 1 B n n
Remarks

Return value

strstr scans s1 for the first occurrence of the substring s2.

strstr returns a pointer to the element in s1, where s2 begins (points to s2 in
s1). If s2 does not occur in s1, strstr returns null.

See also _fstr*

_strtime time.h
Function Converts current time to string.

Syntax char *_strtime(char *buf);

266 Library Reference

_strtime

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks _strtime converts the current time to a string, storing the string in the buffer
buf. The buffer must be at least 9 characters long.

The string has the following form:
 HH:MM:SS

where HH, MM, and SS are all two-digit numbers representing the hour,
minute, and second, respectively. The string is terminated by a null

character.
_Return value _strtime returns buf, the address of the time string.
See also asctime, ctime, localtime, strftime, _strdate, time
strtod, _strtold - stdlib.h
Function Convert a string to a double or long double value.
Syntax double strtod(const char *s, char **endptr);

long double _strtold(const char *s, char **endptr);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

striod ' L}] . n] u L]
_strtold . ' . . "
Remarks strtod converts a character string, s, to a double value. s is a sequence of

characters that can be interpreted as a double value; the characters must
match this generic format:

[ws] [sn} [ddd] [.] [ddd} (fmt([sn]ddd]

where

[ws] = optional whitespace
[sn] = optional sign (+ or -)
[ddd] = optional digits
[fmt] = optional e or E
[.] = optional decimal point

strtod also recognizes +INF and —INF for plus and minus mﬁmty, and
+NAN and -NAN for Not-a-Number.

Chapter 3, Run-time functions ' 267

striod, _strtold

For example, here are some character strings that strtod can convert to
double:

+1231.1981 e-1
502.85E2
+2010.952

strtod stops reading the string at the first character that cannot be
interpreted as an appropriate part of a double value.

If endptr is not null, strtod sets *endptr to point to the character that stopped
the scan (*endptr = &stopper). endptr is useful for error detection.

_strtold is the long double version; it converts a string to a long double
value.

- Return value These functions return the value of s as a double (strtod) or a long double
- (_strtold). In case of overflow, they return plus or minus HUGE_VAL
(strtod) or _LHUGE_VAL (_strtold).

See also atof
strtok, _fstrtok : ~ string.h
Function Searches one string for tokens, which are separated by delimiters defined in

a second string.

Syntax char *strtok(char *sl, const char *s2);
char far * far _fstrtok(char far *sl, const char far *s2)

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks strtok considers the string s1 to consist of a sequence of zero or more text
tokens, separated by spans of one or more characters from the separator
string s2.

The first call to strtok returns a pointer to the first character of the first token
in s1 and writes a null character into s1 immediately following the returned
token. Subsequent calls with null for the first argument will work through
the string s1 in this way, until no tokens remain.

The separatof string, s2, can be different from call to call.

Return value strtok returns a pointer to the token found in s1. A NULL pointer is
returned when there are no more tokens.
See also fstr*

268 ‘ ‘ Library Reference

strtol

strtol stdlib.h
Function Converts a string to a long value.
Syntax long strtol(const char *s, char **endptr, int radix);
p0S | UNIX | win16 | win32 | AnsIC | ANSI C++ | 0s/2
n n [] [] a L]
Remarks strtol converts a character string, s, to a long integer value. s is a sequence of

characters that can be interpreted as a long value; the characters must
match this generic format:

{ws] [sn] [0] [x] (ddd]

where

[ws] = optional whitespace
[sn] = optional sign (+ or -)

[0] = optional zero (0)
[x] = optional x or X
[ddd] = optional digits

strtol stops reading the string at the first character it doesn’t recognize.

If radix is between 2 and 36, the long integer is expressed in base radix. If
radix is 0, the first few characters of s determine the base of the value being

converted.
First Second
character character String interpreted as
0 1-7 Octal
0 xor X Hexadecimal
1-9 Decimal

If radix is 1, it is considered to be an invalid value. If radix is less than 0 or

greater than 36, it is considered to be an invalid value.

Any invalid value for radix causes the result to be 0 and sets the next
character pointer *endptr to the starting string pointer.

If the value in s is meant to be interpreted as octal, any character other than
0 to 7 will be unrecognized. ‘ '

If the value in s is meant to be interpreted as decimal, any character other
than 0 to 9 will be unrecognized.

Chapter 3, Run-time functions

269

strtol

If the value in s is meant to be interpreted as a number in any other base,
then only the numerals and letters used to represent numbers in that base
will be recognized. (For example, if radix equals 5, only 0 to 4 will be
recognized; if radix equals 20, only 0 to 9 and A to] will be recognized.)

If endptr is not null, strtol sets *endptr to point to the character that stopped
the scan (*endptr = &stopper). ‘

Return value strtol returns the value of the converted string, or 0 on error.

See also atoi, atol, strtoul

_strtold
See strtod.

strtoul stdlib.h

Function Converts a string to an unsigned long in the given radix.

Syntax unsigned long strtoul (const char *s, char **endptr, int radix);

D0s | UNIX | Win16 | Win3z | ANSIC | ANSI crr | 05/2
|] L} L} [] . =]

Remarks strtoul operates the same as strfol, except that it converts a string str to an
unsigned long value (where strtol converts to a long). Refer to the entry for
strtol for more information.

Return value strtoul returns the converted value, an unsigned long, or 0 on error.

See also atol, strtol

strupr, _fstrupr

string.h

Function
Syntax

270

Converts lowercase letters in a string to uppercase.

char *strupr(char *s);
char far * far _fstrupr(char far *s)

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Library Reference

strupr, _fstrupr

Remarks strupr converts lowercase letters in string s to uppercase according to the
current Jocale’s LC_CTYPE category. For the default C locale, the
conversion is from lowercase letters (a to z) to uppercase letters (A to Z). No
other characters are changed.

Return value strupr returns s.

See also _fstr*, strlwr

strxfrm string.h

Function Transforms a portion of a string to a specified collation.

Syntax size_t strxfrm(char *target, const char *source, size_t n);

D0S | uNIx | Win16 | wWin32 | ANSI C | ANSI C++ | 0s/2
[] a2 n |] n
Remarks

strxfrm transforms the string pointed to by source into the string target for
no more than n characters. The transformation is such that if the strcmp
function is applied to the resulting strings, its return corresponds with the
return values of the strcoll function.

No more than # characters, including the terminating null character, are
copied to target.

strxfrm transforms a character string into a special string according to the
current locale’s LC_COLLATE category. The special string that is built can
be compared with another of the same type, byte for byte, to achieve a
locale-correct collation result. These special strings, which can be thought
of as keys or tokenized strings, are not compatible across the different
locales. ’

The tokens in the tokenized strings are built from the collation weights
used by strcoll from the active locale’s collation tables.

Processing stops only after all levels have been processed for the character
string or the length of the tokenized string is equal to the maxlen
parameter. '

All redundant tokens are removed from each level’s set of tokens.

The tokenized string buffer must be large enough to contain the resulting
tokenized string. The length of this buffer depends on the size of the
character string, the number of collation levels, the rules for each level and
whether there are any special characters in the character string. Certain
special characters can cause extra character processing of the string

Chapter 3, Run-time functions 271

strxfrm

resulting in more space requirements. For example, the French character
“ce” will take double the space for itself because in some locales, it expands
to two collation weights at each level. Substrings that have substitutions
will also cause extra space requirements. :

There is no safe formula to determine the required string buffer size, but at
least (levels * string length) are required.

Return value Number of characters copied not including the termihating null character.
If the value returned is greater than or equal to 7, the content of target is
indeterminate.

See also stremp, streoll, strncpy

swab stdlib.h

Function Swaps bytes.

Syntax void swab(char *from, char *to, int nbytes);

DOS | UNIX | Win16 | Win32 | 'ANSI C | ANSI C++ | 0S/2
n | |] n |]
Remarks

‘Return value .

swab copies nbytes bytes from the from string to the to string. Adjacent even-
and odd-byte positions are swapped. This is useful for moving data from
one machine to another machine with a different byte order. nbytes should
be even.

None.

system stdlib.h

Function Issue an operating system command.

Syntax int system(const char *command);

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2
n L [] []

Remarks system invokes the operating system command processor to execute an op-
erating system command, batch file, or other program named by the string
command, from inside an executing C program.

To be located and executed, the program must be in the current directory or
in one of the directories listed in the PATH string in the environment.

272 Library Reference

system

The COMSPEC environment variable is used to find the command
processor program file, so that file need not be in the current directory.

Return value - If command is a NULL pointer, system returns nonzero if a command proces-
sor is available.

If command is not a NULL pointer, system returns 0 if the command
processor was successfully started.

If an error occurred, a -1 is returned and errno is set to one of the following:

ENOENT Path or file function not found
ENOEXEC Exec format error
ENOMEM Notenough memory
See also exec..., _fpreset, searchpath, spawn...
tan, tanl math.h
Function Calculates the tangent.
Syntax double tan(double x);

long double tanl{long double x);

DOS UNIX Win 16 Win 32 ANST C ANSI C++ 0s/2

tan n [} [] '] [] a]

tanl . . L n

Remarks tan calculates the tangent. Angles are specified in radians.

tanl is the long double version; it takes a long double argument and returns
along double result. Error handling for these routines can be modlfled
through the functions _matherr and _matherrl.

. This function can be used with bed and complex types.

Return value tan and tanl return the tangent of x, sin(x)/cos(x).

See also ' acbs, asin, atan, atan2, bed, complex, cos, sin

tanh, tanhl , | math.h
Function Calculates the hyperbolic tangent.

Chapter 3, Run-time functions : : » 273

tanh, tanhl

Syhtax

Remarks

Return value

double tanh(double x);
long double tanhl(long double x);

DOS UNIX - | Win 16 Win 32 ANSI C ANST C++ 0s/2

~tanh computes the hyperbolic tangent, sinh(x)/cosh(x).

. tanhl is the long double version; it takes a long double argument and’

returns a long double result. Error handling for these functions can be
modified through the functions _matherr and _matherrl.

This function can be used with bed and complex types.

tanh and tanhl return the hyperbolic tangent of x.

See also bed, complex, cos, cosh, sin, sinh, tan
tell io.h
Function Gets the current position of a file pointer.
Syntax long tell(int handle);

0s | UNIX | Win16 | Win32 | ANSI C | ANSI c++ | os/2

[} [] [} . ’ [}
" Remarks tell gets the current position of the file pointer associated with handle and
expresses it as the number of bytes from the beginning of the file.
Return value tell returns the current file pointer position. A return of -1 (long) indicates
' an error, and the global variable errno is set to

EBADF Bad file number
See also fgetpos, fseek, ftell, Iseck
tempnam stdio.h
Function ~ Creates a-unique file name in specified directory.
SYntax char *tempnam{char *dif, char *prefix) .
274 Library Reference |

tempnam

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Remarks The tempnam function creates a unique file name in arbitrary directories.
The unique file is not actually created; tempnam only verifies that it does not
currently exist. It attempts to use the following directories, in the order
shown, when creating the file name:

m The directory specified by the TMP environment variable.
m The dir argument to tempnam.

m The P_tmpdir definition in stdio.h. If you edit stdio.h and change this
definition, tempnam will not use the new definition.

m The current working directory.

If any of these directories is NULL, or undefined, or does not exist, it is
skipped.

The prefix argument specifies the first part of the file name; it cannot be
longer than 5 characters, and cannot contain a period (.). A unique file
name is created by concatenating the directory name, the prefix, and 6
unique characters. Space for the resulting file name is allocated with malloc;
when this file name is no longer needed, the caller should call free to free it.

W If you do create a temporary file using the name constructed by tempnam, it
is your responsibility to delete the file name (for example, with a call to
remove). It is not deleted automatically. (tmpfile does delete the file name.)

Return value If tempnam is successful, it returns a pointer to the unique temporary file
name, which the caller can pass to free when it is no longer needed.
Otherwise, if tempnam cannot create a unique file name, it returns NULL.

Seealso mktemp, tmpfile, tmpnam

textattr . , ' conio.h T-Z
Function Sets text attributes.

Syntax void textattr(int newattr);

Dos UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks textattr lets you set both the foreground and backgrouhd colors in a single
call. (Normally, you set the attributes with textcolor and textbackground.)

Chapter 3, Run-time functions ‘ 275

textattr

276

This function does not affect any characters currently onscreen; it affects
only those characters displayed by functions (such as cprintf) performing
text mode, direct video output after this function is called.

The color information is encoded in the newattr parameter as follows:

In this 8-bit newattr parameter,

u ffff is the 4-bit foreground color (0 to 15).
m bbb is the 3-bit background color (0 to 7).
m B is the blink-enable bit.

If the blink-enable bit is on, the character blinks. This can be accomplished
by adding the constant BLINK to the attribute.

If you use the symbolic color constants defined in conio.h for creating text

attributes with textattr, note the following limitations on the color you

select for the background:

m You can select only one of the first eight colors for the background.

m You must shift the selected background color left by 4 bits to move it into
the correct bit positions.

These symbolic constants are listed in the following table:

Symbolic : Numeric Foreground or
constant value background?
BLACK] Both

BLUE 1 Both

GREEN 2 Both

CYAN 3 Both

RED 4 Both

MAGENTA 5 Both

BROWN 6 Both
LIGHTGRAY 7 Both
DARKGRAY 8 Foreground only
LIGHTBLUE 9 Foreground only
LIGHTGREEN 10 Foreground only
LIGHTCYAN 11 Foreground only

Library Reference

textattr

Symbolic ‘ Numeric Foreground or
constant value background?

LIGHTRED 12 Foreground only
LIGHTMAGENTA 13 Foreground only
YELLOW 14 Foreground only
WHITE - 15 Foreground only
BLINK 128 Foreground only

W) This function should not be used in Win32s or Win32 GUI applications.
Return value None.

See also gettextinfo, highvideo, lowvideo, normvideo, textbackground, textcolor
textbackground conio.h
Function Selects new text background color.

