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To get an overview of the  This manual contains materials for the advanced programmer. If
Borland fc’? gog#)rr;ﬁnfgf/oQ you already know how to program well (whether in C, C++, or
Guide.sgécj; fh\e” I,-nf,oﬁuci,-eor,i another language), this manual is for you. It provides a language
and Chapter 1in that book — reference, and programming information on C++ streams, object
for information on how fo  container classes, converting from Microsoft C, Windows
most effectively use the 4 i cations, memory models, floating point, overlays, video

Borland C+ ls. . . . .
orian * mandas functions, BASM, inline assembly, and ANSI implementation.

&> Code examples have a main function. EasyWin makes all these
examples work in Windows so you don’t need WinMain and its
complicated parameters.

Typefaces and icons used in these books are described in the
User’s Guide.

What's in this book

Chapters 1 through 4: Lexical elements, Language structure, C++
specifics, and The preprocessor, describe the Borland C++
language. Any extensions to the ANSI C standard are noted in
these chapters. These chapters provide a formal language
definition, reference, and syntax for both the C and C++ aspects of
Borland C++. Some overall information for Chapters 1 through 4
is included in the next section of this introduction.

Chapter 5: Using C++ streams tells you how to use the C-++
version 2.1 stream library.

Chapter 6: The container class library tells you how to use the
Borland C++ object container classes (including templates) in
your programs.
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Chapter 7: Converting from Microsoft C provides some
guidelines on converting your Microsoft C programs to Borland
C++.

Chapter 8: Building a Windows application gets you started in
Windows programming.

Chapter 9: DOS memory management covers memory models,
overlays, and mixed-model programming.

Chapter 10: Math covers floating point and BCD math.

Chapter 11: Video functions is devoted to handling text and
graphics in Borland C++.

Chapter 12: BASM and inline assembly tells how to write
assembly language programs so they work well when called from
Borland C++ programs. It includes information on the built-in
assembler in the IDE.

Appendix A: ANSI implementation-specific standards describes
those aspects of the ANSI C standard that have been left loosely
defined or undefined by ANSI. This appendix tells how Borland
C++ operates in respect to each of these aspects.

An infroduction o the formal definitions

Chapters 1 through 4 constitute a formal description of the C and
C++ languages as implemented in Borland C++. Together, these
chapters describe the Borland C++ language; they provide a
formal language definition, reference, and syntax for both the
C++ and C aspects of Borland C++. These chapters do not provide
a language tutorial. We've used a modified Backus-Naur form
notation to indicate syntax, supplemented where necessary by
brief explanations and program examples. They are organized in
this manner:

m Chapter 1, “Lexical elements,” shows how the lexical tokens for
Borland C++ are categorized. Lexical elements is concerned
with the different categories of word-like units, known as
tokens, recognized by a language.

m Chapter 2, “Language structure,” explains how to use the
elements of Borland C++. Language structure details the legal
ways in which tokens can be grouped together to form
expressions, statements, and other significant units.
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Syntax and
terminology

Infroduction

m Chapter 3, “C++ specifics,” covers those aspects specific to C++.

@ Chapter 4, “The preprocessor,” covers the preprocessor,
including macros, includes, and pragmas, as well as many other
easy yet useful items.

Borland C++ is a full implementation of AT&T’s C++ version 2.1,
the object-oriented superset of C developed by Bjarne Stroustrup
of AT&T Bell Laboratories. This manual refers to AT&T’s previous
version as C++ 2.0. In addition to offering many new features and
capabilities, C++ often veers from C by small or large amounts.
We've made note of these differences throughout these chapters.
All the Borland C++ language features derived from C++ are
discussed in greater detail in Chapter 3.

Borland C++ also fully implements the ANSI C standard, with
several extensions as indicated in the text. You can set options in
the compiler to warn you if any such extensions are encountered.
You can also set the compiler to treat the Borland C++ extension
keywords as normal identifiers (see Chapter 5, “The command-
line compiler,” in the User’s Guide).

There are also “conforming” extensions provided via the #pragma
directives offered by ANSI C for handling nonstandard, imple-
mentation-dependent features.

Syntactic definitions consist of the name of the nonterminal token
or symbol being defined, followed by a colon (:). Alternatives
usually follow on separate lines, but a single line of alternatives
can be used if prefixed by the phrase “one of.” For example,

external-definition:
function-definition
declaration

octal-digit: one of
01234567

Optional elements in a construct are printed within angle
brackets:
integer-suffix:
unsigned-suffix <long-suffix>

Throughout these chapters, the word “argument” is used to mean
the actual value passed in a call to a function. “Parameter” is used




to mean the variable defined in the function header to hold the
value. :
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Chapter 1, Lexical elements

Lexical elements

This chapter provides a formal definition of the Borland C++
lexical elements. It is concerned with the different categories of
word-like units, known as tokens, recognized by a language. By
contrast, language structure (covered in Chapter 2) details the
legal ways in which tokens can be grouped together to form
expressions, statements, and other significant units.

The tokens in Borland C++ are derived from a series of operations
performed on your programs by the compiler and its built-in pre-
processor.

A Borland C++ program starts life as a sequence of ASCII
characters representing the source code, created by keystrokes
using a suitable text editor (such as the Borland C++ editor). The
basic program unit in Borland C++ is the file. This usually
corresponds to a named DOS file located in RAM or on disk and
having the extension .C or .CPP.

The preprocessor first scans the program text for special prepro-
cessor directives (see page 157). For example, the directive #include
<inc_file> adds (or includes) the contents of the file inc_file to the
program before the compilation phase. The preprocessor also
expands any macros found in the program and include files.



Whitespace

Line splicing
with \

In the tokenizing phase of compilation, the source code file is
parsed (that is, broken down) into tokens and whitespace. White-
space is the collective name given to spaces (blanks), horizontal
and vertical tabs, newline characters, and comments. Whitespace
can serve to indicate where tokens start and end, but beyond this
function, any surplus whitespace is discarded. For example, the
two sequences

int 1; float f;
and

int 1 ;
float f;

are lexically equivalent and parse identically to give the six
tokens:

int

.The ASCII characters representing whitespace can occur within

literal strings, in which case they are protected from the normal
parsing process; in other words, they remain as part of the string:

char name(] = "Borland International";

parses to seven tokens, including the single literal-string token
“Borland International”.

A special case occurs if the final newline character encountered is
preceded by a backslash (\). The backslash and new line are both
discarded, allowing two physical lines of text to be treated as one

unit.

"Borland \
International"
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Comments

C comments

See page 163 for a
description of token pasting.

Nested comments

Chapter 1, Lexical elements

is parsed as “Borland International” (see page 18, “String literals,”
for more information).

Comments are pieces of text used to annotate a program. Com-
ments are for the programmer’s use only; they are stripped from
the source text before parsing.

There are two ways to delineate comments: the C method and the
C++ method. Both are supported by Borland C++, with an addi-
tional, optional extension permitting nested comments. You can
mix and match either kind of comment in both C and C++
programs.

A C comment is any sequence of characters placed after the
symbol pair /*. The comment terminates at the first occurrence of
the pair */ following the initial /*. The entire sequence, including
the four comment delimiter symbols, is replaced by one space
after macro expansion. Note that some C implementations remove
comments without space replacements.

Borland C++ does not support the nonportable token pasting
strategy using /**/. Token pasting in Borland C++ is performed
with the ANSI-specified pair ##, as follows:

#define VAR(i,3j) (i/**/3) /* won't work */
#define VAR(1,J) (i##7) /* OK in Borland C++ */
#define VAR(1,3) (1 ##% J) /* Also OK */

In Borland C++,

int /* declaration */ i /* counter */;
parses as

int 1

to give the three tokens: inti;

ANSI C doesn’t allow nested comments. Attempting to comment
out the preceding line with

/* int /* declaration */ 1 /* counter */; */
fails, since the scope of the first /* ends at the first */. This gives
i

which would generate a syntax error.




By default, Borland C++ won’t allow nested comments, but you
can override this with compiler options. You can enable nested
comments via the Source Options dialog box (O | C | Source) in the
IDE or with the —~C option (for the command-line compiler).

C++ comments C++ allows a single-line comment using two adjacent slashes
You can diso use // to credte (//). The 1c'om‘ment can start in any position, and extends until the
commentsin C code. Thisis Xt new lne:

specific to Borland C++. o
class X { // this is a comment

< b

Comment delimiters  In rare cases, some whitespace before /* and //, and after */,
and whitespace  although not syntactically mandatory, can avoid portability
problems. For example, this C++ code

int 1 = j//* divide by k*/k;
+;

parses as int i = j +m; notas

int 1 = j/k;
+m;

as expected under the C convention. The more legible

int 1 = j/ /* divide by k*/ k;
+m;

avoids this problem.

Tokens

Borland C++ recognizes six classes of tokens. The formal
definition of a token is as follows:

token:
keyword
identifier
constant
string-literal
operator
punctuator

Punctuators are also known as separators.

8 Borland C++ Programmer's Guide



Keywords

Table 1.1
All Borland C++ keywords

Table 1.2
Borland C++ extensions to C

Table 1.3
Keywords specific to C++

Chapter 1, Lexical elements

As the source code is parsed, tokens are extracted in such a way
that the longest possible token from the character sequence is
selected. For example, external would be parsed as a single
identifier, rather than as the keyword extern followed by the
identifier al.

Keywords are words reserved for special purposes and must not be
used as normal identifier names. The following two tables list the
Borland C++ keywords. You can use options in the IDE (or
command-line compiler options) to select ANSI keywords only,
UNIX keywords, and so on; see Chapter 2, “IDE Basics” and
Chapter 5, “The command-line compiler,” in the User’s Guide, for
information on these options.

_asm _ds int _seg
asm else _interrupt short
auto enum interrupt signed
break _es _loadds sizeof
case _export long _ss
_cdecl extern _near static
cdecl _far near struct
char far new switch
class _fastcall operator template
const float _pascal this
continue for pascal typedef
_cs : friend private union
default goto protected unsigned
delete : _huge public virtual
do huge register void
double if return volatile

inline _saveregs while
_cdecl _es huge _pascal
cdecl _export interrupt pascal
_cs _far _loadds _saveregs
_ds far _near _seg

_fastcall near _ss
asm operator
class private
delete protected
friend public
inline template
new this

virtual
9




Table 1.4
Borland C++ register
pseudovariables

|dentifiers

Naming and length
restrictions

Identifiers in C++ programs
are significant to any length.

Identifiers and case
sensitivity

10

_AH _BP _cXx DX
AL BX DH _ES
AX CH DI FLAGS
BH _CL _DL _Sl
BL CS _Ds _SP
_Ss

The formal definition of an identifier is as follows:

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
abcdefghijklmnopqrstuvwxyz_
ABCDEFGHIJKLMNOPQRSTUVWXYZ

digit: one of

0123456789

Identifiers are arbitrary names of any length given to classes, ob-
jects, functions, variables, user-defined data types, and so on.
Identifiers can contain the letters A to Z and a to z, the underscore
character (), and the digits 0 to 9. There are only two restrictions:

1. The first character must be a letter or an underscore.

2. By default, Borland C++ recognizes only the first 32 characters
as significant. The number of significant characters can be
reduced by menu and command-line options, but not in-
creased. Use the —in command-line option (where 1 <= n-
<= 32) or Identifier Length in the Source Options dialog box
(OICISource).

Borland C++ identifiers are case sensitive, so that Sum, sum, and
suM are distinct identifiers.

Global identifiers imported from other modules follow the same
naming and significance rules as normal identifiers. However,
Borland C++ offers the option of suspending case sensitivity to
allow compatibility when linking with case-insensitive languages.
By checking Case-sensitive Link in the Linker dialog box

Borland C++ Programmer’s Guide



Uniqueness and scope

Constants

Intfeger constants

(Options | Linker | Settings), or using the /¢ command-line switch
with TLINK, you can ensure that global identifiers are case
insensitive. Under this regime, the globals Sum and sum are
considered identical, resulting in a possible “Duplicate symbol”
warning during linking.

An exception to these rules is that identifiers of type pascal are
always converted to all uppercase for linking purposes.

Although identifier names are arpitrary (within the rules stated),
errors result if the same name is used for more than one identifier
within the same scope and sharing the same name space. Duplicate
names are always legal for different name spaces regardless of
scope. The rules are covered in the discussion on scope starting on
page 27.

Constants are tokens representing fixed numeric or character
values. Borland C++ supports four classes of constants: floating
point, integer, enumeration, and character.

The data type of a constant is deduced by the compiler using such
clues as numeric value and the format used in the source code.
The formal definition of a constant is shown in Table 1.5.

Integer constants can be decimal (base 10), octal (base 8) or hexa-
decimal (base 16). In the absence of any overriding suffixes, the

" data type of an integer constant is derived from its value, as

Chapter 1, Lexical elements

shown in Table 1.6. Note that the rules vary between decimal and
nondecimal constants.

Decimail constants

Decimal constants from 0 to 4,294,967,295 are allowed. Constants
exceeding this limit will be truncated. Decimal constants must not
use an initial zero. An integer constant that has an initial zero is
interpreted as an octal constant. Thus,

int 1 = 10; /*decimal 10 */

int i = 010; /*decimal 8 */
int 1 = 0; /*decimal 0 = octal 0 */

11



Table 1.5: Constants—formal definitions

constant:
floating-constant
integer-constant
enumeration-constant
character-constant

floating-constant:

fractional-constant <exponent-part> <floating-
suffix>

digit-sequence exponent-part <floating-suffix>

fractional-constant:
<digit-sequence> . digit-sequence
digit-sequence .

exponent-part.
e <sign> digit-sequence
E <sign> digit-sequence

sign: one of
+ —

digit-sequence:
digit
digit-sequence digit
floating-suffix: one of
f1FL

integer-constant:
decimal-constant <integer-suffix>
octal-constant <integer-suffix>
hexadecimal-constant <integer-suffix>

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
0 x hexadecimal-digit

0 X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix <long-suffix>
long-suffix <unsigned-suffix>
unsigned-suffix: one of
ulU

long-suffix: one of
1L

enumeration-constant:
identifier

character-constant:
c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:

Any character in the source character set except

the single-quote ('), backslash (\), or newline
character escape-sequence.

escape-sequence: one of

A" Y \? A\
\a \b \f \n
\o \oo \ooo \r
\t \v \Xh... \xh...

Octal constants

All constants with an initial zero are taken to be octal. If an octal
constant contains the illegal digits 8 or 9, an error is reported.
Octal constants exceeding 037777777777 will be truncated.

12
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Table 1.6
Borland C++ integer
constants without L or U
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Hexadecimal constants

All constants starting with Ox (or 0X) are taken to be hexadecimal.
Hexadecimal constants exceeding OXFFFFFFFF will be truncated.

Long and unsigned suffixes

The suffix L (or I) attached to any constant forces it to be repre-
sented as a long. Similarly, the suffix U (or u) forces the constant
to be unsigned. It is unsigned long if the value of the number
itself is greater than decimal 65,535, regardless of which base is
used. You can use both L and U suffixes on the same constant in
any order or case: ul, lu, UL, and so on.

Decimal constants

0to 32,767
32,768 to 2,147,483,647
2,147 483,648 to 4,294,967,295

int
long
unsigned long

> 4294967295 truncated
Octal constants
00 to 077777 int
0100000 to 0177777 unsigned int
02000000 to 017777777777 long

020000000000 to 037777777777

unsigned long

> 037777777777 truncated
Hexadecimal constants
0x0000 to Ox7FFF int
0x8000 to OxFFFF unsigned int
0x10000 to Ox7FFFFFFF long
0x80000000 to OxFFFFFFFF unsigned long
> OxFFFFFFFF truncated

The data type of a constant in the absence of any suffix (U, u, L, or
1) is the first of the following types that can accommodate its
value:

decimal int, long int, unsigned long int
octal int, unsigned int, long int, unsigned long int
hexadecimal int, unsigned int, long int, unsigned long int

If the constant has a U or u suffix, its data type will be the first of
unsigned int, unsigned long int that can accommodate its value.



If the constant has an L or | suffix, its data type will be the first of
long int, unsigned long int that can accommodate its value.

If the constant has both u and [ suffixes (ul, lu, Ul, IU, uL, Lu, LU,
or UL), its data type will be unsigned long int.

Table 1.6 summarizes the representations of integer constants in
all three bases. The data types indicated assume no overriding L
or U suffix has been used.

Character constants A character constant is one or more characters enclosed in single
quotes, such as ‘A’, '=', '\n'. In C, single character constants
have data type int; they are represented internally with 16 bits,
with the upper byte zero or sign-extended. In C++, a character
constant has type char. Multicharacter constants in both C and
C++ have data type int.

Escape sequences

The backslash character (\) is used to introduce an escape sequence, -
allowing the visual representation of certain nongraphic charac-
ters. For example, the constant \n is used for the single newline
character.

A backslash is used with octal or hexadecimal numbers to repre-
sent the ASCII symbol or control code corresponding to that val-
ue; for example, '\03’ for Ctrl-C or '\x3F" for the question mark.
You can use any string of up to three octal or any number of
hexadecimal numbers in an escape sequence, provided that the
value is within legal range for data type char (0 to Oxff for Borland
C++). Larger numbers generate the compiler error, “Numeric con-
stant too large.” For example, the octal number \777 is larger than
the maximum value allowed, \377, and will generate an error.
The first nonoctal or nonhexadecimal character encountered in an
octal or hexadecimal escape sequence marks the end of the
sequence.

Originally, Turbo C allowed only three digits in a hexadecimal
escape sequence. The ANSI C rules adopted in Borland C++
might cause problems with old code that assumes only the first
three characters are converted. For example, using Turbo C 1.x to
define a string with a bell (ASCII 7) followed by numeric
characters, a programmer might write:

printf("\x0072.1A Simple Operating System");

Borland C++ Programmer’s Guide



Table 1.7
Borland C++ escape
sequences

The \\ must be used fo
represent a real ASCII
backslash, as used in DOS
paths.

Chapter 1, Lexical elements

This is intended to be interpreted as \x007 and “2.1A Simple
Operating System”. However, Borland C++ compiles it as the
hexadecimal number \x0072 and the literal string “.1A Simple
Operating System”.

To avoid such problems, rewrite your code like this:
printf("\x007" "2.1A Simple Operating System"};

Ambiguities may also arise if an octal escape sequence is followed
by a nonoctal digit. For example, because 8 and 9 are not legal oc-
tal digits, the constant \258 would be interpreted as a two-
character constant made up of the characters \25 and 8.

The next table shows the available escape sequences.

Sequence Value Char What it does
\a 0x07 BEL Audible bell
\b 0x08 BS Backspace
\f 0x0C FF Formfeed
\n 0x0A LF Newline (linefeed)
\r 0x0D CR Carriage return
\t 0x09 HT Tab (horizontal)
\v 0x0B VT Vertical tab
N\ 0x5¢ \ Backslash
\’ 0x27 ! Single quote (apostrophe)
\" 0x22 " Double quote
\? 0x3F ? Question mark
\O any O = a string of up to three octal
digits
\xH any H = a string of hex digits
\XH any H = a string of hex digits

Borland C++ special two-character constants

Borland C++ also supports two-character constants (for example,
'An’, '‘\n\t’, and ' \007\007'). These constants are represented
as 16-bit int values, with the first character in the low-order byte
and the second character in the high-order byte. These constants
are not portable to other C compilers.

Signed and unsigned char

In C, one-character constants, such as 'A’, ‘\t’, and ' \007’, are
also represented as 16-bit int values. In this case, the low-order
byte is sign extended into the high byte; that is, if the value is
greater than 127 (base 10), the upper byte is set to ~1 (=0xFF). This



Floating-point
constants

can be disabled by declaring that the default char type is un-
signed (use the -K command-line compiler option or choose
Unsigned Characters in the Options | Compiler | Code Generation
dialog box), which forces the high byte to be zero regardless of the
value of the low byte.

Wide character constants

A character constant preceded by an L is a wide-character con-
stant of data type wehar_t (an integral type defined in stddef.h).
For example, ’

x =L 'A";

A floating constant consists of:

m decimal integer

m decimal point

B decimal fraction

me or E and a signed integer exponent (optional)
m type suffix: f or F or I or L (optional)

You can omit either the decimal integer or the decimal fraction
(but not both). You can omit either the decimal point or the letter e
(or E) and the signed integer exponent (but not both). These rules
allow for conventional and scientific (exponent) notations.

Negative floating constants are taken as positive constants with
the unary operator minus (-) prefixed.

Examples:
Constant Value
23.45e6 23.45 x 106
.0 0
0. 0
1. 1.0 x10°=1.0
-1.23 -1.23
2e-5 2.0 x10°
3E+10 3.0 x 1010
.09E34 0.09 x 103

Floating-point constants—data types

In the absence of any suffixes, floating-point constants are of type
double. However, you can coerce a floating constant to be of type
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Table 1.8
Borland C++ floating
constant sizes and ranges

See page 73 for a detailed
look at enum declarations.
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float by adding an f or F suffix to the constant. Similarly, the suffix
I or L forces the constant to be data type long double. The next
table shows the ranges available for float, double, and long
double.

Type Size (bits) Range

float 32 34x10%8to0 3.4 x10%
double 64 1.7 x103%8 t0 1.7 x 10308
long double 80 3.4 %1052 t0 1.1 x 104932

Enumeration constants

Enumeration constants are identifiers defined in enum type dec-
larations. The identifiers are usually chosen as mnemonics to
assist legibility. Enumeration constants are integer data types.
They can be used in any expression where integer constants are
valid. The identifiers used must be unique within the scope of the
enum declaration. Negative initializers are allowed.

The values acquired by enumeration constants depend on the for-
mat of the enumeration declaration and the presence of optional
initializers. In this example,

enum team { giants, cubs, dodgers };

giants, cubs, and dodgers are enumeration constants of type
team that can be assigned to any variables of type team or to any
other variable of integer type. The values acquired by the
enumeration constants are

giants = 0, cubs = 1, dodgers = 2

in the absence of explicit initializers. In the following example,
enum team { giants, cubs=3, dodgers = giants + 1 };

the constants are set as follows:
glants = 0, cubs = 3, dodgers = 1

The constant values need not be unique:

enum team { giants, cubs = 1, dodgers = cubs - 1 };



String literals  String literals, also known as string constants, form a special cate-
gory of constants used to handle fixed sequences of characters. A
string literal is of data type array of char and storage class static,
written as a sequence of any number of characters surrounded by
double quotes:

"This is literally a string!"
The null (empty) string is written "".

The characters inside the double quotes can include escape
sequences (see page 14). This code, for example,

"\t\t\"Name\"\\\tAddress\n\n"
prints out like this:
"Name"\ Address

“Name” is preceded by two tabs; Address is preceded by one tab.
The line is followed by two new lines. The \" provides interior
double quotes.

A literal string is stored internally as the given sequence of char-
acters plus a final null character ("\0"). A null string is stored as a
single '\0’ character.

Adjacent string literals separated only by whitespace are concate-
nated during the parsing phase. In the following example,

#include <stdio.h>

int main()

{

char *D;

p = "This is an example of how Borland C++"
" will automatically\ndo the concatenation for"
" you on very long strings,\nresulting in nicer"
" looking programs.";

printf(p);

return(0};

-}
The output of the program is

This is an example of how Borland C++ will automatically
do the concatenation for you on very long strings,
resulting in nicer looking.programs.
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Constants and internal
representation

You can also use the backslash (\) as a continuation character in

order to extend a string constant across line boundaries:

puts{"This is really \
a one-line string");

ANSI C acknowledges that the size and numeric range of the
basic data types (and their various permutations) are implemen-

tation specific and usually derive from the architecture of the host
computer. For Borland C++, the target platform is the IBM PC
family (and compatibles), so the architecture of the Intel 8088 and
80x86 microprocessors governs the choices of inner represen-
tations for the various data types. The next table lists the sizes and
resulting ranges of the data types for Borland C++; see page 39 for
more information on these data types. Figure 1.1 shows how these
types are represented internally.

Table 1.9: Data types, sizes, and ranges

Type (ﬁ:f:) Range Sample applications

unsigned char 8 0to 255 Small numbers and full PC character set
char 8 -128 to 127 Very small numbers and ASCII characters
enum 16 -32,768 to 32,767 Ordered sets of values

unsigned int 16 0 to 65,535 Larger numbers and loops

short int 16 -32,768 to 32,767 Counting, small numbers, loop control
int 16 -32,768 to 32,767 Counting, small numbers, loop control
unsigned long 32 0 to 4,294,967,295 Astronomical distances

long 32 -2,147,483,648 t0 2,147,483,647 Large numbers, populations

float 32 3.4 %1028 t0 3.4 x 10% Scientific (7-digit precision)

double 64 1.7 x 10°3%8 to 1.7 x 10308 Scientific (15-digit precision)

long double 80 3.4x10%%2 to 1.1 x 10432 Financial (19-digit precision)

near pointer 16 Not applicable Manipulating memory addresses

far pointer 32 Not applicable Manipulating addresses outside current

segment

Chapter 1, Lexical elements
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Figure 1.1
Internal representations of
data types

Constant expressions

20

Increasing significance

int |s| magnitude | (2's complement)
15 0
int | . ,
long int si magnitude (2's complement)
31 0
i1
float |s eg;l)aosr?edm significand
31 22 0
i1
double s egéaos:gm significand
63 51 5
long double |s e%%s:gnt 1 significand
79 6463 0

1]
]

Sign bit (0 = positive, 1 = negative)

Position of implicit binary point

-
]

Integer bit of significand:

Stored in long double
Implicit (always 1) in float, double

Exponent bias (normalized values):

float : 127 (7FH)
double : 1023 (3FFH)
long double : 16,383 (3FFFH)

A constant expression is an expression that always evaluates to a
constant (and it must evaluate to a constant that is in the range of
representable values for its type). Constant expressions are evalu-
ated just as regular expressions are. You can use a constant
expression anywhere that a constant is legal. The syntax for con-
stant expressions is

constant-expression:
Conditional-expression
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Punctuators

Brackets

Parentheses
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Constant expressions cannot contain any of the following
operators, unless the operators are contained within the operand
of a sizeof operator:

m assignment
@m comma
decrement
| function call
@ increment

The punctuators (also known as separators) in Borland C++ are
defined as follows:

punctuator: one of

[T O ), * =4

[ 1 (open and close brackets) indicate single and multidimensional
array subscripts:

char ch, str[] = "Stan";
int mat [3][4]; /* 3 X 4 matrix */
ch = str(3]; /* 4th element */

() (open and close parentheses) group expressions, isolate condi-
tional expressions, and indicate function calls and function
parameters:

d=c* (a+Dh); /* override normal precedence */

if (d == z) ++x; /* essential with conditional statement */
func(); /* function call, no args */

int (*fptr)(); /* function pointer declaration */

fptr = func; /* no () means func pointer */

void func2(int n); /* function declaration with args */

Parentheses are recommended in macro definitions to avoid po-
tential precedence problems during expansion:

#define CUBE(x) ((x) * (x) * (x))

The use of parentheses to alter the normal operator precedence
and associativity rules is covered on page 79.
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Braces

Comma

Semicolon

{ } (open and close braces) indicate the start and end of a com-
pound statement:

if (d == z)
{
++X;
func{);

}

The closing brace serves as a terminator for the compound state-
ment, so a ; (semicolon) is not required after the }, except in
structure or class declarations. Often, the semicolon is illegal, as in

if (statement)
{}; /*illegal semicolon*/
else

The comma (,) separates the elements of a function argument list:
void func(int n, float f, char ch);

The comma is also used as an operator in comima expressions.
Mixing the two uses of comma is legal, but you must use
parentheses to distinguish them:

func(i, j); /* call func with two args */
func((expl, exp2), (exp3, expd, exp5)); /* also calls func
with two args! */

The semicolon (;) is a statement terminator. Any legal C or C++
expression (including the empty expression) followed by ; is
interpreted as a statement, known as an expression statement. The
expression is evaluated and its value is discarded. If the expres-
sion statement has no side effects, Borland C++ may ignore it.

a+ b /* maybe evaluate a + b, but discard value */
++a; /* side effect on a, but discard value of ++a */
; /* empty expression = null statement */

Semicolons are often used to create an empty statement:

for (1 = 0; 1 < n; i++)

{

}
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Colon Use the colon (:) to indicate a labeled statement:

start: x=0;
goto start;

switch (a) {
case 1: puts("One");
break;
case 2: puts("Two");
break;

default: puts("None of the above!");
break;
}

Labels are covered on page 98.

Ellipsis  Ellipsis (...) are three successive periods with no whitespace inter-
vening. Ellipsis are used in the formal argument lists of function
prototypes to indicate a variable number of arguments, or argu-
ments with varying types:

void func(int n, char ch,...);

This declaration indicates that func will be defined in such a way
that calls must have at least two arguments, an int and a char, but
can also have any number of additional arguments.

In C++, you can omit the comma preceding the ellipsis.

Asterisk (pointer The * (asterisk) in a variable declaration denotes the creation of a
declaration) pointer to a type:

char *char_ptr; /* a pointer to char is declared */

Pointers with multiple levels of indirection can be declared by in-
dicating a pertinent number of asterisks:

int **int_ptr; /* a pointer to a pointer to an int */
double ***double_ptr; /* a pointer to a pointer to a pointer
to doubles */
You can also use the asterisk as an operator to either dereference a
pointer or as the multiplication operator:

i = *int_ptr;

a=b*3.14;
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Equal sign (initializer)

Pound sign
(preprocessor
directive)

The = (equal sign) separates variable declarations from initiali-
zation lists:

char array(5] = {1, 2, 3, 4, 5 };
int x = 5;

In C++, declarations of any type can appear (with some
restrictions) at any point within the code. In a C function, no code
can precede any variable declarations.

In a C++ function argument list, the equal sign indicates the
default value for a parameter:

int f(int i = 0) { ... } /* parameter i has default value of
zero */

The equal sign is also used as the assignment operator in
expressions:

a=bi+c;
ptr = farmalloc(sizeof (float)*100);

The # (pound sign) indicates a preprocessor directive when it
occurs as the first nonwhitespace character on a line. It signifies a
compiler action, not necessarily associated with code generation.
See page 157 for more on the preprocessor directives.

# and ## (double pound signs) are also used as operators to
perform token replacement and merging during the preprocessor
scanning phase.
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Declarations

Language sfructure

This chapter provides a formal definition of Borland C++'s
language structure. It details the legal ways in which tokens can
be grouped together to form expressions, statements, and other
significant units. By contrast, lexical elements (described in
Chapter 1) are concerned with the different categories of word-
like units, known as tokens, recognized by a language.

Scope is discussed starting on
page 27; visibility on page
29; duration on page 29; and
linkage on page 31.

Objects

This section briefly reviews concepts related to declarations:
objects, types, storage classes, scope, visibility, duration, and
linkage. A general knowledge of these is essential before tackling
the full declaration syntax. Scope, visibility, duration, and linkage
determine those portions of a program that can make legal
references to an identifier in order to access its object.

An object is an identifiable region of memory that can hold a fixed
or variable value (or set of values). (This use of the word object is
not to be confused with the more general term used in object-
oriented languages.) Each value has an associated name and type
(also known as a data type). The name is used to access the object.
This name can be a simple identifier, or it can be a complex
expression that uniquely “points” to the object. The type is used
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Lvalues

x to determine the correct memory allocation required initially

& to interpret the bit patterns found in the object during
subsequent accesses

min many type-checking situations, to ensure that illegal
assignments are trapped

Borland C++ supports many standard (predefined) and user-
defined data types, including signed and unsigned integers in
various sizes, floating-point numbers in various precisions,
structures, unions, arrays, and classes. In addition, pointers to
most of these objects can be established and manipulated in
varjous memory models.

The Borland C++ standard libraries and your own program and
header files must provide unambiguous identifiers (or expres-
sions derived from them) and types so that Borland C++ can
consistently access, interpret, and (possibly) change the bit
patterns in memory corresponding to each active object in your
program.

Declarations establish the necessary mapping between identifiers
and objects. Each declaration associates an identifier with a data
type. Most declarations, known as defining declarations, also
establish the creation (where and when) of the object, that is, the
allocation of physical memory and its possible initialization.
Other declarations, known as referencing declarations, simply make
their identifiers and types known to the compiler. There can be
many referencing declarations for the same identifier, especially
in a multifile program, but only one defining declaration for that
identifier is allowed.

Generally speaking, an identifier cannot be legally used in a
program before its declaration point in the source code. Legal
exceptions to this rule, known as forward references, are labels, calls
to undeclared functions, and class, struct, or union tags.

An lvalue is an object locator: An expression that designates an
object. An example of an lvalue expression is *P, where P is any
expression evaluating to a nonnull pointer. A modifiable lvalue is an
identifier or expression that relates to an object that can be
accessed and legally changed in memory. A const pointer to a
constant, for example, is not a modifiable Ivalue. A pointer to a
constant can be changed (but its dereferenced value cannot).
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Historically, the I stood for “left,” meaning that an Ivalue could le-
gally stand on the left (the receiving end) of an assignment state-
ment. Now only modifiable lvalues can legally stand to the left of
an assignment statement. For example, if 2 and b are nonconstant
integer identifiers with properly allocated memory storage, they
are both modifiable lvalues, and assignments such asa = 1; and b
=a + b are legal.

Rvalues The expressiona + b is not an lvalue: a + b = a is illegal because the
expression on the left is not related to an object. Such expressions
are often called rvalues (short for right values).

Types and

stforage classes  Associating identifiers with objects requires that each identifier
has at least two attributes: storage class and type (sometimes
referred to as data type). The Borland C++ compiler deduces
these attributes from implicit or explicit declarations in the source
code.

Storage class dictates the location (data segment, register, heap, or
stack) of the object and its duration or lifetime (the entire running
time of the program, or during execution of some blocks of code).
Storage class can be established by the syntax of the declaration,
by its placement in the source code, or by both of these factors.

The type, as explained earlier, determines how much memory is
allocated to an object and how the program will interpret the bit
patterns found in the object’s storage allocation. A given data type
can be viewed as the set of values (often implementation-depen-
dent) that identifiers of that type can assume, together with the set
of operations allowed on those values. The special compile-time
operator, sizeof, lets you determine the size in bytes of any
standard or user-defined type; see page 87 for more on this
operator.

