
3.1

PROGRAMMER'S GUIDE

• LANGUAGE STRUCTURE

• CLASS LIBRARIES

• ADVANCED PROGRAMMING TECHNIQUES

• ANSI C IMPLEMENTATION

BORLAND

Borland C++

Version 3.1

Programmer's Guide

BORLAND INTERNATIONAL INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

Rl

Copyright © 1991, 1992 by Borland International. All rights reserved.
All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.
Windows, as used in this manual, refers to Microsoft's
im plementation of a windows system.

PRINTED IN THE USA.
10 9 8 7 6 5 4

c o N T

Introduction 1
What's in this book 1
An introduction to the formal definitions. 2

Syntax and terminology 3

Chapter 1 Lexical elements 5
Whitespace 6

Line splicing with \ 6
Comments 7

C comments .. 7
Nested comments 7
C++ comments 8
Comment delimiters and whitespace . 8

Tokens 8
Keywords 9
Identifiers .. 10

Naming and length restrictions 10
Identifiers and case sensitivity 10
Uniqueness and scope 11

Constants .. 11
Integer constants 11

Decimal constants 11
Octal constants 12
Hexadecimal constants 13
Long and unsigned suffixes 13

Character constants 14
Escape sequences 14
Borland C++ special two-character
constants 15
Signed and unsigned char 15
Wide character constants 16

Floating-point constants 16
Floating-point constants-data
types 16
Enumeration constants 17

String literals 18

E N T s

Constants and internal
representation 19
. Constant expressions 20

Punctuators 21
Brackets 21
Parentheses 21
Braces 21
Comma 22
Semicolon. .. 22
Colon 23
Ellipsis 23
Asterisk (pointer declaration) 23
Equal sign (initializer) 23
Pound sign (preprocessor directive) .24

Chapter 2 Language structure 25
Declarations 25

Objects 25
Lvalues 26

Rvalues 27
Types and storage classes 27
Scope 27

Block scope 28
Function scope 28
Function prototype scope 28
File scope 28
Class scope (C++) 28
Scope and name spaces 28

Visibility. .. 29
Duration 29

Static duration 29
Local duration 30
Dynamic duration 30

Translation units 31
Linkage 31

N arne mangling 32

Declaration syntax 33
Tentative definitions 33
Possible declarations 34
External declarations and definitions . 36
Type specifiers 38
Type taxonomy 38

Type void .. 39
The fundamental types 39

Integral types 40
Floating-point types 41
Standard conversions 41
Special char, int, and enum
conver~ons 42

Initialization 42
Arrays, structures, and unions 43

Simple declarations 44
Storage class specifiers 45

Use of storage class specifier auto .. 45
Use of storage class specifier extern. 45
Use of storage class specifier
register 45
Use of storage class specifier static .. 46
Use of storage class specifier
typedef 46

Modifiers 47
The const modifier 47
The interrupt function modifier 49
The volatile modifier 49
The cdecl and pascal modifiers 50

pascal 50
cdecl 50

The pointer modifiers 51
Function type modifiers 52

Complex declarations and declarators .53
Pointers 54

Pointers to objects 55
Pointers to functions 55
Pointer declarations 56
Pointers and constants 57
Pointer arithmetic 58
Pointer conversions 59
C++ reference declarations 59

Arrays 59
Functions 60

Declarations and definitions 60
Declarations and prototypes 61
Definitions 63
Formal parameter declarations. 64
Function calls and argument
conver~ons 64

Structures .. 65
Untagged structures and typedefs 66
Structure member declarations 66
Structures and functions 67
Structure member access 67
Structure word alignment 69
Structure name spaces 69
Incomplete declarations 70
Bit fields .. 70

Unions 71
Anonymous unions (C++ only) 72
Union declarations 73

Enumerations 73
Expressions 75

Expressions and C++ 78
Evaluation order 78
Errors and overflows 79

Operator semantics 79
Operator descriptions 79

Unary operators ,..... 81
Binaryoperators 81

Additive operators 81
Multiplicative operators 81
Shift opera tors 81
Bitwise operators 81
Logical operators 81
Assignment operators 81
Relational operators 82
Equality operators 82
Component selection operators 82
Class-member operators 82
Conditional operator 82
Comma operator 82

Postfix and prefix operators 82
Array subscript operator [] 82
Function call operators () 83
Structure/union member operator
. (dot) 83

Structure/union pointer
operator -> 83
Postfix increment operator ++ 84
Postfix decrement operator - - 84

Increment and decrement operators .. 84
Prefix increment operator 84
Prefix decrement operator -... , 84

Unary operators 85
Address operator & 85
Indirection operator * , 86
Unary plus operator + 86
Unary minus operator - , 86
Bitwise complement operator ~ 86
Logical negation operator! 86

The sizeof operator. 87
Multiplicative operators 87
Additive operators 88

The addition operator + 88
The subtraction operator - 89

Bitwise shift operators 89
Bitwise shift operators «< and ») . 89

Relational operators 90
The less-than operator < 90
The greater-than operator> 91
The less-than or equal-to operator
<= ... ~ 91
The greater-than or equal-to
operator >= 91

Equalityoperators 91
The equal-to operator == 91
The inequality operator != 92

Bitwise AND operator & 92
Bitwise exclusive OR operator /\ 93
Bitwise inclusive OR operator I 93
Logical AND operator && 93
Logical OR operator I I 94
Conditional operator? : 94
Assignment operators 95

The simple assignment operator = .. 95
The compound assignment
operators 96

Comma operator , .. , , 96
C++ operators 97

Statements 97

iii

Blocks
Labeled statements
Expression statements
Selection statements

if statements
switch statements .. ,

Iteration statements
while statements
do while statements
for statements

Jump statements
break statements
continue statements
goto statements
return statements

98
98
99
99
99

100
101
101
101
102
103
103
103
103
104

Chapter 3 C++ specifics 105
Referencing 105

Simple references 106
Reference arguments 106

Scope access operator , 108
The new and delete operators 108

Handling errors ,..... 109
The operator new with arrays 109
The operator delete with arrays .. , .. 109
The ::operator new 110
Initializers with the new operator ... 110

Classes 111
Class names .. 111
Class types .. 111
Class name scope 112
Class objects 113
Class member list. 113
Member functions 113
The keyword this 113
Inline functions 114
Static members 115
Member scope 116

Nested types 117
Member access control. 118

Base and derived class access 120
Virtual base classes 122
Friends of classes 122
Constructors and destructors 124

Constructors 125
Constructor defaults 126
The copy constructor , 127
Overloading constructors 127
Order of calling constructors 128
Class initialization 129

Destructors 132
When destructors are invoked 132
atexit, #pragma exit, and destructors. 133
exit and destructors 133
abort and destructors 133
Virtual destructors 134

Overloaded operators 135
Operator functions 136

Overloaded operators and
inheritance 136
Overloading new and delete. 137
Overloading unary operators 138
Overloading binary operators 139
Overloading the assignment
operator = 139
Overloading the function call
operator 0 140
Overloading the subscript operator .. 140
Overloading the class member access
operator 140

Virtual functions 140
Abstract classes .. 142
C++ scope 143

Class scope .. 144
Hiding 144
C++ scoping rules summary 144

Templates 145
Function templates 146

Overriding a template function .. , 148
Implicit and explicit template
functions 148

Class templates 149
Arguments 150
Angle brackets 150
Type-safe generic lists 151
Eliminating pointers 152

Template compiler switches 152
Using template switches 153

iv

Chapter 4 The preprocessor 157
Null directive # .. 159
The #define and #Undef directives 159

Simple #define macros 159
The #Undef directive 160
The -D and -U options 161
The Define option 161
Keywords and protected words 162
Macros with parameters 162

File inclusion with #include 165
Header file search with
<header_name> 166
Header file search with
"header_name" 166

Conditional compilation 166
The #if, #elif, #else, and #endif conditional
directives 167

The operator defined 167
The #ifdef and #ifndef conditional
directives 168

The #line line control directive 169
The #error directive 170
The #pragma directive 171

#pragma argsused 171
#pragma exit and #pragma startup .. 171
#pragma hdrfile 172
#pragma hdrstop 173
#pragma inline 173
#pragma intrinsic 173
#pragma option 173
#pragma saveregs 175
#pragma warn 175

Predefined macros 175
__ BCPLUSPLUS __ 175
__ BORLANDC __ 176
__ CDECL __ 176
__ cplusplus .. 176
__ DATE __ 177
__ DLL __ 177
__ FILE __ 177
__ LINE 177
__ MSDOS __ 177
__ OVERLAY __ 178
__ PASCAL __ 178

__ STDC_ _ 000000 0000000000000000 178
__ TCPLUSPLUS __ 000000000000000 178
__ TEMPLATES __ 00000000·00000000 178
__ TIME __ 00000000000000000000000 178
__ TURBOC 0000000000000000000 179
_Windows 0 179

Chapter 5 Using C++ streams 181
What is a stream? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 181
The iostream library 00000000000000000 182

The streambuf class 000000000000000 182
The ios class 0 182

Output 0000000000000000000000000000 183
Fundamental types 0000000000000000 184
Output formatting 0000000000000000 184
Manipulators 0 185
Filling and padding 000000000000000 187

Input 000000000000000000000000000000 187
I/O of user-defined types 000000000000 188
Simple file I/O 0 189
String stream processing 0000000000000 190
Screen output streams 0000.0000000000 192
Stream class reference 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 193
conbuf 00. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000 194

Member functions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 194
constream 0 195

Member functions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 195
filebuf 00 0 0 0 0 0 0 0 0 0 000000000000000000 196

Member functions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 196
fstream 0 0 0 0 0 0 0 0 0 0 000000 0 0 0 0 0 0 0 0 0 0 00 197

Member functions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 197
fstreambase 000000000000000000000000 197

Member functions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 198
ifstream 0 198

Member functions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 199
ios 0 0 0 000000000000000000000000000 00 199

Data members 00000000000000000000 199
Member functions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 200

iostreamo 00000000000000000000000000 202
iostream_withassign 0000000000000000 202

Member functions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 202
istream 0 202

Member functions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 203
istream_ withassign 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 204

v

Member functions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 204
istrstream 00000 0 0 0 0 0 0 0 000 0 0 0 0 000 0 0 0 0 204
of stream 0 0 0 0 0 0 0 0 0 0 0 0 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 205

Member functions 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 205
ostream 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 205

Member functions 0 0 .. 0 0 206
ostream_withassign .0 .. 00 '0, ... 0 206

Member functions 206
ostrstream 0 0 0 ... 0 206

Member functions 0 " 207
streambuf 0 ... 0 0 ... 0 0 .. 0 0 ... o. 207

Member functions 0 0 ... 0 .. 0 207
strstreambase 000 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 000 210

Member functions 0 0 . 0 . 0 . 0 0 0 0 0 0 . 0 0 210
strstreambuf 0 0 0 0 0 0 0 0 0 . 0 0 0 . 0 . 0 0 0 0 . 0 0 210

Member functions 0 0 . 0 ... 0 .. 0 0 0 . 0 0 211
strstream 000000 .. 0 0 0 .. 0 0 .. 0 0 0 0 0 0 .. 0 211

Member function 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 212

Chapter 6 The container class
libraries 213

What's new since version 200? 000000000 214
Why two sets of libraries? 0 0 0 0 0 0 0 0 0 0 0 0 215
Container basics 0 00 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 216

Object-based and other classes 0000 218
Class categories 0 0 0 00' 0 0 0 0 0 0 0 0 0 0 0 0 0 218
Non-container classes 0000000000000 218

Error class 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . 0 0 218
Sortable class 0 0 0 0 00 0 0 0 0 0 0 . 0 0 0 0 0 0 219
Associa tion class 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 219

Container classes 00 o. 0 0 0 0 0 0 0 0 0 0 0 0 0 219
Containers and ownership 00.000000 220
Container iterators 0 0 0 0 0 0 . 0 0 0 . 0 0 0 0 0 222
Sequence classes 0 0 0 0 0 0 0 0 . 0 0 0 . 0 .. 0 0 223
Collections 0 0 0 . 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 223

Unordered collections 0000.000.00 224
Ordered collections 0 0 0 0 . 0 0 0 0 0 0 0 0 224

The BIDS template library 0 0 0 0 0 0 0 0 0 0 0 0 224
Templates, classes, and containers. 0 0 225
Container implementation 0 0 0 0 0 0 .. 0 225
The template solution 000000000·0000 226

ADTs and FDSs .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 226
Class templates 000000.0000000.00 227

Container class compatibility 0 0 0 0 . 0 0 229

Header files 230
Tuning an application 231
FDS implementation 231
ADT implementation 235

The class library directory 238
The INCLUDE directory , ... 238
The SOURCE directory 239
The LIB directory 239
The EXAMPLES directory 240

Preconditions and checks 240
Container class reference " 241
AbstractArray 242

Data members 242
Member functions " 243
Friends 245

Array 245
Example 245
Member functions. 246

Arraylterator .. 247
Member functions. 247

Association 248
Member functions. 248
Example .. 249

Bag 250
Member functions. 250

BaseDate .. 252
Member functions. 252

BaseTime 253
Member functions 253

Btree 255
Member functions. 255
Friends 257

BtreeIterator 257
Member functions. 257

Collection " 258
Member functions. 259

Container 259
Member functions 261
Friends 263

ContainerIterator 263
Member functions. 263

Date 264
Member functions 264

Deque 265

vi

Example .. 265
Member functions 266

Dictionary 267
Member functions 268

DoubleList .. 268
Member functions 268
Friends " 270

DoubleListIterator 270
Member functions 270

Error 271
Member functions 271

HashTable 272
Member functions 273
Friends 274

HashTableIterator " 274
Member functions 274

List '.' 275
Member functions 275
Friends 276

ListIterator .. 276
Member functions 276

MemBlocks 277
MemStack 278
Object '" , .. , 279

Data member. 279
Member functions 279
Friends 281
Related functions 282

PriorityQueue " 282
Member functions 283

Queue 284
Exam pIe .. 284
Member functions 285

Set " . " .. 285
Member functions 286

Sortable 286
Member functions 288
Related functions 288

SortedArray " 289
Stack .. " , 289

Example .. 290
Member functions 291

String 292
Member functions 292

Example .. 293
Time 294

Member functions 294
Timer 295

Member functions. 295
TShouldDelete .. 296

Member functions. 296

Chapter 7 Converting from Microsoft
C 299

Environment and tools 299
Paths for .h and .LIB files 300
MAKE 301
Command-line compiler 302
Command-line options and libraries. 306
Linker '" 306

Source-level compatibility , 308
__ MSC macro 308
Header files 308
Memory models 309
Keywords. .. 310
Floating-point return values , 310
Structures returned by value 310

Conversion hints. 311

Chapter 8 Building a Windows
application 313

Compiling and linking within the IDE 314
Understanding resource files 315
Understanding module definition
files 315
Compiling and linking WHELLO ... 315

Using the project manager 316
Setting compile and link options .. 317

WinMain 318
Compiling and linking from the
command line 318

Compiling from the command line .. 319
Linking from the command line 320
Using a makefile 321

Another makefile for Windows ... 322
Prologs and epilogs 322

Windows All Functions Exportable
(-W) 323

vii

Windows Explicit Functions Exported
(-WE) 323
Windows Smart Callbacks (-WS) 323
Windows DLL All Functions Exportable
(-WD) 324
Windows DLL Explicit Functions
Exported (-WDE) 324
The _export keyword , 324
Prologs, epilogs, and exports: a
summary 325

Memory models 326
Module definition files 326

A quick example 327
Linking for Windows 328

Linking in the IDE 329
Linking with TLINK 329

Linker options 329
Linking .OBJ and .LIB files 330
Linking .OBJ and .LIB files for
DLLs 331

Dynamic link libraries 332
Compiling and linking a DLL within the
IDE 332
Compiling and linking a DLL from the
command line 332

Module definition files 333
Import libraries 333

Creating DLLs 333
LibMain and WEP 334
Pointers and memory. 335

Static data in DLLs 336
C++ classes and pointers 336

Chapter 9 DOS memory manage-
ment 339

Running out of memory 339
Memory models 339

The 8086 registers 340
General-purpose registers 340
Segment registers 341
Special-purpose registers 341
The flags register 341

Memory segmentation 342
Address calculation 343

Pointers 344
Near pointers 344
Far pointers 344
Huge pointers 345

The six memory models. 346
Mixed-model programming: Addressing
modifiers 350

Segment pointers 351
Declaring far objects 352
Declaring functions to be near or far . 352
Declaring pointers to be near, far, or
huge 353

Pointing to a given segment:offset
address 355

Using library files 355
Linking mixed modules 355

Overlays (VROOMM) for DOS. 357
How overlays work 357

Getting the best out of Borland C++
overlays 359

Requirements 359
Using overlays 360

Overlay example 360
Overlaying in the IDE 361

Overlaid programs 361
The far call requirement. 361
Buffer size 362
What not to overlay 362
Debugging overlays 362
External routines in overlays 363

Swapping .. 364
Expanded memory 364
Extended memory 364

Chapter 10 Math 367
Floating-point options 367

Emulating the 80x87 chip 368
Using 80x87 code 368
No floating-point code 368
Fast floating-point option " ... 368
The 87 environment variable 369
Registers and the 80x87 370
Disabling floating-point exceptions .. 370

viii

Using complex math 371
Using BCD math 372

Converting BCD numbers 373
Number of decimal digits 373

Chapter 11 Video functions 375
Some words about video modes 375
Some words about windows and
viewports 376

What is a window? 376
What is a viewport? 377
Coordinates 377

Programming in text mode 377
The console I/O functions 377

Text output and manipulation 377
Window and mode control 379
Attribute control 379
State query 380
Cursor shape 380

Text windows 380
An example 381

The text_modes type 381
Textcolors 382
High-performance output 383

Programming in graphics mode. 384
The graphics library functions 385

Graphics system control 385
A more detailed discussion 387
Drawing and filling 387
Manipulating the screen and
viewport .. 389
Text output in graphics mode 390
Color control 392
Pixels and ralettes 392
Background and drawing color ... 393
Color control on a CGA 393

CGA low resolution 393
CGA high resolution 394
CGA palette routines 395

Color control on the EGA and
VGA 395
Error handling in graphics mode .. 395
State query 396

Chapter 12 BASM and inline
assembly 399

Inline assembly language 399
BASM 400
Inline syntax 400
Opcodes 402

String instructions 403
Prefixes .. 403
Jump instructions 403
Assembly directives 404

Inline assembly references to data and
functions 404

ix

Inline assembly and register
variables .. 404
Inline assembly, offsets, and size
overrides 404

Using C structure members 405
Using jump instructions and labels. 406

Interrupt functions 406
Using low-Iev,el practices 408

Appendix A ANSI implementation-
specific standards 411

Index 423

T A B L E s

1.1: All Borland C++ keywords 9 2.13: Borland C++ statements 98
1.2: Borland C++ extensions to C 9 4.1: Borland C++ preprocessing directives
1.3: Keywords specific to C++ 9 syntax 158
1.4: Borland C++ register 5.1: Stream manipulators 186

pseudovariables 10 5.2: File modes 190
1.5: Constants-formal definitions 12 5.3: Console stream manipulators 192
1.6: Borland C++ integer constants without 6.1: ADTs as fundamental data

Lor U 13 structures 226
1.7: Borland C++ escape sequences 15 6.2: FDS class templates 227
1.8: Borland C++ floating constant sizes and 6.3: Abbreviations in CLASSLIB names .228

ranges 17 6.4: ADT class templates 228
1.9: Data types, sizes, and ranges 19 6.5: Object-based FDS classes 229
2.1: Borland C++ declaration syntax 35 6.6: Class debugging modes 241
2.2: Borland C++ declarator syntax 36 7.1: CL and BCC options compared 302
2.3: Borland C++ class declarations (C++ 7.2: LINK and TLINK options

only) 37 compared 307
2.4: Declaring types 39 8.1: Compiler options and the _export
2.5: Integral types 40 keyword 325
2.6: Methods used in standard arithmetic 8.2: Startup and library files for DLLs ... 331

conversions; 42 9.1: Memory models 349
2.7: Borland C++ modifiers 47 9.2: Pointer results 351
2.8: Complex declarations 54 11.1: Graphics mode state query
2.9: External function definitions 63 functions 397
2.10: Associativity and precedence of 12.1: Opcode mnemonics 402

Borland C++ operators 76 12.2: String instructions 403
2.11: Borland C++ expressions 77 12.3: Jump instructions 404
2.12: Bitwise operators truth table 93 A.1: Identifying diagnostics in C++ 411

x

F G

1.1: Internal representations of data types .20
5.1: Class streambuf and its derived

classes 182
5.2: Class ios and its derived classes .. , .183
6.1: Class hierarchies in CLASSLIB 217
6.2: TShouldDelete hierarchy 236
6.3: Class hierarchies in CLASSLIB 296
8.1: Compiling and linking

a Windows program 314
9.1: 8086 registers 340
9.2: Flags register of the 8086 342

u

xi

R E s

9.3: Tiny model memory segmentation .. 347
9.4: Small model memory segmentation .347
9.5: Medium model memory

segmentation 348
9.6: Compact model memory

segmentation 348
9.7: Large model memory segmentation .348
9.8: Huge model memory segmentation .349
9.9: Memory maps for overlays 359
11.1: A window in 80x25 text mode 381

N T R

To get an overview of the
Borland C++ documentation

set, start with the User's
Guide. Read the introduction

and Chapter 7 in that book
for information on how to

most effectively use the
Borland C++ manuals.

o D u c T o N

This manual contains materials for the advanced programmer. If
you already know how to program well (whether in C, C++, or
another language), this manual is for you. It provides a language
reference, and programming information on C++ streams, object
container classes, converting from Microsoft C, Windows
applications, memory models, floating point, overlays, video
functions, BASM, inline assembly, and ANSI implementation.

Code examples have a main function. EasyWin makes all these
examples work in Windows so you don't need Win Main and its
complicated parameters.

Typefaces and icons used in these books are described in the
User's Guide.

What's in this book

Introduction

Chapters 1 through 4: Lexical elements, Language structure, C++
specifics, and The preprocessor, describe the Borland C++
language. Any extensions to the ANSI C standard are noted in
these chapters. These chapters provide a formal language
definition, reference, and syntax for both the C and C++ aspects of
Borland C++. Some overall information for Chapters 1 through 4
is included in the next section of this introduction.

Chapter 5: Using C++ streams tells you how to use the C++
version 2.1 stream library.

Chapter 6: The container class library tells you how to use the
Borland C++ object container classes (including templates) in
your programs.

Chapter 7: Converting from Microsoft C provides some
guidelines on converting your Microsoft C programs to Borland
C++.

Chapter 8: Building a Windows application gets you started in
Windows programming.

Chapter 9: DOS memory management covers memory models,
overlays, and mixed-model programming.

Chapter 10: Math covers floating point and BCD math.

Chapter 11: Video functions is devoted to handling text and
graphics in Borland C++.

Chapter 12: BASM and inline assembly tells how to write
assembly language programs so they work well when called from
Borland C++ programs. It includes information on the built-in
assembler in the IDE.

Appendix A: ANSI implementation-specific standards describes
those aspects of the ANSI C standard that have been left loosely
defined or undefined by ANSI. This appendix tells how Borland
C++ operates in respect to each of these aspects.

An introduction to the formal definitions

2

Chapters 1 through 4 constitute a formal description of the C and
C++ languages as implemented in Borland c++. Together, these
chapters describe the Borland C++ language; they provide a
formal language definition, reference, and syntax for both the
C++ and C aspects of Borland C++. These chapters do not provide
a language tutorial. We've used a modified Backus-Naur form
notation to indicate syntax, supplemented where necessary by
brief explanations and program examples. They are organized in
this manner:

• Chapter 1, "Lexical elements," shows how the lexical tokens for
Borland C++ are categorized. Lexical elements is concerned
with the different categories of word-like units, known as
tokens, recognized by a language.

II Chapter 2, "Language structure," explains how to use the
elements of Borland C++. Language structure details the legal
ways in which tokens can be grouped together to form
expressions, statements, and other significant units.

Borland C++ Programmer's Guide

Syntax and
terminology

Introduction

II Chapter 3, "C++ specifics," covers those aspects specific to C++ .

• Chapter 4, "The preprocessor," covers the preprocessor,
including macros, includes, and pragmas, as well as many other
easy yet useful items.

Borland C++ is a full implementation of AT&T's C++ version 2.1,
the object-oriented superset of C developed by Bjarne Stroustrup
of AT&T Bell Laboratories. This manual refers to AT&T's previous
version as C++ 2.0. In addition to offering many new features and
capabilities, C++ often veers from C by small or large amounts.
We've made note of these differences throughout these chapters.
All the Borland C++ language features derived from C++ are
discussed in greater detail in Chapter 3.

Borland C++ also fully implements the ANSI C standard, with
several extensions as indicated in the text. You can set options in
the compiler to warn you if any such extensions are encountered.
You can also set the compiler to treat the Borland C++ extension
keywords as normal identifiers (see Chapter 5, "The command­
line compiler," in the User's Guide).

There are also "conforming" extensions provided via the #pragma
directives offered by ANSI C for handling nonstandard, imple­
mentation-dependent features.

Syntactic definitions consist of the name of the nonterminal token
or symbol being defined, followed by a colon (:). Alternatives
usually follow on separate lines, but a single line of alternatives
can be used if prefixed by the phrase "one of." For example,

external-definition:
function-definition
declaration

octal-digit: one of
01234567

Optional elements in a construct are printed within angle
brackets:

integer-suffix:
unsigned-suffix <long-suffix>

Throughout these chapters, the word "argument" is used to mean
the actual value passed in a call to a function. "Parameter" is used

3

4

to mean the variable defined in the function header to hold the
value.

Borland C++ Programmer's Guide

c H

Chapter 7, Lexical elements

A p T E R

1

Lexical elements

This chapter provides a formal definition of the Borland C++
lexical elements. It is concerned with the different categories of
word-like units, known as tokens, recognized by a language. By
contrast, language structure (covered in Chapter 2) details the
legal ways in which tokens can be grouped together to form
expressions, statements, and other significant units.

The tokens in Borland C++ are derived from a series of operations
performed on your programs by the compiler and its built-in pre­
processor.

A Borland C++ program starts life as a sequence of ASCII
characters representing the source code, created by keystrokes
using a suitable text editor (such as the Borland C++ editor). The
basic program unit in Borland C++ is the file. This usually
corresponds to a named DOS file located in RAM or on disk and
having the extension .C or .CPP.

The preprocessor first scans the program text for special prepro­
cessor directives (see page 157). For example, the directive #include
<inc_file> adds (or includes) the contents of the file inc_file to the
program before the compilation phase. The preprocessor also
expands any macros found in the program and include files.

5

Whitespace

6

Line splicing
with \

In the tokenizing phase of compilation, the source code file is
parsed (that is, broken down) into tokens and whitespace. White­
space is the collective name given to spaces (blanks), horizontal
and vertical tabs, newline characters, and comments. Whitespace
can serve to indicate where tokens start and end, but beyond this
function, any surplus whitespace is discarded. For example, the
two sequences

int i; float f;

and

int i
float f;

are lexically equivalent and parse identically to give the six
tokens:

1. int

2.

3.
4. float

5. f
6. ;

The ASCII characters representing whitespace can occur within
literal strings, in which case they are protected from the normal
parsing process; in other words, they remain as part of the string:

char narne[] = "Borland International";

parses to seven tokens, including the single literal-string token
"Borland International".

A special case occurs if the final newline character encountered is
preceded by a backslash (\). The backslash and new line are both
discarded, allowing two physical lines of text to be treated as one
unit.

"Borland \
International"

Borland C++ Programmer's Guide

Comments

C comments

See page 163 for a
description of token pasting.

is parsed as "Borland International" (see page 18, "String literals,"
for more information).

Comments are pieces of text used to annotate a program. Com­
ments are for the programmer's use only; they are stripped from
the source text before parsing.

There are two ways to delineate comments: the Cmethod and the
C++ method. Both are supported by Borland C++, with an addi­
tional, optional extension permitting nested comments. You can
mix and match either kind of comment in both C and C++
programs.

A C comment is any sequence of characters placed after the
symbol pair 1*. The comment terminates at the first occurrence of
the pair */ following the initial/*. The entire sequence, including
the four comment delimiter symbols, is replaced by one space
after macro expansion. Note that some C implementations remove
comments without space replacements.

Borland C++ does not support the nonportable token pasting
strategy using 1**/. Token pasting in Borland C++ is performed
with the ANSI-specified pair ##, as follows:

#define VAR(i,j)
#define VAR(i,j)
#define VAR (i, j)

In Borland C++,

(i/**/j)
(i##j)
(i ## j)

1* won't work *1
1* OK in Borland ett *1
1* Also OK *1

int 1* declaration *1 1* counter *1;

parses as

int

to give the three tokens: int i ;

Nested comments ANSI C doesn't allow nested comments. Attempting to comment
out the preceding line with

1* int 1* declaration *1 i 1* counter *1; *1

fails, since the scope of the first 1* ends at the first */. This gives

i ;' * I

which would generate a syntax error.

Chapter 7, Lexical elements 7

c++ comments

You can also use / / to create
comments in C code. This is

specific to Borland C++.

Comment delimiters
and whitespace

Tokens

8

By default, Borland C++ won't allow nested comments, but you
can override this with compiler options. You can enable nested
comments via the Source Options dialog box (0 I C I Source) in the
IDE or with the -C option (for the command-line compiler).

C++ allows a single-line comment using two adjacent slashes
U I). The comment can start in any position, and extends until the
next new line:

class X { II this is a comment
... }i

In rare cases, some whitespace before /* and II, and after */,
although not syntactically mandatory, can avoid portability
problems. For example, this C++ code

int i = jll* divide by k*/ki
tIDi

parses as int i = j tffi; not as

int i = j/ki
tIDi

as expected under the C convention. The more legible

int i = jl 1* divide by k*1 ki
tIDi

avoids this problem.

Borland C++ recognizes six classes of tokens. The formal
definition of a token is as follows:

token:
keyword
identifier
constant
string-literal
operator
punctuator

Punctuators are also known as separators.

Borland C++ Programmer's Guide

As the source code is parsed, tokens are extracted in such a way
that the longest possible token from the character sequence is
selected. For example, external would be parsed as a single
identifier, rather than as the keyword extern followed by the
identifier al.

Keywords
Keywords are words reserved for special purposes and must not be
used as normal identifier names. The following two tables list the
Borland C++ keywords. You can use options in the IDE (or
command-line compiler options) to select ANSI keywords only,
UNIX keywords, and so on; see Chapter 2, "IDE Basics" and
Chapter 5, "The command-line compiler," in the User's Guide, for
information on these options.

Table 1.1 _asm
All Borland C++ keywords asm

auto
break
case
_cdecl
cdecl
char
class
const
continue
_cs
default
delete
do
double

Table 1.2 _cdecl
Borland C++ extensions to C cdecl

Table 1.3
Keywords specific to C++

Chapter 7, Lexical elements

_cs
_ds

asm
class
delete
friend
inline
new

_ds
else
enum
_es
_export
extern
_far
far
_fastcall
float
for
friend
goto
_huge
huge
if
inline

_es
_export
_far
far
_fastcall

operator
private
protected
public
template
this
virtual

int
_interrupt
interrupt
_Ioadds
long
near

near
new
operator
_pascal
pascal
private
protected
public
register
return
_saveregs

huge
interrupt
_Ioadds

near
near

_seg
short
signed
sizeof
_ss
static
struct
switch
template
this
typedef
union
unsigned
virtual
void
volatile
while

_pascal
pascal
_saveregs
_seg
_ss

9

Table 1,4
Borland C++ register

pseudovariables

Identifiers

Naming and length
restrictions

Identifiers in C++ programs
are significant to any lenfjth,

10

Identifiers and case
sensitivity

AH BP CX OX - -
AL BX OH ES -
AX CH 01 FLAGS -
BH CL OL SI - -
BL CS OS SP - -

SS -

The formal definition of an identifier is as follows:

identifier:
l10ndigit
identifier l10ndigit
identifier digit

nondigit: one of

abcdefghijklmnopqrstuvwxyz_

ABC 0 E FG H IJ K L M N 0 P Q RS T U V W X Y Z

digit: one of

o 1 2 3 4 5 6 789

Identifiers are arbitrary names of any length given to classes, ob­
jects, functions, variables, user-defined data types, and so on.
Identifiers can contain the letters A to Z and a to 2, the underscore
character <-), and the digits 0 to 9. There are only two restrictions:

1. The first character Inust be a letter or an underscore.

2. By default, Borland C++ recognizes only the first 32 characters
as significant. The number of significant characters can be
reduced by Inenu and comlnand-line options, but not in­
creased. Use the -in command-line option (where 1 <= n
<= 32) or Identifier Length in the Source Options dialog box
(0 I C I Source).

Borland c++ identifiers are case sensitive, so that Sum, sum, and
sliM are distinct identifiers.

Global identifiers imported from other nlodules follow the same
naming and significance rules as normal identifiers. However,
Borland C++ offers the option of suspending case sensitivity to
allow conlpatibility when linking with case-insensitive languages.
By checking Case-sensitive Link in the Linker dialog box

Borland C++ Programmer's Guide

(Options I Linker I Settings), or using the Ie cOll1111and-line switch
with TLINK, you can ensure that global identifiers are case
insensitive. Under this regime, the globals Slim and sum are
considered identical, resulting in a possible "Duplicate symbol"
warning during linking.

An exception to these rules is that identifiers of type pascal are
always converted to all uppercase for linking purposes.

Uniqueness and scope Although identifier names are arbit:cary (within the rules stated),
errors result if the same name is used for more than one identifier
within the same scope and sharing the same name space. Duplicate
names are always legal for different name spaces regardless of
scope. The rules are covered in the discussion on scope starting on
page 27.

Constants
Constants are tokens representing fixed numeric or character
values. Borland C++ supports four classes of constants: floating
point, integer, enumeration, and character.

The data type of a constant is deduced by the cOlnpiler using such
clues as numeric value and the format used in the source code.
The formal definition of a constant is shown in Table 1.5.

Integer constants Integer constants can be decimal (base 10), octal (base 8) or hexa­
decimal (base 16). In the absence of any overriding suffixes, the
data type of an integer constant is derived from its value, as
shown in Table 1.6. Note that the rules vary between decilnal and
nondecimal constants.

Chapter 7, Lexical elements

Decimal constants

Decimal constants from 0 to 4,294,967,295 are allowed. Constants
exceeding this limit will be truncated. Decin1al constants Inust not
use an initial zero. An integer constant that has an initial zero is
interpreted as an octal constant. Thus,

int i =
int i =
int i =

10 ;
010;
0;

/*decimal 10 */
/*decimal 8 */
/*decimal 0 = octal 0 */

11

Table 1.5: Constants-formal definitions

constant:
floating-constant
integer-constant
enumeration-constant
character-constant

floating-constant:
fractional-constant <exponent-part> <floating­

suffix>
digit-sequence exponent-part <floating-suffix>

fractional-constant:
<digit-sequence> . digit-sequence
digit-sequence .

exponent-part:
e <sign> digit-sequence
E <sign> digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-SUffix: one of
f I F L

integer-constant:
decimal-constant <integer-suffix>
octal-constant <integer-suffix>
hexadecimal-constant <integer-suffix>

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
o
octal-constant octal-digit

hexadecimal-constant:
o x hexadecimal-digit

Octal constants

o X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
1 234 5 6 789

octal-digit: one of
o 1 234 5 6 7

hexadecimal-digit: one of
o 1 234 5 6 789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix <long-suffix>
long-suffix <unsigned-suffix>

unsigned-suffix: one of
uU

long-suffix: one of
1 L

enumeration-constant:
identifier

character-constant:
c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
Any character in the source character set except
the single-quote ('), backslash (\), or newline
character escape-sequence.

escape-sequence: one of

\" \' \?
\a \b \f
\0 \00 \000

\t \v \Xh ...

\\
\n
\r
\xh ...

All constants with an initial zero are taken to be octal. If an octal
constant contains the illegal digits 8 or 9, an error is reported.
Octal constants exceeding 037777777777 will be truncated.

12 Borland c++ Programmer's Guide

Table 1.6
Borland C++ integer

constants without L or U

Chapter 7, Lexical elements

Hexadecimal constants

All constants starting with Ox (or OX) are taken to be hexadecimal.
Hexadecimal constants exceeding OxFFFFFFFF will be truncated.

Long and unsigned suffixes

The suffix L (or 1) attached to any constant forces it to be repre­
sented as a long. Similarly, the suffix U (or u) forces the constant
to be unsigned. It is unsigned long if the value of the number
itself is greater than decimal 65,535, regardless of which base is
used. You can use both Land U suffixes on the same constant in
any order or case: uI, Iu, UL, and so on.

Decimal constants

o to 32,767
32,768 to 2,147,483,647

2,147,483,648 to 4,294,967,295

> 4294967295

Octal constants

00 to 077777
0100000 to 0177777

02000000 to 017777777777
020000000000 to 037777777777

> 037777777777

Hexadecimal constants

OxOOOO to Ox7FFF
Ox8000 to OxFFFF

Oxl0000 to Ox7FFFFFFF
Ox80000000 to OxFFFFFFFF

> OxFFFFFFFF

int
long
unsigned long

truncated

int
unsigned int
long
unsigned long

truncated

int
unsigned int
long
unsigned long

truncated

The data type of a constant in the absence of any suffix (U, U, L, or
1) is the first of the following types that can accommodate its
value:

decimal

octal

hexadecimal

int, long int, unsigned long int

int, unsigned int, long int, unsigned long int

int, unsigned int, long int, unsigned long int

If the constant has a U or u suffix, its data type will be the first of
unsigned int, unsigned long int that can accommodate its value.

13

14

If the constant has an L or I suffix, its data type will be the first of
long int, unsigned long int that can accommodate its value.

If the constant has both u and I suffixes (ul, lu, Ul, IU, uL, Lu, LU,
or UL), its data type will be unsigned long int.

Table 1.6 summarizes the representations of integer constants in
all three bases. The data types indicated assume no overriding L
or U suffix has been used.

Character constants A character constant is one or more characters enclosed in single
quotes, such as ' A', ' =' , ' \n' . In C, single character constants
have data type int; they are represented internally with 16 bits,
with the upper byte zero or sign-extended. In C++, a character
constant has type char. Multicharacter constants in both C and
C++ have data type int.

Escape sequences

The backslash character (\) is used to introduce an escape sequence,
allowing the visual representation of certain nongraphic charac­
ters. For example, the constant \n is used for the single newline
character.

A backslash is used with octal or hexadecimal numbers to repre­
sent the ASCII symbol or control code corresponding to that val­
ue; for example, ' \03' for Ctrl-C or ' \x3F' for the question mark.
You can use any string of up to three octal or any number of
hexadecimal numbers in an escape sequence, provided that the
value is within legal range for data type char (0 to Oxff for Borland
C++). Larger numbers generate the compiler error, "Numeric con­
stant too large." For example, the octal number \777 is larger than
the maximum value allowed, \377, and will generate an error.
The first nonoctal or nonhexadecimal character encountered in an
octal or hexadecimal escape sequence marks the end of the
sequence.