Syntax void textbackground{int newcolor);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks textbackground selects the background color. This function works for
functions that produce output in text mode directly to the screen. newcolor
selects the new background color. You can set newcolor to an integer from 0
to 7, or to one of the symbolic constants defined in conio.h. If you use
symbolic constants, you must include conio.h.

Once you have called textbackground, all subsequent functions using direct
video output (such as cprintf) will use newcolor. textbackground does not
affect any characters currently onscreen. :

The following table lists the symbolic constants and the numeric values of
the allowable colors: ' T-Z

Symbolic constant Numeric value

BLACK
BLUE
GREEN
CYAN

RED
MAGENTA
BROWN
LIGHTGRAY

~NOoOO O, WN =2 O

Chapter 3, Run-time functions 277

textbackground

wp This function should not be used in Win32s or Win32 GUI applications.
Return value None. ' ‘

See also gettextinfo, textattr, textcolor

textcolor conio.h
Function Selects new character color in text mode.

Syntax void textcolor(int newcolor);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0S/2

Remarks textcolor selects the foreground character color. This function works for the
' console output functions. newcolor selects the new foreground color. You
can set newcolor to an integer as given in the table below, or to one of the
symbolic constants defined in conio.h. If you use symbolic constants, you
must include conio.h.

Once you have called textcolor, all subsequent functions using direct video
output (such as cprintf) will use newcolor. textcolor does not affect any
characters currently onscreen.

The following table lists the allowable colors (as symbolié constants) and
their numeric values:

Symbolic constant Numeric value

BLACK

BLUE

GREEN

CYAN

RED
MAGENTA
BROWN
LIGHTGRAY
DARKGRAY
LIGHTBLUE
LIGHTGREEN
LIGHTCYAN
LIGHTRED
LIGHTMAGENTA

—_
QWO DWN 2O

—_ i e
W N —

278 Library Reference

textcolor

Symbolic constant Numeric value
YELLOW 14
WHITE - 15
BLINK 128

You can make the characters blink by adding 128 to the foreground color.
The predefined constant BLINK exists for this purpose; for example,

textcolor (CYAN + BLINK);

WP Some monitors do not recognize the intensity signal used to create the eight
“light” colors (8-15). On such monitors, the light colors are displayed as
their “dark” equivalents (0-7). Also, systems that do not display in color
can treat these numbers as shades of one color, special patterns, or special
attributes (such as underlined, bold, italics, and so on). Exactly what you'll
see on such systems depends on your hardware. :

~ w This function should not be used in Win32s or Win32 GUI applications.
Return value None. '

See also gettextinfo, highvideo, lowvideo, normvideo, textattr, textbackground

textmode o | ' conio.h
Function Puts screen in text mode. -

Syntax void textmode (int newmode);

DOS UNIX Win 16 Win 32 ANSI C |- ANSI C++ 0s/2

Remarks textmode selects a specific text mode. .
You can give the text mode (the argument newmode) by using a symbolic T-Z

constant from the enumeration type text_modes (defined in conio.h).

The most comfnonly used text_modes type constants and the modes they
specify are given in the following table. Some additional values are defined

in conio.h.
Symbolic
constant Text mode
LASTMODE Previous text mode
BW40 Black and white, 40 columns
C40 . Color, 40 columns

Chapter 3, Run-time functions v ' 279

textmode

-

Symbolic

constant Text mode

BW80 Black and white, 80 columns

C80 : Color, 80 columns

MONO Monochrome, 80 columns

C4350 , EGA 43-line and VGA 50-line modes

When textmode is called, the current window is reset to the entire écreen,
and the current text attributes are reset to normal, corresponding to a call to
normuvideo.

Specifying LASTMODE to textmode causes the most recently selected text

‘mode to be reselected.

textmode should be used only when the screen or window is in text mode
(presumably to change to a different text mode). This is the only context in
which textmode should be used. When the screen is in graphics mode, use
restorecrtmode instead to escape temporarily to text mode.

~ This function should not be used in Win32s or Win32 GUI applications.

Return value

Return value None.
See also gettextinfo, window
time time.h
Function Gets time of day.
Syntax time_t time(time_t *timer);
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2
a | n n a] []
~ Remarks time gives the current time, in seconds, elapsed since 00:00:00 GMT, January

1, 1970, and stores that value in the location pointed to by timer, provided
that timer is not a NULL pointer.

time returns the elapsed time in seconds, as described.

See also asctime, ctime, difftime, ftime, gettime, gmtime, localtime, settime, stime, tzset
tmpfile stdio.h
Function Opens a “scratch” file in binary mode.

280 Library Reference

tmpfile

- Syntax PILE *tmpfile(void);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks tmpfile creates a temporary binary file and opens it for update (w + b). The
file is automatically removed when it’s closed or when your program
terminates.

Return value tmpfile returns a pointer to the stream of the temporary file created. If the
file can’t be created, tmpfile returns NULL.

See also fopen, tmpnam

tmpnam ’ : - stdio.h

Function / Creates a unique file name.

Synlax char *tmpnam(char *s);

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Remarks tmpnam creates a unique file name, which can safely be used as the name of
a temporary file. tmpnam generates a different string each time you call it,
up to TMP_MAX times. TMP_MAX is defined in stdio.h as 65,535.

The parameter to tmpnam, s, is either null or a pointer to an array of at least
L_tmpnam characters. L_tmpnam is defined in stdio.h. If s is NULL, tmpnam
leaves the generated temporary file name in an internal static object and
returns a pointer to that object. If s is not NULL, tmpnam places its result in
-the pointed-to array, which must be at least L_tmpnam characters long, and
returns s. '

WP If you do create such a temporary file with tmpnam, it is your responsibility s gy
to delete the file name (for example, with a call to remove). It is not deleted ~ §
automatically. (tmpfile does delete the file name:)

Return value If s is null, #mpnam returns a pointer to an internal static object. Otherwise,
tmpnam returns s.
See also tmpfile

Chapter 3, Run-time functions ~ ‘ ‘ 281

- toascii

toascii

ctype.h
Function Translates characters to ASCII format.
Syntax int toascii(int ¢);
D0S | UNIX | Win16 | Win32 | ANSIC L Cre | 0572
|] n |] L] b []
Remarks toascii is a macro that converts the integer ¢ to ASCII by clearing all but the

Return value

lower 7 bits; this gives a value in the range 0 to 127.

toascii returns the converted value of c.

ctype.h

Return value -

_tolower
Function Translates characters to lowercase.
Symax int _tolower{int ch);
DOS | UNIX | Win16 | Win32 | ANSIC.| ANSI C++ | 05/2
- |]) 'I | | n
Remarks

_tolower is a macro that does the same conversion as tolower, except that it
should be used only when ch is known to be uppercase (A-Z).

To use _tolower, you must include ctype.h.

_tolower returns the converted value of ch if it is uppercase; otherwise, the
result is undefined. .

282

tolower ctype.h
Function - Translates characters to lowercase.
- Syntax int tolower (int ch);
os | unix | Win16 | wWin32 | ANsIC | ANSI c++ | 0S/2
|]] [}] [] S |
Remarks tolower is a function that converts an integer ch (in the range EOF to 255) to
' its lowercase value. The function is affected by the current locale’s
LC_CTYPE category. For the default C locale, ch is converted to a lowercase
letter (a to z, if it was uppercase, A to Z). All others are left unchanged.
Library Reference

tolower

Return value tolower returns the converted value of ch if it is uppercase; it returns all
others unchanged. ‘

_toupper ctype.h
Function Translates characters to uppercase.
Syntax int _toupper (int ch);

D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C+ | 05/2

n []] n n

Remarks _toupper is a macro that does the same conversion as toupper, except that it

Return value

should be used only when ch is known to be lowercase letter (a to z).

To use _toupper, you must include ctype.h.

_toupper returns the converted value of ch if it is lowercase; otherwise, the
result is undefined.

toupper ctype.h
Function Translates characters to uppercase.
Svntax int toupper(int ch);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
Remarks toupper is a function that converts an integer c (in the range EOF to 255) to
its uppercase value. The function is affected by the current locale’s
LC_CTYPE category. For the default C locale, ch is converted to an upper-
case letter (A to Z; if it was lowercase, 4 to z). All others are left unchanged.
Return value toupper returns the converted value of ch if it is lowercase; it returns all
others unchanged.
tzset time.h
Function Sets value of global variables _daylight, _timezone, aﬁd _tzname.
Syntax void tzset (void)
283

Chapter 3, Run-time functions

T-Z

{zset

Remarks

Return value

See also.

284

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

tzset is available on XENIX systems.

tzset sets the _daylight, _timezone, and _tzname global variables based on the
environment variable TZ. The library functions ftime and localtime use these
global variables to adjust Greenwich Mean Time (GMT) to the local time
zone. The format of the TZ environment string is:

TZ = zzz[+/-]d[d] [111]

where zzz is a three-character string representing the name of the current
time zone. All three characters are required. For example, the string “PST”
could be used to represent pacific standard time.

[+/-]d[d] is a required field containing an optionally signed number with 1
or more digits. This number is the local time zone’s difference from GMT in
hours. Positive numbers adjust westward from GMT. Negative numbers
adjust eastward from GMT. For example, the number 5 = EST, +8 = PST,
and -1 = continental Europe. This number is used in the calculation of the
global variable _timezone. _timezone is the difference in seconds between
GMT and the local time zone.

lll is an optional three-character field that represents the local time zone
daylight saving time. For example, the string “PDT” could be used to
represent pacific daylight saving time. If this field is present, it causes the
global variable _daylight to be set nonzero. If this field is absent, _daylight is
set to zero. |

If the TZ environment string isn’t present or isn’t in the preceding form, a
default TZ = “ESTSEDT” is presumed for the purposes of a551gn1ng values
to the global variables _daylight, _timezone, and _tzname.

The global variable _tzname[0] points to a three-character string with the
value of the time-zone name from the TZ environment string. _tzname[1]
points to a three-character string with the value of the daylight saving
time-zone name from the TZ environment string. If no daylight saving
name is present, _tzname[1] points to a null string.

None.

asctime, ctime, ftime, gmtime, localtime, stime, time

Library Reference

ultoa

ultoa stdlib.h
Function Converts an unsigned long to a string.
Syntax char *ultoa(unsigned long value, char *string, int radix);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
a n |] L]
Remarks ultoa converts value to a null-terminated string and stores the result in
string. value is an unsigned long.
radix specifies the base to be used in converting value; it must be between 2
and 36, inclusive. ultoa performs no overflow checking, and if value is
negative and radix equals 10, it does not set the minus sign.
WP The space allocated for string must be large enough to hold the returned
string, including the terminating null character (\0). ulfoa can return up to
33 bytes.
Return value ultoa returns string.
See also itoa, ltoa
umask io.h
Function Sets file read /write permission mask.
Syntax' unsigned umask(unsigned mode);
oS | UNIX |. Win16 | Win32 | ANSIC | ANSI C++ | 05/2
n n n "
Remarks

The umask function sets the access permission mask used by open and creat.

Bits that are set in mode will be cleared in the access permission of files

subsequently created by open and creat.

The mode can have one of the following values, defined in sys\stat.h:

Value of mode Access permission
S_IWRITE Permission to write
S_IREAD Permission to read

S_IREADIS_IWRITE

Permission to read and write

Chapter 3, Run-time functions

285

T-Z

umask

Return value The previous value of the mask. There is no error return.
See also - creat, open
ungetc stdio.h
Function Pushes a character back into input stream.
Syntax int ungetc(int ¢, FILE *stream);

pos | unix | winle | win32 [awszc | AnsI ce+ | 0s/2

n |] []] [] [] n

Remarks ungetc pushes the character ¢ back onto the named input stream, which

Return value

must be open for reading. This character will be returned on the next call to
getc or fread for that stream. One character can be pushed back in all
situations. A second call to ungetc without a call to getc will force the
previous character to be forgotten. A call to fflush, fseek, fsetpos, or rewind
erases all memory of any pushed-back characters.

On success, ungetc returns the character pushed back; it returns EOF if the
operation fails.

See also fgetc, getc, getchar
ungetch conio.h
Function Pushes a character back to the keyboard buffer.
Syntax int ungetch(int ch);
s | UNIX | wWin16 | win32 | awsic | ansrcer | o0s/2
Remarks

Return value

See also

286

ungetch pushes the character ch back to the console, causing ch to be the
next character read. The ungetch function fails if it is called more than once
before the next read.

ungetch returns the character c# if it is successful. A return value of EOF
indicates an error.

This function should not be used in Win32s or Win32 GUI applications.
getch, getche

Library Reference

unixtodos

unixtodos) . dos.h
Function Converts date and time from UNIX to DOS format.
Syntax void unixtodos(loh'g time, struct date *d, struct time *t);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks unixtodos converts the UNIX-format time given in time to DOS format and
fills in the date and time structures pointed to by d and .

v time must not represent a calendar time earlier than Jan. 1, 1980 00:00:00.
Return value None.

See also dostounix

unlink - | io.h
Function Deletes a file.

Syntax ‘ int unlink(const char *filename);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

- Remarks unlink deletes a file specified by filename. Any drive, path, and file name can
be used as a filename. Wildcards are not allowed. :

Read-only files cannot be deleted byythis call. To remove read-only files,
first use chmod or _rtl_chmod to change the read-only attribute.

W) If your file is open, be sure to close it before unlinking it. T-Z

Return value - On successful completion, unlink returns 0. On error, it returns -1 and the
global variable errno is set to one of the following values: '

EACCES Permission denied ‘
ENOENT Path or file name not found

See also ’ chmod, remove

Chapter 3, Run-time functions ‘ . o ; 287

unlock

unlock io.h
Function Releases file-sharing locks.
Syntax int unlock(int handle, long offset, long length);
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
] .] "]
Remarks unlock provides an interface to the operating system file-sharing

Return value

mechanism. unlock removes a lock previously placed with a call to lock. To
avoid error, all locks must be removed before a file is closed. A program
must release all locks before completing.

unlock returns 0 on success, —1 on error.

