
oran ++

Library Reference

Borland® C++
Version 4.0

Borland may have.patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1987, 1993 by Borland International. All rights reserved. All Borland products
are trademarks or registered trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95067-3249

PRINTED IN THE UNITED STATES OF AMERICA

1 EOR993
9394959697-9876543
Wi

Contents

Introduction 1 acos, acosl 28
alloca .· 29

Chapter 1 Library cross-reference 3 asctime 30
Reasons to access the run-time library source asin, asinl 30
code 3 assert ',' 31
The run-time libraries 4 atan, atanl 31

The static libraries : 4 atan2, atan21 ' 32
The dynamic-link libraries 6 atexit 33

The Borland C++ header files 7 atof, _atold 33
Library routines by category 9 atoi 34

C++ prototyped routines 9 atol 35
Classification routines 10 atold 35
Console I/O routines 10 bdos 35
Conversion routines 10 bdosptr , 36
Diagnostic routines 11 _beginthread 37
Directory control routines 11 _beginthreadNT 37
EasyWin routines 11 biosequip 39
Inline routines 12 _bios_equiplist 40
Input / output routines 12 bioskey 41
Interface routines 13 biosmemory 42
International locale API routines 14 bios memsize 42
Manipulation routines 14 biosthne : 43
Math routines ; 15 _bios_timeofday 43
Memory routines 16 bsearch " 44
Miscellaneous routines 16 cabs, cabsl 45
Obsolete definitions 16 calloc 46
Process control routines 17 ceil, ceill 46
Time and date routines 18 c exit " : 47
Variable argument list routines 18 - c;xit 47

Chapter 2 The main function 19 ~gets 48

19 chain intr 48 Arguments to main - - 49
Examining arguments to main 20 chdir 49

21 chdrive : Wildcard arguments - 50
D GS OBJ 21 chmod

Linking with WIL AR.) 22 ~hmod ~ 50
Using -p (Pascal calling conventions 22 chsize 51
The value main returns. 51
Passing file information to child processes 22 _clear87 " 52

23 clearerr Multithread programs. 52
clock '" '.'

Chapter 3 Run-time functions 25 close 53
Sample function entry " 25 ~lose " , 53
abort 27 closedir 53
abs 27 ,._ clreol 54
access 28 clrscr 54

_control87 55 eof 86
cos, cosl 55 execl, execle, execlp, execlpe, execv,
cosh, coshl 56 execve,execvp,execvpe , ... 87
country 57 _exit 89
cprintf 58
cputs '" .. 59

exit 90
exp, expl 90

_creat 59 _expand 91
creat 59 fabs, fabsl 91
creatnew 60 farcalloc 92
creattemp 61 farfree 92
_crotl, _crotr 62 farmalloc 93
cscanf 63 farrealloc 93
ctime ' 63 fclose 94
ctrlbrk 64 fcloseall 94
cwait 65 fcvt 95
delline 66 fdopen 95
difftime 66 feof 96
disable, _disable, enable, _enable 67 ferror 97
div 67 fflush 97
_dos_close 68 fgetc ... ',' 98
_dos_commit 68 fgetchar . 98
_dos_creat 69 fgetpos " 98
_dos_creatnew 69 fgets .. , 99
dosexterr 70 filelength 99
_dos_findfirst 71 fileno 100
_dos_findnext 72 findfirst 100
_dos_getdate,_dos_setdate, getdate, setdate .. , 73 findnext , 102
_dos~etdiskfree 74 floor, floorl ' 103
_dos~etdrive, _dos_setdrive 75 flushall 103
_dos~etfileattr, _dos_setfileattr 75 _fmemccpy 103
_dos_getftime, _dos_setftime 76 _fmemchr 104
_dos_gettime, _dos_settime 77 _fmemcmp : 104
_dos~etvect 78 _fmemcpy 104
_dos_open 78 _fmemicmp 104
_dos_read 79 _fmemmove 104
_dos_setdate 80 _fmemset' 104
_dos_setdrive 80 fmod, fmodl 104
_dos_setfileattr 80 _fmovmem 105
_dos_setftime 81 fnmerge 105
_dos_settime 81 fnsplit 106
_dos_setvect 81 fopen 107
dostounix 81 FP _OFF, FP _SEG ~ 108
_dos_write 82 _fpreset ' ' 108
dup : 82 fprintf 109
dup2 ' 83 fputc 110
ecvt , 84 fputchar 110
__ emit_ _ 84 fputs ' 110
enable, _enable 86 fread 111
_endthread 86 free 111

freopen 112 _heap set 140
frexp, frexpl 113 heapwalk 140
fscanf 113 _heapwalk 141
fseek 114 highvideo 141
fsetpos 115 hypot, hypotl 141
_fsopen 115 _InitEasyWin 142
fstat, stat 116 inp 142
_fstr* 118 inport 143
ftell 118 inportb 143
ftime 119 inpw l44
_fullpath 120 insline 144
fwrite 120 int86 145
gcvt 121 int86x 145
geninterrupt 121 intdos 146
getc 122 intdosx ~ . . 147
getcbrk 122
getch : 122

intr " 147
ioctl 148

getchar 123 isalnum 150
getche 123 isalpha 150
getcurdir 124 isascii . 150
getcwd 124 isatty 151
getdate 125 iscntrl 151
~etdcwd 125 isdigit 152
getdfree 126 isgraph 152
getdisk, setdisk 126 islower . 152
getdta 127 isprint 153
getenv 127 ispunct . 153
getfat 128 isspace ~ . . . 154
getfatd 128 isupper 154
getftime, setftime 129 isxdigit ' 154
getpass . ' 130 itoa 155
getpid 130 kbhit 155
getpsp 130 labs 156
gets 131 ldexp, ldexpl 156
gettext 131 ldiv 157
gettextinfo 132 lfind 157
gettime, settime 133 localeconv . 158
getvect, setvect 134 local time 160
getverify 134 lock 161
getw 135 locking 161
gmtime 135 log, logl ' 162
gotoxy 136 log10, loglOl ,163
_heapadd 137 longjmp 164
heapcheck 137 lowvideo 165
heapcheckfree 137 _lrotl, _lrotr ' 165
heapchecknode 138 lsearch 166
_heapchk 138 lseek 166
heapfillfree 139 ltoa 167
_heapmin 139 _makepath 168

iii

malloc 169 puttext 203
_matherr,_matherrl 169 putw 204
max 171 qsort 204
mblen ' 172 raise 205
mbstowcs 172 rand 206
mbtowc 173 random 207
memccpy, _fmemccpy 174 randomize 207
memchr,_fmemchr 174 _read 207
memcmp,_fmemcmp 175 read 207
memcpy, _fmemcpy 175 readdir 208
memicmp, jmemicmp 176 realloc 209
memmove, _fmemmove 176 remove 210
memset, _fmemset 177 rename 210
min ' 177 rewind 211
mkdir 178 rewinddir 211
MK_FP 178 rmdir 212
mktemp 179 rmtmp 212
mktime 179 _rotl, _rotr 213
modf, modfl 180 _rtl_chmod 213
movedata ' 180 _rtl_close 214
movmem, _fmovmem ; 181 _rtl_creat 214
movetext 181 _rtl_heapwalk 215
_msize 182 _rtl_open 216
normvideo 182 _rtl_read 217
offsetof 182 _rtl_write ,218
_open 183 scanf 219
open 183 _searchenv 22,6
opendir 185 searchpath 227
outp 185 _searchstr 227
oUtport, outportb 186 segread 228
outpw 186 setbuf 228
parsfnm 187 setcbrk . ',' 229
_pclose 187 ...:..,setcursortype : 230
peek , 188 setda te 230
peekb 188 setdisk 230
perror : 189 setdta 230
_pipe 190 setftime 231
poke , .191 setjmp 231
pokeb 192 setlocale 232
poly, polyl 192 setmem 235
_popen 192 setmode 235
pow, powl 193 settime 236
pow10, pow10l 194 setvbuf 236
printf 195 setvect 237
putc 201 setverify 237
putch 201 signal 237
putchar 202 sin, sinl 241
putenv 202 sinh, sinhl 241
puts : 203 sleep 242

iv

sopen 242 system 272
spawnl, spawnle, spawnlp, spawnlpe, spawnv, tan, tanl 273
spawnve, spawnvp, spawnvpe 244 tanh, tanhl 273
_splitpath 247 tell 274
sprintf 248 tempnam 274
sqrt, sqrtl 249 textattr 275
srand 249 textbackground , 277
sscanf . " 250 textcolor 278
stackavail 250 textmode 279
stat ~ 251 time 280
_status87 251 tmpfile : ,280
stime 251 tmpnam 281
stpcpy 251 to ascii 282
strcat, _fstrcat 252 _tolower 282
strchr, _fstrchr 252 tolower 282
strcmp, '_fstrcmp 253 _toupper 283
strcmpi 253 toupper 283

. strcoll 254 tzset 283
strcpy, _fstrcpy 255 ultoa 285
strcspn, _fstrcspn 255 umask 285
_strdate 255 ungetc 286
strdup, _fstrdup 256 ungetch 286
_strerror 256 unixtodos 287
strerror 257 unlink 287
strftime 257 unlock 288
stricmp, _fstricmp 259 utime 288
strlen, _fstrlen 260 va_arg,va_end,va_start 289
strlwr, _fstrlwr 260 vfprintf 290
strncat, _fstmcat 261 vfscanf 290
strncmp, _fstmcmp 261 vprintf 291
strncmpi 262 vscanf 292
strncpy, _fstrncpy 262 vsprintf ~ , 293
stmicmp, _fstmicmp 263 vsscanf 293
strnset, _fstmset 263 wait 294
strpbrk, _fstrpbrk 264 wcstombs 295
strrchr, _fstrrchr 264 wctomb 295
strrev, _fstrrev 265 wherex 296
strset, _fstrset 265 wherey 296
strspn, _fstrspn 266 window 297
strstr, _fstrstr 266 _write 297
_strtime 266 write 298
strtod, _strtold 267
strtok, _fstrtok 268
strtol 269
_strtold 270
strtoul 270
strupr, jstrupr 270
strxfrm 271
swab 272

Chapter 4 Global variables 299
_8087 299
_argc , 299
_argv 300
_ctype 300
_daylight " " 300
_directvideo 301

v

_environ 301
ermo, _doserrno, _sys_errlist, _sys_nerr 302
jloatconvert 304
_fmode 305
_new_handler 305
_osmajor, _osminor, _osversion 306
_psp 307
_threadid 307
__ throwExceptionName, __ throwFileName,
__ throwLineNumber ' 307
_timezone 308
_tzname 308
_version 308
_ wscroll 309

Chapter 5 The C++ iostream classes 311
conbuf class 311

Public constructor 311
Public member functions 311

constream class 313
Public constructor 313
Public member functions 313

filebuf class 313
Public constructors 314
Public data members 314
Public member functions 314

fstream class 315
Public constructors 316
Public member functions 316

fstreambase class 316
Public constructors 316
Public member functions 317

ifstream class 317
Public constructors 317
Public member functions 318

ios class ; 318
Public data members , 318
Protected data members 319
Public constructor 320
Protected constructor 320
Public member functions 320
Protected member functions 322

iostream class 322
Public constructor 322

iostream_ withassign class 322
Public constructor ' .. 323
Public member functions 323

istream class 323
Public constructor 323

vi

Public member functions 323
Protected member functions 325

istream_ withassign class 325
Public constructor 325
Public member functions 325

istrstream class 325
Public constructors 326

of stream class . 326
Public constructors 326
Public member functions 327

ostream class 327
Public constructor 327
Public member functions 327

ostream_withassign class 328
Public constructor 328
Public member functions 328

ostrstream class 328
Public constructors 328
Public member functions 329

streambuf class 329
Public constructors 329
Public member functions 330
Protected member functions 331

strstreambase class 332
Public constructors 332
Public member functions 332

strstreambuf class 332
Public constructors 333
Public member functions 333

strstream class 334
Public constructors 334
Public member function 334

Chapter 6 Persistent stream classes and
macros 335

The persistent streams class hierarchy 335
fpbase class 336

Constructors 336
Public member functions 336

ifpstream class 336
Public constructors 337
Public member functions 337

ipstream class 337
Public constructors 337
Public member functions 337
Protected constructors 339
Protected member functions 339
Friends 340

ofpstream class 340

Public constructors 340
Public member functions 341

opstream class 341
Public constructors and destructor 341
Public member functions 341
Protected constructors 343
Protected member functions 343
Friends 343

pstream class 344
Type definitions 344
Public constructors and destructor 344
Public member functions 344
Operators 345
Protected data members 345
Protected constructors 345
Protected member functions 346

TStreamableBase class 346
Type definitions 346
Public destructor , 346
Public member functions 346

TStreamableClass class 347
Public constructor 347
Friends ' 348

TStreamer class 348
Public member functions 348
Protected constructors 348
Protected member functions 348

__ DELTA macro 349
DECLARE_STREAMABLE macro 349
DECLARE_STREAMABLE_FROM_BASE
macro 350
DECLARE_ABSTRACT_STREAMABLE
macro 350
DECLARE_STREAMER macro 350
DECLARE_STREAMER_FROM_BASE macro . 351
DECLARE_ABSTRACT_STREAMER macro .. 351
DECLARE_ CASTABLE macro 351
DECLARE_STREAMABLE_ OPS macro 351
DECLARE_STREAMABLE_CTOR macro 351
IMPLEMENT_STREAMABLE macros 352
IMPLEMENT_STREAMABLE_CLASS macro . 352
IMPLEMENT_STREAMABLE_CTOR macros . 352
IMPLEMENT_STREAMABLE_POINTER
macro 353
IMPLEMENT_CASTABLE_ID macro 353
IMPLEMENT_ CASTABLE macros 353
IMPLEMENT_STREAMER macro 353
IMPLEMENT_ABSTRACT_STREAMABLE
macros 353

IMPLEMENT_STREAMABLE_FROM_BASE
macro 354

Chapter 7 The C++ container classes 355
TMArrayAsVector template .. '" 355

Type definitions 355
Public constructors 355
Public member functions 356
Protected member functions 358
Operators· 359

TMArrayAsVectorIterator template 359
Public constructors 359
Public member functions 359
Operators 359

TArrayAsVector template 360
Public constructors 360

TArrayAsVectorIterator template 360
Public constructors 360

TMIArrayAsVector template '" .. 360
Type definitions . 360
Public constructors 361
Public member functions 361
Protected member functions 363
Operators 364

TMIArrayAsVectorIterator template 364
Public constructors 364
Public member functions 364
Operators 365

TIArrayAsVector template 365
Public constructors 365

TIArrayAsVectorIterator template 365
Public constructors 365

TMSArray As Vector template 366
Public constructors 366

TMSArrayAsVectorIterator template 366
Public constructors 366

TSArrayAsVector template 366
Public constructors 366

TSArrayAsVectorIterator template 367
Public constructors 367

TISArray As Vector template 367
Public constructors 367

TISArrayAsVectorIterator template 367
Public constructors 367

TMISArrayAsVector template 368
Public constructors 368

TMDDAssociation template 368
Public constructors 368
Public member functions 368

vii

Operators 369 Operators 380
TDDAssociation template 369 TIBinarySearchTreelmp template 381

Public constructors 369 Public member functions , 381
TMDIAssociation template 369 Protected member functions 382

Public constructors 370 TIBinarySearchTreeIteratorImp template 382
Public member functions 370 Public constructors 382
Operators 370 Public member functions 382

TDIAssociation template 370 Operators 382
Public constructors 370 TMDequeAsVector template 383

TMIDAssociation template 371 Type definitions 383
Protected data members 371 Public constructors 383
Public constructors 371 Public member functions 383
Public member functions 371 Protected data members , 385
Operators 372 Protected member functions 385

TIDAssociation template ~ 372
Public constructors " 372

TMDequeAsVectorIterator template 385
Public constructors 386

TMIIAssociation template 372 Public member functions . ; 386
Public constructors 372 Operators 386
Public member functions 373 TDequeAs Vector template 386
Operators 373 Public constructors 386

TIIAss~ciation template 373 TDequeAsVectorIterator template 387
Public constructors 373 Public constructors 387

TMBagAsVector template 374 TMIDequeAs Vector template 387
Type definitions 374 Type definitions 387
Public constructors 374 Public constructors 387
Public member funct,ions 374 Public member functions 387
Protected member functions 375 TMIDequeAsVectorIterator template 389

TMBagAsVectorIterator template 375 Public constructors 389
Public constructors 375 TIDequeAs Vector template 389

TBagAsVector template 376 Public constructors 389
Publi<; constructors 376 TIDequeAs VectorIterator template 390

TBagAsVectorIterator template 376 Public constructors 390
Public constructors 376 TMDequeAsDoubleList template 390

TMIBagAsVector template 376 Type definitions 390
Type definitions ·376 Public member functions 390
Public constructors 377 TMDequeAsDoubleListIterator template 392
Public member functions 377 Public constructors 392

TMIBagAsVectorIterator template 378 TDequeAsDoubleList template 392
Public constructors .. ; 378 TDequeAsDoubleListIterator template 392

TIBagAsVector template 378 Public constructors 392
Public constructors 378 TMIDequeAsDoubleList template 392

TIBagAsVectorIterator template 379 Type definitions 392
Public constructors 379 Public member functions 393

TBinarySearchTreelmp template 379 TMIDequeAsDoubleListIterator template 394
Public member functions 379 Public constructors 394
Protected member functions 380 TIDequeAsDoubleList template 395

TBinarySearchTreeIteratorImp template 380 TIDequeAsDoubleListIterator template 395
Public constructors 380 Public constructors 395
Public member functions 380 TMDictionaryAsHashTable template 395

viii

Protected data members 395 Public constructors 407
Public constructors 395 TMIDoubleListlmp template 407
Public member functions 395 Type definitions 407

TMDictionary AsHashTableIterator template .. 396 Public member functions 407
Public constructors 396 Protected member functions ' 409
Public member functions 396 TMIDoubleListIteratorImp template 409
Opera tors 397 Public constructors 409

TDictionaryAsHashTable template 397 Public member functions 409
Public constructors 397 Operators 409

TDictionary AsHashTableIterator template 397 TIDoubleListlmp template 410
Public constructors 398 TIDoubleListIteratorImp template 410

TMIDictionary AsHashTable template 398 Public constructors 410
Public constructors 398 TMISDoubleListlmp template 410
Public member functions 398 Protected member functions 410

TMIDictionary AsHashTableIterator template . 399 TMISDoubleListIteratorImp template 411
Public constructors 399 Public constructors 411
Public member functions 399 TISDoubleListlmp template 411
Operators 399 TISDoubleListlteratorImp template 411

TIDictionaryAsHashTable template 400 Public constructors 411
Public constructors 400 TMHashTablelmp template 411

TIDictionary AsHashTableIterator template ... 400 Public constructors and destructor 411
Public constructors 400 Public member functions 412

TDictionary template 400 TMHashTableIteratorImp template 412
TDictionaryIterator template 400 Public constructors and destructor 412

Public constructors 401 Public member functions 413
TMDoubleListElement template 401 Operators 413

Public data members 401 THashTablelmp template 413
Public constructors 401 Public constructors , 413
Operators 401 THashTableIteratorImp template 414

TMDoubleListImp template 402 Public constructors 414
Type definitions 402 TMIHashTablelmp template 414
Public constructors 402 Public constructors 414
Public member functions 402 Public member functions , 414
Protected data members 403 TMIHashTableIteratorImp template' 415
Protected member functions 403 Public constructors ' 415

TMDoubleListIteratorImp template 404 Public member functions ; 415
Public constructors 404 Operators' " 415
Public member functions 404 TIHashTablelmp template 416
Operators 404 Public constructors 416

TDoubleListlmp template : '" 405 TIHashTableIteratorImp template 416
Public constructors 405 Public constructors 416

TDoubleListIteratorImp template 405 TMListElement template 416
Public constructors 405 Public data members 416

TMSDoubleListlmp template 406 Public constructors 417
Protected member functions 406 Operators 417

TMSDoubleListIteratorImp template 406 TMListImp template 417
Public constructors , 406 Type definitions 417

TSDoubleListlmp template 406 Public constructors 417
TSDoubleListIterato~Imp template 407 Public member functions 418

ix

Protected data members 419 Public constructors 429
Protected member functions 419 TMQueueAsDoubleList template 429

TMListIteratorImp template 419 Public member functions 429
Public constructors 419. TMQueueAsDoubleListIterator template 431
Public member functions 419 Public constructors 431
Operators 419 TQueueAsDoubleList template 431

TListImp template 420 TQueueAsDoubleListIterator template 431
TListIteratorImp template 420 Public constructors 431

Public constructors 420 TMIQueueAsDoubleList template 431
TMSListImp template 420 Public member functions 431
TMSListIteratorImp template 420 TMIQueueAsDoubleListIterator template 432

Public constructors 421 Public constructors 433
TSListImp template 421 TIQueueAsDoubleList template 433
TSListIteratorImp template 421 TIQueueAsDoubleListIterator template 433
TMIListImp template 421 Public constructors 433

Type definitions 421 TQueue template 433
Public member functions 421 TQueueIterator template 433
Protected member functions 422 TMSetAsVector template ; 433

TMIListIteratorImp template 422 Public constructors 434
Public constructors 423 Public member functions 434
Public member functions 423 TMSetAsVectorIterator template 434
Operators 423 Public constructors 434

TIListImp template 423 TSetAsVector template 434
TIListIteratorImp template 423 Public constructors 434

Public constructors 423 TSetAsVectorIterator template 435
TMISListImp template 424 Public constructors 435

Public member functions 424 TMISetAsVector template 435
TMISListIteratorImp template 424 Public constructors 435

Public constructors 424 Public member functions 435
TISListImp template 424 TMISetAsVectorIterator template 435
TISListIteratorImp template 425 Public constructors 436

Public constructors 425 TISetAs Vector template 436
TMQueueAsVector template 425 Public constructors 436

Public constructors 425 TISetAsVectorIterator template 436
Public member functions 425 Public constructors 436

TMQueueAsVectorIterator template 426 TSet template 436
Public constructors 426 TSetIterator template 436

TQueueAs Vector template 427 TMStackAsVector template 437
Public constructors 427 Type definitions 437

TQueueAs VectorIterator template 427 Public constructors 437
Public constructors 427 Public member functions 437

TMIQueueAsVector template 427 TMStackAsVectorIterator template 438
Public constructors 427 Public constructors 438
Public member functions 427 TStackAsVector template 439

TMIQueueAsVectorIterator template 428 Public constructors 439
Public constructors 429 TStackAsVectorIterator template 439

TIQueueAsVector template 429 Public constructors 439
Public constructors 429 TMIStackAs Vector template 439

TIQueueAsVectorIterator template 429 Type definitions 439

x

Public constructors 440 Public constructors 452
Public member functions 440 TMSVectorIteratorImp template 452

TMIStackAsVectorIterator template 441 Public constructors 452
Public constructors 441 TSVectorImp template 452

TIStackAsVector template 441 Public constructors 452
Public constructors 441 TSVectorIteratorImp template 453

TIStackAsVectorIterator template 442 Public constructors 453
Public constructors 442 TMIVectorImp template 453

TMStackAsList template 442 Type definitions 453
TMStackAsListIterator template 442 Public constructors 453

Public constructors 442 Public member functions 454
TStackAsList template 442 Operators 455
TStackAsListIterator template 443 TMIVectorIteratorImp template 455

Public constructors 443 Public constructors 455
TMIStackAsList template 443 Public member functions 455
TMIStackAsListIterator template 443 Operators 456

Public constructors 443 TIVectorImp template 456
TIStackAsList template 443 Public constructors 456
TIStackAsListIterator template 443 TIVectorIteratorImp template 456

Public constructors 444 Public constructors 456
TStack template 444 TMICVectorImp template 457
TStackIterator template 444 Public constructors ' 457
TMVectorImp template 444 Public member functions 457

Type definitions 444 Protected member functions 457
Public constructors 444 TMICVectorIteratorImp template 458
Public member functions 445 Public constructors 458
Operators 446 TICVectorImp template 458
Protected data members 446 Public constructors 458
Protected member functions 446 TICVectorIteratorImp template 458

TMVectorIteratorImp template 447 Public constructors 458
Public constructors 447 TMISVectorImp template 459
Public mmber functions 447 Public constructors 459
Operator~; 447 TMISVectorIteratorImp template 459

TVectorImp template 448 Public constructors 459
Public constructors 448 TISVectorImp template 460

TVectorIteratorImp template 448 Public constructors 460
Public constructors 448 TISVectorIteratorImp template 460

TMCVectorImp template 449 Public constructors 460
Public constructors 449 TShouldDelete class 460
Public member functions 449 Public data members 461
Protected data members 450 Public constructors : 461
Protected member functions 450 Public member functions 461

TMCVectorIteratorImp template 450 Protected member functions 461
Public constructors 450

TCVectorImp template 451
Public constructors 451

TCVectorIteratorImp template 451
Public constructors 451

TMSVectorImp template 451

Chapter 8 The C++ mathematical classes 463
bcd 463

Public constructors 464
Friend functions 465

complex 466

xi

Public constructors 466 Public constructors and destructor 492
Friend functions 466 Public member functions 493

Chapter 9 Class diagnostic macros 471
Default diagnostic macros 472
Extended diagnostic macros 473
Macro message output 475
Run-time macro control 475

Protected member functions 500
Operators 501
Related global operators and functions 504

TSubString class 505
Public member functions 505
Protected member functions ~ 505

Chapter 10 Run-time support 477
Bad_cast class .. " 477

Operators 505
TCriticalSection class ,............ 507

Bad_typeid class 477
set_new _handler function 477

Constructors and destructor 507
TCriticaISection::Lock class 507

set_terminate function 478 Public constructors and destructor 507
set_unexpected function 479
terminate function 479

TMutex class , ... 508
Public constructors and destructor 508

Type_info class 480
Public constructor 480

Operators 508
TMutex::Lock class 508

Operators 480
Public member functions 480

Public constructors 509
Public member functions " 509

unexpected function 481
xalloc class 481

TSync class 509
Protected constructors 510

Public constructors 481 Protected operators 510
Public member functions 481 TSync::Lock class 510

xmsg class '482
Public constructor 482

Public constructors and destructor 510
TThread class 510

Public member functions 482 Type definitions 511
Protected constructors and destructor 512

Chapter 11 C++ utility classes 483 Public member functions 512
TDate class 483 Protected member functions 513

Type definitions 483
Public constructors 484

Protected operators 513
TThread::TThreadError class 513

Public member functions 484
Protected member functions 486

Type definitions 514
Public member functions 514

Operators 487
TFileStatus structure 488

TTime type definitions 515
TTime class 515

TFile class 488 Public constructors 515
Public data members 488 Public member functions 515
Public constructors 490 Protected member functions 517
Public member functions 490 Protected data members 517

String class 492
Type definitions 492

Operators 517

Index 519

xii

Tables

1.1 Default run-time libraries 5
1.2 Summary of static run-time libraries 5
1.3 Summary of dynamic link libraries 7
1.4 Obsolete global variables 17
1.5 Obsolete function names 17

xiii

3.1 Locale monetary and numeric settings 158
3.2 These messages are generated in both Win 16

and Win 32. 189
3.3 These messages are generated only in

Win 32 190

Figures

6.1 Streamable class hierarchy 335

xiv

If you are developing
a 16-bit DOS-only

application, you can
also use the routines
described in the DOS

Reference

Introduction

Introduction

This manual contains definitions of the Borland C++ classes, nonprivate
class members, library routines, common variables, and common defined
types for windows programming.

If you're new to C or C++ programming, or if you're looking for informa­
tion on the contents of the Borland C++ manuals, see the introduction in
the User's Guide.

Here is a summary of the chapters in this manual:

Chapter 1: Library cross-reference provides an overview of the Borland
C++ library routines and header files. After describing the static and
dynamic-link libraries, this chapter lists the header files, and then groups
the library routines according to the tasks they commonly perform.

Chapter 2: The main function discusses arguments to main (including wild­
card arguments), provides some example programs, and describes Pascal
calling conventions and the value that main returns.

Chapter 3: Run-time functions is an alphabetical reference of Borland C++
library functions. Each entry gives syntax, portability information, an
operative description, and return values for the function, together with a
reference list of related functions. .

Chapter 4: Global variables defines and discusses Borland C++'s global
variables. You can use these to save yourself a great deal of programming
time on commonly needed variables (such as dates, time, error messages,
stack size, and so on).

Chapter 5: The C++ iostream classes describes the classes that provide
support for input and output in C++ programs.

Chapter 6: Persistent stream classes and macros describes the persistent
streams classes and macros.

Chapter 7: The C++ container classes describes the container classes
provided by Borland C++ such as array, stack, and linked list.

Chapter 8: The C++ mathematical classes describes how to use bcd and
complex classes.

Chapter 9: Class diagnostic macros describes the classes and macros that
support object diagnosticS.

2

Chapter 10: Run-time support describes functions and classes that let you
control the way your program executes at run time in case the program
runs out of memory or encounters some exception.

Chapter 11: C++ utility classes describes the c++ date, string, and time
classes.

Library Reference

If you are developing
a 16-bit DOS-only

application, you can
also use the routines
described in the DOS

Reference

c H A p T E R 1

Library cross-reference

This chapter provides an overview of the Borland C++ library routines and
header files. Library routines are composed of classes, functions, and
macros that you can call from within your C and C++ programs to perform
a wide variety of tasks. These tasks include low- and high-level I/O, string
and file manipulation, memory allocation, process control, data conversion,
mathematical calculations, and much more.

This chapter provides the following information:

• Names the static and dynamic-link libraries, files, and subdirectories
found in the LIB and BIN subdirectories, and describes their uses.

• Explains why you might want to obtain the source code for the Borland
C++ run-time library.

• Lists and describes the header files.

• Categorizes the library routines according to the type of tasks they
perform.

Reasons to access the run-time library source code

There are several good reasons you might want to obtain the source code
for the run-time library routines:

• A particular function you want to write might be similar to, but not the
same as, a Borland C++ function. With access to the run-time library
source code, you can tailor the library function to suit your needs, and
avoid having to write a separate function of your own.

• Sometimes, when you're debugging code, you might want to know more
about the internals of a library function.

• If you want to delete the leading underscores on C symbols, access to the
run-time library source code will let you do so.

• You can learn a lot from studying tight, professionally written library
source code.

Chapter 1, Library cross-reference 3

For all these reasons, and more, you will want to have access to the Borland
C++ run-time library source code. Because Borland believes strongly in the
concept of "open architecture," we have made the Borland C++ run-time
library source code available for licensing. All you have to do is fill out the
order form distributed with your Borland C++ package, include your pay­
ment, and we'll ship you the Borland C++ run-time library source code.

The run-time libraries

See the
ObjectWindows

Reference Guide for
information about the

libraries and DLLs
specific to

ObjectWindows.

The static
libraries

4

The run-time libraries are divided into static (OBJ and LIB) and dynamic­
link (DLL) versions. These different versions of the libraries are installed in
separate directories. The static and dynamic libraries are described in
separate tables.

Several versions of the run-time library are available. For example, there
are memory-model-specific versions, diagnostic versions, and 16- and 32-
bit-specific versions. There are also optional libraries that provide
mathematics, container, ObjectWindows development, and international
applications.

Here are some guidelines for selecting which run-time libraries to use:

• Segmented memory-model libraries are supported only in 16-bit
programs. Tiny and huge memory models are not supported.

II 16-bit DLLs are supported only in the large memory model.

• For 32-bit programs, only the flat memory model is supported.

• 32-bit console and GUI programs require different startup code.

III Multithread applications are supported only in 32-bit programs.

The static (OBJ and LIB) version of the Borland C++ run-time library is con­
tained in the LIB subdirectory of your installation. For each of the library
file names, the '?' character represents one of the four (compact, small,
medium, and large) distinct memory models supported by Borland. Each
model has its own library file and math file, containing versions of the
routines written for that particular model.

The following table identifies the default run-time libraries used with each
compiler. See the User's Guide for discussions about compiling and linking.

Library Reference

Table 1.1: Default run-time libraries

Compiler

BCC.EXE
BCC32.EXE
BCW.EXE
BCWS32.EXE

Application

16-bit Windows
Win32
Same as BCC.EXE
Same as BCC32.EXE

Default libraries

COWS.OBJ, CWS.L1B, MATHWS.L1B, IMPORT.L1B
COX32.0BJ, CW32.LlB, IMPORT32.LlB
Same as BCC.EXE
Same as BCC32.EXE

The following table lists the names and uses of the Borland C++ static
libraries; it also lists the operating system under which each library item is
available. See the User's Guide for information on linkers, linker options,
requirements, and selection of libraries.

Table 1.2: Summary of static run-time libraries

File name Application Use

Directory of BC41L1B

BIDSDI.LlB Win 16 16-bit diagnostic, dynamic BIDS import library for BIDS40D.DLL

BIDSI.LlB Win 16 16-bit dynamic BIDS import library for BIDS40.DLL

BIDSF.LlB Win32s, Win32 32-bit BIDS library

BIDSDF.LlB Win32s, Win32 32-bit diagnostic BIDS library

BIDSFI.L1B Win32s, Win32 32-bit dynamic BIDS import library for BIDS40F.DLL

BIDSDFI.LlB Win32s, Win32 32-bit diagnostic, dynamic BIDS import library for BIDS40DF.DLL

BIDSDB ?LlB Win 16 16-bit diagnostic BIDS library

BIDS?LlB Win 16 16-bit BIDS library

BWCC.LlB Win 16 16-bit import library for BWCC.DLL

BWCC32.L1B Win32s, Win32 32-bit import library for BWCC32.DLL

COD32.0BJ Win32s, Win32 32-bit DLL startup module

COD?OBJ Win 16 16-bit DLL startup module

COW32.0BJ Win32s, Win32 32-bit GUI EXE startup module

COW?OBJ Win 16 16-bit EXE startup module

COX32.0BJ Win32 32-bit console-mode EXE startup module

CRTDLL.LlB Win 16 16-bit dynamic import library for BC40RTL.DLL

CW32.LlB Win32s, Win32 32-bit GUI single-thread library

CW?LlB Win 16 16-bit library

CW321.L1B Win32s, Win32 32-bit single-thread, GUI, dynamic RTL import library for CW32.DLL

CW32MT.L1B Win32 32-bit GUI multithread library

Chapter 1, Library cross-reference 5

Table 1.2: Summary of static run-time libraries (continued)

CW32MTI.LlB Win32 32-bit multithread, GUI, dynamic RTL import library for CW32MT.DLL

IMPORT.L1B

IMPORT32.LlB

MATHW?LlB

W32SUT16.LlB

W32SUT32.LlB

OBSOLETE.LlB

Win 16

Win32s, Win32

Win 16

Win 16

Win32s

Win 16, Win32, Win32s

Directory of BC41L1BI16-BIT

FILES.C Win 16

FILES2.C

MATHERR.C

MATHERRL.C

Win 16

Win 16

Win 16

Directory of BC41L1BI32-BIT

FILES.C Win32s, Win32

FILES2.C

FILEINFO.OBJ

GP.OBJ

MATHERR.C

MATHERRL.C

Win32s, Win32

Win32s, Win32

Win32s, Win32

Win32s, Win32

Win32s, Win32

WILDARGS.OBJ Win32

Directory of BC41L1BISTARTUP

BUILD-CO.BAT Win 16

COD.ASM Win 16

COW.ASM

RULES.ASI

Win 16

Win 16

16-bit import library for Windows 3.1

32-bit import library; use with IMPRTW32.LlB

16-bit math libraries

16-bit universal thunking library

32-bit universal thunking library

Provides obsolete global variables.

Increases the number of file handles

Increases the number of file handles

Sample of a user-defined floating-paint math exception handler for float and
double types

Sample of a user-defined floating-paint math exception handler for long double
type

Increases the number of file handles

Increases the number of file handles

Passes open file-handle information to child processes

Prints register-dump information when an exception occurs

Sample of a user-defined floating-point math exception handler for float and
double types

Sample of a user-defined floating-point math exception handler for long double
type

Transforms wild-card arguments into an array of arguments to main in console­
mode applications

Batch file to build COD?OBJ, COF?OBJ, and COW?OBJ

Source for COD ?OBJ

Source for COW?OBJ

. Assembly rules for COD.ASM and COW.ASM

The dynamic-link
libraries

The dynamic-link (DLL) version of the run-time library is contained in the
BIN subdirectory of the installation. Several versions of the DLL libraries

6 Library Reference

are available. For example, there are diagnostic versions, 16- and 32-
bit-specific versions, and versions that support multithread applications.

In the 16-bit specific version, only the large-memory model DLL is pro­
vided. No other memory-model is supported in a 16-bit DLL.

The following table lists the Borland C++ DLL names and uses, and the
operating system under which the library item is available. See the User's
Guide for information on linkers, linker options, requirements, and selection
of libraries.

Table 1.3: Summary of dynamic link libraries

File name Application Use

Directory of BC41BIN

BC40RTL.DLL Win 16 16-bit, large-memory model

BIDS40.DLL Win 16 16-bit, BIDS

BIDS40D.DLL Win 16 16-bit, diagnostic BIDS

BIDS40F.DLL Win32s, Win32 32-bit BIDS

BIDS40DF.DLL Win32s, Win32 32-bit diagnostic BIDS

CW32.DLL Win32s, Win32 32-bit, single thread

CW32MT.DLL Win32 32-bit, multithread

LOCALE.BLL Win 16, Win32s, Win32 Locale library

The Borland C++ header files

c++ header files, and
header files defined

by ANSI C, are
marked in the margin.

Header file

alloc.h

assert.h1

bcd.h2

bios.h

checks.h2

Header files provide function prototype declarations for library functions.
Data types and symbolic constants used with the library functions are also
defined in them, along with global variables defined by Borland C++ and
by the library functions. The Borland C++ library follows the ANSI C
standard on header-file names and their contents.

Description

Declares memory-management functions (allocation, deallocation, and so on).

Defines the assert debugging macro.

Declares the C++ class bed and the overloaded operators for bed and bed math functions.

Declares various functions used in calling IBM-PC ROM BIOS routines.

Defines PRECONDITION, WARN, and TRACE diagnostic macros.

Chapter 1, Library cross-reference 7

complex.h2

conio.h

constrea.h2

cstring.h2

ctype.h1

dir.h

direct.h

dirent.h

dos.h

errno.h1

except.h2

excpt.h

fcntl.h

float.h1

fstream.h2

generic.h .

io.h

iomanip.h2

iostream.h2

Iimits.h1

locale.h1

sys\locking.h

malloc.h

math.h1

mem.h

memory.h

new.h2

process.h

ref.h2

regexp.h2

8

Declares the C++ complex math class.

Declares various functions used in calling the operating-system console I/O routines. The functions
defined in this header file cannot be used in GUI applications.

Declares C++ classes and methods to support console output.

Declares the ANSI C++ string class support.

Contains information used by the character classification and character conversion macros (such as
isalpha and toasciJ).

Contains structures, macros, and functions for working with directories and path names.

Defines structures, macros, and functions for dealing with directories and path names.

Declares functions and structures for POSIX directory operations.

Defines various constants and gives declarations needed for DOS and B0x86-specific calls.

Defines constant mnemonics for the error codes.

Declares ANSI C++ exceptions support.

Declares C exceptions support.

Defines symbolic constants used in connection with the library routine open.

Contains parameters for floating-point routines.

Declares the C++ stream classes that support file input and output.

Contains macros for generic class declarations.

Contains structures and declarations for low-level inputbutput routines.

Declares the C++ streams I/O manipulators and contains templates for creating parameterized
manipulators.

Declares the basic C++ streams {I/O} routines.

Contains environmental parameters, information about compile-time limitations, and ranges of integral
quantities.

Declares functions that provide country- and language-specific information.

Definitions for mode parameter of locking function.

Memory-management functions and variables.

Declares prototypes for the math functions and math error handlers.

Declares the memory-manipulation functions~ {Many of these are also defined in string.h.}

Memory-manipulation functions.

Access to_new_handler and setnew_handler.

Contains structures and declarations for the spawn ... and exec ... functions.

Provides support for reference counting. Used with the string class.

Implements regular-expression searching.

Library Reference

search.h

setjmp.h1

share.h

signal,h1

stdarg.h1

stddef.hl

stdio.h1

stdiostr.h2

stdlib.h1

string.h 1

strstrea. h2

sys\stat.h

time.h1

sys\timeb.h

sys\types.h

typeinfo.h2

utime.h

values.h

varargs.h

1 Defined by ANSI C.
2 C++ header files.

Declares functions for searching and sorting.

Defines a type jmp_buf used by the longjmp and seljmp functions and declares the functions longjmp and
setjmp.

Defines parameters used in functions that make use of file-sharing.

Defines constants and declarations for use by the signal and raise functions.

Defines macros used for reading the argument list in functions declared to accept a variable number of ar­
guments (such as vprintf, vscanf, and so on).

Defines several common data types and macros.

Defines types and macros needed for the standard I/O package defined in Kernighan and Ritchie and
extended under UNIX System V. Defines the standard I/O predefined streams stdin, stdout, stdprn, and
stderr, and declares stream-level 110 routines.

Declares the C++ (version 2.0) stream classes for use with stdio FILE structures. You should use
iostream.h for new code.

Declares several commonly used routines: conversion routines, search/sort routines, and other
miscellany.

Decl~res several string-manipulation and memory-manipulation routines.

Declares the C++ stream classes for use with byte arrays in memory.

Defines symbolic constants used for opening and creating files.

Defines a structure filled in by the time-conversion routines asctime, localtime, and gmtime, and a type
used by the routines clime, difftime, gmlime, localtime, and slime; also provides prototypes for these
routines.

Declares the function ftime and the structure timeb that ftime returns.

Declares the type time_t used with time functions.

Provides declarations for ANSI C++ run-time type identification (RTTI).

Declares the utime function and the ulimbuf struct that it returns.

Defines important constants, including machine dependencies; provided for UNIX System V compatibility.

Definitions for accessing parameters in functions that accept a variable number of arguments. Provided for
UNIX compatibility; you should use stdarg.h for new code.

Library routines by category

The Borland C++ library routines perform a variety of tasks. The routines,
along with the header files in which they are declared, are listed by
category of task performed.

Chapter 1, Library cross-reference 9

c++ prototyped
routines

Classification
routines

Console I/O
routines

Conversion
routines

10

Certain routines described in this book have multiple declarations. You
must choose the prototype appropriate for your program. In general, the
multiple prototypes are required to support the original C implementation
and the stricter and sometimes different C++ function declaration syntax.
For example, some string-handling routines have multiple prototypes
because in addition to the ANSI-C specified prototype, Borland C++
provides prototypes consistent with the ANSI C++ draft.

getvect (dos.h) strchr (string.h)
max (stdlib.h) strpbrk (string.h)
memchr (string.h) strrchr (string.h)
min (stdlib.h) strstr (string. h)
setvect (dos.h)

These routines classify ASCII characters as letters, control characters,
punctuation, uppercase, and so on.

isalnum (ctype.h) is lower (ctype.h)
isalpha (ctype.h) isprint (ctype.h)
isascii (ctype.h) ispunct (ctype.h)
iscntrl (ctype.h) isspace (ctype.h)
isdigit (ctype.h) isupper (ctype.h)
isgraph (ctype.h) isxdigit (ctype.h)

These routines output text to the screen or read from the keyboard. They
cannot be used in a CUI application.

cgets
clreol
clrscr
cprintf
cputs
delline
getpass
gettext
gettextinfo
gotoxy
highvideo
ins line
lowvideo

(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)

movetext
normvideo
putch
puttext
_setcursortype
textattr
text background
textcolor
textmode
ungetc
wherex
wherey
window

(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(conio.h)
(stdio.h)
(conio.h)
(conio.h)
(conio.h)

These routines convert characters and strings from alpha to different
numeric representations (floating-point, integers, longs) and vice versa, and
from uppercase to lowercase and vice versa~

Library Reference

Diagnostic
routines

Directory control
routines

EasyWin routines

atof (stdlib.h) strtol (stdlib.h)
atoi (stdlib.h) _strtold (stdlib.h)
atol (stdlib.h) strtoul (stdlib.h)
ecvt (stdlib.h) , toascii (ctype.h)
fcvt (stdlib.h) - tolower (ctype.h)
gcvt (stdlib.h) tolower (ctype.h)
itoa (stdlib.h) _toupper (ctype.h)
ltoa (stdlib.h) toupper (ctype.h)
strtod (stdlib.h) ultoa (stdlib.h)

These routines provide built-in troubleshooting capability.

assert (assert.h) perror (errno.h)
CHECK (checks.h) PRECONDITION (checks.h)
_matherr (math.h) TRACE (checks.h)

- matherrl (math.h) WARN (checks.h)

These routines manipulate directories and path names.

chdir (dir.h) -$etdcwd (direct.h)
Jhdrive (direct.h) getdisk . (dir.h)
dosedir (dirent.h) _makepath (stdlib.h)
_dos Jindfirst (dos.h) mkdir (dir.h)
_dosJindnext (dos.h) mktemp (dir.h)
_dos -$etdiskfree (dos.h) opendir (dirent.h)
_dos -$etdrive (dos.h) readdir (dirent.h)
_dos _setdrive (dos.h) rewinddir (dirent.h)
findfirst (dir.h) rmdir (dir.h)
findnext (dir.h) _searchenv (stdlib.h)
fnmerge (dir.h) searchpath (dir.h)
fnsplit (dir.h) - searchstr (stdlib.h)
Jullpath (stdlib.h) setdisk . (dir.h)
getcurdir (dir.h) _splitpath (stdlib.h)
getcwd (dir.h)

These routines are portable to EasyWin programs but are not available in
Windows 16-bit programs. They are provided to ease porting of existing
code into a Windows 16-bit application.

dreol (conio.h) getche (stdio.h)
drscr (conio.h) gets (stdio.h)
fgetchar (stdio.h) gotoxy (conio.h)
getch (stdio.h) kbhit (conio.h)
getchar (stdio.h) perror (errno.h)

Chapter 1, Library cross-reference 11

Inline routines

Input I output
routines

12

printf (stdio.h) vprintf (stdio.h)
putch (conio.h) vscanf (stdio.h)
putchar (stdio.h) wherex (conio.h)
puts (stdio.h) wherey (conio.h)
scanf (stdio.h)

These routines have inline versions. The compiler will generate code for the
inline versions when you use #pragma intrinsic or if you specify program
optimization. See the User's Guide for more deta~ls.

abs (math.h) stpcpy
alloca (malloc.h) strcat
_crotI (stdlib.h) strchr
_crotr (stdlib.h) strcmp
_IrotI (stdlib.h) strcpy
_Irotr (stdlib.h) strlen
memchr (mem.h) strncat
memcmp (mem.h) strncmp
memcpy (mem.h) strncpy
memset (mem.h) strnset
JotI (stdlib.h) strrchr
Jotr (stdlib.h) strset

(string. h)
(string.h)
(string.h)
(string.h)
(string.h)
(string. h)
(string.h)
(string.h)
(string.h)
(string.h)
(string. h)
(string.h)

These routines provide stream- and operating-system level I/O capability.

access (io.h) _dos_write (dos.h)

- rtCchmod (io.h) dup (io.h)
chmod (io.h) dup2 (io.h)
chsize (io.h) eof (io.h)
clearerr (stdio.h) fclose (stdio.h)

- rtf_close (io.h) fcloseall (stdio.h)
close (io.h) fdopen (stdio.h)

- rtCcreat (io.h) feof (stdio.h)
creat (io.h) ferror (stdio.h)
creatnew (io.h) fflush (stdio.h)
creattemp (io.h) fgetc (stdio.h)
cscanf (conio.h) fgetchar (stdio.h)
_dos_close (dos.h) fgetpos (stdio.h)
_dos_creat (dos.h) fgets (stdio.h)
_dosJreatnew (dos.h) filelength· (io.h)
_dos ~etfileattr (dos.h) fileno (stdio.h)
_dos~etftime (dos.h) flushall (stdio.h)
_dos_open (dos.h) fopen (stdio.h)
_dos_read (dos.h) [printf (stdio.h)
_dos _setfileattr (dos.h) [putc (stdio.h)
_dos _setftime (dos.h) [putchar (stdio.h)

Library Reference

fputs (stdio.h) putw (stdio.h)
fread (stdio.h) - rtCread (io.h)
freopen (stdio.h) read (io.h)
fscanf (stdio.h) remove (stdio.h)
fseek (stdio.h) rename (stdio.h)
fsetpos (stdio.h) rewind (stdio.h)
Jsopell (stdio.h) rmt11lp (stdio.h)
fstat (sys \stat.h) scanf (stdio.h)
ftell (stdio.h) setbuf (stdio.h)
fwrite (stdio.h) setftime (io.h)
getc (stdio.h) setmode (io.h)
getch (conio.h) setvbuf (stdio.h)
getchar (stdio.h) sopen (io.h)
getc1ze (conio.h) sprintf (stdio.h)
getftime (io.h) sscanf (stdio.h)
gets (stdio.h) _strerror (string.h, stdio.h)
getw (stdio.h) strerror (stdio.h)
ioctl (io.h) tell (io.h)
isatty (io.h) tempnam (stdio.h)
kbhit (conio.h) TFile (file.h)
lock (io.h) t11lpfile (stdio.h)
locking (io.h) tmpnam (stdio.h)
lseek (io.h) umask (io.h)
JtCopen (io.h) unlink (dos.h)
open (io.h) unlock (io.h)
-pclose (stdio.h) uti11le (utime.h)
perror (stdio.h) vfprintf (stdio.h)
-pipe (io.h) vfscanf (stdio.h)
-popen (stdio.h) vpri11tf (stdio.h)
pri11tf (stdio.h) vsca11f (stdio.h)
putc (stdio.h) vspri11tf (stdio.h)
putchar (stdio.h) vsscanf (io.h)
puts (stdio.h) - rtCwrite (io.h)

Interface routines
These routines provide operating-system BIOS and machine-specific
capabilities.

bdos (dos.h) dosexterr (dos.h)
bdosptr (dos.h) _dos ~etvect (dos.h)
biosequip (bios.h) _dos _setvect (dos.h)
_bios _equiplist (bios.h) _e11able (dos.h)
bios11le11lory (bios.h) enable (dos.h)
biosti11le (bios.h) FP_OFF (dos.h)
_chai11_i11tr (dos.h) FP_SEG (dos.h)
country (dos.h) geninterrupt (dos.h)

ctrlbrk (dos.h) getcbrk (dos.h)

_disable (dos.h) getdfree (dos.h)

disable (dos.h) getdta (dos.h)

Chapter 1, Library cross-reference 13

International
locale API
routines

Manipulation .
routines

14

getfat (dos.h) outpw (conio.h)
getfatd (dos.h) outport (dos.h)
getpsp (dos.h) outportb (dos.h)
getveet (dos.h) parsfnm (dos.h)
getverify (dos.h) peek (dos.h)
inp (conio.h peekb (dos.h)
inpw (conio.h poke (dos.h)
inport (dos.h) pokeb (dos.h)
inportb (dos.h) segread (dos.h)
int86 (dos.h) setebrk (dos.h) ,
int86x (dos.h) _seteursortype (conio.h)
intdos (dos.h) setdta (dos.h)
intdosx (dos.h) setveet (dos.h)
intr (dos.h) setverify (dos.h)
MK_FP (dos.h) sleep (dos.h)
outp (conio.h)

These routines are affected by the current locale. The current locale is
specified by the setlocale function and is enabled by defining
__ USE LOCALES __ with -0 command line option. When you define
__ USELOCALES __ , only function versions of the following routines are
used in the run-time library rather than macros. See online Help for a
discussion of the International API.

eprintf (stdio.h) seanf (stdio.h)
eseanf (stdio.h) setloeale (locale.h)
fprintf (stdio.h) sprintf (stdio.h)
fseanf (stdio.h) sseanf (stdio.h)
isalnum (ctype.h) streoll (string.h)
isalpha (ctype.h) strftime (time.h)
isentrl (ctype.h) strlwr, Jstrlwr (string.h)
isdigit (ctype.h) strupr, Jstrupr (string.h)
isgraph (ctype.h) strxfrm (string.h)
is lower (ctype.h) tolower (ctype.h)
isprint (ctype.h) to upper (ctype.h)
ispunct (ctype.h) vfprintf (stdio.h)
isspaee (ctype.h) vfseanf (stdio.h)
is upper (ctype.h) vprintf (stdio.h)
isxdigit (ctype.h) vscanf (stdio.h)
localeconv (locale.h) vsprintf (stdio.h)
printf (stdio.h) vsscanf (stdio.h)

These routines handle strings and blocks of memory: copying, comparing,
converting, and searching.

mblen
mbstowcs

(stdlib.h)
(stdlib.h)

mbtowc
memccpy

(stdlib.h)
(mem.h, string.h)

Library Reference

memchr (mem.h, string.h) string (cstring.h)
memcmp (mem.h, string.h) strlen (string.h)
memcpy (mem.h, string.h) strlwr (string.h)
memicmp (mem.h, string. h) strncat (string.h)
memmove (mem.h, string.h) strncmp (string.h)
memset (mem.h, string.h) strncmpi (string.h)
movedata (mem.h, string.h) strncpy (string.h)
movmem (mem.h, string.h) strnicmp (string.h)
setmem (mem.h) strnset (string.h)
stpcpy (string. h) strpbrk (string.h)
strcat (string.h) strrchr (string.h)
strchr (string.h) strrev (string. h)
strcmp (string.h) strset (string.h)
strcmpi (string.h) strspn (string.h)
strcoll (string.h) strstr (string.h)
strcpy (string.h) strtok (string.h)
strcspn (string.h) strupr (string.h)
strdup (string.h) strxfrm (string.h)
strerror (string.h) wcstombs (stdlib.h)
stricmp (string.h) wctomb (stdlib.h)

Math routines These routines perform mathematical calculations and conversions.

abs (complex.h, stdlib.h) coshl (math. h)
acos (complex.h, math.h) cos I (math.h)
acosl (math. h) div (math.h)
arg (complex.h) ecvt (stdlib.h)
asin (complex.h, math.h) exp (complex.h, math.h)
asinl (math.h) expl (math.h)
atan (complex.h, math.h) fabs (math.h)
atan2 (complex.h, math.h) fabsl (math.h)
atan2l (math.h) fcvt (stdlib.h)
atanl (math.h) floor (math.h)
atof (stdlib.h, math.h) floor! (math.h)
atoi (stdlib.h) fmod (math.h)
atol (stdlib.h) fmodl (math.h)
_a told (math.h) Jpreset (float.h)
bcd (bcd.h) frexp (math.h)
cabs (math.h) frexpl (math. h)
cabsl (math.h) gcvt (stdlib.h)
ceil (math.h) hypot (math.h)
ceill (math.h) hypotl (math.h)

- clear87 (float.h) imag '(complex.h)
complex (complex.h) itoa (stdlib.h)
conj (complex.h) labs (stdlib.h)
_control87 (float.h) ldexp (math.h)
cos (complex.h, math.h) ldexpl (math.h)
cosh (complex.h, math.h) ldiv (math.h)

Chapter 1, Library cross-reference 15

Memory routines

Miscellaneous
routines

Obsolete
definitions

16

log
logl
log10
loglOl
_lrotl
_lrotr
ltoa
_matherr
_matherrl
modf
modfl
norm
polar
poly
polyl
pow
powl0
powl01
powl
rand
random

(complex.h, math.h)
(math.h)
(complex.h, math.h)
(math.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(math.h)
(math.h)
(math. h)
(math.h)
(complex.h)
(complex.h)
(math.h)
(math.h)
(complex.h, math.h)
(math.h)
(math. h)
(math.h)
(stdlib.h)
(stdlib.h)

randomize
real
Jotl
Jotr
sin
sinh
sinhl
sinl
sqrt
sqrtl
srand
_status87
strtod
strtol
_strtold
strtoul
tan
tanh
tanhl
tanl
ultoa

(stdlib.h)
(complex.h)
(stdlib.h)
(stdlib.h)
(complex.h, math. h)
(complex.h, math.h)
(math.h)
(math.h).h, math.h)
(complex.h, math.h)
(math.h)
(stdlib.h)
(float.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(stdlib.h)
(complex.h, math.h)
(complex.h, math.h)
(complex.h, math.h)
(math.h)
(stdlib.h)

These routines provide dynamic memory allocation in the small-data and
large-data models.

alloea (malloc.h)
_bios_memsize (bios.h)
ealloe (alloc.h, stdlib.h)
farealloe (alloc.h)'
farfree (alloc.h)
farmalloe (alloc.h)
free (alloc.h, stdlib.h)
heapeheek (alloc.h)

heapeheekfree
heapeheeknode
heapwalk
maUoe
realloe
set _new_handler
staekavail

(alloc.h)
(alloc.h)
(alloc.h)
(alloc.h, stdlib.h)
(alloc.h, stdlib.h)
(new.h)
(malloc.h)

These routines provide nonlocal goto capabilities and locale.

loealeeonv
longjmp

(locale.h)
(seljmp.h)

setjmp
setloeale

(seljmp.h)
(locale.h)

The following global variables have been renamed to comply with ANSI
naming requirements. You should always use the new names. If you link
with libraries that were compiled with Borland C++ 3.1 (or earlier) header
files, you will get the message

Error: undefined external varname in module LIBNAME.LIB

Library Reference

Table 1.4
Obsolete global

variables

Table 1.5
Obsolete function

names

Process control
routines

A library module that results in such an error should be recompiled. How­
ever, if you cannot recompile the code for such libraries, you can link with
OBSOLETE. LIB to resolve the external variable names.

The following global variables have been renamed:

Old name New name Header file

daylight _daylight time.h
directvideo directvideo conio.h -
environ· environ . stdlib.h -
sys_errlist _sys_errlist errno.h
sys_nerr _sys_nerr errno.h
timezone timezone time.h -
tzname tzname time.h

The old names of the following functions are available. However, the
compiler will generate a warning that you are using an obsolete name.
Future versions of Borland C++ might not provide support for the old
function names.

The following function names have been changed:

Old name New name Header file

- chmod jtLchmod iO.h

- close _rtLc/ose iO.h

- creat _rtLcreat iO.h
_heapwalk _rtLheapwalk malloc.h
_open _rtLopen iO.h

- read _rtLread iO.h
write _rtLwrite iO.h

These routines invoke and terminate new processes from within another
routine.

abort (process.h) execve (process.h)
_begin thread (process.h) execvp (process.h)
_beginthreadNT (process.h) execvpe (process.h)
_c_exit (process.h) 3xit (process.h)
_cexit (process.h) exit (process.h)
cwait (process~h) _expand (process. h)
_endthread (process.h) getpid (process.h)
execl (process.h) -pclose (stdio.h)
execle (process.h) -popen (stdio.h)
execlp (process.h) raise (signal.h)
execlpe (process.h) signal (signal.h)
execv (process.h) spawnl (process.h)

Chapter 1, Library cross-reference 17

Time and date
routines

Variable argument
list routines

18

spawn Ie
spawnlp
spawnlpe
spawnv

(process.h)
(process.h)
(process.h)
(process.h)

spawnve
spawnvp
spawnvpe
wait .-

(process.h)
(process.h)
(process.h)
(process.h)

These are time conversion and time manipulation routines.

asctime (time.h) gmtime (time.h)
_bios _timeofday (bios.h) localtime (time.h)
ctime (time.h) mktime (time.h)
difftime (time.h) stime (time.h)
_dos....getdate (dos.h) _strdate (time.h)
_dos....gettime (dos.h) strftime (time.h)
_dos_setdate (dos.h) _strtime (time.h)
_dos_settime (dos.h) TDate (date.h)
dostounix (dos.h) time (time.h)
ftime (sys \ timeb.h) TTime (time.h)
getdate (dos.h) tzset (time.h)
gettime (dos.h) unixtodos (dos.h)

These routines are for use when accessing variable argument lists (such as
with print!, vprint!, vscan!, and so on).

(stdarg.h)
(stdarg.h)

(stdarg.h)

Library Reference

Seethe
Programmers Guide,

Chapter 8, for a
discussion of

Windows
programming.

c H A p T E R 2

The main function

Every C and C++ program must have a program-startup function.
Console-based programs call the main function at startup. Windows GUI
programs call the WinMain function at startup. Where you place the startup
function is a matter of preference. Some programrners place main at the
beginning of the file, others at the end. Regardless of its location, the fol­
lowing points about main always apply.

Arguments to main

Three parameters (arguments) are passed to main by the Borland C++
startup routine: argc, argv, and env.

• argc, an integer, is the number of command-line arguments passed to
main, including the name of the executable itself.

• argv is an array of pointers to strings (char *[]).

• argv[O] is the full path name of the program being run.

• argv[l] points to the first string typed on the operating system
command line after the program name.

• argv[2] points to the second string typed after the program name.

• argv[argc-l] points to the last argument passed to main.

• argv[argc] contains NULL.

• env is also an array of pointers to strings. Each element of env[] holds a
string of the form ENVVAR=value.

Chapter 2, The main function

• ENVV AR is the name of an environment variable, such as PATH or
COMSPEC.

• value is the value to which ENVV AR is set, such as C: \APPS;C: \
TOOLS; (for PATH) or C:\DOS\COMMAND.COM (for COMSPEC).

19

Refer to the getenv
and putenv entries in

Chapter 3, and the
environ entry in

Chapter 4 for more
information.

Examining
arguments to
main

20

If you declare any of these parameters, you must declare them exactly in the
order given: argc, argv, env. For example, the following are all valid
declarations of main's arguments:

int main ()
int main(int argc) /* legal but very unlikely */
int main(int argc, char * argyl])
int main(int argc, char *, argYll, char * env[])]

The declaration int main (int argc) is legal, but it's very unlikely that you
would use argc in your program without also using the elements of argv.

The argument env is also available through the global variable _environ.

For all platforms, argc and argv are also available via the global variables
_argc and y.rgv.

Here is an example that demonstrates a simple way of using these
arguments passed to main:

/* Program ARGS.C */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[], char *env[]) {
int ii

printf("The value of argc is %d \n\n", argc)i
printf("These are the %d command-line arguments passed to"

" main:\n\n", argc)i

for (i = Oi i < argci iff)
printf(" argv[%d]: %s\n", i, argv[i])i

printf("\nThe environment string(s) on this system are:\n\n")i

for (i = 0; env[i] != NULL; iff)
printf(" env[%d]: %s\n", i, env[i]);

return 0;
}

Suppose you run ARGS.EXE at the command prompt with the following
command line:

C:> args first3rg "arg with blanks" 3 4 "last but one" stop!

Note that you can pass arguments with embedded blanks by surrounding
them with quotes, as shown by "argument with blanks" and "last but one"
in this example command line.

The output of ARGS.EXE (assuming that the environment variables are set
as shown here) would then be like this:

Library Reference

Wildcard
arguments

Wildcard arguments
are used only in

console-mode
applications.

Linking with
WILDARGS.OBJ

The value of argc is 7

These are the 7 command-line arguments passed to main:

argv[O]: C:\BC4\ARGS.EXE
argv[l]: first_arg
argv[2]: arg with blanks
argv[3]: 3
argv[4] :
argv[5]: last but one
argv [6]: stop!

The environment string{s) on this system are

env[O]: COMSPEC=C:\COMMAND.COM
env[l]: PROMPT=$p $g
env[2]: PATH=C:\SPRINTiC:\DOSiC:\BC4

The maximum combined length of the command-line arguments passed to
main (including the space between adjacent arguments and the program
name itself) is 255; this is a Win32 limit.

Command-line arguments containing wildcard characters can be expanded
to all the matching file names, much the same way DOS expands wildcards
when used with commands like COPY. All you have to do to get wildcard
expansion is to link your program with the WILDARGS.OBJ object file,
which is included with Borland C++.

Once WILDARGS.OBJ is linked into your progl'am code, you can send
wildcard arguments of the type *.* to your main function. The argument
will be expanded (in the argv array) to all files matching the wildcard mask.
The maximum size of the argv array varies, depending on the amount of
memory available in your heap.

If no matching files are found, the argument is passed unchanged. (That is,
a string consisting of the wildcard mask is passed to main.)

Arguments enclosed in quotes (" ... ") are not expanded.

The following commands compile the file ARGS.C and link it with the
wildcard expansion module WILDARGS.OBJ, then run the resulting
executable file ARGS.EXE:

BCC ARGS.C WILDARGS.OBJ
ARGS C:\BC4\INCLUDE*.H "*.C"

When you run ARGS.EXE, the first argument is expanded to the names of
all the *.H files in your Bor~and C++ INCLUDE directory. Note that the

Chapter 2, The main function 21

expanded argument strings include the entire path. The argument *.C is not
expanded because it is enclosed in quotes.

In the IDE, simply specify a project file (from the project menu) that
contains the following lines:

ARGS
WILDARGS.OBJ

.. If you prefer the wildcard expansion to be the default, modify your
standard CW32?LIB library files to have WILDARGS.OBJ linked automati­
cally. To accomplish that, remove SETARGV and INITARGS from the
libraries and add WILDARGS. The following commands invoke the Turbo
librarian (TLIB) to modify all the standard library files (assuming the
current directory contains the standard C and C++ libraries and
WILDARGS.OBJ):

tlib CW32 -setargv twildargs
tlib CW32MT -setargv twildargs
tlib -setargv twildargs

Using -p (Pascal calling conventions)

If you compile your program using Pascal calling conventions (described in
the Programmer's Guide, Chapter 2), you must remember to explicitly
declare main as a C type. Do this with the _ _ cdecl keyword, like this:

int __ cdecl main(int argc, chart argv[], chart envp[])

The value main returns

The value returned by main is the status code of the program: an into How­
ever, if your program uses the routine exit (or _exit) to terminate, the value
returned by main is the argument passed to the call to exit (or to _exit).

For example, if your program contains the call exit (1), the. status is 1.

Passing file information to child processes

22

If your program uses the exec or spawn functions to create a new
process, the new process will normally inherit all of the open file handles
created by the original process. However, some information about these
handles will be lost, including the access mode used to open the file. For

Library Reference

example, if your program opens a file for read-only access in binary mode,
and then spawns a child process, the child process might corrupt the file by
writing to it, or by reading from it in text mode.

To allow child processes to inherit such information about open files, you
must link your program with the object file FILEINFO.OBJ. For example:

BCC32 TEST.C \BC4\LIB\FILEINFO.OBJ

The file information is passed in the environment variable _C_FILE_INFO.
This variable contair).s encoded binary information, and your program
should not attempt to read or modify its value. The child program must
have been built with the C++ run-time library to inherit this information
correctly. Other programs can ignore _C_FILE_INFO, and will not inherit
file information.

Multithread programs

See the online Help
example for

_beginthread to see
how to use these

functions and
threadid in a

program.

32-bit programs can create more than one thread of execution. If your
program creates multiple threads, and these threads also use the C++ run­
time library, you must use the CW32MT.LIB or CW32MTI library instead.

The multithread libraries provide the _begin thread and _beginthreadNT
functions, which you use to create threads. The multithread libraries also
provide the _end thread function, which terminates threads, and the global
variable _threadid. This global variable contains the current thread's
identification number (also known as the thread ID). The header file
stddef.h contains the declaration of _threadid.

When you compile or link a program that uses multiple threads, you must
use the -WM compiler switch. For example:

BCC32 -WM THREAD.C

Special care must be taken when using the signal function in a multithread
program. See the description of the signal function for more information.

Chapter 2, The main function 23

24 Library Reference

Programming
examples for each

function are available
in the online Help
system. You can

easily copy them from
Help and paste them

into your files.

c H A p T E R 3

Run-time functions

This chapter contains a detailed description of each function in the Borland
C++ library. The functions are listed in alphabetical order, although a few
of the routines are grouped by "family" (the exeq ... and spawn ... functions,
for example) because they perform similar or related tasks.

Each function entry provides certain standard information. For instance,
the entry for free

• Tells you which header file(s) contains the prototype for free.
• Summarizes what free does.

• Gives the syntax for calling free.
• Gives a detailed description of how free is implemented and how it

relates to the other memory-allocation routines.

• Lists other language compilers that include similar functions.

• Refers you to related Borland C++ functions.

The following sample library entry lists each entry section and describes
the information it contains. The alphabetical listings start on page 27.

Sample function entry header file name

Function

Syntax

The function is followed by the header file(s) containing the prototype for
function or definitions of constants, enumerated types, and so on used by
function.

Summary of what this function does.

function(modifier parameter[, ... J};

This gives you the declaration syntax for function; parameter names are
italicized. The [/ ... J indicates that other parameters and their modifiers can
follow.

Portability is indicated by marks (.) in the columns of the portability table.
A sample portability table is shown here:

Chapter 3, Run-time functions 25

Sample function entry

Remarks

Return value

See also

Example

26

DOS

Each entry in the portability table is described in the following table. Any
additional restrictions are discussed in the Remarks section.

DOS

UNIX

Win 16

win 32

ANSI C

Available for DOS.

Available under UNIX andbr POSIX.

Compatible with 16-bit Windows programs running on Microsoft Windows 3.1 , Windows
for Workgroups 3.1, and Windows for Workgroups 3.11. EasyWin users should see the
Users Guide for information about using certain non-Windows functions (such as printf
and scan~ in programs that run under Windows.

Available to 32-bit Windows programs running on Win32s 1.0, and Windows NT 3;1
applications.

Defined by the ANSI C Standard.

ANSI Ctt Included in the ANSI C++ proposal.

as / 2 Available for OS/2.

If more than one function is discussed and their portability features are
identical, only one row is used. Otherwise, each function is represented in a
separate row.

This section describes what function does, the parameters it takes, and any
details you need to use function and the related routines listed.

The value that function returns (if any) is given here. If function sets any
global variables, their values are also listed.

Routines related to function that you might want to read about are listed
here. If a routine name contains an ellipsis, it indicates that you should refer
to a family of functions (for example, exec ... refers to the entire family of
exec functions: execl, execle, execlp, execlpe, execv, execve, execvp, and execvpe).

The function examples have been moved into online Help so that you can
easily cut-and-paste them to your own applications.

Library Reference

abort

Function

Syntax

Remarks

Return value

See also

abs

Function

Syntax

Remarks

Return value

See also

abort

stdlib.h

Abnormally terminates a program.

void abort(void)i

ANSI C++ OS/2

abort causes an abnormal program termination by calling -raise(SIGABRT). If
there is no signal handler for SIGABRT, then abort writes a termination
message ("Abnormal program termination") on stderr, then aborts the
program by a call to _exit with exit code 3.

abort returns the exit code 3 to the parent process or to the operating system
command processor.

assert, atexit, _exit, exit, raise, signal, spawn ...

stdlib.h

Returns the absolute value of an integer.

int abs (int x) i

abs returns the absolute value of the integer argument x. If abs is called
when stdlib.h has been included, it's treated as a macro that expands to
inline code.

If you want to use the abs function instead of the macro, include #undef abs
in your program, after the #include <stdlib.h>.

This function can be used with bcd and complex types.

The abs function returns an integer in the range of 0 to INT_MAX, with the
exception that an argument with the value INT_MIN is returned as
INT_MIN. The values for INT_MAX and INT_MIN are defined in header
file limi ts.h.

bcd, cabs, complex, tabs, labs

Chapter 3, Run-time functions 27

access

access

Function

Syntax

Remarks

Return value

See also

Determines accessibility of a file.

int access (const char *filename, int amode)i

access checks the file named by filename to determine if it exists, and
whether it can be read, written to, or executed.

The list of amode values is as follows:

06 Check for read and write permission
04 Check for read permission
02 Check for write permission
01 Execute (ignored)
00 Check for existence of file

io.h

.. Under DOS, OS/2, and Windows (16- and 32-bit) all existing files have read
access (amode equals 04), so 00 and 04 give the same result. Similarly, amode
values of 06 and 02 are equivalent because under DOS write access implies
read access.

If filename refers to a directory, access simply determines whether the
directory exists.

If the requested access is allowed, access returns 0; otherwise, it returns a
value of -I, and the global variable errno is set to one of the following
values:

EACCES
ENOENT

Permission denied
Path or file name not found

chmod, fstat, stat

acos, acosl math.h

Function Calculates the arc cosine.

28 Library Reference

Syntax

Remarks

Return value

See also

alloca

Function

Syntax

Remarks

acos

acosl

acos, acosl

double acos(double Xli

long double acosl(long double xl i

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

acos returns the arc cosine of the input value. acosl is the long double
version; it takes a long double argument and returns a long double result.
Arguments to acos and acosl must be in the range -1 to 1, or else acos and
acosl return NAN and set the global variable errno to

EDOM Domain error

This function can be used with bcd and complex types.

acos and acosl of an argument between -1 and +1 return a value in the range
o to pi. Error handling for these routines can be modified through the
functions _matherr and _matherrl.

asin, atan, atan2, bcd, complex, cos, _matherr, sin, tan

malloc.h

Allocates temporary stack space.

void *alloca(size_t sizel;

DOS UNIX

alloca allocates size bytes on the stack; the allocated space is automatically
freed up when the calling function exits.

Because alloca modifies the stack pointer, do not place calls to alloca in an'
expression that is an argument to a function.

The alloca function should not be used in the try/block of a C++ program. If
an exception is thrown any values placed on the stack by alloca will be
corrupted.

If the calling function does not contain any references to local variables in
the stack, the stack will not be restored correctly when the function exits,

Chapter 3, Run-time functions 29

alloca

Return value

See also

asctime

Function

Syntax

Remarks

Return value

See also

asin, asinl

Function

Syntax

30

asin

asinl

resulting in a program crash. To ensure that the stack is restored correctly,
use the following code in the calling function:

char *Pi
char dummy [5] i

dummy [0] = 0 i

P = alloca(nbytes)i

If enough stack space is available, afloea returns a pointer to the allocated
stack area. Otherwise, it returns NULL.

maUoe

time.h

Converts date and time to ASCII.

char *asctime(const struct tm *tblock)i

asetime converts a time stored as a structure in *tbloek to a 26-character
string of the same form as the ctime string:

Sun Sep 16 01:03:52 1973\n\0

asctime returns a pointer to the character string containing the date and
time. This string is a static variable that is overwritten with each call to
asctime.

ctime, difftime, ftime, gmtime, loeaitime, mktime, strftime, stime, time, tzset

math.h

Calculates the arc sine.

double asin(double x) i

long double asinl(long double x) i

DOS UNIX Win 16 Win 32 ANSI C ANSI c++ OS/2

• • • • • • •
• • • •

Library Reference

Remarks

Return value

See also

assert

Function

Syntax

Remarks

Return value

See also

atan, atanl

Function

asin, asinl

asin of a real argument returns the arc sine of the input value. sinl is the
long double version; it takes a long double argument and returns a long
double result.

Real arguments to asin and asinl must be in the range -1 to I, or else asin
and asinl return NAN and set the global variable errno to

EDOM Domain error

This function can be used with bcd and complex types.

asin and asinl of a real argument return a value in the range -pi/2 to pi/2.
Error handling for these functions can be modified through the functions
_matherr and _matherrl.

acos, atan, atan2, bcd, complex, cos, _matherr, sin, tan

assert.h

Tests a condition and possibly aborts.

void assert(int test);

assert is a macro that expands to an if statement; if test evaluates to zero,
assert prints a message on stderr and aborts the program (by calling abort).

assert displays this message:

Assertion failed: test, file filename, line linenum

The filename and linenum listed in the message are the source file name and
line number where the assert macro appears.

If you place the #define NDEBUG directive ("no debugging") in the source
code before the #include <assert. h> directive, the effect is to comment out
the assert statement.

None.

abort

math.h

Calculates the arc tangent.

Chapter 3, Run-time functions 31

atan, atanl

Syntax

atan

atan!

Remarks

double atan(double xl i

long double atanl(long double Xli

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

atan calculates the arc tangent of the input value.

atanl is the long double version; it takes a long double argument and
returns a long double result. This function can be used with bcd and complex
types.

Return value atan and atanl of a real argument return a value in the range -pil2 to pil2.
Error handling for these functions can be modified through the functions
_math err and _matherrl.

See also acos, asin, atan2, bcd, complex, cos, _matherr, sin, tan

atan2, atan21 math.h

Function Calculates the arc tangent of y I x.

Syntax double atan2(double y, double Xli

Remarks

Return value

See also

32

atan2

atan2!

long double atan2l(long double y, long double Xli

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

atan2 returns the arc tangent of y I x; it produces correct results even when
the resulting angle is near pil2 or -pil2 (x near 0). If both x and yare set to
0, the function sets the global variable errno to EDOM, indicating a domain
error.

atan21 is the long double version; it takes long double arguments and
returns a long double result.

atan2 and atan21 return a value in the range -pi to pi. Error handling for
these functions can be modified through the functions _matherr and
_matherrl.

acos, asin, atan, cos, _matherr, sin, tan

Library Reference

atexit

Function

Syntax

Remarks

Return value

See also

.st01, _atold

Function

Syntax

Remarks

afof

_a told

atexit

stdlib.h

Registers termination function.

int atexit(void (_USERENTRY * func) (void));

atexit registers the function pointed to by func as an exit function. Upon
normal termination of the program, exit calls func just before returning to
the operating system. func must be used,with the _USERENTRY calling
convention.

Each call to atexit registers another exit function. Up to 32 functions can be
registered. They are executed on a last-in, first-out basis (that is, the last
function registered is the first to be executed).

atexit returns 0 on success and nonzero on failure (no space left to register
the function).

abort, _exit, exit, spawn ...

math.h

Converts a string to a floating-point number.

double atof(const char *s);
long double _atold(const char *s);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

atof converts a string pointed to by s to double; this function recognizes the
character representation of a floating-point number, made up of the
following:

• An optional string of tabs and spaces
• An optional sign
• A string of digits and an optional decimal point (the digits can be on both

sides of the decimal point)
• An optional e or E followed by an optional signed integer

Chapter 3, Run-time functions 33

•

atof, _atold

Return value

See also

atoi

Function

SY,ntax

Remarks

Return value

34

The characters must match this generic format:

[whitespace] [sign] [ddd] [.] [ddd] [e I E[sign]ddd]

atof also recognizes +INF and -INF for plus and minus infinity, and +NAN
and -NAN for Not-a-Number .

. In this function, the first umecognized character ends the conversion.

_atold is the long double version; it converts the string pointed to by s to a
long double.

strtod and _strtold are similar to atof and _atold; they provide better error
detection, and hence are preferred in some applications.

atof and _atold return the converted value of the input string.

If there is an overflow, atof (or _atold) returns plus or minus HUGE_VAL (or
LHUGE VAL), errno is set to ERANGE (Result out of range), and _matherr
(or _matherrl) is not called.

atoi, atol, ecvt, fcvt, gcvt, scanf, strtod

stdlib.h

Converts a string to an integer.

int atoi(const char *s);

DOS UNIX

atoi converts a string pointed to by s to int; atoi recognizes (in the following
order)

• An optional string of tabs and spaces
• An optional sign
• A string of digits

The characters must match this generic format:

[ws] [sn] [ddd]

In this function, the first unrecognized character ends the conversion. There
are no provisions for overflow in atoi (results are undefined).

atoi returns the converted value of the input string. If the string cannot be
converted to a number of the corresponding type (int), atoi returns O.

Library Reference

See also

atol

Function

Syntax

Remarks

Return value

See also

bdos

Function

Syntax

atai

atof, atol, ecvt, fcvt, gcvt, scanf, strtod

stdlib.h

Converts a string to a long.

long atol(const char *s) i

atol converts the string pointed to by s to long. atol recognizes (in the
following order)

• An optional string of tabs and spaces
• An optional sign
• A string of digits

The characters must match this generic format:

[ws] [sn] [ddd]

In this function, the first unrecognized character ends the conversion. There
are no provisions for overflow in atol (results are undefined).

atol returns the converted value of the input string. If the string cannot be
converted to a number of the corresponding type (long), atol returns o.
atof, atoi, ecvt, fcvt, gcvt, scanf, strtod, strtol, strtoul

See atof.

dos.h

Accesses DOS system calls.

int bdos(int dosfun~ unsigned dosdx, unsigned dosal)i

Chapter 3, Run-time functions 35

•

bdos

Remarks

Return value

·See also

bdosptr

Function

Syntax

Remarks

Return value

See also

36

bdos provides direct access to many of the DOS system calls. See your DOS
reference manuals for details on each system call.

For system calls that require an integer argument, use bdos; if they require a
pointer argument, use bdosptr. In the large data models (compact, large, and
huge), it is important to use bdosptr instead of bdos for system calls that
require a pointer as the call argument.

dosfun is defined in your DOS reference manuals.

dosdx is the value of register OX.

dosal is the value of register AL.

The return value of bdos is the value of AX set by the system call.

bdosptr,geninterrupt,int86,int86x,intdos,intdosx

Accesses DOS system calls.

int bdosptr(int dosfun, void *argument, unsigned dosal);

dos.h

bdosptr provides direct access to many of the DOS system calls. See your
DOS reference manuals for details of each system call.

For system calls that require an integer argument, use bdos; if calls require a
pointer argument, use bdosptr. In the large data models (compact, large, and
huge), it is important to use bdosptr for system calls that require a pointer as
the call argument. In the small data models, the argument parameter to
bdosptr specifies OX; in the large data models, it gives the DS:DX values to
be used by the system call.

dosfun is defined in your DOS reference manuals. dosal is the value of
register AL.

The return value of bdosptr is the value of AX on success or -Ion failure.
On failure, the global variables errno and _doserrno are set.

bdos, geninterrupt, int86, int86x, intdos, intdosx

Library Reference

_beginthread

Function

Syntax

Remarks

Return value

See also

Starts execution of a new thread.

unsigned long _beginthread(_USERENTRY (*start_address) (void *),
unsigned stack_size, void *arglist)

_beginthread

process.h

The _begin thread function creates and starts a new thread. The thread starts
execution at start_address. (Note that start_address must be declared to be
_USERENTRY.)The size of its stack in bytes is stack_size; the stack is
allocated by the operating system after the stack size is rounded up to the
next multiple of 4096. The thread is passed arglist as its only parameter; it
can be NULL, but must be present. The thread terminates by simply
returning, or by calling _endthread.

Either this function or _beginthreadNT must be used instead of the operating
system thread-creation API function because _beginthread and
_beginthreadNT perform initialization required for correct operation of the
run-time library functions.

This function is available only in the multithread libraries.

The function is also available for OS/2. However, under OS/2 the function
returns and int and does not require _USERENTRY.

_begin thread returns the handle of the new thread. In the event of an error,
the function returns -I, and the global variable errno is set to one of the
following values:

EAGAIN Too many threads
EINV AL Invalid request

See also the Win32 description of GetLastError.

_beginthreadNT, _end thread

_beginthreadNT process.h

Function Starts execution of a new thread under Windows NT.

Chapter 3, Run-time functions 37

•

_beginthreadNT

,Syntax

Remarks

Return value

See also

38

unsigned long _beginthreadNT(void (_USERENTRY *start_address) (void *),
unsigned stack_size, void *arglist,
void *security_attrib, unsigned long create_flags,
unsigned long *thread_id);

All multithread Windows NT programs must use _beginthreadNT or the
_begin thread function instead of the operating system thread-creation API
function because _begin thread and _beginthreadNT perform initialization
required for correct operation of the run-time library functions. The
_beginthreadNT function provides support for the operating system
security. These functions are available only in the multithread libraries.

The _beginthreadNT function creates and starts a new thread. The thread
starts execution at start_address. (Note 'that start_address must be declared to
be -,,-USERENTRY.) The size of its stack in bytes is stack_size; the stack is
allocated by the operating system after the stack size is rounded up to the
next multiple of 4096. The thread arglist can be NULL, but must be present.

_ The thread terminates by simply returning, or by calling _end thread.

The function uses the security_attr pointer to access the
SECURITY_ATTRIBUTES structure. The structure contains the security
attributes for the thread. If security_attr is NULL, the thread is created with
default security attributes. The thread handle is not inherited if security_attr
is NULL.

The function reads the createJlags variable for flags that provide additional
information about the thread creation. This variable can be zero, specifying
that the thread will run immediately upon creation. The variable can also
be CREATE_SUSPENDED, in which case the thread will not run until the
ResumeThread function is called. ResumeThread is provided by the Win32
API. See the Win32 description of ResumeThread for additional information.

The function initializes the thread_id variable with the thread identifier.

_beginthreadNT returns the handle of the new thread. In the event of an
error, the function returns -I, and the global variable errno is set to one of
the following values:

EAGAIN Too many threads
EINV AL Invalid,request

_begin thread, _endthread

Library Reference

biosequip

Function

Syntax

Remarks

Return value

DOS only sees two
ports but can be

pushed to see four;
the IBM PS/2 can see

up to eight.

biosequip

bios.h

Checks equipment.

int biosequip(void)i

biosequip uses BIOS interrupt Ox11 to return an integer describing the equip­
ment connected to the system.

The return value is interpreted as a collection of bit-sized fields. The IBM
PC values follow:

Bits 14-15 Number of parallel printers installed
00 = 0 printers

Bit 13
Bit 12

01 = 1 printer
10 = 2 printers
11 = 3 printers

Serial printer attached
Game I/O attached

Bits 9-11 Number of COM ports
000 = a ports
001 = 1 port
010 = 2 ports
011 = 3 ports
100 = 4 ports
101 = 5 ports
110 = 6 ports
111 = 7 ports

Bit 8 Direct memory access (DMA)
o = Machine has DMA
1 = Machine does not have DMA; for example, PC Jr.

Bits 6-7 Number of disk drives
00 = 1 drive
01 = 2 drives
10 = 3 drives
11 = 4 drives, only if bit 0 is 1

Chapter 3, Run-time functions 39

II

biosequip

Function

Syntax

Remarks

Return value

40

Bits 4-5

Bits 2-3

Bit 1
Bit 0

Initial video mode
00 = Unused
01 = 40x25 BW with color card
10 = 80x25 BW with color card

. 11 = 80x25 BW with mono card

Motherboard RAM size
00 = 16K
01 = 32K
10 =48K
11 = 64K

Floating-point coprocessor
Boot from disk

Checks equipment.

unsigned _bios_equiplist(voidl;

bios.h

_bios_equiplist uses BIOS interrupt Ox11 to return an integer describing the
equipment connected to the system.

The return value is interpreted as a collection of bit-sized fields. The IBM
PC values follow:

Bits 14-15

Bit 13
Bit 12

Bits 9-11

Number of parallel printers installed
00 = 0 printers
01 = 1 printer
10 = 2 printers
11 = 3 printers

Serial printer attached
Game I/O attached

Number of COM ports
000 = 0 ports .
001 = 1 port
010 = 2 ports
011 = 3 ports
100 = 4 ports
101 = 5 ports

Library Reference

bioskey

Function

Syntax

Remarks

Return value

Bit8

110 = 6 ports
111 = 7 ports

Direct memory access (DMA)
o = Machine has DMA
1 = Machine does not have DMA; for example, PC Jr.

Bits 6-7

Bit 4-5

Bits 2-3

Bit 1
BitO

Number of disk drives
00 = 1 drive
01 = 2 drives
10 = 3 drives
11 = 4 drives, only if bit 0 is 1

Initial video mode
00 = Unused
01 = 40x25 BW with color card
10 = 80x25 BW with color card
11 = 80x25 BW with mono card

Motherboard RAM size
00 = 16K
01 = 32K
10 = 48K
11 = 64K

Floating-point coprocessor
Boot from disk

Keyboard interface, using BIOS services directly.

int bioskey(int cmd);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ I
• I

bios.h

OS/2 II

II

bioskey performs various keyboard operations using BIOS interrupt Ox16.
The parameter emd determines the exact operation.

The value returned by bioskey depends on the task it performs, determined
by the value of emd:

o If the lower 8 bits are nonzero, bioskey returns the ASCII character
for the next keystroke waiting in the queue or the next key
pressed at the keyboard. If the lower8 bits are zero, the upper 8

Chapter 3, Run-time functions 41

•

bioskey

bits are the extended keyboard codes defined in the IBM PC
Technical Reference Manual.

1 This tests whether a keystroke is available to be read. A return
value of zero means no key is available. The return value is
OxFFFFF (-1) if Gtrl-Brkhas been pressed. Otherwise, the value of
the next keystroke is returned. The keystroke itself is kept to be
returned by the next call to bioskey that has a cmd value of zero.

2 Requests the current shift key status. The value is obtained by
ORing the following values together:

Bit 7
Bit 6
BitS
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

Ox80
Ox40
Ox20
Ox10
Ox08
Ox04
Ox02
OxOl

Insert on
Gaps on
NumLockon
Scroll Lock on
Altpressed
Gtrl pressed
f- Shift pressed
~ Shift pressed

biosmemory bios.h

Function Returns memory size.

Syntax int biosrnernory (void) i

Remarks biosmemory returns the size of RAM memory using BIOS interrupt Ox12.
This does not include display adapter memory, extended memory, or
expanded memory.

Return value biosmemory returns the size of RAM memory in 1K blocks.

_bios_memsize bios.h

Function Returns memory size.

Syntax unsigned _bios_rnernsize (void) ;

42 Library Reference

Remarks

Return value

biostime

Function

Syntax

Remarks

Return value

Function

Syntax

Remarks

OS/2

_bios_memsize returns the size of RAM memory using BIOS interrupt Ox12.
This does not include display adapter memory, extended memory, or
expanded memory.

_bios _memsize returns the size of RAM memory in 1K blocks.

bios.h

Reads or sets the BIOS timer.

long biostime(int cmd, long newtime)i

UNIX Wi n 16

biostime either reads or sets the BIOS timer. This is a timer counting ticks
since midnight at a rate of roughly 18.2 ticks per second. biostime uses
BIOS interrupt Ox1A.

If cmd equals 0, biostime returns the current value of the timer. If cmd
,equals 1, the timer is set to the long value in new time.

When biostime reads the BIOS timer (cmd = 0), it returns the timer's current
value.

bios.h

Reads or sets the BIOS timer.

unsigned _bios_timeofday(int cmd, long *timep)i

_bios_timeofday either reads or sets the BIOS timer. This is a timer counting
ticks since midnight ata rate of roughly 18.2 ticks per second.
_bios _timeofday uses BIOS interrupt Ox1A.

Chapter 3, Run-time functions 43

_biosJimeofday

Return value

bsearch

Function

Syntax

Remarks

44

The emd parameter can be either of the following values:

_TIME_GETCLOCK The function stores the current BIOS timer value into
the location pointed to by timep. If the timer has not
been read or written since midnight, the function
returns 1. Otherwise, the function returns O.

_TIME_SETCLOCK The function sets the BIOS timer to the long value
pointed to by timep. The function does not return a
value. .

The _bios_timeofday returns the value in AX that was set by the BIOS timer
call.

stdlib.h

Binary search of an array.

void *bsearch(const void *key, canst void *base, size_t nelem, size_t width,
int (_USERENTRY *fcmp) (canst void *, canst void *));

bseareh searches a table (array) of nelem elements in memory, and returns
the address of the first entry in the table that matches the search key. The
'array must be in order. If no match is found, bseareh returns O. Note that
because this is a binary search, the first matching entry is not necessarily
the first entry in the table.

The type size _t is defined in stddef.h header file .

• nelem gives the number of elements in the table .

• width specifies the number of bytes in each table entry.

The comparison routine femp must be used with the _USERENTRY calling
convention.

femp is called with two arguments: eleml and elem2. Each argument points
to an item to be compared. The comparison function compares each of the
pointed-to items (*eleml and *elem2), and returns an integer based on the
results of the comparison.

Library Reference

Return value

See also

bsearch

For bsearch, the fcmp return value is

• < 0 if *eleml < *elem2

• == 0 if *eleml == *elem2
• > 0 if *e1eml > *elem2

bsearch returns the address of the first entry in the table that matches the
search key. If no match is found, bsearch returns O.

lfind, lsearch, qsort

cabs, cabsl math.h

Function

Syntax

Remarks

cabs

cabsl

Calculates the absolute value of complex number.

double cabs(struct complex Z}i

long double cabsl(struct _complexl Z}i

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • •
• • • •

cabs is a macro that calculates the absolute value of z, a complex number. z
is a structure with type complex. The structure is defined in math.h as

struct complex {
double x, Yi
};

struct _complexl' {
long double x, Yi

}i

where x is the real part, and y is the imaginary part.

Calling cabs is equivalent to calling sqrt with the real and imaginary
components of z, as shown here:

sqrt(z.x *'z.x + z.y * z.y}

cabsl is the long double version; it takes a structure with type _complexl as
an argument, and returns a long double result.

.. ,If you're using C++, you may also use the complex class defined in
complex.h, and use the function abs to get the absolute value of a complex
number.

Chapter 3, Run-time functions 45

cabs, cabsl

Return value

See also

calloc

Function

Syntax

Remarks

Memory models are
available only for 16-

bit applications.

Return value

See also

ceil, ceill

Function

46

cabs (or cabsI) returns the absolute value of z, a double. On overflow, cabs (or
cabsI) returns HUGE_VAL (or _LHUGE_ V AL) and sets the global variable
errno to

ERANGE Result out of range

Error handling for these functions can be modified through the functions
_matherr and_matherrl.

abs, complex, errno (global variable), Jabs, labs, _matherr

stdlib.h

Allocates main memory.

void *calloc(size_t nitems, size_t size) i

Win 16 Win 32

. calloc provides access to the C memory heap. The heap is available for
dynamic allocation of variable-sized blocks of memory. Many data
structures, such as trees and lists, naturally employ heap memory
allocation.

All the space between the end of the data segment and the top of the
program stack is available for use in the small data models (small, and
medium), except for a small margin immediately before the top of the
stack. This margin allows room for the application to grow on the stack,
and provides a small amount of room needed by the operating system.

In the large data models (compact,large, and huge), all space beyond the
program stack to the end of physical memory is available for the heap.

calloc allocates a block of size nitems x size. The block is cleared to O. If you
want to allocate a block larger-than 64K, you must use farcalloc.

calloc returns a pointer to the newly allocated block. If not enough space
exists for the new block or if nitems or size is 0, calloc returns NULL.

farcalloc, free, malloc, realloc .

math.h

Rounds up.

Library Reference

Syntax

Remarks

Return value

See also

Function

Syntax

Remarks

Return value

See also

_cexit

Function

Syntax

Remarks

ceil

ceill

ceil, ceill

double ceil(double xl i

long double ceill(long double xl i

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

ceil finds the smallest integer not less than x. ceill is the long double version;
it takes a long double argument and returns a long double result.

These functions return the integer found as a double (ceil) or a long double
(ceill).

floor, fmod

process.h

Performs _exit cleanup without terminating the program.

_c_exit performs the same cleanup as _exit, except that it does not terminate
the calling process.

None.

abort, atexit, _cexit, exec ... , _exit, exit, signal, spawn ...

process.h

Performs exit cleanup without terminating the program.

void _cexit(voidli

ANSI C++ OS/2

_cexit performs the same cleanup as exit, except that it does not close files or
terminate the calling process. Buffered output (waiting to be output) is
written, and any registered "exit functions" (posted with atexit) are called.

Chapter 3, Run-time functions 47

Return value

See also

cgets

Function

Syntax

Remarks

None.

abort, atexit, _c_exit,exec ... , _exit, exit, signal, spawn ...

conio.h

Reads a string from the console.

char *cgets(char *str);

cgets reads a string of characters from the console, storing the string (and
the string length) in the location pointed to by str.

cgets reads characters until it encounters a carriage-return/linefeed
(CR/LF) combination, or until the maximum allowable number of char­
acters have been read. If cgets reads a CR/LF combination, it replaces the
combination with a \0 (null character) before storing the string.

Before cgets is called, set str[O] to the maximum length of the string to be
read. On return, str[l] is set to the number of characters actually read. The
characters read start at str[2] and end with a null character. Thus, str must
be at least str[O] plus 2 bytes long.

• This function should not be used in Win32s or Win32 GUI applications.

Return value On success, cgets returns a pointer to str[2].

See also cputs, [gets, getch, getche, gets

_chain_intr dos.h

Function Chains to another interrupt handler.

Syntax void _chain_intr(void-(interrupt far *newhandler) ());

Remarks

48

ANSI C ANSI C++

The _chain_intr function passes control from the currently executing
interrupt handler to the new interrupt handler whose address is
newhandler. The current register set is not passed to the new handler.
Instead, the new handler receives the registers that were stacked (and

Library Reference

Return value

See also

chdir

Function

Syntax

Remarks

Return value

See also

_chdrive

Function

Syntax

_chainjntr

possibly modified in the stack) by the old handler~ The new handler can
simply return, as if it were the original handler. The old handler is not
entered again.