Originally, Turbo C allowed only three digits in a hexadecimal
escape sequence. The ANSI C rules adopted in Borland C++
might cause problems with old code that assumes only the first
three characters are converted. For example, using Turbo C l.x to
define a string with a bell (ASCII 7) followed by numeric
characters, a programmer might write:

printf("\x0072.1A Simple Operating System");

Borland C++ Prdgrammer's Guide

Table 1.7
Borland C++ escape

sequences

The \ \ must be used to
represent a real ASCII

backslash, as used in DOS
paths.

Chapter 7, Lexical elements

This is intended to be interpreted as \x007 and I/2.1A Simple
Operating System". However, Borland C++ compiles it as the
hexadecimal number \x0072 and the literal string I/.1A Simple
Operating System".

To avoid such problems, rewrite your code like this:

printf("\x007" "2.1A Simple Operating System");

Ambiguities may also arise if an octal escape sequence is followed
by a nonoctal digit. For example, because 8 and 9 are not legal oc­
tal digits, the constant \258 would be interpreted as a two­
character constant made up of the characters \25 and 8.

The next table shows the available escape sequences.

Sequence Value Char What it does

\a Ox07 BEL Audible bell
\b Ox08 BS Backspace
\f OxOC FF Formfeed
\n OxOA LF Newline (linefeed)
\r OxOD CR Carriage return
\t Ox09 HT Tab (horizontal)
\v OxOB VT Vertical tab
\\ Ox5c \ Backslash
\, Ox27 Single quote (apostrophe)
\" Ox22 Double quote
\? Ox3F ? Question mark
\0 any o = a string of up to three octal

digits
\xH any H = a string of hex digits
\XH any H = a string of hex digits

Borland C++ special two-character constants

Borland C++ also supports two-character constants (for example,
, An', ' \n \t', and' \007\007'). These constants are represented
as 16-bit int values, with the first character in the low-order byte
and the second character in the high-order byte. These constants
are not portable to other C compilers.

Signed and unsigned char

In C, one-character constants, such as ' A', ' \ t' , and ' \007' , are
also represented as 16-bit int values. In this case, the low-order
byte is sign extended into the high byte; that is, if the value is
greater than 127 (base 10), the upper byte is set to -1 (=OxFF). This

15

16

Floating-point
constants

can be disabled by declaring that the default char type is un­
signed (use the -K command-line compiler option or choose
Unsigned Characters in the Options I Compiler I Code Generation
dialog box), which forces the high byte to be zero regardless of the
value of the low byte.

Wide character constants

A character constant preceded by an L is a wide-character con­
stant of data type wchar_t (an integral type defined in stddef.h).
For example,

x = L I A';

A floating constant consists of:

• decimal integer
• decimal point
• decimal fraction
• e or E and a signed integer exponent (optional)
iii type suffix: for For 1 or L (optional)

You can omit either the decimal integer or the decimal fraction
(but not both). You can omit either the decimal point or the letter e
(or E) and the signed integer exponent (but not both). These rules
allow for conventional and scientific (exponent) notations.

Negative floating constants are taken as positive constants with
the unary operator minus (-) prefixed.

Examples:

Constant

23.45e6
.0
o.
1.
-1.23
2e-5
3E+10
.09E34

Value

23.45 X 106

o
o
1.0 x 100 = 1.0
-1.23
2.0 x 10-5

3.0 X 1010

0.09 X 1034

Floating-point constants-data types

In the absence of any suffixes, floating-point constants are of type
double. However, you can coerce a floating constant to be of type

Borland C++ Programmer's Guide

Table 1.8
Borland C++ floating

constant sizes and ranges

See page 73 for a detailed
look at enum dec/a rations.

Chapter 7, Lexical elements

float by adding an f or F suffix to the constant. Similarly, the suffix
1 or L forces the constant to be data type long double. The next
table shows the ranges available for float, double, and long
double.

Type Size (bits) Range

float 32 3.4 x 10-38 to 3.4 X 1038

double 64 1.7 x 10-308 to 1.7 X 10308

long double 80 3.4 x 10-4932 to 1.1 X 104932

Enumeration constants

Enumeration constants are identifiers defined in enum type dec­
larations. The identifiers are usually chosen as mnemonics to
assist legibility. Enumeration constants are integer data types.
They can be used in any expression where integer constants are
valid. The identifiers used must be unique within the scope of the
enum declaration. Negative initializers are allowed.

The values acquired by enumeration constants depend on the for­
mat of the enumeration declaration and the presence of optional
initializers. In this example,

enum team { giants, cubs, dodgers };

giants, cubs, and dodgers are enumeration constants of type
team that can be assigned to any variables of type team or to any
other variable of integer type. The values acquired by the
enumeration constants are

giants = 0, cubs = 1, dodgers = 2

in the absence of explicit initializers. In the following example,

enum team { giants, cubs=3, dodgers = giants + 1 };

the constants are set as follows:

giants = 0, cubs = 3, dodgers = 1

The constant values need not be unique:

enum team { giants, cubs = 1, dodgers = cubs - 1 };

17

18

String literals String literals, also known as string constants, form a special cate­
gory of constants used to handle fixed sequences of characters. A
string literal is of data type array of char and storage class static,
written as a sequence of any number of characters surrounded by
double quotes:

"This is literally a string!"

The null (empty) string is written" ".

The characters inside the double quotes can include escape
sequences (see page 14). This code, for example,

"\t\t\"Name\"\\\tAddress\n\n"

prints out like this:

"Name"\ Address

"Name" is preceded by two tabs; Address is preceded by one tab.
The line is followed by two new lines. The \" provides interior
double quotes.

A literal string is stored internally as the given sequence of char­
acters plus a final null character ('\0'). A null string is stored as a
single I \0 I character.

Adjacent string literals separated only by whitespace are concate­
nated during the parsing phase. In the following example,

#include <stdio.h>

int main ()
{

char *p;

p = "This is an example of how Borland Ctt"
" will automatically\ndo the concatenation for"
" you on very long strings, \nresulting in nicer"
" looking programs.";

printf (p) ;
return(O) ;

The output of the program is

This is an example of how Borland Ctt will automatically
do the concatenation for you on very long strings,
resulting in nicer looking.programs.

Borland C++ Programmer's Guide

You can also use the backslash (\) as a continuation character in
order to extend a string constant across line boundaries:

puts("This is really \
a one-line string");

Constants and internal
representation

ANSI C acknowledges that the size and numeric range of the
basic data types (and their various permutations) are implemen­
tation specific and usually derive from the architecture of the host
computer. For Borland C++, the target platform is the IBM PC
family (and compatibles), so the architecture of the Intel 8088 and
80x86 microprocessors governs the choices of inner represen­
tations for the various data types. The next table lists the sizes and
resulting ranges of the data types for Borland C++; see page 39 for
more information on these data types. Figure 1.1 shows how these
types are represented internally.

Table 1.9: Data types, sizes, and ranges

Size
Type (bits) Range Sample applications

unsigned char 8 o to 255 Small numbers and full PC character set

char 8 -128 to 127 Very small numbers and ASCII characters

enum 16 -32,768 to 32,767 Ordered sets of values

unsigned int 16 o to 65,535 Larger numbers and loops

short int 16 -32,768 to 32,767 Counting, small numbers, loop control

int 16 -32,768 to 32,767 Counting, small numbers, loop control

unsigned long 32 o to 4,294,967,295 Astronomical distances

long 32 -2,147,483,648 to 2,147,483,647 Large numbers, populations

float 32 3.4 x 10-38 to 3.4 X 1038 Scientific (7 -digit precision)

double 64 1.7 x 10-308 to 1.7 X 10308 Scientific (15-digit precision)

long double 80 3.4 x 10-4932 to 1.1 x 104932 Financial (19-digit precision)

near pointer 16 Not applicable Manipulating memory addresses

far pointer 32 Not applicable Manipulating addresses outside current
segment

Chapter 1, Lexical elements 19

20

Figure 1.1
Internal representations of

data types

- Increasing significance

(2's complement)

long int ,:--1 s~l ___ m_a_g_nit_ud_e __ .-.JI (2's complement)

31

i1

double lsi e~~~sne~nt I significand

63 51

significand long double lsi e~~~s';~nt 111
7L9L-----~ML6~3--------------------------------~

s Sign bit (0 = positive, 1 = negative)

Position of implicit binary point

Integer bit of significand:

Stored in long double
Implicit (always 1) in float, double

Exponent bias (normalized values):

float : 127 (7FH)
double : 1023 (3FFH)
long double: 16,383 (3FFFH)

Constant expressions A constant expression is an expression that always evaluates to a
constant (and it must evaluate to a constant that is in the range of
representable values for its type). Constant expressions are evalu­
ated just as regular expressions are. You can use a constant
expression anywhere that a constant is legal. The syntax for con­
stant expressions is

constant-expression:
Conditional-expression

Borland C++ Programmer's Guide

Punctuators

Constant expressions cannot contain any of the following
operators, unless the operators are contained within the operand
of a sizeof operator:

II assignment
III comma
III decrement
III function call
II increment

The punctuators (also known as separators) in Borland C++ are
defined as follows:

punctuator: one of

[](){},;: ... *=#

Brackets [] (open and close brackets) indicate single and multidimensional
array subscripts:

char ch, str [l
int mat[3] [4];
ch = str[3];

"Stan" ;
/* 3 x 4 matrix */
/* 4th element */

Parentheses () (open and close parentheses) group expressions, isolate condi­
tional expressions, and indicate function calls and function
parameters:

Chapter 7, Lexical elements

d = c * (a + b);

if (d == z) ttX;

func ();
int (*fptr) () ;
fptr = func;

void func2(int n);

/* override normal precedence */

/* essential with conditional statement */

/* function call, no args */
/* function pointer declaration */
/* no () means func pointer */

/* function declaration with args */

Parentheses are recommended in macro definitions to avoid po­
tential precedence problems during expansion:

#define CUBE (x) ((x) * (x) * (x))

The use of parentheses to alter the normal operator precedence
and associativity rules is covered on page 79.

21

22

Braces {} (open and close braces) indicate the start and end of a com­
pound statement:

if (d == z)

{

ttX;

func() ;

The closing brace serves as a terminator for the compound state­
ment, so a ; (semicolon) is not required after the }, except in
structure or class declarations. Often, the semicolon is illegal, as in

if (statement)
{};

else
/*illegal semicolon*/

Comma The comma (,) separates the elements of a function argument list:

void func(int n , float f, char ch);

The comma is also used as an operator in comma expressions.
Mixing the two uses of comma is legal, but you must use
parentheses to distinguish them:

func (i I j); / * call func wi th two args * /
func ((expl, exp2) I (exp3 I exp4 I exp5)); / * also calls func

with two args! */

Semicolon The semicolon (;) is a statement terminator. Any legal C or C++
expression (including the empty expression) followed by ; is
interpreted as a statement, known as an expression statement. The
expression is evaluated and its value is discarded. If the expres­
sion statement has no side effects, Borland C++ may ignore it.

a t b;
tta;

/* maybe evaluate a t b, but discard value */
/* side effect on a, but discard value of tta */
/* empty expression = null statement */

Semicolons are often used to create an empty statement:

for (i = 0; i < n; itt)
{

Borland C++ Programmer's Guide

Colon Use the colon (:) to indicate a labeled statement:

start: x=O;

goto start;

switch (a)
case 1: puts("One");

break;
case 2: puts("Two");

break;

default: puts("None of the above!");
break;

Labels are covered on page 98.

Ellipsis Ellipsis (. ..) are three successive periods with no whitespace inter­
vening. Ellipsis are used in the formal argument lists of function
prototypes to indicate a variable number of arguments, or argu­
ments with varying types:

void func(int n, char ch, ...);

This declaration indicates that func will be defined in such a way
that calls must have at least two arguments, an int and a char, but
can also have any number of additional arguments.

~ In C++, you can omit the comma preceding the ellipsis.

Asterisk (pointer
declaration)

Chapter 7, Lexical elements

The * (asterisk) in a variable declaration denotes the creation of a
pointer to a type:

char *char-ptr; /* a pointer to char is declared */

Pointers with multiple levels of indirection can be declared by in­
dicating a pertinent number of asterisks:

int **int-ptr;
double ***double-ptr;

/* a pointer to a pointer to an int */
/* a pointer to a pointer to a pointer

to doubles */

You can also use the asterisk as an operator to either dereference a
pointer or as the multiplication operator:

i = *int-ptr;

a = b * 3.14;

23

24

Equal sign (initializer) The = (equal sign) separates variable declarations from initiali­
zation lists:

Pound sign
(preprocessor

directive)

char array [5] = { 1, 2, 3, 4, 5 };
int x = 5;

In C++, declarations of any type can appear (with some
restrictions) at any point within the code. In a C function, no code
can precede any variable declarations.

In a C++ function argument list, the equal sign indicates the
default value for a parameter:

int f (int i = 0) { ... } /* parameter i has default value of
zero */

The equal sign is also used as the assignment operator in
expressions:

a = b + c;
ptr = farmalloc(sizeof(float)*100);

The # (pound sign) indicates a preprocessor directive when it
occurs as the first nonwhitespace character on a line. It signifies a
compiler action, not necessarily associated with code generation.
See page 157 for more on the preprocessor directives.

~md ## (double pound signs) are also used as operators to
perform token replacement and merging during the preprocessor
scanning phase.

Bar/and C++ Programmer's Guide

c H

Declarations

Scope is discussed starting on
page 27; visibility on page

29; duration on page 29; and
linkage on page 31.

Objects

A p T E R

2

Language structure

This chapter provides a formal definition of Borland C++'s
language structure. It details the legal ways in which tokens can
be grouped together to form expressions, statements, and other
significant units. By contrast, lexical elements (described in
Chapter 1) are concerned with the different categories of word­
like units, known as tokens, recognized by a language.

This section briefly reviews concepts related to declarations:
objects, types, storage classes, scope, visibility, duration, and
linkage. A general knowledge of these is essential before tackling
the full declaration syntax. Scope, visibility, duration, and linkage
determine those portions of a program that can make legal
references to an identifier in order to access its object.

An object is an identifiable region of memory that can hold a fixed
or variable value (or set of values). (This use of the word object is
not to be confused with the more general term used in object­
oriented languages.) Each value has an associated name and type
(also known as a data type). The name is used to access the object.
This name can be a simple identifier, or it can be a complex
expression that uniquely "points" to the object. The type is used

Chapter 2, Language structure 25

Lvalues

26

• to determine the correct memory allocation required initially

• to interpret the bit patterns found in the object during
subsequent accesses

• in many type-checking situations, to ensure that illegal
assignments are trapped

Borland C++ supports many standard (predefined) and user­
defined data types, including signed and unsigned integers in
various sizes, floating-point numbers in various precisions,
structures, unions, arrays, and classes. In addition, pointers to
most of these objects can be established and manipulated in
various memory models.

The Borland c++ standard libraries and your own program and
header files must provide unambiguous identifiers (or expres­
sions derived from them) and types so that Borland C++ can
consistently access, interpret, and (possibly) change the bit
patterns in memory corresponding to each active object in your
program.

Declarations establish the necessary mapping between identifiers
and objects. Each declaration associates an identifier with a data
type. Most declarations, known as defining declarations, also
establish the creation (where and when) of the object, that is, the
allocation of physical memory and its possible initialization.
Other declarations, known as referencing declarations, simply make
their identifiers and types known to the compiler. There can be
many referencing declarations for the same identifier, especially
in a multifile program, but only one defining declaration for that
identifier is allowed.

Generally speaking, an identifier cannot be legally used in a
program before its declaration point in the source code. Legal
exceptions to this rule, known as forward references, are labels, calls
to undeclared functions, and class, struct, or union tags.

An lvalue is an object locator: An expression that designates an
object. An example of an lvalue expression is *P, where P is any
expression evaluating to a nonnull pointer. A modifiable lvalue is an
identifier or expression that relates to an object that can be
accessed and legally changed in memory. A const pointer to a
constant, for example, is not a modifiable lvalue. A pointer to a
constant can be changed (but its dereferenced value cannot).

Borland C++ Programmer's Guide

Rvalues

Types and
storage classes

Scope

Historically, the I stood for "left," meaning that an lvalue could le­
gally stand on the left (the receiving end) of an assignment state­
ment. Now only modifiable lvalues can legally stand to the left of
an assignment statement. For example, if a and bare nonconstant
integer identifiers with properly allocated memory storage, they
are both modifiable lvalues, and assignments such as a = 1; and b
= a + b are legal.

The expression a + b is not an lvalue: a + b = a is illegal because the
expression on the left is not related to an object. Such expressions
are often called rvalues (short for right values).

Associating identifiers with objects requires that each identifier
has at least two attributes: storage class and type (sometimes
referred to as data type). The Borland c++ compiler deduces
these attributes from implicit or explicit declarations in the source
code.

Storage class dictates the location (data segment, register, heap, or
stack) of the object and its duration or lifetime (the entire running
time of the program, or during execution of some blocks of code).
Storage class can be established by the syntax of the declaration,
by its placement in the source code, or by both of these factors.

The type, as explained earlier, determines how much memory is
allocated to an object and how the program will interpret the bit
patterns found in the object's storage allocation. A given data type
can be viewed as the set of values (often implementation-depen­
dent) that identifiers of that type can assume, together with the set
of operations allowed on those values. The special compile-time
operator, sizeof, lets you determine the size in bytes of any
standard or user-defined type; see page 87 for more on this
operator.

The scope of an identifier is that part of the program in which the
identifier can be used to access its object. There are five categories
of scope: block (or local), function, function prototype, file, and class
(C++ only). These depend on how and where identifiers are
declared.

Chapter 2, Language structure 27

28

Block scope The scope of an identifier with block (or local) scope starts at the
declaration point and ends at the end of the block containing the
declaration (such a block is known as the enclosing block).
Parameter declarations with a function definition also have block
scope, limited to the scope of the block that defines the function.

Function scope The only identifiers having function scope are statement labels.
Label names can be used with gata statements anywhere in the
function in which the label is declared. Labels are declared impli­
citly by writing label_name: followed by a statement. Label names
must be unique within a function.

Function prototype Identifiers declared within the list of parameter declarations in a
scope function prototype (not part of a function definition) have

function prototype scope. This scope ends at the end of the
function prototype.

File scope File scope identifiers, also known as globals, are declared outside
of all blocks and classes; their scope is from the point of
declaration to the end of the source file.

Class scope (C++) For now, think of a class as a named collection of members, in­
cluding data structures and functions that act on them. Class
scope applies to the names of the members of a particular class.
Classes and their objects have many special access and scoping
rules; see pages 111 to 124.

Scope and name Name space is the scope within which an identifier must be unique.
spaces There are four distinct classes of identifiers in C:

Structures, classes, and
enumerations are in the

same name space in C++.

1. gata label names. These must be unique within the function in
which they are declared.

2. Structure, union, and enumeration tags. These must be unique
within the block in which they are defined. Tags declared out­
side of any function must be unique within all tags defined
externally.

3. Structure and union member names. These must be unique
within the structure or union in which they are defined. There
is no restriction on the type or offset of members with the
same member name in different structures.

Borland C++ Programmer's Guide

Visibility

Visibility cannot exceed
scope, but scope can

exceed visibility.

4. Variables, typedefs, functions, and enumeration members.
These must be unique within the scope in which they are
defined. Externally declared identifiers must be unique among
externally declared variables.

The visibility of an identifier is that region of the program source
code from which legal access can be made to the identifier's asso­
ciated object.

Scope and visibility usually coincide, though there are circum­
stances under which an object becomes temporarily hidden by the
appearance of a duplicate identifier: The object still exists but the
original identifier cannot be used to access it until the scope of the
duplicate identifier is ended.

int ii char Chi II auto by default
i = 3i II int i and char ch in scope and visible

double ii

i = 3.0e3i

ch = 'A' i

+= Ii

II double i in scope and visible
II int i=3 in scope but hidden
II char ch in scope and visible

II double i out of scope
II int i visible and = 4
II char ch still in scope & visible = 'A'

II int i and char ch out of scope

~ Again, special rules apply to hidden class names and class
member names: Special C++ operators allow hidden identifiers to
be accessed under certain conditions (see page 112).

Duration
Duration, closely related to storage class, defines the period
during which the declared identifiers have real, physical objects
allocated in memory. We also distinguish between compile-time
and run-time objects. Variables, for instance, unlike typedefs and
types, have real memory allocated during run time. There are
three kinds of duration: static, local, and dynamic.

Chapter 2, Language structure 29

Static duration Objects with static duration are allocated memory as soon as exe­
cution is underway; this storage allocation lasts until the program
terminates. Static duration objects usually reside in fixed data
segments allocated according to the memory model in force. All
functions, wherever defined, are objects with static duration. All
variables with file scope have static duration. Other variables can
be given static duration by using the explicit static or extern
storage class specifiers.

Local duration

An object with local duration
a/so has local scope, since it

does not exist outside of its
enclosing block. The con­

verse is not true: A local
scope object can have

static duration.

Static duration objects are initialized to zero (or null) in the
absence of any explicit initializer or, in C++, constructor.

Static duration must not be confused with file or global scope. An
object can have static duration and local scope.

Local duration objects, also known as automatic objects, lead a
more precarious existence. They are created on the stack (or in a
register) when the enclosing block or function is entered. They are
deallocated when the program exits that block or function. Local
duration objects must be explicitly initialized; otherwise, their
contents are unpredictable. Local duration objects always must
have local or function scope. The storage class specifier auto may
be used when declaring local duration variables, but is usually
redundant, since auto is the default for variables declared within
a block.

When declaring variables (for example, int, char, float), the
storage class specifier register also implies auto; but a request (or
hint) is passed to the compiler that the object be allocated a
register if possible. Borland C++ can be set to allocate a register to
a local integral or pointer variable, if one is free. If no register is
free, the variable is allocated as an auto, local object with no
warning or error.

Dynamic duration Dynamic duration objects are created and destroyed by specific
function calls during a program. They are allocated storage from a
special memory reserve known as the heap, using either standard
library functions such as malloc, or by using the C++ operator
new. The corresponding dealloca tians are made using free or
delete.

30 Borland C++ Programmer's Guide

Translation units

For more details, see
"External dec/orations and

definitions" on page 36.

Linkage

The term translation unit refers to a source code file together with
any included files, but less any source lines omitted by condi­
tional preprocessor directives. Syntactically, a translation unit is
defined as a sequence of external declarations:

transla tion-un it:
external-declaration
translation-unit external-declaration

external-declaration
fu nction-defin itioll
declaration

The word external has several connotations in C; here it refers to
declarations made outside of any function, and which therefore
have file scope. (External linkage is a distinct property; see the
following section, "Linkage.") Any declaration that also reserves
storage for an object or function is called a definition (or defining
declaration).

An executable program is usually created by compiling several in­
dependent translation units, then linking the resulting object files
with preexisting libraries. A problem arises when the same identi­
fier is declared in different scopes (for example, in different files),
or declared more than once in the same scope. Linkage is the
process that allows each instance of an identifier to be associated
correctly with one particular object or function. All identifiers
have one of three linkage attributes, closely related to their scope:
external linkage, internal linkage, or no linkage. These attributes
are determined by the placement and format of your declarations,
together with the explicit (or implicit by default) use of the
storage class specifier static or extern.

Each instance of a particular identifier with external linkage repre­
sents the same object or function throughout the entire set of files
and libraries making up the program. Each instance of a particu­
lar identifier with internal linkage represents the same object or
function only within one file. Identifiers with no linkage represent
unique entities.

External and internal linkage rules are as follows:

Chapter 2, Language structure 31

32

1. Any object or file identifier having file scope will have internal
linkage if its declaration contains the storage class specifier
static.

For C++, if the same identifier appears with both internal and
external linkage within the same file, the identifier will have
external linkage. In C, it will have internal linkage.

2. If the declaration of an object or function identifier contains
the storage class specifier extern, the identifier has the same
linkage as any visible declaration of the identifier with file
scope. If there is no such visible declaration, the identifier has
external linkage.

3. If a function is declared without a storage class specifier, its
linkage is determined as if the storage class specifier extern
had been used.

4. If an object identifier with file scope is declared without a
storage class specifier, the identifier has external linkage.

The following identifiers have no linkage attribute:

1. any identifier declared to be other than an object or a function
(for example, a typedef identifier)

2. function parameters

3. block scope identifiers for objects declared without the storage
class specifier extern

Name mangling When a C++ module is compiled, the compiler generates function
names that include an encoding of the function's argument types.
This is known as name mangling. It makes overloaded functions
possible, and helps the linker catch errors in calls to functions in
other modules. However, there are times when you won't want
name mangling. When compiling a C++ module to be linked with
a module that does not have mangled names, the C++ compiler
has to be told not to mangle the names of the functions from the
other module. This situation typically arises when linking with
libraries or .OBJ files compiled with a C compiler.

To tell the C++ compiler not to mangle the name of a function,
simply declare the function as extern "C", like this:

extern "CO void Cfunc(int);

This declaration tells the compiler that references to the function
Cfunc should not be mangled.

Borland C++ Programmer's Guide

You can also apply the extern "e" declaration to a block of names:

extern "C" {

}i

void Cfuncl(int) i
void Cfunc2(int) i
void Cfunc3(int)i

As with the declaration for a single function, this declaration tells
the compiler that references to the functions Cfunc1, Cfunc2, and
Cfunc3 should not be mangled. You can also use this form of
block declaration when the block of function names is contained
in a header file:

extern "C" {
#include "locallib.h"

}i

Declaration syntax

Tentative

All six interrelated attributes (storage class, type, scope, visibility,
duration, and linkage) are determined in diverse ways by
declarations.

Declarations can be defining declarations (also known simply as def­
initions) or referencing declarations (sometimes known as nonde­
fining declarations). A defining declaration, as the name implies,
performs both the duties of declaring and defining; the nonde­
fining declarations require a definition to be added somewhere in
the program. A referencing declaration simply introduces one or
more identifier names into a program. A definition actually
allocates memory to an object and associates an identifier with
that object.

definitions The ANSI C standard introduces a new concept: that of the
tentative definition. Any external data declaration that has no
storage class specifier and no initializer is considered a tentative
definition. If the identifier declared appears in a later definition,
then the tentative definition is treated as if the extern storage class
specifier were present. In other words, the tentative definition
becomes a simple referencing declaration.

Chapter 2, Language structure 33

34

If the end of the translation unit is reached and no definition has
appeared with an initializer for the identifier, then the tentative
definition becomes a full definition, and the object defined has
uninitialized (zero-filled) space reserved for it. For example,

int Xi

int Xi

int Yi
int y = 4i

int z = 5i
int z = 6i

/*legal, one copy of X is reserved */

/* legal, y is initialized to 4 */

/* not legal, both are initialized definitions */

-.. Unlike ANSI C, C++ doesn't have the concept of a tentative
declaration; an external data declaration without a storage class
specifier is always a definition.

Possible
declarations The range of objects that can be declared includes

• variables
II functions
II classes and class members (C++)

• types
• structure, union, and enumeration tags
• structure members
II union members
• arrays of other types
• enumeration constants
• statement labels
1:11 preprocessor macros

The full syntax for declarations is shown in the following tables.
The recursive nature of the declarator syntax allows complex de­
clarators. We encourage the use of typedefs to improve legibility.

Borland C++ Programmer's Guide

Table 2.1
Borland C++ declaration

syntax
declaration:

<decl-specifiers> <declarator-list>;
asm-declaration
Junction-declaration
linkage-specification

decl-specifier:
s tora ge-class-speci fier
type-specifier
Jct-specifier
friend (C++ specific)
typedef

decl-specifiers:
<decl-specifiers> decl-specifier

storage-class-specifier:
auto
register
static
extern

Jct-specifier: (C++ specific)
inline
virtual

type-specifier:
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
const
volatile

simple-type-name:
class-name
typedef-name
char
short

int
long
signed
unsigned
float
double
void

elaborated-type-specifier:
class-key identifier
class-key class-name
enum enum-name

class-key: (C++ specific)
class
struct
union

enum-specifier:
enum <identifier> { <enum-list> }

mum-list:
enumerator
enumerator-list, enumerator

enumerator:
identifier
identifier = constant-expression

cons tan t -expression:
conditional-expression

linkage-specification: (C++ specific)
extern string { <declaration-list> }
extern string declaration

declaration-list:
declaration
declaration-list; declaration

For the following table, note that there are restrictions on the
number and order of modifiers and qualifiers. Also, the modifiers
listed are the only addition to the declarator syntax that are not
ANSI C or C++. These modifiers are each discussed in greater
detail starting on page 47.

Chapter 2, Language structure 35

Table 2.2: Borland C++ declarator syntax

declarator-list:
in it-declarator
declarator-list , in it-declarator

in it-declarator:
declarator <initializer>

declarator:
dname
modifier-list
ptr-operator declarator

class-name (C++ specific)
- class-lzame (C++ specific)
typedef-lzame

type-name:
type-specifier <abstract-declarator>

abstract-declarator:
ptr-operator <abstract-declarator>

declarator (parameter-declaration-list) <cv-qllalifier-list>
(The <cv-qualifier-list> is for c++ only.)

<abstract-declarator> (arglllnent-declaration-list) <cv-qualifier-list>
<abstract-declarator> [<constant-expression> I
(abstract-declarator)

argllment-declaratioll-list:
<arg-declaration-list> declarator [<constant-expression> I

(declarator)

modifier-list:
modifier
modifier-list modifier

modifier:
cdecl
pascal
interrupt
near
far
huge

ptr-operator:
* <cv-qllalifier-list>
& <cv-qllalifier-list> (C++ specific)

arg-declaratioll-list, .. .
<arg-declaration-list> ... (C++ specific)

arg-declaratiOll-list:
argumellt-declaratiOll
arg-declaration-list , argument-declaration

argulllent-declaration:
decl-specifiers declarator
decl-specifiers declarator = expression (C++ specific)
decl-specifiers <abstract-declarator>
decl-specifiers <abstract-declarator> = expression (C++ specific)

fct-defiIllHoll:
<decl-specifiers> declarator <ctor-initializer> fct-body

fct-body:
class-name :: * <cv-qualifier-list> (C++ specific) compoulUt-statemellt

cv-qualifier-list:
cv-qllalifier <cv-qualifier-list>

cv-qualifier
canst
volatile

dllame:
name

External
declarations and

definitions

36

initializer:
= expression
= { initializer-list I
(expression-list) (C++ specific)

initializer-list:
expression
initializer-list , expression
(illitializer-list <,> I

The storage class specifiers auto and register cannot appear in an
external declaration (see "Translation units," page 31). For each
identifier in a translation unit declared with internal linkage, there
can be no more than one external definition.

An external definition is an external declaration that also defines
an object or function; that is, it also allocates storage. If an
identifier declared with external linkage is used in an expression
(other than as part of the operand of sizeof), there must be exactly
one external definition of that identifier somewhere in the entire
program.

Borland C++ Programmer's Guide

Borland c++ allows later re-declarations of external names, such
as arrays, structures, and unions, to add information to earlier
declarations. For example,

int a [] i II no size
struct mystructi II tag only, no member declarators

int a[3] = {l, 2, 3}i II supply size and initialize
struct mystruct {

int i, ji
}i II add member declarators

The following table covers class declaration syntax. Page 105
covers C++ reference types (closely related to pointer types) in
detail.

Table 2,3: Borland C++ class declarations (C++ only)

class-specifier:
class-head { <member-list> }

class-head:
class-key <identifier> <base-spec>
class-key class-name <base-spec>

member-list:
member-declaration <member-list>
access-specifier: <member-list>

member-declaration:
<decl-specifiers> <member-declarator-list> ;
function-definition <;>
qualified-l1ame ;

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator <pure-specifier>
<identifier> : c011stant-expression

pure-specifier:
=0

base-spec:
: base-list

base-list:
base-specifier
base-list, base-specifier

base-specifier:
class-name
virtual <access-specifier> class-11ame

Chapter 2, Language structure

access-specifier <virtual> class-name

access-specifier:
private
protected
public

conversio11-function-name:
operator conversion-type-name

conversion-type-name:
type-specifiers <ptr-operator>

ctor-initializer:
: 111e111-initializer-list

111em-in itializer-l ist:
me111-i n itia I izer
mem-initializer, 111em-initializer-list

me111-in i tia I izer:
class name (<argument-list>)
identifier (<argument-list>)

operator-function-name:
operator operator

operator: one of
new delete sizeof

+
&
+= -= *=
&= 1= «
-- != <=
++
[]

1

1=
»
>=
->*

%
=
%=
»=
&&
->

1\

<>
1\=
«=
II
()

37

38

Type specifiers

Type taxonomy

The type specifier with one or more optional modifiers is used to
specify the type of the declared identifier:

int ii II declare i as a signed integer
unsigned char chl, ch2i II declare two unsigned chars

By long-standing tradition, if the type specifier is omitted, type
signed int (or equivalently, int) is the assumed default. However,
in C++ there are some situations where a missing type specifier
leads to syntactic ambiguity, so C++ practice uses the explicit
entry of all int type specifiers.

There are four basic type categories: void, scalar, function, and
aggregate. The scalar and aggregate types can be further divided
as follows:

1:1 Scalar: arithmetic, enumeration, pointer, and reference types
(C++)

c Aggregate: array, structure, union, and class types (C++)

Types can also be divided into fundamental and derived types. The
fundamental types are void, char, int, float, and double, together
with short, long, signed, and unsigned variants of some of these.
The derived types include pointers and references to other types,
arrays of other types, function types, class types, structures, and
unions.

~ .A class object, for example, can hold a number of objects of
different types together with functions for manipulating these
objects, plus a mechanism to control access and inheritance from
other classes.

Given any nonvoid type type (with some provisos), you can
declare derived types as follows:

Borland C++ Programmer's Guide

Table 2.4
Declaring types

Note that type& var, type
&var, and type & var are all

equivalent.

Type void

c++ handles func() in a
special manner. See

"Declarations and
prototypes" on page 61 and
code examples on page 62.

The fundamental
types

signed and unsigned are
modifiers that can be

applied to the integral types.

type t;

type army[lO];

type *ptr;

type &ref = t;
type func(void);

void func1 (type t);

struct st {type t1; type t2J;

An object of type type

Ten types: array[O] - army[9]

ptr is a pointer to type

ref is a reference to type (C++)

func returns value of type type

func1 takes a type type parameter

structure st holds two types

And here's how you could declare derived types in a class:

class ct {

type *ptr;
public:

II class ct holds ptr to type plus a function
II taking a type parameter (ett)

void func(type*);

void is a special type specifier indicating the absence of any
values. It is used in the following situations:

[J An empty parameter list in a function declaration:
int func(void); II func takes no arguments

l'l When the declared function does not return a value:
void func(int n); II return value

C As a generic pointer: A pointer to void is a generic pointer to
anything:

void *ptr; II ptr can later be set to point to any object

I'J In typecasting expressions:

extern int errfunc();

(void) errfunc();

II returns an error code

II discard return value

The fundamental type specifiers are built from the following
keywords:

char
double
float

int
long
short

signed
unsigned

Chapter 2, Language structure 39

40

Integral types

Table 2.5
Integral types

From these keywords, you can build the integral and floating­
point types, which are together known as the arithmetic types. The
include file limits.h contains definitions of the value ranges for all
the fundamental types.

char, short, int, and long, together with their unsigned variants,
are all considered integral data types. The integral type specifiers
are as follows, with synonyms listed on the same line:

char, signed char . Synonyms if default char set to signed
unsigned char
char, unsigned char Synonyms if default char set to unsigned
signed char
int, signed int
unsigned, unsigned int
short, short int, signed short int
unsigned short, unsigned short int
long, long int, signed long int
unsigned long, unsigned long int

At most, one of signed and unsigned can be used with char,
short, int, or long. If you use the keywords signed and unsigned
on their own, they mean signed int and unsigned int,
respectively.

In the absence of unsigned, signed is usually assumed. An excep­
tion arises with char. Borland C++ lets you set the default for char
to be signed or unsigned. (The default, if you don't set it yourself,
is signed.) If the default is set to unsigned, then the decla:r:ation
char ch declares ch as unsigned. You would need to use signed
char ch to override the default. Similarly, with a signed default for
char, you would need an explicit unsigned char ch to declare an
unsigned char.

At most, one of long and short can be used with int. The
keywords long and short used on their own mean long int and
short int.

ANSI C does not dictate the sizes or internal representations of
these types, except to insist that short, int, and long form a non­
decreasing sequence with "short <= int <= long." All three types
can legally be the same. This is important if you want to write
portable code aimed at other platforms.

In Borland C++, the types int and short are equivalent, both being
16 bits. long is a 32-bit object. The signed varieties are all stored in
2's complement format using the most significant bit (MSB) as a

Borland C++ Programmer's Guide

sign bit: 0 for positive, 1 for negative (which explains the ranges
shown in Table 1.9 on page 19). In the unsigned versions, all bits
are used to give a range of 0 - (211

- 1), where n is 8, 16, or 32.

Floating-point types The representations and sets of values for the floating-point types
are implementation dependent; that is, each implementation of C
is free to define them. Borland C++ uses the IEEE floating-point
formats. (Appendix A, "ANSI implementation-specific
standards," tells more about implementation-specific items.)

float and double are 32- and 64-bit floating-point data types, re­
spectively. long can be used with double to declare an 80-bit pre­
cision floating-point identifier: long double test_case, for example.

Table 1.9 on page 19 indicates the storage allocations for the
floating-point types.

Standard conversions When you use an arithmetic expression, such as a + b, where a
and b are different arithmetic types, Borland C++ performs certain
internal conversions before the expression is evaluated. These
standard conversions include promotions of "lower" types to
"higher" types in the interests of accuracy and consistency.

Here are the steps Borland C++ uses to convert the operands in an
arithmetic expression:

1. Any small integral types are converted as shown in Table 2.6.
After this, any two values associated with an operator are
either int (including the long and unsigned modifiers, double,
float, or long double).

2. If either operand is of type long double, the other operand is
converted to long double.

3. Otherwise, if either operand is of type double, the other
operand is converted to double.

4. Otherwise, if either operand is of type float, the other operand
is converted to float.

5. Otherwise, if either operand is of type unsigned long, the
other operand is converted to unsigned long.

6. Otherwise, if either operand is of type long, then the other op­
erand is converted to long.

7. Otherwise, if either operand is of type unsigned, then the
other operand is converted to unsigned.

8. Otherwise, both operands are of type int.

Chapter 2, Language structure 41

Table 2.6
Methods used in standard

arithmetic conversions

Special char, int, and
enum conversions

The conversions discussed in
this section are specific to

Borland C++.

42

Initialization

If it has automatic storage
duration, its value is

indeterminate.

The result of the expression is the same type as that of the two
operands.

Type

char

unsigned char
signed char
short
unsigned short
enum

Converts to

int

int
int
int
unsigned int
int

Method

Zero or sign-extended
(depends on default char type)
Zero-filled high byte (always)
Sign-extended (always)
Same value
Same value
Same value

Assigning a signed character object (such as a variable) to an
integral object results in automatic sign extension. Objects of type
signed char always use sign extension; objects of type unsigned
char always set the high byte to zero when converted to int.

Converting a longer integral type to a shorter type truncates the
higher order bits and leaves low-order bits unchanged.
Converting a shorter integral type to a longer type either sign
extends or zero fills the extra bits of the new value, depending on
whether the shorter type is signed or unsigned, respectively.