See also lock, locking, sopen
utime utime.h
Function Sets file time and date.
Syntax int utime(char *path, struct utimbuf *times);
D0 | UNIX | Win16 | wWin32 | AwIC | ANSI c++ | o0S/2
B |]] L] ! n
Remarks utime sets the modification time for the file path. The modification time is
contained in the utimbuf structure pointed to by times. This structure is
defined in utime.h, and has the following format:
struct utimbuf { :
time_t actime; /* access time */ ‘
time_t modtime; /* modification time */
b
The FAT file system supports only a modification time; therefore, on FAT
file systems utime ignores actime and uses only modtime to set the file's
modification time.
If times is NULL, the file’s modification time is set to the current time.
. Return value utime returns 0 if it is successful. Otherwise, it returns -1, and the global
variable errno is set to one of the following:
288 Library Reference

utime

EACCES Permission denied
EMFILE Too many open files :
ENOENT Path or file name not found -

See also setftime, stat, time

va_arg, va_end, va_start | | stdarg.h
Function Implement a variable argument list.

Syntax

void va_start(va_list ap, lastfix);
type va_arg(va_list ap, type);
void va_end(va_list ap);

D0S UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks Some C functions, such as vfprintf and vprintf, take variable argument lists

in addition to taking a number of fixed (known) parameters. The va_arg,
va_end, and va_start macros provide a portable way to access these
argument lists. They are used for stepping through a list of arguments
when the called function does not know the number and types of the
arguments being passed.

The header file stdarg.h declares one type (va_list) and three macros
(va_start, va_arg, and va_end).

- mva_list This array holds information needed by va_arg and va_end. When
a called function takes a variable argument list, it declares a variable ap of
type va_list.

m va_start: This routine (implemented as a macro) sets ap to point to the
first of the variable arguments being passed to the function. va_start must
be used before the first call to va_arg or va_end.

mva_start takes two parameters: ap and lastfix. (ap is explained under va_list | gy
in the preceding paragraph; lastfix is the name of the last fixed parameter
being passed to the called function.)

m va_arg: This routine (also implemented as a macro) expands to an
expression that has the same type and value as the next argument being’
passed (one of the variable arguments). The variable ap to va_arg should
be the same ap that va_start initialized.

- Because of default promotions, you.can’t use char, unsigned char, or
float types with va_arg. -

Chapter 3, Run-time functions : 289

va_arg, va_end, va_start

Return value

The first time va_arg is used, it returns the first argument in the list. Each |
successive time va_arg is used, it returns the next argument in the list. It
does this by first dereferencing ap, and then incrementing ap to point to
the following item. va_arg uses the type to both perform the dereference
and to locate the following item. Each successive time va_arg is invoked,

it modifies ap to point to the next argument in the list.

m va_end: This macro helps the called function perform a normal return.
va_end might modify ap in such a way that it cannot be used unless
va_start is recalled. va_end should be called after va_arg has read all the
arguments; failure to do so might cause strange, undefined behavior in
your program. ' ‘

va_start and va_end return no values; va_arg returns the current argument in
the list (the one that ap is pointing to).

See also v...printf, v...scanf
vfprintf stdio.h
Function Writes formatted output to a stream.
Syntax int vfprintf(FILE *stream, const char *format, va_list arglist);
D0S | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0s/2
]] [" ‘n [[
The v...printf functions are known as alternate entry points for the ...printf

Remarks

See printf for details
on format specifiers.

Return value

functions. They behave exactly like their ...printf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vfprintf accepts a pointer to a series of arguments, applies to each argument
a format specifier contained in the format string pointed to by format, and
outputs the formatted data to a stream. There must be the same number of
format specifiers as arguments.

vfprmtf returns the number of bytes output. In the event of error, vfprintf

returns EOF.
See also printf, va_arg, va_end, va_start
viscanf stdio.h
Function Scans and formats input from a stream.
290 Library Reference

Syntax

Remarks

See scanffor details
on format specifiers.

Return value

See also

vprintf

viscanf

int viscanf(FILE *stream, const char *format, va_list arglist);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

The v...scanf functions are known as alternate entry points for the ...scanf
functions. They behave exactly like their ...scanf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vfscanf scans a series of input fields, one character at a time, reading from a
stream. Then each field is formatted according to a format specifier passed
to vfscanf in the format string pointed to by format. Finally, vfscanf stores the
formatted input at an address passed to it as an argument following format.
There must be the same number of format spec1f1ers and addresses as there
are input fields.

vfscanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely, for a
number of reasons. See scanf for a discussion of possible causes.

vfscanf returns the number of input fields successfully scanned, converted,

‘and stored; the return value does not include scanned fields that were not

stored. If no fields were stored, the return value is 0.
If vfscanf attempts to read at end-of-file, the return value is EOF.

fscanf, scanf, va_arg, va_end, va_start

stdarg.h

Function
Syntax

Remarks

See printffor details
on format specifiers.

Writes formatted output to stdout.

int vprintf(const char *format, va_list arglist);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

The v...printf functions are known as alternate entry points for the ...printf
functions. They behave exactly like their ...printf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vprintf accepts a pointer to a series of arguments, applies to each a format
specifier contained in the format string pointed to by format, and outputs
the formatted data to stdout. There must be the same number of format
specifiers as arguments.

Chapter 3, Run-time functions : 9

vprintf
-y
-

Return value

When you use the SS!=DS flag in 16-bit applications, vprintf assumes that
the address being passed is in the SS segment.

For Win32s or Win32 GUI applications, stdout must be redirected.

vprint returns the number of bytes output. In the event of error, vprint
returns EOF.

See also freopen, printf, va_arg, va_end, va_start
vscanf stdarg.h
Function Scans and formats input from stdin.
Syntax int vscanf(const char *format, va_list arglist);
Dos | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
|] | " n . a
Remarks

See scanffor details
on format specifiers.

-

Return value

See also

292

The v...scanf functions are known as alternate entry points for the ...scanf
functions. They behave exactly like their ...scanf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vscanf scans a series of input fields, one character at a time, reading from
stdin. Then each field is formatted according to a format specifier passed to
vscanf in the format string pointed to by format. Finally, vscanf stores the
formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there
are input fields. -

vscanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely, for a
number of reasons. See scanf for a discussion of possible causes.

For Win32s or Win32 GUI applications, stdin must be redirected.

vscanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If no fields were stored, the return value is 0.

If vscanf attempts 'to read at end-of-file, the return value is EOF.

freopen, fscanf, scanf, va_arg, va_end, va_start

Library Reference

vsprintf

vsprintf stdarg.h
Function Writes formatted output to a string.
Syntax int vsprintf(char *buffer, const char *format, va_list arglist);

D0S UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks The v...printf functions are known as alternate entry points for the ...printf
functions. They behave exactly like their ...printf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

See printffor details ~ vsprintf accepts a pointer to a series of arguments, applies to each a format

on format specifiers. specifier contained in the format string pointed to by format, and outputs
the formatted data to a string. There must be the same number of format
specifiers as arguments.

Return value vsprintf returns the number of bytes output. In the event of error, vsprintf
returns EOF.

See also printf, va_arg, va_end, va_start

vsscanf . stdarg.h

Function Scans and formats input from a stream.

Syntax int vsscanf(const char *buffer, const char *format, va_list arglist);

DOS UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2

Remarks The v...scanf functions are known as alternate entry points for the ...scanf
functions. They behave exactly like their ...scanf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

See scanffor details vsscanf scans a series of input fields, one character at a time, reading from a

on format specifiers. stream. Then each field is formatted according to a format specifier passed
to vsscanf in the format string pointed to by format. Finally, vsscanf stores the
formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there
are input fields. '

Chapter 3, Run-time functions 293

vsscanf

Return value

See also

wait

vsscanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely, for a
number of reasons. See scanf for a discussion of possible causes.

vsscanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If no fields were stored, the return value is 0.

If vsscanf attempts to read at end-of-string, the return value is EOF.

fscanf, scanf, sscanf, va_arg, va_end, va_start, vfscanf

process.h

Function
Syntax

Remarks

Return value

294

Waits for one or more child processes to terminate.

int wait(int *statloc);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

The wait function waits for one or more child processes to terminate. The
child processes must be those created by the calling program; wait cannot
wait for grandchildren (processes spawned by child processes). If statloc is
not NULL, it points to location where wait will store the termination status.
If the child process terminated normally (by calling exit, or returning from
main), the termination status word is defined as follows: '

Bits 0-7 Zero.

Bits 8-15 The least significant byte of the return code from the child
‘process. This is the value that is passed to exit, or is returned
from main. If the child process simply exited from main with-
out returning a value, this value will be unpredictable.

If the child process terminated abnormally, the termination status word is
defined as follows:

Bits 0-7 Termination information about the child:

1 Critical error abort.
2 Execution fault, protection exception.
3 External termination signal.

Bits 8-15 Zero.

When wait returns after a normal child process termination it returns the
process ID of the child.

Library Reference

wait

When wait returns after an abnormal child termination it returns —1 to the

parent and sets errno to EINTR.

If wait returns without a child process completion it returns a -1 value and

sets errno to

Return value

ECHILD No child process exists
See also cwait, spawn
wcstombs stdlib.h
Function Converts a wchar_t array into a multibyte string.
Syntax size_t westombs{char *s, const wchar_t *pwes, size_t n);

, :
DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2
n [I [] [] [] [] n

Remarks westombs converts the type wchar_t elements contained in pwcs into a

multibyte character string s. The process terminates if either a null character

or an invalid multibyte character is encountered.

No more than n bytes are modified. If n number of bytes are processed
before a null character is reached, the array s is not null terminated.

The behavior of wcstombs is affected by the setting of LC_CTYPE category
of the current locale.

If an invalid multibyte character is encountered wcestombs returns (size_t)
-1. Otherwise, the function returns the number of bytes m0d1f1ed not

including the terminating code, if any.

wctomb stdlib.h
Function Converts wchar._t code to a multibyte character.
‘ Syntax int wctomb(char *s, wchar_t wc);
DS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
.
Remarks

If s is not null, wctomb determines the number of bytes needed to represent
the multibyte character corresponding to wc (including any change in shift

Chapter 3, Run-time functions '

state). The multibyte character is stored in s. At most MB_CUR_MAX

295

T-Z

wctomb

characters are stored. If the value of wc is zero, wctomb is left in the initial
state.

The behavior of wctomb is affected by the setting of LC_CTYPE category of
the current locale.

* Return value If s is a NULL pointer, wctomb returns a nonzero value if multibyte
character encodings do have state-dependent encodings, and a zero value if
they do not.

If s is not a NULL pointer, wctomb returns -1 if the wc value does not
represent a valid multibyte character. Otherwise, wctomb returns the
number of bytes that are contained in the multibyte character correspond-
ing to wc. In no case will the return value be greater than the value of
MB_CUR_MAX macro.
wherex conio.h
Function Gives horizontal cursor position within window.
- Syntax int wherex(void);
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2
[] |] n : n
Remarks wherex returns the x-coordinate of the current cursor posmon (within the
current text window). ‘
, W) This function should not be used in Win32s or Win32 GUI applications.
Return value wherex returns an integer in the range 1 to the number of columns in the
current video mode.
See also gettextinfo, gotoxy, wherey
wherey conio.h
Function Gives vertical cursor position within window.
Syntax * int wherey(void);
oS | UNIx | Win16 | Win32 [ansrc | awsice [0s/2
|] ' [] |] "
296 Library Reference

wherey

Remarks wherey returns the y-coordinate of the current cursor position (within the

current text window).
~ 'wmp This function should not be used in Win32s or Win32 GUI applications.

Return value wherey returns an integer in the range 1 to the number of rows in the
current video mode.

See also gettextinfo, gotoxy, wherex

window conio.h

Function Defines active text mode window.
Syntax void window(int left, int top, int right, int bottom);
DOS | UNIX | Win 16 | Win32 | ANSI C.| ANSI C++ | 0S/2

Remarks window defines a text window onscreen. If the coordinates are in any way
invalid, the call to window is ignored.
left and top are the screen coordinates of the upper left corner of the
window. right and bottom are the screen coordinates of the lower right
corner.

' The minimum size of the text window is one column by one line. The
default window is full screen, with the coordinates:
1,1,CR '
where C is the number of columns in the current video mode, and R is the
number of rows.
‘ W This function should not be used in Win32s or Win32 GUI applications.

Return value None. / '

See also clreol, clrscr, delline, gettextinfo, gotoxy, insline, puttext, textmode

_Wwrite io.h

Remarks Obsolete function. See _rtl_write.

Chapter 3, Run-time functions ' ‘ 297

write

write - io.h
Function Wirites to a file.
Syntax int write(int handle, void *buf, unsigned len);
p0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0/2
1] |] n . L] n
Remarks write writes a buffer of data to the file or device named by the given handle.

Return value

See also

298

handle is a file handle obtained from a creat, open, dup, or dup? call.

This function attempts to write len bytes from the buffer pointed to by buf
to the file associated with handle. Except when write is used to write to a text
file, the number of bytes written to the file will be no more than the number
requested. The maximum number of bytes that write can write is '
UINT_MAX -1, because UINT_MAX is the same as —1, which is the error
return indicator for write. On text files, when write sees a linefeed (LF)
character, it outputs a CR/LF pair. UINT_MAX is defined in limits.h.

If the number of bytes actually written is less than that requested, the
condition should be considered an error and probably indicates a full disk.