The _chain_intr function can be called only by C interrupt functions. It is
useful when writing a TSR that needs to insert itself in a chain of interrupt
handlers (such as the keyboard interrupt).

None.

_dos~etvect, _dos_setvect,·

dir.h

Changes current directory.

int chdir(const char *path);

chdir causes the directory specified by path to become the current working
directory. path must specify an existing directory.

A drive can also be specified iIi. the path argument, such as

chdir ("a: \ \Be")

but this changes only the current directory on that drive; it doesn't change
the active drive.

Only the current process is affected.

Upon successful completion, chdir returns a value of o. Otherwise, it returns
a value of -I, and the global variable errno is set to

ENOENT Path or file name not found

getcurdir, getcwd, getdisk, mkdir, rmdir, setdisk, system

Sets current disk drive.

int _chdrive(int drive);

"direct.h

Chapter 3, Run-time functions 49

_chdrive

Remarks

Return value

See also

chmod

Function

Syntax

Remarks

_chdrive sets the current drive to the one associated with drive: 1 for A,
2 for B, 3 for C,·and so on.

This function changes the current drive of the parent process.

_chdrive returns 0 if the current drive was changed successfully; otherwise,
it returns -1.

_dos _setdrive

dos.h, io.h

Obsolete function. See _rtCchmod.

sys\stat.h

Changes file access mode ..

int chmod(const char *path, int arnode);

chmod sets the file-access permissions of the file given by path according to
the mask given by amode. path points to a string.

amode can contain one or both of the symbolic constants S_IWRITE and
S_IREAD (defined in sys\stat.h). .

Value of amode

SJWRITE
SJREAD
SJREADISJWRITE

Access permission

Permission to write·
Permission to read
Permission to read and write

-.. Write permission implies read permission.

Return value Upon successfully changing the file access mode, chmod returns O. Other­
wise, chmod returns a value of-1.

50 Library Reference

See also

chsize

Function

Syntax

Remarks

Return value

See also

_clear87

Function

Syntax

In the event of an error, the global variable errno is set to one of the
following values:

EACCES
ENOENT

Permission denied
Path or file name not found

access, _rtCchmod, fstat, open, sopen, stat

Changes the file size.

int chsize(int handle, long size);

chmod

io.h

chsize changes the size of the file associated with handle. It can truncate or
extend the file, depending on the value of size compared to the file's original
size.

The mode in which you open the file must allow writing.

If chsize extends the file, it will append null characters (\0). If it truncates
the file, all data beyond the new end-of-file indicator is lost.

On success, chsize returns O. On failure, it returns -1 and the global variable
errno is set to one of the following values:

EACCES
EBADF
ENOSPC

Permission denied
Bad file number .
No space left on device

close, _rtCcreat, creat, open

Clears floating-point status word.

unsigned int _clear87 (void);

float.h

Chapter 3, Run-time functions 51

_clear8?

Remarks

Return value

See also

.clearerr

Function

Syntax

Remarks

Return value

See also

clock

Function

Syntax

Return value

52

_clear87 clears the floating-point status word, which is a combination of the
80x87 status word and other conditions detected by the 80x87 exception
handler.

The bits in the value returned indicate the floating-point status before it
was cleared. For information on the status word, refer to the constants
defined in float.h.

_controI87, Jpreset, _status87

stdio.h

Resets error indication.

void clearerr(FILE *stream) i

clearerr resets the named stream's error and end-of-file indicators to o. Once
the error indicator is set, stream operations continue to return error status
until a call is made to clearerr or rewind. The end-of-file indicator is reset
with each input operation.

None.

eat, teat, terror, perror, rewind

time.h

Determines processor time.

clock_t clock(void)i

clock can be used to determine the time interval between two events. To
determine the time in seconds, the value returned by clock should be
divided by the value of the macro CLK_TCK.

The clock function returns the processor time elapsed since the beginning of
the program invocation. If the processor time is not available, or its value
cannot be represented, the function returns the value -1.

Library Reference

See also

close -

close

Function

Syntax

Remarks

Return value

See also

closedir

Function

Syntax

Remarks

time

Obsolete function. See - rtCclose.

Closes a file.

int close(int handle);

close closes the file associated with handle, a file handle obtained from a
_rtCcreat, creat, creatnew, creattemp, dup, dup2, _rtCopen, or open call.

clock

io.h

io.h

.. The function does not write a Ctrl-Z character at the end of the file. If you
want to terminate the file with a etr/-z, you must explicitly output one.

Upon successful completion, close returns O. Otherwise, the function returns
a value of -l.

close fais if handle is not the handle of a valid, open file, and the global
variable errno is set to

EBADF Bad file number

chsize, creat, creatnew, dup, fclose, open, _rtl_close, sopen

dirent.h

Closes a directory stream.

int closedir(DIR *dirp);

On UNIX platforms, closedir is available on POSIX-compliant systems.

Chapter 3, Run-time functions 53

closedir

Return value

See also

clreol

Function

Syntax

Remarks

The elosedir function closes the directory stream dirp, which must have been
opened by a previous call to opendir. After the stream is closed, dirp no
longer points to a valid directory stream.

If elosedir is successful, it returns O. Otherwise, elosedir returns -1 and sets
the global variable errno to I •• '\

EBADF The dirp argument does not point to a valid open directory
stream

errno (global variable), opendir, readdir, rewinddir

conio.h

Clears to end of line in text window.

void clreol(void)i

elreol clears all characters from the cursor position to the end of the line
within the current text window, without moving the cursor.

.. This function should not be used in Win32s or Win32 GUI applications.

Return value None.

See also elrser, delline, window

clrscr conio.h

Function Clears the text-mode window.

Syntax void clrscr (void) i

Remarks elrser clears the current text window and places the cursor in the upper
left-hand corner (at position 1,1).

.. This function should not be used in Win32s or Win32 GUI applications.

Return value None.

See also elreol, delline, window

54 Library Reference

_control87

Function

Syntax

Remarks

Return value

See also

cos, cost

Function

_control87

float.h

Manipulates the floating-point control word.

unsigned int _contro187 (unsigned int newcw, unsigned int mask);

UNIX Win 16

_controlS7 retrieves or changes the floating-point control word.

The floating-point control word is an unsigned int that, bit by bit, specifies
certain modes in the floating-point package; namely, the precision, infinity,
and rounding modes. Changing these modes lets you mask or unmask
floating-point exceptions.

_controlS7 matches the bits in mask to the bits in newcw. If a mask bit equals
I, the corresponding bit in newcw contains the new value for the same bit in
the floating-point control word, and _controlS7 sets that bit in the control
word to the new value.

Here's a simple illustration:

Original control word: 0100 0011 0110 0011

mask: 1000 0001 0100 1111
newcw: 1110 1001 0000 0101

Changing bits: 1 xxx xxxI xOxx 0101

If mask equals 0, _controlS7 returns the floating-point control word witllout
altering it.

The bits in the value returned reflect the new floating-point control word.
For a complete definition of the bits returned by _controlS7, seethe header
file float.h.

_clearS7, Jpreset, signal, _statusS7

math.h

Calculates the cosine of a value.

Chapter 3, Run-time functions 55

cos, cosl

Syntax

cos

cost

Remarks

Return value

See also

cosh, coshl

Function

Syntax

cosh

coshl

Remarks

Return value

See also

56

double cos (double Xli

long double cosl(long double Xli

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

cos computes the cosine of the input value. The angle is specified in radians.

cosl is the long double version; it takes a long double argument and returns
a long double result.

This function can be used with bed and complex types.

cos of a real argument returns a value in the range -1 to 1. Error handling
for these functions can be modified through _matherr (or _matherrl).

acos, asin, atan, atan2, bcd, complex, _math err, sin, tan

math.h

Calculates the hyperbolic cosine of a value.

double cosh(double Xli

long double coshl(long double Xli

DOS UNIX· Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

cosh computes the hyperbolic cosine, (eX + e-X)/2. cosh I is the long double
version;-it takes a long double argument and returns a long double result.

This function can be used with bed and complex types.

cosh returns the hyperbolic cosine of the argument.

When the correct value would create an overflow, these functions return
the value HUGE_VAL (cosh) or _LHUGE_ VAL (coshl) with the appropriate
sign, and the global variable errno is set to ERANGE. Error handling for
these functions can be modified through the functions _matherr and
_matherrl.

acos, asin, atan, atan2; bcd, complex, cos~ _matherr, sin, stith, tan, tanh

Library Reference

country

Function

Syntax

Remarks

The country function
is not affected by

set/ocate.

country

dos.h

Ret~rns country-dependent information.

struct COUNTRY *country(int xcode, struct COUNTRY *cp);

country specifies how certain country-dependent data (such as dates, times,
and currency) will be formatted. The values set by this function depend on
the operating system version being used.

If cp has a value of -I, the current country is set to the value of xcode, which
must be nonzero. The COUNTRY structure pointed to by cp is filled with
the country-dependent information of the current country (if xcode is set to
zero), or the' country given by xcode.

The structure COUNTRY is defined as follows:

struct COUNTRY{

};

int co_date;
char co_curr[5);
char co_thsep[2);
char co_desep[2);
char co_dtsep[2);
char co~tmsep[2);
char co_currstyle;
char co_digits;
char co_time;
long co_case;
char co_dasep[2);
char co_fill[lO)i

The date format in co_date is

1* date format *1
1* currency symbol *1
1* thousands separator *1
1* decimal separator *1
1* date separator *1
1* time separator *1
1* currency style *1
1* significant digits in currency *j
1* time format *1
1* case map *1
1* data separator *1
'1* filler *1

.0 for the U.S. style of month, day, year .

• 1 for the European style of day, month, year .

• 2 for the Japanese style of year, month, day.

Chapter 3, Run-time functions . 57

country

Return value

cprintf

Function

Syntax

Remarks

See printf for details
on format specifiers.

Return value .

See also

58

Currency display style is giv~n by co_currstyle as follows:

.0 for the currency symbol to precede the value with no spaces between
the symbol and the number .

• 1 for the currency symbol to follow the value with no spaces between the
number and the symbol.

.2 for the currency symbol to precede the value with a space after the
symbol.

• 3 for the currency symbol to follow the number. with a space before the
symbol.

On success, country returns the pointer argument cpo On error, it returns
NULL.

conio.h

Writes formatted output to the screen.

int cprintf(const char *format[, argument, ... J);

cprintf accepts a series of arguments, applies to each a format specifier
contained in the format string pointed to by format, and outputs the
formatted data directly to the current text window on the screen. There
must be the same number of format specifiers as arguments.

The string is written either directly to screen memory or by way of a BIOS
call, depending on the value of the global variabledirectvideo.

Unlike fprintf and printf, cprintf does not translate linefeed characters (\t:l)
into carriage-return/linefeed character pairs (\r \n). Tab characters
(specified by \t) are not expanded into spaces.

This function should not be used in Win32s or Win32 GUI applications.

cprintf returns the number of characters output.

directvideo (global variable), fprintf, printf, putch, sprintf, vprintf

Library Reference

cputs

cputs conio.h •

Function Writes a string to the screen.

Syntax int cputs(const char *str);

II DOS I UNIX Win 16 Win 32 I ANSI C I ANSI C++ I OS/2 II

II • I • I I I • II

Remarks cputs writes the null-terminated string str to the current text window. It '
does not append a newline character.

The string is written either directly to screen memory or by way of a BIOS
call, depending on the value of the global variable directvideo. Unlike puts,
cputs does not translate linefeed characters. (\n) into carriage­
return/linefeed character pairs (\r\n).

~ This function should not be used in Win32s or Win32 GUI applications.

Return value cputs returns the last character printed.

See also cgets, _directvideo (global variable), fputs, putch, puts

_creat io.h

creat

Function

Syntax

Remarks

Obsolete function. See _rtCcreat.

io.h

Creates a new file or overwrites an existing one.

.int creat(const char *path, int amode);

creat creates a new file or prepares to rewrite an existing file given by path.
amode applies only to newly created files.

A file created with creat is always created in the translation mode specified
by the global variable Jmode (a_TEXT or a_BINARY).

Chapter 3, Run-time functions 59

creat

If the file exists and the write attribute is set, creat truncates the file to a
length of 0 bytes, leaving the file attributes unchanged. If the existing file
has the read-only attribute set, the creat call fails and the file remains
unchanged.

The creat call examines only the S_IWRITE bit of the access-mode word
amode. If,that'bit is 1, the file can be written to. If the bit is 0, the file is
marked as read-only. All other operating system attributes are set to O.

amode can be one of the following (defined in sys\stat.h):

Value of amode

S-,WRITE,
S-'READ
S-,READIS-,WRITE

Access permission

Permission to write
Permission to read
Permission to'read and write

.. Write permission implies read permission.

Return value Upon successful completion, creat returns the new file handle, a non­
negative integer; otherwise, it returns -1.

See also

creatnew

Function

Syntax

Remarks

60

In the event of error, the global variable errno is set to one of the following:

EACCES
EMFILE
ENOENT

Permission denied
Too many open files
Path or file name not found

chmod, chsize, close, _rtCcreat, creatnew, creattemp, dup, dup2, Jmode (global
variable), [open, open, sopen, write

Creates a new file.

int creatnew(const char *path, int mode);

creatnew is identical to _rtCcreat with one exception: If the file exists,
creatnew returns an error and leaves the file untouched.

io.h

Library Reference

Return value

See also

creattemp

Function

Syntax

Remarks

Remember that a
backslash in path

requires \\'.

creatnew

The mode argument to creatnew can be zero or an OR-combination of any
one of the following constants (defined in dos.h):

FA_HIDDEN Hidden file
FA_RDONLY Read-only attribute
FA_SYSTEM System file

Upon successful completion, creat returns the new file handle, a non­
negative integer; otherwise, it returns -1.

In the event of error, the global variable errno is set to one of the following
values:

EACCES
EEXIST
EMFILE
ENOENT

Permission denied
File already exists
Too many open files
Path or file name not found

close, _rtCcreat, creat, creattemp,' _dos_creatnew, dup, Jmode (global variable),
open

Creates a unique file in the directory associated with the path name.

int creattemp(char *path, int attrib);

A file created with creattemp is always created in the translation mode
specified by the global variable Jmode (a_TEXT or a_BINARY).

io.h

path is a path name ending with a backslash (\). A unique file name is
selected in the directory given by path. The newly created file name is
stored in the path string supplied. path should be long enough to hold the
resulting filename. The file is not automatically deleted when the program
terminates.

creattemp accepts attrib, a DOS attribute word. Upon successful file
creation, the file pointer is set to the beginning of the file. The file is opened
for both reading and writing.

Chapter 3, Run-time functions 61

creattemp

Return value

The attrib argument to creattemp can be zero or an OR-combination of any
one of the following constants (defined in dos.h):

FA_HIDDEN
FA_RDONLY
FA_SYSTEM

Hidden file
Read-only attribute
System file

Upon successful completion, ,the new file handle, a nonnegative integer, is
returned; otherwise, -1 is returned.

In the event of error, the global variable errno is set to one of the following
values:

EACCES
EMFILE
ENOENT

Permission denied
Too many open files
Path or file name not found

See also close, _rtCcreat, creat, creatnew, dup, Jmode (global variable), open

_crotl, _crotr stdlib.h

Function Rotates an unsigned char left or right.

Syntax unsigned char _crotl(unsigned char val, int count);
unsigned char _crotr(unsigned char val, int count);

Remarks _crotl rotates the given val to the left count bits. _crotr rotates the given val to
the right count bits.

Return value

See also

62

The argument va'l is an unsigned char, or its equivalent in decimal or hexa­
decimal form.

The functions return the rotated val .

• _crotl returns the value of val left-rotated count bits .
• _crotr returns the value of val right-rotated count bits.

_lrotl, _lrotr, _rotl, _rotr

Library Reference

cscanf

Function

Syntax

Remarks

See scanf for details
on format specifiers.

Return value

See also

ctime

Function

Syntax

cscanf

conio.h

Scans and formats input from the console.

int cscanf(char *forrnat[, address, ... J);

cscanf scans a series of input fields one character at a time, reading directly
from the console. Then each field is formatted according to a format
specifier passed to cscanf in the format string pointed to by format. Finally,
cscanf stores. the formatted input at an address passed to it as an argument
following format, and echoes the input directly to the screen. There must be
the same number of format specifiers and addresses as there are input
fields.

cscanf might stop scanning a particular field 'before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely for a
number of reasons. See scanf for a discussion of possible causes.

This function should not be used in Win32s or Win32 GUI applications.

cscanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If no fields were stored, the return value is O.

If cscanf attempts to read at end-of-file , the return value is EOF.

fscanf, getche, scanf, sscanf

Converts date and time to a string.

char*ctirne(const tirne_t *tirne);

DOS UNIX Win 16 I Win 32 ANSI C I ANSI C++ I OS/2
..

• • • I • • I • I •

time.h

Chapter 3, Run-time functions 63

ctime

Remarks

Return value

See also

ctrlbrk

Function

Syntax

Remarks

Return value

See also

64

ctime converts a time value pointed to by time (the value returned by the
function time) into a 26-character string in the following form, terminating
with a newline character and a null character:

Mon Nov 21 11:31:54 1983\n\O

All the fields have constant width.

The global long variable timezone contains the difference in seconds
between GMT and local standard time (in PST, timezone is 8x60x60). The,
global variable daylight is nonzero if and only if the standard U.S. daylight
saving time conversion should be applied. These variables are set by the
tzset function, not by the user program directly.

ctime returns a pointer to the character string containing the date and time.
The return value points to static data that is overwritten with each call to
ctime.

asctime, _daylight (global variable), difftime, fUme, getdate, gmtime, localtime,
settime, time, _timezone (global variable), tzset

dos.h

Sets control-break handler.

void ctrlbrk(int (*handler) (void));

ctrlbrk sets a new control-break handler function pointed to by handler. The
interrupt vector Ox23 is modified to call the named function.

ctrlbrk establishes a DOS interrupt handler that calls the named function;
the named function is not called directly.

The handler function can perform any number of operations and system
calls. The handler does not have to return; it can use longjmp to return to an
arbitrary point in the program. The handler function returns 0 to abort the
current program; any other value causes the,program to resume execution.

ctrlbr~ returns nothing.

getcbrk, signal

Library Reference

cwait

Function

Syntax

Remarks

cwait

process.h.

Waits for child process to terminate:

int cwait{int *statloc, int pid, int action);

Win 32 ANSI C

,The cwait function waits for a child process to terminate. The process ID of
the child to wait for is pid. If statloc is not NULL, it points to the location
where cwait will store the termination status. The action specifies whether to
wait for the process alone, or for the process and all of its children.

If the child process terminated normally (by calling exit, or returning from
main), the termination status word is defined as follows:

Bits 0-7 Zero.

Bits 8-15 The least significant byte of the return code from the child
process. This is the value that is passed to exit, or is returned
from main. If the child process simply exited from main with­
out returning a value, this value will be unpredictable.

If the child process terminated abnormally, the termination status word is
defined as follows:

Bits 0-7 Termination information about the child:

1 Critical error abort.
2 Execution fault, protection exception ..
3 External termination signal.

Bits 8-15 Zero.

If pid is 0, cwait waits for any child process to terminate. Otherwise,pid
specifies the process ID of the process to wait for; this value must have been
obtained by an earlier call to an asynchronous spawn function.

The acceptable values for action are WAIT_CHILD, which waits for the'
specified child only, and WAIT_GRANDCHILD, which waits for the
specified child and all of its children. These two values are defined in
process.h.

Chapter 3, Run-time functions 65

cwait

Return value

See also

delline

Function

Syntax

Remarks

Return value

See also

difftime

- Function

Syntax

Remarks

66

When cwait returns after a normal child process termination, it returns the
process ID of the child.

When cwait returns after an abnormal child termination, it returns -1 to the
parent and sets errno to EINTR (the child process terminated abnormally).

If cwait returns without a child proc-ess completion, it returns a -1 value
and sets errno to one of the following values:

ECHILD
EINVAL

spawn, wait

No child exists or the pid value is bad
, A bad action value was specified

Deletes line in text window.

voiddelline (void) i

conio.h

delline deletes the line containing the cursor and moves all lines below it
one line up. delline operates within the currently active text window.

... This function should not be used in Win32s or .Win32 GUI applications.

None.

c1reol, c1rscr, inslbie, window

Computes the difference between two times.

double difftime(time_t time2, time_t timel)i

time.h

OS/2

difftime calculates the elapsed time in seconds, from timel to time2. ,

Library Reference

Return value

See also

difftime

difftime returns the result of its calculation as a double.

asctime, ctime, _daylight (global variable), gmtime, localtime, time, _timezone
(global variable)

disable, _disable, enable, _enable dos.h

Function

Syntax

Remarks

Return value

See also

div

Function

Syntax

Remarks

Disables and enables interrupts.

void disable (void) i
void _disable(void)i
void enable (void) i
void _enable (void) i

DOS

These macros are ,designed to provide a programmer with flexible
hardware interrupt control.

The disable and _disable macros disable interrupts. Only the NMI (non­
maskable interrupt) is allowed from any external device.

The enable and _enable macros enable interrupts, allowing any device
interrupts to occur.

None.

getvect

stdlib.h

Divides two integers, returning quotient and remainder.

div_t div(int numer, int denom) i

div divides two integers and returns both the quotient and the remainder as
a div_t type. numer and denom are the numerator and denominator,
respectively. The div_t type is a structure of integers defined (with typedef)
in stdlib.h as follows:

Chapter 3, Run-time functions 67

•

div

typedef struct
int quot;
int rem;

} div_t;

/* quotient */
/* remainder */

Return value div returns a structure whose elements are quat (the quotient) and rem (the
remainder).

See also

Function

Syntax

Remarks

ldiv

Closes a file.

unsigned _dos_close (int handle);

_dos_close closes the file associated with handle. handle is a file handle
obtained from a _dos_creat, _dos_creatnew, or _dos_open call.

dos.h

Return value Upon successful completion, _dos_close returns O. Otherwise, it returns the
operating system error code and the global variable errno is set to

EBADF Bad file number

Function Output a file to the disk.

Syntax unsigned _dos_cornrnit(int handle);

DOS UNIX Win 16 Win 32 I ANSI C ANSI C++ I OS/2

" • • I I II

Remarks This function makes DOS flush any output that it has buffered for a specific
handle to the disk.

Return value The function returns zero on success. On failure the function returns the
DOS error code and sets errno to EBADF.

See also _rtCclose, _rtCcreat, _dos_creat, _dos_write'

68 Library Reference

Function

Syntax

Remarks

Return value

dos.h, io.h

Creates a new file or overwrites an existing one.

unsigned _dos_creat(const char *path,int attrib,int *handlep);

_dos_creat opens the file specified by path. The file is always opened in
binary mode. Upon successful file creation, the file pointer is set to the
beginning of the file. _dos_creat stores the file handle in the location pointed
to by handlep. The file is opened for both reading and writing.

If the file already exists, its size is reset to O. (This is essentially the same as
deleting the file and creating a new file with the same name.)

FA_RDONL Y Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

The attrib argument is an ORed combination of one or more of the
following constants (defined in dos.h):

_A_NORMAL Normal file
_A_RDONLY Read-only file
_A_HIDDEN Hidden file
_A_SYSTEM System file

Upon successful cpmpletion, _dos_creat returns O. If an error occurs,
_dos_creat returns the operating system error code.

In the event of error, the global variable errno is set to one of the following
values:

EACCES
EMFILE
ENOENT

Permission denied
Too many open files
Path or file name not found

See also chsize, close, creat, creatnew, creattemp, _rttchmod, _rtl_close

_dos_creatnew - dos.h

Function Creates a new file.

Chapter 3, Run-time functions 69

Syntax

Remarks

Return value

See also

dosexterr

Function

Syntax

70

unsigned _dos_creatnew(const char *path, irit attrib, int *handlep) i

_dos_creatnew creates and opens the new file path. The file is given the
access permission attrib, an operating-system attribute word. The file is
always opened in binary mode. Upon successful file creation, the file
handle is stored in the location pointed to by handlep, and the file pointer is
set to the beginning of the file. The file is opened for both reading and
writing.

If the file already exists, _dos_creatnew returns an error and leaves the file
untouched.

The attrib argument to _dos_creatnew is an OR combination of one or more
of the following constants (defined in dos.h):

_A_NORMAL Norma~ file
_A_RDONL Y Read-only file
_A_HIDDEN Hidden file
_A_SYSTEM System file

Upon successful completion, _dos_creatnew returns O. Otherwise, it returns
the operating system error code, and the global variable errno is set to one
of the following:

EACCES
EEXIST
EMFILE
ENOENT

Permission denied
File already exists
Too many open files
Path or file name not found

creatnew, _dos_close, _dos_creat, _dos~etfileattr, _dos_setfileattr

Gets extended DOS error information.

int dosexterr(struct DOSERROR *eblkp) i

II DOS UNIX Win 16 Win 32 I ANSIC ANSI C++ OS/2 II
Il • • I II

dos.h

Library Reference

. Remarks

dosexterr

This function fills in the DOSERROR structure pointed to by eblkp with
extended error information after a DOS call has failed. The structure is
defined as follows:

struct DOSERROR {
int de_exterror;
char de_class;
char de_action;
char de_locus;

};

/* extended error */
/* error class */
/* action */
/* error locus */

The values in this structure are obtained by way of DOS call Ox59. A
de_exterror value of 0 indicates that the prior DOS call did not result in an
error.

Return value dosexterr returns the value de_exterror.

_dos_findfirst dos.h

Function : Searches a disk directory.

Syntax unsigned _dos_findfirst (const char *pathname,.int attrib, .

Remarks

struct find_t *ffblkl;

UNIX Win 16 ANSI C++ OS/2

_dosJindfirst begins a search of a disk directory.

pathname is a string with an optional drive specifier, path, and file name of
the file to be found. The file name portion can contain wildcard match
characters (such as? or *). If a matching file is found, the find_t structure
pointed to by ffblk is filled with the file-directory information.

The format of the find_t structure is as follows:

struct find_t {
charreserved[21];
char attrib;
int wr_time;
int wr_date;
long size;
char name [13] ;

}; ,

/* reserved by the operating system */
/* attribute found */
/* file time */

. /* file date */
/* file size */
/* found file name */

attrib is an operating system file-attribute worciused in selecting eligible
files for the search. attrib is an OR combination of one or more of the
following constants (defined in dos.h):

Chapter 3, Run-time functions - 71

_dosjindfirst

Return value

_A_NORMAL
_A_RDONLY
_A_HIDDEN
_A_SYSTEM
_A_VaLID
_A_SUBDIR
_A_ARCH

Normal file
Read-only attribute
Hidden file
System file
Volume label
Directory
Archive

For more detailed information about these attributes, refer to your
operating system reference manuals.

Note that wr _time and wr _date contain 1;>it fields for referring to the file's
date and-time. The structure of these fields was established by the operat­
ing system.

wr_time:
Bits 0-4

Bits 5-10
Bits 11-15

wr_date:
Bits 0-4
Bits 5-8
Bits 9-15

The result of seconds divided by 2 (for example, 10
here means 20 seconds)
Minutes
Hours

Day
Month
Years since 1980 (for example, 9 here means 1989)

_dosJindfirstreturns 0 on successfully finding a file matching the search
pathname. When no more files can be found, or if there is some error in the
file name, the operating system error code is returned, and the global
variable errno is set to

ENOENT Path or file name not found

See also _dosJindnext

Function Continues _dosJindfirstsearch.

Syntax' unsigned _dos_findnext(struct find_t *ffblk)i

Remarks _dosJindnext is used to fetch subsequent files that match the pathname given
in _dosJindfirst. ffblk is the same block filled in by the _dosJindfirst call. This

72 Library Reference,

Return value

See also

block contains necessary information for continuing the search. One file
name for each call to _dos Jindnext is returned until no more files are found
in the directory matching the pathname.

I _dosJindnext returns 0 on successfully finding a file matching the search
pathname. When no more files can be found, or if there is some error in the
file name, the operating system error code is returned, and the global
variable errno is set to

ENOENT

_dos Jindfirst
I

Path or file name not found

_dos_getdate, _dos_setdate, getdate, setdate dos.h

Function

Syntax

Remarks

Gets and sets system date.

void _dos_getdate(struct dosdate_t *datep)i
unsigned _dos_setdate(struct dosdate_t *datep}i
void getdate(struct date *datep) i

void setdate(struct date *datep)i

getdate fills in the date structure (pointed to by datep) with the system's
current date.

setdate sets the system date (month, day, and year) to that in the date
structure pointed to by datep.

The date structure is defined as follows:

struct date {
int da...,yeari
char da_daYi
char da_moni

}i

/* current year */
/* day of the month */
/* month (1 = Jan) */

_dos...getdate fills in the dosdate_t structure (pointed to by datep) with the
system's current date.

Chapter 3, Run-time functions 73

_dos~etdate, _dos_setdate, getdate, setdate

Return value

See also

Function

Syntax

Remarks

Return value

See also

74

The dosdate_t structure is defined as follows:

struct dosdate_t {
unsigned char day; /* 1-31 */
unsigned char month; /* 1-12 */
unsigned int year; /* 1980 - 2099 */
unsigned char dayofweek; /* 0 - 6 (O=Sunday) */

};

_dos-$etdate, getdate, a:nd setdate do not return a value.

If the date is set successfully, _dos_setdate returns O. Otherwise, it returns a
nonzero value and the global variable errno is set to

EINV AL Invalid date

ctime, gettime, settime

dos.h

Gets disk free space.

unsigned _dos_getdiskfree(unsigned char drive, struct diskfree_t *dtable);

_dos-$etdiskfree accepts a drive specifier in drive (0 for default, 1 for A, 2 for
B, and so on) and fills in the diskfree_t structure pointed to by dtable with

. disk characteristics.

The diskfree _t structure is defined as follows:

struct diskfree_t {

};

unsigned avail_clusters;
unsigned total_clusters;
unsigned bytes-per_sector;
unsigned sectors-per_cluster;

/* available clusters ~/
/* total clusters */
/* bytes per sector */
/* sectors per cluster ~/

_dos-$etdiskfree returns 0 if successful. Otherwise, it returns a nonzero value
and the global variable errno is s~t to

EINVAL

getfat, getfatd

Invalid drive specified

Library Reference

Function

Syntax

Remarks

Return value

See also

Function

Synt~x

Remarks

Gets and sets the current drive number.

dos.h II
void _dos_getdrive(unsigned *drivep);
void _dos_setdrive(unsigned drivep, unsigned *ndrives);

II DOS UNIX Win 16 I Win 32 I ANSI C ANSI C++ OS/2

II • • I I •

_dos-$etdrive gets the current drive number.

_dos_setdrive sets the current drive and stores the total number of drives at
the location pointed to by ndrives.

The drive numbers at the location pointed to by drivep are as follows: 1 for
A, 2 for B, 3 for C, and so on.

This function changes the current drive of the parent process.

None. Use _dos-$etdrive to verify that the current drive was changed
successfully.

getcwd_

Changes file access mode.

int _dos_getfileattr(const char *path, unsigned *attribp);
int _dos_setfileattr(const char *path, unsigned attrib);

dos.h

_dos-$etfileattr fetches the file attributes for the file path. The attributes are
stored at the location pointed to by attribp.

_dos_setfileattr sets the file attributes for the file path to the value attrib. The
file attributes can be an OR combination of the following symbolic
constants (defined in dos.h):

_A_RDONLY
_A_HIDDEN

Read-only attribute
Hidden file

Chapter 3, Run-time functions 75

Return value

See also

Function

Syntax

Remarks

76

_A_SYSTEM
_A_VOLID
_A_SUBDIR
_A_ARCH
_A_NORMAL

System file
Volume label
Directory
Archive
Normal file (no attribute bits set)

Upon successful completion,_dos-$etfileattr and _dos_setfileattr return O.
Otherwise, these functions return the operating system error code, and the
global variable errno is set to

ENOENT Path or file name not found

chmod, stat

Gets and sets file date and time.

unsigned _dos_getftime(int handle, unsigned *datep, unsigned *timep);
unsigned _dos_setftime(int handle, unsigned date, unsigned time);

dos.h

_dos-$etftime retrieves the file time and date for the disk file associated with
the open handle. The file must have been previously opened using
_dos_open, _dos_creat, or _dos_creatnew. _dos-$etftime stores the date and
time at the locations pointed to by datep and timep.

_dos_setftime.sets the file's new date and time values as specified by date and
time.

Note that the date and time values contain bit fields for referring to the file's
date and time. The structure of these fields was established by the operat­
ing system.

Date:
Bits 0-4
Bits 5-8
Bits 9-15

Time:
Bits 0-4

Bits 5-10
Bits 11-15

Day
Month
Years since 1980 (for example, 9 here means 1989)

The result of seconds divided by 2 (for example, 10 here
means 20 seconds)
Minutes
Hours

Library Reference

Return value

See also

Function

Syntax

Remarks

Return value

See also

_dos~etftime and _dos_setftime return 0 on success.

In the event of an error return, the operating system error code is returned
and the global variable errno is set to one of the following values:

EACCES
EBADF

fstat, stat

Permission denied
Bad file number

Gets and sets system time.

void _dos_gettime(struct dostime_t *timep);
unsigned _dos_settime(struct dostime_t *timep);

dos.h

_dos~ettime fills in the dostime_t structure pointed to by timep with the sys­
tem's current time.

_dos_settime sets the system time to the values in the dostime_t structure
pointed to by timep.

The dostime _t structure is defined as follows:

struct dostime_t {
unsigned char hour;
unsigned char minute;
unsigned char second;
unsigned char hsecond;

}i

/* hours 0-23 */
/* minutes 0-59 */
/* seconds 0-59 */
/* hundredths of seconds 0-99 */

~dos ~ettime does not return a value.

If _dos_settime is successful, it returns O. Otherwise, it returns the operating
system error code, and the global variable errno is set to:

EINV AL Invalid time

_dos~etdate, _dos_setdate, _dos_settime, stime, time

Chapter 3, Run-time functions 77

•

Function Gets interrupt vector.

Syntax void interrupt(*_dos_getvect(unsigned interruptno)) ()i

Remarks Every processor of the 8086 family includes a set of interrupt vectors,
numbered 0 to 255. The 4-byte value in each vector is actually an address,
which is the location of an interrupt function.

Return value

See also

Function

Syntax

Remarks

78

_dos-$etvect reads the value of the interrupt vector given by interruptno and
returns that value as a (far) pointer to an interrupt function. The value of
interruptno can be from 0 to 255.

_dos-$etvect returns the current 4-byte value stored in the interrupt vector
named by interruptno.

fcntl.h, share.h, dos.h

Opens a file for reading or writing.

unsigned _dos_open(const char *filenarne, unsigned of lags, int *handlep);

UNIX Wi n 16

_dos_open opens the file specified by filename, then prepares it for reading or
writing, as determined by the value of oflags. The file is always opened in
binary mode. _dos_open stores the file handle at the location pointed to by
handlep.

oflags uses the flags from the following two lists. Only one flag from the
first list can be used (and one must be used); the remaining flags can be
used in any logical combination.

List 1: Read/write flags
o _RDONLY Open for reading.
O_WRONLY Open for writing.
o _RDWR Open for reading and writing.

Library Reference

These symbolic
constants are defined
in fcntl.h and shar,e.h.

Return value '

See also

Function

Syntax

The following additional values can be included in 0flags (using an OR
operation):

List 2: Other access flags
O_NOINHERIT
SH_COMPAT

SH_DENYRW
SH_DENWR
SH_DENYRD
SH_DENYNO

The file is not passed to child programs.
Allow other opens with SH_COMPAT. The call will
fail if the file has already been opened in any other
shared mode.
Only the current handle can have access to the file.
Allow only reads from any other open to the file.
Allow only writes from any other open to the file.
Allow other shared opens to the file, but not other
SH_COMPAT opens.

Only one of the SH_DENYxx values can be included in a single _dos_open.
These file-sharing attributes are in addition to any locking performed on
the files.

The maximum number of simultaneously'open files is defined by
HANDLE_MAX. '

On successful completion, _dos_open returns 0, and stores the file handle at
the location pointed to by handlep. The file pointer, which marks the current
position in the file, is set to the beginning of the file.

On error, _dos_open returns the operating system error code. The global
variable errno is set to one of the following:

EACCES
EINVACC
EMFILE
ENOENT

Permission denied
Invalid access code
Too many open files
Path or file not found

open, _rtCread, sopen

Reads from file.

unsigned_dos_read(int handle, void far *buf, unsigned *nread);

io.h, dos.h

Chapter 3, Run-time functions 79

•

Remarks

Return value

See also

_dos_setdate

80

_dos_read reads len bytes from the file associated with handle into but. The
actual number of bytes read is stored at the location pointed to by nread;
when an error occurs, or the end-of-file is encountered, this number might
be less than len.

_dos_read does not remove carriage returns because it treats all files as
binary files.

handle is a file handle obtained from a _dos_creat, _dos_creatizew, of_dDs_open
call.

On disk files, _dos_read begins reading at the current file pointer. When the
reading is complete, the function increments the file pointer by the number
of bytes read. On devices, the bytes are read directly from the device.

The maximum number of bytes that _dos_read can read is UINT_MAX-l,
because UINT_MAX is the same as -1, the error return indicator.
UINT_MAX is defined in limits.h.

On successful completion, _dos_read returns O. Otherwise, the function
returns the DOS error code and sets the global variable errno.

EACCES
EBADF

Permission denied
Bad file number

_rtCopen, read, _rtCwrite

See _dos....getdate.

See _dos....getdrive.

See _dos....getfileattr.

Library Reference

See _dos-$etftime.

Function Sets interrupt vector entry.

Syntax void _dos_setvect(unsigned interruptno, void interrupt (*isr) ()) ;

II DOS I UNIX I Win 16 I Win 32 I ANSI C I ANSI C++ OS/2

II • I 1 1 1 I
Remarks Every processor of the 8086 family includes a set of interrupt vectors,

numbered 0 to 255. The 4-byte value in each vector is actually an address,
which is the location of an interrupt function.

_dos_setvect sets the value of the interrupt vector named by interruptno to a
new value, isr, which is a far pointer containing the address of a new
interrupt function. The address of a C routine can be passed to isr only if
that routine is declared to be an interrupt routine.

_ If you use the prototypes declared in dos.h, pass the address of an interrupt
function to _dos_setvect in any memory model.

Return value None.

See also _dos-$etvect

dostounix dos.h

Function Converts date and time to UNIX time format.

Syntax long dostounix(struct date *d, struct time *t) ;

Chapter 3, Run-time functions 81

dostounix

Remarks

Return value

See also

Function

Syntax

Remarks

Return value

See also

dup

Function

Syntax

82

dostounix converts a date and time as r~turned from'getdate and gettime into
UNIX time format. d points to a date structure, and t points to a time
structure containing valid date and time information.

The date and time must not be earlier than or equal to Jan 11980 00:00:00.

UNIX version of current date and time parameters: number of seconds
since 00:00:00 on January I, 1970 (GMT).

getdate, gettime, unixtodos

Writes to a file.

unsigned _dos_write(int handle, canst void __ far *buf, unsigned len,
unsigned *nwritten}j

dos.h

_dos_write writes len bytes from the buffer pointed to by the _ _ far pointer
buf to the file associated with handle. _dos_write does not translate a linefeed
character (LF) to a CR/LF pair because it treats all files as binary data.

The actual number of bytes written is stored at the location pointed to by
nwritten. If the number of bytes actually written is less than that requested,
the condition should be considered an error and probably indicates a full
disk. For disk files, writing always proceeds from the current file pointer.
On devices, bytes are directly sent to' the device.

On successful completion, _dos_write returns O. Otherwise, it returns the
operating system error code and the global variable errno is set to one of the
following values:

EACCES
EBADF

Permission denied
Bad file number

Duplicates a file handle.

int dup(int handle}j

io.h

Library Reference

Remarks

Return value

See also

dup2

Function

Syntax

Remarks

dup creates a new file handle that has the following in common with the
original file handle:

• Same open file or device
• Same file pointer (that is, changing the file pointer of one changes the
, other)

, • Same access mode (read, write, read/write)

dup

handle is a file handle obtained from a _rtCcreat, creat, _rtCopen, open, dup,
or dup2 call.

Upon successful completion, dup returns the new file handle, a nonnegative
integer; otherwise, dup returns -1.

In the event of error, the global variable errno is set to one of the following
values:

EBADF
EMFILE

Bad file number
Too many open files

_rtl_close, close, _rtCcreat, creat, creatnew, creattemp, dup2, topen, _rtCopen,
open

io.h

Duplicates a file handle (oldhandle) onto an existing file handle (newhandle).

int dup2(int oldhandle, int newhandle)i

dup2 creates a new file handle that has the following in common with the
original file handle: '

• Same open file or device
• Same file pointer (that is, changing the file pointer of one changes the

other)

• Same access mode (read, write, read/write)

dup2 creates a new handle with the value of newhandle. If the file associated
with newhandle is open when dup2 is called; the file' is closed.

Chapter 3, Run-time functions 83

dup2

Return value

See also

ecvt

Function

Syntax

Remarks

Return value

See also

Function

Syntax

84

newhandle and oldhandle are file handles obtained from a creat, open, dup, or
dup2 calL

dup2 returns 0 on successful completion, -1 otherwise.

In the event of error, the global variable errno is set to one of the following
values:

EBADF
EMFILE

Bad file number
Too many open files

_rtf_close, close, _rtCereat, ereat, ereatnew, creattemp, dup, fopen, _rtf_open, open

stdlib.h

Converts a floating-point number to a string.

char *ecvt(double value, int ndig, int *dec, int *sign);

II DOS UNIX Win 16 I Win 32 ANSI C I ANSI C++ I OS/2

II • • • I • I I •

ecvt converts value to a null-terminated string of ndig digits, starting with
the leftmost significant digit, and returns a pointer to the string. The
position of the decimal point relative to the beginning of the string is stored
indirectly through dec (a negative value for dec means that the decimal lies
to the left of the returned digits). There is no decimal point in the string
itself. If the sign of value is negative, the word pointed to by sign is nonzero;
otherwise, it's O. The low-order digit is rounded.

The return value of ecvt points to static data for the string of digits whose
content is overwritten by each call to ecvt and fcvt.

fevt, gevt, sprintf

dos.h

Inserts literal values directly into code.

void_~ _emit __ (argument, ".);

Library Reference·

Description _ _ emit _ _ is an inline function that lets you insert literal values directly into
object code as it is compiling. It is used to generate machine language
instructions without using in line assembly language or an assembler.

Generally the arguments of an _ _ emit _ _ call are single-byte machine
instructions. However, because of the capabilities of this function, more
complex instructions, complete with references to C variables, can be
constructed.

.. You should use this function only if you are familiar with the machine
language of the 80x86 processor family. You can use this function to place
arbitrary bytes in the instruction code of a function; if any of these bytes is
incorrect, the program misbehaves and can easily crash your machine.
Borland C++ does not attempt to analyze your calls for correctness in any
way. If you encode instructions that change machine registers or memory,
Borland C++ will not be aware of it and might not properly preserve
registers, as it would in many cases with inline assembly language (for
example, it recognizes the usage of S1 and D1 registers,in inline
instructions). You are completely on your own with this function.

You must pass at least one argument to _ _ emit_ ~ any nll;mber can be
given. The arguments to this function are not treated like any other
function call arguments in the language. An argument passed to _ _ emit __
will not be converted in any way.

There are special restrictions on the form of the arguments to _ _ emit __ .
Arguments must be in the form of expressions that can be used to initialize
a static object. This means that integer and floating-point constants and the
addresses of static objects can be used. The values of such expressions are
written to the object code at the point of the call, exactly as if they were
being used to initialize data. The address of a parameter or auto variable,
plus or minus a constant offset, can also be used. For these arguments, the
offset of the variable from BP is stored.

The number of bytes placed in the object code is determined from the type
of the argument, except in the following cases:

• If a signed integer constant (that is Ox90) appears that fits within the
range of 0 to 255, it is treated as if it were a character .

• If the address of an auto or parameter variable is used, a byte is written if
the offset of the variable from BP is between -128 and 127; otherwise, a
word is written.

Simple bytes are written as follows:

__ ernit __ (Ox90) i

Chapter 3, Run-time functions 85

Return value

If you want a word written, but the value you are passing is under 255,
simply cast it to unsigned using one of these methods:

__ emit __ (OxB8, (unsigned)17)i
__ emit __ (OxB8, 17u)i

Two- or four-byte address values can be forced by casting an address to
void near * or void far *, respectively.

None.

enable, _enable'

_endthread

Function

Syntax

Remarks

Return value

See also

eof

Function

Syntax

86

See disable.

process.h

Terminates execution of a thread.

void _endthread(voidl'i

The _end thread function terminates the currently executing thread. The
. thread must have been started by an earlier call to _beginthread.

This function is available in the multithread libraries; it is not in the single­
thread libraries.

The function 'does not return a value.

_begin thread

Checks for end-of-file.

int eof(int handle) i

DOS

io.h

Library Reference

Remarks

Return value

See also

eof

eof determines whether the file associated with handle has reached end-of­
file.

If the current position is end-of-file, eof returns the value 1; otherwise, it
returns o. A return value of -1 indicates an error; the global variable errno is
set to

EBADF Bad file number

clearerr, feof, ferror, perror

exeel, exeele, execlp, exeelpe, exeev, exeeve, exeevp, exeevpe proeess.h

Function

Syntax

Remarks

Loads and runs other programs.

int execl(char *path, char *argO *argl, ... , *argn, NULL);
int execle(char *path, char *argO, *argl, ... , *argn, NULL, char **env);

int execlp(char *path, char *argO,*argl, ... , *argn, NULL);
int execlpe(char *path, char *argO, *argl, ... , *argn, NULL, char **env);

int execv(char *path, char *argv[]);
int execve(char *path, char *argv[], char **env);

int execvp(char *path, char *argv[]);
int execvpe(char *path, char *argv[], char **env);

DOS UNIX Win 16

The functions in the exec ... family load and run (execute) other programs,
known as child processes. When an exec ... call succeeds, the child process
overlays the parentprocess. There must be sufficient memory available for
loading and executing the child process.

path is the file name of the called child process. The exec ... functions search
for path using the standard search algorithm:

• If no explicit extension is given, the functions search for the file as given.
If the file is not found, they add .EXE and search again. If not found, they
add .COM and search again. If still not found, they add .BAT and search
once more. The command processor COMSPEC is used to run the
executable file .

• If an explicit extension or a period is given, the functions search for the
file exactly as given.

Chapter 3, Run-time functions 87

execl, execle, execlp, execlpe, execv, execve, execvp, execvpe

88

The suffixes I, v, p, and e added to the exec ... "family name" specify that the
named function operates with certain capabilities .

• 1 specifies that the argument pointers (argO, argl, ... , argn) are passed as
separate arguments. Typically, the I suffix is used when you know in
advance the number of arguments to be passed.

• v specifies that the argument pointers (argv[O) ... , arg[n}) are passed as an
array of pointers. Typically, the v suffix is used when a variable number
of arguments is to be passed.

• p specifies that the function searches for the file in those directories
specified by the PATH environment variable (without the p suffix, the
function searches only the current working directory). If the path parame­
ter does not contain an explicit directory, the function searches first the
current directory, then the directories set with the PATH environment
variable.

• e specifies that the argument env can be passed to the child process,
letting you alter the environment for the child process. Without the e
suffix, child processes inherit the environment of the parent process.

Each function in the exec ... family must have one of the two argument­
specifying suffixes (either I or v). The path search and environment
inheritance suffixes (p and e) are optional; for example,

• execl is an exec ... function that takes separate arguments, searches only
the root or current directory for the child, and passes on the parent's
environment to the child.

• execvpe is an exec ... function that takes an array of argument pointers,
incorporates PATH in its search for the child process, and accepts the env
argument for altering the child's environment.

• Theexec ... functions must pass at least one argument to the child process
(argO or argv[O}); this argument is, by convention, a copy of path. (Using a
different value for this Oth argument won't produce an error.)

path is available for the child process.

When the I suffix is used, argO usually points to path, and argl, ... , argn
point to character strings that 'form the new list of arguments. A mandatory
null following argn marks the end of the list.

When the e.suffix is used, you pass a list of new environment settings
through the argument env. This environment argument is an array of
character pointers. Each element points to a null-terminated character
string of the form

envvar = value

Library Reference

Return value

See also

Function

Syntax

Remarks

Return value

See also

execl, execle, execlp, execlpe, execv, execve, execvp, execvpe

where envvar is the name of an environment variable, and value is the string
value to which envvar is set. The last element in env is null. When env is
null, the child inherits the parents' environment settings.

The combined length of argO + argl + ... + argn (or of argv[O] + argv[1] + ...
+ argn[n]), including space characters that separate the arguments, must be
less than 128 bytes for a 16-bit application, or 260 bytes for Win32
application. Null characters are not counted.

When an exec ... function call is made, any open files remain open in the
child process.

If successful, the exec ... functions do not return. On error, the exec ...
functions return -1, and the global variable errno is set to one of the
following values:

EACCES
EMFILE
ENOENT
ENOEXEC
ENOMEM

Permission denied
Too many open files
Path or file name not found
Exec format error
Not enough memory

abort, atexit, _exit, exit, Jpreset, searchpath, spawn ... , system

Terminates program.

void _exit (int status);

stdlib.h

_exit terminates execution without closing any files, flushing any output, or
calling any exit functions.

The calling process uses status as the exit status of the process. Typically a
value of 0 is used to indicate a normal exit, and a nonzero value indicates
some error.

None.

abort, atexit, exec ... , exit, spawn ...

Chapter 3, Run-time functions 89

exit

exit

Function

Syntax

Remarks

Return value

See also

exp, expl

Function

Syntax

Remarks

Return value

90

exp

exp/

stdlib.h

Terminates program.

void exit (int status);

exit terminates the calling process. Before termination, all files are closed,
buffered output (waiting to be output) is written, and any registered "exit
functions" (posted with atexit) are called.

status is provided for the calling process as the exit status of the process.
Typically a value of 0 is used to indicate a normal exit, and a nonzero value
indicates some error. It can be, but is not required, to be set with one of the
following:

EXIT_SUCCESS

Abnormal program termination; signal to operating
system that program has terminated with an error.
Normal program termination

None.

abort, atexit, exec ... , _exit, keep, signal, spawn ...

math.h

Calculates the exponential e to the x.

double exp(double Xli

long double expl(long double Xli

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

exp calculates the exponential function eX.

expl is the long double version; it takes a long double argument and returns
a long double result.

This function can be used with bcd and complex types.

exp returns eX.

Library Reference

See also

_expand

Function

Syntax

Remarks

Return value

See also

fabs, fabsl

Function

Syntax

fabs

fabsl

exp, expl

Sometimes the arguments passed to these functions produce results that
overflow or are incalculable. When the correct value overflows, exp returns
the value HUGE_VAL and expl returns _LHUGE_ V AL. Results of exces­
sivelyJarge magnitude cause the global variable errno to be set to

ERANGE Result out of range

On underflow, these functions return 0.0, and the glob~l variable errno is
not changed. Error handling for these functions can be modified through
the functions _matherr and _matherrl.

frexp, ldexp, log, loglO, _matherr, pow, powlO, sqrt

malloc.h

Grows or shrinks a heap block in place.

void *_expand(void *block, size_t size);

This function attempts to change the size of an allocated memory block
without moving the block's location in the heap. The data in the block are
not changed, up to the smaller of the old and new sizes of the block. The
block must have been allocated earlier with malloc, calloc, or realloc, and
must not have been freed~

If _expand is able to resize the block without moving it, _expand returns a
pointer to the block, whose address is unchanged. If _expand is unsuccess­
ful, it returns a NULL pointer and does not modify or resize the block.

calloc, malloc, reallQc,

'Retumsthe absolute value of a floating-point number.

double fabs(double x);
long double fabsl(long double x);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

math.h

Chapter 3, Run-time functions 91

II

tabs, tabsl

Remarks

Return value

See also

. farcalloc

Function

Syntax

Remarks

Return value

See also

farfree

Function

Syntax

Remarks

92

fabs calculates the absolute value of x, a double. fabsl is the long double
version; it takes a long double argument and returns a long double result.

fabs and fabsl return the absolute value of x.

. abs, cabs, labs

alloc.h

Allocates memory from the far heap.

void far *farcalloc(unsigned long nunits, unsigned long unitsz)i

farcalloc allocates memory from the far heap for an array containing nunits
elements, each unitsz bytes long.

For allocating from the far heap, note that

.' All available RAM can be allocated .
• Blocks larger than 64K can be allocated .

• Far pointers (or huge pointers if blocks are larger than 64K) are used to
access the allocated blocks.

In the compact and large memory models, farcalloc is similar, though not
identi<:al, to calloc. It takes unsigned long parameters, while calloc takes
unsigned parameters.

farcalloc returns a pointer to the newly allocated block, or NULL if not
enough space exists for the new block.

calloc, farfree, farmalloc, malloc

alloc.h

Frees a block from far heap.

void farfree(void far * block)i

farfree releases a block of memory previously allocated from the far heap.'

Library Reference

Return value

See also

farmalloc

Function

Syntax

Remarks

Return value

See also

farrealloc

Function

Syntax

Remarks

farfree

In the small and medium memory models, blocks allocated by farmalloc
cannot be freed with normal free, and blocks allocated with malloc canno,t be
freed with farfree. In these models, the two heaps are completely distinct.

None.

farcalloc, farmalloc

alloc.h

Allocates from far heap.

void far *farmalloc(unsigned long nbytes)i

. farmalloc allocates a block of memory nbytes bytes long from the far heap.

For allocating from the far heap, note that

• All available RAM can be allocated.
• Blocks larger than 64K can be allocated.
• Far pointers are used to access the allocated blocks.

In the compact and large memory models, farmalloc is similar though not·
identical to malloc. It takes unsigned long parameters, while malloc takes
unsigned parameters.

farmalloc returns a pointer to the newly allocated block, or NULL if not
enough space exists for the new block.

farcalloc, farfree, farrealloc, malloc

alloc.h

Adjusts allocated block in far heap.

void far *farrealloc(void far *oldblock, unsigned long nbytes)i

DOS

farrealloc adjusts the size of the allocated block to nbytes, copying the
contents to a new location, if necessary.

Chapter 3, Run-time functions 93

farrealloc

Return value

See also

fclose

Function

Syntax

Remarks

Return value

See also

fcloseall

Function

Syntax

Remarks

94

For allocatmg from the far heap, note that

, • All available RAM can be allocated .
• Blocks larger than 64K can be allocated .
• Far pointers are used to access the allocated blocks.

farrealloc (eturns the address of the reallocated block, which might be
different than the address of the original block. If the block cannot be
reallocated, farrealloc returns NULL.

fa rmalloc , realloc

stdio.h

Closes a stream.

- int fclose (FILE *strearnl;

fclose closes the named stream. All buffers associated with the stream are
flushed before closing. System-allocated buffers are freed upon closing.
Buffers assigned with setbuf or setvbuf are not automatically freed. (But if
setvbuf is passed null for the buffer pointer, it will free it upon close.)

fclose retumsO on success. It returns EOF if any errors were detected.

close, fcloseall, fdopen, fflush; flushall, fopen, freopen

stdio.h

Closes open streams.

int fcloseall(voidlj

fcloseall closes all open streams except stdin, stdout, stdprn, stderr, and
stdaux. stdpm and stdaux streams are not available on OS /2 and Win32.

Library Reference

Return value

See also

fcvt

Function

Syntax

Remarks

Return value

See also

fdopen

Function

Syntax

Remarks

fcloseall

fdoseall returns the total number of streams it closed. It returns EOF if any
errors were detected.

fdose, fdopen, flushall, fopen, freopen

stdlib.h

Converts a floating-point number to a string.

char *fcvt(double value, int ndig, int *dec, int *sign);

fcvt converts value to a null-terminated string digit, starting with the
leftmost significant digit, with ndig digits to the right of the decimal point.
fcvt then returns a pointer to the string. The position of the decimal point
relative to the beginning of the string is stored indirectly through dec (a
negative value for dec means to the left of the returned digits). There is no
decimal point in the string itself. If the sign of value is negative, the word
pointed to by sign is nonzero; otherwise, it is O.

The correct digit has been rounded for the number of digits to the right of
the decimal point specified by ndig.

The return value of fcvt points to static data whose content is overwritten
by each call to fcvt and ecvt.

ecvt, gcvt, sprintf

stdio.h

Associates a stream with a file handle.

FILE *fdopen(int handle, char *type);

fdopen associates a stream with a file handle obtained from creat, dup, dup2,
or open. The type of stream must match the mode of the open handle.

The type string used in a call to fdopen is one of the following values:

Chapter 3, Run-time functions 95

fdopen

Return value

See also

feaf

Function

Syntax

Remarks

96

Value Description

r Open for reading only.

w Create for writing.

a Append; open for writing at end-of-file, or create for writing if the file does not exist.

r+ Open an existing file for update (reading and writing).

w+ Create a new file for update.

a+ Open for append; open (or create if the file does not exist) for update at the end of
the file.

To specify that a given file is being opened or created in text mode, append
a t to the value of the type string (rt, w+t, and so on); similarly, to specify
binary mode, append a b to the type string (wb, a+b, and so on).

If a t or b is not given in the type string, the mode is governed by the global
variable Jmode. If Jmode is set to a_BINARY, files will be opened in binary
mode. If Jmode is set to a_TEXT, they will be opened in text mode. These
0_ ... constants are defined in fcntl.h.

When a file is opened for update, both input and output can be done on the
resulting stream. However, output cannot be directly followed by input
without an intervening fseek or rewind, and input cannot be directly
followed by output without an intervening fseek, rewind, or an input that
encounters end-of-file.

On successful completion, fdopen returns a pointer to the newly opened
stream. In the event of error, it returns NULL.

fcZose, fopen, freopen, open

stdio.h

Detects end-of-file on a stream.

int feof(FILE *stream);

, feof is a macro that tests the given stream for an end-of-file indicator. Once
the indicator is set, read operations on the file return the indicator until
rewind is called, or the file is closed.

Library Reference

Return value

See also

ferror

Function

Syntax

Remarks

Return value

See also

fflush

Function

Syntax

Remarks

Return value

See also

feof

The end-of-file indicator is reset with each input operation.

feof returns nonzero if an end-of-file indicator was detected on the last input
operation on the named stream, and 0 if end-of-file has not been reached.

clearerr, eof, ferror, perror

stdio.h

Detects errors on stream.

int ferror(FILE *stream)i

DOS UNIX I Win 16 I Win 32 ANSI C I ANSI C++ I OS/2 II I

• • I • I • • I • I • II

ferror is a macro that tests the given stream for a read or write error. If the
stream's error indicator has been set, it remains set until clearerr or rewind is
called, or until the stream is closed.

ferror returns nonzero if an error was detected on the named stream.

clearerr, eof, feof, fopen, gets, perror

stdio.h

Flushes a stream.

int fflush(FILE *stream) i

II DOS I UNIX I Win 16 I Win 32 I ANSI C ANSI C++ OS/2 II
II • I • I • I • I • • • II

If the given stream has buffered output, fflush writes the output for stream
to the associated file.

The stream remains open after fflush has executed. fflush has no effect on an
unbuffered stream.

fflush returns 0 on success. It returns EOF if any errors were detected.

fclose, flushall, setbuf, setvbuf

Chapter 3, Run-time functions 97

fgetc

fgetc stdio.h

Function Gets character from stream.

Syntax int fgetc (FILE *stream);

Remarks fgete returns the next character on the named input stream.

Return value On success, fgete returns the character read, after converting it to an int
without sign extension. On end-of-file or error, it returns EOF.

See also fgetehar, fpute, gete, geteh, getehar, getehe, ungete, ungeteh

fgetchar stdio.h

Function Gets character from stdin.

Syntax int fg~tchar (void) ;

Remarks fgetehar returns the next character from stdin. It is defined as fgete(stdin).

.. For Win32s or Win32 GUI applications, stdin must be redirected.

Return value On success, fgetehar returns the character read, after converting it to an int
without sign extension. On end-of-file or error, it returns EOF.

See also fgete, fputehar, /reopen, getehar

fgetpos stdio.h

Function Gets the current file pointer.

Syntax int fgetpos(FILE *stream, fpos_t *pos);

UNIX Win 16

98 Library Reference

Remarks

Return value

See also

fgets

Function

Syntax

Remarks

Return value

See also

filelength

Function

Syntax

Remarks

fgetpos

fgetpos stores the position of the file pointer associated with the given
stream in the location pointed to by pos. The exact value is unimportant; its
value is opaque except as a parameter to subsequent fsetpos calls.

On success, fgetpos returns O. On failure, it returns a nonzero value and sets
the global variable errno to

EBADF
EINVAL

fseek, fsetpos, ftell, tell

Bad file number
Invalid number

stdio.h

Gets a string fro!ll a stream.

char*fgets{char *s, int n, FILE *strearn);

DOS UNIX Win 16 Win 32

fgets reads characters from stream into the string s. The function stops
reading when it reads either n -1 characters or a newline character, which­
ever comes first. fgets retains the newline character at the end of s. A null
byte is appended to s to mark the end of the string.

On success, [gets returns the string pointed to by s; it returns NULL on
end~of-file or error.

cgets, [puts, gets

Gets file size in bytes.

long filelength{int handle);

"

DOS UNIX I Win 16 Win 32 ANSI C I ANSI C++ I OS/2 "

"

• I I • • 1 1 • JI

filelength returns the length (in bytes) of the file associated with handle.

io.h

Chapter 3, Run-time functions 99

filelength

Return value

See also

fileno

Function

Syntax

Remarks

Return value

See also

findfirst

Function

Syntax

Remarks

100

On success, filelength returns a long value, the file length in bytes. On error,
it r'eturns -1 and the global variable errno is set to

EBADF Bad file number

fopen, lseek, open

Gets file handle.

int fileno(FILE *stream)i

stdio.h

fileno is a macro that returns the file handle for the given stream. If stream
has more than one handle, fileno returns the handle assigned to the stream
when it was first opened. .

fileno returns the integer file handle associated with stream.

fdopen,fopen,jreopen

Searches a disk directory.

dir.h

int findfirst(const char *pathname, struct ffblk *ffblk, int attrib)i

findfirst begins a search of a disk directory for files specified by attributes or
wildcards.

pathname is a string with an optional drive specifier, path, and file name of
the file to be found. Only the file name portion can contain wildcard match
characters (such as ? or *). If a matching file is found, the ffblk structure is
filled with the file-directory information. -

Library Reference

nnanrSI

The format of the structure ffblk is as follows:

struct ffblk {
char ff_reserved[211;
char fCattrib;
int fCftime;
int fCfdate;
long fCfsize;
char ff_name[131;
};

struct ffblk {

1* reserved by DOS *1
1* attribute found *1
1* file time *1
1* file date *1
1* file size *1
1* found file name *1

long ff_reserved;
long ff_fsizei

_ unsigned long ff_attrib;
unsigned short ff_ftimei
unsigned short ff_fdate;
char ff_name[2561i
}i

1* file size *1
1* attribute found *}

1* file time *1
1* file date *1
1* found file name *1

attrib is a file-attribute byte used in selecting eligible files for the search.
attrib should be selected from the following constants defined in dos.h:

FA_RDONLY
FA_HIDDEN
FA_SYSTEM
FA_LABEL
FA_DIREC
FA_ARCH

Read-only attribute
Hidden file
System file
Volume label
Directory
Archive

A combination of constants can be ORed together.

For more detailed irlformation about these attributes, refer to your operat­
ing system reference manuals.

Note that ffJtime and ff_fdate contain bit fields for referring to the current
date and time. The structure of these fields was established by the operat­
ing system. Both are 16-bit structures divided into three fields.

',-ftime:
Bits 0 to 4

Bits 5 to 10
Bits 11 to 15

',-'date:
Bits.0-4
Bits 5-8
Bits 9-15

Chapter 3, Run-time functions

The result of seconds divided by 2 (for example, 10 here
means 20 seconds) ,
Minutes
Hours

Day
Month
Years since 1980 (for example, 9 here means 1989)

101

IInumSI

Return value

See also

findnext

Function

Syntax

Remarks

Return value

See also

102

The structure ftime declared in io.h uses time and date bit fields similar in
structure to ffJtime, andffJdate.

findfirst returns a on successfully finding a file matching the search
pathnaine. When no more files can be found, or if there is some error in the
file name, -1 is returned, and the global variable errno is set to

ENOENT Path or file name not found

and _doserrno is set to one of the following values:

ENMFILE
ENOENT

No more files
Path or file name not found

findnext, getftime, setftime

ContiTIues findfirst search ..

int findnext(struct ffblk *ffblk)i

dir.h

findnext is used to fetch s.ubsequent files that match the pathname given in
findfirst. ffblk is the same block filled in by the findfirst tall. This block
contains necessary information for continuing the search. One file name for
each call to findnext .will be returned until no more files are found in the
directory matching the pathname.

findnext returns a on successfully finding a file matching the search
pathname. When no more files can be found, or if there is some error in the
file name, -1 is returned, and the global variable errno is set to
. ,

ENOENT Path or file name not found

and _doserrno is set to one of the following values: .

ENMFILE
ENOENT

findfirst

No more files
Path or file name not found

, Library Reference

floor, floorl

Function

Syntax

Remarks

Return value

See also

flushall

Function

Syntax

Remarks

Return value

See also

floor

floorl

_fmemccpy

floor, floorl

math.h

Rounds down.

double floor(double x);
long double floorl(long double x);

DOS UNIX Wi n 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

floor finds the largest integer not greater than x. floorl is the long double
version; if takes a long double argument and returns a long double result.

floor returns the integer found as a double. floorl returns the integer found
as a long double.

ceil, fmod

stdio.h

Flushes all streams.

int flushall(void);

flushall clears all buffers associated with open input streams, and writes all
buffers associated with open output streams to their respective files. Any
read operation following flushall reads new data into the buffers from the
input files. Streams stay open after flushall executes.

flushall returns an integer, the number of open input and output streams.

I fcZose, fcZoseall, fflush

See memccpy.

Chapter 3, Run-time functions 103

jmemchr

_fmemchr

_fmemcmp

_fmemcpy

_fmemicmp

_fmemmove

_fmemset

fmod, fmodl

Function

Syntax

104

'mod

'modI

See memchr.

See memcmp.

See memcpy.

See memicmp. '

See memmove.

See memset.

math.h

Calculates x modulo y, the remainder of x/yo

double frnod{double X, double y) ;
long double frnodl{long double X, long double y);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

Library R~ference

Remarks

Return value

See also

_fmovmem

fnmerge

Function

Syntax

Remarks

Return value

See also

fmod, fmodl

fmod calculates x modulo y (the remainder f, where x = ay + f for some
integer a and 0 5.f < y). fmodl is the long double version; it takes long
double arguments and returns a long double result.

fmod and fmodl return the remainder f, where x = ay + f (as described).
Where y = 0, fmod and fmodl return O.

ceil, floor, modf

See movmem.

Builds a path from component parts.

dir.h

vaid fnmerge(char *path, canst char *drive, canst char *dir, canst char *narne,
canst char *ext);

fnmerge makes a path name from its components. The new path name is

X:\DIR\SUBDIR\NAME.EXT

where

drive = X:
dir = \DIR\SUBDIR\
name = NAME
ext = . EXT

fnmerge assumes there is enough space in path for the constructed path
name. The maximum constructed length is MAXP A TH. MAXP ATH is
defined in dir.h.

fnmerge and fnsplit are invertible; if you split a given path with fnsplit, then
merge the resultant components with fnmerge, you end up with path.

None.

fnsplit

Chapter 3, Run-time functions 105

fnsplit

fnsplit

Function

Syntax

Remarks

106

Splits a full path name into its components.

int fnsplit(const char *path, char *drive, char *dir, char *narne, char *ext)i

fnsplit takes a file's full path name (path) as a string in the form

X: \DIR\ SUBDIR\NAME.EXT

dir.h .

and splits path into its four components. It then stores those components in
the strings pointed to by drive, dir, name, and ext. (All five components must
be passed, but any of them can be a null, which means the corresponding
component will be parsed but not stored.)

The maximum sizes for these strings are given by the constants MAXDRIVE,

MAXDIR, MAXPATH, MAXFILE, and MAXEXT (defined in dir.h), and each size
includes space for the null character.

Max Max
Constant 16·bit 32·bit St.ring

MAX PATH 80 260 path
MAXDRIVE 3 3 drive; includes colon (:)
MAXDIR 66 260 dir, includes leading and trailing backslashes 0)
MAXFILE 9 260 name
MAX EXT 5 260 ext, includes leading dot (.)

fnsplit assumes that there is enough space to store each non-null
component.

When fnsplit splits path, it treats the punctuation as follows:

• drive includes the colon (C:, A:, and so on).

• dir includes the leading and trailing backslashes (\ BC\include \,
\source \, and so on).

• name includes the file name.
• ext includes the dot preceding the extension (.C, .EXE, and so on).

fnmerge and fnsplit are invertible; if you split a given path with fnsplit, then
merge the resultant components with fnmerge, you end 'up with path.

Library Reference

Return value

See also

fopen

Function

Syntax

Remarks

fnsplit

fnsplit returns an integer (composed of five flags, defined in dir.h)
indicating which of the full path name components were present in path.
These flags and the components they represent are .

EXTENSION
FILENAME
DIRECTORY
DRIVE
WILDCARDS

fnmerge

Opens a stream.

An extension
A file name
A directory (and possibly subdirectories)
A drive specification (see dir.h)
Wildcard~ (* or ?)

FILE *fapen(canst char' *filenarne; canst char *rnade} ;

stdio.h

fopen opens the file named by filename and associates a stream with it. fopen
returns a pointer to be used to identify the stream in subsequent
operations. . .'

The mode string used in calls to fopen is one of the following values:

Value Description

Open for reading only.

w Create for writing. If a file by that name already exists, it will be overwritten.

a Append; open for writing at end of file, or create for writing if the file does not exist.

f+ Open an existing file for update (reading and writing).

Wt Create a new file for update (reading and writing). If a file by that name already
exists, it will be overwritten.

at Open fo~ append; open for update at the end of the file, or create if the file does not
exist.

To specify that a given file is being opened or created in text mode, append
a t to the mode string (rt, w+t, and so on). Similarly, to specify binary mode,
append a b to the mode string (wb, a+b, and so on). fopen also allows the tor

Chapter 3, Run-time functions 107

fopen

Return value

See also

Function

Syntax

Remarks

Return value

See also

_fpreset

Function

Syntax

108

b to be inserted between the letter and the + character in the mode string;
for example, rt+ is equivalent to r+t.

If a t or b is not given in the mode st:ring, the mode is governed hy the global
variable Jmode. If Jmode is set to a_BINARY, files are opened in binary
mode. If Jmode is set to a_TEXT, they are opened in text mode. These 0_ ...
constants are defined in fcntl.h.

When a file is opened for update, both input and output can be done on the
resulting stream. However, output cannot be followed directly by input
without an intervening fseek or rewind, and input cannot be directly
followed by output without an interveningfseek, rewind, or an input that
encounters end-of-file.

On successful completion, fopen returns a pointer to the newly opened­
stream. In the event of error, it returns NULL.

creat, dup, fclose, fdopen ferror, Jmode (global variable), fread, freopen, fseek,
fwrite, open, rewind, setbuf, setmode

Gets a, far address offset or segment.

unsigned FP_OFF(void far *p};
unsigned FP_SEG(void far *p};

dos.h

The FP _OFF macro can be used to get or set the offset of the far pointer p.

FP _SEC is a macro that gets or sets the segment value of the far pointer p.

FP _OFF returns an unsigned integer value representing an offset value.

FP _SEC returns an unsigned integer representing a segment value.

MK_FP, movedata, segread

float.h

Reinitializes floating-point math package.

void _fpreset(void};

Library Reference

jpreset

DOS UNIX Win 16

Remarks Jpreset reinitializes the floating-point math package. This function is
usually used in conjunction with system or the exec ... or spawn ... functions.
It is also used to recover from floating-point errors before calling longjmp.

Return value

See also

fprintf

Function

Syntax

Remarks

.. If an 80x87 coprocessor is used in a program, a child process (executed by
system or by an exec ... or spawn ... function) might alter the parent process'
floating-point state.

If you use an 80x87, take the following precautions:

• Do not call system or an exec ... or spawn ... function while a floating-point
expression is being ~valuated .

• Call Jpreset to reset the floating-point state after using system, exec ... , or
spawn ... if there is any chance that the child process performed a
floating-point operation with the 80x87.

None.

_clear87, _contro187, _status87

stdio.h

Writes formatted output to a stream.

int fprintf(FILE *stream, canst char *farmat[, argument, ... J);

See printffor details
on format specifiers.

fprintf accepts a series of arguments, applies to each a format specifier
contained in the format string pointed to by format, and outputs the
formatted data to a stream. There must be the same number of format
specifiers as arguments.

Return value fprintf returns the number of bytes output. In the event of error, it returns
EOF. .

See also cprintf, fscanf, printf, putc, sprintf

Chapter 3, Run-time functions 109

·fputc

fputc stdio.h

Function Puts a character on a stream.

Syntax int fputc (int c, FILE *stream);

Remarks fputc outputs character·c to the named stream.

.. For Win32s or Win32 GUI applications, stdout must be redirected.

Return value On success, fputc returns, the character c. On error, it returns EOP.

See also fgetc, putc

fputchar stdio.h

Function Outputs a character on stdout.

Syntax int fputchar (int c);

Remarks fputchar outputs character c to stdout. fputchar(c) is the same as
fputc(c, stdout).

.. For Win32s or Win32 GUI applications, stdout must be redirected.

, Return value On success, fputchar returns the character c. On error, it returns EOF.

See also fgetchar, [reopen, putchar

fputs stdio.h

Function Outputs a string on a stream.

Syntax int fputs (const char *s, FILE *stream);.

II DOS I UNIX Win 16 I Win 32 I ANSI C I ANSI C++ I OS/2 II

II • I • • I • I • I • I • II

110 Library Reference

Remarks

Return value

See also

fread

Function

Syntax

Remarks

Return value

See also

free

Function

Syntax

Remarks

Return value

See also

fputs

fputs copies the null-terminated string s to the given output stream; it does
not append a newline character, and the terminating null character is not
copied.

On successful completion, fputs returns a non-negative value. Otherwise, it
returns a value of EOF.

tgets, gets, puts

stdio.h

Reads data from a stream.

size_t fread(void *ptr, size_t size, size_t n,FILE *strearn)i

DOS I UNIX I Win 16 Win 32 ANSI C I ANSI C++ I OS/2 II
• I • I • • • I • I • II

fread reads n items of data, each of length size bytes, from the given input
stream into a block pointed to by ptr. .

The total number of bytes read is (n x size).

On successful completion, fread returns the number of items (not bytes)
actually read. It returns a short count (possibly 0) on end-of-file or error.

topen, fwrite, printt, read

stdlib.h

Frees allocated block.

void free(void *block)i

free deallocates a memory block allocated by a previous call to ealloe, malloe,
or realioe.

None.

ealioe, malioe, realioe, strdup

Chapter 3, Run-time functions 111

freopen

freopen

Function

Syntax

Remarks

Return value

See also

112

stdio.h

Associates a new file with an open stream.

FILE *freopen(const char *filenarne, const char *rnode, FILE *strearn);

freopen substitutes the named file in place of the open stream. It closes
stream, regardless of whether the open succeeds. freopen is useful for
changing the file attached to stdin, stdout, or stderr.

The mode string used in calls to fopen is one of the following values:

Value Description

r Open for reading only.

w Create for writing.

a Append; open for writing at end-of-file, or create for writing if the file does not exist.

r+ Open an existing file for update (reading and writing).

w+ Create a new file for update.

a+ Open for append; open (or create if the file does not exist) for update at the end of
the file.

To specify that a given file is being opened or created in text mode, append
a t to the mode string (rt, w+t, and so on); similarly, to specify binary mode,
append a b to the mode string (wb, a+b, and so on).

If a t or b is not given in the mode string, the mode is governed by the global
variable Jmode. If _[mode is set to ° _BINARY, files are opened in binary
mode. If Jmode is set to O_TEXT, they are opened in text mode. These 0_ ...
constants are defined in fcntl.h.

When a file is opened for update, both input and output can be done on the
resulting stream. However, output cannot be directly followed by input
without an intervening fseek or rewind, and input cannot be directly
followed by output without an intervening fseek, rewind, or an input that
encounters end-of-file.

On successful completion, freopen returns the argument stream. In the event
of error, it returns NULL.

felose, fdopen, fopen, open, setmode

Library Reference

frexp, frexpl

Function

Syntax

Remarks

Return value

See also

fscanf

Function

Syntax

Remarks

frexp

frexp/

See scanffor details
on format specifiers.

'Return value

frexp, frexp\ '

math.h

Splits a number into mantissa and exponent.

double frexp(double x, int *exponent);
long double frexpl(long double x, int *exponent);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

frexp calculates the mantissa m (a double greater than or equal to 0.5 and
less than 1) and the integer value n, such that x (the original double value)
equals m x 2n. frexp stores n in the integer that exponent points to.

frexpl is the long double version; it takes a long double argument for x and
returns a long double result.

frexp and frexpl return the mantissa m'. Error handling for these routines can
, be modified through the functions _matherr and _matherrl.

exp, ldexp, _matherr,

stdio.h

, Scans and formats input from a stream.

int fscanf(FILE *stream, const char *format[, address, ... J);

II DOS UNIX Win 16 Win 32 I ANSI C ANSI C++ I OS/2

"
"

• • • • I • • I •

" fscanf scans a series of input fields, one character at a time, reading from a
stream. Then each field is formatted according to a format specifier passed
to fsca1:lf in the format string pointed to by format. Finally, fscanf stores the
formatted input at an address passed to it as an argument following format.
The number of format specifiers and addresses must be the same as the
number of input fields.

fscanf can stop scanning a particular field before it reaches the normal end­
of-field character (whitespace), or it can terminate entirely for a number of
reasons. See scanf for a discussion of possible causes.

fscanf returns the number of input fields successfully scanned, conve:i:ted,
and stored; the return value does not include scanned fields that were not
stored.

Chapter 3, Run-time functions 113

fscanf

See also

fseek

Function

Syntax

Remarks

If fscanf attempts to read at end-of-file, the return value is EOF. If no fields
were stored, the return value is O.

atof, cscanf, fprintf, printf, scanf, sscanf, vfscanf, vsc{mf, vsscanf

stdio.h

Repositions a file pointer on a stream.

int fseek(FILE o*strearn, long offset, int whence);

fseek sets the file pointer associated with stream to a new position that is
offset bytes from the file location given by whence. For text mode streams,
offset should be 0 or avalue returned by ftell.

whence must be one of the values 0,1, or 2, which represent three symbolic
constants (defined in stdio.h) as follows:

Constant

SEEK_SET
SEEK_CUR
SEEK_END

whence,

a
1
2

File location

File beginning
Current file pointer position
End-of-file

fseek discards any character pushed back using ungetc. fseek is used with
stream I/O; for file handle I/O, use [seek.

After fseek, the next operation on an update file can be either input or
output.

Return value fseek returns 0 if the pointer is successfully moved and nonzero on failure.

114

.. fseek might return a 0, indicating that the pointer has been moved success­
fully, when in fact it has not been. This is because DOS, which actually
resets the pointer, does not verify the setting. fseek returns an error code
only on an unopened file or device.

In the event of an error return, the global variable errno is set to one of the
following values:

EBADF
EINVAL
ESPIPE

Bad file pointer
Invalid argument
Illegal seek on device

Library Reference

, See also

fsetpos

Function

Syntax

Remarks

Return value

See also

_fsopen

Function

Syntax

Remarks

fseek

fgetpos,/open, fsetpos, ftell, lseek, rewind, setbuf, tell

stdio.h

Positions the file pointer of a stream.

int fsetpos(FILE*stream, const fpos_t *pos) i

fsetpos sets the file pointer associated with stream to a new position~ The
new position is the value obtained by a previous call to fgetpos on that
stream. It also clears the end-of-file indicator on the file that stream points to
and undoes any effects of ungetc on that file. After a call tofsetpos, the next
operation on the file can be input or output.

On success, fsetpos returns O. On failure, it returns a nonzero value and also
sets the global variable errno tQ a nonzero value.

fgetpos, fseek, ftell

stdio.h, share.h

Opens a stream with file sharing.

FILE *_fsopen(const char *filename, const char *mode, int shflag)i

DOS UNIX Win 16 , Win 32 , ANSI C
,"

ANSI C++ , OS/2

• • 1 • 1 I 1 • JI

Jsopen opens the file nam~d by filename and associates a stream with it.
Jsopen returns a pointer that is used to identify the stream in subsequent
operations.

The mode string used in calls to Jsopen is one of the following values:

Mode Description

w

a

Open for reading only.

Create fo(writing. If a file by that name already exists, it will be overwritten.

Append; open for writing at end of file, or create for writing if the file does not exist.

Chapter 3, Run-time functions 115

_fsopen

Return value

See also

fstat, stat

Function

116

r+ Open an 9r.isting file for update (reading and writing).

w+ Create a new file for update (reading and writing). If a file by that name already
exists, it will be overwritten.

a+ Open for appand; open for update at the end of the file, or create if the file does not
exist.

To specify that a given file is being opened or created in text mode, append
a t to the mode string (rt, w+t, and so on). Similarly, to specify binary mode,

. append a b to the mode string (wb, a+b, and so on).'Jsopen also allows the t
or b to be inserted betwee'n the letter and the + character in the mode string;
for example, rt+ is equivalent to r+t.

If a t or b is not given in the mode string, the mode is governed by the global
variable Jmode. If Jmode is set to a_BINARY, files are opened in binary
mode. If Jmode is set to a_TEXT, they are opened in text mode. These 0_ ...
constants are defined in fcntl.h.

When a file is opened for update, both input and output can be done on the
resulting stream. However, output cannot be followed directly by input
without an intervening fseekor rewind, and input cannot be directly
followed by output without an intervening fseek, rewind, or an input that
encounters end-of-file.

shflag specifies the type of file-sharing allowed on the file filename. Symbolic
constants for shflag are defined in share.h.' '

Value of shflag

SH_COMPAT
SH_DENYRW
SH_DENYWR
SH_DENYRD
SH_DENYNONE
SH_DENYNO

Description

Sets compatibility mode
Denies read/write access
Denies write access
Denies read access
Permits read/write access
Permits read/write access

On successful completion, Jsopen returns a pointer to the newly opened
stream. In the event of error, it returns NULL.

creat, _dos_open, dup, fclose, fdopen, ferror, Jmode (global variable), fopen,
fread, freopen, fseek, fwrite, open, rewind, setbuf, setmode, sopen

sys\stat.h

Gets open file information.

Library Reference

Syntax

Remarks

int fstat(int handle, struct stat *statbuf);
int stat(char *path, struct stat *statbuf);

fstat, stat

fstat stores information in the stat structure about the file or directory
associated with handle. '

stat stores information about a given file or directory in the stat structure.
The name of the file is path.

statbufpoints to the stat structure (defined in sys\stat.h). That structure
contains the following fields:

st_mode Bit mask givfug information about the file's mode

st_dev Drive number of disk containing the file, or file handle if the
file is on a device

st_rdev Same as st_dev

st_nlink Set to the integer constant 1

st_size Size of the file in bytes

st_atime Most recent access

st_mtime Same as st_atime

st_ctime Same as st_atime

The stat structure contains three more fields not mentioned here. They
contain values that are meaningful only in UNIX.

The st_mode bit mask that gives information about the mode of the open file
includes the following bits:

One of the following bits will be set:

S_IFCHR If handle refers to a device.
S_IFREG If an ordinary file is referred to by handle.

One or both of the following bits will be set:

S_IWRITE If user has permission to write to file.
S_IREAD If user has permission to read to file.

The HPFS and NTFS file-management systems make the following
distinctions:

Chapter 3, Run-time functions , 117

fstat, stat

Return value

See also

Function

Syntax

Remarks

Note that when a far
string function returns

an int or size_t, the
return is never

modified by the far
keyword.

Return value

See also

ftell

Function

Syntax

118

st_atime Most recent access.
st_mtime Most recent modify.
st_ctime Creation time.

fstat and stat return 0 if they successfully retrieved the information about
the open file. On error (failure to get the information), these functions
return:1 and set the global variable errno to

EBADF Bad file handle

access, chmod

string.h

Provides string operations in a large-code model.

far string functions

The See also section below provides a list of string functions that have a far
version. The far version of a string function is prefixed with Jstr. The
behavior of a far string function is identical to the behavior of the standard
function to which it corresponds. The only difference is that for a far string
function, the arguments and return value (only when the return value is of
type 'char far *') are each modified by the far keyword. The entry for each
of the functions provides a description that applies to the far version. -

When an Jstr-type function returns a char pointer, the return is a far type.

strcat, strchr, strcmp, strcpy, strcspn, strdup, stricmp, strlen, strlwr, strncat,
strncmp, strncpy, strnicmp, strnset, strpbrk, strrchr, strrev, strset, strspn, strstr,
strtok, strupr '

stdio.h -

Returns the current file pointer.

long int ftell(FILE *stream);

Library Reference

Remarks '

Return value

See also

ftime

Function

Syntax

Remarks

ftell

ftell returns the current file pointer.for stream. The offset is measured in
, bytes from the beginning of the file (if the file is binary). The value returned

by ftell can be used in a subsequent call to fseek.

ftell returns the current file pointer position on success. It returns -lL on
error and sets the global variable errno to a positive value.

In the event of an error return, the global variable errno is set to one of the
following values:

EBADF Bad file pointer
ESPIPE Illegal seek on device

fgetpos, fseek,fsetpos, lseek, rewind, tell

sys\timeb.h

Stores current time in timeb structure.

void ftime(struct timeb *buf)

On UNIX platforms, ftime is available only on System V systems.

ftime determines the current time and fills in the fields in the timeb structure
pointed to by buf. The timeb structure contains four fields: time, millitm,
_timezone, and dstfLag: .

struct timeb {
long time i

short millitm i

short _timezone
short dstflag i

}i
- '

• time provides the time in seconds since 00:00:00 Greenwich mean time
(GMT), January I, 1970.

• millitm is the fractional part of a second in milliseconds.

• _timezone is the difference in minutes between GMT and the local time.
This value is computed going west from GMT. ftime gets this field from
the global variable _timezone, which is set by tzset.

• dstfLag is used to indicate whether daylight saving time will be taken into
account during time calculations. .

Chapter 3, Run-time functions 119

ftime

-.. ftime calls tzset. Therefore, it isn't necessary to call tzset explicitly when you
useftime.

Return value None.

See also asctime, ctime, gmtime, localtime, stim~, time, tzset

_fullpath stdlib.h

Function Converts a path name from relative to absolute.

Syntax char * _fullpath(char *buffer, canst char *path, int buflen);

Remarks Jullpath converts the relative path name in path to an absolute path name
that is stored in the array of characters pointed to by buffer. The maximum
number of characters that can be stored at buffer is buflen. The function
returns NULL if the buffer isn't big enough to store the absolute path name,
or if the path contains an invalid drive letter.

Return value

See also

fwrite

Function

Syntax

Remarks

120

If buffer is NULL, Jullpath allocates a buffer of up to _MAX_PATH charac­
ters. This buffer should be freed using free when it is no longer needed.
_MAX_PATH is defined in stdlib.h '

If successful, the Jullpath function returns a pointer to the buffer containing
the absolute path name. Otherwise, it returns NULL.

_makepath, _splitpath

stdio.h

Writes to a stream.

size_t fwrite(const void *ptr, size_t size, size_t n, FILE *strearn);

[write appends n items of data, each of length size bytes, to the given output
file. The data written begins at ptr. The total number of bytes written is (n x
size). ptr in the declarations is a pointer to any object.

Library Reference

Return value

See also

gcvt

Function

Syntax

Remarks

Return value

See also

geninterrupt

Function

Syntax

Remarks

fwrite

On successful completion, fwrite returns the number of items (not bytes)
actually written. It returns a short count on error.

fopen, fread

stdlib.h

Converts floating-point number to a string.

char *gcvt(double value, int ndec, char *buf);

gcvt converts value to a null-terminated ASCII string and stores the string in
buf. It produces ndec significant digits in FORTRAN F format, if possible;
otherwise, it returns the value in the printfE format (ready for printing). It
might suppress trailing zeros. .

gcvt returns the address of the string pointed to by buf.

ecvt, fcvt, sprintf

Generates a 'software interrupt.

void geninterrupt(int intr_num);

dos.h

The geninterrupt macro triggers a software trap for the interrupt given by
intr _num. The state of all registers after the call depends on the interrupt
called.

.. Interrupts can leave registers in unpredictable states.

Return value None.

See also bdos, bdosptr, disable, enable, getvect, int86, int86x, intdos, intdosx, intr

Chapter 3, Run-time functions 121

getc

Function

Syntax

Remarks

Return value.

See also

getcbrk

Function

Syntax

Remarks

Return value

See also

getch

Function

Syntax

Remarks

122

stdio.h '

Gets character from stream.

int getc(FILE *strearn)i

getc is a macro that retUrns the next character on the given input stream and
, increments the stream's file pointer to point to the next character.

On success, getc returns the character read, after converting it to an int
without sign extension. On end-of-file or error, it returns EOF.

/getc, getch, getchar, getche, gets, putc, putchar, ungetc

dos.h

Gets control-break setting.

int getcbrk(void)i

getcbrk uses the DOS system call Ox33 to return the current setting of
control-break checking. ;

getcbrk returns 0 if control-break checking is off; or 1 if checking is on.

ctrlbrk, setcbrk

conio.h

Gets character from keyboard, does not echo to screen.

int getch(void)i

II DOS I UNIX Win 16 I Win 32 I ANSI C I ANSI C++ I OS/2

It • I -I I I I
getch reads a single character directly from the keyboard, without echoing
to the screen.

Library Reference

getch

.. This function should not be used in Win32s or Win32 GUI applications.

Return value getch returns the character read from the keyboard.

See also cgets, cscanf, fgetc, getc, getchar, getche, getpass, kbhit, putch, ungetch

getchar stdio.h

Function

Syntax

Gets character from stdin.

int getchar(void)i

Remarks getchar is a macro that returns the next character on the named input stream
stdin. It is defined to be getc(stdin). .

.. For Win32s or Win32 GUI applications, stdin must be redirected.

Return value On success, getchar returns the character read, after converting it to an int
without sign extension. On end-of-file or error, it returns EOF.

See also fgetc, fgetchar, /reopen, getc, getch, getche, gets, putc, putchar, scanf, imgetc

getche . conio.h

Function Gets character from the keyboard, echoes to screen.

Syntax int getche (void) i

Remarks

Return value

See also

getche reads a single character from the keyboard and echoes it to the
current text window using direct video or BIOS.

.. This function should not be used in Win32s or Win32 GUI applications.

getche returns the character read from the keyboard.

cgets, csca~f, fgetc, getc, getch, getchar, kbhit, putch, ungetch

Chapter 3, Run-time functions 123

•

getcurdir

getcurdir

Function

Syntax

Remarks

Return value

See also

getcwd

Function

Syntax

Remarks

Return value

124

dir.h

Gets current directory for specified drive.

int getcurdir(int drive, char *directory);

getcurdir gets the name of the current working directory for the drive
indicated by drive. drive specifies a drive number (0 for default, 1 for A, and
so on). directory points to an area of memory of length MAXDIR where the
null-terminated directory name will be placed. The name does not contain
the drive specification and does not begin with a backslash.

getcurdir returns 0 on success or -1 in the event of error.

chdir, getcwd, getdisk, mkdir, rmdir

dir.h

Gets current working directory.

char *getcwd(char *buf, int buflen);

II DOS I UNIX Win 16 I Win 32 ANSI C ANSI C++ I OS/2 II

"
• I • I • I • JI

getcwd gets the full path name (including the drive) of the current working
directory, up to buflen bytes long and stores it in but. If the full path name
length (including the null character) is longer than buflen bytes, an error
occurs.

If but is NULL, a buffer buflen bytes long is allocated for you with malloc.
You can later free the allocated buffer by passing the return value of getcwd
to the function free.'

getcwd returns the following values:

.• If but is not NULL on input, getcwd returns but on success, NULL on
error .

• If but is NULL on input, getcwd returns a pointer to the allocated buffer.

Library Reference

See also

getcwd

In the event of an error return, the global variable errno is set to one of the
following values:

ENODEV
ENOMEM
ERANGE

No such device
Not enough memory to allocate a buffer (buf is NULL)
Directory name longer than buflen (buf is not ,NULL)

chdir, getcurdir, -$etdcwd, getdisk, mkdir, rmdir

getdate •

_getdcwd

Function

Syntax

Remarks

Return value

See also

direct.h

Gets current directory for specified drive.

char * _getdcwd(int drive, char *buffer, int buflen);

UNIX Win 16 Win 32 ANSI C

-$etdcwd gets the full path name of the working directory of the specified
drive (including the drive name), up to buflen bytes long, and stores it in
buffer. If the full path name length (including the null character) is longer
than buflen, an error occurs. The drive is 0 for the default drive, l=A, 2=B; .
and so on.

If buffer is NULL, -$etdcwd allocates a buffer at leastbuflen bytes long. You
can later free the allocated buffer by passing the -$etdcwd return value to
the free function.

If successful, -$etdcwd returns a pointer to the buffer containing the current
directory for the specified drive. Otherwise it returns NULL, and sets the
global variable errno to one of the following values:

ENOMEM Not enough memory to allocate a buffer (buffer is NULL)
ERANGE Directory name longer than bufleri (buffer is not NULL)

chdir, getcwd, mkdir, rmdir

Chapter 3, Run-time functions 125

getdfree

getdfree.

Function

Syntax

Remarks

. Return value

See also

dos.h

Gets disk free space.

void getdfree(unsigned char drive, struct dfree *dtable);

getdfree accepts a drive specifier in drive (0 for default, 1 for A, and so on)
and fills the-dfree structure pointed to by dtable with disk attributes.

Thedfree structure is defined as follows:

struct dfree {
unsigned df_avail;
unsigned df_total;
unsigned df_bsec;
unsigned df_sclus;

};

/* available clusters */
/* total clusters */
/* bytes per sector */'
/* sectors per cluster */

getdfree returns no valve. In the event of an-error, df_sclus in the dfree
structure is set to (unsigned) -1.

getfat, get/atd

getdisk, setdisk dir.h

Function

Syntax

Remarks

Return value

See also

126

Gets or sets the current drive number.

int getdisk(void);
int setdisk(int drive);

getdisk gets the current drive number. It returns an integer: 0 for A, 1 for B, 2 ,
for C, and so on. setdisk sets the current drive to the one associated with .
drive: 0 for A, 1 for B, 2 for C, and so on.

The setdisk function changes the current drive of the parent process.

getdisk returns the current drive number. setdisk returns the total number of
. drives available.

getcurdir, getcwd

Library Reference

getdta

Function

Syntax

Remarks

Return value

See also

getenv

Function

Syntax

Remarks

getdta

dos.h

Gets disk transfer address.

char far *getdta(void);

Win 32 ANSI C

getdta returns the current setting of the disk transfer address (DT A).

In the small and medium memory models, it's assumed the segment is the
current data segment. If you use C or c++ exclusively, this will be the case,
but assembly routines can set the DTA to any hardware address.

In the compact or large models, the address returned by getdta is the correct
hardware address and can be located outside the program. .

getdta returns a far pointer to the current DTA.

setdta

stdlib.h

Gets a string from environment.

char *getenv(const char *name);

getenv returns the value of a specified variable. On DOS and OS/2, name
must be uppercase. On other systems, name can be either uppercase or low- .

. ercase. name must not include the equal sign (=). If the specified
environment variable does not exist, getenv returns a NULL pointer.

To delete the variable from the environment, use getenv("name=ll).

.. Environment entries must not be changed directly. If you want to change
an environment value, you must use putenv.

Return value On success, getenv returns the value associated with name. If the specified
name is not defined in the environment, getenv returns a NULL pointer.