Initializers set the initial value that is stored in an object (variables,
arrays, structures, and so on). If you don't initialize an object, and
it has static duration, it will be initialized by default in the
following manner:

II to zero if it is of an arithmetic type

.. to null if it is a pointer type

The syntax for initializers is as follows:

initializer
= expression
= {initializer-list} <,>}

(expression list)

initializer-list
expression
initializer-list, expression
{initializer-list} <,>}

Rules governing initializers are

Borland C++ Programmer's Guide

1. The number of initializers in the initializer list cannot be larger
than the number of objects to be initialized.

2. The item to be initialized must be an object type or an array of
unknown size.

3. For C (not required for C++), all expressions must be constants
if they appear in one of these places:

a. in an initializer for an object that has static duration

b. in an initializer list for an array, structure, or union (expres­
sions using sizeof are also allowed)

4. If a declaration for an identifier has block scope, and the
identifier has external or internal linkage, the declaration
cannot have an initializer for the identifier.

5. If there are fewer initializers in a brace-enclosed list than there
are members of a structure, the remainder of the structure is
initialized implicitly in the same way as objects with static
storage duration.

Scalar types are initialized with a single expression, which can op­
tionally be enclo'sed in braces. The initial value of the object is that
of the expression; the same constraints for type and conversions
apply as for simple assignments.

For unions, a brace-enclosed initializer initializes the member that
first appears in the union's declaration list. For structures or
unions with automatic storage duration, the initializer must be
one of the following:

IJ an initializer list as described in the following section

fl a single expression with compatible union or structure type. In
this case, the initial value of the object is that of the expression.

Arrays, structures, and You initialize arrays and structures (at declaration time, if you
unions like) with a brace-enclosed list of initializers for the members or

elements of the object in question. The initializers are given in
increasing array subscript or member order. You initialize unions
with a brace-enclosed initializer for the first member of the union.
For example, you could declare an array days, intended to count
how many times each day of the week appears in a month (and
assuming that each day will appear at least once), as follows:

int days [7] = { 1 f 1 f 1 f 1 f 1, 1 f 1 }

Chapter 2, Language structure 43

44

Simple
declarations

Use these rules to initialize character arrays and wide character
arrays:

1. You can initialize arrays of character type with a literal string,
optionally enclosed in braces. Each character in the string, in­
cluding the null terminator, initializes successive elements in
the array. For example, you could declare

char name [] = { "Unknown" };

which sets up an eight-element array, whose elements are 'U'
(for name[O]), 'n' (for name[1]), and so on (and including a null
termina tor).

2. You can initialize a wide character array (one that is
compatible with wchar_t) by using a wide string literal,
optionally enclosed in braces. As with character arrays, the
codes of the wide string literal initialize successive elements of
the array.

Here is an example of a structure initialization:

struct mystruct {
int i;
char str[21];
double d;

s = { 20, "Borland", 3.141 };

Complex members of a structure, such as arrays or structures, can
be initialized with suitable expressions inside nested braces. You
can eliminate the braces, but you must follow certain rules, and it
isn't recommended practice.

Simple declarations of variable identifiers have the following
pattern:

data-type varl <=initl>, var2 <=init2>, ... ;

where varl, var2, ... are any sequence of distinct identifiers with
optional initializers. Each of the variables is declared to be of type
data-type. For example,

int x = I, y = 2;

creates two integer variables called x and y (and initializes them
to the values 1 and 2, respectively).

Borland C++ Programmer's Guide

These are all defining declarations; storage is allocated and any
optional initializers are applied.

The initializer for an automatic object can be any legal expression
that evaluates to an assignment-compatible value for the type of
the variable involved. Initializers for static objects must be
constants or constant expressions.

~ In C++, an initializer for a static object can be any expression in­
volving constants and previously declared variables and
functions.

Storage class
specifiers

Use of storage class
specifier auto

Use of storage class
specifier extern

Use of storage class
specifier regis"ter

A storage class specifier, or a type specifier, must be present in a
declaration. The storage class specifiers can be one of the
following:

auto
extern

register
static

typedef

The storage class specifier auto is used only with local scope
variable declarations. It conveys local (automatic) duration, but
since this is the default for all local scope variable declarations, its
use is rare.

The storage class specifier extern can be used with function and
variable file scope and local scope declarations to indicate external
linkage. With file scope variables, the default storage class
specifier is extern. When used with variables, extern indicates
that the variable has static duration. (Remember that functions
always have static duration.) See page 32 for information on using
extern to prevent name mangling when combining C and C++
code.

The storage class specifier register is allowed only for local
variable and function parameter declarations. It is equivalent to
auto, but it makes a request to the compiler that the variable
should be allocated to a register if possible. The allocation of a
register can significantly reduce the size and improve the per­
formance of programs in many situations. However, since
Borland C++ does a good job of placing variables in registers, it is
rarely necessary to use the register keyword.

Chapter 2, Language structure 45

46

Use of storage class
specifier static

Borland C++ lets you select register variable options from the
Options I Compiler I Optimizations Options dialog box. If you
check Automatic, Borland C++ will try to allocate registers even if
you have not used the register storage class specifiers.

The storage class specifier static can be used with function and
variable file scope and local scope declarations to indicate internal
linkage. static also indicates that the variable has static duration.
In the absence of constructors or explicit initializers, static
variables are initialized with a or null.

~ In C++, a static data member of a class has the same value for all
instances of a class. A static member function of a class can be
invoked independently of any class instance.

Use of storage class
specifier typedef

The keyword typedef indicates that you are defining a new data
type specifier rather than declaring an object. typedef is included
as a storage class specifier because of syntactical rather than
functional similarities.

static long int biggy;
typedef long int BIGGY;

The first declaration creates a 32-bit, long intI static-duration
object called biggy. The second declaration establishes the
identifier BlGGY as a new type specifier, but does not create any
run-time object. BlGGY can be used in any subsequent declaration
where a type specifier would be legal. For example,

extern BIGGY salary;

has the same effect as

extern long int salarYi

Although this simple example can be achieved by #define BIGGY

long intI more complex typedef applications achieve more than is
possible with textual substitutions.

Important! typedef does not create new data types; it merely creates useful
mnemonic synonyms or aliases for existing types. It is especially
valuable in simplifying complex declarations:

typedef double (*PFD) ()i
PFD array-pfd[10];
/* array-pfd is an array of 10 pointers to functions

returning double */

Borland C++ Programmer's Guide

Modifiers

You can't use typedef identifiers with other data-type specifiers:

unsigned BIGGY pay; 1* ILLEGAL *1

In addition to the storage class specifier keywords, a declaration
can use certain modifiers to alter some aspect of the identifier /
object mapping. The modifiers available with Borland C++ are
summarized in Table 2.7.

The canst modifier The const modifier prevents any assignments to the object or any
other side effects, such as increment or decrement. A const
pointer cannot be modified, though the object to which it points
can be. Consider the following examples:

The modifier const used
by itself is equivalent to

const into

const float pi = 3.1415926;
const maxint = 32767;
char *const str = "Hello, world" ; II A constant pointer
char const *str2 = "Hello, world" ; 1* A pointer to a constant

char *1

Given these, the following statements are illegal:

pi = 3.0;
= maxinttt;

str = "Hi, there! ";

1* Assigns a value to a canst *1
1* Increments a canst *1
1* Points str to something else *1

Note, however, that the function call strcpy (str, "Hi I there!") is
legal, since it does a character-by-character copy from the string
literal "Hi, there!" into the memory locations pointed to by str.

~ In C++, const also hides the const object and prevents external
linkage. You need to use extern const. A pointer to a const can't
be assigned to a pointer to a non-const (otherwise, the const
value could be assigned to using the non-const pointer). For
example,

Table 2.7
Borland C++ modifiers

c++ extends const and
volatile to include classes

and member functions.

char *str3 = str2 1* disallowed *1

Only const member functions can be called for a const object.

Modifier

canst

volatile

Use with

Variables only

Variables only

Use

Prevents changes to object.

Prevents register allocation and some
optimization. Warns compiler that

Chapter 2, Language structure 47

48

Table 2,7: Borland C++ modifiers (continued)

Borland C++ extensions

cdecl Functions

cdecl Variables

pascal Functions

pascal Variables

interrupt Functions

near, Pointer types
far,
huge

_cs, Pointer types
_ds,
_es,
_seg,
ss -

near, Functions
far,

huge
model.

near, Variables
far

_export Functions/ classes

loadds Functions -

_saveregs Functions

fastcall Functions -

object may be subject to outside
change during evaluation.

Forces C argument-passing
convention. Affects Linker and link-
time names.

Forces global identifier case-sensitivity
and leading underscores.

Forces Pascal argument-passing
convention. Affects Linker and link-
time names.

Forces global identifier case-
insensitivity with no leading
underscores.

Function compiles with the additional
register-housekeeping code needed
when writing interrupt handlers.

Overrides the default pointer
type specified by the current
memory model.

Segment pointers.
See page 350.

Overrides the default function
type specified by the current

memory

Directs the placement of
the object in memory.

Tells the compiler which functions or
classes to export.

Sets DS to point to the current
data segment.

Preserves all register values
(except for return values)
during execution of the function.
Forces register parameter passing
convention. Affects the linker and
link-time names.

Borland C++ Programmer's Guide

The interrupt function
modifier

The volatile modifier

In C++, volatile has a special
meaning for class member

functions. If you've declared
a volatile object, you can

only use its volatile member
functions.

The interrupt modifier is specific to Borland C++. interrupt
functions are designed to be used with the 8086/8088 interrupt
vectors. Borland C++ will compile an interrupt function with extra
function entry and exit code so that registers AX, BX, CX, DX, SI,
DI, ES, and DS are preserved. The other registers (BP, SP, SS, CS,
and IP) are preserved as part of the C-calling sequence or as part
of the interrupt handling itself. The function will use an iret
instruction to return, so that the function can be used to service
hardware or software interrupts. Here is an example of a typical
interrupt definition:

void interrupt myhandler()
{

You should declare interrupt functions to be of type void.
Interrupt functions can be declared in any memory model. For all
memory models except huge, DS is set to the program data
segment. For the huge model, DS is set to the module's data
segment.

The volatile modifier indicates that the object may be modified;
not only by you, but also by something outside of your program,
such as an interrupt routine or an I/O port. Declaring an object to
be volatile warns the compiler not to make assumptions concern­
ing the value of the object while evaluating expressions contain­
ing it, since the value could (in theory) change at any moment. It
also prevents the compiler from making the variable a register
variable.

volatile
interrupt
{

int ticks;
timer ()

ticks++ ;

wait(int interval)
{

ticks = 0;
while (ticks < interval); II Do nothing

These routines (assuming timer has been properly associated with
a hardware clock interrupt) implement a timed wait of ticks

Chapter 2, Language structure 49

The cdecl and pascal
modifiers

Page 31 tells how to use
extern, which allows C

names to be referenced
from a C++ program.

The -p compiler option or
Calling Convention Pascal in

the Options I Compiler I
Entry I Exit Code dialog box

causes all functions (and
pointers to those functions)

to be treated as if they were
of type pascal.

specified by the argument interval. A highly optimizing compiler
might not load the value of ticks inside the test of the while loop,
since the loop doesn't change the value of ticks.

Borland C++ allows your programs to easily call routines written
in other languages, and vice versa. When you mix languages like
this, you have to deal with two important issues: identifiers and
parameter passing.

In Borland C++, all global identifiers are saved in their original
case (lower, upper, or mixed) with an underscore C) prepended to
the front of the identifier, unless you have selected the -u - option
or unchecked the Generate Underbars box in the Options I
Compiler I Advanced Code Generation dialog box.

pascal

In Pascal, global identifiers are not saved in their original case,
nor are underscores prep ended to them. Borland C++ lets you
declare any identifier to be of type pascal; the identifier is con­
verted to uppercase, and no underscore is prepended. (If the iden­
tifier is a function, this also affects the parameter-passing se­
quence used; see "Function type modifiers," page 52, for more
details.)

The pascal modifier is specific to Borland C++; it is intended for
functions (and pointers to functions) that use the Pascal para­
meter-passing sequence. Also, functions declared to be of type
pascal can still be called from C routines, so long as the C routine
sees that the function is of type pascal.

pascal putnums(int i, int j, int k)
{

printf("And the answers are: %d, %d, and %d\n",i,j,k);

Functions of type pascal cannot take a variable number of
arguments, unlike functions such as printf. For this reason, you
cannot use an ellipsis (. ..) in a pascal function definition.

.. Most of the Windows API functions are pascal functions.

50

cdecl

Once you have compiled with Pascal calling convention turned
on (using the -p option or IDE Options I Compiler I Entry/Exit

. Borland C++ Programmer's Guide

main must be declared as
cdec/: this is because the C

start-up code a/ways tries to
call main with the C calling

convention.

Code), you may want to ensure that certain identifiers have their
case preserved and keep the underscore on the front, especially if
they're C identifiers from another file. You can do so by declaring
those identifiers to be cdecl. (This also has an effect on parameter
passing for functions).

Like pascal, the cdecl modifier is specific to Borland C++. It is
used with functions and pointers to functions. It overrides the -p
option or IDE Options I Compiler I Entry /Exit Code compiler di­
rective and allows a function to be called as a regular C function.
For example, if you were to compile the previous program with
the Pascal calling option set but wanted to use printf, you might
do something like this:

extern cdecl printf();
void putnums(int i, int j, int k);

cdecl main ()
{

putnums(l,4,9);

void putnums(int i, int j, int k)
{

printf("And the answers are: %d, %d, and %d\n",i,j,k);

If you compile a program with the -p option or IDE Options I
Compiler I Entry /Exit Code, all functions used from the run-time
library will need to have cdecl declarations. If you look at the
header files (such as stdio.h), you'll see that every function is
explicitly defined as cdecl in anticipation of this.

The pointer modifiers Borland C++ has eight modifiers that affect the pointer declarator
(*); that is, they modify pointers to data. These are near, far, huge,
_cs, _ds, _es, _seg, and _ss.

C lets you compile using one of several memory models. The
model you use determines (among other things) the internal
format of pointers. For example, if you use a small data model
(tiny, small, medium), all data pointers contain a 16-bit offset from
the data segment (OS) register. If you use a large data model
(compact,large, huge), all pointers to data are 32 bits long and
give both a segment address and an offset.

Sometimes, when using one size of data model, you want to
declare a pointer to be of a different size or format than the
current default. You do so using the pointer modifiers.

Chapter 2, Language structure 51

See the discussion starting on page 344 in Chapter 9 for an in­
depth explanation of near, far, and huge pointers, and page 345
for a description of normalized pointers. Also see the discussion
starting on page 350 for more on _cs, _ds, _es, _seg, and _ss.

Function type modifiers The near, far, and huge modifiers can also be used as function
type modifiers; that is, they can modify functions and function
pointers as well as data pointers. In addition, you can use the
_export, _Ioadds, and _saveregs modifiers to modify functions.

52

The near, far, and huge function modifiers can be combined with
cdecl or pascal, but not with interrupt.

Functions of type huge are useful when interfacing with code in
assembly language that doesn't use the same memory allocation
as Borland C++.

A non-interrupt function can be declared to be near, far, or huge
in order to override the default settings for the current memory
model.

A near function uses near calls; a far or huge function uses far call
instructions.

In the tiny, small, and compact memory models, an unqualified
function defaults to type near. In the medium and large models,
an unqualified function defaults to type far. In the huge memory
model, it defaults to type huge.

A huge function is the same as a far function, except that the OS
register is set to the data segment address of the source module
when a huge function is entered, but left unset for a far function.

Br The _export modifier makes the function exportable from
~ Windows. It's used in an executable (if you don't use smart

callbacks) or in a OLL; see page 323 of Chapter 8 for details. The
_export lTIodifier has no significance for DOS programs.

The _Ioadds modifier indicates that a function should set the OS
register, just as a huge function does, but does not imply near or
far calls. Thus, _Ioadds far is equivalent to huge.

The _saveregs modifier causes the function to preserve all
register values and restore them before returning (except for
explicit return values passed in registers such as AX or OX).

The _Ioadds and _saveregs modifiers are useful for writing low­
level interface routines, such as mouse support routines.

Borland C++ Programmer's Guide

Complex
declarations and

declarators

See Table 2.1 on page 35 for
the declarator syntax. The

definition covers both
identifier ond function

declorators.

The _fastcall modifier is documented in Appendix A, "The
Optimizer" in the User's Guide.

Simple declarations have a list of comma-delimited identifiers
following the optional storage class specifiers, type specifiers, and
other modifiers.

A complex declaration uses a comma-delimited list of declarators
following the :various specifiers and modifiers. Within each dec­
larator, there exists just one identifier, namely the identifier being
declared. Each of the de clara tors in the list is associated with the
leading storage class and type specifier.

The format of the declarator indicates how the declared dname is
to be interpreted when used in an expression. If type is any type,
and storage dass specifier is any storage class specifier, and if 01
and 02 are any two declarators, then the declaration

storage-dass-specifier type 01,02;

indicates that each occurrence of 01 or 02 in an expression will be
treated as an object of type type and storage class storage dass
specifier. The type of the dname embedded in the declarator will be
some phrase containing type, such as "type," "pointer to type,"
"array of type," "function returning type," or "pointer to function
returning type," and so on.

For example, in the declarations

int n, nao[], naf[3], *pn, *apn[], (*pan) [], &nr=n;

int f (void), *fnp,(void), (*pfn) (void);

each of the de clara tors could be used as rvalues (or possibly
lvalues in some cases) in expressions where a single int object
would be appropriate. The types of the embedded identifiers are
derived from their declarators as follows:

Chapter 2, Language structure 53

Table 2.8: Complex declarations

Declarator
syntax

type name;

type name [) ;

type name [3) ;

type *name;

type *name [) ;

type * (name [)) ;

type (*name) [) ;

type &name;

type name () ;

type *name() ;

type * (name ()) ;

type (*name) () ;

Pointers

Implied type of name Example

type int count;

(open) array of type int count[) ;

Fixed array of three elements, all of type int count [3);
(name[O], name[1], and name[2])

Pointer to type int *count;

(open) array of pointers to type int *count[) ;

Same as above int * (count [)) ;

Pointer to an (open) array of type int (*count) [) ;

Reference to type (C++ only) int &count;

Function returning type int count();

Function returning pointer to type int *count () ;

Same as above int * (count ()) ;

Pointer to function returning type int (*count) () ;

Note the need for parentheses in (*name)[] and (*name)O,·since the
precedence of both the array declarator [] and the function
declarator () is higher than the 'pointer declarator *. The
parentheses in *(name[]) are optional.

See page 85 for a discussion
of referencing and de­

referencing.

Pointers fall into two main categories: pointers to objects and
pointers to functions. Both types of pointers are special objects for
holding memory addresses.

54

The two pointer classes have distinct properties, purposes, and
rules for manipulation, although they do share certain-Borland
C++ operations. Generally speaking, pointers to functions are
used to access functions and to pass functions as arguments to
other functions; performing arithmetic on pointers to functions is
not allowed. Pointers to objects, on the other hand, are regularly
incremented and decremented as you scan arrays or more
complex data structures in memory.

Borland C++ Programmer's Guide

Pointers to
objects

Pointers to

Although pointers contain numbers with most of the characteris­
tics of unsigned integers, they have their own rules and restric­
tions for assignments, conversions, and arithmetic. The examples
in the next few sections illustrate these rules and restrictions.

A pointer of type "pointer to object of type" holds the address of
(that is, points to) an object of type. Since pointers are objects, you
can have a pointer pointing to a pointer (and so on). Other objects
commonly pointed at include arrays, structures, unions, and
classes.

The size of pointers to objects is dependent on the memory model
and the size and disposition of your data segments, possibly influ­
enced by the optional pointer modifiers (discussed starting on
page 51).

functions A pointer to a function is best thought of as an address, usually in
a code segment, where that function's executable code is stored;
that is, the address to which control is transferred when that func­
tion is called. The size and disposition of your code segments is
determined by the memory model in force, which in turn dictates
the size of the function pointers needed to call your functions.

A pointer to a function has a type called "pointer to function re­
turning type," where type is the function's return type.

~ Under C++, which has stronger type checking, a pointer to a
function has type "pointer to function taking argument types type
and returning type." In fact, under C, a function defined with
argument types will also have this narrower type. For example,

void (*func)()i

In C, this is a pointer to a function returning nothing. In C++, it's a
pointer to a function taking no arguments and returning nothing.
In this example,

void (*func) (int) i

*func is a pointer to a function taking an int argument and re­
turning nothing.

Chapter 2, Language structure 55

Pointer
declarations

See page 39 for details on
void.

Warning! You need to
initialize pointers before using

them.

56

A pointer must be declared as pointing to some particular type,
even if that type is void (which really means a pointer to
anything). Once declared, though, a pointer can usually be
reassigned so that it points to an object of another type. Borland
C++ lets you reassign pointers like this without typecasting, but
the compiler will warn you unless the pointer was originally
declared to be of type pointer to void. And in C, but not C++, you
can assign a void* pointer to a non-void* pointer.

If type is any predefined or user-defined type, including void, the
declara tion

type *ptr; /* Danger--uninitialized pointer */

declares ptr to be of type "pointer to type." All the scoping,
duration, and visibility rules apply to the ptr object just declared.

A null pointer value is an address that is guaranteed to be
different from any valid pointer in use in a program. Assigning
the integer constant 0 to a pointer assigns a null pointer value to
it.

The mnemonic NULL (defined in the standard library header files,
such as stdio.h) can be used for legibility. All pointers can be
successfully tested for equality or inequality to NULL.

The pointer type "pointer to void" must not be confused with the
null pointer. The declaration

void *vptr;

declares that vptr is a generic pointer capable of being assigned to
by any "pointer to type" value, including null, without complaint.
Assignments without proper casting between a "pointer to type1"
and a "pointer to type2," where type1 and type2 are different
types, can invoke a compiler warning or error. If type1 is a
function and type2 isn't (or vice versa), pointer assignments are
illegal. If type1 is a pointer to void, no cast is needed. Under C, if
type2 is a pointer to void, no cast is needed.

Assignment restrictions also apply to pointers of different sizes
(near, far, and huge). You can assign a smaller pointer to a larger
one without error, but you can't assign a larger pointer to a
smaller one unless you are using an explicit cast. For example,

Borland C++ Programmer's Guide

char near *ncp;
char far *fcp;
char huge *hcp;
fcp ncp; II legal
hcp fcp; II legal
fcp hcp; II not legal
ncp fcp; II not legal
ncp (char near*)fcp; II now legal

Pointers and
constants A pointer or the pointed-at object can be declared with the canst

modifier. Anything declared as a canst cannot be assigned to. It is
also illegal to create a pointer that might violate the nonassigna­
bility of a constant object. Consider the following examples:

int i· , II i is an int

int * pi; II pi is a pointer to int
(uninitialized)

int * const cp &i; II cp is a constant pointer to int.

const int ci = 7' , II ci is a constant int

const int * pci; II pci is a pointer to constant int

const int * const cpc = &ci; II cpc is a constant pointer to a
II constant int

The following assignments are legal:

i = ci;

*cp = ci;

ttpci;

pci = cpc;

II Assign const-int to int

II Assign const-int to
Ilobject-pointed-at-by-a-const-pointer

II Increment a pointer-to-const

II Assign a const-pointer-to-a-const to a
II pointer-to-const

The following assignments are illegal:

ci = 0; II NO--cannot assign to a const-int

ci--; II NO--cannot change a const-int

*pci = 3 . , II NO--cannot assign to an object
II pointed at by pointer-to-const

cp &ci; II NO--cannot assign to a const-pointer,
II even if value would be unchanged

CpCtt ; II NO--cannot change const-pointer

Chapter 2, Language structure 57

Pointer arithmetic
The internal arithmetic
performed on pointers

depends on the memory
model in force and the

presence of any overriding
pointer modifiers.

The difference between two
pointers only has meaning if
both pointers point into the

same array.

58

pi = pci; II NO--if this assignment were allowed,
II you would be able to assign to *pci
II (a const value) by assigning to *pi.

Similar rules apply to the volatile modifier. Note that canst and
volatile can both appear as modifiers to the same identifier.

Pointer arithmetic is limited to addition, subtraction, and compar­
ison. Arithmetical operations on object pointers of type "pointer
to type" automatically take into account the size of type; that is,
the number of bytes needed to store a type object.

When performing arithmetic with pointers, it is assumed that the
pointer points to an array of objects. Thus, if a pointer is declared
to point to type, adding an integral value to the pointer advances
the pointer by that number of objects of type. If type has size 10
bytes, then adding an integer 5 to a pointer to type advances the
pointer 50 bytes in memory. The difference has as its value the
number of array elements separating the two pointer values. For
example, if ptrl points to the third element of an array, and ptr2
points to the tenth element, then the result of ptr2 - ptrl would
be7.

When an integral value is added to or subtracted from a "pointer
to type," the result is also of type "pointer to type."

There is no such element as "one past the last element", of course,
but a pointer is allowed to assume such a value. If P points to the
last array element, P + 1 is legal, but P + 2 is undefined. If P points
to one past the last array element, P - 1 is legal, giving a pointer to
the last element. However, applying the indirection operator * to a
"pointer to one past the last element" leads to undefined behavior.

Informally, you can think of P + n as advancing the pointer by
(n * sizeof(type» bytes, as long as the pointer remains within the
legal range (first element to one beyond the last element).

Subtracting two pointers to elements of the same array object
gives an integral value of type ptrdiff_t defined in stddef.h (signed
long for huge and far pointers; signed int for all others). This
value represents the difference between the subscripts of the two
referenced elements, provided it is in the range of ptrdiff_t. In the
expression Pl - P2, where Pl and P2 are of type pointer to type
(or pointer to qualified type), Pl and P2 must point to existing.
elements or to one past the last element. If Pl points to the i-th

Borland C++ Programmer's Guide

,/

Pointer

element, and P2 points to the j-th element, Pl - P2 has the value
(i - j).

conversions Pointer types can be converted to other pointer types using the
typecasting mechanism:

c++ reference
declarations

Arrays

char *stri
int *ipi
str = (char *)ipi

More generally, the cast (type*) will convert a pointer to type
"pointer to type."

c++ reference types are closely related to pointer types. Reference
types create aliases for objects and let you pass arguments to func­
tions by reference. C passes arguments only by value. In C++ you
can pass arguments by value or by reference. See page 105,
"Referencing," for complete details.

The declaration

type declarator [<constant-expression>]

declares an array composed of elements of type. An array consists
of a contiguous region of storage exactly large enough to hold all
of its elements.

If an expression is given in an array declarator, it must evaluate to
a positive constant integer. The value is the number of elements in
the array. Each of the elements of an array is numbered from 0
through the number of elements minus one.

Multidimensional arrays are constructed by declaring arrays of
array type. Thus, a two-dimensional array of five rows and seven
columns called alpha is declared as

type alpha [5] [7] i

In certain contexts, the first array declarator of a series may have
no expression inside the brackets. Such an array is of indeter-

Chapter 2, Language structure 59

Functions

Declarations and

minate size. The contexts where this is legitimate are ones in
which the size of the array is not needed to reserve space.

For example, an extern declaration of an array object does not
need the exact dimension of the array, nor does an array function
parameter. As a special extension to ANSI C, Borland C++ also
allows an array of indeterminate size as the final member of a
structure. Such an array does not increase the size of the structure,
except that padding can be added to ensure that the array is
properly aligned. These structures are normally used in dynamic
allocation, and the size of the actual array needed must be
explicitly added to the size of the structure in order to properly
reserve space.

Except when it is the operand of a sizeof or & operator, an array
type expression is converted to a pointer to the first element of the
array.

Functions are central to C and C++ programming. Languages
such as Pascal distinguish between procedure and function.
Borland C++ functions play both roles.

definitions Each program must have a single external function named main
marking the entry point of the program. Functions are usually de­
clared as prototypes in standard or user-supplied header files, or
within program files. Functions are external by default and are
normally accessible from any file in the program. They can be re- ,
stricted by using the static storage class specifier (see page 31).

/n c++ you must a/ways use
function prototypes. We

recommend that you a/so
use them in C.

60

Functions are defined in your source files or made available by
linking precompiled libraries.

A given function can be declared several times in a program, pro­
vided the declarations are compatible. Nondefining function
declarations using the function prototype format provide Borland
C++ with detailed parameter information, allowing better control
over argument number and type checking, and type conversions.

Excluding C++ function overloading, only one definition of any
given function is allowed. The declarations, if any, must also
match this definition. (The essential difference between a

Borland C++ Programmer's Guide

Declarations and
prototypes

In c++, this declaration
means <type> func(void)

You can enable a warning
within the IDE or with the
command-line compiler:

.. Function called without a
prototype. "

definition and a declaration is that the definition has a function
body.)

In the original Kernighan and Ritchie style of declaration, a
function could be implicitly declared by its appearance in a
function call, or explicitly declared as follows:

<type> funcO

where type is the optional return type defaulting to int. A function
can be declared to return any type except an array or function
type. This approach does not allow the compiler to check that the
type or number of arguments used in a function call match the
declaration.

This problem was eased by the introduction of function
prototypes with the following declaration syntax:

<type> func(parameter-declarator-list);

Declarators specify the type of each function parameter. The com­
piler uses this information to check function calls for validity. The
compiler is also able to coerce arguments to the proper type.
Suppose you have the following code fragment:

extern long lmax(long vI, long v2); /* prototype */

faa ()
{

int limit = 32;
char ch = -' A' ;

long mval;

mval = lmax(limit,ch); /* function call */

Since it has the function prototype for Imax, this program
converts limit and ch to long, using the standard rules of
assignment, before it places them on the stack for the call to Imax.
Without the function prototype, limit and ch would have been
placed on the stack as an integer and a character, respectively; in
that case, the stack passed to Imax would not match in size or
content what Imax was expecting, leading to problems. The classic
declaration style does not allow any checking of parameter type
or number, so using function prototypes aids greatly in tracking
down programming errors.

Chapter 2, Language structure 61

62

Function prototypes also aid in documenting code. For example,
the function strcpy takes two parameters: a source string and a
destination string. The question is, which is which? The function
prototype

char *strcpy(char *dest, const char *source};

makes it clear. If a header file contains function prototypes, then
you can print that file to get most of the information you need for
writing programs that call those functions. If you include an
identifier in a prototype parameter, it is only used for any later
error messages involving that parameter; it has no other effect.

A function declarator with parentheses containing the single
word void indicates a function that takes no arguments at all:

func(void);

~ In C++, funcO also declares a function taking no arguments.

stdarg.h contains macros
that you can use in user­

defined functions with
variable numbers of

parameters.

A function prototype normally declares a function as accepting a
fixed number of parameters. For functions that accept a variable
number of parameters (such as printf), a function prototype can
end with an ellipsis (. ..), like this:

f(int *count, long total, ... }

With this form of prototype, the fixed parameters are checked at
compile time, and the variable parameters are passed with no
type checking.

Here are some more examples of function declarators and
prototypes:

int f () ;

int f () ;

int f (void) ;

int p(int,long};

/* In C, a function returning an int with no
information about parameters. This is the K&R
"classic style." */

/* In Ctt, a function taking no arguments */

/* A function returning an int that takes no
parameters. */

/* A function returning an int that accepts two
parameters: the first, an inti the second, a
long. * /

int pascal q(void}; /* A pascal function returning an int that takes
no parameters at all. */

char far *s(char *source, int kind}; /* A function returning a far
pointer to a char and accepting two parameters: the
first, a pointer to a char; the second, an into */

Borland C++ Programmer's Guide

Definitions

Table 2,9
External function definitions

You can mix elements from 1
and 2,

int printf(char *format, ...); /* A function returning an int and
accepting a pointer to a char fixed parameter and
any number of additional parameters of unknown
type. * /

int (*fp) (int); /* A pointer to a function returning an int and
accepting a single int parameter. */

The general syntax for external function definitions is given in the
following table:

file
external-definition
file external-definition

external-definition:
function-definition
declaration
asm-statement

function-definition:
<declaration-specifiers> declarator <declaration-list>

compound-statement

In general, a function definition consists of the following sections
(the grammar allows for more complicated cases):

1. Optional storage class specifiers: extern or static. The default
is extern.

2. A return type, possibly void. The default is int.

3. Optional modifiers: pascal, cdecl, interrupt, near, far, huge,
_export, _Ioadds, _saveregs. The defaults depend on the
memory model and compiler option settings.

4. The name of the function.

5. A parameter declaration list, possibly empty, enclosed in pa­
rentheses. In C, the preferred way of showing an empty list is
func(void). The old style of funcO is legal in C but antiquated
and possibly unsafe.

6. A function body representing the code to be executed when
the function is called.

Chapter 2, Language structure 63

Formal parameter
declarations The formal parameter declaration list follows a similar syntax to

that of the declarators found in normal identifier declarations.
Here are a few examples:

64

int func(void) (II no args

int func(Tl tl, T2 t2, T3 t3=1) (II three simple parameters, one
II with default argument

int func(Tl* ptrl, T2& tref) II a pointer and a reference arg

int func(register int i) (II request register for arg

int func(char *str, ...) (1* one string arg with a variable
number of other args, or with a fixed number of args with
varying types *1

~ In C++, you can give default arguments as shown. Parameters
with default values must be the last arguments in the parameter
list. The arguments' types can be scalars, structures, unions, enu­
merations; pointers or references to structures and unions; or
pointers to functions or classes.

Function calls
and argument

conversions

The ellipsis (. ..) indicates that the function will be called with dif­
ferent sets of arguments on different occasions. The ellipsis can
follow a sublist of known argument declarations. This form of
prototype reduces the amount of checking the compiler can make.

The parameters declared all enjoy automatic scope and duration
for the duration of the function. The only legal storage class
specifier is register.

The canst and volatile modifiers can be used with formal
argument declarators.

A function is called with actual arguments placed in the same se­
quence as their matching formal arguments. The actual argu­
ments are converted as if by initialization to the declared types of
the formal arguments.

Here is a summary of the rules governing how Borland C++ deals
with language modifiers and formal parameters in function calls,
both with and without prototypes:

Borland C++ Programmer's Guide

Structures

1. The language modifiers for a function definition must match
the modifiers used in the declaration of the function at all calls
to the function.

2. A function may modify the values of its formal parameters,
but this has no effect on the actual arguments in the calling
routine, except for reference arguments in C++.

When a function prototype has not been previously declared,
Borland C++ converts integral arguments to a function call
according to the integral widening (expansion) rules described in
the section "Standard conversions," starting on page 41. When a
function prototype is in scope, Borland C++ converts the given
argument to the type of the declared parameter as if by
assignment.

When a function prototype includes an ellipsis (...), Borland C++
converts all given function arguments as in any other prototype
(up to the ellipsis). The compiler widens any arguments given
beyond the fixed parameters, according to the normal rules for
function arguments without prototypes.

If a prototype is present, the number of arguments must match
(unless an ellipsis is present in the prototype). The types need
only be compatible to the extent that an assignment can legally
convert them. You can always use an explicit cast to convert an
argument to a type that is acceptable to a function prototype.

Important! If your function prototype does not match the actual function def­
inition, Borland C++ will detect this if and only if tha t definition is
in the same compilation unit as the prototype. If you create a
library of routines with a corresponding header file of prototypes,
consider including that header file when you compile the library,
so that any discrepancies between the prototypes and the actual
definitions will be caught. C++ provides type-safe linkage, so
differences between expected and actual parameters will be
caught by the linker.

Structure initialization is
discussed on page 42.

A structure is a derived type usually representing a user-defined
collection of named members (or components). The members can
be of any type, either fundamental or derived (with some restric­
tions to be noted later), in any sequence. In addition, a structure

Chapter 2, Language structure 65

member can be a bit field type not allowed elsewhere. The
Borland C++ structure type lets you handle complex data
structures almost as easily as single variables.

~ In C++, a structure type is treated as a class type (with certain dif-
. ferences: Default access is public, and the default for the base class

is also public). This allows more sophisticated control over access
to structure members by using the C++ access specifiers: public
(the default), private, and protected. Apart from these optional
access mechanisms, and from exceptions as noted, the following
discussion on structure syntax and usage applies equally to C and
C++ structures.

Untagged
structures and

typedefs

Untagged structure and
union members are ignored

during initialization.

Structure member

Structures are declared using the keyword struct. For example,

struct mystruct { .. , }i II mystruct is the structure tag

struct mystruct s, *ps, arrs[lOli
1* s is type struct mystructi ps is type pointer to struct mystruct;

arrs is array of struct mystruct. *1

If you omit the structure tag, you can get an untagged structure.
You can use untagged structures to declare the identifiers in the
comma-delimited struct-id-list to be of the given structure type (or
derived from it), but you cannot declare additional objects of this
type elsewhere:

struct { ... } s, *ps, arrs[lOli II untagged structure

It is possible to create a typedef while declaring a structure, with
or without a tag:

typedef struct mystruct { ... } MYSTRUCTi
MYSTRUCT s, *ps, arrs[lOli II same as struct mystruct s, etc.
typedef struct { ... } YRSTRUCTi II no tag
YRSTRUCT y, *yp, arry[201i

You don't usually need both a tag and a typedef: Either can be
used in structure declarations.

declarations The member-decl-list within the braces declares the types and
names of the structure members using the declarator syntax
shown in Table 2.2 on page 36.

66 Borland C++ Programmer's Guide

You can omit the struct
keyword in C++.

Structures and

A structure member can be of any type, with two exceptions:

1. The member type cannot be the same as the struct type being
currently declared:

struct mystruct { mystruct s } sl, s2; II illegal

A member can be a pointer to the structure being declared, as
in the following example:

struct mystruct { mystruct *ps } sl, s2; II OK

Also, a structure can contain previously defined structure
types when declaring an instance of a declared structure.

2. Except in C++, a member cannot have the type "function
returning ... ," but the type "pointer to function returning ... " is
allowed. In C++, a struct can have member functions.

functions A function can return a structure type or a pointer to a structure
type:

Structure member

mystruct func1(void); II func1() returns a structure
mystruct *func2(void); II func2() returns pointer to structure

A structure can be passed as an argument to a function in the
following ways:

void func1(mystruct s);
void func2(mystruct *sptr);
void func3(mystruct &sref);

II directly
II via a pointer
II as a reference (ett only)

access Structure and union members are accessed using the selection
operators. and ->. Suppose that the object s is of struct type 5,
and sptr is a pointer to S. Then if m is a member identifier of type
M declared in 5, the expressions s.m and sptr->m are of type M,
and both represent the member object min s. The expression
sptr->m is a convenient synonym for (* sptr) . m.

The operator. is called the direct member selector; the operator ->
is called the indirect (or pointer) member selector; for example,

Chapter 2, Language structure

struct mystruct
{

int i;
char str[21];
double d;

67

68

} s, *sptr=&s;

s.i = 3;
sptr->d = 1.23;

II assign to the i member of mystruct s
II assign to the d member of mystruct s

The expression s.m is an lvalue, provided that s is not an lvalue
and m is not an array type. The expression sptr->m is an lvalue
unless m is an array type.