Scope

The scope of an identifier is that part of the program in which the
identifier can be used to access its object. There are five categories
of scope: block (or local), function, function prototype, file, and class
(C++ only). These depend on how and where identifiers are
declared.
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Block scope

Function scope

Function profotype
scope

File scope

Class scope (C++)

Scope and name
spaces

Structures, classes, and
enumerations are in the
same name space in C++.

The scope of an identifier with block (or local) scope starts at the
declaration point and ends at the end of the block containing the
declaration (such a block is known as the enclosing block).
Parameter declarations with a function definition also have block
scope, limited to the scope of the block that defines the function.

The only identifiers having function scope are statement labels.
Label names can be used with goto statements anywhere in the
function in which the label is declared. Labels are declared impli-
citly by writing label_name: followed by a statement. Label names
must be unique within a function.

Identifiers declared within the list of parameter declarations in a
function prototype (not part of a function definition) have
function prototype scope. This scope ends at the end of the
function prototype.

File scope identifiers, also known as globals, are declared outside
of all blocks and classes; their scope is from the point of
declaration to the end of the source file.

For now, think of a class as a named collection of members, in-
cluding data structures and functions that act on them. Class
scope applies to the names of the members of a particular class.
Classes and their objects have many special access and scoping
rules; see pages 111 to 124.

Name space is the scope within which an identifier must be unique.
There are four distinct classes of identifiers in C:

1. goto label names. These must be unique within the function in
which they are declared.

2. Structure, union, and enumeration tags. These must be unique
within the block in which they are defined. Tags declared out-
side of any function must be unique within all tags defined
externally.

3. Structure and union member names. These must be unique
within the structure or union in which they are defined. There
is no restriction on the type or offset of members with the
same member name in different structures.
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4. Variables, typedefs, functions, and enumeration members.
These must be unique within the scope in which they are
defined. Externally declared identifiers must be unique among
externally declared variables.

Visibility
The visibility of an identifier is that region of the program source

code from which legal access can be made to the identifier’s asso-
ciated object.

Scope and visibility usually coincide, though there are circum-
stances under which an object becomes temporarily hidden by the
appearance of a duplicate identifier: The object still exists but the
original identifier cannot be used to access it until the scope of the
duplicate identifier is ended.

Visibility cannot exceed
scope, but scope can
exceed visibility. {
int i; char ch; // auto by default

i=3; // int 1 and char ch in scope and visible

{
double 1i;
1= 3.0e3; // double i in scope and visible
// int 1=3 in scope but hidden
ch = 'A’; // char ch in scope and visible

// double i out of scope
i+=1; // int 1 visible and = 4
// char ch still in scope & visible = 'A’

}
// int i and char ch out of scope

Again, special rules apply to hidden class names and class
member names: Special C++ operators allow hidden identifiers to
be accessed under certain conditions (see page 112).

Duration

Duration, closely related to storage class, defines the period
during which the declared identifiers have real, physical objects
allocated in memory. We also distinguish between compile-time
and run-time objects. Variables, for instance, unlike typedefs and
types, have real memory allocated during run time. There are
three kinds of duration: static, local, and dynamic.
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Static duration

Local duration

An object with local duration
also has local scope, since it

30

does not exist outside of its
enclosing block. The con-
verse is not frue: A local
scope object can have
static duration.

Dynamic duration

Objects with static duration are allocated memory as soon as exe-
cution is underway; this storage allocation lasts until the program
terminates. Static duration objects usually reside in fixed data
segments allocated according to the memory model in force. All
functions, wherever defined, are objects with static duration. All
variables with file scope have static duration. Other variables can
be given static duration by using the explicit static or extern
storage class specifiers.

Static duration objects are initialized to zero (or null) in the
absence of any explicit initializer or, in C++, constructor.

Static duration must not be confused with file or global scope. An
object can have static duration and local scope.

Local duration objects, also known as automatic objects, lead a
more precarious existence. They are created on the stack (orin a
register) when the enclosing block or function is entered. They are
deallocated when the program exits that block or function. Local
duration objects must be explicitly initialized; otherwise, their
contents are unpredictable. Local duration objects always must
have local or function scope. The storage class specifier auto may
be used when declaring local duration variables, but is usually
redundant, since auto is the default for variables declared within
a block.

When declaring variables (for example, int, char, float), the
storage class specifier register also implies auto; but a request (or
hint) is passed to the compiler that the object be allocated a
register if possible. Borland C++ can be set to allocate a register to
a local integral or pointer variable, if one is free. If no register is
free, the variable is allocated as an auto, local object with no
warning or error.

Dynamic duration objects are created and destroyed by specific
function calls during a program. They are allocated storage from a
special memory reserve known as the heap, using either standard
library functions such as mallog, or by using the C++ operator
new. The corresponding deallocations are made using free or
delete.
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Translation units

For more details, see
“External declarations and
definitions” on page 36.

Linkage

The term translation unit refers to a source code file together with
any included files, but less any source lines omitted by condi-
tional preprocessor directives. Syntactically, a translation unit is
defined as a sequence of external declarations:

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration
function-definition
declaration

The word external has several connotations in C; here it refers to
declarations made outside of any function, and which therefore
have file scope. (External linkage is a distinct property; see the
following section, “Linkage.”) Any declaration that also reserves
storage for an object or function is called a definition (or defining
declaration).

An executable program is usually created by compiling several in-
dependent translation units, then linking the resulting object files
with preexisting libraries. A problem arises when the same identi-

- fier is declared in different scopes (for example, in different files),

or declared more than once in the same scope. Linkage is the
process that allows each instance of an identifier to be associated
correctly with one particular object or function. All identifiers
have one of three linkage attributes, closely related to their scope:
external linkage, internal linkage, or no linkage. These attributes
are determined by the placement and format of your declarations,
together with the explicit (or implicit by default) use of the
storage class specifier static or extern.

Each instance of a particular identifier with external linkage repre-
sents the same object or function throughout the entire set of files
and libraries making up the program. Each instance of a particu-
lar identifier with internal linkage represents the same object or
function only within one file. Identifiers with no linkage represent
unique entitjes.

External and internal linkage rules are as follows:
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Name mangling

1. Any object or file identifier having file scope will have internal
linkage if its declaration contains the storage class specifier
static.

For C++, if the same identifier appears with both internal and
external linkage within the same file, the identifier will have
external linkage. In C, it will have internal linkage.

2. If the declaration of an object or function identifier contains
the storage class specifier extern, the identifier has the same
linkage as any visible declaration of the identifier with file
scope. If there is no such visible declaration, the identifier has
external linkage.

3. If a function is declared without a storage class specifier, its
linkage is determined as if the storage class specifier extern
had been used.

4. If an object identifier with file scope is declared without a
storage class specifier, the identifier has external linkage.

The following identifiers have no linkage attribute:

1. any identifier declared to be other than an object or a function
(for example, a typedef identifier)

2. function parameters

3. block scope identifiers for objects declared without the storage
class specifier extern

When a C++ module is compiled, the compiler generates function
names that include an encoding of the function’s argument types.
This is known as name mangling. It makes overloaded functions
possible, and helps the linker catch errors in calls to functions in
other modules. However, there are times when you won’t want
name mangling. When compiling a C++ module to be linked with
a module that does not have mangled names, the C++ compiler
has to be told not to mangle the names of the functions from the
other module. This situation typically arises when linking with
libraries or .OBJ files compiled with a C compiler.

To tell the C++ compiler not to mangle the name of a function,
simply declare the function as extern *C", like this:

extern "C" void Cfunc( int );

This declaration tells the compiler that references to the function
Cfunc should not be mangled.
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You can also apply the extern "C" declaration to a block of names:

extern "C" {
void Cfuncl( int );
void Cfunc2( int );
void Cfunc3{ int );
}i

As with the declaration for a single function, this declaration tells
the compiler that references to the functions Cfunct, Cfunc2, and
Cfunc3 should not be mangled. You can also use this form of
block declaration when the block of function names is contained
in a header file:

extern "C" {
#include "locallib.h"
}i

Declaration synfax

Tentative
definitions

All six interrelated attributes (storage class, type, scope, visibility,
duration, and linkage) are determined in diverse ways by
declarations.

Declarations can be defining declarations (also known simply as def-
initions) or referencing declarations (sometimes known as nonde-
fining declarations). A defining declaration, as the name implies,
performs both the duties of declaring and defining; the nonde-
fining declarations require a definition to be added somewhere in
the program. A referencing declaration simply introduces one or
more identifier names into a program. A definition actually
allocates memory to an object and associates an identifier with
that object.

The ANSI C standard introduces a new concept: that of the
tentative definition. Any external data declaration that has no
storage class specifier and no initializer is considered a tentative
definition. If the identifier declared appears in a later definition,
then the tentative definition is treated as if the extern storage class
specifier were present. In other words, the tentative definition
becomes a simple referencing declaration.
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-

Possible
declaratfions

If the end of the translation unit is reached and no definition has
appeared with an initializer for the identifier, then the tentative
definition becomes a full definition, and the object defined has
uninitialized (zero-filled) space reserved for it. For example,

int x;

int x; /*legal, one copy of x is reserved */

int y;

int y = 4; /* legal, vy is initialized to 4 */

int z = 5;

int z = 6; /* not legal, both are initialized definitions */

Unlike ANSI C, C++ doesn’t have the concept of a tentative
declaration; an external data declaration without a storage class
specifier is always a definition.

The range of objects that can be declared includes

m variables

m functions

B classes and class members (C++)
m types

m structure, union, and enumeration tags
m structure members

union members

m arrays of other types

@ enumeration constants

m statement labels

preprocessor macros

The full syntax for declarations is shown in the following tables.
The recursive nature of the declarator syntax allows complex de-
clarators. We encourage the use of typedefs to improve legibility.
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Table 2.1
Borland C++ declaration
syntax

declaration:
<decl-specifiers> <declarator-list>;
asm-declaration
function-declaration
linkage-specification

decl-specifier:
storage-class-specifier
type-specifier
fet-specifier
friend (C++ specific)
typedef

decl-specifiers:
<decl-specifiers> decl-specifier

storage-class-specifier:
auto
register
static
extern

fet-specifier: (C++ specific)
inline
virtual

type-specifier:
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
const
volatile

simple-type-name:
class-name
typedef-name
char
short

int

long
signed
unsigned
float
double
void

elaborated-type-specifier:
class-key identifier
class-key class-name
enum enum-name

class-key: (C++ specific)
class
struct
union

enum-specifier:
enum <identifier> { <enum-list>}

enum-list:
enumerator
enumerator-list , enumerator

enumerator:
identifier
identifier = constant-expression

constant-expression:
conditional-expression

linkage-specification: (C++ specific)
extern string { <declaration-list>}
extern string declaration

declaration-list:
declaration
declaration-list ; declaration

For the following table, note that there are restrictions on the
number and order of modifiers and qualifiers. Also, the modifiers
listed are the only addition to the declarator syntax that are not
ANSI C or C++. These modifiers are each discussed in greater

detail starting on page 47.
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Table 2.2: Borland C++ declarator syntax

declarator-list:
init-declarator
declarator-list , init-declarator

init-declarator:
declarator <initializer>

declarator:
dname
modifier-list
ptr-operator declarator
declarator ( parameter-declaration-list ) <cv-qualifier-list>
(The <cv-qualifier-list> is for C++ only.)
declarator [ <constant-expression> ]
(declarator )

modifier-list:
modifier
modifier-list modifier

modifier:
cdecl
pascal
interrupt
near
far
huge

ptr-operator:

* <cv-qualifier-list>

& <cv-gualifier-list> (C++ specific)

class-name :: * <cv-qualifier-list> (C++ specific)
co-qualifier-list:

cv-qualifier <co-gualifier-list>
co-qualifier

const

volatile

dname:
name

class-name (C++ specific)
~ class-name (C++ specific)
typedef-name

type-name:
type-specifier <abstract-declarator>

abstract-declarator:
ptr-operator <abstract-declarator>

<abstract-declarator> ( argument-declaration-list } <cv-qualifier-list>

<abstract-declarator> [ <constant-expression> |
(abstract-declarator )

argument-declaration-list:
<arg-declaration-list>
arg-declaration-list , ...
<arg-declaration-list> ... (C++ specific)

arg-declaration-list:
argument-declaration
arg-declaration-list , argument-declaration

argument-declaration:
decl-specifiers declarator
decl-specifiers declarator = expression (C++ specific)
decl-specifiers <abstract-declarator>
decl-specifiers <abstract-declarator> = expression (C++ specific)

fet-definition:
<decl-specifiers> declarator <ctor-initializer> fct-body

fet-body:
compound-statement
initializer:
= expression
= { initializer-list }
(expression-list ) (C++ specific)

initializer-list:
expression
initializer-list , expression
{ initializer-list <,> }

External

declarations and The storage class specifiers auto and register cannot appear in an
definitions external declaration (see “Translation units,” page 31). For each
identifier in a translation unit declared with internal linkage, there
can be no more than one external definition.

An external definition is an external declaration that also defines
an object or function; that is, it also allocates storage. If an
identifier declared with external linkage is used in an expression
(other than as part of the operand of sizeof), there must be exactly
one external definition of that identifier somewhere in the entire
program.
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Borland C++ allows later re-declarations of external names, such
as arrays, structures, and unions, to add information to earlier
declarations. For example,

int all; // no size
struct mystruct; // tag only, no member declarators

int al3] = {1, 2, 3}; // supply size and initialize
struct mystruct {
int i, 3;

}i

// add member declarators

The following table covers class declaration syntax. Page 105
covers C++ reference types (closely related to pointer types) in

detail.

Table 2.3: Borland C++ class declarations (C++ only)

class-specifier:
class-head | <member-list> }

class-head:
class-key <identifier> <base-spec>
class-key class-name <base-spec>

member-list:
member-declaration <member-list>
access-specifier : <member-list>

member-declaration:
<decl-specifiers> <member-declarator-list> ;
function-definition <;>
qualified-name ;

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator <pure-specifier>
<identifier> : constant-expression

pure-specifier:

access-specifier <virtual> class-name

access-specifier:
private
protected
public

conversion-function-name:
operator conversion-type-name

conversion-type-name:

type-specifiers <ptr-operator>
ctor-initializer:

: mem-initializer-list
mem-initializer-list:

mem-initializer

mem-initializer , mem-initializer-list

mem-initializer:
class name ( <argument-list>)
identifier ( <argument-list>)

operator-function-nanie:
operator operator

operator: one of

base-spec: new delete sizeof
: base-list
- * ) A
base-list: ;( I I, f’
b e ~ ! = <>
ase—speczﬁer . = — *— = Y= Az
base-list , base-specifier _ - << o> - <=
base-specifier: == 1= <= >= && 1l
class-name ++ - , —* - O
virtual <access-specifier> class-name [1] >
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Type specifiers

Type taxonomy

The type specifier with one or more optional modifiers is used to
specify the type of the declared identifier:

int i; // declare i1 as a signed integer
unsigned char chl, ch2; // declare two unsigned chars

By long-standing tradition, if the type specifier is omitted, type
signed int (or equivalently, int) is the assumed default. However,
in C++ there are some situations where a missing type specifier
leads to syntactic ambiguity, so C++ practice uses the explicit
entry of all int type specifiers.

There are four basic type categories: void, scalar, function, and
aggregate. The scalar and aggregate types can be further divided
as follows: ‘

o Scalar: arithmetic, enumeration, pointer, and reference types
(C++)

o Aggregate: array, structure, union, and class types (C++)

Types can also be divided into fundamental and derived types. The
fundamental types are void, char, int, float, and double, together
with short, long, signed, and unsigned variants of some of these.
The derived types include pointers and references to other types,
arrays of other types, function types, class types, structures, and
unions.

A class object, for example, can hold a number of objects of
different types together with functions for manipulating these
objects, plus a mechanism to control access and inheritance from
other classes.

Given any nonvoid type type (with some provisos), you can
declare derived types as follows:
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Table 2.4
Declaring types

Note that type& var, type
&var, and type & var are all
equivalent.

Type void

C++ handles func() in a
special manner. See
“Declarations and
prototypes” on page 61 and
code examples on page 62.

The fundamental
types

signed and unsigned are
modifiers that can be
applied to the infegral types.

typet; An object of type type

type array[10]; Ten types: array[0] — array[9]
type *ptr; ptr is a pointer to type

type &ref = £; ref is a reference to type (C++)

type func(void); func returns value of type type

void funci(type t); func1 takes a type type parameter

struct st {type t1; type t2}; structure st holds two types

And here’s how you could declare derived types in a class:

class ct { // class ct holds ptr to type plus a function
// taking a type parameter (C++)
type *ptr;
public:

void func(type*);
}

void is a special type specifier indicating the absence of any
values. It is used in the following situations:
o An empty parameter list in a function declaration:
int func(void); // func takes no arguments

g When the declared function does not return a value:

vold func{int n); // return value
As a generic pointer: A pointer to void is a generic pointer to

anything:

void *ptr; // ptr can later be set to point to any object

o In typecasting expressions:

extern int errfunc(); // returns an error code

(void) errfunc(); // discard return value

The fundamental type specifiers are built from the following

keywords:
char int signed
double long unsigned
float short
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Infegral types .

Table 2.5
Integral types

From these keywords, you can build the integral and floating-
point types, which are together known as the arithmetic types. The
include file limits.h contains definitions of the value ranges for all
the fundamental types.

char, short, int, and long, together with their unsigned variants,
are all considered integral data types. The integral type specifiers
are as follows, with synonyms listed on the same line:

char, signed char Synonyms if default char set to signed
unsigned char

char, unsigned char ~ Synonyms if default char set to unsigned
signed char

int, signed int

unsigned, unsigned int’

short, short int, signed short int

unsigned short, unsigned short int

long, long int, signed long int

unsigned long, unsigned long int

At most, one of signed and unsigned can be used with char,
short, int, or long. If you use the keywords signed and unsigned
on their own, they mean signed int and unsigned int,
respectively.

In the absence of unsigned, signed is usually assumed. An excep-
tion arises with char. Borland C++ lets you set the default for char
to be signed or unsigned. (The default, if you don’t set it yourself,
is signed.) If the default is set to unsigned, then the declaration
char ch declares ch as unsigned. You would need to use signed
char ch to override the default. Similarly, with a signed default for
char, you would need an explicit unsigned char ch to declare an
unsigned char.

At most, one of long and short can be used with int. The
keywords long and short used on their own mean long int and
short int.

ANSI C does not dictate the sizes or internal representations of
these types, except to insist that short, int, and long form a non-
decreasing sequence with “short <= int <= long.” All three types
can legally be the same. This is important if you want to write
portable code aimed at other platforms.

In Borland C++, the types int and short are equivalent, both being
16 bits. long is a 32-bit object. The signed varieties are all stored in
2's complement format using the most significant bit (MSB) as a
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sign bit: 0 for positive, 1 for negative (which explains the ranges
shown in Table 1.9 on page 19). In the unsigned versions, all bits
are used to give a range of 0 — (2" - 1), where n is 8, 16, or 32.

Floating-point types The representations and sets of values for the floating-point types
are implementation dependent; that is, each implementation of C
is free to define them. Borland C++ uses the IEEE floating-point
formats. (Appendix A, “ANSI implementation-specific
standards,” tells more about implementation-specific items.)

float and double are 32- and 64-bit floating-point data types, re-
spectively. long can be used with double to declare an 80-bit pre-
cision floating-point identifier: long double test_case, for example.

Table 1.9 on page 19 indicates the storage allocations for the
floating-point types.

Standard conversions  When you use an arithmetic expression, such as a + b, where a
and b are different arithmetic types, Borland C++ performs certain
internal conversions before the expression is evaluated. These
standard conversions include promotions of “lower” types to
“higher” types in the interests of accuracy and consistency.

Here are the steps Borland C++ uses to convert the operands in an
arithmetic expression:

1. Any small integral types are converted as shown in Table 2.6.
After this, any two values associated with an operator are
either int (including the long and unsigned modifiers, double,
float, or long double).

2. If either operand is of type long double, the other operand is
converted to long double.

3. Otherwise, if either operand is of type double, the other
operand is converted to double.

4. Otherwise, if either operand is of type float, the other operand
is converted to float.

5. Otherwise, if either operand is of type unsigned long, the
other operand is converted to unsigned long.

6. Otherwise, if either operand is of type long, then the other op-
erand is converted to long.

7. Otherwise, if either operand is of type unsigned, then the
other operand is converted to unsigned.

8. Otherwise, both operands are of type int.
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Table 2.6
Methods used in standard
arithmetic conversions

Special char, int, and
enum conversions
The conversions discussed in

this section are specific fo
Borland C++.

Initialization

If it has automatic storage
duration, its value is
indeterminate.

S
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The result of the expression is the same type as that of the two
operands. '

Type Converts to Method

char int Zero or sign-extended
(depends on default char type)

unsigned char int Zero-filled high byte (always)

signed char int Sign-extended (always)

short int Same value

unsigned short unsigned int Same value

enum int Same value

Assigning a signed character object (such as a variable) to an
integral object results in automatic sign extension. Objects of type
signed char always use sign extension; objects of type unsigned
char always set the high byte to zero when converted to int.

Converting a longer integral type to a shorter type truncates the
higher order bits and leaves low-order bits unchanged.
Converting a shorter integral type to a longer type either sign
extends or zero fills the extra bits of the new value, depending on
whether the shorter type is signed or unsigned, respectively.

Initializers set the initial value that is stored in an object (variables,
arrays, structures, and so on). If you don’t initialize an object, and
it has static duration, it will be initialized by default in the
following manner:

B to zero if it is of an arithmetic type
m to null if it is a pointer type
The syntax for initializers is as follows:
initializer
= expression

= {initializer-list} <,>}
(expression list)

initializer-list
expression
initializer-list, expression
{initializer-list} <,>}

Rules governing initializers are
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1. The number of initializers in the initializer list cannot be larger
than the number of objects to be initialized.

2. The item to be initialized must be an object type or an array of
unknown size.

3. For C (not required for C++), all expressions must be constants
if they appear in one of these places:

a. in an initializer for an object that has static duration

b. in an initializer list for an array, structure, or union (expres-
sions using sizeof are also allowed)

4. If a declaration for an identifier has block scope, and the
identifier has external or internal linkage, the declaration
cannot have an initializer for the identifier.

5. If there are fewer initializers in a brace-enclosed list than there
" are members of a structure, the remainder of the structure is
initialized implicitly in the same way as objects with static
storage duration.

Scalar types are initialized with a single expression, which can op-
tionally be enclosed in braces. The initial value of the object is that
of the expression; the same constraints for type and conversions
apply as for simple assignments.

For unions, a brace-enclosed initializer initializes the member that
first appears in the union’s declaration list. For structures or
unions with automatic storage duration, the initializer must be
one of the following:

o an initializer list as described in the following section

@ a single expression with compatible union or structure type. In
this case, the initial value of the object is that of the expression.

Arrays, structures, and  You initialize arrays and structures (at declaration time, if you
unions  like) with a brace-enclosed list of initializers for the members or

elements of the object in question. The initializers are given in
increasing array subscript or member order. You initialize unions
with a brace-enclosed initializer for the first member of the union.
For example, you could declare an array days, intended to count
how many times each day of the week appears in a month (and
assuming that each day will appear at least once), as follows:

int days(7] = {1, 1, 1,1, 1,1, 1}
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Simple
declarations

Use these rules to initialize character arrays and wide character
arrays:

1. You can initialize arrays of character type with a literal string,
optionally enclosed in braces. Each character in the string, in-
cluding the null terminator, initializes successive elements in
the array. For example, you could declare

char name[] = { "Unknown" };

which sets up an eight-element array, whose elements are ‘U’
(for name[0]), ‘n” (for name[1]), and so on (and including a null
terminator).

2. You can initialize a wide character array (one that is
compatible with wechar_t) by using a wide string literal,
optionally enclosed in braces. As with character arrays, the
codes of the wide string literal initialize successive elements of
the array.

Here is an example of a structure initialization:

struct mystruct {
int 1i;
char str(21];
double d;
} s = { 20, "Borland", 3.141 };

Complex members of a structure, such as arrays or structures, can
be initialized with suitable expressions inside nested braces. You
can eliminate the braces, but you must follow certain rules, and it
isn’t recommended practice.

Simple declarations of variable identifiers have the following
pattern:

data-type varl <=initl>, var2 <=init2>, ...;

where varl, var2,... are any sequence of distinct identifiers with
optional initializers. Each of the variables is declared to be of type
data-type. For example,

int x =1, v =2;

creates two integer variables called x and y (and initializes them
to the values 1 and 2, respectively).
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These are all defining declarations; storage is allocated and any
optional initializers are applied.

The initializer for an automatic object can be any legal expression
that evaluates to an assignment-compatible value for the type of
the variable involved. Initializers for static objects must be
constants or constant expressions.

@3@} In C++, an initializer for a static object can be any expression in-
volving constants and previously declared variables and
functions.

Storage class

specifiers A storage class specifier, or a type specifier, must be present in a
declaration. The storage class specifiers can be one of the

following;:
auto register typedef
extern static

Use of storage class  The storage class specifier auto is used only with local scope
specifier auto  variable declarations. It conveys local (automatic) duration, but
since this is the default for all local scope variable declarations, its
use is rare.

Use of storage class  The storage class specifier extern can be used with function and

specifier extern  variable file scope and local scope declarations to indicate external
linkage. With file scope variables, the default storage class
specifier is extern. When used with variables, extern indicates
that the variable has static duration. (Remember that functions
always have static duration.) See page 32 for information on using
extern to prevent name mangling when combining C and C++
code. '

Use of storage class  The storage class specifier register is allowed only for local
specifier register  variable and function parameter declarations. It is equivalent to

auto, but it makes a request to the compiler that the variable
should be allocated to a register if possible. The allocation of a
register can significantly reduce the size and improve the per-
formance of programs in many situations. However, since
Borland C++ does a good job of placing variables in registers, it is
rarely necessary to use the register keyword.
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Use of storage class
specifier static

&z

Use of storage class
specifier typedef

Important!

Borland C++ lets you select register variable options from the
Options | Compiler | Optimizations Options dialog box. If you
check Automatic, Borland C++ will try to allocate registers even if
you have not used the register storage class specifiers.

The storage class specifier static can be used with function and
variable file scope and local scope declarations to indicate internal
linkage. static also indicates that the variable has static duration.
In the absence of constructors or explicit initializers, static
variables are initialized with 0 or null.

In C++, a static data member of a class has the same value for all
instances of a class. A static member function of a class can be
invoked independently of any class instance.

The keyword typedef indicates that you are defining a new data
type specifier rather than declaring an object. typedef is included
as a storage class specifier because of syntactical rather than
functional similarities.

static long int biggy;
typedef long int BIGGY;

The first declaration creates a 32-bit, long int, static-duration
object called biggy. The second declaration establishes the
identifier BIGGY as a new type specifier, but does not create any
run-time object. BIGGY can be used in any subsequent declaration
where a type specifier would be legal. For example,

extern BIGGY salary;
has the same effect as
extern long int salary;

Although this simple example can be achieved by #define BIGGY
long int, more complex typedef applications achieve more than is
possible with textual substitutions.

typedef does not create new data types; it merely creates useful
mnemonic synonyms or aliases for existing types. It is especially
valuable in simplifying complex declarations:

typedef double (*PFD)();

PFD array_pfd[10];

/* array_pfd is an array of 10 pointers to functions
returning double */
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You can’t use typedef identifiers with other data-type specifiers:

unsigned BIGGY pay; /* ILLEGAL */

Modifiers

In addition to the storage class specifier keywords, a declaration
can use certain modifiers to alter some aspect of the identifier/
object mapping. The modifiers available with Borland C++ are
summarized in Table 2.7.

The const modifier The const modifier prevents any assignments to the object or any
other side effects, such as increment or decrement. A const
pointer cannot be modified, though the object to which it points
can be. Consider the following examples:

The modifier const used const float pi =3.1415926;
by itself is equivalent fo const maxint = 32767;
const int. char  *const  str = "Hello, world"; // A constant pointer
char  const *str2 = "Hello, world"; /* A pointer to a constant

char */

Given these, the following statements are illegal:

pi = 3.0; /* Assigns a value to a const */
1 = maxint++; /* Increments a const */
str = "Hi, there!"; /* Points str to something else */

Note, however, that the function call strcpy(str, "Hi, there!") is
legal, since it does a character-by-character copy from the string
literal “Hi, there!” into the memory locations pointed to by str.

@} In C++, const also hides the const object and prevents external
linkage. You need to use extern const. A pointer to a const can’t
be assigned to a pointer to a non-const (otherwise, the const
value could be assigned to using the non-const pointer). For
example,

char *str3 = str2 /* disallowed */

Only const member functions can be called for a const object.

Table 2.7 - -
Borland C++ modifiers ~ Modifier Use with Use
C++extendsconstand ~ const Variables only Prevents changes to object.
voldatile to include classes . . . .
and member functions. volatile Variables only Prevents register allocation and some

optimization. Warns compiler that
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Table 2.7: Borland C++ modifiers (continued)

Borland C++ extensions

cdecl

cdecl

pascal

pascal

interrupt

near,
far,
huge

_cs,
_ds,
_es,
_seg,
_ss

near,
far,

model.

near,
far
_export

_loadds

_saveregs

_fastcall

Functions

Variables

Functions

Variables

Functions

Pointer types

Pointer types

Functions

huge

Variables
Functions/ classes
Functions

Functions

Functions

object may be subject to outside
change during evaluation.

Forces C argument-passing
convention. Affects Linker and link-
time names.

- Forces global identifier case-sensitivity

and leading underscores.

Forces Pascal argument-passing
convention. Affects Linker and link-
time names.

Forces global identifier case-
insensitivity with no leading
underscores.

Function compiles with the additional
register-housekeeping code needed
when writing interrupt handlers.

Overrides the default pointer
type specified by the current
memory model.

Segment pointers.
See page 350.

Overrides the default function
type specified by the current
memory

Directs the placement of
the object in memory.

Tells the compiler which functions or
classes to export.

Sets DS to point to the current
data segment.

Preserves all register values
(except for return values)

during execution of the function.
Forces register parameter passing
convention. Affects the linker and
link-time names.
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The interrupt function  The interrupt modifier is specific to Borland C++. interrupt

modifier functions are designed to be used with the 8086/8088 interrupt
vectors. Borland C++ will compile an interrupt function with extra
function entry and exit code so that registers AX, BX, CX, DX, SIL,
DI, ES, and DS are preserved. The other registers (BP, SP, SS, CS,
and IP) are preserved as part of the C-calling sequence or as part
of the interrupt handling itself. The function will use an iret
instruction to return, so that the function can be used to service
hardware or software interrupts. Here is an example of a typical
interrupt definition:

void interrupt myhandler()
{

}

You should declare interrupt functions to be of type void.
Interrupt functions can be declared in any memory model. For all
memory models except huge, DS is set to the program data
segment. For the huge model, DS is set to the module’s data
segment.

The volatile modifier  The volatile modifier indicates that the object may be modified;
In C++, volatile has a special not only b}{ you, but alsoiby something outside of your program,
meaning for class member ~ SUch as an interrupt routine or an I/0 port. Declarm'g an object to
functions. If you've declared  be volatile warns the compiler not to make assumptions concern-
a voldtile object, youcan  ing the value of the object while evaluating expressions contain-
only use ifs VO’Of’/efﬂi?; " ingit, since the value could (in theory) change at any moment. It
" also prevents the compiler from making the variable a register
variable.

volatile int ticks;
interrupt  timer()
A

ticks++;

}

wait(int interval)
{

ticks = 0;

while (ticks < interval); // Do nothing
}

These routines (assuming timer has been properly associated with
a hardware clock interrupt) implement a timed wait of ticks
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The cdecl and pascal

modifiers

Page 31 fells how fo use
extern, which allows C
names to be referenced
from a C++ program.

The -p compiler option or

Calling Convention Pascal in

the Options | Compiler |
Enfry | Exit Code dialog box
causes all functions (and
pointers to those functions)

to be freated as if they were
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of type pascal.

specified by the argument interval. A highly optimizing compiler
might not load the value of ticks inside the test of the while loop,
since the loop doesn’t change the value of ticks.

Borland C++ allows your programs to easily call routines written
in other languages, and vice versa. When you mix languages like
this, you have to deal with two important issues: identifiers and
parameter passing.

In Borland C++, all global identifiers are saved in their original
case (lower, upper, or mixed) with an underscore (_) prepended to
the front of the identifier, unless you have selected the —u — option
or unchecked the Generate Underbars box in the Options |
Compiler | Advanced Code Generation dialog box.

pascal

In Pascal, global identifiers are not saved in their original case,
nor are underscores prepended to them. Borland C++ lets you
declare any identifier to be of type pascal; the identifier is con-
verted to uppercase, and no underscore is prepended. (If the iden-
tifier is a function, this also affects the parameter-passing se-
quence used; see “Function type modifiers,” page 52, for more
details.)

The pascal modifier is specific to Borland C++; it is intended for
functions (and pointers to functions) that use the Pascal para-
meter-passing sequence. Also, functions declared to be of type
pascal can still be called from C routines, so long as the C routine
sees that the function is of type pascal.

pascal putnums(int i, int j, int k)
{
printf("And the answers are: %d, %d, and %d\n",i,j.k);

}

Functions of type pascal cannot take a variable number of
arguments, unlike functions such as printf. For this reason, you
cannot use an ellipsis (...) in a pascal function definition.

Most of the Windows API functions are pascal functions.

cdecl

Once you have compiled with Pascal calling convention turned
on (using the —p option or IDE Options | Compiler | Entry /Exit
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Code), you may want to ensure that certain identifiers have their
case preserved and keep the underscore on the front, especially if
they’re C identifiers from another file. You can do so by declaring
those identifiers to be cdeci. (This also has an effect on parameter
passing for functions).

main must be declared as  Like pascal, the edecl modifier is specific to Borland C++. It is
cdecl; this is because the C ;504 with functions and pointers to functions. It overrides the —p
start-up code always tries to . . . . . .
call main with the C calling ~ option or IDE Options | Compiler | Entry /Exit Code compiler di-
convention.  rective and allows a function to be called as a regular C function.
For example, if you were to compile the previous program with
the Pascal calling option set but wanted to use printf, you might

do something like this:

extern cdecl printf();
void putnums(int i, int j, int k);

cdecl main()

{
putnums(1,4,9);

}

void putnums(int i, int j, int k)
{

printf("And the answers are: %d, %d, and %d\n",1i,j,k);
} .