See also _environ (global variable), getpsp, putenv

Chapter 3, Run~time functions 127

•

getfat

getfat

Function

Syntax

Remarks

Return value

See also

getfatd

Function

Syntax

Remarks

Return value

128

dos.h,

Gets file allocation table information for given drive.

void getfat(unsigned char drive, struct fat info ,*dtable);:

getfat gets information from the file allocation table (FAT) for the drive
specified by drive (0 for default, 1 for A, 2 for B, and so on). dtable points to
the fatinfo structure to be filled in. The fatinfo structure filled in by getfat is
defined as follows:

struct fat info {
char fi_sdus;
char fi_fatid;
unsigned fi_nclus;

};

None.

getdfree, getfatd

1* sectors per cluster *1
1* the FAT id byte *1
1* number of clusters *1
1* bytes per sector *1

Gets file allocation table information.

void getfatd(struct fatinfo *dtable);

dos.h

getfatd gets information from the file allocation table (FAT) of the default
drive. dtable points to the fatinfo structure to be filled in.

The fatinfo structure filled in by getfatd is defined as follows:

'struct fatinfo {
char fi_sclus;
char fi_fatid;
int fi_nelus;
int fi_bysec;

};

None.

1* sectors per cluster *1
1* the FAT id byte *1
1* number of clusters *1
1* bytes per sector *1

Library Reference

gettata

See also getdfree, getfat

getftime, setftime io.h

Function

Syntax

Remarks

Return value

See also

Gets and sets the file date and time.

int getftime(int handle, struct ftime *ftimep);
int setftime(int handle, struct ftime *ftimep);

getftime retrieves the file time and date for the disk file associated with the
open handle. The ftime structure pointed to by ftimep is filled in with the
file's time and date.

setftime sets the file date and time of the disk file associated with the open
handle to the date and time in the ftime structure pointed to by ftimep. The
file must not be written to after the setftime call or the changed information
will be lost. The file must be open for writing; an EACCES error will occur
if the file is open for read-only access.

The ftime structure is defined as follows:

struct ftime {
unsigned ft_tsec: 5;

. unsigned ft_min: 6;
unsigned ft_hour: 5;
unsigned ft_day: 5;
unsigned ft_month: 4;
unsigned ft-year: 7;
};

/* two seconds */
/* minutes */
/* hours * /
/* days */
/* months */
/* year - 1980*/

getftime and setftime return 0 on success.

In the event of an error return, -1 is returned and the global variable errno
is set to one of the following values:

EACCES
EBADF
EINVFNC

fflush, open

Permission denied
Bad file number
Inyalid function number

Chapter 3, Run-time functions 129

II

getpass

getpass

Function

Syntax

Remarks

Return value

. See also

getpid

Function

Syntax

Remarks

. Return value

See also

getpsp

Function

130

conio.h

Reads a password.

char *getpass(const cha~ *prompt);

getpass reads a password from the system console, after prompting with the
null-terminated string prompt and disabling the echo. A pointer is returned

. to a null-terminated string of up to eight characters (not counting the null
character).

.. This function should not be used in Win32s or Win32 GU1 applications.

The return value is a pointer to a static string, which is overwritten .with
each call.

getch·

process.h

Gets the process 1D of a program.

unsigned getpid (void) .

This function returns the current process 1D-an integer that uniquely
identifies the process .

getpid returns the identification number of the current process.

getpsp,-psp (global variable)

Gets the program segment prefix (PSP).

dos.h

Library Reference

Syntax

Remarks

Return value

See also

gets

Function

Syntax

Remarks

unsigned getpsp(void);

getpsp gets the segment address of the PSP using DOS call Ox62.

getpsp returns the address of the PSP.

getenv, -psp (global variable)

Gets a string from stdin.

char *gets(char *s);

getpsp

stdio.h •

gets collects a string of characters terminated by a new line from the
standard input stream stdin and puts it into s. The new line is replaced by a
null character ('\0') in s.

gets allows input strings to contain certain whitespace characters (spaces,
tabs). gets returns when it encounters a new line; everything up to the new
line is copied into s.

.. For Win32s or Win32 GUI applications, stdin must be redirected .

. Return value On success, gets returns the string argument s; it returns NULL on end-of­
file or error.

See also cgets, ferror, fgets, fopen, fputs, fread, freopen, getc, puts, scanf

gettext conio.h

Function Copies text from text mode screen to memory.

Chapter 3, Run-time functions 131

gettext

Syntax

Remarks

int gettext(int left, int top, int right, int bottom, void *destin);

gettext stores the contents of an onscreen text rectangle defined by left, top,
right, and bottom into the area of memory pointed to by destin.

All coordinates are absolute screen coordinates, not window-relative. The
upper left corner is (1,1).

, gettext reads the contents of the rectangle into memory sequentially from
left to right and top to bottom. '

Each position onscreen takes 2 bytes of memory: The first byte is the
character in the cell, and the second is the cell's video attribute. The space
required for a rectangle 'l!J columns wide by h rows high is defined as

bytes = (h rows) x (w columns) x 2

.. This function should not be used in Win32s or Win32 GUI applications.

Return value gettext returns 1 if the operation succeeds. It returns 0 if it fails (for example,
if you gave coordinates outside the range of the current screen mode).

See also movetext, putt ext

gettextinfo conio.h

Function Gets text mode video information.

Syntax void gettextinfo(struct text_info *r);

Remarks gettextinfo fills in the text_info structure pointed to by r with the current text
video information.

132

The text_info structure is defined in conio.h as follows:

struct text_info {
unsigned charwinleft;
unsigned char wintop;
'unsigned char winright;'
unsigned char winbottom;
unsigned char attribute;

I

/* left windo? coordinate */
/* top window coordinate */
/ * right windov7 coordinate * /
/* bottom window coordinate */
/* text attribute */

Library Reference

Return value

See also

};

unsigned char normattr;
unsigned char currmode;
unsigned char screenheight;
unsigned char screenwidth;
unsigned c~ar curx;
unsigned char cury;

/* normal attribute */
/* BW40, BW80, C40, C80, or C4350 */
/* text screen's height */
/* text screen's width */
/* x-coordinate in current window */
/* y-coordinate in current window */

gettextinfo

.. This function should not be used in Win32s or Win32 GUI applications.

gettextinfo returns nothing; the results are returned in the structure pointed
to by r.

textattr, textbackground, textcolor, textmode, wherex, wherey, window

gettime, settime dos.h

Function

Syntax

Remarks

Return value

See also

gettime

settime

Gets and sets the system time.

void gettime(struct time *timep);
void settime(struct time *timep);

DOS UNIX Win 16 Win 32

• • •
• •

ANSI C ANSI C++ OS/2 ,

•
•

gettime fills in the time structure pointed to by timep with the system's
current time.

settime sets the system time to the values in the time structure pointed to by
timep.

The time structure is'defined as follows:

struct time {

};

unsigned char ti_min;
unsigned char ti_hour;
unsigned char ti_hund;
unsigned char ti_sec;

None.

/* minutes */
/* hours */
/* hundredths of seconds */
/* seconds */

_dos-$ettime, _dos_settime, getdate, setdate, stime, time

Chapter 3, Run-time functions 133

"

getvect, setvect

getvect, setvect dos.h

Function Gets and sets interrupt vector.

Syntax

Remarks

Return value

See also

getverify

Function

Syntax

134

void i~terrupt(*getvedt(int interruptno)) ();
void interrupt(*getvect(int interruptno)) (...);
void setvect(int interruptno, void interrupt (*isr) ());
void setvect(int interruptno, void interrupt (*isr) (...));

DOS I UNIX Win 16 Win 32 I ANSI C I ANSI C++ I OS/2 II
• I • I I I II

/* C version */
// Ctt version

/* C version */
// Ctt version

Every processor of the 8086 family includes a set of interrupt vectors,
numbered 0 to 255. The 4-byte value in each vector is actually an address,
which is the location of an interrupt function. . .

getvectreads the value of the interrupt vector given by interruptno and
returns that value as a (far) pointer to an interrupt function. The value of
interruptno can be from 0 to 255.

setvect sets the value of the interrupt vector named by interruptno to a new
value, isr, which is a far pointer containing the address of a new interrupt
function. The address of a C routine can be passed to isr only if that routine
is declared to be an interrupt routine.

In C++ only static member functions ornon...:member functions can be
declared to be an interrupt routine.

If you use the prototypes declared in dos.h, simply pass the address of an
interrupt function 'to setvect in any memory model.

. getvect returns the current 4-byte value stored in the interrupt vector named
by interruptno. .

setvect does not return a value.

disable, _dos....getvect, _dos_setvect, enable, geninterrupt

dos.h

Returns the state of the oper~ting system verify flag.

int getverify (void);

Library Reference

Remarks

Return value

See also

getw

Function

Syntax

Remarks

Return value

See also

gmtime

Function

Syntax

Remarks

getverify

getverify gets the current state of the verify flag.

The verify flag controls output to the disk. When verify is off, writes are not
verified; when verify is on, all disk writes are verified to ensure proper
writing of the data.

getverify returns the current state of the verify flag, either 0 (off) or 1 (on).

setverify

stdio.h •

Gets integer from stream.

int getw(FILE *stream)i

getw returns the next integer in the named input stream. It assumes no
special alignment in the file.

getw should not be used when the stream is opened in text mode.

getw returns the next integer on the input stream. On end-of-file or error,
getw returns EOF. Because EOF is a legitimate value for getw to return, feof
or terror should be used to detect end-of-file or error. .

putw

time.h

Converts date and time to Greenwich mean time (GMT).

struct tm *gmtime(const ti~e_t *timer) i

gmtime accepts the address of a value returned by time and returns a
pointer to the structure of type tm containing the time elements. gmtime
converts directly toGMT.

The global long variable _timezone should be set to the difference in seconds
between GMT and local standard time (in PST, _timezone is 8x60x60). The .

Chapter 3, Run-time functions 135

gmtime

Return value

See also

gotoxy

Function

Syntax

global variable _daylight should be set to nonzero only if the standard U.S.
daylight saving time conversion should be applied.

This is the tm structure declaration from the time.h header file:

struct tm {
1* Seconds *1
1* Minutes *1
1* Hour (0 - 23) *1
1* Day of month (1 - 31) *1
1* Month (0 - 11) *1
1* Year (calendar year minus 1900) *1
1* Weekday (0 - 6i Sunday is 0) _ *1
1* Day of year (0 -365) *1

int tm_seCi
int tm_mini
int tm_houri
int tm_mdaYi
int tm_moni
int tm-yeari
int tm_WdaYi
int tm-ydaYi
int tm_isdsti 1* Nonzero if daylight saving time is in effect. *1

}i

These quantities give the time on a 24-hour clock, day of month (1 to 31),
month (0 to 11), weekday (Sunday equals 0), year -1900, day of year (0 to
365), and a flag that is nonzero if daylight saving timeis in effect.

gmtime returns a pointer to the structure containing the time elements. This
structure is a static that is overwritten with each call.

asctime, ctime, ftime, localtime, stime, time, tzset

conio.h

Positions cursor in text window.

void gotoxy(int X, int Y)i

Win 16 Win 32

Remarks gotoxy moves the cursor to the given position in the current text window. If
the coordinates are in any way invalid, the call to gotoxy is ignored. An
example of this is a call to gotoxy(40,30), when.(35,25) is the bottom right
position in the window. .

Neither argument to gotoxy can be zero.

.. This function should not be used in Win32s or Win32 CUI applications.

Return value None.

See also wherex, wherey, window

136 Library Reference

Function

Syntax

Remarks

Return value

See also

heapcheck

Function

Syntax

Remarks

Return value

heapcheckfree

Function

Syntax

_heapadd

malloc.h

Add a block to the heap.

int _heapadd(void *block, size_t size);

UNIX Win 16

This function adds a new block of memory to the heap. The block must not
. have been previously allocated from the heap. _heapadd is typically used to
add large static data areas to the heap.

_heapadd returns 0 if it is successful, and -1 if it is unsuccessful.

free, malloc

Checks and verifies the heap.

int heapcheck(void);

alloc.h

heapcheck walks through the heap and examines each block, checking its
pointers, size, and other critical attributes.

The return value is less than 0 for an error and greater than 0 for success.
The return values and their meaning are as follows:

_HEAPCORRUPT
_HE APEMPTY
_HEAPOK

Heap has been corrupted
No heap
Heap is verified

Checks the free blocks on the heap for a constant value.

int heapcheckfree(unsigned int fillvalue);

alloc.h

Chapter 3, Run-time functions 1'37

heapcheckfree

Return value The return value is less then 0 for an error and greater than 0 for success.
The return values and their meaning are as follows: .

_BADVALUE
_HEAPCORRUPT
_HEAPEMPTY
_HEAPOK

A value other than the fill value was found
Heap has' been corrupted
No heap
Heap is accurate

heapchecknode alloc.h

Function

Syntax

Remarks

Return value

_heapchk

Function

Syntax

138

Checks and verifies a single node on the heap.

int heapchecknode(void *node)i

If a node has been freed and heapchecknode is called with a pointer to the
freed block, heapchecknode can return _BAD NODE rather than the expected
_FREEENTRY. This is because adjacent free blocks on the heap are merged,
and the block in question no longer exists.

One of the following values: .

_BADNODE
_FREEENTRY
_HEAPCORRUPT
_HEAPEMPTY
_USEDENTRY

Node could not be found
Node is a free block
Heap has been corrupted
No p.eap
Node is a used block

Checks and verifies the heap.

int _heapchk(void)i

malloc.h

Library Reference

Remarks

Return value

See also

heapfillfree

Function

Syntax

Return value

_heapmin

Function

Syntax

Remarks

Return value

_heapchk

_heapchk walks through the heap and examines each block, checking its
pointers, size, and other critical attributes.

One of the following values:

_HEAPBADNODE A corrupted heap block has been found
_HEAPEMPTY No heap exists
_HEAPOK The heap appears to be uncorrupted

_heapset,_rtCheapwalk

Fills the free blocks on the heap with a constant value.

int heapfillfree(unsigned int fillvalue);

One of the following values:

_HEAPCORRUPT
_HEAPEMPTY
_HEAPOK

Heap has been corrupted
No heap
Heap is accurate

Release unused heap areas.

int _heapmin(void);

II DOS UNIX Win 16 I Win 32 I ANSI C I ANSI C++

It • • 1 • 1 -I I

OS/2

•
II
II

. alloc.h II

malloc.h

The _heapmin function returns unused areas of the heap to the operating
system. This allows blocks that have been allocated and then freed to be
used by other processes. Due to fragmentation of the heap,_heapmin might
not always be able to return unused memory to the operating system; this
is not an error.

_heapmin returns 0 if it is successful, or -1 if an error occurs.

Chapter 3, Run-time functions 139

_heapmin

See also

_heapset

Function

Syntax

Remarks

Return value

See also

heapwalk

Function

Syntax

Remarks

140

free, maUoc

malloc.h

Fills the free blocks on the heap with a const~nt value.

int _heapset(unsigned int fillvalue)i

II DOS UNIX Win 16 I Win 32 ANSI C I ANSI C++ OS/2

II I • I •

_heapset checks the heap for c9nsistency using the same methods as
_heapchk. It then fills each free block in the heap with the value contained in
the least significant byte of fiUvalue. This function can be used to find heap­
related problems. It does not guarantee that subsequently allocated blocks .
will be filled with the specified value.

One of the following values:

_HEAPOK The heap appears to be uncorrupted
_HEAPEMPTY No heap exists
_HEAPBADNODE A corrupted heap block has been found

_heapchk, _rtCheapwalk

alloc.h

heapwalk is used to "walk" through the heap, node by node.

int heapwalk(struct heapinfo *hi)i

heapwalk assumes the heap is correct. Use heapcheck to verify the heap before
using heapwalk. _HEAPOK is returned with the last block on the heap.
_HEAPEND will be returned on the next call to heapwalk.

heapwalk receives a pointer to a structure of type heapinfo (declared in
alloc.h). For the first call to heapwalk, set the hi.ptr field to null. heapwalk

Library Reference

Return value

See also.

_heapwalk

Remarks

highvideo

Function

Syntax

Remarks

Return value

See also

hypot, hypotl

Function

heapwalk

returns with hLptr containing the address of the first block. hi.size holds
the size of the block in bytes. hLin_use is a flag that's set if the block is
currently in use. .

One of the following values:

_HEAPEMPTY No heap
_HEAPEND End of the heap has been reached
_HEAPOK Heapinfo block contains valid data

farheapwalk, _rtCheapwalk

. malloc.h.

Obsolete 'nction. See _rtl_heapwalk.

conio.h

, Selects high-intensity characters.

void highvideo(void)i

highvideo selects high-intensity characters by setting the high-intensity bit of
the currently selected foreground color.

This function does not affect any characters currently onscreen, but does
affect those displayed by functions (such as cprintf) that perform direct
video, text mode output after highvideo is called.

. I

This function should not be used in Win32s or Win32 GUI applications.

None.

cprintf, cputs, gettextinfo, lowvideo, normvideo, textattr, textcolor

math.h

Calculates hypotenuse of a right triangle.

Chapter 3, Run-time functions 141

hypot, hypotl

Syntax

Remarks

Return value

hypot

hypotl

double hypot(double X, double y);
long double hypotl(long double X, long double y);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • •
• • • •

hypot calculates the value z where

Z2 = x2 + y2. and z >= 0

This is equivalent to the length of the hypotenuse of a right triangle, if the
lengths of the two sides are x and y.

hypotl is the long double version; it takes long double arguments and
returns a long double result.

I

On success, these functions return z, a double (hypot) or a long double)
(hypotl).' On error (such as an overflow), they set the global variable errno to

ERANGE Result out of range

and return the value HUGE_ V AL (hypot) or _LHUGE_ V AL (hypotl). Error
handling for these routines can be modified through the functions _matherr
and _matherrl.

_lnitEasyWin io.h

Function Initializes Easy Windows.

Syntax void _InitEasyWin(void);

Remarks

Return value

inp

Function

Syntax

142

"DOS UNIX I Win 16 I Win 32 I ANSI C I ANSI C++ I OS/2 "

" I I I I I "
_InitEasyWin allows programs to use functions which perform console I/O
within 16-bit Windows. '

None.

conio.h

Reads a byte from a hardware port.

int .inp (unsigned portid) ;

Library Reference

Remarks

Return value

See also

inport

Function

Syntax

Remarks

Return value -

See also

inportb

Function

Syntax

Remarks

Return value

inp

inp is a macro that reads a byte from the input port specified by portid. If inp
is called when conio.h has been included, it will be treated as a macro that
expands to inline code. If you don't include conio.h, or if you do include
conio.h and undefine the macro inp, you get the inp function.

inp returns the value read.

inpw, outp, outpw

dos.h

Reads a word from a hardware port.

int inport(int portid)i

DOS I UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• 1 •

inport works just like the 80x86 instruction IN. It reads the low byte of a
word from the input port specified by portid; it reads the high byte from
portid + 1.

inport returns the value read. -

inportb, outport, outportb

Reads ~ byte from a hardware port. .

unsigned char inportb(int portid)i

dos.h

inportb is a macro that reads a byte from the input port specified by portid.

If inportb is called when dos.h has been included, it will be treat~d as a
macro that expands to inline code. If you don't include dos.h, or if you do
include dos.h and #undef the macro inportb, you get the inportb function.

inportb returns the value read.

Chapter 3, Run-time functions 143

inportb

See also

inpw

Function

Syntax

Remarks

inport, outport, outportb

conio.h

Reads a word from a hardware port.

unsigned inpw(unsigned portid);

inpw is a macro that reads a 16-bit word from the inport port specified by
portid. It reads the low byte of the word from portid, and the high byte from
portid + 1.

· If inpw is called when conio.h has been included, it will be treated as a
· macro that expands to inline code. If you don't include conio.h, or if you do
include conio.h and #undef the macro inpw, you get the inpw function.

Return value inpw returns the value read.

See also inp, outp, outpw

insline conio.h

Function Inserts a blank line in the text window.

Syntax void ins line (void) ;

Remarks. insline inserts an empty line in the text window at the cursor position using
the current text background color. All lines below the empty one move

· down one line, and the bottom line scrolls off the bottom of the window.

-.. This function should not be used in Win32s or Win32 GUI applications.

Return value None.

See also clreol, delline, window

144 Library Reference

int86

Function

Syntax

Remarks

Return value

See also

int86x

Function

Syntax

Remarks

int86

dos.h

General 8086 software interrupt.

int int86(int intno, union REGS *inregs, union REGS *outregs);

int86 executes an 8086 software interrupt specified by the argument intno .
. Before executing the software interrupt, it copies register values from inregs
into the registers. '

After the software interrupt returns, int86 copies the current register values
to outregs, copies the status of the carry flag to the x.cflag field in outregs,
and copies the value of the 8086 flags register to the x.flags field in outregs. If
the carry flag is set, it usually indicates that an error has occurred.

Note that in regs can point to the same structure that outregs points to.

int86 returns the value of AX after completion of the software interrupt. If
,,-the carry flag is set (out regs -> x. cflag ! = 0), indicating an error, this
function sets the global variable _doserrno to the error code. Note that when
the carry flag is not set (outregs -> x.cflag = 0), you mayor may not have
an error. To be certain, always check _doserrno.

bdos, bdosptr, geninterrupt, int86x, intdos, intdosx, intr

General 8086 software interrupt interface.

int int86x(int intno, union REGS *inregs, union REGS *outregs,
, struct SREGS *segregs);

dos.h

int86x executes an 8086 software interrupt specified by the argument intno.
Before executing the software interrupt, it copies register values from inregs
into the registers.

In addition, int86x copies the segregs ->ds and segregs ->es values into the
corresponding registers before executing the software interrupt. This

Chapter 3, Run-time functions 145

int86x

Return value

See also

intdos

Function

Syntax

Remarks

Return value

146

feature allows programs that use far pointers or a large data memory
model to specify which segment is to be used for the software interrupt.

. After the software interrupt returns, int86x copies the current register
values to outregs, the status of the carry flag to the x.cflag field in outregs,
and the value of the 8086 flags register to the x.flags field in outregs. In
addition, int86x restores OS and sets the segregs ->es and segregs ->ds fields
to the values of the correspqnding segment registers. If the carry flag is set,
it usually indicates that an error has occurred.

int86x lets you invoke an 8086 software interrupt that takes a value of OS
different from the default data segment, and/or takes a~ argument in ES.

Note that inregs can point to the same structure that outregs points to.

int86x returns the value of AX after completion of the software interrupt. If
the carry flag is set (out regs -> x.cflag != .0), indicating an error, this
function sets the global variable _doserrno to the error code. Note that when
the carry flag is not set (out regs -> x. cf'lag = 0), you mayor may not have
an error. To be certain, always check _doserrno.

bdos, bdosptr, geninterrupt, intdos, intdosx, int86, intr, segread

dos.h

General DOS interrupt interface.

int intdos(union REGS *inregs, union REGS *outregs);

intdos executes DOS interrupt Ox21 to invoke a specified DOS function. The
value of in regs -> h.ah specifies the DOS function to be invoked.

After the interrupt Ox21 returns, intdos copies th~ current register values to
outregs, copies the status of the carry flag to the x.cflag field in outregs, and
copies the value of the 8086 flags register to the x.fl(lgs field in outregs. If the
carry flag is set, it indicates that an error has occurred.

Note that inregs can point to the same structure that outregs points to.

intdos returns the value of AX after completion of the DOS function call. If
the carry flag is set (out regs -> x. cflag ! = 0), indicating an error, it sets the
global variable _doserrno to the error code. Note'that when the carry flag is
not set (out regs -> x. cflag = 0), you mayor may not have an error. TO,be
certain, always check _doserrno.

Library Reference

See also

intdosx

Function

Syntax

Remarks

Return value

See also

intr

Function

Syntax

intdos

bdos, bdosptr, geninterrupt, int86, int86x, intdosx, intr

dos.h

General DOS mterrupt interface.

int intdosx(union REGS *inregs, union REGS *outregs, struct SREGS *segregs)i

intdosx executes DOS interrupt Ox21 to invoke a specified DOS function.
The value of inregs -> h.ah specifies the DOS function to be invoked.

In addition, intdosx copies the segregs ->ds and segregs ->es values into the
corresponding registers before invoking the DOS function. This feature
allows programs that use far pointers or a large data memory model to
specify which segment is to be used for the function execution.

After the interrupt Ox21 returns, intdosx copies the current register values to
outregs, copies the status of the carry flag to the x.cflag field in outregs, and
copies the value of the 8086 flags register to the x.flags field in outregs. In
addition, intdosx sets the segregs ->es and segregs ->ds fields to the values of
the corresponding segment registers and then restores DS. If the carry flag
is set, it indicates that an error occurred.

intdosx lets you invoke a DOS function that takes a value of OS different
from the default data segment and/or takes an argument in ES.

Note that inregs can point to the same structure that outregs points to.

intdosx returns the value of AX after completion of the DOS function call. If
the carry flag is set (outregs -> x.cflag 1= 0), indicating an error, it sets the
global variable _doserrno to the error code. Note that when the carry flag is
not set (out regs -> x.cflag = O),you mayor may not have an error. To be
certain, always check _doserrno.

bdos, bdosptr, geninterrupt, int86, int86x, intdos, intr, segread

dos.h

Alternate 8086 software interrupt interface.

void intr(int intno, struct REGPACK *preg)i

Chapter 3, Run-time functions 147

intr

Remarks

Return value

See also

ioctl

Function

Syntax

Remarks

148

The intr function is an alternate interface for executing software interrupts.
It generates an 8086 software interrupt specified by the argument intno.

intr copies register values from the REGP ACK structure *preg into the
registers before executing the software interrupt. After the software
interrupt completes, intr copies the current register values into *preg,
including the flags.

The arguments passed to intr are as follows:

intno Interrupt number to be executed

preg Address of a structure containing

(a) the input registers before the interrupt call
(b) the value of the registers after the interrupt call

The REGP ACK structure (defined in dos.h) has the following format:

struct REGPACK {
unsigned r_ax, r_bx, r_cx, r_dxi
unsigned r_bp, r_si, r_di, r_ds, r_es, r_flagsi

}i

No value is returned. The REGP ACK structure *preg contains the value of
the registers after the interrupt call.

geninterrupt, int86,int86x, intdos, intdosx

"io.h

Controls I/O device.

int ioctl(int handle, int func' [, void *argdx, int argcx]li

ioetl is available on UNIX systems, but not with these parameters or
functionality. UNIX version 7 and System III differ from each other in their
use of ioetl. ioetl calls are not portable to UNIX and are rarely portable
across DOS machines.

DOS 3.0 extends ioetl with June values of 8 and 11.

Library Reference

Return value

This is a direct interface to the DOS call Ox44 (IOCTL).

The exact function depends on the value of fune as follows:

o Get device information.
1 Set device information (in argdx).
2 Read argex bytes into the address pointed to by argdx.
3 Write argex bytes from the address pointed to by argdx.
4 Same as 2 except handle is treated as a drive number (0 equals

default, 1 equals A, and so on).
5 Same as 3 except handle is a drive number (0 equals default, 1

equals A, and so on).
6 Get input status.
7 Get output status.
8 Test removability; DOS 3.0 only.

11 Set sharing conflict retry count; DOS 3.0 only.

ioctl

ioetl can be used to get information about device channels. Regular files can
also be used, but only June values 0, 6, and 7 are defined for them. All other
calls return an EINV AL error for files.

See the documentation for system call Ox44 in your DOS reference manuals
for detailed information on argument or return values.

The arguments argdx and argex are optional.

ioetl provides a direct interface to DOS device drivers for special functions.
As a result, the exact behavior of this function varies across different
vendors' hardware and in different devices. Also, several vendors do not
follow the interfaces described here. Refer to the vendor BIOS
documentation for exact use of ioetl.

For fune 0 or I, the return value is the device information (DX of the ioetl
call). For fune values of 2 through 5, the return value is the number of bytes
actually transferred. For June values of 6 or 7, the return value is the device
status.

In any event, if an error is detected, a value of -1 is returned, and the global
variable errno is set to one of the following:

EBADF
EINVAL
EINVDAT

Bad file number
Invalid argument
Invalid data

Chapter 3, Run-time functions 149

isalnum

isalnum

Function

Syntax

Remarks

Return value

isalpha

Function

Syntax

Remarks

Return value

isascii

Function

Syntax

150

ctype.h ..

. Tests for an alphanumeric character.

int isalnurn(int e)i

isalnum is a macro that classifies ASCII-coded integer values by table
lookup. The macro is affected by the current locale's LC_CTYPE category.
For the default C locale, c is a letter (A to Z or a to z) or a digit (0 to 9).

You can make this macro available as a function by un defining (#undef) it.

It is a predicate returning nonzero for true and 0 for false. isalnum returns
nonzero if c is a letter or a digit.

ctype.h

Classifies an alphabetical character.

int isalpha(int e)i

isalpha is a macro that classifies ASCII-coded integer values by table lookup.
The macro is affected by the current locale's LC_CTYPE category. For the
default C locale, c is a letter (A to Z or a to z).

You can make this macro available as a function by undefining (#undef) it.

isalpha returns nonzero if c is a letter.

ctype.h

Character classification macro.

int isaseii(int e)i

Library Reference

Remarks

Return value

isatty

Function

Syntax

Remarks

Return value

iscntrl

F~nction

Syntax

Remarks

isascii

isascii isa macro that classifies ASCII-coded integer values by table lookup.
It is a predicate returning nonzero for true and 0 for false.

isascii is defined on all integer values.

isascii returns nonzero if the low order byte of c is in the range 0 to 127
(OxOO-Ox7F).

Checks for device type.

int isatty(int handle)i

II DOS I UNIX I Win 16 I Win 32 ANSI C ANSI C++ I OS/2

II • I • I • I • I •

io.h

isatty determines whether handle is associated with anyone of the following
character devices:

.A terminal

.Aconsole

.A printer
• A serial port

If the device is one of the four character devices listed above, isatty returns
.. a nonzero integer. If it is not such a device, isatty returns o.

ctype.h

. Tests for a control character.

int isentrl(int e)i

iscntrl is a macro that classifies ASCII-coded integer values by table lookup.
The macro is affected by the current locale's LC_CTYPE category. For the
default C locale, c is a delete character or control character (Ox7F or OxOO to
OxlF).

You can make this macro available asa function by undefining (#undef) it.

Chapter 3, Run-time functions 151

iscntrl

Return value

isdigit

Function

Syntax j

Remarks

Return value

isgraph

Function

Syntax

Remarks

Return value

islower

Function

Syntax

152

iscntrl returns nonzero if c is a delete character or ordinary control
character.

Tests for decimal-digit character.

int isdigit(int c);

ctype.h

isdigit is a macro that classifies ASCII-coded integer values by table lookup.
The macro is affected by the current locale's LC_CTYPE category. For the
default C locale, c is a digit (0 to 9).

You can make this macro available as a function by undefining (#undef) it.

isdigit returns nonzero if c is a digit.

ctype.h

Tests for printing character.

int isgraph(int c);

DOS UNIX

isgraph is a macro that classifies ASCII-coded integer values by table
lookup. The macro is affected by the current locale's LC_CTYPE category.
For the default C locale, c is a printing character except blank space (' ').

You can make this macro available as a function by undefining (#undef) it.

isgraph returns nonzero if c is a printing character.

ctype.h

Tests for lowercase character.

int islower(int c);

Library Reference

Remarks

Return value

isprint

Function

Syntax

Remarks

Return value

ispunct

Function

Syntax

Remarks

Return value

islower

is lower is a macro that classifies ASCII-coded integer values by table
'lookup. The macro is affected by the current locale's LC_CTYPE category.
For the default C locale, c is a lowercase letter (a to z).

You can make this macro available as a function by undefining (#undef) it.

islower returns nonzero if c is a lowercase letter.

ctype.h

Tests for printing character.

int isprint(int e)i

Win 32 ANSI C

isprint is a macro that classifies ASCII-coded integer values by table lookup.
The macro is affected by the current locale's LC_CTYPE category. For the
default C locale, c is a printing character including the blank space (' ').

You can make this macro available as a function by undefining (#undef) it.

isprint returns nonzero if c is a printing character.

ctype.h

Tests for punctuation character.

int ispunet(int e)i

ispunct is a macro that classifies ASCII-coded integer values by table
lookup. The macro is affected by the current locale's LC_CTYPE category.
For the default C locale, c is any printing character that is neither an alpha­
numeric nor a blank space (' ').

You can make this macro available as a function by undefining (#undef) it.

ispunct returns nonzero if c is a punctuation character.

Chapter 3, Run-time functions 153

isspace

isspace

Function

Syntax

Remarks

Return value

isupper

Function

Syntax.

Remarks

Return value

isxdigit

Function

Syntax

154

ctype.h

Tests for space character.

int isspaee(inte)i '

isspace is a macro that classifies ASCII-coded integer values by table lookup.
The macro is affected by the current locale's LC_CTYPE category.

You can make this macro available as a function by undefining (#undef) it.

isspace returns nonzero if c is a space, tab, carriage return, new line, vertical
tab, formfeed (Ox09 to OxOD, Ox20), or any other locale-defined space
character.

ctype.h

. Tests for uppercase character;

int isupper(int e)i

isupper is a macro that classifies ASCII-coded integer values by table
lookup: The macro is affected by the current locale's LC_CTYPE category.
For the default C locale, c is an uppercase letter (A to Z).

You can make this macro available as a function by undefining (#undef) it.

isupper returns nonzero if c is an uppercase letter.

ctype.h

Tests for hexadecim~l character.

int isxdigit(int e);

Library Reference

Remarks

Return value

itoa

Function

Syntax

isxdigit

isxdigit is a macro that classifies. ASCII-coded integer values by table
lookup. The macro is affected by the current locale's LC_CTYPE category.

You can make this macro available as a function by undefining (#undef)it.

isxdigit returns nonzero if c is a hexadecimal digit (0 to 9, A to F, a to f) or
any other hexadecimal digit defined by the locale.

stdlib.h

Converts an integer to a string.

char *itoa(int value, char *string, int radix);

DOS I UNIX Win 16 1 Wi n 32 1 ANSI C I ANSI C++ I OS/2 JI

· 1 I I I I • II

Remarks itoa converts value to a null-terminated string and stores the result in string.
With itoa, value is an integer.

radix specifies the base to be used in converting value; it must be between 2
and 36, inclusive. If value is negative and radix is 10, the first character of
string is the minus sign (-). '

.. The space allocated for string must be large enough to hold the returned
string, including the terminating null character (\0). itoa can return up to 17
bytes.

Return value itoa returns a pointer to string.

See also ltoa, ultoa

kbhit conio.h

Function Checks for currently available keystrokes.

Syntax int kbhit (void) ;

Chapter 3, Run-time functions 155

kbhit

Remarks kbhit checks to see if a keystroke is currently available. Any availqble
keystrokes can be retrieved with getch or getche.

.. This function should not be used in Win32s or Win32 GUI applications.

Return value If a keystroke is available, kbhit returns a nonzero value. Otherwise, it
returns o.

See also getch, getche

labs math.h

Function Gives long absolute value.

Syntax long labs (long int x) i

Remarks labs computes the absolute value of the parameter x.

Return value labs returns the absolute value of x.

See also abs, cabs, fabs

Idexp,ldexpl math.h

Function Calculates x x 2exP.

Syntax double ldexp(double x, int exp) i

Remarks

Return value

See also

156

/dexp

/dexp/

long double ldexpl(long double x, int exp)i

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

ldexp calculates the double value x x 2exP.

expl is the long double version; it takes a long double argument for x and
returns a long double result.

On success, ldexp (or ldexpl) returns the value it calculated, x x 2exP. Error
handling for these routines can be modified through the functions _matherr
and _matherrl.

exp, frexp, modf

, Library Reference

Idiv

Function

Syntax

Remarks

Return value

See also

Ifind

Function

Syntax

Remarks

Return value

Idiv.

stdlib.h

Divides two longs, returning quotient and remainder.

ldiv_t ldiv(long int numer, long int denom)i

UNIX Win 16

ldiv divides two longs and returns both the quotient and the remainder as
an ldiv_t type. numer and denam are the numerator and denominator,
respectively. The ldiv_t type is a structure of longs defined in stdlib.h as
follows:

typedef struct {
long int quoti
long int rem;
} ldiv_t;

/* quotient */
/* remainder */

ldiv returns a structure whose elements are quat (the quotient) and rem (the
remainder).

div

stdlib.h

Performs a linear search.

void *lfind(const void *key, const void *base, size_t *num, size_t width,
int (_USERENTRY *fcmp) (const void *, const void *));

"

DOS UNIX Win 16 I Win 32 I ANSI C I ANSI C++ I OS/2 II
II • • • 1 • 1 I I • /I

lfind makes a linear search for the value of key in an array ,of sequential
records. It uses a user-defined comparison routine tcmp. The tcmp function
must be used with the _USERENTRY calling convention.

The array is described as having *num records that are width bytes wide,
and begins at the memory location pointed to by base.

lfind returns the address of the first entry in the table that matches the
search key. If no match is found, lfind returns NULL. The comparison

Chapter 3, Run-time functions 157

•

Ifind

See also

localeconv

Functipn

. Syntax

Remarks

routine must return 0 if *eleml == *elem2, and nonzero otherwise (eleml and
elem2 are its two parameters).

bsearch, lsearch, qsort

locale.h

Queries the locale for numeric format.

struct lconv *localeconv(void);

This function provides information about the monetary and other numeric
formats for the current locale. The information is stored in a struct lconv
type. The structure can only be modified by the setlocale. Subsequent calls to
localeconv will update the lconv structure.

The lconv structure is defined in locale.h. It contains the following fields:

Table 3.1: Locale monetary and numeric settings

Field

char *decimaLpaint,

char *thausands_sep;

char *grouping;

char *inLcurcsymbal;

char *currency_symbal;

char *man_decimaLpaint;

char *man_thausands_sep;

char *man_grouping;

char *positive_sign;

char *negative_sign;

char inLfrac_digits;

158

Application

Decimal point used in nonmonetary formats. This can never be an empty string.

Separator used to group digits to the left of the decimal point. Not used with monetary
quantities.

Size of each group of digits. Not used with monetary quantities. See the value listing table
below.

International monetary symbol in the current locale. The symbol format is specified in the ISO
4217 Codes far the Representation af Currency and Funds.

Local monetary symbol for the current locale.

Decimal point used to format monetary quantities.

Separator used to group digits to the left of the decimal point for monetary quantities.

Size of each group of digits used in monetary quantities. See the value listing table below.

String indicating nonnegative monetary quantities.

String indicating negative monetary quantities.

Number of digits after the decimal point that are to be displayed in an internationally formatted
monetary quantity.

Library Reference

localeconv

Table 3.1: Locale monetary and numeric settings (continued)

char frac_digits; Number of digits after the decimal point that are to be displayed in a formatted monetary

char p_sign_posn;

char n_sign_posn;

quantity. .

Set to 1 if currency_symbol precedes a nonnegative formatted monetary quantity. If
currency_symbol is after the quantity, it is set to O.

Set to 1 if currency_symbol is to be separated from the nonnegative formatted monetary
quantity by a space. Set to 0 if there is no space separation.

Set to 1 if currency_symbol prec~des a negative formatted monetary quantity. If
currency_symbol is after the quantity, set to O.

Set to 1 if currency_symbol is to be separated from the negative formatted monetary quantity
by a space. Set to 0 if there is no space separation.

Indicate where to position the positive sign in a nonnegative formatted monetary quantity.

Indicate where to position the positive sign in a negative formatted monetary quantity.

Any of the above strings (except decimatpoint) that is empty "" is not I
supported in the current locale. The nonstring char elements are nonnega-
tive numbers. Any nonstring char element that is set to CHAR_MAX
indicates that the element is not supported in the current locale.

The grouping and mon....grouping elements are set and interpreted as follows:

Value

any other integer

Meaning

No further grouping is to be performed.

The previous element is to be used repeatedly for the remainder
of the digits.

Indicates how many digits make up the current group. The next
element is read to determine the size of the next group of digits
before the current group.

The p_sign_posn and n_sign-posn elements are set and interpreted as
follows: '

Value

o

2

Meaning

Use parentheses to surround the quantity and currency_symbol

Sign string precedes the quantity and currency_symbol.

Sign string succeeds the quantity and currency_symbol.

Ch~pter 3, Run-time functions 159

localeconv

Return value

See also

localtime

Function

-Syntax

Remarks

160

Value

-3

4

Meaning

Sign string immediately precedes the quantity and
currency_symbol.

Sign string immediately succeeds the quantity and
currency_symbol.

Returns a pointer to the filled-in structure of type struct lconv. The values in
the structure will change whenever setlocale modifies the LC_MONET ARY
or LC_NUMERIC categories.

setlocale

time.h

Converts date and time to a structure.

struct tm *localtime(const time_t *timer)i

II DOS I UNIX I Win 16 I Win 32 ANSI C ANSI C++ I OS/2

II • I • I • I • • • I •

localtime accepts the address of a value returned by time and returns a
pointer to the structure of type tm containing the time elements. It corrects
for the time zone and possible daylight saving time.

The global long variable timezone contains the difference in seconds be­
tween GMT and local standard time (in PST, timezone is 8x60x60). The
global variable daylight contains nonzero only if the standard U.S. daylight
saving time conversion should be applied. These values are set by tzset, not
by the user program directly.

This is the tm structure declaration from the time.h header file:

struct tm {

}i

int tm_seCi
int tm_mini
int tm_houri
int tm_mdaYi
int tm_moni
int tm-yeari
int tm_wdaYi
int tm-ydaYi
int tm_isdsti

Library Reference

Return value

See also

lock

Function

Syntax

Remarks

Return value

See also

locking

Function

Syntax

Remarks

localtime

These quantities give the time on a 24-hour clock, day of month (1 to 31),
month (0 to II), weekday (Sunday equals 0), year -1900, day of year (0 to
365), and a flag that is nonzero if daylight saving time is in effect.

localtime returns a pointer to the structure containing the time elements.
This structure is a static that is overwritten with each call.

asctime, ctime, /time, gmtime, stime, time, tzset

Sets file-sharing locks.

int lock(int handle, long offset, long length);

II DOS I UNIX I Win 16 Win 32 ANSI C ANSI C++ I OS/2

II • I I • • I •

io.h

lock provides an interface to the operating system file-sharing mechanism.

A lock can be placed on arbitrary, nonoverlapping regions of any file. A
program attempting to read or write into a locked region will retry the
operation three times. If all three retries fail, the call fails with an error.

lock returns 0 on success. On error, lock returns -1 and sets the global
variable errno to

EACCES Locking violation

locking, open, sopen, unlock

io.h, sys\locking.h

Sets or resets file-sharing locks.

int locking(int .handle, int crnd, long length);

locking provides an interface to the operating system file-sharing
mechanism. The file to be locked or unlocked is the open file specified by
handle. The region to be locked or unlocked starts at the current file
position, and is length bytes long.

Chapter 3, Run-time functions 161

•

locking

Return value

See also'

10g,logl

Function

Syntax

Remarks

162

log

logl

\

Locks can be placed on arbitrary, nonoverlapping regions of any file. A
program attempting to read or write into a locked region will retry the
operation three times. If all three retries fail, the call fails with an error.

The cmd specifies the action to be taken (the values are defined in
sys \locking.h):

LK_LOCK Lock the region. If the lock is unsuccessful, try once a
second for 10 seconds before giving up.

LK_RLCK Same as LK_LOCK.

LK_NBLCK Lock the region. If the lock if unsuccessful, give up
immediately.

LK_NBRLCK Same as LK_NBLCK.

LK_ UNLCK Unlock the region, which must have been previously
locked. '

, On successful operations, locking returns O. Otherwise, it returns -I, and the
global variable errno is set to one of the following values: .

Fil~ already locked or unlocked
Bad file number

EACCES
EBADF
EDEADLOCK File cannot be locked after 10 retries (cmd is LK_LOCK '

orLK_RLCK)
EINVAL Invalid cmd, or SHARE.EXE not loaded

Jsopen, lock, open, sopen, unlock

math.h

Calculates the natural logarithm of x.

double log(double X)i

long double logl(long double X)i

DOS UNIX Win 16 Win 32 ANSI C ' ANSI C++ OS/2
"

• • • • • • •
• • • •

log calculates the natural logarithm of x.

Zagl is the long double version; it takes a long double argument and returns
a long double result.

Library Reference

Return value

See also

'log10,log101

This function can be used with bcd and complex types.

On success, log and logl return the value calculated, In(x).

If the argument x passed to these functions is real and less than 0, the
global variable errno is set to

EDaM Domain error

10g,logl

If x is 0, the functions return the value negative HUGE_ V AL (log) or
negative _LHUGE_ VAL (logl), and set errno to ERANGE. Error handling for
these routines can be modified through the functions _matherr and
_matherrl.

bcd, complex, exp, log10, sqrt

math.h

Function Calculates log lO(x).

Syntax double loglO(double Xli

Remarks

/og10

, /og101

Return value

See also

long double loglOl(long double Xli

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

log10 calculates the base 10 logarithm of x.

loglOl is the long double version; it takes a long double argument and
returns a long double result.

This function can be used with bcd and complex types.

'On success, loglO (or loglOl) returns the value calculated, IOglO(X).

If the argument x passed to these functions is real and less than 0, the
global variable errno is set to

EDaM Domain error

If x is 0, these functions return the value negative HUGE_ VAL (loglO) or
LHUGE VAL (log101). Error handling for these routines can be modified
through the functions _matherr and _matherrl.

bcd, complex, exp, log

Chapter 3, Run-time functions 163

II

longjmp

longjrnp

Function

Syntax

Remarks

Return value

See also

164

setjmp.h

Performs nonlocal goto.

void longjrnp(jrnp_buf jrnpb, int retval)i

DOS

A call to longjmp restores the task state captured by the last call to setjmp
with the argument jmpb. It then returns in such a way that setjmp appears to
have returned with the value retval.

A task state includes:

Win 16

All segment registers
CS,OS, ES,SS

Register variables
01 and SI

Stack pointer SP

Frame pointer BP

Flags

Win 32

No segment registers
are saved

Register variables
EBX, EOI, ESI

Stack pointer ESP

Frame pointer EBP

Flags are not saved

A task state is complete enough that setjmp and longjmp can be used to
implement co-routines.

setjmp must be called before longjmp. The routine that called setjmp and set
up jmpb must still be active and cannot have returned before the longjmp is
called. If this happens, the results are unpredictable.

longjmp cannot pass the value 0; if 0 is passed in retval,longjmp will
substitute 1.

You can not use longjmp to switch between different threads in a
multithread process. That is, do not jump to a jmp _but that was saved by a
setjmp call in a different thread.

None.

ctrlbrk, setjmp, signal

Library Reference

lowvideo

Function

Syntax

Remarks

Return value

See also

_Irotl, _Irotr

Function

Syntax

Remarks

Return value

See also

lowvideo

conio.h

Selects low-intensity characters.

void lowvideo(void);

lowvideo selects low-intensity characters by clearing the high-intensity bit of
the currently selected foreground color.

This function does not affect any characters currently onscreen. It affects
only those characters displayed by functions that perform text mode, direct
console output after this function is called.

This function should not be used in Win32s or Win32 CUI applications.

None.

-highvideo, normvideo, textattr, textcolor

Rotates an unsigned long integer value to the left or right.

unsigned long _lrotl(unsigned long val, int count);
unsigned long _lrotr(unsigned long val, int count);

II DOS I UNIX I Win 16 I Win 32l ANSI C J ANSI C++

" • I I I I J

OS/2

stdlib.h

_lroti rotates the given val to the left count bits. _lrotr rotates the given val to
the right count bits.

The functions return the rotated integer:

• _lrotl returns the value of val left-rotated count bits .

• _lrotr returns the value of val right-rotated count bits.

_crotr, _croti, _roti, _rotr

Chapter 3, Run-time functions 165

II

Isearch

Isearch

Function

Syntax

Remarks

Return value

See also

Iseek

Function

Syntax

166

stdlib.h

Performs a linear search.

void*lsearch(const void *key, void *base, size_t *num, size_t width,
int (_USERENTRY *fcmp) (const void *, const void *));

ANSI C ANSI c++

lsearch searches a table for information. Because this is a linear search, the
table entries do 'not need to be sorted before a 'call to lsearch. If the item that
key points to is not in the table, lsearch appends that item to the table.

• base points to the base (Oth element) of the search table.

• num points to an integer containing the number of entries in the table.

• width contains the number qf bytes in each entry.

• key points to the item to be searched for (the search key).

The function tcmp must be used with the _ USERENTRY calling convention.

The argument tcmp points to a user-written comparison routine, that
compares two items and returns a value based on the comparison.

To search the table, lsearch makes repeated calls to the routine whose
address is passed intcmp.

On each call to the comparison routine,lsearch passes two arguments: key, a
pointer to the item being searched for, and elem, a pointer to the element of
base being compared.

tcmp is free to interpret the search key and the table entries in any way.

lsearch returns the address of the first entry in the table that matches the
search key.

If the search key is not identical to *elem, tcmp returns a nonzero integer. If
the search key is identical to *elem, tcmp returns O.

bsearch, lfind, qsort

io.h

Moves file pointer.

long lseek(int handle, long offset, int fromwhere);

Library Reference

Remarks

Return value

See also

Itoa

Function

Syntax

Remarks

Iseek

lseek sets the file pointer associated with handle to a new position offset bytes
beyond the file location given by fromwhere. fromwhere must be one of the
following symbolic constants (defined in io.h):

from where

SEEK_CUR
SEEK_END
SEEK_SET

File location

Current tile pointer position
End-at-file
File beginning

lseek returns the offset of the pointer's new position measured in bytes from
the file beginning. lseek returns -IL on error, and the global variable errno is
set to one of the following values:

EBADF
EINVAL
ESPIPE

Bad file handle
Invalid argument
Illegal seek on device

On devices incapable of seeking (such as terminals and printers), the return .
value is undefined.

filelength, fseek, ftell, getc, open, sopen, ungetc, _rtl_write, write

stdlib.h

Converts a long to a string.

char *ltoa(long value, char *string, int radlx);

OS/2

Itoa converts value to a null-terminated string and stores the result in string.
value is a long integer.

radix specifies the base to be used in converting value; it must be between 2
and 36, inclusive. If value is negative and radix is 10, the first character of
string is the minus sign (-).

Chapter 3, Run-time functions 167

I

Itoa

-. The space allocated for string must be large enough to hold the returned
string, including the terminating null character (\O).ltoa can return up to 33
bytes.

Return value ltoa returns a pointer to string.

See also itoa, ultoa

_makepath stdlib.h

Function , Builds a path from component parts.

Syntax vaid _rnakepath(char *path, canst char *drive, canst char *dir,

Remarks

Return value

168

canst char *narne, canst char *ext);

II DOS I UNIX I Win 16 I Win 32 ANSI C ANSI C++ OS/2

II • I I • I • •

_makepath makes a path name from its components. The new path name is
I

X:\DIR\SUBDIR\NAME.EXT

where

drive = x:
dir = \DIR\SUBDIR\
name = NAME
ext = . EXT

H drive is empty or NULL, no drive is inserted in the path name. H it is
missing a trailing colon (:), a colon is inserted in the path name.

H dir is empty or NULL, no directory is inserted in the path name. Ifit is
missing a trailing slash (\ or I), a backslash is inserted in the path name.

H name is empty or NULL, no file name is inserted in the path name.

H ext is empty or NULL, no extension is inserted in the path name. Hit is
missing a leading period (.), a period is inserted in the path name.

_makepath assumes there is enough space in path for the constructed path
name. The maximum constructed length is _MAX_PATH. _MAX_PATH is
defined in stdlib.h.

_makepath and _splitpath are invertible; if you split a given path with
_splitpath, then merge the resultant compone.ntswith _makepath, you end up
with path.

None.

Library Reference

See also

malice

Function

Syntax

Remarks

Return value

See also

_makepath

Jullpath, ~splitpath

stdlib.h

Allocates main memory.

void *rnalloc(size_t size);

malloe allocates a block of size bytes from the memory heap. It allows a
program to allocate memory explicitly as it's needed, and in the exact
amounts needed.

The heap is used for dynamic allocation of variable-sized blocks of
memory. Many data structures, for example, trees and lists, naturally
employ heap memory allocation. .
All the space between the end of the data segment and the top of the

. program stack is available for use in the small data models, except for a
small margin immediately before the top of the stack. This margin is
intended to allow the application some room to make the stack larger, in
addition to a small amount needed by DOS.

In the large data models, all the space beyond the program stack to the end
of available memory is available for the heap.

On success, maUoe returns a pointer to the newly allocated block of
memory. If not enough space exists for the new block, it returns NULL. The
contents of the block are left unchanged. If the argument size == 0, malloe
returns NULL.

calloc, farcalloe, farmalloc, free, realloc

_matherr, _matherrl math.h

Function

Syntax

User-modifiable math error handler.

int _rnatherr(struct _exception *e);
int _rnatherrl(struct _exceptionl *e);

Chapter 3, Run-time functions 169

II

_matherr, _matherrl

Remarks

170

_matherr is called when an error is generated by the math library.

_matherrl is the long double version; it is called when an error is generated
by the long double math functions.

_matherr and_matherrl each serve as a user hook (a function that can be
customized by the user) that you can replace by writing your own math
error handling routine. The example shows a user-defined _matherr
implementation. '

_matherr and _matherrl are useful.£or trapping domain and range errors
. caused by the math functions. They do not trap floating-point exceptions,

such as division by zero. See signal for information on trapping such errors.

You can define your own _matherr or _matherrl routine to be a custom error
handler (such as one that catches and resolves certain types of errors); this
customized function overrides the default version in the C library. The
customized _matherr or _matherrl should return 0 if it fails to resolve the
error, or nonzero if the error is resolved. If nonzero is returned, no error
message is printed and the global variable errno is not changed.

Here are the _exception and _exceptionl structures (defined in math.h):

struct _exception {
.int type;
char *name;
double argl, arg2, retval;

};

struct_exceptionl
int type;
char - *name;
long double argl, arg2, retval;

};

The members of the _exception and _exception I structures are shown in the
following table:

Member

type

name

arg1,
arg2

retval

What it is (or represents)

The type of mathematical error that occurred; an enum type defined in the typedef
_mexcep (see definition after this list).

A pointer to a null-terminated string holding the ·name of the math library function.
that resulted in an error. .

The arguments (passed to the function that name points to) caused the error; .
if only one argLiment was passed to the function, it is stored in arg1.

The default return value for _matherr (or _matherr~; you can modify this value.

Library Reference

Return value ,

_matherr, _matherrl

The typedef _mexcep, also defined in math.h, enumerates the following
symbolic constants representing possible mathematical errors:

Symbolic
constant

DOMAIN

SING

OVERFLOW

UNDERFLOW

TLOSS

Mathematical error

Argument was not in domain of function, such as log(-1).

Argument would result in a singularity, such as pow{O, -2).

Argument would produce a function result greater than DBL_MAX (or
LDBL_MAX), such as exp(1000).

Argument would produce a function result less than DBL_MIN (or
LDBL_MIN), such as exp(-1000).

Argument would produce function result with total loss of significant digits,
such as sin(10e70).

The macros DBL_MAX, DBL_MIN, LDBL_MAX, and LDBL_MIN are
defined in float.h.

The source code to the default _matherr and _matherrl is on the Borland C++
distribution disks.

The UNIX-style _matherr and _matherrl default behavior (printing a
message and terminating) is not ANSI compatible. If you want a UNIX­
style version of these routines, use MATHERR.C and MATHERRL.C
provided on the Borland C++ distribution disks.

The default return value for _matherr and _matherrl is 1 if the error is
UNDERFLOW or TLOSS, 0 otherwise. _matherr and _matherrl can also
modify e -> retval, which propagates back to the original caller.

When'_matherr and _matherrl return 0 (indicating that they were not able to
resolve the error), the global variable errno is set to 0 and an error message
is printed.

When _matherr and _matherrl return nonzero (indicating that they were able
to resolve the error), the global variable errno is not set and no messages are
printed.

max stdlib.h

Function Returns the larger of two values.

Syntax (type) max (a, b);
~ template <class T> T max(Ttl, T t2);

Chapter 3, Run-time functions 171

II

max

Remarks

Return value

See also

mblen

Function

Syntax

Remarks

Return value

See also

mbstowcs

Function

Syntax

172

The C macro and the C++ template function compare two values and
return the larger of the two. Both arguments and" the routine declaration
must be of the same type.

max returns the larger of two values.

min

Determines the length of a multibyte character.

int mblen(const char *s, size_t nl;

stdlib.h

If s is not null, mblen determines the number of bytes in the multibyte char­
acter pointed to by s. The maximum number of bytes examined is specified
byn.

The behavior of mblen is affected by the setting of LC_CTYPE category of
the current locale.

If s is null, mblen returns a nonzero value if multibyte characters have '
state-dependent encodings. Otherwise, mblen returns O. ,

If s is not null, mblen returns 0 if s points to the null character, and -1 if the
next n bytes do not comprise a valid multibyte character; the number of
bytes that comprise a valid multibyte character.

mbstowcs, mbtowc, setlocale

stdlib.h

Converts a multibyte string to a wchar _t array.

size_t mbstowcs(wchar_t *pwcs, const char *s, size_t nl;

Library Reference

Remarks

Return value

See also

mbtowc

Function

Syntax

Remarks

Return value

See also

mbstowcs

The function converts the multibyte string s into the array pointed to by
pwcs. No more than n values are stored in the array. If an invalid multibyte
sequence is encountered, mbstowcs returns (size_t) -1.

The pwcs array will not be terminated with a zero value if mbstowcs
returns n.

The behavior of mbstowcs is affected by the setting of LC_ CTYPE category
of the current locale.

If an invalid multibyte sequence is encountered, mbstowcs returns (size_t)
-1. Otherwise, the function returns the number of array elements modified,
not including the terminating code, if any.

mblen, mbtowc, setlocale

Converts a multibyte character to wchar _t code.

stdlib.h III
int mbtowc(wchar_t *pwc, const char *s, size_t n) ;

If s is not null, mbtowc determines the number of bytes that comprise the
multibyte character pointed to by s. Next, mbtowc determines the value of
the type wchar_t that corresponds to that multibyte character. If there is a
successful match between wchar_t and the multibyte character, and pwc is
not null, the wchar_t value is stored in the array pointed to by pwc. At most
n characters are examined.

When s points to an invalid multibyte character,-l is returned. When s
points to the null character, 0 is returned. Otherwise, mbtowc returns the
number of bytes that comprise the converted multibyte character.

The return value never exceeds MB_CUR_MAX or the value of n.
The behavior of mbtowc is affected by the setting of LC_CTYPE category of
the current locale.

mblen, mbstowcs, setlocale

Chapter 3, Run-time functions 173

memccpy, jmemccpy

memccpy, _fmemccpy mem.h

Function

Syntax

Remarks

memccpy

jmemccpy

Return value

See also

Copies a block of n bytes.

void *memccpy(void *dest, const void *src, int c, size_t n);
void far, * far _fmemccpy(void far *dest, const void far *src, int c, size_t n)

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • •
• •

memccpy is available on UNIX System V systems.

memccpy copies a block of n bytes from src to dest. The copying stops as
soon as either of the following occurs:

• The character c is first copied into dest .
• n bytes have been copied into dest.

memccpy returns a pointer to the byte in dest immediately following c, if c
was copied; otherwise, memccpy returns NULL.

memcpy, memmove, memset

memchr, _fmemchr mem.h

Function

Syntax

Remarks

174

memchr

_fmemchr

Searches n bytes for character c.

void *memchr(const void *s, int c, size_t n);

void far * far _fmemchr(const void far *s, int c, size_t n);

const void *memchr(const void *s, int c, size_t n);
void *memchr(void *s, int c, size_t n);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++

• • • • • •
• •

memchr is available on UNIX System V systems.

OS/2

•

/* Conly */

/* C and c++ */

/ / c++ only
/ / c++ only

memchr searches the first n bytes of the block pointed to by s for character c.

Library Reference

memchr, _fmemchr

Return value On success, memchr returns a pointer to the first occurrence of c in 8;
otherwise, it returns NULL.

.. If you are using the intrinsic version of these functions, the case of n=O will
return NULL.

memcmp, _fmemcmp mem.h

Function

Syntax

memcmp

_fmemcmp

Compares two blocks for a length of exactly n bytes.

int memcmp(const void *sl, canst void *s2, size_t nl;
int far _fmemcmp(const void far *sl, const void far *s2, size_t nl

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• •

Remarks memcmp is available on UNIX System V systems. '

Return value

memcmp compares the first n bytes of the blocks 81 and 82 as unsigned
chars.

Because it compares bytes as unsigned chars, memcmp returns a value that
is

• < 0 if 81 is less than 82

• = 0 if 81 is the same as 82

• > 0 if 81 is greater than 82

For example,

memcmp(l\xFF", l\x7F", 1l

returns a value greater than 0:

.. If you are using the intrinsic version of these functions, the case of n=O will
return NULL.

See also memicmp

·memcpy, _fmemcpy mem.h

Function Copies a block of n bytes.

Chapter 3, Run-time functions 175

II

memcpy, jmemcpy

Syntax

Remarks

, memcpy

_fmemcpy

Return value

See also

void *memcpy(void *dest, const void *src, size_t nl;
void far *far _fmemcpy(void far *dest, const void far *src, size_t nl;

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• •

memcpy is available on UNIX System V systems.

memcpy copies a block of n bytes from src to dest. If src and dest overlap, the
behavior of memcpy is undefined.

memcpy returns dest.

memccpy, memmove, memset, movedata, movmem

memicmp, _fmemicmp mem.h

Function

Syntax

Remarks

memicmp

_fmemicmp

Return value

See also

Compares n bytes of two character arrays, ignoring case.

int memicmp(const void *sl, const void *s2, size_t nl;
int far _fmemicmp(cons(void far *sl, const void far *s2, size_t nl

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • •
• •

memicmp is available on UNIX System V systems.

memicmp compares the first n bytes of the blocks sl and s2, ignoring
character case (upper or lower).

memicmp returns a value that is

• < 0 if sl is less than s2

• = 0 if sl is the same as s2

• > 0 if sl is greater than s2

memcmp

memmove, _fmemmove mem.h

Function Copies a block of n bytes.

176 Library Reference

memmove, jmemmove

Syntax

memmove

_fmemmove

Remarks

Return value

See also

void *memmove(void *dest, const void,*src, size_t n);
void far * far _fmemmove (void far *dest, const void far *src, size_t n)

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• •

memmove copies a block of n bytes from src to dest. Even when the source
and destination blocks overlap, bytes in the overlapping locations are
copied correctly.

memmove returns dest.

memccpy, memcpy, movmem

memset, _fmemset

Function

Syntax

Sets n bytes of a block of memory to byte c.

mem.h

ll
memset

fmemset

void *memset(void *s, int c, size_t n);
void far * far _fmemset (void far *s, int c, size_t n)

DOS UNIX . Win 16 Win 32 ANSI C ANSI C++

• • • • • •
• •

OS/2

•

Remarks

Return value

See also

memset sets the first n bytes of the array s to the character c.

memset returns s.

memccpy, memcpy, setmem

min

Function Returns the smaller of two values.

Syntax (type) min(a, b);
~ template <class T> T minI Ttl, T t2);

UNIX Win 16

Chapter 3, Run-time functions

stdlib.h

177

min

Remarks

Return value

See also

mkdir

Function

Syntax

Remarks

Return value

See also

Function

Syntax

Remarks

Return value

178

The C macro and the c++ template function compare two values and
return the smaller of the two. Both arguments and the routine declaration
must be of the same type.

min returns the smaller of tWo values.

max

dir.h

Creates a directory.

int rnkdir(const char *P~th)i

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • •

mkdir is available on UNIX, though it then takes an additional parameter.

mkdir creates. a new directory from the given path name path.

mkdir returns the value 0 if the new directory was created.

A return value of -1 indicates an error, and the global variable errno is set to
one of the following values: .

EACCES .
ENOENT

Permission denied
No such file or directory

chdir, getcurdir, getcwd, rmdir

Makes a far pointer.

void far * MK_FP (unsigned seg, unsigned ofs) i

dos.h

MK_FP is a macro that makes a far pointer from its component segment
(seg) and offset (ofs) parts.

MK_FP returns a far pointer.

LibraryHeference

See also

mktemp

Function

Syntax

Remarks

Return value

mktime

Function

Syntax

Remarks

Return value

FP _OFF, FP _SEG, movedata, segread

dir.h

Makes a unique file name.

char *mktemp(char *template) i

mktemp replaces the string pointed to by template with a unique file name
and returns template ..

template should be a null-terminated string with six trailing Xs. These Xs
are replaced with a unique collection of letters plus a period, so that there II
are two letters, a period, and three suffix letters in the new file name.

Starting with AA.AAA, the new file name is assigned by looking up the
name on the disk and avoiding pre-existing names of the same format.

If template is well-formed, mktemp returns the address of the template string.
Otherwise, it returns null.

time.h

Converts time to calendar format.

time_t mktime(struct tm *t)i

Converts the time in the structure pointed to by t into a calendar time with
the same format used by the time function. The original values of the fields
tm_sec, tm_min, tm_hour, tm_mday, and tm_mon are not restricted to the
ranges described in the tm structure. If the fields are not in their proper
ranges, they are adjusted. Values for fields tm_wday and tm-yday are
computed after the other fields have been adjusted. If the calendar time
ca~ot be represented, mktime returns -1.

The allowable range of calendar times is Jan 11970 00:00:00 to Jan 19 2038
03:14:07.

See Remarks.

Chapter 3, Run-time functions 179

mktime

See also

modf, modfl

Function

Syntax

Remarks

Return value

See also

movedata

Function

Syntax

Remarks

Return value

See also

180

mod'

modfl

localtime, strftime, time

math.h

Splits a double or long double into integer and fractional parts.

double modf(double x, double *ipartl;
long double modfl(long double x, long double *ipartl;

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

modfbreaks the double x into two parts: the integer and the fraction. modf
stores the integer in ipart and returns the fraction.

modfl is the long double version; it takes long double arguments and
returns a long double result.

modf and modfl return the fractional part of x.

fmod,ldexp

Copies n bytes.

mem.h

void movedata(unsigned srcseg, unsigned srcoff, unsigned dstseg, unsigned dstoff,
size_t nl;

movedata copies n bytes from the source address (srcseg:srcoff) to the
destination address (dstseg:dstoff). movedata provides a memory-model inde­
pendent means for moving blocks of data.

None.

FP _OFF, memcpy, MK_FP,movmem, segread

Library Reference

movmem, Jmovmem

movmem, _fmovmem mem.h

Function

Syntax

Remarks

Return value

See also

movetext

Function

Syntax

Remarks

. Moves a block of length bytes.

void movrnem(const void *src, void *dest, unsigned length);
void _fmovrnem(const void far *src, void far *dest, unsigned length);

movmem moves a block of length bytes from src to dest. Even if the source
and destination blocks overlap, the move direction is chosen so that t~e
data is always moved correctly. Jmovmem provides the same functionality
in a large memory model as movmem does in small memory model.

None.

memcpy, memmove, movedata

conio.h

Copies text onscreen from one rectangle to another.

int movetext(int left, int top, int right, int bottom, int destleft, int desttop);

II DOS I UNIX I Win 16 I Win 32 ANSI C ANSI C++ I OS/2 II

II • I I I I • II

move text copies the contents of the onscreen rectangle defined by left, top,
right, and bottom to a new rectangle of the same dimensions. The new
rectangle's upper left comer is position (destleft, desttop).

All coordinates are absolute screen coordinates. Rectangles that overlap are
moved correctly. '

movetext is a text mode function performing direct video output.

.. 'This function should not be used in Win32s or Win32 GUI applications.

Return value movetext returns nonzero if the operation succeeded. If the operation failed
(for example, if you gave coordinates outside the range of the current
screen mode), movetext returns O.

See also gettext, puttext

Chapter 3, Run-time functions . 181

II

_msize malloc.h

Function Returns the size of a heap block.

Syntax size_t _rnsize (void *block);

Remarks _msize returns the size of the allocated heap block whose address is block.
The block must have been allocated with maUoc, caUoc, or realloc. The
returned size can be larger than the number ot bytes originally requested
when the block was allocated. .

Return value _msize returns the size of the block in bytes.

See also maUoc, free, realloc

normvideo conio.h

Function Selects normal-intensity characters.

Syntax void norrnvideo(void);

DOS UNIX Win 16 I Win 32 ANSI C I ANSI C++ I OS/2 II
• I • I I • II

Remarks normvideo selects normal characters by returning the text attribute
(foreground and background) to the value it had when the program.
started.

This function does not affect any characters currently on the screen,' only
those displayed by functions (such as cprintf) performing direct console
output functions after normvideois called.

_ This function should not be used in Win32s or Win32 GUI applications.

, Return value None.

See also highvideo, lowvideo, textattr, textcolor

offsetof stddef.h

Function Gets the byte offset toa structure member:

182 Library Reference

Syntax

Remarks

Return value

Remarks

op~n

Function

Syntax

Remarks

offsetof

size_t offsetof(struct_type, struct_memberl;

II DOS I UNIX I Win 16 Win 32 I ANSI C I ANSI C++ OS/2 II
II • I • I • • I • I • • II

offsetof is available only as a macro. The argument struct_type is a struct
type. struct_member is any element of the struct that can be accessed
through the member selection operators or pointers.

If struct_member is a bit field, the result is undefined.

See also Chapter 2 in the Programmer's Guide for a discussion of the sizeof
operator, memory allocation, and alignment of structures.

offsetof returns the number of bytes from the start of the structure to the
start of the named structure member.

fcntl.h, share.h, dos.h

Obsolete function. See _rtCopen.

fcntl.h, io.h I
Opens a file for reading or writing.

int open(const char *path, int access [, unsigned mode]l;

II DOS I UNIX I Win 16 Win 32 ANSI C ANSI C++ OS/2

II • I • I • • •

open opens the file specified by path, theri prepares it for reading and/or
writing as determined by the value of access.

To create a file in a particular mode, you can either assign to the global
. variable Jmode or call open with the O_CREAT and O_TRUNC options
ORed with the translation mode desired. For example, the call

open ("XMP", O_CREAT I O_TRUNC 10_BINARY, S_IREADl

creates a binary-mode, read-only file named XMP, truncating its length to 0
bytes if it already existed.

For open, access is constructed by bitwise ~Ring flags from the followi(l.g
two lists. Only one flag from the first list can be used (and one must be
used); the remaining flags can be used in any logical combination.

Chapter 3, Run-time functions 183

open

These symbolic
constants are defined

in fcntl,h.

Return value

184

List 1: Read/write flags
a _RDONL Y Open for reading only.
O_WRONLY Open for writing only.
a _RDWR Open for reading and writing.

List 2: Other access flags
O_NDELAY Not used; for UNIX,compatibility.
a_APPEND If set, the file pointer will be set to the end of the file

prior to each write.
O_CREAT If the file exists, this flag has no effect. If the file does

not exist, the file is created, and the bits of mode are
used to set the file attribute bits as in chmod.

O_TRUNC If the file exists, its length is truncated to O. The file
attribute_s remain unchanged.

O_EXCL Used only with O_CREAT. If the file already exists,
an error is returned.

a_BINARY Can be given to explicitly open the file in binary
mode.

a_TEXT Can be given to explicitly open the file in text mode.

If neither a_BINARY nor a_TEXT is given, the file is opened in the
translation mode set by the global variable Jmode.

If the O_CREAT flag is used in constructing access, you need to supply the
mode argument to open from the following symbolic constants defined in
sys \stat.h.

Value of mode

S-,WRITE
S-'READ
S-,READIS-,WRITE

Access permission

. Permission to write
Permission to read
Permission to read and write

On successful completion, open returns a nonnegative integer (the file
handle). The file pointer, which marks the current position in the file, is set
to the beginning of the file. On error, open returns -1 and the global variable
errno is set to one of the following values:

EACCES
EINVACC
EMFILE
ENOENT

Permission denied
Invalid access code
Too many open files
No such file or directory

Library Reference

See also

opendir

Function

Syntax

Remarks

Return value

See also

outp

Function

Syntax

open·

chmod, chsize, close, _rtCcreat, creat, creatnew, creattemp, dup, dup2, fdopen,
filelength, fopen, freopen, getftime, lseek, lock, _rtl_open, read, sopen, _rtl_write,
write

dirent.h

Opens a directory stream for reading.

DIR *opendir(char *dirname);

opendir is available on POSIX-compliant UNIX systems.

The opendir function opens a directory stream for reading. The name of the
directory to read is dirname. The stream is set to read the first entry in the
directory.

A directory stream is represented by the DIR structure, defined in dirent.h.
This structure contains no user-accessible fields. Multiple directory streams
can be opened and read simultaneously. Directory entries·can be created or
deleted while a directory stream is being read.

Use the readdir function to read successive entries from a directory stream.
Use the closedir function to remove a directory stream when it is no longer
needed. '

If successful, opendir returns a pointer to a directory stream that can be used
in calls to readdir, rewinddir, and closedir. If the directory cannot be opened,
opendir returns NULL and sets the global variable errno to

The directory does not exist ENOENT
ENOMEM Not enough memory to allocate a DIR object

closedir~ readdir, rewinddir

Outputs a byte to a hardware port.

int outp(unsigned portid, int value);

It DOS 1 UNIX I Win 16 I Win 32 ANSI C ANSI C++ OS/2

II • I I • I

conio.h

Chapter 3, Run-time functions 185

II

Qutp

Remarks

Return value

See also

outp is ,a macro that writes the low byte of value to the output port specified
by portid. .

. If outp is called when conio.h has been included, it will be treated as a
macro that expands to inline code. If you don't include conio.h, or if you do

, include conio.h and #undef the macro outp, you'll get the outp function.

outp returns value.

inp, inpw, outpw

outport, outportb dos.h

Function

Syntax

Remarks

Return value

See also

outpw

Function

, Syntax

186

Outputs a word or byte to a hardware port.

void outport(int portid,int value);
void outportb(int portid, unsigned char value);

outport works just like the 80x86 instruction OUT. It writes the low byte of
the word given by value to the output port specified by portid and writes the
high byte of the word to portid +1.

outportb is a macro that writes the byte given by value to the output port
sp~cified by portid.

If outportb is called when dos.h has been included, it will be treated as a
macro that expands to inline code. If you don't include dos.h, or if you do
include dos.h and #undef the macro outportb, you'll get the outportb
function.

None.

inport, inportb

conio.h , -

Outputs a word to a hardware port.

unsignedoutpw(unsigned portid, unsigned value);

Library Reference

Remarks

Return value

See also

parsfnm

Function

Syntax

R,emarks

Return value

~pclose

Function

Syntax

Remarks

outpw

outpw is a macro that writes the 16-bit word given by value to the output
port specified by portid. It writes the low byte of value to portid, and the high
byte of the word to portid +1, using a single 16-bit OUT instruction.

If outpw is called when conio.h has been included, it will be treated as a
macro that expands to inline code. If you don't include conio.h, or if you do
include conio.h and #undef the macro outpw, you'll get the 01:ltpw function.

,outpw returns value.

inp, inpw, outp

Parses file name.

char *parsfnrn(const char *cmdline, struct fcb *fcb, int opt);

Win 32 ANSI C

dos.h

parsfnm parses a string pointed to by emdline for a file name. The string is
normally a command line. The file name is placed in a file control block
(FCB) as a drive, file name, and extension. The FCB is pointed to by feb.

The opt parameter is the value documented for AL in the DOS parse system
call. See your DOS reference manuals under system call Ox29 for a
description of the parsing operations performed on the file name.

On success, parsfnm returns a pointer to the next byte after the end of the
'file name. If there is any error in parsing the file name, parsfnm returns null.

stdio.h

Waits f~r piped command to complete.

int-pclose(FILE * stream);

This function is not available in Win32s programs.

-pclose closes a pipe stream created by a previous call to -popen, and then
waits for the associated child command to complete.

Chapter 3, Run-time functions 187

I

_pclose

Return value

See also

peek

Function

Syntax

Remarks

Return value

See also

peekb

Function

Syntax

Remarks

Return value'

See also

188

If it is successful, -pclose returns the termination status of the child
command. This is the same value as the termination status returned by
cwait, except that the high and low order bytes of the low word are
swapped. If -pclose is unsuccessful, it returns -1.

-pipe,-popen

dos.h

Returns the word at memory location specified by segment:offset.

int peek(unsigned segment, unsigned offset);

II DOS I UNIX I Win 16 Win 32 ANSI C ANSI C++ OS/2

II • J I •

peek returns the word at the memory location segment:offset.

If peek is called when dos.h has been included, it is treated as a macro that
expands to inline code. If you don't include dos.h, or if you do include it
and #undef peek, you'll get the function rather than the macro.

peek returns the word of data stored at the memory location segment:offset.

peekb, poke

dos.h

Returns the byte of memory specified by segment:offset.

char peekb(unsigned segment, unsigned offset);

II DOS I UNIX I Win 16 I Win 32 I ANSI C ANSI. C++ I OS/2 II
II • I I • I I I II

peekb returns the byte at the memory location addressed bysegment:offset.

If peekb is called when dos.h has been included, it is treated as a macro that
expands to inline code. If you don't include dos.h, or if you do include it
and #undef peekb, you'll get the function rather than the macro.

peekb returns the byte of information stored at the memory location
segment:offset~

peek, pokeb

Library Reference

perror

Function

Syntax

Remarks

Table 3.2
These messages are

generated in both
Win 16 and Win 32.

perror

stdio.h

Prints a system error message.

void perror(const char *s);

perror prints to the stderr stream (normally the console) the system error
message for the last library routine that set errno.

First the argument s is printed, then a colon, then the message corre­
sponding to the current value of the global variable errno, and finally a
newline. The convention is to pass the file name of the program as the
argument string.

The array of error message strings is accessed through the global variable
_sys_errlist. The global variable errno can be used as an index into the array
to find the string corresponding to the error number. None of the strings
include a newline character.

The global variable _sys_nerr contains the number of entries in the array.

Refer to errno,_sys_errlist, and _sys_nerr in Chapter 4 for more information.

The following messages are generated by perror:

Win 16 and Win 32 messages

Arg list too big
Attempted to remove current

directory
Bad address
Bad file number
Block device required
Broken pipe
Cross-device link
Error 0
Exec format error
Executable file in use
File already exists
File too large
Illegal seek
Inappropriate 1/0 control

operation
Inputbutput error
Interrupted function call

Is a directory
Math argument
Memory arena trashed
Name too long
No child processes
No more files

. No space left on device
No such device
No such device or address
No such file or directory
No such process
Not a directory
Not enough memory
Not same device
Operation not permitted
Path not found
Permission denied
Possible deadlock

Chapter 3, Run-time functions 189

I

perror

Table 3.3
These messages are

generated only in
Win 32.

Return'value

See'also

_pipe

Function

Syntax

Remarks

190

Table 3.2: These messages are generated in both Win 16 and Win 32. (continued)

Invalid access code , Read-only file system
. Invalid argument Resource busy

Invalid data Resource temporarily unavailable
Invalid environment Result too large
Invalid format Too many links
Invalid function number Too many open files
Invalid memory block address

Win 32-only, messages

Bad address
Block device required
Broken pipe
Executable file in use
File too large
Illegal seek
Inappropriate I/O control

operation
, Inputbutput error

Interrupted function call
Is a directory
Name too long

No child processes
No space left on device
No such device or address
No such process
Not a directory
Operation not permitted
Possible deadlock .
Read-only file system
Resource busy
Resource temporarily unavailable
Too many links

For Win32s or Win32 GUI applications, stderr must be redirected.

None.

clearerr, eat, /reopen, _strerror, strerror

fcntl.h, io.h

Creates a read/write pipe.

int -pipe(int *handles, unsigned int size, int mode);

This function is not available in Win32s programs.

The -pipe function creates an anonymous pipe that can be used to pass
information between processes. The pipe is opened for both reading and
writing. Like a disk file, a pipe can be read from and written to, but it does
not have a name or permanent storage associated with it; data written to

Library Reference

Return value

See also

poke

Function

Syntax

Remarks

Return value

See also

_pipe

and from the pipe exist only in a memory buffer managed by the operating
system.

The read handle is returned to handles[O], and the write handle is returned
to handles[1]. The program can use these handles in subsequent calls to read,
write, dup, dup2, or close. When all pipe handles are closed, the pipe is
destroyed. .

The size of the internal pipe buffer is size. A recommended minimum value
is 512 bytes.

The translation mode is specified by mode, as follows:

o _BINARY The pipe is opened in binary mode
0_ TEXT The pipe is opened in text mode

If mode is zero, the translation mode is determined by the external variable
Jmode.

On successful completion, -pipe returns 0 and returns the pipe handles to ,
handles[O] and handles[l]. Otherwise it returns -1 and sets errno to one of the
following values:

EMFILE
ENOMEM

-pclose, -popen

Too many open files
Out of memory

Stores an integer value at a memory location given by segment:offset:

void poke(unsigned segment, unsigned offset, int value);

poke stores the integer value at the memory location segment:offset.

dos.h

If this routine is called when dos.h has been included, it will be treated as a
macro that expands to inline code. If you don't include dos.h, or if you do
include it and #undef poke, you'll get the function rather than the macro.

None.

peek, pokeb

Chapter 3, Run-time functions 191

II

pOKeo

pokeb

Function

Syntax

Remarks

Return value

See also

poly, polyl

Function

Syntax

Remarks

Return value

_popen

Function

192

poly

polyl

dos.h

Stores a byte value at memory location seginent:offset.
, f

void pokeb(unsigned segment, unsigned offset, char value);

pokeb stores the byte value at the memory location segment:offset.

If this routine is called when dos.h has been included, it will be treated as a
macro that expands to inline code. If you don't include dos.h, or if you do
include it and #undef pokeb, you'll get the function rather than the macro.

None.

peekb, poke

math.h

Generates a polynomial from arguments.

double poly(double x, int degree, double coeffs[J);
long double polyl(long double x, int degree, long double coeffs[J);

DOS UNIX Wi n 16 Win 32 ANSI C ANSI C++ OS/2

• • • • •
• • • •

poly generates a polynomial in x, of degree degree, with coefficients coeffs[O},
coeffs[11, .:., coeffs[degreel. For example, if n = 4, the generated polynomial is

coeffs[4}x4 + coeffs[3}x3 + coeffs[2}x2 + coeffs[l}x+ coeffs[O}

polyl is the long double version; it takes long double arguments and returns
a long double result.

poly and polyl return the value of the polynomial as evaluated for the
given x.

stdio.h

Creates a command processor pipe.

Library Reference

Syntax

Remarks

Return value

See also

pow, powl

Function

_popen

FILE *-papen (canst char*cammand, canst char *madelj

This function is not available in Win32s programs.

The -popen function creates a pipe to the command processor. The
command processor is executed asynchronously, and is passed the
command line in command. The mode string specifies whether the pipe is
connected to the command processor's standard input or output, and
whether the pipe is to be opened in binary or text mode.

The mode string can take one of the following values:

Value Description

rt Read child command's standard output (text).

rb Read child command's standard output (binary).

wt Write to child commands standard input (text).

wb Write to child commands standard Input (binary).

The terminating tor b is optional; if missing, the translation mode is
determined by the external variable Jmode.

Use the -pclose function to close the pipe and obtain the return code of the
command.

If -popen is successful it returns a FILE pointer that can be used to read the
standard output of the command, or to write to the standard input of the
command, depending on the mode string. If -popen is unsuccessful, it
returns NULL.

-pclose, -pipe

math.h

Calculates x to the power of y.

Chapter 3, Run-time functions 193

I

pow, powl

Syntax

Remarks

Return value

pow

pawl

double pow(double X, double Y)i

long double powl(long double X, double Y)i

DOS UNIX 'Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

pow calculates xY•

pawl is the long double version; it takes long double arguments and returns
a long double result. '

This function can be used with bed and complex types.

On success, pow and pawl return the value calculated, xY•

Sometimes the arguments passed to these functions produce results that
overflow or are incalculable. When the correct value would overflow, the
functions return the value HUGE_VAL (pow) or _LHUGE_ VAL (pawl).
Results of excessively large magnitude can cause the global variable errno
to be set to

ERANGE Result out of range

If the argument x passed to pow or pawl is real and less than 0, and y is not a
whole numher, ot you call pow(0,0), the global variable errno is set to

EDOM Domain error

Error handling for these functions can be modified through the functions
_matherr and _matherrl.

See also bcd, complex, exp, powl0, sqrt

pow10, pow101 math.h

Function Calculates 10 to the power of p.

Syntax double powlO (int p) i

Remarks

194

pow10

pow101

long double powlOl(int p);

DOS UNIX Win 16

• ~ •
• •

powl0 computes lOP.

Win 32

•
•

ANSI C ANSI C++ OS/2

•
•

Library Reference

Return value

See also

printf

Function

Syntax

Remarks

The format string

pow10, pow101

On success, powl0 returns the value calculated, lOP.

The result is actually calculated to long double accuracy. All arguments are
valid, although some can cause an underflow or overflow.

powl is the long double version; it returns a long double result.

exp, pow

stdio.h

Writes formatted output to stdout.

int printf(const char *format[, argument, ...]);

"

DOS I. UNIX
1

Win 16 Win 32 ANSI C
1

ANSI C++
1

OS/2
II

"

• I • I • • I • I • II

printf accepts a series of arguments, applies to each a format specifier
contained in the format string given by format, and outputs the formatted
data to stdout. There must be the same number of format specifiers as
arguments.

For Win32s or Win32 GUI ~pplications, stdout must be redirected.

The format string, present in each of the ... printf function calls, controls
how each function will convert, format, and print its arguments. There must
be enough arguments for the format; if not, the results will be unpredictable and ,
possibly disastrous. Excess arguments '(more than required by the format) are
ignored.

The format string is a character string that contains two types of objects­
plain characters and conversion specifications:

• Plain characters are copied verbatim to the output stream .

• Conversion specifications fetch arguments from the argument list and
apply formatting to them.

Format specifiers

.. . printf format specifiers have the following form:

.% [flags] [width] [.prec] [FINlhllIL] type

Chapter 3, Run-time functions 195

I

printf

Optional format
string components

... printf
conversion-type

characters

, Type
character

Numerics

d

0

u

196

. Each format specifier begins with the percent character (%). After the % .
come the following, in this order: .

• An optional sequence of flag characters, [flags]

• An optional width specifier, [width]

II An optional precision specifier, [. prec]

• An optional input-size modifier, [F I Nih III L]

• The conversion-type character, [type]

These are the general aspects of output formatting controlled by the
optional characters, specifiers, and modifiers in the format string:

Character
or specifier

Flags

Width

Precision

Size

What it controls or specifies

Output justification, numeric signs, decimal points, trailing zeros, octal and hex
prefixes

Minimum number of characters to' print, padding with blanks or zeros

Maximum number of characters to print; for integers, minimum number of
digits to print

Override default size of argument:

N = near pointer
F = far pointer

. h = short int
1=long
L = long double

The following table lists the ... print! conversion-type characters, the type of
input argument accepted by each, and in what format the.output appears.

The information in this table of type characters is based on the assumption
that no flag characters, width specifiers, preCision specifiers, or input-size
modifiers were included in the format specifiers. To see how the addition of
the optional characters and specifiers affects the .. . print! output, refer to the
tables following this one.

Input argument Format of output

Integer signed decimal int.
Integer signed decimal int.
Integer unsigned octal int.
Integer unsigned ,decimal int.

Library Reference

x
X

e

g

E

G

Characters

c

s

%

Pointers

n

p

Integer
Integer

Floating-point

Floating-point

Floating-point

Floating-point

Floating-point

Character

String pointer

None

Pointer to int

Pointer

unsigned hexadecimal int (with a, b, c, d, e, f).
unsigned hexadecimal int (with A, B, C, D, E, F).

signed value of the form [-]dddd.dddd.

signed value of the form [-]d.dddd or e [+/-]ddd.

signed value in either e or f form, based on given value and precision.

Trailing zeros and the decimal point are printed only if necessary.

Same as e, but with E for exponent.

Same as 'g, but with E for exponent if e format used.

Single character.

Prints characters until a null-terminator is pressed or precision is reached.

The % character is printed.

Stores (in the location pointed to by the input argument) a count of the
characters written so far.

printf

was used. It will be either XXXX:YYYY or YYYY (offset only). •
Prints the input argument as a pointer; format depends on which memory model I

Conventions Certain conventions accompany some of these specifications. The decimal­
point character used in the output is determined by the current locale's
LC_NUMERIC category. The conventions are summarized in the following
table: "

Characters

e or E

g orG

Chapter 3, Run-time functions

Conventions

The argument is converted to match the style [-] d.ddd ... e[+/-]ddd, where

• One digit precedes the decimal point.
• The number of digits after the decimal point is equal to the precision.
• The exponent always contains at least two digits.

The argument is converted to decimal notation in the style [-] ddd.ddd ... , where
the number of digits after the decimal point is equal to the precision (if a nonzero
precision was given).

The argument is printed in style e, E or f, with the precision specifying the
number of significant digits. Trailing zeros are removed from the result, and a
decimal point appears only if necessary.

197

printf .

(
)

Characters Conventions

_ xorX

The argument is printed in style e or f (with some restraints) if g is the
conversion character, and in style E if the character is G. Style e is used only if
the exponent that results from the conversion is either greater than the precision
or less than -4.

For x conversions, the letters a, b, c, d, e, and f appear in the output; for X
conversions, the letters A, 8, C, D, E, and F appear.

.. Infinite floating-point numbers are printed as +INF and -INF. An IEEE
Not-a-Number is printed as +NAN or -NAN.

Flag characters The flag characters are minus (-), plus (+), sharp (#), and blank O. They can
appear in any order and combination.

Flag What it specifies

Left-justifies the result, pads on the right with blanks. If not given, it right-justifies the
result, pads on the left with zeros or blanks.

+ Signed conversion results always begin with a plus (+) or minus (-) sign.

blank If value is nonnegative, the output begins with a blank instead of a plus; negative
values still begin with a minus.

Specifies that argis to be converted using an "alternate form." See the following.table.

.. Plus (+) takes precedence over blank 0 if both are given.

Alternate forms If the # flag is used with a conversion character, it has the following effect
on the argument (arg) being converted:

Conversion
character

c,s,d,i,u

o
x orX

e, E, orf

g orG

How # affects arg

No effect.

o is prepended to a nonzero argo

Ox (or OX) is prepended to argo

The result always contains a decimal point even if no digits follow the point. .
Normally, a decimal point appears in these results only if a digit follows it.

, Same as e and E, with the addition that trailing zeros are not removed.

Width specifiers The width specifier sets the minimum field width for an output value.

Width is specified in one of two ways: directly, through a decimal digit
string, or indirectly, through an asterisk (*). If you use an asterisk for the
width specifier, the next argument in the call (which must be an int)
specifies the minimum output field width.

198 Library Reference

printf

In no case does a nonexistent or small field width cause truncation of a
field. If the result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result.

Width
specifier

n

On

How output width is affected

At least n characters are printed. If the output value has less than n characters,
the output is padded with blanks (right-padded if - flag given, left-padded
otherwise).

At least n characters are printed. If the output value has less than n characters, it
is filled on the left with zeros.

The argument list supplies the width specifier, which must preced~ the actual
, argument ~eing formatted.

Precision specifiers A precision specification always begins with a period (.) to separate it from
any preceding width specifier. Then, like width, precision is specified either
directly through a decimal digit string, or indirectly through an asterisk (*).

, If you use an asterisk for the precision specifier, the next argument in the
call (treated as an int) specifies the precision.

If you use asterisks for the width or the precision, or for both, the width

argument, then the argument for the data to be converted. ,
argument must immediately fOllOW, the specifiers, followed by the preci, sion I

Precision
specifier How output precision is affected

(none given)

.0

.n

Precision set to default:

default = 1 for d, i, 0, u, x, X types
default = 6 for e, E, (types
default = all significant digits for g, G types
default = print to first null character for s types; no effect on c types

For d, i, 0, u, x types, precision set to default; for e, E, (types, no decimal point
is printed. '

n characters or n decimal places are printed. If the output value has more than
n characters, the output might be truncated or rounded. (Whether this happens
depends,on the type character.)

The argument list supplies the precision specifier, which must precede the
actual argument being formatted.

-.. If an explicit precision of zero is specified, and the format specifier for the
field is one of the integer formats (that is, d, i, 0, U, x), and the value to be
printed is 0, no numeric characters will be output for that field (th~t is, the
field will be blank).

Chapter 3, Run-time (unctions 199

printf

Conversion
character

d
i
o
u
x
X

·e
E
f

9
G

c

s

How precision specification (.n) affects conversion

.n specifies that at least n digits are
printed. If the input argument has less
than n digits, the output value is left­
padded with zeros. If the input argument
has more than n digits, the output value
is not truncated.

.n specifies that n characters are printed
after the decimal point, and the last digit
printed is rounded.

.n specifies that at most n significant
digits are printed .

. n has no effect on the output.

.n specifies that no more than n characters
are printed.

Input-size modifier The input-size modifier character (F, N, h, I, or L) gives the size of the

200

subsequent input argument:

F = far pointer
N = near pointer
h = short int
1 = long
L = long double

The input-size modifiers (F, N, h, I, and L) affect how the .. . printf functions
interpret the data type of the corresponding input argument argo F and N
apply only to input args that are pointers (%p, %s, and %n). h, L, and L
apply to input args that are numeric (integers and floating-point).

Both F and N reinterpret the input argo Normally, the arg for a %p, %s, or
%n conversion is a pointer of the default size for the memory model. F
means "interpret arg as a far pointer." N means "interpret arg as a near
pointer."

h, I, and L override the default size of the numeric data input arguments: 1
and L apply to integer (d, i, 0, U, x, X) and floating-point (e, E, f, g, and G)
types, while h applies to integer types only. Neither hnor 1 affect character
(c, s) or pointer (p, n) types.

Library Reference

Return value

See also

pute

Function

Syntax

Remarks

Return value

See also

puteh

Function

Syntax."

Input-size
modifier

F

printf

How arg is interpreted

arg is read as a far pointer.

N arg is read as a near painter. Ncannot be used with any conversion in huge
model.

h arg is interpreted as a short int for d, i, 0, u, X, or X.

arg is interpreted as a long int for d, i, 0, u, X, or X; arg is interpreted as a
double for e, E, f, g, or G.

L arg is interpreted as a long double for e, E, f, g, or G.

printf returns the number of bytes output. In the event of error, printf
returns EOF.

eprintf, eevt, fprintf, fread, freopen, fseanf, pute, puts, putw, seanf, sprintf, vprintf,
vsprintf

stdio.h

Outputs a character to a stream.

int pute(int e, FILE *streaml i

pute is a macro that outputs the cha~acter e to the stream given by stream.

On success, pute returns the character printed, e. On error, pute returns EOF.

fprintf, fpute, fputehar, fputs, fwrite, gete, getehar, printf, puteh, putehar, putw,
vprintf

eonio.h

Outputs character to screen.

int puteh(int eli

ANSI C ANSI C++

Chapter 3, Run-time functions 201

II

putch

Remarks putch outputs the character c to the current text window. It is a text mode
function performing direct video output to the console. putch does not
translate linefeed characters (\n) into carriage-return/linefeed pairs.

The string is written either directly to screen memory or by way of a BIOS
call, depending on the value of the global variable directvideo.

.. This function should not be used in Win32s or Win32 GUI applications.

Return value On success, putch returns the character printed, c. On error, it returns EOF.

See also cpriritf, cputs, getch, getche, putc, putchar

putchar stdio.h

Function Outputs character on stdout.

Syntax int put char (int c);

DOS UNIX Win 16 Win 32 ANSI C I ANSI C++ I OS/2 II
• • • • • I • I • II

Remarks putchar(c) is a macro defined to be putc(c, stdout).

.. For Win32s or Win32 GUI applications, stdout must be redirected.

Return value On success, putchar returns the character c. On error, putchar returns EOF.

See also fputchar, getc, getchar, printf, putc, putch, puts, putw, freopen, vprintf

putenv stdlib.h

Function Adds string to current environment.

Syntax int putenv,(const char *name);

Remarks putenv accepts the string name and adds it to the environment of the current
process. For example,

202

putenv ("PATH=C: \ \BC") ;

putenv can also beused to modify an existing name. On DOS and OS/2,
name must be uppercase. On other systems, name can be either uppercase or

Library Reference

, Return value

See also

puts

Function

Syntax

putenv

lowercase. name must not include the equal sign (=). You can set a variable
to an empty value by specifying an empty string on the right side of the' ='
sign. This effectively removes the environment variable. Environment
variables created by putenv can ~e lower or upper case.

putenv can be used only to modify the current program's environment.
Once the program ends, the old environment is restored. The ,environment'
of the current process is passed to child processes, including any changes
made by putenv.