If structure B contains a field whose type is structure A, the
members of A can be accessed by two applications of the member
selectors:

struct A
int j;
double x;

};

struct B {

int i;
struct A ai
double d;

s, *sptr;

s.i = 3;
s.a.j = 2;
sptr->d = 1.23;
(sptr->a).x = 3.14

II assign to the i member of B

II assign to the j member of A

II assign to the d member of B
II assign to x member of A

Each structure declaration introduces a unique structure type, so
that in

struct A
int i,j;
double d;

a, al;

struct B {
int i,j;
double d;

b;

the objects a and al are both of type struct A, but the objects a and
b are of different structure types. Structures can be assigned only
if the source and destination have the same type:

a = al; II OK: same type, so member by member assignment
a = b; II ILLEGAL: different types
a.i = b.i; a.j = b.j; a.d = b.d 1* but you can assign

member-by-member *1

Borland C++ Programmer's Guide

Structure word
alignment

Structure name

Memory is allocated to'a structure member-by-member from left
to right, from low to high memory address. In this example,

struct mystruct {
int i;
char str[21];

double d;
s;

the object s occupies sufficient memory to hold a 2-byte integer, a
21-byte string, and an 8-byte double. The format of this object in
memory is determined by the Borland C++ word alignment
option. With this option off (the default), s will be allocated 31
contiguous bytes.

If you turn on word alignment with the Options I Compiler I Code
Generation dialog box or with the -a compiler option, Borland
C++ pads the structure with bytes to ensure the structure is
aligned as follows:

1. The structure will start on a word boundary (even address).

2. Any non-char member will have an even byte offset from the
start of the structure.

3. A final byte is added (if necessary) at the end to ensure that
the whole structure contains an even number of bytes.

With word alignment on, the structure would therefore have a
byte added before the double, making a 32-byte object.

spaces Structure tag names share the same name space with union tags
and enumeration tags (but enums within a structure are in a
different name space in C++). This means that such tags must be
uniquely named within the same scope. However, tag names need
not differ from identifiers in the other three name spaces: the label
name space, the member name space(s), and the single name
space (which consists of variables, functions, typedef names, and
enumerators).

Chapter 2, Language structure 69

Incomplete
declarations

Bit fields
A structure can contain any
mixture of bit field and non­

bit field types.

70

Member names within a given structure or union must be unique,
but they can share the names of members in other structures or
unions. For example,

goto s;

s:
struct s

int s;
float s;

s;

union s
int s;
float f;

f;

struct t
int s;

s;

II OK: tag and label name spaces different
II OK: label, tag and member name spaces different
II ILLEGAL: member name duplicated
II OK: var name space different. In Ctt, this can only
II be done if s does not have a constructor.

II ILLEGAL: tag space duplicate
II OK: new member space

II OK: var name space

II OK: different member space-

II ILLEGAL: var name duplicate

A pointer to a structure type A can legally appear in the decla­
ration of another structure B before A has been declared:

struct A; II incomplete
struct B { struct A *pa }i

struct A { struct B *pb };

The first appearance of A is called incomplete because there is no
definition for it at that point. An incomplete declaration is
allowed here, since the definition of B doesn't need the size of A.

You can declare signed or unsigned integer members as bit fields
from 1 to 16 bits wide. You specify the bit field width and
optional identifier as follows:

type-specifier <bitfield-id> : width;

where type-specifier is char, unsigned char, int, or unsigned into Bit
fields are allocated from low-order to high-order bits within a
word. The expression width must be present and must evaluate to .
a constant integer in the range 1 to 16.

Borland C++ Programmer's Guide

If the bit field identifier is omitted, the number of bits specified in
width is allocated, but the field is not accessible. This lets you
match bit patterns in, say, hardware registers where some bits are
unused. For example,

struct mystruct {
int 2;
unsigned 5;
int 4;
int k 1 i
unsigned m 4;

a, b, Ci

produces the following layout:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x x x x x x x x x x x x x x

.. ~~ " .I ... J ~ ... ,

m k (unused) j i

Integer fields are stored in 2's-complement form, with the leftmost
bit being the MSB (most significant bit). With int (for example,
Signed) bit fields, the MSB is interpreted as a sign bit. A bit field
of width 2 holding binary II, therefore, would be interpreted as 3
if unsigned, but as -1 if int. In the previous example, the legal
assignment a. i = 6 would leave binary 10 = -2 in a.i with no
warning. The signed int field k of width 1 can hold only the values
-1 and 0, since the bit pattern 1 is interpreted as -l.

'- Bit fields can be declared only in structures, unions, and classes.

Unions

Unions correspond to the
variant record types of
Pascal and Modula-2.

They are accessed with the same member selectors (. and -»
used for non-bit field members. Also, bit fields pose several pro­
blems when writing portable code, since the organization of bits­
within-bytes and bytes-within-words is machine dependent.

The expression &mystruct.x is illegal if x is a bit field identifier,
since there is no guarantee that mystruct.x lies at a byte address.

Union types are derived types sharing many of the syntactical
and functional features of structure types. The key difference is
that a union allows only one of its members to be "active" at any
one time. The size of a union is the size of its largest member. The

Chapter 2, Language structure 71

Anonymous

value of only one of its members can be stored at any time. In the
following simple case,

union myunion
int i;
double d;
char Chi

} mu, *muptr=μ

1* union tag = myunion *1

the identifier mu, of type union myunion, can be used to hold a 2-
byte int, an 8-byte double, or a single-byte char, but only one of
these at the same time.

sizeof(union myunion) and sizeof(mu) both return 8, but 6 bytes
are unused (padded) when mu holds an int object, and 7 bytes are
unused when mu holds a char. You access union members with
the structure member selectors (. and -», but care is needed:

mu.d = 4.016;
printf("mu .d = %f\n",mu.d}; II OK: displays mu.d = 4.016
printf("mu .i = %d\n",mu.i}; II peculiar result
mu.ch = I A';
printf("mu . ch = %c\n",mu.ch}; II OK: displays mu.ch = A
printf("mu.d = %f\n",mu.d}; /1 peculiar result
muptr->i = 3;
printf("mu .i = %d\n",mu.i); II OK: displays mu.i = 3

The second printf is legal, since mu.i is an integer type. However,
the bit pattern in mu.i corresponds to parts of the double pre­
viously assigned, and will not usually provide a useful integer
interpretation. .

When properly converted, a pointer to a union points to each of
its members, and vice versa.

unions (C++ only) A union that doesn't have a tag and is not used to declare a
named object (or other type) is called an anonymous union. It has
the following form:

~

72

union { member-list };

Its members can be accessed directly in the scope where this
union is declared, without using the x.y or p->y syntax.

Borland c++ Programmer's Guide

Union
declarations

Anonymous unions can't have member functions and at file level
must be declared static. In other words, an anonymous union may
not have external linkage.

The general declaration syntax for unions is pretty much the same
as that for structures. Differences are

1. Unions can contain bit fields, but only one can be active. They
all start at the beginning of the union (and remember that,
because bit fields are machine dependent, they pose several
problems when writing portable code).

©$> 2. Unlike c++ structures, c++ union types cannot use the class
access specifiers: public, private, and protected. All fields of a
union are public.

3. Unions can be initialized only through their first declared
member:

union loca187
int i;
double d;

a = { 20 };

©$> 4. A union can't participate in a class hierarchy. It can't be
derived from any class, nor can it be a base class. A union can
have a constructor.

Enumerations

An enumeration data type is used to provide mnemonic
identifiers for a set of integer values. For example, the following
declara tion,

enum days { sun, mon, tues, wed, thur, fri, sat} anyday;

establishes a unique integral type, enum days, a variable anyday of
this type, and a set of enumerators (sun, man, ...) with constant
integer values.

Borland C++ is free to store enumerators in a single byte when
Treat enums as ints is unchecked (0 I C I Code Generation) or the
-b flag. The default is on (meaning enums are always ints) if the
range of values permits, but the value is always promoted to an
int when used in expressions. The identifiers used in an

Chapter 2, Language structure 73

74

enumerator list are implicitly of type signed char, unsigned char,
or int, depending on the values of the enumerators. If all values
can be represented in a signed or unsigned char, that is the type
of each enumerator.

~ In C, a variable of an enumerated type can be assigned any value
of type int-no type checking beyond that is enforced. In C++, a
variable of an enumerated type can be assigned only one of its
enumerators. That is,

anyday = moni
anyday = 1i

II OK
II illegal, even though mon == 1

The identifier days is the optional enumeration tag that can be
used in subsequent declarations of enumeration variables of type
en urn days:

enum days payday, holidaYi II declare two variables

~ In C++, you can omit the enurn keyword if days is not the name of
anything else in the same scope.

See page 17 for more on
enumeration constants.

As with struct and union declarations, you can omit the tag if no
further variables of this enurn type are required:

enum { sun, mon, tues, wed, thur, fri, sat} anydaYi
1* anonymous enum type *1

The enumerators listed inside the braces are also known as enum­
eration constants. Each is assigned a fixed integral value. In the
absence of explicit initializers, the first enumerator (sun) is set to
zero, and each succeeding enumerator is set to one more than its
predecessor (mon = 1, tues = 2, and so on).

With explicit integral initializers, you can set one or more enum­
erators to specific values. Any subsequent names without initial­
izers will then increase by one. For example, in the following
declaration,

1* initializer expression can include previously declared
enumerators *1

enum coins { penny = 1, tuppence, nickel = penny +4, dime = 10,
quarter = nickel * nickel } smallchangei

tuppence would acquire the value 2, nickel the value 5, and quarter
the value 25.

The initializer can be any expression yielding a positive or
negative integer value (after possible integer promotions). These
values are usually unique, but duplicates are legal.

Borland C++ Programmer's Guide

enum types can appear wherever int types are permitted.

enum days { sun, man, tues, wed, thur, fri, sat} anydaYi
enum days payday;
typedef enum days DAYS;
DAYS *daysptr;
int i = tues;
any day = man;
*daysptr = anyday;
man = tues;

/I OK
/I OK
II ILLEGAL: man is a constant

Enumeration tags share the same name space as structure and
union tags. Enumerators share the same name space as ordinary
variable identifiers:

int man = 11;

enum days { sun, man, tues, wed, thur, fri, sat} anyday;
1* enumerator man hides outer declaration of int man *1
struct days { int i, j;}; II ILLEGAL: days duplicate tag
double sat; II ILLEGAL: redefinition of sat

man = 12; II back in int mon scope

~ In C++, enumerators declared within a class are in the scope of
that class.

Expressions

Table 2.11 shows how
identifiers and operators are

combined to form
grammatically legal

"phrases. "

The standard conversions are
detailed in Table 2.6 on

page 42.

An expression is a sequence of operators, operands, and ~
punctuators that specifies a computation. The formal syntax,
listed in Table 2.11, indicates that expressions are defined
recursively: Subexpressions can be nested without formal limit.
(However, the compiler will report an out-of-memory error if it
can't compile an expression that is too complex.)

Expressions are evaluated according to certain conversion,
grouping, associativity, and precedence rules which depend on
the operators used, the presence of parentheses, and the data
types of the operands. The way operands and sub expressions are
grouped does not necessarily specify the actual order in which
they are evaluated by Borland C++ (see "Evaluation order" on
page 78).

Chapter 2, Language structure 75

Table 2.10
Associativity and

precedence of Borland C++
operators

76

Precedence of each
category is indicated by

order in this table. The first
category (the first line) has

the highest precedence.

Expressions can produce an lvalue, an rvalue, or no value. Ex­
pressions may cause side effects whether they produce a value or
not.

We've summarized the precedence and associativity of the
operators in Table 2.10. The grammar in Table 2.11 on page 77
completely defines the precedence and associativity of the
operators.

There are sixteen precedence categories, some of which contain
only one operator. Operators in the same category have equal
precedence with each other. Where there are duplicates of
operators in the table, the first occurrence is unary, the second
binary. Each category has an associativity rule: left to right, or
right to left. In the absence of parentheses, these rules resolve the
grouping of expressions with operators of equal precedence.

Operators

() [] -> ::
! - + - ++ - - & * (typecast) sizeof new delete
.* ->*
* 1 %
+ -
« »
< <= > >=
-- !=
&

"
1
&&
II
?: (conditional expression)
= *= 1= 0/0= += -= &= "= 1= «= »=

Associativity

Left to righ t
Right to left
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left
Left to right

Borland C++ Programmer's Guide

Table 2.11: Borland C++ expressions

primary-expression:
literal
this (C++ specific)
:: identifier (C++ specific)
:: operator-fllnction-name (C++ specific)
::qllalified-name (C++ specific)
(expression)
name

literal:
integer-constant
c/zaracter-collstall t
floating-constant
string-literal

name:
identifier
operator-function-name (C++ specific)
conversion-function-name (C++ specific)
- class-name
qualified-name (C++ specific)

qllalified-name: (C++ specific)
qualified-class-name:: name

postfix-expression:
primary-expression
postfix-expressioll [expression 1
postfix-expressioll «expressioll-list»
simple-type-name «expression-list» (C++ specific)
postfix-expression . name
postfix-expression -> Ilame
postfix-expression ++
postfix-expression --

expressioll-list:
assignment-expression
expression-list , assignment-expressioll

lInary-expression:
postfix-expression
++ lInary-expression
- - lInary-expression
lInary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
al/ocation-expression (C++ specific)
deal/ocation-expression (C++ specific)

lIllary-operator: one of
& • +

al/ocation-expression: (C++ specific)
<::> new <placement> new-type-name <initializer>
<::> new <placement> (type-name) <initializer>

placement: (C++ specific)
(expression-list)

new-type-name: (C++ specific)
type-specifiers <new-declarator>

new-declarator: (C++ specific)
ptr-operator <new-declarator>
new-declarator [<expression> 1

deal/ocation-expression: (C++ specific)
<::> delete cast-expression
<::> delete [1 cast-expression

cast-expression:
unary-expression

Chapter 2, Language structure

(type-name) cast-expression

pm-expression:
cast-expressioll
pill-expression .* cast-expressioll (C++ specific)
pm-expression ->* cast-expression (C++ specific)

mllitiplicative-expression:
pm-expression
mllltiplicative-expression * plll-expressioll
multiplicative-expression 1 pm-expression
mllitiplicative-expression % pill-expression

additive-expression:
mllitiplicative-expression
additive-expression + mllltiplicative-expressioll
additive-expression - multiplicative-expressioll

shift-expression:
additive-expression
slzift-expression « additive-expressioll
shift-expression » additive-expression

reiational-expression:
shift-expression
reiational-expression < shift-expressioll
reiational-expression > slzift-expression
reiational-expression <= shift-expression
relational-expression >= shift-expression

eq lIality-expression:
reiational-expression
eqllalityexpression == relational-expression
eqllality expression != relational-expression

AND-expressioll:
eqllality-expression
AND-expression & eqllality-expression

exclusive-OR-expression:
AND-expression
exclusive-OR-expression 1\ AND-expression

inclusive-OR-expressioll:
exclusive-OR -expression
illclusive-OR-expressioll I exclllsive-OR-expression

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclllsive-OR-expression

logical-OR-expression:
logica I-AN D-expression
logical-OR-expressioll II logical-AND-expression

conditional-expression:
logical-OR-expression
logical-OR-expression ? expressioll : conditiollal-expression

assignment -expression:
collditiollal-expression
unary-expression assignment-operator assignment-expression

assigmnent-operator: one of

«= »=
1=
&=

expression:
assignmellt-expression
expression, assigllment-expression

constallt-expression:
conditional-expression

+=
1=

77

78

Expressions and
C++

Evaluation order

c++ allows the overloading of certain standard C operators, as
explained starting 'on page 136. An overloaded operator is defined
to behave in a special way when applied to expressions of class
type. For instance, the relational operator == might be defined in
the class complex to test the equality of two complex numbers
without changing its normal usage with non-class data types. An
overloaded operator is implemented as a function; this function
determines the operand type,lvalue, and evaluation order to be
applied when the overloaded operator is used. However,
overloading cannot change the precedence ~t an operator.
Similarly, C++ allows user-defined conversions between class
objects and fundamental types. Keep in mind, then, that some of
the rules for operators and conversions discussed in this section
may not apply to expressions in C++.

The order in which Borland C++ evaluates the operands of an
expression is not specified, except where an operator specifically
states otherwise. The compiler will try to rearrange the expression
in order to improve the quality of the generated code. Care is
therefore needed with expressions in which a value is modified
more than once. In general, avoid writing expressions that both
modify and use the value of the same object. Consider the
expression

i = v[i++j; II i is undefined

The value of i depends on whether i is incremented before or after
the assignment. Similarly,

int total = 0;
sum = (total = 3) + (++total)i II sum = 4 or sum = 7 ??

is ambiguous for sum and total. The solution is to revamp the
expression, using a temporary variable:

int temp, total = Oi
temp = tttotal;
sum = (total = 3) + tempi

Where the syntax does enforce an evaluation sequence, it is safe to
have multiple evaluations:

sum = (i = 3, itt, itt); I I OK: sum = 4, i = 5

Borland C++ Programmer's Guide

Errors and
overflows

See math err and signal in the
Library Reference.

Each subexpression of the comma expression is evaluated from
left to right, and the whole expression evaluates to the rightmost
value.

Borland C++ regroups expressions, rearranging associative and
commutative operators regardless of parentheses, in order to
create an efficiently compiled expression; in no case will the re­
arrangement affect the value of the expression.

You can use parentheses to force the order of evaluation in ex­
pressions. For example, if you have the variables a, b, c, and I, then
the expression I = a + (b + c) forces (b + c) to be evaluated before
adding the result to a.

We've summarized the precedence and associativity of the
operators in Table 2.10. During the evaluation of an expression,
Borland C++ can encounter many problematic situations, such as
division by zero or out-of-range floating-point values. Integer
overflow is ignored (C uses modulo 211 arithmetic on n-bit
registers), but errors detected by math library functions can be
handled by standard or user-defined routines.

Operator semantics

The Borland C++ operators
described here are the

standard ANSI C operators.

Unless the operators are overloaded, the following information is
true in both C and C++. In C++ you can overload all of these ope­
rators with the exception of . (member operator) and ?: (condi­
tional operator) (and you also can't overload the C++ operators ::
and .*). .

If an operator is overloaded, the discussion may not be true for it
anymore. Table 2.11 on page 77 gives the syntax for all operators
and operator expressions.

Operator descriptions

Operators are tokens that trigger some computation when applied
to variables and other objects in an expression. Borland C++ is
especially rich in operators, offering not only the common
arithmetical and logical operators, but also many for bit-level

Chapter 2, Language structure 79

manipulations, structure and union component access, and
pointer operations (referencing and dereferencing).

~ C++ extensions offer additional operators for accessing class
members and their objects, together with a mechanism for over­

Overlo?ding is covered loading operators. Overloading lets you redefine the action of any
startIng on page 735. standard operators when applied to the objects of a given class. In

this section, we confine our discussion to the standard operators
of Borland c++.

The operators # and ## are

After defining the standard operators, we discuss data types and
declarations, and explain how these affect the actions of each
operator. From therewe can proceed with the syntax for building
expressions from operators, punctuators, and objects.

The operators in Borland c++ are defined as follows:

operator: one of

[] () -> ++
& * +
sizeof 1 % « » <
> <= >= -- != A
1 && " ?: = *=
1= %= += -= «= »=

used only by the preproces- &= A= 1= # ##
sor (see page 757).

80

And the following operators specific to C++:

* ->*

Except for [], (), and ?:, which bracket expressions, the multi char­
acter operators are considered as single tokens. The same operator
token can have more than one interpretation, depending on the
context. For example,

A * B
*ptr

A & B
&A

int &

label:
a ? x : y

void func(int n)i

a = (b+c) *di

a, b, Ci

Multiplication
Dereference (indirection)

Bitwise AND
Address operation
Reference modifier (C++)

Statement label
Conditional statement

Function declaration
Parenthesized expression

Comma expression

Borland c++ Programmer's Guide

Unary operators

Binary operators

Additive operators

Multiplicative operators

Shift operators

Bitwise operators

Logical operators

Assignment operators

Chapter 2, Language structure

fune(a, b, e)i Function call

a = -bi
-fune() {delete ai}

Bitwise negation (one's complement)
Destructor (C++)

&
*
+

++

+

*
1
%

«
»

&
A

&&
1\

=
*=
1=
0/0=

+=
-=

Address opera tor
Indirection operator
Unary plus
Unary minus
Bitwise complement (1's complement)
Logical negation
Prefix: preincrement; Postfix: postincrement
Prefix: predecrement; Postfix: postdecrement

Binary plus (addition)
Binary minus (subtraction)

Multiply
Divide
Remainder

Shift left
Shift right

Bitwise AND
Bitwise XOR (exclusive OR)
Bitwise inclusive OR

Logical AND
Logical OR

Assignment
Assign product
Assign quotient
Assign remainder (modulus)
Assign sum
Assign difference

81

Relational operators

Equality operators

Component selection
operators

82

Class-member
operators

Conditional operator

Comma operator

Postfix and prefix
operators

Array subscript
operator []

«=
»=
&=

1=

<
>
<=
>=

!=

->

*
->*

a? x: y

Assign left shift
Assign right shift
Assign bitwise AND
Assign bitwise XOR
Assign bitwise OR

Less than
Grea ter than
Less than or equal to
Greater than or equal to

Equal to
Not equal to

Direct component selector
Indirect component selector

Scope access/ resolution
Dereference pointer to class member
Dereference pointer to class member

"if a then x; else y"

Evaluate; e.g., a, b, c; from left to right

The operator functions, as well as their syntax, precedences, and
associativities, are covered starting on page 75.

The six postfix operators [] () . -> ++ and - - are used to build
postfix expressions as shown in the expressions syntax table
(Table 2.11). The increment and decrement operators (++ and --)
are also prefix and unary operators; they are discussed starting oil
page 84.

In the expression

postfix-expression [expression]

either postfix-expression or expression must be a pOinter and the
other an integral type.

Borland C++ Programmer's Guide

Function call
operators ()

Structure/union
member operator

. (dot)

Ivalues are defined on page
26.

Structure/union pointer
operator ->

In C, but not necessarily in C++, the expression exp1[exp2J is
defined as

* ((expl) + (exp2))

where either expl is a pointer and exp2 is an integer, or expl is an
integer and exp2 is a pointer. (The punctuators [], *, and + can be
individually overloaded in C++.)

The expression

postfix-expression (<arg-expression-list»

is a call to the function given by the postfix expression. The arg­
expression-list is a comma-delimited list of expressions of any type
representing the actual (or real) function arguments. The value of
the function call expression, if any, is determined by the return
statement in the function definition. See "Function calls and
argument conversions," page 64, for more on function calls.

In the expression

postfix-expression. identifier

the postfix expression must be of type structure or union; the
identifier must be the name of a member of that structure or
union type. The expression designates a member of a structure or
union object. The value of the expression is the value of the
selected member; it will be an lvalue if and only if the postfix
expression is an lvalue. Detailed examples of the use of . and ->
for structures are given on page 67.

In the expression

postfix-expression -> identifier

the postfix expression must be of type pointer to structure or
pointer to union; the identifier must be the name of a member of
that structure or union type. The expression designates a member
of a structure or union object. The value of the expression is the
value of the selected member; it will be an lvalue if and only if the
postfix expression is an lvalue.

Chapter 2, Language structure 83

84

Postfix increment
operator ++

Postfix decrement
operator --

Increment and
decrement

operators

Prefix increment
operator

Prefix decrement
operator

In the expression

postfix-expression ++

the postfix expression is the operand; it must be of scalar type
(arithmetic or pointer types) and must be a modifiable lvalue (see
page 26 for more on modifiable lvalues). The postfix ++ is also
known as the postincrement operator. The value of the whole
expression is the value of the postfix expression before the
increment is applied. After the postfix expression is evaluated, the
operand is incremented by 1. The increment value is appropriate
to the type of the operand. Pointer types are subject to the rules
for pointer arithmetic.

The postfix decrement, also known as the postdecrement, operator
follows the same rules as the postfix increment, except that 1 is
subtracted from the operand after the evaluation.

The first two unary operators are ++ and - -. These are also
postfix and prefix operators, so they are discussed here. The
remaining six unary operators are covered following this
discussion.

In the expression

++ unary-expression

the unary expression is the operand; it must be of scalar type and
must be a modifiable lvalue. The prefix increment operator is also
known as the preincrement operator. The operand is incremented
by 1 before the expression is evaluated; the value of the whole
expression is the incremented value of the operand. The 1 used to
increment is the appropriate value for the type of the operand.
Pointer types follow the rules of pointer arithmetic.

The prefix decrement, also known as the predecrement, operator
has the following syntax:

- - unary-expression

Borland C++ Programmer's Guide

Unary operators

Address operator &

The symbol & is also used in
c++ to specify reference

types: see page 705.

It follows the same rules as the prefix increment operator, except
that the operand is decremented by 1 before the whole expression
is evaluated.

The six unary operators (aside from ++ and - -) are & * + - -
and !. The syntax is

unary-operator cast-expression

cast-expression:
unary-expression
(type-name) cast-expression

The & operator and * operator (the * operator is described in the
next section) work together as the referencing and dereferencing
operators. In the expression

& cast-expression

the cast-expression operand must be either a function designator or
an lvalue designating an object that is not a bit field and is not
declared with the register storage class specifier. If the operand is
of type type, the result is of type pointer to type.

Some non-lvalue identifiers, such as function names and array
names, are automatically converted into "pointer to X" types
when appearing in certain contexts. The & operator can be used
with such objects, but its use is redundant and therefore dis­
couraged.

Consider the following extract:

type t1 = 1, t2 = 2;
type *ptr = &t1;
*ptr = t2i

II initialized pointer
II same effect as tl = t2

type *ptr = &t1 is treated as

T *ptr;
ptr = &tii

so it is ptr, not *ptr, that gets assigned. Once ptr has been
initialized with the address &t1, it can be safely dereferenced to
give the lvalue *ptr.

Chapter 2, Language structure 85

Indirection operator * In the expression

* cast-expression

the cast-expression operand must have type "pointer to type,"
where type is any type. The result of the indirection is of type
type. If the operand is of type "pointer to function," the result is a
function designator; if the operand is a pointer to an object, the
result is an lvalue designating that object. In the following
situations, the result of indirection is undefined:

1. The cast-expression is a null pointer.

2. The cast-expression is the address of an automatic variable and
execution of its block has terminated.

Unary plus operator + In the expression

+ cast-expression

the cast-expression operand must be of arithmetic type. The result
is the value of the operand after any required integral promotions.

Unary minus operator - In the expression

86

Bitwise complement
operator -

Logical negation
operator!

- cast-expression

the cast-expression operand must be of arithmetic type. The result
is the negative of the value of the operand after any required
integral promotions.

In the expression

- cast-expression

the cast-expression operand must be of integral type. The result is
the bitwise complement of the operand after any required integral
promotions. Each 0 bit in the operand is set to 1, and each 1 bit in
the operand is set to O.

In the expression

! cast-expression

the cast-expression operand must be of scalar type. The result is of
type int and is the logical negation of the operand: 0 if the op-

Borland C++ Programmer's Guide

The sizeof

erand is nonzero; 1 if the operand is zero. The expression fE is
equivalent to (0 == E).

operator There are two distinct uses of the sizeof operator:

How much space is set aside
for each type depends on

the machine.

sizeof unary-expression
sizeof (type-name)

The result in both cases is an integer constant that gives the size in
bytes of how much memory space is used by the operand
(determined by its type, with some exceptions). In the first use,
the type of the operand expression is determined without
evaluating the expression (and therefore without side effects).
When the operand is of type char (signed or unsigned), sizeof
gives the result 1. When the operand is a non-parameter of array
type, the result is the total number of bytes in the array (in other
words, an array name is not converted to a pointer type). The
number of elements in an array equals sizeof array I sizeof
array[O].

If the operand is a parameter declared as array type or function
type, sizeof gives the size of the pointer. When applied to
structures and unions, sizeof gives the total number of bytes,
including any padding.

sizeof cannot be used with expressions of function type,
incomplete types, parenthesized names of such types, or with an
lvalue that designates a bit field object.

The integer type of the result of sizeof is size_t, defined as
unsigned int in stddef.h.

You can use sizeof in preprocessor directives; this is specific to
Borland C++.

~ In C++, sizeof(classtype), where class type is derived from some
base class, returns the size of the .object (remember, this includes
the size of the base class size).

Multiplicative
operators There are three multiplicative operators: * I and %. The syntax is

multiplica tive-expression:
cast-expression
multiplicative-expression * cast-expression

Chapter 2, Language structure 87

88

Rounding is a/ways toward
zero.

Additive

multiplicative-expression! cast-expression
multiplicative-expression % cast-expression

The operands for * (multiplication) and! (division) must be of
arithmetical type. The operands for % (modulus, or remainder)
must be of integral type. The usual arithmetic conversions are
made on the operands (see page 41).

The result of (opl * op2) is the product of the two operands. The
results of (opl! op2) and (opl % op2) are the quotient and remain­
der, respectively, when opl is divided by op2, provided that op2 is
nonzero. Use of ! or % with a zero second operand results in an
error.

When opl and op2 are integers and the quotient is not an integer,
the results are as follows:

1. If opl and op2 have the same sign, opl ! op2 is the largest
integer less than the true quotient, and opl % op2 has the sign
of opl.

2. If opl and op2 have opposite signs, opl ! op2 is the smallest
integer greater than the true quotient, and opl % op2 has the
sign of opl.

operators There are two additive operators: + and -. The syntax is

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

The addition The legal operand types for opl + op2 are
operator +

1. Both opl and op2 are of arithmetic type.

2. opl is of integral type, and op2 is of pointer to object type.

3. op2 is of integral type, and opl is of pointer to object type.

In case 1, the operands are subjected to the standard arithmetical
conversions, and the result is the arithmetical sum of the
operands. In cases 2 and 3, the rules of pointer arithmetic apply.
(Pointer arithmetic is covered on page 58.)

Borland C++ Programmer's Guide

The subtraction The legal operand types for opl - op2 are
operator -

1. Both opl and op2 are of arithmetic type.

2. Both opl and op2 are pointers to compatible object types. The
_ unqualified type type is considered to be compatible with the

qualified types canst type, volatile type, and canst volatile
type.

Bitwise shift
operators

Bitwise shift operators
«< and »)

The constants ULONG_MAX
and UINCMAX are defined in

limits.h.

3. opl is of pointer to object type, and op2 is integral type.

In case 1, the operands are subjected to the standard arithmetic
conversions, and the result is the arithmetic difference of the
operands. In cases 2 and 3, the rules of pointer arithmetic apply.

There are two bitwise shift operators: «and ». The syntax is

shift-expression:
addi tive-expression
shift-expression « additive-expression
shift-expression » additive-expression

In the expressions El «E2 and El » E2, the operands E1 and E2
must be of integral type. The normal integral promotions are
performed on El and E2, and the type of the result is the type of
the promoted El. If E2 is negative or is greater than or equal to
the width in bits of El, the operation is undefined.

The result of El « E2 is the value of El left-shifted by E2 bit posi­
tions, zero-filled from the right if necessary. Left shifts of an un­
signed long El are equivalent to multiplying El by 2E2, reduced
modulo ULONG_MAX + 1; left shifts of unsigned ints are
equivalent to multiplying by 2 E2 reduced modulo UINT _MAX + 1.
If El is a signed integer, the result must be interpreted with care,
since the sign bit may change.

The result of El » E2 is the value of El right-shifted by E2 bit po­
sitions. If El is of unsigned type, zero-fill occurs from the left if
necessary. If El is of signed type, the fill from the left uses the
sign bit (0 for positive, 1 for negative El). This sign-bit extension
ensures that the sign of El » E2 is the same as the sign of El.
Except for signed types, the value of El » E2 is the integral part
of the quotient El/2E2.

Chapter 2, Language structure 89

Relational
operators There are four relational operators: < > <= and >=. The syntax

for these operators is:

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression> shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The less-than In the expression El < E2, the operands must conform to one of
operator < the following sets of conditions:

1. Both El and E2 are of arithmetic type.
Qualified names are defined

on page 117.
2. Both El and E2 are pointers to qualified or unqualified

versions of compatible object types.

90

3. Both El and E2 are pointers to qualified or unqualified
versions of compatible incomplete types.

In case I, the usual arithmetic conversions are performed. The
result of El < E2 is of type int. If the value of El is less than the
value of E2, the result is 1 (true); otherwise, the result is zero
(false).

In cases 2 and 3, where El and E2 are pointers to compatible
types, the result of El < E2 depends on the relative locations
(addresses) of the two objects being pointed at. When comparing
structure members within the same structure, the "higher"
pointer indicates a later declaration. Within arrays, the "higher"
pointer indicates a larger subscript value. All pointers to members
of the same union object compare as equal.

Normally, the comparison of pointers to different structure, array,
or union objects, or the comparison of pointers outside the range
of an array object give undefined results; however, an exception is
made for the "pointer beyond the last element" situation as
discussed under "Pointer arithmetic" on page 58. If P points to an
element of an array object, and Q points to the last element, the
expression P < Q + 1 is allowed, evaluating to 1 (true), even
though Q + 1 does not point to an element of the array object.

Borland C++ Programmer's Guide

The greater-than
operator>

The less-than or equal­
to operator <=

The greater-than or
equal-to operator >=

Equality operators

The expression E1 > E2 gives 1 (true) if the value of E1 is greater
than the value of E2; otherwise, the result is 0 (false), using the
same interpretations for arithmetic and pointer comparisons, as
defined for the less-than operator. The same operand rules and
restrictions also apply.

Similarly, the expression E1 <= E2 gives 1 (true) if the value of E1
is less than or equal to the value of E2. Otherwise, the result is 0
(false), using the same interpretations for arithmetic and pointer
comparisons, as defined for the less-than operator. The same
operand rules and restrictions also apply.

Finally, the expression E1 >= E2 gives 1 (true) if the value of E1 is
greater than or equal to the value of E2. Otherwise, the result is 0
(false), using the same interpretations for arithmetic and pointer
comparisons, as defined for the less-than operator. The same
operand rules and restrictions also apply.

There are two equality operators: == and !=. They test for equality
and inequality between arithmetic or pointer values, following
rules very similar to those for the relational operators.

.. However, == and != have a lower precedence than the relational
operators < >, <=, and >=. Also, == and != can compare certain
pointer types for equality and inequality where the relational
operators would not be allowed.

The equal-to
operator ==

The syntax is

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

In the expression E1 == £2, the operands must conform to one of
the following sets of conditions:

1. Both E1 and £2 are of arithmetic type.

2. Both E1 and £2 are pointers to qualified or unqualified
versions of compatible types.

Chapter 2, Language structure 91

The inequality operator
!=

92

Bitwise AND
operator &

3. One of El and E2 is a pointer to an object or incomplete type,
and the other is a pointer to a qualified or unqualified version
of void.

4. One of El or E2 is a pointer and the other is a null pointer
constant.

If El and E2 have types that are valid operand types for a
relational operator, the same comparison rules just detailed for El
< E2, El <= E2, and so on, apply.

In case I, for example, the usual arithmetic conversions are per­
formed, and the result of El == E2 is of type int. If the value of El
is equal to the value of E2, the result is 1 (true); otherwise, the
result is zero (false).

In case 2, El == E2 gives 1 (true) if El and E2 point to the same
object, or both point "one past the last element" of the same array
object, or both are null pointers.

If El and E2 are pointers to function types, El == E2 gives 1 (true)
if they are both null or if they both point to the same function.
Conversely, if El == E2 gives 1 (true), then either El and E2 point
to the same function, or they are both null.

In case 4, the pointer to an object or incomplete type is converted
to the type of the other operand (pointer to a qualified or
unqualified version of void).

The expression El != E2 follows the same rules as those for El ==
E2, except that the result is 1 (true) if the operands are unequal,
and 0 (false) if the operands are equal.

The syntax is

AND-expression:
equal ity-expression
AND-expression & equality-expression

In the expression El & E2, both operands must be of integral type.
The usual arithmetical conversions are performed on El and E2,
and the result is the bitwise AND of El and E2. Each bit in the
result is determined as shown in Table 2.12.

Borland C++ Programmer's Guide

Table 2.12
Bitwise operators truth table

Bitwise exclusive
OR operator 1\

Bitwise inclusive

Bit value Bit value
in E1 in E2 E1 & E2 E1 " E2 E11 E2

0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 0 1

The syntax is

exc lusive-OR-expression:
AND-expression
exclusive-OR-expression 1\ AND-expression

In the expression El 1\ E2, both operands must be of integral type.
The usual arithmetic conversions are performed on El and E2,
and the result is the bitwise exclusive OR of El and E2. Each bit in
the result is determined as shown in Table 2.12.

OR operator I The syntax is

Logical AND
operator &&

inclusive-OR -expression:
exclusive-OR -expression
inclusive-OR -expression I exclusive-O R-expression

In the expression El I E2, both operands must be of integral type.
The usual arithmetic conversions are performed on El and E2,
and the result is the bitwise inclusive OR of El and E2. Each bit in
the result is determined as shown in Table 2.12.

The syntax is

logical-AND-expression:
inclusive-OR -expression
logical-AND-expression && inclusive-OR-expression

In the expression El && E2, both operands must be of scalar type.
The result is of type int, the result is 1 (true) if the values of El and
E2 are both nonzero; otherwise, the result is 0 (false).

Chapter 2, Language structure 93

Logical OR

Unlike the bitwise & operator, && guarantees left-to-right
evaluation. E1 is evaluated first; if E1 is zero, E1 && E2 gives 0
(false), and E2 is not evaluated.

operator I I The syntax is

logical-DR-expression:
logical-AND-expression

Conditional

logical-DR-expression Illogical-AND-expression

In the expression E1 II E2, both operands must be of scalar type.
The result is of type int, and the result is 1 (true) if either of the
values of E1 and E2 are nonzero. Otherwise, the result is 0 (false).

Unlike the bitwise I operator, II guarantees left-to-right evaluation.
E1 is evaluated first; if E1 is nonzero, E1 II E2 gives 1 (true), and
E2 is not evaluated.

operator ?: The syntax is

conditional-expression
logical-DR -expression
logical-DR-expression ? expression: conditional-expression

In C++, the result is an Ivalue. In the expression E1 ? E2 : E3, the operand E1 must be of scalar
type. The operands E2 and E3 must obey one of the following sets
of rules:

94

1. Both of arithmetic type

2. Both of compatible structure or union types

3. Both of void type

4. Both of type pointer to qualified or unqualified versions of
compatible types

5. One operand of pointer type, the other a null pointer constant

6. One operand of type pointer to an object or incomplete type,
the other of type pointer to a qualified or unqualified version
of void

First, E1 is evaluated; if its value is nonzero (true), then E2 is eval­
uated and E3 is ignored. If E1 evaluates to zero (false), then E3 is

Borland C++ Programmer's Guide

Assignment
operators

The simple assignment
operator =

In C++, the result is an Iva/ue.

evaluated and E2 is ignored. The result of El ? E2 : E3 will be the
value of whichever of E2 and E3 is evaluated.

In case 1, both E2 and E3 are subject to the usual arithmetic con­
versions, and the type of the result is the common type resulting
from these conversions.

In case 2, the type of the result is the structure or union type of E2
and E3.

In case 3, the result is of type void.

In cases 4 and 5, the type of the result is pointer to a type qualified
with all the type qualifiers of the types pointed to by both
operands.

In case 6, the type of the result is that of the nonpointer-to-void
operand.

There are eleven assignment operators. The = operator is the
simple assignment operator; the other ten are known as
compound assignment operators.

The syntax is

ass i gnmen t -expression:
condi tional-expression
unary-expression assignmen t-operator assignment-expression

assignment-operator: one of

= *- /=
«= »= &=

%= +=
"= 1=

-=

In the expression El = E2, El must be a modifiable lvalue. The
value of E2, after conversion to the type of El, is stored in the
object designated by El (replacing El's previous value). The value
of the assignment expression is the value of El after the
assignment. The assignment expression is not itself an lvalue.