If you compile a program with the —p option or IDE Options |
Compiler | Entry/Exit Code, all functions used from the run-time
library will need to have cdecl declarations. If you look at the
header files (such as stdio.h), you'll see that every function is
explicitly defined as cdecl in anticipation of this.

The pointer modifiers  Borland C++ has eight modifiers that affect the pointer declarator
(+); that is, they modify pointers to data. These are near, far, huge,
_cs,_ds, _es,_seg, and _ss.

C lets you compile using one of several memory models. The
model you use determines (among other things) the internal
format of pointers. For example, if you use a small data model
(tiny, small, medium), all data pointers contain a 16-bit offset from
the data segment (DS) register. If you use a large data model
(compact, large, huge), all pointers to data are 32 bits long and
give both a segment address and an offset.

Sometimes, when using one size of data model, you want to
declare a pointer to be of a different size or format than the
current default. You do so using the pointer modifiers.
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Function type modifiers
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See the discussion starting on page 344 in Chapter 9 for an in-
depth explanation of near, far, and huge pointers, and page 345
for a description of normalized pointers. Also see the discussion
starting on page 350 for more on _cs, _ds, _es, _seg, and _ss.

The near, far, and huge modifiers can also be used as function
type modifiers; that is, they can modify functions and function
pointers as well as data pointers. In addition, you can use the
_export, _loadds, and _saveregs modifiers to modify functions.

The near, far, and huge function modifiers can be combined with
cdecl or pascal, but not with interrupt. ‘

Functions of type huge are useful when interfacing with code in
assembly language that doesn’t use the same memory allocation
as Borland C++.

A non-interrupt function can be declared to be near, far, or huge
in order to override the default settings for the current memory
model. :

A near function uses near calls; a far or huge function uses far call
instructions.

In the tiny, small, and compact memory models, an unqualified
function defaults to type near. In the medium and large models,
an unqualified function defaults to type far. In the huge memory
model, it defaults to type huge.

A huge function is the same as a far function, except that the DS
register is set to the data segment address of the source module
when a huge function is entered, but left unset for a far function.

The _export modifier makes the function exportable from
Windows. It's used in an executable (if you don’t use smart
callbacks) or in a DLL; see page 323 of Chapter 8 for details. The
_export modifier has no significance for DOS programs.

The _loadds modifier indicates that a function should set the DS
register, just as a huge function does, but does not imply near or
far calls. Thus, _loadds far is equivalent to huge.

The _saveregs modifier causes the function to preserve all
register values and restore them before returning (except for
explicit return values passed in registers such as AX or DX).

The _loadds and _saveregs modifiers are useful for writing low-
level interface routines, such as mouse support routines.
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Complex
declarations and
declarators

See Table 2.1 on page 35 for
the declarator syntax. The
definition covers both
identifier and function
declarators.

The _fastcall modifier is documented in Appendix A, “The
Optimizer” in the User’s Guide.

Simple declarations have a list of comma-delimited identifiers
following the optional storage class specifiers, type specifiers, and
other modifiers.

A complex declaration uses a comma-delimited list of declarators
following the various specifiers and modifiers. Within each dec-
larator, there exists just one identifier, namely the identifier being
declared. Each of the declarators in the list is associated with the
leading storage class and type specifier.

The format of the declarator indicates how the declared dname is
to be interpreted when used in an expression. If type is any type,
and storage class specifier is any storage class specifier, and if D1
and D2 are any two declarators, then the declaration

storage-class-specifier type D1, D2;

indicates that each occurrence of DI or D2 in an expression will be
treated as an object of type type and storage class storage class
specifier. The type of the dname embedded in the declarator will be
some phrase containing type, such as “type,” “pointer to type,”
“array of type,” “function returning type,” or “pointer to function
returning type,” and so on.

For example, in the declarations

int n, nao[], naf[3], *pn, *apn(], (*pan)[], &nr=n;
int f(void), *fnp(void), (*pfn)(void);

each of the declarators could be used as rvalues (or possibly
Ivalues in some cases) in expressions where a single int object
would be appropriate. The types of the embedded identifiers are
derived from their declarators as follows:
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Table 2.8: Complex declarations

Declarator

syntax Implied type of name Example

type name; type int count;

type name(l; (open) array of type int count[];

type name[3]; Fixed array of three elements, all of type int count[3];

(namel0], name[1], and name[2])

type *name; Pointer to type int *count;

type *namel]; (open) array of pointers to type int *count[];

type *(name[]); Same as above int *(count[]);

type (*name)[]; Pointer to an (open) array of type int (*count) [];

type &name; Reference to type (C++ only) int &count;

type name(); Function returning type int count{();

type *name(); Function returning pointer to type int *count();

type *(name()); Same as above int *(count());

type (*name) (); Pointer to function returning type int (*count) ();
Note the need for parentheses in (*name)[] and (*name)(), since the
precedence of both the array declarator [ ] and the function
declarator () is higher than the pointer declarator *. The
parentheses in *(namel[]) are optional.

Pointers

See page 85 for a discussion
of referencing and de-
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referencing.

Pointers fall into two main categories: pointers to objects and
pointers to functions. Both types of pointers are special objects for

holding memory addresses.

The two pointer classes have distinct properties, purposes, and
rules for manipulation, although they do share certain-Borland
C++ operations. Generally speaking, pointers to functions are
used to access functions and to pass functions as arguments to
other functions; performing arithmetic on pointers to functions is
not allowed. Pointers to objects, on the other hand, are regularly
incremented and decremented as you scan arrays or more
complex data structures in memory.
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Although pointers contain numbers with most of the characteris-
tics of unsigned integers, they have their own rules and restric-
tions for assignments, conversions, and arithmetic. The examples
in the next few sections illustrate these rules and restrictions.

Pointers to

objects A pointer of type “pointer to object of type” holds the address of
(that is, points to) an object of type. Since pointers are objects, you
can have a pointer pointing to a pointer (and so on). Other objects
commonly pointed at include arrays, structures, unions, and
classes.

Thesize of pointers to objects is dependent on the memory model
and the size and disposition of your data segments, possibly influ-
enced by the optional pointer modifiers (discussed starting on '
page 51).

Pointers fo

functions A pointer to a function is best thought of as an address, usually in
a code segment, where that function’s executable code is stored;
that is, the address to which control is transferred when that func-
tion is called. The size and disposition of your code segments is
determined by the memory model in force, which in turn dictates
the size of the function pointers needed to call your functions.

A pointer to a function has a type called “pointer to function re-
turning type,” where type is the function’s return type.

@} Under C++, which has stronger type checking, a pointer to a
function has type “pointer to function taking argument types type
and returning type.” In fact, under C, a function defined with
argument types will also have this narrower type. For example,

void (*func)();

In C, this is a pointer to a function returning nothing. In C++, it'’s a
pointer to a function taking no arguments and returning nothing.
In this example,

void (*func) (int);

*func is a pointer to a function taking an int argument and re-
turning nothing.
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Pointer
declarations

See page 39 for details on
void.

Warning! You need to

initialize pointers before using
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them.

A pointer must be declared as pointing to some particular type,
even if that type is void (which really means a pointer to
anything). Once declared, though, a pointer can usually be
reassigned so that it points to an object of another type. Borland
C++ lets you reassign pointers like this without typecasting, but
the compiler will warn you unless the pointer was originally
declared to be of type pointer to void. And in C, but not C++, you
can assign a void* pointer to a non-void* pointer.

If type is any predefined or user-defined type, including void, the
declaration

type *ptr; /* Danger--uninitialized pointer */

declares ptr to be of type “pointer to type.” All the scoping,
duration, and visibility rules apply to the ptr object just declared.

A null pointer value is an address that is guaranteed to be
different from any valid pointer in use in a program. Assigning
the integer constant O to a pointer assigns a null pointer value to
it.

The mnemonic NULL (defined in the standard library header files,
such as stdio.h) can be used for legibility. All pointers can be
successfully tested for equality or inequality to NULL.

The pointer type “pointer to void” must not be confused with the
null pointer. The declaration

void *vptr;

declares that vptr is a generic pointer capable of being assigned to
by any “pointer to type” value, including null, without complaint.
Assignments without proper casting between a “pointer to type1”
and a “pointer to type2,” where type? and type2 are different
types, can invoke a compiler warning or error. If type7is a
function and type2isn’t (or vice versa), pointer assignments are
illegal. If type1 is a pointer to void, no cast is needed. Under C, if
type2is a pointer to void, no cast is needed.

Assignment restrictions also apply to pointers of different sizes
(near, far, and huge). You can assign a smaller pointer to a larger
one without error, but you can’t assign a larger pointer to a
smaller one unless you are using an explicit cast. For example,

Borland C++ Programmer's Guide



char near *ncp;
char far *fcp;
char huge *hcp;

fep = nep; // legal
hep = fep; // legal
fcp = hep; // not legal
ncp = fep; // not legal
ncp = (char near*)fcp; // now legal

Pointers and

constants A pointer or the pointed-at object can be declared with the const
modifier. Anything declared as a const cannot be assigned to. It is
also illegal to create a pointer that might violate the nonassigna-
bility of a constant object. Consider the following examples:

int 1i; // 1 1s an int

int * pi; // pi is a pointer to int
(uninitialized)

int * const cp = &i; // cp is a constant pointer to int.
const int c¢ci = 7; // ci is a constant int

const int * pci; // pci is a pointer to constant int

const int * const cpc = &ci; // cpc is a constant pointer to a
// constant int

The following assignments are legal:
i=ci; // Assign const-int to int

*cp = ci; // Assign const-int to
) // object-pointed-at-by-a-const-pointer

+4pci; // Increment a pointer-to-const

pcl = cpc; // Assign a const-pointer-to-a-const to a
// pointer-to-const

The following assignments are illegal:

ci = 0; // NO--cannot assign to a const-int
cl--; // NO--cannot change a const-int
*pel = 3; // NO--cannot assign to an object

// pointed at by pointer-to-const

cp = &ci; // NO--cannot assign to a const-pointer,
// even if value would be unchanged

cpc++; // NO--cannot change const-pointer
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Pointer arithmetic

The difference between two

The internal arithmetic
performed on pointers
depends on the memory
model in force and the
presence of any overriding
pointer modifiers.

pointers only has meaning if
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both pointers point info the
same array.

pi = pci; // NO--if this assignment were allowed,
// you would be able to assign to *pci
// (a const value) by assigning to *pi.

Similar rules apply to the volatile modifier. Note that const and
volatile can both appear as modifiers to the same identifier.

Pointer arithmetic is limited to addition, subtraction, and compar-
ison. Arithmetical operations on object pointers of type “pointer
to type” automatically take into account the size of type; that is,
the number of bytes needed to store a type object.

When performing arithmetic with pointers, it is assumed that the
pointer points to an array of objects. Thus, if a pointer is declared
to point to type, adding an integral value to the pointer advances
the pointer by that number of objects of type. If type has size 10
bytes, then adding an integer 5 to a pointer to type advances the
pointer 50 bytes in memory. The difference has as its value the
number of array elements separating the two pointer values. For
example, if ptrl points to the third element of an array, and ptr2
points to the tenth element, then the result of ptr2 - ptrl would
be7.

When an integral value is added to or subtracted from a “pointer
to type,” the result is also of type “pointer to type.”

There is no such element as “one past the last element”, of course,
but a pointer is allowed to assume such a value. If P points to the

last array element, P + 1 is legal, but P + 2 is undefined. If P points
to one past the last array element, P — 1 is legal, giving a pointer to
the last element. However, applying the indirection operator * to a
“pointer to one past the last element” leads to undefined behavior.

Informally, you can think of P + n as advancing the pointer by
(n * sizeof(type)) bytes, as long as the pointer remains within the
legal range (first element to one beyond the last element).

Subtracting two pointers to elements of the same array object
gives an integral value of type ptrdiff_t defined in stddef.h (signed
long for huge and far pointers; signed int for all others). This
value represents the difference between the subscripts of the two
referenced elements, provided it is in the range of ptrdiff_t. In the
expression P1 - P2, where P1 and P2 are of type pointer to type
(or pointer to qualified type), P1 and P2 must point to existing.
elements or to one past the last element. If P1 points to the i-th
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conversions

C++ reference
declarations

Arrays

element, and P2 points to the j-th element, P1 - P2 has the value
@i-).

Pointer types can be converted to other pointer types using the
typecasting mechanism:

char *str;
int *ip;
str = (char *)ip;

More generally, the cast (type*) will convert a pointer to type
“pointer to type.”

C++ reference types are closely related to pointer types. Reference
types create aliases for objects and let you pass arguments to func-
tions by reference. C passes arguments only by value. In C++ you
can pass arguments by value or by reference. See page 105,
“Referencing,” for complete details.

The declaration
type declarator [<constant-expression>]

declares an array composed of elements of type. An array consists
of a contiguous region of storage exactly large enough to hold all
of its elements.

If an expression is given in an array declarator, it must evaluate to
a positive constant integer. The value is the number of elements in
the array. Each of the elements of an array is numbered from 0
through the number of elements minus one.

Multidimensional arrays are constructed by declaring arrays of
array type. Thus, a two-dimensional array of five rows and seven
columns called alpha is declared as

type alpha {5] [7];

In certain contexts, the first array declarator of a series may have
no expression inside the brackets. Such an array is of indeter-
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Functions

minate size. The contexts where this is legitimate are ones in
which the size of the array is not needed to reserve space.

For example, an extern declaration of an array object does not
need the exact dimension of the array, nor does an array function
parameter. As a special extension to ANSI C, Borland C++ also
allows an array of indeterminate size as the final member of a
structure. Such an array does not increase the size of the structure,
except that padding can be added to ensure that the array is
properly aligned. These structures are normally used in dynamic
allocation, and the size of the actual array needed must be
explicitly added to the size of the structure in order to properly
reserve space.

Except when it is the operand of a sizeof or & operator, an array
type expression is converted to a pointer to the first element of the
array.

Declarations and

definitions

In C++ you must always use
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function prototypes. We
recommend that you also
use themin C.

Functions are central to C and C++ programming. Languages
such as Pascal distinguish between procedure and function.
Borland C++ functions play both roles.

Each program must have a single external function named main
marking the entry point of the program. Functions are usually de-
clared as prototypes in standard or user-supplied header files, or
within program files. Functions are external by default and are
normally accessible from any file in the program. They can be re-.
stricted by using the static storage class specifier (see page 31).

Functions are defined in your source files or made available by
linking precompiled libraries.

A given function can be declared several times in a program, pro-
vided the declarations are compatible. Nondefining function

declarations using the function prototype format provide Borland
C++ with detailed parameter information, allowing better control
over argument number and type checking, and type conversions.

Excluding C++ function overloading, only one definition of any
given function is allowed. The declarations, if any, must also
match this definition. (The essential difference between a

Borland C++ Programmer's Guide



definition and a declaration is that the definition has a function
body.)

Declarations and

prototypes In the original Kernighan and Ritchie style of declaration, a
function could be implicitly declared by its appearance in a
function call, or explicitly declared as follows:

In C++, this declaration <type> func()

means <type> func(void)
where type is the optional return type defaulting to int. A function

can be declared to return any type except an array or function
type. This approach does not allow the compiler to check that the
type or number of arguments used in a function call match the
declaration.

You can enable a waming  This problem was eased by the introduction of function

;ﬁ’;’,’ﬁg}ﬂ% feoéc‘;vrz ’; iflgi prototypes with the following declaration syntax:

"Function called without a < type> func(parameter-declarator-list);
protfotype.”

Declarators specify the type of each function parameter. The com-
piler uses this information to check function calls for validity. The
compiler is also able to coerce arguments to the proper type.
Suppose you have the following code fragment:

extern long lmax(long vl, long v2); /* prototype */

foo()

{
int limit = 32;
char ch =-'A";

long mval;

mval = lmax(limit,ch); /* function call */

}

Since it has the function prototype for Imax, this program
converts limit and ch to long, using the standard rules of
assignment, before it places them on the stack for the call to Imax.
Without the function prototype, limit and ch would have been
placed on the stack as an integer and a character, respectively; in
that case, the stack passed to Imax would not match in size or
content what Imax was expecting, leading to problems. The classic
declaration style does not allow any checking of parameter type
or number, so using function prototypes aids greatly in tracking
down programming errors.
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Function prototypes also aid in documenting code. For example,
the function strepy takes two parameters: a source string and a
destination string. The question is, which is which? The function

prototype

char *strcpy(char *dest, const char *source);

makes it clear. If a header file contains function prototypes, then
you can print that file to get most of the information you need for
writing programs that call those functions. If you include an
identifier in a prototype parameter, it is only used for any later
error messages involving that parameter; it has no other effect.

A function declarator with parentheses containing the single
word void indicates a function that takes no arguments at all:

func(void);

@} In C++, func() also declares a function taking no arguments.

stdarg.h contains macros
that you can use in user-
defined functions with
variable numbers of
parameters.

A function prototype normally declares a function as accepting a
fixed number of parameters. For functions that accept a variable
number of parameters (such as printf), a function prototype can
end with an ellipsis (...), like this:

f({int *count, long total, ...)

With this form of prototype, the fixed parameters are checked at
compile time, and the variable parameters are passed with no
type checking.

Here are some more examples of function declarators and

prototypes:

int £0); /* In C, a function returning an int with no
information about parameters. This is the K&R
"classic style." */

int £(); /* In C++, a function taking no arguments */

int  f(void); /* A function returning an int that takes no
parameters. */

int p(int,long); /* A function returning an int that accepts two
parameters: the first, an int; the second, a
long. */

int pascal g(void); /* A pascal function returning an int that takes
no parameters at all. */

char far *s(char *source, int kind); /* A function returning a far
pointer to a char and accepting two parameters: the
first, a pointer to a char; the second, an int. */
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int printf(char *format,...); /* A function returning an int and
accepting a pointer to a char fixed parameter and
any number of additional parameters of unknown
type. */

int  (*fp) (int); /* A pointer to a function returning an int and
accepting a single int parameter. */

Definitions

The general syntax for external function definitions is given in the
following table:

Table 2.9
External function definitions

file
external-definition
file external-definition

external-definition:
function-definition
declaration
asm-statement

function-definition:

<declaration-specifiers> declarator <declaration-list>
compound-statement

In general, a function definition consists of the following sections
(the grammar allows for more complicated cases):

You can mix elements from 1
and 2.

—_
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. Optional storage class specifiers: extern or static. The default

is extern.
A return type, possibly void. The default is int.

Optional modifiers: pascal, cdecl, interrupt, near, far, huge,.
_export, _loadds, _saveregs. The defaults depend on the
memory model and compiler option settings.

The name of the function.

A parameter declaration list, possibly empty, enclosed in pa-

rentheses. In C, the preferred way of showing an empty list is
func(void). The old style of func() is legal in C but antiquated
and possibly unsafe.

A function body representing the code to be executed when
the function is called.
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Formal parameter
declarations

(€0
(€0

(€0

Function calls
and argument
conversions

The formal parameter declaration list follows a similar syntax to
that of the declarators found in normal identifier declarations.
Here are a few examples:

int func{void) { ; // no args

int func(Tl ti, T2 t2, T3 t3=1) { // three simple parameters, one
// with default argument

int func(Tl* ptrl, T2& tref) { // a pointer and a reference arg

int func(register int i) { // request register for arg

int func{char *str,...} { /* one string arg with a variable
number of other args, or with a fixed number of args with
varying types */

In C++, you can give default arguments as shown. Parameters
with default values must be the last arguments in the parameter
list. The arguments’ types can be scalars, structures, unions, enu-
merations; pointers or references to structures and unions; or
pointers to functions or classes.

The ellipsis (...) indicates that the function will be called with dif-
ferent sets of arguments on different occasions. The ellipsis can
follow a sublist of known argument declarations. This form of
prototype reduces the amount of checking the compiler can make.

The parameters declared all enjoy automatic scope and duration
for the duration of the function. The only legal storage class
specifier is register.

The const and volatile modifiers can be used with formal
argument declarators.

A function is called with actual arguments placed in the same se-
quence as their matching formal arguments. The actual argu-
ments are converted as if by initialization to the declared types of
the formal arguments.

Here is a summary of the rules governing how Borland C++ deals
with language modifiers and formal parameters in function calls,
both with and without prototypes:
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Important!

Structures

1. The language modifiers for a function definition must match
the modifiers used in the declaration of the function at all calls
to the function.

2. A function may modify the values of its formal parameters,
but this has no effect on the actual arguments in the calling
routine, except for reference arguments in C++.

When a function prototype has not been previously declared,
Borland C++ converts integral arguments to a function call
according to the integral widening (expansion) rules described in
the section “Standard conversions,” starting on page 41. When a
function prototype is in scope, Borland C++ converts the given
argument to the type of the declared parameter as if by
assignment.

When a function prototype includes an ellipsis (...), Borland C++
converts all given function arguments as in any other prototype
(up to the ellipsis). The compiler widens any arguments given
beyond the fixed parameters, according to the normal rules for
function arguments without prototypes.

If a prototype is present, the number of arguments must match
(unless an ellipsis is present in the prototype). The types need
only be compatible to the extent that an assignment can legally
convert them. You can always use an explicit cast to convert an
argument to a type that is acceptable to a function prototype.

If your function prototype does not match the actual function def-
inition, Borland C++ will detect this if and only if that definition is
in the same compilation unit as the prototype. If you create a
library of routines with a corresponding header file of prototypes,
consider including that header file when you compile the library,
so that any discrepancies between the prototypes and the actual
definitions will be caught. C++ provides type-safe linkage, so
differences between expected and actual parameters will be
caught by the linker. ‘

Structure initialization is
discussed on page 42.

A structure is a derived type usually representing a user-defined
collection of named members (or components). The members can
be of any type, either fundamental or derived (with some restric-
tions to be noted later), in any sequence. In addition, a structure
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union members are ignored

Untagged
structures and
typedefs

Untagged structure and

during initialization.

Structure member
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declarations

member can be a bit field type not allowed elsewhere. The
Borland C++ structure type lets you handle complex data
structures almost as easily as single variables.

In C++, a structure type is treated as a class type (with certain dif-
ferences: Default access is public, and the default for the base class
is also public). This allows more sophisticated control over access
to structure members by using the C++ access specifiers: public
(the default), private, and protected. Apart from these optional
access mechanisms, and from exceptions as noted, the following
discussion on structure syntax and usage applies equally to C and
C++ structures.

Structures are declared using the keyword struct. For example,

struct mystruct { ... }; // mystruct is the structure tag

struct mystruct s, *ps, arrs(l10];
/* s is type struct mystruct; ps is type pointer to struct mystruct;
arrs is array of struct mystruct. */

If you omit the structure tag, you can get an untagged structure.
You can use untagged structures to declare the identifiers in the
comma-delimited struct-id-list to be of the given structure type (or
derived from it), but you cannot declare additional objects of this
type elsewhere:

struct { ... } s, *ps, arrs[l0]; // untagged structure

It is possible to create a typedef while declaring a structure, with
or without a tag:

typedef struct mystruct { ... } MYSTRUCT;
MYSTRUCT s, *ps, arrs{10]; // same as struct mystruct s, etc.
typedef struct { ... } YRSTRUCT; // no tag

YRSTRUCT y, *yp, arry[20];

You don’t usually need both a tag and a typedef: Either can be
used in structure declarations.

The member-decl-list within the braces declares the types and
names of the structure members using the declarator syntax
shown in Table 2.2 on page 36.
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You can omit the struct
keyword in C++,

Structures and
functions

Structure member
access

A structure member can be of any type, with two exceptions:

1. The member type cannot be the same as the struct type being
currently declared:

struct mystruct { mystruct s } sl, s2; // illegal
A member can be a pointer to the structure being declared, as
in the following example:

struct mystruct { mystruct *ps } sl, s2; // OK
Also, a structure can contain previously defined structure
types when declaring an instance of a declared structure.

2. Except in C++, a member cannot have the type “function
returning...,” but the type “pointer to function returning...” is
allowed. In C++, a struct can have member functions.

A function can return a structure type or a pointer to a structure
type:

mystruct funcl{void); // funcl() returns a structure
mystruct *func2(void); // func2() returns pointer to structure

A structure can be passed as an argument to a function in the
following ways:

void funcl(mystruct s); // directly
void func2(mystruct *sptr); // via a pointer
void func3(mystruct &sref); // as a reference (C++ only)

Structure and union members are accessed using the selection
operators . and —>. Suppose that the object s is of struct type S,
and sptr is a pointer to S. Then if m is a member identifier of type
M declared in S, the expressions s.m and sptr->m are of type M,
and both represent the member object i in s. The expression
sptr->m is a convenient synonym for (*sptr).m.

The operator . is called the direct member selector; the operator —>
is called the indirect (or pointer) member selector; for example,

struct mystruct
{
int i;
char str{21];
double d;
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} s, *sptr=é&s;

s.i=3; // assign to the 1 member of mystruct s
sptr->d = 1.23; // assign to the d member of mystruct s

The expression s.m is an lvalue, provided that s is not an lvalue
and m is not an array type. The expression sptr->m is an lvalue
unless m is an array type.

If structure B contains a field whose type is structure A, the
members of A can be accessed by two applications of the member
selectors:

struct A {
int 3;
double x;
}i

struct B {
int i;
struct A a;
double d;

} s, *sptr;

s.i=3; // assign to the i member of B
s.a.j = 2; // assign to the j member of A
sptr->d = 1.23; // assign to the d member of B
(sptr-»a).x = 3.14 // assign to x member of A

Each structure declaration introduces a unique structure type, so
that in

struct A {
int 1,3;
double d;
} a, al;

struct B {
int 1,3;
double d;
} b;

the objects a and a1 are both of type struct A, but the objects a and
b are of different structure types. Structures can be assigned only
if the source and destination have the same type:

a =al; // OK: same type, so member by member assignment

a=b; // ILLEGAL: different types

a.i =b.i; a.j = b.j; a.d = b.d /* but you can assign
member-by-member */
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Structure word
alignment

Sftructure name
spaces

Memory is allocated to a structure member-by-member from left
to right, from low to high memory address. In this example,

struct mystruct {
int 1i;
char str(21];
double d;

}os;

the object s occupies sufficient memory to hold a 2-byte integer, a
21-byte string, and an 8-byte double. The format of this object in
memory is determined by the Borland C++ word alignment
option. With this option off (the default), s will be allocated 31
contiguous bytes.

If you turn on word alignment with the Options | Compiler | Code
Generation dialog box or with the —a compiler option, Borland
C++ pads the structure with bytes to ensure the structure is
aligned as follows:

1. The structure will start on a word boundary (even address).

2. Any non-char member will have an even byte offset from the
start of the structure.

3. A final byte is added (if necessary) at the end to ensure that
the whole structure contains an even number of bytes.

With word alignment on, the structure would therefore have a
byte added before the double, making a 32-byte object.

Structure tag names share the same name space with union tags
and enumeration tags (but enums within a structure are in a
different name space in C++). This means that such tags must be
uniquely named within the same scope. However, tag names need
not differ from identifiers in the other three name spaces: the label
name space, the member name space(s), and the single name
space (which consists of variables, functions, typedef names, and
enumerators).
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declarations

Bif fields

A sfructure can confain any
mixture of bit field and non-
bit field types.
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Member names within a given structure or union must be unique,
but they can share the names of members in other structures or
unions. For example,

goto s;

st
struct s { // OK: tag and label name spaces different

int s;  // OK: label, tag and member name spaces different
float s; // ILLEGAL: member name duplicated
} s; // OK: var name space different. In C++, this can only

// be done if s does not have a constructor.

union s { // ILLEGAL: tag space duplicate

int s; // OK: new member space

float f;
y £ // OK: var name space
struct t {

int s; // OK: different member space -
} s; // ILLEGAL: var name duplicate

A pointer to a structure type A can legally appear in the decla-
ration of another structure B before A has been declared:

struct A; // incomplete
struct B { struct A *pa };
struct A { struct B *pb };

The first appearance of A is called incomplete because there is no
definition for it at that point. An incomplete declaration is
allowed here, since the definition of B doesn’t need the size of A.

You can declare signed or unsigned integer members as bit fields
from 1 to 16 bits wide. You specify the bit field width and
optional identifier as follows:

type-specifier <bitfield-id> : width;

where type-specifier is char, unsigned char, int, or unsigned int. Bit
fields are allocated from low-order to high-order bits within a
word. The expression width must be present and must evaluate to-
a constant integer in the range 1 to 16.
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Unions

If the bit field identifier is omitted, the number of bits specified in
width is allocated, but the field is not accessible. This lets you
match bit patterns in, say, hardware registers where some bits are
unused. For example,

struct mystruct {

int i:2;

unsigned J : 5;

int : 4

int k1

unsigned m : 4;
}a, b, c;

produces the following layout:

15|]14|13})12(11{10{ 9 |8 | 7|6 5(4 3210

X X X X X X X X X X X X X X X X

< Ly )
<« | i

A
\4
A
Y

»ld
Ll )

m k (unused) i i

Integer fields are stored in 2’s-complement form, with the leftmost
bit being the MSB (most significant bit). With int (for example,
signed) bit fields, the M5B is interpreted as a sign bit. A bit field
of width 2 holding binary 11, therefore, would be interpreted as 3
if unsigned, but as -1 if int. In the previous example, the legal
assignment a.i = 6 would leave binary 10 = -2 in a.i with no
warning. The signed int field k of width 1 can hold only the values
-1 and 0, since the bit pattern 1 is interpreted as -1.

Bit fields can be declared only in structures, unions, and classes.
They are accessed with the same member selectors ( . and —>)
used for non-bit field members. Also, bit fields pose several pro-
blems when writing portable code, since the organization of bits-
within-bytes and bytes-within-words is machine dependent.

The expression &mystruct.x is illegal if x is a bit field identifier,
since there is no guarantee that mystruct.x lies at a byte address.

Unions correspond to the
variant record types of
Pascal and Modula-2.

Union types are derived types sharing many of the syntactical
and functional features of structure types. The key difference is
that a union allows only one of its members to be “active” at any
one time. The size of a union is the size of its largest member. The
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value of only one of its members can be stored at any time. In the
following simple case,

union myunion { /* union tag = myunion */
int 1i;
double d;
char ch;

} mu, *muptr=&mu;

the identifier mu, of type union myunion, can be used to hold a 2-
byte int, an 8-byte double, or a single-byte char, but only one of
these at the same time.

sizeof(union myunion) and sizeof(mmu) both return 8, but 6 bytes
are unused (padded) when mu holds an int object, and 7 bytes are
unused when mu holds a char. You access union members with
the structure member selectors (. and ~>), but care is needed:

mu.d = 4.016;

printf('mu.d = $f\n",mu.d); // OK: displays mu.d = 4.016
printf("mu.i = %d\n",mu.i); // peculiar result

mu.ch = 'A’;

printf('mu.ch = %c\n",mu.ch); // OK: displays mu.ch = A
printf('mu.d = $f\n",mu.d); // peculiar result

muptr->i = 3;

printf('mu.i = 8%d\n",mu.i); // OK: displays mu.i = 3

The second printf is legal, since mu.i is an integer type. However,
the bit pattern in mu.i corresponds to parts of the double pre-
viously assigned, and will not usually provide a useful integer
interpretation. ‘

When properly converted, a pointer to a union points to each of
its members, and vice versa.

A union that doesn’t have a tag and is not used to declare a
named object (or other type) is called an anonymous union. It has
the following form:

union { member-list };

Its members can be accessed directly in the scope where this
union is declared, without using the x.y or p->y syntax.
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Anonymous unions can’t have member functions and at file level
must be declared static. In other words, an anonymous union may
not have external linkage.

Union

declarations The general declaration syntax for unions is pretty much the same
as that for structures. Differences are

1. Unions can contain bit fields, but only one can be active. They
all start at the beginning of the union (and remember that,
because bit fields are machine dependent, they pose several
problems when writing portable code).

@} 2. Unlike C++ structures, C++ union types cannot use the class
access specifiers: public, private, and protected. All fields of a
unijon are public.

3. Unions can be initialized only through their first declared
member:

union local87 {
int i;
double d;

ba={20}

@} 4. A union can’t participate in a class hierarchy. It can’t be
derived from any class, nor can it be a base class. A union can
have a constructor.

Enumerations

An enumeration data type is used to provide mnemonic
identifiers for a set of integer values. For example, the following
declaration,

enum days { sun, mon, tues, wed, thur, fri, sat } anyday;

establishes a unique integral type, enum days, a variable anyday of
this type, and a set of enumerators (sun, mon,...) with constant
integer values.

Borland C++ is free to store enumerators in a single byte when
Treat enums as ints is unchecked (O C|Code Generation) or the
-b flag . The default is on (meaning enums are always ints) if the
range of values permits, but the value is always promoted to an
int when used in expressions. The identifiers used in an
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See page 17 for more on
enumeration constants.

enumerator list are implicitly of type signed char, unsigned char,
or int, depending on the values of the enumerators. If all values
can be represented in a signed or unsigned char, that is the type
of each enumerator.

In C, a variable of an enumerated type can be assigned any value
of type int—no type checking beyond that is enforced. In C++, a
variable of an enumerated type can be assigned only one of its
enumerators. That is,

anyday = mon; // OK
anyday = 1; // illegal, even though mon == 1

The identifier days is the optional enumeration tag that can be
used in subsequent declarations of enumeration variables of type
enum days:

enum days payday, holiday; // declare two variables

In C++, you can omit the enum keyword if days is not the name of
anything else in the same scope.

As with struct and union declarations, you can omit the tag if no
further variables of this enum type are required:

enum { sun, mon, tues, wed, thur, fri, sat } anyday;
/* anonymous enum type */

The enumerators listed inside the braces are also known as enum-
eration constants. Each is assigned a fixed integral value. In the
absence of explicit injtializers, the first enumerator (sun) is set to
zero, and each succeeding enumerator is set to one more than its
predecessor (mon =1, tues = 2, and so on).

With explicit integral initializers, you can set one or more enum-
erators to specific values. Any subsequent names without initial-
izers will then increase by one. For example, in the following
declaration,

/* initializer expression can include previously declared
enumerators */
enum coins { penny = 1, tuppence, nickel = penny + 4, dime = 10,
quarter = nickel * nickel } smallchange;

tuppence would acquire the value 2, nickel the value 5, and quarter
the value 25.