Note that the string given to putenv must be static or global., Unpredictable
results will occur if a local or dynamic string given to putenv is used after .
the string mem6ry is released.

On success, putenv returns 0; on failure, -l.

getenv

Outputs a string to stdout.

int puts(const char *s);

stdio.h

Remarks puts copies the null-terminated string s to the standard output stream
stdout and appends a newline character. '

-.. For Win32s or Win32 GUI applications, s'tdout must be redirected.

Return value On successful completion, puts returns a nonnegative value. Otherwise, it
returns a value of EOF.

See also cputs, fputs, gets, printf, putchar, [reopen

puttext conio.h

Function Copies text from memory to the text mode screen. '

Syntax int puttext(int left, int top, int right, int bottom, void *source);

Chapter 3, Run-time functions 203

I

puttext

Remarks

Return value

See also

putw

Function

Syntax

Remarks

Return value

See also

qsort

Function

204

puttext writes the contents of the memory area pointed to by source out to
the onscreen rectangle defined by left, top, right, and bottom.

All coordinates are absolute screen coordinates, not window-relative. The
upper left corner is (1,1).

puttext places the contents of a memory area into the defined rectangle
sequentially from left to right and top to bottom.

Each position onscreen takes 2 bytes of memory: The first byte is the
character in the cell, and the second is the cell's video attribute. The space
required for a rectangle w columns wide by h rows high is defined as

bytes = (h rows) x (w columns) x 2

puttext is a text mode function performing direct video output

This function should not be used in Win32s or Win32 GUI applications.

puttext returns a nonzero value if the operation succeeds; it returns 0 if it
fails (for example, if you gave coordinates outside the range of the current
screen mode).

gettext, movetext, window

stdio.h

Puts an integer on a stream.

int putw(int w, FILE *strearn) i

"

DOS I UNIX Win 16 I Win 32 ANSI C ANSI C++ I OS/2 II

"

• I • • I . , I • JI

putw outputs the integer w to the given stream. putw neither expects nor
causes special alignment in the file.

On success, putw returns the integer w. On error, putw returns EOF. Because
EOF is a legitimate integer, use ferror to detect errors with putw.

getw, printf

stdlib.h

Sorts using the quicksort algorithm.

Library Reference

Syntax

Remarks

Return value

See also

raise

Function

Syntax

qsort

void qsort(void *base, size_t nelern, size_t width,
int (_USERENTRY *fcrnp) (canst void *, canst void *));

qsort is an implementation of the "median of three" variant of the quicksort
algorithm. qsort sorts the entries in a table by repeatedly calling the user­
define4 comparison function pointed to by temp.

• base points to the base (Oth element) of the table' to be sorted.

• nelem is the number of entries in the table.

• width is the size of each entry in the table, in bytes.

temp, the comparison function, must be used with the _USERENTRY calling
. convention.

temp accepts two arguments, e1ernl and elem2, each a pointer to an entry in
the table. The comparison function compares each of the pointed-to items
(*eleml and *e1em2), and returns an integer based on the result of the
comparison.

• *eleml < *elem2 temp returns an integer < 0

• *eleinl == *elem2 temp returns 0

• *eleml > *elem2 temp returns an integer> 0

In the comparison, the less-than symbol «) means the left element should
appear before the right element in the final, sorted sequence. Similarly, the
greater-than (» symbol means the left element should appear after the
right element in the final, sorted sequence.

None.

bseareh, lseareh

signal.h

Sends a software signal to the executing program.

int rais~(int sig);

Chapter 3, Run-time functions 205

11

raise

Remarks

Return value

See also

rand

Function

Syntax

Remarks

Return value

See also

206

raise sends a signal of type sig to the program. If the program has installed a
signal handler for the signal type specified by sig, that handler will be
executed. If no handler has been installed, the default action for that signal
type will be taken.

The signal types currently defined in signal.h are noted here:

Signal

SIGABRT
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM
SIGUSR1
SIGUSR2.
SIGUSR3
SIGBREAK

Description

Abnormal termination
Bad floating-point operation
Illegal instruction
Glrl-G interrupt
Invalid access to storage
Request for program termination
User-defined signal .
User-defined signal
User-defined signal
GIrl-Break interrupt

f

SIGABRT isn't generated by Borland C++ during normal operation.
However, it can be generated by abort, raise, or unhandled exceptions.

raise returns 0 if successful, nonzero otherwise.

abort, signal

stdlib.h

Random number generator.

inc rand (void) i

rand uses a multiplicative congruential ran~om number generator with
period 232 to return successive pseudorandom numbers in the range from 0
to RAND_MAX. The symbolic constant RAND_MAX is defined in stdlib.h.

rand returns the generated pseudorandom number.

random, randomize, srand

Library Reference'

random

Function

Syntax

Remarks

Return value

See also

randomize

Function

Syntax

Remarks

Return value

See also

Remarks

read

Function

Syntax

random

stdlib.h

Random number generator.

int random{int num);

random returns a random number between 0 and (num-l). random(num) is a
macro defined in stdlib.h. Both num and the random number returned are
integers.

random returns a number between 0 and (num-l).

rand, randomize, srand

Initializes random number generator.

void randomize (void) ;

stdlib.h, time.h

randomize initializes the random number generator with a random value.

None.

rand, random, srand

io.h, dos.h

Obsolete function. See _rtCread.

io.h

Reads from file.

int read{int handle, void *buf, unsigned len);

Chapter 3, Run-time functions 207

II

read

Remarks

Return value

See also

readdir

Function

Syntax

Remarks

208

read attempts to read len bytes from the file associated with handle into the
buffer pointed to by but.

For a file opened in text mode, read removes carriage returns and reports
end-of-file when it reaches a Ctrl-Z.

The file handle handle is obtained from a creat, open, dup, or dup2 call.

On disk files, read begins reading at the current file pointer. When the
reading is complete, it increments the file pointer by the number of bytes
read. On devices, the bytes are read directly from the device.

The maximum number of bytes that read can read is UINT_MAX-I,
because UINT_MAX is the same as -I, the error return indicator.
UINT_MAX is defined in limits.h.

On successful completion, read returns an integer indicating the number of
bytes placed 'in the buffer. If the file was opened in text mode, read does not
count carriage returns or Ctrl-Z characters in the number of bytes read.

On end-ot-file, read returns o. On error, read returns -1 and sets the global
variable errno to one of the following values:

EACCES
EBADF

Permission denied
Bad file number

open, _rtCread, write

Reads the current entry from a directory stream.

struct dirent *readdir(DIR *dirp);

readdir is available on POSIX-compliant UNIX systems.

dirent.h

The readdir function reads the current directory entry in the directory
stream pointed to by dirp. The directory stream is advanced to the next
entry.

Library Reference

Return value

See also

realloc

Function

Syntax

Remar~s

readdir

The readdir function returns a pointer to a dirent structure that is overwrit­
ten by each call to the function on the same directory stream. The structure
is not overwritten by a readdir call on a different directory stream.

The dirent structure corresponds to a single directory entry. It is defined in
dirent.h, and contains (in addition to other non-accessible members) the
following member:

char d_name[];

where d_name is an array of characters containing the null-terminated file
name for the current directory entry. The size of the array is indeterminate;
use strlen to determine the length of the file name.

All valid directory entries are returned, including subdirectories, "." and
" .. " entries, system files, hidden files, and volume labels. Unused or deleted
directory entries are skipped.

A directory entry can be created or deleted while a directory stream is
being read, but readdir might or might not return the affected directory
entry. Rewinding the directory with rewinddir or reopening it with opendir
ensures that readdir will reflect the current state of the directory.

If successful, readdir returns a pointer to the current directory entry for the
directory stream. If the end of the directory has been reached, or dirp does
not refer to an open directory stream, readdir returns NULL.

closedir, opendir, rewinddir

Reallocates main memory.

stdlib.h 11 • •
void *realloc(void *block, size_t size);

II DOS UNIX I Win 16 I Win 32 ANSI C ANSI C++ I OS/2

II • • I • I • • • I •

realloc attempts to shrink or expand the previously allocated block to size
bytes. If size is zero, the memory block is freed and NULL is returned. The
block argument points to a memory block previously obtained by calling
malloc, calloc, or realloc. If block is a NULL pointer, realloc works just like
malloc.

realloc adjusts the size of the allocated block to size, copying the contents to
a new location if necessary.

Chapter 3, Run-time functions 209

realloc

Return value

See also

remove

Function

Syntax

Remarks

Return value

See also

rename

Function

Syntax

Remarks

210

realloc returns the address of the reallocated block, which can be different
than the address of the original block. If the block cannot be reallocated,
realloc returns NULL.

If the value of size is 0, the memory block is freed and realloc returns NULL.

calloc, farrealloc, free, malloc

stdio.h

Removes a file.

int rernove(const char *filenarnej;

remove deletes the file specified by filename. It is a macro that simply
translates its call to a call to unlink. If your file is open, be sure to close it
before removing it.

-.. The filename string can include a full path.

On successful completion, remove returns O. On error, it returns -I, and the
global variable errno is set to one of the following values:

EACCES
ENOENT

unlink

Renames a file.

Permission denied
No such file or directory

int renarne(const char *oldnarne, const char *newnarnej;

stdio.h

rename changes the name of a file from oldname to newname. If a drive
specifier is given in newname, the specifier must be the same as that given in
oldname. '

Library Reference

Return value

rewind

Function

Syntax

Remarks

Return value

See also

rewinddir

Function

Syntax

rename

Directories in old name and newname need not be the same, so rename can be
used to move a file from one directory to another. Wildcards are not
allowed.

This function will fail (EACCES) if either file is currently open in any
process.

On successfully renaming the file, rename returns O. In the event of error,-l
is returned, and the global variable errno is set to one of the following
values:

EACCES Permission denied: filename already exists or has an
invalid path

ENOENT No such file or directory
ENOTSAM Not same device

stdio.h

Repositions a file pointer to the beginning of a stream.

void rewind{FILE *stream);

rewind(stream) is equivalent to fseek(stream, OL, SEEK_SET), except that
rewind clears the end-of-file and error indicators, while fseek clears the end­
of-file indicator only.

After rewind, the next operation on an update file can be either input or
output.

None.

fopen, fseek, ftell

dirent.h

Resets a directory stream to the first entry.

void rewinddir{DIR *dirp);

Chapter 3, Run~time functions 211

rewinddir

Remarks

Return value

See also

rmdir

Function

Syntax

Remarks

Return value

See also

rmtmp

Function

Syntax

212

rewinddir is available on POSIX-compliant UNIX systems.

The rewinddir function repositions the directory stream dirp at the first entry
in the directory. It also ensures that the directory stream accurately reflects
any directory entries that might have been created or deleted since the last
opendir or rewinddir on that directory stream.

None.

closedir, opendir, readdir

dir.h

Removes a directory.

int rrndir(const char *path);

rmdir deletes the directory whose path is given by path. The directory
named by path

• Must be empty
• Must not be the current working directory
• Must not be the root directory

rmdir returns 0 if the directory is successfully deleted. A return value of-1
indicates an error, and the global variable errno is set to one of the following
values:

EACCES Permission denied
ENOENT Path or file function not found

chdir, getcurdir, getcwd, mkdir

stdio.h

Removes temporary files.

int rrntrnp (void) ;

Library Reference

Remarks

Return value

See also

Function

Syntax

Remarks

Return value

See also

rmtmp

The rmtmp function closes and deletes all open temporary file streams,
which were previously created with tmpfile. The current directory must the
same as when the files were created, or the files will not be deleted.

rmtmp returns the total number of temporary files it closed and deleted.

tmpfile

Bit-rotates an unsigned short integer value to the left or right.

unsigned short _rotl(unsigned short value, int count);
unsigned short _rotr(unsigned short value" int count);

II DOS UNIX Win 16 I Win 32 I ANSI C I ANSI C++

II • • I • I 1
_fotl rotates the given value to the left count bits.

_rotr rotates the given value to the right count bits.

The functions return the rotated integer:

OS/2

•

• _rotl returns the value of value left-rotated count bits .

• _rotr returns the value of value right-rotated count bits.

_crotl, _crotr, _lrotl, _lrotr

stdlib.h

dos.h, io.h

Function

Syntax

Remarks

Gets or sets file attributes.

int _rtl_chmod(const char *path, int func [, int attrib]);

_rtCchmod can either fetch or set file attributes. If Junc is 0, _rtCchmod
returns the current attributes for the file. If tunc is I, the attribute is set to
attrib.

attrib can be one of the following symbolic constants (defined in dos.h):

FA_RDONLY
FA_HIDDEN

Read-only attribute
Hidden file

Chapter 3, Run-time functions 213

II-

Return value

See also

Function

Syntax

Remarks

Return value

See also

Function

Syntax

214

FA_SYSTEM
FA_LABEL
FA_DIREC
FA_ARCH

System file
Volume label
Directory
Archive

Upon successful completion, _rtCehmod returns the file attribute word;
otherwise, it returns a value of -1. .

In the event of an error, the global variable errno is set to one of the
following:

EACCES Permission denied
ENOENT . Path or file name not found

ehmod, _rtCereat

Closes a file.

int _rtl_close(int handle);

io.h

_rtl_close closes the file associated with handle, a·file handle obtaiI).ed from a
_rtCereat, ereat, ereatnew, ereattemp, dup, dup2, _rtCopen, or open call.

.. The function does not write a Ctrl-Z character at the end of the file. If you
want to terminate the file with a Ctrl-Z, you must explicitly output one.

Upon successful completion, _rtCclose returns O. Otherwise, the function
returns a value of -1.

_rtCclose fails if handle is not the handle of a valid, open file, and the global
variable errno is set to

EBADF Bad file number

ehsize, close, ereatnew, dup, fclose, _rtCereat, _rtCopen, sopen

Creates a new file or overwrites "in existing one.

int _rtl_creat(const char *path, int attrib);

dos.h, io.h

Library Reference

Remarks

Return value

See also

_rtLcreat

_rtCcreat opens the file specified by path. The file is always opened in
binary mode. Upon successful file creation, the file pointer is set to the
beginning of the file. The file is opened for both reading and writing.

If the file already exists, its size is reset to o. (This is essentially the same as
deleting the file and creating a new file with the same name.)

The attrib argument is an ORed combination of one or more of the
following constants (defined in dos.h):

FA_RDONL Y Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Upon successful completion, _rtCcreat returns the new file handle, a non­
negative integer; otherwise, it returns-l.

In the event of error, the global variable errno is set to one of the following
values:

EACCES
EMFILE
ENOENT

Permission denied
Too many open files
Path or file name not found

chsize, close, creat, creatnew, creattemp, _rtCchmod, _rtCclose

Function Inspects the heap, node by node.

malloc.h Ii1iI
Syntax

Remarks

DOS UNIX Win 16 Win 32 I ANSI C ANSI C++ I OS/2 II
• l 1 JI

_rtCheapwalk assumes the heap is correct. Use _heapchk to verify the heap
before using _rtCheapwalk. _HEAPOK is returned with the last block on the
heap. _HEAPEND will be returned on the next call to _rtCheapwalk.

_rtCheapwalk receives a pointer to a structure of type _HEAPINFO (declared
in maUoc.h).

Chapter 3, Run-time functions 215

_rtLheapwalk

Return value

See also

Function

Syntax

Remarks

216

For the first call to _rtCheapwalk, set the hi.-pentry field to NULL.
_rtCheapwalk returns with hi.-pentry containing the address of the first
block.

hi._size holds the size of the block in bytes.

hi._useflag is a flag that is set to _ USED ENTRY if the block is currently in
use. If the block is free, hi._useflag is set to _FREEENTRY.

One of the following values:

_HEAPBADNODE A corrupted heap block has been found
_HEAPBADPTR The _pentry field does not point to a valid heap

block
No heap exists _HEAP EMPTY

_HEAPEND
_HEAPOK

The end of the heap has been reached
The _heapinfo block contains valid information
about the next heap block

_heapchk, _heapset

fcntl.h, share.h, io.h

Opens an existing file for reading or writing.

int _rtl_open(const char *filename, int of lags) ;

_rtCopen opens the file specified by filename, then prepares it for reading or
writing, as determined by the value of oflags. The file is always opened in
binary mode.

oflags uses the flags from the following two lists. Only one flag from the
first list can be used (and one must be used); the remaining flags can be
used in any logical combination.

List 1: Read/write flags
o _RDONLY Open for reading.
0_ WRONL Y Open for writing.
o _RDWR Open for reading and writing.

The following additional values can be included in oflags (using an OR
operation):

Library Reference

These symbolic
constants are defined
in fcntl.h and share.h.

Return value

See also

Function

Syntax

Remarks

List 2: Other access flags
o _NOINHERIT The file is not passed to child programs.
SH_COMPAT Allow other opens with SH_COMPAT. The call will

fail if the file has already been opened in any other
shared mode.

SH_DENYRW
SH_DENWR
SH_DENYRD
SH_DENYNO

Only the current handle can have access to the file.
Allow only reads from any other open to the file.
Allow only writes from any other open to the file.
Allow other shared opens to the file, but not other
SH_COMPATopens.

Only one of the SH_DENYxx values can be included in a single _rtCopen.
These file-sharing attributes are in addition to any locking performed on
the files.

The maximum number of simultaneously open files is defined by
HANDLE_MAX.

On successful completion, _rtCopen returns a nonnegative integer (the file
handle). The file pointer, which marks the current position in the file, is set
to the beginning of the file.

On error,_rtCopen returns -1. The global variable errno is set to one of the
following:

EACCES
EINVACC
EMFILE
ENOENT

Permission denied
Invalid access code
Too many open files
Path or file not found

open,_rtCread, sopen

Reads from file.

int _rtl_read(int handle, void *buf, unsigned len);

io.h, dos~h

_rtCread attempts to read len bytes from the file associated with handle into
the buffer pointed to by but.

When a file is opened in text mode, _rtCread does not remove carriage
returns. -

Chapter 3, Run-time functions 217

Return value

See also

Function

Syntax

Remarks

218

The argument handle is a file handle obtained froma creat, open, dup, or dup2
call. .

On disk files _rtCread begins reading at the current file pointer. When the
reading is complete, the function increments the file pointer by the number
of bytes read. On devices, the bytes are read directly from the device.

The maximum number of bytes that _rtCread can read is DINT_MAX -I,
because DINT.:...MAX is the same as -I, the error return indicator.
DINT_MAX is defined in limits.h.

On successful completion, _rtCread returns a positive integer indicating the
number of bytes placed in the buffer. On end-of-file, _rtCread returns zero.
On error, it returns -I, and the global variable errno is, set to one of the
following values:

EACCES
EBADF

Permission denied
Bad file number

read, _rtl_open, _rtl_write

Writes to a file.

int _rtl_write(int handle, void *buf, unsigned len) i

io.h

_rtl_write attempts to write len bytes from the buffer pointed to by but to the
file associated with handle. The maximum number of bytes that _rtl_write
can write is DINT_MAX -I, because DINT_MAX is the same as -I, which is
the error return indicator for _rtl_write. DINT_MAX is defined in limits.h.
_rtl_write does not translate a linefeed character (LF) to a CR/LF pair
because all its files are binary files.

If the number of bytes actually written is less than that requested, the
condition should be considered an error and probably indicates a full disk.

For disk files, writing always proceeds from the current file pointer. On
devices, bytes are directly 'sent to the device.

For files opened with the a_APPEND option, the file pointer is not
positioned to EOF by _rtl_write before writing the data.

Library Reference

Return value

_rtLwrite

_rtl_write returns the number of bytes written. In case of error, _rtCwrite
returns -1 and sets the global variable errno to one of the following values:

EACCES
EBADF

Permission denied
Bad file number

See also lseek, _rtCread, write

scant stdio.h

Function Scans and formats input from the stdin stream.

Syntax int scanf(const char *format[, address, ... J);

II DOS I UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2 II

II • I • • • • • II

Remarks scanf scans a series of input fields, one character at a time, reading from the
stdin stream. Then each field is formatted according to a format specifier
passed to scanf in the format string pointed to by format. Finally, scanf stores
the formatted input at an address passed to it as an argument following
format. There must be the same number of format specifiers and addresses
as there are input fields.

.. For Win32s or Win32 GUI applications, stdin must be redirected.

The format string The format string present in scanf and the related functions cscanf, fscanf,
sscanf, vscanf, vfscanf, and vsscanf controls how each function scans,
converts, and· stores its input fields. There must be enough address arguments I­
for the given format specifiers; if not, the results will be unpredictable and possibly
disastrous. Excess address arguments (more than required by the format)
are ignored.

.. scanf often leads to unexpected results if you diverge from an expected
pattern. You need to remember to teach scanf how to synchronize at the end
of a line. The combination of gets or fgets followed by sscanf is safe and easy,
and therefore preferred.

The format string is a character string that contains three types of objects:
whitespace characters, non-whitespace characters, and format specifiers .

• The whitespace characters are blank, tab (\t) or newline (\n). If a .. . scanf
function encounters a whitespace character in the format strmg, it will
read, but not store, all consecutive whitespace characters up.to the next
non-whitespace character in the input.

Chapter 3, Run-time functions 219

scanf

Optional format
string components

220

• The non-whitespace characters are all other ASCII characters except the
percent sign (%). If a .:.scantfunction encounters a non-whitespace
character in the format string, it will read, but not store, a matching non­
whitespace character.

• The format specifiers direct the ... scant functions to read and convert
characters from the input field into specific types of values, then store
them in the locations given by the address arguments.

Trailing whitespace is left unread (including a newline), unless explicitly
matched in the format string.

Format specifiers

... scant format specifiers have the following form:

% [*] [width] [FIN] [hlllL] type_character

Each format specifier begins with the percent character (%). After the %
come the following, in this order:

• An optional assignment-suppression character, [*]

• An optional width specifier, [width]

• An optional pointer size modifier, [F I N]

• An optional argument-type modifier, [h III L]

• The type character

These are the general aspects of input formatting controlled by the optional
characters and specifiers in the ... scant format string:

Character
or specifier

width

size

argument
type

What it controls or specifies

Suppresses assignment of the next input field.

Maximum number of characters to read; fewer characters might be read if
the ... scanffunction encounters a whitespace or unconvertible character.

Overrides default size of address argument:

N = near pointer
F = far pointer

Overrides default typeof address argument:

h = short int
I = long int (if the type character specifies an integer conversion)
I = double (if the type character specifies a floating-point conversion)
L = long double (valid only with floating-point conversions)

Library Reference

scant

... scanf type The foliowing table lists the .. . scant type characters, the type of input
characters expected by each, and in what format the input will be stored.

Type
character

Numerics

d
D

0

0

u

U

x
X

e,E

g,G

Characters

s

c

%

The information in this table is based on the assumption that no optional
character~s, specifiers, or modifiers (*, width, or size) were included in the
format specifier.

To see how the addition of the optional elements affects the ... scant input,
refer to the tables following this one.

Expected input Type of argument

Decimal integer Pointer to int (int * arg).
Decimal integer Pointer to long (long * arg).

Octal integer Pointer to int (int *arg).
Octal integer Pointer to long (long * arg).

Decimal, octal, or Pointer to int (int * arg).
hexadecimal integer
Decimal, octal, or Pointer to long (long * arg).
hexadecimal integer

Unsigned decimal Pointer to unsigned int (unsigned int *arg).
integer
Unsigned decimal Pointer to unsigned long (unsigned long *arg).
integer

Hexadecimal integer Pointer to int (int *arg).
Hexadecimal integer Pointer to int (int *arg).

Floating point Pointer to float (float * arg).

Floating point Pointer to float (float * arg).

Floating point Pointer to float (float *arg).

Character string Pointer to array of characters (char argm.

Character Pointer to character (char *arg) if a field width Wis given along with the c-
type character (such as %5c).

Pointer to array of W characters (char arg[Wj).

% character No conversion done; % is stored.

Chapter 3, Run-time functions 221

•

scanf

Type
character Expected input Type of argument

Pointers

222

n

p Hexadecimal form
YYYY:ZZZZ or
ZZZZ

Pointer to int (int *arg). The number of characters read successfully up to %n
is stored in this int.

Pointer to an object. (far* or near*)
%p conversions default to the
pointer size native to the memory model.

Input fields Anyone of the following is an input field:

• All characters up to (but not including) the next whit~space character

• All characters up to the first one that cannot be converted under the
current format specifier (such as an 8 or 9 under octal format)

• Up to n characters, where n is the specified field width

Conventions Certain conventions accompany some of these format specifiers. The
decimal-point character used in the output is determined by the current
locale's LC_NUMERIC category. The conventions are summarized here.

%c conversion
This specification reads the next character, including a whitespace charac­
ter. To skip one whitespace character and read the next non-whitespace
character, use %18.

% Wc conversion (W = width specification)
The address argument is a pointer to an array of characters; the array
consists of Welements (char arg[W]).

%s conversion
The address argument is a pointer to an array of characters (char arg[]).

The array size mustbe at least (n+ 1) bytes, where n equals the length of
string s (in characters). A space or newline terminates the input field; the
terminator is not scanned or stored. A null-terminator is automatically
appended to the string and stored as the last element in the array.

%[search_setj conversion
The set of characters surrounded by square brackets can be substituted for
the s-type character. The address argument is a pointer to an array of
characters (char arg[]).

These square brackets surround a set of characters that define a search set of
possible characters making up the string (the input field).

Library Reference

scant

If the first character in the brackets is a caret (/\), the search set is inverted to
include all ASCII characters except those between the square brackets.
(Normally, a caret will be included in the inverted search set unless
explicitly listed somewhere after the first caret.)

The input field is a string not delimited by whitespace scant reads the
corresponding input field up to the first character it reaches that does not
appear in the search set (or in the inverted search set). Two examples of this
type of conversion are

% [abed] Searches for any of the characters a, b, c, and d in the input
field.

% ["abed] Searches for any characters except a, b, c, and d in the input
field.

You can also use a range facility shortcut to define a range of characters
(numerals or letters) in the search set. For example, to catch all decimal
digits, you could define the search set by using % [0 12 3456789], or you could
use the shortcut to define the same search set by using % [0 - 9] .

To catch alphanumeric characters, use the following shortcuts:

% [A-Z] Catches all uppercase letters.
% [O-9A-Za-z] Catches all decimal digits and all letters (uppercase and

lowercase).
% [A-FT-Z] Catches all uppercase letters from A through F and from

Tthrough Z.

The rules covering these search set ranges are straightforward:

• The character prior to the hyphen (-) must be lexically less than the one
after it.

• The hyphen must not be the first nor the last character in the set. (If it is
first or last, it is considered to be the hyphen character, not a range
definer.)

• The characters on either side of the hyphen must be the ends of the range
and not part of some other range.

Here are some examples where the hyphen just means the hyphen
character, not a range between two ends:

Chapter 3, Run-time functions

%[':'+*/]
%[z-a]
%[+O-9-A-Z]
%[+O-9A-Z-]
%["-O-9+A-Z]

The four arithmetic operations.
The characters z, -, and a.
The characters + and - and the ranges 0-9 and A-Z.
Also the characters + ~~d - and the ranges 0-9 and A-Z.
All characters except + and - and those in the ranges 0-9
andA-Z.

223

I

scant

INF = INFinity; NAN =
Not-A-Number

Assignment­
suppression

character

%e, %E. %f, %g, and %G (floating-point) conversions
Floating-point numbers in the input field must conform to the following
generic format:

[+ / - 1 ddddddddd [. 1 dddd [E I e 1 [+ / - 1 ddd

where [item] indicates that item is optional, and ddd represents decimal,
octal, or hexadecimal digits.

In addition, +INF, -INF, +NAN, and -NAN are recognized as floating­
point numbers. Note that the sign and capitalization are required.

%d, %i, %0, %x, %D, %1, %0, %X, %c, %n conversions
A pointer to unsigned character, unsigned integer, or unsigned long can be
used in any conversion where a pointer to a character, integer, or long is
allowed.

The assignment-suppression character is an asterisk (*); it is not to be
confused with the C indirection (pointer) operator (also an asterisk).

If the asterisk follows the percent sign (%) in a format specifier, the next
input field will be scanned but not assigned to the next address argument.
The suppressed input data is assumed to be of the type specified by the
type character that follows the asterisk character.

The. success of literal matches and suppressed assignments is not directly
determinable.

Width specifiers The width specifier (n), a decimal integer, controls the maximum number of
characters that will be read from the current input field.

224

If the input field contains fewer than n characters, ... scant reads all the
characters in the field, then proceeds with the next field and format
specifier.

If a whitespace or nonconvertible character occurs before width characters
are read, the characters up to that character are read, converted, and stored,
then the function attends to the next format specifier.

A nonconvertible character is one that cannot be converted according to the
given format (such as an 8 or 9 when the format is octal, or a J or K when
the format is hexadecimal or decimal).

Width
specifier

n

How width of stored input is affected

Up to n characters are read, converted, and stored in the current address
argument.

Library Reference

Input-size and
argument-type

modifiers

When scanf stops
scanning

scam

The input-size modifiers (N and F) and argument-type modifiers (h, I, and
L) affect how the ... scan! functions interpret the corresponding address
argument arg[!l.

F and N override the default or declared size of argo

h, I, and L indicate which type (version) of the following input data is to be
used (h = short, I = long, L = long double). The input data will be converted

, to the specified version, and the arg for that input data should point to an
object of the corresponding size (short object for %h, long or double object
for %1, and long double object for %L).

Modifier

F

N

h

How conversion is affected

Overrides default or declared size; arg interpreted as far pOinter.

Overrides default or declared size; arg interpreted as near pointer. Cannot be
used with any conversion in huge mode\.

For d, i, 0, u, x types, convert input to short int, store in short object.

For 0, I, 0, V, X types, no effect.

For e, f, c, s, n, p types, no effect.

For d, i, 0, u, x types, convert input to long int, store in long object.

For e, f, 9 types, convert input to double, store in double object.

, For 0, I, 0, V, X types, no effect.

For c, s, n, p types, no effect.

L For e, f, 9 types, convert input to a long double, store in long double object. L
has no effect on other formats.

scan! might stop scanning a particular field before reaching the normal
field-end character (whitespace), or might terminate entirely, for a variety
of reasons.

scan! stops scanning and storing the current field and proceed to the next
input field if any of the following occurs:

• An assignment-suppression character (*) appears after the percent
character in the format specifier; the current input field is scanned but
not stored.

• width characters have been read (width = width specification, a positive
decimal integer in the format specifier).· ,

• The next character read cannot be converted under the current format
(for example, an A when the format is decimal).

Chapter 3, Run-time functions 225

I

scam

Return value

See also

_searchenv

Function

Syntax

Remarks

226

• The next character in the input field does not appear in the search set (or
does appear in an inverted search set).

When seanf stops scanning the current input field for one of these reasons,
the next character is assumed to be unread and to be the first character of
the following input field, or the first character in a subsequent read
operation on the input.

seanf will terminate under the following circumstances:

• The next character in the input field conflicts with a corresponding non­
whitespace character in the format string.

• The next character in the input field is EOP.

• The format string has been exhausted.

If a character sequence that is not part of a format specifier occurs in the
format string, it must match the current sequence of charaCters in the input
field; seanf will scan but not store the matched characters. When a
conflicting character occurs, it remains in the input field as if it were never
read.

seanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If seanf attempts to read at end-of-file, the return value is EOP. If no
fields were stored, the return value is O.

atof, eseanf, fse~nf, freopen, gete, printf, sseanf, vfseanf, vseanf, vsseanf

stdlib.h

Searches an environment path for a file.

void _searchenv(const char *file, canst char *varnarne, char *buf);

II DOS I UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

II • I • • •

_searehenv attempts to locate file, searching along the path specified by the
operating system environment variable varname. Typical environment
variables that contain paths are PATH, LIB, and INCLUDE.

_searehenv searches for the file in the current directory of the current drive
first. If the file is not found there, the environment variable varname is
fetched, and each directory in the path it specifies is searched in tum until
the file is found, or the path is exhausted.

Library Reference

Return value

See also

searchpath

Function

Syntax

Remarks

Return value

See also

_searchstr

Function

Syntax

_searchenv

When the file is located, the full path name is stored in the buffer pointed to
by buf. This string can be used in a call to access the file (for example, with
fopen or exec ...). The buffer is assumed to be large enough to store any
possible file name. If the file cannot be successfully located, an empty string
(consisting of only a null character) will be stored at buf.

None.

_dosJindfirst, _dosJindnext, exec ... , spawn ... , system

dir.h

Searches the operating system path for a file.

char *searchpath(const char *file);

ANSI C++ OS/2

searchpath attempts to locate file, searching along the operating system path,
which is the PATH= ... string in the environment. A pointer to the complete
path-name string is returned as the function value.

searchpath searches for the file in the current directory of the current drive
first. If the file is not found there, the PATH environment variable is
fetched, and each directory in the path is searched in tum until the file is
found, or the path is exhausted.

When the file is located, a string is returned containing the full path name.
This string can be used in a call to access the file (for example, with fopen or
exec ...).

The string returned is located in a static buffer and is overwritten on each
subsequent call to search path.

searchpath returns a pointer to a file name string if the file is successfully
located; otherwise, searchpath returns null.

exec ... , findfirst, findnext, spawn ... , system

stdlib.h

Searches a list of directories for a file.

void _searchstr(const char *file, const char *ipath, char *buf);

Chapter 3, Run-time functions 227

I

_searchstr

Remarks

Return value

See also

segread

Function

Syntax

Remarks

Return value

See also

setbuf

Function

Syntax

_searchstr attempt to locate file, searching along the path specified by the
string ipath.

_searchstr searches for the file in the current directory of the current drive
first. If the file is not found there, each directory in ipath is searched in tum
until the file is found, or the path is exhausted. The directories in ipath must
be separated by semicolons.

When the file is located, the full path name is stored in the buffer pointed
by by but. This string can be used in a call to access the file (for example,
with topen or exec .. .). The buffer is assumed to be large enough to store any
possible file name. The constant _MAX_PATH, defined in stdlib.h, is the
size of the largest file name. If the file cannot be successfully located, an
empty string (consisting of only a null character) will be stored at but.

None.

_searchenv

dos.h

Reads segment registers.

void segread(struct SREGS *segp} i

segread places the current values of the segment registers into the structure
pointed to by segp.

This call is intended for use with intdosx and int86x.

None.

FP _OFF, int86, int86x, intdos, intdosx, MK_FP, movedata

Assigns buffering to a stream.

void setbuf(FILE *stream, char *buf}i

stdio.h

Library Reference

Remarks

Return value

See also

setcbrk

Function

Syntax

Remarks

Return value

See also

DOS UNIX Win 16 I Win 32 I ANSI C I ANSI C++ I OS/2

• • • 1 • I • I • I •

setbuf causes the buffer buf to be used for I/O buffering instead of an
automatically allocated buffer. It is used after stream has been opened.

setbuf

If buf is null, I/O will be unbuffered; otherwise, it will be fully buffered.
The buffer must be BUFSIZ bytes long (specified in stdio.h).

stdin and stdout are unbuffered if they are not redirected; otherwise, they
are fully buffered. setbuf can be used to change the buffering style used.

Unbuffered means that characters written to a stream are immediately
output to the file or device, while buffered means that the characters are
accumulated and written as a block.

setbuf produces unpredictable results unless it is called immediately after
opening stream or after a call to fseek. Calling setbuf after stream has been
unbuffered is legal and will not cause problems.

A common cause for error is to allocate the buffer as an automatic (local)
variable and then fail to close the file before returning from the function
where the buffer was declared.

None.

fflush, fopen, fseek, setvbuf

dos.h

Sets control-break setting.

int setcbrk(int cbrkvalue);

" DOS I UNIX I Win 16 I Win 32 I ANSI C I ANSI C++ OS/2

II • I J I I 1
setcbrk uses the DOS system call Ox33 to turn control-break checking on or
off.

cbrkvalue = 0 Turns checking off (check only during I/O to console,
printer, or communications devices).

cbrkvalue = 1 Turns checking on (check at every system call).

setcbrk returns cbrkvalue, the value passed.

getcbrk

Chapter 3, Run-time functions 229

I

_setcursortype

_setcursortype conio.h

Function Selects cursor appearance.

Syntax void _setcursortype (int cur_t) i

Remarks Sets the cursor type to

_NOCURSOR
_NORMALCURSOR
_SOLIDCURSOR

Turns off the cursor
Normal underscore cursor
Solid block cursor

.. This function should not be used in Win32s or Win32 CUI applications.

Return value None.

setdate

setdisk

setdta

Function

. Syntax

Remarks

Return value

See also

230

See _dos -$etdate.

See getdisk.

dos.h

Sets disk-transfer address .

void setdta(char far *dta)i

setdta changes the current setting of the DOS disk-transfer address (DT A) to
the value given by dta.

None.

getdta

Library Reference

setftime

setjmp

Function

Syntax

Remarks

Return value

See also

setftime

See getftime.

setjmp.h

Sets up for nonlocal goto.

int setjmp(jmp_buf jmpb);

II DOS I UNIX I Win 16 I Win 32 ANSI C I ANSI C++ I OS/2 II

II • I • I I I I I • II

setjmp captures the complete task state in jmpb and returns O.

A later call to longjmp with jmpb restores the captured task state and returns
in such a way that setjmp appears to have returned with the value val.

A task state includes:

Win 16

All segment registers
CS,OS,ES,SS

Register variables
Oland SI

Stack pointer SP

Frame painter SP

Flags

Win 32

No segment registers
are saved

Register variables
ESX, EOI, ESI

Stack pointer ESP

Frame pointer ESP

Flags are not saved

A task state is complete enough that setjmp can be used to implement
coroutines.

setjmp must be called before longjmp. The routine that calls setjmp and sets
up jmpb must still be active and cannot have returned before the longjmp is
called. If it has returned, the results are unpredictable.

setjmp is useful for dealing with errors and exceptions encountered in a
low-level subroutine of a p~ogram.

setjmp returns 0 when it is initially called. If the return is from a call to
longjmp, setjmp retu~ns a nonzero value (as in the example).

longjmp, signal

Chapter 3, Run-time functions' 231

I

setlocale

setlocale

Function

Syntax

Remarks

Future releases of
Borland C++ will

increase the number
of locales supported.

232

Selects or queries a locale.

char *setlocale(int category, const char *locale)i

Borland C++ supports the following locales at present:

Module

de_DE
fCFR
en_GB
en_US

Locale supported

German
French
English (Great Britain)
English (United States)

For each locale, the following character sets are supported:

005437
005850
WIN1252

English
Multilingual (Latin I)
Windows, Multilingual

locale.h

For a description of DOS character sets, see MS-DOS User's Guide and
Reference. See also MS Windows 3.1 Programmer's Reference, Volume 4 for a
discussion of the WIN1252 character set.

The possible values for the category argument are as follows:

Value

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MONETARY

LC_NUMERIC

Description

Affects all the following categories.

Affects strcoll and strxfrm.

Affects single-byte character handling functions. The mbstowcs and mbtowc
functions are not affected.

Affects monetary formatting by the localeconvfunction.

Affects the decimal point of non-monetary data formatting. This includes the
printffamily of functions, and the information returned by localeconv.

Affects strftime.

The locale argument is a pointer to the name of the locale or named locale
category. Passing a NULL pointer returns the current locale in effect.
Passing a pointer that points to a null string requests setlocale to look for

Library Reference

The LOCALE.BLL file
is installed in BC4\

BIN directory.

See the
Programmers Guide,

Chapter 5, for
information about
defining options.

setlocale

environment variables to determine which locale to set. The locale names
are case sensitive.

If you specify a locale other than the default C locale, setlocale tries to access
the locale library file named LOCALE.BLL to obtain the locale data. This
file is located using the following strategies:

1. Searching the directory where the application's executable resides.

2. Searching in the current default directory.

3. Accessing the "PATH" environment variable and searching in each of
the specified directories.

If the locale library is not found, setlocale terminates.

When setlocale is unable to honor a locale request, the preexisting locale in
effect is unchanged and a null pointer is returned.

If the locale argument is a NULL pointer, the locale string for the category is
returned. If category is LC_ALL, a complete locale string is returned. The
structure of the complete locale string consists of the names of all the
categories in the current locale concatenated and separated by semicolons.
This string can be used as the locale parameter when calling setlocale with
LC_ALL. This will reinstate all the locale categories that are named in the
complete locale string, and allows saving and restoring of locale states. If
the complete locale string is used with a single category, for example,
LC_TIME, only that category will be restored from the locale string.

ANSI C states that if an empty string "" is used as the locale parameter an
implementation defined locale is used. setlocale has been implemented to
look for corresponding environment variables in this instance as POSIX
suggests.

If the environment variable LC_ALL exists, the category will be set
according to this variable. If the variable does not exist, the environment •
variable that has the same name as the requested category is looked for and
the category is set accordingly.

If none of the above are satisfied, the environment variable named LANG is
used. Otherwise, setlocale fails and returns a NULL pointer.

To take advantage of dynamically loadable locales in your application,
define __ USELOCALES __ for each module. If __ USELOCALES __ is not
defined, all locale-sensitive functions and macros will work only with the
default C locale.

If a NULL pointer is used as the argument for the locale parameter, setlocale
returns a string that specifies the current locale in effect. If the category
parameter specifies a single category, such as LC_COLLATE, the string

Chapter 3, Run-time functions 233

setlocale

The default collation
is named dbase.

Therefore, whether
you specify dbase or

nothing at all, you get
the same collation.

234

However, dbase
might not be the
default in future

releases.

pointed to will be the name of that category. If LC_ALL is used as the
category parameter then the string pointed to will be a full locale string that

, will indicate the name of each category in effect.

localenameptr = set locale (LC_COLLATE, NULL);

if (localenameptr)
printf ("%s\n", localenameptr);

The output here will be one of the module names together with the
specified code page. For example, the output could be fr_FR.DOS850@dbase.

localenameptr = setlocale(LC_ALL, NULL);

if (localenameptr)
printf("%s\n", localenameptr);

An example of the output here could be the following:
fr_FR.DOS850@dbase;fr_FR.DOS850;fr_FR.DOS850;fr_FR.DOS850;
fr_FR.DOS850;fr_FR.DOS850;;

Each category in this full string is delimited by a semicolon. This string can
be copied and saved by an application and then used again to restore the '
same locale categories at another time. Each delimited name corresponds to
the locale category constants defined in locale.h. Therefore, the first name is
the name of the LC_ COLLA TE category, the second is the LC_ CTYPE
category, and so on. Any other categories named in the locale.h header file
are reserved for future implementation.

Here are some examples of setting locales by using setlocale:

Set all default categories for the specified French locale:
setlocale(LC_ALL, "fr_FR.DOS850");

Set French locale to named collation dbase:
setlocale(LC_COLLATE, "fr_FR.DOS850@dbase"

When a category is loaded from the locale library, the default category is
the one that will be loaded unless a modifier name is used. For example:

setlocale(LC_COLLATE, "fr_FR.DOS850")

causes the default LC_COLLATE category to be loaded. It might or might
not have a specific name.

setlocale(LC_COLLATE, "fr_FR.DOS850@dbase"

Library Reference

Return value

See also

setmem

Function

Syntax

Remarks

Return value

See also

setmode

Function

Syntax

Remarks

setlocale

specifies that the LC_COLLATE category named dbase to be loaded. This
might or might not be the default.

setl9cale updates the lconv locale structure when a request has been fulfilled.

When an application exits, any allocated memory used for the locale object
is deallocated.

If selection is successful, setlocale returns a pointer to a string that is associ­
ated with the selected category (or possibly all categories) for the new
locale.

On failure, a NULL pointer is returned and the locale is unchanged. All
other possible returns are discussed in the Remarks section above.

localeconv

mem.h

Assigns a value to a range of memory.

void setmem(void *dest, unsigned length, char value)i

setmem sets a block of length bytes, pointed to by dest, to the byte value.

None.

memset, strset

Sets mode of an open file.

fcntl,h.

int setmode(int handle, int amode)i

setmode sets the mode of the open file associated with handle to either binary
or text. The argument amode must have a value of either a_BINARY or
a_TEXT, never both. (These symbolic constants are defined in fcntl.h.)

Chapter 3, Run-time functions 235

setmode

Return value

See also

settime

setvbuf

Function

Syntax

Remarks

236

setmode returns the previous translation mode if successful. On error it
returns -1 and sets the global variable errno to

EINV AL Invalid argument

_rtCcreat, creat, _rtCopen, open

See gettime on page 133.

stdio.h

Assigns buffering to a stream.

int setvbuf(FILE *stream, char *buf, int type, size_t size);

setvbuf causes the buffer buf to be used for I/O buffering instead of an
automatically allocated buffer. It is used after the given stream is opened.

If buf is null, a buffer will be allocated using malloc; the buffer will use size
as the amount allocated. The buffer will be automatically freed on close.
The size parameter specifies the buffer size and must be greater than zero.

... The parameter size is limited by the constant DINT_MAX as defined in
limits.h.

stdin and stdout are unbuffered if they are not redirected; otherwise, they
are fully buffered. Unbuffered means that characters written to a stream are
immediately output to the file or device, while buffered means that the
characters are accumulated and written as a block.

The type parameter is one of the following:

• _IOFBF The file is fully buffered. When a buffer is empty, the next
input operation will attempt to fill the entire buffer. On
output, the buffer will be completely filled before any data is
written to the file .

• _IOLBF The file is line buffered. When a buffer is empty, the next input
operation will still attempt to fill the entire buffer. On output,

Library Reference

Return value

See also

setvect

setverify

Function

Syntax

Remarks

Return value

See also

signal

Function

__ IONBF

setvbuf

however, the buffer will be flushed whenever a newline
character is written to the file.

The file is unbuffered. The buf and size parameters are
ignored. Each input operation will read directly from the
file, and each output operation will immediately write the
data to the file.

A common cause for error is to allocate the buffer as an automatic (local)
variable and then fail to close the file before returning from the function
where the buffer was declared.

setvbuf returns 0 on success. It returns nonzero if an invalid value is given
for type or size, or if there is not enough space to allocate a buffer.

fflush, fopen, setbuf

See getvect.

dos.h

Sets the state of the verify flag in the operating system.

void setverify(int value);

Win 32 ANSI C

setverify sets the current state of the verify flag to value, which can be either
o (off) or 1 (on). '

The verify flag controls output to the disk. When verify is off, writes are not
verified; when verify is on, all disk writes are verified to ensure proper
writing of the data.

None.

getverify

signal.h

Specifies signal-handling actions.

Chapter 3, Run-time functions 237

I

signal

Syntax

Remarks

238

void (_USERENTRY *signal(int sig, void (_USERENTRY *func)
(int sig[, int subcode]))) (int);

DOS

signal determines how receipt of signal number sig will subsequently be
treated. You can install a user-specified handler routine (specified by the
argument func) or use one of the two predefined handlers, SIG_DFL and
SIG_IGN, in signal.h. The function func must be used with the
_ USERENTRY ~alling convention.

Function pointer

SIG_DFL
SIG_ERR
SIG-,GN

Description

Terminates the program
Indicates an error return from signal
Ignore this type signal

The signal types and their defaults are as follows:

Signal type

SIGBREAK

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

SIGUSR1,
SIGUSR2,
SIGUSR3

Description

Keyboard must be in raw mode.

Abnormal termination. Default action is equivalent to calling
_exi~3).

Arithmetic error caused by division by 0, invalid operation, and
the like. Default action is equivalent to calling _exi~1).

Illegal operation. Default action is equivalent to calling _exi~1).

Ctrl-C interrupt. Default action is to do an INT 23h.

II/egal storage access. Default action is equivalent to calling
_exi~1).

Request for program termination. Default action is equivalent to
calling _exi~1). -

User-defined signals that can be generated only
by calling raise. Default action is to ignore
the signal.

signal.h defines a type called sig_atomic_t, the largest integer type the
processor can load or store atomically in the presence of asynchronous
interrupts (for the 8086 family, this is a .16-bit word; for 80386 and higher
number processors, it is a 32-bit word-a Borland C++ integer).

When a signal is generated by the raise function or by an external event, the
following two things happen:

Library Reference

signal

• If a user-specified handler has been installed for the signal, the action for
that signal type is set to SIC_DFL.

• The user-specified function is called with the signal type as the
parameter.

User-specified handler functions can terminate by a return or by a call to
abort, _exit, exit, or longjmp. If your handler function is expected to continue
to receive and handle more signals, you must have the handler function call
signal again.

Borland C++ implements an extension to ANSI C when the signal type is
SIGFPE, SIGSEGV, or SIGILL. The user-specified handler function is called
with one or two extra parameters. If SIGFPE, SIGSEGV, or SIGILL has been
raised as the result of an explicit call to the raise function, the user-specified
handler is called with one extra parameter, an integer specifying that the
handler is being explicitly invoked. The explicit activation values for
SIGFPE, SIGSEGV and SIGILL are as follows (see declarations in float.h):

Signal

SIGFPE
SIGSEGV
SIGILL

Meaning

FPE_EXPLICITGEN
SEGV _EXPLICITGEN
ILL_EXPLICITGEN

If SIGFPE is raised because of a floating-point exception, the user handler is
called with one extra parameter that specifies the FPE_xxx type of the
signal. If SIGSEGV, SIGILL, or the integer-related variants of SIGFPE
signals (FPE_INTOVFLOW or FPE_INTDIVO) are raised as the result of a
processor exception, the user handler is called with two extra parameters:

1. The SIGFPE, SIGSEGV, or SIGILL exception type (see float.h for all
these types). This first parameter is the usual ANSI signal type .

2. An integer pointer into the stack of the interrupt handler that called the
user-specified handler. This pointer points to a list of the processor
registers saved when the exception occurred. The registers are in the
same order as the parameters to an interrupt function; that is, BP, DI, SI,
DS, ES, DX, CX, BX, AX, IP, CS, FLAGS. To have a register value
changed when the handler returns, change one of the locations in this
list. For example, to have a new SI value on return, do something like
this:

Chapter 3, Run-time functions

((int)list-pointer + 2) = neW_51_value;

In this way, the handler can examine and make any adjustments to the
registers that you want.

239

•

signal

240

The following SIGFPE-type signals can occur (or be generated). They
correspond to the exceptions that the 8087 family is capable of detecting, as
well as the "INTEGER DIVIDE BY ZERO" and the "INTERRUPT ON
OVERFLOW" on the main CPU. (The declarations for these are in float.h.)

SIGFPE signal

FPE-,NTOVFLOW
FPE-,NTDIVO
FPE-,NVALID
FPE_ZERODIVI DE
FPE_OVERFLOW
FPE_UNDERFLOW
FPE-,NEXACT
FPE_EXPLICITGEN
FPE_STACKFAUL T

Meaning

INTO executed with OF flag set
Integer divide by zero
Invalid operation
Division by zero
Numeric overflow
Numeric underflow
Precision
User program executed raise(SIGFPE)
Floating-point stack overflow or underflow

.. The FPE_INTOVFLOW and FPE_INTDIVO signals are generated by integer
operations, and the others are generated by floating-point operations.
Whether the floating-point exceptions are generated depends on the
coprocessor control word, which can be modified with _controIS7.
Denormal exceptions are handled by Borland C++ and not passed to a
signal handler.

The following SIGSEGV -type signals can occur:

SEGV_BOUND
SEGV _EXPLICITGEN

Bound constraint exception
raise(SIGSEGV) was executed

The 8088 and 8086 processors don't have a bound instruction. The 186, 286,
386, and NEC V series processors do have this instruction. So, on the 8088
and 8086 processors, the SEGV _BOUND type of SIGSEGV signal won't
occur. Borland C++ doesn't generate bound instructions, but they can be
used in inline code and separately compiled assembler routines that are
linked in.

The following SIGILL-type signals can occur:

ILL_EXECUTION
ILL_EXPLICITGEN

Illegal operation attempted
raise(SIGILL) was executed

The 8088, 8086, NEC V20, and NEC V30 processors don't have an illegal
operation exception. The 186,286, 386, NEC V40, and NEC VSO processors
do have this exception type. So, on 8088, 8086, NEC V20, and NEC V30
processors, the ILL_EXECUTION type of SIGILL won't occur.

When the signal type is SIGFPE, SIGSEGV, or SIGILL, a return from a
signal handler is generally not advisable if the state of the 8087 is corrupt,
the results of an integer division are wrong, an operation that shouldn't

Library Reference

Return value

See also

sin, sinl

Function

Syntax

Remarks

Return value

See also

sinh, sinhl

Function

sin

sinl

signal

have overflowed did, a bound instruction failed, or an illegal operation was
attempted. The only time a return is reasonable is when the handler alters
the registers so that a reasonable return context exists or the signal type in­
dicates that the signal was generated explicitly (for example,
FPE_EXPLICITGEN, SEGV _EXPLICITGEN, or ILL_EXPLICITGEN).
Generally in this case you would print an error message and terminate the
program using _exit, exit, or abort. If a return is executed under any other
conditions, the program's action will probably be unpredictable upon
resuming.

If the call succeeds, signal returns a pointer to the previous handler routine·
for the specified signal type. If the call fails, signal returns SIG_ERR, and the
external variable errno is set to EINV AL.

abort, _control87, ctrlbrk, exit, longjmp, raise, setjmp

math.h

Calculates sine.

double sin(double Xli

long double sinl(long double Xli

DOS UNIX Wi n 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • •
• • • •

sin computes the sine of the input value. ~ngles are specified in radians.

sinl is the long double version; it takes a long double argument and returns
a long double result. Error handling for these functions can be modified
through the functions _matherr and _matherrl.

This function can be used with bcd and complex types.

sin and sinl return the sine of the input value.

acos, asin, atan, atan2, bcd, complex, cos, tan

Calculates hyperbolic sine.

math.h

Chapter 3, Run-time functions 241

sinh, sinhl

Syntax

Remarks

Return value

See also

sleep

Function

Syntax

Remarks

Return value

sopen

Function

Syntax

242

sinh

sinhl

double sinh(double x);
long double sinhl(long double x);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • •
• • • •

sinh computes the hyperbolic sine, (eX - e-X)/2.

sinl is the long double version; it takes a long double argument and returns
a long double result. Error handling for sinh and sinhl can be modified
through the functions _matherr and _matherrl.

This function can be used with bcd and complex types.

sinh and sinhl return the hyperbolic sine of x.

When the correct value overflows, these functions return the value
HUGE_VAL (sinh) or _LHUGE_ VAL (sinhl) of appropriate sign. Also, the
global variable errno is set to ERANGE.

acos, asin, atan, atan2, bcd, complex, cos, cosh, sin, tan, tanh

dos.h

Suspends execution for an interval (seconds).

void sleep(unsigned seconds);

With a c;all to sleep, the current program is suspended from execution for
the number of seconds specified by the argument seconds. The interval is
accurate only to the nearest hundredth of a second or to the accuracy of the
operating system clock, whichever is less accurate.

None.

fcntl.h, sys\stat.h, share.h, io.h

Opens a shared file.

int sopen(char *path, int access, int shflag[, int mode]);

Library Reference

Remarks sopen opens the file given by path and prepares it for shared reading or
writing, as determined by access, shflag, and.mode.

sopen

For sopen, access is constructed by ORing flags bitwise from the following
two lists. Only one flag from the first list can be used; the remaining flags
can be used in any logical combination.

List 1: Read/write flags ° _RDONL Y Open for reading only.
O_WRONLY Open for writing only. ° _RDWR Open for reading and writing.

List 2: Other access flags
O_NDELAY Not used; for UNIX compatibility. ° _APPEND If set, the file pointer is set to the end of the file prior

to each write.
0_ CREAT If the file exists, this flag has no effect. If the file does

not exist, the file is created, and the bits of mode are
used to set the file attribute bits as in chmod.

O_TRUNC If the file exists, its length is truncated to O. The file
attributes remain unchanged.

O_EXCL Used only with O_CREAT. If the file already exists,
an error is returned. ' ° _BINARY This flag can be given to explicitly open the file in
binary mode.

O_TEXT This flagcan be given to explicitly open the file in
text mode. ° _NOINHERIT The file is not passed to child programs .

These 0_ ... symbolic constants are defined in fcntl.h.

If neither O_BINARY nor O_TEXT is given, the file is opened in the transla­
tion mode set by the global variable Jmode.

If the O_CREAT flag is used in constructing access, you need to supply the
mode argument to sopen from the following symbolic constants defined in
sys \stat.h.

Value of mode

SJWRITE
SJREAD
SJREADISJWRITE

Access permission

Permission to write
Permission to read
Permission to read/write

Chapter 3, Run-time functions 243

•

sopen

Return value

See also

shflag specifies the type of file-sharing allowed on the file path. Symbolic
constants for shflag are defined in share.h.

Value of shflag

SH_COMPAT
SH_DENYRW
SH_DENYWR
SH_DENYRD
SH_DENYNONE
SH_DENYNO

What it does

Sets compatibility mode.
Denies read/write access.
Denies write access.
Denies read access.
Permits read/write access.
Permits read/write access.

On successful completion, sopen returns a nonnegative integer (the file
handle), and the file pointer (that marks the current position in the file) is
set to the beginning of the file. On error, it returns -1, and the global
variable errno is set to

EACCES
EINVACC
EMFILE
ENOENT

Permission denied
Invalid access code
Too many open files
Path or file function not found

chmod, close, creat, lock, lseek, _rtf_open, open, unlock, umask

spawnl, spawnle, spawnlp, spawnlpe, spawnv, spawnve, spawnvp,
spawnvpe process.h, stdio.h

Function

Syntax

The last string must
be NULL in functions
spawnle, spawnlpe,
spawnv, spawnve,

spawnvp, and
spawnvpe.

Remarks

244

Creates and runs child processes.

int spawnl(int mode, char *path, char *argO, argl, ... , argn, NULL);
int spawnle(int mode, char *path, char *argO, argl, ... , argn, NULL, char *envp[]);
int spawnlp(int mode, char *path, char *argO, argl, ... , argn, NULL);
int spawnlpe(int mode, char *path, char *argO, argl, ... , argn, NULL,

char *envp[]);
int spawnv(int mode, char *path, char *argv[]);
int spawnve(int mode, char *path, char *argv[], char *envp[]);
int spawnvp(int mode, char *path, char *argv[]);
int spawnvpe(int mode, char *path, char *argv[], char *envp[]);

The functions in the spawn ... family create child processes that run
(execute) their own files. There must be sufficient memory available for
loading and executing a child process.

Library Reference

spawnl, spawnle, spawnlp, spawnlpe, spawnv, spawnve, spawnvp, spawnvpe

The value of mode determines what action the calling function (the parent
process) takes after the spawn ... call. The possible values of mode are

P_NOWAITO

Puts parent process" on hold" until child process
completes execution.

Continues to run parent process while child process
runs. The child process ID is returned, so that the
parent can wait for completion using cwait or wait.

Identical to P _NOWAIT except that the child process
ID isn't saved by the operating system, so the parent
process can't wait for it using cwait or wait.

Identical to P _NOWAITO, except that the child
process is executed in the background with no access
to the keyboard or the display.

P _OVERLAY Overlays child process in memory location formerly
occupied by parent. Same as an exec ... call.

path is the file name of the called child process. The spawn ... function calls
search for path using the standard operating system search algorithm:

• If no explicit extension is given, the functions search for the file as given.
If the file is not found, they add .EXE and search again. If not found, they
add .COM and search again. If still not found, they add .BA T and search
once more. The command processor COMSPEC is used' to run the
executable file.

• If an extension is given, they search only for the exact file name.

• If only a period is given, they search only for the file name with no
extension.

• If path does not contain an explicit directory, spawn ... functions that have
the p suffix search the current directory, then the directories set with the
operating system PATH environment variable.

The suffixes p, I, and v, and e added to the spawn ... "family name" specify
that the named function operates with certain capabilities.

Chapter 3, Run-time functions

p The function searches for the file in those directories specified by the
PATH environment variable. Without the p suffix, the function
searches only the current working directory.

The argument pointers argO, argl, ... , argn are passed as separate
arguments. Typically, the I suffix is used when you know in advance
the number of arguments to be passed.

245

•

spawnl, spawnle, spawnlp, spawnlpe, spawnv, spawnve, spawnvp, spawnvpe

246

v The argument pointers argv[O], ... , arg[n] are passed as an array of
pointers. Typically, the v suffix is used when a variable number of
arguments is to be passed.

e The argument envp can be passed to the child process, letting you
alter the environment for the child process. Without the e suffix,
child processes inherit the environment of the parent process.

Each function in the spawn ... family must have one of the two argument­
specifying suffixes (either I or v). The pathsearch and environment
inheritance suffixes (p and e) are optional.

For example,

• spawnl takes separate arguments, searches only the current directory for
the child, and passes on the parent's environment to the child .

• spawnvpe takes an array of argument pointers, incorporates PATH in its
search for the child process, and accepts the envp argument for altering
the child's environment.

The spawn ... functions must pass at least one argument to the child process
(argO or argv[O]). This argument is, by convention, a copy of path. (Using a
different value for this oth argument won't produce an error.) If you want to
pass an empty argument list to the child process, then argO or argv[O] must
be NULL.

Under DOS 3.x, path is available for the child process; under earlier
versions, the child process cannot use the passed value of the oth argument
(argO or argv[O]).

When the I suffix is used, argO usually points to path, and argl, , argn
point to character strings that form the new list of arguments. A mandatory
null following argn marks the end of the list.

When the e suffix is used, you pass a list of new environment settings
through the argument envp. This environment argument is an array of
character pointers. Each element points to a nuil-terminated character
string of the form

envvar = value

where envvar is the name of an environment variable, and value is the string
value to which envvar is set. The last element in envp[] is null. When envp is
null, the child inherits the parents' environment settings.

The combined length of argO + argl + .,. + argn (or of argv[O] + argv[1] + ...
+ argv[n]), including space characters that separate the arguments, must be
< 260 bytes. Null-terminators are not counted.

Library Reference

Return value

See also

_splitpath

Function

Syntax

Remarks

spawnl, spawnle, spawnlp, spawnlpe, spawnv, spawnve, spawnvp, spawnvpe

When a spawn ... function call is made, any open files remain open in the
child process.

On a successful execution, the spawn ... functions where mode is P _WAIT
return the child process' exit status (0 for a normal termination). If the child
specifically calls exit with a nonzero argument, its exit status can be set to a
nonzero value. If mode is P _NOW AIT or P _NOW AlTO, the spawn
functions return the process ID of the child process. This ID can be passed
to cwait.

On error, the spawn ... functions return -I, and the global variable errno is
set to one of the following:

E2BIG
EINVAL
ENOENT
ENOEXEC
ENOMEM

Arg list too long
Invalid argument
Path or file name not found
Exec format error
Not enough memory

abort, atexit, cwait, _exit, exit, exec ... , Jpreset, searchpath, system, wait

Splits a full path name into its components.

stdlib.h

void _splitpath(const char *path, char *drive, char *dir, char *narne, char text) i

_splitpath takes a file's full path name (path) as a string in the form

X:\DIR\SUBDIR\NAME.EXT

and splits path into its four components. It then stores those components in
the strings pointed to by drive, dir, name, and ext. (All five components must
be passed, but any of them can be a null, which means the corresponding
component will be parsed but not stored.) The maximum sizes for these
strings are given by the constants _MAX_DRIVE _MAX_DIR _MAX_PATH
_MAX_FNAME and _MAX_EXT) (defined in stdlib.h), and each size
includes space for the null-terminator. These constants are defined in
stdlib.h.

Chapter 3, Run-time functions 247

I

_splitpath

Return value

See also

sprintf

Function

Syntax

Remarks

See printffor details
on format specifiers.

Return value

248

Constant

_MAX_PATH
_MAX_DRIVE
_MAX_DIR
_MAX]NAME
_MAX_EXT

String

path
drive; includes colon (:)
dir, includes leading and trailing backslashes N
name
ext, includes leading dot (.)

_splitpath assumes that there is enough space to store each non-null
component.

When _splitpath splits path, it treats the punctuation as follows:

• drive includes the colon (C:, A:, and so on).

• dir includes the leading and trailing backslashes
(\BC\include\, \source\, and so on).

• name includes the file name.
• ext includes the dot preceding the extension (.C, .EXE, and so on).

_makepath and _splitpath are invertible; if you split a given path with
_splitpath, then merge the resultant components with _makepath, you end up
with path.

None.

Jullpath, _makepath

std.io.h

Writes formatted output to a string.

int sprintf(char *buffer, canst char *farmat[, argument, ... J);

sprint! accepts a series of arguments, applies to each a format specifier
contained in the format string pointed to by!ormat, and outputs the
formatted data to a string.

sprint! applies the first format specifier to the first argument, the second to
the second, and so on. There must be the same number of format specifiers
as arguments.

sprint! returns the number of bytes output. sprint! does not include the
terminating null byte in the count. In the event of error, sprint! returns EOF.

Library Reference

See also

sqrt, sqrtl

Function

Syntax

Remarks

Return value

See also

srand

Function

Syntax

Remarks

Return value

See also

sqrt

sqrtl

sprintf

fprintf, printf

math.h

Calculates the positive square root.

double sqrt(double x);
long double sqrtl(long double x);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • •
• • • •

sqrt calculates the positive square root of the argument x.

sqrtl is the long double version; it takes a long double argument and returns
a long double result. Error handling for these functions can be modified
through the functions _matherr and _matherrl.

This function can be used with bcd and complex types.

On success, sqrt and sqrtl return the value calculated, the square root of x. If
x is real and positive, the result is positive. If x is real and negative, the
global variable errno is set to

EDaM Domain error

bcd, complex, exp, log, pow

Initializes random number generator.

void srand(unsigned seed);

stdlib.h

The random number generator is reinitialized by calling srand with an
argument value of 1. It can be set to a new starting point by calling srand
with a given seed number.

None.

rand, random, randomize

Chapter 3, Run-time functions 249

I

sscanf

sscanf

Function

Syntax

Remarks

See scanf for details on
format specifiers.

Return value

See also

stackavail

Fu'nction

Syntax

Remarks

Return value

See also

250

stdio.h

Scans and formats input from a string.

int sscanf(canst char *buffer, canst char *farrnat[, address, ... J};

sscanf scans a series of input fields, one character at a time, reading from a
string. Then each field is formatted according to a format specifier passed
to sscanf in the format string pointed to by format. Finally, sscanf stores the
formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there
are input fields.

sscanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely, for a
number of reasons. See scanf for a discussion of possible causes.

sscanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If no fields were stored, the return value is O.

If sscanf attempts to read at end-of-string, the return value is EOF.

fscanf, scanf

Gets the amount of available stack memory.

size_t stackavail(vaid};

DOS UNIX

malloc.h

stackavail returns the number of bytes available on the stack. This is the
amount of dynamic memory that alloca can access.

stackavail returns a size_t value indicating the number of bytes available.

alloca

Library Reference

stat

_status87

Function

Syntax

Remarks

Return value

stime

. Function

Syntax

Remarks

Return value

See also

stpcpy

Function

stat

See fstat.

float.h

Gets floating-point status.

unsigned int _status87(void);

I DOS UNIX Win 16 I Win 32 ANSI C ANSI C++ OS/2 II
I • • l • • JI

_status87 gets the floating-point status word, which is a combination of the
80x87 status word and other conditions detected by the 80x87 exception
handler.

The bits in the return value give the floating-point status. See float.h for a
complete definition of the bits returned by _status87.

time~h

Sets system date and time.

intstime (time_t *tp) i

stime sets the system time and date. tp points to the value of the time as
measured in seconds from 00:00:00 GMT, January 1,1970.

stime returns a value of o.
asctime, ftime, gettime, gmtime, localtime, time, tzset

string.h

Copies one string into another.

Chapter 3, Run-time functions 251

•

stpcpy

Syntax char *stpcpy(char *dest, const char *src)i

ANSI C++ OS/2

Remarks stpepy copies the string sre to dest, stopping after the terminating null
character of sre has been reached.

Return value stpcpy returns dest + strlen(src).

See also strepy

strcat, _fstrcat string.h

Function Appends one string to another.

Syntax char *strcat(char *dest, const char *src)i
char far * far _fstrcat(char far *dest, const char far *src)

Remarks streat appends a copy of sre to the end of dest. The length of the resulting .
string is strlen(dest) + strlen(sre).

Return value streat returns a pointer to the concatenated strings.

See also Jstr*

strchr, _fstrchr string.h

Function Scans a string for the first occurrence of a given character.

Syntax

252

char *strchr(const char *s, int C)i

char far * far _fstrchr(const char far *s, int c)

const char *strchr(const char *s, int c) i

char *strchr(char *s, int C)i

1* Conly *1

1* C and c++ *1

I I c++ only
II c++ only

Library Reference

Remarks

Return value

See also

strchr, jstrchr

II DOS UNIX Win 16 Win 32 ANSI C I ANSI C++ I OS/2 II
II • • • • • I • I • II

strchr scans a string in the forward direction, looking for a specific
character. strchr finds the first occurrence of the character c in the string s.
The null-terminator is considered to be part of the string, so that, for
example,

strchr(strs,O)

returns a pointer to the terminating null character of the string strs.

strchr returns a pointer to the first occurrence of the character c in s; if c does
not occur in s, strchr returns null.

Jstr*, strcspn, strrchr

strcmp, _fstrcmp string.h

Function'

Syntax

Remarks

Return value

See also

strcmpi

Function

Compares one string to another.

int strcmp(canst char *s1, canst char *s2);
int far _fstrcmp(const char far *s1, canst char far *s2);

strcmp performs an unsigned comparison of sl to s2, starting with the first
character in each string and continuing with subsequent characters until
the corresponding characters differ or until the end of the strings is
reached.

strcmp returns a value that is

• < 0 if sl is less than s2

• == 0 if sl is the same as s2

• > 0 if sl is greater than s2

_fstr*, strcmpi, strcoll, stricmp, strncmp, strncmpi, strnicmp

string.h

Compares one string to another, without case sensitivity.

Chapter 3, Run-time functions 253

I

strcmpi '.

Syntax

Remarks

Return value

See also

strcoll

Function

Syntax

Remarks

Return value

See also

254

int strcrnpi(const char *s1, const char *82);

5trcmpi performs an unsigned comparison of 51 to 52, without case
sensitivity (same as 5tricmp-implemented as a macro).

It returns a value « 0, 0, or > 0) based on the result of comparing 51 (or part
of it) to 52 (or part of it).

The routine 5trcmpi is the same as 5tricmp. 5trcmpi is implemented through a
macro in string.h and translates calls from 5trcmpi to 5tricmp. Therefore, to
use 5trcmpi, you must include the header file string.h for the macro to be
available. This macro is provided for compatibility with other C compilers.

5trcmpi returns an int value that is

• < 0 if 51 is less than 52

• == 0 if 51 is the same as 52

• > 0 if 51 is greater than 52

5trcmp, 5trcoll, 5tricmp, 5trncmp, 5trncmpi, 5trnicmp

string.h

Compares two strings.

int strcoll(char *s1, char *s2);

DOS UNIX Win 16 I Win 32 ANSI C I ANSI C++ I OS/2

" • • I • • I • I •
" 5trcoll compares the string pointed to by 51 to the string pointed to by 52,

according to the current locale's LC_COLLATE category.

5trcoll returns a value that is

• < 0 if 51 is less than 52

• == 0 if 51 is the same as 52

• > 0 if 51 is greater than 52

5trcmp, 5trcmpi, 5tricmp, 5trncmp, 5trncmpi, 5trnicmp, 5trxfrm

Library Reference

strcpy, jstrcpy

strcpy, _fstrcpy string.h

Function Copies one string into another.

Syntax char *strcpy(char *dest, canst char *src);
char far * far _fstrcpy(char far *dest, canst char far *src);

Remarks Copies string src to dest, stopping after the terminating null character has
been moved.

Return value strcpy returns dest.

See also Jstr*, stpcpy

strcspn, ·_fstrcspn string.h

Function

Syntax

Remarks

Return value

See also

_strdate

Function

Syntax

Scans a string for the initial segment not containing any subset of a given
set of characters.

size_t strcspn(canst char *sl, canst char *s2);
size_t far *far _fstrcspn(canst char far *sl, canst char far *s2)

UNIX Wi n 16

The strcspn functions search s2 until anyone of the characters contained in
sl is found. The number of characters which were read in s2 is the return
value. The string termination character is not counted. Neither string is
altered during the search.

strcspn returns the length of the initial segment of string sl that consists
entirely of characters not from string s2.

_fstr*, strchr, strrchr

time.h

Converts current date to string.

char *_strdate(char *buf);

Chapter 3, Run-time functions 255

I

_strdate

Remarks

Return value

See also

DOS I UNIX Win 16 I Win 32 ANSI C ANSI C++ OS/2 II
I I I I· I I JI

_strdate converts the current date to a string, storing the string in the buffer
buf. The buffer must be at least 9 characters long.

The string has the form MM/DD/YY where MM, DD, and YY are all two-digit
numbers representing the month, day, and year. The string is terminated by
a null character.

_strdate returns buf, the address of the date string.

asctime, ctime, loealtime, strftime, _strtime, time

strdup, _fstrdup string.h

Function

Syntax

Remarks

Return value

See also

_strerror

Function

Syntax

Remarks

256

Copies a string into a newly created location.

char *strdup(const char *s);
char far * far _fstrdup(const char far *s)

strdup makes a duplicate of string s, obtaining space with a call to malloe.
The allocated space is (strlen(s) + 1) bytes long. The user is responsible for
freeing the space allocated by strdup when it is no longer needed.

strdup returns a pointer to the storage location containing the duplicated
string, or returns null if space could not be allocated.

free ,-istr*

string.h

Builds a customized error message.

char *_strerror(const char *s);

DOS I UNIX I Win 16 Win 32 I ANSI C I ANSI C++ I OS/2 JI
I I I I 1 1 I JI

_strerror lets you generate customized error messages; it returns a pointer
to a null-terminated string containing an error message.

Library Reference

Return value '

See also

strerror

Function

Syntax

Remarks

Return value

See also

strftime

Function

Syntax

Remarks

_strerror

• If s is null, the return value points to the most recent error message .

• If s is not null, the return value contains s (your customized error
message), a colon, a space, the most-recently generated system error
message, and a new line. s should be 94 characters or less.

_strerror returns a pointer to a constructed error string. The error message
string is constructed in a static buffer that is overwritten with each call to
_strerror.

perror, strerror

string.h

Returns a pointer to an error message string.

char *strerror(int errnum);

strerror takes an int parameter errnum, an error number, and returns a
. pointer to an error message string associated with errnum.

strerror returns a pointer to a constructed error string. The error message
string is constructed in a static buffer that is overwritten with each call to
strerror.

perror, _strerror

time.h

Formats time for output.

size_t strftime(char *s, size_t maxsize, const char *fmt, const struct tm *t);

strftime formats the time in the argument t into the array pointed to by the
argument s according to the fmt specifications. The format string consists of
zero or more directives and ordinary characters. Like printf, a directive
consists of the % character followed by a character that determines the
substitution that is to take place. All ordinary characters are copied
unchanged. No more than maxsize characters are placed in s.

Chapter 3, Run-time functions 257

I

strftime

You must define
__ USELOCALES __
in order to use these

descriptors.

258

The time is formatted according to the current locale's LC_TIME category.

The following table describes the ANSI-defined format specifiers.

Format specifier

%%
%a
%A
%b
%8
%c
%d
%H
%1
%j
%m
%M
%p
%S
%U

%w
%W

%x
%X
%y
%Y
%2

Substitutes

Character %
Abbreviated weekday name
Full weekday name
Abbreviated month mime
Full month name
Date and time
Two-digit day of the month (01 to 31)
Two-digit hour (00 to 23)
Two-digit hour (01 to 12)
Three-digit day of the year (001 to 366)
Two-digit month as a decimal number (1 - 12)
Two-digit minute (00 to 59)
AM or PM
Two-digit second (00 to 59)
Two-digit week number where Sunday is the first day of the week (00
to 53)
Weekday where 0 is Sunday (0 to 6)
Two-digit week number where Monday is the first day of the week (00
to 53)
Date
Time
Two-digit year without century (00 to 99)
Year with century
Time zone name, or no characters if no time zone

In addition to the ANSI C-defined format descriptors; the following
POSIX-defined descriptors are also supported. Each format specifier begins
with the percent character (%).

Format specifier

%C
%D
%e

%h
%n
%r
%t
%T
%u

Substitutes

Century as a decimal number (00-99). For example, 1992 => 19
Date in the format mm/dd/yy
Day of the month as a decimal number in a two-digit field with leading
space (1-31)
A synonym for %b
Newline character
12-hour time (01-12) format with am/pm string i.e; "%I:%M:%S %p"
Tab character
24-hour time (00-23) in the format "HH:MM:SS"
Weekday as a decimal number (1 Monday - 7 Sunday)

Library Reference

You must define
USELOCALES

In order to use these '
descriptors.

Return value

. See also

strftime

In addition to these descriptors, strftime also supports the descriptor modi­
fiers as defined by POSIX on the following descriptors:

Descriptor modifier Substitutes

%Od
%Oe
%OH
%01
%Om
%OM
%OS
%Ou
%OU
%Ow
%OW
%Oy

Day of the month using alternate numeric symbols
Day of the month using alternate numeric symbols
Hour (24 hour) using alternate numeric symbols
Hour (12 hour) using alternate numeric symbols
Month using alternate numeric symbols
Minutes using alternate numeric symbols
Seconds using alternate numeric symbols
Weekday as a number using alternate numeric symbols
Week number of the year using alternate numeric symbols
Weekday as number using alternate numeric symbols
Week number of the year using alternate numeric symbols
Year (offset from %C) using alternate numeric symbols

%0 modifier - when this modifier is used before any of the above sup­
ported numeric format descdptors, for example %Od, the numeric value is
converted to the corresponding ordinal string, if it exists. If an ordinal
string does not exist then the basic format descriptor is used unmodified.

For example, on 8/20/88 a %d format descriptor would produce 20 but
%Od on the same day would produce 20th.

strftime returns the number of characters placed into s. If the number of
characters required is greater than maxsize, strftime returns O .

locaitime, mktime, time

stricmp, _fstricmp string.h

Function

Syntax

Remarks

Compares one string to another, without case sensitivity.

int stricmp(canst char *sl, canst char *s2);
int far_fstricmp(canst char far *sl, canst char far *s2)

Win 16 Win 32,

stricmp performs an unsigned comparison of sl to 82, starting with the first
character in each string and continuing with subsequent characters until
the corresponding characters differ or until the end of the strings is
reached. The comparison is not case sensitive.

Chapter 3, Run-time functions 259

I

stricmp, jstricmp

Return value

It returns a value « 0, 0, or > 0) based on the result of comparing sl (or part
of it) to s2 (or part of it).

The routines stricmp and strcmpi are the same; strcmpi is implemented
through a macro in string.h that translates calls from strcmpi to stricmp.
Therefore, in order to use strcmpi, you must include the header file string.h
for the macro to be available.

stricmp returns an int value that is

• < 0 if sl is less than s2

• == 0 if sl is the same as s2

• > 0 if sl is greater than s2

See also Jstr*, strcmp, strcmpi, strcoll, strncmp, strncmpi, strnicmp

strlen, _fstrlen string.h

Function Calculates the length of a string.

Syntax size_t strlen(const char *s);
size_t far _fstrlen(const char far *s)

Remarks strlen calculates the length of s.

Return value strlen returns the number of characters in s, not counting the null­
terminating character.

See also Jstr*

strlwr, _fstrlwr string.h

Function Converts uppercase letters in a string to lowercase.

Syntax char *strlwr (char *s);
char far * far _fstrlwr(char char far *s)

Remarks strlwr converts uppercase letters in string s to lowercase according to the
current locale's LC_CTYPE category. For the C locale, the conversion is

260 Library Reference

Return value

See also

strlwr, jstrlwr

from uppercase letters (A to Z) to lowercase letters (a to z). No other charac­
ters are changed.

strlwr returns a pointer to the string s.

Jstr*, strupr

strncat, _fstrncat string.h

Function

Syntax

Remarks

Return value

. See also

Appends a portion of one string to another.

char *strncat(char *dest, canst char *src, size_t rnaxlen) i
char far * far _fstrncat(char far *dest, canst char far *src, size_t rnaxlen)

strncat copies at most maxlen characters of src to the end of dest and then
appends a null character. The maximum length of the resulting string is
strlen(dest) + maxlen.

strncat returns dest .

Jstr*

strncmp, _fstrncmp string.h

Function

Syntax

Remarks

Return value

Compares a portion of one string to a portion of another.

int strncrnp(canst char *sl, canst char *s2, size_t rnaxlen)i
int far _fstrncrnp(canst char far *sl, canst char far *s2, size_t rnaxlen)

strncmp makes the same unsigned comparison as strcmp, but looks at no
more than maxlen characters. It starts with the first character in each string
and continues with subsequent characters until the corresponding charac­
ters differ or until it has examined maxlen characters.

strncmp returns an int value based on the result of comparing sl (or part of
it) to s2 (or part of it):

• < 0 if sl is less than s2

• == 0 if 81 is the same as 82

• > 0 if 81 is greater than s2

Chapter 3, Run-time functions 261

I

strncmp, jstrncmp

See also

strncmpi

Function

Syntax

Remarks

Return value

Jstr*, strcmp, strcoll, stricmp, strncmpi, strnicmp

string.h

Compares a portion of one string to a portion of another, without case
sensitivity. .

int strncmpi(canst char *sl, canst char *s2, size_t n)i

II DOS UNIX Win 16 Win 32 ANSI C I ANSI C++ OS/2 II
II • • • I II

strncmpi performs a signed comparison of sl to s2, for a maximum length of
n bytes, starting with the first character in each string and continuing with
subsequent characters until the corresponding characters differ or until n
characters have been examined. The comparison is not case sensitive.
(strncmpi is the same as strnicmp-implemented as a macro). It returns a
value « 0, 0, or > 0) based on the result of comparing sl (or part of it) to s2
(or part of it).

The routines strnicmp and strncmpi are the same; strncmpi is implemented
through a macro in string.h that translates calls from strncmpi to strnicmp.
Therefore, in order to use strncmpi, you must include the header file
string.h for the macro to be available. This macro is provided for compati­
bility with other C compilers.

strncmpi returns an int value that is

• < 0 if sl is less than s2
• == 0 if sl is the same as s2
• > 0 if sl is greater than s2

strncpy, _fstrncpy string.h

Function

Syntax

262

Copies a given number of bytes from one string into another, truncating or
padding as necessary.

char *strncpy(char *dest, canst char *src, size_t maxlen)i
char far * far ._fstrncpy(char far *de~t, canst char far *src, size_t maxlen)

ANSI C++ OS/2

Library Reference

Remarks

Return value

See also

strncpy, jstrncpy

strncpy copies up to maxlen chaJacters from src into dest, truncating or null­
padding dest. The target string, dest, might not be null-terminated if the
length of src is maxlen or more.

strncpy returns dest.

Jstr*

strnicmp, _fstrnicmp string.h

Function

Syntax

Remarks

Return value

See also

Compares a portion of one string to a portion of another, without case
sensitivity.

int strnicrnp(constchar *sl, const char *s2, size_t rnaxlen)i
int far _fstrnicrnp(const char far *sl, const char far *s2, size_t rnaxlen)

II .DOS I UNIX Win 16 Win 32 I ANSI C I ANSI C++ I OS/2 II
II • I • • I I I • II

strnicmp performs a signed comparison of sl to s2, for a maximum length of
maxlen bytes, starting with the first character in each string and continuing
with subsequent characters until the corresponding characters differ or
until the end of the strings is reached. The comparison is not case sensitive.

It returns a value « 0, 0, or > 0) based on the result of comparing sl (or part
of it) to s2 (or part of it).

strnicmp returns an int value that is

• < 0 if sl is less than s2

• == 0 if sl is the same as s2

• > 0 if sl is greater than s2

Jstr*

strnset, _fstrnset string.h

Function·

Syntax

Sets a specified number of characters in a string to a given character.

char *strnset(char *s, int ch, size_t n)i

char far * far _fstrnset(char far *s, int ch, size_t n)

Chapter 3, Run-time functions 263

I

strnset, Jstrnset

Remarks

Return value

See also

strnset copies the character ch into the first n bytes of the string s. If
n > strlen(s), then strlen(s) replaces n. It stops when n characters have been
set, or when a null character is found.

strnset returns s.

Jstr*

strpbrk, _fstrpbrk string.h

Function

Syntax

Remarks

Return value

See also

Scans a string for the first occurrence of any character from a given set.

char *strpbrk(const char *s1, const char *s2);

char far *far _fstrpbrk(const char far *s1, const char far *s2)

const char *strpbrk(const char *s1, const char *s2);
char *strpbrk(char *s1, const char *S2)i

ANSI C++ OS/2

1* Conly *1

1* C and Ctt *1

II Ctt only
II Ctt only

strpbrk scans a string, sl, for the first occurrence of any character appearing
ins2.

strpbrk returns a pointer to the first occurrence of any of the characters in s2.
If none of the s2 characters occur in sl, strpbrk returns null.

Jstr*

strrchr, _fstrrchr string.h

Function

Syntax

264

Scans a string for the last occurrence of a given character.

char *strrchr(const char *s, int C)i

char far * far _fstrrchr(const char far *s, int c)

const char *strrchr(const char *s, int c);
char *strrcht(char *s, int c);

/* Conly *1

1* C and Ctt *1

1/ Ctt only
I I Ctt only

Library Reference

strrchr, _fstrrchr

Remarks strrchr scans a string in the reverse direction, looking for a specific
character. strrchr finds the last occurrence of the character c in the string s.
The null-terminator is considered to be part of the string.

Return value strrchr returns a pointer to the last occurrence of the character c. If c does
not occur in s, strrchr returns null.

See also Jstr*, strcspn, strchr

strrev, _fstrrev string.h

Function Reverses a string.

Syntax char *strrev(char *s);
char far * far _fstrrev(char far *s)

Remarks strrev changes all characters in a string to reverse order, except the
terminating null character. (For example, it would change string\O to
gnirts\O.)

Return value strrev returns a pointer to the reversed string.

See also Jstr*

strset, _fstrset string.h

Function Sets all characters in a string to a given character.

Syntax

Remarks

Return value

See also

char *strset(char *s, int chI;
char far * far _fstrset(char far *s, int chI

strset sets all characters in the string s to the character ch. It quits when the
terminating null character is found.

strset returns s.

Jstr*, setmem

Chapter 3, Run-time functions 265

•

strspn, _fstrspn

strspn, _fstrspn string.h

Function Scans a string for the first segment that is a subset of a given set of
characters.

Syntax size_t strspn(canst char *sl, canst char *s2);
size_t far _fstrspn(canst char far *sl, canst char far *s2);

Remarks strspn finds the initial segment of string sl that consists entirely of
characters from string s2.

Return value strspn returns the length of the initial segment of sl that consists entirely of
characters from s2.

See also Jstr*

strstr, _fstrs~r string.h

Function Scans a string for the occurrence of a given substring.

Syntax

Remarks

Return value

See also

_strtime

Function

Syntax

266

char *strstr(canst char *sl, canst char *s2);

char far * far _fstrstr(canst char far *sl, canst char far *s2);

canst char *strstr(canst char *sl, canst char *s2);
char *strstr(char *sl, canst char *s2);

Il DOS I UNIX I Wi n 16 I Wi n 32 I ANSI C ANSI C++ OS/2 II

II • I • I I I • II

strstr scans sl for the first occurrence of the substring s2.

/* Conly */

/* C and Ctt */

/ / Ctt only
/ / Ctt only

strstr returns a pointer to the element in sl, where s2 begins (points to s2 in
sl). If s2 does not occur in sl, strstr returns null.

Jstr*

time.h

Converts current time to string.

char *_strtime(char *buf);

Library Reference

_strtime

Remarks ~strtime converts the current time to a string, storing the string in the buffer
buf. The buffer must be at least 9 characters long.

The string has the following form:

HH:MM:SS

where HH, MM, and 55 are all two-digit numbers representing the hour,
minute, and second, respectively. The string is terminated by a null
character.

Return value _strtime returns buf, the address of the time string.

See also asctime, ctime, localtime, strftime, _strdate, time

strtod, _strtold stdlib.h

Function Convert a string to a double or long double value.

Syntax double strtod(const char *s, char **endptr);

Remarks

strtod

_strtold

long double _strtold(const char *s, char **endptr);

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

strtod converts a character string, s, to a double value. s is a sequence of
characters that can be interpreted as a double value; the characters must
match this generic format:

[wsJ [snJ [dddJ [.J [dddJ [fmt[snJddd]

where

[ws] = optional whitespace
[sn] = optional sign (+ or-)
[ddd] = optional digits
[fmt] = optional e or E
[.] = optional decimal point

strtod also recognizes +INF and -INF for plus and minus infinity, and
+NAN and -NAN for Not-a-Number.

Chapter 3, Run-time functions 267

I

strtod, _strtold

For example, here are some character strings that strtod can convert to
double:

+ 1231.1981 e-1
502.85E2
+ 2010.952

strtod stops reading the string at the first character that cannot be
interpreted as an appropriate part of a double value.

If endptr is not null, strtod sets *endptr to point to the character that stopped
the scan (*endptr = &stopper). endptr is useful for error detection.

_strtoid is the long double version; it converts a string to a long double
value.

Return value These functions return the value of s as a double (strtod) or a long double
LstrtoId). In case of overflow, they return plus or minus HUGE_VAL
(strtod) or _LHUGE_ V AL LstrtoId).

See also a to!

strtok, _fstrtok string.h

Function Searches one string for tokens, which are separated by delimiters defined in
a second string.

Syntax char *strtok(char *s1, canst char *s2);

Remarks

Return value

See also

268

char far * far _fstrtak(char far *s1, canst char far *s2)

DOS

strtok considers the string sl to consist of a sequence of zero or more text
tokens, separated by spans of one or more characters from the separator
string s2.

The first call to strtok returns a pointer to the first character of the first token
in sl and writes a null character into sl immediately following the returned
token. Subsequent calls with null for the first argument will work through
the string sl in this way, until no tokens remain.

The separator string, s2, can be different from call to call.

strtok returns a pointer to the token found in sl. A NULL pointer is
returned when there are no more tokens.

Jstr*

Library Reference

strtol

Function

Syntax

Remarks

strta\

stdlib.h

Converts a string to a long value.

long strtol(const char *s, char **endptr, int radix);

strtol converts a character string, s, to a long integer value. s is a sequence of
characters that can be interpreted as a long value; the characters must
match this generic format:

[ws] [sn] [0] [xl [dddl

where

[wsJ = optional whitespace
[snJ = optional sign (+ or-)
[OJ = optional zero (0)
[xJ = optional x or X
[dddJ = optional digits

strtol stops reading the string at the first character it doesn't recognize.

If radix is between 2 and 36, the long integer is expressed in base radix. If
radix is 0, the first few characters of s determine the base of the value being
converted.

First Second
character character String interpreted as

0 1-7 Octal
0 xor X Hexadecimal

1-9 Decimal

If radix is 1, it is considered to be an invalid value. If radix is less than 0 or
greater than 36, it is considered to be an invalid value.

Any invalid value for radix causes the result to be 0 and sets the next
character pointer *endptr to the starting string pointer.

If the value in s is meant to be interpreted as octal, any character other than
o to 7 will be unrecognized.

If the value in s is meant to be interpreted as decimal, any character other
than 0 to 9 will be unrecognized.

Chapter 3, Run-time functions 269

I

strtol

Return value

See also

_strtold

If the value in s is meant to be interpreted as a number in any other base,
then only the numerals and letters used to represent numbers in that base
will be recognized. (For example, if radix equals 5, only 0 to 4 will be
recognized; if radix equals 20, only 0 to 9 and A to J will be recognized.)

If endptr is not null, strtal sets *endptr to point to the c~aracter that stopped
the scan (*endptr = &stapper). .

strtal returns the value of the converted string, or 0 on error.

atai, atal, strtaul

See strtad.

strtoul stdlib.h

Function Converts a string to an unsigned long in the given radix.

Syntax unsigned long strtoul(const char *s, char **endptr, int radix);

Remarks strtaul operates the same as strtal, except that it converts a string str to an
unsigned long value (where strtal converts to a long). Refer to the entry for
strtal for more information.

Return value strtaul returns the converted value, an unsigned long, or 0 on error.

See also atal, strtal

strupr, _fstrupr string.h

Function Converts lowercase letters in a string to uppercase.

Syntax char * s trupr (char * s) ;
char far * far _fstrupr(char far *s)

270 Library Reference

Remarks

Return value

See also

strxfrm

Function

Syntax

Remarks

strupr, jstrupr

strupr converts lowercase letters in string s to uppercase according to the
current locale's LC_CTYPE category. For the default C locale, the
conversion is from lowercase letters (a to z) to uppercase letters (A to Z). No
other characters are changed.

strupr returns s.

Jstr*, strlwr

string.h

Transforms a portion of a string to a specified collation.

size_t strxfrm(char *target, const char *source, size_t nl;

strxfrm transforms the string pointed to by source into the string target for
no more than n characters. The transformation is such that if the strcmp
function is applied to the resulting strings, its return corresponds with the
return values of the strcoll function.

No more than n characters, including the terminatin!? null character, are
copied to target.

strxfrm transforms a character string into aspecial string according to the
current locale's LC_COLLATE category. The special string that is built can
be compared with another of the same type, byte for byte, to achieve a
locale-correct collation result. These special strings, which can be thought
of as keys or tokenized strings, are not compatible across the different
locales.

The tokens in the tokenized strings are built from the collation weights
used by strcoll from the active locale's collation tables.

Processing stops only after all levels have been processed for the character
string or the length of the tokenized string is equal to the maxlen
parameter.

All redundant tokens are removed from each level's set of tokens.

The tokenized string buffer must be large enough to contam. the resulting
tokenized string. The length of this buffer depends on the size of the
character string, the number of collation levels, the rules for each level and
whether there are any special characters in the character string. Certain
special characters can cause extra character processing of the string

Chapter 3, Run-time functions 271

•

strxfrm

Return value

See also

swab

Function

Syntax

Remarks

Return value ,

system

Function

Syntax

Remarks

272

resulting in more space requirements. For example, the French character
"(E" will take double the space for itself because in some locales, it expands
to two collation weights at each level. Substrings that have substitutions
will also cause extra space requirements.

There is no safe formula to determine the required string buffer size, but at
least (levels * string length) are required.

Number of characters copied not including the terminating null character.
If the value returned is greater than or equal to n, the content of target is
indeterminate.

strcmp, strcoll, strncpy

stdlib.h

Swaps bytes.

void swab(char *from, char *to, int nbytes);

swab copies nbytes bytes from the from string to the to string. Adjacent even­
and odd-byte positions are swapped. This is useful for moving data from
one machine to another machine with a different byte order. nbytes should
be even.

None.

stdlib.h

Issue an operating system command.

int system(const char *command);

system invokes the operating system command processor to execute an op­
erating system command, batch file, or other program named by the string
command, from inside an executing C program.

To be located and executed, the program must be in the current directory or
in one of the directories listed in the PATH string in the environment.

Library Reference

Return value

See also

tan, tanl

Function

Syntax

Remarks

Return value

See also

tanh, tanhl

Function

tan

tanl

system

The COMSPEC environment variable is used to find the command
processor program file, so that file need not be in the current directory.

If command is a NULL pointer, system returns nonzero if a command proces,;"
sor is available.

If command is not a NULL pointer, system returns 0 if the command
processor was successfully started.

If an error occurred, a -1 is returned and errno is set to one of the following:

ENOENT Path or file function not found
ENOEXEC Exec format error
ENOMEM Not enough memory

exec ... , Jpreset, searchpath, spawn ...

math.h

Calculates the tangent.

double tan(double xl;
long double tanl(long double xl;

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

tan calculates the tangent. Angles are specified in radians.

tanl is the long double version; it takes a long double argument and returns
a long double result. Error handling for these routines can be modified
through the functions _matherr and _matherrl. .

, This function can be used with bcd and complex types.

tan and tanl return the tangent of x, sin(x)/ cos(x).

acos, asin, atan, atan2, bcd, complex, cos, sin

math.h

Calculates the hyperbolic tangent.