The operands El and E2 must obey one of the following sets of
rules:

1. El is of qualified or unqualified arithmetic type and E2 is of
arithmetic type.

Chapter 2, Language structure 95

The compound
assignment operators

Comma operator

2. El has a qualified or unqualified version of a structure or
union type compatible with the type of E2.

3. El and E2 are pointers to qualified or unqualified versions of
compatible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right.

4. One of El or E2 is a pointer to an object or incomplete type
and the other is a pointer to a qualified or unqualified version
of void. The type pointed to by the left has all the qualifiers of
the type pointed to by the right.

5. El is a pointer and E2 is a null pointer constant.

The compound assignments op=, where op can be anyone of the
ten operator symbols * I % + - « » & A I, are interpreted as
follows:

El op= E2

has the same effect as

El = El op E2

except that the lvalue El is evaluated only once. For example, El
+= E2 is the same as El = El + E2.

The rules for compound assignment are therefore covered in the
previous section (on the simple assignment operator =).

The syntax is

expression:
assignment-expression
expression, assignment-expression

In c++, the result is an Ivalue. In the comma expression

96

El,E2

the left operand El is evaluated as a void expression, then E2 is
evaluated to give the result and type of the comma expression. By
recursion, the expression

El, E2, ... , En

results in the left-to-right evaluation of each Ei, with the value
and type of En giving the result of the whole expression. To avoid

Bor/and C++ Programmer's Guide

c++ operators
See page 108 for information

on the scope access
operator (::).

Statements

ambiguity with the commas used in function argument and
initializer lists, parentheses must be used. For example,

func (1, (j = 1, j + 4), k);

calls func with three arguments, not four. The arguments are i, 5,
andk.

The operators specific to c++ are:: .* ->*. The syntax for the .*
and ->* operators is as follows:

pm-expression
cast-expression
pm expression .* cast-expression
pm expression ->* cast-expression

The .* operator dereferences pointers to class members. It binds
the cast-expression, which must be of type "pointer to member of
class type", to the pm-expression, which must be of class type or of a
class publicly derived from class type. The result is an object or
function of the type specified by the cast-expression.

The ->* operator dereferences pointers to pointers to class
members (no, that isn't a typo; it does indeed dereference pointers
to pointers). It binds the cast-expression, which must be of type
"pointer to member of type," to the pm-expression, which must be
of type pointer to type or of type "pointer to class publicly derived
from type." The result is an object or function of the type specified
by the cast-expression.

If the result of either of these operators is a function, you can only
use that result as the operand for the function call operator (). For
example,

(ptr2object->*ptr2memberfunc) (10);

calls the member function denoted by ptr2memberfunc for the
object pointed to be ptr2object.

Statements specify the flow of control as a program executes. In
the absence of specific jump and selection statements, statements
are executed sequentially in the order of appearance in the source
code. Table 2.13 on page 98 lays out the syntax for statements:

Chapter 2, Language structure 97

Blocks
A compound statement, or block, is a list (possibly empty) of state­
ments enclosed in matching braces ({ }). Syntactically, a block can
be considered to be a single statement, but it also plays a role in
the scoping of identifiers. An identifier declared within a block
has a scope starting at the point of declaration and ending at the
closing brace. Blocks can be nested to any depth.

Table 2.13: Borland C++ statements

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
asm-statement
declaration (C++ specific)

asm-statement:
asm tokens newline
asm tokens;
asm {tokens; <tokens;>=

<tokens;>
I

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

compound-statement:
{ <declaration-list> <statement-list> }

declaration-list:
declaration

Labeled

declaration-list declaration

statement-list:
statement
statement-list statement

expression-statement:
<expression> ;

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement:
while (expression) statement
do statement while (expression);
for (for-init-statement <expression> ; <expression» statement

for-init-statement
expression-statement
declaration (C++ specific)

jump-statement:
goto identifier;
continue;
break;
return <expression>;

statements A statement can be labeled in the following ways:

98

1. label-identifier: statement

The label identifier serves as a target for tJ.:1e unconditional
goto statement. Label identifiers have their own name space
and enjoy function scope. In C++ you can label both

... declaration and non-declaration statements.

2. case constant-expression: statement
default: statement

Case and default labeled statements are used only in
conjunction with switch statements.

Borland C++ Programmer's Guide

Expression
statements

Selection
statements

if statements

The parentheses around
cond-expression are

essential.

Any expression followed by a semicolon forms an expression
statement:

<expression> ;

Borland C++ executes an expression statement by evaluating the
expression. All side effects from this evaluation are completed
before the next statement is executed. Most expression statements
are assignment statements or function calls.

A special case is the null statement, consisting of a single semicolon
(;). The null statement does nothing. It is nevertheless useful in
situations where the Borland C++ syntax expects a statement but
your program does not need one.

Selection or flow-control statements select from alternative
courses of action by testing certain values. There are two types of
selection statements: the it ... else and the switch.

The basic it statement has the following pattern:

it (eond-expression) t-st <else f-st>

The eond-expression must be of scalar type. The expression is eval­
uated. 1£ the value is zero (or null for pointer types), we say that
the eond-expression is false; otherwise, it is true.

1£ there is no e,lse clause and eond-expression is true, t-st is
executed; otherwise, t-st is ignored.

1£ the optional else f-st is present and eond-expression is true, t-st is
executed; otherwise, t-st is ignored and f-st is executed.

_ Unlike, say, Pascal, Borland C++ does not have a specific Boolean
data type. Any expression of integer or pointer type can serve a
Boolean role in conditional tests. The relational expression (a > b)
(if legal) evaluates to int 1 (true) if (a > b), and to int 0 (false) if
(a <= b). Pointer conversions are such that a pointer can always be
correctly compared to a constant expression evaluating to O. That
is, the test for null pointers can be written if (lptr) ... or
if (ptr == 0)

Chapter 2, Language structure 99

The f-st and t-st statements can themselves be if statements, allow­
ing for a series of conditional tests nested to any depth. Care is
needed with nested if ... else constructs to ensure that the correct
statements are selected. There is no endif statement: Any "else"
ambiguity is resolved by matching an else with the last
encountered if-without-an-else at the same block level. For
example,

if (x == 1)

if (y == 1) puts("x=l and y=l");
else puts("x != 1");

draws the wrong conclusion! The else matches with the second if,
despite the indentation. The correct conclusion is that x = 1 and y
!= 1. Note the effect of braces:

if (x == 1)

{

if (y == 1) puts("x = 1 and y = 1");

else puts("x != 1"); II correct conclusion

switch statements The switch statement uses the following basic format:

It is illegal to have duplicate
case constants in the same

switch statement.

100

switch (sw-expression) case-st

A switch statement lets you transfer control to one of several
case-labeled statements, depending on the value of sw-expression.
The latter must be of integral type (in C++, it can be of class type,
provided that there is an unambiguous conversion to integral
type available). Any statement in case-st (including empty
statements) can be labeled with one or more case labels:

case const-exp-i : case-st-i

where each case constant, const-exp-i, is a constant expression with
a unique integer value (converted to the type of the controlling
expression) within its enclosing switch statement.

There can also be at most one default label:

default: default-st

After evaluating sw-expression, a match is sought with one of the
const-exp-i. If a match is found, control passes to the statement
case-st-i with the matching case label. .

If no match is found and there is a default label, control passes to
default-st. If no match is found and there is no default label, none

Borland C++ Programmer's Guide

Iteration

of the statements in case-st is executed. Program execution is not
affected when case and default labels are encountered. Control
simply passes through the labels to the following statement or
switch. To stop execution at the end of a group of statements for a
particular case, use break.

statements Iteration statements let you loop a set of statements. There are
three forms of iteration in Borland C++: while, do, and for loops.

while statements The general format for this statement is

The parentheses are while (cond-exp) t-st
essential.

The loop statement, t-st, will be executed repeatedly until the
conditional expression, cond-exp, compares equal to zero (false).

The cond-exp is evaluated and tested first (as described on page
99). If this value is nonzero (true), t-st is executed; if no jump
statements that exit from the loop are encountered, cond-exp is
evaluated again. This cycle repeats until cond-exp is zero.

As with if statements, pointer type expressions can be compared
with the null pointer, so that while (ptr) ... is equivalent to

while (ptr != NULL) ...

The while loop offers a concise method for scanning strings and
other null-terminated data structures:

char str[lO]="Borland";
char *ptr=&str[O];
int count=O;
/ / ...
while (*ptr++) II loop until end of string

count++;

,In the absence of jump statements, t-st must affect the value of
cond-exp in some way, or cond-exp itself must change during
evaluation in order to prevent unwanted endless loops.

do while statements The general format is

do do-st while (cond-exp);

The do-st statement is executed repeatedly until cond-exp
compares equal to zero (false). The key difference from the while
statement is that cond-exp is tested after, rather than before, each

Chapter 2, Language structure 101

for statements

For C++, <init-exp> can be
an expression or a

declaration.

execution of the loop statement. At least one execution of do-st is
assured. The same restrictions apply to the type of cond-exp
(scalar).

The for statement format in C is

for «init-exp>; <test-exp>; <increment-exp» statement

The sequence of events is as follows:

1. The initializing expression init-exp, if any, is executed. As the
name implies, this usually initializes one or more loop
counters, but the syntax allows an expression of any degree of
complexity (including declarations in C++). Hence the claim
that any C program can be written as a single for loop. (But
don't try this at home. Such stunts are performed by trained
professionals.)

2. The expression test-exp is evaluated following the rules of the
while loop. If test-exp is nonzero (true), the loop statement is
executed. An empty expression here is taken as while (1), that
is, always true. If the value of test-exp is zero (false), the for
loop terminates.

3. increment-exp advances one or more counters.

4. The expression statement (possibly empty) is evaluated and
control returns to step 2.

If any of the optional elements are empty, appropriate semicolons
are required:

for (;;) { I I same as for (; 1;)
II loop forever

~ The C rules for for statements apply in C++. However, the init-exp
in C++ can also be a declaration. The scope of a declared identifier
extends through the enclosing loop. For example,

102

for (int i = 1; i < j; ++i)
{

if (i ...)

if (i. ..)

II ok to refer to i here

II illegal; i is now out of scope

Borland C++ Programmer's Guide.

Jump statements
A jump statement, when executed, transfers control uncondition­
ally. There are four such statements: break, continue, goto, and
return.

break statements The syntax is

break;

A break statement can be used only inside an iteration (while, do,
and for loops) or a switch statement. It terminates the iteration or
switch statement. Since iteration and switch statements can be
intermixed and nested to any depth, take care to ensure that your
break exits from the correct loop or switch. The rule is that a
break terminates the nearest enclosing iteration or switch
statement.

continue statements The syntax is

continue;

A continue statement can be used only inside an iteration
statement; it transfers control to the test condition for while and
do loops, and to the increment expression in a for loop.

With nested iteration loops, a continue statement is taken as
belonging to the nearest enclosing iteration. .

goto statements The syntax is

goto label;

The goto statement transfers control to the statement labeled label
(see "Labeled statements,"page 98), which must be in the same
function.

~ In C++, it is illegal to bypass a declaration having an explicit or
implicit initializer unless that declaration is within an inner block
that is also bypassed.

Chapter 2, Language structure 103

104

return statements Unless the function return type is void, a function body must
contain at least one return statement with the following format:

return return-expression;

where return-expression must be of type type or of a type that is
convertible to type by assignment. The value of the return­
expression is the value returned by the function~ An expression
that calls the function, such as func (actual-arg-list), is an rvalue
of type type, not an lvalue:

t = func (arg) i
func(arg) = ti

(func(arg))++i

II OK
1* illegal in Ci legal in c++ if return type of

func is a reference *1
1* illegal in Ci legal in c++ if return type of

func is a reference *1

The execution of a function call terminates if a return statement is
encountered; if no return is met, execution "falls through," ending
at the final closing brace of the function body.

If the return type is void, the return statement can be written as

returni

with no return expression; alternatively, the return statement can
be omitted.

Borland C++ Programmer's Guide

c H

Referencing

Pointer referencing and
dereferencing is discussed on

page 85.

Chapter 3, C++ specifics

A p T E R

3

c++ specifics

c++ is basically a superset of C. This means that, generally
speaking, you can compile C programs under C++, but you can't
compile a C++ program under C if the program uses any
constructs peculiar to C++. Some situations need special care. For
example, the same function func declared twice in C with
different argument types will invoke a duplicated name error.
Under C++, however, func will be interpreted as an overloaded
function-whether this is legal or not will depend on other
circumstances.

Although C++ introduces new keywords and operators to handle
classes, some of the capabilities of C++ have applications outside
of any class context. We first review these aspects of C++ that can
be used independently of classes, then get into the specifics of
classes and class mechanisms.

While in C you pass arguments only by value, in C++ you can
pass arguments by value or by reference. C++ reference types,
which are closely related to pointer types, create aliases for objects
and let you pass arguments to functions by reference.

105

Simple references

Note that type& var, type
&var, and type & var are all

equivalent.

Reference

The reference declarator can be used to declare references outside
functions:

int i = 0;
int &ir = i; II ir is an alias for i
ir = 2; II same effect as i = 2

This creates the lvalue ir as an alias for i, provided that the
initializer is the same type as the reference. Any operations on ir
have precisely the same effect as operations on i. For example,
ir = 2 assigns 2 to i, and &ir returns the address of i.

arguments The reference declarator can also be used to declare reference type
parameters within a function:

106

void funcl (int i);
void func2 (int &ir);

int sum=3;
func1 (sum) ;
func2 (sum) ;

II ir is type "reference to intO

II sum passed by value
II sum passed by reference

The sum argument passed by reference can be changed directly by
func2. On the other hand, func1 gets a copy of the sum argument
(passed by value), so sum itself cannot be altered by func1.

When an actual argument x is passed by value, the matching
formal argument in the function receives a copy of x. Any changes
to this copy within the function body are not reflected in the value
of x itself. Of course, the function can return a value that could be
used later to change x, but the function cannot directly alter a pa­
rameter passed by value.

The C method for changing x uses the actual argument &x, the
address of &x, rather than &X itself. Although &X is passed by value,
the function can access &X through the copy of &X it receives. Even
if the function does not need to change x, it is still useful (though
subject to possibly dangerous side effects) to pass &x, especially if
x is a large data structure. Passing x directly by value involves the
wasteful copying of the data structure.

Compare the three implementations of the function treble:

Borland C++ Programmer's Guide

Implementation 7

Implementation 2

Implementation 3

Chapter 3, C++ specifics

int treble_1(n}
{

return 3*n;

int x, i = 4;
x = treble_1(i};

void treble_2(int* np}
{

*np = (*np}*3;

treble_2(int &i);

void treble_3(int& n}
{

n = 3*n;

II x now = 12, i = 4

II i now = 12

II n is a reference type

II i now = 36

The formal argument declaration type& t (or equivalently, type &t)

establishes t as type "reference to type." So, when treble_3 is
called with the real argument i, i is used to initialize the formal
reference argument n. n therefore acts as an alias for i, so that
n = 3 *n also assigns 3 * ito i.

If the initializer is a constant or an object of a different type than
the reference type, Borland C++ creates a temporary object for
which the reference acts as an alias:

int& ir = 6; 1* temporary int object created, aliased by ir, gets
value 6 *1

float f;
int& ir2 = f; 1* creates temporary int object aliased by ir2;

converted before assignment *1
ir2 = 2.0 II ir2 now = 2, but f is unchanged

The automatic creation of temporary objects permits the conver­
sion of reference types when formal and actual arguments have
different (but assignment-compatible) types. When passing by
value, of course, there are fewer conversion problems, since the
copy of the actual argument can be physically changed before
assignment to the formal argument.

107

Scope access operator

This code also works if the
"globar i is a file-level static.

The scope access (or resolution) operator :: (two semicolons) lets
you access a global (or file duration) name even if it is hidden by a
local redeclaration of that name (see page 27 for more on scope):

int i;

void func(void);
{

int i=O;
i = 3;
: : i = 4;
printf ("%d",i);

II global i

II local i hides global i
II this i is the local i
II this i is the global i
II prints out 3

The :: operator has other uses with class types, as discussed
throughout this chapter.

The new and delete operators

108

The new and delete operators offer dynamic storage allocation
and deallocation, similar but superior to the standard library
functions in the malloe and free families (see the Library Refer­
ence).

A simplified syntax is

pointer-to-name = new name <name-initializer>;
delete pointer-to-name;

name can be of any type except "function returning ... " (however,
pointers to functions are allowed).

new tries to create an object of type name by allocating (if possible)
sizeof(name) bytes in free store (also called the heap). The storage
duration of the new object is from the point of creation until the
operator delete kills it by deallocating its memory, or until the
end of the program.

If successful, new returns a pointer to the new object. A null
pointer indicates a failure (such as insufficient or fragmented heap
memory). As with malloe, you need to test for null before trying
to access the new object (unless you use a new-handler; see the
following section for details). However, unlike malloe, new
calculates the size of name without the need for an explicit sizeof

Borland C++ Programmer's Guide

new, being a keyword,
doesn't need a prototype.

Handling errors

The operator new
with arrays

The operator
delete with arrays

Chapter 3, C++ specifics

operator. Further, the pointer returned is of the correct type,
"pointer to name," without the need for explicit casting.

name *nameptr; II name is any nonfunction type

if (! (nameptr = new name)) {
errmsg(IIInsufficient memory for name ll

);

exit (1);

II use *nameptr to initialize new name object

delete nameptr; II destroy name and deallocate sizeof(name) bytes

You can define a function that will be called if the new operator
fails (returns 0). To tell the new operator about the new-handler
function, call set_new_handler and supply a pointer to the new­
handler. The prototype for set_new_handler is as follows (from
new.h):

void (*set_new_handler(void (*) ())) ();

set_new_handler returns the old new-handler, and changes the
function _new_handler so that it, in turn, points to the new­
handler that you define.

If name is an array, the pointer returned by new points to the first
element of the array. When creating multidimensional arrays with
new, all array sizes must be supplied (although the left-most
dimension doesn't have to be a compile-time constant):

mat-ptr = new int[3] [10] [12];
mat-ptr = new int[n] [10] [12];
mat-ptr = new int[3] [] [12];
mat-ptr = new int[] [10] [12];

/I OK
II OK
I I illegal
I I illegal

Although the first array dimension may be a variable, all
following dimensions must be constants.

You must use the syntax "delete [] expr" when deleting an array.
In C++ 2.1, the array dimension should not be specified within the
brackets:

109

The ::operator

char * P;

void func ()
{

P = new char[10]; II allocate 10 chars
delete[] Pi II delete 10 chars

c++ 2.0 code required the array size. In order to allow 2.0 code to
compile, Borland C++ issues a warning and simply ignores any
size that is specified. For example, if the preceding example reads
delete[lO] p and is compiled, the warning is as follows:

Warning: Array size for 'delete' ignored in function func()

With Borland C++, the [] is actually only required when the array
element is a class with a destructor. But it is good programming
practice to always tell the compiler that an array is being deleted.

new When used with non-class objects, new works by calling a stand­
ard library routine, the global ::operator new. With class objects of
type name, a specific operator called name::operator new can be
defined. new applied to class name objects invokes the appropriate
name::operator new if present; otherwise, the standard ::operator
new is used.

Initializers with the

110

new operator The optional initializer is another advantage new has over malloc
(although calloc does clear its allocations to zero). In the absence
of explicit initializers, the object created by new contains unpre­
dictable data (garbage). The objects allocated by new, other than
arrays, can be initialized with a suitable expression between
parentheses:

int-ptr = new int(3);

Arrays of classes with constructors are initialized with the default
constructor (see page 126). The user-defined new operator with
customized initialization plays a key role in C++ constructors for
class-type objects.

Borland C++ Programmer's Guide

Classes

Class names

Class types

Chapter 3, C++ specifics

c++ classes offer extensions to the predefined type system. Each
class type represents a unique set of objects and the operations
(methods) and conversions available to create, manipulate, and
destroy such objects. Derived classes can be declared that inherit
the members of one or more base (or parent) classes.

In C++, structures and unions are considered as classes with
certain access defaults.

A simplified, "first-look" syntax for class declarations is

class-key class-name <: base-list> { <member-list> }

class-key is one of class, struct, or union.

The optional base-list lists the base class or classes from which the
class class-name will derive (or inherit) objects and methods. If any
base classes are specified, the class class-name is called a derived
class (see page 120, "Base and derived class access"). The base-list
has default and optional overriding access specifiers that can
modify the access rights of the derived class to members of the
base classes (see page 118, "Member access control").

The optional member-list declares the class members (data and
functions) of class-name with default and optional overriding
access specifiers that may affect which functions can access which
members.

class-name is any identifier unique within its scope. With
structures, classes, and unions, class-name can be omitted (see
"Untagged structures and typedefs," page 66.)

The declaration creates a unique type, class type class-name. This
lets you declare further class objects (or instances) of this type, and
objects derived from this type (such as pointers to, references to,
arrays of class-name, and so on):

class X { .,. } i
X x, &xr, *xptr, xarray[lO]i
/* four objects: type X, reference to X, pointer to X and array of
X* /

111

112

Class name

struct Y { ... } i
Y y, &yr, *yptr, yarray[lO) i

II C would have
II struct Y y, *yptr, yarray[lO)i

union z { ... } i
Z z, &zr, *zptr, zarray[lO)i
II C would have
II union Z z, *zptr, zarray[lO)i

Note the difference between C and C++ structure and union dec­
larations: The keywords struct and union are essential in C, but in
C++ they are needed only when the class names, Y and Z, are
hidden (see the following section).

scope The scope of a class name is local, with some tricks peculiar to
classes. Class name scope starts at the point of declaration and
ends with the enclosing block. A class name hides any class,
object, enumerator, or function with the same name in the enclos­
ing scope. If a class name is declared in a scope containing the
declaration of an object, function, or enumerator of the same
name, the class can only be referred to using the elaborated type
specifier. This means that the class key, class, struct, or union must
be used with the class name. For example,

struct S { ... }i

int S(struct S *Sptr)i

void func(void)
{

S ti

struct S Si
S (&s) i

II ILLEGAL declaration: no class key
II and function S in scope
II OK: elaborated with class key
II OK: this is a function call

C++ also allows an incomplete class declaration:

class Xi II no members, yet!

Incomplete declarations permit certain references to class name X
(usually references to pointers to class objects) before the class has
been fully defined (see "Structure member declarations," page
66). Of course, you must make a complete class declaration with
members before you can define and use class objects.

Borland C++ Programmer's Guide

Class objects

Class member list

Member

Class objects can be assigned (unless copying has been restricted),
passed as arguments to functions, returned by functions (with
some exceptions), and so on. Other operations on class objects and
members can be user-defined in many ways, including member
and friend functions, and the redefinition of standard functions
and operators when used with objects of a certain class. Redefined
functions and operators are said to be overloaded. Operators and
functions that are restricted to objects of a certain class (or related
group of classes) are called member functions for that class. C++
offers a mechanism whereby the same function or operator name
can be called to perform different tasks, depending on the type or
number of arguments or operands.

The optional member-list is a sequence of data declarations (of any
type, including enumerations, bit fields and other classes) and
function declarations and definitions, all with optional storage
class specifiers and access modifiers. The objects thus defined are
called class members. The storage class specifiers auto, extern, and
register are not allowed. Members can be declared with the static
storage class specifiers.

functions A function declared without the friend specifier is known as a
member function of the class. Functions declared with the friend
modifier are called friend functions.

The keyword this

Chapter 3, C++ specifics

The same name can be used to denote more than one function,
provided that they differ in argument type or number of
arguments.

Nonstatic member functions operate on the· class type object with
which they are called. For example, if x is an object of class X and f
is a member function of X, the function call x. f () operates on x.
Similarly, if xptr is a pointer to an X object, the function call
xptr->f () operates on *xptr. But how does f know which x it is
operating on? C++ provides f with a pointer to x called this. this is

113

Inline functions

114

passed as a hidden argument in all calls to nonstatic member
functions.

The keyword this is a local variable available in the body of any
nonstatic member function. this does not need to be declared and
is rarely referred to explicitly in a function definition. However, it
is used implicitly within the function for member references. If
x.f(y) is called, for example, where y is a member of X, this is set to
&x and y is set to this->y, which is equivalent to x.y.

You can declare a member function within its class and define it
elsewhere. Alternatively, you can both declare and define a
member function within its class, in which case it is called an
inline function.

Borland C++ can sometimes reduce the normal function call
overhead by substituting the function call directly with the
compiled code of the function body. This process, called an inline
expansion of the function body, does not affect the scope of the
function name or its arguments. Inline expansion is not always
possible or feasible. The inline specifier is a request (or hint) to the
compiler that you would welcome an inline expansion. As with
the register storage class specifier, the compiler mayor may not
take the hint!

Explicit and implicit inline requests are best reserved for small,
frequently used functions, such as the operator functions that im­
plement overloaded operators. For example, the following class
declaration:

int i;

class X {
public:

II global int

char* func(void) { return i;} II inline by default
char* i;

};

is equivalent to:

inline char* X::func(void) { return i; }

func is defined "outside" the class with an explicit inline specifier.
The i returned by func is the char* i of class X-see the section on
member scope starting on page 116.

Borland C++ Programmer's Guide

Static members

Chapter 3, C++ specifics

The storage class specifier static can be used in class declarations
of data and function members. Such members are called static
members and have distinct properties from nonstatic members.
With nonstatic members, a distinct copy "exists" for each object in
its class; with static members, only one copy exists, and it can be
accessed without reference to any particular object in its class. If x
is a static member of class X, it can be referenced as X::x (even if
objects of class X haven't been created yet). It is still possible to
access x using the normal member access operators. For example,
y.x and yptr->x, where y is an object of class X and yptr is a pointer
to an object of class X, although the expressions y and yptr are not
evaluated. In particular, a static member function can be called
with or without the special member function syntax:

class X {
int member_inti

pUblic:
static void func(int i, X* ptr) i

}i

void g (void) i

{

X obji
func(l, &Obj)i II error unless there is a global func()

II defined elsewhere

X: : func (1, &obj) i I I calls the static fune () in X
II OK for static functions only

obj.func(l, &obj) i II so does this (OK for static and
II nonstatic functions)

Since a static member function can be called with no particular
object in mind, it has no this pointer. A consequence of this is that
a static member function cannot access nonstatic members
without explicitly specifying an object with. or ->. For example,
with the declarations of the previous example, func might be
defined as follows:

void X::func(int i, X* ptr)
{

member_int = ii

ptr->member_int = ii

II which object does member_int
II refer to? Error
II OK: now we know!

115

Member scope

116

Apart from inline functions, static member functions of global
classes have external linkage. Static member functions cannot be
virtual functions. It is illegal to have a static and nonstatic
member function with the same name and argument types.

The declaration of a static data member in its class declaration is
not a definition, so a definition must be provided elsewhere to
allocate storage and provide initialization.

Static members of a class declared local to some function have no
linkage and cannot be initialized. Static members of a global class
can be initialized like ordinary global objects, but only in file
scope. Static members obey the usual class member access rules,
except they can be initialized.

class X {

static int x;

};

int X::x = 1;

The main use for static members is to keep track of data common
to all objects of a class, such as the number of objects created, or
the last-used resource from a pool shared by all such objects.
Static members are also used to

II reduce the number of visible global names

• make obvious which static objects logically belong to which
class

• permit access control to their names

The expression X::func() in the example on page 114 uses the class
name X with the scope access modifier to signify that func,
although defined "outside" the class, is indeed a member function
of X, and it exists within the scope of X. The influence of X::
extends into the body of the definition. This explains why the i
returned by func refers to X::i, the char* i of X, rather than the
global int i. Without the X:: modifier, the function func would rep­
resent an ordinary non-class function, returning the global int i.

All member functions, then, are in the scope of their class, even if
defined outside the class.

Borland C++ Programmer's Guide

Data members of class X can be referenced using the selection op­
erators . and -> (as with C structures). Member functions can also
be called using the selection operators (see also "The keyword
this," page 113). For example,

class X {

public:
int i;

};

char name[20];
X *ptr1;
X *ptr2;
void Xfunc(char*data, X* left, X* right); II define elsewhere

void f (void) ;
{

X xl, x2, *xptr=&x1;
xl. i = 0;
x2. i = xl. i;
xptr->i = 1;
x1.Xfunc("stan", &x2, xptr);

If m is a member or base member of class X, the expression X::m is
called a qualified name; it has the same type as m, and it is an lvalue
only if m is an lvalue. A key point is that even if the class name X
is hidden by a non-type name, the qualified name X::m will access
the correct class member, m.

Class members cannot be added to a class by another section of
your program. The class X cannot contain objects of class X, but
can contain pointers or references to objects of class X (note the
similarity with C's structure and union types).

Nested types In C++ 2.1, even tag or typedef names declared inside a class
lexically belong to the scope of that class. Such names can in
general be accessed only using the xxx::yyy notation, except when
in the scope of the appropriate class.

A class declared within another class is called a nested class. Its
name is local to the enclosing class; the nested class is in the scope
of the enclosing class. This is purely lexical nesting. The nested
class has no additional privileges in accessing members of the
enclosing class (and vice versa).

.. Classes can be nested in this way to an arbitrary level. For
example:

Chapter 3, C++ specifics 117

Member access
control

Friend function declarations

struct outer

typedef int ti II 'outer: :t' is a typedef name

struct inner II'outer::inner' is a class

static int Xi

}i

}i

static int Xi

int f () i

int outer::Xi

int outer::f()
{

Iidefine static data member

t Xi II 't' visible directly here

return Xi

int outer::inner::xi Iidefine static data member

outer::t Xi II have to use 'outer: :t' here

With C++ 2.0, any tags or typedef names declared inside a class
actually belong to the global (file) scope. For example:

struct foo

}i

enum bar { X}i II 2.0 rules: 'bar' belongs to file scope
II 2.1 rules: 'bar' belongs to 'foo' scope

bar Xi

The preceding fragment compiles without errors. But, because the
code is illegal under the 2.1 rules, a warning is issued as follows:

Warning: Use qualified name to access nested type 'foo: :bar'

Members of a class acquire access attributes either by default (de­
pending on class key and declaration placement) or by the use of
one of the three access specifiers: public, private, and protected.
The significance of these attributes is as follows:

public The member can be used by any function.

are not affected by access private
specifiers (see "Friends of

The member call be used only by member functions
and friends of the class in which it is declared.

classes, "page 722).

118 Borland c++ Programmer's Guide

Chapter 3, C++ specifics

protected Same as for private, but additionally, the member can
be used by member functions and friends of classes
derived from the declared class, but only in objects of
the derived type. (Derived classes are explained in the
next section.)

Members of a class are private by default, so you need explicit
public or protected access specifiers to override the default.

Members of a struct are public by default, but you can override
this with the private or protected access specifier.

Members of a union are public by default; this cannot be changed.
All three access specifiers are illegal with union members.

A default or overriding access modifier remains effective for all
subsequent member declarations until a different access modifier
is encountered. For example,

class X {
int ii
char Chi

public:
int j;
int ki

protected:
int 1;

};

struct Y {
int i;

private:
int ji

pUblic:
int k;

}i

union z {

II x::i is private by default
Iisoisx::ch

II next two are public

II x::l is protected

II Y::i is public by default

II Y::j is private

II Y::k is public

int ii II public by default; no other choice
double d;

};

The access specifiers can be listed and grouped in any convenient
sequence. You can save a little typing effort by declaring all the
private members together, and so on.

119

Base and derived
class access When you declare a derived class 0, you list the base classes 81,

82, .. , in a comma-delimited base-list:

Since a base class can itself
be a derived class, the

access attribute question is
recursive: You backtrack until

you reach the basest of the
base classes, those that do

not inherit.

Unions cannot have base
classes, and unions cannot

be used as base classes.

120

class-key D: base-list { <member-list> }

D inherits all the members of these base classes. (Redefined base
class members are inherited and can be accessed using scope
overrides, if needed.) D can use only the public and protected
members of its base classes. But, what will be the access attributes
of the inherited members as viewed by D? 0 may want to use a
public member from a base class, but make it private as far as
outside functions are concerned. The solution is to use access
specifiers in the base-list.

When declaring D, you can use the access specifier public,
protected, or private in front of the classes in the base-list:

class D : public Bl, private B2, ... {

These modifiers do not alter the access attributes of base members
as viewed by the base class, though they can alter the access
attributes of base members as viewed by the derived class.

The default is private if 0 is a class declaration, and public if D is
a struct declaration.

The derived class inherits access attributes from a base class as
follows:

public base class: public members of the base class are public
members of the derived class. Protected
members of the base class are protected
members of the derived class. Private
members of the base class remain private to
the base class.

protected base class: Both public and protected members of the
base class are protected members of the
derived class. Private members of the base
class remain private to the base class.

private base class: Both public and protected members of the
base class are private members of the

Borland C++ Programmer's Guide

Chapter 3, C++ specifics

derived class. Private members of the base
class remain private to the base class.

In both cases, note carefully that private members of a base class
are, and remain, inaccessible to member functions of the derived
class unless friend declarations are explicitly declared in the base
class granting access. For example,

class X : A { II default for class is 'private A

1* class X is derived from class A *1

class Y : BI public C { II override default for C

1* class Y is derived (multiple inheritance) from Band C
B defaults to private B *1

struct S : 0 { II default for struct is public 0
1* struct S is derived from 0 *1

struct T private 0 1 E { II override default for 0
II E is public by default

1* struct T is derived (multiple inheritance) from 0 and E
E defaults to public E *1

The effect of access specifiers in the base list can be adjusted by
using a qualified-name in the public or protected declarations in the
derived class. For example,

class B {
int ai

pUblic:
int b l Ci

int Bfunc (void) i

}i

class X : private B
int di

public:

};

B: :Ci

int ei

int Xfunc (void) i

int Efunc (X& x) ;

II private by default

II a l b l C I Bfunc are now private in X
II private by default l NOTE: a is not
II accessible in X

II c was private l now is public

II external to B and X

121

The function Efune can use only the public names c, e, and Xfune.

The function Xfune is in X, which is derived from private B, so it
has access to

• The "adjusted-to-public" c

• The "private-to-X" members from B: band Bfune

• X's own private and public members: d, e, and Xfune

However, Xfune cannot access the "private-to-B" member, a.

Virtual base classes

With multiple inheritance, a base class can't be specified more
than once in a derived class:

class B { ... };
class D : B, B { ... }; II Illegal

However, a base class can be indirectly passed to the derived class
more than once:

class X : public B { ... }
class Y : public B { ... }

class Z : public X, public Y { ... } II OK

In this case, each object of class Z will have two sub-objects of
class B. If this causes problems, the keyword virtual can be added
to a base class specifier. For example,

class X : virtual public B { ... }
class Y : virtual public B { ... }
class Z : public X, public Y { .. .

B is now a virtual base class, and class Z has only one sub-object
of class B.

Friends of classes

122

A friend F of a class X is a function or class that, although not a
member function of X, has full access rights to the private and
protected members of X. In all other respects, F is a normal
function with respect to scope, declarations, and definitions.

Borland C++ Programmer's Guide

Chapter 3, C++ specifics

Since F is not a member of X, it is not in the scope of X and it
cannot be called with the x.F and xptr->F selector operators
(where x is an X object, and xptr is a pointer to an X object).

If the specifier friend is used with a function declaration or defini­
tion within the class X, it becomes a friend of X.

Friend functions defined within a class obey the same inline rules
as member functions (see "Inline functions," page 114). Friend
functions are not affected by their position within the class or by
any access specifiers. For example,

class X {
int ii II private to X
friend void friend_func(X*, int}i

1* friend_func is not private, even though it's declared in the
private section *1

pUblic:
void member_func(int}i

}i

1* definitionsi note both functions access private int *1
void friend_func(X* xptr, int a} { xptr->i = ai }
void X::member_func(int a} { i = ai }

X xobj i

1* note difference in function calls *1
friend_func(&xobj, 6}i
xobj.member_func(6}i

You can make all the functions of class Y into friends of class X
with a single declaration:

class Yi
class X {

friend Y;
int ii
void member_funcX(} i

}i

class Yi {

}i

void friend_Xl(X&}i
void friend_X2(X*} i

II incomplete declaration

II complete the declaration

The functions declared in Yare friends of X, although they have
no friend specifiers. They can access the private members of X,
such as i and member _funcX.

123

It is also possible for an individual member function of class X to
be a friend of class Y:

class X {

void member_funcX();

class Y {
int i;
friend void X::member_funcX();

};

Class friendship is not transitive: X friend of Y and Y friend of Z
does not imply X friend of Z. However, friendship is inherited.

Constructors and destructors

124

There are several special member functions that determine how
the objects of a class are created, initialized, copied, and de­
stroyed. Constructors and destructors are the most important of
these. They have many of the characteristics of normal member
functions-you declare and define them within the class, or
declare them within the class and define them outside-but they
have some unique features.

1. They do not have return value declarations (not even void).

2. They cannot be inherited, though a derived class can call the
base class's constructors and destructors.

3. Constructors, like most C++ functions, can have default
arguments or use member initialization lists.

4. Destructors can be virtual, but constructors cannot.

5. You can't take their addresses.

int main(void)
{

void *ptr = base::base; / / illegal

6. Constructors and destructors can be generated by Borland
C++ if they haven't been explicitly defined; they are also
invoked on many occasions without explicit calls in your

Borland C++ Programmer's Guide

Constructors

Chapter 3, C++ specifics

program. Any constructor or destructor generated by the
compiler will be public.

7. You cannot call constructors the way you call a normal
function. Destructors can be called if you use their fully
qualified name.

X *Pi

p->X::-X()i

x: :X () i

II legal call of destructor
II illegal call of constructor

8. The compiler automatically calls constructors and destructors
when defining and destroying objects.

9. Constructors and destructors can make implicit calls to
operator new and operator delete if allocation is required for
an object.

10. An object with a constructor or destructor cannot be used as a
member of a union.

If a class X has one or more constructors, one of them is invoked
each time you define an object x of class X. The constructor creates
x and initializes it. Destructors reverse the process by destroying
the class objects created by constructors.

Constructors are also invoked when local or temporary objects of
a class are created; destructors are invoked when these objects go
out of scope.

Constructors are distinguished from all other member functions
by having the same name as the class they belong to. When an
object of that class is created or is being copied, the appropriate
constructor is called implicitly.

Constructors for global variables are called before the main
function is called. When the pragma startup directive is used to
install a function prior to the main function, global variable
constructors are called prior to the startup functions.

125

126

Constructor
defaults

Important!

Local objects are created as the scope of the variable becomes
active. A constructor is also invoked when a temporary object of
the class is created.

class X

public:
X(); II class X constructor

};

A class X constructor cannot take X as an argument:

class X {

public:
X(X) ; II illegal

The parameters to the constructor can be of any type except that
of the class of which it is a member. The constructor can accept a
reference to its own class as a parameter; when it does so, it is
called the copy constructor. A constructor that accepts no
parameters is called the default constructor. We discuss the default
constructor next; the description of the copy constructor starts on
page 127.

The default constructor for class X is one that takes no arguments;
it usually has the form X: : X () . If no user-defined constructors exist
for a class, Borland C++ generates a default constructor. On a dec­
laration such as X x, the default constructor creates the object x.