The initializer can be any expression yielding a positive or
negative integer value (after possible integer promotions). These
values are usually unique, but duplicates are legal.
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Expressions

enum types can appear wherever int types are permitted.

enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
enum days payday;

typedef enum days DAYS;

DAYS *daysptr;

int 1 = tues;

anyday = mon; // OK
*daysptr = anyday; // OK
mon = tues; // ILLEGAL: mon is a constant

Enumeration tags share the same name space as structure and
union tags. Enumerators share the same name space as ordinary
variable identifiers:

int mon = 11;

{
enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
/* enumerator mon hides outer declaration of int mon */
struct days { int i, j;}; // ILLEGAL: days duplicate tag
double sat; // ILLEGAL: redefinition of sat

}

mon = 12; // back in int mon scope

In C++, enumerators declared within a class are in the scope of
that class.

Table 2.11 shows how
identifiers and operators are
combined fo form
grammatically legal
"phrases.”

The standard conversions are
detailed in Table 2.6 on
page 42.

Chapter 2, Language structure

An expression is a sequence of operators, operands, and -
punctuators that specifies a computation. The formal syntax,
listed in Table 2.11, indicates that expressions are defined
recursively: Subexpressions can be nested without formal limit.
(However, the compiler will report an out-of-memory error if it
can’t compile an expression that is too complex.)

Expressions are evaluated according to certain conversion,
grouping, associativity, and precedence rules which depend on
the operators used, the presence of parentheses, and the data
types of the operands. The way operands and subexpressions are
grouped does not necessarily specify the actual order in which
they are evaluated by Borland C++ (see “Evaluation order” on
page 78).
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Table 2,10
Associativity and

precedence of Borland C++
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- operators

Precedence of each
category is indicated by
order in this table. The first
category (the first line) has
the highest precedence.

Expressions can produce an Ivalue, an rvalue, or no value. Ex-
pressions may cause side effects whether they produce a value or

not.

We've summarized the precedence and associativity of the
operators in Table 2.10. The grammar in Table 2.11 on page 77
completely defines the precedence and associativity of the

operators.

There are sixteen precedence categories, some of which contain
only one operator. Operators in the same category have equal
precedence with each other. Where there are duplicates of
operators in the table, the first occurrence is unary, the second
binary. Each category has an associativity rule: left to right, or
right to left. In the absence of parentheses, these rules resolve the
grouping of expressions with operators of equal precedence.

Operators Associativity
OIL1 — . Left to right
! ~ + = ++ —= & * (typecast) sizeof new delete  Right to left
St Left to right
1 % Left to right
+ - Left to right
<< >> Left to right
< <= > >= Left to right
= l= Left to right
& Left to right
A Left to right
I Left to right
&& Left to right
i Left to right
?: (conditional expression) Right to left
= *z [= %= += —= &= "= |= <<= >>= Right to left
, Left to right
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Table 2.11: Borland C++ expressions

primary-expression:
literal
this (C++ specific)
:2 identifier (C++ specific)
perator-function-name (C++ specific)
qualified-name (C++ specific)
(expression)
name
literal:
integer-constant
character-constant
floating-constant
string-literal

name:
identifier
operator-function-name (C++ specific)
conversion-function-name (C++ specific)
~ class-name
qualified-name (C++ specific)

qualified-name: (C++ specific)
qualified-class-name =3 name

postfix-expression:
primary-expression
postfix-expression | expression |
postfix-expression ( <expression-list> )
simple-type-name  ( <expression-list> ) (C++ specific)
postfix-expression . name
postfix-expression => name
postfix-expression ++
postfix-expression - —

expression-list:
assigniment-expression
expression-list , assignment-expression

unary-expression:
postfix-expression
++ unary-expression
= — unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-name)
allocation-expression (C++ specific)
dealloculian-expression (C++ specific)

unary-operator: one of
.
+

-~ !
allocation-expression: (C++ specific)

<:> new <placement> new-type-name <initializer>
11> new <placement> (type-name) <initializer>

placement: (C++ specific)
(expression-list )

new-type-name: (C++ specific)
type-specifiers <new-declarator>

new-declarator: (C++ specific)
ptr-operator <new-declarator>
new-declarator [ <expression> ]

deallocation-expression: (C++ specific)
> delete cast-expression
> delete [ ] cast-expression

cast-expression:
unary-expression

(type-name) cast-expression

pm-expression:
cast-expression
pm-expression .* cast-expression (C++ specific)
pm-expression —>* cast-expression (C++ specific)

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression | pm-expression
multiplicative-expression % pm-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression — multiplicative-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression:
relational-expression
equality expression == relational-expression
equality expression 1= relational-expression

AND-expression:
equality-expression
AND-expression & equality-expression

exclusive-OR-expression:
AND-expression
exclusive-OR-expression ~ AND-expression

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

logical-OR-expression:
logical-AND-expression
logical-OR-expression I logical-AND-expression

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

assignment-expression:

conditional-expression

unary-expression assignment-operator assignment-expression
assignment-operator: one of

= *= = %= = -

<<= >>= &= Az I=
expression:

assignment-expression

expression, assignment-expression
constant-expression:

conditional-expression

Chapter 2, Language structure
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Expressions and
C++

Evaluation order

C++ allows the overloading of certain standard C operators, as
explained starting on page 136. An overloaded operator is defined
to behave in a special way when applied to expressions of class
type. For instance, the relational operator == might be defined in
the class complex to test the equality of two complex numbers
without changing its normal usage with non-class data types. An
overloaded operator is implemented as a function; this function
determines the operand type, Ivalue, and evaluation order to be
applied when the overloaded operator is used. However,
overloading cannot change the precedence of an operator.
Similarly, C++ allows user-defined conversions between class
objects and fundamental types. Keep in mind, then, that some of
the rules for operators and conversions discussed in this section
may not apply to expressions in C++.

The order in which Borland C++ evaluates the operands of an
expression is not specified, except where an operator specifically
states otherwise. The compiler will try to rearrange the expression
in order to improve the quality of the generated code. Care is
therefore needed with expressions in which a value is modified
more than once. In general, avoid writing expressions that both
modify and use the value of the same object. Consider the
expression

i = v{i++]; // 1 is undefined

The value of i depends on whether i is incremented before or after
the assignment. Similarly,

int total = 0;
sum = (total = 3) + (++total); // sum = 4 or sum = 7 ??

is ambiguous for sum and total. The solution is to revamp the
expression, using a temporary variable:

int temp, total = 0;
temp = ++total;
sum = (total = 3) + temp;

Where the syntax does enforce an evaluation sequence, it is safe to
have multiple evaluations:

sum = (i =3, i++, i++); // OK: sum =4, 1 =5
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Errors and
overflows

See matherr and signal in the

Each subexpression of the comma expression is evaluated from
left to right, and the whole expression evaluates to the rightmost
value.

Borland C++ regroups expressions, rearranging associative and
commutative operators regardless of parentheses, in order to
create an efficiently compiled expression; in no case will the re-
arrangement affect the value of the expression.

You can use parentheses to force the order of evaluation in ex-
pressions. For example, if you have the variables g, b, ¢, and f, then
the expression f = a + (b + ¢) forces (b + ¢) to be evaluated before
adding the result to a.

We've summarized the precedence and associativity of the
operators in Table 2.10. During the evaluation of an expression,
Borland C++ can encounter many problematic situations, such as

Library Reference.  §jyision by zero or out-of-range floating-point values. Integer
overflow is ignored (C uses modulo 2" arithmetic on n-bit
registers), but errors detected by math library functions can be
handled by standard or user-defined routines.

Operator semantics

The Borland C++ operators
described here are the
standard ANSI C operators.

Unless the operators are overloaded, the following information is
true in both C and C++. In C++ you can overload all of these ope-
rators with the exception of . (member operator) and ?: (condi-
tional operator) (and you also can’t overload the C++ operators ::
and .*). "

If an operator is overloaded, the discussion may not be true for it
anymore. Table 2.11 on page 77 gives the syntax for all operators
and operator expressions.

Operator descriptions

Chapter 2, Language structure

Operators are tokens that trigger some computation when applied
to variables and other objects in an expression. Borland C++ is
especially rich in operators, offering not only the common
arithmetical and logical operators, but also many for bit-level
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Overloading is covered
starting on page 135.

The operators # and ## are

used only by the preproces-

80

sor (see page 157).

manipulations, structure and union component access, and
pointer operations (referencing and dereferencing).

C++ extensions offer additional operators for accessing class
members and their objects, together with a mechanism for over-
loading operators. Overloading lets you redefine the action of any
standard operators when applied to the objects of a given class. In
this section, we confine our discussion to the standard operators
of Borland C++.

After defining the standard operators, we discuss data types and
declarations, and explain how these affect the actions of each
operator. From there we can proceed with the syntax for building
expressions from operators, punctuators, and objects.

The operators in Borland C++ are defined as follows:

operator: one of

n 0 . > s -
& * + - ~ !
sizeof / % << >> <

> <= >= == I= A

| && Il ?: = *=
/= %= += -= <<= >>=
&= Az I= , # ##

And the following operators specific to C++:
> —>*
Except for [], (), and ?:, which bracket expressions, the multichar-
acter operators are considered as single tokens. The same operator
token can have more than one interpretation, depending on the

context. For example,

A*B Multiplication

*ptr Dereference (indirection)
A&B Bitwise AND

&A Address operation

int & Reference modifier (C++)
label: Statement label

a?x:y Conditional statement
void func{int n); Function declaration

a = (b+c)*d; Parenthesized expression
a, b, c; Comma expression
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func(a, b, ¢); Function call

Unary operators

Binary operators

Additive operators

Multiplicative operators

Shift operators

Bitwise operators

Logical operators

Assighment operators

Chapter 2, Language stfructure

a = ~b; Bitwise negation (one’s complement)
~func() {delete a;} Destructor (C++)

& Address operator

* Indirection operator

+ Unary plus

- Unary minus

~ Bitwise complement (1’s complement)

! Logical negation

++ Prefix: preincrement; Postfix: postincrement

- Prefix: predecrement; Postfix: postdecrement

+ Binary plus (addition)

- Binary minus (subtraction)

* Multiply

/ Divide

% Remainder

<< Shift left

>> Shift right

& Bitwise AND

A Bitwise XOR (exclusive OR)

| Bitwise inclusive OR

&& Logical AND

1l Logical OR

= Assignment

*= Assign product

I= Assign quotient

Y%= Assign remainder (modulus)

+= Assign sum

Assign difference
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Relational operators

Equality operators

Component selection

82

operators

Class-member
operators

Conditional operator

Comma operator

Postfix and prefix
operators

Array subscript
operator[ ]

<<=

->

-
a?x:y

’

Assign left shift
Assign right shift
Assign bitwise AND
Assign bitwise XOR
Assign bitwise OR

Less than

Greater than

Less than or equal to
Greater than or equal to

Equai to
Not equal to

Direct component selector
Indirect component selector

Scope access/resolution
Dereference pointer to class member
Dereference pointer to class member

“if a then x; else y”

Evaluate; e.g., a, b, c; from left to right

The operator functions, as well as their syntax, precedences, and
associativities, are covered starting on page 75.

The six postfix operators [] () . => ++ and — — are used to build
postfix expressions as shown in the expressions syntax table
(Table 2.11). The increment and decrement operators (++ and —-)
are also prefix and unary operators; they are discussed starting on

page 84.

In the expression

postfix-expression [expression]

either postfix-expression or expression must be a pointer and the
other an integral type.
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Function call
operators ()

Structure/union
member operator
. (dot)

Ivalues are defined on page
26.

Structure/union pointer
operator —>

In C, but not necessarily in C++, the expression exp1[exp?] is
defined as

* ((expl) + (exp2))

where either exp] is a pointer and exp2 is an integer, or exp1 is an
integer and exp2 is a pointer. (The punctuators [ ], *, and + can be
individually overloaded in C++.)

The expression
postfix-expression(<arg-expression-list>)

is a call to the function given by the postfix expression. The arg-
expression-list is a comma-delimited list of expressions of any type
representing the actual (or real) function arguments. The value of
the function call expression, if any, is determined by the return
statement in the function definition. See “Function calls and
argument conversions,” page 64, for more on function calls.

In the expression
postfix-expression . identifier

the postfix expression must be of type structure or union; the
identifier must be the name of a member of that structure or
union type. The expression designates a member of a structure or
union object. The value of the expression is the value of the
selected member; it will be an Ivalue if and only if the postfix
expression is an lvalue. Detailed examples of the use of . and —>
for structures are given on page 67.

In the expression
postfix-expression —> identifier

the postfix expression must be of type pointer to structure or
pointer to union; the identifier must be the name of a member of
that structure or union type. The expression designates a member
of a structure or union object. The value of the expression is the
value of the selected member; it will be an lvalue if and only if the
postfix expression is an lvalue.
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Postfix increment
operator ++

Postfix decrement
operator — -

Increment and
decrement
operators

Prefix increment
operator

Prefix decrement
operator

In the expression
postfix-expression ++

the postfix expression is the operand; it must be of scalar type
(arithmetic or pointer types) and must be a modifiable lvalue (see
page 26 for more on modifiable lvalues). The postfix ++ is also
known as the postincrement operator. The value of the whole
expression is the value of the postfix expression before the
increment is applied. After the postfix expression is evaluated, the
operand is incremented by 1. The increment value is appropriate
to the type of the operand. Pointer types are subject to the rules
for pointer arithmetic.

The postfix decrement, also known as the postdecrement, operator
follows the same rules as the postfix increment, except that 1 is
subtracted from the operand after the evaluation.

The first two unary operators are ++ and — —. These are also
postfix and prefix operators, so they are discussed here. The
remaining six unary operators are covered following this
discussion.

In the expression
++ unary-expression

the unary expression is the operand; it must be of scalar type and
must be a modifiable lvalue. The prefix increment operator is also
known as the preincrement operator. The operand is incremented
by 1 before the expression is evaluated; the value of the whole
expression is the incremented value of the operand. The 1 used to
increment is the appropriate value for the type of the operand.
Pointer types follow the rules of pointer arithmetic.

The prefix decrement, also known as the predecrement, operator
has the following syntax:

- — unary-expression

Borland C++ Programmer’s Guide



Unary operators

Address operator &

The symbol & is also used in
C++ to specify reference
types; see page 105,

It follows the same rules as the prefix increment operator, except
that the operand is decremented by 1 before the whole expression
is evaluated.

The six unary operators (aside from ++and —-) are & * + - ~
and !. The syntax is

unary-operator cast-expression

cast-expression:
unary-expression
(type-name) cast-expression

The & operator and * operator (the * operator is described in the
next section) work together as the referencing and dereferencing
operators. In the expression

& cast-expression

the cast-expression operand must be either a function designator or
an lvalue designating an object that is not a bit field and is not
declared with the register storage class specifier. If the operand is
of type type, the result is of type pointer to type.

Some non-lvalue identifiers, such as function names and array
names, are automatically converted into “pointer to X” types
when appearing in certain contexts. The & operator can be used
with such objects, but its use is redundant and therefore dis-
couraged.

Consider the following extract:

type tl = 1, t2 = 2;
type *ptr = &tl1; // initialized pointer
*ptr = t2; // same effect as tl = t2

type *ptr = &tlis treated as

T *ptr;
ptr = &ti;

so it is ptr, not *ptr, that gets assigned. Once ptr has been
initialized with the address &¢1, it can be safely dereferenced to
give the lvalue *ptr.
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Indirection operator *

Unary plus operator +

Unary minus operator -

86

Bitwise complement
operator ~

Logical negation
operator !

In the expression
* cast-expression

the cast-expression operand must have type “pointer to type,”
where typeis any type. The result of the indirection is of type
type. If the operand is of type “pointer to function,” the resultis a
function designator; if the operand is a pointer to an object, the
result is an lvalue designating that object. In the following
situations, the result of indirection is undefined:

1. The cast-expression is a null pointer.

2. The cast-expression is the address of an automatic variable and
execution of its block has terminated.

In the expression
+ cast-expression

the cast-expression operand must be of arithmetic type. The result
is the value of the operand after any required integral promotions.

In the expression
- cast-expression

the cast-expression operand must be of arithmetic type. The result
is the negative of the value of the operand after any required
integral promotions.

In the expression
~ cast-expression

the cast-expression operand must be of integral type. The result is
the bitwise complement of the operand after any required integral
promotions. Each 0 bit in the operand is set to 1, and each 1 bit in
the operand is set to 0.

In the expression
! cast-expression

the cast-expression operand must be of scalar type. The result is of
type int and is the logical negation of the operand: 0 if the op-
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erand is nonzero; 1 if the operand is zero. The expression /E is
equivalent to (0 == E).

The sizeof
operator  There are two distinct uses of the sizeof operator:

sizeof unary-expression
sizeof (type-name)

How much space is set aside  The result in both cases is an integer constant that gives the size in
for each fypeﬂ?ep enc’lj °N bytes of how much memory space is used by the operand
©maching (Jetermined by its type, with some exceptions). In the first use,

the type of the operand expression is determined without
evaluating the expression (and therefore without side effects).
When the operand is of type char (signed or unsigned), sizeof
gives the result 1. When the operand is a non-parameter of array
type, the result is the total number of bytes in the array (in other
words, an array name is not converted to a pointer type). The
number of elements in an array equals sizeof array/sizeof
array[0].

If the operand is a parameter declared as array type or function
type, sizeof gives the size of the pointer. When applied to
structures and unions, sizeof gives the total number of bytes,
including any padding.

sizeof cannot be used with expressions of function type,
incomplete types, parenthesized names of such types, or with an
Ivalue that designates a bit field object.

The integer type of the result of sizeof is size_t, defined as
unsigned int in stddef.h.

You can use sizeof in preprocessor directives; this is specific to
Borland C++.

@@} In C++, sizeof(classtype), where classtype is derived from some
base class, returns the size of the object (remember, this includes
the size of the base class size).

Multiplicative
operators  There are three multiplicative operators: * / and %. The syntax is

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression

Chapter 2, Language structure 87



88

Rounding is always toward
zero.

Additive
operators

The addition
operator +

multiplicative-expression I cast-expression
multiplicative-expression % cast-expression

The operands for * (multiplication) and / (division) must be of
arithmetical type. The operands for % (modulus, or remainder)
must be of integral type. The usual arithmetic conversions are
made on the operands (see page 41).

The result of (op1 * 0p2) is the product of the two operands. The
results of (op1 / op2) and (op1 % op2) are the quotient and remain-
der, respectively, when op1 is divided by op2, provided that op2 is
nonzero. Use of / or % with a zero second operand results in an
error.

When opl and op2 are integers and the quotient is not an integer,
the results are as follows:

1. If op1 and 0p2 have the same sign, opl / 0p2 is the largest
integer less than the true quotient, and opl % op2 has the sign
of opl.

2. If op1 and op2 have opposite signs, opl / op2 is the smallest
integer greater than the true quotient, and op1 % op2 has the
sign of op1.

There are two additive operators: + and —. The syntax is

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression —~ multiplicative-expression .

The legdl operand types for opl + op2 are

1. Both opl and op2 are of arithmetic type.
2. op1 is of integral type, and op2 is of pointer to object type.
3. op2 is of integral type, and op1 is of pointer to object type.

In case 1, the operands are subjected to the standard arithmetical
conversions, and the result is the arithmetical sum of the
operands. In cases 2 and 3, the rules of pointer arithmetic apply.
(Pointer arithmetic is covered on page 58.)
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The subtraction
operator -

>

Bitwise shift
operators

Bitwise shift operafors
(<< and >>)

The constants ULONG_MAX
and UINT_MAX are defined in
limits.h.

The legal operand types for opl —op2 are

1. Both op1 and op2 are of arithmetic type.

2. Both opl and op2 are pointers to compatible object types. The
unqualified type typeis considered to be compatible with the
qualified types const type, volatile type, and const volatile
type.

3. opl is of pointer to object type, and op2 is integral type.

In case 1, the operands are subjected to the standard arithmetic
conversions, and the result is the arithmetic difference of the
operands. In cases 2 and 3, the rules of pointer arithmetic apply.

There are two bitwise shift operators: << and >>. The syntax is

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

In the expressions E1 << E2 and E1 >> E2, the operands E1 and E2
must be of integral type. The normal integral promotions are
performed on EI and E2, and the type of the result is the type of
the promoted E1. If E2 is negative or is greater than or equal to
the width in bits of E1, the operation is undefined.

The result of E1 << E2 is the value of E1 left-shifted by E2 bit posi-
tions, zero-filled from the right if necessary. Left shifts of an un-
signed long E1 are equivalent to multiplying E1 by 2£2, reduced
modulo ULONG_MAX + 1; left shifts of unsigned ints are
equivalent to multiplying by 252 reduced modulo UINT_MAX + 1.
If E1 is a signed integer, the result must be interpreted with care,
since the sign bit may change.

The result of E1 >> E2 is the value of E1 right-shifted by E2 bit po-
sitions. If E1 is of unsigned type, zero-fill occurs from the left if
necessary. If E1 is of signed type, the fill from the left uses the
sign bit (0 for positive, 1 for negative E1). This sign-bit extension
ensures that the sign of E1 >> E2 is the same as the sign of E1.
Except for signed types, the value of E1 >> E2 is the integral part
of the quotient E1/2E2.
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Relational

“operators

The less-than
operator <

Qualified names are defined

90

onpage 117.

There are four relational operators: < > <= and >=. The syntax
for these operators is:

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

In the expression E1 < E2, the operands must conform to one of
the following sets of conditions:

1. Both E1 and E2 are of arithmetic type.

2. Both ET and E2 are pointers to qualified or unqualified
versions of compatible object types.

3. Both E1 and E2 are pointers to qualified or unqualified
versions of compatible incomplete types.

In case 1, the usual arithmetic conversions are performed. The
result of E1 < E2 is of type int. If the value of EI is less than the
value of E2, the result is 1 (true); otherwise, the result is zero
(false).

In cases 2 and 3, where E1 and E2 are pointers to compatible
types, the result of E1 < E2 depends on the relative locations
(addresses) of the two objects being pointed at. When comparing
structure members within the same structure, the “higher”
pointer indicates a later declaration. Within arrays, the “higher”
pointer indicates a larger subscript value. All pointers to members
of the same union object compare as equal.

Normally, the comparison of pointers to different structure, array,
or union objects, or the comparison of pointers outside the range
of an array object give undefined results; however, an exception is
made for the “pointer beyond the last element” situation as
discussed under “Pointer arithmetic” on page 58. If P points to an
element of an array object, and Q points to the last element, the
expression P < Q + 1 is allowed, evaluating to 1 (true), even
though Q + 1 does not point to an element of the array object.
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The greater-than
operator >

The less-than or equal-
to operator <=

The greater-than or
equal-to operator >=

Equality operators

-

The equal-to
operator ==

The expression E1 > E2 gives 1 (true) if the value of E1 is greater
than the value of E2; otherwise, the result is 0 (false), using the
same interpretations for arithmetic and pointer comparisons, as
defined for the less-than operator. The same operand rules and
restrictions also apply.

Similarly, the expression E1 <= E2 gives 1 (true) if the value of E1
is less than or equal to the value of E2. Otherwise, the result is 0
(false), using the same interpretations for arithmetic and pointer
comparisons, as defined for the less-than operator. The same
operand rules and restrictions also apply.

Finally, the expression E1 >= E2 gives 1 (true) if the value of E1 is
greater than or equal to the value of E2. Otherwise, the result is 0
(false), using the same interpretations for arithmetic and pointer
comparisons, as defined for the less-than operator. The same
operand rules and restrictions also apply.

There are two equality operators: == and !=. They test for equality
and inequality between arithmetic or pointer values, following
rules very similar to those for the relational operators.

However, == and != have a lower precedence than the relational
operators < >, <=, and >=. Also, == and != can compare certain
pointer types for equality and inequality where the relational
operators would not be allowed.

The syntax is

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

In the expression E1 == E2, the operands must conform to one of
the following sets of conditions:

1. Both EI and E2 are of arithmetic type.

2. Both ET and E2 are pointers to qualified or unqualified
versions of compatible types.
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The inequality operator
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Bitwise AND
operator &

3. One of EI and E2 is a pointer to an object or incomplete type,
and the other is a pointer to a qualified or unqualified version
of void.

4. One of E1 or E2 is a pointer and the other is a null pointer
constant.

If E1 and E2 have types that are valid operand types for a
relational operator, the same comparison rules just detailed for E1
< E2, E1 <= E2, and so on, apply.

In case 1, for example, the usual arithmetic conversions are per-
formed, and the result of E1 == E2 is of type int. If the value of EI
is equal to the value of E2, the result is 1 (true); otherwise, the
result is zero (false).

In case 2, E1 == E2 gives 1 (true) if EI and E2 point to the same
object, or both point “one past the last element” of the same array
object, or both are null pointers.

If E1 and E2 are pointers to function types, E1 == E2 gives 1 (true)
if they are both null or if they both point to the same function.
Conversely, if E1 == E2 gives 1 (true), then either E1 and E2 point
to the same function, or they are both null.

In case 4, the pointer to an object or incomplete type is converted
to the type of the other operand (pointer to a qualified or
unqualified version of void).

The expression EI != E2 follows the same rules as those for EI ==
E2, except that the result is 1 (true) if the operands are unequal,
and 0 (false) if the operands are equal.

The syntax is

AND-expression:
equality-expression
AND-expression & equality-expression

In the expression E1 & E2, both operands must be of integral type.
The usual arithmetical conversions are performed on E1 and E2,
and the result is the bitwise AND of E1 and E2. Each bit in the
result is determined as shown in Table 2.12.
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Table 2.12
Bitwise operators truth table

Bitwise exclusive
OR operator A

Bitwise inclusive
OR operator |

Logical AND
operator &&

Bit value Bit value
in E1 in E2 E1 & E2 E1~E2 E11E2
0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 0 1

The syntax is

exclusive-OR-expression:
AND-expression
exclusive-OR-expression » AND-expression

In the expression EI1 * E2, both operands must be of integral type.
The usual arithmetic conversions are performed on E1 and E2,
and the result is the bitwise exclusive OR of E1 and E2. Each bit in
the result is determined as shown in Table 2.12.

The syntax is

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

In the expression E1 | E2, both operands must be of integral type.
The usual arithmetic conversions are performed on E1 and E2,
and the result is the bitwise inclusive OR of E1 and E2. Each bit in
the result is determined as shown in Table 2.12.

The syntax is

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

In the expression E1 && E2, both operands must be of scalar type.
The result is of type int, the result is 1 (true) if the values of E1 and
E2 are both nonzero; otherwise, the result is 0 (false).
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Logical OR
operator | |

Conditional
operator ? ;

In C++, the result is an Ivalue.
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Unlike the bitwise & operator, && guarantees left-to-right
evaluation. E1 is evaluated first; if E1 is zero, E1 && E2 gives 0
(false), and E2 is not evaluated.

The syntax is

logical-OR-expression:
logical-AND-expression
logical-OR-expression Il logical-AND-expression

In the expression E1 Il E2, both operands must be of scalar type.
The result is of type int, and the result is 1 (true) if either of the
values of E1 and E2 are nonzero. Otherwise, the result is 0 (false).

Unlike the bitwise | operator, Il guarantees left-to-right evaluation.
E1 is evaluated first; if E1 is nonzero, E1 Il E2 gives 1 (true), and
E2 is not evaluated.

The syntax is
conditional-expression
logical-OR-expression
logical-OR-expression ? expression : conditional-expression
In the expression E1 ? E2 : E3, the operand E1 must be of scalar

type. The operands E2 and E3 must obey one of the following sets
of rules:

Both of arithmetic type
Both of compatible structure or union types
Both of void type

Both of type pointer to qualified or unqualified versions of
compatible types

One operand of pointer type, the other a null pointer constant

One operand of type pointer to an object or incomplete type,
the other of type pointer to a qualified or unqualified version
of void

=L

o w

First, E1 is evaluated; if its value is nonzero (true), then E2 is eval-
uated and E3 is ignored. If E1 evaluates to zero (false), then E3 is
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evaluated and E2 is ignored. The result of E1 ? E2 : E3 will be the
value of whichever of E2 and E3 is evaluated.

In case 1, both E2 and E3 are subject to the usual arithmetic con-
versions, and the type of the result is the common type resultmg
from these conversions.

In case 2, the type of the result is the structure or union type of E2
and E3.

In case 3, the result is of type void.

In cases 4 and 5, the type of the result is pointer to a type qualified
with all the type qualifiers of the types pointed to by both
operands.

In case 6, the type of the result is that of the nonpointer-to-void
operand.

Assignment
operators  There are eleven assignment operators. The = operator is the
simple assignment operator; the other ten are known as
compound assignment operators.

The syntax is

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

= *— /: %: += —_—
<<= >>= &= M= |=

The simple assignment  In the expression E1 = E2, E1 must be a modifiable Ivalue. The
operator = value of E2, after conversion to the type of E1, is stored in the
object designated by E1 (replacing E1’s previous value). The value
of the assignment expression is the value of E1 after the
assignment. The assignment expression is not itself an lvalue.

In C++, the resultis an Ivalue.  The operands E1 and E2 must obey one of the following sets of
rules:

1. E1is of qualified or unqualified arithmetic type and E2 is of
arithmetic type.
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The compound
assignment operators

Comma operator

In C++, the result is an Ilvalue.
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2. E1 has a qualified or unqualified version of a structure or
union type compatible with the type of E2.

3. E1 and E2 are pointers to qualified or unqualified versions of
compatible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right.

4. One of E1 or E2 is a pointer to an object or incomplete type
and the other is a pointer to a qualified or unqualified version
of void. The type pointed to by the left has all the qualifiers of
the type pointed to by the right.

5. E1is a pointer and E2 is a null pointer constant.

The compound assignments op=, where op can be any one of the
ten operator symbols * / % + — << >> & * |, are interpreted as
follows:

E1 0p= E2
has the same effect as
El1=ElopE2

except that the lvalue E1 is evaluated only once. For example, E1
+= E2 is the same as E1 = E1 + E2.

The rules for compound assignment are therefore covered in the
previous section (on the simple assignment operator =).

The syntax is

expression:
assignment-expression
expression , assignment-expression

In the comma expression
E1,E2

the left operand E1 is evaluated as a void expression, then E2 is
evaluated to give the result and type of the comma expression. By
recursion, the expression

E1,E2,...,En

results in the left-to-right evaluation of each Ei, with the value
and type of En giving the result of the whole expression. To avoid
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C++ operators

See page 108 for information
on the scope access
operator (::).

Statements

ambiguity with the commas used in function argument and
initializer lists, parentheses must be used. For example,

func(i, (3 =1, 3 + 4), k);

calls func with three arguments, not four. The arguments are i, 5,
and k.

The operators specific to C++ are :: .* =>*. The syntax for the .*
and ->* operators is as follows:

pm-expression

cast-expression

pm expression * cast-expression

pm expression —>* cast-expression
The .* operator dereferences pointers to class members. It binds
the cast-expression, which must be of type “pointer to member of
class type”, to the pm-expression, which must be of class type or of a
class publicly derived from class type. The result is an object or
function of the type specified by the cast-expression.

The —>* operator dereferences pointers to pointers to class
members (no, that isn’t a typo; it does indeed dereference pointers
to pointers). It binds the cast-expression, which must be of type
“pointer to member of type,” to the pm-expression, which must be
of type pointer to type or of type “pointer to class publicly derived
from type.” The result is an object or function of the type specified
by the cast-expression.

If the result of either of these operators is a function, you can only
use that result as the operand for the function call operator (). For
example,

(ptr2object->*ptr2memberfunc) (10);

calls the member function denoted by ptr2memberfunc for the
object pointed to be ptr2object.

Statements specify the flow of control as a program executes. In
the absence of specific jump and selection statements, statements
are executed sequentially in the order of appearance in the source
code. Table 2.13 on page 98 lays out the syntax for statements:
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Blocks

A compound statement, or block, is a list (possibly empty) of state-
ments enclosed in matching braces ({ }). Syntactically, a block can
be considered to be a single statement, but it also plays a role in
the scoping of identifiers. An identifier declared within a block
has a scope starting at the point of declaration and ending at the
closing brace. Blocks can be nested to any depth.

Table 2.13: Borland C++ statements

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
asm-statement
declaration (C++ specific)

asm-statement:
asm fokens newline
asm fokens;
asm {tokens; <tokens;>=
<tokens;>

}

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

compound-statement:
{ <declaration-list> <statement-list> }

declaration-list:
declaration

declaration-list declaration

statement-list:
statement
statement-list statement

expression-statement:
<expression> ;

selection-statement:
if (expression ) statement
if (expression ) statement else statement
switch ( expression ) statement

iteration-statement:
while ( expression ) statement
do statement while (expression);
for (for-init-statement <expression> ; <expression>) statement

for-init-statement
expression-statement
declaration (C++ specific)

Jump-statement:
goto identifier ;
continue ;
break ;
return <expression> ;

Labeled

statements A statement can be labeled in the following ways:

1. Iabel-identifier : statement

98

The label identifier serves as a target for the unconditional
goto statement. Label identifiers have their own name space
and enjoy function scope. In C++ you can label both
declaration and non-declaration statements.

case constant-expression : statement
default : statement

Case and default labeled statements are used only in
conjunction with switch statements.
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Expression

stafements  Any expression followed by a semicolon forms an expression
statement:

<expression>;

Borland C++ executes an expression statement by evaluating the
expression. All side effects from this evaluation are completed
before the next statement is executed. Most expression statements
are assignment statements or function calls.

A special case is the null statement, consisting of a single semicolon
(;). The null statement does nothing. It is nevertheless useful in
situations where the Borland C++ syntax expects a statement but
your program does not need one.

Selection

stfatements Selection or flow-control statements select from alternative
courses of action by testing certain values. There are two types of
selection statements: the if...else and the switch.

if statements  The basic if statement has the following pattern:

The parentheses around if (cond-expression) t-st <else f-st>
cond-expression are ) L
essential.  The cond-expression must be of scalar type. The expression is eval-

uated. If the value is zero (or null for pointer types), we say that
the cond-expression is false; otherwise, it is true.

If there is no else clause and cond-expression is true, t-st is
executed; otherwise, f-st is ignored.

If the optional else f-st is present and cond-expression is true, t-st is
executed; otherwise, t-st is ignored and f-st is executed.