Chapter 3, Run-time functions 273

I

tanh, tanhl

Syntax

Remarks

Return value

See also

tell

Function

Syntax

Remarks

Return value

See also

tempnam

Function

Syntax

274

tanh

tanhl

double tanh(double x);
long double tanhl(long double x);

DOS UNIX· Win 16 Win 32 ANSI C ANSI C++ OS/2

• • • • • • •
• • • •

tanh computes the hyperbolic tangent, sinh(x)/cosh(x).

, tanhl is the long double version; it takes a long double argument and'
returns a long double result. Error handling for these functions can be
modified through the functions _matherr and _matherrl.

This function can be used with bcd and complex types.

tanh and ta!1hl return the hyperbolic tangent of x.'

bcd, complex, cos, cosh, sin, sinh, tan

Gets the current position of a file pointer.

long tell(int handle);

II DOS I UNIX Win 16 Win 32 I ANSI C ANSI C++

II • I • • • I
I
1

OS/2

•
II

JI

io.h

tell gets the current position of the file pointer associated with handle and
expresses it as the number of bytes from the beginning of the file.

tell returns the current file pointer position. A return of -1 (long) indicates
an error, and the global variable errno is set to' '

EBADF Bad file number

fgetpos, fseek, ftell, lseek

Creates a 'unique file name in specified directory.

char *tempnam(char *dir, char *prefix)

stdio.h

Library Reference

Remarks

tempnam

The tempnam function creates a unique file name in arbitrary directories.
The unique file is not actually created; tempnam only verifies that it does not
currently exist. It attempts to use the following directories, in the order
shown, when creating the file name:

• The directory specified by the TMP environment variable.

• The dir argument to tempnam.
• The P _tmpdir definition in stdio.h. If you edit stdio.h and change this

definition, tempnam will not use the new definition.

• The current working directory.

If any of these directories is NULL, or undefined, or does not exist, it is
skipped.

The prefix argument specifies the first part of the file name; it cannot be
longer than 5 characters,and cannot contain a period (.). A unique file
name is created by concatenating the directory name, the prefix, and 6
unique characters. Space for the resulting file name is allocated with maUoc;
when this file name is no longer needed, the caller should call free to free it.

.. If you do create a temporary file using the name constructed by tempnam, it
is your responsibility to delete the file name (for example, with a call to
remove). It is not deleted automatically. (tmpfile does delete the file name.)

Return value If tempnam is successful, it returns a pointer to the unique temporary file
name, which the caller can pass to free when it is no longer needed.
Otherwise, if tempnam cannot create a unique file name, it returns NULL.

See also mktemp, tmpfile, tmpnam

textattr

Sets text attributes. Function

Syntax void textattr(int newattr)i

DOS UNIX Win 16 Win 32

• •

conio.hlli

ANSI C ANSI C++ I OS/2

1 •

Remarks textattr lets you set both the foreground and background colors in a single
call. (Normally, you set the attributes with textcolor and textbackground.)

Chapter 3, Run-time functions 275

textattr

276

This function does not affect any characters currently onscreen; it affects
only those characters displayed by functions (such as cprintf) performing
text mode, direct video output after this function is called.

The color information is encoded in the newattr parameter as follows:

7 6 541 3 2 1 0

IBlblblbl fl fl fl fl
I

In this 8-bit newattr parameter,

• fff! is the 4-bit foreground color (0 to 15).

• bbb is the 3-bit background color (0 to 7).

• B is the blink-enable bit.

If the blink-enable bit is on, the character blinks. This can be accomplished
by adding the constant BLINK to the attribute.

If you use the symbolic color constants defined in conio.h for creating text
attributes with textattr, note the following limitations on the color you
select for the background:

• You can select only one of the first eight colors for the background.

• You must shift the selected background color left by 4 bits to move it into
the correct bit positions.

These symbolic constants are listed in the following table:

Symbolic Numeric Foreground or
constant value background?

BLACK 0 Both
BLUE 1 Both
GREEN 2 Both
CYAN 3 Both
RED 4 Both
MAGENTA 5 Both
BROWN 6 Both
LI GHTG RAY 7 Both
DARKGRAY 8 Foreground only
LlGHTBLUE 9 Foreground only
LlGHTGREEN 10 Foreground only
LlGHTCYAN 11 Foreground only

Library Reference

textattr

Symbolic Numeric Foreground or
constant value background?

LlGHTRED 12 Foreground only
LlGHTMAGENTA 13 Foreground only
YELLOW 14 Foreground only
WHITE 15 Foreground only
BLINK 128 Foreground only

_ This function should not be used in Win32s or Win32 GUI applications.

Return value None.

See also gettextinfo, highvideo, lowvideo, normvideo, textbackground, textcolor

textbackground conio.h

Function Selects new text background color.

Syntax void textbackground(int newcolor)i

Remarks textbackground selects the, background color. This function works for
functions that produce output in text mode directly to the screen. newcolor
selects the new background color. You can set newcolor to an integer from 0
to 7, or to one of the symbolic constants defined in conio.h. If you use
symbolic constants, you must include conio.h.

Once you have called textbackground, all subsequent functions using direct
video output (such as cprintf) will use newcolor. textbackground does not
affect any characters currently onscreen.

The following table lists the symbolic constants and the numeric values of m
the allowable colors: •

Symbolic constant

BLACK
BLUE
GREEN
CYAN
RED
MAGENTA
BROWN
LlGHTGRAY

Numeric value

o
1
2
3
4
5
6
7

Chapter 3, Run-time functions 277

textbackground

.. This function should not be used in Win32s or Win32 GUI applications.

Return value None.

See also gettextinfo, textattr, textcolor

textcolor conio.h

Function Selects new character color in text mode.

Syntax void textcolor (int newcolor) i

Remarks textcolor selects the foreground character color. This function works for the
console output functions. newcolor selects the new foreground color. You
can set newcolor to an integer as given in the table below, or to one of the
symbolic constants defined in conio.h. If you use symbolic constants, you
must include conio.h.

278

Once you have called textcolor, all subsequent functions using direct video
output (such as cprintf) will use newcolor. textcolor does not affeCt any
characters currently onscreen.

The following table lists the allowable colors (as symbolic constants) and
their numeric values:

SymbOlic constant

BLACK
BLUE
GREEN
CYAN
RED
MAGENTA
BROWN
LlGHTGRAY
DARKGRAY
LlGHTBLUE
LlGHTGREEN
LlGHTCYAN
LlGHTRED
LlGHTMAGENTA

Numeric value

o
1
2
3
4
5
6
7
8
9

10
11
12
13

Library Reference

Return value

See also

textmode

Function

Syntax

Remarks

Symbolic constant

YELLOW
WHITE
BLINK

Numeric value

14
15

128

textcolor

You can make the characters blink by adding 128 to the foreground color.
The predefined constant BLINK exists for this purpose; for example,

textcolor{CYAN + BLINK);

Some monitors do not recognize the intensity signal used to create the eight
"light" colors (8-15). On such monitors, the light colors are displayed as
their" dark" equivalents (0-7). Also, systems that do not display in color
can treat these numbers as shades of one color, special patterns, or special
attributes (such as underlined, bold, italics, and so on). Exactly what you'll
see on such systems depends on your hardware.

This function should not be used in Win32s or Win32 GUI applications.

None.

gettextinfo, highvideo, lowvideo, normvideo, t~xtattr, textbackground

conio.h

Puts screen in text mode ..

void textrnode{int newrnode);

Win 16 Win 32 ANSI C . ANSI C++

textmode selects a specific text mode.

You can give the text mode (the argument newmode) by using asymbolic
constant from the enumeration type text_modes (defined in conio.h)~

The most commonly used text_modes type constants and the modes they
specify are given in the following table. Some additional values are defined
in conio.h. -

SymboliC
constant

LASTMODE
BW40
C40

Text mode

Previous text mode
Black and white, 40 columns
Color, 40 columns

Chapter 3, Run-time functions 279

textmode

Symbolic
constant

Bwao
CaD
MONO
C4350,

Text mode

Black and white, aD columns
Color, aD columns
Monochrome, aD columns
EGA 43-line and VGA 50-line modes

When textmode is called, the current window is reset to the entire screen,
and the current text attributes are reset to normal, corresponding to a call to
normvideo. '

Specifying LASTMODE to textmode causes the most recently selected text
. mode to be reselected. '

textmode should be used only when the screen or window is in text mode
(presumably to change to a different text mode}. This is the only context in
which textmode should be used. When the screen is in graphics mode, use
restorecrtmode instead to escape temporarily to text mode.

.. This function should not be used in Win32s or Win32 GUI applications.

Return value None.

See also gettextinfo, window

time time.h

Function Gets time of day.

Syntax time_t time (time_t *timer) i

, Remarks time gives the current time, in seconds, elapsed since 00:00:00 GMT, January
1, 1970, and stores that value in the location pointed to by timer, provided
that timer is not a NULL pointer.

Return value time returns the elapsed time in seconds, as described.

See also asctime, ctime, difftime, ftime, gettime, gmtime, localtime, settime, stime, tzset

tmpfile stdio.h

Function Opens a "scratch" file in binary mode.

280 Library Reference

, Syntax

Remarks

Return value

See also

tmpnam

Function

Syntax

Remarks

Return value

See also

tmpfile

FILE *trnpfile{void);

tmpfile creates a temporary binary file and opens it for update (w + b). The
file is automatically removed when it's closed or when your program
terminates.

tmpfile returns a pointer to the stream of the temporary file created. If the
file can't be created, tmpfile returns NULL.

topen, tmpnam

, stdio.h

Creates a unique file name.

char *trnpnarn{char *5};

tmpnam creates a unique file name, which can safely be used as the name of
a temporary file. tmpnam generates a different string each time you call it,
up to TMP _MAX times. TMP _MAX is defined in stdio.h as 65,535.

The parameter to tmpnam, 5, is either null or a pointer to an array of at least
L_tmpnam characters. L_tmpnam is defined in stdio.h. If 5 is NULL, tmpnam
leaves the generated temporary file name in an internal static object and
returns a pointer to that object. If 5 is not NULL, tmpnam places its result in
the pointed-to array, which must be at least L_tmpnam characters l~ng, and
returns s.

If you do create such a temporary file with tmpnam, it is your responsibility II
to delete the file name (for example, with a call to remove). It is not deleted
automatically. (tmpfile does delete the file name:)

If 5 is null, tmpnam returns a pointer to an internal static object. Otherwise,
tmpnam returns 5.

tmpfile

Chapter3, Run-time functions 281

toascii

toascii

Function

Syntax

Remarks

Return value

_tolower

Function

Syntax

Remarks

Return value

tolower

Function

Syntax

Remarks

282

ctype.h

Translates characters to ASCII format.

int toaseii(int e)i

toascii is a macro that converts the integer c to ASCII by clearing all but the
lower 7bits; this gives a value in the range 0 to 127.

toascii returns the converted value of c.

ctype.h

Translates characters to lowercase.

int _tolower{int eh)i

_tolower is a macro that does the same conversion as to lower, except that it
should be used only when ch is known to be uppercase (A-Z).

To use _tolower, you must include ctype.h.

_to lower returns the converted value of ch if it is uppercase; otherwise, the
result is undefined.

ctype.h

Translates characters to lowercase.

int tolower(int eh);

tolower is a function that converts an integer ch (in the range EOF to 255) to
its lowercase value. The function is affected by the currentlocale's
LC_CTYPE category. For the default C locale, ch is converted to a lowercase
letter (a to 2, if it was uppercase, A to Z). All others are left unchanged.

Library Reference

Return value

_toupper

Function

Syntax

Remarks

Return value

toupper

Function

Syntax

Remarks

Return value

tzset

Function

Syntax

tolower

tolower returns the converted value of ch if it is uppercase; it returns all
others unchanged.

ctype.h

Translates characters to uppercase.

int _toupper(int ch);

_to upper is a macro that does the same conversion as toupper, except that it
should be used only when ch is known to be lowercase letter (a to z).

To use _toupper, you must include ctype.h.

_toupper returns the converted value of ch if it is lowercase; otherwise, the
result is undefined.

ctype.h

Translates characters to uppercase.

int toupper(int ch);

toupper is a function that converts an integer ch (in the range EOF to 255) to
its uppercase value. The function is affected by the current locale's
LC_CTYPE category. For the default C locale, ch is converted to an upper­
case letter (A to Z; if it was lowercase, a to z). All others are left unchanged.

toupper returns the converted value of ch if it is lowercase; it returns all
others unchanged.

time.h

Sets value of global variables _daylight, _timezone, and _tzname.

void tzset(void)

Chapter 3, Run-time functions 283

I

tzset

Remarks

Return value

See also.

284

tzset is available on XENIX systems.

tzset sets the _daylight, _timezone, and _tzname global variables based on the
environment variable TZ. The library functions ftime and localtime use these
global variables to adjust Greenwich Mean Time (GMT) to the local time
zone. The format of the TZ environment string is:

TZ = zzz[+/-]d[d] [111]

where zzz is a three-character string representing the name of the current
time zone. All three characters are required. For example, the string "PST"
could be used to represent pacific standard time.

[+/-]d[d] is a required field containing an optionally signed number with 1
or more digits. This number is the local time zone's difference from GMT in
hours. Positive numbers adjust westward from GMT. Negative numbers
adjust eastward from GMT. For example, the number 5 = EST, +8 = PST,
and -1 = continental Europe. This number is used in the calculation of the
global variable _timezone. _timezone is the difference in seconds between
GMT and the local time zone.

III is an optional three-character field that represents the local time zone
daylight saving time. For example, the string "PDT" could be used to
represent pacific daylight saving time. If this field is present, it causes the
global variable _daylight to be set nonzero. If this field is absent, _daylight is
set to zero.

If the TZ environment string isn't present or isn't in the preceding form, a
default TZ = "EST5EDT" is presumed for the purposes of assigning values
to the global variables _daylight, _timezone, and _tzname.

The global variable _tzname[O] points to a three-character string with the
value of the time-zone name from the TZ environment string. _tzname[l]
points to a three-character string with the value of the daylight saving
time-zone name from the TZ environment string. If no daylight saving
name is present, _tzname[l] points to a null string.

None.

asctime, ctime, ftime, gmtime, localtime, stime, time

Library Reference

ultoa

ultoa stdlib.h

Function Converts an unsigned long to a string.

Syntax char *ultoa(unsigned long value, char *string, int radix);

Remarks ultoa converts value to a null-terminated string and stores the result in
string. value is an unsigned long. '

radix specifies the base to be used in converting value; it must be between 2
and 36, inclusive. ultoa performs no overflow checking, and if value is
negative and radix equals 10, it does not set the minus sign.

.. The space allocated for string must be large enough to hold the returned
string, including the terminating null character (\0). ultoa can return up to
33 bytes.

Return value ultoa returns string.

See also itoa, ltoa

umask io.h

Function Sets file read/write permission mask.

Syntax' unsigned umask(unsigned mode);

Remarks The umask function sets the access permission mask used by open and creat. I
Bits that are set in mode will be cleared in the access permission of files
subsequently created by open and creat.

The mode can have one of the following values, defined in sys \stat.h:

Value of mode

SJWRITE
SJREAD
SJREADISJWRITE

Access permission

Permission to write
Permission to read
Permission to read and write

Chapter 3, Run-time functions 285

umask

Return value

See also

ungetc

Function

Syntax

Remarks

Return value

See also

ungetch

Function

Syntax

Remarks

Return value

See also

286

The previous value of the mask. There is no error return.

creat, open

Pushes a character back into input stream.

int ungetc(int c, FILE *stream);

stdio.h

ungetc pushes the character c back onto the named input stream, which
must be open for reading. This character will be returned on the next call to
getc or fread for that stream. One character can be pushed back in all
situations. A second call to ungetc without a call to getc will force the
previous character to be forgotten. A call to [flush, [seek, fsetpos, or rewind
erases all memory of any pushed-back characters.

On success, ungetc returns the character pushed back; it returns EOF if the
operation fails.

[getc, getc, getchar

conio.h

Pushes a character back to the keyboard buffer.

int ungetch(int ch);

ungetch pushes the character ch back to the console, causing ch to be the
next character read. The ungetch function fails if it is called more than once
before the next read.

ungetch returns the character ch if it is successful. A return value of EOF
indicates an error.

~ This function should not be used in Win32s or Win32 CUI applications.

getch, getche

Library Reference

unixtodos

Function

Syntax

Remarks

Return value

See also

unlink

Function

Syntax

Remarks

Return value

See also

unixtodos

dos.h

Converts date and time from UNIX to DOS format.

void unixtodos(lo~g time, struct date *d, struct time ttl;

II DOS UNIX I Win 16 I Win 32 I ANSI C I ANSI C++ I OS/2

II I II I . I

unixtodos converts the UNIX-format time given in time to DOS format and
fills in the date and time structures pointed to by d and t.

time must not represent a calendar time earlier than Jan. 1, 198000:00:00.

None.

dostounix

io.h

Deletes a file.

int unlink(const char *filename)i

unlink deletes a file specified by filename. Any drive, path, and file name can
be used as a filename. Wildcards are not allowed.

Read-only files cannot be deleted by this call. To remove read-only files,
first use chmod or _rtCchmod to change the read-only attribute ..

'If your file is open, be sure to close it before unlinking it.

On successful completion, unlink returns O. On error,·it returns -1 and the
global variable errno is set to one of the following values:

EACCES
ENOENT

chmod, remove

Permission denied
Path or file name not found

Chapter 3, Run-time functions 287

I

unlock

unlock

Function

Syntax

Remarks

Return value

See also

'utime

Function

Syntax

Remarks

, Return value

288

io.h

Releases file-sharing locks.

int unlock(int handle, long offset, long length);

unlock provides an interface to the operating system file-sharing
mechanism. unlock removes a lock previously placed with a call to lock. To
avoid error, all locks must be removed before a fileis closed. A program
must release all locks before completing. .

unlock returns 0 on success, -Ion error.

lock, locking, sopen

utime.h

Sets file time and date.

int utime(char *path, struct utirnbuf *times);

utime sets the modification time for the file path. The modification time is
contained in the utimbuf structure pointed to by times. This structure is
defined in utime.h, and has the following format:

struct utimbuf {
time_t
time_t
};

actime;
modtime;

/* access time */
/* modification time *'/

The FAT file system supports only a modification time; therefore, on FA T
file systems utime ignores actime and uses only modtime to set the file's
modification time.

If times is NULL, the file's modification time is set to the current time.

uti'me returns 0 if it is successful. Otherwise, it returns -I, and the global
variable errno is set to one of the following:

Library Reference

See also

Function

Syntax

Remarks

EACCES
EMFILE
ENOENT

Permission denied
Too many open files
Path or file name not found .

setftime, stat, time

utime

stdarg.h

Implement a variable argument list.

void va_start (va_list ap, last fix) ;
type va_arg(va_list ap, type);
void va_end(va_list ap);

DOS

Some C functions, such as vfprintf and vprintf, take variable argument lists
in addition to taking a number of fixed (known) parameters. The va_arg,
va_end, and va_start macros provide a portable way to access these
argument lists. They are used for stepping through a list of arguments
when the called function does not know the number and types of the
arguments being passed. '

The header file stdarg.h declares one type (va_list) and three macros
(va_start, va_arg, and va_end).

• va_list This array holds information needed by va_arg and va_end. When
a called function takes a variable argument list, it declares a variable ap of
type va_list.

• va_start: This routine (implemented as a macro) sets iIp to point to the
first of the variable arguments being passed to the function. va_start must
be used before the first call to va_arg or va_en~.

• va_start takes two parameters: ap and lastfix. (ap is explained under va_list
in the preceding paragraph; lastfix is the name of the last fixed parameter
being passed to the called function.)

• va_arg: This routine (also implemented as a macro) expands to an
expression that has the same type and value as the next argument being'
passed (one of the variable arguments). The variable ap to va_arg should
be the same ap that va_start initialized.

_ Because of default promotions, you can't use char, unsigned char, or
float types with va_argo .

Chapter 3, Run-time functions 289

II

Return value

See also

vfprintf

Function

Syntax

Remarks

See printf for details
on format specifiers.

Return. value

See also

vfscanf

Function

290

The first time va_arg is used, it returns the first argument in the list. Each
successive time va.:...arg is used, it returns the next argument in the list. It
does this by first dereferencing ap, and then incrementing ap to point to
the following item. va_arg uses the type to both perform the dereference
and to locate the following item. Each successive time va_arg is invoked,
it modifies ap to point to the next argument in the list.

• va_end: This macro helps the called function perform a normal return.
va_end might modify ap in ~uch a way that it cannot be used unless
va_start is recalled. va~end should be called after va_arg has read all the
arguments; failure to do so might cause strange, undefined behavior in
your program.

va_start and va_end return no values; va_arg returns the current argument in
the list (the one that ap is pointing to).

v ... printf, v ... scanf

stdio.h

Writes formatted output to a strea~.

int vfprintf(FILE *stream, const char *~ormat, va_list arglist);

The v ... printf functions are known as alternate entry points for the . .. printf
functions; They behave exactly like their ... printf counterparts, but they'
accept a pointer to a list of arguments instead of an argument list.

vfprintf accepts a pointer to a series of arguments, applies to each argument
a format specifier contained in the format string pointed to by format, and
outputs the formatted data to a stream. There must be the same number of
format specifiers as arguments.

vfprintf returns the number of bytes output. In the event of error, vfprintf
returns EOF. '

printf, va_arg, va_end, va_start

stdio.h

Scans and formats input from a stream.

Library Reference

Syntax

Remarks

See scanf for details
on format specifiers.

Return value

See also

vprintf

Function

Syntax

Remarks

See printffor details
on format specifiers.

vfscanf

int vfscanf(FILE *stream, const char *format, va_list arglist);

The v ... seanf functions are known as alternate entry points for the . .. seanf
functions. They behave exactly like their .. . seanf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vfseanf scans a series of input fields, one character at a time, reading from a
stream. Then each field is formatted according to a format specifier passed
to vfseanf in the format string pointed to by format. Finally, vfseanf stores the
formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there
are input fields.

vfseanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely, for a
number of reasons. See seanf for a discussion of possible causes.

vfseanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If no fields were stored, the return value is O.

If vfseanf attempts to read at end-of-file, the return value is EOF.

fseanf, seanf, va_arg, va_end, va_start

Writes formatted output to stdout.

int vprintf(const char *format, va_list arglist);

DOS UNIX I Win 16 Win 32 I ANSI C ANSI C++ I OS/2

• • I • I • •

stdarg.h

The v ... printf functions are known as alternate entry points for the . .. printf
functions. They behave exactly like their .. . printf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vprintf accepts a pointer to a series of arguments, applies to each a format
specifier contained in the format string pointed to by format, and outputs
the formatted data to stdout. There must be the same number of format
specifiers as arguments.

Chapter 3, Run-time functions 291

I

vprintf

_ When you use the SSl=DS flag in 16-bit applications, vprintf assumes that
the address being passed is in the SS segment.

_ For Win32s or Win32 GUI applications, stdout must be redirected.

Return value vprint returns the number of bytes output. In the event of error, vprint
returns EOF.

See also freopen, printf, va_arg, va_end, va_start

vscanf stdarg.h

Function Scans and formats input from stdin.

Syntax int vscanf(const char *format, va_list arglist);

Remarks

See scanffor details
on format specifiers.

Return value

See also

292

II DOS UNIX I Win 16 I Win 32 I ANSI C I ANSI C++ I OS/2

"

• I I I II
The v ... scanf functions are known as alternate entry points for the .. . scanf
functions. They behave exactly like their ... scanf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vscanf scans a series of input fields, one character at a time, reading from
stdin. Then each field is formatted according to a format specifier passed to
vscanf in the format string pointed to by format. Finally, vscanf stores the
formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there
are input fields.

vscanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely, for a
number of reasons. See scanf for a discussion of possible causes.

For Win32s or Win32 GUI applications, stdin must be redirected.

vscanf returns the number of input fields successfully scannefi, converted,
and stored; the return value does not include scanned fields that were not
stor'ed. If no fields were stored, the return value is O.

If vscanf attempts 'to read at end-of-file, the return value is EOF.

freopen, fscanf, scanf, va_arg, va_end, va_start

Library Reference

vsprintf

Function

Syntax

Remarks

See printf for details
on format specifiers.

Return value

See also

vsscanf

Function

Syntax

Remarks

See scanffor details
on format specifiers.

vsprintf

stdarg.h

Writes formatted output to a string.

int vsprintf(char *buffer, canst char *farrnat, va_list arglist) i

DOS

The v ... printf functions are known as alternate entry points for the .. . printf
functions. They behave exactly like their .. . printf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vsprintf accepts a pointer to a series of arguments, applies to each a format
specifier contained in the format string pointed to by format, and outputs
the formatted data to a string. There must be the same number of format
specifiers as arguments.

vsprintf returns the number of bytes output. In the event of error, vsprintf
returns EOF.

printf, va_arg, va_end, va_start

stdarg.h

Scans and formats input from a stream.

int vsscanf(canst char *buffer, canst char *farrnat, va_list arglist)i

The v ... scanf functions are known as alternate entry points for the .. . scanf
functions. They behave exactly like their .. . scanf counterparts, but they
accept a pointer to a list of arguments instead of an argument list.

vsscanf scans a series of input fields, one character at a time, n;ading from a
stream. Then each field is formatted according to a format specifier passed
to vsscanf in the format string pointed to by format. Finally, vsscanf stores the
formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there
are input fields.

Chapter 3, Run-time functions 293

II

vsscanf

Return value

See also

wait

Function

Syntax

Remarks

Return value

294

vsseanf might stop scanning a particular field before it reaches the normal
end-of-field (whitespace) character, or it might terminate entirely, for a
number of reasons. See seanf for a discussion of possible causes.

vsseanf returns the number of input fields successfully scanned, converted,
and stored; the return value does not include scanned fields that were not
stored. If no fields were stored, the return value is O.

If vsseanf attempts to read at end-of-string, the return value is EOF.

fseanf, seanf, sscanf, va_arg, va_end, va_start, vfseanf

process.h

Waits for one or more child processes to terminate.

int wait(int *statloc);

The wait function waits for one or more child processes to terminate. The
child processes must be those created by the calling program;' wait cannot
wait for grandchildren-(processes spawned bY,child processes). If statloe is
not NULL, it points to location where wait will store the termination status.
If the child process terminated normally (by calling exit, or returning from
main), the termination status word is defined as follows:

Bits 0-7 Zero.

Bits 8-15 The least significant byte of the return code from the child
process. This is the value that is passed to exit, or is returned
from main. If the child process simply exited from main with­
out returning a value, this value will be unpredictable.

If the child process terminated abnormally, the termination status word is
defined as follows:

Bits 0-7 Termination information about the child:

1 Critical error abort.
2 Execution fault, protection exception.
3 External termination signal.

Bits 8-15 Zero.

When wait returns after a normal child process termination it returns the
process ID of the child.

Library Reference

See also

wcstombs

Function

Syntax

Remarks

Return value

wctomb

Function

Syntax

Remarks

wait

When wait returns after an abnormal child termination it returns -1 to the
parent and sets errno to EINTR.

If wait returns without a child process completion it returns a -1 value and
sets errno to

ECHILD No child process exists

ewait, spawn

stdlib.h

Converts a wchar_t array into a multibyte string.

size_t wcstombs{char *s, const wchar_t *pwcs, size_t n)i

II DOS I UNIX I Win 16 I Win 32 I ANSI C ANSI C++ OS/2

II • I • I • I • I • • •

westombs converts the type wchar_t elements contained in pwes into a
multibyte character string s. The process terminates if either a null character
or an invalid multibyte character is encountered.

No more than n bytes are modified. If n number of bytes are processed
before a null character is reached, the array s is not null terminated.

The behavior of westombs is affected by the setting of LC_CTYPE category
of the current locale.

If an invalid multibyte character is encountered, westombs returns (size_t)
-1. Otherwise, the function returns the number of bytes modified, not
including the terminating code, if any.

Converts wchar_t code to a multibyte character.

stdlib.h I
int wctomb{char *s, wchar_t WC)i

DOS I UNIX Win 16 Win 32 ANSI C ANSI C++ I OS/2 II
I • I • • • • • I • II

If s is not null, wetomb determines the number of bytes needed to represent
the multibyte character corresponding to we (including any change in shift
state). The multibyte character is stored in s. At most MB_CUR_MAX

Chapter 3, Run-time func!ions 295

wctomb

, Return value

wherex

Function

Syntax

Remarks

Return value

See also

wherey

Function

Syntax

296

characters are stored. If the value of wc is zero, wctomb is left in the initial
state.

The behavior of wctomb is affected by the setting of LC_ CTYPE category of
the current locale.

If s is a NULL pointer, wctomb returns a nonzero value if multibyte
character encodings do have state-dependent encodings, and a zero value if
they do not.

If s is not a NULL pointer, wctomb returns -1 if the wc value does not
represent a valid multibyte character. Otherwise, wctomb returns the
number of bytes that are contained in the multibyte character correspond­
ing to wc. In no case will the return value be greater than the value of
MB_CUR_MAX macro.

conio.h

Gives horizontal cursor·position within window.

int wherex(void) i

wherex returns the x-coordinate of the current cursor position (within the
current text win<:iow).

.. This function should not be used in Win32s or Win32 GUI applications.

wherex returns an integer in the range 1 to the number of columns in the
current video mode.

gettextinfo, gotoxy, wherey

conio.h

Gives vertical cursor position within window.

int wherey(void);

Library Reference

wherey

Remarks wherey returns the y-coordinate of the current cursor position (within the
current text window).

.. This function should not be used in Win32s or Win32 GUI applications.

Return value wherey returns an integer in the range 1 to the number of rows in the
current video mode.

See also gettextinfo, gotoxy, wherex

window conio.h

Function Defines active text mode window.

Syntax void window(int left, int top, int right, int bottom);

Remarks window defines a text windowonscreen. If the coordinates are in any way
invalid, the call to window is ignored.

Return value

See also

__ write

Remarks

left and top are the screen coordinates of the upper left corner of the
window. right and bottom are the screen coordinates of the lower right
comer.

The minimum size of the text window is one column by one line. The
default ~indow is full screen, with the coordinates:

1,1,C,R

where C is the number of columns in the current video mode, and R is the
number of rows.

.. This function should not be used in Win32s or Win32 GUI applications.

None.

elreol, elrser, delline, gettextinfo, gotoxy, insline, puttext, textmode

io.h

Obsolete function. See _rtf_write. '

Chapter 3, Run-time functions 297

I

write

write

Function

Syntax

Remarks

Return value

See also

298

io.h

Writes to a file.

int write (int handle, void *buf,unsigned len);

write writes a buffer of data to the file or device named by the given handle.
handle is a file handle obtained from a creat, open, dup, or dup2 call. '

This function attempts to write len bytes from the buffer pointed to by but
to the file associated with handle. Except when write is used to write to a text
file, the number of bytes written to the file will be no more than the number
requested. The maximum number of bytes that write can write is .
UINT_MAX -I, because UINT_MAX is the same as -I, which is the error
return indicator for write. On text files~ when write sees a linefeed (LF)
character, it outputs a CR/LF pair. UINT_MAX is defined in limits.h.

If the number of bytes actually written is less than that requested, the
condition should be considered an error and probably indicates a full disk.

. For disks or disk files, writing always proceeds from the current file
pointer. For devices, bytes are sent directly to the device. For files operied
with the 0 _APPEND option, the file pointer is positioned to EOF by write
before writing the data.

write returns the number of bytes written. A write to a text file does not
count generated carriage returns. Incase of error, write returns -1 and sets
the global variable errno to, one of the following values:

EACCES
EBADF

Permission denied
Bad file number

creat, lseek, open, read, :-rtCwrite

Library Reference

Function

Syntax

Remarks

In a 16·bit Windows
program, the value is
1 if any coprocessor

is detected.

Function

Syntax

c H A p T E R 4

Global variables

Borland C++ provides you with predefined global variables for many
common needs, such as dates, times, command-line arguments, and so on.
This chapter defines and describes them.

dos.h

Coprocessor chip flag.

extern int _8087;

The _8087 variable is set to a nonzero value (1, 2, or 3) if the startup code
auto detection logic detects a floating-point coprocessor (an 8087,80287, or
80387, respectively). The _8087 variable is set to 0 otherwise.

The autodetection logic can be overridden by setting the 87 environment
variable to YES or NO. (The commands are SET 87=YES and SET 87=NO; it is
essential that there be no spaces before or after the equal sign.) If you use
the 87 environment variable, the _8087 variable will reflect the override.

Refer to Chapter 8 in the Programmer's Guide for more information about the
87 environment variable. .

dos.h

Keeps a count of command-line arguments.

extern int _argc;

Chapter 4, Global variables 299

J

Remarks

Function

Syntax

Remarks

_ctype

Function

Syntax

Remarks

_daylight

Function

Syntax

Remarks

See also

300

_argc has the value of argc passed to main when the program starts.

dos.h

An array of pointers to command-line arguments.

extern char **_argvi

OS/2

_argv points to an array containing the original command-line arguments
(the elements of argv[]) passed to main when the program starts.

ctype.h

An array of character attribute information.

extern char _ctype[]i

_ctype is an array of character attribute information indexed by ASCII value
+ 1. Each entry is a set of bits describing the character.

This array is used only by routines affected by the C locale, such as isdigit,
isprint, and so on.

time.h

Indicates whether daylight saving time adjustments will be made.

extern int _daylighti

_daylight is used by the time and date functions. It is set by the tzset, [time,
and localtime functions to i for daylight saving time, 0 for standard time.

_timezone

Library Reference

_directvideo

Function

Syntax

Remarks

_environ

Function

Syntax

Remarks

_directvideo

conio.h

Flag that controls video output.

extern int _directvideo;

_directvideo controls whether your program's console output (from cputs, for
example) goes directly to the video RAM Ldirectvideo = 1) or goes via ROM
BIOS calls Ldirectvideo = 0).

The default value is _directvideo = 1 (console output goes directly to video
RAM). To use _directvideo = 1, your system's video hardware must be
identical to IBM display adapters. Setting _directvideo = 0 allows your
console output to work on any system that is IBM BIOS-compatible.
_directvideo should be used only in character-based applications. It should
not be used in 16-bit Windows, Win32s, or Win32 CUI applications.

dos.h

Accesses the operating system environment variables.

extern char ** _environ;

_environ is an array of pointers to strings; it is used to access and alter the
operating system environment variables. Each string is of the form

envvar = varvalue

where envvar is the name of an environment variable (such as PATH), and
varvalue is the string value to which envvar is set (such as c: \BIN i c: \DOS).
The string varvalue can be empty.

When a program begins execution, the operating system environment set­
tings are passed directly to the program. Note that en v, the third argument
to main, is equal to the initial setting of _environ.

The _environ array can be accessed by getenv; however, the putenv function
is the only routine that should be used to add, change or delete the _environ
array entries. This is because modification can resize and relocate the

Chapter 4, Global variables 301

_environ

See also

Function

Syntax

Remarks

302

process environment array, but _environ is automatically adjusted so that it
always points to the array.

getenv, putenv

Enable perror to print error messages.

extern int_doserrnoi
extern int errnOi
extern char **_sys_errlisti
extern int _sys_nerri

II DOS I UNIX I Win 16 I Win 32

Il • J J 1
I ANSI C

J

dos.h, errno.h

ANSI C++ OS/2 II
• II

errno, _sys_errlist, and _sys_nerr are used by perror to print error messages
when certain library routines fail to accomplish their appointed tasks.
_doserrno is a variable that maps many operating-system error codes to
errno; however, perror does not use _doserrno directly. See the header files
winbase.h and winerror.h for the list of operating-system errors.

• errno: When an error in a math or system call occurs, errno is set to indi­
cate the type of error. Sometimes errno and _doserrno are equivalent. At
other times, errno does not contain the actual operating system error
code, which is contained in _doserrno instead. Still other errors might
occur that set only errno, not _doserrno.

• _doserrno: When an operating-system call results in an error, _doserrno is
set to the actual operating-system error code. errno is a-parallel error
variable inherited from UNIX.

• _sys_errlist: To provide more control over message formatting, the array
of message strings is provided in _sys_errlist. You can use errno as an
index into the array to find the string corresponding to the error number.
The string does not inClude any newline character.

• _sys _nerr: This variable is defined as the number of error message strings
in _sys_errlist.

The following table gives mnemonics and their meanings for the values
stored in _sys_errlist. The list is alphabetically ordered for easier reading.
For the numerical ordering, see the header file errno.h.

Library Reference

Mnemonic

E2BIG
EACCES
EBADF
ECHILD
ECONTR
ECURDIR
EDEADLOCK
EDOM
EEXIST
EFAULT
EINTR
EINVACC
EINVAL
EINVDAT
EINVDRV
EINVENV
EINVFMT
EINVFNC
EINVMEM

EIO
EMFILE
ENAMETOOLONG
ENFILE
ENMFILE
ENODEV
ENOENT
ENOEXEC
ENOFILE
EN OM EM
ENOPATH
ENOS PC
ENOTSAM
ENXIO
EPERM
EPIPE
ERANGE
EROFS
ESPIPE
EXDEV
EZERO

16-bit description

Arg list too long
Permission denied
Bad file number

Memory blocks destroyed
Attempt to remove CurDir

Domain error
File already exists
Unknown error

Invalid access code
Invalid argument
Invalid data
Invalid drive specified
Invalid environment
Invalid format
Invalid function number
Invalid memory block address

Too many open files

No more files
No such device
No such file or directory
Exec format error
No such file or directory
Not enough memory
Path not found

Not same device

Result out of range

Cross-device link
Error 0

32-bit description

. Arg list too long
Permission denied
Bad file number
No child process
Memory blocks destroyed
Attempt to remove CurDir
Locking violation
Math argument
File already exists
Unknown error
Interrupted function call
Invalid access code
Invalid argument
Invalid data
Invalid drive specified
Invalid environment
Invalid format
Invalid function number
Invalid memory block
address
Input/Output error
Too many open files
File name too long
Too many open files
No more files
No such device
No such file or directory
Exec format error
File not found
Not enough core
Path not found
No space left on device
Not same device
No such device or address
Operation 'not permitted
Broken pipe
Result too large
Read-only filesystem
Illegal seek
Cross-device link
Error 0

The following list gives mnemonics for the actual DOS error codes to which
_doserrno can be'set. (This value of _doserrno mayor may riot be mapped
(through errno) to an equivalent error message string in _sys_errlist.

Chapter 4, Global variables 303

Mnemonic DOS error code

E2BIG Bad environ
EACCES Access denied
EACCES Bad access
EACCES Is current dir
EBADF Bad handle
EFAULT Reserved
EINVAL Bad data
EINVAL Bad function
EMFILE Too many open
ENOENT No such file or directory
ENOEXEC Bad format
ENOMEM Out of memory
ENOMEM Bad block
EXDEV 'Bad drive
EXDEV Not same device

Refer to your DOS reference manual for more information. about DOS error
return codes.

_floatconvert stdio.h

Function Links the floating-point formats.

Syntax extern int _floatconvert;

Remarks Floating-point output requires linking of conversion routines used by
print!, scan!, and any variants of these functions. To reduce executable size,
the floating-point formats are not automatically linked. However, this
linkage is done automatically whenever your program uses a mathematical
routine or the address is taken of some floating-point number. If neither of
these actions occur the missing floating-point formats can result in a run­
time error.

304

The following program illustrates how to set up your program to properly
execute.

Library Reference

Function

Syntax

Remarks

Function

Syntax -

1* PREPARE TO OUTPUT FLOATING-POINT NUMBERS. *1
#include <stdio.h>

#pragma extref _floatconvert

void main() {
printf("d = %If\n", 1);

Determines default file-translation mode.

extern int _fmode;

Jloatconvert

fcntl.h

Jmode determines in which mode (text or binary) files will be opened and
translated. The value of Jmode is O_TEXT by default, which specifies that
files will be read in text mode. If Jmode is set to O_BINARY, the files are
opened and read in binary mode. (O_TEXT and O_BINARY are defined in
fcntl.h.)

In text mode, carriage-return/linefeed (CR/LF) combinations are translated
to a single linefeed character (LF) on input. On output, the reverse is true:
LF characters are translated to CR/LF combinations.

In binary mode, no such translation occurs.

You can override the default mode as set by Jmode by specifying a t (for
text mode) or b (for binary mode) in the argument type in the library
functions fopen, fdopen, and freopen. Also, in the function open, the argument
access can include either O_BINARY or O_TEXT, which will explicitly
define the file being opened (given by the open pathname argument) to be in
either binary or text mode.

Traps new allocation miscues.

typedef void (*pvf) ();
pvf _new_handler;

Chapter 4, Global variables 305

Remarks

As an alternative, you can set using the function set_new_handler, like this:

pvf set_new_handler(pvf p)i

ANSI C++ OS/2

_new_handler contains a pointer to a function that takes no arguments and
returns void. If operator newO is unable to allocate the space required, it
will call the function pointed to by _new _handler; if that function returns it
will try the allocation again. By default, the function pointed to by
_new_handler terminates the application. The application can replace this
handler, however, with a function that can try to free up some space. This is
done by assigning directly to _new _handler or by calling the function
set_new_handler, which returns a pointer to the former handler~

, _new_handler is provided primarily for compatibility with C++ version 1.2.
In most cases this functionality can be better provided by overloading
operator newO.

_osmajor, _osminor, _osversion dos.h

Function

Syntax

Remarks

306

Contain the major and minor operating-system version numbers.

extern unsigned char _osmajor;
extern unsigned char _osminor;
extern unsigned _osversion;

The major and minor version numbers are available individually through
_os major and _osminC?r. _osmajor is the major version number, and _osminor
is the minor version number. For example, if you are running DOS version
3.2, _osmajor will be 3 and _osminor will be 20.

_osversion is functionally identical to _version. See the discussion of _version.

These variables can be useful when you want to write modules that will
run on DOS versions 2.x and 3.x. Some library routines behave differently
depending on the DOS version number; other routines work under DOS 3.x
only. (For example, refer to _rttopen, ereatnew, and ioetl in this book.)

Library Reference

Function

Syntax

Remarks

_threadid

Function

Syntax

Remarks

dos.h

Contains the segment address of the program segment prefix (PSP) for the
current program.

extern unsigned inf -PSPi

OS/2

The PSP is a DOS process descriptor; it contains initial DOS information
about the program.

Refer to the DOS Programmer's Reference Manual for more information on
the PSP.

stddef.h

Pointer to thread ID.

extern long _threadidi

_threadid is a long integer that contains the ID of the currently executing
thread. It is implemented as a macro, and should be declared only by
including stddef.h.

__ throwExceptionName, __ throwFileName, __ throwLineNumber except.h

Function

Syntax

Remarks

Generates information about a thrown exception.

_extern char * __ throwExceptionNamei
extern char * __ throwFileNamei
extern char * __ throwLineNumberi

OS/2

Use these global variables to get the name and location of a thrown
exception. The output for each of the variables is a printable character
string.

Chapter 4, Global variables 307

_timezone

_timezone

Function

Syntax

Remarks

See also

_tzname

Function

Syntax

Remarks

_version

Function

Syntax

308

To get the file name and line number for a thrown excep~ion with
__ throwFileName and _ _ throwLineNumber, you must compile the module
with the -xp compiler option.

time.h

Contains difference in seconds between local time and GMT.

extern long _timezone;

_timezone is used by the time-and-date functions.

This variable is calculated by then tzset function; it is assigned a long value
that is the difference, in seconds, between the current local time and
Greenwich mean time.

_daylight

time.h

Array of pointers to time-zone names.

extern char * _tzname[2J

The global variable _tzname is an array of pointers to strings containing
abbreviations for time-zone names. _tzname[O] points to a three-character
string with the value of the time-zone name from the-TZ environment
string. The global variable _tzname[l] points to a three-character string with
the value of the daylight-saving time-zone name from the TZ environment
string. If no daylight saving name is present,_tzname[l] points to a null .
string.

dos.h

Contains the operating-system version number.

extern unsigned _version;

Library Reference

Remarks

_wscroll

Function

Syntax

Remarks

_version

"

DOS I UNIX I Win 16 I Win 32 ANSI C ANSI C++ I OS/2 "

"

• I I • • I •

" _version contains the operating-system version number, with the major
version number in the high byte and the minor version number in the low
byte. For a 32-bit application, this layout of the version number is in the
low word. (For DOS version x.y, the x is the major version number, and y is
the minor.)

conio.h

Enables or disables scrolling in console I/O functions.

extern int _wscroll

_wscroll is a console I/O flag. Its default value is 1. If you set _wscroll to 0,
scrolling is disabled. This can be useful for drawing along the edges of a
window without having your screen scroll.

_wscroll should be used only in character-based applications. It is available
for EasyWin but it should not be used in any GUI application.

Chapter 4, Global variables 309

310 Library Reference

Online help provides
sample programs for

many iostream
classes.

conbuf class

c H A p T E R 5

The C++ iostream classes

The stream class library in C++ consists of several classes distributed in two
separate hierarchical trees. See the Programmer's Guide, Chapter 6, for an
illustration of the class hierarchies. This reference presents some of the
most useful details of these classes, in alphabetical order. The following
cross-reference table tells which classes belong to which header files.

Header file

constrea.h

iostream.h

fstream.h
strstrea.h

Classes

conbuf, constream (These classes are available only for console-mode
applications.)
ios, iostream, iostream_withassign, istream, istream_withassign,
ostream, ostream_ withassign, streambuf
filebuf, fstream, fstreambase, ifstream, of stream
istrstream, ostrstream, strstream, strstreambase, strstreambuf

constrea.h

conbuf is available Specializes streambuf to handle console output.
only for console-

mode applications.

Constructor

clreol

clrscr

Public constructor

conbuf ()

Makes an unattached conbuf.

Public member functions

void clreol ()

Clears to end of line in text window.

void clrscr ()

Chapter 5, The C++ iostream classes 311

conbuf class

delline

gotoxy

highvideo

insline

lowvideo

normvideo

overflow

setcursortype

textattr

textbackground

textcolor

textmode

wherex

wherey

312

Clears the defined screen.

void delline ()

Deletes a line in the window.

void gotoxy(int Xi int y)

Positions the cursor in the window at the specified location.

void highvideo ()

Selects high-intensity characters.

void ins line ()

Inserts a blank line.

void lowvideo ()

Selects low-intensity characters.

void normvideo()

Selects normal-intensity characters.

virtual int overflow(int = EOF)

Flushes the conbuf to its destination.

void setcursortype(int cur_type)

Selects the cursor appearance.

void textattr(int newattribute)

Selects cursor appearance.

void textbackground(int newcolor)

Selects the text background color.

void textcolor(int newcolor)

Selects character color in text mode.

static void textmode(int newmode)

Puts the screen in text mode.

int wherex ()

Gets the horizontal cursor position.

int wherey ()

Gets the vertical cursor position.

Library Reference

window void window(int left, int top, int" right, int bottom)

Defines the active window.

conbuf class

constream class constrea.h

constream is Provides console output streams. This class is derived from ostream.
available only for

console-mode
applications. Public constructor

Constructor constream ()

clrscr

rdbuf

textmode

window

filebuf class

Provides an unattached output stream to the console.

Public member functions

void clrscr ()

Clears the screen.

conbuf *rdbuf ()

Returns a pointer to this constream's assigned conbuf.

void textmode(int newmode)

Puts the screen in text mode.

void window(int left, int top, int right, int bottom)

Defines the active window.

fstream.h

Specializes streambuf to use files for input and output of characters. The
filebuf class manages buffer allocation and deletion, and seeking within a
file. This class also permits unbuffered file I/O by using the appropriate
constructor or the member function filebuf::setbuf. By default, files are
opened in openprot mode to allow reading and writing. See page 319 for a
list of file-opening modes.

The filebuf class only provides basic services for file I/O. Input and output
to a filebuf can only be done with the low-level functions provided by
streambuf. Higher level classes provide formatting services.

Chapter 5, The C++ iostream classes 313

filebuf class

Constructor

Constructor

openprot

attach

close

fd

314

Public constructors

filebuf () ;

Makes a filebuf that isn't attached to a file.

filebuf(int fd)i

Makes a filebuf attached to a file as specified by file descriptor fd.

filebuf(int fd, char *buf, int n) i

Makes a filebuf attached to a file specified by the file descriptor fd, and uses
buf as the storage area. The size of buf is sufficient to store n bytes. If buf is
NULL or n is non-positive, the filebuf is unbuffered.

Public data members

static canst int openprot

The default file protection. The exact value of openprot should not be of
interest to the user. Its purpose is to set the file permissions to read and
write.

Public member functions

filebuf* attach(int fd)

Connects this closed filebuf to a file specified by the file descriptor fd. If the
file buffer is already open, attach fails and returns NULL. Otherwise, the file
buffer is connected to fd.

filebuf* close()

Flushes and closes the file. Generally, it is not necessary to make an explicit
call to close at your program's end because proper file closing is ensured by
the filebuf destructor. An explicit call to close is useful when you want to
disconnect the filebuf from your program.

Returns a on error, for example, if the file was already closed. Otherwise,
the function returns a reference to the filebuf (the this pointer).

int fd()

Returns the file descriptor or EOF.

int is_open()i

Library Reference

open

overflow

seekoff

setbuf

sync

underflow

fstream class

filebuf class

Returns nonzero if the file is open.

filebuf* open(const char *filename, int mode,
int prot = filebuf::openprot)i

Opens the file specified by filename and connects to it. The file-opening
mode is specified by mode.

virtual int overflow(int c = EOF);

'Flushes a buffer to its destination. Every derived class should define the
actions to be taken.

virtual streampos seekoff(streamoff offset, dir ios::seek_dir, int mode)i

Moves the file get/ put pointer an offset number of bytes. The pointer is
moved in the direction specified by dir relative to the current position. mode
can specify read (ios::in), write (ios::out), or both. If mode is ios::in, the get
pointer is adjusted. If mode is ios::out, the put pointer is adjusted.

If successful, the seekoff function returns a streampos-type value that
indicates the new file pointer position.

The function can fail if the file does not support repositioning or you
request an illegal pointer repositioning, for example, beyond the end of the
file. On failure, seekoff returns EOF. The file pointer position is undefined.

virtual streambuf* setbuf(char *buf, int len);

Allocates buf of size len for use by the filebuf. If buf is NULL or len is a non­
positive value, the filebuf is unbuffered:

On success, setbuf returns a pointer to the filebuf. A failure occurs if the file
is open and a buffer has been allocated. On failure, setbuf returns NULL
and no changes are made to the buffering status.

virtual int sync();

Establishes consistency between internal data structures and the external
stream representation.

virtual int underflow();

Makes input available. This is called when no more data exists in the input
buffer. Every derived class should define the actions to be taken.

fstream.h

This stream class, derived from fstreambase and iostream, provides for
simultaneous input and output on a filebuf.

Chapt~r 5, The C++ iostream classes 315

fstream class

Constructor

Constructor

Constructor

Constructor

open

rdbuf

Public constructors

fstream () i

Makes an fstream that isn't attached to a file.

fstream(const char *name, int mode, int prot = filebuf::openprot)i

Makes an fstream, opens a file with access as specified by mode, and
connects to it. See page 319 for access options provided by ios::open_mode.

fstream(int fd)i

Makes an fstream and connects to an open-file descriptor specified by fd.

fstream(int fd, char *buf, int n)i

Makes a fstream attached to a file specified by the file descriptor fd, and uses
buf as the storage area. The size of buf is sufficient to store n bytes. If buf is
NULL or n is non-positive, the fstream is unbuffered.

Public mel11ber functions

void open(const char *name, int mode, int prot = filebuf::openprot)i

Opens a file specified by name for an fstream. The file-opening mode is
specified by the variable mode.

filebuf* rdbuf()i

Returns the filebuf used.

fstreambase class fstream.h

Constructor

Constructor

316

This stream class, derived from ios, provides operations common to file
streams. It serves as a base for fstream, ifstream, and of stream.

Public constructors

fstreambase()i

Makes an fstreambase that isn't attached to a file.

fstreambase(const char *name, int mode, int = filebuf::openprot)i

Library Reference

Constructor

Constructor

attach

close

open

rdbuf

setbuf

fstreambase class

Makes an fstreambase, opens a file specified by name in mode specified by
mode, and connects to it.

fstreambase(int fd);

Makes an fstreambase and connects to an open-file descriptor specified by fd.

fstreambase(int fd, char *buf, int len);

Makes an fstreambase connected to an open-file descriptor specified by fd.
The buffer is specified by buf and the buffer size is len.

Public member functions

void attach(int fd);

Connects to an open-file descriptor.

void close();

Closes the associated filebuf and file.

void open(const char *name, int mode, int prot = filebuf::openprot);

Opens a file for an fstreambase. The file-opening mode is specified by mode.

filebuf* rdbuf();

Returns the filebuf used.

void setbuf(char *bu~, int len);

Reserves an area of memory pointed to by buf. The area is sufficiently large
to store len number of bytes.

ifstream class ' fstream.h

Constructor

Constructor

This stream class, derived from fstreambase and istream, provides input
operations on a filebuf.

Public constructors

ifstream () ;

Makes an ifstream that isn't attached to a file.

ifstream(const char *name, int mode = ios::in,
int prot = filebuf::openprot);

Chapter 5, The C++ iostream classes 317

ifstream class

Constructor

Constructor

open

rdbuf

ios class

318

Makes an ifstream, opens a file for input in protected mode, and connects to
it. By default, the file is not created if it does not already exist.

ifstream(int fd);

Makes an ifstream and connects to an open-file descriptor fd.

ifstream(int fd, char *buf, int buf_len);

Makes an ifstream connected to an open file. The file is specified by its
descriptor, fd. The ifstream uses the buffer specified by buJof length buf_Ien.

Public member functions

void open(const char *name, int mode, int prot = filebuf::openprot);

Opens a file for an ifstream.

filebuf* rdbuf();

Returns the filebuf used.

iostream.h

Provides operations common to both input and output. Its derived classes
(istream, ostream, iostream) specialize I/O with high-level formatting
operations. The ios class is a base for istream, ostream, fstreambase, and
strstreambase.

Public data members

The following three constants are used as the second parameter of the setf
function:

static const long adjustfield; / / left I right I internal
static const long basefield; / / dec I oct I hex
static const long floatfield; / / scientific I fixed

Stream seek direction: .

enum seek_dir { beg=O, cur=l, end=2 };

Library Reference

ios class

Stream operation mode. These can be logically ORed:

enum open_mode

} ;

app,
ate,
in,
out,
binary,
trunc,

nocreate,
noreplace,

Append data-always write at end of file.
Seek to end of file upon original open.
Open for input (default for ifstreams). -
Open fqr output (default for of streams).
Open file in binary mode.
Discard contents if file exists (default if out is specified
and neither ate nor app is specified).
If file does not exist, open fails.
If file exists, open for output fails unless ate or app is
set.

Format flags used with flags, setf, and unsetf member functions:

enum {

} ;

skipws,
left,
right,
internal,
dec,
oct,
hex,
showbase,
showpoint,
uppercase,
showpos,
scientific,

fixed,
unitbuf,
stdio,

Skip whitespace on input.
Left-adjust output.
Right-adjust output.
Pad after sign or base indicator.
Decimal conversion.
Octal conversion.
Hexadecimal conversion.
Show base indicator on output.
Show decimal point for floating-point output.
Uppercase hex output.
Show '+' with positive integers.
Suffix floating-point numbers with exponential (E)
notation on output.
Use fixed decimal point for floating-point numbers.
Flush all streams after insertion.
Flush stdout, stderr after insertion.

Protected-data members

streambuf
int
long
int

Chapter 5, The C++ iostream classes

*bp;
x_fill;
x_flags;
xJ)recision;

/ / The associated streambuf
/ / Padding character of output
/ / Formatting flag bits
/ / Floating-point precision on output

319

ios class

Constructor

Constructor

bad

bitalloc

clear

eof

fail

fill

fill

flags

320

int
ostrearn
int

state;
*x_tie;
x_width;

/ / Current state of the streambuf
/ / The tied ostream, if any
/ / Field width on output

Public constructor

ios(strearnbuf *);

Associates a given streambuf with the stream.

Protected constructor

ios () ;

Constructs an ios object that has no corresponding streambuf.

Public member functions

int bad () ;

Nonzero if error occurred.

static long bitalloc();

Acquires a new flag bit set. The return value can be used to set, clear, and
test the flag. This is for user-defined formatting flags.

void clear(int = 0);

Sets the stream state to the given value.

int eof();

Nonzero on end of file.

int fail () ;

Nonzero if an operation failed.

char fill ()

Returns the current fill character.

char fill (char) ;

Resets the fill character; returns the previous character.

long flags () ;

Returns the current format flags.

Library Reference

flags

good

precision

precisi~n

rdbuf

rdstate

setf

setf

tie

tie

unsetf

ios class

long flags(long);

Sets the format flags to be identical to the given long; returns previous
flags. Use flags (0) to set the default format.

int good();

Nonzero if no state bits were set (that is, no errors appeared).

int precision();

Returns the current floating-point precision.

int precision(int);

Sets the floating-point precision; returns previous setting.

streambuf* rdbuf();

Returns a pointer to this stream's assigned streambuf.

int rdstate();

long setf(long);

Sets the flags corresponding to those marked in the given long; returns
previous settings.

long setf(long _setbits, long _field);

The bits corresponding to those marked in Jield are cleared, and then reset
to be those marked in _setbits.

static void sync_with_stdio();

Mixes stdio files and iostreams. This should not be used for new code.

ostream* tie();

Returns the tied stream, or NULL if there is none. Tied streams are those
that are connected such that when one is used, the other is affected. For
example, cin and cout are tied; when cin is used, it flushes cout first.

ostream* tie(ostream *out);

Ties another stream to the output stream out and returns the previously
tied stream. If the stream was not previously tied, tie returns NULL.

When an input stream has characters to be consumed, or if an output
stream needs more characters, the tied stream is first flushed automatically.
By default, cin, cerr and clog are tied to cout.

long unsetf(long f);

Chapter 5, The C++ iostream classes 321

ios class

width

width

xalloc

init

setstate

iostream class

Constructor

Clears the bits corresponding to [and returns a long that represents the
previous settings.

int width();

Returns the current width setting.

int width (int) ;

Sets the width as given; returns the previous width.

static int xalloc();

Returns an array index of previously unused words that can be used as
user-defined formatting flags.

Protected member functions

void init(strearnbuf *);

Provides the actual initialization.

void setstate(int);

Sets all status bits.

iostream.h

This class, derived from istream and ostream, is a mixture of its base classes,
allowing both input and output on a stream. It is a base for [stream and
strstream.

Public constructor

iostrearn(strearnbuf *);

Associates a given streambu[with the stream.

iostream_withassign class iostream.h

This class is an iostream with an added assignment operator.

322 Library Reference

Constructor

istream class

Constructor

gcount

get

get

iostream_withassign class

Public constructor

iostream_withassign();

Default constructor (calls iostream's constructor).

Public member functions

None (although the = operator is overloaded).

iostream.h

Provides form'!tted and unformatted input from a streambuf. The »
operator is overloaded for all fundamental types, as explained in the
narrative at the beginning of the chapter. This ios class is a base for ifstream,
iostream, istrstream, and istream_withassign.

Public constructor

istream(streambuf *);

Associates a given streambuf with the stream.

Public member functions

int gcount();

Returns the number of characters last extracted.

int get () ;

Extrads the next character or EOF.

istream& get(char *buf, int len, char delim = '\n');
istream& get (signed char *buf, int len, char delim = '\n');
istream& get (unsigned char *buf, int len, char delim = '\n');

Extracts characters and stores them in buf until the delimiter, specified by
delim, or end-of-file is encountered, or until (len -1) bytes have been read. A
terminating null is always placed in the output string; the delimiter never
is. The delimiter remains in the stream. Fails only if no characters were
extracted.

Chapter 5, The C++ iostream classes 323

istream class

get

get

getline

ignore

ipfx

peek·

putback

read

seekg

seekg

324

The get function fails if it encounters the end of file before any characters
are stored. On failure, get sets ios::failbit.

istream& get (char &Ch)i
istream& get (signed char &Ch)i
istream& get (unsigned char &ch) i

Extracts a single character into the ch reference.

istream& get(streambuf &sbuf, char de lim = '\n')i

Extracts characters into the given sbuf reference until delim is encountered.

istream& getline(char *buf, int len, char) i

istream& getline(signed char *buf, int len, char delim = '\n')i
istream& get line (unsigned char *buf, int len, char delim = '\n') i

Same as get, except the delimiter is also extracted. Generally, the specified
delim is not copied to buf. However, if the delimiter is encountered exactly
when len characters have been extracted, delim is not extracted.

istream& ignore(int n = 1, int delim = EOF)'i

Causes up to n characters in the input stream to be skipped; stops if delim is
encountered. .

istream& ipfx(int n = O)i

The ipfx function is called by input functions prior to fetching from an input
stream. Functions that perform formatted input call ipfx(O); unformatted
input functions call ipfx(l).

int peek()i

Returns next char without extraction.

istream& putback(char)i

Pushes back a character into the stream.

istream& read(char*, int)i
istream& read(signed char*, int)i
istream& read(unsigned char*, int)i

Extracts a given number of characters into an array. Use gcount for the
number of characters actually extracted if an error occurred.

istream& seekg(streampos POS)i

Moves to an absolute position in the input stream.

istream& seekg(streamoff offset, seek_dir dir) i

Library Reference

tellg

eatwhite

istream class

Moves offset number of bytes relative to the current position for the input
stream. The offset is in the direction specified by dir following the
definition: enum seek_dir {beg, cur, end};

Use ostream::seekp for positioning in an output stream.

Use seekpos or seekoff for positioning in a stream buffer.

streampos tellg();

Returns the current stream position. On failure, tellg returns a negative
number.

Use ostream::tellp to find the position in an output stream.

Protected member functions

void eatwhite();

Extract consecutive whitespace.

istream_withassign class iostream.h

This class is an istream with an added assignment operator.

Public constructor

Constructor istream_withassign();

Default constructor (calls istream's constructor).

Public member functions

None (although the = operator is overloaded).

istrstream class strstrea.h

Provides input operations on a strstreambuf. This class is derived from
strstreambase and istream.

Chapter 5, The C++ iostream classes 325

istrstream class

Constructor

Constructor

of stream class

Constructor

Constructor

Constructor

Constructor

326

Public constructors

istrstream(char *);
istrstream(signed char *);
istrstream(unsigned char *);

Each of the constructors above makes an istrstream with a specified string (a
null character is never extracted). See "The three char types" in Chapter 1
of the Programmer's Guide for a discussion of character types.

istrstream(char *str, int n);
istrsteam(signed char *str, int);
istrstream(unsigned char *str, int);

Each of the three constructors above makes an istrstream using up to n bytes
of str. See "The three char types" in Chapter 1 of the Programmer's Guide for
a discussion of character types.

fstream.h

Provides input operations on a filebuf. This class is derived from fstreambase
and ostream.

Public constructors

ofstream();

Makes an ofstream that isn't attached to a file.

ofstream(const char *name, int mode = ios::out,
int prot = filebuf::openprot);

Makes an afstream, opens a file, and connects to it.

ofstream(int fd);

Makes an afstream and connects to an open-file descriptor specified by fd.

ofstream(int fd, char *buf, int len);

Makes an afstream connected to an open-file descriptor specified by fd. The
buffer specified by buf of len is used by the afsfream.

Library Reference

open

rdbuf

ostream class

Constructor

flush

opfx

osfx

put

of stream class

Public member functions

void open(const char *name, int mode = ios::out,
int prot = filebuf::openprot);

Opens a file for an ofstream.

filebuf* rdbuf();

Returns the fiZebuf used.

iostream.h

Provides formatted and unformatted output to a streambuf. The «operator
is overloaded for all fundamental types. This ios-based class is a base for
constream, iostream, ofstream, ostrstream, and ostream_withassign.

Public constructor

ostream(streambuf *);

Associates a given streambuf with the stream.

Public member functions

ostream& flush();

Flushes the stream.

int opfx();

The opfx function is called by output functions prior to inserting to an
output stream~ opfx returns 0 if the ostream has a nonzero error state.
Otherwise, opfx returns a nonzero value.

void osfx () ;

The osfx function performs post output operations. If ios::unitbuf is on, opfx
flushes the ostream. On failure, opfx sets ios::
failbit.

ostream& put (unsigned char ch);
ostream& put (char ch) i

ostream& put (signed char ch);

Inserts the character.

Chapter 5, The C++ iostream classes 327

ostream class

seekp

seekp

tellp

write

ostream& seekp(streampos)i

Moves to an absolute position (as returned from tellp).

ostream& seekp(streamoff, seek_dir)i

Moves to a position relative to the current position, following the
definition: enum seek_dir (beg, cur, end);

streampos tellp()i

Returns the current stream position.

ostream& write(const signed char*, int n)i
ostream& write(const unsigned char*, int n)i
ostream& write(const char*, int n)i

Inserts n characters (nulls included).

ostream_withassign class iostream.h

This class is an ostream with an added assignment operator.

Public constructor

Constructor ostream_withassign()i

Default constructor (calls ostream's constructor).

Public member functions

None (although the = operator is overloaded).

ostrstream class strstrea.h

Constructor

328

Provides output operations on a strstreambuf. This class is derived from
strstreambase and ostream.

Public constructors

ostrstream () i

Library Reference ,

Constructor

p~ount

str

Makes a dynamic ostrstream.

ostrstream(char *buf, int len, int mode = ios::out)i
ostrstream(signed char *buf, int len, int mode = ios::out)i
ostrstream(unsigned char *buf, int len, int mode = ios::out)i

ostrstream class

Each of the three constructors above makes a ostrstream with a specified
len-byte buffer. If the file-opening mode is ios::app or ios::ate, the get/put
pointer is positioned at the null character of the string. See "The three char
types" in Chapter 1 of the Programmer's Guide for a discussion of character
types.

Public member functions

int pcount()i

Returns the number of bytes currently stored in the buffer.

char *str()i

Returns and freezes the buffer. You must deallocate it if it was dynamic.

streambuf class iostream.h

Constructor

Constructor

This is a base class for all other buffering classes. It provides a buffer
interface between your data and storage areas such as memory or physical
devices. The buffers created by streambuf are referred to as get, put, and
reserve areas. The contents are accessed and manipulated by pointers that
point between characters.

Buffering actions performed by streambuf are rather primitive. Normally,
applications gain access to buffers and buffering functions through a
pointer to streambuf that is set by ios. Class ios provides a pointer to
streambuf that provides a transparent access to buffer services for high-level
classes. The high-level classes provide I/O formatting.

Public constructors

streambuf()i

Creates an empty buffer object.

streambuf(char *buf, int size)i

Chapter 5, The C+-+: iostream classes 329

streambuf class

ouCwaiting

sbumpc

seekoff

seekpos

setbuf

sgetc

sgetn

snextc

sputbackc

sputc

sputn

330

Constructs an empty buffer but and sets up a reserve area for size number of
bytes.

Public member functions

int in_avail();

Returns the number of characters remaining in the input buffer.

int out_waiting();

Returns the number of characters remaining in the output buffer.

int sbumpc();

Returns the current character from the input buffer, then advances.

virtual streampos seekoff(streamoff, ios::seek_dir,
int = (ios::in I ios::out);

Moves the get and/or put pointer (the third argument determines which
one or both) relative to the current position.

virtual streampos seekpos(streampos, int = (ios::in I ios::out));

Moves the get or put pointer to an absolute position.

virtual streambuf* setbuf(char *, int);

Connects to a given buffer.

int sgetc();

Peeks at the next character in the input buffer.

int sgetn(char*, int n);

Gets the next n characters from the input buffer.

int snextc();

Advances to and returns the next character from the input buffer.

int sputbackc(char);

Returns a character to input.

int sputc (int) ;

Puts one character into the output buffer.

int sputn(const char*, int n);

Puts n characters into the output buffer.

Library Reference

stossc

allocate

base

bien

eback

ebuf

egptr

epptr

gbump

gptr

pbase

pbump

pptr

void stossc();

Advances to the next character in the input buffer.

Protected member functions

int allocate () ;

Sets up a buffer area.

char *base();

Returns the start of the buffer area.

int blen();

Returns the length of the buffer area.

char *eback();

Returns the base of the putback section of the get area.

char *ebuf();

Returns the end + 1 of the buffer area.

char *egptr();

Returns the end + 1 of the get area.

char *epptr();

Returns the end+l of the put area.

void gbump(int);

Advances the get pointer.

char *gptr () ;

Returns the next location in the get area.

char *pbase();

Returns the start of the put area.

void pbump (int) ;

Advances the put pointer.

char *pptr () ;

Returns the next location in the put area.

Chapter 5, The C++ iostream classes

streambuf class

331

streambuf class

setb void setb(char *, char *, int = 0);

Sets the buffer area.

setg void setg(char *; char *, char *);

Initializes the get pointers.

setp void setp(char *, char *);

Initializes the put pointers.

unbuffered void unbuffered(int) ;

Sets the buffering state.

unbuffered int unbuffered();

Returns nonzero if not buffered.

strstreambase class strstrea.h

Constructor

Constructor

rdbuf

Specializes ios to string streams. This class is entirely protected except for
the member function strstreambase::rdbuf. This class is a base for strstream,
istrstream, and ostrstream.

Public constructors

strstreambase();

Makes an empty strstreambase.

strstreambase(char *, int, char *start);

Makes an strstreambase with a specified buffer and starting position.

Public member functions

strstreambuf * rdbuf();

Returns a pointer to the strstreambuf associated with this object.

strstreambuf class strstrea.h,

Specializes streambuf for in-memory formatting.

332. Library Reference

Constructor

Constructor

Constructor

Constructor

doallocate

freeze

overflow

seekoff

setbuf

str

strstreambuf class

Public constructors

strstreambuf();

Makes a dynamic strstreambuf. Memory will be dynamically allocated as
needed.

strstreambuf(void * (*) (long), void (*) (void *));

Makes a dynamic bufferwith specified allocation and free functions.

strstreambuf(int n);

Makes a dynamic strstreambuf, initially allocating a buffer of at least n bytes.

strstreambuf(char*, int, char *strt = 0);
strstreambuf(signed char *, int, signed char *strt = 0);
strstreambuf(unsigned char *, int, unsigned char *strt = 0);

Each of the three constructors above makes a static strstreambuf with a
specified buffer. If strt is not null, it delimits the buffer. See "The three char
types" in Chapter 1 of the Programmer's Guide for a discussion of character
types.

Public member functions

virtual intdoallocate();

Performs low-level buffer allocation.

void freeze(int = 1);

If the input parameter is nonzero, disallows storing any characters in the
buffer. Unfreeze by passing a zero.

virtual int overflow(int);

Flushes a buffer to its destination. Every derived class should define the
actions to be taken.

virtual streampos seekoff(streamoff, ios::seek_dir, int);

Moves the pointer relative to the current position.

virtual streambuf* setbuf(char*, int);

Specifies the buffer to use.

char *str();

Returns a pointer to the buffer and freezes it.

Chapter 5, The C++ iostream classes 333

strstreambuf class

sync

underflow

strstream class

Constructor

Constructor

str

334

virtual int sync();

Establishes consistency between internal data structures and the external
stream representation.

virtual int underflow();

Makes input available. This is called when a character is requested and the
strstreambuf is empty. Every derived class should define the actions to be
taken.

strstrea.h

Provides for simultaneous input and output on a strstreambuf. This class 'is
derived from strstreambase and iostream.

Public constructors

strstream();

Makes a dynamic strstream.

strstream(char *buf, int sz, int mode);
strstream(signed char *buf, int sz, int mode);
strstream(unsigned char *buf, int sz, int mode);

Each of the three constructors above makes a strstream with a specified sz­
byte buffer. If mode is ios::app or ios::ate, the get/put pointer is positioned at
the null character of the string. See "The three char types" in Chapter 1 of
the Programmer's Guide for a discussion of character types.

Public member function

char *str () ;

Returns and freezes the buffer. The user must deallocate it if it was
dynamic.

Library Reference

To learn how to use
the persistent

streams library, see
Chapter 7 in the

Programmers Guide.

c H A p T E R

Persistent stream classes and
macros

6

Borland support for persistent streams consists of a class hierarchy and
macros to help you develop streamable objects. This chapter is a reference
for these classes and macros. It alphabetically lists and describes all the
public classes that support persistent objects. The class descriptions are
followed by descriptions of the __ DELTA macro and the streaming
macros. The streaming macros are provided to simplify the declaration and
definition of streamable classes.

The persistent streams class hierarchy

Figure 6.1
Stream able class

hierarchy

The persistent streams class hierarchy is shown in the following figure:

.. The gray arrows connecting TStreamableBase indicate that it is a friend class.

Chapter 6, Persistent stream classes and macros 335

fpbase class

fpbase class

Constructor

attach

close

open

rdbuf

setbuf

ifpstream class

336

objstm.h

Provides the basic operations common to all object file stream I/O.

Constructors

fpbase();
fpbase(const char _FAR *name, int omode, int prot = filebuf::openprot);
fpbase (int f);
fpbase(int f, char _FAR *b, int len);

Creates a buffered fpbase object. You can set the size and initial contents of
the buffer with the len and b arguments. You can open a file and attach it to
the stream by specifying the name, mode, and protection (prot) arguments,
or by using the file descriptor, f.

Public member functions

void attach(int f);

Attaches the file with descriptor f to this stream if possible. Sets ios::state
accordingly.

void close();

Closes the stream and associated file.

void open(const char _FAR *name, int mode, int prot = filebuf::openprot);

Opens the named file in the given mode (app, ate, in, out, binary, trunc,
nocreate, noreplace) and protection. The opened file is attached to this
stream.

filebuf _FAR * rdbuf();

Returns a pointer to the current file buffer.

void setbuf(char _FAR *buf, int len);

Allocates a buffer of size len.

objstrm.h

Provides the base class for reading (extracting) streamable objects from file
streams.

Library Reference

Constructor

open

rdbuf

ipstream class

Constructor

find

ifpstream class

Public constructors

ifpstream () j

ifpstream(const char _FAR *name, int mode = ios::in, int prot =
filebuf::openprot)j

ifpstream(int f)j

ifpstream(int f, char _FAR *b, int len) j

Creates a buffered ifpstream object. You can set the size and initial contents
of the buffer with the len and 'b arguments. You can open a file and attach it
to the stream by specifying the name, mode, and protection arguments, or
via the file descriptor, f.

Public member functions

void open(const char _FAR *name, int mode = ios::in, int prot =
filebuf::openprot)j

Opens the named file in the given mode (app, ate, in, out, binary, trunc,
nocreate, or noreplace) and protection. The default mode is in (input) with
openprot protection. The opened file is attached to this stream.

filebuf _FAR * rdbuf()j

Returns a pointer to the current file buffer.

objstrm.h

Provides the base class for reading (extracting) streamable objects.

Public constructors

ipstream(streambuf *buf)j

Creates a buffered ipstream with the given buffer and sets the bp data
member to buf. The state is set to O.

Public member functions

TStreamableBase _~AR * find(P_id_type Id)j

Returns a pointer to the object corresponding to Id.

Chapter 6, Persistent stream classes and macros 337

ipstream class

freadBytes

freadString

getVersion

read Byte

read Bytes

. readString

readWord-

readWord16

readWord

registerObject

338

void freadBytes(void far *data, size_t sz);

Reads into the supplied far buffer (data) the number of bytes specified by sz.

char *freadString();

Reads a string from the stream. Determines the length of the string and
allocates a far character array of the appropriate length. Reads the string
into this array and returns a pointer to the string. The caller is expected to
free the·allocated memory block. .

char * freadString (char far *buf, unsigned maxLen);

Reads a string from the stream into the supplied far buffer (but>: If the
length of the string is greater than maxLen-l, reads nothing. Otherwise

. reads the string into the buffer and appends a null terminating byte.

uint32 getVersion() const;

Returns the object version number.

uint8 readByte();

Returns the character at the current stream position.

void readBytes(void _FAR *data, size_t sz);

Reads sz bytes from current stream position, and writes them to data .

char _FAR * readString();
char _FAR * readString(char _FAR *buf, unsigned maxLen);

readStringO allocates a buffer large enough to contain the string at the
current stream position. Reads the string from the stream into the buffer.
The caller must free the buffer.

readString(Pchar buf, unsigned maxLen) reads the string at the current stream
position into the buffer specified by buf. Does not read more than maxLen
bytes.

uint32 readWord();

Returns the 32-bit word at the current stream position.

uint16 readWord16()i

Returns the 16-bit word at the current stream position.

uint32 readWord32();

Returns the 32-bit word at the current stream position.

void registerObject(TStreamableBase * adr);

Library Reference

seekg

tellg

Constructor

read Data

read Prefix

readSuffix

readVersion

Registers the object pointed to by adr.

ipstream& seekg(streampos pos)j
ipstream& seekg(streamoff off, ios::seek_dir)j

ipstream class

The first form moves the stream position to the absolute position given by
pas. The second form moves to a position relative to the current position by
an offset off (+ or -) starting at ias::seek_dir. ias::seek_dir can be set to beg
(start of stream), cur (current stream position), or end (end of stream).

streampos tellg()j

Returns the (absolute) current stream position.

Protected constructors

ipstream() j

The protected form of the constructor does not initialize the buffer pointer
bp. Use init to set the buffer and state.

Protected member functions

void _FAR * readData(const ObjectBuilder _FAR* ,TStreamableBase _FAR *&
mem) j

Invokes the appropriate read function to read from the stream to the object
pointed to by memo If mem is 0, the appropria.te build function is called ~irst.

See also: TStreamableClass, and the read and build member functions of each
streamable class

const ObjectBuilder _FAR * readPrefix()j

Returns the TStreamableClass object corresponding to the class name stored
at the current position. ' .

void readSuffix()j

Reads and checks the final byte of an object's name field.

See also: ipstream::readPrefix

void readVersion()j

Sets the version number of the input stream.

Chapter 6, Persistent stream classes and macros 339

ipstream class

Operator »

Friends

friend ipstream& operator » (ipstream& PS, signed char _FAR & ch);
friend ipstream& operator » (ipstream& PS, unsigned char _FAR & ch);
friend ipstream& operator » (ipstream& PS, signed short _FAR & sh);
friend ipstream& operator » (ipstream& PS, unsigned short _FAR & sh);
friend ipstream& operator » (ipstream& PS, signed int _FAR & i);
friend ipstream& operator » (ipstream& PS, unsigned int _FAR & i)i
friend ipstream& operator » (ipstream& PS, signed long _FAR & l)i
friend ipstream& operator » (ipstream& PS, unsigned long _FAR & l)i
friend ipstream& operator » (ipstream& PS, float _FAR & f)i
friend ipstream& operator » (ipstream& PS, double _FAR & d)i
friend ipstream& operator » (ipstream& PS, long double _FAR & d)i
friend ipstream& operator » (ipstream& PS, TStreamableBase t)i
friend ipstream& operator » (ipstream& PS, void *t)i

Extracts (reads) from the ipstream ps, to the given argument. A reference to
the stream is returned,letting you chain» operations in the usual way.
The data type of the argument determines how the read is performed. For
example, reading a signed char is implemented using readByte.

of pst ream class objstrm.h

Constructor

340

Provides the base class for writing (inserting) streamable objects to file
streams.

Public constructors

ofpstream()i
ofpstream(const char _FAR *name , int mode = ios::out ,

int prot = filebuf::openprot)i
ofpstream(int f)i
ofpstream(int f, char _FAR *b , int len)i

Creates a buffered ofpstream object. You can set the size and initial contents
of the buffer with the len and b arguments. A file can be opened and
attached to the stream by specifying the name, mode, and protection
arguments, or by using the file descriptor, f.

Library Reference

open

rdbuf

opstream class

Constructor

Destructor

findObject

findVB

flush

fwriteBytes

of pst ream class

Public member functions

void open(char _FAR *name, int mode = ios::out,
int prot = filebuf::openprot)i

Opens the named file in the given mode (app, ate, in, out, binary, trunc,
nocreate, or noreplace) and protection. The default mode is out (output) with
openprot protection. The opened file is attached to this stream.

filebuf _FAR * rdbuf()i

Returns the current file buffer.

objstrm.h

opstream, a specialized derivative of pstream, is the base class for writing
(inserting) streamable objects.

Public constructors and destructor

opstream(streambuf _FAR *buf)i

This constructor creates a buffered opstream with the given buffer and sets
the bp data me~ber to buf. The state is set to O.

-opstream() i

Destroys the opstream object.

See also: pstream::init

Public member functions

p_id_type findObject(TStreamableBase _FAR *adr)i

Returns the type ID for the objectpointed to by adr.

p_id_type findVB(TStreamableBase _FAR *adr)i

Returns a pointer to the virtual base.

opstream& flush()i

Flushes the stream.

void fwriteBytes(const void *data, size_t sz)i

Chapter 6, Persistent stream classes and macros 341

opstream class

fwriteString

registerObject

registerVB

seekp

tellp

writeByte

writeBytes

writeObject .

writeObjectPtr

writeString

writeWord

writeWord16

342

Writes the specified number of bytes (sz) from the supplied far buffer (data)
to the stream.

void fwriteString(const char *str)i

Writes the specified far character string (str) to the stream.

void registerObject(TStreamableBase _FAR *adr)i

Registers the class of the object pointed to by adr.

void registerVB(TStreamableBase _FAR *adr)i

Registers a virtual base class.

opstream& seekp(streampos POS)i
opstream& seekp(streamoff off,ios: :seek_dir)i

The first form moves the stream's current position to the absolute position
given by pos. The second form moves to a position relative to the current
position by an offset off (+ or -) starting at ios::seek_dir. ios::seek_dir can be set
to beg (start of stream), cur (current stream position), or end (end of stream).

streampos tellp()i

Returns the (absolute) current stream position.

void writeByte(uint8 ch);

Writes the byte ch to the stream.

void writeBytes(const void *data, size_t sz);
void writeBytes(const void far *data, size_t sz);

Writes sz bytes from data buffer to the stream.

void writeObject(const TStreamableBase _BIDSFAR *t);

Writes the object that is pointed to by t to the output stream.

void writeObjectPtr(const TStreamableBase *t)i

Writes the object pointer t to the output stream.

void writeString(const char _FAR *str);

Writes str to the stream (together with a leading length byte).

void writeWord(uint32 US)i

Writes the 32-bit word us to the stream.

void writeWord16 (uint16 US)i

Writes the 16-bit word us to the stream.

Library Reference

writeWord32

Constructor

write Data

writePrefix

writeSuffix

Operator «

opstream class

void writeWord32 (uint32 us);

Writes the 32-bit word us to the stream.

Protected constructors

opstream() ;

This protected form of the constructor does not initialize the buffer pointer
bp. Use init to set the buffer and state.

Protected member functions

void writeData(TStreamableBase *t);

Writes data to the stream by calling the appropriate class's write member
function for the object being written. .

See also: TStreamableBase and the write functions in the streamable classes

void writePrefix(const TStreamableBase *t);

Writes the class name prefix to the stream. The «operatoruses this
function to write a prefix and suffix around the data written with writeData.
The prefix/suffix is used to ensure type-safe stream I/O. .

See also: ipstream:readPrefix

void writeSuffix(const TStreamableBase *t)i

Writes the class name suffix to the stream. The «operator uses this
function to write a prefix and suffix around the data written with writeData.
The prefix/suffix is used to ensure type-safe stream I/O.

See also: ipstream:readPrefix

Friends

friend opstream& operator « (opstream& PS, signed charch);
friend opstream&operator « (opstream& PS, unsigned char ch);.
friend opstream& operator « (opstream& PS, signed short Sh)i
friend opstream& operator « (opstream& PS, unsigned short sh);
friend opstream& operator « (opstream& PS, signed int i);
friend opstream& operator « (opstream& PS, unsigned int i);
friend opstream& operator « (opstream& PS, signed fong 1) i

Chapter 6, Persistent stream classes and macros 343

opstream class

pstream class

PointerTypes

Constructor

Destructor

bad

clear

eof

344

friend opstream& operator « (opstream& PS, unsigned long 1);
friend opstream& operator « (opstream& PS, float f);
friend opstream& operator « (opstream& PS, double d);
friend opstream& operator « (opstream& PS, long double d);
friend opstream& operator « (opstream& PS, TStreamableBase& t);

Inserts (writes) the given argument to the given ipstream object. The data
type of the argument determines the form of write operation employed.

pstream is the base class for handling streamable objects.

Type definitions

, enum PointerTypes{ptNull , ptlndexed, ptObject};

Enumerates object pointer types.

Public constructors and destructor

pstream(streambuf _FAR *buf);

objstrm.h

This constructor creates a buffered pstream with the given buffer and sets
the bp data member to but. The state is set to O.

virtual -pstream();

Destroys the pstream object.

Public member functions

int bad() const;

Returns nonzero if an error occurs.

void clear(int aState = 0);

Set the stream state to the given value (defaults to 0).
\

int eof() const;

Returns nonzero on end of stream.

Library Reference

fail

good

rdbuf

rdstate

Operator void *()

Operator! ()

bp

state

Constructor

int fail() const;

Returns nonzero if a stream operation fails.

int good() const;

pst ream class ,

Returns nonzero if no state bits are set (that is, if no errors occurred).

streambuf _FAR * rdbuf() const;

Returns the pb pointer to this stream's assigned buffer.

See also: pstream::pb

int rdstate() const;

Returns the current state value.

Operators

operator void *() const;

Overloads the pointer-to-void cast operator. Returns 0 if the operation has
failed (that is, if pstream::fail returned nonzero); otherwise, returns nonzero.

See also: pstream::fail

int operator! () const;

Overloads the NOT operator. Returns the value returned by pstream::fail.

See also: pstream::fail

Protected data members

streambuf _FAR *bp;

Pointer to the stream buffer.

int state;

Format state flags. Use rdstate to access the current state.

See also: pstream::rdstate

Protected constructors

pstream() ;

Chapter 6, Persistent stream classes and macros 345

pstream class

init

setstate

This form of the constructor does not initialize the buffer pointer bp. Use
init and setstate to set the buffer and state.

Protected member functions

void init(streambuf _FAR *Sbp)i

Initializes the stream: sets state to 0 and bp to sbp.

void setstate(int b)i

Updates the state data member with state 1= (b & OxFF).

TStreamableBase class objstrm.h

TypeJd

Destructor

CastablelD

346

class _EXPCLASS TStreamableBase : public TCastable

Classes that inherit from TStreamableBase are known as streamable classes,
meaning their objects can be written to and read from streams. If you want
to develop your own streamable classes, you should make sure that
TStreamableBase is s.omewhere in their ancestry. Using an existing
streamable class as a base, of course, is an obvious way of achieving this.
Don't be afraid to use multiple inheritance to derive a class from

. TStreamableBase if your class must also fit into an existing class hierarchy.

Type definitions

typedef canst char *Type_idi

Describes type identifiers.

Public destructor'

virtual -TStreamableBase() {}i

Destroys the TStreamableBase object.

Public member functions

virtual Type_id CastableID() canst = Oi

Library Reference

FindBase

MostDerived

TStreamableBase class

Provides support for typesafe downcasting. Returns a string.containing the
type name.

virtual void *FindBase(Type_id id) const;

Returns a pointer to the base class.

virtual void *MostDerived() canst = 0;

Returns a void pointer to the actual streamed object.

TStreamableClass class streambl.h '

Constructor

Used by the private database class and pstream in streamable class
registration.

Public constructor

TStreamableClass(const char *n, BUILDER b, int d=NoDelta, ModuleId
mid=GetModuleId()) ;

Creates a TStreamableClass object with the given name (n) and the given
builder function (b), then registers the type. Each streamable class, for
example TClassname, has a build member function of type BUILDER. For
type-safe object-stream I/O, the stream manager needs to access the names
and the type information for each class. To ensure that the appropriate
functions are linked into any application using the stream manager, you
must provide a reference such as: '

TStreamableClass RegClassName;

where TClassName is the name of the class for which objects need to be
streamed. (Note that RegClassName is a single identifier.) This not only
registers TClassName (telling the stream manager which build function to
use), it also automatically registers any dependent classes. You can register
a class more than once without any harm or overhead.

Invoke this function to provide raw memory of the correct size into which
an object of the specified class can be read. Because the build procedure
invokes a special constructor for the class, all virtual table ,pointers are
initialized correctly.

Chapter 6, Persistent stream classes and macros, 347

TStreamableClass class

The distance, in bytes, between the base of the streamable object and the
beginning of the TStreamableBase component of the object is d. Calculate d
by using the __ DELTA macro. For example,

TStreamableClass RegTClassName = TStreamableClass("TClassName",
TciassName::build, __ DELTA(TClassName));

See also: TStreamableBase, ipstream, opstream

Friends

The classes opstream and ipstream are friends of TStreamableClass.

TStreamer class objstrm.h

GetObject

Constructor

Read

StreamableName

348

class _BIDSCLASS _RTTI TStrearner

Base class for all streamable objects.

Public member functions

TStrearnableBase *GetObject() canst

Returns the address of the TStreamableBase component of the streamable
object.

Protected constructors

TStrearner(TStrearnableBase *abj

Constructs the TStreamer object, and initializes the streamable object
pointer.

Protected member functions

virtual vaid *Read(ipstrearn&, uint32) canst = 0;

This pure virtual member function must be redefined for every streamable
class. It must read the necessary data members for the streamable class
from the supplied ipstream.

virtual canst char *StrearnableNarne() canst = 0;

Library Reference

Write

TStreamer class

This pure virtual member function must be redefined for every streamable
class. StreamableName returns the name of the streamable class, which is
used by the stream manager to register the streamable class. The name
returnedmust,be a O-terminated string.

virtual void Write(opstrearn&) canst = OJ

This pure virtual function must be redefined for every streamable class. It
must write the necessary streamable class data members to the supplied
opstream object. Write is usually implemented by calling the base class's
Write (if any), and then inserting any additional,data members for the
derived class.

__ DELTA macro streambl.h

#define __ DELTA(d) (FP_OFF((TStrearnable *) (d *)1)-1)

Calculates the distance, in bytes, between the base of the streamable object
and the beginning of the TStreamableBase component of the object.

DECLARE_STREAMABLE macro objstrm.h

DECLARE_STREAMABLE(exp, cls, ver)

The DECLARE_STREAMABLE macro is used within a class definition to
add the members that are needed for streaming. Because it contains access
specifiers, it should be followed by an access specifier or be used at the end
of the class definition. The first parameter should be a macro, which in tum
should conditionally expand to either _import or _export, depending on
whether or not the class is to be imported or exported from a DLL. The
second parameter is the streamable class name. The third parameter is the
object version number. DECLARE_STREAMABLE is defined as follows:

#define DECLARE_STREAMABLE(exp, cIs, ver)
DECLARE_CAST ABLE
DECLARE_STREAMER (exp, cIs, ver);
DECLARE_STREAMABLE_OPS(cIs);
DECLARE_STREAMABLE_CTOR(cIs)

See also: Chapter 9 in the Programmer's Guide

Chapter 6, Persistent stream classes and macros 349

objstrm.h

DECLARE_STREAMABLE_FROM_BASE(exp, cls, ver)

DECLARE_STREAMABLE_FROM_BASE is used in the same way as
DECLARE_STREAMABLE; it should be used when the class being defined
can be written and read using Read and Write functions defined in its base
class without change. This usually occurs when a derived class overrides
virtual functions in its base or provides different constructors, but does not
add any data members. (If you used DECLARE_STREAMABLE in this
situation, you would have to write Read and Write functions that merely
called the base's Read and Write functions. Using
DECLARE_STREAMABLE_FROlYf_BASE prevents this.)

DECLARE_STREAMABLE_FROM_BASE is defined as follows:

#define DECLARE_STREAMABLE_FROM_BASE(cIs, base, ver)
DECLARE_CASTABLE
DECLARE_STREAMER_FROM_BASE(exp, cIs, base, ver)i

DECLARE_STREAMABLE_OPS! cIs)i

DECLARE_STREAMABLE_CTOR(cIs)

\
\
\
\

DECLARE ABSTRACT ·STREAMABLE macro objstrm.h - ,-

DECLARE_ABSTRACT_STREAMABLE(exp, cls, ver)

This macro is used in an abstract class. DECLARE_STREAMABLE doesn't
work with an abstract class because an abstract class can never be
instantiated, and the code that attempts to instantiate the object (Build)
causes compiler errors. This macro expands to DECLARE_CAST ABLE,
DECLARE_ABSTRACT_STREAMER, DECLARE_STREAMABLE_OPS,
and DECLARE_STREAMABLE_CTOR.

DECLARE_STREAMER macro objstrm.h

350

DECLARE_STREAMER (exp, cls, ver)

This macro defines a nested class within your streamable class; it contains
the core of the streaming code. DECLARE_STREAMER declares the Read
and Write function declarations, whose definitions you must provide, and
the Build function that calls the TStreamableClass constructor. See
DECLARE_STREAMABLE for an explanation of the parameters.

Library Reference

DECLARE_STREAMER_FROM_BASE macro

objstrm.h

DECLARE_STREAMER_FROM_BASE(exp, cls, base)

This macro is used by DECLARE_STREAMABLE_FROM_BASE. It declares
a nested Streamer class without the Read and Write functions. See
DECLARE_STREAMABLE for a description of the parameters.

DECLARE_ABSTRACT _STREAMER macro objstrm.h

define DECLARE_ABSTRACT_STREAMER(exp, cls, ver)

This macro is used by DECLARE_ABSTRACT_STREAMABLE. It declares a
nested Streamer class without the Build function. See
DECLARE_STREAMABLE for an explanation of the parameters.

DECLARE_CASTABLE macro objstrm.h

DECLARE_CASTABLE

This macro provides declarations that provide a rudimentary typesafe
downcast mechanism. This is useful for compilers that don't support run- .
time type information.

DECLARE_STREAMABLE_OPS macro objstrm.h

DECLARE_STREAMABLE_OPS(cls)

Declares the inserters and extractors. For template classes,
DECLARE_STREAMABLE_OPS must use class< ... > as the macro

, argument; other DECLAREs take only the class name.

DECLARE_STREAMABLE_CTOR macro objstrm.h

DECLARE_STREAMABLE_CTOR(cls)

Declares the constructor called by the Streamer::Build function.

Chapter 6, Persistent stream classes and macros 351

IMPLEMENT _STREAMABLE macros

IMPLEMENT _STREAMABLE macros objstrm.h

IMPLEMENT_STREAMABLE(cls)
IMPLEMENT_STREAijABLEl(cls, basel)
IMPLEMENT_STREAMABLE2(cls, basel, base2)
IMPLEMENT_STREAMABLE3(cls, basel, base2, base3)
IMPLEMENT_STREAMABLE4(cls, basel, base2, base3, base4)
IMPLEMENT_STREAMABLE5(cls, basel, base2, base3, base4, base5)

The IMPLEMENT_STREAMABLE macros generate the registration object
for the class via IMPLEMENT_STREAMABLE_CLASS, and generate the
various member functions that are needed for a streamable class via
IMPLEMENT_ABSTRACT _STREAMABLE.

IMPLEMENT _STREAMABLE is used when the class has no base classes
other than TStreamableBase. Its only parameter is the name of the class.
The numbered versions (IMPLEMENT_STREAMABLEl,
IMPLEMENT_STREAMABLE2, and so on) are for classes that have bases.
Each base class, including all virtual bases, must be listed in the
IMPLEMENT_STREAMABLE macro invocation. .

The individual components comprising these macros can be used
separately for special situations, such for as custom constructors.

IMPLEMENT _STREAMABLE_CLASS macro objstrm.h

IMPLEMENT_STREAMABLE_CLASS(cls)

Constructs a TStreamableClass class instance.

IMPLEMENT _STREAMABLE_CTOR macros objstrm.h

352

IMPLEMENT_STREAMABLE_CTOR(cls)
IMPLEMENT_STREAMABLE_CTOR1(cls, basel)
IMPLEMENT_STREAMABLE_CTOR2(cls, basel, base2)
IMPLEMENT_STREAMABLE_CTOR3(cls, basel, base2, base3)
IMPLEMENT_STREAMABLE_CTOR4(cls, basel, base2, base3, base4)
IMPLEMENT_STREAMABLE_CTOR5(cls, basel, base2, base3, base4, base5)

Defines the constructor called by the Build function. All base classes must
be listed in the appropriate macro.