- For disks or disk files, writing always proceeds from the current file
. pointer. For devices, bytes are sent directly to the device. For files opened

with the O_APPEND option, the f11e pointer is positioned to EOF by write

* before writing the data.

write returns the number of bytes written. A write to a text file does not
count generated carriage returns. In case of error, write returns ~1 and sets
the global variable errno to one of the following values: :

EACCES Permission denied -
EBADF Bad file number

creat, Iseek, open, read, r_rtl_write

Library Reference

Global variables

Borland C++ provides you with predefined global variables for many
common needs, such as dates, times, command-line arguments, and so on.
This chapter defines and describes them.

dos.h

_8087
Function Coprocessor chip flag.
Syntax extern int _8087;
DOS | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 05/2
Remarks The _8087 variable is set to a nonzero value (1, 2, or 3) if the startup code
autodetection logic detects a floating-point coprocessor (an 8087, 80287, or
In a 16-bit Windows 80387, respectively). The _8087 variable is set to 0 otherwise.

program, the value is
1 if any coprocessor

The autodetection logic can be overridden by setting the 87 environment

isdetected. yarjable to YES or NO. (The commands are SET 87=YES and SET 87=N0; it is

essential that there be no spaces before or after the equal sign.) If you use
the 87 environment variable, the _8087 variable will reflect the override.
Refer to Chapter 8 in the Programmer’s Guide for more information about the
87 environment variable. ' ’

_arge dos.h

Function Keeps a count of command-line arguments.

Syntax extern int _argc;

D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
Chapter 4, Global variables 299

_arge

_ctype

Remarks _argc has the value of argc passed to main when the program starts.
_argv dos.h
- Function An array of pointers to command-line arguments.
Syntax extern char **_argv;
DOS | UNIX | Winl6 | Win32 | ANSI C | ANSI C++ | 05/2
| a n n
Remarks _argu points to an array containing the original command-line arguments

(the elements of argu[]) passed to main when the program starts.

ctype.h

Function An array of character attribute information.
Syntax extern char _ctypel]; ‘
D0S | UNIX | Win16 | win32 | ANSI C | ANSI C++ | 05/2
Remarks _ctype is an array of character attribute information indexed by ASCII value
+ 1. Each entry is a set of bits describing the character.
This array is used only by routines affected by the C locale, such as isdigit,
isprint, and so on. :
_daylight time.h
Function Indicates whether daylight saving time adjustments will be made.
Syntax extern int _daylight;
oS | UNIX | Win16 | win32 | ANSIC | ANSI C++ | 0S/2
Remarks _daylight is used by the time and date functions. It is set by the tzset, ftime,
and localtime functions to 1 for daylight saving time, 0 for standard time.
See also _timezone '
300 Library Reference

_directvideo

_directvideo conio.h
Function Flag that controls video output.
Syntax extern int _directvideo;
0s | unIx | wWin16 | win32 | anstc | ansI e+ [0572
Remarks _directvideo controls whether your program’s console output (from cputs, for
example) goes directly to the video RAM (_directvideo = 1) or goes via ROM
BIOS calls (_directvideo = 0).
The default value is _directvideo = 1 (console output goes directly to video
RAM). To use _directvideo = 1, your system’s video hardware must be
identical to IBM display adapters. Setting _directvideo = 0 allows your
console output to work on any system that is IBM BIOS-compatible.
_directvideo should be used only in character-based applications. It should
not be used in 16-bit Windows, Win32s, or Win32 GUI applications.
_environ dos.h
Function Accesses the operating system environment variables.
Syntax extern char ** _environ;
0s | uNIx | Win16 | win32 | ANSI C | ANSI C++ | 05/2
Remarks

_environ is an array of pointers to strings; it is used to access and alter the
operating system environment variables. Each string is of the form

envvar = varvalue

where envvar is the name of an environment variable (such as PATH), and
varvalue is the string value to which envvar is set (such as C:\BIN;C:\DO0S).
The string varvalue can be empty.

When a program begins execution, the operating system environment set-
tings are passed directly to the program. Note that env, the third argument
to main, is equal to the initial setting of _environ.

The _environ array can be accessed by getenv; however, the putenv function
is the only routine that should be used to add, change or delete the _environ
array entries. This is because modification can resize and relocate the

Chapter 4, Global variables ’ i 301

_environ

process environment array, but _environ is automatically adjusted so that it
always points to the array.

See also getenv, putenv

errno, _doserrno, _sys_errlist, _sys_nerr dos.h, errno.h
Function Enable perror to print error messages.

Syntax extern int _doserrno;

extern int errno;
extern char **_sys_errlist;
extern int _sys_nerr;

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ 0s/2

Remarks errno, _sys_errlist, and _sys_nerr are used by perror to print error messages
when certain library routines fail to accomplish their appointed tasks.
_doserrno is a variable that maps many operating-system error codes to
errno; however, perror does not use _doserrno directly. See the header files
winbase.h and winerror.h for the list of operating-system errors.

merrno: When an error in a math or system call occurs, errno is set to indi-
cate the type of error. Sometimes errno and _doserrno are equivalent. At
other times, errno does not contain the actual operating system error
code, which is contained in _doserrno instead. Still other errors might
occur that set only errno, not _doserrno.

m _doserrno: When an operating-system call results in an error, _doserrno is
set to the actual operating-system error code. errno is aparallel error
variable inherited from UNIX.

m _sys_errlist: To provide more control over message formatting, the array
of message strings is provided in _sys_errlist. You can use errno as an
index into the array to find the string corresponding to the error number.
The string does not include any newline character.

m_sys_nerr: This variable is defined as the number of error message strings
in _sys_errlist.

The following table gives mnemonics and their meanings for the values
stored in _sys_errlist. The list is alphabetically ordered for easier reading.
For the numerical ordering, see the header file errno.h.

302 : : Library Reference

ermo, _doserrno, _sys_errlist, _sys_nerr

Mnemonic 16-bit description 32-bit description
E2BIG Arg list too long - Arg list too long
EACCES Permission denied Permission denied
EBADF Bad file number Bad file number
ECHILD ’ No child process .
ECONTR Memory blocks destroyed Memory blocks destroyed
ECURDIR Attempt to remove CurDir Attempt to remove CurDir
EDEADLOCK Locking violation
EDOM Domain error Math argument
EEXIST File already exists File already exists
EFAULT Unknown error Unknown error
EINTR ‘ Interrupted function call
EINVACC Invalid access code Invalid access code
EINVAL Invalid argument Invalid argument
EINVDAT Invalid data Invalid data
EINVDRV Invalid drive specified Invalid drive specified
EINVENV Invalid environment Invalid environment
EINVEMT Invalid format Invalid format
EINVFNC Invalid function number Invalid function number
EINVMEM Invalid memory block address ~ Invalid memory block
address
EIO . Input/Output error
EMFILE Too many open files , Too many open files
ENAMETOOLONG ‘ File name too long
ENFILE Too many open files
ENMFILE No more files No more files
ENODEV No such device No such device
ENOENT No such file or directory- No such file or directory
ENOEXEC Exec format error Exec format error
ENOFILE No such file or directory File not found
ENOMEM Not enough memory Not enough core
ENOPATH Path not found Path not found
ENOSPC No space left on device
ENOTSAM Not same device Not same device
ENXIO No such device or address
EPERM Operation not permitted
EPIPE) Broken pipe
ERANGE Result out of range Result too large
EROFS c " Read-only filesystem
ESPIPE llegal seek
EXDEV Cross-device link Cross-device link
EZERO Error 0 Error 0

The following list gives mnemonics for the actual DOS error codes to which
_doserrno can be'set. (This value of _doserrno may or may not be mapped
(through errno) to an equivalent error message string in _sys_errlist.

Chaptef 4, Global variables

303

erro, _doserrno, _sys_errlist, _sys_nerr

_floatconvert

Mnemonic DOS error code
E2BIG) Bad environ
EACCES Access denied
" EACCES Bad access ’ o \
EACCES Is current dir
EBADF Bad handle
EFAULT Reserved
EINVAL Bad data
EINVAL Bad function
EMFILE Too many open
ENOENT No such file or directory
ENOEXEC Bad format
ENOMEM Out of memory
ENOMEM Bad block
EXDEV ‘Bad drive
EXDEV Not same device

Refer to your DOS reference manual for more information about DOS error
return codes.

stdio.h

Function

Syntax

Remarks

304 -

Links the floating-point formats.

extern int _floatconvert;

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

Floating-point output requires linking of conversion routines used by
printf, scanf, and any variants of these functions. To reduce executable size,
the floating-point formats are not automatically linked. However, this
linkage is done automatically whenever your program uses a mathematical
routine or the address is taken of some floating-point number. If neither of
these actions occur the missing floating-point formats can result in a run-
time error. k

The following program illustrates how to set up your program to properly
execute.

Library Reference

_floatconvert

/* PREPARE TO OUTPUT FLOATING-POINT NUMBERS. */
#include <stdio.h>

#pragma extref _floatconvert

void main{() {
printf("d = $1f\n", 1);
}

_fmode fentl.h
Function ~ Determines default file-translation mode.
Syntax extern int _fmode;
DOS | UNIX | Win16 | Win32 | ANSI C | ANSI C++ | 0S/2
a L] a1 n
Remarks

_new_handler

_fmode determines in which mode (text or binary) files will be opened and
translated. The value of _fmode is O_TEXT by default, which specifies that
files will be read in text mode. If _fmode is set to O_BINARY, the files are
opened and read in binary mode. (O_TEXT and O_BINARY are defined in
fentlh.)

In text mode, carriage-return/linefeed (CR/LF) combinations are translated
to a single linefeed character (LF) on input. On output, the reverse is true:
LF characters are translated to CR/LF combinations.

In binary mode, no such translation occurs.

You can override the default mode as set by _fmode by specifying a t (for
text mode) or b (for binary mode) in the argument type in the library
functions fopen, fdopen, and freopen. Also, in the function open, the argument
access can include either O_BINARY or O_TEXT, which will explicitly
define the file being opened (given by the open pathname argument) to be in
either binary or text mode.

Function

Syntax -

Traps new allocation miscues.

typedef void (*pvf)();
pvf _new_handler;

Chapter 4, Global variables . ' 305

_new_handler

Remarks

As an alternative, you can set using the function set_new_handler, like this:

pvf set_new_handler(pvf p);

DOS UNIX Win 16 Win 32 ANST C ANSI Ct++ 0s/2

_new_handler contains a pointer to a function that takes no arguments and
returns void. If operator new() is unable to allocate the space required, it
will call the function pointed to by _new_handler; if that function returns it
will try the allocation again. By default, the function pointed to by
_new_handler terminates the application. The application can replace this
handler, however, with a function that can try to free up some space. This is
done by assigning directly to _new_handler or by calling the function
set_new_handler, which returns a pointer to the former handler.

__new_handler is provided primarily for compatibility with C++ version 1.2.

In most cases this functionality can be better provided by overloading
operator new().

_osmajor, _osminor, _osversion dos.h

Function
Syntax

Remarks

306

Contain the major and minor operating-system version numbers.

extern unsigned char _osmajor;
extern unsigned char _osminor;
extern unsigned _osversion;

DOS UNIX Win 16 Win 32 ANST C ANST C++ 0s/2

The major and minor version numbers are available individually through
_osmajor and _osminor. _osmajor is the major version number, and _osminor
is the minor version number. For example, if you are running DOS version
3.2, _osmajor will be 3 and _osminor will be 20.

_osversion is functionally identical to _version. See the discussion of _version.

These variables can be useful when you want to write modules that will
run on DOS versions 2.x and 3.x. Some library routines behave differently
depending on the DOS version number; other routines work under DOS 3.x
only. (For example, refer to _rtl_open, creatnew, and ioctl in this book.)

Library Reference

_psp

-psp

dos.h

Function Contains the segment address of the program segment prefix (PSP) for the
current program.
Syntax extern unsigned int' _psp;
D0s | UNIX | Wwin16 | Win32 | ANSIC | ANSI C++ | 0S/2
Remarks The PSP is a DOS process descriptor; it contains initial DOS information
about the program.
Refer to the DOS Programmer’s Reference Manual for more information on
the PSP. ‘
_threadid stddef.h
Function Pointer to thread ID.
Syntax extern long _threadid;
D0S | UNIX | Win16 | Win32 | ANSIC | ANSI C++ | 0S/2
Remarks _threadid is a long integer that contains the ID of the currently executing
thread. It is implemented as a macro, and should be declared only by
including stddef.h.
_ _throwExceptionName, _ _throwFileName, _ _throwLineNumber except.h
Function Generates information about a thrown exception.
Syntax extern char * _ _throwExceptionName;
extern char * _ _throwFileName;
extern char * _ _throwLineNumber;
DOs UNIX Win 16 Win 32 ANSI C ANST C++ 0s/2
Remarks Use these global variables to get the name and location of a thrown

exception. The output for each of the variables is a printable character
string.

Chapter 4, Global variables ‘ ' 307

_timezone

To get the file name and line number for a thrown exception with
_ _throwFileName and _ _throwLineNumber, you must compile the module
with the —xp compiler option.

_timezone time.h

Function Contains difference in seconds between local time and GMT.

Syntax extern long _timezone;

DOS | UNIX | Winl16 | Win32 | ANSIC | ANSI C++ | 05/2

Remarks _timezone is used by the time-and-date functions.
This variable is calculated by then tzset function; it is assigned a long value
that is the difference, in seconds, between the current local time and
Greenwich mean time.

See also _daylight

_tzname time.h

Function Array of pointers to time-zone names.

Syntax extern char * _tzname[2]

os | uNix | Win16 | wWin32 | ANsIC | ANSI C++ | 05/2

Remarks The global variable _tzname is an array of pointers to strings containing
abbreviations for time-zone names. _tzname[0] points to a three-character
string with the value of the time-zone name from the TZ environment
string. The global variable _tzname[1] points to a three-character string with
the value of the daylight-saving time-zone name from the TZ environment
string. If no daylight saving name is present, _tzname[1] points to anull
string.

_version dos.h

Function Contains the operating-system version number.