@ Unlike, say, Pascal, Borland C++ does not have a specific Boolean
data type. Any expression of integer or pointer type can serve a
Boolean role in conditional tests. The relational expression (a > b)
(if legal) evaluates to int 1 (true) if (a > b), and to int 0 (false) if
(a <= b). Pointer conversions are such that a pointer can always be
correctly compared to a constant expression evaluating to 0. That
is, the test for null pointers can be written if (!ptr)... or
if (ptr == 0)....
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switch statements

Itis ilegal to have duplicate
case constants in the same
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switch statement.

The f-st and t-st statements can themselves be if statements, allow-
ing for a series of conditional tests nested to any depth. Care is
needed with nested if...else constructs to ensure that the correct
statements are selected. There is no endif statement: Any “else”
ambiguity is resolved by matching an else with the last
encountered if-without-an-else at the same block level. For
example,

if (x == 1)
if (y == 1) puts("x=1 and y=1");
else puts("x != 1");

draws the wrong conclusion! The else matches with the second if,
despite the indentation. The correct conclusion is that x = 1 and y
!=1. Note the effect of braces:

if (x == 1)
{

if (y == 1) puts("x = 1 and y = 1");
}

else puts("x != 1"); // correct conclusion

The switch statement uses the following basic format:
switch (sw-expression) case-st

A switch statement lets you transfer control to one of several
case-labeled statements, depending on the value of sw-expression.
The latter must be of integral type (in C++, it can be of class type,
provided that there is an unambiguous conversion to integral
type available). Any statement in case-st (including empty
statements) can be labeled with one or more case labels:

case const-exp-i : case-st-i

where each case constant, const-exp-i, is a constant expression with
a unique integer value (converted to the type of the controlling
expression) within its enclosing switch statement.

There can also be at most one default label:
default : default-st

After evaluating sw-expression, a match is sought with one of the
const-exp-i. If a match is found, control passes to the statement
case-st-i with the matching case label.

If no match is found and there is a default label, control passes to
default-st. If no match is found and there is no default label, none
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of the statements in case-st is executed. Program execution is not
affected when case and default labels are encountered. Control
simply passes through the labels to the following statement or
switch. To stop execution at the end of a group of statements for a
particular case, use break.

[teration

statements Iteration statements let you loop a set of statements. There are
three forms of iteration in Borland C++: while, do, and for loops.

while statements The general format for this statement is

The parentheses are while (cond-exp) t-st
essential.

The loop statement, t-st, will be executed repeatedly until the
conditional expression, cond-exp, compares equal to zero (false).

The cond-exp is evaluated and tested first (as described on page
99). If this value is nonzero (true), t-st is executed; if no jump
statements that exit from the loop are encountered, cond-exp is
evaluated again. This cycle repeats until cond-exp is zero.

As with if statements, pointer type expressions can be compared
with the null pointer, so that while (ptr)... is equivalent to

while (ptr != NULL)...

The while loop offers a concise method for scanning strings and
other null-terminated data structures:

char str({10}="Borland";

char *ptr=&str(0);

int count=0;

..

while {(*ptr++) // loop until end of string
count++;

In the absence of jump statements, t-st must affect the value of
cond-exp in some way, or cond-exp itself must change during
evaluation in order to prevent unwanted endless loops.

do while statements The general format is
do do-st while (cond-exp);

The do-st statement is executed repeatedly until cond-exp
compares equal to zero (false). The key difference from the while
statement is that cond-exp is tested after, rather than before, each
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for statements

For C++, <init-exp> can be
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an expression or a
declaration.

&>

execution of the loop statement. At least one execution of do-st is
assured. The same restrictions apply to the type of cond-exp
(scalar).

The for statement format in C is

for (<init-exp>; <test-exp>; <increment-exp>) statement

The sequence of events is as follows:

1. The initializing expression init-exp, if any, is executed. As the

name implies, this usually initializes one or more loop
counters, but the syntax allows an expression of any degree of
complexity (including declarations in C++). Hence the claim
that any C program can be written as a single for loop. (But
don’t try this at home. Such stunts are performed by trained
professionals.)

. The expression test-exp is evaluated following the rules of the

while loop. If test-exp is nonzero (true), the loop statement is
executed. An empty expression here is taken as while (1), that
is, always true. If the value of fest-exp is zero (false), the for
loop terminates.

. increment-exp advances one or more counters.
. The expression statement (possibly empty) is evaluated and

control returns to step 2.

If any of the optional elements are empty, appropriate semicolons
are required:

for (;;) { // same as for (; 1;)
// loop forever

}

The C rules for for statements apply in C++. However, the init-exp
in C++ can also be a declaration. The scope of a declared identifier
extends through the enclosing loop. For example,

for (int 1 = 1; 1 < j; ++1)
( )

if (1...) ... // ok to refer to i here
}

if (i...) // illegal; 1 is now out of scope
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Jump statements

A jump statement, when executed, transfers control uncondition-
ally. There are four such statements: break, continue, goto, and
return.

break stafements  The syntax is
break;

A break statement can be used only inside an iteration (while, do,
and for loops) or a switch statement. It terminates the iteration or
switch statement. Since iteration and switch statements can be
intermixed and nested to any depth, take care to ensure that your
break exits from the correct loop or switch. The rule is that a
break terminates the nearest enclosing iteration or switch
statement.

continue statements  The syntax is
continue;

A continue statement can be used only inside an iteration
statement; it transfers control to the test condition for while and
do loops, and to the increment expression in a for loop.

With nested iteration loops, a continue statement is taken as
belonging to the nearest enclosing iteration.

goto statements The syntax is
goto label;

The goto statement transfers control to the statement labeled label
(see “Labeled statements,” page 98), which must be in the same
function.

@..j} In C++, it is illegal to bypass a declaration having an explicit or
implicit initializer unless that declaration is within an inner block
that is also bypassed.
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return statements

Unless the function return type is void, a function body must
contain at least one return statement with the following format:

return return-expression;

where return-expression must be of type type or of a type that is
convertible to type by assignment. The value of the return-
expression is the value returned by the function. An expression
that calls the function, such as func(actual-arg-list), is an rvalue
of type type, not an lvalue:

t = func(arg); // 0K

func(arg) = t; /* illegal in C; legal in C++ if return type of
func is a reference */

(func(arg))++; /* illegal in C; legal in C++ if return type of

func is a reference */

The execution of a function call terminates if a return statement is
encountered; if no return is met, execution “falls through,” ending
at the final closing brace of the function body.

- If the return type is void, the return statement can be written as

{
return;
}

with no return expression; alternatively, the return statement can
be omitted.
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Referencing

C++ specifics

C++ is basically a superset of C. This means that, generally
speaking, you can compile C programs under C++, but you can’t
compile a C++ program under C if the program uses any
constructs peculiar to C++. Some situations need special care. For
example, the same function func declared twice in C with
different argument types will invoke a duplicated name error.
Under C++, however, func will be interpreted as an overloaded
function—whether this is legal or not will depend on other
circumstances.

Although C++ introduces new keywords and operators to handle
classes, some of the capabilities of C++ have applications outside
of any class context. We first review these aspects of C++ that can
be used independently of classes, then get into the specifics of
classes and class mechanisms.

Pointer referencing and
dereferencing is discussed on
page 85.

Chapter 3, C++ specifics

While in C you pass arguments only by value, in C++ you can

‘pass arguments by value or by reference. C++ reference types,

which are closely related to pointer types, create aliases for objects
and let you pass arguments to functions by reference.
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Simple references

Note that type& var, type

&var, and type & var are all
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equivalent.

Reference
arguments

The reference declarator can be used to declare references outside
functions:

int i =0;
int &ir = 1; // ir is an alias for i
ir = 2; // same effect as i =2

This creates the lvalue ir as an alias for i, provided that the
initializer is the same type as the reference. Any operations on ir
have precisely the same effect as operations on i. For example,
ir = 2 assigns 2 to i, and &ir returns the address of i.

The reference declarator can also be used to declare reference type
parameters within a function:

void funcl (int 1i);

void func2 {int &ir); // ir is type "reference to int"
int sum=3;

funcl (sum); // sum passed by value

func2 (sum) ; // sum passed by reference

The sum argument passed by reference can be changed directly by
func2. On the other hand, func1 gets a copy of the sum argument
(passed by value), so sum itself cannot be altered by func1.

When an actual argument x is passed by value, the matching
formal argument in the function receives a copy of x. Any changes
to this copy within the function body are not reflected in the value
of x itself. Of course, the function can return a value that could be
used later to change x, but the function cannot directly alter a pa-
rameter passed by value.

The C method for changing x uses the actual argument &x, the
address of &x, rather than &x itself. Although &x is passed by value,
the function can access &x through the copy of &x it receives. Even
if the function does not need to change ¥, it is still useful (though
subject to possibly dangerous side effects) to pass &x, especially if
x is a large data structure. Passing x directly by value involves the
wasteful copying of the data structure.

Compare the three implementations of the function treble:
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Implementation 1

Implementation 2

Implementation 3

Chapfer 3, C++ specifics

int treble_1(n)
{

return 3*n;
}
int x, 1 = 4;
X = treble_1(i); // xnow = 12, 1 =4

void treble_2{int* np)
{

*np = (*np)*3;
}
treble_2(int &i); // 1 now = 12
void treble_3{int& n) // n is a reference type'
{ |
n = 3*n;
\
}
treble_3(i); // 1 now = 36

The formal argument declaration type& t (or equivalently, type &t)
establishes ¢ as type “reference to type.” So, when treble_3 is

called with the real argument i, i is used to initialize the formal

reference argument 7. n therefore acts as an alias for 7, so that (
n = 3*nalso assigns 3 * i to 1. [

If the initializer is a constant or an object of a different type than
the reference type, Borland C++ creates a temporary object for
which the reference acts as an alias: - (

int& ir = 6; /* temporary int object created, aliased by ir, gets
value 6 */

float f;

int& ir2 = f; /* creates temporary int object aliased by ir2; f
converted before assignment */

ir2 = 2.0 // ir2 now = 2, but f is unchanged

The automatic creation of temporary objects permits the conver-
sion of reference types when formal and actual arguments have
different (but assignment-compatible) types. When passing by
value, of course, there are fewer conversion problems, since the
copy of the actual argument can be physically changed before
assignment to the formal argument.

107



Scope access operator

This code also works if the
“global” i is a file-level static.

The scope access (or resolution) operator :: (two semicolons) lets
you access a global (or file duration) name even if it is hidden by a
local redeclaration of that name (see page 27 for more on scope):

int i; // global i

void func(void);

{

int i=0; // local i hides global i
1=3; // this i is the local 1
il o= 4 // this i is the global i
printf ("%d",i); // prints out 3

}

The :: operator has other uses with class types, as discussed
throughout this chapter.

The new and delete operators
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The new and delete operators offer dynamic storage allocation
and deallocation, similar but superior to the standard library
functions in the malloc and free families (see the Library Refer-
ence).

A simplified syntax is

pointer-to-name = new name <name-initializer>;
delete pointer-to-name;

name can be of any type except “function returning...” (however,
pointers to functions are allowed).

new tries to create an object of type name by allocating (if possible)
sizeof(name) bytes in free store (also called the heap). The storage
duration of the new object is from the point of creation until the
operator delete kills it by deallocating its memory, or until the
end of the program.

If successful, new returns a pointer to the new object. A null
pointer indicates a failure (such as insufficient or fragmented heap
memory). As with malloc, you need to test for null before trying
to access the new object (unless you use a new-handler; see the
following section for details). However, unlike malloc, new
calculates the size of name without the need for an explicit sizeof
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operator. Further, the pointer returned is of the correct type,
“pointer to name,” without the need for explicit casting.

new, being a keyword, name *nameptr; // name is any nonfunction type
doesn’t need a prototype.

if (!(nameptr = new name)) {
errmsg("Insufficient memory for name");
exit (1);

}

// use *nameptr to initialize new name object

delete nameptr; // destroy name and deallocate sizeof (name) bytes

Handling errors

You can define a function that will be called if the new operator

fails (returns 0). To tell the new operator about the new-handler

function, call set_new_handler and supply a pointer to the new-
handler. The prototype for set_new_handler is as follows (from

new.h):

void {*set_new_handler( void (*)() ))();

set_new_handler returns the old new-handler, and changes the
function _new_handler so that it, in turn, points to the new-
handler that you define.

- The operator new

With QrrQys  1f name is an array, the pointer returned by new points to the first
element of the array. When creating multidimensional arrays with
new, all array sizes must be supplied (although the left-most
dimension doesn’t have to be a compile-time constant):

mat_ptr = new int{3]([10]({12); // OK
mat_ptr = new int[n][10][12}; // OK
mat_ptr = new int[3][][12]; // illegal
mat_ptr = new int[][10][12]; // illegal

Although the first array dimension may be a variable, all
following dimensions must be constants.

The operator

delete with arrays  You must use the syntax “delete [] expr” when deleting an array.
’ In C++ 21, the array dimension should not be specified within the
brackets:
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char * p;

void func()

{
p = new char[10]; // allocate 10 chars
delete(] p; // delete 10 chars

}

C++ 2.0 code required the array size. In order to allow 2.0 code to
compile, Borland C++ issues a warning and simply ignores any
size that is specified. For example, if the preceding example reads
delete[10] p and is compiled, the warning is as follows:

Warning: Array size for ’delete’ ignored in function func()

With Borland C++, the [] is actually only required when the array
element is a class with a destructor. But it is good programming
practice to always tell the compiler that an array is being deleted.

The ::operator

NeW When used with non-class objects, new works by calling a stand-
ard library routine, the global ::operator new. With class objects of
type name, a specific operator called name::operator new can be
defined. new applied to class name objects invokes the appropriate
name::operator new if present; otherwise, the standard ::operator
new is used.

Initializers with the

New Operator The optional initializer is another advantage new has over malloc
(although calloc does clear its allocations to zero). In the absence
of explicit initializers, the object created by new contains unpre-
dictable data (garbage). The objects allocated by new, other than
arrays, can be initialized with a suitable expression between
parentheses:

int_ptr = new int(3);

Arrays of classes with constructors are initialized with the default
constructor (see page 126). The user-defined new operator with
customized initialization plays a key role in C++ constructors for
class-type objects.
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Class names

Class types
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C++ classes offer extensions to the predefined type system. Each
class type represents a unique set of objects and the operations
(methods) and conversions available to create, manipulate, and
destroy such objects. Derived classes can be declared that inherit
the members of one or more base (or parent) classes.

In C++, structures and unions are considered as classes with
certain access defaults.

A simplified, “first-look” syntax for class declarations is
class-key class-name <: base-list> { <member-list> }
class-key is one of class, struct, or union.

The optional base-list lists the base class or classes from which the
class class-name will derive (or inherit) objects and methods. If any
base classes are specified, the class class-nameis called a derived
class (see page 120, “Base and derived class access”). The base-list
has default and optional overriding access specifiers that can
modify the access rights of the derived class to members of the
base classes (see page 118, “Member access control”).

The optional member-list declares the class members (data and
functions) of class-name with default and optional overriding
access specifiers that may affect which functions can access which
members.

class-name is any identifier unique within its scope. With
structures, classes, and unions, class-name can be omitted (see
“Untagged structures and typedefs,” page 66.)

The declaration creates a unique type, class type class-name. This
lets you declare further class objects (or instances) of this type, and
objects derived from this type (such as pointers to, references to,
arrays of class-name, and so on):

class X { ... };

X X, &Xr, *xptr, xarray(10];

/* four objects: type X, reference to X, pointer to X and array of
X*/
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Class name
scope

struct Y { ... };

Yy, &r, *yptr, varray{10];

// C would have

// struct Yy, *yptr, yarray[10];

union Z { ... }:

Z z, &zr, *zptr, zarray[10];

// C would have

// union Z z, *zptr, zarray[l10];

Note the difference between C and C++ structure and union dec-
larations: The keywords struct and union are essential in C, but in
C++ they are needed only when the class names, Y and Z, are
hidden (see the following section).

The scope of a class name is local, with some tricks peculiar to
classes. Class name scope starts at the point of declaration and
ends with the enclosing block. A class name hides any class,
object, enumerator, or function with the same name in the enclos-
ing scope. If a class name is declared in a scope containing the
declaration of an object, function, or enumerator of the same
name, the class can only be referred to using the elaborated type
specifier. This means that the class key, class, struct, or union must
be used with the class name. For example,

struct S { ... };
int S(struct S *Sptr);

void func(void)

{

S t; // ILLEGAL declaration: no class key
// and function S in scope

struct S s; // OK: elaborated with class key

S(&s); // OK: this is a function call

}

C++ also allows an incomplete class declaration:
class X; // no members, yet!

Incomplete declarations permit certain references to class name X
(usually references to pointers to class objects) before the class has
been fully defined (see “Structure member declarations,” page
66). Of course, you must make a complete class declaration with
members before you can define and use class objects.
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Member
functions

The keyword this
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Class objects can be assigned (unless copying has been restricted),

‘passed as arguments to functions, returned by functions (with

some exceptions), and so on. Other operations on class objects and
members can be user-defined in many ways, including member
and friend functions, and the redefinition of standard functions
and operators when used with objects of a certain class. Redefined
functions and operators are said to be overloaded. Operators and
functions that are restricted to objects of a certain class (or related
group of classes) are called member functions for that class. C++
offers a mechanism whereby the same function or operator name
can be called to perform different tasks, depending on the type or
number of arguments or operands.

The optional member-list is a sequence of data declarations (of any
type, including enumerations, bit fields and other classes) and
function declarations and definitions, all with optional storage
class specifiers and access modifiers. The objects thus defined are
called class members. The storage class specifiers auto, extern, and
register are not allowed. Members can be declared with the static
storage class specifiers.

A function declared without the friend specifier is known as a
member function of the class. Functions declared with the friend
modifier are called friend functions.

The same name can be used to denote more than one function,
provided that they differ in argument type or number of
arguments.

Nonstatic member functions operate on the class type object with
which they are called. For example, if x is an object of class X and f
is a member function of X, the function call x.£() operates on x.
Similarly, if xptr is a pointer to an X object, the function call
xptr->f() operates on *xptr. But how does f know which x it is
operating on? C++ provides f with a pointer to x called this. this is
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Inline functions

passed as a hidden argument in all calls to nonstatic member
functions.

The keyword this is a local variable available in the body of any
nonstatic member function. this does not need to be declared and
is rarely referred to explicitly in a function definition. However, it
is used implicitly within the function for member references. If
x.f(y) is called, for example, where y is a member of X, this is set to
&x and y is set to this->y, which is equivalent to x.y.

You can declare a member function within its class and define it
elsewhere. Alternatively, you can both declare and define a
member function within its class, in which case it is called an
inline function.

Borland C++ can sometimes reduce the normal function call
overhead by substituting the function call directly with the
compiled code of the function body. This process, called an inline
expansion of the function body, does not affect the scope of the
function name or its arguments. Inline expansion is not always
possible or feasible. The inline specifier is a request (or hint) to the
compiler that you would welcome an inline expansion. As with
the register storage class specifier, the compiler may or may not
take the hint!

Explicit and implicit inline requests are best reserved for small,

frequently used functions, such as the operator functions that im-
plement overloaded operators. For example, the following class
declaration:

int 1; // global int

class X {

public:
char* func(void) { return i; } // inline by default
char* i;

b
is equivalent to:
inline char* X::func(void) { return i; }

func is defined “outside” the class with an explicit inline specifier.
The i returned by func is the char* i of class X—see the section on

member scope starting on page 116.
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The storage class specifier static can be used in class declarations
of data and function members. Such members are called static
members and have distinct properties from nonstatic members.
With nonstatic members, a distinct copy “exists” for each object in
its class; with static members, only one copy exists, and it can be
accessed without reference to any particular object in its class. If x
is a static member of class X, it can be referenced as X::x (even if
objects of class X haven’t been created yet). It is still possible to
access x using the normal member access operators. For example,
y.x and yptr->x, where y is an object of class X and yptr is a pointer
to an object of class X, although the expressions y and yptr are not
evaluated. In particular, a static member function can be called
with or without the special member function syntax:

class X {

int member_int;
public:

static void func(int i, X* ptr);
}i

void g(void);

{

X obj;

func(l, &obj); // error unless there is a global func()
// defined elsewhere

X::func(l, &obj); // calls the static func{) in X

// OK for static functions only
obj.func(l, &obj); // so does this (OK for static and
// nonstatic functions)

)

Since a static member function can be called with no particular
object in mind, it has no this pointer. A consequence of this is that
a static member function cannot access nonstatic members
without explicitly specifying an object with . or —>. For example,
with the declarations of the previous example, func might be
defined as follows:

void X::func(int i, X* ptr)
{

member_int = i; // which object does member_int
// refer to? Error
ptr->member_int = i; // OK: now we know!
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Member scope

Apart from inline functions, static member functions of global
classes have external linkage. Static member functions cannot be
virtual functions. It is illegal to have a static and nonstatic
member function with the same name and argument types.

The declaration of a static data member in its class declaration is
not a definition, so a definition must be provided elsewhere to
allocate storage and provide initialization.

Static members of a class declared local to some function have no
linkage and cannot be initialized. Static members of a global class
can be initialized like ordinary global objects, but only in file
scope. Static members obey the usual class member access rules,
except they can be initialized.

class X {
static int x;

i

int X::ix = 1;
The main use for static members is to keep track of data common
to all objects of a class, such as the number of objects created, or
the last-used resource from a pool shared by all such objects.
Static members are also used to
m reduce the number of visible global names

m make obvious which static objects logically belong to which
class

® permit access control to their names

The expression X::func() in the example on page 114 uses the class
name X with the scope access modifier to signify that func,
although defined “outside” the class, is indeed a member function
of X, and it exists within the scope of X. The influence of X::
extends into the body of the definition. This explains why the i
returned by func refers to X::i, the char* i of X, rather than the
global int i. Without the X:: modifier, the function fune would rep-
resent an ordinary non-class function, returning the global int i.

All member functions, then, are in the scope of their class, even if
deﬁned 011I-e1'r]a tho flace

ULOIUT ulic Lidoo.
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Data members of class X can be referenced using the selection op-
erators . and —> (as with C structures). Member functions can also
be called using the selection operators (see also “The keyword
this,” page 113). For example,

class X {

public:
int i;
char name[20];
X *ptrl;
X *ptr2;
void Xfunc(char*data, X* left, X* right); // define elsewhere
)i
void f(void);
{
X x1, x2, *xptr=&xl;

x1.1 = 0;
x2.1 = Xl.i;
xptr->i = 1;

x1l.Xfunc{"stan", &x2, xptr);
}

If m is a member or base member of class X, the expression X: :mis
called a qualified name; it has the same type as m, and it is an lvalue
only if m is an lvalue. A key point is that even if the class name X
is hidden by a non-type name, the qualified name X::m will access
the correct class member, m.

Class members cannot be added to a class by another section of
your program. The class X cannot contain objects of class X, but
can contain pointers or references to objects of class X (note the
similarity with C’s structure and union types).

In C++ 2.1, even tag or typedef names declared inside a class
lexically belong to the scope of that class. Such names can in
general be accessed only using the xxx::yyy notation, except when
in the scope of the appropriate class.

A class declared within another class is called a nested class. Its
name is local to the enclosing class; the nested class is in the scope
of the enclosing class. This is purely lexical nesting. The nested
class has no additional privileges in accessing members of the
enclosing class (and vice versa).

Classes can be nested in this way to an arbitrary level. For
example:
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Member access
control

Friend function declarations
are not affected by access
specifiers (see “Friends of
classes,” page 122).
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struct outer

{

typedef int t; // 'outer::t’ is a typedef name

struct inner //'outer::inner’ is a class

{

static int x;
}i
static int x;
int £();
I

int outer::x; //define static data member

int outer::f()
{

t x; // 't’ visible directly here

return X;

}

int outer::inner::x; //define static data member

outer::t x; // have to use ’'outer::t’' here

With C++ 2.0, any tags or typedef names declared inside a class
actually belong to the global (file) scope. For example:

struct foo
{

enum bar { x }; // 2.0 rules: 'bar’ belongs to file scope

// 2.1 rules: 'bar’ belongs to ’'foo’ scope
b

bar x;

The preceding fragment compiles without errors. But, because the
code is illegal under the 2.1 rules, a warning is issued as follows:

Warning: Use qualified name to access nested type ’foo::bar’

Members of a class acquire access attributes either by default (de-
pending on class key and declaration placement) or by the use of
one of the three access specifiers: public, private, and protected.

The significance of these attributes is as follows:
public The member can be used by any function.

private The member can be used only by member functions

and friends of the class in which it is declared.
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protected Same as for private, but additionally, the member can
be used by member functions and friends of classes
derived from the declared class, but only in objects of
the derived type. (Derived classes are explained in the
next section.)

Members of a class are private by default, so you need explicit
public or protected access specifiers to override the default.

Members of a struct are public by default, but you can override
this with the private or protected access specifier.

Members of a union are public by default; this cannot be changed.
All three access specifiers are illegal with union members.

A default or overriding access modifier remains effective for all
subsequent member declarations until a different access modifier
is encountered. For example,

class X {
int 1;
char ch;
public:
int j;
int k;
protected:
int 1;

}i

struct Y {
int 1i;
private:
int j;
public:
int k;
}i

union Z {
int 1i;
double d;
i

// X::1 is private by default

/

/

/

/

/

/

/

/

/

/

/

/

/

~

so is X::ch

next two are public

X::1 1s protected

Y::1 is public by default
Y::j is private

Y::k is public

public by default; no other choice

The access specifiers can be listed and grouped in any convenient
sequence. You can save a little typing effort by declaring all the
private members together, and so on.

Chapter 3, C++ specifics
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Base and derived
class access

Since a base class can itself
be a derived class, the
access attribute question is
recursive: You backtrack until
you reach the basest of the
base classes, those that do
not inherit.

Unions cannot have base
classes, and unions cannot
be used as base classes.
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When you declare a derived class D, you list the base classes B1,
B2, ... in a comma-delimited base-list:

class-key D : base-list { <member-list> }

D inherits all the members of these base classes. (Redefined base
class members are inherited and can be accessed using scope
overrides, if needed.) D can use only the public and protected
members of its base classes. But, what will be the access attributes
of the inherited members as viewed by D? D may want to use a
public member from a base class, but make it private as far as
outside functions are concerned. The solution is to use access
specifiers in the base-list.

When declaring D, you can use the access specifier public,
protected, or private in front of the classes in the base-list:

class D : public Bl, private B2, ... {

}

These modifiers do not alter the access attributes of base members
as viewed by the base class, though they can alter the access
attributes of base members as viewed by the derived class.

The default is private if D is a class declaration, and public if D is
a struct declaration.

The derived class inherits access attributes from a base class as
follows:

public base class: public members of the base class are public
members of the derived class. Protected
members of the base class are protected
members of the derived class. Private
members of the base class remain private to

the base class.

protected base class: Both public and protected members of the
base class are protected members of the
derived class. Private members of the base

class remain private to the base class.

private base class:  Both public and protected members of the

base class are private members of the
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derived class. Private members of the base
class remain private to the base class.

In both cases, note carefully that private members of a base class
are, and remain, inaccessible to member functions of the derived
class unless friend declarations are explicitly declared in the base
class granting access. For example,

class X : A { // default for class is private A

}

/* class X is derived from class A */

class Y : B, public C { // override default for C

}
/* class Y is derived (multiple inheritance) from B and C
B defaults to private B */

struct S : D { // default for struct is public D
e /* struct S is derived from D */
}
struct T : private D, E { // override default for D

// E is public by default

}
/* struct T is derived (multiple inheritance) from D and E
E defaults to public E */

The effect of access specifiers in the base list can be adjusted by
using a qualified-name in the public or protected declarations in the
derived class. For example,

class B {

int a; // private by default
public:

int b, c;

int Bfunc(void);
bi

class X : private B { // a, b, c, Bfunc are now private in X
int d; // private by default, NOTE: a is not
// accessible in X
public:
B::c; // ¢ was private, now is public
int e;
int Xfunc(void);
}i

int Efunc(X& x); // external to B and X
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The function Efunc can use only the public names ¢, e, and Xfunc.

The function Xfune is in X, which is derived from private B, so it
has access to

m The “adjusted-to-public” ¢ _
m The “private-to-X” members from B: b and Bfunc
m X’s own private and public members: 4, e, and Xfunc

However, Xfunc cannot access the “private-to-B” member, 4.

Virtual base classes

With multiple inheritance, a base class can’t be specified more
than once in a derived class:

class B { ...};
class D : B, B{ ... }; // Illegal

However, a base class can be indirectly passed to the derived class
more than once:

class X : public B { ... }
class Y : public B { ... }
class Z : public X, public ¥ { ... } // OK

In this case, each object of class Z will have two sub-objects of
class B. If this causes problems, the keyword virtual can be added
to a base class specifier. For example,

class X : virtual public B { ... }
class Y : virtual public B { ... }
class Z : public X, public Y { ... }

B is now a virtual base class, and class Z has only one sub-object
of class B.

Friends of classes

A friend F of a class X is a function or class that, although not a
member function of X, has full access rights to the private and
protected members of X. In all other respects, F is a normal
function with respect to scope, declarations, and definitions.
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Since F is not a member of X, it is not in the scope of X and it
cannot be called with the x.F and xptr->F selector operators
(where x is an X object, and xptr is a pointer to an X object).

If the specifier friend is used with a function declaration or defini-
tion within the class X, it becomes a friend of X.

Friend functions defined within a class obey the same inline rules
as member functions (see “Inline functions,” page 114). Friend
functions are not affected by their position within the class or by
any access specifiers. For example,

class X {
int i; // private to X
friend void friend_func(X*, int);
/* friend_func is not private, even though it’s declared in the
private section */
public:
void member_func(int);
}i
/* definitions; note both functions access private int 1 */
void friend_func(X* xptr, int a) { xptr->i = a; }
void X::member_func(int a) { i = a; }

X xobj;
/* note difference in function calls */

friend_func(&xobj, 6);
xobj.member_func(6);

You can make all the functions of class Y into friends of class X
with a single declaration:

class Y; // incomplete declaration
class X {
friend Y;
int 1i;
void member_funcX(});
}i
class Y; { // complete the declaration
void friend_X1 (X&);
void friend X2 (X*);

}i

The functions declared in Y are friends of X, although they have
no friend specifiers. They can access the private members of X,
such as i and member_funcX.
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It is also possible for an individual member function of class X to
be a friend of class Y:

class X {

void member_funcx();
}
class ¥ {
int i;
friend void X::member_funcX();

b

Class friendship is not transitive: X friend of Y and Y friend of Z
does not imply X friend of Z. However, friendship is inherited.

Constructors and d‘es’rruc’rors

There are several special member functions that determine how
the objects of a class are created, initialized, copied, and de-
stroyed. Constructors and destructors are the most important of
these. They have many of the characteristics of normal member
functions—you declare and define them within the class, or
declare them within the class and define them outside—but they
have some unique features.

1. They do not have return value declarations (not even void).

2. They cannot be inherited, though a derived class can call the
base class’s constructors and destructors.

3. Constructors, like most C++ functions, can have default
arguments or use member initialization lists.

4. Destructors can be virtual, but constructors cannot.
5. You can’t take their addresses.
int main{void)
{
void *ptr = base::base; // illegal

}

6. Constructors and destructors can be generated by Borland
C++ if they haven’t been explicitly defined; they are also
invoked on many occasions without explicit calls in your
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program. Any constructor or destructor generated by the
compiler will be public.

7. You cannot call constructors the way you call a normal
function. Destructors can be called if you use their fully
qualified name.

{

X *p;

p->X::~X{); // legal call of destructor
X::X(); // illegal call of constructor

}

8. The compiler automatically calls constructors and destructors
when defining and destroying objects.

9. Constructors and destructors can make implicit calls to
operator new and operator delete if allocation is required for
an object.

10. An object with a constructor or destructor cannot be used as a
member of a union. ’

If a class X has one or more constructors, one of them is invoked
each time you define an object x of class X. The constructor creates
x and initializes it. Destructors reverse the process by destroying
the class objects created by constructors.

Constructors are also invoked when local or temporary objects of
a class are created; destructors are invoked when these objects go
out of scope.

Chapter 3, C++ specifics

Constructors are distinguished from all other member functions
by having the same name as the class they belong to. When an
object of that class is created or is being copied, the appropriate
constructor is called implicitly.

Constructors for global variables are called before the main
function is called. When the pragma startup directive is used to
install a function prior to the main function, global variable
constructors are called prior to the startup functions.
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Constructor
defaults

Important!

Local objects are created as the scope of the variable becomes
active. A constructor is also invoked when a temporary object of
the class is created.

class X

{
public:
X(); // class X constructor

b
A class X constructor cannot take X as an argument:

class X {
public:

X(X); // illegal
}

The parameters to the constructor can be of any type except that
of the class of which it is a member. The constructor can accept a
reference to its own class as a parameter; when it does so, it is
called the copy constructor. A constructor that accepts no
parameters is called the default constructor. We discuss the default
constructor next; the description of the copy constructor starts on
page 127.

The default constructor for class X is one that takes no arguments;
it usually has the form X::X(). If no user-defined constructors exist
for a class, Borland C++ generates a default constructor. On a dec-
laration such as X x, the default constructor creates the object x.

Like all functions, constructors can have default arguments. For
example, the constructor

X::X(int, int = 0)

can take one or two arguments. When presented with one argu-
ment, the missing second argument is assumed to be a zero int.
Similarly, the constructor

X::X(int = 5, int = 6)

could take two, one, or no arguments, with appropriate defaults.
However, the default constructor X::X() takes no arguments and
must not be confused with, say, X::X(int = 0), which can be called
with no arguments as a default constructor, or can take an
argument.
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Overloading
constructors
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Take care to avoid ambiguity in calling constructors. In the
following case, the two default constructors could become
ambiguous:

class X
{
public:
X{);
X(int i= 0);
)i

main{)
{
X one(10); // OK; uses X::X{int)
X two; // illegal; ambiguous whether to call X::X{) or
// X::X(int = 0)

return 0;

A copy constructor for class X is one that can be called with a
single argument of type X: X::X(const X&) or X::X(const X&,int

= 0). Default arguments are also allowed in a copy constructor.
Copy constructors are invoked when copying a class object,
typically when you declare with initialization by another class
object: X x = y. Borland C++ generates a copy constructor for class
Xif one is needed and none is defined in class X.