Library Reference

IMPLEMENT _STREAMAIjLI:_tJUIN rcM macro

IMPLEMENT _STREAMABLE_POINTER macro

IMPLEMENT_STREAMABLE_POINTER(cls)

Creates the instance pointer extraction operator (»).

IMPLEMENT_CASTABLE_ID macro

IMPLEMENT_CASTABLE_ID(cls)

Sets the typesafe downcast identifier.

IMPLEMENT_CASTABLE macros

IMPLEMENT_CASTABLE(cls)
IMPLEMENT_CASTABLE1(cls)
IMPLEMENT_CASTABLE2(cls)
IMPLEMENT_CASTABLE3(cls)
IMPLEMENT_CASTABLE4(cls)
IMPLEMENT_CASTABLE5(cls)

objstrm.h

objstrm.h

objstrm.h

These macros implement code that supports the typesafe downcast
mechanism.

IMPLEMENT_STREAMER macro

IMPLEMENT_STREAMER (cIs)

Defines the Streamer constructor.

IMPLEMENT _ABSTRACT _STREAMABLE macros

IMPLEMENT_ABSTRACT_STREAMABLE(cls)
IMPLEMENT_ABSTRACT_STREAMABLE1(cls)
IMPLEMENT_ABSTRACT_STREAMABLE2(cls)
IMPLEMENT_ABSTRACT_STREAMABLE3(cls)
IMPLEMENT_ABSTRACT_STREAMABLE4(cls)
IMPLEMENT_ABSTRACT_STREAMABLE5(cls)

Chapter 6, Persistent stream classes and macros

objstrm.h

objstrm.h

353

IMPLEMENT_ABSTRACT _STREAMABLE macros

354

This macro expands to IMPLEMENT_STREAMER (which defines the
Streamer constructor), IMPLEMENT_STREAMABLE_CTOR (which defines
the TStreamableClass constructor), and
IMPLEMENT_STREAMABLE_POINTER (which defines the instance
pointer extraction operator).

objstrm.h

IMPLEMENT_STREAMABLE_FROM_BASE{ cIs, basel)

This macro expands to IMPLEMENT_STREAMABLE_CLASS (which
constructs a TStreamableClass instance),
IMPLEMENT_STREAMABLE_CTORI (which defines a one base class
constructor that is called by Build), and
IMPLEMENT_STREAMABLE_POINTER (which defines the instance
(pointer extraction operator). .

Library Reference

See Chapter 7 in the
Programmers Guide

for information on
using containers.

c H A p T E R 7

The C++ container classes

This chapter is a reference guide to the Borland C++ container classes. Each
container class belongs to one of the following groups, which are listed here
with their associated header-file names.

• Array (arrays.h) • Hash table (hashimp.h)

• Association (assoc.h) • List (listimp.h)

• Bag (bags.h) • Queue (queues.h)

• Binary tree (binimp.h) • Set (sets.h)
• Dequeue (deques.h) • Stack (stacks.h)

• Dictionary (diet.h) • Vector (vectimp.h)

• Double-linked list (dlistimp.h)

TMArrayAsVector template arrays.h

CondFunc

IterFunc

Constructor

TMArrayAsVector implements a managed array of objects of type T, using a
vector as the underlying implementation. It requires an == operator for
type T.

Type definitions

typedef int (*CondFunc) (const T &, void *)j

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void. (*IterFunc) (T &, void *) j

Function type used as a parameter to the ForEach member function.

Public constructors

TMArrayAsVector(int upper, int lower ="0, int delta = 0

Chapter 7, The C++ container classes 355

Array containers

Add

AddAt

ArraySize

Destroy

Detach

FirstThat

356

Creates an array with an upper bound of upper, a lower bound of lower, and
a growth delta of delta.

Public member functions

int Add (canst T& t)

Adds a T object at the next available index at the end of an array. Adding
an element beyond the upper bound leads to an overflow condition. If
overflow occurs and delta is nonzero, the array is expanded (by sufficient
multiples of delta bytes) to accommodate the addition. If delta is zero, Add
fails. Add returns 0 if it couldn't add the object.

int AddAt(canst T& t, int lac)

Adds a T object at the specified index. If that index is occupied, it moves the
object up to make room for the added object. If lac is beyond the upper
bound, the array is expanded if delta (see the constructor) is nonzero. If delta
is zero, attempting to AddAt beyond the upper bound gives an error.

unsigned ArraySize() canst

Returns the current number of cells allocated.

int Destroy (int i)

Removes the object at the given index. The object will be destroyed.

int Destroy (canst T& t)

Removes the given object and destroys it.

int Detach(int lac, TShauldDelete::DeleteType dt =TShauldDelete::NaDelete

int Detach(canst T& t, TShauldDelete::DeleteType dt =
TShauldDelete::NaDelete)

The first version removes the object at lac; the second version removes the
first object that compares equal to the specified object. The value of dt and
the current ownership setting determine whether the object itself will be
deleted. DeleteType is defined in the base class TShouldDelete as
enum { NaDelete, DefDelete, Delete }. The default value of dt, NoDelete,
means that the object will not be deleted regardless of ownership. With dt
set to Delete, the object will be deleted regardless of ownership. If dt is set to
DefDelete, the object will be deleted only if the array owns its elements.

See also: TShouldDelete::ownsElements

T *FirstThat(CandFunc, void *args) canst

Library Reference

Flush

ForEach

Array containers

Returns a pointer to the first object in the array that satisfies a given
condition. You supply a test-function pointer I that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

See also: LastThat

void Flush(TShauldDelete::DeleteType dt = TShauldDelete::DefDelete

Removes all elements from the array without destroying the array. The
value of dt determines whether the elements themselves are destroyed. By
default, the ownership status of the array determines their fate, as
explained in the Detach member function. You can also set dt to Delete and
NoDelete. .

See also: Detach

void ForEach(IterFunc, void *args)

ForEach creates an internal iterator to execute the given function for each
element in the array. The args argument lets you pass arbitrary data to this
function.

GetltemslnContainer unsigned GetItemslnCantainer () canst

HasMember

IsEmpty

IsFull

LastThat

LowerBound

Returns the number of items in the array, as distinguished from ArraySize,
which returns the size of the array.

int HasMember(canst T& t) canst

Returns 1 if the given object is found in the array; otherwise returns O.

int IsEmpty() canst

Returns 1 if the array contains no elements; otherwise returns O.

int IsFull() canst

Returns 1 if the array is full; otherwise returns O. The array is full if delta is
not equal to 0 and if the number of items in the container equals the value
returned by ArraySize.

T *LastThat(int (* f) (canst T &, void *), void *args) canst

Returns a pointer to the last object in the array that satisfies a given
condition.·You supply a test function pointer, I, that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" function.

See also: FirstThat, ForEach

int LawerBaund() canst

Chapter 7, The C++ container classes 357

Array containers

UpperBound

BoundBase

Find

Grow

InsertEntry

ItemAt

Reallocate

RemoveEntry

SetOata

ZeroBase

358

Returns the array's lowerbound.

int UpperBound() const

Returns the array's current upperbound.

protected member functions

int BoundBase(unsigned loc) const

Boundbase adjust vectors, which are zero-based, to arrays, which aren't
zero-based. See ZeroBase.

int Find(const T& t) const

Finds the specified object and returns the object's index; otherwise returns
INT_MAX.

void Grow(int loc)

Increases the size of the array, in either direction, so that lac is a valid index.

void InsertEntry(int loc)

Creates an object and inserts it at lac, moving entries above lac up by one.

T ItemAt(int i) const

Returns a copy of the object stored at location i.

int Reallocate (unsigned sz, unsigned offset = 0

If delta (see the constructor) is zero, reallocate returns O. Otherwise, reallocate
tries to create a new array of size sz (adjusted upwards to the nearest
multiple of delta). The existing array is copied to the expanded array and
then deleted. In an array of pointers, the entries are zeroed for each unused
element. In an array of objects,' the default constructor is invoked for each
unused element. offset is the location in the new vector where the first
element of the old vector should be copied. This is needed when the array
has to be extended downward.

void RemoveEntry(int loc)

Removes element atthe lac index into the array, and'reduces the array by
. one element. Elements from index (lac + 1) upward are copied to positions

lac, (lac + 1), and so on. The original element at lac is lost.

void SetData(int loc, const T& t)

The given t replaces the existing element at the index lac.

unsigned ZeroBase(int loc) const

Library Reference

operator []

. Array containers

Returns the location relative to lowerbound (loc -lowerbound).

Operators

T& operator [] (int loc

T& operator [] (int loc const

Returns a reference to the element at the location specified by loco the
non-const version resizes the array if it's necessary to make loc a valid
index. The const throws an exception in the debugging version on an
attempt to index out of bounds.

TMArray AsVectorlterator template arrays.h

Constructor

Current

Restart

operator ++

Implements an iterator object to traverse TMArrayAs Vector objects.

Public constructors

TMArrayAsVectorIterator(const TMArrayAsVector<T,Alloc> & a

Creates an iterator object to traverse TMArrayAsVector objects.

Public member functions

Const T& Current();

Returns the current object.

void Restart();
void. Restart (unsigned start, unsigned stop); ,

Restarts iteration from the beginning, or over the specified range.

Operators

Const .T& operator ++(int);

Moves to the next object, and returns the object that was current before the
move (post-increment).

Const T& operator ++();

Chapter 7, The C++ container classes 359

Array containers

operator int

Moves to the next object, and returns the object that was current after the
move (pre-increment).

operator int() const

Converts the iterator to an integer value for testing if objects remain in the
iterator.The iterator converts to 0 if nothing remains in the iterator.

TArrayAsVector template arrays.h

Constructor

TArrayAsVector implements an array of objects of type T, using a vector as
the underlying implementation. TStandardAllocator is used to manage
memory. See TMArrayAsVector on page 355 for members.

Public constructors

TArrayAsVector(int upper, int lower = 0, int delta = 0) :

Creates an array with an upper bound of upper, a lower bound of [ower, and
a growth delta of delta.

TArrayAsVectorlterator template arrays.h

Constructor

Implements an iterator object to traverse T ArrayAs Vector objects. See
TMArrayAsVectorlterator on page 359 for members.

Public constructors

TArrayAsVectorlterator(const TArrayAsVector<T> & a)

Creates an iterator object to traverse TArrayAsVector objects.

TMIArrayAsVector template arrays.h

CondFunc

360

Implements a managed, indirect array of objects of type T, using a vector as
the underlying implementation.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Library Reference

IterFunc

Constructor

AddAt

ArraySize

Destroy

Detach

Array containers

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public constructors

TMIArrayAsVector(int upper, int lower = 0, int delta = 0)

Creates an indirect array with an upper bound of upper, a lower bound of
lower, and a growth delta of delta.

Public member functions

int Add (T *t)

Adds a pointer to a T object at the next available index at the end of an
array. Adding an element beyond the upper bound leads to an overflow
condition. If overflow occurs and delta is nonzero, the array is expanded (by
sufficient multiples of delta bytes) to accommodate the addition. If delta is
zero, Add fails. Add returns 0 if the object couldn't be added.

int AddAt(T *t, int loc)

Adds a pointer to a T object at the specified index. If that il1dex is occupied,
it moves the object up to make room for the added object. If lac is beyond
the upper bound, the array is expanded if delta (see the constructor) is
nonzero. If delta is zero, attempting to AddAt beyond the upper bound gives
an error.

unsigned ArraySize() const

Returns the current number of cells allocated.

int Destroy (int i)

Removes the object at the given index. The object will be deleted.

int Destroy (T *t)

Removes the object pointed to by t and deletes it.

int Detach(T *t, DeleteType dt = NoDelete)
int Detach(int lac, DeleteType dt = NoDelete)

The first version removes the object pointer at lac; the second version
removes the specified pointer. The value of dt and the current ownership

Chapter 7, The C++ container classes 361

Array containers

FirstThat

Find

Flush

ForEach

setting determine whether the object itself will be deleted. DeleteType is
defined in the base class TShouldDelete as enum { NoDelete, DefDelete,
Delete }. The default value of dt, NoDelete, means that the object will not be
deleted regardless of ownership. With dt set to Delete, the object will be
deleted regardless of ownership. If dt is set to DefDelete, the object will be
deleted only if the array owns its elements.

See also: TShouldDelete::ownsElements

T *FirstThat(CondFunc, void *args) const

Returns a pointer to the first element in the array that satisfies a given
condition. You supply a test-function pointer f that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the container meets the condition. Note that FirstThat creates its own
internal iterator, so you can treat it as a "search" function.

See also: LastThat

int Find(const T *t) const

Finds the first specified object pointer and returns the index. Returns
INT_MAX not found.

void Flush(DeleteType dt = DefDelete)

Removes all elements from the array without destroying the array. The
value of dt determines whether the elements themselves are destroyed. By
default, the ownership status of the array determines their fate, as
explained in the Detach member function. You can also set dt to Delete and
NoDelete.

See also: Detach

void ForEach(IterFunc, void *args)

ForEach creates an internal iterator to execute the given function for each
element in the container. The args argument lets you pass arbitrary data to
this function.

GetltemslnContainer unsigned GetItemslnContainer () const

HasMember

IsEmpty

IsFull

362

Returns the number of items in the array.

int HasMember(canst T& t) const

Returns 1 if the given object is found in the array; otherwise returns O.

int IsEmpty() const

Returns 1 if the array contains no elements; otherwise 'returns O.

int IsFull() const

Library Reference

LastThat

LowerBound

UpperBound

BoundBase

Grow

InsertEntry

ItemAt

Reallocate

RemoveEntry

Array containers

Returns 1 if the array is full; otherwise returns o.
T *LastThat(int (* f) (const T &, void *), void *args) const

Returns a pointer to the last element in the array that satisfies a given
condition. You supply a t~st function pointer, /' that returns tr~e for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the container meets the condition. Note that LastThat creates its
own internal iterator, so you can treat it as a "search" function.

See also: FirstThat, ForEach

int LowerBound() const

Returns the array's lowerbound.

int UpperBound() const

Returns the array's current upperbound.

Protected member functions

int BoundBase(unsigned loc) const

Boundbase adjust vectors, which are zero-based, to arrays, which aren't
zero-based. See ZeroBase.

void Grow(int loc)

Increases the size of the array, in either direction, so that loc is a valid .index.

void InsertEntry(int loc)

Creates an object and inserts it at loco

T ItemAt(int i) const

Returns a copy of the object stored at location i ..

int Reallocate (unsigned sz, unsigned offset = 0

If delta (see the constructor) is zero, reallocate returns O. Otherwise, reallocate
tries to create a new array of size S2 (adjusted upward to the nearest
multiple of delta). The existing array is copied to the expanded array and
then deleted. In an array of pointers the entries are zeroed. In an array of
objects the default constructor is invoked for each unused element. offset is
the location in the new vector where the first element of the old. vector
should be copied. This is needed when the array has to be extended
downward.

void RemoveEntry(int loc)

Chapter 7, The C++ container classes 363

Array containers

Set Data

SqueezeEntry

ZeroBase

operator []

Removes element at lac, and reduces the array by one element. Elements
from index (lac + 1) upward are copied to positions lac, (lac + I), and so on.
The original element at lac is lost.

void SetData(int loc, const T& t)

The given t replaces the existing element at the index lac.

void SqueezeEntry(unsigned loc)

Removes element at lac, and reduces the array by one element. Elements
from index (lac + 1) upward are copied to positions lac, (lac + I), and so on.
The original element at ldc is lost.

unsigned ZeroBase(int loc) const

Returns the location relative to lowerbound (lac -lowerbound).

Operators

T * & operator [] (int loc

T * & operator [] (int loc const

Returns a reference to the element at the location specified by lac. the
non-const version resizes the array if it's necessary to make loc a valid
index. The const throws an exception in the debugging version on an
attempt to index out of bounds.

TMIArrayAsVectorlterator template arrays.h

Constructor

Current

364

Implements an iterator object to traverse TMIArrayAs Vector objects. Based
on TMVectorIteratorlmp.

Public constructors

TMIArrayAsVectorIterator(const TMIArrayAsVector<T,Alloc> &a)

Creates an ~terator object to traverse TMArrayAsVector objects.

Public member functions

T *Current();

Returns a pointer to the current object.

Library Reference

Restart

operator ++

Array containers

void Restart()i
void Restart (unsigned start, unsigned sTop)i

Restarts iteration from the beginning, or over the specified range.

Operators

Const T& operator ++(int)i

Moves to the next object, and returns the object that was current before the
move (post-increment).

Const T& operator ++()i

Moves to the next object, and returns the object that was current after the
move (pre-increment).

TIArrayAsVector template arrays.h

Constructor

Implements an indirect array of objects of type T, using a vector as the
underlying implementation. TStandardAllocator is used to manage memory.
See TMIArrayAs Vector on page 360 for members.

Public constructors

TIArrayAsVector(int upper, int lower = 0, int delta = 0)

Creates an array with an upper bound of upper, a lower bound of lower, and
a growth delta of delta.

, TIArrayAsVectorlterator template arrays.h

Constructor

Implements an iterator object to traverse TIArrayAs Vector objects. Uses
TStandardAllocator for memory management. See TMIArrayAsVectorIterator
on page 364 for member functions and operators .

. Public' constructors

TIArrayAsVectorlterator(const TIArrayAsVector<T> &a
TMIArrayAsVectorlterator<T,TStandardAllocator> (a)

Chapter 7, The C++ container classes 365

Array containers

Creates an iterator object to traverse TIArrayAs Vector objects.

,TMSArrayAsVector template arrays~h

Constructor

Implements a sorted array of objects of type T, using a vector as the
underlying implementation. With the exception of the AddAt member
function, TMSArrayAsVector inherits its member functions and operators
from TMArrayAsVector. See TMArrayAsVector on page 355 for members.

Public constructors

TMSArrayAsVector(int upper, int lower = 0, int delta = 0')

Creates an array with an upper bound of upper, a lower bound of lower, and
a growth delta of delta. It requires a < operator for type T.

TMSArrayAsVectorlterator template arrays.h

Constructor '

Implements an iterator object to traverse TMSArrayAs Vector objects. See
, TMArrayAs VectorIterator on page 359 for members.

Public constructors

TMSArrayAsVectorlterator(const TMSArrayAsVector<T> & a) :

Creates an iterator object to traverse TSArrayAs Vector objects.

TSArrayAsVector template arrays.h

Constructor

366

Implements a sorted array of objects of type T, using a vector as the
underlying implementation. With the exception of the AddAt member
function, TSArrayAsVector inherits its member functions and operators
fromTMArrayAsVector. See TMArrayAsVector 355 for members.

Public constructors

TSArrayAsVect9r(int upper, int lower = 0, int delta = 0)

Library Reference

Array containers

Creates an array with an upper bound of upper, a lower bound of lower, and
a growth delta of delta. It requires a < operator for type T.

TSArrayAsVectorlterator template arrays.h

Constructor

Implements an iterator object to traverse TSArrayAsVector objects. See
TMArrayAs VectorIterator on page 359 for members.

Public constructors

TSArrayAsVectorlterator(const TSArrayAsVector<T> & a) :

Creates an iterator object to traverse TSArrayAsVector objects.

TISArrayAsVector template arrays.h

Constructor

Implements an indirect sorted array of objects of type T, using a vector as
the underlying implementation. See TMIArrayAsVector on page 360 for
members.

Public constructors

TISArrayAsVector(int upper, int lower = 0, int delta = 0)

Creates an indirect array with an upper bound of upper, a lower bound of
lower, and a growth delta of delta.

TISArrayAsVectorlterator template arrays.h

Constructor

Implements an iterator object to traverse TISArrayAs Vector objects. See
TMArrayAs VectorIterator on page 359 for members.

Public constructors

TISArrayAsVectorlterator(const TISArrayAsVector<T> &a)

Creates an iterator object to traverse TISArrayAsVector objects.

Chapter 7, The C++ container classes 367

Array containers

TMISArrayAsVector template arrays.h

Constructor

Implements a managed, indirect sorted array of objects of type T, using a
vector as the underlying implementation. See TMIArrayAs Vector on page
360 for members.

Public constructors

TMISArrayAsVector(int upper, int lower = 0, int delta = 0)

Creates an indirect array with an upper bound of upper, a lower bound of
lower, and a growth delta of delta.

TMDDAssociation template assoc.h

Constructor

Constructor

HashValu,e

Key

368

Implements a managed association, binding a direct key (K) with a direct
value (V) . Assumes that K has a Hash Value member function, or that a
global function with the following prototype exists:

unsigned HashValue(K &)i

K also must have a valid == operator. Class A represents the user-supplied
storage manager. '

Public constructors

TMDDAssociation()

The default constructor.

TMDDAssociation(canst K &k, canst V &v)

Constructs an object that associates a copy of key object k with a copy of
value object v.

Public member functions

unsigned HashValue()

Returns the hash value for the key.

K Key()

Returns KeyData.

Library Reference

Association containers

Value V Value()

Returns ValueData.

Operators

operator == Tests equality between keys.

TDDAssociation template assoc.h

Constructor

Constructor

Standard association (direct key, direct value). Implements an association,
binding a direct key (K) with a direct value (V). Assumes that K has a
Hash Value member function, or that a global function with the following
prototype exists:

unsigned HashValue(K &);

K also must have a valid == operator. See TMDDAssociation on page 368 for
members.

Public constructors

TDDAssaciatian()

The default constructor.

TDDAssaciatian(canst K &k, canst V &v)

Constructs an object that associates key object k with value object v.

TMDIAssociation template assoc.h

Implements a managed association, binding a direct key (K) with a indirect
value (V) . Assumes that K has a Hash Value member function, or that a
global function with the following prototype exists:

unsigned HashValue (K &);

K also must have a valid == operator. Class A represents the user-supplied
storage manager.

Chapter 7, The C++ container classes 369

Association containers

Constructor

Constructor

HashValue

Key

Value

operator ==

Public constructors

TMDIAssociation()

The default constructor.

TMDIAssociation (K k, V * v) .

Constructs an object that associates key object k with value object v.

Public member functions

unsigned HashValue()

Returns the hash value for the key.

K Key()

Returns the key.

canst V * Value()

Returns a pointer to the data.

Operators

int operator == (canst TMDDAssociation<K,V,A> & a)

Tests the equality between keys.

TDIAssociation template assoc.h

Constructor

370

Implements an association, binding a direct key (K) with a indirect value
(V). Assumes that K has a HashValue member function, or that a global
function with the following prototype exists:

unsigned HashValue(K &)i

K also must have a valid == operator. See TMDIAssociation on page 369 for
members.

Public constructors

TDIAssociation()

The default constructor.

Library Reference

Association containers

Constructor TDIAssociation(K k, V * v)

Constructs an object that associates key object k with value object v.

TMIDAssociation template assoc.h"

Key Data

ValueData

Constructor

Constructor

HashValue

Key,

Value

Implements a managed association, binding an indirect key (K) with a
direct value (V) . Assumes that K has a Hash Value member function, or that
a global functiori with the following prototype exists:

unsigned HashValue(K &)i

K also must have a valid == operator. Class A represents the user-supplied
storage manager.

Protected data members

K KeyDatai

The key Class passed into the template by the user.

V ValueDatai

The value class passed into the template by the user.

Public constructors

TMIDAssociation()

The default constructor.

TMIDAssociation(K *k,' V v)

Constructs anobject that associates key object k with value object v.

Public member functions

unsigned HashValue()

Returns the hash value for the key.

const K * Key ()

Returns a pointer to the key.

V Value()

Chapter 7, The C++ container classes 371

Association containers

Returns a copy of the data.

Operators

operator == int operator == (const TMIDAssociation<K,V,A> & a)

Tests the equality between keys;

TIDAssociation template assoc.h

Constructor

Constructor

Implements an association, binding an indirect key (K) with a direct value
(V) . Assumes that K has a Hash Value member function, or that a global
function with the following prototype exists:

,unsigned HashValue(K &);

K also must have a valid == operator. See TMIDAssociation on page 371 for
members.

Public constructors

TIDAssociation ()

The default constructor.

TIDAssociation(K * k, V v)

Constructs an object that associates key object *k with value object v.

TMIlAssociation template assoc.h

Constructor

372

Implements a managed association, binding an 'indirect key (K) with an
indirect value (V) . Assumes that K has a Hash Value member function, or
that a global function with the following prototype exists:

unsigned HashValue(K &);

K also must have a valid == operator. Class A represents the user":supplied
storage manager.

Public constructors

TMIIAssociation()

Library Reference

Constructor

HashValue

Key

Value

operator ==

Association containers

The default constructor.

TMIIAssociation(K * k, V * v)

Constructs an object that associates key object *k with value object *v.

Public member functions

unsigned HashValue()

Returns the hash value for the key.

const K * Key ()

Returns a pointer to the key.

V * Value ()

Returns a pointer to the data.

Operators

int operator == (const,TMIIAssociation<K,V,A> & a)

Tests equality between keys.

TIlAssociation template assoc.h

Constructor

Constructor

Standard association (indirect key, indirect value). Implements an
association, binding an indirect key (K) with an indirect value (V) .
Assumes that K has a HashValue member function, or that a global function
with the following prototype exists:

unsigned HashValue(K &)i

K also must have a valid == operator. See TMIIAssociation on page 372 for
members.

Public constructors

TIIAssociation()

The default constructor.

TIIAssociation(K *k, V * v)

Constructs an object that associates key object *k with value object *v.

Chapter 7, The C++ container classes 373

Bag containers

TMBagAsVector template bags.h

CondFunc

IterFunc

Constructor

Add

Detach

FindMember

374

Implements a managed bag of objects of type T, using a vector as the
underlying implementation. Bags, unlike sets, can contain duplicate objects.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public constructors

TMBagAsVector(unsigned S2 = DEFAULT_BAG_SIZE)

Constructs a managed, empty bag. sz represents the number of items the
bag can hold. .

Public member functions

int Add (const T& t)

Adds the given object to the bag.

int Detach(const T& t, TShouldDelete::DeleteType =
TShouldDelete::NoDelete)

Removes the specified object. The value of dt and the current ownership
setting determine whether the object itself will be deleted. DeleteType is
defined in the base class TShouldDelete as enum { NoDelete, DefDelete,
Delete }. The default value of dt, NoDelete, means that the object will not be
deleted regardless of ownership. With dt set to Delete, the object will be
deleted regardless of ownership. If dt is set to DefDelete, the object will be
deleted only if the bag owns its elements.

See also: TShouldDelete::ownsElements

T* FindMember(const T& t) canst

RetUrns a pointer to the given object if found; otherwise returns O.

Library Reference

Flush

ForEach

Bag containers

vaid Flush(TShauldDelete::DeleteType = TShauldDelete::DefDelete)

Removes all the elements from the bag without destroying the bag. The
value of dt determines whether the elements themselves are destroyed. By
default, the ownership status of the bag determines their fate, as explained
in the Detach member function. You can also set dt to Delete and NoDelete.

See also: Detach

vaid FarEach(IterFunc, vaid *args)

ForEach creates an internal iterator to execute the given function for each
element in the bag. The args argument lets you pass arbitrary data to this
function.

GetltemslnContainer int GetItemsInCantainer () canst

HasMember

IsEmpty

IsFull

Find

Returns the number of objects in the bag.

int HasMember(canst T& t) canst

Returns 1 if the given object is found; otherwise returns O.

int isEmpty() canst

Returns 1 if the bag is empty; otherwise returns O.

int isFull() canst

ReturnsO.

Protected member functions

virtual T *Find(canst T&) canst;

Returns a pointer to the given object if found; otherwise returns O.

TMBagAsVectorlterator template bags.h

Constructor

Implements an iterator object to traverse TMBagAs Vector objects. See
TMArrayAsVectorIterator on page 359 members.

Public constructors

TMBagAsVectarIteratar(canst TMBagAsVectar<T,Allac> & b) .

Constructs an object that iterates on TMBagAs Vector objects.

Chapter 7, The C++ container classes 375

Bag containers

TBagAsVector template bags.h

Constructor

Implements a bag of objects of type T, using a vector as the underlying
implementation. TStandardAllocator is used to manage memory. See
TMBagAsVector on page 374 for members.

Public constructors

TBagAsVector(unsigned sz = DEFAULT_BAG_SIZE)

Constructs an empty bag. S2 represents the number of items the bag can
hold.

TBagAsVectorlterator template bags.h

Constructor

Implements an iterator object to traverse TBagAsVector objects.
TStandardAllocator is used to manage memory. See TMArrayAsVectorIterator
on page 359 for members.

Public constructors

TBagAsVectorIterator(const TBagAsVector<T> &Q)

Constructs an object that iterates on TBagAs Vector objects.

TMIBagAsVector template bags.h

CondFunc

lterFunc

376

Implements a managed bag of pointers to objects of type T, using a vector
as the underlying implementation.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Library Reference

Constructor

Add

Detach

FindMember

FirstThat

Flush

ForEach

Bag containers

Public constructors

TMIBagAsVector(unsigned sz = DEFAULT_BAG~SIZE
Constructs an empty, managed, indirect bag. sz represents the initial
number of slots allocated.

Public member functions

int Add (T *t)

Adds the given object pointer to the bag.

int Detach(T *t, DeleteType dt = NoDelete

Removes the specified object pointer. The value of dt and the current
ownership setting determine whether the object itself will be deleted.
DeleteType is defined in the base class TShouldDelete as enum { NoDelete,
DefDelete, Delete }. The default value of dt, NoDelete, means that the object
will not be deleted regardless of ownership. With dt set to Delete, the object
will be deleted regardless of ownership. If dt is set to DefDelete, the object
will only be deleted if the bag owns its elements.

See also: TShouldDelete::ownsElements

T * FindMember(T *t)' const

Returns a pointer to the object if found; otherwise returns O.

T *FirstThat(CondFunc, void *args) const

See: TMBagAs Vector::FirstThat

void Flush(TShouldDe~ete::DeleteType dt = TShouldDelete::DefDelete)

Removes all the elements from the bag without destroying the bag. The
value of dt determines whether the elements themselves are destroyed. By
default, the ownership status of the bag determines their fate, as explained
in the Detach member function. You can also set dt to Delete and NoDelete.

See also: Detach

void ForEach(IterFunc, void *args) .

ForEach creates an internal iterator to execute the given function for each
element in the bag. The args argumen~ lets you pass arbitrary data to this
function.

GetltemslnContainer int GetItemslnContainer () const

Chapter 7, The C++ container classes 377

Bag containers

HasMember

IsEmpty

IsFuli

LastThat

Returns the number of objects in the bag.

int HasMember(canst T& t) canst

Returns 1 if the given object is found; otherwise returns O.

int isEmpty() canst

Returns 1 if the bag is empty; otherwise returns O.

Int isFull() canst

Returns O.

T *LastThat(CandFunc, vaid *args) canst

Returns a pointer to the last object in the array that satisfies a given
condition. You supply a test function pointer, I, that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" function.

TMIBagAsVectorlterator template bags.h

Constructor

Implements an iterator object to traverse TMIBagAsVector objects. See
TMArrtiyAs VectorIterator on page 359 for members.

Public constructors

TMIBagAsVectarlteratar(canst TMIBagAsVectar<T,Allac> & s)

Constructs an object that iterates on TMIBagAsVector objects.

TIBagAsVector template bags.h

Constructor

378

. Implements a bag of pointers to objects of type T, using a vector as the
underlying implementation. TStandardAllocator is used to manage memory.
See TMIBagAsVector on page 376 for members.

Public constructors

TIBagAsVectar(unsigned sz = DEFAULT_BAG_SIZE

Constructs an empty, managed, indirect bag. S2 represents the initial
number of slots allocated.

Library Reference

Bag containers

TIBagAsVectorlterator template bags.h

Constructor

Implements an iterator object to traverse TIBagAs Vector objects.
TStandardAliocator is used to manage memory. See TMArrayAsVectorIterator
on page 359 for members. .

Public constructors

TIBagAsVectorlterator(const TIBagAsVector<T> & s)

Constructs an object that iterates on TMIBagAs Vector objects.

TBinarySearchTreelmp template binimp.h

Add

Detach

Find

Flush

ForEach

Implements an unbalanced binary tree. Class T must have < and ==
operators, and must have a default constructor.

Public member functions

int Add (const T& t).

Creates a new binary-tree node and inserts a copy of object t into it.

int Detach(const T& tt int del = 0)

Removes the node containing item t from the tree.

T * Find(const T& t) const

Returns a pointer to the node containing item t.

void Flush; (int del=O);

Removes all items from the tree.

void ForEach(IterFunc iter, void * args, IteratorOrder order = InOrder)

Creates an internal iterator that executes the given function iter for each
item in the container. The args argument lets you pass arbitrary data to this
function.

GetltemslnContainer unsigned GetItemslnContainer () ;

Parent::lsEmpty

Returns the number of items in the tree.

int IsEmpty () ;

Chapter 7, The C++ container classes 379

Binary tree containers

EqualTo

LessThan

DeleteNode

Returns 1 if the tree is empty; otherwise returns O.

Protected member functions·

virtual int EqualTo(BinNode *nl, BinNode *n2

Tests the equality between two nodes.

virtual int LessThan(BinNode *nl, BinNode *n2

Tests if node nl is less than node n2;

virtual void DeleteNode(BinNode *node, int del)

Deletes node. The second parameter is ignored.

TBinarySearchTreelteratorlmp template binimp.h

Constructor

Current

Restart

operator int

380

Implements an iterator that traverses TBinarySearchTreelmp objects.

Public constructors

TBinarySearchTreelteratorlrnp(TBinarySearchTreelrnp<T>& tree,
TBinarySearchTreeBase::lteratorOrder order =
TBinarySearchTreeBase::lnOrder) : TBinaryTreeExternallteratorBase(tree,
order), CurNode(static_cast<TBinaryNodelrnp<T>*>(Next()))

Constructs an iterator object that traverses a TBinarySearchTreelmp
container.

Public member functions

const T& Current() const

Returns the current object.

void Restart()

Restarts iteration from the beginning of the tree.

Operators

operator int() const

Library Reference

operator ++

I:jmary tree comalners

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

const T& operator ++ (int)

Moves to the next object in the tree, and returns the object that was current
before the move (post-increment).

const T& operator ++ ()

Moves to the next object, and returns the object that was current after the
move (pre-increment).

TIBinarySearchTreelmp template binimp.h

Add

Detach

Find

Flush

ForEach

Implements an indirect unbalanced binary tree. Class T must have < and ==
operators, and must have a default constructor.

Public member functions

int Add (T * t)

Creates a new binary-tree node and inserts a pointer to object t into the tree.

int Detach(T * t, int del = 0)

, Removes'the node containing item t from the tree. The item is deleted if del
is 1.

T * Find(T * t) const

Returns a pointer to the node containing *t.

void Flush; (int del=O);

Removes all items from the tree. The are deleted if del is 1. If del is 0 the
items are not deleted.

void ForEach(void (*func) (T &, void *), void * args, IteratorOrder order
= InOrder)

Creates an internal iterator that executes the given function f for each item
in the container. The args argument lets you pass arbitrary data to this
function.

GetltemslnContainer unsigned GetIternslnContainer () ;

Parent::lsEmpty

Returns the number of items in the tree.

int IsErnpty();

Chapter 7, The C++ container classes 381

clnary tree containers

EqualTo

LessThan

OeleteNode

Returns 1 if the tree is empty; otherwise returns o.

Protected member functions

virtual int Eq~alTo(BinNode *nl, BinNode *n2

Tests the equality between two nodes.

virtual int LessThan(BinNode *nl, BinNode *n2

Tests if node n1 is less than node n2.

virtual void DeleteNode(BinNode *node, int del)

Deletes node. The second parameter is ignored.

TIBinarySearchTreelteratorlmp template binimp.h

Constructor

Current

Restart

operator int

382

Implements an iterator that traverses TIBinarySearchTreelmp objects.

Public constructors

TIBinarySearchTreeIteratorlmp(TIBinarySearchTreelmp<T>& tree,
TBinarySearchTreeBase::lteratorOrder order =
TBinarySearchTreeBase::lnOrder) :
TBinarySearchTreelteratorlmp<TVoidPointer> (tree, order)

Constructs an iterator object that traverses a TIBinarySearchTreelmp
container.

Public member functions

T *Current() const

Returns a pointer to the current object.

void Restart ()

Restarts iteration from the beginning of the'tree.

Operators

operator inti) const

Library Reference

operator ++ .

Binary tree containers

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

T *operator ++ (int i)

Moves to the next object in the tree, and returns a pointer to the object that
was current before the move (post-increment).

T *operator ++ ()

Moves to the next object, and returns a pointer to the object that was
current after the move (pre-increment).

TMDequeAsVector template deques.h

CondFunc

IterFunc

Constructor

FirstThat

Implements a managed dequeue of T objects, using a vector as the
underlying implementation.

Type definitions

typedef int (*CondFunc) (const T &, void *);'

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function;

Public constructors

,TMDequeAsVector(unsigned max = DEFAULT_DEQUE_SIZE

Constructs a dequeue of max size.

Public member functions

T *FirstThat(CondFunc, void *args) const;

Returns a pointer to the first object in the dequeue that satisfies a given
condition. You supply a test-function pointer f that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

See also: LastThat

Chapter 7, The C++ container classes 383

Dequeue containers

Flush

ForEach

void Flush(TShauldDelete::DeleteType = TShauldDelete: :DefDelete)

Flushes the dequeue without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the dt argument.

See also: TShouldDelete::ownsElements

void FarEach(IterFunc, void *args);

Executes function f for each dequeue element. ForEach creates an internal
iterator to execute the given function for each element in the array. The args
argument lets you pass arbitrary data to this function.

GetltemslnContainer int GetItemslnCantainer () canst

GetLeft

GetRight

IsEmpty

IsFull

LastThat

PeekLeft

384

Returns the number of items in the dequeue.

T GetLeft () ;

Returns the object at the left end and removes it from the dequeue. The
debuggable version throws an exception when the dequeue is empty .

. See also: PeekLeft

T GetRight();

Same as GetLeft, except that the right end of the dequeue is returned.

See also: PeekRight

int IsEmpty() canst

Returns 1 if the dequeue has no elements; otherwise returns O.

int IsFull() canst·

Returns 1 if the dequeue is full; otherwise returns O.

. T *LastThat(CandFunc, void *args) ~anst;

Returns a pointer to the last object in the dequeue that satisfies a given
condition. You supply a test function pointer, f, that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns a if no
object in the array meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" function.

See also: FirstThat, ForEach

Canst T& PeekLeft() canst

Returns the object at the left end (head) of the dequeue; The object stays in
the dequeue.

See also: GetLeft

Library Reference

PeekRight

PutLeft

PutRight

Data

Left

Right

Next

Prey

Dequeue containers

Canst T& PeekRight(1 canst

Returns the object at the right end (tail) of the dequeue. The object stays in
the dequeue.

See also: GetRight

vaid PutLeft(canst T& I;

Adds (pushes) the given object at the left end (head) of the dequeue.

vaid PutRight(canst T& I;

Adds (pushes) the given object at the right end (tail) of the dequeue~

Protected data members

Vect Data;

The vector containing the dequeue's data.

unsigned Left;

Index to the leftmost element of the deque~e.

unsigned Right;

Index to the rightmost element of the dequeue.

Protected member functions

unsigned Next (unsigned index I canst

Returns index + 1. Wraps around to the head of the dequeue.

See also: Prev

unsigned Prev(unsigned index I canst

Returns index - 1. Wraps around to the tail of the dequeue.

TMDequeAsVectorlterator template deques.h

Implements an iterator object for a managed, vector-based dequeue.

Chapter 7, The C++ container classes ..385

Dequeue containers

Constructor

Current

Restart

operator ++

operator int

Public constructors

TMDequeAsVectorlterator(canst TMDequeAsVector<T,Alloc> &d)

Constructs an object that iterates on TMDequeAsVector objects.

Public member functions

Canst T& Current();

Returns the current object.

void Restart();

Restarts iteration.

Operators

Canst T& operator ++ (int) i

Moves to the next object, and returns the object that was current before the
move (post-increment). '

Canst T& operator ++ ()i

Moves to the next object, and returns the object that was current after the
move (pre-increment).

operator int() i

Converts the iterator to an integer value for testing if objects remain in the
iterator. Iterator converts to 0 if nothing remains in the iterator.

TDequeAsVector template deques.h

Constructor

386

Implements a dequeue of T objects, using a vector as the underlying
implementation. TStandardAllocator is used to manage memory. See
TMDequeAs Vector on page 383 for members.

Public constructors

TDequeAsVector(unsigned max = DEFAULT~DEQUE_SIZE
Constructs a dequeue of max size.

Library Reference

Dequeue containers

TDequeAsVectorlterator template deques.h.

Constructor

Implements an iterator object for a vector-based dequeue. See
TMDequeAsVectorIterator on page 385 for members.

Public constructors

TDequeAsVectorlterator(const TDequeAsVector<T> &d)

Constructs an object that iterates on TMDequeAsVector objects.

TMIDequeAsVector.template deques.h

CondFunc

IterFunc

Constructor

FirstThat

Implements a managed, indirect dequeue of pointers to objects of type T,
using, a vector as the underlying implementation.

Type definitions
\ ,

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *)i

Function type used as a parameter to ForEach member function.

Public constructors

TMIDequeAsVector(unsigned sz= DEFAULT_DEQUE_SIZE

Constructs an indirect dequeue of max size.

Public member functions

T *FirstThat(CondFunc, void *args) consti

Returns a pointer to the first object in the dequeue that satisfies a given
condition. You supply a test-function pointer f that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

Chapter 7, The C++ container classes 387

Dequeue containers

Flush

ForEach

See also: LastThat

void Flush(TShouldDelete::DeleteType = TShouldDelete: :DefDelete);

Flushes the dequeue without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the dt argument.

void ForEach(IterFunc, void *args);

Executes function f for each' dequeue element. For Each creates an internal
iterator to execute the given fun~tion for each element in the array. The args
argument lets you pass arbitrary data to this function.

GetltemslnContainer int GetIternsInContainer () const

Get Left

GetRight

IsEmpty

IsFull

LastThat

PeekLeft

388

Returns the number of items in the dequeue.

T *GetLeft()

Returns a pointer to the object at the left end and removes it from the
dequeue. Returns 0 if the dequeue is empty.

See also: PeekLeft

T *GetRight ()

Same as GetLeft, except that the right end of the dequeue is returned.

See also: PeekRight

int IsErnpty() const

Returns 1 if a dequeue has no elements; otherwise re~rns O.

int isFull() const

Returns 1 if a dequeue is full; otherwise returns O.

T *LastThat(CondFunc, void *args) const;

Returns a pointer to the last object in the dequeue that satisfies a given
condition. You supply a test function pointer, f, that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" function.

See also: FirstThat, ForEach

T *PeekLeft() const

Returns a pointer to the object at the left end (head) of the dequeue. The
object stays in the dequeue.

See also: GetLeft

Library Reference

PeekRight

PutLeft

PutRight

Dequeue containers

T *PeekRight() const

Returns the object at the right end (tail) of the dequeue. The object stays in
the dequeue.

See also: GetRight

void PutLeft(T *t

Adds (pushes) the given object pointer at the left end (head) of the
dequeue.

void PutRight(T *t)

Adds (pushes) the given object pointer at the right end (tail) of the,
, dequeue.

TMIDequeAsVectorlterator template deques.h

Constructor

Implements an iterator for the family of managed, indirect dequeues
implemented as vectors. See TMDequeAsVectorIterator on page 385 for
members.

Public constructors

TMIDequeAsVectorlterator(const TMIDequeAsVector<T,Alloc> &d)

Creates an object that iterates on TMIDequeAsVector objects.

TIDequeAsVector template deques.h

Constructor

Implements an indirect dequeue of pointers to objects of type T, using a
vector as the underlying implementation. See TMIDequeAs Vector on page
387 for members.

Public constructors

TIDequeAsVector(unsigned sz = DEFAULT_DEQUE_SIZE)
TMIDequeAsVector<T,TStandardAllocator> (sz)

Constructs an indirect dequeue of max size.

Chapter 7, The C++ container classes 389

Dequeue containers

TI DequeAs Vectorlterator template deques.h

Constructor

Implements an iterator for the family of indirect dequeues implemented as
vectors. See TMDequeAs VectorIterator 385 for members.

Public constructors

TIDequeAsVectorIterator(constTIDequeAsVector<T> &d)

, Constructs an object that iterates on TIDequeAs Vector objects.

TMDequeAsDoubleList template deques.h

CondFunc

IterFunc

FirstThat

Flush

ForEach

390

Implements a managed dequeue of objects of type T, using a double-linked
list as the underlying implementation.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Fundion type used as a parameter to ForEach member function.

Public member functions

T *FirstThat(CondFunc, void *args) const

Returns a pointer to 'the first object in the dequeue that satisfies a given
condition. You supply a test-function pointer f that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

See also: LastThat

void Flush(int_del

Flushes the dequeue without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the dt argument.

void ForEach(IterFunc, void *args)

Library Reference

Dequeue containers

Executes function f for each dequeue element. For Each creates an internal
iterator to execute the given function for each element in the array. The args

, argument lets you pass arbitrary data to this function.

GetltemslnContainer int GetItemsInCantainer () canst

Get Left

GetRight

IsEmpty

IsFull

LastThat

PeekLeft

PeekRight

PutLeft

PutRight

Returns the number of items in the dequeue.

T GetLeft ()

Returns the object at the left end and removes it from the dequeue.

T GetRight ()

Same as GetLeft, except that the right end of the dequeue is returned.

See also: PeekRight

int IsEmpty() canst

Returns 1 if a dequeue has no elements; otherwise returns O.

int IsFull() canst

Returns 1 if a dequeue is full; otherwise returns O.

T *LastThat(CandFunc, v6id *args) canst

Returns a pointer to the last object in the dequeue that satisfies a given
condition. You supply a test function pointer, f, that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" function. -

See also: FirstThat, ForEach

Canst T& PeekLeft() canst

Returns a reference to ,the object at the left end (head) of the dequeue. The
object stays in the dequeue.

See also: GetLeft

Canst T& PeekRight() canst

Returns a reference to the object at the right end (tail) of the dequeue. The
object stays in the dequeue.

See also: GetRight

vaid PutLeft(canst T& t

Adds (pushes) the given object at the left end (head) of the dequeue.

void PutRight(canst T& t)

Chapter 7, The C++ container classes 391

Dequeue containers

Adds (pushes) the given object at the right end (tail) of the dequeue.

TMDequeAsDoubleListlterator template deques.h

Constructor

Implements an iterator object for a double-list based deques. See
TMDoubleListIteratorlmp on page 404 for members.

Public constructors

TMDequeAsDoubleListlterator(const TMDequeAsDoubleList<T, Alloc> & s

Constructs an object that iterates on TMDequeAsDoubleList objects.

TDequeAsDoubleList template deques.h

Implements a dequeue of objects of type T, using a double-linked list as the
underlying implementation, and TStandardAllocator as its memory manager.
See TMDequeAsDoubleList on page 390 for members. .

TDequeAsDoubleListlterator template deques.h

Constructor '

Implements an iterator object for a double-list based dequeue.

Public constructors

TMDequeAsDoubleListlterator(const TMDequeAsDoubleList<T, Alloc> & s)

Constructs an object that iterates on TDequeAsDoubleList objects.

TMIDequeAsDoubleList template deques.h

CondFunc

392

Implements a managed dequeue of pointers to objects of type T, using a
double-linked list as.the underlying implementation.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Library Reference

IterFunc

FirstThat

Flush

ForEach

Dequeue containers

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public member functions

T *FirstThat(CondFunc, void *args) const

Returns a pointer to the first object in the dequeue that satisfies a given
condition. You supply a test-function pointer f that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

See also: LastThat

void Flush(TShouldDelete::DeleteType dt = TShouldDelete::DefDelete)

Flushes the dequeue without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the dt argument.

void FarEach(IterFunc, vaid *args)

Executes function f for each dequeue element. ForEach creates an internal
iterator to execute the given function for each element in the array. The args
argument lets you pass arbitrary data to this function.

GetltemslnContainer int GetItemsInContainer () canst

GetLeft

GetRight

IsEmpty

IsFull

Returns the number of items in the dequeue.

T *GetLeft ()

Returns a pointer to the object at the left end and removes it from the
dequeue. Returns 0 if the dequeue is empty.

See also: PeekLeft

T *GetRight ()

Same as GetLeft, except that a pointer to the object at the right end of the
dequeue is returned.

See also: PeekRight

int IsEmpty() canst

Returns 1 if the dequeue has no elements; otherwise returns O.

int IsFull() canst

Chapter 7, The C++ container classes 393

Dequeue containers

LastThat

PeekLeft

PeekRight

PutLeft

PutRight

Returns 1 if the dequeue is full; otherwise returns o.
T *LastThat(CondFunc, void *args) const

Returns a pointer to the last object in the dequeue that satisfies a given
condition. You supply a test function pointer, /' that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it asa "search" function.

See also: FirstThat, ForEach

T *PeekLeft() const

Returns a pointer to the object at the left end (head) of the dequeue. The
object stays in the dequeue.

T *PeekRight() const

Returns the object at the right end (tail) of the dequeue. The object stays in
the dequeue.

void PutLeft(T *t)

Adds (pushes) the given object pointer at the left end (head) of the
dequeue.

void PutRight(T *t)

Adds (pushes) the given object pointer at the right end (tail) of the
dequeue.

TMIDequeAsDoubleListlterator template deques.h

Constructor

394

Implements an iterator for the family of managed, indirect dequeues
implemented as double lists. See TMDoubleListIteratorlmp on page 404 for
members.

Public constructors

TMIDequeAsDoubleListlterator(const TMIDequeAsDoubleList<T,Alloc> s

Constructs an object that iterates on TMIDequeAsDoubleList objects.

Library Reference

Dequeue containers

TIDequeAsDoubleList template deques.h

Implements a dequeue of pointers to objects of type T, using a double­
linked list a.s the underlying implementation. See TMIDequeAsDoubleList on
page 392 for members.

TIDequeAsDoubleListlterator template deques.h

Constructor

Implements an iterator for the family of indirect de queues implemented as
double lists. See TMDoubleListIteratorlmp on page 404 for members.

Public constructors

TIDequeAsDaubleListIteratar(canst TIDequeAsDaubleList<T> & s)

. Constructs an object that iterates on TIDequeAsDoubleList objects.

TMDictionaryAsHashTable template dict.h

HashTable

Constructor

Add

Implements a managed dictionary using a hash table as the underlying
FDS, and using the user-supplied storage allocator A. It assumes that Tis
one of the four types of associations, and that T has meaningful copy and
== semantics as well as a default constructor.

Protected data members

TMHashTableImp<T,A> HashTable;

Implements the underlying hash table.

Public constructors

TMDictianaryAsHashTable(unsigned size = DEFAULT_HASH_TABLE_SIZE)

Constructs a dictionary with the specified size.

Public member functions

int Add (canst T& t)

Chapter 7, The C++ container classes' 395

Dictionary containers

Detach

Find

Flush

ForEach

Adds item t if not already in the dictionary.

int Detach (canst T& t, int del = 0)

Removes item t from the dictionary, and deletes if del is 1. If del ,is 0 the item
is not deleted.

T * Find(constT& t)

Returns a pointer to item t.

void Flush(int del = 0)

Removes all items from the dictionary. The items are deleted if del is 1. If del
is 0 the items are not deleted.

void ForEach(void (*func) (T &, void *), void * args)

Creates an internal iterator that executes the given function f for each item
in the container. The args argument lets you pass arbitrary data to this
function. '

GetltemslnContainer inline. unsigned GetIternslnContainer ()

IsEmpty

Returns the number of items in the dictionary.

inline int IsErnpty()

Returns 1 if the dictionary is empty; otherwise returns O.

TMDictionaryAsHashTablelterator template dict.h

Constructor

Current

396

Implements an iterator that traverses TMDictionaryAsHashTable objects,
using the user-supplied storage allocator A.

Public constructors

TMDictionaryAsHashTablelterator(TMDictionaryAsHashTable<T,A> & t

Constructs an iterator object that traverses a TMDictionaryAsHashTable
container.

Public member functions

Canst T& Current()

Returns the current object.

Library Reference

Restart

operator int

operator ++

Dictionary containers

void Restart () ;

Restarts iteration from the beginning of the dictionary.

Operators

operator int ()

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

Const T& operator ++ (int)

Moves to the next object, and returns the object that was current before the
move (post-increment).

Const T& operator ++ ()

Moves to the next object, and returns the object that was current after the
move (pre-increment).

TDictionaryAsHashTable template dict.h

Constructor

Implements a dictionary objects of type T, using the system storage
allocator TStandardAllocator. It assumes that T is one of the four types of
associations, and that T has meaningful copy and == semantics as well as a
default constructor. See TMDictionaryAsHashTable on page 395 for
members.

Public constructors

TDictionaryAsHashTable(unsigned size = DEFAULT_HASH_TABLE_SIZE)

Constructs a dictionary with the specified size.

TDictionary AsHashTablelterator template dict.h

Implements an iterator that traverses TDictionaryAsHashTable objects, using
the system storage allocator TStandardAllocator.

Chapter 7, The ef+ container class 397

Dictionary containers

Constructor

Public constructors

TDictionaryAsHashTablelterator(TDictionaryAsHashTable<T> & t

Constructs an iterator object that traverses a TDictionaryAsHashTable
container.

TMIDictionaryAsHashTable template dict.h

Constructor

Add

Detach

Find

Flush

ForEach

Implements a managed indirect dictionary using a hash table as the
underlying FDS, and using the user-supplied storage allocator A. It
assumes that T is of class TAssociation.

Public constructors

TMIDictionaryAsHashTable(unsigned size =, DEFAULT_HASH_TABLE_SIZE

Constructs an indirect dictionary with the specified size.

Public member functions

int Add (T * t)

Adds a pointer t~ item t if not already ~ the dictionary.

int Detach(T * t, int del = 0)

Removes the pointer to item t from the dictionary, and deletes if del is 1. If
del is 0 the item is not deleted.

T * Find(T * t)

Returns a pointer to item t.'

void Flush(int del = 0)

Removes all items from the' dictionary. The item is deleted if del is 1. If del is
o the item is not deleted.

void ForEach(void (*func) (T &, void *), void * args);

Creates an internal iterator that executes the given function f for each item
in the container. The args argument lets you pass arbitrary data to this
function. '

GetltemslnContainer inline unsigned GetItemsI~Container ()

398 Library Reference

IsEmpty

Returns the number of items in the dictionary.

inline int IsEmpty()

Returns 1 if the dictionary is empty; otherwise returns O.

Dictionary containers

TMIDictionary AsHashTablelterator template dict.h

Constructor

Current

Restart

operator int

operator++

Implements an iterator that traverses TMIDictionaryAsHashTable objects,
using the user-supplied storage allocator A.

Public constructors

TMIDictionaryAsHashTableIterator(TMIDictionaryAsHashTable<T,A> & t)

Constructs an iterator object that traverses a TMIDictionaryAsHashTable
container.

Public member functions

T *Current ()

Returns a pointer to the current object.

void Restart();

Restarts iteration from the beginning of the dictionary.

Operators

operator int ()

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

T *operator ++ (int)

Moves to the next object, and returns a pointer to the object that was'
current before the move (post-increment).

T,*operator ++ ()

Moves to the next object, and returns a pointer to the object that was
current after the move (pre-increment).

Chapter 7, The C++ container classes 399

Dictionary containers

TIDictionaryAsHashTable template dict.h

Constructor

Implements an indirect dictionary using a hash table as the underlying
FDS, and using the system storage allocator TStandardAllocator. It assumes
that T is one of the four types of associations. See
TMIDictionaryAsHashTable on page 398 for members.

Public constructors

TIDictionaryAsHashTable(unsigned size = DEFAULT_HASH_TABLE_SIZE)

Constructs an indirect dictionary with the specified size.

TI Dictionary AsHash Tablelterator template dict.h

Constructor

Implements an iterator that traverses TIDictionaryAsHashTable objects,
using the user-supplied storage allocator A. See
TMIDictionaryAsHashTablelterator on page 399 for members.

Public constructors

TIDictionaryAsHashTablelterator(TIDictionaryAsHashTable<T> & t

Constructs an iterator object that traverses a TIDictionaryAsHashTable
container.

TDictionary template dict.h

A simplified name for TDictionaryAsHashTable. See TDictionaryAsHashTable
on page 397 for members.

, TDictionarylterator template dict.h

400

A simplified name for TDictionaryAsHashTableIterator. See
TDictionaryAsHashTableIterator on page 397 for members.

Library Reference

Dictionary containers

Public constructors

Constructor TDictionarylterator(const TDictionary<T> & a

Constructs an iterator object that traverses a TDictionary container.

TMDoubleListElement template dlistimp.h

data

Next

Prey

Constructor

Constructor

operator delete

operator new

This class defines the nodes for double-list classes TMDoubleListImp and
TMIDoubleListImp.

Public data members

T datai

Data object contained in the double list.

TMDoubleListElement<T> *Nexti

A pointer to the next element in the double list.

TMDoubleListElement<T> *Previ

A pointer to the previous element in the double list.

Public constructors

TMDoubleListElement()i

Constructs a double-list element.

TMDoubleListElement(T& t, TMDoubleListElement<T> *p

Constructs a double-list element, and inserts after the object pointed to by
p.

Operators

void operator delete(void *)i

Deletes an object.

void *operator newt size_t sz)i

Allocates a memory block of S2 amount, and retumsa pointer to the
memory block

. Chapter 7, The C++ container classes 401

Double list ,containers

TMDoubleListlmp template dlistimp.h,

CondFunc

IterFunc

Constructor

Add

AddAtHead

AddAtTaii

Detach

FirstThat

402

Implements a managed, double-linked list of objects of type T. Assumes
that T has meaningful copy semantics, operator ==, and a default
constructor.

Type definitions

typedef int (*CondFunc) (const T &, void *)j

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *)j

Functio~ type used as a parameter to F01"-Each member function.

Public constructors

TMDoubleListlmp()

Constructs an empty, managed, double-linked list.

Public member functions

int Add (const T& t)j

Add the given object at the beginning of the list.

int AddAtHead(const T& t)i

Add the'given object at the beginning of the list.

int AddAtTail(const T&)i

Adds the given object at the end (tail) the list.

int Detach(const T&, int = 0)i

Removes the first occurrence of the given object encountered by searching
from the beginning of the list. For direct containers the second -argument is
ignored. For indirect containers the int argument determines if the
detached object is itself destroyed. See TShouldDelete on page 460 for
details. '

T *FirstThat(int (*) (const T &, void *), void *), consti

Library Reference

Flush

ForEach

IsEmpty

LastThat

PeekHead

PeekTaii

Head,Taii

FindDetach

Double list containers

Returns a pointer to the first object in the double-list that satisfies a given
condition. You supply a test-function pointer / that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

vaid Flush(int = 0);

Removes all elements from the list without destroying the list. The value of
dt determines whether the elements themselves are destroyed. By default,
the ownership status of the array determines their fate, as explained in the
Detach member function. You can also set dt to Delete and NoDelete.

vaid FarEach(IterFunc, vaid *);

ForEach creates an internal iterator to execute the given function for each
element in the array. The args argument lets you pass arbitrary data to this
function.

int IsEmpty() canst

Returns 1 if array contains no elements; otherwise returnsO.

T *LastThat(int (*) (canst T &, vaid *), vaid *) canst;

Returns a pointer to the last object in the double list that satisfies a given
condition. You supply a test function pointer, /, that returns true for a
certairt condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" function.

See also: FirstThat, ForEach

Canst T& PeekHead() canst

Returns a reference to the Head item in the double list, without removing it.

Canst T& PeekTail() canst

Returns a reference to the Tail item in the double list, without removing it.,

Protected data members

TMDaubleListElement<T> Head, Tail;

The head and tail items of the double list.

Protected member functions

virtual TMDaubleListElement<T> *FindDetach(canst T& t)

Chapter 7, The C++ container classes 403

Double list containers

FindPred

Determines whether an object is in the list, and returns a pointer to its
predecessor. Returns 0 if not found.

virtual TMDoubleListElernent<T> *FindPred(const T&)i

Finds the element that would be followed by the parameter. The function
does not check whether the parameter is actually there. This can be used for
inserting (insert after returned element pointer). .

TMDoubleListlteratorlmp template dlistimp.h

Constructor

Current

Restart

operator int

operator ++

404

Implements a double list iterator. This iterator works with any direct
double-linked list. For indirect lists, see TMIDoubleListIteratorlmp on
page 409.

Public constructors

TMDoubleListlteratorlrnp(const TDoubleListlrnp<T> &1)

Constructs an iterator that traverses TDoubleListImp objects.

, Public member functions

Const T& Current()

Returns the current object.

void Restart()

Restarts iteration from the beginning of the list.

Operators

operator int ()

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

const .T& operator ++ (int)

Moves to the next object, and returns the object that was current before the
move (post-increment).

const T& operator ++ {)

Library Reference

operator--

Double list containers

Moves to the next object, and returns the object that was current after the
move (pre-increment).

const T& operator -- (int)

Moves to the previous object, and returns the object that was current before
the move (post-decrement).

const T& operator -- ()

Moves to the previous object, and returns the object that was current after
the move (pre-decreme:t;lt).

TDoubleListlmp template dlistimp.h

Constructor

Implements a double-linked list of objects of type T, using
TStandardAllocator for memory management. Assumes that T has
meaningful copy semantics and a default constructor. See TMDoubZeListImp
on page 402 for members.

Public constructors

TDoub1eListlmp()

Constructs an empty double-linked list.

TDoubleListlteratorlmp template dlistimp.h

Constructor

Implements a double list iterator. This iterator works with anY,direct
double-linked list. See TMDoubZeListIteratorlmp on page 404 for members.

Public constructors

TDoub1eListlteratorlmp(const TDoub1eListlmp<T> &1)

Constructs an iterator that traverses TDoubZeListImp objects.

Chapter 7, The C++ container classes 405

Double list containers

TMSDoubleListlmp template dlistimp.h

FindDetach

FindPred

Implements a managed, sorted, double-linked list of objects of type T. It
assumes that T has meaningful copy semantics, a == operator, a < operator,
and a default constructor. See TMDoubleListImp on page 402 for members.

Protected member functions

In addition to the following member functions, TMSDoubleListImp inherits
member functions from TMDoubleListImp (see page 402).

virtual'TMDoubleListElement<T> *FindDetach(canst T&) i

Determines whether an object is in the list, and returns a pointer to its
predecessor. Returns 0 if not found.

virtual TMDoubleListElement<T> *FindPred(canst T&)i

Finds the element that would be followed by the parameter. The function
does not check whether the parameter is actually there. This can be used for
inserting (insert after returned element pointer).

TMSDoubleListlteratorlmp template dlistimp.h

Constructor

Implements a double list iterator. This iterator works with any direct
double-linked list. See TMDoubleListIteratorlmp on page 404 for members.

Public constructors

TMSDoubleListlteratarlmp(canst TMSDaubleListlmp<T,Alloc> &1

Constructs an iterator that traverses TMSDoubleListImp objects.

TSDoubleListlmp template dlistimp.h

406

Implements a sorted, double-linked list of objects of type T. It assumes that
T has meaningful copy semantics, a meaningful < operator, and a default
constructor. See TMSDoubleListlmp on page 406 for members.

Library Reference

Double list containers

TSDoubleListiteratorlmp template dlistimp.h

Constructor

Implements a double list iterator. This iterato:r works with any direct
double-linked list. See TMDoubleListIteratorImp on page 404 for members.

Public constructors

TSDoubleListIteratorImp(const TSDoubleListImp<T> &1)

Constructs an iterator that traverses TSDoubleListImp objects.

TMIDoubleListlmp template dlistimp.h

CondFunc

IterFunc

Add

AddAtHead

AddAtTaii

Detach

Implements a managed, double-linked list of pointers to objects of type
T.The contained objects need a valid == operator. Since pointers always
have meaningful copy semantics, this class can handle any type of object.

Type definitions

typedef int (*CondFunc) (const T &, void *)j

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to For Each member function.

Public member functions

int Add (T *t)

Adds an object pointer to the double list.

int AddAtHead(T *t)j

Add the given object at the beginning of the list.

irit AddAtTail(T *t)

Adds an object pointer to the tail of the double list.

int Detach(T *t, int del = 0)

Chapter 7, The C++ container classes 407

Double list c,ontainers

DetachAtHead

DetachAtTaii

FirstThat

Flush

ForEach

Removes the given object pointer from the list. The second argument
specifies whether the object should be deleted. See TShouldDelete on
page 460.

int DetachAtHead(int del = 0)

Deletes the object pointer from the head of the list.

int DetachAtTail(int del = 0)

Deletes the object pointer from the tail of the list.

T *FirstThat(int (*) (const T &, void *), void *) const;

Returns a pointer to the first object in the double list that satisfies a given
condition. You supply a test-function pointer I that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

See also: LastThat

void Flush(int = 0);

Removes all elements from the list without destroying the list. The value of
dt determines whether the elements themselves are destroyed. By default,
the ownership status of the array determines their fate, as explained in the
Detach member function. You can also set dt to Delete and NoDelete.

void ForEach(IterFunc, void *);

Executes function I for each double-list element. ForEach creates an internal
iterator to execute the given function for each element in the array. The args
argument lets you pass arbitrary data to this function.

GetltemslnContainer unsigned GetItemslnContainer () const.'

IsEmpty

LastThat

PeekHead

408

Returns the number of items in the array.

int IsEmpty() const

Returns 1 if array contains no elements; otherwise returns O.

T *LastThat(int (*)(const T &, void *), void *) const;

Returns a pointer to the last object in the list that satisfies a given condition.
You supply a test function pointer, I, that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition. Note that LastThat creates its own internal
iterator,so you can treat it as a "search" function. ~

See also: FirstThat, ForEach

T *PeekHead() const

Library Reference

PeekTaii

FindPred

· Double list containers

Returns the object pointer at the Head of the list, without removing it.

T *PeekTail() const

Returns the object pointer at the Tail of the list, without removing it.

Protected member functions

virtual TDoubleListElement<void *> *FindPred(void *)i

Finds the element that would be followed by the parameter. The function
does not check whether the parameter is actually there. This can be used for
inserting (insert after returned element pointer).

TMIDoubleListlteratorlmp template dlistimp.h

Constructor

Current

Restart

operator ++

Implements a double list iterator. This iterator works with any indirect
double list. For direct lists, see TMDoubleListIteratorlmp on page 404.

Public constructors

TMIDoubleListlteratorlmp(const TMIDoubleListlmp<T,Alloc> &1

Constructs an object that iterates on TIDoubleListImp objects.

Public member functions

T *Current()

Returns the current object pointer.

void Restart()

Restarts iteration from the beginning of the list.

Operators

T *operator ++ (int)

Moves to the next object, and returns the object that was current before the
move (post-increment).

Chapter 7, The C++ container classes ' 409

Double list containers

T *operator ++ ()

Moves to the next object, and returns the object that was current after the
move (pre-increment).

TIDoubleListimp template dlistimp.h

Implements a double-linked list of pointers to objects of type T, using
TStandardAllocator for memory management. Since pointers always have
meaningful copy semantics, this class can handle any type of object. See
TMIDoubleListImp on page 407 for members.

TIDoubleListlteratorlmp template dlistimp.h

Constructor

Implements a double list iterator. This iterator works with any indirect
double list. See TMIDoubleListIteratorlmp on page 409 for members.

Public constructors

TIDoubleListlteratorlmp(const TIDoubleListlmp<T> &1)

ConstruCts an object that iterates on TIDoubleListImp objects.

TMISDoubleListlmp template dlistimp.h

FindDetach

410

Implements a managed, sorted, double-linked list of pointers to objects of
type T. Since pointers always have meaningful copy semantics, this class
can handle any type of object.

Protected member functions .

In addition to the member function described here, TMISDoubleListImp
inherits member functions (see TMIDoubleListImp on page 407).

virtual TMDoubleListElement<void *> *FindDetach(void *);

Determines whether an object is in :the list, and returns a pointer to its
predecessor.

Library Reference

Double list containers

TMISDoubleListlteratorlmp template dlistimp.h

Constructor

Implements a double list iterator. This iterator works with any indirect,
sorted double list. See TMIDoubleListIteratorlmp on page 409 for members.

Public constructors

TMISDoub1eListlteratorlmp(const TMISDoub1eListlmp<T,A11oc> &1

Constructs an object that iterates on TMISDoubleListImp objects.

TISDoubleListlmp template dlistimp.h

Implements a sorted, double-linked llst of pointers to objects of type T,
using TStandardAllocator for memory management. Since pointers always
have meaningful copy semantics, this class can handle any type of object.
See TMIDoubleListImp on page 407 for members.

TISDoubleListlteratorlmp template dlistimp.h

Constructor

Implements a double list iterator. This iterator works with any indirect,
sorted double list. See TMIDoubleListIteratorlmp on page 409 for members.

Public constructors

TISDoub1eListlteratorlmp(const TISDoub1eListlmp<T> &1)

Constructs an object that iterates on TMISDoubleListImp objects.

TMHashTablelmp template hashimp.h

Constructor

Implements a managed hash table of objects of type T, using the user­
supplied storage al~ocator A. It assumes that T has meaningful copy and ==
semantics, as well as a default constructor.

Public constructors and destructor

, TMHashTab1elmp(unsigned aPrime = DEFAULT_HASH_TABLE_SIZE)

Chapter 7, The C++ container class~s 411

Hash table containers

Destructor

Add

Detach

Find

Flush

ForEach

Constructs a hash table.

~TMHashTablelrnp()

Calls member function Flush to delete the container.

Public member functions

'int Add (canst T& t) i

Adds item t to the hash table.

int Detach (canst T& t, int del=O)i

Removes item t from the hash table. If del is set to 0, t is deleted; if del is set
to I, t is not deleted.

T * Find(canst T& t) canst

,Returns a pointer to item t.

vaid Flush(int del = 0)

Flushes all items in the hash table. The hash table is destroyed if del is
nonzero.

vaid FarEach(vaid (*f) (T&, vaid *), vaid *args)i

Creates an internal iterator that executes the given function f for each item
in the container. The args argument lets you pass arbitrary data to this
function.

GetltemslnContainer unsigned GetIternslnCantainer () canst

Returns the number of items in the hash table.

, IsEmpty int IsErnpty() canst

Returns 1 if the hash table is empty; otherwise returns O.

TMHashTablelteratorlmp template hashimp.h

Constructor

412

Implements an iterator for traversing TMHashTablelmp containers, using
the user-supplied storage allocator Alloc.

Public constructors and destructor

TMHashTablelterata~Irnp(canst TMHashTablelrnp<T,A> & h)

Library Reference

Destructor

Current

Restart

operator int

operator ++

Hash table containers

Constructs an iterator object that traverses a TMHashTableImp container.

-TMHashTableIteratorImp()

Destroys the iterator.

Public member functions

Const T& Current()

RetUrns the current object.

void Restart();

Restarts iteration from the beginning of the hash table.

Operators

operator int ()

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

Const T& operator ++ (int)

Moves to the next object, and returns the object that was current before the
move (post-increment).

Const T& operator ++ ()

Moves to the next object, and returns the object that was current after the
move (pre-increment).

THashTablelmp template hashimp.h

Constructor

Implements a hash table of objects of type T, using the system storage
allocator TStandardAllocator. It assumes that T has meaningful copy and ~=
semantics as well as a default constructor. See TMHashTablelmp on page 411
for members.

Public constructors

THashTableImp(unsigned aPrime = DEFAULT_HASH_TABLE~SIZE

Constructs a hash table that uses TStandardAllocator for memory
management.

Chapter 7, The C++ container classes 413

Hash table containers

THashTablelteratorlmp template hashimp.h

Constructor

Implements an iterator for traversing THashTablelmp containers. See
TMHashTableIteratorImp on page 412 for members.

P'ublic constructors

THashTablelteratorlmp(constTHashTablelmp<T,A> & h)

Constructs an iterator object that traverses a THashTablelmp container.

TMIHashTablelmp template hashimp.h

Constructor

Add

Detach

Find

Flush

ForEach

414

Implements a managed hash table of pointers to objects of type T, using the
user-supplied storage allocator Alloc.

Public constructors

TMIHashTablelmp(unsigned aPrime = DEFAULT_HASH_TABLE_SIZE)

Constructs an indirect hash table.

Public member functions

int Add (T * t)

Adds a pointer to item t to the hash table.

int Detach (T * t, int del = 0)

Removes a pointer to item t from the hash table. t is deleted if qel is set 1,
and not deleted if del is set to O.

T * Find(const T * t) const

Returns a pointer to item t.

void Flush(int del = 0)

. Flushes all items in the hash table. The hash table is destroyed if del is
nonzero.

\

void ForEach(void (*f) (T &, void *),'void *args);

Library Reference

Hash table containers

Creates an internal iterator that executes the given function f for each item
in the container. The args argument lets you pass arbitrary data to this
function.

GetltemslnContainer unsigned GetItemslnContainer () const

Returns the number of items in the hash table.

IsEmpty int IsEmpty() const

Returns 1 if the hash table is empty; otherwise returns O.

TMIHashTablelteratorlmp template hashimp.h

" Constructor

Current

Restart

operator int

operator ++

Implements an iterator for traversing TMIHashTablelmp containers. "

Public constructors

TMIHashTablelteratorlmp(const TMIHashTablelmp<T,A> & h)

" Constructs an iterator object that traverses a TMIHashTablelmp container.

Public member functions

T *Current ()

Returns a pointer to the current object.

void Restart()i

Restarts iteration from the beginning of the hash table.

Operato"rs

operator int ()

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

,T *operator ++ (int)

Moves to the next object, and returns the object pointer that was current
before the move (post-increment).

T *operator ++ ()

Chapter 7, The C++ container c1as~es 415

Hash table containers

Moves to the next object, and returns the object pointer that was current
after the ~ove (pre-increment) ..

TIHashTablelmp template hashimp.h

Constructor

Implements a hash table of pointers to objects of type T, using the system
storage allocator TStandardAllocator. See TMIHashTablelmp on page 414 for
members.

Public constructors

TIHashTablelrnp(unsigned aPrime = DEFAULT_HASH_TABLE_SIZE

Constructs an indirect hash table that uses the system storage allocator.

. TIHashTablelteratorlmp template hashimp.h

Constructor

Implements an iterator object that traverses TIHashTablelmp containers, and
uses the system memory allocator TStandardAllocator. See
TMIHashTableIteratorlmp on page 415 for members.

Public constructors

TIHashTablelteratarlmp(canst TIHashTablelmp<T> & h)

TMListElement template listimp.h

data

Next

416

This class defines the nodes for TMListImp and TMIListlmp and related
Classes.

Public data members

T Data;

Data object contained in the list.

TMListElement<T,Allac> *Next;

A pointer to the next element in the list.

.)
Library Reference .

Constructor

Constructor

operator delete

operator new

Public constructors

TMListElement();

Constructs a list element.

TMListElement(T& t, TMListElement<T,Alloc> *p

List containers

Constructs a list element, and places it after the object at location p.

Operators

void operator delete(void *);

Deletes an object.

void *operator new (size_t sz);

Allocates a memory block of S2 amount,· and returns a pointer to the
memory block.

TMListimp template listimp.h

CondFunc

IterFunc

Constructor

Implements a managed list of objects of type T. TMListlmp assumes that T
has meaningful copy semantics, and a default constructor.

Type definitions

typedef int (*CondFunc~ (canst T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public constructors

TMListImp ()

Constructs an empty list.

Chapter 7, The C++ container classes 417

List. containers

Add

Detach

FirstThat

Flush

ForEach

IsEmpty

LastThat

PeekHead

418

Public member functions

int Add (const T& t)i

Adds an object to the list.

int Detach(-const T&, int = 0);

Removes the given object from the list. Returns 0 for failure, 1 for success in
removing the object. The second argument specifies whether the object
should be deleted. See TShouldDelete on page 460.

T *FirstThat(int (*) (const T &, void *), void *) const;

Returns a pointer to the first object in the list that satisfies a given
condition. You supply a test-function pointer / that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

See also: LastThat

void Flush(int del = 0);

Flushes the list without destroying it. _

int Detach(const T&, int = 0);
void ForEach(IterFunc, ~oid *);

Executes function / for list element. ForEach creates an internal iterator to
execute the given function·for each element in the array. The args ar'gument
lets you pass arbitrary data to this function.

int IsEmpty() const

Returns 1 if the list has no elements; otherwise returns O.

T *LastThat(lnt (*) (const T &, void *), void *) const;

Returns a pointer to the last object in the list that satis-fies a given condition.
You supply a test function pointer, /' that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition. Note that LastThat creates its own internal
iterator, so you can treat it as a "search" function.

See also: FirstThat, ForEach

Const T& PeekHead() const

Returns a reference to the Head item in the list, without removing it.

Library Reference

Head, Tail

FindDetach

FindPred

List containers

Protected data members

TMListElement<T,Alloc> Head, Tail;

The elements before the first and after the last elements in the list.

Protected member functions

virtual TMListElement<T,Alloc> *FindDetach(const T& t)

Determines whether an object is in the list, and returns a pointer to its
predecessor. Returns 0 if not found.

virtual TMListElement<T,Alloc> *FindPred(const T&);

Finds the element that would be followed by the parameter. The function
does not check whether the parameter is actually there. This can be used for
inserting (insert after returned element pointer).

TMListlteratorlmp template listimp.h

Constructor

Current

Restart

operator int

Implements a list iterator that works on direct, managed list. For indirect
list iteration see TMlListIteratorlmp on page 422.

Public constructors

TMListlteratorlmp(const TMListlmp<T,Alloc> &1)

Constructs an iterator that traverses TMListImp objects.

Public member functions

Canst T& Current()

Returns the current object.

void Restart()

Restarts iteration from the beginning of the list.

Operators

operator int () ;

Chapter 7, The C++ container classes 419

List containers

operator ++

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

Const T& operator ++ (int)

Moves to the next object, and returns the object that was current before the
move (post-increment).

Const T& operator +~ ()

Moves to the next object, and returns the object that was current after the
move (pre-increment).

TListlmp template listimp.h

Implements a list of objects of type T. TListImp assumes that T has
meaningful copy semantics, and a default constructor. See TMListImp on
page 417 for members.

TListlteratorlmp template listimp.h

Constructor

Implements a list iterator that works on direct, managed list; See
TMListIteratorlmp on page 419 for members.

, Public constructors

TListlteratorlrnp(const TMListlrnp<T,TStandardA11ocator> &1

Constructs an iterator that traverses TListImp objects.

TMSListlmp template listimp.h

Implements a managed, sorted list of objects of type T. TMSListImp
,assumes that T has meaningful copy semantics, a meaningful < operator,
and a default constructor. See TMListImp on page 417 for members.

>'

TMSListlteratorlmp templat~ listimp.h

420

Implements a list iterator that works on direct, managed, sorted list. See
TMListIteratorlmp on page 419 for members.

Library Reference

Constructor

Public constructors

TMSListlteratorlmp(const TMSListlmp<T,A11oc> &1

Constructs an iterator that traverses TMSListlmp objects.

List containers

TSListlmp template listimp.h

Implements a sorted list of objects of type T, using TStandardAllocator for
.memory management. TSListImp assumes that T has meaningful copy·
semantics, a meaningful < operator, and a default constructor. See
TMListImp on page 417 for members.

TSListlteratorlmp template listimp.h

Implements a list iterator that works on direct, sorted list. See
TMListIteratorlmp on page 419 for members.

TMIListlmp template listimp.h

CondFunc

IterFunc

Add

Implements a managed list of pointers to objects of type T. Since pointers
always have meaningful copy semantics, this class can handle any type of
object.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions. .

typedef void (*IterFunc) (T &, void *);

Function type used as a-parameter to ForEach member function.

Public member functions

int Add (T *t);

Adds an object pointer to the list.

Chapter 7, The C++ container classes 421

List containers

Detach

FirstThat

ForEach

LastThat

PeekHead

FindPred

int Detach(T *t, int del = 0)

Removes.the given object pointer from the list. The second argument
specifies whether the object should be deleted. See TShouldDelete on
page 460. .

T *FirstThat (int. (*) (const T &, void *), void *) const;

Returns a pointer to the first object in the list that satisfies a given
condition. You supply a test-function pointer I that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

See also: LastThat

void ForEach(IterFunc, void *

Executes function I for each list element. ForEach creates an internal iterator
. to execute the given function for each element in the array. The args
argument lets,You pass arbitrary data to this function. .

T *LastThat(int (*) (const T &, void *)~ void *) const;

, Returns a pointer to the last object in the list that satisfies a given condition.
You supply a test function pointer, I, that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition. Note that LastThat creates its own internal
iterator, s~ you can treat it as a "search" function.

See also: FirstThat, ForEach

T *PeekHead() const

Returns the object pointer at the Head of the list, without removing it.

Protected member functions

virtual TMListElement<VoidPointer,Alloc> *FindPred(voidPointer);

Finds the element that would be followed by the parameter. The function
does not check whether the parameter is actually there. This can be used for
inserting (insert after returned element pointer).

TMIListlteratorlmp template listimp.h

422

Implements a list iterator that works with any managed indire~t list. For
direct lists, see TMListIteratorlmp on page 419.

Library Reference

Constructor

Current

Restart

operator ++

Public constructors

TMIListIteratorImp(const TMIListImp<VoidPointer,Alloc> &1

Constructs an object that iterates on TMlListImp objects.

Public member functions

T *Current ()

Returns the current object pointer.

, void Restart ()

Restarts iteration from the beginning of the list.

Operators

T *operator ++ (int)

Li$t containers

Moves to the next object, and returns the object that was current before the
move (post-increment).

T *operator ++ ()

Moves to the next object, and returns the object that was current after the
move (pre-increment).

TIListlmp template listimp.h

Implements a list of pointers to objects of type T. Since pointers always
have meaningful copy semantics, this class can handle any type of object.
See TMlListImp on page 421 for members. '

TIListiteratorlmp template

Constructor

Implements a list iterator that works with any indirect list. See
TMlListIteratorlmp on page 422 for members.

Public constructors'

TIListIteratorImp(const TIListImp<T> &1

Chapter 7, The C++ container classes

listimp.h

423

List containers

Constructs an object that iterates on TMlListImp objects.

TMISListimp template listimp.h

FindDetach

FindPred

Implements a managed sorted list of pointers to objects of type T. Since
pointers always. have meaningful copy semantics, this class can handle any
type of object.

Public member functions

In addition to the member functions described here, TMISListImp inherits
other member functions from TMlListImp (see page 421).

virtual TMListElement<TVoidPointer,Alloc> *FindDetach(TVoidPointer)i

Determines whether an object is in the list, and returns a pointer to its
predecessor. Returns 0 if not found.

virtual TMListElement<TVoidPointer,Alloc> *FindPred(TVoidPointer)i

Finds the element that would be followed by the parameter. The function
does not check whether the parameter is actually there. This can be used for
inserting (insert after returned element point~r).

TMISListlteratorlmp template listimp.h

Constructor

Implements a list iterator that works with any managed indirect list. For
direct lists, see TMListIteratorlmp on page 419.

Public constructors

TMISListlteratorlmp(const TMISListlmp<T,Alloc> &1) :

Constructs an object that iterates on TMISListImp objects.

TISListlmp template listimp.h

424

Implements a sorted list of pointers to objects of type T, using
TStandardAllocator for memory management. Since pointers always have
meaningful copy semantics, this class can handle any type of object. See
TMISListImp on page 424 for members.

Library Reference

List containers

TISListlteratorlmp template listimp.h

Constructor

Implements a list iterator that works with any indirect list. See
TMlListIteratorlmp on page 422 for members.

Public constructors

TISListlteratorlmp(canst TISListlmp<T> &1

Constructs an object that iterates on TISListImp objects.

TMQueueAsVector template queues.h

Constructor

FirstThat

Flush

ForEach

Implements a managed queue of objects of type T, using a vector as the
underlying implementation. TMQueueAs Vector assumes T has meaningful
copy semantics, a < operator, and a default constructor.

Public constructors

TMQueueAsVector(unsigned sz = DEFAULT_QUEUE_SIZE)

Constructs a managed, vector-implemented queue, of sz size.

Public member functions

T *FirstThat(CondFunc, void *args) canst;

Returns a pointer to the first object in the queue that satisfies a given
condition. You supply a test-function pointer f that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

See also: LastThat

void Flush(TShouldDelete::DeleteType = TShouldDelete::DefDelete

Flushes the queue without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the dt argument.

See also: TShouldDelete::ownsElements

void ForEach(IterFunc, void *args);

Chapter 7, The C++ container classes 425

Queue containers

Get

Executes function / for each queue element. ForEach creates an internal
iterator to execute the given function for each element in the array; The args
argument lets you pass arbitrary data to this function. I

T Get ()

Removes the object from the end (tail) of the queue. If the queue is empty, it
returns O. Otherwise the removed object is rerurned.

GetltemslnContainer int GetItemslnContainer () const

IsEmpty

IsFull

LastThat

Put

Returns the number of items in the queue.

int IsEmpty() const

Returns 1 if the queue has no elements; otherwise returns O.

int IsFull() const

Returns 1 if the queue is full; otherwise returns O.

T *LastThat(CondFunc, void *args) const;

Returns a pointer to the last object in the queue that satisfies a given
condition. You supply a test function pointer, /' that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the a~ray meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" function.

See also: FirstThat, For Each

void Put (T t)

Adds an object to (the tail of) a queue.

TMQueueAsVectorlterator template queues.h

Constructor

426

Implements an iterator object for managed, vector-based queues. See
TMDequeAs VectorIterator on page 385 for members.

Public constructors

TMQueueAsVectorlterator(const TMDequeAsVector<T,Alloc> &q)

Constructs an object that iterates on TMQueueAs Vector objects.

Library Reference

Queue containers .

TQueueAsVector template queues.h

Constructor

See TMQueueAs Vector on page 425 for members.

Public constructors

TQueueAsVector(unsigned sz = DEFAULT_QUEUE_SIZE)

Constructs a vector-implemented queue, of sz size.

TQueueAsVectorlterator template queues.h

Constructor

Implements an iterator object for vector-based queues. See
TMDequeAsVectorIterator on page.385 for members.

Public constructors

TQueueAsVectorlterator(const TQueueAsVector<T> &q)

Constructs an object that iterates on TQueueAs Vector objects.

TMIQueueAsVector template queues.h

Constructor

FirstThat

Implements a managed queue of pointers to objects of type T, using a
vector as the underlying implementation.

Public constructors

TMIQueueAsVector(unsigned sz = DEFAULT_QUEUE_SIZE)

Constructs a managed, indirect queue, of sz size.

Public member functions

T *FirstThat(CondFunc, void *args) const;

Returns a pointer to the first object in the queue that satisfies a given
condition. You supply a test-function pointer f that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 ifno object
in the array meets the condition.

. Chapter 7, The C++ container classes 427

Queue containers

Flush

ForEach

Get

See also: LastThat

void Flush(TShouldDelete::DeleteType = TShouldDelete::DefDelete)i

Flushes the queue without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the dt argument.

void ForEach(IterFunc, void *args)i

Executes function I for each queue element. ForEach creates an internal
iterator to execute the given function for each element in the array. The args
argument lets you pass arbitrary data to this function.

T *Get ()

Removes and returns the object pointer from the queue. If the queue is
empty, it returns O.

GetltemslnContainer int GetItemslnContainer () canst

IsEmpty

IsFull

LastThat

Put

Returns the number of items in the queue.

int IsEmpty() canst

Returns 1 if a queue has no elements; otherwise returns O.

int isFull() canst

Returns 1 if a queue is full; otherwise returns O.

T *LastThat(CondFunc, void *args) canst;

Returns a pointer to the last object in the queue that satisfies a given
condition. You supply a test function pointer, I, that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" function. -

See also: FirstThat, ForEach

void Put (T *t)

Adds an object pointer to (the tail of) a queue.

TMIQueueAsVectorlterator template queues.h

Implements an iterator object for managed, indirect, vector-based queues.

428 Library Reference

.Constructor

Queue containers

Public constructors

TMIQueueAsVectorlterator(const TMIDequeAsVector<T,Alloc> &q)

Constructs an object that iterates on TMIQueueAs Vector objects.

TIQueueAsVector template queues.h

Constructor

Implements a queue of pointers to objects of type T, using a vector as the
underlying implementation.

Public constructors

TIQueueAsVector(unsigned sz = DEFAULT_QUEUE_SIZE)

Constructs a indirect queue, of sz size.

TIQueueAsVectorlterator template queues.h

Constructor

Implements an iterator object for indirect, vector-based queues. See
TMDequeAs VectorIterator on page 385 for members.

Public constructors

TIQueueAsVectorlterator(const TIQueueAsVector<T> &q)

Constructs an object that iterates on TIQueueAsVector objects.

TMQueueAsDoubleList template queues.h

FirstThat

Implements a managed queue of objects of type T, using a double-linked
list as the underlying implementation. See TMDequeAsDoubleList on page
390 for members.

Public member functions

T *FirstThat(CondFunc, void *args) const

Chapter 7, The C++ container classes 429

Queue containers

Flush

ForEach

Get

Returns a pointer to the first object in the queue that satisfies a given
condition. you supply ,a test-function pointer I that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

See also: LastThat

void Flush(int del

Flushes objects from the queue. Flushes the queue without destroying it.
The fate of any objects removed depends on the current ownership status
and the value of the dt argument.

void ForEach(IterFunc, void *args)

Executes function I for each queue element. FarEach creates an internal
Herator to execute the given function for each element in the array. The args
argument lets you pass arbitrary data to this function.

T Get ()

Removes the object from the end (tail) of the queue. If the queue is empty, it
returns O. Otherwise the removed object is returned.

GetltemslnContainer int GetIternslnContainer () const

IsEmpty

IsFull

LastThat

Put

430

Returns the number of items in the queue.

int IsErnpty() const

Returns 1 if a queue has no elements; otherwise returns O.

int IsFull() const

Returns 1 if a queue is full; otherWise returns O.

T *LastThat(CondFunc, void *args) const

Returns a pointer to the last object in the queue that satisfies a given .
condition. You supply a test function pointer, I, that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" function.

See also: FirstThat, ForEach

void Put(T t)

Adds an object to (the tail of) a queue.

Library Reference

Queue containers

TMQueueAsDoubleListiterator template queues.h

Constructor

Implements an iterator object for list-based queues. See
TMDequeAsDoubleListIterator on page 392 for members.

Public constructors

TMQueueAsDoubleListlterator(const TMQueueAsDoubleList<T,Allac> & q)

Constructs an object that iterates on TMQueueAsDoubleList objects. '

TQueueAsDoubleList template queues.h

Implements a queue of objects of type T, using a,double-linked list as the
underlying implementation. See TMQueueAsDoubleList on page 429 for
members.

TQueueAsDoubleListlterator template queues.h

Constructor

Implements an iterator object for list-based queues. See
TMDequeAsDoubleListIterator on page 392 for members.

Public constructors

TQueueAsDoubleListlterator(const ,TQueueAsDoubleList<T> &q)

Constructs an object that iterates on TQueueAsDoubleList objects.

TMIQueueAsDoubleList template queues.h

FirstThat

Implements a managed indirect queue of pointers to objects of type T,
, using a double-linked list as the underlying implementation.

Public member functions

T *FirstThat(CondFunc, void *args) canst

Returns a pointer to the first object in the queue that satisfies a given
condition. You supply a test-function pointer f that returns true for a certain

Chapter 7, The ,C++ container classes 431

Queue containers

Flush

ForEach

Get

condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

See also: LastThat

void Flush(TShouldDelete::DeleteType dt = TShouldDelete: :DefDelete

Flushes the queue without destroying it. The fate of any objects removed
depends on the .current ownership status and the vplue of the dt argument.

void ForEach(IterFunc, void *args)

Executes function I for each queue element. ForEach creates an internal
iterator to execute the given function for each element in the array. The args
argument lets you pass arbitrary data to this function.

T *Get ()

,Removes and returns the object pointer from the queue. If the queue is
empty, it returns O. I

GetltemslnContainer int GetItemslnContainer () const

IsEmpty

IsFull

LastThat'

Put

Returns the number of items in the queue.

int IsEmpty() const

Returns 1 if the queue has no elements; otherwise returns o.
int IsFull() const

Returns 1 if the queue is full; otherwise returns O.

T *LastThat(CondFunc, void *args) const

Returns a pointer to the last object in the dequeue that satisfies a given
condition. You supply a test function pointer, I, that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition. Note that LastThat creates its own
interna,l iterator, so you can treat it as a "search" function.

See also: FirstThat, ForEach

void Put (T *t)

Adds an object pointer to (the tail of) a queue.

TMIQueueAsDoubleListlterator template queues.h

432

Implements an iterator object for indirect, list-based queues. See
TMIDequeAsDoubleListIterator on page 394 for members.

Library Reference

Constructor

Queue containers

Public constructors

TMIQueueAsDoubleListlterator(const TMIQueueAsDoubleList<T,Alloc> & q)

Constructs an object that iterates on TMIQueueAsDoubleList objects.

TIQueueAsDoubleList template queues.h

Implements an indirect queue of pointers to objects of type T, using a
double-linked list as the underlying implementation. See
TMIQueueAsDoubleList on page 431 for members.

TIQueueAsDoubleListlterator template queues.h

Constructor

Implements an iterator object for indirect, list-based queues. See
TMIDequeAsDoubleListIterator on page 394 for members.

Public constructors

TIQueueAsDoubleListlterator(canst TIQueueAsDoubleList<T> & q)

Constructs an object that iterates on TIQueueAsDoubleList objects.

TQueue template queues.h

A simplified name for TQueueAsVector.

TQueuelterator template queues.h

A simplified name for TQueueAsVectorIterator.

TMSetAsVector template sets.h

Implements a managed set of objects of type T, using a vector as the
underlying implementation. A set, unlike a bag, cannot contain duplicate
items.

Chapter 7, The C++ container classes . 433

Set containers

Constructor

Add

Public constructors

TMSetAsVectar(unsigned sz = DEFAULT_SET_SIZE)

Constructs an empty set. S2 represents the number of items the set can hold.

Public member functions

In addition to the following member function, TMSetAs Vector inherits
member functions from TMBagAsVector. See TMBagAsVector on page 374
for members.

int Add (canst T& t)i

Adds an object to the set.

TMSetAsVectorlterator template sets.h

Constructor

Implements an iterator object to traverse TMSetAs Vector objects. See
TMArrayAsVectorIterator on page 359 for members.

Public constructors

TMSetAsVectarlteratar(canst TMSetAsVectar<T,Allac> &s) :

Constructs an object that iterates on TMSetAsVectorobjects.

TSetAsVector template , sets.h

Constructor

434

Implements a set of objects of type T, using a vector as the underlying
implementation. TStandardAllocator is used to manage memory. See
TMBagAsVector on page 374 for members.

Public constructors

TSetAsVectar(unsigned sz = DEFAULT_SET_SIZE)

Constructs an empty set. S2 represents the number of items the set can hold.

Library Reference

Set containers

TSetAsVectorlterator template sets.h '

Constructor

Implements an iterator object to traverse TSetAsVector objects. See
TMArrayAs VectorIterator on page 359 for members.

Public constructors

TSetAsVectorIterator(const TSetAsVector<T> &s)

Constructs an object that iterates on TMSetAsVector objects.

TMISetAsVector template sets.h

Constructor

Add

Implements a managed set of pointers to objects of type T, using a vector as
the underlying implementation. See TMIBagAs Vector on page 376 for
members.

Public constructors

TMISetAsVector(unsigned sz = DEFAULT_SET_SIZE)

Constructs an empty, managed, indirect set. sz represents the initial
number of slots allocated.

Public member functions

In addition to the following member function, TMISetAsVector inherits
member functions from TMIBagAsVector. See TMIBagAsVector on page 376.

int Add (T *)i

Adds an object pointer to the set.

TMISetAsVectorlterator template sets.h

Implements an iterator object to traverse TMISetAs Vector objects. See
TMIArrayAsVectorIterator on page 364 for members.

Chapter 7, The C++ container classes 435,

Set containers

Constructor

Public constructors

TMISetAsVectorIterator(const TMISetAsVector<T,Alloc> &s

Constructs an object that iterates on TMISetAs Vector objects.

TISetAsVector template sets.h

Constructor

Implements a set of pointers to objects of type T, using a vector as the
underlying implementation. See TMIBagAs Vector on page 376 for members.