Like all functions, constructors can have default arguments. For
example, the constructor

X: :X(int, int = 0)

can take one or two arguments. When presented with one argu­
ment, the missing second argument is assumed to be a zero into
Similarly, the constructor

X::X(int = 5, int = 6)

could take two, one, or no arguments, with appropriate defaults.
However, the default constructor X: : X () takes no arguments and
must not be confused with, say, x: :X (int = 0), which can be called
with no arguments as a default constructor, or can take an
argument.

Borland C++ Programmer's Guide

The copy
constructor

Overloading
constructors

Chapter 3, C++ specifics

Take care to avoid ambiguity in calling constructors. In the
following case, the two .default constructors could become
ambiguous:

class X

pUblic:
X();
X (int i = 0);

};

main()
{

X one(10); II OK; uses X: :X(int)
X two; II illegal; ambiguous whether to call X: :X() or

I I X: :X(int = 0)

return 0;

A copy constructor for class X is one that can be called with a
single argument of type x: x: :X(const X&) or x: :X(const X&, int

= 0). Default arguments are also allowed in a copy constructor.
Copy constructors are invoked when copying a class objeCt,
typically when you declare with initialization by another class
object: X x = y. Borland C++ generates a copy constructor for class
X if one is needed and none is defined in class X.

Constructors can be overloaded, allowing objects to be created,
depending on the values being used for initialization.

class X

int integer-part;
double double-part;

pUblic:
X (int i) {integer-part = i; }
X(double d) { double-part = d; }

};

main()
{

X one(10); II invokes X::X(int) and sets integer-part to 10
X one(3.14); II invokes X::X(double) setting double-part

127

Order of calling
constructors

return 0;

In the case where a class has one or more base classes, the base
class constructors are invoked before the derived class con­
structor. The base class constructors are called in the order they
are declared.

For example, in this setup,

class Y { ... }
class X : public Y { ... }
X one;

the constructors are called in this order:

Y(); II base class constructor
X(); II derived class constructor

For the case of multiple base classes:

class X : public Y, public z
X onei

the constructors are called in the order of declaration:

Y()i II base class constructors corne first
Z()i

X()i

Constructors for virtual base classes are invoked before any non­
virtual base classes. If the hierarchy contains multiple virtual base
classes, the virtual base class constructors are invoked in the order
in which they were declared. Any non-virtual bases are then con­
structed before the derived class constructor is called.

If a virtual class is derived from a non-virtual base, that non­
virtual base will be first so that the virtual base class may be
properly constructed. The code

class X : public Y, virtual public Z
X onei

produces this order:

Z() i II virtual base class initialization
Y(); II non-virtual base class
X(); II derived class

128 Borland C++ Programmer's Guide

Class initialization

Chapter 3, C++ specifics

Or for a more complicated example:

class base;
class base2;
class levell : public base2, virtual public base;
class leve12 : public base2, virtual public base;
class toplevel : public levell, virtual public leve12;
toplevel view;

The construction order of view would be as follows:

basel) ;

base2();

leve12 () ;
base2 () ;
levell () ;
toplevel();

II virtual base class highest in hierarchy
II base is only constructed once
II non-virtual base of virtual base leve12
II must be called to construct leve12
II virtual base class
II non-virtual base of levell
II other non-virtual base

In the event that a class hierarchy contains multiple instances of a
virtual base class, that base class is only constructed once. If, how­
ever, there exist both virtual and non-virtual instances of the base
class, the class constructor is invoked a single time for all virtual
instances and then once for each non-virtual occurrence of the
base class.

Constructors for elements of an array are called in increasing
order of the subscript.

An object of a class with only public members and no constructors
or base classes (typically a structure) can be initialized with an ini­
tializer list. If a class has a constructor, its objects must be either
initialized or have a default constructor. The latter is used for
objects not explicitly initialized.

Objects of classes with constructors can be initialized with an ex­
pression list in parentheses. This list is used as an argument list to
the constructor. An alternative is to use an equal sign followed by
a single value. The single value can be of the type of the first
argument accepted by a constructor of that class, in which case
either there are no additional arguments, or the remaining
arguments have default values. It could also be an object of that
class type. In the former case, the matching constructor is called to
create the object. In the latter case, the copy constructor is called
to initialize the object.

129

Base class constructors must
be declared as either public

or protected to be called
from a derived class.

130

class X

int i;
public:

};

X();
X(int x);
X(const X&);

main()
{

II function bodies omitted for clarity

X one; II default constructor invoked
X two(l); II constructor X::X(int) is used
X three = 1; II calls X::X(int)
X four = one; II invokes X::X(const X&) for copy
X five(two); II calls X::X(const X&)

The constructor can assign values to its members in two ways. It
can accept the values as parameters and make assignments to the
member variables within the function body of the constructor:

class X

int a, bi
public:

X (int i, int j) { a = i i b = j }

}i

Or it can use an initializer list prior to the function body:

class X

int a, b;
pUblic:

X (int i, int j) : a (i), b (j) {}

}i

In both cases, Cin initialization of X x (1, 2) assigns a value of 1 to
x::a and 2 to x::b. The second method, the initializer list, provides a
mechanism for passing values along to base class constructors.

class basel

int Xi
public:

basel(int i) { x = i;
}i

class base2

Borland C++ Programmer's Guide

Chapter 3, C++ specifics

int Xi
public:

base2(int i) : x(i) {}
}i

class top : public basel, public base2
{

int a, bi
public:

top(int i, int j) : basel(i*5), base2(j+i), a(i) {b = ji}
}i

With this class hierarchy, a declaration of top one (1, 2) would
result in the initialization of base1 with the value 5 and base2
with the value 3. The methods of initialization can be intermixed.

As described previously, the base classes are initialized in
declaration order. Then the members are initialized, also in
declaration order, independent of the initialization list.

class X

int a, bi
pUblic:

X(int i, j) : a(i), b(a+j) {}
}i

With this class, a declaration of X x (1,1) results in an assignment
of 1 to x::a and 2 to x::b.

Base class constructors are called prior to the construction of any
of the derived classes members. The values of the derived class
can't be changed arid then have an affect on the base class's
creation.

class base

int Xi
public:

base (int i) : X (i) {}
}i

class derived : base

int ai
public:

derived(int i) a(i*lO), base(a) { } II Watch out! Base will be
II passed an uninitialized a

}i

131

With this class setup, a call of derived d(1) will not result in a
value of 10' for the base class member x. The value passed to the
base class constructor will be undefined.

When you want an initializer list in a non-inline constructor, don't
place the list in the class definition. Instead, put it at the point at
which the function is defined.

derived::derived(int i) : a(i)
{

Destructors

The destructor for a class is called to free members of an object
before the object is itself destroyed. The destructor is a member
function whose name is that of the class preceded by a tilde (-). A
destructor cannot accept any parameters, nor will it have a return
type or value declared.

class X

pUblic:
-X(); II destructor for class X

};

If a destructor is not explicitly defined for a class, the compiler
will generate one.

When destructors

132

are invoked A destructor is called implicitly when a variable goes out of its
declared scope. Destructors for local variables are called when the
block they are declared in is no longer active. In the case of global
variables, destructors are called as part of the exit procedure after
the main function.

When pointers to objects go out of scope, a destructor is not impli­
citly called. This means that the delete operator must be called to
destroy such an object.

Destructors are called in the exact opposite order from which
their corresponding constructors were called (see page 128).

Borland C++ Programmer's Guide

atexit, #pragma
exit, and

destructors

exit and
destructors

abort and

All global objects are active until the code in all exit procedures
has executed. Local variables, including those declared in the
main function, are destroyed as they go out of scope. The order of
execution at the end of a Borland C++ program in these regards is
as follows:

• atexit functions are executed in the order they were inserted.

• #pragma exit functions are executed in the order of their
priority codes.

• Destructors for global variables are called.

When you call exit from within a program, destructors are not
called for any local variables in the current scope. Global variables
are destroyed in their normal order.

destructors If you call abort anywhere in a program, no destructors are called,
not even for variables with a global scope.

Chapter 3, C++ specifics

A destructor can also be invoked explicitly in one of two ways:
indirectly through a call to delete, or directly by using the de­
structor's fully qualified name. You can use delete to destroy
objects that have been allocated using new. Explicit calls to the de­
structor are only necessary for objects allocated a specific address
through calls to new.

class X {

-X() ;

};

void* operator new(size_t size, void *ptr)
{

return ptr;

char buffer[sizeof(X)];

main()
{

133

Virtual destructors

134

X* pointer = new Xi
X* exact-pointer;

exact-pointer = new(&buffer) Xi II pointer initialized at
II address of buffer

delete pointeri
exact-pointer->X::-X();

II delete used to destroy pointer
II direct call used to deallocate

A destructor can be declared as virtual. This allows a pointer to a
base class object to call the correct destructor in the event that the
pointer actually refers to a derived class object. The destructor of a
class derived from a class with a virtual destructor is itself virtual.

class color

public:
virtual -color()i II virtual destructor for color

};

class red : public color

public:
-red () i II destructor for red is also virtual

}i

class brightred: public red
{

pUblic:
-brightred(); II brightred's destructor also virtual

}i

The previously listed classes and the following declarations

color *palette[3];

palette[O] = new redi
palette[l] = new brightredi
palette[2] = new color;

will produce these results

delete palette[O]i
II The destructor for red is called followed by the
II destructor for color.

delete palette[l]i
II The destructor for brightred is called, followed by -red

Borland C++ Programmer's Guide

II and -color.

delete palette[21j
II The destructor for color is invoked.

However, in the event that no destructors were declared as
virtual, delete palette[O], delete palette[l], and delete palette[2]
would all call only the destructor for class color. This would
incorrectly destruct the first two elements, which were actually of
type red and brightred.

Overloaded operators

This class was invented for
illustrative purposes only. It
isn't the same as the class

complex in the run-time
library.

Chapter 3, C++ specifics

c++ lets you redefine the action of most operators, so that they
perform specified functions when used with objects of a particular
class. As with overloaded C++ functions in general, the compiler
distinguishes the different functions by noting the context of the
call: the number and types of the arguments or operands.

All the operators on page 79 can be overloaded except for

.. * :: ?:

The preprocessing symbols # and ## also cannot be overloaded.

The keyword operator followed by the operator symbol is called
the operator function name; it is used like a normal function name
when defining the new (overloaded) action of the operator.

A function operator called with arguments behaves like an
operator working on its operands in an expression. The operator
function can't alter the number of arguments or the precedence
and associativity rules (Table 2.10 on page 76) applying to normal
operator use. Consider the class complex:

class complex {
double real, imagj

public:

complex() { real = imag = OJ }

complex(double r , double i = 0)
real = ri imag = ii

II private by default

II inline constructor
II another one

We could easily devise a function for adding complex numbers,
say,

135

complex AddComplex(complex cl, complex c2) i

but it would be more natural to be able to write:

complex cl(O,l), c2(l,O), c3
c3 = cl + C2i

than

c3 = AddComplex(cl, C2)i

The operator + is easily overloaded by including the following
declaration in the class complex:

friend complex operator + (complex cl, complex C2)i

and defining it (possibly inline) as:

complex operator + (complex cl, complex c2)
{

return complex(cl.real + c2.real, cl.imag + c2.imag) i

Operator functions

136

Overloaded
operators and

inheritance

Operator functions can be called directly, although they are
usually invoked indirectly by the use of the overload operator:

c3 = cl.operator + (C2)i II same as c3 = cl + c2

Apart from new and delete, which have their own rules (see the
next sections), an operator function must either be a nonstatic
member function or have at least one argument of class type. The
operator functions =, (), [] and -> must be nonstatic member
functions.

With the exception of the assignment function operator =() (see
"Overloading the assignment operator =" on page 139), all
overloaded operator functions for class X are inherited by classes
derived from X, with the standard resolution rules for overloaded
functions. If X is a base class for V, an overloaded operator
function for X may possibly be further overloaded for Y.

Borland C++ Programmer's Guide

Overloading new
and de!ete

The type size_t is defined in
std/ib.h

Chapter 3, C++ specifics

The operators new and delete can be overloaded to provide alter­
native free storage (heap) memory-management routines. A user­
defined operator new must return a void* and must have a size_t
as its first argument. A user-defined operator delete must have a
void return type and void* as its first argument; a second
argument of type size_t is optional. For example,

#include <stdlib.h>

class X {

pUblic:

}i

void* operator new(size_t size) { return newalloc(size);}
void operator delete (void* p) { newfree(p) i }

X() { 1* initialize here *1 }
X(char ch) { 1* and here *1 }

-X() { 1* clean up here *1 }

The size argument gives the size of the object being created, and
newalloc and newfree are user-supplied memory allocation and
deallocation functions. Constructor and destructor calls for objects
of class X (or objects of classes derived from X that do not have
their own overloaded operators new and delete) will invoke the
matching user-defined X::operator new() and X::operator delete(),
respectively.

The X::operator new and X::operator delete operator functions
are static members of X whether explicitly declared as static or
not, so they cannot be virtual functions.

The standard, predefined (global) new and delete operators can
still be used within the scope of X, either explicitly with the global
scope operator (::operator new and ::operator delete), or
implicitly when creating and destroying non-X or non-X-derived
class objects. For example, you could use the standard new and
delete when defining the overloaded versions:

void* X::operator new(size_t s)
{

void* ptr = new char[s] i II standard new called

return ptr;

137

138

Overloading

void X::operator delete(void* ptr}·
{

delete (void*) ptri II standard delete called

The reason for the size argument is that classes derived from X
inherit the X::operator new. The size of a derived class object may
well differ from that of the base class.

unary operators You can overload a prefix or postfix unary operator by declaring a
nonstatic member function taking no arguments, or by declaring a
non-member function taking one argument. If @ represents a
unary operator, @x and x@ can both be interpreted as either
x.operator@() or operator@(x), depending on the declarations
made. If both forms have been declared, standard argument
matching is applied to resolve any ambiguity.

~ Under c++ 2.0, an overloaded operator++ or - is used for both
prefix and postfix uses of the operator. For example:

struct foo

operator: : () ;
operator--(}i

Xi

void func ()
{

xt+; II calls x.operatort+(}
++Xi II calls x.operator++(}

x--; II calls x.operator--(}
--Xi II calls x.operator--(}

With C++ 2.1, when an operator++ or operator':"- is declared as a
member function with no parameters, or as a nonmember
function with one parameter, it only overloads the prefix operator
++ or operator -. You can only overload a postfix operator++ or
operator- by defining it as a member function taking an int
parameter or as a nonmember function taking one class and one
int parameter. For example add the following lines to the previous
code:

Borland C++ Programmer's Guide

Overloading
binary operators

Overloading the
assignment
operator =

Chapter 3, C++ specifics

operator++ (int) i
operator-- (int) j

When only the prefix version of an operator++ or operator- is
overloaded and the operator is applied to a class object as a
postfix operator, the compiler issues a warning. Then it calls the
prefix operator, allowing 2.0 code to compile. The preceding
example results in the following warnings:

Warning: Overloaded prefix 'operator ++' used as a postfix operator
in function func()

Warning: Overloaded prefix 'operator --' used as a postfix operator
in function func()

You can overload a binary operator by declaring a nonstatic
member function taking one argument, or by declaring a non­
member function (usually friend) taking two arguments. If @
represents a binary operator, x@y can be interpreted as either
x.operator@(y) or operator@(x,y), depending on the declarations
made. If both forms have been declared, standard argument
matching is applied to resolve any ambiguity.

The assignment operator = can be overloaded by declaring a
nonstatic member function. For example,

class String {

String& operator = (String& str)i

String (String&)i
-String () j

This code, with suitable definitions of String::operator =(), allows
string assignments strl = str2, just like other languages. Unlike the
other operator functions, the assignment operator function cannot
be inherited by derived classes. If, for any class X, there is no
user-defined operator =, the operator = is defined by default as a
member-by-member assignment of the members of class X:

X& X::operator = (canst X& source)
{

139

II memberwise assignment

Overloading the
function call The function call

operator () primary-expression (<expression-list>)

Overloading the

is considered a binary operator with operands primary-expression
and expression-list (possibly empty). The corresponding operator
function is operatorO. This function can be user-defined for a class
X (and any derived classes) only by means of a nonstatic member
function. A call x(argl, arg2), where x is an object of class X, is
interpreted as x.operatorO(argl,arg2).

subscript Similarly, the subscripting operation

operator primary-expression [expression]

Overloading the

is considered a binary operator with operands primary-expression
and expression. The corresponding operator function is operator[];
this can be user-defined for a class X (and any derived classes)
only by means of a nonstatic member function. The expression
x[yL where x is an object of class X, is interpreted as x.operator[]
(y).

class member Class member access using

access operator primary-expression -> expression

Virtual functions

Virtu a! functions can oniv be
member functions.

140

is considered a unary operator. The function operator-> must be a
nonstatic member function. The expression x->m, where x is a
class X object, is interpreted as (x.operator->(»->m, so that the
function operator->() must either return a pointer to a class object
or return an object of a class for which operator-> is defined.

Virtual functions allow derived classes to provide different
versions of a base class function. You can use the virtual keyword

Borland C++ Programmers Guide

Chapter 3, C++ specifics

to declare a virtual function in a base class, then redefine it in any
derived class, even if the number and type of arguments are the
same. The redefined function is said to override the base class
function. You can also declare the functions int Base:: Fun (int)
and int Derived:: Fun (int) even when they are not virtual. The
base class version is available to derived class objects via scope
override. If they are virtual, only the function associated with the
actual type of the object is available.

With virtual functions, you cannot change just the function type.
It is illegal, therefore, to redefine a virtual function so that it
differs only in the return type. If two functions with the same
name have different arguments, c++ considers them different,
and the virtual function mechanism is ignored.

If a base class B contains a virtual function vf, and class 0, derived
from B, contains a function vf of the same type, then if vf is called
for an object d or 0, the call made is D: :vf, even if the access is via
a pointer or reference to B. For example,

struct B {

};

virtual void vfl(};
virtual void vf2(};
virtual void vf3(};
void f () ;

class D : public B
virtual void vfl(}; II virtual specifier is legal but redundant
void vf2(int}; II not virtual, since it's using a different

II arg list
char vf3 (); II Illegal: return-type-only change!
void f {) ;

};

void extf ()
{

D d;
B* bp = &d;
bp->vfl ();
bp->vf2 ();
bp->f(};

II declare a D object
II standard conversion from D* to B*
I I calls D: :vfl
II call B::vf2 since D's vf2 has different args
II calls B::f (not virtual)

The overriding function vf1 in 0 is automatically virtual. The
virtual specifier can be used with an overriding function
declaration in the derived class, but its use is redundant.

The interpretation of a virtual function call depends on the type of
the object for which it is called; with non-virtual function calls, the

141

interpretation depends only on the type of the pointer or
reference denoting the object for which it is called.

.. Virtual functions must be members of some class, but they cannot
be static members. A virtual function can be a friend of another
class.

A virtual function in a base class, like all member functions of a
base class, must be defined or, if not defined, declared pure:

class B {
virtual void vf(int) = 0; II = 0 means 'pure'

In a class derived from such a base class, each pure function must
be defined or redeclared as pure (see the next section, "Abstract
classes").

If a virtual function is ~efined in the base it need not necessarily
be redefined in the derived class. Calls will simply call the base
function.

Virtual functions exact a price for their versatility: Each object in
the derived class needs to carry a pointer to a table of functions in
order to select the correct one at run time (late binding).

Abstract classes

142

An abstract class is a class with at least one pure virtual function. A
virtual function is specified as pure by using the pure-specifier.

An abstract class can be used only as a base class for other classes.
No objects of an abstract class can be created. An abstract class
cannot be used as an argument type or as a function return type.
However, you can declare pointers to an abstract class. References
to an abstract class are allowed, provided that a temporary object
is not needed in the initialization. For example,

class shape {
point center;

II abstract class

public:
where() { return center; }
move(point p) { center = p; draw(); }
virtual void rotate(int) = 0; II pure virtual function
virtual void draw() = 0; II pure virtual function
virtual void hilite() = 0; II pure virtual function

Borland C++ Programmer's Guide

c++ scope

Chapter 3, C++ specifics

shape x;

shape* sptr;
shape f();

int g (shape s);

II ERROR: attempted creation of an object of
II an abstract class
II pointer to abstract class is OK
II ERROR: abstract class cannot be a return
II type
II ERROR: abstract class cannot be a
Ilfunction argument type

shape& h(shape&); II reference to abstract class as return
II value or function argument is OK

Suppose that 0 is a derived class with the abstract class 8 as its
immediate base class. Then for each pure virtual function pvf in B,
if 0 doesn't provide a definition for pvf, pvf becomes a pure
member function of 0, and 0 will also be an abstract class.

For example, using the class shape previously outlined,

class circle: public shape { II circle derived from
II abstract class

int radius;

public:
void rotate(int) { }

void draw() ;

II private

II virtual function defined:
II no action to rotate a
/ I circle
II circle::draw must be
II defined somewhere

Member functions can be called from a constructor of an abstract
class, but calling a pure virtual function directly or indirectly from
such a constructor provokes a run-time error.

The lexical scoping rules for C++, apart from class scope, follow
the general rules for C, with the proviso that C++, unlike C,
permits both data and function declarations to appear wherever a
statement may appear. The latter flexibility means that care is
needed when interpreting such phrases as "enclosing scope" and
"point of declaration."

143

Class seope

Hiding

c++ seoping rules
summary

144

The name M of a member of a class X has class scope "local to X;"
it can only be used in the following situations:

• In member functions of X
• In expressions such as x.M, where x is an object of X

• In expressions such as xptr->M, where xptr is a pointer to an
object of X

• In expressions such as X::M or D::M, where 0 is a derived class
of X

• In forward references within the class of which it is a member.

Names of functions declared as friends of X are not members of X;
their names simply have enclosing scope.

A name can be hidden by an explicit declaration of the same name
in an enclosed block or in a class. A hidden class member is still
accessible using the scope modifier with a class name: X::M. A
hidden file scope (global) name can be referenced with the unary
operator ::; for example, ::g. A class name X can be hidden by the
name of an object, function, or enumerator declared within the
scope of X, regardless of the order in which the names are
declared. However, the hidden class name X can still be accessed
by prefixing X with the appropriate keyword: class, struct, or
union.

The point of declaration for a name x is immediately after its com­
plete declaration but before its initializer, if one exists.

The following rules apply to all names, including typedef names
and class names, provided that C++ allows such names in the
particular context discussed:

1. The name itself is tested for ambiguity. If no ambiguities are
detected within its scope, the access sequence is initiated.

2. If no access control errors occur, the type of the object,
function, class, typedef, and so on, is tested.

Borland C++ Programmer's Guide

Templates

For a discussion of templates
in the container class library

see Chapter 6, page 224.

Chapter 3, C++ specifics

3. If the name is used outside any function and class, or is pre­
fixed by the unary scope access operator ::, and if the name is
not qualified by the binary:: operator or the member selection
operators. and ->, then the name must be a global object,
function, or enumerator.

4. If the name n appears in any of the forms X::n, x.n (where x is
an object of X or a reference to X), or ptr->n (where ptr is a
pointer to X), then n is the name of a member of X or the mem­
ber of a class from which X is derived.

5. Any name not covered so far that is used in a static member
function must be declared in the block in which it occurs or in
an enclosing block, or be a global name. The declaration of a
local name n hides declarations of n in enclosing blocks and
global declarations of n. Names in different scopes are not
overloaded.

6. Any name not covered so far that is used in a nonstatic mem­
ber function of class X must be declared in the block in which
it occurs or in an enclosing block, be a member of class X or a
base class of X, or be a global name. The declaration of a local
name n hides declarations of n in enclosing blocks, members of
the function's class, and global declarations of n. The declara­
tion of a member name hides declarations of the same name in
base classes.

7. The name of a function argument in a function definition is in
the scope of the outermost block of the function. The name of a
function argument in a non-defining function declaration has
no scope at all. The scope of a default argument is determined
by the point of declaration of its argument, but it can't access
local variables or nonstatic class members. Default arguments
are evaluated at each point of call.

S. A constructor initializer (see ctor-initializer in the class
declarator syntax, Table 2.3 on page 37) is evaluated in the
scope of the outermost block of its constructor, so it can refer
to the constructor's argument names.

Templates, also called generics or parameterized types, allow you to
construct a family of related functions or classes. In this section,
we'll introduce the basic concept then some specific points.

145

146

Function
templates

Syntax:

Template-declaration:
template < template-argument-list > declaration

template-argument-list:
template-argument
template-argument-list, template argument

template-argument:
type-argument
argumen t -declara tion

type-argument:
class identifier

template-class-name:
template-name < template-arg-list >

template-arg-list:
template-arg
template-arg-list , template-arg

tern pIa te-arg:
expression
type-name

Consider a function max(x,y) that returns the larger of its two
arguments. x and y can be of any type that has the ability to be
ordered. But, since C++ is a strongly typed language, it expects
the types of the parameters x and y to be declared at compile time.
Without using templates, many overloaded versions of maxO are
required, one for each data type to be supported, even though the
code for each version is essentially identical. Each version
compares the arguments and returns the larger. For example,

int max(int x, int y)
{

return (X > y) ? X : y;

long max (long x, long y)
{

return (x > y) ? X : y;

followed by other versions of max.

Borland c++ Programmer's Guide

Function template definition

One way around this problem is to use a macro:

#define max(x,y) ((x> y) ? x : y)

However, using the #define circumvents the type-checking
mechanism that makes C++ such an improvement over C. In fact,
this use of macros is almost obsolete in C++. Clearly, the intent of
max(x,y) to compare compatible types. Unfortunately, using the
macro allows a comparison between an int and a struct, which are
incompatible.

Another problem with the macro approach is that substitution
will be performed where you don't want it to be:

class Faa

pUblic:
int max(int, int); II Results in syntax error; this gets

expanded! ! !
I I ...

};

By using a template instead, you can define a pattern for a family
of related overloaded functions by letting the data type itself be a
parameter:

template <class T>
T max(T x, T y)
{

return (x > y) ? x : y;
};

The data type is represented by the template argument: <class T>.
When used in an application, the compiler generates the
appropriate function according to the data type actually used in
the call:

int i;
Myclass a, b;

int j = max(i,O); II arguments are integers
Myclass m = max(a,b); II arguments are type Myclass

.. Any data type (not just a class) can be used for <class T>. The
compiler takes care of calling the appropriate operator>O, so you
can use max with arguments of any type for which operator>O is
defined.

Chapter 3, C++ speCifics 147

Overriding a template
function

148

Implicit and explicit
template functions

The previous example is called a function template (or generic
function, if you like). A specific instantiation of a function template
is called a template function. You can override the generation of a
template function for a specific type with a non-template function:

#include <string.h>

char *max(char *x, char *y}
{

return(strcmp(x,Y}>O} ?X:Yi

If you call the function with string arguments, it's executed in
place of the automatic template function. In this case, calling the
function avoided a meaningless comparison between two
pointers.

Only trivial argument conversions are performed with compiler­
generated template functions.

The argument type(s) of a template function must use all of the
template formal agruments. If it doesn't there is no way of
deducing the actual values for the unused template arguments
when the function is called.

When doing overload resolution (following the steps of looking
for an exact match), the compiler in gores template functions that
have been generated implicitly by the compiler.

template<class T> T max(T a, T b)
{

return (a > b) ? a : bi

void f(int i, char c)

max (i, i) i
max (c, c) i

max (i, c);
max (c, i);

II calls max(int ,int }
II calls max (char,char)
II no match for max(int,char}
II no match for max(char,int}

This code results in the following error messages.
Could not find a match for 'max(int,char), in function f(int,char)
Could not find a match for 'max(char,int), in function f(int,char)

If the user explicitly declares a template function, this function, on
the other hand, will participate fully in overload resolution. For
example:

Borland C++ Programmer's Guide

Class templates

Class template definition

Chapter 3, C++ specifics

template<class T> T max{T a, T b)
{

return (a > b) ? a : b;

int max{int, int);

void f{int i, char c)

max{i, i) ;
max(c, c) ;
max{i, c) ;
max{c, i) ;

II declare max(int,int) explicitly

II calls max{int ,int)
II calls max {char, char)
II calls max{int,int)
II calls max{int,int)

A class template (also called a generic class or class generator)
allows you to define a pattern for class definitions. Generic
container classes are good examples. Consider the following
example of a vector class (a one-dimensional array). Whether you
have a vector of integers or any other type, the basic operations
performed on the type are the same (insert, delete, index, and so
on). With the element type treated as a type parameter to the class,
the system will generate type-safe class definitions on the fly:

#include <iostream.h>

template <class T>
class Vector

T *data;
int size;

public:
Vector (int) ;
-Vector() {delete[J data;}
T& operator[J (int i) {return data[iJ;}

};

II Note the syntax for out-of-line definitions:
template <class T>
Vector<T>::Vector(int n)
{

};

data = new T [nJ ;
size = n;

main{)
{

Vector<int> x(5) ;11 Generate a vector of ints

149

150

for (int i = 0; i < 5; Hi)
x [i] = i;

for (i = 0; i < 5; Hi)
cout « xli] « ' ';

cout « ' \n' ;
return 0;

II Output will be: 0 1 2 3 4

As with function templates, an explicit template class definition
may be provided to override the automatic definition for a given
type:

class Vector<char *> { ... };

The symbol Vector must be always be accompanied by a data
type in angle brackets. It cannot appear alone, except in some
cases in the original template definition.

For a more complete implementation of a vector class, see the file
vectimp.h in the container class library source code, found in the
\BORLANDC\CLASSLIB\INCLUDE subdirectory. Also see
Chapter 6, "The container class library," page 230.

Arguments Although these examples use only one template argument,
multiple arguments are allowed. Template arguments can also
represent values in addition to data types:

template<class T, int size = 64> class Buffer { ... };

Non-type template arguments such as size can have default
arguments. The value supplied for a non-type template argument
must be a constant expression:

canst int N = 128;
int i = 256;

Buffer<int, 2*N> bl;11 OK
Buffer<float, i> b2;11 Error: i is not constant

Since each instantiation of a template class is indeed a class, it
receives its own copy of static members. Similarly, template
functions get their own copy of static local variables.

Angle brackets Take care when using the right angle bracket character upon
instantiation:

Buffer<char, (x > lOa? 1024 : 64» buf;

Borland C++ Programmer's Guide

In the preceding example, without the parentheses around the
second argument, the> between x and 100 would prematurely
close the template argument list.

Type-safe generic lists In general, when you need to write lots of nearly identical things,
think templates. The problems with the following class definition,
a generic list class,

Type-safe generic list class
definition

Chapter 3, C++ specifics

class GList

public:

}i

void insert (void *) i
void *peek () i

I I ...

are that it isn't type-safe and common solutions ne~d repeated
class definitions. Since there's no type checking on what gets
inserted, you have no way of knowing what you'll get back out.
You can solve the type-safe problem by writing a wrapper class:

class FooList : public GList

pUblic:

}i

void insert (Foo *f) { GList::insert(f) i }
Foo *peek() { return (Foo *)GList::peek()i }

I I ...

This is type-safe. insert will only take arguments of type pointer­
to-Foo or object-derived-from-Foo, so the underlying container
will only hold pointers that in fact point to something of type Foo.
This means that the cast in FooList::peek is always safe, and
you've created a true FooList. Now to do the same thing for a
BarList, a BazList, and so on, you need repeated separate class
definitions. To solve the problem of repeated class definitions and
be type-safe, once again, templates to the rescue:

template <class T> class List : public GList
{

public:

}i

void insert (T *t) { GList::insert(t) i
T *peek () { return (T *) GList: :peek () i }
I I ...

List<Foo> fListi II create a FooList class and an instance"
named fList.

List<Bar> bListi II create a BarList class and an instance

151

Eliminating pointers

Template definition that
eliminates pointers

Template
compiler switches

152

named bList.
List<Baz> zList; II create a BazList class and an instance

named zList.

By using templates, you can create whatever type-safe lists you
want, as needed, with a simple declaration. And there's no code
generated by the type conversions from each wrapper class so
there's no run-time overhead imposed by this type safety.

Another design technique is to include actual objects, making
pointers unnecessary. This can also reduce the number of virtual
function calls required, since the compiler knows the actual types
of the objects. This is a big benefit if the virtual functions are small
enough to be effectively inlined. It's difficult to inline virtual
functions when called through pointers, because the compiler
doesn't know the actual types of the objects being pointed to.

template <class T> aBase
{

I I ...
private:
T buffer;

};

class anObject public aSubject, public aBase<aFilebuf>
{

I I ...
};

All the functions in aBase can call functions defined in aFilebuf
directly, without having to go through a pointer. And if any of the
functions in aFilebuf can be inlined, you'll get a speed
improvement, since templates allow them to be inlined.

The -Jg family of switches control how instances of templates are
generated by the compiler. Every template instance encountered
by the compiler will be affected by the value of the switch at the
point where the first occurence of that particular instance is seen
by the compiler. For template functions the switch applies to the
function instances; for template classes, it will apply to all
member functions and s.tatic data members of the template class.
In all cases this switch applies only to compiler-generated
template instances, and never to user-defined instances, although

Borland C++ Programmer's Guide

Using template
switches

Chapter 3, C++ specifics

it can be used to tell the compiler which instances will be user­
defined so that they are not generated from the template.

-Jg Default value of the switch. All template instances first
encountered when this switch value is in effect will be
generated, such that if several compilation units generate
the same template instance, the linker will merge them to
produce a single copy of the instance. This is the most
convenient approach to generating template instances,
because it's almost entirely automatic. Note, though, that in
order to be able to generate the template instances, the
compiler must have the function body (in case of a template
function) or bodies of member functions and definitions for
static data members (in case of a template class).

-Jgd Instructs the compiler to generate public definitions for
template instances. This is similar to -Jg, but if more than
one compilation unit generates a definition for the same
template instance, the linker will report public symbol re­
definition errors.

-Jgx Instructs the compiler to generate external references to
template instances. Some other compilation unit must
generate a public definition for that template instance
(using the -Jgd switch) so that the external references can
be satisfied.

Using the -Jg family of switches, there are two basic approaches
for generating template instances:

1. Include the function body (for a function template) or member
function and static data member definitions (for a template
class) in the header file that defines the particular template,
and use the default setting of the template switch (-Jg). If
some instances of the template are user-defined, the
declarations (prototypes, for example) for them should be
included in the same header, but preceded by #pragma option
-Jgx, thus letting the compiler know that it should not
generate those particular instances.

Here's an example of a template function header file:

II Declare a template function along with its body

template<class T> void sort(T* array, int size)
{

body of template function goes here ...

153

154

II Sorting of 'int' elements done by user-defined instance

#pragma option -Jgx

extern void sort(int* array, int size)i

II Restore the template switch to its original state

#pragma option -Jg.

If the preceding header file is included in a C++ source file, the
'sort' template can be used without worrying about how the
various instances are generated (with the exception of 'sort' for
int arrays, which is declared as a user-defined instance, and
whose definition must be defined by the user).

2. Compile all of the source files comprising the program with
the -Jgx switch (causing external references to templates to be
generated); this way, template bodies don't need to appear in
header files. In order to provide the definitions for all of the
template instances, add a file (or files) to the program that
includes the template bodies (including any user-defined
instance definitions), and list all the template instances needed
in the rest of the program, to provide the necessary public
symbol definitions. Compile the file (or files) with the -Jgd
switch.

Here's an example:

II vector.h

template <class elem, int size> class vector
{

elem * valuei

public:

vector()i

elem & operator[J (int index) { return value[indexJi }
}i

II MAIN.CPP

#include "vector.h"

II Tell the compiler that the template instances that follow
II will be defined elsewhere.

#pragma option -Jgx

II Use two instances of the 'vector' template class.

vector<int,lOO> int_lOOi
vector<char,lO> char_lOi

main()
{

return int_lOO[OJ + char_lO[OJi

Borland C++ Programmer's Guide

Chapter 3, C++ specifics

II TEMPLATE.CPP

#include <string.h>

#include "vector.h"

II Define any template bodies

template <class elem, int size> vector<elem, size>: :vector(}
{

value = new elem[sizeli
memset(value, 0, size * sizeof(elem}}i

II Generate the necessary instances

#pragma option -Jgd

typedef vector<int,lOO> fake_int_100i
typedef vector<char,lO> fake_char_10;

155

156 Borland C++ Programmer's Guide

c H

The independent
preprocessor is documented

online.

The preprocessor detects
preprocessor directives (a/so

known as contro/lines) and
parses the tokens

embedded in them.

Chapter 4, The preprocessor

A p T E R

4

The preprocessor
Although Borland C++ uses an integrated single-pass compiler
for its IDE and command-line versions, it is useful to retain the
terminology associated with earlier multipass compilers.

With a multipass compiler, a first pass of the source text would
pull in any include files, test for any conditional-compilation di­
rectives, expand any macros, and produce an intermediate file for
further compiler passes. Since the IDE and command-line
versions of the Borland C++ compiler perform this first pass with
no intermediate output, Borland C++ provides an independent
preprocessor, CPP.EXE, that does produce such an output file.
The independent preprocessor is useful as a debugging aid,
l~tting you see the net result of include directives, conditional
compilation directives, and complex macro expansions.

The following discussion on preprocessor directives, their syntax
and semantics, therefore, applies both to the CPP preprocessor
and to the preprocessor functionality built into the Borland C++
compiler.

The Borland C++ preprocessor includes a sophisticated macro
processor that scans your source code before the compiler itself
gets to work. The preprocessor gives you great power and
flexibility in the following areas:

• Defining macros that reduce programming effort and improve
your source code legibility. Some macros can also eliminate the
overhead of function calls.

157

Preprocessor directives are
usually placed at the

beginning of your source
code, but they can legally

appear at any point in a
program.

• Including text from other files, such as header files containing
standard library and user-supplied function prototypes and
manifest constants .

• Setting up conditional compilations for improved portability
and for debugging sessions.

Any line with a leading # is taken as a preprocessing directive,
unless the # is within a string literal, in a character constant, or
embedded in a comment. The initial # can be preceded or
followed by whitespace (excluding new lines).

The full syntax for Borland C++'s preprocessor directives is given
in the next table. '

Table 4.1: Borland C++ preprocessing directives syntax

preprocessing-file:
group

group:
group-part
group group-part

group-part:
<pp-tokens> newline
if-section
control-line

if-section:
if-group <elif-groups> <else-group> end if-line

if-group:
#if constant-expression newline <group>
#ifdef identifier newline <group>
#ifndef identifier newline <group>

elif-groups:
elif-group
elit-groups elif-group

elif-group:
#elif constant-expression newline <group>

else-group:
#else newline <group>

endif-line:
#endif newline

control-line:
#include pp-tokens newline
#define identifier replacement-list newline
#define identifier lparen <identifier-list» replacement-list newline
#undef identifier newline
#line pp-tokens newline
#error <pp-tokens> newline
#pragma <pp-tokens> newline

158

#pragma warn action abbreviation newline
#pragma inline newline
newline

action: one of
+ - .

abbreviation:
nondigit nondigit nondigit

lparen:
the left parenthesis character without preceding whitespace

replacement-list:
<pp-tokens>

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

preprocessing-token:
header-name (only within an #inc1ude directive)
identifier (no keyword distinction)
constant
string-literal
operator
punctuator
each non-whitespace character that cannot be one of the preceding

header-name:
<h-char-sequence>

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any character in the source character set except the newline (\n)
or greater than (» character

newline:
the newline character

Borland C++ Programmer's Guide

Null directive #

The null directive consists of a line containing the single character
#. This directive is always ignored.