Constructors can be overloaded, allowing objects to be created,
depending on the values being used for initialization.

class X
{
int integer_part;
double double_part;
public:
X(int i) { integer_part = i; }
X(double d) { double_part = d; }
)i ‘
main()
{

X one(10); // invokes X::X(int) and sets integer_part to 10
X one(3.14); // invokes X::X{double) setting double_part
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Order of calling
constructors
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return 0;

In the case where a class has one or more base classes, the base
class constructors are invoked before the derived class con-
structor. The base class constructors are called in the order they
are declared.

For example, in this setup,

class Y {...)
class X : public Y {...}
X one;

the constructors are called in this order:

Y(); // base class constructor
X(); // derived class constructor

For the case of multiple base classes:

class X : public Y, public Z
X one;

the constructors are called in the order of declaration:

Y(); // base class constructors come first

X();

Constructors for virtual base classes are invoked before any non-
virtual base classes. If the hierarchy contains multiple virtual base
classes, the virtual base class constructors are invoked in the order
in which they were declared. Any non-virtual bases are then con-
structed before the derived class constructor is called.

If a virtual class is derived from a non-virtual base, that non-
virtual base will be first so that the virtual base class may be
properly constructed. The code

class X : public Y, virtual public Z
X one;

produces this order:

Z(); // virtual base class initialization
Y{); // non-virtual base class
X(}; // derived class
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Or for a more complicated example:

class base;

class base?2;

class levell : public base2, virtual public base;
class level2 : public base2, virtual public base;
class toplevel : public levell, virtual public level2;
toplevel view;

The construction order of view would be as follows:

base() ; // virtual base class highest in hierarchy
// base is only constructed once

base2(); // non-virtual base of virtual base level2
// must be called to construct level2

level2(); // virtual base class

base2(); // non-virtual base of levell

levell(); // other non-virtual base

toplevel ();

In the event that a class hierarchy contains multiple instances of a
virtual base class, that base class is only constructed once. If, how-
ever, there exist both virtual and non-virtual instances of the base
class, the class constructor is invoked a single time for all virtual
instances and then once for each non-virtual occurrence of the
base class.

Constructors for elements of an array are called in increasing
order of the subscript.

An object of a class with only public members and no constructors
or base classes (typically a structure) can be initialized with an ini-
tializer list. If a class has a constructor, its objects must be either
initialized or have a default constructor. The latter is used for
objects not explicitly initialized.

Objects of classes with constructors can be initialized with an ex-
pression list in parentheses. This list is used as an argument list to
the constructor. An alternative is to use an equal sign followed by
a single value. The single value can be of the type of the first
argument accepted by a constructor of that class, in which case
either there are no additional arguments, or the remaining
arguments have default values. It could also be an object of that
class type. In the former case, the matching constructor is called to
create the object. In the latter case, the copy constructor is called
to initialize the object.
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declared as either public
or protected to be called
from a derived class.

class X
{
int 1i;
public:
X(); // function bodies omitted for clarity
X(int x);
X(const X&);
i

main()

{
X one; // default constructor invoked
X two(l); // constructor X::X{int) is used

X three = 1; // calls X::X{int)
X four = one; // invokes X::X(const X&) for copy
X five{two); // calls X::X(const X&)

}

The constructor can assign values to its members in two ways. It

can accept the values as parameters and make assignments to the

member variables within the function body of the constructor:

class X
{
int a, b;
public:
X(int i, int j) {a=1; b=3}
I

Or it can use an initializer list prior to the function body:

class X
{
int &, b;
public:
X(int i, int j) : a(i), b(3) {}
H

In both cases, an initialization of X x(1, 2) assigns a value of 1 to

x:a and 2 to x::b. The second method, the initializer list, provides a

mechanism for passing values along to base class constructors.

class basel
{
int x;
public:
basel(int i) { x = i; }

}i

class base2

{
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int x;
public:

base2 (int i) : x(i) {}
}i

class top : public basel, public base2
{
int a, b;
public:
top{int i, int j)} : basel(i*5), base2(j+i), a(i) { b = j;}
}i

With this class hierarchy, a declaration of top one (1, 2) would
result in the initialization of base1 with the value 5 and base2
with the value 3. The methods of initialization can be intermixed.

As described previously, the base classes are initialized in
declaration order. Then the members are initialized, also in
declaration order, independent of the initialization list.

class X
{
int a, b;
public:
X(int i, j) ¢ ali), bla+j) {}
)i

With this class, a declaration of X x(1,1) results in an assignment
of 1 to x::a and 2 to x::b.

Base class constructors are called prior to the construction of any
of the derived classes members. The values of the derived class
can’t be changed and then have an affect on the base class’s
creation. '

class base
{
int x;
public:
base(int i) : x(i) {}
)i

class derived : base
{
int a;
public:
derived(int i) : a(i*10), base(a) { } // Watch out! Base will be
// passed an uninitialized a
i
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With this class setup, a call of derived d(1) will not result in a
value of 10 for the base class member x. The value passed to the
base class constructor will be undefined.

When you want an initializer list in a non-inline cohstructor, don’t
place the list in the class definition. Instead, put it at the point at -
which the function is defined.

derived: :derived(int 1) : a(i)

{

}

When destructors
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are invoked

The destructor for a class is called to free members of an object
before the object is itself destroyed. The destructor is a member
function whose name is that of the class preceded by a tilde (~). A
destructor cannot accept any parameters, nor will it have a return
type or value declared.

class X
{
public:
~X{); // destructor for class X
}i

If a destructor is not explicitly defined for a class, the compiler
will generate one.

A destructor is called implicitly when a variable goes out of its
declared scope. Destructors for local variables are called when the
block they are declared in is no longer active. In the case of global
variables, destructors are called as part of the exit procedure after
the main function.

When pointers to objects go out of scope, a destructor is not impli-
citly called. This means that the delete operator must be called to
destroy such an object.

Destructors are called in the exact opposite order from which
their corresponding constructors were called (see page 128).
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exit, and
destructors

exit and
destructors

abort and
destructors
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All global objects are active until the code in all exit procedures
has executed. Local variables, including those declared in the
main function, are destroyed as they go out of scope. The order of
execution at the end of a Borland C++ program in these regards is
as follows:

m atexit functions are executed in the order they were inserted.

m #pragma exit functions are executed in the order of their
priority codes.

m Destructors for global variables are called.

When you call exit from within a program, destructors are not
called for any local variables in the current scope. Global variables
are destroyed in their normal order.

If you call abort anywhere in a program, no destructors are called,
not even for variables with a global scope.

A destructor can also be invoked explicitly in one of two ways:
indirectly through a call to delete, or directly by using the de-
structor’s fully qualified name. You can use delete to destroy
objects that have been allocated using new. Explicit calls to the de-
structor are only necessary for objects allocated a specific address
through calls to new. :

class X {
~X{);
)i
void* operator new(size_t size, void *ptr)
{

return ptr;
}

char buffer([sizeof(X)];

main()

{
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X* pointer = new X;
X* exact_pointer;

exact_pointer = new(&buffer) X; // pointer initialized at
// address of buffer

delete pointer; // delete used to destroy pointer
exact_pointer->X::~X{); // -direct call used to deallocate

A destructor can be declared as virtual. This allows a pointer to a
base class object to call the correct destructor in the event that the
pointer actually refers to a derived class object. The destructor of a
class derived from a class with a virtual destructor is itself virtual.

class color
{
public:
virtual ~color();  // virtual destructor for color
bi

class red : public color
{
public:
~red(); // destructor for red is also virtual

b

class brightred: public red
{
public:
. ~brightred(); // brightred's destructor also virtual
b

The previously listed classes and the following declarations

color *palette[3];

palette[0] = new red;
palette[l] = new brightred;
palette[2] = new color;

I

will produce these results

delete palette(0];
//  The destructor for red is called followed by the
//  destructor for color.

delete palette[l];
// The destructor for brightred is called, followed by ~red
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// and ~color.

delete palette[2};
// The destructor for color is invoked.

However, in the event that no destructors were declared as
virtual, delete palette[0], delete palette[1], and delete palette[2]
would all call only the destructor for class color. This would
incorrectly destruct the first two elements, which were actually of
type red and brightred.

Overloaded operators

This class was invented for
illustrative purposes only. It
isn‘t the same as the class
complex in the run-time
library.

Chapter 3, C++ specifics

C++ lets you redefine the action of most operators, so that they
perform specified functions when used with objects of a particular
class. As with overloaded C++ functions in general, the compiler
distinguishes the different functions by noting the context of the
call: the number and types of the arguments or operands.

All the operators on page 79 can be overloaded except for

R &
The preprocessing symbols # and ## also cannot be overloaded.

The keyword operator followed by the operator symbol is called
the operator function name; it is used like a normal function name
when defining the new (overloaded) action of the operator.

A function operator called with arguments behaves like an
operator working on its operands in an expression. The operator
function can’t alter the number of arguments or the precedence
and associativity rules (Table 2.10 on page 76) applying to normal
operator use. Consider the class complex:

class complex {

double real, imag; // private by default
public:

complex() { real = imag = 0; } // inline constructor

complex (double r, double 1 = 0) { // another one

real = r; imag = i;

}

}

We could easily devise a function for adding complex numbers,
say,
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complex AddComplex{complex cl, complex c2);
but it would be more natural to be able to write:

complex c¢1(0,1), ¢2(1,0), c3
c3 =cl + c2;

than
c3 = AddComplex(cl, c2);

The operator + is easily overloaded by including the following
declaration in the class complex:

friend complex operator +(complex cl, complex c2);
and defining it (possibly inline) as:

complex operator +{complex cl, complex c2)
{
return complex(cl.real + c2.real, cl.imag + ¢2.imag);

}

Operator functions

Overloaded
operators and
inheritance

136

Operator functions can be called directly, although they are
usually invoked indirectly by the use of the overload operator:

c3 = cl.operator + (c2); // same as ¢3 =cl + c2

Apart from new and delete, which have their own rules (see the
next sections), an operator function must either be a nonstatic
member function or have at least one argument of class type. The
operator functions =, (), [ ] and —> must be nonstatic member
functions.

With the exception of the assignment function operator =() (see
“Overloading the assignment operator =" on page 139), all
overloaded operator functions for class X are inherited by classes
derived from X, with the standard resolution rules for overloaded
functions. If X is a base class for Y, an overloaded operator
function for X may possibly be further overloaded for Y.
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and delete The operators new and delete can be overloaded to provide alter-
native free storage (heap) memory-management routines. A user-
defined operator new must return a void* and must have a size_t
The type size_tis defined in  as its first argument. A user-defined operator delete must have a
Stllo-h - yoid return type and void* as its first argument; a second
argument of type size_t is optional. For example,

#include <stdlib.h>

class X {

public:
void* operator new(size_t size) { return newalloc(size);}
void operator delete(void* p) { newfree(p); }
X() { /* initialize here */ }
X{(char ch) { /* and here */ }

~X(} { /* clean up here */ }

}i
The size argument gives the size of the object being created, and
newalloc and newfree are user-supplied memory allocation and
deallocation functions. Constructor and destructor calls for objects
of class X (or objects of classes derived from X that do not have
their own overloaded operators new and delete) will invoke the
matching user-defined X::operator new() and X::operator delete(),
respectively.

The X::operator new and X::operator delete operator functions
are static members of X whether explicitly declared as static or
not, so they cannot be virtual functions.

The standard, predefined (global) new and delete operators can
still be used within the scope of X, either explicitly with the global
scope operator (::operator new and ::operator delete), or
implicitly when creating and destroying non-X or non-X-derived
class objects. For example, you could use the standard new and
delete when defining the overloaded versions:

void* X::operator new(size_t s)
( .
void* ptr = new char(s]; // standard new called

return ptr;
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void X::operator delete(void* ptr)
{

delete (void*) ptr; // standard delete called
}

The reason for the size argument is that classes derived from X
inherit the X::operator new. The size of a derived class object may
well differ from that of the base class.

Overloading

unNary operators  You can overload a prefix or postfix unary operator by declaring a
nonstatic member function taking no arguments, or by declaring a
non-member function taking one argument. If @ represents a
unary operator, @x and x@ can both be interpreted as either
x.operator@() or operator@(x), depending on the declarations
made. If both forms have been declared, standard argument
matching is applied to resolve any ambiguity.

w Under C++ 2.0, an overloaded operator++ or — is used for both
prefix and postfix uses of the operator. For example:

struct foo
{

operator:: (});
operator--{();

X7

void func()

{
x++; // calls x.operator++()
++Xx; // calls x.operator++()

x--; // calls x.operator--{)
--x; // calls x.operator--{()

}

With C++ 2.1, when an operator++ or operator— is declared as a
member function with no parameters, or as a nonmember
function with one parameter, it only overloads the prefix operator
++ or operator —. You can only overload a postfix operator++ or
operator— by defining it as a member function taking an int
parameter or as a nonmember function taking one class and one
int parameter. For example add the following lines to the previous
code:
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binary operators

Overloading the
assignment
operator =
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operator++(int);
operator--(int);

When only the prefix version of an operator++ or operator— is
overloaded and the operator is applied to a class object as a
postfix operator, the compiler issues a warning. Then it calls the
prefix operator, allowing 2.0 code to compile. The preceding
example results in the following warnings:

Warning: Overloaded prefix ‘operator ++' used as a postfix operator
in function func{()

Warning: Overloaded prefix 'operator --’ used as a postfix operator
in function func()

You can overload a binary operator by declaring a nonstatic
member function taking one argument, or by declaring a non-
member function (usually friend) taking two arguments. If @
represents a binary operator, x@y can be interpreted as either
x.operator@(y) or operator@(x,y), depending on the declarations
made. If both forms have been declared, standard argument
matching is applied to resolve any ambiguity.

The assignment operator = can be overloaded by declaring a
nonstatic member function. For example,

class String {
String& operator = (String& str);

String (String&);
~String();
}

This code, with suitable definitions of String::operator =(), allows
string assignments str1 = str2, just like other languages. Unlike the
other operator functions, the assignment operator function cannot
be inherited by derived classes. If, for any class X, there is no
user-defined operator =, the operator = is defined by default as a
member-by-member assignment of the members of class X:

X& X::operator = (const X& source)

{
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Overloading the
function call
operator

Overloading the
subscript
operator

Overloading the
class member
access operator

Virtual functions

// memberwise assignment

}

The function call
primary-expression ( <expression-list>)

is considered a binary operator with operands primary-expression
and expression-list (possibly empty). The corresponding operator
function is operator(). This function can be user-defined for a class
X (and any derived classes) only by means of a nonstatic member
function. A call x(arg1, arg2), where x is an object of class X, is
interpreted as x.operator()(argl,arg2).

Similarly, the subscripting operation
primary-expression [ expression ]

is considered a binary operator with operands primary-expression
and expression. The corresponding operator function is operator{];
this can be user-defined for a class X (and any derived classes)
only by means of a nonstatic member function. The expression
x[yl, where x is an object of class X, is interpreted as x.operator(]
).

Class member access using
primary-expression —> expression

is considered a unary operator. The function operator-> must be a
nonstatic member function. The expression x->m, where x is a
class X object, is interpreted as (x.operator->())->m, so that the
function operator->() must either return a pointer to a class object
or return an object of a class for which operator-> is defined.

Virtual functions can only be
member functions.

140

Virtual functions allow derived classes to provide different
versions of a base class function. You can use the virtual keyword
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to declare a virtual function in a base class, then redefine it in any
derived class, even if the number and type of arguments are the
same. The redefined function is said to override the base class
function. You can also declare the functions int Base::Fun(int)
and int Derived::Fun(int) even when they are not virtual. The
base class version is available to derived class objects via scope
override. If they are virtual, only the function associated with the
actual type of the object is available.

With virtual functions, you cannot change just the function type.
It is illegal, therefore, to redefine a virtual function so that it
differs only in the return type. If two functions with the same
name have different arguments, C++ considers them different,
and the virtual function mechanism is ignored.

If a base class B contains a virtual function vf, and class D, derived
from B, contains a function vf of the same type, then if vf is called
for an object d or D, the call made is D::vf, even if the access is via
a pointer or reference to B. For example,

struct B {
virtual void vl();
virtual void vi2();
virtual void vi3();
void f();

}i

class D : public B {

virtual void vil(); // virtual specifier is legal but redundant
void vi2(int); // not virtual, since it's using a different
// arg list
char vi3(); // Illegal: return-type-only change!
void f{);
}i
void extf ()
(
D d; // declare a D object

B* bp = &d; // standard conversion from D* to B*
bp->vEfl(); // calls D::vfl
bp->vE2(); // call B::vf2 since D's vi2 has different args
bp->£(); // calls B::f (not virtual)
}

The overriding function vf1 in D is automatically virtual. The
virtual specifier can be used with an overriding function
declaration in the derived class, but its use is redundant.

The interpretation of a virtual function call depends on the type of
the object for which it is called; with non-virtual function calls, the
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interpretation depends only on the type of the pointer or
reference denoting the object for which it is called.

Virtual functions must be members of some class, but they cannot
be static members. A virtual function can be a friend of another
class.

A virtual function in a base class, like all member functions of a
base class, must be defined or, if not defined, declared pure:

class B {
virtual void vi{int) = 0; // = 0 means 'pure’

In a class derived from such a base class, each pure function must
be defined or redeclared as pure (see the next section, “Abstract
classes”).

If a virtual function is defined in the base it need not necessarily
be redefined in the derived class. Calls will simply call the base
function.

Virtual functions exact a price for their versatility: Each object in
the derived class needs to carry a pointer to a table of functions in
order to select the correct one at run time (late binding).
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An abstract class is a class with at least one pure virtual function. A
virtual function is specified as pure by using the pure-specifier.

An abstract class can be used only as a base class for other classes.
No objects of an abstract class can be created. An abstract class
cannot be used as an argument type or as a function return type.
However, you can declare pointers to an abstract class. References
to an abstract class are allowed, provided that a temporary object
is not needed in the initialization. For example,

class shape { // abstract class
point center;

public:
where() { return center; }
move (point p) { center = p; draw(); }

virtual void rotate{int) = 0; // pure virtual function
virtual void draw() = 0; // pure virtual function
virtual void hilite() = 0; // pure virtual function
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}

shape x; // ERROR: attempted creation of an object of
// an abstract class
shape* sptr; // pointer to abstract class is OK

shape f(); // ERROR: abstract class cannot be a return
/] type
int g(shape s); // ERROR: abstract class cannot be a

//function argument type
shape& h{shape&); // reference to abstract class as return
// value or function argument is OK

Suppose that D is a derived class with the abstract class B as its
immediate base class. Then for each pure virtual function pvfin B,
if D doesn’t provide a definition for pvf, pvf becomes a pure
member function of D, and D will also be an abstract class.

For example, using the class shape previously outlined,

class circle : public shape { // circle derived from
// abstract class

int radius; // private
public:
void rotate(int) { } // virtual function defined:
// no action to rotate a
// circle
void draw(); // circle::draw must be

// defined scmewhere

}

Member functions can be called from a constructor of an abstract
class, but calling a pure virtual function directly or indirectly from
such a constructor provokes a run-time error.

Chapter 3, C++ specifics

The lexical scoping rules for C++, apart from class scope, follow
the general rules for C, with the proviso that C++, unlike C,
permits both data and function declarations to appear wherever a
statement may appear. The latter flexibility means that care is
needed when interpreting such phrases as “enclosing scope” and
“point of declaration.” -
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Hiding

C++ scoping rules
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summary

The name M of a member of a class X has class scope “local to X;”
it can only be used in the following situations:

m In member functions of X

m In expressions such as x.M, where x is an object of X

m In expressions such as xptr->M, where xptr is a pointer to an
object of X

m In expressions such as X::M or D::M, where D is a derived class
of X

m In forward references within the class of which it is a member.

Names of functions declared as friends of X are not members of X;
their names simply have enclosing scope.

A name can be hidden by an explicit declaration of the same name
in an enclosed block or in a class. A hidden class member is still
accessible using the scope modifier with a class name: X::M. A
hidden file scope (global) name can be referenced with the unary
operator ::; for example, ::g. A class name X can be hidden by the
name of an object, function, or enumerator declared within the
scope of X, regardless of the order in which the names are
declared. However, the hidden class name X can still be accessed
by prefixing X with the appropriate keyword: class, struct, or
union.

The point of declaration for a name x is immediately after its com-
plete declaration but before its initializer, if one exists.

The following rules apply to all names, including typedef names
and class names, provided that C++ allows such names in the
particular context discussed:

1. The name itself is tested for ambiguity. If no ambiguities are
detected within its scope, the access sequence is initiated.

2. If no access control errors occur, the type of the object,
function, class, typedef, and so on, is tested.
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. If the name is used outside any function and class, or is pre-

fixed by the unary scope access operator ::, and if the name is
not qualified by the binary :: operator or the member selection
operators . and —>, then the name must be a global object,
function, or enumerator.

. If the name n appears in any of the forms X::n, x.n (where x is

an object of X or a reference to X), or ptr->n (where ptr is a
pointer to X), then 7 is the name of a member of X or the mem-
ber of a class from which X is derived.

. Any name not covered so far that is used in a static member

function must be declared in the block in which it occurs or in
an enclosing block, or be a global name. The declaration of a
local name 1 hides declarations of 7 in enclosing blocks and
global declarations of n. Names in different scopes are not
overloaded.

. Any name not covered so far that is used in a nonstatic mem-

ber function of class X must be declared in the block in which
it occurs or in an enclosing block, be a member of class X or a
base class of X, or be a global name. The declaration of a local
name # hides declarations of n in enclosing blocks, members of
the function’s class, and global declarations of n. The declara-
tion of a member name hides declarations of the same name in
base classes.

. The name of a function argument in a function definition is in

the scope of the outermost block of the function. The name of a
function argument in a non-defining function declaration has
no scope at all. The scope of a default argument is determined
by the point of declaration of its argument, but it can’t access
local variables or nonstatic class members. Default arguments
are evaluated at each point of call.

. A constructor initializer (see ctor-initializer in the class

declarator syntax, Table 2.3 on page 37) is evaluated in the
scope of the outermost block of its constructor, so it can refer
to the constructor’s argument names.

For a discussion of templates
in the container class library
see Chapter 6, page 224.
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Templates, also called generics or parameterized types, allow you to
construct a family of related functions or classes. In this section,
we'll introduce the basic concept then some specific points.
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Function
templates

Syntax:

Template-declaration:
template < template-argument-list > declaration

template-argument-list:
template-argument
template-argument-list, template arqument

template-argument:
type-argument
argument-declaration

type-argument:
class identifier

template-class-name:
template-name < template-arg-list >

template-arg-list:

template-arg

template-arg-list , template-arg
template-arg:

expression

type-name

Consider a function max(x,y) that returns the larger of its two
arguments. x and y can be of any type that has the ability to be
ordered. But, since C++ is a strongly typed language, it expects
the types of the parameters x and y to be declared at compile time.
Without using templates, many overloaded versions of max() are
required, one for each data type to be supported, even though the
code for each version is essentially identical. Each version
compares the arguments and returns the larger. For example,

int max(int x, int y)
{
return (x >y) ? X : y;

}

long max(long x, long y)
{

return (x >y) 2 X : y;
}

followed by other versions of max.
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One way around this problem is to use a macro:

#define max(x,y) ((x >y) ? x : y)

However, using the #define circumvents the type-checking
mechanism that makes C++ such an improvement over C. In fact,
this use of macros is almost obsolete in C++. Clearly, the intent of
max(x,y) to compare compatible types. Unfortunately, using the
macro allows a comparison between an int and a struct, which are
incompatible.

Another problem with the macro approach is that substitution
will be performed where you don’t want it to be:

class Foo
{
public:
int max(int, int); // Results in syntax error; this gets
expanded!!!
/...
Vi

By using a template instead, you can define a pattern for a family
of related overloaded functions by letting the data type itself be a
parameter:

template <class T>
T max(T x, Ty)
{
return (x >y) ? X : y;
}i

The data type is represented by the template argument: <class T>.
When used in an application, the compiler generates the
appropriate function according to the data type actually used in
the call:

int i;
Myclass a, b;

// arguments are integers
// arguments are type Myclass

int j = max(i,0);
Myclass m = max(a,b);

Any data type (not just a class) can be used for <class T>. The
compiler takes care of calling the appropriate operator>(), so you
can use max with arguments of any type for which operator>() is
defined.
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Overriding a template  The previous example is called a function template (or generic
function  function, if you like). A specific instantiation of a function template
is called a template function. You can override the generation of a
template function for a specific type with a non-template function:

#include <string.h>

char *max(char *x, char *y)

{

return(stremp (x,y)>0) ?x:y;

}

If you call the function with string arguments, it’s executed in
place of the automatic template function. In this case, calling the
function avoided a meaningless comparison between two
pointers.

Only trivial argument conversions are performed with compiler-
generated template functions.

The argument type(s) of a template function must use all of the
template formal agruments. If it doesn’t there is no way of
deducing the actual values for the unused template arguments
when the function is called.

Implicit and explicit  When doing overload resolution (following the steps of looking
templafe functions for an exact match), the compiler ingores template functions that
have been generated implicitly by the compiler.

template<class T> T max(T a, T b)
{

return (a >Db) ? a : b;

}

void f{int i, char c)

max(i, i); // calls max(int ,int )
max(c, ¢); // calls max(char,char)
max(i, c); // no match for max(int,char)
max(c, 1i); // no match for max (char,int)

}

This code results in the following error messages.
Could not find a match for ‘max(int,char)’ in function f(int,char)
Could not find a match for ‘max(charint)’ in function f(int,char)

If the user explicitly declares a template function, this function, on
the other hand, will participate fully in overload resolution. For
example:
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template<class T> T max(T a, T b)
{

return {a >b) 2 a: b;

}
int max (int,int); // declare max{int,int) explicitly

void f(int 1, char c)

max(i, 1); // calls max{int ,int )
max(c, c); // calls max(char,char)
max(i, c); // calls max(int,int)
max(c, 1); // calls max({int,int)

Class tfemplates

A class template (also called a generic class or class generator)
allows you to define a pattern for class definitions. Generic
container classes are good examples. Consider the following
example of a vector class (a one-dimensional array). Whether you
have a vector of integers or any other type, the basic operations
performed on the type are the same (insert, delete, index, and so
on). With the element type treated as a type parameter to the class,
the system will generate type-safe class definitions on the fly:

Class template definition $include <iostream.h>

template <class T>
class Vector
{

T *data;

int size;

public:
Vector(int);
~Vector() {delete(] data;}
T& operator(] (int i) {retﬁrn datal(il;}

}i

// Note the syntax for out-of-line definitions:
template <class T>
Vector<T>::Vector(int n)
{
data = new T[n];
size = n;

}i

main()

{

Vector<int> x(5);// Generate a vector of ints
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for (int 1 = 0; 1 < 5; ++1)
x[i] = i;

for (i = 0; 1 < 5; ++1)
cout << x[i] << ' ’;

cout << '\n’;

return 0;

}
// Output will be: 01 2 3 4

As with function templates, an explicit template class definition
may be provided to override the automatic definition for a given

type:
class Vector<char *> { ... };

The symbol Vector must be always be accompanied by a data
type in angle brackets. It cannot appear alone, except in some
cases in the original template definition.

For a more complete implementation of a vector class, see the file
vectimp.h in the container class library source code, found in the
\BORLANDC\CLASSLIB\INCLUDE subdirectory. Also see
Chapter 6, “The container class library,” page 230.

Arguments  Although these examples use only one template argument,
' multiple arguments are allowed. Template arguments can also
represent values in addition to data types:

template<class T, int size = 64> class Buffer { ... };

Non-type template arguments such as size can have default
arguments. The value supplied for a non-type template argument
must be a constant expression:

const int N = 128;

int 1 = 256;

Buffer<int, 2*N> bl;// OK

Buffer<float, i> b2;// Error: i is not constant

Since each instantiation of a template class is indeed a class, it
receives its own copy of static members. Similarly, template
functions get their own copy of static local variables.

Angle brackets Take care when using the right angle bracket character upon
instantiation:

Buffer<char, (x > 100 2 1024 : 64)> buf;

suller<ciar ' X >
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In the preceding example, without the parentheses around the
second argument, the > between x and 100 would prematurely
close the template argument list.

Type-safe generic lists  In general, when you need to write lots of nearly identical things,
think templates The problems with the following class definition,
a generic list class,

class GList
{
public:
void insert( void * );
void *peek();
/...
b

are that it isn’t type-safe and common solutions need repeated
class definitions. Since there’s no type checking on what gets
inserted, you have no way of knowing what you’ll get back out.
You can solve the type-safe problem by writing a wrapper class:

class FooList : public GList
{
public:
void insert( Foo *f ) { GList::insert( f }; }
Foo *peek() { return (Foo *)GList::peek(); }
o
}i

This is type-safe. insert will only take arguments of type pointer-
to-Foo or object-derived-from-Foo, so the underlying container
will only hold pointers that in fact point to something of type Foo.
This means that the cast in FooList::peek is always safe, and
you've created a true FooList. Now to do the same thing for a
BarList, a BazList, and so on, you need repeated separate class
definitions. To solve the problem of repeated class definitions and
be type-safe, once again, templates to the rescue:

Type-safe generic list class template <class T> class List : public GList
definition { :
public:

void insert( T *t )} { GList::insert( t ); }
T *peek() { return (T *)GList::peek(}; }
/...

}i

List<Foo> fList; // create a Foolist class and an instance-
named fList.
List<Bar> bList; // create a BarList class and an instance
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Eliminating pointers

Template definition that
eliminates pointers

Template
compiler switches
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named bList.
List<Baz> zList; // create a BazList class and an instance
named zList.

By using templates, you can create whatever type-safe lists you
want, as needed, with a simple declaration. And there’s no code
generated by the type conversions from each wrapper class so
there’s no run-time overhead imposed by this type safety.

Another design technique is to include actual objects, making
pointers unnecessary. This can also reduce the number of virtual
function calls required, since the compiler knows the actual types
of the objects. This is a big benefit if the virtual functions are small

- enough to be effectively inlined. It’s difficult to inline virtual

functions when called through pointers, because the compiler
doesn’t know the actual types of the objects being pointed to.

template <class T> aBase
{

/1l ...
private:

T buffer;

};
class anObject : public aSubject, public aBase<aFilebuf>
{

/..
}i

All the functions in aBase can call functions defined in aFilebuf
directly, without having to go through a pointer. And if any of the
functions in aFilebuf can be inlined, you'll get a speed
improvement, since templates allow them to be inlined.

The —Jg family of switches control how instances of templates are
generated by the compiler. Every template instance encountered
by the compiler will be affected by the value of the switch at the
point where the first occurence of that particular instance is seen
by the compiler. For template functions the switch applies to the
function instances; for template classes, it will apply to all
member functions and static data members of the template class.
In all cases this switch applies only to compiler-generated
template instances, and never to user-defined instances, although
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it can be used to tell the compiler which instances will be user-
defined so that they are not generated from the template.

—Jg Default value of the switch. All template instances first
encountered when this switch value is in effect will be
generated, such that if several compilation units generate
the same template instance, the linker will merge them to
produce a single copy of the instance. This is the most
convenient approach to generating template instances,
because it’s almost entirely automatic. Note, though, that in
order to be able to generate the template instances, the
compiler must have the function body (in case of a template
function) or bodies of member functions and definitions for
static data members (in case of a template class).

—Jgd Instructs the compiler to generate public definitions for
template instances. This is similar to —Jg, but if more than
one compilation unit generates a definjtion for the same
template instance, the linker will report public symbol re-
definition errors.

—Jgx Instructs the compiler to generate external references to
template instances. Some other compilation unit must
generate a public definition for that template instance
(using the —Jgd switch) so that the external references can
be satisfied.

Using template  Using the —~Jg family of switches, there are two basic approaches
switches for generating template instances:

1. Include the function body (for a function template) or member
function and static data member definitions (for a template
class) in the header file that defines the particular template,
and use the default setting of the template switch (-Jg). If
some instances of the template are user-defined, the
declarations (prototypes, for example) for them should be
included in the same header, but preceded by #pragma option
—Jgx, thus letting the compiler know that it should not
generate those particular instances.

Here’s an example of a template function header file:

// Declare a template function along with its body

template<class T> void sort(T* array, int size)

{

... body of template function goes here ...

}
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// Sorting of 'int’ elements done by user-defined instance
#pragma option -Jgx

extern void sort{int* array, int size);

// Restore the template switch to its original state

#pragma option -Jg.

If the preceding header file is included in a C++ source file, the
'sort’ template can be used without worrying about how the
various instances are generated (with the exception of ‘sort” for
int arrays, which is declared as a user-defined instance, and
whose definition must be defined by the user).

. Compile all of the source files comprising the program with

the —Jgx switch (causing external references to templates to be
generated); this way, template bodies don’t need to appear in
header files. In order to provide the definitions for all of the
template instances, add a file (or files) to the program that
includes the template bodies (including any user-defined
instance definitions), and list all the template instances needed
in the rest of the program, to provide the necessary public
symbol definitions. Compile the file (or files) with the —Jgd
switch.

Here’s an example:

//  vector.h

template <class elem, int size> class vector

{

elem * value;
public:
vector();

elem & operator[] (int index) { return value[index]; }

}i

1/ MAIN.CPP
#include "vector.h"

// Tell the compiler that the template instances that follow
// will be defined elsewhere.

#pragma option -Jgx
// Use two instances of the ’vector’ template class.

vector<int, 100> int_100;
vector<char,10> char_10;

main()

{

return int_100[0] + char_10{0];
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}

// TEMPLATE .CPP
#include <string.h>
#include "vector.h"

// Define any template bodies

template <class elem, int size> vector<elem, size>::vector()

{

value = new elem(size];

memset (value, 0, size * sizeof{elem));
}

// Generate the necessary instances
#pragma option -Jgd

typedef vector<int,100> fake_int_100;
typedef vector<char,10> fake_char_10;

15)
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The preprocessor

Although Borland C++ uses an integrated single-pass compiler
for its IDE and command-line versions, it is useful to retain the
terminology associated with earlier multipass compilers.

With a multipass compiler, a first pass of the source text would
pull in any include files, test for any conditional-compilation di-
rectives, expand any macros, and produce an intermediate file for
further compiler passes. Since the IDE and command-line
versions of the Borland C++ compiler perform this first pass with
no intermediate output, Borland C++ provides an independent
The independent  preprocessor, CPP.EXE, that does produce such an output file.
preprocessor s documoeg;fre]a: The independent preprocessor is useful as a debugging aid,
" letting you see the net result of include directives, conditional
compilation directives, and complex macro expansions.