Syntax extern unsigned _version;

308 Library Reference

_version

DOS UNIX Win 16 Win 32 ANST € ANST C++ 0s/2

Remarks _version contains the operating-system version number, with the major
version number in the high byte and the minor version number in the low
byte. For a 32-bit application, this layout of the version number is in the
low word. (For DOS version x.y, the x is the major version number, and y is
the minor.) :

_wscroll conio.h

Function Enables or disables scrolling in console I/O functions.

Syntax extern int _wscroll

oS | UNIX | win16 | wWin32 | awsIc | ANSI c++ | 0s/2
Remarks _wscroll is a console I/0O flag. Its default value is 1. If you set _wscroll to 0,

scrolling is disabled. This can be useful for drawing along the edges of a
window without having your screen scroll.

_wscroll should be used only in character-based applications. It is available
for EasyWin but it should not be used in any GUI application.

Chapter 4, Global variables 309

310 : . l Library Reference

Online help provides
sample programs for
many iostream
classes.

conbuf class

The C++ iostream classes

The stream class library in C++ consists of several classes distributed in two
separate hierarchical trees. See the Programmer’s Guide, Chapter 6, for an
illustration of the class hierarchies. This reference presents some of the
most useful details of these classes, in alphabetical order. The following
cross-reference table tells which classes belong to which header files.

Header file Classes

constrea.h conbuf, constream (These classes are available only for console-mode
applications.)

jostream.h ios, iostream, jostream_withassign, istream, istream_withassign,
ostream, ostream_withassign, streambuf '

fstream.h filebuf, fstream, fstreambase, ifstream, ofstream

strstrea.h istrstream, ostrstream, strstream, strstreambase, strstreambuf

‘constrea.h

conbuf is available
only for console-
mode applications.

Constructor

clreol

clrser

Specializes streambuf to handle console output.

Public constructor

conbuf ()

Makes an unattached conbuf.

Public member functions

void clreol()
Clears to end of line in text window.

void clrscr()

Chapter 5, The C++ iostream classes ‘ 311

conbuf class

delline
gotoxy
highvideo
insline
lowvideo
normvideo
overflow
setcursortype
textattr
textbackground
textcolor
textmode
wherex

wherey

312

Clears the defined screen.
void delline()
Deletes a line in the window.

void gotoxy(int x; int y)

Positions the cursor in the window at the specified location.

void highvideo()

Selects high-intensity characters.
void insline()

Inserts a blank line.

void lowvideo()

Selects low-intensity characters.
void normvideo()

Selects normal-intensity characters.
virtual int overflow(int = EOF)
Flushes the conbuf to its destination.
void setcursortype(int cur_type)
Selects the cursor appearance.

void textattr(int newattribute)
Selects cursor appearance.

void textbackground(int newcolor)
Selects the text background color.
void textcolor(int newcolor)
Selects character color in text mode.
static void textmode(int newmode)
Puts the screen in text mode.

int wherex()

Gets the horizontal cursor position.
int wherey()

Gets the vertical cursor position.

Library Reference

conbuf‘class

window void window(int left, int top, int right, int bottom)
Defines the active window.
constream class constrea.h

constream is
avaitable only for
console-mode
applications.

Constructor

clrser
rdbuf
textmode

window

filebuf class

Provides console output streams. This class is derived from ostream.

Public constructor

constream()

Provides an unattached output stream to the console.

Public member functions

void clrsecr()

Clears the screen.

conbuf *rdbu’f ()

Returns a pointer to this constream’s assigned conbuf.
void textmode(int newmode)

Puts the screen in text mode.

void window(int left, int top, int right, int bottom)

Defines the active window.

fstream.h

Specializes streambuf to use files for input and output of characters. The
filebuf class manages buffer allocation and deletion, and seeking within a
file. This class also permits unbuffered file I/O by using the appropriate
constructor or the member function filebuf::setbuf. By default, files are
opened in openprot mode to allow reading and writing. See page 319 for a
list of file-opening modes.

The filebuf class only provides basic services for file I/O. Input and output
to a filebuf can only be done with the low-level functions provided by
streambuf. Higher level classes provide formatting services.

Chapter 5, The C++ iostream classes 313

filebuf class

Constructor

Constructor

openprot

attach

close

fd

is_open

314

Public constructors

filebuf();

Makes a filebuf that isn’t attached to a file.

filebuf (int fd);

Makes a filebuf attached to a file as specified by file descriptor fd.
filebuf (int fd, char *buf, int n);

Makes a filebuf attached to a file specified by the file descriptor fd, and uses
buf as the storage area. The size of buf is sufficient to store n bytes. If buf is
NULL or n is non-positive, the filebuf is unbuffered.

Public data members

static const int openprot

The default file protection. The exact value of openprot should not be of
interest to the user. Its purpose is to set the file permissions to read and
write.

Public member functions

filebuf* attach(int £d)

Connects this closed filebuf to a file specified by the file descriptor fd. If the
file buffer is already open, attach fails and returns NULL. Otherwise, the file
buffer is connected to fd.

filebuf* closef)

Flushes and closes the file. Generally, it is not necessary to make an explicit
call to close at your program’s end because proper file closing is ensured by
the filebuf destructor. An explicit call to close is useful when you want to
disconnect the filebuf from your program.

Returns 0 on error, for example, if the file was already closed. Otherwise,
the function returns a reference to the filebuf (the this pointer).

int fd()
Returns the file descriptor or EOF.

int is_open();

Library Reference

open

overflow

seekoff

setbuf

sync

underflow

fstream class

filebuf class

Returns nonzero if the file is open.

filebuf* open{const char *filename, int mode,
int prot = filebuf::openprot};

Opens the file specified by filename and connects to it. The file-opening
mode is specified by mode.

virtual int overflow(int c = EOF);

'Flushes a buffer to its destination. Every derived class should define the

actions to be taken.
virtual streampos seekoff(streamoff offset, dir ios::seek_dir, int mode);

Moves the file get/put pointer an offset number of bytes. The pointer is
moved in the direction specified by dir relative to the current position. mode
can specify read (ios::in), write (ios::out), or both. If mode is ios::in, the get
pointer is adjusted. If mode is ios::out, the put pointer is adjusted.

If successful, the seekoff function returns a streampos-type value that
indicates the new file pointer position.

The function can fail if the file does not support repositioning or you
request an illegal pointer repositioning, for example, beyond the end of the
file. On failure, seekoff returns EOF. The file pointer position is undefined.

virtual streambuf* setbuf(char *buf, int len);

Allocates buf of size len for use by the filebuf. If buf is NULL or len is a non-
positive value, the filebuf is unbuffered.

On success, setbuf returns a pointer to the filebuf. A failure occurs if the file
is open and a buffer has been allocated. On failure, setbuf returns NULL
and no changes are made to the buffering status.

virtual int sync();

Establishes consistency between internal data structures and the external
stream representation.

virtual int underflow();

Makes input available. This is called when no more data exists in the input
buffer. Every derived class should define the actions to be taken.

fstream.h

This stream class, derived from fstreambase and iostream, 'provides for
simultaneous input and output on a filebuf.

Chapter 5, The C++ iostream classes " 315

fstream class

Public constructors
Constructor fstream()
Makes an fstream that isn’t attached to a file.
Constructor fstream{const char *name, int mode, int prot = filebuf::openprot);
Makes an fstream, opens a file with access as specified by mode, and
connects to it. See page 319 for access options provided by ios::open_mode.
Constructor fstream(int £d);
Makes an fstream and connects to an open-file descriptor specified by fd.
Constructor fstream(int fd, char *buf, int n);
Makes a fstream attached to a file specified by the file descriptor fd, and uses
buf as the storage area. The size of buf is sufficient to store n bytes. If buf is
NULL or 7 is non-positive, the fstream is unbuffered.
Public member functions
open void open{const char *name, int mode, int prot = filebuf::openprot);
Opens a file specified by name for an fstream. The file-opening mode is
specified by the variable mode.
rdbuf filebuf* rdbuf();
Returns the filebuf used.
fstreambase class fstream.h
This stream class, derived from ios, provides operations common to file
streams. It serves as a base for fstream, ifstream, and ofstream.
Public constructors
Constructor fstreambase () :
Makes an fstreambase that isn’t attached to a file.
Constructor fstreambase (const char *name, int mode, int = filebuf::openprot);
316 Library Reference

Constructor

Constructor

attach
close
open
rdbuf

setbuf

ifstream class -

fstreambase class

Makes an fstreambase, opens a file specified by name in mode specified by
mode, and connects to it.

fstreambase{int fd);
Makes an fstreambase and connects to an open-file descriptor specified by fd.
fstreambase{int fd, char *buf, int len);

Makes an fstreambase connected to an open-file descriptor specified by fd.
The buffer is specified by buf and the buffer size is len.

Public member functions

void attach(int fd);

Connects to an open-file descriptor.

void close();

Closes the associated filebuf and file.

void open(const char *name, int mode, int prot = filebuf: :openprotf ;
Opens a file for an fstreambase. The file-opening mode is specified by mode.
filebuf* rdbuf();

Returns the filebuf used.

void setbuf(char *buf, int len);

Reserves an area of memory pointed to by buf. The area is sufficiently large
to store len number of bytes.

fstream.h

Constructor

Constructor

This stream class, derived from fstreambase and istream, provides input
operations on a filebuf.

Public constructors

ifstream();
Makes an ifstream that isn’t attached to a file.

ifstream(const char *name, int mode = ios::in,
int prot = filebuf::openprot);

Chapter 5, The C++ iostream classes | 317

 ifstream class

Makes an ifstream, opens a file for input in protected mode, and connects to
it. By default, the file is not created if it does not already exist.

Constructor ifstream(int £d);
Makes an ifstream and connects to an open-file descriptor fd.

Constructor ifstream(int fd, char *buf, int buf_len);
Makes an ifstream connected to an open file. The file is specified by its
descriptor, fd. The ifstream uses the buffer specified by buf of length buf len.
Public member functions

open void open(const char *name, int mode, int prot = filebuf::openprot);

: Opens a file for an ifstream.

rdbuf filebuf* rdbuf();
Returns the filebuf used.

ios class iostream.h
Provides operations common to both input and output. Its derived classes
(istream, ostream, iostream) specialize I/O with high-level formatting
operations. The ios class is a base for istream, ostream, fstreambase, and
strstreambase. ’
Public data members
The following three constants are used as the second parameter of the setf
function:
static const long adjustfield; //left | right | internal
static const long basefield; // dec | oct | hex
static const long floatfield; // scientific | fixed
Stream seek direction:
enum seek_dir { beg=0, cur=1, end=2 };

318 Library Reference

ios class

Stream operation mode. These can be logically ORed:

enum open_mode {

app, Append data—always write at end of file.

ate, Seek to end of file upon original open.

in, Open for input (default for ifstreams).

out, Open for output (default for ofstreams).

binary, Open file in binary mode.

trunc, Discard contents if file exists (default if out is specified
and neither ate nor app is specified).

nocreate, If file does not exist, open fails.

noreplace, If file exists, open for output fails unless ate or app is
set.

}i

Format flags used with flags, setf, and unsetf member functions:

enum {
skipws, Skip whitespace on input.
left, Left-adjust output.
right, Right-adjust output.
internal, Pad after sign or base indicator.
dec, Decimal conversion.
oct, Octal conversion.
hex, Hexadecimal conversion.
showbase, Show base indicator on output.
showpoint, Show decimal point for floating-point output.
uppercase, Uppercase hex output.
showpos, Show ‘+” with positive integers.
scientific, Suffix floating-point numbers with exponential (E)
notation on output.
fixed, Use fixed decimal point for floating-point numbers
unitbuf, Flush all streams after insertion.
stdio, Flush stdout, stderr after insertion.
}i
Protected data members
streambuf *bp; / / The associated streambuf
int x_fill; / / Padding character of output
long x_flags; / / Formatting flag bits
int x_precision; // Floating-point precision on output

Chapter 5, The C++ iostream classes 319

ios class

int state; // Current state of the streambuf
ostream *x_tie; // The tied ostream, if any
int x_width; / / Field width on output
Public constructor
Constructor ios(streambuf *);

Associates a given streambuf with the stream.

Protected constructor

Constructor i0s();

Constructs an ios object that has no corresponding streambuf.

Public member functions

bad int bad();
Nonzero if error occurred.
bitalloc static long bitalloc();

Acquires a new flag bit set. The return value can be used to set, clear, and
test the flag. This is for user-defined formatting flags.

clear void clear(int = 0);

Sets the stream state to the given value.
eof int eof();

Nonzero on end of file.
fail ' int fail(); ‘

Nonzero if an operation failed.
fill char fill()

Returns the current fill character.
fill char fill({char);

Resets the fill character; returns the previous character.
flags long flags();

Returns the current format flags.

320 \ Library Reference

flags

good

precision

precision

rdbuf

rdstate
setf

setf

sync_with_stdio

tie

, tie

unsetf

ios class

long flags(long);

Sets the format flags to be identical to the given long; returns previous
flags. Use flags(0) to set the default format.

int good();

Nonzero if no state bits were set (that is, no errors appeared).
int precision();

Returns the current floating-point precision.

int precision(int);

Sets the floating-point precision; returns previous setting.
streambuf* rdbuf();

Returns a pointer to this stream’s assigned streambuf.

int rdstate();

long setf(long);

Sets the flags corresponding to those marked in the given long; returns
previous settings.

long setf(long _setbits, long _field);

The bits corresponding to those marked in _field are cleared, and then reset
to be those marked in _setbits.

static void sync_with_stdio();
Mixes stdio files and iostreams. This should not be used for new code.
ostream* tie();

Returns the tied stream, or NULL if there is none. Tied streams are those
that are connected such that when one is used, the other is affected. For
example, cin and cout are tied; when cin is used, it flushes cout first.

ostream* tie(ostream *out);

Ties another stream to the output stream out and returns the previously
tied stream. If the stream was not previously tied, tie returns NULL.