Public constructors

TISetAsVector(unsigned sz = DEFAULT_SET_SIZE)

Constructs an empty, indirect bag. sz represents the initial number of slots
allocated.

TISetAs Vectorlterator template sets.h

Constructor

TSet template

Implements an iterator object to traverse TISetAs Vector objects. See
TMIArrayAsVectorIterator on page 364 for members.

Public constructors

TISetAsVectorIterator(const TISetAsVector<T> &8)

Constructs an object that iterates on TISetAs Vector objects.

A simplified name for TSetAsVector.

sets.h

TSetlterator template sets.h

A simplified name for TSetAsVectorIterator.

436 Library Reference

Stack containers

TMStackAsVector template stacks.h

CondFunc

lterFunc

Constructor

FirstThat

Flush

ForEach

Implements a managed stack of objects of type T, using a vector as the
underlying implementation.

Type definitions

typedef int (*CondFunc) (const T &, voi,d *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Public constructors

TMStackAsVector(unsigned max = DEFAULT_STACK_SIZE

Constructs a managed, vector-implemented stack, with max indicating the
maximum stack size. .

Public member functions

T *FirstThat(CondFunc, void *args) const

Returns a pointer to the first object in the stack that satisfies a given
condition. You supply a test-function pointer f that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

See also: LastThat

void Flush(TShouldDelete::DeleteType = TShouldDelete::DefDelete

Flushes the stack without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the dt argument.

See also: TShouldDelete::ownsElements

void ForEach(IterFunc, void *args)

Executes function f for each stack element. For Each creates an internal
iterator to execute the given function for each element in the array. The args
argument lets you pass arbitrary data to this function.

Chapter 7, The C++ container classes 437

Stack containers

GetltemslnContainer int GetIternsInCantainer () canst

IsEmpty

IsFull

LastThat

Pop

Push

Top

Returns the number of items in the stack.

int IsErnpty() canst

Returns 1 if the stack has no elements; otherwise returns O.

int'IsFull() canst

Returns 1 if the stack is full; otherwise returns O.

~ *LastThat(int (* f) (canst T &, vaid i), vaid *args) canst

Returns a pointer to the last object in the stack that satisfies a given
condition. You supply a test function pointer, f, that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no
object in the array meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" function.

See also: FirstThat, For Each '

T Pap()

Removes the object from the top of the stack and returns the object. The fate
of the popped object is determined by ownership. See TShouldDelete on
page 460.

vaid Push(canst T& t)

Pushes an object oil the top of the stack.

Canst T& Tap() canst

Returns but does not remove the object at the top of the stack.

TMStackAsVectorlterator template stacks.h

Constructor

438

Implements an iterator object for managed, vector-based stacks. See
TMVectorIteratorlmp .on page 447 for members.,

Public constructors

TMStackAsVectarIteratar(canst TMStackAsVectar<T,Allac> & s)

Constructs an object that iterates on TMStackAs Vector objects.

Library Reference' ,

Stack containers

TStackAsVector template stacks.h

Constructor

Implements a 'stack of objects of type T, using a vector as the underlying
implementation, and TStandardAllocator for memory management.

Public constructors ,

TStackAsvector(unsigned max = DEFAULT_STACK_SIZE

Constructs a vector-implemented stack, with max indicating the maximum
stack size.

TStackAsVectorlterator template stacks.h

Constructor

Implements an iterator object for managed, vector-based stacks. See
TMVectorIteratorlmp on page 447 for members.

Public constructors

TStackAsVectorlterator(const TStackAsVector<T> & s) :

Constructs an object that iterates on TS tackAs Vector objects.

TMIStackAsVector template stacks.h

CondFunc

IterFunc

TMIStackAs Vector implements a managed stack of pointers to objects of
type T, using a vector as the underlying implementation.

Type definitions

typedef int (*CondFunc) (const T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*~terFunc) (T &, void *);

Function type used as a parameter to ForEach member function.

Chapter 7, The C++ container classes 439

Stack containers

Constructor

FirstThat

Flush

ForEach

Public constructors

TMIStackAsVector(unsigned max = DEFAULT_STACK_SIZE
Constructs a managed, indirect, vector-implemented stack, with max
indicating the maximum stack size.

Public member functions

T *FirstThat(CondFunc, void *args) const

Returns a pointer to the first object in the stack that satisfies a given
condition. You supply a test-function pointer I that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

See also: LastThat

void Flush(TShouldDelete::DeleteType = TShouldDelete::DefDelete

Flushes the stack without destroying it. The fate of any objects removed
deperds on the current ownership status and the value of the dt argument.

See also: TShouldDelete::ownsElements

void ForEach(IterFunc, 'void *args)

Executes function I for each stack element. ForEach creates an internal
iterator to execute the given function for each element in the array. The args
argument lets you pass arbitrary data to this function.

GetltemslnContainer int GetItemsInContainer () canst

IsEmpty

IsFull

LastThat

440

Returns the number of items in the stack.

int IsEmpty() const

Returns 1 if the stack has no elements; otherwise returns O.

int IsFull() const

Returns 1 if the stack is full; otherwise returns O.

T *LastThat(CondFunc, void *args) const

Returns a pointer to the last object in the stack that satisfies a given
condition. You supply a test function pointer, I, that returns true for a
certain condition. You can pass' arbitrary arguments via args. Returns 0 if no
object in the array meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" f~nction.

See also: FirstThat, ForEach

Library Reference

Pop

Push

Top

Stack containers

T *Pop ()

Removes the object from the top of the stack and retUrns a pointer to the
object. The fate of the popped object is determined by ownership. See
TShouldDelete on page 460.

void Push (T *t)

Pushes a pointer to an object on the top of the stack.

T *Top () const

Returns but does not remove the object pointer at the top of the stack.

TMIStackAsVectorlterator template stacks.h

Constructor

Implements an iterator object for managed, indirect, vector-based stacks.
See TMVectorIteratorlmp on page 447 for members.

Public constructors

TMIStackAsVectorIterator(const TMIStackAsVector<T,Alloc> & s

Constructs an object that iterates on TMIStackAs Vector objects.

TIStackAsVector template stacks.h

Constructor

Implements an indirect stack of pointers to objects of type T, using a vector
as the underlying implementation. See TMIStackAs Vector on page 439 for
members.

Public constructors

TIStackAsVector(unsigned max = DEFAULT_STACK_SIZE)
TMIStackAsVector<T,TStandardAllocator>(max)

Constructs an indirect, vector-implemented stack, with max indicating the
maximum stack size.

Chapter 7, The C++ container classes 441

Stack containers

TIStackAsVectorlterator template stacks.h

Constructor

Implements an iterator object for indirect, vector-based stacks. See
TMIVectorlteraforlmp on page 455 for members.

Public constructors

TMIStackAsVectorlterator(const TMIStackAsVector<T,Alloc> & s

Constructs an object that iterates on TIStackAsVector objects.

TMStackAsList template stacks.h

Implements a managed stack of objects of type T, using a list as the
underlying implementation. See TMStackAs Vector on page 437 for
members.

TMStackAsListlterator template stacks.h

Constructor

Implements an iterator object for managed, list-based stacks. See .
TMListIteratorlmp on page 419 for members.

Public constructors

TMStackAsListlterator(const TMStackAsList<T,Alloc> & s) :
TMListlteratorlmp<T,Alloc> (s.Data)

Constructs an object that iterates on TMStackAsList objects.

TStackAsList template stacks.h

442

Implements a managed stack of objects of type T, using a list as the
underlying implementation. See TMStackAsVector on page 437 for
members.

Library Reference

Stack containers

TStackAsListlterator template stacks.h

Constructor

Implements an iterator object for list-based stacks. See TMVectoriteratorlmp
on page 447 for members.

Public constructors

TStackAsListlterator(const TStackAsList<T> & s)
TMStackAsListlterator<T,TStandardAllocator>(s)

Constructs an object that iterates on TIStackAs Vector objects.

TMIStackAsList template stacks.h

Implements a managed stack of pointers to objects of type T, using a linked
list as the underlying implementation. See TMIStackAsVector on page 439
for members. '

TMIStackAsListiterator template stacks.h

Constructor

Implements an iterator object for managed, indirect, list-based stacks. See
TMlListIteratorlmp on page 422 for members.

Public constructors

TMIStackAsListlterator(const TMIStackAsList<T,Alloc> & s

Constructs an object that iterates on TMIStackAsList objects.

TIStackAsList template stacks.h

Implements TMIStackAsList with the standard allocator TStandardAllocator.
See TMIStackAs Vector on page 439 for members.

TIStackAsListlterator template

Implements an iterator object for indirect, list-based stacks. See
TMIVectoriteratorlmp on page 455 for members.

Chapter 7, The C-I;+ container classes

stacks.h

443

Stack containers

Constructor

Public constructors

TIStackAsListlterator(const TIStackAsList<T> & s

Constructs an object that iterates on TIStackAsList objects.

TStack template stacks~h

A simplified name for TStackAsVector.

TStacklterator template stacks.h

A simplified name for TStackAsVectorlterator.

TMVectorlmp template vectimp.h

CondFunc

lterFunc

Constructor

Constructor

Constructor

444

Implements a managed vector of objects of type T. TMVectorlmp assumes
that T has meaningful copy semantics, and a default constructor.

Type definitions

typedef int (*CondFunc) (const T &, void *) i

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *) i

Function type used as a parameter to ForEach member function.

Public constructors

TMVectorlmp();

Constructs a vector with no entries.

TMVectorlmp(unsigned sz, unsigned = 0');
/

Constructs a vector of S2 objects, initialized by default to O.

TMVectorlmp(const TMVectorlmp<T,Alloc> &);

Constructs a vector copy.

Library Reference

FirstThat

Flush

ForEach

GetDelta

LastThat

Vector containers

Public member functions

T *FirstThat(CondFunc, void *args) const

Returns a pointer to the first object in the vector that satisfies a given
condition. You supply a test-function pointer I that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns 0 if no object
in the array meets the condition.

T *FirstThat(CondFunc, void *, unsigned, unsigned) const;

This version of FirstThat allows you to specify a range to be searched.
Returns a pointer to the first object in the vector that satisfies a given
condition. You supply a test-function pointer I that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns O· if no object
in the array meets the condition.

See also: LastThat

void Flush(unsigned = 0, unsigned = UINT_MAX, unsigned = 0);

Flushes the vector without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the first
argument. A range to be flushed can be specified with the last two
arguments.

See also: TShouldDelete::ownsElements

void ForEach(IterFunc, void *ar'gs)

Returns a pointer to the first object in the vector that satisfies a given
condition. ForEach creates an internal iterator to execute the given function
for each element in the array. The args argument lets you pass arbitrary
data to this function.

void ForEach(IterFunc, void *, unsigned, unsigned);

This version allows you to specify a range.

See also: LastThat

virtual unsigned GetDelta() const;

Returns the growth delta for the array.

T *LastThat(CondFunc, void *args) const

Returns a pointer to the last object in the vector that satisfies a given
condition. You supply a test function pointer, I, that returns true for a
certain condition. You can pass arbitrary arguments via args. Returns 0 if no

Chapter 7, The C++ container classes 445

Vector containers

Limit

Resize

Top

operator []

operator =

Lim

Zero

446

object in the array meets the condition. Note that LastThat creates its own
internal iterator, so you can treat it as a "search" f1:illction. /-

T *LastThat(CondFunc, void *, unsigned, unsigned) const;

This version allows you to specify a range.

See also: FirstThat, ForEach

unsigned Limit() const;

Returns the number of items that the vector can hold.

void Resize(unsigned sz, unsigned offset = 0);

Creates a new vector of size sz. The existing vector is copied to the
expanded vector, then deleted. In a vector of pointers the entries are
zeroed. In an array of objects the default constructor is invoked for each
unused element. offset is the location in the new vector where the first
element of the old vector should be copied. This is needed when the vector
has to be extended downward.

vir,tual unsigned Top () const;

Returns the index of the current top element. For plain vectors Top returns
Lim; for counted and sorted vectors Top returns the current insertion point.

Operators

T & operator [] (unsigned index) const

Returns a reference to the object at index.

const TMVectorlmp<T,Alloc> & operator = (const TMVectorlmp<T,Alloc> &);

Provides the vector assignment operator.

Protected data members

unsigned Lim;

Lim stores the upper limit for indexes into the vector.

Protected member functions

virtual void Zero(unsigned, unsigned

Provides for zeroing vector contents 'within the specified range.

Library Reference

Vector containers

TMVectorlteratorlmp template vectimp.h

Constructor

Constructor

Current

Restart

operator ++

operator int

,Implements a vector iterator that works with any direct, managed vector of
objects of type T. For indirect vector iterators, see TMIVectorIteratorlmp on
page 455.

Public constructors

TMVectorlteratorlmp(const TMVectorlmp<T,Alloc> &v

Creates an iterator object to traverse TMVectorlmp objects.

TMVectorlteratorlmp(const TMVectorlmp<T,Alloc> &v, unsigned start,
unsigned stop)

\

Creates an iterator object to traverse TMVectorlmp objects. A range can be
specified.

Public member functions

Const T& Current()i

Returns the current object.

void Restart()i

Restarts iteration over the whole vector.

void Restart (unsigned start, unsigned stop)i

Restarts iteration over the given range.

Operators

Const T& operator ++(int)i

Moves to the next object, and returns the object that was current before the
move (post-increment).

Const T& operator ++()i

Moves to the next object, and returns the object that was current after the
move (pre-increment).

operator int()i

Chapter 7, The C++ container classes 447

Vector containers

Converts the iterator to an integer value for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

TVectorlmp template vectimp.h

Constructor

Constructor

Constructor

Implements a vector of objects of type T. TVectorlmp assumes that T has
meaningful copy semantics, and a default constructor. See TMVectorlmp on
page 444 for members. .

Public constructors

TVectorlmp ()

Constructs a vector with no entries.

TVectorlmp(unsigned sz, unsigned = 0

Constructs a vector of sz objects, initialized by default to O.

TVectorlmp(const TVectorlmp<T> &v

Constructs a vector copy.

TVectorlteratorlmp template vectimp.h

Constructor

Constructor

448

Implements a vector iterator that works with any direct vector of objects of
type T. See TMVectorIteratorlmp on page 447 for members.

Public constructors

TVectorlteratorlmp(const TVectorlmp<T> &v)

Creates an iterator object to traverse TVectorI'!lP objects.

TVectorlteratorlmp(const TVectorlmp<T> &v, unsigned start, unsigned stop

Creates an iterator object to traverse TVectorlmp objects. A range can be
specified.

Library Reference

Vector containers

TMCVectorlmp template vectimp.h

Constructor

Constructor

Add

. AddAt

Count

Detach

Find

Implements a managed, counted vector of objects of type T. TMCVectorlmp
assumes that T has meaningful copy semantics, and a default constructor.

Public constructors

TMCVectarlmp()i

Constructs a vector with no entries.

TMCVectarlmp(unsigned sz, unsigned = 0)i

Constructs a vector of 52 objects, initialized by default to O.

Public member functions

In addition to the member functions described here, TMCVectorlmp inherits
member functions from TMVectorlmp (see page 444).

int Add (canst T& t)i

Adds an object to the vector and increments Count_ .

int AddAt(canst T&, unsigned)i

Adds an object to the vector at the specified location, and increments
Count_.

unsigned Caunt() cansti

Returns Count_.

int Detach(unsigned, int dt = 0)i
int Detach (canst T&, int dt = 0)i

Remove by specifying the object or its index. The first version removes the
object at loc; the second version removes the first object that compares equal
to the specified object. The value of dt and the current ownership setting
determine whether the object itself will be deleted. DeleteType is defined in
the base class TShouldDelete as enum { NaDelete, DefDelete, Delete }. The
default value of dt, NoDelete, means that the object will not be deleted
regardless of ownership. With dt set to Delete, the object will be deleted
regardless of ownership. If dt is set to DefDelete, the object will be deleted
only if the array owns its elements.

virtual unsigned.Find(canst T&) cansti

Chapter 7, The C++ container classes 449

Vector containers

GetDelta

CounC

Delta

Top

Finds the specified object and returns the object's index; otherwise returns
INT_MAX.

virtual unsigned GetDelta() const;

RetUrns Delta.

Protected data members

In addition to the data members described here, TMCVeCtorlmp inherits
data members from TMVectorlmp (see page 444).

unsigned Count_;

Maintains the number of objects in the vector.

unsigned Delta;

Specifies the size increment to be used when the vector grows.

Protected member functions .

virtual unsigned Top() const

Returns Count_.

TMCVectorlteratorlmp· template vectimp.h

Constructor

Constructor

Implements a vector iterator that works with any direct, managed, counted
vector of objects of type T. See TMVectorlteratorlmp on page 447 for
members. '

Public constructors

TMCVectorlteratorlrnp(const TMCVectorlrnp<T,Alloc> &v)

Creates an iterator object to traverse TMCVectorlmp objects.

TMVectorlteratorlrnp(const TMCVectorlrnp<T,Alloc> &v, unsigned start,
unsigned stop)

Creates an iterator object to traverse TMCVectorlmp objects. A range can be
specified.

Library Reference

Vector containers

TCVectorlmp template vectimp.h

Constructor

Constructor

Implements a counted vector of objects of type T. TCVectorlmp assumes that
T has meaningful copy semantics, and a default constructor. See
TMCVectorlmp on page 449 for members.

Public constructors

TCVedorlmp()i

Constructs a vector with no entries.

MCVectorlmp (unsigned S2, unsign,ed = 0) i

Constructs a vector of 52 objects, initialized by default to O.

TCVectorlteratorlmp template . vectimp.h

Constructor

Constructor

Implements a vector iterator that works with any direct, counted vector of
objects of type T.See TMCVectorIteratorlmp on page 450 for members.

Public constructors

TCVectorlteratorlmp(const TCVectorlmp<T> &v)

Creates an iterator object to traverse TCVectorImp objects.

TCVectorIteratorlmp(const TCVectorlmp<T> &v, unsigned start, unsigned
stop)

Creates an iterator object to traverse TCVectorlmp objects. A range can be
specified.

TMSVectorlmp template vectimp.h

Implements a managed, sorted vector of objects of type T. TM5Vectorlmp
assumes that T has meaningful copy semantics, a meaningful < operator,

. and a default constructor. See TMCVectorlmp on page 449 for members.

Chapter 7, The C++ container classes 451

Vector containers

Public constructors

Constructor TMSVectorlmp ()

Constructs a vector with no entries.

Constructor TMSVectorlmp(unsigned sz, unsigned d = 0

Constructs a vector of 5Z objects, initialized by default to O.

TMSVectorlteratorlmp template vectimp.h

Constructor

Constructor

Implements a vector iterator that works with any direct, managed, sorted
vector of objects of type T. See TMVectorlteratorImp on page 447 for
members.

Public constructors

TMSVectorlteratorlmp(const TMSVectorlmp<T,Alloc> &v)

Creates an iterator object to traverse TM5VectorImp objects.

TMSVectorlteratorlmp(const TMSVectorlmp<T,Alloc> &v, unsigned start,
unsigned stop)

Creates an iterator object to traverse TM5VectorImp objects. A range can be
specified.

TSVectorlmp template vectimp.h

Constructor

Constructor

452

Implements a sorted vector of objects of type T. TM5VectorImp assumes
that T has meaningful copy semantics, a meaningful < operator, and a
default constructor. See TMCVectorImp on page 449 for members.

Public constructors

TSVectorlmp ()

Constructs a vector with no entries.

TSVectorlmp(unsigned sz, unsigned d = 0

Constructs a vector of 5Z objects, initialized by default to O.

Library Reference

Vector containers

TSVectorlteratorl mp temp late vectimp.h

Constructor

Constructor

Implements a vector iterator that works with any direct, sorted vector of
objects of type T. See TMVectorlteratorlmp on page 447 for members.

Public constructors

TSVectorlteratorlrnp(canst TSVectorlrnp<T> &v)

Creates an iterator object to traverse TSVectorlmp objects.

TSVectorlteratorlrnp(canst TSVectorlrnp<T> &v, unsigned start, unsigned
stop)

Creates an iterator object to traverse TSVectorlmp objects. A range can be
specified.

TMIVectorlmp template vectimp.h

CondFunc

IterFunc

Constructor

Implements a managed vector of pointers to objects of type T. Since
pointers always have meaningful copy semantics, this class can handle any
type of object.

Type definitions , .

typedef int (*CondFunc) (canst T &, void *);

Function type used as a parameter to FirstThat and LastThat member
functions.

typedef void (*IterFunc) (T &, void *);

Function type used as a parameter to ForEach·member function.

Public constructors

TMIVectorlrnp(unsigned sz);

Constructs a managed vector of pointers to objects. S2 represents the vector
size.

Chapter 7, The C++ container classes 453

Vector containers

FirstThat

Flush

ForEach.

GetDelta

LastThat

Limit

Resize

454

Public member functions

T *FirstThat(CondFunc, void *args) const

Returns a pointer to the first object in the vector that satisfies a given
condition. You supply a test-function pointer f that returns true for a certain
condition. You can pass arbitrary arguments via args. Returns a if no object
in the array meets the condition.

T *FirstThat,(int (*) (const T &, void *), void *, unsigned, unsigned)
const;

This version allows specifying a range to be searched. You supply a test­
function pointer f that returns true for a certain condition. You can pass
arbitrary arguments via args. Returns a if no object in the array meets the
conditIon.

void Flush(unsigned = 0, unsigned = UINT_MAX, unsigned = 0);

Flushes the vector without destroying it. The fate of any objects removed
depends on the current ownership status and the value of the first
argument. A range to be flushed can be specified with the last two
arguments.

void ForEach(IterFunc, void *args)

Returns a pointer to the first object in the vector that satisfies a given
condition. See TMArrayAsVector::FirstThat. .

void ForEach(IterFunc, void *, unsigned, unsigned);

This version allows specifying a'range.

virtual unsigned GetDelta() const;

Returns the growth delta for the array.

T *LastThat(CondFunc, void *args) const

Returns a pointer to the last object in the vector that satisfies a given
condition. See TMArrayAsVector::LastThat.

T *LastThat(CondFunc, void *, unsigned, unsigned) const;

This version allows specifying a range.

unsigned Limit() const;

Returns the number of items that the vector can hold.

void Resize(unsigned sz, unsigned offset = 0);

Library Reference

Top

Zero

operator []

Vector containers

Creates a new vector of size sz. The existing vector is copied to the
expanded vector, then deleted. In a vector of pointers the entries are
zeroed. In an array of objects the default constructor is invoked for each
unused element. offset is the location in the new vector where the first
element of the old vector should be copied. This is needed when the vector
has to be extended downward.

virtual unsigned Top() const;

Returns the index of the current top element. For plain vectors Top returns
Lim; for counted and sorted vectors Top returns the current insertion point.

virtual void Zero(unsigned, unsigned);

Provides for zeroing vector contents within the specified range.

Operators

T * & operator [] unsigned index

T * & operator [] unsigned index const

Returns a reference to the object at index ..

TMIVectorlteratorlmp template vectimp.h

Constructor

Constructor

Current

Restart

Implements a vector iterator that works with an indirect, managed vector.

Public constructors

TMIVectorIteratorImp(const TMIVectorImp<T,Alloc> &v)

Creates an iterator object to traverse TMIVectorlmp objects.

TMIVectorIteratorImp(const TMIVectorImp<T,Alloc> &v, unsigned 1, unsigned u

Creates an iterator object to traverse TMIVectorlmp objects. A range can be
specified.

Public member functions

T *Current();

Returns a pointer t~ the current object.

void Restart();

Chapter 7, The C++ container classes 455

Vector containers

operator ++

operator int

Restarts iteration over the whole vector.

void Restart (unsigned start, unsigned stop)i

Restarts iteration over the given range.

Operators

Const T& operator ++(int)i

Moves to the next object, and returns the object that was current before the
move (post-increment).

Const T& operator ++()i

Moves to the next object, and returns the object that was current after the
move (pre-increment). .

operator int()i

Converts the iterator to an integer value'for testing if objects remain in the
iterator. The iterator converts to 0 if nothing remains in the iterator.

TIVectorlmp template vectimp.h

Constructor

Implements a vector of pointe~s to objects of type T. Since pointers always
have meaningful copy semantics, this class can handle any type of object.
See TMIVectorlmp on page 453 for members. '

Public constructors

TIVectorlmp(unsigned sz, unsigned d = 0)

Constructs an indirect vector of sz size, with default initialization of O.

TIVectorlteratorlmp template vectimp.h

Constructor

456

Implements a vector iterator that works with an indirect, managed vector.
See TMIVectorIteratorImp on page 455 for members.

Public constructors

TIVectorlteratorlmp(const TIVectorlmp<T> &v)

Library Reference

Constructor

Vector containers

Creates an iterator object to traverse TIVectorImp objects.

TIVectorlteratorlmp(const TIVectorlmp<T> &v, unsigned 1, unsigned u)

Creates an iterator object to traverse TIVectorImp objects. A range can be
specified. .

TMICVectorlmp template vectimp.h

Constructor

Add

Find

Find

Implements a managed, counted vector of pointers to objects of type T.
Since pointers always have meaningful copy semantics, this class can
handle any type of object.

Public constructors

TMICVectorlmp(unsigned sz, unsigned d = 0)

Constructs a managed, counted vector of pointers to objects. sz represents
the vector size. d represents the initialization value.

Public member functions

In addition to the following member functions, TMICVectorlmp inherits
other member functions'and operators from TMIVectorlmp (see page 453).

int Add (T *t);

Adds an object to the vector.

unsigned Find(T *t) const

Finds the specified object pointer, and returns its index.

Protected member functions

virtual unsigned Find(void *) const;

Finds the specified pointer and returns its index.

Chapter 7, The C++ container classes 457

Vector containers

TMICVectorlteratorlmp template vectimp.h

Constructor

Constructor

Implements a vector iterator that works with an indirect, managed,
counted vector. See TMIVectorIteratorlmp on page 455 and
TMVectorIteratorImp on page 447 for members.

Public constructors

TMICVectorIteratorImp(canst TMICVectarImp<T,Allac> &v)

Creates an iterator object to traverse TMCIVectorlmp objects.

TMICVectorIteratarImp(canst TMICVectarImp<T,Alloc> &v, unsigned I,
unsigned u)

Creates an iterator object to traverse TMICVectorlmp objects. A range can be
specified.

TICVectorlmp template vectimp.h

Constructor

Implements a counted vector of pointers to objects of type T. Since pointers
always have meaningful copy semantics, this class can handle any type of
object. See TMICVectorlmp on page 457 for members.

Public constructors

TICVectarImp(unsigned sz, unsigned d = 0

Constructs a counted vector of pointers to objects. S2 represents the vector
size. d represents the initialization value.

TICVectorlteratorlmp template vectimp.h

Constructor

458

Implements a vector iterator that works with an indirect, managed,
counted vector. See TMIVectorIteratorlmp on page 455 and
TMVectorIteratorlmp on page 44~ for members.

Public constructors

TICVectorIteratarImp(canst TICVectarImp<T> &v)

Library Reference

Constructor

Vector containers

Creates an iterator object to traverse TICVectorimp objects.

TICVectorlteratorlrnp(const TICVectorlrnp<T> &v, ,unsigned 1, unsigned u)

Creates an iterator object to traverse TICVectorlmp objects. A range can be
specified.

TMISVectorlmp template vectimp.h

Constructor

Impleme~ts a managed, sorted vector of pointers to objects of type T. Since
pointers always have meaningful copy semantics, this class ca.n handle any
type of object. See TMICVectorlmp on page 457 for members.

Public constructors

TMISVectorlrnp(unsigned sz, unsigned d = 0);

Constructs a managed, sorted vector of pointers to objects. S2 represents the
vector size. d represents the initialization value.

TMISVectorlteratorlmp template vectimp.h

Constructor

Constructor

Implements a vector iterator that works with an indirect, managed, sorted
vector. See TMIVectorIteratorlmp on page 455 and TMVectorIteratorImp on
page 447 for members.

Public constructors

TMISVectorlteratorlrnp(canst TMISVectarlrnp<T,A11ac> &v)

Creates an iterator object to traverse TMIVectorlmp objects.

TMISVectorlteratorlrnp(canst TMISVectorlrnp<T,A11oc> &v, unsigned 1,
unsigned u)

Creates an iterator object to traverse TMIVectorlmp objects. A range can be
specified.

Chapter 7, The C++ container classes 459

Vector containers

TISVectorlmp template vectimp.h

Constructor

Implements a sorted vector of pointers to objects of type T. Since pointers
always have meaningful copy semantics, this class can handle any type of
object. See TMICVectorlmp on page 457 for members.

Public constructors

TISVectarlmp(unsigned sz, unsigned d = 0)

Constructs a managed, sorted vector of pointers to objects. S2 represents the
vector size. d represents the initialization value.

TISVectorlteratorlmp template vectimp.h

Constructor

Constructor

Implements a vector iterator that works with an indirect, managed, sorted
vector. See TMIVectorlteratorlmp on page 455 and TMVectorlteratorlmp on/'
page 447 for members.

Public constructors

TISVectarlteratarlmp(canst TISVectarlmp<T> &v)

Creates an iterator object to traverse TISVectorlmp objects.

TISVectarlteratarlmp(canst TISVectarlmp<T> &v, unsigned 1, unsigned u)

Creates an iterator object to traverse TISVectorlmp objects. A range can be
specified.

TShouldDelete class shddel.h

460

TShouldDelete maintains the ownership state of an indirect container. The
fate of objects that are removed from a container can be made to depend on
whether the container owns its elements or not. Similarly, when a container
is destroyed, ownership can dictate the fate of contained objects that are
still in scope. As a virtual base class, TShouldDelete provides ownership
control for all containers classes. The member function OwnsElements can
be used either to report or to change the ownership status of a container.
The member function DelObj is used to determine if objects in containers
should be deleted or not.

Library Reference

Constructor

Owns Elements

DelObj

TShouldDelete

Public data members

enum DeleteType { NoDelete, DefDelete, Delete };

Enumerates values to determine whether or not an object should be deleted
upon removal from a container.

Public constructors

TShouldDelete(DeleteType dt = Delete

Creates a TShouldDelete object. See member function DelObj.

Public member functions

int OwnsElements()

Returns 1 if the container owns its elements; otherwise returns O.

void OwnsElements(int del)

Changes the ownership status as follows: if del is 0, ownership is turned off;
otherwise ownership is turned on.

Protected member functions

int DelObj(DeleteType dt)

Tests the state of ownership and returns 1 if the contained'objects should be
deleted or 0 if the contained elements should not be deleted. The factors
determining this are the current ownership state, and the valu~ of dt, as
shown in the following table.

delObj
ownsElements No Yes

No Delete No No
,DefDelete No Yes
Delete Yes Yes

delObj returns 1 if (dt is Delete) or (dt is DefDelete and the container currently
owns its elements). Thus a dt of No Delete returns 0 (don't delete) regardless
of ownership; a dt of Delete return 1 (do delete) regardless of ownership;
and a dt of DefDelete returns 1 (do delete) if the elements are owned, but a 0
(don't delete) if the objects are not owned.

Chapter 7, The C++ container classes 461

462 Library Reference

bed

c H A p T E R 8

The C++ mathematical classes

This chapter describes Borland C++ mathematics based on C++ classes.
These mathematical operations are available only in C++ programs. How­
ever, a C++ program that uses any of these classes, the numerical types that
the classes define, or any of the classes' friend and member functions can
use any of ANSI C Standard mathematics routines.

There are two classes, bed and complex, that construct numerical types.
Along with these numerical types, each class defines the functions with
which to carry out operations with their respective types (for example,
converting to and from the bed and complex type). Each class also overloads
all necessary operators.

The mathematical classes are independent of any hierarchy. However, each
class includes the iostream.h header file.

The portability for bed and complex is as follows:

bed.h

The class constructors create binary coded decimals (BCD) from integers or
floating-point numerical types. The friend function real, described on page
465, convert~ bed numbers to long double.

Once you construct bed numbers, you can freely mix them in expressions
with ints, doubles, and other numeric types. You can also use bed numbers
in any of the ANSI C Standard mathematical functions.

The following ANSI C math functions are overloaded to operate with bed
types: .

friend bed abs(bed &);
friend bed aeos(bed &);
friend bed asin(bed &);

Chapter 8, The C++ mathematical classes 463

bed

Constructor

Constructor

464

friend bed atan(bed &)i
friend bed cos (bed &) i
friend bed eosh(bed &)i
friend bed exp(bed &)i
friend bed log(bed &)i
friend bed loglO (bed &) i
friend bed pow (bed & base, bed & expon) i
friend bed sin(bed &)i
friend bed sinh(bed &)i
friend bed sqrt (bed &) i
friend bed tan(bed &)i
friend bed tanh (bed &);

See the documentation of these functions in Chapter 3.

The bed class also overloads the operators +, -, *,1,+=,-=, *=,1=, =, ==, and
!=. These operators provide bed arithmetic manipulation in the usual sense.

The operators « and » are overloaded for stream input and output of bed
numbers, as they are for other data types in iostream.h.

bed numbers have about 17 decimal digits precision, and a range of about
1 x 10-125 to 1 X 10125.

The number is rounded according to the rules of banker's rounding, which
means round to nearest whole number, with ties being rounded to an even
digit.

Public constructors

bcd() ;

The default constructor. You typically use this to declare a variable of type
bed.

bed i; II Construct a bcd-type number.
bed j = 37; II Construct and initialize a'bed-type number.

bcd(int x);

This constructor defines a bed variable from an int variable or directly from
an integer.

int i = 15;
bed j = bed(i)i
bed k = bed(12)i

II Initialize j with a previously declared type.
II Construct k from the integer provided.

The above example provides these variables:

i = 15 j = 15 k = 12

Library Reference

Constructor

Constructor

Constructor

Constructor

Constructor

real

bed

bed(unsigned int x);

This constructor defines a bed variable from a variable that was previously
declared to be an unsigned int type. An unsigned integer can be provided
directly to the constructor.

bed (long x);

This constructor defines a bed variable from an long variable or directly
from a long value.

bed(unsigned long x);

This constructor defines a bed variable from a variable that was previously
declared to be an unsigned long type.

bed (double x, int decimals = Max) ;

This constructor defines a bed variable from a variable that was previously
declared to be a floating point double type. The constructor also creates a
variable directly from a double value.

To specify a precision level (that is, the number of digits after the decimal
point) that is different from the default, use the variable decimals; for
example, .

double x = 1.2345; II Declare and initialize in the usual manner.
, bcd y = bcd(x, 2); II Create a bed numerical type from x.

The precision level for y is set to 2. Therefore, y is initialized with 1.23.

bed(long double x, int decimals = Max);

This constructor defines a bed variable from a variable that was previously
declared to be a floating point long double type. Alternately, you can
supply a long, double value directly in the place of x.

To specify a precision level (that is, the number of digits after the decimal
point) that is different from the default, use the variable decimals.

Friend functions

long double real (bed number)

You can use the real function to convert a binary coded decimal number
back to a long double. See the Programmer's Guide, Chapter 2, for a discus­
sion about arithmetic conversions.

Chapter 8, The C++ mathematical classes 465

complex

complex

Constructor

Constructor

abs

acos

466

complex.h

Creates complex numbers. Once you construct complex numbers, you can
freely mix them in expressions with ints, doubles, and other numeric types.
You can also use complex numbers in any of the ANSI C Standard mathe­
matical functions. The ANSI math functions are documented in Chapter 3.

The complex class also overloads the operators +, -, *,/, +=, -=, ,*=,/=, =, ==,
and !=. These operators provide complex arithmetic manipulation in the
usual sense.

The operators « and » are overloaded for stream input and output of
complex numbers, as they are for other data types in iostream.h.

If 'you don't want to program in C++, but instead want to program in C, the
only constructs available to you are struct complex and cabs, which give the
absolute value of a complex number. Both of these alternates are defined in
math.h.

Public constructors

complex () ;

The default constructor. You typically use this to declare a variable of type
complex .

. complex i;
complex j = 37;

II Construct a complex-type number.
II Construct and initialize a complex-type number.

complex(double real, double imag = 0);

Creates a complex numerical type out of a double. Upon construction, a real'
and an imaginary part are provided. The imaginary part is considered to be
zero if imag is omitted.

Friend functions

friend double abs(complex& val);

Returns the absolute value of a complex number.

The complex version of abs returns a double. All other math functions
return a complex type when val is complex type. .

friend complex acos(complex& z);

Library Reference

arg

asin

alan

conj

cos

cosh

exp

Calculates the arc cosine.

The complex inverse cosine is defined by

acos(z) = -i * log(z + i sqrt(l - Z2))

double arg(complex x) i

arg gives the angle, in radians, of the number in the complex plane.

complex

The positive real axis has angle 0, and the positive imaginary axis has angle
pi/2. If the argument passed to arg is complex 0 (zero), arg returns zero. ~

arg(x) returns atan2(imag(x), real(x)).

friend complex, asin(complex& Z)i

Calculates the arc sine.

The complex inverse sine is defined by

asin(z) = -i * log(i * z + sqrt(l - z2))

friend complex atan(complex& Z)i

Calculates the arc tangent.

The complex inverse tangent is defined by

atan(z) = -0.5 i log((l + i z)/(l - i z))

complex conj(complex Z)i

Returns the complex conjugate of a ~omplex number.
conj (z) is the same as complex (real (z), -imag(z)).

friend complex cos (complex& Z)i

Calculates the cosine of a value.

The complex cosine is defined by

cos(z) = (exp(i * z) + exp(-i * z)) / 2

friend complex cosh(complex& Z)i

Calculates the hyperbolic cosine of a value.

The complex hyperbolic cosine is defined by

cosh(z) = (exp(z)· + exp(-z)) / 2

friend complex exp(complex& Y)i

Calculates the exponential e to the y.

Chapter 8, The C++ mathematical classes 467

complex

imag

log

log10

norm

polar

pow

real

'468

The complex exponential function is defined by

exp(x + y * i) = exp(x) (cos(y) + i * sin(y))

double imag(complex x);

Returns the imaginary part of a complex number.

The data associated to a complex number consists of two floating-point
(double) numbers. imag returns the one considered to be the imaginary
part.

friend complex log(complex& z);

Calculates the natural logarithm of z.

The complex natural logarithm is defined by

log(z) = log(abs(z)) + i * arg(z)

friend complex loglO(complex& z);

Calculates log lO(z).

The complex common logarithm is defined by

loglO(z) = log(z) / log(lO)

double norm (complex x);

Returns the square of the absolute value. norm(x) returns the magnitude
real(x) * real(x) + imag(x) * imag(x).

norm can overflow if either the real or imaginary part is sufficiently large.

complex polar(double mag, double angle = 0);

Returns a complex number with a given magnitude (absolute value) and
angle.

polar(mag, angle) is the same as complex(mag * cos (angle), mag * sin(angle».

friend complex pow(complex& base, double expon);
friend complex pow(double base, complex& expon);
friend complex pow(complex& base, complex& expon);

Calculates base to the power of expon.

The complex pow is defined by

pow(base, expon) = exp(expon * log(base))

double real (complex x);

You can use the real function to convert a complex number back to a long
double. The friend function returns the real part of a complex number or

Library Reference

sin

sinh

sqrt

tan

tanh

complex

converts a complex number back to double. The data associated to a
complex number consists of two floating-point numbers. real returns the
number considered to be the real part.

See the Programmer's Guide, Chapter 2, for a discussion about arithmetic
conversions.

friend complex sin(complex& Z)i

Calculates the trigonometric sine.

The complex sine is defined by

sin(z) = (exp(i * z) - exp(-i * z)) / (2 * i)

friend complex sinh(complex& Z)i

Calculates the hyperbolic sine.

The complex hyperbolic sine is defined by

sinh(z) = (exp(z) - exp(-z)) / 2

friend complex sqrt(complex& x) i

Calculates the positive square root.

For any complex number x, sqrt(x) gives the complex root whose arg is
arg(x)/2.

The complex square root is defined by

sqrt(x) = sqrt(abs(x)) (cos(arg(x) / 2) + i * sin(arg(x)/2))

friend complex tan(complex& Z)i

Calculates the trigonometric tangent.

The complex tangent is defined by

tan(z) = sin(z) '/ cos(z)

friend complex tanh(complex& Z)i

Calculates the hyperbolic tangent.

The complex hyperbolic tangent is defined by

tanh(z) = sinh(z) / cosh(z)

Chapter 8, The C++ mathematical classes 469

470 Library Reference

c H A p T E R 9

Class diagnostic macros

Borland provides a set of macros for debugging C++ code. These macros
can be used with Windows and DOS and are located in checks.h. There are
two types of macros, default and extended. The default macros are

• CHECK • TRACE

• PRECONDITION • WARN

The extended macros are

.CHECKX

• PRECONDITIONX

.TRACEX

.WARNX

The default macros provide straightforward value checking and message
output. The extended macros let you create macro groups that you can
selectively enable or disable. Extended macros also let you selectively
enable or disable macros within a group based on a numeric threshold
level.

Three preprocessor symbols control diagnostic macro expansion:
__ DEBUG, __ TRACE, and __ WARN. If one of these symbols is defined·
when compiling, then the corresponding macros expand and diagnostic
code is generated. If none of these symbols is defined, then the macros do
not expand and no diagnostic code is generated. These symbols can be
defined on the command line usingthe -0 switch, or by using #define
statements within your code.

The diagnostic macros are enabled according to the following table:

--DEBUG=1 . __ DEBUG=2 __ TRACE __ WARN

PRECONDITION X X
PRECONDITIONX X X
CHECK X
CHECKX X
TRACE X
TRACEX X
WARN X
WARNX X

Chapter 9, Class diagnostic macros \ 471

To create a diagnostic version of an executable, place the diagnostic macros
at strategic points within the program code and compile with the
appropriate preprocessor symbols defined. Diagnostic versions of the
Borland class libraries are built in a similar manner.

The following sections describe the default and extended diagnostic
macros, give examples of their use, and explain message output and run­
time control.

Default diagnostic macros checks.h

CHECK

PRECONDITION

TRACE

WARN

CHECK «cond»

Outputs <eond> and throws an exception if <eond> equals O. Use CHECK to
perform value checking within a function.

PRECONPITION«cond»

Outputs <eond> and throws an exception if <eond> equals O. Use
PRECONDITION on entry to a function to check the validity of the
arguments and to do any other checking to determine if the function has
been invoked correctly.

TRACE «msg»

Outputs <msg>. TRACE is used to output general messages that are not
dependent on a particular condition.

WARN «cond>, <msg»

Outputs <msg> if <eond> is nonzero. It is used to output conditional
messages.

Example The following program illustrates the use of the default TRACE and

472

WARN macros: .

#include <checks.h>

int main ()
{

TRACE C "Hello World");
WARN (5 != 5, "Math is broken!");
WARN (5 != 7, "Math still works!");

return 0; ,

When the above code is compiled with __ TRACE and __ WARN defined, it
produces the following output when run:

Library Reference

Trace PROG.C 5: [Defj Hello World
Warning PROG.C 7: [Defj Math still works!

Default diagnostic macros

The above output indicates that the message "Hello World" was output by .
the default TRACE macro on line 5 of PROG.C, and the message "Math still
works!" was output by the default WARN macro on line 7 of PROG.C.

Default diagnostic macros expand to extended'diagnostic macros with the
group set to "Def" and the level set to O. This "Def" group controls the
behavior of the default macros and. is initially enabled with a threshold
level of O.

Extended diagnostic macros checks.h

CHECKX

PRECONDITIONX

TRACEX

WARNX

The extended macros CHECKX and PRECONDITIONX augment CHECK
and PRECONDITION by letting you provide a message to be output when
the condition fails. '

The extended macros TRACEX and WARNX augment TRACE and WARN
by providing a way to specify macro groups that can be independently
enabled or disabled. TRACEX and W ARNX require additional arguments
that specify the group to which the macros belongs, and the threshold level
at which the macro should be executed. The macro is executed only if the
specified group is enabled and has a threshold level that is greater than or
equal to the threshold-level argument used in the ·macro.

The following sections describe the extended diagnostic macros;

CHECKX«cond>,<msg»

Outputs <msg> and throws an exception if <cond> equals O. Use CHECKX
to perform value checking within a function.

PRECONDITIONX«cond>,<msg»

Outputs <msg> and throws an exception if <cond> equals O. Use
PRECONDITIONX on entry to a function to check the validity of the
arguments and to do any other checking to determine if the function has
been invoked correctly.

TRACEX«group>, <level>, <msg»

Trace only if <group> and <level> are enabled.

WARNX «group>, <cond>, <level>, <msg»

Warn orlly if <group> and <level> are enabled.

Chapter 9, Class diagnostic macros 473

Extended diagnostic macros

When using TRACEX and WARNX you need to be able to create groups.
The following three macros create diagnostic macro groups:

DlAG_DEClARE_GROUP DIAG_DECLARE_GROUP «name»

Declare a gr'oup named <name>.

DlAG_DEFINE_GROUP DIAG_DEFINE_GROUP «name>, <enabled>, <level»

Define a group named <name>.

DlAG_CREATE_GROUP DIAG_CREATE_GROUP «name>, <enabled>, <level»

Define and declare a group named <name>.

The following two macros manipulate groups:

DIAG_ENABLE«group>,<state»

Sets <group>'s enable flag to <state>.

DIAGJSENABlED DIAG_I SENABLED (<group>)

Returns nonzero if <group> is enabled.

The following two macros manipulate levels:

DIAG_SETLEVEL«group>,<level»

Sets <group>'s threshold level to <level>.

DlAG_GETlEVEl DIAG_GETLEVEL«group»

Gets <group>'s threshold level.

Threshold levels are arbitrary numeric values that establish a threshold for
enabling macros. A macro with a level greater than the group threshold
level will not be executed. For example, if a group has a threshold level of 0
(the default value), all macros that belong to that group and have levels of 1

474

or greater are ignored. -

Example The following PROG.C example defines two diagnostic groups, Groupl and
Group2, which are used as arguments to extended diagnostic macros:

·#includ~ <checks.h>

DIAG_CREATE~GROUP(Groupl,l,O);
DIAG_CREATE_GROUP(Group2,l,O);

int rnaip(int argc, char **argv)
{

TRACE ("Always works, argc=" « argc);

TRACEX (Groupl, 0, "Hello")';

Library Reference

Extended diagnostic macros

TRACEX (Group2, 0, "Hello");

DIAG_DISABLE(Group1) ;

TRACEX(Group1, 0, "Won't execute - group is disabled!")i

TRACEX(Group2, 3, "Won't execute - level is too high!");

return 0;

When the above code is compiled with __ TRACE defined and run, it
produces the following output:

Trace PROG.C 8: [Def] Always works, argc=l
Trace PROG.C 10: [Group1] Hello
Trace PROG.C 11: [Group2] Hello

Note that the last two macros are not executed. In the first case, the group'
Groupl is disabled. In the second case, the macro level exceeds Group2's
threshold level (set by default to 0).

Macro message output

The CHECKX, PRECONDITIONX, TRACE, TRACEX, WARN, and
W ARNX macros take a <msg> argument that is conditionally inserted into
an output stream. This means ct sequence of objects can be inserted in the
output stream (for example TRACE ("Mouse @ "'« x « "," « Y) i). The
use of streams is extensible to different object types and allows for
parameters within trace messages.

Diagnostic macro message output can be viewed while the program is
running. If the target environment is Windows, the output is sent to the
OutputDebugString function, and can be viewed with the DBWIN.EXE or
OX.sYS utilities. If Turbo Debugger is running, the output will be sent to its
log window. If the target environment is DOS, the output is sent to the
standard error stream and can be easily redirected at the command line.

Run-time macro control

Diagnostic groups can be controlled at run time by using the control
macros described above within your program or by directly modifying the
group information within the debugger.

This group information is contained in a template class named
TDiagGroup< TDiagGroupClass##Group >, where ##Group is the name of the

Chapter 9, Class diagnostic macros 475

Extended diagnostic macros

476

group. This class contains a static structure Flags, which in tum contains the
enabled flag and the threshold level. For example, to enable the group
Groupl, you would set the variable
TDiagGroup<TDiagGroupClassGroupl>::Flags.Enabled to 1.

Library Reference

Bad_cast class

c H A p T E R 10

Run-time support

This chapter provides a detailed description, in alphabetical order, of
functions and classes that provide run-time support. Any class operators or
member functions are listed immediately after the class constructor. See the
Programmer's Guide, Chapter 4, for a discussion of how.to use exception­
handling keywords.

The portability for all classes and functions in this chapter is as follows:

typeinfo.h

When dynamic_cast fails to make a cast to reference, the expression can
throw Bad_cast. Note that when dynamic_cast fails to make a cast to
pointer type, the result is the null pointer.

typeinfo.h

When the operand of typeid is a dereferenced 0 pointer, the typeid operator
can throw Bad _typeid.

typedef void (new * new_handler) () throw(xalloc)i
new_handler set_new_handler(new_handler my_handler)i

new.h

set_new_handler installs the function to be called when the global operator
newO or operator new[]O cannot allocate the requested memory. By default
the new operators throw an xalloc exception if memory cannot be allocated.
You can change this default behavior by calling set _new _handler to set a

Chapter to, Run-time support 477

new handler. To retain the traditional version of new, which does not throw
exceptions, you can use set_new_handler(O).

If new cannot allocate the requested memory, it calls the handler that was
set by a previous call to set_new_handler. ~f there is no handler installed by
set_new_handler, new returns O. my_handler should specify the actions to be
taken when new cannot satisfy a request for memory allocation. The
new_handler type, defined in new.h, is a function that takes no arguments
and returns void. A new _handler can throw an xalloe exception.

The user-defined my_handler should do one of the following:

• Return after freeing memory

• Throw an xalloe exception or an exception derived from xalloe

• Call abort or exit functions

If my_handler returns, then new will again attempt to satisfy the request.

Ideally, my_handler frees up memory and returns; new can then satisfy the
request and the program can continue. However, if my_handler cannot
provide memory for new, my_handler must throw an exception or terminate
the program. Otherwise, an infinite loop will be created.

Preferably, you should overload operator newO and operator new[]O to
. take appropriate actions for your applications.

set_new_handler returns the old handler, if one has been registered.

The user-defined argument function, my_handler, should not return a value.

See also the description of abort, exit, and _new_handler (global variable).

set_terminate function except.h

478

typedef void (*terminate_function) ()i

terminate_function set_terminate(terminate_function t_func);

set_terminate lets you install a function that defines the program's termina­
tion behavior when a handler for the exception cannot be found. The

,actions are defined in tJune, which is declared to be a function of type
terminateJunction. A terminateJunetion type, defined in except.h, is a
function that takes no arguments, and returns void.

By default, an exception for which no handler can be found results in the
program calling the terminate function. This will normally result in a call to
abort. The program then ends with the message Abnormal program
termination. If you want some function other than abort to be called by the

Library Reference

seCterminate function

terminate function, you should define your own tJunc function. Your tJunc
function is installed by set_terminate as the termination function. The instal­
lation of tJunc lets you implement any actions that are not taken by abort.

The previous function given to set_terminate will be the return value.

The definition of t Junc must terminate the program. Such a user-defined
function must not'return to its caller, the terminate function. An attempt to
return to the caller results in undefined program behavior. It is also an error
for t Junc to throw an exception.

See also the description of abort, set_unexpected,'and terminate.

set_unexpected function except.h

typedef void (* unexpected_function) () i
unexpected_function set_unexpected(unexpected_function unexpected_func) i

set_unexpected lets you install a function that defines the program's behavior
when a function throws an exception not listed in its exception specifiCa­
tion. The actions are defined in unexpectedJunc, which is declared to be a
function of type unexpectedJunction. An unexpectedJunction type, defined in
except.h, is a ftinction that takes no arguments, and returns. void.

By default, an unexpected exception causes unexpected to be called. If
unexpectedJunc is defined, it is subsequently called by unexpected. Program
control is the!l turned over to the user-defined unexpectedJunc. Otherwise,
terminate is called.

The previous function given to set _unexpected will be the return value.

The definition of unexpectedJunc must not return to its caller, the unexpected
function. An attempt to return to the caller results in undefined program
behavior.

unexpectedJunc can also call abort, exit, or terminate.

See also the description of abort, exit, set_terminate, and terminate.

terminate function except.h

void terminate()i

The function terminate can be called by unexpected or by the program when
a handler for an exception cannot be found. The default action by terminate

Chapter 10, Run-time support 479

terminate function

is to call abort. Such a default action causes immediate program
termination.

You can modify the way your program terminates when an exception is
generated that is not listed in the exception specification. If you don't want

. the program to terminate with a call to abort, you can instead define a
function to be called. Such a function (called a terminateJunction) will be
called by terminate if it is registered with set_terminate.

The function does not return.

See also the description of abort and set_terminate.

Type_info class typeinfo.h

Constructor

operator ==

operator !=

before

480

Provides information about a type.

Public constructor

None.

Only aprivate constructor is provided. You cannot create Type_info objects.
By declaring your objects to be _ _ rtti types, or by using the -RT compiler
switch, the compiler provides your objects with the elements of Type_info.

Type_info references are generated by the typeid operator. See Chapter 2 in
the Programmer's Guide for a discussion of typeid.

Operators

int operator==(const Type_info &) const;

Provides comparison of Typeinfos.

int operator!=(const Type_info &) const;

Provides comparison of Typeinfos.

Public member functions

int before(const Type_info &);,

Use this function to compare the lexical order of types. For example, to
compare two types, T1 and T2, use the following syntax:

Library Reference

fname
name

typeid(Tl) .before(typeid(T2));

The before function returns 0 or 1.

canst char* __ far fname() canst;
canst char* name() canst;

TypeJnfo class

The functions, fname and name, perform identically. Use fname in large
memory-model programs.

Each of the functions returns a printable string that identifies the type name
of the operand to typeid. The space for the character string is overwritten
on each call.

unexpected function except.h

xaHoc class

Constructor

raise

void unexpected();

The unexpected function is called when a function throws an exception not
listed in its exception specification. Theprogram calls unexpected, which by
default calls any user-defined function registered by set_unexpected. If no
function is registered with set_unexpected, the unexpected function then calls
terminate.

The unexpected function does not return. However, the function can throw
an exception.

See also the description of set _unexpected and terminate.

except.h

Reports an error on allocation request.

Public constructors

xallac(canst string &msg, size_t size);

The xalloc class has no default c01;lstructor. Every use of xalloc must define
the message to be reported when a size allocation cannot be fulfilled. The
string type is defined in cstring.h header file.

Public member functions

vaid raise() thraw(xallac);

Chapter 10, Run-time support 481

xalloc class

requested

xmsg class

Constructor

raise

why

482

Calling raise causes an xalloc to be thrown. In particular, it throws *this.

size_t requested() canst;
I,

Returns the number of bytes that were requested for allocation.

excep~.h

Reports a message related to an exception.

Public constructor

xmsg(string msg);

There is no default constructor for xmsg. Every xmsg object must have a
string message explicitly defined. The string type is defined in cstring.h
header file.

Public member functions

vaid raise () thraw(xmsg);'

Calling raise causes an xmsg to be thrown. In particular, it throws *this. '

string why() canst;

,Reports the string used to construct an xmsg. Because every xmsg must
have its message explicitly defined, every instance should have a unique
message.

Library Reference

TDate class

DayTy

HowToPrint

JulTy

MonthTy

c H A p T E R 11

c++ utility classes

This chapter is a reference guide for the following classes, which are listed
here with their associated header-file names:

• Date class (date.h)
• File classes (file.h)
• String classes (cstring.h)
• Threading classes (thread.h)

• Time Classes (time.h)

The header files for these classes an~ found in \BC4\INCLUDE or \BC4\
INCLUDE\CLASSLIB.

date.h

class TDate

Class TDate represents a date. It has members that read, write, and store
dates, and that convert dates to Gregorian calendar dates.

Type definitions

typedef unsigned DayTyi

Day type.

enum HowToPrint{ Normal, Terse, Numbers, EuropeanNumbers, European }i

Lists different print formats.

typedef unsigned long JU1Tyi

Julian calendar type.

typedef unsigned MopthTyi

Month type.

Chapter 11, C++ utility classes 483

TDate class

YearTy.

Constructor

Constructor

Constructor

Constructor

Constructor

AsString

Between

CompareTo

Day

DayName

484

typedef unsigned YearTy;

Year type.

Public constructors

Tbate();

Constructs a TDate object with the current date.

TDate(DayTy day, YearTy year);

Constructs a TDate object with the given day and year. The base date for this
computation is Dec. 31 of the previous year. If year == 0, it constructs a .
TDate with Jan. I, 1901 as "day zero." For example, TDate(-I,O) = Dec. 31,
1900 and TDate(I,O) = Jan. 2, 1901.

TDate(DayTy day, canst char* manth, YearTy year);
TDate(DayTy day, ManthTy manth, YearTy year);

Constructs a TDate object for the given day, month, and year.

TDate(istream& is);

Constructs a TDate object, reading the date from input stream is.

TDate(canst TTime& time);

Constructs a TDate object from TTime object time.

Public member functions

string AsString() canst;

Converts the TDate object to a string object.

int Between (canst TDate& dl, canst TDate& d2) canst;

Returns 1 if this TDate object is between dl and d2, inclusive. .

int CampareTa(canst TDate &) canst;

Returns 1 if the target TDate is greater than parameter TDate,-1 if the target
is less than the parameter, and 0 if the dates are equal.

DayTy Day() canst;

Returns the day of the year (1-365).

canst char * DayName(DayTy weekDayNumber);

Library Reference

DayOfMonth

DayOfWeek

DayslnYear

DayWithinMonth

FirstDayOfMonth

Hash

IndexOfMonth

IsValid

Jday

Leap

Max

TDate class

Returns a string name for the day of the week, where Monday is 1 and
Sunday is 7.

DayTy DayOfManth() canst;

Returns the day of the month (1-31).

DayTy DayOfWeek(canst char* dayName);

Returns the number associated with a string naming the day of the week,
where Monday is 1 and Sunday is 7. .

DayTy DayslnYear(YearTy);

Returns the number of days in the specified year (365 or 366).

int DayWithinManth(ManthTy, DayTy, YearTy);

Returns 1 if the given day is within the given month for the given year.

DayTy FirstDayOfManth() canstj

Returns the number of the first day of the month for this TDate.

DayTy FirstDayOfManth(ManthTy manth) canst;

Returns the number of the first day of a given month. Returns 0 if month is
outside the range 1 through 12.

unsigned Hash() canst;

Returns a hash value for the date.

ManthTy IndexOfManth(canst char *manthName)j

Returns the number (1-12) of the month monthname.

int IsValid() canst;

Returns 1 if this TDate is valid, 0 otherwise.

JulTy Jday(ManthTy, DayTy, YearTy);

Converts the given Gregorian calendar date to the corresponding Julian
day number. Gregorian calendar started on Sep. 14, 1752. This function not
valid before that date. Returns 0 if the date is invalid.

int Leap() canstj

Returns 1 if this TDate's year is a leap year, 0 otherwise.

TDate Max(canst TDate& dt) canst;

Compares this TDate with dt and returns the date with the greater Julian
number.

Chapter 11, C++ utility classes 485

TDate class

Min

Month

MonthName

NameOfDay

NameOfMonth

Previous

SetPrintOption

WeekDay

Year

TDate Min(canst'TDate& dt) canst;

Compares this TDate with dt and returns the date with the lesser Julian
~~ .

ManthTy Manth() canst;

Returns the month number for this TDate.

'canst char *ManthName(ManthTy manthNumber);

Returns the string name for the given monthNumber (1-12). Returns 0 for an
invalid monthNumber.

canst char *NameOfDay() canst;

Returns this TDate's day string name.

canst char *NameOfManth() canst;

Returns this TDate's month string name.

TDate Previaus(canst char*dayName) canst;

Returns the TDate of the previous dayName.

TDate Previous (DayTy day) canst;

Returns the TDate of the previous day.

HawTaPrint SetPrintOptian(.HawTaPrint h);

Sets the print option for all TDate objects and returns the old setting. See
HowToPrint in the "Type definition" section for this class.

DayTy WeekDay() canst;

Returns 1 (Monday) through 7 (Sunday).

YearTy Year() canst;

Returns the year of this TDate.

Protected member functions

AssertlndexOfMonth static int AssertlndexOfManth(ManthTy m);

Returns 1 if m is between 1 and 12 inclusive, otherwise returns O.

AssertWeekDayNumber static int AssertWeekDayNumber (DayTy d);

Returns 1 if d is between 1 and 7 inclusive, otherwise returns O.

486 Library Reference

Operator <

Operator <=

Operator>

Operator >=

Operator ==

Operator !=

Operator...;

Operator, +

Operator-

Operator ++

Operator--

Operator +=

Operator-=

Operator «

Operators

int operator < (const TDate& date) const;

Returns 1 if this TDate precedes date, otherwise returns o.
int operator <= (const TDate& date) const;

TDate class

Returns 1 if this TDate is less than or equal to date, otherwise returns o.
int operator> (const TDate& date) const;

Returns 1 if this TDate is greater than date, otherwise returns O.

int operator >= (const TDate& date) const;

Returns 1 if this TDate is greater than or equal to date, otherwise returns O.

int operator == (const TDate& date) const;

Returns 1 if this TDate is equal to date, otherwise retUrns O.

int operator != (const TDate& date) const;

Returns 1 if this TDate is not equal to date, otherwise returns O.

JulTy operator - (const TDate& dt) const;

Subtracts dt from this TDate and returns the difference.

friend TDate operator + (const TDate& dt, int dd);
friend TDate operator + (int dd, const TDate& dt);

Returns a new TD,ate containing the sum of this TDate and dd.,

friend TDate operator - '(const TDate& dt, int dd);

Subtracts dd from this TDate and returns the difference.

void operator ++ ();

Increments this TDate by l.

void operator -- ();

Decrements this TDate by l.

void operator += (ipt dd); .

Adds dd to this TDate.

void operator -= (int dd);

Subtracts dd from this TDate.

friend ostream& operator « (ostream& os, const TDate& date);

Chapter 11, C++ utility classes 487

TDate class

Operator »
Inserts date into output stream os.

friend istream& operator » (istream& is, TDate& date);

Extracts date from input stream is.

TFileStatus structure file.h

TFile class

FileNull

File flags

488

struct TFileStatus
{

} ;

TTime createTime;
TTime modifyTime;
TTime accessTime;
long size;
uint8 attribute;
char fullName[_MAX_PATH];

Describes a file record containing creation, modification, and access times;
also provides the file size, attributes, and name.

See also: TTime class

file.h

class TFile

Class TFile encapsulates standard file characteristics and operations.

Public data members

enum { FileNull };

Represents a null file handle.

enum{
ReadOnly
ReadWrite
WriteOnly
Create
CreateExcl
Append

= O_RDONLY,
= O_RDWR,
= O_WRONLY,
= O_CREAT I O_TRUNC,
= O_CREAT I O_EXCL,
= O_APPEND,

Library Reference

TFile class

#if defined(__ FLAT __)
Compat = SH_COMPAT,
DenyNone = SH_DENYNONE,

#else
DenyRead
DenyWrite

#endif
DenyRdWr
Nolnherit
} i

= SH_DENYRD,
= SH_DENYWR,

= SH_DENYRW,
= O_NOINHERIT

Enumerates file-translation modes and sharing capabilities. See the open
and sopen functions in Chapter 3.

enum{
PermRead
PermWrite
PermRdWr
} i

= S_IREAD,
= S_IWRITE,
= S_IREAD I S_IWRITE

Enumerates file read and write permissions. See the creat function in
Chapter 3.

enum{
Normal
RdOnly
Hidden
System
Volume
Directory
Archive

} i

= OxOO,
Ox01,

= Ox02,
= Ox04,
= Ox08,
= Ox10,
= Ox20

Enumerates file types.

enum seek_dir

beg = 0,
cur = 1,
end = 2
} i

Enumerates file-pointer seek direction.

Chapter 11, C++ utility classes 489

TFile class

Constructor

Constructor

Constructor

Constructor

Close

Flush

GetHandle .

GetStatus

IsO pen

Length

490

Public constructors

TFile ();

Creates a TFile object with a file handle of FileNull.

TFile(int handle);

Creates a TFile object with a file handle of handle.

TFile(canst TFile& file);

Creates a TFile object with the same file handle file.

TFile(canst char* name, uint16 access=ReadOnly, uint16
permissian=PermRdWr);

Creates a TFile object and opens file name with the given attributes. The file
is created if it doesn't exist.

Public member functions

int Clase();

Closes the file. Returns nonzero if successful, 0 otherwise.

vaid Flush();

Performs any pending I/O functions.

int GetHandle() canst;

Returns the file handle.

int GetStatus(TFileStatus& status) canst;

Fills status with the current file status. Returns nonzero if successful, 0
otherwise.

int GetStatus(canst char *name; TFileStatus& status);

Fills status with the status for file name. Returns nonzero if successful, 0
otherwise.

int IsOpen() canst;

Returns 1 if the file is open, 0 otherwise.

lang Length() canst;

Returns the file length.

vaid Length(lang newLen);

Library Reference

LockRange

Open

Position

Read

Remove

Rename

Seek

SeekTo8egin

SeekToEnd

SetStatus

UnlockRange

Write

Resizes fileto newLen.

void LockRange(long position, uint32 co~nt);

Locks counthytes, beginning at position of the associated file.

See also: UnlockRange

TFile class

int Open (const char* name, uint16 access, uint16 permission);

Opens file name with the given attributes. The file will be created if it
doesn't exist. Returns 1 if successful, 0 otherwise.

long Position() const;

Returns the current position of the file pointer. Returns -1 to indicate an
error.

int Read (void*buffer, int numBytes);

Reads numBytes from the file into buffer.

long Read(void huge *buffer, long numBytes);

Reads numBytes from the file into buffer (32-bit Windows version).

static void Remove(const char *name);

Removes file name. Returns 0 if successful, -1 if unsuccessful.

static void Rename(const char *oldName, const char *newName);

Renames file oldName to newName.

long Seek(long offset, int origin; beg);

Repositions the file pointer to offset bytes from the specified origin.

long SeekToBegin();

Repositions the file pointer to the beginning of the file.

long SeekToEnd();

Repositions the file pointer to the end of the file.

static int SetStatus(const char *name, const TFileStatus& status);

Sets file name's statvs to status.

void UnlockRange(long Position, uint32 count);

Unlocks the range at the given Position.

See also: LockRange

int Write(const vOld *buffer, int numBytes:);

Chapter 11, C++ utility classes 491

TFile class

String class

StripType

Constructor

Constructor

Constructor

Constructor

Constructor

Constructor

492

Writes numbytes of buffer to the file.

long Write(canst void huge *buffer, long numBytes);

Writes num~ytes of buffer to the file (32-bit Windows version).

cstring.h

class string

This class uses a technique called" copy-on-write." Multiple instances of a
string can refer to the same piece of data so long as it is in a "read-only"
situation. If a string writes to the data, a copy is automatically made if more
than one string is referring to it.

Type definitions

enum StripType { Leading, Trailing, Both };

Enumerates type of stripping. See strip in the "Public member functions"
section for this class.

Public constructors and destructor

string () ;

The default constructor. Creates a string of length zero.

string(const string _FAR &s);

Copy constructor. Creates a string that contains a copy of the contents of
string s.· ,

string(canst string _FAR &s, size_t n)

Creates a string containing a copy of the n bytes of string s.

string(const char _FAR *cp);

Creates a string containing a copy of the bytes from the location pointed to
by cp through the first 0 byte (conversion from char*).

string(const char _FAR *cp, size_t n);

Creates a string containing a copy of the n bytes beginning at the location,
pointed to by cpo

string(char c)

Library Reference

Constructor

Constructor

Constructor

Constructor

Constructor

Constructor

Constructor

Constructor

Destructor

append

Constructs a string containing the character c.

string(char c, size_t n)

Constructs a string containing the characterc repeated n times.

string(signed char c)

Constructs a string containing the character c.

string(signed char c, size_t n)

Constructs a string containing the character c repeated n times.

string(unsigned char c)

Constructs a string containing the character c.

string(unsigned char c, size_t n)

Constructs a string containing the character c repeated n times.

string(const TSubString _FAR &SS)i

Constructs a string from the substring 88.

string(const char __ far *cp)
string(const char __ far *cp, size_t n)

String class

Constructs strings for Windows small and medium memory models.

string (HINSTANCE instance, UINT id, int len = 255)

Windows version for constructing a string from a resource.

-String()i

Destroys the string and frees all resources allocated to this object.

Public member functions

void ansi_to_oem ()

Converts the target string from the ANSI character set into the OEM­
defined character set (Win~ows only).

string _FAR '& append (const string _FAR &s

Appends string 8 to the target string.

string _FAR & append (const string _FAR &s, size_t n)

Appends the first n characters of string 8 to the target string.

string _FAR & append (const char _FAR *cp, size_t n

Chapter 11, C++ utility classes 493

String class

assign

compare

contains

copy

494

Appends the first n characters of the character array cp to the target string.

string _FAR & assign(canst string _FAR &s);

Assigns string s to target' string.

See also: operator =

string _FAR & assign(canst string _FAR &s, size_t n);

Assigns n characters bf string s to target string.

See also: operator =
int campare(canst string _FAR &s);

Compares the target string to the string s. compare returns an integer less
than, equal to, or greater than 0, depending on whether the target string is
less than, equal to, or greater than s. '

int campare(canst string _FAR &s, size_t n);

Compares not more than n characters from the target string to the string s.

int cantains(canst char _FAR * pat) canst

Returns 1 if pat is found in the target string, 0 otherwise.

int cantains(canst string _FAR & s) canst

Returns 1 if string s is found in the target string, 0 otherwise.

'size_t cbpy(char _FAR *cb, size_t n)

Copies at most n characters from the target string into the char array
pointed to by cb. copy returns the number of characters copied.

size_t capy(char _FAR *cb, size_t n, size_t pas)

Copies at most n characters beginning at position pas from the target string
into the char array pointed to by cb. copy returns the number of characters
copied.

string capy() canst thraw(xallac).

Returns a distinct copy of the string.

canst char ~FAR *c_str() canst

Returns a pointer to a zero-terminated character array that holds the same
characters contained in the string. The returned pointer might poirit to the
actual contents of the string, or it might point to an array,that the string
allocates for this function call. The effects of any direct modification to the
contents of this array are undefined, and the results of accessing this array

. Library Reference

find

String class

after the executian af any nan-const member functian an the target string
are undefined.

Canversians fram a string abject to. a char* are inherently dangeraus,
because they vialate the class baundary and can lead to. dangling painters.
Far thisreasan class string daes nat have an implicit canversian to. char*,
but pravides c_str far use when this canversian is needed.

size_t find(canst string _FAR &s)

Locates the first accurrence af the string s in the target string. If the string is
faund, it returns the pasitian af the beginning af s within the target string.
If the string s is nat faund, it returns NPOS. '

size_t find(canst string _FAR &s, size_t pas

Lacates the first accurrence af the string s in the target string, beginning at
the pasitian pos. If the string is faund, it returns the pasitian af the
beginning af s within the target string. If the s is nat faund, it returns NPOS
and daes nat change pos.

size_t find(canst TRegexp _FAR &pat, size_t i = 0)

Searches the string far patterns matching regular expressian pat beginning
at lacatian i. It returns the pasitian af the beginning af pat within the target
string. If the pat is nat faund, it returns NPOS and daes nat change pos:

size_t find(canst TRegexp _FAR &pat, size_t _FAR *ext, size_t i = 0)
canst;

Searches the string far patterns matching regular expressian pat beginning
at lacatian i. Parameter ext returns the length af the matching string if
faund. It returns the pasitian af the beginning af pat within the target
string. If the pat is nat faund, it returns NPOS and daes nat change pos.

See also.: rfind

size_t find_first_af(canst string _FAR &s) canst

Lacates the first accurrence in the target string af any character cantained
in string s. If the search is successful findJirst_of returns the character
lacatian. If the search fails ar if pas > length (), findJirst_of returns O.

size_t find_first_af(canst string ~FAR &s, size_t pas) canst

Lacates the first accurrence in the target string af any character cantained
in string s. If the search is successful, pos is set to. the pasitian af that
character within the target string, and findJirst_of returns 1. If the search
fails ar if pas > length (), findJirst_of returnsO~

size_t find_first_nat_af(canst string _FAR &s) canst

Chapter 11, C++ utility classes 495

String class

findJasCof

Locates the first occurrence in the target string of any character not
contained in string s. If the search is successful, findJirst_not_of returns the
character location. If the search fails or if pas > length (), findJirst_not_of
returns O. .

size_t find_first_nat_af(canst string _FAR &s, size_t pas) canst
Locates the first occurrence in the target string of any character not
contained in string s. If the search is successful, pas is set to the position of
that character within the target string, and findJirst_not_of returns 1. If the
search fails or if pas > length (), findJirst_not_of returns O.

size_t find_last_af(canst string _FAR &s) canst

Locates the last occurrence in the target string of any character contained in
string s. If the search is successful find_last_of returns the character location.
If the search fails or if pas> length (), find_Iast.c..0f returns O.

size_t find_last_af(canst string _FAR &s, size_t pas) canst

Locates the last occurrence in the target string of any character contained in
string s. If the search is successful,pos is set to the position of that character
within the target string, and find_last_of returns 1. If the search fails or if pas
> length (), find_last_of returns O.

findJasCnoCof . size_t find_last.;..nat_af (canst string _FAR &s) canst

geCat

Locates the last occurrence in the target string of any character not
contained in string s. If the search is successful find_Iast_not_of returns the
character location. If the search fails or if pas > length (), find_Iast_not_of
returns O.

size_t find_last_nat_af(canst string _FAR &s, size_t pas) canst

Locates the last occurrence in the target string of any charqcter not
contained in string s. If the search is successful, pas is set to the position of
that character within the target string, and find_last_not_of returns 1. If the
search fails or if pas > length (), find_Jast_not_of returns O.

char get_at(size_t pas) canst thraw(autafrange)i

Returns the character at the specified position. If pas > length () -I, an
out0frange exception is thrown.

See also: put_at

geCcase_sensitive_flag static int get_case_sensi ti veFlag ()

Returns 0 if string comparisons are case sensitive, 1 if not.

getJnitial_capacity static unsigned get_initial_capacity ()

Returns the number of characters that will fit in the string without resizing.

496 Library Reference

String class

static unsigned get_rnax_waste()

After a $tring is resized, returns the amount of free space available.

get_paranoid_check static int get-paranaid_check();

Returns 1 if paranoid checking is enabled, 0 if not.

get_resizejncrement static unsigned get_resize_incrernent ()

Returns the string resizing increment.

geCskipwhitespace_flag static int get_skipwhitespace_flag ()

hash

insert

length

prepend

Returns 1 if whitespace is skipped, 0 if not.

unsigned hash() canst;

Returns a hash value.

static size_t initial_capacity(size_t ic 63);

Sets initial string allocation capacity.

string _FAR &insert(size_t pas, canst string _FAR &s

Inserts string s at position pas in the target string. insert returns a reference
to the resulting string.

string _FAR &insert(size_t pas, canst string _FAR &s, size_t n)

Inserts n characters of string s at position pas in the target string. insert
returns a reference to the resulting string.

int is_null() canst

Returns 1 if the string is empty, 0 otherwise.

unsigned length() canst

Returns the number of characters in the target string. Since null characters
can be stored in a string, length () might be greater than strlen (c_str ()).

static size_t MaxWaste(size_t rnw = 63);

Sets the maximum empty space size and resizes the string.

vaid aern_ta_ansi()

Windows function for converting the target string from the ANSI character
set to the OEM-defined character set (Windows only).

string _FAR &prepend(canst string _FAR &s

Prep ends string s to the t~rget string.

I

Chapter 11, C++ utility classes . 497

String class

puCat

readJine

rfind

remove

498

string _FAR &!?repend(canst string _FAR &s, size_t n)

Prep ends the first n characters of string s to the target string.

string _FAR &prepend(canst char _FAR *cp)

Prep ends the character array cp to the target string.

string _FAR &prepend(canst char _FAR *C!?, size_t n

Prep ends the first n characters of the character array cp to the target string.

vaid put_at (size_t pas, char c) thraw(autafrange);

Replaces the character at pos with c. If pas == length () , putAt appends c to
the target string. If pas > length () an outofrange exception is thrown.

istream _FAR &read_file(istream _FAR &is);

Reads from input stream is until an EOF or a null terminator is reached.

istream _FAR &read_line(istream _FAR &is);

Reads from input stream is until an EOF or a newline is reached.

istream _FAR &read_string(istream _FAR &is);

Reads from input stream is until an EOF or a null terminator is reached.

istream _FAR &read_ta_delim(istream _FAR &is, char delim='\n');.

Reads from input stream is until an Ear or a delim is reached.

istream _FAR &read_taken(istream _FAR &is);

Reads from input stream is until whitespace is reached. Note that this
function skips any initial whitespace.

size_t rfind(canst string _FAR &s)

Locates the last occurrence of the string s in the target string. If the string is
found, it returns the position of the beginning of the string s within the
target string. If s is not found, it returns NPOS.

size_t rfind(canst string _FAR &s, size_t pas)

Locates the last occurrenct: of the string s that is not beyond the position pos
in the target string. If the string is found, it returns the position of the
beginning of s within the target string. If s is not found, it returns NPOS
and does not change pos.

See also: find

string _FAR &remave (size_t pas);

Library Reference

replace

reserve

resize

resizejncrement

String class

Removes the characters from pos to the end of the target string and returns
a reference to the resulting string.

string _FAR &remove(size_t pas, size_t n)

Removes at most n characters from the target string beginning at pos and
returns a reference to the resulting string.

string _FAR &replace(size_t pas, size_t n, canst string _FAR &s)

Removes at most n characters from the target string beginning at pos, and
replaces them with a copy of the string s. replace returns a reference to the
resulting string.

string _FAR &replace(size_t pas, size_t n1, canst string _FAR &s, size_t
n2)

Removes at most nl characters from the target string beginning at pos, and
replaces them with the first n2 characters of string s. replace returns a
reference to the resulting string. I

size_t reserve() canst

Returns an implementation-dependent value that indicates the current
internal storage size. The returned value is always greater than or equal to
length() .

void reserve(size_t ic)

Suggests to the implementation that the target string might eventually
require ic bytes of storage.

void resize(size_t m);

Resizes the string to m characters, truncating or adding blanks as necessary.

static size_t resize_increment(size_t ri = 64);

Sets the resize increment for automatic resizing.

seCcase_sensitive static int set_case_sensitive (int tf = 1)';

Sets case sensitivity. lis case sensitive; 0 is not case sensitive.

seCparanoid_check static int setJ)aranoid_check (int ck = 1);

skip_whitespace

String searches use a hash value scheme to find the strings. There is a
possibility that more than one string could hash to the same value. Calling
se(jJaranoid_check with ck set to 1 forces checking the string found against
the desired string with the C library function strcmp. When
set-paranoid_check is called with ck set to 0, this final check isn't made.

static int skip_whitespace(int sk = 1);

Chapter 11, C++ utility classes 499

String class

strip

substr

substring

toJower

assert_element

assertjndex

500

Set to 1 to skip whitespace after a token read, 0 otherwise.

TSubString strip(StripType s = Trailing, char c=' ');

Strips away c characters from the beginning, end, or both (beginning and
end) of string s, depending on StripType.

string substr(size_t pas) canst

Creates a string containing a copy of the characters from pas to the end of
the target string.

string substr(size_t pas, size_t n) canst

Creates a string containing a copy of not more than n characters frqm pas to
the end of the target string.

TSubString substring (canst char _FAR *cp)

Creates a TSubString object containing a copy of the characters pointed to
by *cp.

canst TSubString substring (canst char _FAR *cp) canst

Creates a TSubString object containing a copy of the characters pointed to
by *cp.

TSubString substring (canst char _FAR *cp, size_t start)

Creates a TSubString object containing a copy of the characters pointed to
by *cp, starting at character start. . .

canst TSubString substring (canst char _FAR *cp, size_t start) canst

Creates a TSubString object containing a copy of the characters pointed to
by *cp, starting at character start.

vaid ta_lawer();

Changes the string to lowercase.

vaid ta_upper();

Changes target string to uppercase.

Protected member functions

vaid assert_element (size_t pas) canst

Throws 'an autafrange exception if an invalid element is given.

vaid assert_index(size_t pas) canst

Library Reference

cow

validJndex

Operator =

Operator +=

Operator +

Operator []

Operator ()

Throws an outofrange exception if an invalid index is given.

void cow();

String class

Copy on write. Multiple instances of a string can refer to the same piece of
data as long as it is in a read-only situation. If a string writes to the data,
then cow (copy on write) is called to make a copy if more than one string is
referring to it.

int valid_element(size_t pos) const

Returns 1 if pas is an element of the string, 0 otherwise.

int valid_index (size_t pos) const

Returns 1 if pas is a valid index of the string, 0 otherwise.

Operators

'string _FAR & operator='(const string _FAR &s);

If the target string is the same object as the parameter passed to the
assignment, the assignment operator does nothing. Otherwise it performs

, any actions necessary to free up resources allocated to the target string,
then copies s into the target string.

string _FAR & operator += (const String _FAR &s)

Appends the contents of the string s to the target string.

string _FAR & operator+=(const char _FAR *cp);

Appends the contents of cp to the target string.

friend String _Cdecl _FARFUNC operator+(const String _FAR &, const char
_FAR *cp);

Concatenates string sand cpo

char _FAR & operator[] (size_t pos);

Returns a reference to the character at position pas.

char operator[] (size_t pos) const;

Returns the character at position pas.

ch~r _FAR & operator() (size_t pos);

Returns a reference to the character at position pas.

TSubString operator() (size_t start, size_t len);

Chapter 11, ~++ utility classes 501

String class

Operator ==

Operator !=

502

Returns the substring beginning at location start and spanning len bytes.

TSubString operator() (const TRegexp _FAR & re)i

Returns the first occurrence of a substring matching regular expression reo

TSubString operator() (canst TRegexp _FAR & re, size_t start) i

Returns the first occurrence of a substring matching regular expression re,
beginning at location start.

char operator() (size_t pos)consti

Returns the character at position pos.

const TSubString operator() (size_t start, size_t len) consti

Returns the substring beginning at location start and spanning len bytes.

canst TSubString operatar() (canst TRegexp _FAR & pat) consti

Returns the first occurrence of a substring matching regular expression reo

const TSubString operator() (const TRegexp _FAR & pat, size_t start) consti

Returns the first occurrence of a substring matching regular expression re,
beginning at location start.

friend int operator == (canst String _FAR &sl, canst String _FAR &s2)i

Tests for equality of string sl and string s2. Two strings are equal if they
have the same length, arid if the same location in each string contains
characters that compare equally. Operator == returns a 1 to indicate that the
strings are equal, and a 0 to indicate that they are not equal.

friend int operator == (canst String _FAR &s, const char _FAR *cp)i
friend int operator == (canst char _FAR *cp, const String _F~R &s)i

Tests for equality of string sl and char *cp. The two are equal if they have
the same length, and if the same location in each string contains characters
that compare equally. Operator == returns a 1 to indicate that the strings
are equal, and a 0 to indicate that they are not equal.

friend int operator != (canst String "":FAR &sl, const String _FAR &s2)i

Tests for inequality of strings sl and 52. Two strings are equal if they have
the same length, and if the same location in each string contains characters
that compare equally. Operator != returns a 1 to indicate that the strings are
not equal, and a 0 to indicate that they are equal.

friend int operator !=

friend intoperator !=

const String _FAR &s, const char _FAR *cp)i

const char _FAR *cp, const String _FAR &s)i

Library Reference

Operator <

Operator <=

Operator>

Operator >=

Operator »

String class

Tests for inequality between string s and char *cp. The two are equal if they
have the same length, and if the same location in eac~ string contains the
same character. Operator != returns a 1 to indicate that the strings are not
equal, and a 0 to indicate that they are equal.

friend int operator < (const String _FAR &sl, const String _FAR &s2)i

Compares string s1 to string s2. Returns 1 if string s1 is less than s2, 0
otherwise.

friend int operator < (const String _FAR &s, const char _FAR *CP')i

friend int operator < (const char _FAR *cp, const String _FAR &s)i

Compares string s1 to *cp2. Returns 1 if the left side of the expression is less
than the right side, 0 otherwise.

friend int operator <= (const String _FAR ~sl, const String _FAR &s2)i

Compares string s1 to string s2. Returns 1 if string s1 is less than or equal to
s2, 0 otherwise.

friend int operator <= (const String _FAR &s, const char _FAR *cp-) i
friend int operator <= (const char _FAR *cp, const String _FAR &s)i

Compares string s1 to *cp. Returns 1 if the left side of the expression is less
than or equal to the right side, 0 otherwise.

friend int operator> (const String _FAR &sl, const String _FAR &s2) i

Compares string s1 to string s2. Returns 1 if string s1 is gr~ater than s2, 0
otherwise.

friend intoperator > (const String _FAR &s, const char _FAR *cp)i
friend int operator > (const char ~FAR *cp, const String _FAR &s) i

Compares string s1 to *cp2. Returns 1 if the left side of the expression is
greater than the right side, 0 otherwise.

friend int operator >= (const String _FAR &sl, const String _FR &s2)i

Compares string s1 to string s2. Returns 1 if string s1 is greater than or
equal to s2, 0 otherwise.

friend int operator >= (const String _FAR &8, const char _FAR *cp)i

friend int operator >= (const char _FAR *cp, const String _FAR &s) i

Compares string s1 to *cp. Returns 1 if the left side of the expression is
greater than or equal to the right side, 0 otherwise.

friend ipstream _FAR & operator» (ipstream _FAR & is, string _FAR & str)i

Extracts string str from input stream is.

Chapter 11, C++ utility classes 503

String class

Operator »

Operator «

- Operator +

getline

toJower

504

Related global operators and functions

istream _FAR & _Cdecl _FARFUNC operator»(istream _FAR &is, string _FAR
&s) i

Behaves the same as operator» (istream&, char *) (see Chapter 5), and
returns a reference to is.

ostream _FAR & _Cdecl _FARFUNC operator«(ostream _FAR &os, const String
_FAR&s)i

Behaves the same as operator« (ostream&, const char *) (see Chapter 5)
except that it does not terminate when it encounters a null character in the
string. Returns a reference to as:

opstream _FAR& _Cdecl operator « (opstream _FAR & os, const string _FAR
& str) i

Inserts string str into persistent output stream as.

string _Cdecl..:.FARFUNC operator + (const char _FAR *cp, const string _FAR
& s) i

Concatenates *cp and string s.

string _Cdecl _FARFUNC operator + (const string _FAR &sl, const string
_FAR &s2) i

Concatenates string sl and s2.

istream _FAR & _Cdecl getline(istream _FAR &is, string _FAR &s);

Behaves the same as istream: :getline (chptr, NPOS) , except that instead of
storing into a char array, it stores into a string. getline returns a reference to
is.

istream _F~R & _Cdecl getline(istream _FAR &is, string _FAR &s, Char c)i

Behaves the same as istream: :getline (cb, NPOS, c), except that instead of
storing into a char array, it stores irito a string. getline returns a reference to
is.

String _Cdecl _FARFUNC to_lower(const string _FAR &s) i

Changes string s to uppercase.

String _Cdecl _FARFUNC to_upper(const string _FAR &s) i­

Changes string s to lowercase.

Library Reference

TSubString class

TSubString class cstring.h

geCat

length

start

toJower

assert_element

Operator =

class TSubString

Addresses selected substrings.

Public member functions

char get_at(size_t pas) canst

Returns the character at the specified position. If pas > length () -1, an
exception is thrown.

See also: put_at

int is_null() canst

Returns 1 if the string is empty, 0 otherwise.

size_t length() canst

Returns the substring length.

vaid put_at (size_t pas, char c

Replaces the character at pas with c. If pas == length () , putAt appends c to
the target string. If pas > length () , an exception is thrown.

int start() canst

Returns the index of the starting character.

vaid ta_lawer();

Changes the substring to lowercase.

vaid ta_upper();

Changes the substring to uppercase.

Protected member functions

int assert_element(size_t pas) canst;

Returns 1 if pas represents a valid index into the substring, 0 otherwise.

Operators

TSubString _FAR & aperatar=(canst string _FAR &s);

Chapter 11, C++ utility classes 505

TSubString class

Operator ==

Operator !=

Operator ()

Operator []

Operator!

506

Copies s into the target substring.

int aperatar==(canst char _FAR * cp) canst;

Tests for equality between the target substring and *cp. The two are equal if
they have the same length, and if the same location in each string contains
the same character. Operator == returns a 1 to indicate that the strings are
equal, and a 0 to indicate that they are not equal.

int aperator=:;:(canst string _FAR & s) canst;'

Tests for equality between the target substring and string s. Two are equal
if they have the same length, and if the same location in each string
contains the same character. Operator == returns a 1 to indicate that the
strings are equal, and a 0 to indicate that they are not equal.

int aperatar!=(canst char _FAR * cp) canst

Tests for inequality between the target string and *cp. Two strings are equal
if they have the same length, and if the same location in each string
contains the same character. Operator != returns a 1 to indicate that the
strings are not equal, and a 0 to indicate that they are equal.

int aperatar!=(canst string _FAR &' s) canst;

Tests for inequality between the target string and string s. Two strings are
equal if they have the same length, and if the same location in each string
contains the same character. Operator != returns a 1 to indicate that the
strings are not equal, and a 0 to indicate that they are equal.

char _FAR & aperatar() (size_t pas);

Returns a reference to the character at position pas.

char aperatar() (size_t pas) canst;

Returns the character at position pas.

char _FAR-& aperatar[] (size_t pas);

Returns a reference to the character at position pas.

char aperatar[] (size_t pas) canst;

Returns the character at position pas.

int aper~tor! () canst

Detects null substrings. Returns 1 if the substring is not null.

Library Reference

TCriticalSection class

TCriticalSection class thread.h

Constructor

Destructor

class TCriticalSection

TCriticalSection provides a system-independent interface to critical sections
in threads. TCriticalSection objects can be used in conjunction with
TCriticalSection::Lock objects to guarantee that only one thread can be
executing any of the code sections protected by the lock at any given time.

See also: TCriticalSection::Lock

Constructors and destructor

TCriticalSection();

Constructs a TCriticalSection object.

-TCriticalSection();

Destroys a TCriticalSection object.

TCriticaISection:: Lock class thread.h

Constructor

class Lock

This nested class handles locking and unlocking critical sections. Here's an
example:

TCriticalSection LockFi
void f ()
{

TCriticalSection::Lock(LockF)i

II critical processing here

Only one thread of execution will be allowed to execute the critical code
inside function f at anyone time.

Public constructors and destructor

Lock(const TCritiGalSection&);

Requests a lock on the TCriticalSection object. If no Lock object in another
thread holds a lock on that TCriticalSection object, the lock is allowed and

I Chapter 11, C++ utility classes 507

TCriticaISection::Lock class·

Destructor

'TMutex class

Constructor

Destructor

HANDLE

execution continues. If a Lock object in another thread holds a lock on that
object, the requesting thread is blocked until the lock is released.

~Lock()i

Releases the lock.

thread.h

TMutex provides a system-independent interface to critical sections in
threads. TMutex objects can be used in conjunction with TMutex::Lock
objects to guarantee that only one thread can be executing any of the code
sections protected by the lock at any given time.

The differences between the classes TCriticalSection and TMutex are that a
timeout can be specified when creating a Lock on a TMutex object, and that
a TMutex object has a HANDLE that can be used outside the class. This
mirrors the distinction made in Windows NT between a
CRITICALSECTION and a Mutex. Under NT a TCriticalSection object is
much faster than a TMutex object. Under operating systems that don't make
this distinction a TCriticalSection object can use the same underlying
implementation as a TMutex,losing the speed advantage that it has under
NT.

Public constructors and destructor

TMutex() i

Constructs a TMutex object.

~TMutex () i

Destroys a TMutex object.

Operators

operator HANDLE() const;

Returns the handle of the underlying Windows NT semaphore object.

TMutex::Lock class thread.h

This nested class handles locking and ~locking TMutex objects.

508 Library Reference

Constructor

Release

TSync class

TMutex::Lock class

Public constructors

Lock(canst TMutex&, unsigned long timeOut = NoLimit)i

Requests a lock on the TMutex object. If no Lock object in another thread
holds a lock on that TMutex object, the lock is allowed and execution
continues. If a Lock object in another thread holds a lock on that object, the
requesting thread is blocked until the lock is released.

Public member functions

void Release()i

Releases the lock on the TMutex object.

thread.h

TSync provides a system-independent interface for building classes that act
like monitors-classes in which only one member function can execute on a
particular instance at anyone time. TSync uses TCriticalSection, has no
public members, and can only be used as a base class. Here is an example
of TSync in use:

class ThreadSafe : private TSync
{

pUblic:
void f () ;
void g() i

private:
int i;

} i

void ThreadSafe::f()
{.

Lock(this);
if (i == 2)

i = 3;

void ThreadSafe::g()
{

Lock(this) i
if (i == 3)

i = 2;

Chapter 11, C++ utility classes 509

TSync class

See also: class TSync::Lock

Protected constructors

Constructor TSync() ;

Default constructor.

Constructor TSync(const TSync&);

Copy constructor. Does not copy the TCriticalSection object.

-Protected operators

Operator =. const TSync& operator = (const TSync& s)

Assigns s to the target, and does not copy the TCriticalSection object.

TSync:: Lock class thread.h

Constructor

Destructor

TThread class

510

class Lock: private TCriticalSection::Lock

This nested class handles locking and unlocking critical sections.

Public constructors _and destructor

Lock(tonst TSync *s);

-Requests a lock on the critical section of the TSync object pointed to by s. If
no other Lock object holds a lock on that TCriticalSection object, the lock is
allowed and execution continues. If another Lock object holds a lock on that
object, the requesting thread is blocked until the lock is released.

-Lock () ;

Releases the lock.

thread.h

class TThread

TThread provides a system-independent interface to threads. Here is an
example:

Library Reference

Status

TThread class

class TimerThread : private TThread

public:
TimerThread() : Count (0) {}

private:

};

unsigned long Run () ;
int Count;

unsigned long TimerThread::Run()
{

II loop 10 times
while(Count++ < 10
{

Sleep (1000) ; II delay 1 second
cout « "Iteration n « Count « endl;

return OL;,

int main()
{.

TimerThread timer;
timer. Start () ;
Sleep(20000); II delay 20 seconds
return 0;

Type definitions

enum Status { Created, Running, Suspended, Finished, Invalid }i

Describes the state of the thread, as follows:

• Created. The object has been created but its thread has not been started.
The only valid transition from this state is to Running, which happens on
a call to Start. In particular, a call to Suspend or Resume when the object is
in this state is an error and will throw an exception .

• Running. The thread has been started successfully. There are two
transitions from this state: .

• When the user calls Suspend, the object moves into the Suspended state .

• When the thread exits, the object moves into the Finished state.

Calling Resume on an object that is in the Running state is an error and
will throw an exception. . .

Chapter 11, C++ utility classes 511

TThread class

Constructor

Constructor

Destructor

GetPriority

GetStatus

Resume

SetPriority

Start

Suspend

512

• Suspended. The thread has been suspended by the user. Subsequent calls
to Suspend nest, so there must be as many calls to Resume as there were to
Suspend before the thread resumes execution.'

• Finished. The thread has finished executing. There are no valid transitions
out of this state. This is the only state from which it is legal to invoke the
destructor for the object. Invoking the destructor when the object is in
any other state is an error and will throw an exception.

Protected constructors and destructor

TThread() ;

Constructs an object of type TThread.

TThread(canst TThread&);

Copy constructor. Puts the target object into the Created state.

virtual -TThread();

Destroys the TThread object.

Public member functions

int GetPriarity() canst;

Gets the thread priority.

See also: SetPriority

Status GetStatus() canst;

Returns the current status of the thread. See data member Status for
possible values.

unsigned lang Resurne()i

Resumes execution of a suspended thread.

int SetPriarity(int);

Sets the thread priority.

See also: GetPriority

HANDLE Start();

Begins execution of the thread, and returns the thread handle.

unsigned lang Suspend();

Library Reference

Terminate

TThread class

Suspends execution of the thread.

void Terminate();

Sets an internal flag that indicates that the thread should exit. The derived
class can check the state of this flag by calling ShouldTerminate.