The following discussion on preprocessor directives, their syntax
and semantics, therefore, applies both to the CPP preprocessor
and to the preprocessor functionality built into the Borland C++
compiler.

The preprocessor defects  The Borland C++ preprocessor includes a sophisticated macro
B i’f';‘,:;;,‘: ::)(ggg processor that scans your source code before the compiler itself
parses the fokens ~ &ets to work. The preprocessor gives you great power and

embedded in them.  flexibility in the following areas:

m Defining macros that reduce programming effort and improve
your source code legibility. Some macros can also eliminate the
overhead of function calls.
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Preprocessor directives are
usually placed at the
beginning of your source
code, but they can legally
appear at any pointin a
program.,

m Including text from other files, such as header files containing
standard library and user-supplied function prototypes and
manifest constants.

m Setting up conditional compilations for improved portability
and for debugging sessions.

Any line with a leading # is taken as a preprocessing directive,
unless the # is within a string literal, in a character constant, or
embedded in a comment. The initial # can be preceded or
followed by whitespace (excluding new lines).

The full syntax for Borland C++'s preprocessor directives is given
in the next table. '

Table 4.1: Borland C++ preprocessing directives syntax

preprocessing-file:
group
group:
group-part
group group-part
group-part:
<pp-tokens> newline
if-section
control-line

#pragma warn action abbreviation newline
#pragma inline newline
# newline

action: one of
+ - .
abbreviation:
nondigit nondigit nondigit

Iparen:
the left parenthesis character without preceding whitespace

if-section: replacement-list:
if-group <clif-groups> <else-group> endif-line <pp-tokens>
if-group: pp-tokens:
#if constant-expression newline <group> preprocessing-token

#ifdef identifier newline <group>

#ifndef identifier newline <group>
elif-groups:

elif-group

elif-groups elif-group

elif-group:

#elif constant-expression newline <group>

else-group:

#else newline <group>
endif-line:

#endif newline

control-line:
#include pp-tokens newline

#define identifier replacement-list newline .
#define  identifier Iparen <identifier-list>) replacement-list newline

#undef  identifier newline
#line pp-tokens newline
#error  <pp-tokens> newline
#pragma <pp-tokens> newline

pp-tokens preprocessing-token

preprocessing-token:
header-name (only within an #include directive)
identifier (no keyword distinction)
constant
string-literal
operator
punctuator
each non-whitespace character that cannot be one of the preceding

header-name:
<h-char-sequence>

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any character in the source character set except the newline (\n)
or greater than (>) character

newline:
the newline character
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Null directive #

The null directive consists of a line containing the single character
#. This directive is always ignored.

The #define and #undef directives

The #define directive defines a macro. Macros provide a
mechanism for token replacement with or without a set of formal,
function-like parameters.

Simple #define

MACIOS In the simple case with no parameters, the syntax is as follows:
t#define macro_identifier <token_sequence>

Each occurrence of macro_identifier in your source code following
this control line will be replaced in situ with the possibly empty
token_sequence (there are some exceptions, which are noted later).
Such replacements are known as macro expansions. The token se-
quence is sometimes called the body of the macro.

Any occurrences of the macro identifier found within literal
strings, character constants, or comments in the source code are
not expanded.

An empty token sequence results in the effective removal of each
affected macro identifier from the source code:

#define HI "Have a nice day!"
#define empty
#define NIL ""

puts (HI}; /* expands to puts("Have a nice day!"); */
puts (NIL); /* expands to puts(""); */
puts{"empty"); /* NO expansion of empty! */

/* NOR any expansion of the empty within comments! */

After each individual macro expansion, a further scan is made of
the newly expanded text. This allows for the possibility of nested
macros: The expanded text may contain macro identifiers that are
subject to replacement. However, if the macro expands into what
looks like a preprocessing directive, such a directive will not be
recognized by the preprocessor:
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The #undef
directive

tdefine GETSTD #include <stdio.h>

GETSTD  /* compiler error */

GETSTD will expand to #include <stdio.h>. However, the prepro-
cessor itself will not obey this apparently legal directive, but will
pass it verbatim to the compiler. The compiler will reject #include
<stdio.h> as illegal input. A macro won'’t be expanded during its
own expansion. So #define A A won't expand indefinitely.

You can undefine a macro using the #undef directive:
#undef macro_identifier

This line detaches any previous token sequence from the macro
identifier; the macro definition has been forgotten, and the macro
identifier is undefined.

No macro expansion occurs within #undef lines.

The state of being defined or undefined turns out to be an important
property of an identifier, regardless of the actual definition. The
#ifdef and #ifndef conditional directives, used to test whether any
identifier is currently defined or not, offer a flexible mechanism
for controlling many aspects of a compilation.

After a macro identifier has been undefined, it can be redefined
with #define, using the same or a different token sequence.

#define BLOCK_SIZE 512
buff = BLOCK_SIZE*blks; /* expands as 512*blks *

#undef BLOCK_SIZE
/* use of BLOCK_SIZE now would be illegal "unknown" identifier */

#define BLOCK_SIZE 128  /* redefinition */

buf = BLOCK_SIZE*blks; /* expands as 128*blks */
Attempting to redefine an already defined macro identifier will
result in a warning unless the new definition is exactly the same,
token-by-token definition as the existing one. The preferred

strategy where definitions may exist in other header files is as
follows:
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The -D and -U
‘ options

The Define option

Chapter 4, The preprocessor

#ifndef BLOCK_SIZE
#define BLOCK_SIZE 512
#endif

The middle line is bypassed if BLOCK_SIZE is currently defined;
if BLOCK_SIZE is not currently defined, the middle line is
invoked to define it.

No semicolon (;) is needed to terminate a preprocessor directive.
Any character found in the token sequence, including semicolons,
will appear in the macro expansion. The token sequence termin-
ates at the first non-backslashed new line encountered. Any
sequence of whitespace, including comments in the token
sequence, is replaced with a single space character.

Assembly language programmers must resist the temptation to
write:

#define BLOCK_SIZE = 512 /* 22 token sequence includes the = */

Identifiers can be defined and undefined using the command-line
compiler options —D and ~U (see Chapter 5, “The command-line
compiler,” in the User’s Guide). Identifiers can be defined, but not
explicitly undefined, from the IDE Options | Compiler | Code
Generation dialog box (see Chapter 2, “IDE basics,” also in the
User’s Guide). ‘

The command line
BCc -Ddebug=1; paradox=0; X -Umysym myprog.c
is equivalent to placing

#define debug 1
#define paradox 0
#define X

#undef mysym

in the program.

Identifiers can be defined, but not explicitly undefined, from the
Defines input box in the Code Generation | Options dialog box
(under O CICode Generation) (see Chapter 2, “IDE basics,” in
the User’s Guide).
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Keywords and
protected words

Note the double
underscores, leading and
trailing.

Macros with |

parameters

Any comma within
parentheses in an argument
list is treated as part of the
argument, not as an
argument delimiter.
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It is legal but ill-advised to use Borland C++ keywords as macro '
identifiers:

#define int long /* legal but probably catastrophic */
#define INT long /* legal and possibly useful */

The following predefined global identifiers may not appear
immediately following a #define or #undef directive:

__STDC_ _ __DATE_ _
__FILE_ _ __TIME_ _
__LINE_ _

The following syntax is used to define a macro with parameters: '
#define macro_identifier(<arg_list>) token_sequence

Note that there can be no whitespace between the macro identifier
and the (. The optional arg_list is a sequence of identifiers
separated by commas, not unlike the argument list of a C
function. Each comma-delimited identifier plays the role of a

_ formal argument or place holder.

Such macros are called by writing
macro_identifier<whitespace>(<actual_arg_list>)

in the subsequent source code. The syntax is identical to that of a
function call; indeed, many standard library C “functions” are
implemented as macros. However, there are some important
semantic differences and potential pitfalls (see page 164).

The optional actual_arg_list must contain the same number of
comma-delimited token sequences, known as actual arguments,
as found in the formal arg_list of the #define line: There must be
an actual argument for each formal argument. An error will be
reported if the number of arguments in the two lists is different.

A macro call results in two sets of replacements. First, the macro
identifier and the parenthesis-enclosed arguments are replaced by
the token sequence. Next, any formal arguments occurring in the
token sequence are replaced by the corresponding real arguments
appearing in the actual_arg_list. For example,
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#define CUBE(x) ((x}*(x}*(x))
iﬁé n,y;
n = CUBE(y);
results in the following replacement:
n=((y)* (y) * (y));
Similarly, the last line of

tdefine SUM (a,b) ((a) + (b))

int i,3,sum;
sum = SUM(i,3);

expands to sum = ((i) + (j)). The reason for the apparent glut of
parentheses will be clear if you consider the call

n = CUBE(y+l);

Without the inner parentheses in the definition, this would
expand as n = y+1#y+1 *y+1, which is parsed as

n=y+ (1*yv) + (1*y) + 1; // '= (y+1) cubed unless y=0 or y = -3!

As with simple macro definitions, rescanning occurs to detect any
embedded macro identifiers eligible for expansion.

Note the following points when using macros with argument
lists:

1. Nested parentheses and commas: The actual_arg_list may
contain nested parentheses provided that they are balanced;
also, commas appearing within quotes or parentheses are not
treated like argument delimiters:

#define ERRMSG(x, str) showerr("Error",x,str)
#define SMM(x,y) ((x) + (v))

ERRMSG(2, "Press Enter, then Esc");

/* expands to showerr("Error",2,"Press Enter, then Esc");
return SUM(f(i,3j), gtk,1));

/* expands to return {(f(i,3}) + (g(k,1))); */

2. Token pasting with ## You can paste (or merge) two tokens
together by separating them with ## (plus optional whitespace
on either side). The preprocessor removes the whitespace and
the ##, combining the separate tokens into one new token. You
can use this to construct identifiers; for example, given the
definition

#define VAR(i,3) (1##3)
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then the call VAR (x, 6) would expand to (x6). This replaces the
older (nonportable) method of using (i/%*/j).

3. Converting to strings with #: The # symbol can be placed in
front of a formal macro argument in order to convert the
actual argument to a string after replacement. So, given the
following macro definition: :

#define TRACE(flag) printf(#flag "=%d\n",flag)
the code fragment

int highval = 1024;
TRACE (highval);

becomes

int highval = 1024;
printf("highval® "= %d\n", highval);

which, in turn, is treated as .

int highval = 1024;
printf("highval=%d\n", highval);

4. The backslash for line continuation: A long token sequence
can straddle a line by using a backslash (\). The backslash and
the following newline are both stripped to provide the actual
token sequence used in expansions:

#define WARN "This is really a single-\
line warning"

puts (WARN) ; ,
/* screen will show: This is really a single-line warning */
5. Side effects and other dangers: The similarities between

function and macro calls often obscure their differences. A
‘macro call has no built-in type checking, so a mismatch
between formal and actual argument data types can produce
bizarre, hard-to-debug results with no immediate warning.
Macro calls can also give rise to unwanted side effects,
especially when an actual argument is evaluated more than
once. Compare CUBE and cube in the following example:

int cube(int x) {
return x*x*x;
}
#define CUBE(x) ((x)*(x)*(x))

int b=20, a = 3;

b = cube(a++);
/* cube() is passed actual arg = 3; so b = 27; a now = 4 _*/
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Final value of b depends on a = 3;
what your compiler does to b = CUBE(a++);

the expanded expression. /* expands as ({a++)*(a++)*(a++)); a now = 6 */

File inclusion with #include

The #include directive pulls in other named files, known as
include files, header files, or headers, into the source code. The syntax
has three forms:

The angle brackets are real #include <header name>
tokens, not metasymbols that #include “head er—n ame”
imply that header_name is oy

optional. #include macro_identifier
The third variant assumes that neither < nor “ appears as the first
non-whitespace character following #include; further, it assumes
that a macro definition exists that will expand the macro identifier
into a valid delimited header name with either of the
<header_name> or “header_name” formats.

The first and second variant imply that no macro expansion will
be attempted; in other words, header_name is never scanned for
macro identifiers. header_name must be a valid DOS file name with
an extension (traditionally .h for header) and optional path name
and path delimiters.

The preprocessor removes the #include line and conceptually
replaces it with the entire text of the header file at that point in the
source code. The source code itself is not changed, but the com-
piler “sees” the enlarged text. The placement of the #include may
therefore influence the scope and duration of any identifiers in the
included file.

If you place an explicit path in the header_name, only that directory
will be searched.

The difference between the <header _name> and “header_name”
formats lies in the searching algorithm employed in trying to
locate the include file; these algorithms are described in the
following two sections.
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Header file
search with
<header_name>

Header file
search with
*header_name”

The <header_name> variant specifies a standard include file; the
search is made successively in each of the include directories in
the order they are defined. If the file is not located in any of the
default directories, an error message is issued.

The “header_name” variant specifies a user-supplied include file;
the file is sought first in the current directory (usually the direc-
tory holding the source file being compiled). If the file is not
found there, the search continues in the include directories as in
the <header_name> situation.

The following example clarifies these differences:

#include <stdio.h> .
/* header in standard include directory */

#define myinclud C:\BORLANDC\INCLUDE\MYSTUFF.H"
/* Note: Single backslashes OK here; within a C statement you would
‘need "C:\\BORLANDC\\INCLUDE\\MYSTUFF.H" */

#include myinclud
/* macro expansion */

#include "myinclud.h"
/* no macro expansion */

After expansion, the second #include statement causes the prepro-
cessor to look in C:\BORLANDC\INCLUDE\MYSTUFF.H and
nowhere else. The third #include causes it to look for
MYINCLUD.H in the current directory, then in the default
directories.

Conditional compilation

166

Borland C++ supports conditional compilation by replacing the
appropriate source-code lines with a blank line. The lines thus
ignored are those beginning with # (except the #if, #ifdef, #ifndef,
#else, #elif, and #endif directives), as well as any lines that are not
to be compiled as a result of the directives. All conditional compi-
lation directives must be completed in the source or include file in
which they are begun.
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The #if, #elif, #else,
and #endif
conditional
directives
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The conditional directives #if, #elif, #else, and #endif work like the
normal C conditional operators. They are used as follows:

#if constant-expression-1
<section-1>
<ttelif constant-expression-2 newline section-2>

<ttelif constant-expression-n newline section-n>
<#else <newline> final-section>

#endif

If the constant-expression-1 (subject to macro expansion) evaluates
to nonzero (true), the lines of code (possibly empty) represented
by section-1, whether preprocessor command lines or normal
source lines, are preprocessed and, as appropriate, passed to the
Borland C++ compiler. Otherwise, if constant-expression-1 evalu-
ates to zero (false), section-1 is ignored (no macro expansion and
no compilation).

In the true case, after section-1 has been preprocessed, control
passes to the matching #endif (which ends this conditional
interlude) and continues with next-section. In the false case, control
passes to the next #elif line (if any) where constant-expression-2 is
evaluated. If true, section-2 is processed, after which control
moves on to the matching #endif. Otherwise, if constant-
expression-2 is false, control passes to the next #elif, and so on,
until either #else or #endif is reached. The optional #else is used
as an alternative condition for which all previous tests have
proved false. The #endif ends the conditional sequence.

The processed section can contain further conditional clauses,
nested to any depth; each #if must be carefully balanced with a
closing #endif.

The net result of the preceding scenario is that only one section
(possibly empty) is passed on for further processing. The
bypassed sections are relevant only for keeping track of any
nested conditionals, so that each #if can be matched with its
correct #endif.

The constant expressions to be tested must evaluate to a constant
integral value.
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The operator defined
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The #ifdef and
#ifndef
conditional
directives

The defined operator offers an alternative, more flexible way of
testing whether combinations of identifiers are defined or not. It is

‘valid only in #if and #elif expressions.

The expression defined(identifier) or defined identifier
(parentheses are optional) evaluates to 1 (true) if the symbol has
been previously defined (using #define) and has not been
subsequently undefined (using #undef); otherwise, it evaluates to
0 (false). So the directive

#1if defined(mysym)
is the same as
#ifdef mysym

The advantage is that you can use defined repeatedly in a
complex expression following the #if directive, such as

#if defined(mysym) && !defined(yoursym)

/

The #ifdef and #ifndef conditional directives let you test whether
an identifier is currently defined or not, that is, whether a pre-
vious #define command has been processed for that identifier and
is still in force. The line

#ifdef identifier

has exactly the same effect as
#if 1

if identifier is currently defined, and the same effect as
#f 0

if identifier is currently undefined.

#ifndef tests true for the “not-defined” condition, so the line
#ifndef identifier

has exactly the same effect as
#f 0

if identifier is currently defined, and the same effect as
#if 1

if identifier is currently undefined.
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The syntax thereafter follows that of the #if, #elif, #else, and
#endif given in the previous section.

An identifier defined as NULL is considered to be defined.

The #line line control directive

The inclusion of stdio.h
means that the preprocessor
output will be somewhat
large.

We ‘ve eliminated most of the
stdio.h portion.

Chapter 4, The preprocessor

You can use the #line command to supply line numbers to a
program for cross-reference and error reporting. If your program
consists of sections derived from some other program file, it is
often useful to mark such sections with the line numbers of the
original source rather than the normal sequential line numbers
derived from the composite program. The syntax is

#line integer_constant <“filename”>

indicating that the following source line originally came from line
number integer_constant of filename. Once the filename has been
registered, subsequent #line commands relating to that f11e can
omit the explicit filename argument.

/* TEMP.C: An example of the #line directive */
#include <stdio.h>

#line 4 "junk.c"
void main()

{

printf(" in line %d of %s",_ _LINE_ _,_ _FILE_ _};
#line 12 "temp.c"

printf("\n");

printf(" in line %d of %s",_ _LINE_ _,_ _FILE_ _);
#line 8

printf(*\n");

printf(" in line %d of %s",_ _LINE_ _,_ _FILE_ _);

}

If you run TEMP.C through CPP (cpp temp), you'll get an output
file TEMP.L; it should look like this:

temp.c 1:

C: \BORLAND\BORLANDC\CPP\INCLUDE\STDIO.H 1:
C:\BORLAND\BORLANDC\CPP\INCLUDE\STDIO.H 2:
C:\BORLAND\BORLANDC\CPP\ INCLUDE\STDIO.H 3:

C:\BORLAND\BORLANDC\CPP\INCLUDE\STDIO.H 212:
C:\BORLAND\BORLANDC\CPP\INCLUDE\STDIO.H 213:
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temp.c 2

temp.c 3:

junk.c 4: void main()

junk.c 5: {

junk.c 6: printf(" in line %d of %s",6,"junk.c");
junk.c 7:

temp.c 12: printf("\n");

temp.c 13: printf(" in line %d of %s",13,"temp.c");
temp.c 14:

temp.c 8: printf("\n");

temp.c 9: printf(" in line %d of %s",9,"temp.c");
_temp.c, 10: }

temp.c 11:

If you then compile and run TEMP.C, you’ll get the output shown
here:

in line 6 of junk.c
in line 13 of temp.c
in line 9 of temp.c

Macros are expanded in #line arguments as they are in the
#include directive.

The #line directive is primarily used by utilities that produce C
code as output, and not in human-written code.

The #error directive
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The #error directive has the following syntax:
#error errmsg V

This generates the message:
Error: filename line# : Error directive: errmsg

This directive is usually embedded in a preprocessor conditional
that catches some undesired compile-time condition. In the
normal case, that condition will be false. If the condition is true,
you want the compiler to print an error message and stop the
compile. You do this by putting an #error directive within a
conditional that is true for the undesired case.

For example, suppose you #define MYV AL, which must be either
0 or 1. You could then include the following conditional in your
source code to test for an incorrect value of MYVAL:
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#1f (MYVAL != 0 && MYVAL != 1)
#error MYVAL must be defined to either 0 or 1
#endif

The #pragma directive

Borland C++ only

#pragma
argsused

#pragma exit and
#pragma startup

Chapter 4. The preprocessor

The #pragma directive permits implementation-specific directives
of the form:

#pragma directive-name

With #pragma, Borland C++ can define whatever directives it
desires without interfering with other compilers that support
#pragma. If the compiler doesn’t recognize directive-name, it
ignores the #pragma directive without any error or warning
message. :

Borland C++ supports the following #pragma directives:

@ #pragma argsused

| #pragma exit

m #pragma hdrfile

m #pragma hdrstop
#pragma inline

m #pragma option

m #pragma saveregs

m #pragma startup

@ #pragma warn

| #pragma intrinsic

The argsused pragma is only allowed between function
definitions, and it affects only the next function. It disables the
warhing message:

"Parameter name is never used in function func-name"

These two pragmas allow the program to specify function(s) that
should be called either upon program startup (before the main
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Priorities from 0 fo 63 are

used by the C libraries, and
should not be used by the

user.

Note that the function name

#pragma hdrfile |

172

used in pragma startup or
exit must be defined (or
declared) before the
pragma line is reached.

function is called), or program exit (just before the program
terminates through _exit).

The syntax is as follows:

#pragma startup function-name <priority>
#pragma exit function-name <priority>

The specified function-name must be a previously declared
function taking no arguments and returning void; in other words,
it should be declared as

void func(void);

The optional priority parameter should be an integer in the range
64 to 255. The highest priority is 0. Functions with higher
priorities are called first at startup and last at exit. If you don’t
specify a priority, it defaults to 100. For example,

#include <stdio.h>

void startFunc(void)

{

printf("Startup function.\n");

}

#pragma startup startFunc 64
/* priority 64 --> called first at startup */

void exitFunc(void)
{
printf("Wrapping up execution.\n");

}

dpragma exit exitFunc
/* default priority is 100 */

void main(void)
{
printf("This is main.\n");

}

This directive sets the name of the file in which to store precom-
piled headers. The default file name is TCDEF.SYM. The syntax is

#pragma hdrfile “filename.SYM”
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See Appendix D,
“Precompiled headers” in
the User’s Guide for more
details.

#pragma hdrstop

#pragma inline

#pragma intrinsic

#pragma option

The command-line compiler
options are defined in
Chapter 5in the User’s

Guide.

Chapter 4, The preprocessor

If you aren’t using precompiled headers, this directive has no
effect. You can use the command-line compiler option
—H=filename or the Precompiled Header (O | ClCode Generation)
to change the name of the file used to store precompiled headers.

This directive terminates the list of header files that are eligible for
precompilation. You can use it to reduce the amount of disk space
used by precompiled headers. (See Appendix D in the User’s Guide
for more on precompiled headers.)

This directive is equivalent to the ~B command-line compiler
option or the IDE inline option. It tells the compiler that there is
inline assembly language code in your program (see Chapter 12,
“BASM and inline assembly”). The syntax is

#pragma inline

This is best placed at the top of the file, since the compiler restarts
itself with the —B option when it encounters #pragma inline.
Actually, you can leave off both the =B option and the #pragma
inline directive, and the compiler will restart itself anyway as
soon as it encounters asm statements: The purpose of the option
and the directive is to save some compilation time.

#pragma intrinsic is documented in Appendix A, “The
Optimizer” in the User’s Guide.

Use #pragma option to include command-line options within
your program code. The syntax is

#pragma option [options...]

options can be any command-line option (except those listed in the
following paragraph). Any number of options can appear in one
directive. Any of the toggle options (such as —a or —K) can be
turned on and off as on the command line. For these toggle
options, you can also put a period following the option to return
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See page 352 for more on
using #pragma option with
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far objects.

the option to its command-line, configuration file, or option-menu
setting. This allows you to temporarily change an option, then
return it to its default, without you having to remember (or even
needing to know) what the exact default setting was.

Options that cannot appear in a pragma option include

-B -H -Q
-Cc ~Ifilename -S
—dname ~L filename -T
-Dname = string -Ixset -Uname
—efilename -M -V
-E -0 -X
-Fx -P =Y

You can use #pragmas, #includes, #define, and some #ifs before

1. The use of any macro name that begins with two underscores
(and is therefore a possible built-in macro) in an #if, #ifdef,
#ifndef or #elif directive.

2. The occurrence of the first real token (the first C or C++
declaration).

Certain command-line options can only appear in a #pragma
option command before these events. These options are

—Efilename -m* -u
-f* —npath -w
~i#t -ofilename -2*

Other options can be changed.anywhere. The following options
will only affect the compiler if they get changed between
functions or object declarations:

-1 -h ’ -r
-2 -k -rd
-a =N ) -V
—ff -0 -y
-G -p -Z

The following options can be changed at any time and take effect
immediately:

-A -gn -zE
-b : -jn -zF
-C -K -zH
-d —~WXXX ‘
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They can additionally appear followed by a dot (.) to reset the
option to its command-line state.

#oragma

saveregs The saveregs pragma guarantees that a huge function will not
change the value of any of the registers when it is entered. This
directive is sometimes needed for interfacing with assembly
language code. The directive should be placed immediately
before the function definition. It applies to that function alone.

#pragma warn

The warn directive lets you override specific -wxxx command-line
options or check Display Warnings settings in the Options |
Compiler | Messages dialog boxes.

For example, if your source code contains the directives

#pragma warn +xxx

#pragma warn -yyy
#pragma warn .zzz

the xxx warning will be turned on (even if on the Options |
Compiler | Messages menu it was toggled to Off), the yyy warning
will be turned off, and the zzz warning will be restored to the
value it had when compilation of the file began.

A complete list of the three-letter abbreviations and the warnings
to which they apply is given in Chapter 5, “The command-line
compiler” in the User’s Guide.

Predefined macros

Borland C++ predefines certain global identifiers, each of which is
discussed in this section. Except for __cplusplus and _Windows,
each of these starts and ends with two underscore characters (_ ).
These macros are also known as manifest constants.

_ _BCPLUSPLUS_ _

This macro is specific to Borland’s C and C++ family of compilers.
It is only defined for C++ compilation. If you've selected C++
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compllatlon it is defined as 0x0300, a hexadecimal constant. This
numeric value will increase in later releases.

_BORLANDC

This macro is specific to Borland’s C and C++ family of compilers.
It is defined as 0x0400, a hexadecimal constant. This numeric
value will increase in later releases.

_CDECL_ _

This macro is specific to Borland’s C and C++ family of compilers.
It signals that the —p flag was not used (the C radio button in the
Entry/Exit Code Generation dialog box). Set to the integer
constant 1 if calling was not used; otherwise, undefined.

The following six symbols are defined based on the memory

model chosen at compile time.
__COMPACT__ _ _MEDIUM_ _

__HUGE_ _ __SMALL_ _
__LARGE_ _ __TINY__

Only one is defined for any given compilation; the others, by defi-
nition, are undefined. For example if you compile with the small
model, the . _SMALL_ _macro is defined and the rest are not, so
that the directive

#if defined{_ _SMALL_ _)
will be true, while
#if defined(_ _LARGE_ _)

(or any of the others) will be false. The actual value for any of
these defined macros is 1.

_cplusplus

This macro is defined as 1 if in C++ mode; it’s undefined other-
wise. This allows you to write a module that will be compiled
sometimes as C and sometimes as C++. Using conditional
compilation, you can control which C and C++ parts are included.
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__DATE_ _

This macro provides the date the preprocessor began processing
the current source file (as a string literal).

Each inclusion of _ _DATE_ _ in a given file contains the same
value, regardless of how long the processing takes. The date
appears in the format mmm dd yyyy, where mmm equals the month
(Jan, Feb, and so forth), dd equals the day (1 to 31, with the first
character of dd a blank if the value is less than 10), and yyyy equals
the year (1990, 1991, and so forth).

_DLL_

This macro is specific to Borland’s C and C++ family of compilers.

22l Itis defined to be 1 if you compile a module with the ~-WD
command-line compiler option or are using the Windows DLL All
Functions Exportable radio button (O 1 C | C | Entry/Exit Code) to
generate code for Windows DLLs; otherwise it remains
undefined.

_ _FILE_ _

This macro provides the name of the current source file being pro-
cessed (as a string literal). This macro changes whenever the
compiler processes an #include directive or a #line directive, or
when the include file is complete.

_ _LINE_ _

This macro provides the number of the current source-file line
being processed (as a decimal constant). Normally, the first line of
a source file is defined to be 1, through the #line directive can
affect this. See page 169 for information on the #line directive.

__MSDOS_ _

This macro is specific to Borland’s C/C++ family of compilers. It
provides the integer constant 1 for all compilations.
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__OVERLAY_ _

__PASCAL_

_SIDC_ _

_ _TCPLUSPLUS_"_

_TEMPLATES_ _

__NIME_ _
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This macro is specific to Borland’s C and C++ family of compilers.
It is predefined to be 1 if you compile a module with the =Y
option (enable overlay support). If you don’t enable overlay
support, this macro is undefined.

This macro is specific to Borland’s C and C++ family of compilers.
It signals that the —p flag or the Pascal calling convention (O |C|
C| Exit/Entry) has been used. The macro is set to the integer
constant 1 if used; otherwise, it remains undefined.

This macro is defined as the constant 1 if you compile with the
ANSI compatibility flag (-A) or ANSI radio button (Source
Options); otherwise, the macro is undefined.

This macro is specific to Borland’s C and C++ family of compilers.
It is only defined for C++ compilation. If you've selected C++
compilation, it is defined as 0x0300, a hexadecimal constant. This
numeric value will increase in later releases.

This macro is specific to Borland’s C and C++ family of compilers.
It is defined as 1 for C++ files (meaning that Borland C++
supports templates); it's undefined otherwise.

This macro keeps track of the time the preprocessor began
processing the current source file (as a string literal).

As with __DATE_ _, each inclusion of _ _TIME_ _ contains the
same value, regardless of how long the processing takes. It takes
the format ih:mm:ss, where hh equals the hour (00 to 23), mm
equals minutes (00 to 59), and ss equals seconds (00 to 59).
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_ _TURBOC_ _

This macro is specific to Borland’s C and C++ family of compilers.
It is defined as 0x0400, a hexadecimal constant. This numeric
value will increase in later releases.

_Windows

Indicates that Windows-specific code is being generated. This
macro is defined if you compile a module with any of the -W
command-line compiler options enabled (generate Windows
applications). If you don’t enable any of these options, this macro
is undefined.
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Using C++ streams

This chapter is divided into two sections: a brief, practical over-
view of using C++ stream I/O, and a reference section to the C++
stream class library.

Stream input/output in C++ (commonly referred to as iostreams,
or merely streams) provide all the functionality to the stdio library
in C. iostreams are used to convert typed objects into readable
text, and vice versa. Streams may also read and write binary data.
The C++ language allows you to define or overload I/O functions
and operators that are then called automatically for correspond-
ing user-defined types.

What is a stream?

A stream is an abstraction referring to any flow of data from a
source (or producer) to a sink (or consumer). We also use the syno-
nyms extracting, getting, and fetching when speaking of inputting
characters from a source; and inserting, putting, or storing when
speaking of outputting characters to a sink. Classes are provided
that support console output (constrea.h), memory buffers '
(iostream.h), files (fstream.h), and strings (strstrea.h) as sources or
sinks (or both).

]
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The iostfream library

182

The streambuf
class

Figure 6.1
Class streambuf and its
derived classes

The ios class

The iostream library has two parallel families of classes: those
derived from streambuf, and those derived from ios. Both are
low-level classes, each doing a different set of jobs. All stream
classes have at least one of these two classes as a base class.
Access from ios-based classes to streambuf-based classes is
through a pointer.

The streambuf class provides an interface to physical devices.
streambuf provides general methods for buffering and handling
streams when little or no formatting is required. streambufis a
useful base class employed by other parts of the iostream library,
though you can also derive classes from it for your own functions
and libraries. The classes conbuf, filebuf and strstreambuf are
derived from streambuf.

Cireambu>

CebuD  Grsreambut>  (conoud

The class ios (and hence any of its derived classes) contains a
pointer to a streambuf. It performs formatted I/O with error-
checking using a streambuf.

An inheritance diagram for all the ios family of classes is found in
Figure 5.2. For example, the ifstream class is derived from the
istream and fstreambase classes, and istrstream is derived from
istream and strstreambase. This diagram is not a simple hier-
archy because of the generous use of multiple inheritance. With
multiple inheritance, a single class can inherit from more than one
base class. (The C++ language provides for virtual inheritance to
avoid multiple declarations.) This means, for example, that all the
members (data and functions) of iostream, istream, ostream,
fstreambase, and ios are part of objects of the fstream class. All
classes in the ios-based tree use a streambuf (or a filebuf or
strstreambuf, which are special cases of a streambuf) as its source
and /or sink.
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C++ programs start with four predefined open streams, declared
as objects of withassign classes as follows:

extern istream_withassign cin; // Corresponds to stdin
extern ostream_withassign cout; // Corresponds to stdout
extern ostream withassign cerr; // Corresponds to stderr
extern ostream_withassign clog; // A buffered cerr

Figure 5.2
Class ios and its derived
classes

By accepted practice, the
arrows point from the derived
class to the base class.

Btream_withassigny Costream_withassign)
Output

Stream output is accomplished with the insertion (or put to) opera-
tor, <<. The standard left shift operator, <<, is overloaded for out-
put operations. Its left operand is an object of type ostream. Its
right operand is any type for which stream output has been
defined (that is, fundamental types or any types you have over-
loaded it for). For example,
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cout << "Hello!\n";

writes the string “Hello!” to cout (the standard output stream,
normally your screen) followed by a new line.

The << operator associates from left to right and returns a
reference to the ostream object for which it is invoked. This
allows several insertions to be cascaded as follows:

int 1 = 8;
double d = 2.34;
cout << "1 = "<« i< ", d="<<d<< "\n";

This will write the following to standard output:

i=8,d=2.34

Fundamental

TYpes The fundamental data types directly supported are char, short,
int, long, char* (treated as a string), float, double, long double,
and void*. Integral types are formatted according to the default
rules for printf (unless you've changed these rules by setting
various ios flags). For example, the following two output
statements give the same result:

int i;
long 1;
cout << 1 << " " << 1;
printf("sd %1d*, i, 1);

The pointer (void *) inserter is used to display pointer addresses:
int i;
cout << &i; // display pointer address in hex

Read the description of the ostream class (page 205) for other
output functions.

Output

formafting Formatting for both input and output is determined by various
format state flags contained in the class ios. The format flags are as

follows:
public:
enum {
skipws, // skip whitespace on input
left, - // left-adjust output
right, // right-adjust output
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internal, // pad after sign or base indicator

dec, // decimal conversion

oct, // octal conversion

hex, // hexadecimal conversion
showbase, // show base indicator on output

showpoint, // show decimal point (floating-point output)

uppercase, // uppercase hex output

showpos, // show '+' with positive integers

scientific, // suffix floating-point numbers with exponential (E)
notation on output

fixed, // use fixed decimal point for floating-point numbers
unitbuf, // flush all streams after insertion
stdio, // flush stdout, stderr after insertion

I

These flags are read and set with the flags, setf, and unsetf
member functions (see class ios starting on page 199).