The #define and #undef directives

Simple #define

The #define directive defines a macro. Macros provide a
mechanism for token replacement with or without a set of formal,
function-like parameters.

macros In the simple case with no parameters, the syntax is as follows:

Chapter 4, The preprocessor

#define macro_identifier <token_sequence>

Each occurrence of macro _identifier in your source code following
this control line will be replaced in situ with the possibly empty
token_sequence (there are some exceptions, which are noted later).
Such replacements are known as macro expansions. The token se­
quence is sometimes called the body of the macro.

Any occurrences of the macro identifier found within literal
strings, character constants, or comments in the source code are
not expanded.

An empty token sequence results in the effective removal of each
affected macro identifier from the source code:

#define HI "Have a nice day! 11

#define empty
#define NIL

puts(HI)i /* expands to puts ("Have a nice daY!")i */
puts(NIL)i /* expands to putS("I); */
puts(l empt Y")i /* NO expansion of empty! */
/* NOR any expansion of the empty within comments! */

After each individual macro expansion, a further scan is made of
the newly expanded text. This allows for the possibility of nested
macros: The expanded text may contain macro identifiers that are
subject to replacement. However, if the macro expands into what
looks like a preprocessing directive, such a directive will not be
recognized by the preprocessor:

159

160

The #undef

#define GETSTD #include <stdio.h>

GETSTD . / * cornpil er error * /

GET5TD will expand to #include <stdio.h>. However, the prepro­
cessor itself will not obey this apparently legal directive, but will
pass it verbatim to the compiler. The compiler will reject #include
<stdio .h> as illegal input. A macro won't be expanded during its
own expansion. 50 #define A A won't expand indefinitely.

directive You can undefine a macro using the #undef directive:

#undef macro _identifier

This line detaches any previous token sequence from the macro
identifier; the macro definition has been forgotten, and the macro
identifier is undefined.

No macro expansion occurs within #undef lines.

The state of being defined or undefined turns out to be an important
property of an identifier, regardless of the actual definition. The
#ifdef and #ifndef conditional directives, used to test whether any
identifier is currently defined or not, offer a flexible mechanism
for controlling many aspects of a compilation.

After a macro identifier has been undefined, it can be redefined
with #define, using the same or a different token sequence.

#define BLOCK_SIZE 512

buff = BLOCK_SIZE*blks; /* expands as 512*blks *

#undef BLOCK_SIZE
/* use of BLOCK_SIZE now would be illegal "unknown" identifier */

#define BLOCK_SIZE 128 /* redefinition */

buf = BLOCK_SIZE*blks; /* expands as 128*blks */

Attempting to redefine an already defined macro identifier will
result in a warning unless the new definition is exactly the same,
token-by-token definition as the existing one. The preferred
strategy where definitions may exist in other header files is as
follows:

Borland C++ Programmer's Guide

The -D and-U

#ifndef BLOCK_SIZE
#define BLOCK_SIZE 512

#endif

The middle line is bypassed if BLOCK_SIZE is currently defined;
if BLOCK_SIZE is not currently defined, the middle line is
invoked to define it.

No semicolon (;) is needed to terminate a preprocessor directive.
Any character found in the token sequence, including semicolons,
will appear in the macro expansion. The token sequence termin­
ates at the first non-backslashed new line encountered. Any
sequence of whitespace, including comments in the token
sequence, is replaced with a single space character.

Assembly language programmers must resist the temptation to
write:

#define BLOCK_SIZE = 512 /* ?? token sequence includes the = */

options Identifiers can be defined and undefined using the command-line
compiler options -0 and -U (see Chapter 5, "The command-line
compiler," in the User's Guide). Identifiers can be defined, but not
explicitly undefined, from the IDE Options I Compiler I Code
Generation dialog box (see Chapter 2, "IDE basics," also in the
User's Guide).

The Define option

Chapter 4, The preprocessor

The command line

BCc -Ddebug=li paradox=Oi x -Umysym myprog.c

is equivalent to placing

#define debug 1
#define paradox 0
#define X
#undef mysym

in the program.

Identifiers can be defined, but not explicitly undefined, from the
Defines input box in the Code Generation I Options dialog box
(under a I C I Code Generation) (see Chapter 2, "IDE basics," in
the User's Guide).

161

Keywords and
protected words

Note the double
underscores, leading and

trailing.

Macros with

It is legal but ill-advised to use Borland C++ keywords as macro
identifiers:

#define int long
#define INT long

/* legal but probably catastrophic */
/* legal and possibly useful */

The following predefined global identifiers may not appear
immediately following a #define or #undef directive:

__ STDC __
__ FILE __

LlNE __

DATE __
__TIME __

parameters The following syntax is used to define a macro with parameters:

Any comma within
parentheses in an argument

list is treated as part of the
argument, not as an
argument delimiter.

162

#define macro_identifier(<arg_list» token_sequence

Note that there can be no whitespace between the macro identifier
and the (. The optional arg_Iist is a sequence of identifiers
separated by commas, not unlike the argument list of a C
function. Each comma-delimited identifier plays the role of a
formal argument or place holder.

Such macros are called by writing

macro _identifier<whitespace>{ <actuaCarg_list»

in the subsequent source code. The syntax is identical to that of a
function call; indeed, many standard library C "functions" are
implemented as macros. However, there are some important
semantic differences and potential pitfalls (see page 164).

The optional actuaCarg_Iist must contain the same number of
comma-delimited token sequences, known as actual arguments,
as found in the formal arg_list of the #define line: There must be
an actual argument for each formal argument. An error will be
reported if the number of arguments in the two lists is different.

A macro call results in two sets of replacements. First, the macro
identifier and the parenthesis-enclosed arguments are replaced by
the token sequence. Next, any formal arguments occurring in the
token sequence are replaced by the corresponding real arguments
appearing in the actuaCarg_list. For example,

Borland C++ Programmer's Guide

Chapter 4, The preprocessor

#define CUBE)x) ((x) * (x) * (x))

int n,y;
n = CUBE (y);

results in the following replacement:

n = ((y) * (y) * (y»;

Similarly, the last line of

#define SUM (a,b) ((a) t (b))

int i,j,sum;
sum = SUM(i,j);

expands to sum = ((i) + (j». The reason for the apparent glut of
parentheses will be clear if you consider the call

n = CUBE(yt1);

Without the inner parentheses in the definition, this would
expand as n = y+ 1 *y+ 1 *y+ 1, which is parsed as

n = y t (l*y) t (l*y) t 1; II!= (yt1) cubed unless y=O or y = -3!

As with simple macro definitions, rescanning occurs to detect any
embedded macro identifiers eligible for expansion.

Note the following points when using macros with argument
lists:

1. Nested parentheses and commas: The actuaCarg_list may
contain nested parentheses provided that they are balanced;
also, commas appearing within quotes or parentheses are not
treated like argument delimiters:

#define ERRMSG(x, str) showerr("Error",x,str)
#define SUM(x,y) ((x) t (y))

ERRMSG(2, "Press Enter, then Esc");
1* expands to showerr("Error" ,2, "Press Enter, then Esc");
return SUM(f(i,j), g(k,l));
1* expands to return ((f(i,j)) t (g(k,l))); *1

2. Token pasting with ##: You can paste (or merge) two tokens
together by separating them with ## (plus optional whitespace
on either side). The preprocessor removes the whitespace and
the ##, combining the separate tokens into one new token. You
can use this to construct identifiers; for example, given the
definition

#define VAR (i, j) (i##j)

163

164

then the call VAR (x, 6) would expand to (x6). This replaces the
older (nonportable) method of using (i/** Ij).

3. Converting to strings with #: The # symbol can be placed in
front of a formal macro argument in order to convert the
actual argument to a string after replacement. So, given the
following macro definition:

#define TRACE (flag) printf(#flag "=%d\n",flag)

the code fragment

int highval = 1024;
TRACE(highval);

becomes

int highval = 1024;
printf ("highval" "= %d\n", highval);

which, in turn, is treated as

int highval = 1024;
printf("highval=%d\n", highval);

4. The backs lash for line continuation: A long token sequence
can straddle a line by using a backslash (\). The backslash and
the following newline are both stripped to provide the actual
token sequence used in expansions:

#define WARN "This is really a single-\
line warning"

puts (WARN) ;
/* screen will show: This is really a single-line warning */

5. Side effects and other dangers: The similarities between
function and macro calls often obscure their differences. A
,macro call has no built-in type checking, so a mismatch
between formal and actual argument data types can produce
bizarre, hard-to-debug results with no immediate warning.
Macro calls can also give rise to unwanted side effects,
especially when an actual argument is evaluated more than
once. Compare CUBE and cube in the following example:

int cube(int x) {
return x*x*x;

#define CUBE (x) ((x)*(x)*(x))

int b = 0, a = 3;
b = cube (a ++) ;

/* cube() is passed actual arg = 3; so b = 27; a now = 4, */

Borland C++ Programmer's Guide

Final value of b depends on
what your compiler does to

the expanded expression.

a = 3;
b = CUBE (a ++) ;
/* expands as ((a++)*(a++)*(a++)); a now = 6 */

File inclusion with #include

The angle brackets are real
tokens, not metasymbols that

imply that header_name is
optional.

Chapter 4, The preprocessor

The #include directive pulls in other named files, known as
include files, header files, or headers, into the source code. The syntax
has three forms:

#include <header _name>
#include "header_name"
#include macro_identifier

The third variant assumes that neither < nor" appears as the first
non-whitespace character following #include; further, it assumes
that a macro definition exists that will expand the macro identifier
into a valid delimited header name with either of the
<header _na,me> or "header _name" formats.

The first and second variant imply that no macro expansion will
be attempted; in other words, header _name is never scanned for
macro identifiers. header _name must be a valid DOS file name with
an extension (traditionally .h for header) and optional path name
and path delimiters.

The preprocessor removes the #include line and conceptually
replaces it with the entire text of the header file at that point in the
source code. The source code itself is not changed, but the com­
piler "sees" the enlarged text. The placement of the #include may
therefore influence the scope and duration of any identifiers in the
included file.

If you place an explicit path in the header _name, only that directory
will be searched.

The difference between the <header _name> and "header _name"
formats lies in the searching algorithm employed in trying to
locate the include file; these algorithms are described in the
following two sections.

165

Header file
search with

<header_name>

Header file
search with

\\ header_name II

The <header _name> variant specifies a standard include file; the
search is made successively in each of the include directories in
the order they are defined. If the file is not located in any of the
default directories, an error message is issued.

The "header _name" variant specifies a user-supplied include file;
the file is sought first in the current directory (usually the direc­
tory holding the source file being compiled). If the file is not
found there, the search continues in the include directories as in
the <header _name> situation.

The following example clarifies these differences:

#include <stdio.h>
/* header in standard include directory */

#define myinclud C:\BORLANDC\INCLUDE\MYSTUFF.H"
/* Note: Single backslashes OK here; within a C statement you would

'need "C: \ \ BORLANDC \ \ INCLUDE \ \MYSTUFF. H" * /

#include myinclud
/* macro expansion */

#include "myinclud.h"
/* no macro expansion */

After expansion, the second #include statement causes the prepro­
cessor to look in C: \ BORLANDC \INCLUDE \MYSTUFF.H and
nowhere else. The third #include causes it to look for
MYINCLUD.H in the current directory, then in the default
directories.

Conditional compilation

166

Borland C++ supports conditional compilation by replacing the
appropriate source-code lines with a blank line. The lines thus
ignored are those beginning with # (except the #if, #ifdef, #ifndef,
#else, #elif, and #endif directives), as well as any lines that are not
to be compiled as a result of the directives. All conditional compi­
lation directives must be completed in the source or include file in
which they are begun.

Borland C++ Programmer's Guide

The #if, #elif, #else,
and #endif
conditional

directives

Chapter 4, The preprocessor

The conditional directives #if, #elif, #else, and #endif work like the
normal C conditional operators. They are used as follows:

#if cons tan t-expression-l
<section-l >
<#elif constant-expression-2 newline section-2>

<#elif constant-expression-n newline section-n>

<#else <newline> final-section>

#endif

If the constant-expression-l (subject to macro expansion) evaluates
to nonzero (true), the lines of code (possibly empty) represented
by section-l, whether preprocessor command lines or normal
source lines, are preprocessed and, as appropriate, passed to the
Borland C++ compiler. Otherwise, if constant-expression-l evalu­
ates to zero (false), section-l is ignored (no macro expansion and
no compilation).

In the true case, after section-l has been preprocessed, control
passes to the matching #endif (which ends this conditional
interlude) and continues with next-section. In the false case, control
passes to the next #elif line (if any) where constant-expression-2 is
evaluated. If true, section-2 is processed, after which control
moves on to the matching #endif. Otherwise, if constant­
expression-2 is false, control passes to the next #elif, and so on,
until either #else or #endif is reached. The optional #else is used
as an alternative condition for which all previous tests have
proved false. The #endif ends the conditional sequence.

The processed section can contain further conditional clauses,
nested to any depth; each #if must be carefully balanced with a
closing #endif.

The net result of the preceding scenario is that only one section
(possibly empty) is passed on for further processing. The
bypassed sections are relevant only for keeping track of any
nested conditionals, so that each #if can be matched with its
correct #endif.

The constant expressions to be tested must evaluate to a constant
integral value.

167

The operator defined The defined operator offers an alternative, more flexible way of
testing whether combinations of identifiers are defined or not. It is
valid only in #if and #elif expressions.

168

The #ifdef and
#ifndef

conditional
directives

The expression defined(identifier) or defined identifier
(parentheses are optional) evaluates to 1 (true) if the symbol has
been previously defined (using #define) and has not been
subsequently undefined (using #undef); otherwise, it evaluates to
o (false). So the directive

#if defined (mysym)

is the same as

#ifdef mysym

The advantage is that you can use defined repeatedly in a
complex expression following the #if directive, such as

#if defined (mysym) && !defined(yoursym)

The #ifdef and #ifndef conditional directives let you test whether
an identifier is currently defined or not, that is, whether a pre­
vious #define command has been processed for that identifier and
is still in force. The line

#ifdef identifier

has exactly the same effect as

#if 1

if identifier is currently defined, and the same effect as

#if 0

if identifier is currently undefined.

#ifndef tests true for the "not-defined" condition, so the line

#ifndef identifier

has exactly the same effect as

#if 0

if identifier is currently defined, and the same effect as

#if 1

if identifier is currently undefined.

Borland c++ Programmer's Guide

The syntax thereafter follows that of the #if, #elif, #else, and
#endif given in the previous section.

An identifier defined as NULL is considered to be defined.

The #Iine line control directive

The inclusion of stdio.h
means that the preprocessor

output will be somewhat
large.

We've eliminated most of the
stdio.h portion.

Chapter 4, The preprocessor

You can use the #Iine command to supply line numbers to a
program for cross-reference and error reporting. If your program
consists of sections derived from some other program file, it is
often useful to mark such sections with the line numbers of the
original source rather than the normal sequential line numbers
derived from the composite program. The syntax is

#line integer _constant <"filename">

indicating that the following source line originally came from line
number integer _constant of filename. Once the filename has been
registered, subsequent #line commands relating to that file can
omit the explicit filename argument.

/* TEMP.C: An example of the #line directive */

#inelude <stdio.h>

#line 4 "junk.e"
void main ()
{

printf (" in line %d of %s", __ LINE __ , __ FILE __) ;
#line 12 "temp.e"

print f ("\n") ;
printf(" in line %d of %s", __ LINE __ ,_ JILE __);

#line 8
printf("\n") ;
printf (" in line %d of %s", __ LINE __ , __ FILE __) ;

If you run TEMP.C through CPP (cpp temp), you'll get an output
file TEMP.!; it should look like this:

temp.e 1:
C:\BORLAND\BORLANDC\CPP\INCLUDE\STDIO.H 1:
C:\BORLAND\BORLANDC\CPP\INCLUDE\STDIO.H 2:
C:\BORLAND\BORLANDC\CPP\INCLUDE\STDIO.H 3:

C:\BORLAND\BORLANDC\CPP\INCLUDE\STDIO.H 212:
C:\BORLAND\BORLANDC\CPP\INCLUDE\STDIO.H 213:

169

temp.c 2:
temp.c 3:
junk.c 4: void main()
junk.c 5: {
junk.c 6: printf(" in line %d of %s",6,"junk.c");
junk.c 7:
temp.c 12: printf("\n");
temp.c 13: printf(" in line %d of %s",13,"temp.c");
temp.c 14:
temp.c 8: printf("\n");
temp.c 9: printf(" in line %d of %s",9, "temp.c");
temp. c'. 1 0: }
temp. c 11:

If you then compile and run TEMP.C, you'll get the output shown
here:

in line 6 of junk.c
in line 13 of temp.c
in line 9 of temp.c

Macros are expanded in #line arguments as they are in the
#include directive.

The #line directive is primarily used by utilities that produce C
code as output, and not in human-written code.

The #error directive

170

The #error directive has the following syntax:

#error errmsg

This generates the message:

Error: filename line# : Error directive: errmsg

This directive is usually embedded in a preprocessor conditional
that catches some undesired compile~time condition. In the
normal case, that condition will be false. If the condition is true,
you want the compiler to print an error message and stop the
compile. You do this by putting an #error directive within a
conditional that is true for the undesired case.

For example, suppose you #define MYV AL, which must be either
o or 1. You could then include the following conditional in your
source code to test for an incorrect value of MYVAL:

Borland C++ Programmer's Guide

#if (MYVAL != 0 && MYVAL != 1)
#error MYVAL must be defined to either 0 or 1
#endif

The #progmo directive

The #pragma directive permits implementation-specific directives
of the form:

#pragma directive-name

With #pragma, Borland c++ can define whatever directives it
desires without interfering with other compilers that support
#pragma. If the compiler doesn't recognize directive-name, it
ignores the #pragma directive without any error or warning
message.

Borland C++ supports the following #pragma directives:

&I #pragma argsused

1'1 #pragma exit

.. #pragma hdrfile

• #pragma hdrstop
Borland C++ only #pragma inline

#pragma
argsused

#pragma exit and
#pragma startup

Chapter 4, The preprocessor

.. #pragma option

• #pragma saveregs

.. #pragma startup

.. #pragma warn

II #pragma intrinsic

The argsused pragma is only allowed between function
definitions, and it affects only the next function. It disables the
warning message:

"Parameter name is never used in function tunc-name"

These two pragmas allow the program to specify function{s) that
should be called either upon program startup (before the main

171

Priorities from a to 63 are
used bV the C libraries, and
should not be used bV the

user.

Note that the function name
used in pragma startup or

exit must be defined (or
declared) before the

pragma line is reached.

#pragmo hdrfile ,

172

function is called), or program exit (just before the program
terminates through _exit).

The syntax is as follows:

#pragma startup function-name <priority>
#pragma exit function-name <priority>

The specified function-name must be a previously declared
function taking no arguments and returning void; in other words,
it should be declared as

void func (void) ;

The optional priority parameter should be an integer in the range
64 to 255. The highest priority is O. Functions with higher
priorities are called first at startup and last at exit. If you don't
specify a priority, it defaults to 100. For example,

#include <stdio.h>

void startFunc(void)
{

printf("Startup function.\n");

#pragrna startup startFunc 64
/* priority 64 --> called first at startup */

void exitFunc(void)
{

printf ("Wrapping up execution. \n n) ;

#pragrna exit exitFunc
/* default priority is 100 */

void main(void)
(

printf("This is main.\n");

This directive sets the name of the file in which to store precom­
piled headers. The default file name is TCDEF.SYM. The syntax is

#pragma hdrfile "filename.5YM"

Borland c++ Programmer's Guide

See Appendix 0,
"Precompiled headers" in
the User's Guide for more

details.

#pragma hdrstop

#pragma inline

#pragma intrinsic

#pragma option

The command-line compiler
options are defined in
Chapter 5 in the User's

Guide.

Chapter 4, The preprocessor

If you aren't using precompiled headers, this directive has no ,
effect. You can use the command-line compiler option
-H=filename or the Precompiled Header (0 I C I Code Generation)
to change the name of the file used to store precompiled headers.

This directive terminates the list of header files that are eligible for
precompilation. You can use it to reduce the amount of disk space
used by precompiled headers. (See Appendix 0 in the User's Guide
for more on precompiled headers.)

This directive is equivalent to the -8 command-line compiler
option or the IDE inline option. It tells the compiler that there is
inline assembly language code in your program (see Chapter 12,
"BASM and inline assembly"). The syntax is

#pragma inline .

This is best placed at the top of the file, since the compiler restarts
itself with the -8 option when it encounters #pragma inline.
Actually, you can leave off both the -8 option and the #pragma
inline directive, and the compiler will restart itself anyway as
soon as it encounters a5m statements; The purpose of the option
and the directive is to save some compilation time.

#pragma intrinsic is documented in Appendix A, "The
Optimizer" in the User's Guide.

Use #pragma option to include command-line options within
your program code. The syntax is

#p.ragma option [options ...]

options can be any command-line option (except those listed in the
following paragraph). Any number of options can appear in one
directive. Any of the toggle options (such as -a or -K) can be
turned on and off as on the command line. For these toggle
options, you can also put a period following the option to return

173

See page 352 for more on
using #pragma option with

for objects.

174

the option to its command-line, configuration file, or option-menu
setting. This allows you to temporarily change an option, then
return it to its default, without you having to remember (or even
needing to know) what. the exact default setting was.

Options that cannot appear in a pragma option include

-8 -H -Q
-c -I filename -S
-dname -Lfilename - T
-Dname = string -Ixset -Uname
-efilename -M -V
-E -0 -X
-Fx -P -V

You can use #pragmas, #includes, #define, and some #ifs before

1. The use of any macro name that begins with two underscores
(and is therefore a possible built-in macro) in an #if, #ifdef,
#ifndef or #elif directive.

2. The occurrence of the first real token (the first C or C++
declaration).

Certain command-line options can only appear in a #pragma
option command before these events. These options are

-Efilename -m * -u
~* ~~~ -W
-i# -ofilename -z *

Other options can be changed anywhere. The following options
will only affect the compiler if they get changed between
functions or object declarations:
-1 -h -r
-2 -k -rd
-a -N -v
-ff -0 -y
-G -p -Z

The following options can be changed at any time and take effect
immediately:

-A -gn -zE
-b -jn -zF
-c -K -zH
-d -wxxx

Borland C++ Programmer's Guide

#pragma

They can additionally appear followed by a dot (.) to reset the
option to its command-line state.

saveregs The saveregs pragma guarantees that a huge function will not
change the value of any of the registers when it is entered. This
directive is sometimes needed for interfacing with assembly
language code. The directive should be placed immediately
before the function definition. It applies to that function alone.

#pragma warn
The warn directive lets you override specific -wxxx command-line
options or check Display Warnings settings in the Options I
Compiler I Messages dialog boxes.

For example, if your source code contains the directives

#pragma warn txxx
#pragma warn -yyy
#pragma warn .zzz

the xxx warning will be turned on (even if on the Options I
Compiler I Messages menu it was toggled to Of!>, the yyy warning
will be turned off, and the zzz warning will be restored to the
value it had when compilation of the file began.

A complete list of the three-letter abbreviations and the warnings
to which they apply is given in Chapter 5, "The command-line
compiler" in the User's Guide.

Predefined macros

BCPLUSPLUS __

Chapter 4, The preprocessor

Borland C++ predefines certain global identifiers, each of which is
discussed in this section. Except for __ cplusplus and _Windows,
each of these starts and ends with two underscore characters C _).
These macros are also known as manifest constants.

This macro is specific to Borland's C and C++ family of compilers.
It is only defined for C++ compilation. If you've selected C++

175

__ CDECL __

_ _ cplusplus

176

compilation, it is defined as Ox0300, a hexadecimal constant. This
numeric value will increase in later releases.

This macro is specific to Borland's C and C++ family of compilers.
It is defined as Ox0400, a hexadecimal constant. This numeric
value will increase in later releases.

This macro is specific to Borland's C and C++ family of compilers.
It signals that the -p flag was not used (the C radio button in the
Entry /Exit Code Generation dialog box). Set to the integer
constant 1 if calling was not used; otherwise, undefined.

The following six symbols are defined based on the memory
model chosen at compile time.

__ COMPACT __
__ HUGE __
__ LARGE __

__MEDIUM __
__SMALL __
__TINY __

Only one is defined for any given compilation; the others, by defi­
nition, are undefined. For example, if you compile with the small
model, the __ SMALL __ macro is defined and the rest are not, so
that the directive

#if defined{ __ SMALL __)

will be true, while

#if defined{ __ LARGE __)

(or any of the others) will be false. The actual value for any of
these defined macros is 1.

This macro is defined as 1 if in C++ mode; it's undefined other­
wise. This allows you to write a module that will be compiled
sometimes as C and sometimes as C++. Using conditional
compilation, you can control which C and C++ parts are included.

Borland C++ Programmer's Guide

Chapter 4, The preprocessor

This macro provides the date the preprocessor began processing
the current source file (as a string literal).

Each inclusion of __ DATE __ in a given file contains the same
value, regardless of how long the processing takes. The date
appears in the format mmm dd yyyy, where mmm equals the month
(Jan, Feb, and so forth), dd equals the day (1 to 31, with the first
character of dd a blank if the value is less than 10), and yyyy equals
the year (1990, 1991, and so forth).

This macro is specific to Borland's C and C++ family of compilers.
It is defined to be 1 if you compile a module with the -WD
command-line compiler option or are using the Windows DLL All
Functions Exportable radio button (0 I C I C I Entry /Exit Code) to
generate code for Windows DLLs; otherwise it remains
undefined.

This macro provides the name of the current source file being pro­
cessed (as a string literal). This macro changes whenever the
compiler processes an #include directive or a #line directive, or
when the include file is complete.

This macro provides the number of the current source-file line
being processed (as a decimal constant). Normally, the first line of
a source file is defined to be 1, through the #line directive can
affect this. See page 169 for information on the #line directive.

This macro is specific to Borland's C/C++ family of compilers. It
provides the integer constant 1 for all compilations.

177

__ OVERLAY __

__ TCPLUSPLUS_'_

__ TEMPLATES __

178

This macro is specific to Borland's C and C++ family of compilers.
It is predefined to be 1 if you compile a module with the -y
option (enable overlay support). If you don't enable overlay
support, this macro is undefined.

This macro is specific to Borland's C and C++ family of compilers.
It signals that the -p flag or the Pascal calling convention (0 I C I
C I Exit/Entry) has been used. The macro is set to the integer
constant 1 if used; otherwise, it remains undefined.

This macro is defined as the constant 1 if you compile with the
ANSI compatibility flag (-A) or ANSI radio button (Source
Options); otherwise, the macro is undefined.

This macro is specific to Borland's C and C++ family of compilers.
It is only defined for C++ compilation. If you've selected C++
compilation, it is defined as Ox0300, a hexadecimal constant. This
numeric value will increase in later releases.

This macro is specific to Borland's C and C++ family of compilers.
It is defined as 1 for C++ 'files (meaning that Borland C++
supports templates); it's undefined otherwise.

This macro keeps track of the time the preprocessor began
processing the current source file (as a string literal).

As with __ DATE_ -' each inclusion of __ TIME __ contains the
same value, regardless of how long the processing takes. It takes
the format hh:mm:ss, where hh equals the hour (00 to 23), mm
equals minutes (00 to 59), and ss equals seconds (00 to 59).

Borland C++ Programmer's Guide

_Windows

Chapter 4, The preprocessor

This macro is specific to Borland's C and C++ family of compilers.
It is defined as Ox0400, a hexadecimal constant. This numeric
value will increase in later releases.

Indicates that Windows-specific code is being generated. This
macro is defined if you compile a module with any of the -W
command-line compiler options enabled (generate Windows
applications). If you don't enable any of these options, this macro
is undefined.

179

180 Borland C++ Programmer's Guide

c H A p T E R

5

Using C++ streams

This chapter is divided into two sections: a brief, practical over­
view of using C++ stream I/O, and a reference section to the C++
stream class library.

Stream input/output in C++ (commonly referred to as iostreams,
or merely streams) provide all the functionality to the stdio library
in C. iostreams are used to convert typed objects into readable
text, and vice versa. Streams may also read and write binary data.
The C++ language allows you to define or overload I/O functions
and operators that are then called automatically for correspond­
ing user-defined types.

What is a stream?

A stream is an abstraction referring to any flow of data from a
source (or producer) to a sink (or consumer). We also use the syno­
nyms extracting, getting, and fetching when speaking of inputting
characters from a source; and inserting, putting, or storing when
speaking of outputting characters to a sink. Classes are provided
that support console output (constrea.h), memory buffers .
(iostream.h), files (fstream.h), and strings (strstrea.h) as sources or
sinks (or both).

Chapter 5, Using C++ streams 181

The iostream library

182

The streambuf

The iostream library has two parallel families of classes: those
derived from streambuf, and those derived from ios. Both are
low-level classes, each doing a different set of jobs. All stream
classes have at least one of these two classes as a base class.
Access from ios-based classes to streambuf-based classes is
through a pointer.

class The streambuf class provides an interface to physical devices.
streambuf provides general methods for buffering and handling
streams when little or no formatting is required. streambuf is a
useful base class employed by other parts of the iostream library,
though you can also derive classes from it for your own functions
and libraries. The classes conbuf, filebuf and strstreambuf are
derived from streambuf.

Figure 5.1
Class streambuf and its

derived classes

The ios class
The class ios (and hence any of its derived classes) contains a
pointer to a streambuf. It performs formatted I/O with error­
checking using a streambuf.

An inheritance diagram for all the ios family of classes is found in
Figure 5.2. For example, the ifstream class is derived from the
istream and fstreambase classes, and istrstream is derived from
istream and strstreambase. This diagram is not a simple hier­
archy because of the generous use of multiple inheritance. With
tnultiple inheritance, a single class can inherit from more than one
base class. (The C++ language provides for virtual inheritance to
avoid multiple declarations.) This means, for example, that all the
members (data and functions) of iostream, istream, ostream,
fstreambase, and ios are part of objects of the fstream class. All
classes in the ios-based tree use a streambuf (or a fHebuf or
strstreambuf, which are special cases of a streambuf) as its source
and/or sink.

Borland C++ Programmer's Guide

Figure 5.2
Class ios and its derived

classes

By accepted practice, the
arrows point from the derived

class to the base class.

Output

c++ programs start with four predefined open streams, declared
as objects of withassign classes as follows:

extern istream_withassign cin;
extern ostream_withassign cout;
extern ostream_withassign cerri
extern ostream_withassign clog;

II Corresponds to stdin
II Corresponds to stdout
II Corresponds to stderr
II A buffered cerr

ostream_withassign

Stream output is accomplished with the insertion (or put to) opera­
tor, «. The standard left shift operator, «, is overloaded for out­
put operations. Its left operand is an object of type ostream. Its
right operand is any type for which stream output has been
defined (that is, fundamental types or any types you have over­
loaded it for). For example,

Chapter 5, Using C++ streams 183

184

Fundamental
types

Output
formatting

cout « "Hello!\n";

writes the string "Hello!" to cout (the standard output stream,
normally your screen) followed by a new line.

The« operator associates from left to right and returns a
reference to the ostream object for which it is invoked. This
allows several insertions to be cascaded as follows:

int i = 8;
double d = 2.34;

cout « "i = n « i « ", d = n « d « "\n";

This will write the following to standard output:

i = 8, d = 2.34

The fundamental data types directly supported are char, short,
int, long, char* (treated as a string), float, double, long double,
and void*. Integral types are formatted according to the default
rules for printf (unless you've changed these rules by setting
various ios flags). For example, the following two output
statements give the same result:·

int i;
long 1;
cout « i « " " « 1;·
printf("%d %ld", i, 1);

The pointer (void *) inserter is used to display pointer addresses:

int i;
cout « &i; II display pointer address in hex

Read the description of the ostream class (page 205) for other
output functions.

Formatting for both input and output is determined by various
format state flags contained in the class ios. The format flags are as
follows:

public:
enum {

skipws,
left,
right,

II skip whitespace on input
II left-adjust output
II right-adjust output

Borland C++ Programmer's Guide

Manipulators

Parameterized manipulators
must be called for each

stream operation.

}i

internal,
dec,
oct,
hex,
showbase,
showpoint,
uppercase,
showpos,
scientific,

fixed,
uni tbuf,
stdio,

II pad after sign or base indicator
II decimal conversion
II octal conversion
II hexadecimal conversion
II show base indicator on output
II show decimal point (floating-point output)
II uppercase hex output
II show '+' with positive integers
II suffix floating-point numbers with exponential (E)

notation on output
II us~ fixed decimal point for floating-point numbers
II flush all streams after insertion
II flush stdout, stderr after insertion

These flags are read and set with the flags, setf, and unsetf
member functions (see class ios starting on page 199).

A simple way to change some of the format variables is to use a
special function-like operator called a manipulator. Manipulators
take a stream reference as an argument and return a reference to
the same stream. You can embed manipulators in a chain of
insertions (or extractions) to alter stream states as a side effect
without actually performing any insertions (or extractions). For
example,

#include <iostream.h>
#include <iomanip.h> II Required for parameterized manipulators.

int main (void) {
int i = 6789, j = 1234, k = 10;

cout « setw(6)« «j« i « k « ji
cout « "\n";
cout « setw(6)« «setw(6)« «setw(6) .« k;
return(O)i
}

Produces this output:

678912346789101234
6789 1234 10

setw is a parameterized manipulator declared in iomanip.h. Other
parameterized manipulators, setbase, setfill, setprecision,
setiosflags and resetiosflags, work in the same way. To make use

Chapter 5, Using C++ streams 185

186

Table 5.1
Stream manipulators

of these, your program must include iomanip.h. You can write
your own manipulators without parameters:

#include <iostream.h>

II Tab and prefix the output with a dollar sign.
ostream& money (ostream& output) {

return output « "\t$";
}

int main (void) {
float owed = 1.35, earned = 23.1;
cout « money « owed « money « earned;
return (0) ;
}

produces the following output:

$1.35 $23.1

The non-parameterized manipulators dec, hex, and oct (declared
in iostream.h) take no arguments and simply change the
conversion base (and leave it changed):

int i = 36;
cout « dec « i « " " « hex « i « " " « oct« «endl;
cout «dec; II Must reset to use decimal base.
II displays 36 24 44

Manipulator

dec
hex
oct
ws
endl
ends
flush
setbase(int n)

resetiosflags(long j)
setiosflags(long j)
setfill(int c)
setprecision(int n)
setw(int n)

Action

Set decimal conversion base format flag.
Set hexadecimal conversion base format flag.
Set octal conversion base format flag.
Extract whitespace characters.
Insert newline and flush stream.
Insert terminal null in string.
Flush an ostream.
Set conversion base format to base n (0,8, 10, or
16). a means the default: decimal on output,
ANSI C rules for literal integers on input.
Clear the format bits specified by f.
Set the format bits specified by f.
Set the fill character to c.
Set the floating-point precision to n.
Set field width to n.

The manipulator endl inserts a newline character and flushes the
stream. You can also the flush an ostream at any time with

ostream « flush;

Borland C++ Programmer's Guide

Input

Filling and
padding The fill character and the direction of the padding depend on the

setting of the fill character and the left, right, and internal flags.

The default fill character is a space. You can vary this by using the
function fill:

int i = 123;
cout.fill('*');
cout.width(6);
cout « ij II display ***123

The default direction of padding gives right-justification (pad on
the left). You can vary these defaults (and other format flags) with
the functions setf and unsetf:

int i = 56j

cout.width(6)j
cout.fill('#')j
cout.setf(ios::left,ios::adjustfield) ;
cout « i; II display 56####

The second argument, ios::adjustfield, tells setf which bits to set.
The first argument, ios::left, tells setf what to set those bits to.
Alternatively, you can use the manipulators setfill, setiosflags,
and resetiosflags to modify the fill character and padding mode.
See ios data members on page 199 for a list of masks used by setf.

Stream input is similar to output but uses the overloaded right
shift operator, », known as the extraction (get from) operator, or
extractor. The left operand of» is an object of type class istream.
As with output, the right operand can be of any type for which
stream input has been defined.

By default,» skips whitespace (as defined by the isspace func­
tion in ctype.h), then reads in characters appropriate to the type of
the input object. Whitespace skipping is controlled by the
ios::skipws flag in the format state's enumeration. The skipws flag is
normally set to give whitespace skipping. Clearing this flag (with
setf, for example) turns off whitespace skipping. There is also a
special "sink'" manipulator, ws, that lets you discard whitespace.

Chapter 5, Using C++ streams 187

Consider the following example:

int i;
double d;
cin » i » d;

When the last line is executed, the program skips any leading.
whitespace. The integer value (i) is then read. Any whitespace
following the integer is ignored. Finally, the floating-point value
(d) is read.

For type char (signed or unsigned), the effect of the» operator is
to skip whitespace and store the next (non-whitespace) character.
If you need to read the next character, whether it is whitespace or
not, you can use one of the get member functions (see the
discussion of istream, beginning on page 202).

For type char* (treated as a string), the effect of the » operator is
to skip whitespace and store the next (non-whitespace) characters
until another whitespace character is found. A final null character
is then appended. Care is needed to avoid "overflowing" a string.
You can alter the default width of zero (meaning no limit) using
width as follows:

char array[SIZE];
cin.width(sizeof(array));
cin » array; II Avoids overflow.

For all input of fundamental types, if only whitespace is encoun­
tered nothing is stored in the target, and the istream state is set to
fail. The target will retain its previous value; if it was uninitial­
ized, it remains uninitialized.

I/O of user-defined types

188

To input or output your own defined types, you must overload
the extraction and insertion operators. Here is an example:

#include <iostream.h>

struct info {
char *name;
double val;
char *units;
};

II You can overload « for output as follows:
ostream& operator « (ostream& s, info& m) {

Borland C++ Programmer's Guide

Simple file I/O

s « m.name « II II « m.val « II II « m.unitsi
return Si

}i

II You can overload » for input as follows:
istream& operator » (istream& s, info& m) {

s » m.name » m.val » m.unitsi
return Si

}i

int main (void)
info Xi

x.name = new char[15]i
x.units = new char[lO]i

cout « "\nInput name, value and units: "i
cin » Xi

cout « II \nMy input: II « Xi

return(O) i
}

The class of stream inherits the insertion operations from ostream,
while ifstream inherits the extraction operations from istream.
The file-stream classes also provide constructors and member
functions for creating files and handling file I/O. You must
include fstream.h in all programs using these classes.

Consider the following example that copies the file FILE.lN to the
file FILE.OUT:

#include <fstream.h>

int main (void) {
char Chi

ifstream f1("FILE.IN")i
of stream f2("FILE.OUT")i

if (! f1) cerr « "Cannot open FILE. IN for input "i
if (!f2) cerr « "Cannot open FILE.OUT for output"i
while (f2 && fl.get(ch))

f2 .put (ch) i

return(O)i
}

Note that if the ifstream or of stream constructors are unable to
open the specified files, the appropriate stream error state is set.

Chapter 5, Using C++ streams 189

Table 5.2
File modes

The constructors allow you to declare a file stream without speci­
fying a named file. Later, you can associate the file stream with a
particular file:

of stream ofilei II creates output file stream

ofile.open("payroll")i II ofile connects to file II payroll II
II do some payrolling ...

ofile.close() i II close the ofile stream
ofile.open("employee")i II ofile can be reused ...