When an input stream has characters to be consumed, or if an output
stream needs more characters, the tied stream is first flushed automatically.
By default, cin, cerr and clog are tied to cout.

long unsetf(long f);

Chapter 5, The C++ iostream classes ' 321

ios class

width
width

xalloc

init

setstate

iostream class

Clears the bits corresponding to f and returns a long that represents the
previous settings.

int width();

Returns the current width setting.

int width(int);

Sets the width as given; returns the previous width.
static int xalloc();

Returns an array index of previously unused words that can be used as
user-defined formatting flags. '

Protected member functions

void init (streambuf *);
Provides the actual initialization.
void setstate(int);

Sets all status bits.

iostream.h

This class, derived from istream and ostream, is a mixture of its base classes,
allowing both input and output on a stream. It is a base for fstream and
strstream. ‘

Public constructor

Constructor iostream(streambuf *);
Associates a given streambuf with the stream.

iostream_withassign class iostream.h
This class is an iostream with an added assignment operator.

322 Library Reference

Constructor

istream class

jostream_withassign class

Public constructor

iostream_withassign();

Default constructor (calls iostream’s constructor).

Public member functions

None (although the = operator is overloaded).

jostream.h

Constructor

gcount

get

get

L

Provides formatted and unformatted input from a streambuf. The >>
operator is overloaded for all fundamental types, as explained in the
narrative at the beginning of the chapter. This ios class is a base for ifstream,
iostream, istrstream, and istream_withassign.

Public constructor

istream(streambuf *);

Associates a given streambuf with the stream.

Public member functions

int gcount();

Returns the number of characters last extracted.
int get();

Extracts the next character or EOF.

istream& get(char *buf, int len, char delim = '\n’);
istream& get(signed char *buf, int len, char delim = ‘\n’);
istream& get(unsigned char *buf, int len, char delim = ‘\n’});

Extracts characters and stores them in buf until the delimiter, specified by
delim, or end-of-file is encountered, or until (len — 1) bytes have been read. A
terminating null is always placed in the output string; the delimiter never
is. The delimiter remains in the stream. Fails only if no characters were
extracted.

Chapter 5, The C++ iostream classes . 323

istream class

get

get

getline

ignore

ipfx

peek -

putback

read

seekg

seekg

324

The get function fails if it encounters the end of file before any characters
are stored. On failure, get sets ios::failbit.

istream& get(char &ch);
istream& get(signed char &ch);
istream& get(unsigned char &ch);

Extracts a single character into the ch reference.
istream& get(streambuf &sbuf, char delim = '\n’);
Extracts characters into the given sbuf reference until delim is encountered.

istream& getline(char *buf, int len, char);
istream& getline(signed char *buf, int len, char delim = "\n’);
istream& getline(unsigned char *buf, int len, char delim = '\n’);

Same as get, except the delimiter is also extracted. Generally, the specified
delim is not copied to buf. However, if the delimiter is encountered exactly
when len characters have been extracted, delim is not extracted.

istream& ignore(int n = 1, int delim = EOF);

Causes up to n characters in the input stream to be skipped; stops if delim is
encountered.

istream& ipfx(int n = 0);

The ipfx function is called by input functions prior to fetching from an input
stream. Functions that perform formatted input call ipfx(0); unformatted
input functions call ipfx(1).

int peek();

Returns next char without extraction.
istream& putback(char);

Pushes back a character into the stream.

istream& read(char*, int);
istream& read(signed char*, int);
istream& read(unsigned char*, int);

Extracts a given number of characters into an array. Use gcount for the
number of characters actually extracted if an error occurred.

istream& seekg(streampos pos);
Moves to an absolute position in the input stream.

istream& seekg(streamoff offset, seek_dir dir);

Library Reference

tellg

eatwhite

istream class

Moves offset number of bytes relative to the current position for the input
stream. The offset is in the direction specified by dir following the
definition: enum seek_dir {beg, cur, end);

Use ostream::seekp for positioning in an output stream.
Use seekpos or seekoff for positioning in a stream buffer.
streampos tellg();

Returns the current stream position. On failure, fellg returns a negative
number.

Use ostream::tellp to find the position in an output stream.

Protected member functions

void eatwhite();

Extract consecutive whitespace.

istream_withassign class iostream.h

Constructor

This class is an istream with an added assignment operator.

Public constructor

istream withassign();

Default constructor (calls istream’s constructor).

Public member functions

None (although the = operator is overloaded).

istrstream class ; strstrea.h

Provides input operations on a strstreambuf. This class is derived from
strstreambase and istream.

Chapter 5, The C++ iostream classes : ' 325

istrstream class

Public constructors
Constructor istrstream(char *);
istrstream(signed char *);
istrstream(unsigned char *);
Each of the constructors above makes an istrstream with a specified string (a
null character is never extracted). See “The three char types” in Chapter 1
of the Programmer’s Guide for a discussion of character types.
Constructor istrstream(char *str, int n);
istrsteam(signed char *str, int); \
istrstream(unsigned char *str, int); \
Each of the three constructors above makes an istrstream using up to n bytes
of str. See “The three char types” in Chapter 1 of the Programmer’s Guide for
a discussion of character types.
ofstream class fstream.h
Provides input operations on a filebuf. This class is derived from fstreambase
and ostream.
Public constructors
Constructor ofstream() ;
Makes an ofstream that isn’t attached to a file.
Constructor ofstream(const char *name, int mode = ios::out,
int prot = filebuf::openprot);
Makes an ofstream, opens a file, and connects to it.
Constructor ofstream(int fd);
Makes an ofstream and connects to an open-file descriptor specified by fd.
Constructor ofstream(int fd, char *buf, int len);
Makes an ofstream connected to an open-file descriptor specified by fd. The
buffer specified by buf of len is used by the ofstream.
326 Library Reference

open

rdbuf

- ostream class

ofstream class

Public member functions

void open(const char *name, int mode = ios::out,
int prot = filebuf::openprot);

Opens a file for an ofstream.
filebuf* rdbuf();
Returns the filebuf used.

iostream.h

Constructor

flush

opfx

osfx

put

Provides formatted and unformatted output to a streambuf. The << operator
is overloaded for all fundamental types. This ios-based class is a base for
constream, iostream, ofstream, ostrstream, and ostream_withassign.

Public constructor

ostream(streambuf *);

Associates a given streambuf with the stream.

Public member functions

ostream& flush();
Flushes the stream.
int opfx();

The opfx function is called by output functions prior to inserting to an
output stream. opfx returns 0 if the ostream has a nonzero error state.
Otherwise, opfx returns a nonzero value.

void osfx();

The osfx function performs post output operations. If ios::unitbuf is on, opfx
flushes the ostream. On failure, opfx sets ios::
failbit.

ostream& put(unsigned char ch);
ostream& put{char ch);
ostream& put(signed char ch);

Inserts the character.

Chapter 5, The C++ iostream classes ' 327

ostream class

seekp

seekp

tellp

write

ostream& seekp (streampos);
Moves to an absolute position (as returned from tellp).
ostream& seekp(streamoff, seek_dir);

Moves to a position relative to the current position, following the
definition: enum seek_dir {beg, cur, end};

streampos tellp(};
Returns the current stream position.

ostream& write(const signed char*, int n);
ostream& write(const unsigned char*, int n);
ostream& write(const char*, int n);

Inserts n characters (nulls included).

ostream_withassign class jostream.h

Constructor

This class is an ostream with an added assignment operator.

Public constructor

ostream_withassign();

Default constructor (calls ostream’s constructor).

Public member functions

None (although the = operator is overloaded).

ostrstream class strstrea.h

Constructor

328

Provides output operations on a strstreambuf. This class is derived from
strstreambase and ostream.

Public constructors

ostrstream();

Library Reference

ostrstream class

Makes a dynamic ostrstream.

Constructor ostrstream(char *buf, int len, int mode = ios::out);
ostrstream(signed char *buf, int len, int mode = ios::out);
ostrstream(unsigned char *buf, int len, int mode = ios::out);
Each of the three constructors above makes a ostrstream with a specified
len-byte buffer. If the file-opening mode is ios::app or ios::ate, the get/put
pointer is positioned at the null character of the string. See “The three char
types” in Chapter 1 of the Programmer’s Guide for a discussion of character
types.
Public member functions

pcount int pcount();
Returns the number of bytes currently stored in the buffer.

str char *str{); _
Returns and freezes the buffer. You must deallocate it if it was dynamic.

streambuf class iostream.h
This is a base class for all other buffering classes. It provides a buffer
interface between your data and storage areas such as memory or physical
devices. The buffers created by streambuf are referred to as get, put, and
reserve areas. The contents are accessed and manipulated by pointers that
point between characters.
Buffering actions performed by streambuf are rather primitive. Normally,
applications gain access to buffers and buffering functions through a
pointer to streambuf that is set by ios. Class ios provides a pointer to
streambuf that provides a transparent access to buffer services for high-level
classes. The high-level classes provide I/O formatting.
Public constructors

Constructor streambuf () ;
Creates an empty buffer object.

Constructor streambuf (char *buf, int size);

Chapter 5, The C++ iostream classes ‘ 329

streambuf class

Constructs an empty buffer buf and sets up a reserve area for size number of
bytes.

Public member functions

in_avail ’ int in_avail();

Returns the number of characters remaining in the input buffer.
out_waiting int out_waiting(});

Returns the number of characters refnaining in the output buffer.
sbumpc int sbumpc();

Returns the current character from the input buffer, thén advances.

seekoff virtual streampos seekoff (streamoff, ios::seek_dir,
int = (los::in | ios::out);

Moves the get and /or put pointer (the third argument determines which
one or both) relative to the current position.

seekpos virtual streampos seekpos(streampos, int = (ios::in | ios::out)) ;
Moves the get or put pointer to an absolute position.
setbuf virtual streambuf* setbuf(char *, int);
Connects to a given buffer.
sgetc int sgetc();
Peeks at the next character in the input buffer.
sgetn int sgetn(char*, int n);
Gets the next n characters from the input buffer.
snextc int snextc();
Advances to and returns the next character from the input buffer.
sputbacke int sputbackc(char);
Returns a character to input.
sputc int sputc(int);
Puts one character into the output buffer.
sputn int sputn(const char*, int n);

Puts n characters into the output buffer.

330 Library Reference

stossc

allocate

base

blen

eback

ebuf

egptr

epptr

gbump

gptr

pbase

pbump

pptr

streambuf class

void stossc();

Advances to the next character in the input buffer.

Protected member functions

int allocate();

Sets up a buffer area.

char *base(};

Returns the start of the buffer area.

int blen();

Returns the length of the buffer area.
char *eback();)
Returns the base of the putback section of the get area.
char *ebuf(); \

Returns the end+1 of the buffer area.
char *egptr();

Returns the end+1 of the get area.

char *epptr(); 7

Returns the end+1 of the put area.

void gbump(int);

Advances the get pointer.

char *gptr();

Returns the next location in the get area.
char *pbase();

Returns the start of the put area.

void pbump(int);

Advances the put pointer.

char *pptr(); |

Returns the next location in the put area.

Chapter 5, The C++ iostream classes ‘ 331

streambuf class

setbh void setb(char *, char *, int = 0);
Sets the buffer area.
setg vold setg(char *; char *, char *);
Initializes the get pointers.
setp void setp(char *, char *);
Initializes the put pointers.
unbuffered void unbuffered(int);
_ Sets the buffering state.
unbuffered int unbuffered();
Returns nonzero if not buffered.
strstreambase class | strstrea.h
Specializes ios to string streams. This class is entirely protected except for
the member function strstreambase::rdbuf. This class is a base for strstream,
istrstream, and ostrstream.
Public constructors
Constructor strstreambase() ;
Makes an empty strstreambase.
Constructor strstreambase(char *, int, char *start);
Makes an strstreambase with a specified buffer and starting position.
Public member functions
rdbuf strstreambuf * rdbuf();
Returns a pointer to the strstreambuf associated with this object.
strstreambuf class strstrea.h
Specializes streambuf for in-memory formatting.
332 Library Reference

Constructor

Constructor

Constructor

Constructor

doallocate

freeze

overflow

seekoff

setbuf

str

strstreambuf class

Public constructors

strstreambuf () ;

Makes a dynamic strstreambuf. Memory will be dynamically allocated as
needed.

strstreambuf (void * (*)(long), void (*)(void *));

Makes a dynamic buffer with specified allocation and free functions.
strstreambuf (int n);

Makes a dynamic strstreambuf, initially allocating a buffer of at least n bytes.,

strstreambuf (char*, int, char *strt = 0);
strstreambuf (signed char *, int, signed char *strt = 0);
strstreambuf (unsigned char *, int, unsigned char *strt = 0);

Each of the three constructors above makes a static strstreambuf with a
specified buffer. If strt is not null, it delimits the buffer. See “The three char
types” in Chapter 1 of the Programmer’s Guide for a discussion of character

types.

Public member functions

Virtuai int doallocate();
Performs low-level buffer allocation.
void freeze(int = 1);

If the input parameter is nonzero, disallows storing any characters in the
buffer. Unfreeze by passing a zero.

virtual int overflow(int);

Flushes a buffer to its destination. Every derived class should define the
actions to be taken.

virtual streampos seekoff (streamoff, ios::seek dir, int);
Moves the pointer relative to the current position.

virtual streambuf* setbuf(char*, int);

Specifies the buffer to use.

char *str();

_ Returns a pointer to the buffer and freezes it.

Chapter 5, The C++ iostream classes 333

strstreambuf class

sync

underflow

strstream class

virtual int sync();

Establishes consistency between internal data structures and the external
stream representation.

virtual int underflow();

Makes input available. This is called when a character is requested and the
strstreambuf is empty. Every derived class should define the actions to be
taken.

strstrea.h

Constructor

~ Constructor

str

334

Provides for simultaneous input and output on a strstreambuf This class is
derived from strstreambase and iostream.