Manipulators

A simple way to change some of the format variables is to use a
special function-like operator called a manipulator. Manipulators
take a stream reference as an argument and return a reference to
the same stream. You can embed manipulators in a chain of
insertions (or extractions) to alter stream states as a side effect
without actually performing any insertions (or extractions). For
example,

Parameterized manipulators #include <iostream.h>

must be called for each

- #include <iomanip.h> // Required for parameterized manipulators.
stream operation.

int main(void) {
int i = 6789, j = 1234, k = 10;

cout << setw(6) << 1 << j << 1 << k << J;

cout << "\n";

cout << setw(6) << 1 << setw(6) << j << setw(6) << k;
return(0);

}
Produces this output:

678912346789101234
6789 1234 10

setw is a parameterized manipulator declared iniomanip.h. Other
parameterized manipulators, setbase, setfill, setprecision,
setiosflags and resetiosflags, work in the same way. To make use
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of these, your program must include iomanip.h. You can write
your own manipulators without parameters:

#include <iostream.h>

// Tab and prefix the output with a dollar sign.
ostream& money( ostream& output) {
return output << "\t$";

}

int main(void) {
float owed = 1.35, earned = 23.1;
cout << money << owed << money << earned;
return(0);

}

produces the following output:
$1.35  §23.1

The non-parameterized manipulators dec, hex, and oct (declared
in iostream.h) take no arguments and simply change the
conversion base (and leave it changed):

int 1 = 36;

cout << dec << 1 << " " << hex << 1 << " " << oct << 1 << endl;
cout << dec; // Must reset to use decimal base.

// displays 36 24 44

Table 5.1 3 : )

Stream manipulators Manipulator Action
dec Set decimal conversion base format flag.
hex Set hexadecimal conversion base format flag.
oct Set octal conversion base format flag.
ws Extract whitespace characters.
end] Insert newline and flush stream.
ends Insert terminal null in string.
flush Flush an ostream.
setbase(int ») Set conversion base format to base n (0, 8, 10, or

16). 0 means the default: decimal on output,

ANSI C rules for literal integers on input.
resetiosflags(long f) Clear the format bits specified by f.
setiosflags(long /)  Set the format bits specified by f.

setfill(int c) Set the fill character to c.
setprecision(int 1)  Set the floating-point precision to .
setw(intn) Set field width to .

The manipulator endl inserts a newline character and flushes the
stream. You can also the flush an ostream at any time with

ostream << flush;
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Filing and
padding

Input

The fill character and the direction of the padding depend on the
setting of the fill character and the left, right, and internal flags.

The default fill character is a space. You can vary this by using the

function fill:

int 1 = 123;
cout.fill('*");
cout.width(6);

cout << i // display ***123

The default direction of padding gives right-justification (pad on
the left). You can vary these defaults (and other format flags) with
the functions setf and unsetf:

int 1 = 56;

cout.width(6);

cout.fill('#");
cout.setf(ios::1left,ios::adjustfield);
cout << i // display S56####

The second argument, ios::adjustfield, tells setf which bits to set.
The first argument, ios::left, tells setf what to set those bits to.
Alternatively, you can use the manipulators setfill, setiosflags,
and resetiosflags to modify the fill character and padding mode.
See ios data members on page 199 for a list of masks used by setf.

Chapter 5, Using C++ streams

Stream input is similar to output but uses the overloaded right
shift operator, >>, known as the extraction (get from) operator, or
extractor. The left operand of >> is an object of type class istream.
As with output, the right operand can be of any type for which
stream input has been defined.

By default, >> skips whitespace (as defined by the isspace func-
tion in ctype.h), then reads in characters appropriate to the type of
the input object. Whitespace skipping is controlled by the
ios::skipws flag in the format state’s enumeration. The skipws flag is
normally set to give whitespace skipping. Clearing this flag (with
setf, for example) turns off whitespace skipping. There is also a
special “sink” manipulator, ws, that lets you discard whitespace.
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Consider the following example:

int 1i;
double d;
cin > 1 > d;

When the last line is executed, the program skips any leading .
whitespace. The integer value (i) is then read. Any whitespace
following the integer is ignored. Finally, the floating-point value
(d) is read.

For type char (signed or unsigned), the effect of the >> operator is
to skip whitespace and store the next (non-whitespace) character.
If you need to read the next character, whether it is whitespace or
not, you can use one of the get member functions (see the
discussion of istream, beginning on page 202).

For type char* (treated as a string), the effect of the >> operator is
to skip whitespace and store the next (non-whitespace) characters
until another whitespace character is found. A final null character
is then appended. Care is needed to avoid “overflowing” a string.
You can alter the default width of zero (meaning no limit) using
width as follows:

char array[SIZE];
cin.width(sizeof (array));
cin >> array; // Avoids overflow.

For all input of fundamental types, if only whitespace is encoun-
tered nothing is stored in the target, and the istream state is set to
fail. The target will retain its previous value; if it was uninitial-
ized, it remains uninitialized.

|/O of user-defined types

188

To input or output your own defined types, you must overload
the extraction and insertion operators. Here is an example:

#include <iostream.h>

struct info {
char *name;
double val;
char *units;
}i

// You can overload << for output as follows:
ostream& operator << (ostream& s, info& m)-{

Borland C++ Programmer’s Guide



Simple file 1/0

§ << m.name << " " << m.val << " " << m.units;
return s;
IH

// You can overload »> for input as follows:
istream& operator >> ({istream& s, info& m) {
S >> m.name >> m.val >> m.units;
return s;

}i

int main(void) {
info x;
x.name = new char(15];
x.units = new char(10];

cout << "\nInput name, value and units:";
cin >> X;

cout << "\nMy input:" << x;

return(0);

}

The class ofstream inherits the insertion operations from ostream,
while ifstream inherits the extraction operations from istream.
The file-stream classes also provide constructors and member
functions for creating files and handling file I/O. You must
include fstream.h in all programs using these classes.

Consider the following example that copies the file FILE.IN to the
file FILE.OUT:

#include <fstream.h>

int main(void) {
char ch;
ifstream f1("FILE.IN");
ofstream £2("FILE.OUT");

if (1fl) cerr << "Cannot open FILE.IN for input";
if (1f2) cerr << "Cannot open FILE.OUT for output";
while (f2 && fl.get(ch))

f2.put{ch);
return(0);

}

Note that if the ifstream or ofstream constructors are unable to
open the specified files, the appropriate stream error state is set.
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Table 5.2
File modes

The constructors allow you to declare a file stream without speci-
fying a named file. Later, you can associate the file stream with a
particular file:

ofstream ofile; // creates output file stream

ofile.open("payroll"); // ofile connects to file "payroll"
// do some payrolling...

ofile.close(); // close the ofile stream
ofile.open{"employee"); // ofile can be reused...

By default, files are opened in text mode. This means that on in-
put, carriage-return/linefeed sequences are converted to the ‘\n’
character. On output, the ‘\n’ character is converted to a carriage-
return/linefeed sequence. These translations are not done in
binary mode. The file opening mode is set with an optional
second parameter to the open function, chosen from the following
table:

Mode bit Action )

ios::app Append data—always write at end of file.
ios::ate Seek to end of file upon original open.
ios::in Open for input (default for ifstreams).
ios::out Open for output (default for ofstreams).
ios::binary Open file in binary mode.

ios::itrunc Discard contents if file exists (default if

ios::out is specified and neither ios::ate nor
ios::app is specified).

ios::nocreate If file does not exist, open fails.
ios::noreplace , If file exists, open for output fails unless ate or
app is set.

String stream processing
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The functions defined in strstrea.h support in-memory formatting,
similar to sscanf and sprintf, but much more flexible. All of the
istream functions are available for the class istrstream (input
string stream”); likewise for output: ostrstream inherits from
ostream.

Given a text file with the following format:

101 191 Cedar Chest

o

102 1999.99 Livingroom Set
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Each line can be parsed into three components: an integer ID, a
floating-point price, and a description. The output produced is:

1: 101 191.00 Cedar Chest
2: 102 1999.99 Livingroom Set

Here is the program:

#include <fstream.h>
#include <strstrea.h>
#include <iomanip.h>
#include <string.h>

int main(int argc, char **argv) {
int id;
float amount;
char description[4l];
ifstream inf{argv(l]);

if (inf) {
char inbuf[81];
int lineno = 0;

// Want floats to print as fixed point
cout.setf(ios::fixed, ios::floatfield);

// Want floats to always have decimal point
cout.setf(ios::showpoint);

while (inf.getline(inbuf,81)) {
// 'ins’' is the string stream:
istrstream ins(inbuf,strlen{inbuf));
ins >> id >> amount >> ws;
ins.getline(description,41); // Linefeed not copied.
cout << ++lineno << ": "
<< 1d << "\t’
<< setprecision(2) << amount << '\t’
<< description << "\n";
}
}
return(0);

}

Note the use of format flags and manipulators in this example.

The calls to setf coupled with setprecision allow floating-point
numbers to be printed in a money format. The manipulator ws
skips whitespace before the description string is read.
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Screen output stfreams

Table 5.3
Console stfream manipulators

Typical use of parameterized
manipulators.
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The class constream, derived from ostream and defined in
constrea.h, provides the functionality of conio.h for use with C++
streams. This allows you to create output streams that write to
specified areas of the screen, in specified colors, and at specific
locations.

As with conio.h functions, constreams are not compatible with
Windows. The screen area created by constream is not bordered
or otherwise disinguished from the surrounding screen.

Console stream manipulators are provided to facilitate formatting
of console streams. These manipulators work in the same way as
the corresponding function provided by conio.h. For a detailed
description of the manipulators’ behavior and valid arguments,
see the Library Reference.

Manipulator conio function Action

cireol cireol Clears to end of line in text
window.

delline delline Deletes line in the text
window.

highvideo highvideo Selects high-intensity
characters.

insline insline Inserts a blank line in the
text window.

lowvideo lowvideo Selects low-intensity
characters.

normvideo normvideo Selects normal-intensity
characters.

setattr(int) textattr Sets screen attributes.

setbk(int) textcolor Sets new character color.

setclr(int) textcolor Set the color.

setcrstype(int) _setcursortype  Selects cursor appearance.

setxy(int, int) gotoxy Positions the cursor at the

specified position.

#include <constrea.h>

int main(void) {
constream winl;

winl.window(1, 1, 40, 20); // Initialize the desired space.
winl.clrscr(); // Clear this rectangle.

// Use the parameterized manipulator to set screen attributes.
winl << setattr((BLUE<<4) | WHITE)
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<< "This text is white on blue.";

// Use this parameterized manipulator to specify output area.
winl << setxy (10, 10)
<< "This text is in the middle of the window.";

return(0);
}
You can create multiple #include <constrea.h>
constreams, each writing to

its own portion of the screen. int main(void) {

Then, you can output to any constream demol, demo2;

them without having fo reset .

the window each fime. demol.window( 1, 2, 40, 10 );

demo2.window( 1, 12, 40, 20 );

demol.clrscr();
demo?2.clrscr();

demol << "Text in first window" << endl;

demo2 << "Text in second window® << endl;

demol << "Back to the first window" << endl;
demo2 << "And back to the second window" << endl;
return(0);

}

Stream class reference

The stream class library in C++ consists of several classes. This
reference presents some of the most useful details of these classes,
in alphabetical organization. The following cross-reference lists
tell which classes belong to which header files.

constrea.h: conbuf, constream

iostream.h: ios, iostream, iostream_withassign, istream,
istream_withassign, ostream,
ostream_withassign, streambuf.

fstream.h: filebuf, fstream, fstreambase, ifstream,
ofstream.
strstrea.h: istrstream, ostrstream, strstream,

strstreambase, strstreambuf.
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‘conbuf

conlbuf <constrea.h>
Specializes streambuf to handle console output.
constructor  conbuf ()
Makes an unattached conbuf.
Member
functions
clreol  void clreol()
Clears to end of line in text window.
clrser  void clrscr()

Clears the defined screen.

delline void delline()
Deletes a line in the window.

gotoxy void gotoxy(int x, int y)
Positions the cursor in the window at the specified location.

highvideo void highvideo()

Selects high-intensity characters.

insline  void insline()
Inserts a blank line.

lowvideo  void lowvideo()
Selects low-intensity characters.
normvideo  void normvideo()
Selects normal-intensity characters.
overflow virtual int overflow( int = EOF )
" Flushes the conbulf to its destination.
sef¢ursoriype void setcursortype(int cur_type)

Selects the cursor appearance.

textattr  void textattr(int newattribute)

| Selects cursor appearance.
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conbuf

textbackground void textbackground(int newcolor)
Selects the text background color.
textcolor void textcolor( int newcolor)
Selects character color in text mode.
textmode static void textmode(int newmode)
Puts the screen in text mode.
wherex int wherex()
Gets the horizontal cursor position.
wherey int wherey()
Gets the vertical cursor position.
window  void window{int left, int top, int right, int bottom)
Defines the active window.
constream <constrea.h>
Provides console output streams. This class is derived from ostream.
constructor  constrean() |
Provides an unattached output stream to the console.
Member
functions
cliser  void clrscr()
Clears the screen.
rdbuf  conbuf *rdbuf ()
Returns a pointer to this constream’s assigned conbuf.
textmode void textmode (int newmode)
Puts the screen in text mode.
window  void window(int left, int top, int right, int bottom)
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filebuf

filebuf <fsfream.h>
Specializes streambuf to handle files.
constructor  filebuf();
Makes a filebuf that isn’t attached to a file.
consfructor  filepuf (int fd);
Makes a filebuf attached to a file as specified by file descriptor fd.
constructor  filebuf(int fd, char *, int n);
Makes a filebuf attached to a file and uses a specified n-character buffer.
Member
functions
attach  filebuf* attach(int)
Attaches this closed filebuf to opened file descriptor.
close filebuf* close()
Flushes and closes the file. Returns 0 on error.
fd  Returns the file descriptor or EOF.
is_open int is_open{();
Returns nonzero if the file is open.
open filebuf* open(const char*, int mode, int prot = filebuf::openprot);
Opens the given file and connects to it.
overflow virtual int overflow(int = EOF);
Flushes a buffer to its destination. Every derived class should define the
actions to be taken.
seekoff virtual streampos seekoff (streamoff, ios::seek_dir, int);
Moves the file pointer relative to the current position.
setbuf  virtual streambuf* setbuf (char*, int);
Specifies a buffer for this filebuf.
sync virtual int sync();
Establishes consistency between internal data structures and the external
stream representation.
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underflow virtual int underflow();
Makes input available. This is called when no more data exists in the
input buffer. Every derived class should define the actions to be taken.
fstream <fstream.h>

This stream class, derived from fstreambase and iostream, provides for
simultaneous input and output on a filebuf.

constructor  fstream();
Makes an fstream that isn’t attached to a file.

constructor  fstream(const char*, int, int = filebuf::openprot);
Makes an fstream, opens a file, and connects to it.

constructor  fstream(int);
Makes an fstream, connects to an open file descriptor.

constructor  fstream(int, char*, int);
Makes an fstream connected to an open file and uses a specified buffer.

Member
functions ,
open void open(const char*, int, int = filebuf::openprot);
Opens a file for an fstream.
rdbuf  filebuf* rdbuf();
Returns the filebuf used.
fstreambase <fstream.h>

This stream class, derived from ios, provides operations common to file
streams. It serves as a base for fstream, ifstream, and ofstream.

constructor  fstreambase();

Makes an fstreambase that isn’t attached to a file.
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constructor  fstreambase(const char*, int, int = filebuf::openprot);
Makes an fstreambase, opens a file, and connects to it.
consfructor  fstreambase(int); ’
Makes an fstreambase, connects to an open file descriptér.
constructor  fstreambase(int, char*, int);
Makes an fstreambase connected to an open file and uses a specified
buffer.
Member
functions
aftach  void attach(int);
Connects to an open file descriptor.
close void close();
Closes the associated filebuf and file.
open void open{const char*, int, int = filebuf::openprot);
Opens a file for an fstreambase.
rdbuf  filebuf* rdbuf();
Returns the filebuf used.
setbuf  void setbuf (char*, int);
Uses a specified buffer.
ifstream <fsfream.h>
This stream class, derived from fstreambase and istream, provides input
operations on a filebuf.
consfructor  ifstream();
Makes an ifstream that isn’t attached to a file.
ifstream({const char*, int = ios::in, int = filebuf::openprot);

constructor
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Makes an ifstream, opens an input file in protected mode, and connects to
it. The existing file contents are preserved; new writes are appended.
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constructor  ifstream{int);
Makes an ifstream, connects to an open file descriptor.
constructor ifstrean(int fd, char *, int);
Makes an ifstream connected to an open file and uses a specified buffer.
Member
functions
open void open(const char*, int, int = filebuf::openprot);
Opens a file for an ifstream.
rdbuf filebuf* rdouf();
Returns the filebuf used.
ios <iostream.h>
Provides operations common to both, input and output. Its derived
classes (istream, ostream, iostream) specialize I/O with high-level
formatting operations. The ios class is a base for istream, ostream,
fstreambase, and strstreambase. .
constructor  ios(); protected
Constructs an ios object that has no corresponding streambuf.
constructor  ios (streambuf *);
Associates a given streambuf with the stream.
Dafa
members

static const long adjustfield; // left | right | internal
static const long basefield; // dec | oct | hex
static const long floatfield; // scientific | fixed

streambuf *bp; » // the associated streambuf protected
int x_fill; // padding character on
: // output protected
long x_flags; // formatting flag bits protected
int x_precision; // floating-point precision on '
// output protected

Chapter 5, Using C++ streams 199



ios

200

Member

functions
bad

bitalloc

clear

eof

fail

fill

fill

flags

flags

good

init

int state; // current state of the

// streambuf protected
ostream *x_tie; // the tied ostream, if any protected
int x_width; // field width on output protected
int bad();

Nonzero if error occurred.
static long bitalloc();

Acquires a new flag bit set. The return value may be used to set, clear, and
test the flag. This is for user-defined formatting flags.

void clear({int = 0);

Sets the stream state to the given value.
int eof();

Nonzero on end of file.

int fail();

Nonzero if an operation failed.

char £ill()

Returns the current fill character.

char fill(char);

Resets the fill character; returns the previous one.
long flags();

Returns the current format flags.

long flags(long);

Sets the format flags to be identical to the given long; returns previous
flags. Use flags(0) to set the default format.

int good();
Nonzero if no state bits set (that is, no errors appeared).
void init(streambuf *); protected

Provides the actual initialization.
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precision int precision();
Returns the current floating-point precision.
precision int precision(int);
Sets the floating-point precision; returns previous setting.
rdbuf  streambuf* rdbuf();
Returns a pointer to this stream’s assigned streambuf.
rdstate  int rdstate();
Returns the stream state.
self long setf(long);

Sets the flags corresponding to those marked in the given long; returns
previous settings.

seff long setf(long _setbits, long _field);

The bits corresponding to those marked in _field are cleared, and then
reset to be those marked in _setbits.

sefstate protected:void setstate(int);
Sets all status bits.
sync_with_stdio static void sync_with_stdio();
Mixes stdio files and iostreams. This should not be used for new code.
tie ostream* tie();

Returns the tied stream, or zero if none. Tied streams are those that are
connected such that when one is used, the other is affected. For example,
cin and cout are tied; when c¢in is used, it flushes cout first.

tie ostream* tie(ostream*);

Ties another stream to this one and returns the previously tied stream, if
any. When an input stream has characters to be consumed, or if an output
stream needs more characters, the tied stream is first flushed automati-
cally. By default, cin, cerr and clog are tied to cout.

unsetf  long unsetf(long);

Clears the bits corresponding to those marked in the given long; returns
previous settings.
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width  int width();
Returns the current width setting.
width  int width(int);
Sets the width as given; returns the previous width.
xalloc  static int xalloc();
Returns an array index of previously unused words that can be used as
user-defined formatting flags.
jostfream <jostream.h>
This class, derived from istream and ostream, is simply a mixture of its
base classes, allowing both input and output on a stream. It is a base for
fstream and strstream.
constructor  iostream(streamouf *);
Associates a given streambuf with the stream.
iostfream_withassign . <iostream.h>
) This class is an iostream with an added assignment operator.
constructor  iostream withassign();
Default constructor (calls iostream’s constructor).
Member
functions

None (although the = operator is overloaded).

isfream <iostream.h>
Provides formatted and unformatted input from a streambuf. The >>
operator is overloaded for all fundamental types, as explained in the
narrative at the beginning of the chapter. This ios class is a base for
ifstream, iostream, istrstream, and istream_withassign.
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constructor  istream(streambuf *);

Associates a given streambuf with the stream.

Member

functions
gcount  int gcount();

Returns the number of characters last extracted.
get int get();
Extracts the next character or EOF.

get istream& get(signed char*, int len, char = ‘\n’);
istream& get(unsigned char*, int len, char = '\n’);

Extracts characters into the given char * until the delimiter (third
parameter) or end-of-file is encountered, or until (Ien — 1) bytes have been
read. A terminating null is always placed in the output string; the
delimiter never is. Fails only if no characters were extracted.

get istream& get{signed char&);
istream& get{unsigned char&);

Extracts a single character into the given character reference.
get istream& get(streambuf&, char = ‘\n’);

Extracts characters into the given streambuf until the delimiter is
encountered.

getline istream& getline(signed char *buffer, int, char = '\n’);
istream& getline{unsigned char *buffer, int, char = '\n’);

Same as get, except the delimiter is also extracted. The delimiter is not
copied to buffer.

ignoré istream& ignore(int n = 1, int delim = EQF);

Causes up to n characters in the input stream to be skipped; stops if delim
is encountered.

peek int peek();
Returns next char without extraction.
putback istream& putback(char);

Pushes back a character into the stream.
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read istream& read(signed char*, int);
istream& read(unsigned char*, int);
Extracts a given number of characters into an array. Use gcount() for the
number of characters actually extracted if an error occurred.
seekg istream& seekg(long);
Moves to an absolute position (as returned from tellg).
seekg istream& seekg(long, seek_dir);
Moves to a position relative to the current position, following the
definition: enum seek_dir {beg, cur, end};
tellg 1long tellg();
Returns the current stream position.
istream_withassign <iostream.h>

This class is an istream with an added assignment operator.

constructor  istream withassign();
Default constructor (calls istream’s constructor).

Member
functions
None (although the = operator is overloaded).
istrsfream <strstrea.h>

Provides input operations on a strstreambuf. This class is derived from
strstreambase and istream.

constructor  istrstream(const char *);
Makes an istrstream with a specified string (a null character is never
extracted).

constructor  istrstream(const char *, int n);
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Makes an istrstream using up to n bytes of a specified string.
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ofstream <fsfream.h>
Provides input operations on a filebuf. This class is derived from
fstreambase and ostream.
constructor  ofstream();
Makes an ofstream that isn’t attached to a file.
constructor  ofstream(const char*, int = ios::out, int = filebuf::openprot);
Makes an ofstream, opens a file, and connects to it.
constructor  ofstream(int);
» Makes an ofstream, connects to an open file descriptor.
constructor  ofstream(int fd, char*, int);
Makes an ofstream connected to an open file and uses a specified bulffer.
Member
functions
open void open({const char*, int, int = filebuf::openprot);
Opens a file for an ofstream.
rdbuf filebuf* rdbuf();
Returns the filebuf used.
ostream <iostfream.h>
Provides formatted and unformatted output to a streambuf. The <<
operator is overloaded for all fundamental types, as explained on page
183. This ios-based class is a base for constream, iostream, ofstream,
ostrstream, and ostream_withassign.
constructor » ostream(streambuf *);

Associates a given streambuf with the stream.
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Member
functions
flush  ostream& flush();
Flushes the stream.
put  ostream& put (char);
Inserts the character.
seekp ostream& seekp(long};
Moves to an absolute position (as returned from tellp).
seekp ostreams seekp(long, seek_dir);
Moves to a position relative to the current position, following the
definition: enum seek_dir {beg, cur, end};
tellp  long tellp();
Returns the current stream position.
writeé  ostream& write{const signed char*, int n);
ostream& write(const unsigned char*, int n);
Inserts #n characters (nulls included).
ostream_withassign <iostream.h>
This class is an ostream with an added assignment operator.
constructor  ostream withassign();
Default constructor (calls ostream’s constructor).
Member
functions _
None (although the = operator is overloaded).
ostrstream <strstrea.h>
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Provides output operations on a strstreambuf. This class is derived from
strstreambase and ostream.
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constructor  ostrstream();
Makes a dynamic ostrstream.
constructor ostrstream{char*, int, int = ios::out);
Makes a ostrstream with a specified n-byte buffer. If mode is ios::app or
ios::ate, the get/put pointer is positioned at the null character of the
string.
Member
functions
pcount char *pcount();
Returns the number of bytes currently stored in the buffer.
sfr  char *str();
Returns and freezes the buffer. You must deallocate it if it was dynamic.
streambuf <iostream.h>
This is a buffer-handling class. Your applications gain access to buffers
and buffering functions through a pointer to streambuf that is set by ios.
streambuf is a base for filebuf and strstreambuf.
constructor  streambuf();
Creates an empty buffer object.
constructor  streambuf (char *, int);
Uses the given array and size as the buffer.
Member
functions
allocate  int allocate(); protected
. Sets up a buffer area.
base char *base(); protected
Returns the start of the buffer area.
blen int blen{); protected

Returns the length of buffer area.
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ebaék
ebuf
egptr
epptr
gbump
gptr
in_avail
out_waiting
pbase
pbump
pptr
sbumpc

seekoff
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char *eback(); protected
Returns the base of putback section of get area.

char *ebuf(); protected
Returns the end+1 of the buffer area.

char *egptr{); protected
Returns the end+1 of the get area.

char *epptr(); protected
Returns the end+1 of the put area.

void gbump(int); protected
Advances the get pointer.

char *gptr(); protected

Returns the next location in get area.

int in_avail();

Returns the number of characters remaining in the input buffer.
int out_waiting();

Returns the number of characters remaining in the output buffer.

char *pbase(); protected
Returns the start of put area.

void pbump(int); protected
Advances the put pointer.

char *pptr(); protected

Returns the next location in put area.
int sbumpc();
Returns the current character from the input buffer, then advances.

virtual streampos seekoff (streamoff, ios::seek dir,
int = {ios::in | ios::out);

Moves the get or put pointer (the third argument determines which one or
both) relative to the current position.
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seekpos

setb

setbuf

setg

setp

sgetc

sgetn

snextc

sputbacke

sputc

sputn

stossc

unbuffered

unbuffered

streambuf

virtual streampos seekpos(streampos, int = {ios::in | 1los::out));

Moves the get or put pointer to an absolute position.

void setb{char *, char *, int = 0 ); protected
Sets the buffer area.

virtual streambuf* setbuf(signed char *, int);
streambuf* setbuf (unsigned char *, int);

Connects to a given buffer.

void setg(char *, char *, char *); protected
Initializes the get pointers.

void setp(char *, char *); protected
Initializes the put pointers.

int sgetc();

Peeks at the next character in the input buffer.

int sgetn{char*, int n);

Gets the next n characters from the input buffer.

int snextc();

Advances to and returns the next character from the input buffer.

int sputbackc(char); ‘

Returns a character to input.

int sputc(int);

Puts one character into the output buffer.

int sputn(const char*, int n);

Puts n characters into the output buffer.

void stossc();

Advances to the next character in the input buffer.

void unbuffered(int); protected
Sets the buffering state.

int unbuffered(); protected

Returns non-zero if not buffered.
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strstreambase | - <strstrea.h>

* Specializes ios to string streams. This class is entirely protected except for

the member function strstreambaée::rdbuf(). This class is a base for
strstream, istrstream, and ostrstream.

constructor strstreambase() ; protected
Makes an empty strstreambase.
constructor  strstreambase(char *, int, char *start); protected
Makes an strstreambase with a specified buffer and starting position.
Member
functions
rdbuf  strstreambuf * rdbuf();
Returns a pointer to the strstreambuf associated with this object.
strstreamibuf <sfrstrea.h>
Specializes streambuf for in-memory formatting.
constructor  strstreambuf () ; v
Makes a dynarrﬁc strstreambuf. Memory will be dynamically allocated as
needed.
constructor  strstreambuf (void * (*)(long), void (*)(void *));
Makes a dynamic buffer with specified allocation and free functions.
constructor  strstreambuf (int n);
Makes a dynamic strstreambuf, initially allocating a buffer of at least
bytes. '
constructor  strstreambuf (signed char *, int, signed char *end = 0};
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strstreambuf (unsigned char *, int, unsigned char *end = 0);

Makes a static strstreambuf with a specified buffer. If end is not null, it
delimits the buffer.
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strstreambuf

Member
functions

doallocate virtual int doallocate();

Performs low-level buffer allocation.
freeze void freeze(int = 1); ‘
If the input parameter is nonzero, disallows storing any characters in the
buffer. Unfreeze by passing a zero.
overflow virtual int overflow(int = EOF);
Flushes a buffer to its destination. Every derived class should define the
actions to be taken. A
seekoff virtual streampos seekoff (streamoff, ios::seek_dir, int);
Moves the pointer relative to the current position.
setbuf virtual streambuf* setbuf (char*, int);
Specifies the buffer to use.
str char *str();
Returns a pointer to the buffer and freezes it.
underflow  virtual int underflow();
Makes input available. This is called when a character is requested and
the strstreambuf is empty. Every derived class should define the actions to
be taken.
strstream <sfrstrea.h>

Provides for simultaneous input and output on a strstreambuf. This class
is derived from strstreambase and iostream.

constructor  strstrean(); ’
Makes a dynamic sti'stream.

constructor  strstream(char*, int n, int mode);

Makes a strstream with a specified n-byte buffer. If mode is ios::app or
ios::ate, the get/put pointer is positioned at the null character of the
string. :
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strstream

Member

function
str . char *str();

Returns and freezes the buffer. The user must deallocate it if it was
dynamic.
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The confainer class libraries

For more information about  Borland C++ version 3.0 includes two complete container class
femplares'.%ee Chapter 3, jibraries: an enhanced version of the Object-based library
++ specifics. . . . R .

supplied with version 2.0, plus a brand-new implementation
based on templates. This chapter describes both libraries. We
assume that you are familiar with the syntax and semantics of
C++ and with the basic concepts of object-oriented programming
(OOP). To understand the template-based version (called BIDS,
for Borland International Data Structures), you should be
acquainted with C++’s new template mechanism.

The chapter is divided into seven parts:

m A review of the difference between versions 2.0 and 3.0 of the
class libraries

m An overview of the Object- and template-based libraries

m A survey of the Object container classes, introducing the basic
concepts and terminology

@ An overview of the BIDS library

m The CLASSLIB directory and how to use it

m The new debugging tools

m An alphabetic reference guide to the Object container library,
listing each class and its members
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What's new since version 2.07?

When you choose Confainer

Class Library in the IDE's Link

Libraries dialog box, the

Object-based libraries will be
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automaticailly linked in.

The version 2.0 container library is an Object-based implemen-
tation. Both container objects and the elements stored in them are
all ultimately derived from the class Object. Further, the data
structures used to implement each container class were fixed and
(usually) hidden from the programmer. This provides a simple,
effective model for most container applications. Version 3.0
therefore offers an enhanced, code-compatible version of the
previous Object-based container library. We call this the Object
container class library. In addition, a more flexible (but more
complex), template-based container library, called BIDS (Borland
International Data Structures), is supplied with version 3.0.
Through the power of templates, BIDS lets you vary the under-
pinning data structure for a container and lets you store arbitrary
objects in a container. With the appropriate template parameters,
BIDS can actually emulate the Object container library.

Before we review the differences between the Object and BIDS
models, we’ll list the changes to the Object container library since
version 2.0:

m New Btree and PriorityQueue classes.

m New TShouldDelete class gives the programmer control over
container/element ownership. You can control the fate of
objects when they are detached from a container and when the
container is flushed (using the new flush method) or destroyed.

m New memory management classes, MemBlocks and MemStack,
for efficient memory block and memory stack (mark-and-
release) allocations.

m New PRECONDITION and CHECK macros provide sophisti-
cated assert mechanisms to speed application development
and debugging.

m New Timer class gives you a stopwatch for tlmmg program
execution (not in Microsoft Windows).

m New DLL library and support for Windows applications.

Existing Borland C++ version 2.0 container class code will still run
with the version 3.0 libraries. The new Object container class
libraries, in directory /CLASSLIB, are distinguished by the prefix
TC: TCLASSx.LIB, TCLASDBx.LIB, TCLASDLL.LIB, and
TCLASS.DLL, where x specifies the memory model, and DB
indicates the special debug versions. To reduce verbiage, we will
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To use the template-based
libraries, you must explicitly
add the appropriate
BIDS(DB)x.LIB library to your
project or makefile.

often refer to this container implementation as the Object or TC
version.

The corresponding libraries for the new template-based container
classes are distinguished by the prefix BIDS: BIDSx.LIB, |
BIDSDBx.LIB, BIDSDLL.LIB, and BIDS.DLL. Let’s review the
reasons for having two sets of container libraries. The use of all
these libraries is covered on page 238.

Why two sets of libraries?

Existing code based on the
Object container classes will
compile and run perfectly
using the new BIDS classes,
just by linking in the
appropriate library.

The Object container classes have been retained and enhanced to
provide code compatibility with the version 2.0 library. They
provide a gentler learning curve than the template-based BIDS
library. The Object container code offers faster compilation but
slightly slower execution than the template version. The project
files for the example and demo programs are set up to use the
Object version of the container libraries.

BIDS exploits the new exciting templates feature of C++ 2.1. It
offers you considerable flexibility in choosing the best underlying
data structure for a given container application. With the Object
version, each container is implemented with a fixed data
structure, chosen to meet the space/speed requirements of most
container applications. For example, a Bag object is implemented
with a hash table, and a Deque object with a double list. With
BIDS you can fine-tune your application by varying the container
implementation with the minimum recoding—often a single
typedef will suffice. You can switch easily from StackAsList to
StackAsVector and test the results. In fact, you'll see that by setting
appropriate values for <T>, a generic class paramet