TerminateAndWait void TerminateAndWait (unsigned long timeout = (unsigned long) (-1));

WaitForExit

ShouldTerminate

Operator =

Combines the behavior of Terminate and WaitForExit. Sets an internal flag
that indicates that the thread should exit and blocks the calling thread until
the internal thread exits or until the time specified by timeout, in
milliseconds, expires. A timeout of -1 says to wait indefinitely.

void WaitForExit(unsigned long timeout = (unsigned long) (-1))i

Blocks the calling thread until the internal thread exits or until the time
specified by timeout, in milliseconds, expires. A timeout of -1 says wait
indefinitely.

Protected member functions

int ShouldTerminate() const;

Returns a nonzero value to indicate that Terminate or TerminateAndWait has
been called and that the thread will finish its processing and exit.

Protected operators

const TThread& operator = (const TThread&);

The TThread assignment operator. The target object must be in either the
Created or Finished state. If so, assignment puts the target object into the
Created state. If the object is not in either state an exception will be thrown.

TThread: :TThreadError class thread.h

class TThreadError

TThreadError defines the exceptions that are thrown when a threading error
occurs.

Chapter 11, C++ utility classes 513

TIhread::TIhreadError class

ErrorType

GetErrorType

514

Type definitions

enum ErrorType
{

SuspendBeforeRun,
ResumeBeforeRun,
ResumeDuringRun,
SuspendAfterExit,
ResumeAfterExit,
CreationFailure,
DestroyBeforeExit,
AssignError
} ;

Identifies the type of error that occurred. The following list explains each'
error type:

• SuspendBeforeRun. The user called Suspend on an object before calling
Start. '

• ResumeBeforeRun. The user called Resume on an object before calling Start.
• ResumeDuringRun. The user called Resume on a thread that was not

suspended.

• SuspendAfterExit. The user called Suspend on an object whose thread had
already exited.

• ResumeAfterExit. The user called Resume on an object whose thread had
already exited .

• CreationFailure. The operating system was unable to ~reate the thread.

• DestroyBeforeExit. The object's destructor was invoked before its thread
had exited.

• AssignError. An attempt was made to assign to an object that was not in
either the Created or Finished state.

Public member functions

ErrorType GetErrorType() const;

Returns the ErrorType for the error that occurred.

Library Reference

TTime type definitions

TTime type definitions time.h

TTime class

Constructor

Constructor

Constructor

Constructor

AsString

BeginDST

Between

typedef unsigned HourTyj
typedef unsigned MinuteTyj
typedef unsigned SecondTyj
typedef unsigned long ClockTyj

Type definitions for hours, minutes, seconds, and seconds since January I,
1901.

class TTime

Class TTime encapsulates time functions and characteristics.

Public constructors

TTime()j

Constructs a TTime object with the current time.

TTime(ClockTy s)j

time.h

Constructs a TTime object with the given s (seconds since January I, 1901). -

TTime(HourTy h, MinuteTy m, SecondTy s = 0)i

Constructs a TTime object with the given time and today's date.

TTime(const TDate&, HourTy h=O, MinuteTy m=O, SecondTY s=o)i

Constructs a TTime object with the given time and date.

Public member functions

string AsString() canstj

Returns a string object containing the time.

static TTime BeginDST(unsigned year)j

Returns the start of da.ylight savings time for the given year.

int Between (const TTime& a, const TTime& b) constj

Returns 1 if the target date is between TTimes a and b, 0 otherwise.

Chapter 11, C++ utility c/a~ses 515

TIime class

CompareTo

EndDST

Hash

Hour

HourGMT

IsDST

IsValid

Max

Min

Minute

MinuteGMT

PrintDate

Second

Seconds

516

int CampareTa(canst TTime &) canst;

Compares t to this TTime object and returns 0 if the times are equal, 1 if t is
earlier, and -1 if t is later.

static TTime EndDST(unsigned year);

Returns the time when daylight savings time ends for the given year.

unsigned Hash() canst;

Returns seconds since January I, 1901.

HaurTy Haur() canst;

Returns the hour in local time.

HaurTy HaurGMT() canst;

Returns the hour in Greenwich Mean Time.

int IsDST() canst;

Returns 1 if the time is in daylight savings time, 0 otherwise.

int IsValid() canst;

Returns 1 if this TTime object contains a valid time, 0 otherwise.

TTime Max (canst TTime& t) canst;

Returns either this TTime object or t, whichever is greater.

TTime Min(canst TTime& t) canst;

Returns either this TTime object or t, whichever is lesser.

MinuteTy Minute() canst;

Returns the minute in local time.

MinuteTy MinuteGMT() canst;

Returns the minute in Greenwich Mean Time.

static int PrintDate(int flag);

Set flag to 1 to print the date along with the time; set to 0 to not print the
'date. Returns the old setting.

SecandTy Secand() canst;

Returns seconds.

ClackTy Secands() canst;

Library Reference

AssertDate

RefDate

MaxDate

Operator <

Operator <=

Operator>

Operator >=

Operator ==

Operator !=

Operator ++

Operator--

TTime class

Returns seconds since January 1, 1901.

Protected member functions

static int AssertDate(const TDate& d);

Returns 1 if d is between the earliest valid date (RefDate) and the latest valid
date (MaxDate).

Protected data members

static const TDate Ref Date;

The minimum valid date for TTime objects: January 1, 1901.

static const TDate MaxDate;

The maximum valid date for TTime objects.

Operators

int operator < (const TTime& t) const;

Returns 1 if the target time is less than time t, 0 otherwise.

int operator <= (const TTime& t) const;

Returns 1 if the target time is less than or equal to time t, 0 otherwise.

int operator > (const TTime& t) const;

Returns 1 if the target time is greater than time t, 0 otherwise.

int operator >= (const TTime& t) const;'

Returns 1 if the target time is greater than or equal to time t, 0 otherwise.

int operator == (const TTime& t) const;

Returns 1 if the target time is equal to time t,O otherwise.

int operator != (const TTime& t) const;

Returns 1 if the target time is not equal to time t, 0 otherwise.

void operator++();

Increments time by 1 second.

void operator--();

Chapter 11, C++ utility classes 517

TTime class

Operator +=

Operator-=

Operator +

Operator-

Operator «

Operator »

518

Decrements time by 1 second.

void operator+=(long S)i

Adds 8 seconds to the time.

void operator-=(long S)i

Subtracts 8 seconds from the time.

friend,TTime operator + (const TTime& t, long S)i

friend TTime operator + (long s, const TTime& t)i

Adds 8 seconds to time t.

friend TTime operator - (const TTime& t, long s)i

friend TTime operator - (long s, const TTime& t)i

. Performs subtraction, in seconds, between 8 and t.

friend ostream& operator « (ostream& os, const TTime& t)i

Inserts time t into output stream 08.

friend opstream& operator « (opstream& s, const TTime& d)i

Inserts time t into persistent stream 8.

friend ipstream& operator » (ipstream& s, TTime& d) i

Extracts time t from persistent stream 8.

Library Reference

Index

+

<

>

!=

o

TSubString operator 506

global string operator 504
string operator 501.
TDate operator 487
TIime operator 518

TDate operator 487
TTime operator 518

string operator 503
TDate operator 487
TTime operator 517

string operator 501
TMVectorImp operator 446
TSubString operator 505
TSync operator 510
TThread operator 513

string operator 503
TDate operator 487'
TIime operator 517

string operator 502
TDate operator 487
TSubString operator 506
TIime operator 517

string operator 501
TSubString operator 506

++
TBinarySearchTreeIteratorImp operator 381
TDate operator 487
TIBinarySearchTreeIteratorImp operator 383
TMArrayAsVectorIterator operator 359
TMDequeAsVectorIterator operator 386
TMDictionaryAsHashTableIterator operator 397

. TMDoubleListIteratorImp operator 404
TMHashTableIteratorImp operator 413
TMIArrayAsVectorIterator operator 365

Index

TMIDictionaryAsHashTableIterator operator
399
TMIDoubleListIterator operator 409
TMIHashTableIteratorImp operator 415
TMIListIteratorImp operator 423
TMIVectorIteratorImp operator 456
TMListIteratorImp operator 420
TMVectorIteratorImp operator 447
TIime operator 517

+=

«

string operator 501
TDate operator 487
TTime operator 518

TDate operator 487
TMDoubleListIteratorImp operator 405
TTime operator 517

TDate operator 487
TIime operator 518

global string operator 504
TDate operator 487
TIime operator 518

<=
string operator 503
TDate operator 487
TTime operator 517

string operator 502
TDate operator 487
TMDDAssociation operator 369
TMDIAssociation operator 370
TMIDAssociation operator 372
TMIIAssociation operator 373
TSubString operator 506
TIime operator 517

>=
string operator 503
TDate operator 487
TTime operator 517

» ,
global string operator 504

519

[]

string operator 503
TDate operator 488
TTime operator 518

string operator 501
TArray operator 364
TMArrayAsVector operator 359
TMIVectorImp operator 455
TMVectorImp operator 446
TSubString operator 506

_8087 (global variable) 299
8086 processor.

interrupt vectors 78,81, 134
interrupts 145, 147

80x86 processors
functions (list) 13

Oxll BIOS interrupt 39, 40
Oxl2 BIOS interrupt 42, 43
Oxl6 BIOS interrupt 41
Ox21 DOS interrupt 146, 147
Ox23 DOS interrupt 64
0x29 DOS system call 187
Ox33 DOS system call 122,229
Ox44 DOS system call 148
Ox59 DOS system call 71
Ox62 DOS system call 131
OxlA BIOS interrupt 43

A
abnormal program termination 206, 478
abort (function) 27
abs (complex friend function) 466
abs (function) 27
absolute value

complex numbers 45, 466
square 468

floating-point numbers 91
integers 27

long 156
access

DOS system calls 35, 36
memory (DMA) 39, 41
modes, changing 50,75,213
program, signal types 206

invalid 206
read/write 90, 117

520

files 28, 60, 184, 243
permission 184

access (function) 28 .
access flags 184, 243
access permission mask 285
acos (complex friend function) 466
acos (function) 28
acosl (function) 28
Add

TBinarySearchTreeImp member function 379
TIBinarySearchTreeImp member function 381
TMArray As Vector member function 356
TMBagAs Vector member function 374
TMCVectorImp member function 449
TMDictionaryAsHashTable member function
395
TMDoubleListImp member function 402
TMHashTableImp member function 412
TMIArrayAsVector member function 361
TMIBagAsVector member function 377
TMICVectorImp member function 457
TMIDictionary AsHash Table member function
398
TMIDoubleListImp member function 407
TMIHashTableImp member function 414
TMIListImp member function 421
TMISetAs Vector member function· 435
TMListImp member function 418
TMSetAs Vector member function 434

AddAt
TMArray As Vector member function 356
TMCVectorImp member function 449
TMIArrayAsVector member function 361

AddAtHead
TMDoubleListImp member function 402
TMIDoubleListImp member function 407

AddAtTail
TMDoubleListImp member function 402
TMIDoubleListImp member function 407

address segment, of far pointer 108, 178
addresses

memory See memory
passed to __ emit __ 85

adjustfield, ios data member 318
alloc.h (header file) 7
alloca (function) 29
allocate, streambuf member function 331

Library Reference

allocation
nrrenrrory Seenrrenrrory
streanrrable object file buffers and 336, 344

alphabetic ASCII codes, checking for 150
alphanunrreric ASCII codes, checking for 150
angles (conrrplex nunrrbers) 467
ansi_to_oenrr, string nrrenrrber function 493
app, ios data nrrenrrber 319
append, string nrrenrrber function 493
arc cosine 28
arc sine 30
arc tangent 31, 32
arg (conrrplex friend function) 467
argc (argunrrent to nrrain) 19
_argc (global variable) 299
ARGS.EXE20
argunrrent list, variable 289

conversion specifications and 195
routines 18

argunrrents
conrrnrrand-line, passing to nrrain 19, 299, 300

wildcards and 21
argv (argunrrent to nrrain) 19
_argv (global variable) 300
arrays

of character, attribute infornrration 300
searching 44, 157
of tiTIne zone nanrres 308

ArraySize
TMArray As Vector nrrenrrber function 356
TMIArray As Vector nrrenrrber function 361

ASCII codes
alphabetic 150

lowercase 152
uppercase '154

alphanunrreric 150
control or delete -152
converting

characters to 282
date and tinrre to 30

digits 152
hexadecinrral 154

functions, list 10
low 150
lowercase alphabetic 152
printing characters 152, 153
punctuation characters 153

Index

uppercase alphabetic 154
whitespace 154

asctinrre (function) 30
asin (conrrplex friend function) 467
asin (function) 30
asinl (function) 30
assert (function) 31
assert_ elenrrent

string nrrenrrber function 500
TSubString nrrenrrber function 505

assert.h (header file) 7
assert_index, string nrrenrrber function 500
AssertDate, TIinrre nrrenrrber function 517
AssertIndexOfMonth, TDate nrrenrrber function 486
assertion 31
AssertWeekDayNunrrber, TDate nrrenrrber function

486
assign, string nrrenrrber function 494
assignnrrent suppression, fornrrat specifiers 220,

224,225
AsString

TDate nrrenrrber function 484
TIinrre nrrenrrber function 515

atan (conrrplex friend function) 467
atan (function) 31
atan2 (function) 32
atan21 (function) 32
atanl (function) 31
ate, ios data nrrenrrber 319
atexit (function) 33
atof (function) 33
atoi (function) 34
atol (function) 35
_atold (function) 33
attach nrrenrrber functions

filebuf 314
£pbase 336
fstreanrrbase 317

attribute bits 184, 243
attribute word 61, 70,214
attributes

B

characters, arrays of 300
text 275, 277, 278

bad
ios nrrenrrber function 320

521

pstream member function 344
Bad_cast (class) 477
Bad_typeid (class) 477
banker's rounding 464
base 10 logarithm 163, 468
base, streambuf member function 331
basefield, ios data member 318
BCD (binary coded decimal) numbers 463, 465
bcd (class constructor) 463, 464 . .
bcd.h (header file) 7
bdos (function) 35
bdosptr (function) 36
before, Type_info member function 480
BeginDST, TTime member function 515
_beginthread (function) 37
_beginthreadNT (function) 37
Between

TDate member function 484
TTime member function 515

binary, ios data member 319
binary files

creat and 59·
. creattemp and 61

fdopen and 96
fopen and 107
freopen and 112
_fsopen and 116
opening 96, 107, 112, 116

and translating 305
setting 235
temporary

naming 274, 281
opening 280

binary search 44
BIOS

functions (list) 13
interrupts

Oxll 39,40
Ox12 42, 43·
Ox1641
OxlA 43

timer 43
_bios_equiplist (function) 40
bios.h (header file) 7

. _bios_memsize (function) 42
_bios_timeofday (function) 43
biosequip (function) 39

522

bioskey (function) 41
biosmemory (function) 42
biostime (function) 43
bit mask 117
bit rotation

long integer 165
unsigned char 62
unsigned integer 213

bitalloc, ios member function 320
bits, attribute 61, 69, 70, 184,215,243
bIen, streambuf member function 331
blink-enable bit 276
Borland C++

functions, licensing 3
obsolete definitions 16

BoundBase
TArrayAsVectorImp member function 363
TMArray As Vector member function 358

bp
ios data member 319
pstream data member 345

bsearch (function) 44
. buffers

default, allocating 344
files 236,313,315

allocating 336
creating 336, 337, 340, 341

pstream 344 .
current 336

keyboard, pushing character to 286
pointers, pstream 345
streams and 228,229, 236,313,315

clearing 103
flushing 94
pointers to 345
writing 103

system-allocated, freeing 94
writing data from 342 '

BUILDER type, streamable classes and 347
bytes

copying 180
reading from hardware ports 142, 143
returning from memory 188
storing in memory 192
streamable objects and 338, 339, 340, 341, 342,
348
swapping 272

Library Reference

c
C++ See Borland C++
c_str, string member function 494
cabs (function) 45
cabsl (function) 45
calendar format (time) 179
calloc (function) 46
carry flag 145, 146, 147
CastableID, TStreamableBase member function

346
ceil (function) 46
ceill (function) 46
cgets (function) 48
_chain_intr (function) 48
channels (device) 149
characters

alphabetic 150
alphanumeric 150
array 338

global variable 300
attributes 275, 277, 278
blinking 276
color, setting 275, 278
control or delete 152
converting to ASCII 282
device 151
digits 152
displaying 197, 201, 221
floating-point numbers and 33
functions (list) 10
hexadecimal digits 154
intensity

high 141
low 165
n,ormal 182

low ASCII 150
lowercase 282

checking for 152
converting to 282

manipulating header file 8
newline (\n) 203
printing 152, 153
punctuation 153
pushing

to input stream 286
to keyboard buffer 286

. reading 221

Index

from console 48
from keyboard 122, 123
from streams 98, 122, 123

stdin 98
scanning in strings 255, 264

segment subset 266
searching

blocks 174
strings 252

streamable objects and 338, 342
uppercase

checking for 154
converting to 283

whitespace 154
writing .

to screen 201 .
. to streams 110, 201, 202

chdir (function) 49
_chdrive (function) 49
CHECK macro 472
checks.h (header file) 7
CHECKX macro 473
child processes 87, 244

exec (function) 22
functions (list) 17
header file 8
spawn (function) 22

chmod (function) 50
chsize (function) 51
class diagnostics 471

CHECK macro 471
CHECKX macro 471
PRECONDITION macro 471
PRECONDITIONX macro 471
TRACE macro 471
TRACEX macro 471
WARN macro 471
WARNX macro 471

classes
. names, read/write prefix/suffix 339

registering 339,342,347
writing to streams 343

clear
ios member function 320
pstream member function 344

_clear87 (function) 51
clearerr (function) 52

523

clearing
screens 54
to end of line 54

clock (function) 52
dose (function) 53
Close, TFile member function 490
close member functions

filebuf 314
fpbase 336
fstreambase 317

closedir (function) 53 ,
clreol, conbuf member function 311
clreol (function) 54
clrscr (function) 54
clrscr member functions

conbuf 311
constream 313

co-routines, task states and 164
colors and palettes

background color, text 275, 277
setting, character 275, 278

command-line arguments, passing to main 299,
300

command-line compiler, Pascal calling conventions,
option (-p) 22,

communications, ports, checking for 39, 40, 151
compare, string member function 494
CompareTo

TDate member function 484
TTime member function 515

comparing two values 171, 177
comparison function, user-defined 205
compile-time limitations, header file 8
complex (class constructor) 466
complex.h (header file) 7
complex numbers

absolute value 45
square of 468

angles 467
conjugate of 467
constructor for 466
conversion to real 466
functions (list) 15
header file 7
imaginary portion 468
logarithm 468
polar function 468

524

real portion 468
COMSPEC environment variable 273
conbuf (class) 311
concatenated strings 252, 261
CondFunc typedef 355, 360, 374, 376, 383, 387, ,

390,392,402,407,417,421,437,439,444,453
conditions,testing 31
conio.h (header file) 8
conj (complex friend function) 467
conjugate (complex numbers) 467
console

checking for 151
header file 8
output flag 301
reading and formatting

characters 48
input 63

constants
DOS (header file) 8
open function (header file) 8
symbolic (header file) 9
UNIX compatible (header file) 9
used by function setf 318

constrea.h (header file) 8
constream (class) 313
constructors

complex numbers 466
conbuf 311
filebuf 314
fpbase 336
fstream 316
fstreambase 316
ifpstream 337
ifstream 317
iostream 322
iostream_ withassign 323
ipstream 337, 339
istream 323
istream_ withassign 325
istrstream 326
ofpstream 340
of stream 326
opstream 341, 343
ostream 327
ostream_ withassign 328
ostrstream 328
pstream 344, 345

Library Reference

streambuf 320, 329
strstream 334
strstreambase 332
strstreambuf 333
TStreamableClass 347

contairis, string member function 494
_contro187 (function) 55
control-break

handler 64
returning 122
setting 229
software signal 206

control characters, checking for 152
control word, floating point 55
conversions

binary coded decimal 463, 465
complex numbers 466
date and time 30

to calendar format 179
DOS to UNIX format 81
to Greenwich mean time 135
header file 9
to string 63
to structure 160
UNIX to DOS format 287

double
to integer and fraction 180
to mantissa and exponent 113
strings to 267

floating point
strings to 33
to string 84, 95, 121

format specifiers 196, 200
functions (list) 10
header file 9
integer

strings to 34
toAS~II 282
to string 155

long double, strings to 267
long integer

strings to 35, 269,270
to string 167, 285

lowercase to uppercase 270, 283
specifications (print£) 195
strings

date and time to 63

Index

integers to 155
to double 267
to floating point 33
to integer 34
to long double 267
to long integer 35, 269, 270
to unsigned long integer 270

unsigned long integer
strings to 270
to string 285

uppercase to lowercase 260, 282
coordinates

cursor position 136,296
screens, text mode 132

copy, string member function 494
coroutines, task states and 231
cos (complex friend function) 467
cos (complex numbers) 467
cos (function) 55
cosh (complex friend function) 467
cosh (complex numbers) 467
cosh (function) 56
coshl (function) 56
cosine 55, 467

hyperbolic 56
complex numbers 467

. inverse 28
cosl (function) 55
Count, TMCVectorImp member function 449
country (function) 57
country-dependent data 57, 158, 232
cow, string member function 501
cprintf (function) 58

format specifiers 195
cputs (function) 59
creat (function) 59
creatnew (function) 60
creattemp (function) 61
_crotl (function) 62
_crotr (function) 62
cscanf (function) 63

format specifiers 219
cstring (header file) 8
ctime (function) 63
ctrlbrk (function) 64
_ctype (global variable) 300
ctype.h (header file) 8

525

currency symbols 58, 158, 232
Current

TBinarySearchTreeIteratorImp member function·
380
TIBinarySearchTreeImp member function 382
TMArrayAsVectorIterator member function 359
TMDequeAs VectorIterator member function
386
TMDictionary AsHashTableIterator member
function 396
TMDoubleListItenitorImp member function 404
TMHashTableIteratorImp member fun~tion 413
TMIArray As VectorIterator member function
364
TMIDictionary AsHashTableIterator member
function 399
TMIDoubleListIteratorImp member function
409
TMIHashTableIteratorImp member function
415
TMIListIteratorImp member function 423
TMIVectorIteratorImp member function 455
TMListIteratorImp member function 419
TMVectorIteratorImp member function 447

current drive number 126
cursor

appearance, selecting 230
position in text window 136

returning 296
cwait (function) 65

D
data

country-dependent, supporting 57, 158, 232
moving 180
reading from streams 111, 113,290,293

stdin 219, 292
returning from currenfenvironment 127
security 130
writing to current environment 202

Data, TMDequeAsVector data member 385
. data public members

TMDoubleListElement 401
TMListElement 416

data segment 46, 169
data types

defining header file 9

526

time_t (header file) 9
date ' '

file 76, 129
global variable 300
international formats 57
system 30, 63, 119, 135, 160

converting from DOS to UNIX 81
converting from UNIX to DOS 287
getting 73
setting 73, 251

date functions (list) 18
Day, TDate member function 484 ,
_daylight (global variable) 300

setting value of 283
daylight saving time

adjustments 64,.300
setting 284

DayName, TDate member function 484
DayOfMonth, TDate member function 485
DayOfWeek, TDate member function 485
DaysInYear, TDate member function 485
DayTy, TDate type definition 483
DayWithinMonth, TDate member function 485

/ de_exterror 71
__ DEBUG debugging symbol 471
debugging

classes 471
macros (header file) 7

dec, ios data member 319
delete

. TMDoubleListElement operator 401
TMListElement operator 417

DeleteNode
TBinarySearchTreeImp member function 380
TIBinarySearchTreeImp member function 382

DeleteType, TShouldDelete data member 461
deletion

characters, checking for 152
directories 212 .
file 210, 287
line 54,66

delline, conbuf member function 312
delline (function) 66
DelObj .

TShouldDelete member function 461
__ DELTA macro 349

TStreamableClass 348

Library Reference

Destroy direct memory access (DMA)
TMArrayAsVector member function 356 checking for presence of 39, 41
TMIArrayAsVector member function 361 directories

destructor creating 178
opstream 341 current 88, 245
pstream 344 changing 49

Detach returning 124, 125
TBinarySearchTreeImp member function 379 deleting 212
TIBinarySearchTreeImp member function 381 functions (list) .11
TMArray As Vector member function 356 header file 8
TMBagAs Vector member function 374 searching 53, 71, 72, 100, 102, 185, 208,. 211,
TMCVectorImp member function 449 226, 227
TMDictionaryAsHashTable member function directory stream
396 closing 53
TMDoubleListImp member function 402 opening 185
TMHashTableImp member function 412 reading 208
TMIArrayAsVector member function 361 rewinding 211
TMIBagAsVector member function 377 _directvideo (global variable) 301
TMIDictionaryAsHashTable member function dirent.h (header file) 8
398 disable (function) 67
TMIDoubleListImp member function 407 _disable (function) 67
TMIHashTableImp member function 414 disk drives
TMIListImp member function 421 checking for presence of 39, 41
TMListImp member function 418 current number 75, ·126

DetachAtHead, TMIDoubleListImp member function setting 49
408 disk transfer address (DTA)

DetachAtTail, TMIDoubleListImp member function DOS
408 returning 127

device setting 230
channels 149 disks
character 151 space available 74, 126
DOS drivers 149 writing to, verification 135,237
type checking 151 div (function) 67

. DIAG_CREATE_GROUP macro 474 division, integers 67, 157
DIAG_DECLARE_GROUP 474 DLL, memory model support 7
DIAG_DEFINE_GROUP macro 474 DMA See direct memory access
DIAG_ENABLE macro 474 do allocate, strstreambuf member function 333
DIAG_GETLEVEL macro 474 DOS
DIAG_ISENABLED macro 474 date and time 73
DIAG_SETLEVEL macro 474 converting to UNIX format 81
diagnostics converting UNIX to 287

class 471 setting 133
preprocessor symbols 471 'device drivers 149

difftime (function) 66 environment, adding data to 202
dir.h (header file) 8 error codes 303
direct.h (header file) 8 error information, extended 70

file attributes, search 101

Index 527

functions (li'st) 13
header file 8
interrupts

Ox21 146, 147
Ox2364
functions 78, 81, 134
interface 146, 147

system calls
Ox29187
Ox33 122, 229
Ox44148
Ox59 71
Ox62 131
accessing 35, 36
memory models and 36

verify flag 134
_dos~etvect (function) 78
_dos_setvect (function) 81
_dos_close (function) 68
_dos_commit (function) 68
_dos_creat (function) 69
_dos_creatnew (function) 69
_dosermo (global variable) 302,303
dosexterr (function) 70
_dos_findfirst (function) 71
_dos_findnext (function) 72
_dos~etdate (function) 73
_dos_getdiskfree (function) 74
_dos~etdrive (function) 75
_dos~etfileattr (function) 75
_dos~etftime (function) 76
_dos~ettime (function) 77
dos.h (header file) 8
_dos_open (function) 78
_dos_read (function) 79
_dos_setdate (function) 73
_dos_setdrive (function) 75
_dos_seHileattr (function) 75
_dos_setftime (function) 76
_dos_settime (function) 77
dostounix (function) 81
_do~_write (function) 82
DTA See disk transfer address
dup (function) 82
dup2 (function) 83
dynamic_cast (exception) 477
dynamic-link libraries See DLL

528

dynamic memory allocation 46, 111, 169, 209, 250

E
eatwhite, istream member function 325
eback, streambuf member function 331
ebuf, streambuf member function 331
echoing to screen 122, 123
ecvt (function) 84 .
editing, block operations

copying 174, 175, 1i6,181
searching for character 174

egptr, streambuf member function 331
_8087 (global variable) 299
__ emit __ (function) 84
enable (function) 67
_enable (function) 67
encryption 130
end of file

checking 86, 96, 208
resetting 52

end of line, clearing to 54
_end thread (function) 86
enumopen_mode, ios data member 319
env (argument to main) 19
_environ (global variable) 20, 301
environment

operating system (header file) 8
variables 301

COMSPEC272
PATH 88,245

eof
ios member function 320
pstream member function 344

. eof (function) 86
epptr, streambuf member function 331
EqualTo

TBinarySearchTreeImp member function 380
TIBinarySearchTreeImp member function 382

equations, polynomial 192
ermo (global variable) 302
ermo.h (header file) 8
error codes 302
error handlers, math, user-modifiable 169
errors

detection, on stream 96, 97
DOS

extended information 70

Library Reference

mnemonics 302, 303
indicators, resetting 52
locked file 161
messages

perror function 189
pointer to, returning 256, 257
printing 189, 302

mnemonics for codes 8
read/write 97
streams and 344, 345

ErrorType, TThreadError data member 514
European date formats 57
except.h (header file) 8
exception handlers, numeric coprocessors 52,251
exception handling

exception names 307
files 307
global variables 307
messages 482
predefined exceptions 477, 481, 482
set_terminate (function) 478
set_unexpected (function) 479
terminate (function) 479
unexpected (function) 481

exceptions
Bad_cast (class) 477
Bad_typeid (class) 477
floating-point 55
memory allocation 478, 481
xalloc 478, 481
xmsg (class) 482

excpt.h (header file) 8
execl (function) 87
execle (function) 87
execlp (function) 87
execlpe (function) 87
execution, suspending 242
execv (function) 87
execve (function) 87
execvp (function) 87
execvpe (function) 87
exit (function) 33,47,90
_exit (function) 89
exit codes 27
exit status 89, 90
exp (complex friend function) 467
exp (function) 90

Index

_expand (function) 91
expl (function) 90
exponential (complex numbers) 467
exponents

calculating 90, 193, 194
double 113, 156

extended error information, DOS 70
external, undefined 16

F
fabs (function) 91
fabsl (function) 91
fail

ios member function 320
pstream member function 344

far heap
allocating memory from 92, 93
memory in

freeing 92
reallocating 93

pointers 92, 93, 94
farcalloc (function) 92
farfree (function) 92

small and medium memory models and 92
farmalloc (function) 93
farrealloc (function) 93
FAT See file allocation table
fclose (function) 94
fcloseall (function) 94
fcntl.h (header file) 8
fcvt (function) 95
fd, filebuf member function 314
fdopen (function) 95
feof (function) 96
ferror (function) 97
fflush (function) 97
fgetc (function) 98
fgetchar (function) 98
fgetpos (function) 98
fgets (function) 99
fields, input 222, 225
file allocation table (FAT) 128
file modes

changing 50,75,213
default 61, 69, 70,215
global variables 305
setting 235, 305

529

text 96, 107, 112, 116
, translation 59, 61, 305

file permissions 285
filebuf (class) 313
filelength (function) 99
fileno (function) 100
FileNull, TFile data member 488
files -

access
determining 28
flags 184, 243
permission 50

ARGS.EXE20
attaching 336, 337, 340, 341
attribute bits 184, 243
attribute word 214
attributes 60

access mode 75,213
file sharing 79, 217
searching directories and 71, 101
setting 61, 69, 70, 215

buffers 236
allocating 336
current 336
input and output 313, 315
line 236

closing 53,68,94, 112,214,336
date 76, 129
deleting 210, 287
end of

checking 86, 96, 208
resetting 52

file descriptor fd (function) 314
file pointer reposition 315
handles 53, 68, 184, 214

duplicating 82, 83
linking to streams 95
returning 100

header 25
HPFS and NTFS 117
information on, returning 116
locking 161,288
modes, setting 336, 337, 340, 341
names

parsing 187
unique 179,274,281

new 59,60,61,69,214

530

,open, statistics on 116
opening 78, 183, 184,216,336,337, 341

for update 96, 108, 112, 116
in binary mode 280

for writing 340
modes 319, 337, 341

default 314
openprot 314
shared 115,242,243
streams and 107, 112, 115

overwriting 60
position seeking 318
reading 60,79,207,217

and formatting input from 113,219,290,292, '
293
characters from 98, 122
data from 111
header file 8
integers from 135
strings from 99

renaming 210
replacing 112
rewriting 59,69,214
scratch 274, 281

opening 280
security '130
seek an offset 315
sharing

attributes 79, 217
header file 9
locks 161,288
opening shared files 115, 242, 243
permission '116, 243

, size 51
returning 99

statistics 116
streams, C++ operations 316
temporary 274, 281

opening 280
removing 212

time 76, 129
unlocking 288 ,
WILDARGS.OBJ 21, 22
writing 82, 120,218,298

a ttribu tes 60
characters to 110
formatted output to 109, 195,290,291

Library Reference

header file 8
strings to 110

fill, ios member function 320
Find

TBinarySearchTreelmp member function 379
TIBinarySearchTreelmp member function 381
TMArrayAsVector member function 358
TMBagAs Vector member function 375
TMCVectorImp member function 449
TMDictionaryAsHashTable member function
396
TMHashTablelmp member function < 412
TMIArray As Vector member function 362
TMICVectorImp member function 457
TMIDictionary AsHashTable member function
398
TMIHashTablelmp member function 414

find
ipstream member function 337
string member function 495

find_first_not_of, string member function 495
find_first_of, string member function 495
find_Iast_not_of, string member function 496
find_last_of, string member function 496
FindBase, TStreamableBase member function 347
FindDetach

TMDoubleListImp member function 403
TMISDoubleListImp member function 410
TMISListImp member function 424
TMListImp member function 419
TMSDoubleListImp member function 406

findfirst (function) 100 .
FindMember

TMBagAs Vector member function 374
TMIBagAs Vector member function 377

findnext (function) 102
find Object, opstream member function 341
FindPred

. TMDoubleListImp member function 404
TMIDoubleListImp member function 409
TMISListImp member function 424
TMListImp member function 419
TMSDoubleListImp member function 406

find VB, opstream member function 341
FirstDayOfMonth, TDate member function 485
FirstThat

TMArray As Vector member function 356

Index

TMDequeAsDoubleList member function 390
TMDequeAs Vector member function 383
TMDoubleListImp member function 402
TMIArrayAsVector member function 362
TMIBagAs Vector member function 377
TMIDequeAsDotibleList member function 393
TMIDequeAsVector member function 387
TMIDoubleListImp member function 408
TMlListImp member function 422
TMIQueueAsDoubleList member function 431
TMIQueueAsVector member function 427
TMIStackAs Vector member function 440
TMIVectorlmp member function 454
TMListImp member function 418'
TMQueueAsDoubleList member function 429
TMQueueAs Vector member function 425
TMStackAsVector member function 437
TMVectorImp member function 445

fixed, ios data member 319
flags

carry 145, 146, 147
console output 301
DOS verify 134
format specifiers 196, 198
format state 345
ios member function 320
operating system verify 237
read/write 184,243
video output 301

float.h (header file) 8
_floatconvert (global variable) 304
floatfield, ios data member 318
floating point '

absolute value of 91
binary coded decimal 463, 465
characters and 33
control word 55
displaying 197, 223
double, exponents 156
exceptions 55
format specifiers 197,221,223
formats 304
functions (list) 15
header file 8
I/O 304
infinity 55
math package 108

531

modes 55
precision 55

'reading 221
software signal 206
status word 51, 251

floor (function) 103
floor! (function) 103
Flush

TBinarySearchTreeImp member function 379
TFile member function 490
TIBinarySearchTreeImp member function 381
TMArray As Vector member function 357
TMBagAs Vector member function 374
TMDequeAsDoubleList member function 390
TMDequeAs Vector member function 383
TMDictionary AsHash Table member function
396 '
TMDoubleListImp member function 403
TMHashTableImp member function 412
TMIArrayAsVector member function 362
TMIBagAs Vector member function 377
TMIDequeAsDoubleList member function 393
TMIDequeAs Vector member function 388
TMIDictionary AsHash Table member function
398
TMIDoubleListImp member function 408
TMIHashTableImp member function 414
TMIQueueAsDoubleList member function 432
TMIQueueAs Vector member function 428
TMIStackAs Vector member function 440
TMIVectorImp member function 454
TMListImp member function 418 ,
TMQueueAsDoubleList member function 430
TMQueueAs Vector member function 425
TMStackAs Vector member function 437
TMVectorImp member function 445

flush
opstream member function 341
ostream member function 327

flushall (function) 103
flushing streams 97, 103
_fmemccpy (function) 174
_fmemchr (function) 174
_fmemcmp (function) 175
_fmemcpy (function) 175
_fmemicmp (function) 176
_fmemmove (function) 176

532

_fmemset (function) 177
fmod (function) 104
_fmode (global variable) 305
fmodl (function) 104
_fmovmem (function) '181
fname, Type_info member function 481
fnmerge (function) 105
fnsplit (function) 106
fopen (function) 107
ForEach

TBinarySea'rchTreeImp member function 379
TIBinarySearchTreelmp member function 381
TMArray As Vector member function 357
TMBagAsVector member function 375
TMDequeAsDoubleList member function 390
TMDequeAs Vector member function 384
TMDictionaryAsHashTable member function
396
TMDoubleListImp member function 403
TMIArrayAsVector member function 362
TMIBagAs Vector member function 377
TMIDequeAsDoubleList member function 393
TMIDequeAs Vector member function 388
TMIDictionaryAsHashTable member function
398
TMIDoubleListImp member function 408
TMIHashTableImp member function 412, 414
TMlListImp member function 422
TMIQueequeAs Vector member function 428
TMIQueueAsDoubleList member function 432
TMIStackAs Vector member function 440
TMIVectorImp member function 454
TMListImp member function 418

. TMQueueAsDoubleList member function 430
TMQueueAs Vector member function 425
TMStackAsVector member function 437
TMVectorImp member function 445

format flags 318, 319
state 345

format specifiers
assignment suppression 220, 224, 225
characters 197, 221

type 220, 221
conventions
, display 197

reading 222
conversion type 196, 200

Library Reference

cprintf 195
cscanf 219
F and N 196
flags 196, 198

alternate forms 198
floating-point 197,221,223
fprintf 195
fscanf 219
inappropriate character in 225
input fields and 222,'225
integers 196,221
modifiers

argument-type 220, 225
input-size 196,200
size 220, 225

pointers 197, 222
precision 196, 199, 200
printf 195
range facility shortcut 223
scanf 219
sprintf 195, 248
sscanf 219
strings 197,221
vfprintf 195
vfscanf 219
vprintf 195
vscanf 219
vsprintf 195
vsscanf 219
width

printf 196, 198
scanf 220, 224, 225

format strings
input 219
output 195

formatting
console input 63
cprintf 58
cscanf 63
fprintf 109
fscanf 113
output 58
printf 195
scanf 219
sprintf 248
sscanf 250
strings 248, 293

Index

time 257
vfprintf 290
vfscanf 290
vprintf 291
vscanf 292
vsprintf 293
vsscanf 293

FP _OFF (function) 108
. FP _SEG (function) 108
fpbase class 336
_fpreset (function) 108
fprintf (function) 109

format specifiers 195
fputc (function) 110
fputchar (function) 110
fputs (function) 110
frame base pointers as task state 164, 231
fread (function) 111
freadBytes, ipstream member function 337
freadString, ipstream member function 338
free (function) 111
freeze, strstreambuf member function 333
freopen (function) 112
frexp (function) 113
frexpl (function) 113
fscanf (function) 113

format specifiers 219
fseek (function) 114
fsetpos (function) 115
_fsopen (function) 115
fstat (function) 116
_fstrcat (function) 252
_fstrcmp (function) 253
_fstrchr (function) 252
_fstrcpy (function) 255
_fstrcspn (function) 255
_fstrdup (function) 256
fstream (class) 315
fstream.h (header file) 8
fstreambase (class) 316
_fstricmp (function) 259
_fstrlen (function) 260
_fstrlwr (function) 260
_fstrnbrk (function) 264
_fstrncat (function) 261
_fstrncmp (function) 261
_fstrncpy (function) 262

533

_fstrincmp (function) 263
_fstrnset (function) 263
_fstrrchr (function) 264
_fstrrev (function) 265
jstrset (function) 265
_fstrspn (function) 266
_fstrstr (function) 266
_fstrtok (function) 268
_fstrupr (function) 270
ftell (function) 118
ftime (function) 119
_fullpath (function) 120
functions

8086 13
bcd (header file) 7
BIOS 13

header file 7
Borland C++, licensing 3
child processes 17

header file 8
classification 10
comparing two values 171
comparison, user-defined 205
complex numbers 15

header file 7
console (header file) 8
conversion 10
da te and time 18

header file 9
diagnostic 11
directories 11

header file 8
file sharing (header file) 9
floating point (header file) 8
fstream (header file) 8
generic (header file) 8
go to 16

header file 9
integer 15
international

header file 8
information 16

I/O 12
he~der file 8

iomanip (header file) 8
iostream (header file) 8
listed by topic 9-18 .

534

locale 16
mathematical 15

header file 8
memory 14

allocating and checking 16
header file 8 .

obsolete names 17
operating system 13
process control 17
signals (header file) 9
sound 16
stdiostr (header file) 9 .
strings 14
strstrea (header file) 9
variable argument lists 18
windows 10
with multiple prototypes 9

fwrite (function) 120
fwrite~ytes, opstream member function 341
fwriteString, opstream member function 342

G
game port 39, 40
gbump, streambuf member function 331
gcount, istream member function 323
gcvt (function) 121
generic.h (header file) 8
geninterrupt (function) 121
Get

TMIQueueAsDoubleList member function 432
TMIQueueAs Vector member function 428

. TMQueueAsDoubleList member function 430
TMQueueAsVector member function 426

get, istream member function 323, 324
get_at

string member function 496
TSubString member function 505

get_case_sensitive_flag, string member function
496

get_initiaCcapacity, string member function 496
get_max_waste, string member function 496
get_paranoid_check, string member function 497
get_resize_increment, string member function 497
get_skipwhitespace_flag, string member function

497
getc (function) 122
getcbrk (function) 122

Library Reference

getch (function) 122
getchar (function) 123
getche (function) 123
getcurdir (function) 124
getcwd (function) 124
getdate (function) 73
_getdcwd (function) 125
GetDelta

TMCVectorImp member function 450
TMIVectorImp member function 454
TMVectorImp member function 445

getdfree (function) 126
getdisk (function) 126
getdta (function) 127

memory models and 127
getenv (function) 127
GetErrorType, TThreadError member function 514
getfat (function) 128
getfatd (function) 128
getftime (function) 129
GetHandle, TFile member function 490
GetItemslnContainer

TBinarySearchTreelmp member function 379,
381
TMArray As Vector member function 357
TMBagAsVector member function 375
TMDequeAsDoubleList member function 391
TMDequeAs Vector member function 384
TMDictionary AsHash Table member function
396
TMDoubleListImp member function 408
TMHashTablelmp member function 412

\ TMIArray As Vector member function 362
TMIBagAsVector member function 377
TMIDeqtieAsDoubleList member function 393
TMIDequeAs Vector member function 388
TMIDictionary AsHashTable member function
398
TMIHashTablelmp member function 415
TMIQueueAsDoubleList member function 432
TMIQueueAs Vector member function 428
TMQueueAsDoubleList member function 430
TMQueueAs Vector member function 426
TMStackAs Vector member function 437, 440

GetLeft
TMDequeAsDoubleList member function 391
TMDequeAs Vector member function 384

Index

TMIDequeAsDoubleList member function 393
TMIDequeAs Ve~tor member function 388

getline
global string function 504
istream member function 324

GetObject, TStreamer member function 348
getpass (function) 130
getpid (function) 130
GetPriority, TThread member function 512
getpsp (function) 130
GetRight

TMDequeAsDoubleList member function 391
TMDequeAs Vector, member function 384
TMIDequeAsDoubleList member function 393
TMIDequeAs Vector member function 388

gets (function) 131
GetStatus

TFile member function 490
TThread member function 512

gettext (function) 131
gettextinfo (function) 132
gettime (function) 133
getvect (function) 134
getverify (function) 134
getVersion, ipstream member function 338
getw (function) 135
global variables 299

_8087299
_argc 299
_argv 300
arrays, character 300
command-line arguments 299, 300
_ctype 300
_daylight 300

setting value of 283
_directvideo 301
_doserrno 302, 303
_environ 20, 301
errno 302

. file mode 305
_floatconvert 304
_fmode 305
main function and 299, 300
_new_handler 305
numeric coprocessors and 299
obsolete names 16
operating system environment 301

535

_osmajor 306
_ osminor 306
_osversion 306
printing error messages 302
program segment prefix (PSP) 307
_psp 307
_sys_errlist 302
_sys_nerr 302
time zones 300, 308

setting value of 283
_ timezone 308 .

,setting value of 283
_tzname 308

setting value of 283
undefined 16
_version 308
video output flag 301

gmtime (function) 135
good

. ios member function 321
pstream member function 345

go to, nonlocal64, 164,231
goto statements

functions list 16
header file 9

gotoxy, conbuf member function 312
gotoxy (function) 136
gptr, streambuf member function 331
graphics drivers, modes, text 131, 132
Greenwich mean time (GMT) 64, 67, 119

converting to 135
global variable 308
time zones and 284, 308

Grow

H

TMArrayAsVector member function 358
TMIArray As Vector member function 363

handlers 239
exception 52,251
interrupt 64

hardware
checking for presence of 39, 40, 151

device type 151
I/O, controlling 148
interrupts 39, 40
ports 142, 143

536

reading from 143, 144
writing to 185, 186

Hash
TDate member function 485
TTime member function 516

hash, string member function 497
HashTable, TMDictionaryAsHashTable data member

395
HashValue

TMDDAssociation member function 368
TMDIAssociation member function 370
TMIDAssociation member function 371
TMIIAssociation member function 373

HasMember
TMArray As Vector member function 357
TMBagAsVector member function 375
TMIArray As Vector member function 362
TMIBagAs Vector member function 378

Head
TMDoubleList data member 403
TMListImp data member 419

header files 25
described 7
floating point 8
reading and writing 8
sharing 9

heap
allocating memory from 46, 111, 169,209
checking 137, 138
free blocks

checking 137
filling 139, 140

memory freeing in 111
nodes 138
reallocating memory in 209
walking through 140,215

_heapadd (function) 137
heapcheck (function) 137
heapcheckfree (function) 137
heapchecknode (function) 138
_heapchk (function) 138
_HEAPEMPTY 141
_HEAPEND 140, 141
_HEAPOK 140'
heapfillfree (function) 139
_heap min (function) 139
_HEAPOK 141

Library Reference

_heapset (function) 140
heapwalk (function) 140
hex, ios data member 319
hexadeCimal digits, checking for 154
hierarchy, streams 335
high intensity 141
highvideo, conbuf member function 312
highvideo (function) 141
Hour, TTime member function 516
HourGMT, TTime member function 516
HowToPrint, TDate type definition 483
hyperbolic cosine 56
hyperbolic sine 241
hyperbolic tangent 273, 469
hypot (function) 141
hypotenuse 141
hypotl (function) 141

ID, process 130
ifpstream class 336
ifstream (class) 317
ignore, istream member function 324
illegal instruction, softWare signal 206
imag (complex friend function) 468
in, ios data member 319
in_avail, streambuf member function 330
IndexOfMonth, TDate member function 485
indicator

end-of-file 52, 86, 96, 208
error 52

infinity, floating point 55
init

ios member function 322
pstream member function 346

initial_capacity, string member function 497
initializa tion

file pointers 211
memory 177, 235
random number generator 207, 249
strings 263, 265

inline optimization 12
inp (function) 142
inport (function) 143
inportb (function) 143
input

console, reading and formatting 63

Index

fields 222
format specifiers and 225

from streams 113, 290, 293
formatting 113,219,290,292,293
pushing characters onto 286
stdin219,292
terminating 226

inpw (function) 144
insert, string member function 497
InsertEntry·

TMArrayAsVector member function 358
TMIArray As Vector member function 363

insline (conbuf member function) 312
insline (function) 144
int

TBinarySearchTreeIteratorImp operator 380
TIBinarySearchTreeIteratorImp operator 382
TMArrayAsVectIterator operator 360
TMDequeAs Vector Iterator operator 386
TMDictionary AsHashTableIterator operator 397
TMDoubleListIteratorImp operator 404
TMHashTableIteratorImp operator 413
TMIDictionary AsHashTableIterator operator
399
TMIHashTableIteratorImp operator 415
TMIVectorIteratorImp operator 456
TMListIteratorImp operator 419
TMVectorIteratorImp operator 447

int86 (function) 145
int86x (function) 145
intdos (function) 146
intdosx (function) 147
integers

absolute value 27
displaying 196
division 67

long integers 157
format specifiers 196,221
functions (list) 15
long

absolute value of 156
division 157
rotating 165 '

ranges, header file 8
reading 135, 221
rotating 165,213
storing in memory 191

537

writing to stream 204
integrated environment, wildcard .expansion and

22·
intensity

high 141
low 165
normal 182

internal, ios data member 319
international

character sets 232
code pages 232
·code sets 232
country-dependent data 57

setting 158, 232
currency symbol position 159
date formats 57
decimal point 197, 222
default category 234
functions list 16
header file 8
locale library 7
locales supported 232
specify a category 234

interrupts
8086 145, 147
chaining 48
control-break .122,229
controlling 67, 121
disabling 67
enabling 67
handlers 49

DOS 64
signal handlers and 239

rion-maskable 67
software 121, 145, 148

interface 145, 147
signal 206

system equipment 39, 40
vectors 64

8086 78,81, 134
getting 134
setting 81, 134

intr (function) 147
invalid access to storage 206
inverse cosine (complex numbers) 466
inverse sine (complex numbers) 467
inverse tangent 32

538

complex numbers 467
io.h (header file) 8
ioctl (function) 148
I/O

buffers 228
characters, writing 201, 202
controlling 148
floating-point

formats, linking 304
numbers 304

functions (list) 12
integers, writing 204
keyboard 122, 123

checking for keystrokes 155
low level header file 8
ports

hardware 142, 143, 144
writing to 185, ·186

screen 58
writing to 59, 201

streams 96, 108, 112, 116, 286
iomanip.h (header file) 8
ios (class) 318
ios data members 318
iostream (class) 322
iostream.h (header file) 8
iostream_withassign (class) 322
ipfx, istream member function 324
ipstream class 337

friends 340
is_null

String member function 497
TSubString member function 505

iSJtCopen, filebuf member function 314
isalnum (function) 150
isalpha (function) 150
is ascii (function) 150
isatty (function) 151
iscntrl (function) 151
isdigit (function) 152
IsDST, TTime member function 516
IsEmpty

TBinarySearchTreelmp member function 379,
381
TMArrayAsVector member function 357
TMBagAs Vector member function 375
TMDequeAsDoubleList member function 391

Library Reference

TMDequeAs Vector member function 384
TMDictionary AsHashTable member function
396
TMDoubleListImp member function 403
TMHashTablelmp member function 412
TMIArrayAsVector member function 362
TMIBagAs Vector member function 378
TMIDequeAsDoubleList member function 393
TMIDequeAs Vector member function 388
TMIDictionaryAsHashTable member function
399
TMIDoubleListImp member function 408
TMIHashTablelmp member function 415
TMIQueueAsDoubleList member function 432
TMIQueueAsVector member function 428
TMIStackAs Vector member function 440
TMListImp member function 418
TMQueueAs Vector member function 426
TMQuueAsDoubleList member function 430
TMStackAs Vector member function 438

IsFull
TMArrayAsVector member function 357
TMBagAsVector member function 375
TMDequeAsDoubleList member function 391
TMDequeAs Vector member function 384
TMIArray As Vector member function 362
TMIBagAsVector member function 378
TMIDequeAsDoubleList .member function 393
TMIDequeAsVector member function 388
TMIQueueAsDoubleList member function 432
TMIQueueAsVector member function 428
TMIStackAs Vector member'function 440
TMQueueAsDoubleList member function 430
TMQueueAs Vector member function 426
TMStackAs Vector member function 438

isgraph (function) 152
islower (function) 152
IsOpen, TFile member function 490
isprint (function) 153
ispunct (function) 153
isspace (function) 154
istream (class) 323
istream_withassign (class) 325
istrstream (class) 325
isupper (function) 154
IsValid

TDate member function 485

Index

TTime member function 516
isxdigit (function) 154
ItemAt

TMArrayAsVector member function 358
TMIArray As Vector member function 363

IterFunc typedef ,355,361,374,376,383,387,390,
393,402,407,417,421,437,439,444,453

itoa (function) 155

J
Japanese date formats 57
Jday, TDate member function 485
JulTy, TDate type definition 483

K
kbhit (function) 155
Key

TMDDAssociation member function 368
TMDIAssociation member function 370
TMIDAssociation member function 371
TMIIAssociation member function 373

keyboard
buffer, pushing characters back into 286
I/O 122, 123

checking for 155
operations 41
reading characters from 122, 123

KeyData, TMIDAssociation data member 371
keystrokes, checking for 155

L
labs (function) 156
LastThat

TMArrayAsVector member function 357
TMDequeAsDoubleList member function 391
TMDequeAs Vector member function 384
TMDoubleListImp member function 403
TMIArray As Vector member function 363
TMIBagAs Vector member function 378
TMIDequeAsDoubleList member function 394
TMIDequeAs Vector member function 388
TMIDoubleListImp member function 408
TMlListImp member function 422
TMIQueueAsDoubleList member function 432
TMIQueueAsVector me~ber function 428
TMIStackAs Vector member function 440

539

TMIVectorImp member function 454
TMListImp member function 418
TMQueueAsDoubleList member function 430
TMQueueAs Vector member function 426
TMStackAs Vector member function 438
TMV~ctorlmp member function 445

lconv structure 158
ldexp (function) 156
ldexpl (function) 156
ldiv (function) 157
Leap, TDate member function 485
left, ios data member 319
Left, TMDequeAsVector data member 385
length

of files 51, 99
of strings 260

Length, TFile member function 490
length member functions

string 497
TSubString 505

LessThan
TBinarySearchTreelmp member function 380
TIBinarySearchTreelmp member function 382

lfind (function) 157
libraries

dynamic link, summary 7
entry headings 25
files (list) 4
multithread support 23
selecting 4
static, summary 5

Lim, TMVectorImp data member 446
Limit

TMIVectorImp member function 454
TMVectorImp member function 446

limits.h (header file) 8
line-buffered files 236
linear searches 157, 166
lines

blank, inserting 144
clearing to end of 54
deleting 54, 66

literal values, inserting into code 84
local standard time 64, 67, 119, 135, 160
locale

current 158
dynamically loadable ?33

540

enabling 233
environment variable LANG 233
functions list 16
monetary information 158
numeric formats 158
printf 197
scanf 222
selecting 232
__ USELOCALES __ 233

locale.h (header file) 8
localeconv (function) 158
local time (function) 160
Lock 507, 510

constructor 507, 510
destructor 508, 510

lock (function) 161
locking (function) 161
locking.h (header file) 8
LockRange, TFile member function 491
locks, file-sharing 161,288
10glO (complex friend function) 468
log (complex friend function) 468
log (function) 162
10glO (function) 163
10g101 (function) 163
logarithm

base 10 163,468
complex numbers 468
natural 162,468

logl (function) 162
longjmp (function) 164

header file 9
low intensity 165
LowerBound

TMArrayAsVector member function 357
TMIArrayAsVector member function 363

lowercase
characters 282

checking for 152
conversions 270, 283
strings 260

lowvideo, conbuf member function 312
lowvideo (function) 165
_IrotI (function) 165
_lrotr (function) 165
lsearch (function) 166
lseek (function) 166

Library Reference

ltoa (function) 167

M
machine language instructions

inserted into object code 84
macros

argument lists, header file 9
assert 7,31
case conversion 282, 283
character classification 151, 153, 154

case 150, 152, 154
header file 8
integers 150, 152, 154
printable characters 152, 153

characters 8, 202
ASCII conversion 282

comparing two values 171, 177
debugging, assert (header file) 7
defining (header file) 9
directory manipulation (header file) 8
far pointer 178
file deletion 210
input ports 142, 143
output ports 185, 186
peek 188
peekb 188
poke 191
pokeb 192
streaming 349
toascii 282
variable argument list 289

main (function) 19-22
arguments passed to 19, 299, 300

example 20
wildcards 21

compiled with Pascal calling conventions 22
declared as C type 22
global variables and 299, 300
value returned by 22

_makepath (function) 168
malloc (function) 169
malloc.h (header file) 8
mantissa 113, 180
math, functions, list 15

, math error handler, user-modifiable 169
math.h (header file) 8

Index

math package, floating-point 108
_matherr (function) 169
_matherrl (function) 169
Max

TDate member function 485
TTime member function 516

max (function) 171
max_waste, string member function 497
MaxDate, TTime member function 517
mblen (function) 172
mbstowcs (function) 172
mbtowc (function) 173
mem.h (header file) 8
memccpy (function) 174
memchr (function) 174
memcmp (function) 175
memcpy (function) 175
memicmp (function) 176
memmove (function) 176
memory

access (DMA) 39, 41
addresses

returning byte from 188
returning word from 188
storing byte at 192
storing integer at 191

allocation
. dynamic 46, 111, 169,209,250
errors 477
freeing 92
functions (list) 16
memory models and 46, 92, 93
_new_handler and 305
reallocating, 93
set_new _handler and 305

checking 16
copying 174, 175, 176, 181

in small and medium memory models 180
direct access (DMA) 39,41
freeing

in far heap 92
in heap 111
in small and medium memory models 92

functions (list) 14
header file 7, 8
initialization 177
initializing 235

541

screen segment, copying to 131
size 40, 41, 250

determining 42
memory blocks

adjusting size in heap 93, 209
free 137

filling 139, 140
initializing 177, 235
searching 174

memory.h (header file) 8
memory management functions 8
memory models.

disk transfer address and 127
DLL7
DOS system calls and 36
functions 16
libraries 4
math files for 4
memory allocation and 46, 92, 93
moving data and 180

,memset (function) 177
microprocessors 240
midnight, number of seconds since 43
Min

TDate member function 485
TTime member function 516

min (function) 177
Minute, TTime member function 516
MinuteGMT, TTime member function 516
mixing with BCD numbers 466
mixing with complex numbers 466
MK_FP (function) 178
mkdir (function) 178
mktemp (function) 179
mktime (function) 179

, mnemonics, error codes 8 302 303
, modes, floating point, ro;ndin~ 55
modf (function) 180
modfl (function) 180
modulo 104
Month, TDate member function 486
MonthName, TDate member function 486
MonthTy, TDate type definition 483
MostDerived, TStreamableBase member function

347
movedata (function) , 180
movetext (function) 181

542

movmem (function) 181
_msize (function) 182
multibyte characters 172

converting to wchar_t code 173
multibyte string, converting to a wchar_t array 172
multithread

initialization 37
ResumeThread (function) 38
Windows NT 37

multithread libraries 23

N
name, Type_info member function 481
NameOfDay, TDate member function 486
NameOfMonth, TDate member function 486
natural logarithm 162
new I

TMDoubleListElement operator 401
TMListElement operator 417

new files 59, 60, 61, 69,214
new.h (header file) 8
new_handler (function type) 478
_new_handler (global variable) 305
newline character 203
Next

TMDequeAs Vector member function 385
TMDoubleListElement data member 401
TMListElement data member 416

NMI67
nocreate, ios data member 319
nodes, checking on heap 138
non-maskable interrupt 67
nonlocal go to 64, 164, 231
noreplace, ios data member 319
norm, (complex friend function) 468
normal intensity 182
normvideo, conbuf member function 312
normvideo (function) 182
not operator (!), overloading 345
number of drives available 126
numbers

ASCII, checking for 152
BCD (binary coded decimal) 463, 465
complex 468
functions (list) 15
pseudorandom 206
random 206, 207

Library Reference

generating 249
rounding 46, 103
turning strings into 33

numeric coprocessors

o

checking for presence of 40, 41
control word 55
exception handler 52, 251
global variables 299
problems with 1.09
status word 51,251

object code
machine language instructions and 84

OBSOLETE. LIB 17
oct, ios data member 319
oem_to_ansi, string member function 497
offset, of far pointer 108, 178
offsetof (function) 182
ofpstream class 340
of stream (class) 326
open (function) 183

header file 8
Open, TFile member function' 491
open member functions

filebuf 315
fpbase 336
fstream 316
fstreambase 317
ifpstream 337
ifstream 318
ofpstream 341
of stream 327

open_mode, ios data member 319
opendir (function) 185 -
openprot, filebuf data member 314
operating system

command processor 272
commands 272
date _and time, setting 251 '
environment

returning data from 127
variables.88,245

accessing 301
file attributes, shared 79,217
path, searching for file in 226, 227
search algorithm 87

Index

system calls 80, 217
verify flag 237
version number 306, 308

operator «
opstream friends 343
writing prefix/suffix (streamable) 343

operator! 0, pstream 345
operator », ipstream friends 340
operator void *0, pstream member function 345
opfx, ostream member function 327
opstream class 341

friends 343
osfx, ostream member function 327
_osmajor (global variable) 306
_osminor (global variable) 306
ostream (class) 327
ostream_withassign (class) 328
ostrstream (class) 328
_osversion (global variable) 306
out, ios data member 319
out_waiting, streambuf member function 330
. outp (function) 185 '
outport (function) 186
outportb (function) 186
output

characters, writing 201
displaying 109, 195,291
flag 301
flushing 97
formatting 58, 319
to streams, formatting 109, 195,291

outpw (function) 186
overflow member functions

conbuf 312
filebuf 315
strstreambuf 333

overloaded operators 345
overwriting files 60
OwnsElements, TShouldDelE~te member function

461

p
P _id_type 337, 341
-p option (Pascal calling conventions), main function

and 22
parameter values for locking' function 8
parent process 87, 245

543

parsfnm (function) 187
parsing file names 187
Pascal calling conventions, compiling main with

22
passwords 130
PATH environment variable 88, 245
paths

directory 226, 227
finding 124
names

converting 120
creating 105, 168
splitting 106,247

operating system 226, 227
pause (suspended execution) 242
pbase, streambuf member function 331
pbump, streambuf member function 331
_pclose (function) 187
pcount, ostrstream member function 329
peek (function) 188
peek, istream member function 324
peekb (function) 188
PeekHead

TMDoubleListlmp member function 403
TMIDoubleListlmp member function 408
TMInternalIListImp member function 422
TMListImp member function 418

PeekLeft
TMDequeAsDoubleList member function 391
TMDequeAs Vector member function 384
TMIDequeAsDoubleList member function 394
TMIDequeAs Vector member function 388

PeekRight
TMDequeAsDoubleList member function 391
TMDequeAs Vector member function 384
TMIDequeAsDoubleList member function 394
TMIDequeAs Vector member function 388

PeekTail
TMDoubleListImp member function 403
TMIDoubleListImp member function 409 '

perror (function) 189, 302
messages generated by 189

persistent streams, macros 349
PID (process ID) 130, See also processes
_pipe (function) 190
pointers

to error messages 256, 257

544

far 92, 93, 94
address segment 108, 178
creating 178
offset of 108, 178

file
initialization 211
moving 166
obtaining 98
resetting 80, 114,208,218
returning 118

current position of 274
setting 115, 184,243

format specifiers 197, 222
frame base 164,231
stack 164,231
stream buffers 345

pstream 345
to void, overloading 345

PointerTypes, pstream data member 344
poke (function) 191 '
pokeb (function) 192 '
polar (complex friend function) 468
poly (function) 192
polyl (function) 192
polynomial equation 192
Pop

TMIStackAs Vector member function 440
TMStackAs Vector member function 438

_popen (function) 192
ports

checking for presence of 39, 40
communications 39, 40, 151
I/O 143, 144, 186

macros 142, 143, 185
writing to 185, 186

position
current 339

stream 338
streamable objects 339, 342

Position, TFile member function 491
POSIX directory operations 8
powlO (function) 194
pow (complex friend function) 468
pow (complex numbers) 468
pow (function) 193
powlOl (function) 194

Library Reference

powers
calculating ten to 194
calculating values to 193

powl (function) 193
pptr, streambuf member function 331
precision

floating point 55
format specifiers 196, 199,200

precision, ios member function 321
PRECONDITION macro 472
PRECONDITIONX macro 473
prefixes, streamable object's name and 339, 343
prepend, string member function 497
Prev

TMDequeAs Vector member function 385
TMDoubleListElement data member 401

Previous, TDate member function 486
printable characters, checking for 152, 153
PrintDate, TTime member function 516
printers, checking for 39, 40, 151
printf (function) 195

conversion specifications 195
format specifiers 195
input-size modifiers 195
locale sU:pport 197

printing, error messages 189, 302
process control, functions (list) 17
process.h (header file) 8
process 10 130
processes

child 87, 244
exec ... (functions), suffixes 88
parent 87, 245
stopping 27

program segment prefix (PSP) 130
current program 307

programs
loading and running 87
process ID 130
signal types 206
stopping 27, 33, 64

exit status 47, 89, 90
request for 206
suspended execution 242

termination 478,479
TSR49

pseudorandom numbers 206

Index

PSP See program segment prefix
_psp (global variable) 307
pstream class 344
punctuation characters, checking for ·153
Push

TMIStackAs Vector member function 441
TMStackAs Vector member function 438

Put
TMIQueueAsDoubleList member function 432
TMIQueueAsVector member function 428
TMQueueAsDoubleList member function 430 ,
TMQueueAsVector member function 426

put, ostream member function 327
put_at

string member function 498
TSubString member function 505

putback, istream member function 324
putc (function) 201
putch (function) 201
putchar (function) 202
putenv (function) 202
PutLeft

TMDequeAsDoubleList member function 391
TMDequeAs Vector member function 385
TMIDequeAsDoubleList member function 394
TMIDequeAs Vector member function 389

PutRight
TMDequeAsDoubleList member function 391
TMDequeAs Vector member function 385
TMIDequeAsDoubleList member function 394
TMIDequeAs Vector member function 389

puts (function) 203
puttext (function) 203
putw (function) 204

Q
qsort (function) 204
quicksort algorithm 204
quotient 67, 157

R
raise (function) 205

header file 9
raise member function, xmsg 482
raise member functions

xalloc 481

545

RAM, size 40, 41, 42, 43
rand (furiction) 206
random (function) 207
random number generator 206, 207

initialization 207, 249
random numbers 206, 207
randomize (function) 207
range facility shortcut 223
rdbuf member functions

constream 313
£pbase 336
fstream 316
fstreambase 317
ifpstream 337
ifstream 318
ios 321
ofpstream 341
of stream 327
pstream 345
strstreambase 332

rdstate
ios member function 321
pstream member function 345

Read
TFile member function 491
TStreamer member function 348

read (function) 207
read, istreammember function 324
_dos_read (function) 79
read error 97
read_file, string member function 498
read_line, string member function 498
read_string, string member function 498 ,
read_to_delim, string member function 498
read,:,..token, string member function 498
read/write flags 184,243
readByte, ipstream member function 338
readBytes, ipstream member function 338
readData, ipstream member function 339
readdir (function) 208
readPrefix, ipstream member function 339
readString, ipstream member function 338
readSuffix, ipstream member function 339
readVersion, ipstreiilm member' function 339
readWord16, ipstream member function 338
readWord32, ipstream member function 338
read Word, ipstream member function 338

546

real friend functions
bcd 465
complex 468

realloc (function) 209
Reallocate

TMArrayAsVector member function 358
TMIArrayAsVector member function 363

records, sequential 157:
ref.h (header file) 8
RefDate, TTime data member 517
RegClassName 347
regexp.h (header file) 8
register variables, as task states 164
registerObject

ipstream member function 338
opstream member function 342

registers, segment, reading 228
registerVB, opstream member function 342
registration types 347 '
REGP ACK structure 148
remainder 67, 104, 157
remove (function) 210
remove, string member function 498
Remove, TFile member function 491
RemoveEntry

TMArray As Vector member function 358
TMIArrayAsVector member function 363

rename (function) 210
Rename, TFile member function 491
replace, string member function 499
request for program termination 206
requested member function, xalloc 482
reserve, string member function 499
Resize

TMIVectorImp member function 454
TMVectorImp member function 446

resize, string member function 499
resize_increment, string member function 499
Restart

TBinarySearchTreelteratorImp member function
380
TIBinarySearchTreelteratorImp member
function 382
TMArrayVectorlterator member function 359
TMDequeAsVectorlteiator member function
386

Library Reference

TMDictionary AsHashTableIterator member
function 397
TMDoubleListIteratorImp member function 404
TMHashTableIteratorImp member function 413
TMIArray As VectorIterator member function
364
TMIDictionary AsHashTableIterator member
function 399
TMIDoubleListIteratorImp member function
409
TMIHashTableIteratorImp member function
415
TMlListIteratorImp member function 423
TMIVectorIteratorImp member function 455
TMListIteratorImp member function 419
TMVectorIteratorImp member function 447

restoring screen 203
Resume, TThread member function 512
rewind (function) 211
rewinddir (function) 211
rfind, string member function 498
right, ios data member 319
Right, TMDequeAsVector data member 385
rmdir (function) 212
rmtmp (function) 212
rotation, bit

long integer 165
unsigned char 62
unsigned integer 213

_rotl (function) 213
_rotr (function) 213
rounding 46, 103

banker's 464
modes, floating point 55

_rtl_chmod (function) 213
_rtl_close (function) 214
_rtl_creat (function) 214
_rtl_write (function) 218
_rtl_heapwalk(function) 215
_rtl_open (function) 216
__ rtti type (Type_info class) 480
run-time library

functions by category 9
source code, licensing 3

Index

S_IWRITE 285
sbumpc, streambuf member function 330
scanf (function) 219

format specifiers 219
locale support 222
termination 225

conditions 226
scientific, ios data member 319
scratch files

naming 274, 281
opening 280

screens
clearing 54
copying text from 181
displaying strings 59
echoing to 122, 123
formatting output to 58
modes, restoring 203
saving 132
segment, copying to memory 131
writing characters to 201

scrolling 309
search.h (header file) 8
search key 166
_searchenv (function) 226
searches

appending and 166
binary 44
block, for characters 174
header file 9
linear 157, 166
operating system

algorithms 87
path, for file 226, 227

string
for character 252
for tokens 268

searchpath (function) 227
_searchstr (function) 227
Second, TTime member function 516
Seconds, TTime member function 516
security, passwords 130
seed number 249
Seek, TFile member function 491
seek_dir, ios data member 318
seekg

ipstream member function 339

547

istream member function 324
seekoff member functions

filebuf 315
streambuf 330
strstreambuf 333

seekp
opstream member function 342
ostream member function 327, 328

seekpos, streambuf member function 330
SeekToBegin, TFile member function 491
SeekToEnd, TFile member function 491
·segment prefix, program 130,307
segments

far pointer 108, 178
registers, reading 228
scanning for characters in strings 266
screen, copying to memory 131

segread (function) 228
sequential records 157
seCcase_sensitive, string member function 499
seCnew_handler (function) 305,477
set_paranoid_check, string member function 499
seCterminate (function) 478
seCunexpected (function) 479
setb, streambuf member function 331
setbuf (function) 228
setbuf member functions

filebuf 315
fpbase 336
fstreambase 317
streambuf 330
strstreambuf 333

setcbrk (function) 229
setcursortype, conbuf member function 312
setcursortype (function) 230
SetData

TMArray As Vector member function 358
TMIArray As Vector member function 364

setdate (function) 73
setdisk (function) 126
setdta (function) 230
setf, ios member function 321

constants used with 318
setftime (function) 129
setg, streambuf member function 332
seljmp (function) 231

header file 9

548

seljmp.h (header file) 9
setlocale (function) 232
setmem (function) 235
setmode (function) 235
setp, streambuf member function 332
SetPrintOption, TDate member function 486
SetPriority, TThread member function 512
setstate

ios member function 322
pstream member function 346

SetStatus, TFile member function 491
settime (function) 133
setting file read/write permission 285
setvbuf (function) 236
setvect (function) 134
setverify (function) 237
sgetc, streambuf member function 330
sgetn, streambuf member function 330
share.h (header file) 9
ShouldTerminate, TThread member function 513
showbase, ios data member 319
showpoint, ios data member 319
showpos, ios data member 319
signal (function) 237

header file 9
multithread programs 23

signal.h (header file) 9
signals

handlers 205, 206, 237
interrupt handlers and 239
returning from 240
user-specified 237

program 206
sin (complex friend function) 469
sin (function) 241
sine 241

complex numbers 469
hyperbolic 241
inverse 30

sinh (complex friend function) 469
sinh (complex numbers) 469
sinh (function) 241
sinhl (function) 241
sinl (function) 241
size

file 51,99
memory 40, 41, 42

Library Reference

skip _ whitespace, string member function 499
skipws, ios data member 319
sleep (function) 242
snextc, streambuf member function 330
software signals 205, 206
sopen (function) 242
sorts, quick 204
sounds, functions list 16
source code, run-time library, licensing 3
space on disk, finding 74, 126
spawn ... (functions), suffixes 245
spawnl (function) 244
spawnle (function) 244
spawnlp (function) 244
spawnlpe (function) 244
spawnv (function) 244
spawnve (function) 244
spawnvp (function) 244
spawn~pe (function) 244
_splitpath (function) 247
sprintf (function) 248

format specifiers 195,248
sputbackc, streambuf member function 330
sputc, streambuf member function 330
sputn, streambuf member function 330
sqrt (complex friend function) 469
sqrt (function) 249
sqrtl (function) 249
square root 249

complex numbers 469
SqueezeEntry

TMIArrayAsVector member function 364
srand (function) 249
sscanf (function) 250

format specifiers 219
stack 46, 169

pointer, as task st.ates 164,231
size 250

stackavail (function) 250
standard time 64, 67, 119, 135
start, TSubString member function 505
Start, TThread member function 512
stat (function) 116
stat structure 117
state

ios data member 320
pstream data member 345

Index

read current pstream 345
set current pstream 346

_status87 (function) 251
Status, TIhread data member 511
status word

floating-point 51,251
numeric coprocessors 51,251

stdargs.h (header file) 9
stdaux 94
stddef.h (header file) 9
stderr 94, 112

header file 9
stdin 94, 112

buffers and 229
header file 9
reading

characters from 98, 123
input from 219, 292
strings from 131

stdio, ios data member 319
stdio.h (header file) 9
stdiostr.h (header file) 9
stdlib.h (header file) 9
stdout 94, 112

buffers and 229
header file 9
writing

characters to11 0, 202
formatted output to 195,291
strings to 203

stdprn 94
header file 9

stime (function) 251
storage, invalid access 206
stossc, streambuf member function 330
stpcpy (function) 251
str member functions

ostrstream 329
strstream 334
strstreambuf 333

strcat (function) 252
strchr (function) 252
strcmp (function) 253
strcmpi (function) 253
strcoll (function) 254
strcpy (function) 255
strcspn (function) 255

549

_strdate (function) 255
strdup (function) 256
streamable classes

base class 344
BUILDER typedefand 347
creating 346, 347
reading 337

strings 338
registering 347
TStreamableBase 346
TStreamableClass 347
writing 341

streamable objects
basic operations 336
finding 337, 341
flushing 341
position within 339, 342
reading 336, 339

current position 338
writing 336, 340

StreamableName, TStreamer member function 348 .
streambuf (class) 329
streaming macros 349

DECLARE_ABSTRACT_STREAMABLE 350
DECLARE_ABSTRACT _STREAMER 351
DECLARE_CASTABLE 351
DECLARE_STREAMABLE 349
DECLARE_STREAMABLE_CTOR 351
DECLARE_STREAMABLE_FROM_BASE 350
DECLARE_STREAMABLE_ OPS 351
DECLARE_STREAMER 350
DECLARE_STREAMER_FROM_BASE 351
IMPLEMENT_ABSTRACT_STREAMABLE 353
IMPLEMENT_CASTABLE_ID 353

. IMPLEMENT_STREAMABLE 352
IMPLEMENT_STREAMABLE_ CLASS 352
IMPLEMENT _STREAMABLE_CTOR352
IMPLEMENT_STREAMABLE_POINTER 353
IMPLEMEN~_STREAMER 353

streams
buffer, pointer to 345
closing 94, 112
end of 344
error and end-of-file indicators 52,96,97
flushing 97, 103,341
formatting input from 113,290,293

stdin 219, 292

550

header file ,9
hierarchy 335
I/O 96, 108, 112, 116

pushing character onto 286
initializing 346
linking file handles to 95
macros 349
opening 107, 112, 115
pointers

file 114, 115
initialization 211

reading
characters from 98, 122
data from 111
errors 344
input from 113, 290, 293

stdin 219
integers from 135
strings from 99

reading and writing, errors 344
registering 347
replacing 112
state 344
stdaux 94
stderr 94, 112
stdprn 94
terminated input 226
tied 321
unbuffered 229, 236
writing 103, 120

characters to 110, 201, 202
errors 344
formatted output to 109, 195,290

stdout 291
integers to 204
strings to 110, 203

writing to 342, 343
_strerror (function) 256
strerror (function) 257
strftime (function) 257
stricmp (function) 259
string 492

!= operator 502
o operator 501
+= operator 501
<= operator 503
== operator 502 .

Library Reference

>= operator 503
»operator 503
[) operator 501
+ operator 501
< operator 503
= operator 501
> operator 503
ansi_to_oem member function 493
append member function 493
assign member function 494
assignment operator 501
c_str member function 494
compare member function 494
concatentation operator 501
copy member function 494
cow member function 501
find_first_not_of member function 495
find_first_of member function 495
find_Iast_not_of member function 496
find_last_of member function 496
find member function 495
get_case_sensitive_flag member function 496
get_initial_capacity member function 496
get_max_ waste member function 496
get_paranoid_checkmember function 497
get_resize_increment member function 497
get_skipwhitespace_flag member function 497
hash member function 497
initiaCcapacity member function 497
is_null member function 497
length member function 497
max_waste member function 497
oem_to_ansi member function 497
prepend member function 497
read_file member function 498
read_line member function 498
read_string member function 498
read_to_delim member function 498
read_token member function 498
replace member function 499
reserve member function 499
resize_increment member function 499
resize member function 499
rfind member function 498
set_case_sensitive member function 499
set_paranoid_check member function 499
skip_whitespace member function 499

Index

strip member function 500
substr member function 500
substring member function 500
to_lower member function 500
to_upper member function 500

string.h (header file) 9
strings

appending 252
parts of 261

array allocation 338
changing 271
comparing 175, 253, 254

ignoring case 176, 253, 259.
parts of 261

ignoring case 262, 263
concatenating 252, 261
copying 251, 255

new location 256
truncating or padding 262

displaying 59, 197
duplicating 256
format specifiers 197, 221
formatting 248, 257, 293
functions 14

with multiple prototypes 9
header file 9
initialization 263, 265
length, calculating 260
lowercase 260
reading 221, 338

formatting and 250
from console 48
from streams 99, 131

reversing 265
searching

for character 252
in set 264
last occurrence of 264
not in set 255

for segment in set 266
for substring 266
for tokens 268

space allocation 338
transforming 271
uppercase 270
writing

formatted output to 248, 293

551

to current environment 202
to screen 59
to stdout 203
to streams 110, 342

strip, string member function 500
Strip Type, string type definition 492
strlen (function) 260
strlwr (function) 260
strricat (function) 261
stmcmp (function) 261
stmcmpi (function) 262
stmcpy (function) 262
stmicmp (function) 263
strnset (function) 263
strpbrk (function) 264
strrchr (function) 264
strrev (function) 265
strset (function) 265
strspn (function) 266
strstr (function) 266
strstrea.h (header file) 9
strstream (class) 334 .
strstreambase (class) 332
strstreambuf (class) 332
_strtime (function) 266
strtod (function) 267
strtok (function) 268
strtol (function) 269
_strtold (function) 267
strtoul (function) 270
struct DOSERROR 71
struct heapinfo 141
structures

REGPACK 148
stat 117

strupr (function) 270
strxfrm (function) 271
substr, string member function 500
substring, string member function 500
substrings, scanning for 266
suffixes

exec ... 88
spawn ... 245
streamable object's name and 339, 343

support for variable-argument functions 9
Suspend, TThread member function 512
suspended execution, program 242

552

swab (function) 272
swapping bytes 272
sync member functions

filebuf 315
strstreambuf 333

sync_with_stdio, ios member function 321
sys \stat.h (header file) 9
sys\types.h (header file) 9
_sys_errlist (global variable) 302
_sys_nerr (global variable) 302
system

buffers 94
commands, issuing 272
equipment interrupt 39, 40
error messages 189, 302

system (function) 272

T
T constructor

TBinarySearchTreeIteratprImp 380,382
TMDictionaryAsHashTableIterator 396, 399,
400
TMIHashTableImp 414

tables, searching 44, 166
Tail

TMDoubleList data member 403
TMListImp data member 419

tan (complex friend function) 469
tan (function) 273
tangent 273, 469

complex numbers 469
hyperbolic 273
inverse 31, 32

tanh (complex friend function) 469
tanh (function) 273
tanhl (function) 273
tanl (function) 273
TArrayAsVector 360

constructor 360
TArrayAsVectorIterator 360

constructor 360
task states

defined 164, 231
register variables 164

TBagAsVector 376
constructor 376

TBagAsVectorIterator 376

Library Reference

constructor 376
TBinarySearchTreelmp 379
TBinarySearchTreeIteratorImp 380
TCriticalSection 507

constructor 507
destructor 507

TCVectorlmp 451
constructor 451

TCVectorIteratorImp 451
TDate 483

constructor 484
TDDAssociation 369

constructor 369
TDeque constructor 387
TDequeAsDoubleList 392
TDequeAsDoubleListIterator 392

constructor 392
TDequeAs Vector 386

constructor 386
TDequeAsVectorIterator 387
TDIAssociation 370

constructor 370
TDictionary 400
TDictionary AsHashTable 397

constructor 397
TDictionary AsHashTableIterator 397

constructor 398
TDictionaryIterator 400

constructor 401
TDoubleListIteratorImp 405

constructor 405
tell (function) 274
tellg

ipstream member function 339
istream member function 325

tellp
opstream member function 342
ostream member function 328

template (file names) 179
tempnam (function) 274
temporary files

naming 274,281
opening 280
removing 212

terminals, checking for, 151
terminate (function) 479
Terminate, TThread member function 513

Index

TerminateAndWait, TThread member function
513

terminating
input from streams 226
software signals 206

termina tion function 33
testing conditions 31
text

attributes 275, 277, 278
background color, setting 275, 277
colors 278
copying

from one screen rectangle to another 181
to memory 131
to screen 203

intensity
high 141
low 165
normal 182

modes (screens) 203, 279, 297
character color 275, 278
coordinates 132
copying to memory 131
video information 132

text files
creat and 59
creattemp and 61
_dos_read and 80
fdopen and 96
fopen and 107
freopen and 112
_fsopen and 116
_rtl_read and 217

. reading 208
setting 235

mode 96, 107, 112, 116,305
textattr (conbuf member functions) 312
textattr (function) 275 I

textbackground (conbuf member function) 312
textbackground (function) 277
textcolor (conbuf member function) 312
textcolor (function) 278
textmode (function) 279
textmode member functions

conbuf 312
constream 313

TFile 488

553

constructor 490
TFileStatus 488
THashTableImp 413

constructor 413
THashTableIteratorImp 414

constructor 414
thread ID 307
_threadid (global variabie) 23, 307
__ throwExceptionName (global variable) 307
__ throwFileName (global variable) 307
__ throwLineNumber (global variable) 307 .
TIArray As Vector 365

constructor 365
TIArrayAsVectorIterator 365

constructor 365
TIBagAs Vector 378

constructor 378
TIBagAsVectorIterator 379

constructor 379
TIBinarySearchTreeImp 381
TIBinarySearch TreerteratorImp 382
TICVectorImp 458

constructor 458
TIDAssociation 372

constructor 372
TIDequeAsDoubleList 395
TIDequeAsDoubleListIterator 395

constructor 395
TIDequeAs Vector 389

constructor 389
TIDequeAs VectorIterator 390

constructor 390
TIDictionary AsHashTable 400
TIDictionaryAsHashTableIterator 400

constructor 400
TIDoubleListImp 410
TIDoubleListIteratorImp 410

constructor 410
tie, ios member function 321
tied streams 321
TIHashTableImp 416
TIHashTableIteratorImp 416

constructor 416
TIIAssociation 373

constructor 373
TIListIteratorImp·423

constructor 423

554

time
BIOS timer 43

- delays in program execution 242
difference between two 66
elapsed 52, 66

returning 280
file 76, 129
formatting 257
functions (list) 18
global variables 283, 300, 308
system 30, 63, 119, 135

converting from DOS to UNIX 81
converting from UNIX to DOS 287
local 160
returning 77, 133
setting 77, 133,251

time (function) 280
time.h (header file) 9
time zones 119, 135

arrays 308
differences between 67
global variables 300, 308
setting 64,284

timer, reading and setting 43
_timezone (global variable) 308

setting value of 283
TIQueueAsDoubleList 433
TIQueueAsDoubleListIterator 433

constructor 433
TIQueueAs Vector 429

constructor 429
TIQueueAsVectorIterator 429

constructor 429
TISArray As Vector 367

constructor 367
TISArrayAsVectorIterator 367

constructor 367
TISDoubleListImp 411
TISDoubleListIteratorImp 411

constructor 411
TISetAs Vector 436
TISetAs VectorIterator 436

constructor 436
TIStackAsList 443
TIStackAsListIterator 443

constructor 444
TIStackAs Vector 441

Library Reference

constructor 441
TIStackAsVectorIterator 442
TISVectorImp 460

constructor 460
TIVectorImp 456

constructor 456
TMArrayAsVector 355

constructor 355
TMArray As Vector Iterator 359

constructor 359
TMBagAsVector 374

constructor 374
TMBagAsVectorIterator 375

constructor 375
TMCVectorImp 449
TMCVectorIteratorImp 450
TMDDAssociation 368

constructor 368
TMDequeAsDoubleList 390
TMDequeAsDoubleListIterator 392

constructor 392 .
TMDequeAs Vector 383

constructor 383 1
,

TMDequeAsVectorIterator 385
constructor 386

TMDIAssociation 369
constructor 370

TMDictionary AsHashTable 395
TMDictionary AsHashTableIterator 396
~MDictionay AsHashTable

. constructor 395
TMDoubleListElement 401

constructor 401
TMDoubleListImp 402, 405
TMDoubleListIteratorImp 404

constructor 404
TMHashTableImp 411

constructor 411
destructor 412

TMHashTableIteratorImp 412
constructor 412, 413

TMIArrayAsVector 360
constructor 361

TMIArray As VectorIterator 364
constructor 364

TMIBagAs Vector 376
constructor 377

Index

,TMIBagAsVectorIterator 378
constructor 378

TMIDAssociation 371
constructor 371

TMIDequeAsDoubleList 392
TMIDequeAsDoubleListIterator 394

constructor 394
TMIDequeAsVector 387

constructor 387
TMIDequeAsVectorIterator 389

constructor 389
TMIDictionary AsHashTable 398

constructor 398
TMIDictionary AsHashTableIterator 399
TMIDoubleListImp 407 .
TMIDoubleListIteratorImp 409

constructor 409
TMIHashTableImp 414

constructor 416
TMIHashTableIteratorImp 415

constructor 415 '
TMIIAssociation 372

constructor 372
TMIQueueAsDoubleList 431
TMIQueueAsDoubleListIterator 432

constructor 433
TMIQueueAs Vector 427

constructor 427
TMIQueueAs VectorIterator 428

constructor 429
TMISArray As Vector 368

constructor 368
TMISDoubleListImp 410
TMISDoubleListIteratorImp 411

constructor 411
TMISetAs Vector 435

constructor 435
TMISetAsVectorIterator 435

constructor 436
TMIStackAsList 443
TMIStackAsListIterator 443

constructor 443
TMIStackAs Vector 439
TMIStackAs VectorIterator 441

constructor 441, 442
tmpfile (function) 280
tmpnam (function) 281

555

TMQueueAsDoubleList 429
TMQueueAsDoubleListIterator 431

constructor 431
TMQueueAs Vector 425

constructor 425
TMQueueAsV~ctorIterator 426

constructor 426
TMSArrayAsVector 366

constructor 366
TMSArray As VectorIterator

constructor 366
TMSDoubleListImp 406
TMSDoubleListIteratorImp 406
, constructor 406

TMSetAs Vector 433
constructor 434

TMSetAsVectorIterator 434
,constructor 434

TMStackAsList 442
TMStackAsListIterator 442
TMStackAs Vector

constructor 437
TMStackAs VectorIterator 438

constructor 438
TMSVectorIteratorImp 452
TMutex508

constructor 508
destructor 508
HANDLE operator 508

TMutex::Lock 508
constructor 509

to_lower
global string function 504
string member function 500
TSubString member function 505

to_upper
global s'tring function 504
string member function 500
TSubString member function 505 .

toascii (function) 282
tokens, searching for in string 268
_tolower (function) 282
tolower (function) 282
Top

TMCVectorImp member function .450
TMIStackAs Vector member function 441
TMIVectorImp member function 455

556

TMStackAs Vector member function 438
TMVectorImp member function 446

_toupper (function) 283
toupper (function) 283
TQueue 433
TQueueAsDoubleList 431

, TQueueAsDoubleListIterator 431
constructor 431

TQueueAs Vector 427
constructor 427

TQueueAs VectorIterator 427
constructor 427

TQueueIterator 433
__ TRACE debugging symbol 471
TRACE macro 472 .
TRACEX macro 473
translation mode 59,61,305
triangles, hypotenuse 141
trigonometric functions

arc cosine 28
arc sine 30
arc tangent 31, 32
cosine 55

hyperbolic 56
inverse 28

hyperbolic tangent 273
sine 241

hyperbolic 241
inverse 30

tangent 273
hyperbolic 273
inverse 31, 32

trunc, ios data member 319
TSArray J\s Vector 366

constructor 366
TSArrayAsVectorIterator 366, 367

constructor 367
TSDoubleListImp 406
TSDoubleListIteratorImp 407

constructor 407
TSet 436

constructor 434, 436
TSetAs Vector 434
TSetAsVectorIterator 435

constructor 435
TSetIterator 436,
TShouldDelete 460

Library Reference

constructor 461
TSListIteratorImp 421
TSR programs 49
TStack 444
TStackAsList 442
TStackAsListIterator 443
TStackAs Vector 439

constructor 439
TStackAs VectorIterator 439

constructor 439
TStackIterator 444
TStreamableBase 346

CastableID member function 346
destructor 346
FindBase member function 347
MostDerived member function 347

TStreamableClass 347
__ DELTA macro 348
friends of 348

TStreamer 348
constructor 348
GetObject member function 348
Read member function 348
StreamableName member function 348
Write member function 349

TString
constructor 492
destructor 493

TSubString 505
o operator 506
assert_element member function 505
get_at member function 505
is_null member function 505
length member function 505
put_at member function 505
start member function 505
to _lower member function 505
to_upper member function 505

TSVectorImp 452
constructor 452

TSVectorIteratorImp 453
TSync 509

= operator 510
constructor 510

TThread 510
= operator 513
constructor 512

Index

destructor 512
GetPriority member function 512
GetStatus member function 512
Resume member function 512
SetPriority member function 512
ShouldTerminate member function 513
Start member function 512
Status data member 511
Suspend member function 512
Terminate member function 513
TerminateAndWait member function 513
WaitForExit member function 513

TThreadError 513
ErrorType data member. 514
GetErrorType member function 514

TTime 515
!= operator 517
++ operator 517
+= operator 518
- operator 517
-= operator 518
«operator 518
<= operator 517
== operator 517
>= operator 517
» operator 518
+ operator 518
- operator 518
< operator 517
> operator 517
AssertDate member function 517
AsString member function 515
BeginDST member function 515
Between member function 515
CompareTo member function 515
constructor 515
EndDST member function 516
Hash member function 516
Hour member function 516
HourGMT member function 516
IsDST member function 516
Is Valid member function 516
Max member function 516
MaxDate data member 517
Min member function 516
Minute member function 516
MinuteGMT member function 516

557

PrintDate member function 516
RefDate data member 517
Second member function 516
Seconds member function 516

TV ectorImp 448
constructor 448

TVectorIteratorImp 448
constructor 448

type checking, device 151
Type_id, TStreamable base typedef346
Type_info class 480
typeid operator (Type_info class) 480
typeinfo.h (header file) 9
_tzname (global variable) 308

setting value of 283
tzset (function) 283

u
U.S. date formats 57
ultoa (function) 285
umask (function) 285
unbuffered, streambuf member function 332
unbuffered streams 229, 236
undefined external 16
underflow member functions

filebuf 315
strstreambuf 334

unexpected (function) 481
ungetc (function) 286
ungetch (function) 286
unitbuf, ios·data member 319
UNIX

constants, header file 9
date and time

converting DOS to 81
converting to DOS format 287

unixtodos (function) 287
unlink (function) 287
unlock (function) 288
UnlockRange, TFile member function 491
unsetf, ios member function 321
UpperBound

TMArray As Vector member function 358
TMIArray As Vector member function 363

uppercase
characters 154, 283
checking for 154

558

conversions 260, 282
strings 270

uppercase, ios data member 319
__ USELOCALES __

international support
API, enabling 14
macro 233

-user-defined comparison function 205
user-defined formatting flags 322
user hook 170
user-modifiable math error handlers 169
user-specified signal handlers 237
utime (function) 288
utime.h (header file) 9

v
va_arg (function) 289
va_arg (variable argument macro) 289
va_end (function) 289
va_list (variable argument macro)-289
va_start (function) 289
va_start (variable argument macro) 289
valid_element, string member function 501
valid_index, string member function 501
Value

TMDDAssociation member function 368
TMDIAssociation member function 370
TMIDAssociation member function 371
TMIIAssociation member function 373

ValueData, TMIDAssociation data member 371
values

calculating powers to 193, 194
comparing 171, 177
literal 84

values.h (header file) 9
varargs.h (header file) 9
variables

argument list 289
conversion specifications and 195
environment 88, 245, 301

COMSPEC272
register 164

verify flag (DOS) 134
verify the heap 140
version numbers

DOS 306
operating system 308

Library Reference

_version (global variable) 308
vfprintf (function) 290

format specifiers 195
variable argument list 289

vfscanf (function) 290
format specifiers 219
variable argument list 289

video
checking for 151
information, text mode 132
mode, checking 40, 41
output flag 301

void *0, pstream operator 345
vprintf (function) 291

format specifiers 195
variable argument list 289

vscanf (function) 292
format specifiers 219
variable argument list 289

vsprintf (function) 293
format specifiers 195
variable argument list 289

vsscanf (function) 293
format specifiers 219
variable argument list 289

W
wait (function) 294
WaitForExit TThread member function 513
__ WARN debugging symbol 471
WARN macro 47-2
WARNX macro 473
wcstombs (function) 295
wctomb (function) 295
WeekDay, TDate member function 486
wherex, conbufmember function 312
wherex (function) 296
wherey, conbuf member function 312
wherey (function) 296
whitespace, checking for 154
why member function, xmsg 482
width, ios member function 322
WILDARGS.OBJ 21 .
wildcards, expansion 21

by default 22
from the IDE 22

window (function) 297

Index

window member functions
conbuf 312
constream 313

windows
functions (list) 10
scrolling 309
text

cursor position 136, 296
defining 297
deleting lines in 54, 66
inserting blank lines in 144

words
floating-point control 55
reading from hardware ports 143, 144
returning from memory 188
writing to hardware ports 185, 186
writing to streams 342

Write
TFile member function 491
TStreamer member function 349.

write (function) 298
write, ostream member function 328
write error 97
writeByte, opstream member function 342
write Bytes, opstream member function 342
write Data, opstream member function 343
writeObjectPointer, opstream member function

342
writeObjectPtr, opstream member function 342
writePrefix, opstream member function 343
write String, opstream member function 342
write Suffix, opstream member function 343
writeWord16, opstream member function 342
writeWord32, opstream member function 342
write Word, opstream member function 342

x
x_fill, ios data member 319 tI

x_flags, ios data member 319
x_precision, ios data member 319
x_tie, ios data member 320
x_width,ios data member 320
xalloc (class) 481
xalloc, ios member function 322
xmsg (class) 482

559

v
Year, TDate member function 486
YearTy, TDate type definition 483

560

z
Zero

TMIVectorImp member function 455
TMVectorImp member function 446

ZeroBase
TMArray As Vector member function 358
TMIArra y As Vector member function ,364

Library Reference

Borland
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431- 1000. Offices in: Australia, Belgium, Canada,
Denmark, France, Gennany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, New Zealand, Singapore, Spain,
Sweden, Taiwan, and United Kingdom' Part # BCP1240WW21772 • BOR 6272