Public constructors

strstream();
Makes a dynamic strstream.

strstream(char *buf, int sz, int mode);
strstream(signed char *buf, int sz, int mode);
strstream(unsigned char *buf, int sz, int mode);

Each of the three constructors above makes a strstream with a specified sz-

- byte buffer. If mode is ios::app or ios::ate, the get/put pointer is positioned at

the null character of the string. See “The three char types” in Chapter 1 of
the Programmer’s Guide for a discussion of character types.

Public member function

char *str();

Returns and freezes the buffer. The user must deallocate it if it was
dynamic.

Library Reference

Persistent stream classes and
macros

Tolearnhowtouse Borland support for persistent streams consists of a class hierarchy and
strear;';%igg@siné macros to help you develop streamable objects. This chapter is a reference
Chapter 7inthe ~ for these classes and macros. It alphabetically lists and describes all the

Programmers Guide. ~ public classes that support persistent objects. The class descriptions are
followed by descriptions of the _ _DELTA macro and the streaming
macros. The streaming macros are provided to simplify the declaration and
definition of streamable classes.

The persistent streams class hierarchy

The persistent streams class hierarchy is shown in the following figure:

Figure 6.1 pstream
Streamable class A
hierarchy

TStreamable
A 0

ipstream opstream _ fpbase
A A

i

ifpstream

W) The gray arrows connecting TStreamableBase indicate that it is a friend class.

Chapter 6, Persistent stream classes and macros 335

fpbase class

fpbase class

objstm.h

Constructor

attach

close

open

rdbuf

setbuf

ifpstream class

Provides the basic operations common to all object file stream I/O.

Constructors

fpbase();

fpbase({const char _FAR *name, int omode, int prot = filebuf::openprot);
fpbase (int £);

fpbase(int £, char _FAR *b, int len);

Creates a buffered fpbase object. You can set the size and initial contents of
the buffer with the len and b arguments. You can open a file and attach it to
the stream by specifying the name, mode, and protection (prot) arguments,
or by using the file descriptor, f.

Public member functions

void attach(int £);

Attaches the file with descriptor f to this stream if possible. Sets ios::state
accordingly.

void close();
Closes the stream and associated file.
void open(const char _FAR *name, int mode, int prot = filebuf::openprot);

Opens the named file in the given mode (app, ate, in, out, binary, trunc,
nocreate, noreplace) and protection. The opened file is attached to this
stream. 4

filebuf _FAR * rdbuf();
Returns a pointer to the current file buffer.
void setbuf (char _FAR *buf, int len);

Allocates a buffer of size len.

objstrm.h

336

Provides the base class for reading (extracting) streamable objects from file
streams. B

Library Reference

Constructor

open

rdbu‘f

ipstream class

ifpstream class

Public constructors

ifpstream(); .

ifpstream(const char _FAR *name, int mode = ios::in, int prot =
filebuf: :openprot);

ifpstream(int f);

ifpstream{int £, char _FAR *b, int len);

Creates a buffered ifpstream object. You can set the size and initial contents
of the buffer with the len and b arguments. You can open a file and attach it
to the stream by specifying the name, mode, and protection arguments, or
via the file descriptor, f.

Public member functions

void open(const char _FAR *name, int mode = ios::in, int prot =
filebuf::openprot);

Opens the named file in the given mode (app, ate, in, out, binary, trunc,
nocreate, or noreplace) and protection. The default mode is in (input) with
openprot protection. The opened file is attached to this stream.

filebuf _FAR * rdbuf();

Returns a pointer to the current file buffer.

objstrm.h

Constructor

find

Provides the base class for reading (extracting) streamable objects.

Public constructors

ipstream{streambuf *buf);

Creates a buffered ipstream with the given buffer and sets the bp data
member to buf. The state is set to 0. ”

Public member functions

TStreamableBase _FAR * find(P_id_type Id);

Returns a pointer to the object corresponding to Id.

Chapter 6, Persistent stream classes and macros 337

ipstream class

freadBytes

freadString

getVersion
readByte
readBytes

-readString

readWord -
readWord16
readWord

registerObject

338

" void freadBytes(void far *data, size_t sz);

Reads into the supplied far buffer (data) the number of bytes _spécified by sz.
char *freadString(); '

Reads a string from the stream. Determines the length of the string and
allocates a far character array of the appropriate length. Reads the string
into this array and returns a pointer to the string. The caller is expected to
free the allocated memory block. ‘

char *freadString(char far *buf, unsigned maxLen);

Reads a string from the stream into the supplied far buffer (buf). If the
length of the string is greater than maxLen-1, reads nothing. Otherwise

. reads the string into the buffer and appends a null terminating byte.

uint32 getVersion() const;

Returns the object version number.

uint8 readByte(); ‘
Returns the character at the current stream position.

void readBytes(void _FAR *data, size_t sz);

- Reads sz bytes from current stream position, and writes them to data.

char _FAR * readString();
char _FAR * readString(char _FAR *buf, unsigned maxLen);

readString() allocates a buffer large enough to contain the string at the
current stream position. Reads the string from the stream into the buffer.
The caller must free the buffer.

readString(Pchar buf, unsigned maxLen) reads the string at the current stream
position into the buffer specified by buf. Does not read more than maxLen
bytes.

uint32 readWofd()i

Returns the 32-bit word at the current stream position.
uintl6 readWordl6();

Returns the 16-bit word at the current stream position.
uint32 readWord32 ()‘;

Returns the 32-bit word at the current stream position.

void registerObject (TStreamableBase * adr);

Library Reference

seekg

tellg

Constructor

readData

readPrefix

readSuffix

readVersion

ipstream class

Registers the object pointed to by adr.

ipstream& seekg(streampos pos);
ipstream& seekg(streamoff off, ios::seek_dir);

The first form moves the stream position to the absolute position given by
pos. The second form moves to a position relative to the current position by
an offset off (+ or —) starting at ios::seek_dir. ios::seek_dir can be set to beg
(start of stream), cur (current stream position), or end (end of stream).

streampos tellg();

Returns the (absolute) current stream position.

Protected constructors

ipstream();

The protected form of the constructor does not initialize the buffer pointer
bp. Use init to set the buffer and state.

Protected member functions

void _FAR * readData (const ObjectBullder _FAR* ,TStreamableBase _FAR *&
mem) ;

Invokes the appropriate read function to read from the stream to the object
pointed to by mem. If mem is 0, the appropriate build function is called first.

See also: TStreamableClass, and the read and buzld member functions of each
streamable class

const ObjectBuilder _FAR * readPrefix();

Returns the TStreamableClass object corresponding to the class name stored
at the current position.

void readSuffix();

Reads and checks the final byte of an objéct’s name field.
See also: ipstream::readPrefix

void readVersion();

Sets the version number of the input stream.

Chapter 6, Persistent stream classes and macros . . 339

ipstream class

Operator >>

Friends

friend ipstream& operator >> (ipstream& ps, signed char__FAR & ch);
friend ipstream& operator >> (ipstream& ps, unsigned char _FAR & ch);
friend ipstream& operator >> (ipstream& ps, signed short _FAR & sh);
friend ipstream& operator >> (ipstream& ps, unsigned short _FAR & sh);
friend ipstream& operator >> (ipstream& ps, signed int _FAR & i);
friend ipstream& operator >> (ipstream& ps, unsigned int _FAR & 1);
friend ipstream& operator >> (ipstream& ps, signed long _FAR & 1);
friend ipstream& operator >> (ipstream& ps, unsigned long _FAR & 1};
friend ipstream& operator >> (ipstream& ps, float _FAR & f);

friend ipstream& operator >> (ipstream& ps, double _FAR & d);

friend ipstream& operator >> (ipstream& ps, long double _FAR & d);
friend ipstream& operator >> (ipstream& ps, TStreamableBase t);
friend ipstream& operator >> (ipstream& ps, void *t);

Extracts (reads) from the ipstream ps, to the given argument. A reference to
the stream is returned, letting you chain >> operations in the usual way.
The data type of the argument determines how the read is performed. For

example, reading a signed char is implemented using readByte.

ofpstream class objstrm.h

Constructor

340

Provides the base class for writing (inserting) streamable ob]ects to file
streams.

Public constructors

ofpstream();

ofpstream(const char _FAR *name, int mode = ios::out,
int prot = filebuf::openprot);

ofpstream(int f);

ofpstream(int £, char _FAR *b, int len);

Creates a buffered ofpstream object. You can set the size and initial contents
of the buffer with the len and b arguments. A file can be opened and
attached to the stream by specifying the name, mode, and protection
arguments, or by using the file descriptor, f.

Library Reference

ofpstream class

Public member functions

open void open(char _FAR *name, int mode = ios::out,
int prot = filebuf::openprot);

Opens the named file in the given mode (app, ate, in, out, binary, trunc,
nocreate, or noreplace) and protection. The default mode is out (output) with
openprot protection. The opened file is attached to this stream.

rdbuf filebuf _FAR * rdbuf();

Returns the current file buffer.

opstream class objstrm.h

opstream, a specialized derivative of pstream, is the base class for writing
(inserting) streamable objects. '

Public constructors and destructor

Constructor opstream(streambuf _FAR *buf);

This constructor creates a buffered opstream with the given buffer and sets
the bp data member to buf. The state is set to 0.

Destructor ~opstream() ;

Destroys the opstream object.

See also: pstream::init

Public member functions

findObject . P_id_type findObject (TStreamableBase _FAR *adr);
Returns the type ID for the object pointed to by adr.
findvB P_id_type findVB(TStreamableBase _FAR. *adr) ;
. Returns a pointer to the virtual base.
flush opstreams flush();
Flushes the stream.

fwriteBytes " void fwriteBytes(const void *data, size_t sz);

Chapter 6, Persistent stream classes and macros : 341

opstream class

fwriteString
registerObject
registerVB

seekp

tellp
writeByte

writeBytes

writeObject .
writeObjectPtr
writeString
writeWord

writeWord16

342

Writes the specified number of bytes (sz) from the supplied far buffer (data)
to the stream.

void fwriteString(const char *str);

Writes the specified far character string (str) to the stream.
void registerObject (TStreamableBase _FAR *adr);

Régisters the class of the object pointed to by adr.

void registerVB(TStreamableBase _FAR *adr);

Registers a virtual base class.

opstream& seekp(streampos pos);
opstream& seekp(streamoff off,ios::seek_dir);

The first form moves the stream’s current position to the absolute position
given by pos. The second form moves to a position relative to the current
position by an offset off (+ or -) starting at ios::seek_dir. ios::seek_dir can be set
to beg (start of stream), cur (current stream position), or end (end of stream).

streampos tellp();

Returns the (absolute) current stream position.
void writeByte(uint8 ch);

Writes the byte ch to the stream.

void writeBytes(const void *data, size_t sz);
void writeBytes(const void far *data, size_t sz); -

Writes sz bytes from data buffer to the stream.

void writeObject(const TStreamableBase _BIDSFAR *t);
Wrrites the object that is pointed to by t to the output stream.
void writeObjectPtr(const TStreamableBase *t);

Writes the object pointer ¢ to the output stream.

void writeString(const char _FAR *str);

ertes str to the stream (together with a leading length byte).
v01d writeWord(uint32 us);

Writes the 32-bit word us to the stream.

void writeWordl6 (uintl6 us);

Writes the 16-bit word us to the stream.

Library Reference

writeWord32

Constructor

writeData

writePrefix

writeSuffix

Operator <<'

opstream class

void writeWord32(uint32 us);

Writes the 32-bit word us to the stream.

Protected constructors

opstream();

This protected form of the constructor does not initialize the buffer pointer
bp. Use init to set the buffer and state. ‘

Protected member functions

void writeData(TStreamableBase *t);

- Writes data to the stream by calling the appropriate class’s write member

function for the object being written.
See also: TStreamableBase and the write functions in the streamable classes
void writePrefix(const TStreamableBase *t);

Writes the class name prefix to the stream. The << operator-uses this
function to write a prefix and suffix around the data written with writeData..
The prefix/sulffix is used to ensure type-safe stream I/O.

See also: ipstream:readPrefix
void writeSuffix(const TStreamableBase *t);

Writes the class name suffix to the stream. The << operator uses this)
function to write a prefix and suffix around the data written with writeData.
The prefix/suffix is used to ensure type-safe stream I/O.

See also: ipstream:readPrefix

Friends

friend opstream& operator << (opstream& ps, signed char ch);
friend opstream& operator << (opstream& ps, unsigned char ch);
friend opstream& operator << (opstream& ps, signed short sh);
friend opstream& operator << (opstream& ps, unsigned short sh);
friend opstream& operator << (opstream& ps, signed int i);
friend opstream& operator << (opstream& ps, unsigned int i);
friend opstream& operator << (opstream& ps, signed long 1);

Chapter 6, Persistent stream classes and macros : : 343

opstream class

pstream class

friend opstream& operator << (opstream& ps, unsigned long 1);
friend opstream& operator << (opstream& ps, float f);

friend opstream& operator << (opstream& ps, double d);

friend opstream& operator << (opstream& ps, long double d);
friend opstream& operator << (opstream& ps, TStreamableBase& t);

Inserts (writes) the given argument to the given ipstream object. The data
type of the argument determines the form of write operation employed.

objstrm.h

PointerTypes

Constructor

Destructor

bad

clear

eof

344

pstream is the base class for handling streamable objects.

Type definitions ‘ , ,

" enum PointerTypes{ptNull, ptIndexed, ptObject};

Enumerates object pointer types.

Public constructors and destructor

pstream(streambuf _FAR *buf);

This constructor creates a buffered pstream with the given buffer and sets
the bp data member to buf. The state is set to 0.

virtual ~pstream();

Destroys the pstream object.

Public member functions

int bad{) const;

Returns nonzero if an error occurs.

void clear(int aState = 0);

Set the stream state to the given value (defaults to 0).
int eof() const; o

Returns nonzero on end of stream.

Library Reference

fail

good

rdbuf

rdstate

Operator void *()

Operator ! ()

bp

state

Constructor

pstream class

int fail() const;

Returns nonzero if a stream operation fails.

int good() const;

Returns nonzero if no state bits are set (that is, if no errors occurred).
streambuf _FAR * rdbuf() const;

Returns the pb pointer to this stream’s assigned buffer.

See also: pstream::pb

int rdstate() const;

Returns the current state value.

Operators

operator void *() const;

Overloads the pointer-to-void cast operator. Returns 0 if the operation has
failed (that is, if pstream::fail returned nonzero); otherwise, returns nonzero.

See also: pstream::fail
int operator ! () const;
Overloads the NOT operator. Returns the value returned by pstream::fail.

See also: pstream::fail

Protected data members

streambuf _FAR *bp;

Pointer to the stream buffer.

int state;

Format state flags. Use rdstate to access the current state.

See also: pstream::rdstate

Protected constructors

pstream();

Chapter 6, Persistent stream classes and macros : 345

pstream class

init

setstate

This form of the constructor does not initialize the buffer pointer bp. Use
init and setstate to set the buffer and state.

Protected member functions

void init (streambuf _FAR *sbp);

Initializes the stream: sets state to 0 and bp to sbp.
void setstate(int b);

Updates the state data member with state |= (b & 0xFF).

TStreamableBase class | objstrm.h

Type_id

Destructor

CastablelD -

346

class _EXPCLASS TStreamableBase : public TCastable

Classes that inherit from TStreamableBase are known as streamable classes,
meaning their objects can be written to and read from streams. If you want
to develop your own streamable classes, you should make sure that
TStreamableBase is somewhere in their ancestry. Using an existing
streamable class as a base, of course, is an obvious way of achieving this.
Don’t be afraid to use multiple inheritance to derive a class from

- TStreamableBase if your class must also fit into an existing class hierarchy.

Type definitions

typedef const char *Type_id;

- Describes type identifiers.

Public destructor"

virtual ~TStreamableBase() {};

Destroys the TStreamableBase object.

Public member functions

virtual Type_id CastableID() const = 0;

Library Reference

FindBase

MostDerived

TStreamableBase class

Provides support for typesafe downcasting. Returns a string containing the
type name. :

virtual void *FindBase(Type_id id) const;
Returns a pointer to the base class.
virtual void *MostDerived() const = 0;

Returns a void pointer to the actual streamed object.

TStreamableClass class : streambl.h -

Constructor

Used by the private database class and pstream in streamable class
registration.

Public constructor

TStreamableClass (const char *n, BUILDER b, int d=NoDelta, ModuleId
mid=GetModuleId());

Creates a TStreamableClass object with the given name (1) and the given
builder function (b), then registers the type. Each streamable class, for
example TClassname, has a build member function of type BUILDER. For
type-safe object-stream 1/O, the stream manager needs to access the names
and the type information for each class. To ensure that the appropriate
functions are linked into any application using the stream manager, you
must provide a reference such as:'

TStreamableClass RegClassName;

where TClassName is the name of the class for which objects need to be
streamed. (Note that RegClassName is a single identifier.) This not only
registers TClassName (telling the stream manager which build function to
use), it also automatically registers any dependent classes. You can register
a class more than once without any harm or overhead.

Invoke this function to provide raw memory of the correct size into which
an object of the specified class can be read. Because the build procedure
invokes a special constructor for the class, all virtual table pointers are
initialized correctly.

Chapter 6, Persistent stream classes and macros: ' ' 347

TStreamableClass class

The distance, in bytes, between the base of the streamable object and the
beginning of the TStreamableBase component of the object is d. Calculate d
by using the _ _DELTA macro. For example,

TStreamableClass RegTClassName = TStreamableClass("TClassName",
TClassName::build, _ _DELTA(TClassName));

See also: TStreamableBase, ipstream, opstream

Friends

The classes opstream and ipstream are friends of TStreamableClass.

TStreamer class | objstrm.h

GetObject

Constructor

Read

StreamableName

348

class _BIDSCLASS _RTTI TStreamer

Base class for all streamable objects.

Public member functions

TStreamableBase *GetObject() const

Returns the address of the TStreamableBase component of the streamable
object.

Protected constructors

TStreamer (TStreamableBase *obj)}

Constructs the TStreamer object, and initializes the streamable object
pointer.

Protected member functions

virtual void *Read(ipstream&, uint32)} const = 0;

This pure virtual member function must be redefined for every streamable
class. It must read the necessary data members for the streamable class
from the supplied ipstream.

virtual const char *StreamableName() const = 0;

Library Reference

Write

TStreamer class

This pure virtual member function must be redefined for every streamable
class. StreamableName returns the name of the streamable class, which is
used by the stream manager to register the streamable class The name
returned must be a O-terminated string.

virtual void Write(opstream&) const = 0;

This pure virtual function must be redefined for every streamable class. It
must write the necessary streamable class data members to the supplied
opstream object. Write is usually implemented by calling the base class’s
Write (if any), and then inserting any additional data members for the
derived class.

_DELTA macro | streambl.h

#define _ DELTA(d) (FP_OFF((TStreamable *)(d *)1)-1)

Calculates the distance, in bytes, between the base of the streamable object
and the beginning of the TStreamableBase component of the object.

DECLARE_STREAMABLE macro objstrm.h

DECLARE_STREAMABLE (exp, cls, ver)

The DECLARE_STREAMABLE macro is used within a class definition to
add the members that are needed for streaming. Because it contains access
specifiers, it should be followed by an access specifier or be used at the end
of the class definition. The first parameter should be a macro, which in turn
should conditionally expand to either __import or __export, depending on

‘whether or not the class is to be imported or exported from a DLL. The

second parameter is the streamable class name. The third parameter is the
object version number. DECLARE_STREAMABLE is defined as follows:

#define DECLARE_STREAMABLE(exp, cls, ver)
DECLARE_CASTABLE
DECLARE_STREAMER (exp, cls, ver);
DECLARE_STREAMABLE_OPS(cls); -
DECLARE_STREAMABLE_CTOR(cls)

P

See also: Chapter 9 in the Programmer’s Guide

Chapter 6, Persistent stream classes and macros 349

DECLARE_STREAMABLE_FROM_BASE macro

DECLARE_STREAMABLE_FROM_BASE macro objsti‘m.h

DECLARE_STREAMABLE_FROM_BASE (exp, cls, ver)

DECLARE_STREAMABLE_FROM_BASE is used in the same way as
DECLARE_STREAMABLE; it should be used when the class being defined
can be written and read using Read and Write functions defined in its base

~ class without change. This usually occurs when a derived class overrides

virtual functions in its base or provides different constructors, but does not
add any data members. (If you used DECLARE_STREAMABLE in this
situation, you would have to write Read and Write functions that merely
called the base’s Read and Write functions. Using
DECLARE_STREAMABLE_FROM_BASE prevents this.)

DECLARE_STREAMABLE_FROM_BASE is defined as follows:

#define DECLARE_STREAMABLE_FROM_BASE(cls, base, ver)
DECLARE_CASTABLE ,
. DECLARE_STREAMER_FROM_BASE (exp, cls, base, ver);
DECLARE_STREAMABLE_OPS{ cls); -
DECLARE_STREAMABLE_CTOR(cls)

P

| DECLARE_ABSTRACT__.STREAMABLE macro objstrm.h

DECLARE_ABSTRACT_STREAMABLE (exp, cls, ver)

This macro is used in an abstract class. DECLARE_STREAMABLE doesn’t
work with an abstract class because an abstract class can never be
instantiated, and the code that attempts to instantiate the object (Build)
causes compiler errors. This macro expands to DECLARE_CASTABLE,
DECLARE_ABSTRACT_STREAMER, DECLARE_STREAMABLE_OPS,
and DECLARE_STREAMABLE_CTOR.

DECLARE_STREAMER macro | - objstrm.h

350

DECLARE_STREAMER (exp, ¢ls, ver)

- This macro defines a nested class within your streamable class; it contains

the core of the streaming code. DECLARE_STREAMER declares the Read
and Write function declarations, whose definitions you must provide, and
the Build function that calls the TStreamableClass constructor. See
DECLARE_STREAMABLE for an explanation of the parameters.

Library Reference

DECLARE_STREAMER_FROM_BASE macro

DECLARE_STREAMER_FROM_BASE macro objstrm.h

DECLARE_STREAMER_FROM_BASE(exp, cls, base)

This macro is used by DECLARE_STREAMABLE_FROM_BASE. It declares
a nested Streamer class without the Read and Write functions. See
DECLARE_STREAMABLE for a description of the parameters.

DECLARE_ABSTRACT_STREAMER macro ~ objstrm.h

define DECLARE_ABSTRACT_STREAMER(exp, cls, ver)

This macro is used by DECLARE_ABSTRACT_STREAMABLE. It declares a
nested Streamer class without the Build function. See
DECLARE_STREAMABLE for an explanation of the parameters.

DECLARE_CASTABLE macro | objstrm.h

DECLARE_CASTABLE

This macro provides declarations that provide a rudimentary typesafe
downcast mechanism. This is useful for compilers that don’t support run- -
time type information.

DECLARE_STREAMABLE_OPS macro objstrm.h

DECLARE_STREAMABLE_OPS (cls)

Declares the inserters and extractofs. For template classes,
DECLARE_STREAMABLE_OPS must use class<...> as the macro
~argument; other DECLARES take only the class name.

DECLARE_STREAMABLE_CTOR macro objstrm.h

DECLARE_STREAMABLE_CTOR (c1s)

Declares the constructor called by the Streamer::Build function.

Chapter 6, Persistent stream classes and macros 351

IMPLEMENT_STREAMABLE macros

IMPLEMENT_STREAMABLE macros - | | objstrm.h

IMPLEMENT_STREAMABLE (cls)

IMPLEMENT STREAMABLEI (cls, basel)

IMPLEMENT STREAMABLE?2 (cls, basel, base2)

IMPLEMENT STREAMABLE3 (cls, basel, base2, base3)
IMPLEMENT_STREAMABLE4 (cls, basel, base2, base3, based)
IMPLEMENT STREAMABLES (cls, basel, base2, base3, based4, baseb)

The IMPLEMENT_STREAMABLE macros generate the registration object
for the class via IMPLEMENT_STREAMABLE_CLASS, and generate the
various member functions that are needed for a streamable class via
IMPLEMENT_ABSTRACT_STREAMABLE.

IMPLEMENT_STREAMABLE is used when the class has no base classes
other than TStreamableBase. Its only parameter is the name of the class.
The numbered versions (IMPLEMENT_STREAMABLE],
IMPLEMENT_STREAMABLE?2, and so on) are for classes that have bases.
Each base class, including all virtual bases, must be listed in the
IMPLEMENT_STREAMABLE macro invocation.

The individual components comprising these macros can be used
separately for special situations, such for as custom constructors.

IMPLEMENT_STREAMABLE_CLASS macro objstrm.h

IMPLEMENT_STREAMABLE_CLASS(cls)

Constructs a TStreamableClass class instance.

IMPLEMENT_STREAMABLE_CTOR macros . objstrm.h

352

IMPLEMENT STREAMABLE_CTOR (cls)

IMPLEMENT STREAMABLE_CTORI1(cls, basel)

IMPLEMENT STREAMABLE_CTOR2(cls, basel, base2)

IMPLEMENT STREAMABLE_CTOR3(cls, basel, base2, base3)

IMPLEMENT STREAMABLE_CTOR4 (cls, basel, base2, base3, based)
IMPLEMENT. STREAMABLE_CTORS (cls, basel, base2, base3, based, base5)

Defines the constructor called by the Build function. All base classes must
be listed in the appropriate macro. ‘

' Library Reference

IMPLEMENT_STREAMABLE_FOIN I'tEH macro

IMPLEMENT_STREAMABLE_POINTER macro objstrm.h

IMPLEMENT STREAMABLE_POINTER (cls)

Creates the instance pointer extraction operator (>>).

IMPLEMENT_CASTABLE_ID macro | objstrm.h

IMPLEMENT_CASTABLE_ID(cls)

Sets the typesafe downcast identifier.

IMPLEMENT_CASTABLE macros , objstrm.h

IMPLEMENT_CASTABLE(cls)

IMPLEMENT_CASTABLEL(cls)
IMPLEMENT_CASTABLE2(cls)
IMPLEMENT_CASTABLE3 (cls)
IMPLEMENT_CASTABLE4(cls)
IMPLEMENT_CASTABLES5(cls)

These macros implement code that supports the typesafe downcast
mechanism.

IMPLEMENT_STREAMER macro objstrm.h

IMPLEMENT STREAMER(cls)

Defines the Streamer constructor.

IMPLEMENT_ABSTRACT_STREAMABLE macros objstrm.h

IMPLEMENT_ABSTRACT STREAMABLE(cls)
IMPLEMENT_ABSTRACT_STREAMABLEl{ cls)
IMPLEMENT_ABSTRACT STREAMABLE2{ cls)
IMPLEMENT_ABSTRACT_STREAMABLE3(cls)
IMPLEMENT_ABSTRACT_STREAMABLE4 (cls)
IMPLEMENT _ABSTRACT_STREAMABLES(cls)

-Chapter 6, Persistent stream classes and macros , 353

IMPLEMENT_ABSTRACT_STREAMABLE macros

This macro expands to IMPLEMENT_STREAMER (which defines the
Streamer constructor), IMPLEMENT_STREAMABLE_CTOR (which defines
the TStreamableClass constructor), and :
IMPLEMENT_STREAMABLE_POINTER (which defines the instance
pointer extraction operator).

IMPLEMENT_STREAMABLE_FROM_BASE macro objstrm.h

354

IMPLEMENT_STREAMABLE_FROM_BASE(cls, basel)

This macro expands to IMPLEMENT_STREAMABLE_CLASS (which
constructs a TStreamableClass instance),
IMPLEMENT_STREAMABLE_CTOR1 (which defines a one base class

~ constructor that is called by Build),