By default, files are opened in text mode. This means that on in­
put, carriage-return/linefeed sequences are converted to the '\n'
character. On output, the '\n' character is converted to a carriage­
return/linefeed sequence. These translations are not done in
binary mode. The file opening mode is set with an optional
second parameter to the open function, chosen from the following
table:

Mode bit

ios::app
ios::ate
ios::in
ios::out
ios::binary
ios::trunc

ios::nocreate
ios:: noreplace

Action

Append data-always write at end of file.
Seek to end of file upon original open.
Open for input (default for ifstreams).
Open for output (default for of streams).
Open file in binary mode.
Discard contents if file exists (default if
ios::out is specified and neither ios::ate nor
ios::app is specified).
If file does not exist, open fails.
If file exists, open for output fails unless ate or
app is set.

String stream processing

190

The functions defined in strstrea.h support in-memory formatting,
similar to sscanf and sprintf, but much more flexible. All of the
istream functions are available for the class istrstream (input
string stream"); likewise for output: ostrstream inherits from
ostream.

Given a text file with the following format:

101 191 Cedar Chest
102 1999.99 Livingroom Set

Borland C++ Programmer's Guide

Each line can be parsed into three components: an integer ID, a
floating-point price, and a description. The output produced is:

1: 101 191.00 Cedar Chest
2: 102 1999.99 Livingroom Set

Here is the program:

#include <fstream.h>
#include <strstrea.h>
#include <iomanip.h>
#include <string.h>

int main(int argc, char **argv) {
int id;
float amount;
char description[41];
ifstream inf(argv[l]);

if (inf) {
char inbuf [81] ;
int lineno = 0;

II Want floats to print as fixed point
cout.setf(ios: :fixed, ios::floatfield);

II Want floats to always have decimal point
cout.setf(ios::showpoint) ;

while (inf.getline(inbuf,81)) {
II 'ins' is the string stream:
istrstream ins (inbuf,strlen(inbuf));
ins » id » amount » ws;
ins.getline(description,41); II Linefeed not copied.
cout « ttlineno « ": "

« id « '\t'
« setprecision(2) « amount « '\t'
« description « "\n";

return (0) ;

Note the use of format flags and manipulators in this example.
The calls to setf coupled with setprecision allow floating-point
numbers to be printed in a money format. The manipulator ws
skips whitespace before the description string is read.

Chapter 5, Using C++ streams 191

Screen output streams

The class constream, derived from ostream and defined in
constrea.h, provides the functionality of conio.h for use with C++
streams. This allows you to create output streams that write to
specified areas of the screen, in specified colors, and at specific
locations.

.. As with conio.h functions, constreams are not compatible with
Windows. The screen area created by constream is not bordered
or otherwise disinguished from the surrounding screen.

Table 5.3
Console stream manipulators

Typical use of parameterized
manipulators.

192

Console stream manipulators are provided to facilitate formatting
of console streams. These manipulators work in the same way as
the corresponding function provided by conio.h. For a detailed
description of the manipulators' behavior and valid arguments,
see the Library Reference.

Manipulator conic function

clreol clreol

delline delline

highvideo highvideo

insline insline

lowvideo lowvideo

normvideo normvideo

setaHr(int) textaHr
setbk(int) textcolor
setclr(int) textcolor
setcrstype(int) _setcursortype
setxy(int, int) gotoxy

#include <constrea.h>

int main (void) {
constream winl;

Action

Clears to end of line in text
window.
Deletes line in the text
window.
Selects high-intensity
characters.
Inserts a blank line in the
text window.
Selects low-intensity
characters.
Selects normal-intensity
characters.
Sets screen attributes.
Sets new character color.
Set the color.
Selects cursor appearance.
Positions the cursor at the
specified position.

winl;window(l, 1, 40, 20); II Initialize the desired space.
winl.clrscr() i II Clear this rectangle.

II Use the parameterized manipulator to set screen attributes.
winl « setattr((BLUE«4) I WHITE)

Borland C++ Programmer's Guide

You can create multiple
constreams, each writing to

its own portion of the screen.
Then, you can output to any
them without having to reset

the window each time.

« "This text is white on blue.";

II Use this parameterized manipulator to specify output area.
winl « setxy(10, 10)

« "This text is in the middle of the window.";
return(O) ;
}

#include <constrea.h>

int main(void) {
constream demol, demo2;

demol.window(I, 2, 40, 10);
demo2.window(I, 12, 40, 20);

demol. clrscr () ;
demo2. clrscr () ;

demol « "Text in first window" « endl;
demo2 « "Text in second window· « endl;
demol « "Back to the first window" « endl;
demo2 « "And back to the second window" « endl;
return(O) ;
}

Stream class reference

The stream class library in C++ consists of several classes. This
reference presents some of the most useful details of these classes,
in alphabetical organization. The following cross-reference lists
tell which classes belong to which header files.

constrea.h:

iostream.h:

fstream.h:

strstrea.h:

Chapter 5, Using C++ streams

conbuf, constream

ios, iostream, iostream_withassign, istream,
istream_withassign, ostream,
ostream_withassign, streambuf.

filebuf, fstream, fstreambase, ifstream,
of stream.

istrstream, ostrstream, strstream,
strstreambase, strstreambuf.

193

conbuf

conbuf <constrea. h>

194

Specializes streambuf to handle console output.

constructor conbuf ()

Member
functions

Makes an unattached conbuf.

clreol void clreol ()

Clears to end of line in text window.

clrscr void clrscr ()

Clears the defined screen.

delline void delline ()

Deletes a line in the window.

gotoxy void gotoxy (int X, int y)

Positions the cursor in the window at the specified location.

highvideo 'void highvideo ()

Selects high-intensity characters.

insline void ins line ()

Inserts a blank line.

lowvideo void lowvideo ()

Selects low-intensity characters.

normvideo void normvideo ()

Selects normal-intensity characters.

overflow virtual int overflow (int = EOF)

Flushes the conbuf to its destination.

setcursortype void setcursortype (int cur_type)

Selects the cursor appearance.

textattr void textattr(int newattributel

Selects cursor appearance.

Borland C++ Programmer's Guide

textbackground void textbackground (int newcolor)

Selects the text background color.

textcolor void textcolor (int newcolor)

Selects character color in text mode.

textmode static void textmode (int newmode)

Puts the screen in text mode.

wherex int wherex ()

Gets the horizontal cursor position.

wherey int wherey ()

Gets the vertical cursor position.

window void window(int left, int top, int right, int bottom)

Defines the active window.

constream

conbuf

<constrea.h>

Provides console output streams. This class is derived from ostream.

constructor constream()

Member
functions

Provides an unattached output stream to the console.

clrscr void clrscr ()

Clears the screen.

rdbuf conbuf *rdbuf ()

Returns a pointer to this constream's assigned conbuf.

textmode void textmode(int newmode)

Puts the screen in text mode.

window void window(int left, int top, int right, int bottom)

Defines the active wiridow.

Chapter 5, Using C++ streams 195

filebuf

filebuf <fstreom.h>

196

Specializes streambuf to handle files.

constructor filebuf () ;

Makes a filebuf that isn't attached to a file.

constructor filebuf (int fd);

Makes a filebuf attached to a file as specified by file descriptor fd.

constructor filebuf (int fd, char *, int n);

Member
functions

Makes a filebuf attached to a file and uses a specified n-character buffer.

attach filebuf* attach(int)

Attaches this closed filebuf to opened file descriptor.

close filebuf* closet)

Flushes and closes the file. Returns 0 on error.

fd Returns the file descriptor or EOF.

is_open int is_open () ;

Returns nonzero if the file is open.

open filebuf* open (const char*, int mode, int prot = filebuf:: openprot) ;

Opens the given file and connects to it.

overflow virtual int overflow (int = EOF);

Flushes a buffer to its destination. Every derived class should define the
actions to be taken.

seekoff virtual streampos seekoff (streamoff, ios:: seek_dir, int);

Moves the file pointer relative to the current position.

setbuf virtual streambuf* setbuf(char*, int);

Specifies a buffer for this filebuf.

sync virtual int sync();

Establishes consistency between internal data structures and the external
stream representation.

Borland C++ Programmer's Guide

filebuf

underflow virtual int underflow () ;

Makes input available. This is called when no more data exists in the
input buffer. Every derived class should define the actions to be taken.

fstream <fstream.h>

This stream class, derived from fstreambase and iostream, provides for
simultaneous input and output on a filebuf.

constructor fstream() ;

Makes an fstream that isn't attached to a file.

constructor fstream(const char*, int, int = filebuf::openprot);

Makes an fstream, opens a file, and connects to it.

constructor f stream (int) ;

Makes an fstream, connects to an open file descriptor.

constructor fstream(int , char* lint);

Makes an fstream connected to an open file and uses a specified buffer.

Member
functions

open void open (const char* I int lint f ilebuf : : openprot) ;

Opens a file for an fstream.

rdbuf filebuf* rdbuf () ;

Returns the filebuf used.

fstreambase <fstream.h>

This stream class, derived from ios, provides operations common to file
streams. It serves as a base for fstream, ifstream, and of stream.

constructor fstreambase () ;

Makes an fstreambase that isn't attached to a file.

Chapter 5, Using C++ streams 197

fstreambase

constructor fstrearnbase (const char* I int lint = filebuf:: openprot) ;

Makes an fstreambase, opens a file, and connects to it.

constructor fstrearnbase (int) ;

Makes an fstreambase, connects to an open file descriptor.

constructor fstrearnbase (int I char* lint) ;

Member
functions

Makes an fstreambase connected to an open file and uses a specified
buffer.

attach void attach (int) ;

Connects to an open file descriptor.

close void closet);

Closes the associated filebuf and file.

open void open(const char* I int, int = filebuf: :openprot);

Opens a file for an fstreambase.

rdbuf filebuf* rdbuf () ;

Returns the filebuf used.

setbuf void setbuf (char* lint) ;

Uses a specified buffer.

ifstream <fstream,h>

198

This stream class, derived from fstreambase and istream, provides input
operations on a filebuf.

constructor ifstream() ;

Makes an ifstream that isn't attached to a file.

constructor ifstream(const char*, int = ios::in , int = filebuf::openprot);

Makes an ifstream, opens an input file in protected mode, and connects to
it. The existing file contents are preserved; new writes are appended.

Borland C++ Programmer's Guide

ios

constructor ifstream(int);

Makes an ifstream, connects to an open file descriptor.

constructor ifstream(int fd, char *, int);

ifstream

Makes an ifstream connected to an open file and uses a specified buffer.

Member
functions

open void open (const char*, int, int f ilebuf: : openprot) ;

Opens a file for an ifstream.

rdbuf filebuf* rdbuf () ;

Returns the filebuf used.

<iostream.h>

Provides operations common to both, input and output. Its derived
classes (istream, ostream, iostream) specialize I/O with high-level
formatting operations. The ios class is a base for istream, ostream,
fstreambase, and strstreambase.

constructor ios () ; protected

Constructs an ios object that has no corresponding streambuf.

constructor ios (streambuf *);

Data
members

Associates a given streambuf with the stream.

static const long adjustfield; / / left I right I internal
static const long basefield; / / dec I oct I hex
static const long floatfield; / / scientific I fixed
streambuf *bp; / / the associated streambuf
int x_fill ; / / padding character on

/ / output
long x_flags; / / formatting flag bits
int x-precision; / / floating-point precision on

/ / output

protected

protected
protected

protected

Chapter 5, Using C++ streams 199

ios

200

Member
functions

int

ostrearn
int

bad int bad () ;

state;

*x_tie;
x_width;

Nonzero if error occurred.

bitalloc static long bitalloc () ;

/ / current state of the
/ / streambuf

/ / the tied ostream, if any
/ / field width on output

protected
protected
protected

Acquires a new flag bit set. The return value may be used to set, clear, and
test the flag. This is for user-defined formatting flags.

clear void clear (int = 0);

Sets the stream state to the given value.

eof int eof () ;

Nonzero on end of file.

fail int fail () ;

Nonzero if an operation failed.

fill char fill ()

Returns the current fill character.

fill char fill (char) ;

Resets the fill character; returns the previous one.

flags long flags () i

Returns the current format flags.

flags long flags (long) ;

Sets the format flags to be identical to the given long; returns previous
flags. Use 1Iag5(0) to set the default format.

good int good () ;

Nonzero if no state bits set (that is, no errors appeared).

init void ini t (strearnbuf *); protected

Provides the actual initialization.

Borland C++ Programmer's Guide

precision int precision () ;

Returns the current floating-point precision.

precision int precision (int) ;

Sets the floating-point precision; returns previous setting.

rdbuf streambuf* rdbuf () ;

Returns a pointer to this stream's assigned streambuf.

rdstote int rdstate();

Returns the stream state.

seH long setf (long);

Sets the flags corresponding to those marked in the given long; returns
previous settings.

seH long setf (long _setbits, long _field);

The bits corresponding to those marked in _field are cleared, and then
reset to be those marked in _setbits.

setstote protected:void setstate(int);

Sets all status bits.

sync_with_stdio static void sync_with_stdio ();

Mixes stdio files and iostreams. This should not be used for new code.

He ostream* tie();

ios

Returns the tied stream, or zero if none. Tied streams are those that are
connected such that when one is used, the other is affected. For example,
cin and cout are tied; when cin is used, it flushes cout first.

tie ostream* tie (ostream*) ;

Ties' another stream to this one and returns the previously tied stream, if
any. When an input stream has characters to be consumed, or if an output
stream needs more characters, the tied stream is first flushed automati­
cally. By default, cin, cerr and clog are tied to cout.

unseH long unsetf (long) ;

Clears the bits corresponding to those marked in the given long; returns
previous settings.

Chapter 5, Using C++ streams 201

ios

width int width () i

Returns the current width setting.

width int width (int) i

Sets the width as given; returns the previous width.

xalloc static int xalloc () i

Returns an array index of previously unused words that can be used as
user-defined formatting flags.

iostream <iostream. h>

This class, derived from istream and ostream, is simply a mixture of its
base classes! allowing both input and output on a stream. It is a base for
fstream and strstream.

constructor iostrearn (streambuf *) i

Associates a given streambuf with the stream.

iostream_ withassign <iostream. h>

This class is an iostream with an added assignment operator.

constructor iostrearn_wi thassign () i

Member
functions

Default constructor (calls iostream's constructor).

None (although the = operator is overloaded).

istream <iostream.h>

202

Provides formatted and unformatted input from a streambuf. The»
operator is overloaded for all fundamental types, as explained in the
narrative at the beginning of the chapter. This ios class is a base for
ifstream, iostream, istrstream, and istream_withassign.

Borland C++ Programmer's Guide

istream

constructor istream(streambuf *);

Member
functions

Associates a given streambuf with the stream.

gcount int gcount () ;

Returns the number of characters last extracted.

get int get () ;

Extracts the next character or EOP.

get istream& get (signed chart, int len, char = '\n');
istream& get (unsigned chart, int len, char = '\n');

Extracts characters into the given char * until the delimiter (third
parameter) or end-of-file is encountered, or until (len -1) bytes have been
read. A terminating null is always placed in the output string; the
delimiter never is. Fails only if no characters were extracted.

get istream& get (signed char&);
istream& get (unsigned char&);

Extracts a single character into the given character reference.

get istream& get (streambuf&, char = ' \n');

Extracts characters into the given streambuf until the delimiter is
encountered.

getline istream& getline(signed char *buffer, int, char = '\n');
istream& getline(unsigned char *buffer, int, char = '\n');

Same as get, except the delimiter is also extracted. The delimiter is not
copied to buffer.

ignore istream& ignore(int n = 1, int delim = EOF);

Causes up to n characters in the input stream to be skipped; stops if delim
is encountered.

peek int peek () ;

Returns next char without extraction.

putback istream& putback (char) ;

Pushes back a character into the stream.

Chapter 5, Using C++ streams 203

istream

read istrearn& read (signed char*, int);
istrearn& read(unsigned char*, int);

Extracts a given number of characters into an array. Use gcountO for the
number of characters actually extracted if an error occurred.

seekg istrearn& seekg (long) ;

Moves to an absolute position (as returned from tellg).

seekg istrearn& seekg (long, seek_dir);

Moves to a position relative to the current position, following the
definition: enum seek_dir {beg, cur, end};

teUg long tellg () i

Returns the current stream position.

istream_ withassign <iostream.h>

This class is an istream with an added assignment operator.

constructor istrearn_wi thassign () ;

Member
functions

Default constructor (calls istream's constructor).

None (although the = operator is overloaded).

istrstream <strstrea. h>

204

Provides input operations on a strstreambuf. This class is derived from
strstreambase and istream.

constructor istrstrearn(const char *);

Makes an istrstream with a specified string (a null character is never
extracted).

constructor istrstrearn (canst char *, int n);

Makes an istrstream using up to n bytes of a specified string.

Borland C++ Programmer's Guide

ofstream

ofstream <fstream.h>

Provides input operations on a filebuf. This class is derived from
fstreambase and ostream.

constructor of stream () i

Makes an of stream that isn't attached to a file.

constructor ofstream(const char*, int = ios::out, int = filebuf::openprot)i

Makes an of stream, opens a file, and connects to it.

constructor ofstream(int) i

Makes an of stream, connects to an open file descriptor.

constructor ofstream(int fd, char*, int) i

Makes an of stream connected to an open file and uses a specified buffer.

Member
functions

open void open (const char*, int, int = f ilebuf : : openprot) i

Opens a file for an of stream.

rdbuf filebuf* rdbuf () i

Returns the filebuf used.

ostream <iostream.h>

Provides formatted and unformatted output to a streambuf. The«
operator is overloaded for all fundamental types, as explained on page
183. This ios-based class is a base for constream, iostream, of stream,
ostrstream, and ostream_withassign.

constructor ostream(strearnbuf *) i

Associates a given streambuf with the stream.

Chapter 5, Using C++ streams 205

ostream

Member
functions

flush ostream& flush();

Flushes the stream.

put ostream& put (char);

Inserts the character.

seekp ostream& seekp(long);

Moves to an absolute position (as returned from tellp).

seekp ostream& seekp (long ,seek_dir) ;

Moves to a position relative to the current position, following the
definition: enum seek_dir {beg, cur, end};

tellp long tellp () ;

Returns the current stream position.

write ostream& write (canst signed char*, int n);

ostream& write(const unsigned char*, int n);

Inserts n characters (nulls included).

ostream_ withassign <iostream. h>

This class is an ostream with an added assignment operator.

constructor ostream_wi thassign () ;

Member
functions

Default constructor (calls ostream's constructor).

None (although the = operator is overloaded).

ostrstream <strstrea.h>

206

Provides output operations on a strstreambuf. This class is derived from
strstreambase and ostream.

Borland C++ Programmer's Guide

ostrstream

constructor ostrstream() ;

Makes a dynamic ostrstream.

constructor ostrstream(char*, int, int = ios::out);

Member
functions

Makes a ostrstream with a specified n-byte buffer. If mode is ios::app or
ios::ate, the get/put pointer is positioned at the null character of the
string.

pcount char *pcount () ;

Returns the number of bytes currently stored in the buffer.

str char *str () ;

streambuf

constructor

constructor

Member
functions

allocate

base

bien

Returns and freezes the buffer. You must deallocate it if it was dynamic.

<iostream.h>

This is a buffer-handling class. Your applications gain access to buffers
and buffering functions through a pointer to streambuf that is set by ios.
streambuf is a base for filebuf and strstreambuf.

streambuf();

Creates an empty buffer object.

streambuf(char *, int);

Uses the given array and size as the buffer.

int allocate () ; protected

Sets up a buffer area.

char *base(); protected

Returns the start of the buffer area.

int blen(); protected

Returns the length of buffer area.

Chapter 5, Using C++ streams 207

streambuf

208

eback char * eback () ;

Returns the base of putback section of get area.

ebut char *ebuf () ;

Returns the end + 1 of the buffer area.

egptr char *egptr();

Returns the end + 1 of the get area.

epptr char *epptr();

Returns the end+l of the put area.

gbump void gbump(int);

Advances the get pointer.

gptr char *gptr();

Returns the next location in get area.

in_avail int in_avail () ;

Returns the number of characters remaining in the input buffer.

ouCwaiting int out_waiting ();

Returns the number of characters remaining in the output buffer.

protected

protected

protected

protected

protected

protected

pbose char *pbase () ; protected

Returns the start of put area.

pbump void pbump (int) ;

Advances the put pointer.

pptr char *pptr () ;

Returns the next location in put area.

sbumpc int sbumpc () ;

protected

protected

Returns the current character from the input buffer, then advances.

seekoff virtual streampos seekoff(streamoff, ios: :seek_dir,
int = (ios::in I ios::out);

Moves the get or put pointer (the third argument determines which one or
both) relative to the current position.

Borland C++ Programmer's Guide

streambuf

seekpos virtual streampos seekpos (streampos, int = (ios:: in I ios:: out)) ;

Moves the get or put pointer to an absolute position.

setb void setb(char *, char *, int = 0);

Sets the buffer area.

setbuf virtual streambuf* setbuf(signed char *, int);
streambuf* setbuf(unsigned char *, int);

Connects to a given buffer.

setg void setg(char *, char *, char *);

Initializes the get pointers.

setp void setp(char *, char *);

Initializes the put pointers.

sgetc int sgetc () ;

Peeks at the next character in the input buffer.

sgetn int sgetn (char*, int n);

Gets the next n characters from the input buffer.

snextc int snextc () ;

protected

protected

protected

Advances to and returns the next character from the input buffer.

sputbackc int sputbackc (char) ;

Returns a character to input.

sputc int sputc (int) ;

Puts one character into the output buffer.

sputn int sputn(const char*, int n);

Puts n characters into the output buffer.

stossc void stossc();

Advances to the next character in the input buffer.

unbuffered void unbuffered(int);

Sets the buffering state.

unbuffered int unbuf fered () ;

Returns non-zero if not buffered.

Chapter 5, Using C++ streams

protected

protected

209

strstreombase

strstreambase <strstrea. h>

Specializes ios to string streams. This class is entirely protected except for
the member function strstreambase::rdbufO. This class is a base for
strstream, istrstream, and ostrstream.

constructor strstreambase () ;

Makes an empty strstreambase.

constructor strstreambase(char *, int, char *start);

protected

protected

Makes an strstreambase with a specified buffer and starting position.

Member
functions

rdbuf strstreambuf * rdbuf () ;

Returns a pointer to the strstreambuf associated with this object.

strstreambuf <strstrea.h>

210

Specializes streambuf for in-memory formatting.

constructor strstreambuf () ;

Makes a dynamic strstreambuf. Memory will be dynamically allocated as
needed.

constructor s trs treambuf (void * (*) (long), void (*) (void *));

Makes a dynamic buffer with specified allocation and free functions.

constructor strstreambuf (int n);

Makes a dynamic strstreambuf, initially allocating a buffer of at least n
bytes.

constructor strstreambuf (signed char *, int, signed char *end = 0);
strstreambuf(unsigned char *, int, unsigned char *end = 0);

Makes a static strstreambuf with a specified buffer. If end is not null, it
delimits the buffer.

Borland C++ Programmer's Guide

strstreambuf

Member
functions

doallocate virtual int doallocate () i

Performs low-level buffer allocation.

fr~eze void freeze (int = 1) i

If the input parameter is nonzero, disallows storing any characters in the
buffer. Unfreeze by passing a zero.

overflow virtual int overflow (int = EOF) i

Flushes a buffer to its destination. Every derived class should define the
actions to be taken.

seekoff virtual streampos seekoff (streamoff, ios:: seek_dir, int) i

Moves the pointer relative to the current position.

setbuf virtual streambuf* setbuf(char*, int)i

Specifies the buffer to use.

str char *str () i

Returns a pointer to the buffer and freezes it.

underflow virtual int underflow () i

Makes input available. This is called when a character is requested and
the strstreambuf is empty. Every derived class should define the actions to
be taken.

strstream <strstrea.h>

Provides for simultaneous input and output on a strstreambuf. This class
is derived from strstreambase and iostream.

constructor strstream() i

Makes a dynamic strstream.

constructor strstream(char*, int n, int mode) i

Makes a strstream with a specified n-byte buffer. If mode is ios: :app or
ios::ate, the get/put pointer is positioned at the null character of the
string.

Chapter 5, Using C++ streams 211

strstream

Member
function

str char *str () ;

212

Returns and freezes the buffer. The user must deallocate it if it was
dynmnic.

Borland C++ Programmer's Guide

c H

For more information about
templates, see Chapter 3,

"C++ specifics. "

A p T E R

6

The container class libraries

Borland C++ version 3.0 includes two complete container class
libraries: an enhanced version of the Object-based library
supplied with version 2.0, plus a brand-new implementation
based on templates. This chapter describes both libraries. We
assume that you are familiar with the syntax and semantics of
C++ and with the basic concepts of object-oriented programming
(OOP). To understand the template-based version (called BIDS,
for Borland International Data Structures), you should be
acquainted with C++'s new template mechanism.

The chapter is divided into seven parts:

• A review of the difference between versions 2.0 and 3.0 of the
class libraries

• An overview of the Object- and template-based libraries
• A survey of the Object container classes, introducing the basic

concepts and terminology
~ An overview of the BIDS library
• The CLASSLIB directory and how to use it
• The new debugging tools
• An alphabetic reference guide to the Object container library,

listing each class and its members

Chapter 6, The container class libraries 213

What's new since version 2.0?

When you choose Container
Class Library in the IDE's Link

Libraries dialog box, the
Object-based libraries will be

automatically linked in.

214

The version 2.0 container library is an Object-based implemen­
tation. Both container objects and the elements stored in them are
all ultimately derived from the class Object. Further, the data
structures used to implement each container class were fixed and
(usually) hidden from the programmer. This provides a simple,
effective model for most container applications. Version 3.0
therefore offers an enhanced, code-compatible version of the
previous Object-based container library. We call this the Object
container class library. In addition, a more flexible (but more
complex), template-based container library, called BIDS (Borland
International Data Structures), is supplied with version 3.0.
Through the power of templates, BIDS lets you vary the under­
pinning data structure for a container and lets you store arbitrary
objects in a container. With the appropriate template parameters,
BIDS can actually emulate the Object container library.

Before we review the differences between the Object and BIDS
models, we'll list the changes to the Object container library since
version 2.0:

• New Btree and PriorityQueue classes.
• New TShouldDelete class gives the programmer control over

container / element ownership. You can control the fate of
objects when they are detached from a container and when the
container is flushed (using the new flush method) or destroyed.

• New memory management classes, MemBlocks and MemStack,
for efficient memory block and memory stack (mark-and­
release) allocations.

• New PRECONDITION and CHECK macros provide sophisti­
cated assert mechanisms to speed application development
and debugging.

• New Timer class gives you a stopwatch for timing program
execution (not in Microsoft Windows).

• New DLL library and support for Windows applications.

Existing Borland C++ version 2.0 container class code will still run
with the version 3.0 libraries. The new Object container class
libraries, in directory /CLASSLIB, are distinguished by the prefix
TC: TCLASSx.LIB, TCLASDBx.LIB, TCLASDLL.LIB, and
TCLASS.DLL, where x specifies the memory model, and DB
indicates the special debug versions. To reduce verbiage, we will

Borland C++ Programmer's Guide

To use the template-based
libraries, you must explicitly

add the appropriate
BIDS(DB)x.LlB library to your

project or makefile.

often refer to this container implementation as the Object or TC
version.

The corresponding libraries for the new template-based container
classes are distinguished by the prefix BIDS: BIOSx.LIB,
BIOSOBx.LIB, BIOSOLL.LIB, and BIOS.OLL. Let's review the
reasons for having two sets of container libraries. The use of all
these libraries is covered on page 238.

Why two sets of libraries?

Existing code based on the
Object container classes will

compile and run perfectly
using the new BIDS classes,

just by linking in the
appropriate library.

The Object container classes have been retained and enhanced to
provide code compatibility with the version 2.0 library. They
provide a gentler learning curve than the template-based BIDS
library. The Object container code offers faster compilation but
slightly slower execution than the template version. The project
files for the example and demo programs are set up to use the
Object version of the container libraries.

BIDS exploits the new exciting templates feature of C++ 2.1. It
offers you considerable flexibility in choosing the best underlying
data structure for a given container application. With the Object
version, each container is implemented with a fixed data
structure, chosen to meet the space/ speed requirements of most
container applications. For example, a Bag object is implemented
with a hash table, and a Deque object with a double list. With
BIDS you can fine-tune your application by varying the container
implementation with the minimum recoding-often a single
typedef will suffice. You can switch easily from StackAsList to
StackAsVector and test the results. In fact, you'll see that by setting
appropriate values for <T>, a generic class parameter, you can
implement the Object model exactly. With BIDS, you can even
choose between polymorphic and non-polymorphic implementa­
tions of the Object container model. Such choices between
execution speed (non-polymorphic) and future flexibility
(polymorphic) can be tested without major recoding.

Both the Object and BIDS versions provide the same functional
interface. For example, the push and pop member functions work
the same for all Stack objects. This makes the new template-based
libraries highly compatible with existing code written for the
Object library.

Chapter 6, The container class libraries 215

The objects stored in Object library containers must be derived
from the class Object. To store ints, say, you would have to derive
an Integer class from Object (you'll see how later). With BIDS you
have complete freedom and direct control over the types of
objects stored in a container. The stored data type is simply a
value passed as a template parameter. For instance,
BI_ListImpdnt> gives you a list of ints, and BI_IBtreeImp<Emp> gives
you a B-tree of pointers to Emp (a user-defined struct).

Regardless of which container class model you elect to use, you
should be familiar with container terminology, the Object class
hierarchy, and the functionality provided for each container type.
Although the classes in the BIDS library have different naming
conventions and special template parameters, the prototypes and
functionality of each class member are the same as those in the
Object library.

Container basics

If you are fully versed in the
Borland C++ 2.0 version of
the container library, you
should first check out the

Object library enhancements
before moving to the

templates section on page
224.

Using ObjectBrowser in
Windows, you can see the

class hierarchy. Here we
highlight the basic structure.

216

We start by describing the Object container class hierarchy as
enhanced for Borland C++ version 3.0. This hierarchy offers a
high degree of modularity through inheritance and
polymorphism. You can use these classes as they are, or you can
extend and expand them to produce an object-oriented software
package specific to your needs.

At the top of the class hierarchy is the Object class (see Figure 6.1),
an abstract class that cannot be instantiated (no objects of its type
can be declared). An abstract class serves as an umbrella for
related classes. As such, it has few if any data members, and some
or all of its member functions are pure virtual functions. Pure
virtual functions serve as placeholders for functions of the same
name and signature intended to be defined eventually in derived
classes. In fact, any class with at least one pure virtual function is,
by definition, an abstract class.

Borland C++ Programmer's Guide

Figure 6.1: Class hierarchies in CLASSLIB

__________ Error

Object ~ ..___----------string //Array
'<:~.. - Sortable ~ Base~ate- ~ate //AbstractArray~

'"'''''' ~ BaseTlme-Tlme// HashTable SortedArray
~~Assoclatlon ~Bag - Set - Dictionary

TShouldDelete <:....",. ~Collectlon~ L" t
~'. ~ ~ IS
';:Container~~ Stack "~DoubleList

"<~~DeqUe - Queue ~'Btree
Memblocks , PriorityQueue

MemStack

~
HaShTablelterator
Listlterator

Contalnerlterator ~ DoubleListlterator
Btreelterator
Arraylterator

Abstract Classes in normal type
Instance Classes in bold type

To enhance your
understanding of the classes,

you can review their
declarations in the source
code files in the CLASSLIB

directory.

Note that TShouldDelete provides a second base (multiple
inheritance) for both Container and Association.

A class derived from an abstract class can provide a body defining
the inherited pure virtual function. If it doesn't, the derived class
remains abstract, providing a base for further derivations. When
you reach a derived class with no pure virtual functions, the class
is called a non-abstract or instance class. As the name implies,
instance classes can be instantiated to provide usable objects.

An abstract class can be the base for both abstract and instance
classes. For example, you'll see that Container, an abstract class
derived from the abstract class Object, is the base for both
Collection (abstract) and Stack (instance).

As you read this chapter, bear in mind that a derived class inherits
and can access all non-private data members and member
functions fro~ all its ancestral base classes. For example, the
Array class does not need to explicitly define a function to print an
array, because its immediate parent class AbstractArray does so.
The Container class, an ancestor further up the Class tree, defines
a different print function that can also be used with an array,
because an array is a container. To determine all the member
functions available to an object, you will have to ascend the class
hierarchy tree. Because the public interface is intended to be
sufficient for applications, object-oriented programming makes a
knowledge of private data members unnecessary; therefore,

Chapter 6, The container class libraries 217

Object-based and
other classes

Class categories

Non-container

private members (with a few exceptions) are not documented in
this chapter.

The Object-based hierarchy contains classes derived from the
class Object (together with some other utility classes). Object pro­
vides a minimal set of members representing what every derived
object must do; these are described in the reference section under
Object (page 279). Both the containers-as-objects and the objects
they store are objects derived (ultimately) from Object. Later
you'll see that the template-based containers can contain objects
of any data type, not just those derived from Object.

The classes in or near the Object hierarchy can be divided into
three groups:

• The non-container classes include Object itself, and those classes
derived from Object, such as String and Date, which cannot
store other objects.

• The container classes (also derived from Object), such as Array
and List, which can store objects of other, usually non-
container, class types. . .

• The helper and utility classes not derived from Object, such as
TShouldDelete, Listlterator and MemStack.

Let's look at each category in more detail, although as with most
OOP topics, they are closely related.

classes The basic non-container classes provided are Object and its three
children: Error (instance), Sortable (abstract), and Association
(instance). Recall that the main purpose of these classes is to
provide objects that can be stored as data elements in con.tainers.
To this end, all Object-derived classes provide a hashing function
allowing any of their objects to be stored in a hash table.

Error class Error is not a normal class; it exists solely to define a unique,
For details on Error see page special object called theErrorObject. A pointer to theErrorObject
271 in the reference section. carries the mnemonic NOOBJECT. NOOBJECTisrather like a

null pointer, but serves the vital function of occupying empty
slots in a container. For example, when an Array object is created
(not to be confused with a traditional C array), each of its
elements will initially contain NOOBJECT.. .

218 Borland C++ Programmer's Guide

Sortable class Sortable is an abstract class from which sortable classes must be
derived. Some containers, known as ordered collections, need to
maintain their elements in a particular sequence. Collections such
as SortedArray and PriorityQueue, for example, must have
consistent methods for comparing the "magnitude" of objects.
Sortable adds the pure virtual function isLessThan to its base,
Object. Classes derived from Sortable need to define IsLessThan
and IsEqual (inherited from Object) for their particular objects.
Using these members, the relational operators <, ==, >, >=, and so
on, can be overloaded for sortable objects. Typical sortable classes
are String, Date, and Time, the objects of which are ordered in the
natural way. Of course, string ordering may depend on your
locale, but you can always override the comparison functions
(another plus for C++).

For more details on Sortable
see page 286 in the

reference section.

Association class
For details on Association see

page 248 in the reference
. section.

Container classes

Distinguish between the container object and the objects it
contains: Sortable is the base for non-container objects; it is not a
base for ordered collections. Every class derived from Object
inherits the isSortable member function so that objects can be
queried as to their "sortability."

Association is a non-container, instance class providing special
objects to be stored (typically) in Dictionary collections. An
Association object, known as an association, is a pair of objects
known as the key and the value. The key (which is unique in the
dictionary) can be used to retrieve the value. Every class derived
from Object inherits the isAssociation member function so that
objects can report whether they are associations or not.

In the Object-based library, all the container storage and access
methods assume that the stored elements are derived from
Object. They are actually stored as references or pointers to
Object offering the advantages and disadvantages of
polymorphism. Most of the container access member functions
are virtual, so a container does not need to "know" how its
contained elements were derived. A container can, in theory,
contain mixed objects of different class types, so proper care is
needed to maintain type-safe linkage. Every class has member
functions called IsA and nameOf, which allow objects to announce
their class ID and name. As you've seen, there are also isSortable
and isAssociation member functions for testing object types.

Chapter 6, The container class libraries 219

220

Containers and
ownership

All the container classes are derived from the abstract Container
class, a child of Object. Container encapsulates just a few simple
properties upon which more specialized containers can be built.
The basic container provides the following functionality:

• Displays its elements
• Calculates its hash value
• Pure virtual slot for counting the number of items with

getitemslnContainer
• Pure virtual slot for flushing (emptying) the container with

flush
• Performs iterations over its elements
• Reports and changes the ownership of its elements (inherited

from TShouldDelete)

So far, our containers have no store, access, or detach methods.
(We can flush the container but we cannot detach individual
elements.) Nor is there a hasMember member function, that is, a
general way of determining whether a given object is an element
of the container. This is a deliberate design decision. As we move
up the hierarchy, you'll see that what distinguishes the various
derived container classes are the storage and access rules that
actually define each container's underlying data structure. Thus
push and pop member functions are added for Stack, indexing
operators are added for Array, and so on. There is not enough in
common to warrant having generic add and retrieve methods at
the Container level. There is no one perfect way of extracting
common properties from groups of containers, and therefore no
perfect container class hierarchy. The Object-based container
hierarchy is just one possible design based on reasonable
compromises. The BIDS version, as you'll see, offers a different
perspective.

The first three Container functions listed previously are fairly
self-explanatory. We'll discuss the important subjects of
ownership and iteration in the next two sections.

Before you use the Container family, you must understand the
concept of ownership. As in real life, a C++ container starts out
empty and must be filled with objects before the objects can be
said to be in the container. Unlike the real world, however, when
objects are placed in the container, they are, by default, owned by

Borland C++ Programmer's Guide

the container. The basic idea is that when a container owns its
objects, the objects are destroyed when the container is destroyed.

Recall that containers are themselves objects subject to the usual
C++ scoping rules, so local containers come and go as they move
in and out of scope. Care is needed, therefore, to prevent
unwanted destruction of a container's contents, so provision is
made for changing ownership. A container can, throughout its
lifetime, relinquish and regain ownership of its objects as often as
it likes by calling the ownsElements member function (inherited
from TShouldDelete). The fate of its objects when the container
disappears is determined by the ownership status ruling at the
time of death. Consider the following:

void test ()
{

Array a1(10)i

Array a2(10)i

II construct an array
II and another

a1.ownsElements(1) i II arrayal owns its objects (the default)
a2.ownsElements(0) i II array a2 relinquishes ownership

II load and manipUlate the arrays here

When test exits, al will destroy its objects, but the objects in a2
will survive (subject, of course, to their own scope). The
al. ownsElernents (1) call is not really needed since, by default,
containers own their contents.

Ownership also plays a role when an object is removed from a
container. The pure virtual function Container: :flush is declared
as

virtual void flush(DeleteType dt = DefDelete) = 0:

flush empties the container but whether the flushed objects are
destroyed or not is controlled by the dt argument. DeleteType is
an enum defined in TShouldDelete. A value of NoDelete means
preserve the flushed objects regardless of ownership; Delete
means destroy the objects regardless of ownership; DefDelete, the
default value, means destroy the objects only if owned by the
container. Similarly Collection (derived from Container) has a
detach member function, declared as

virtual void detach(Object& obj, DeleteType dt = NoDelete
= 0;

Chapter 6, The container class libraries 221

which looks for obj in the collection and removes it if found.
Again, the fate of the detached object is determined by the value
dt. Here, the default is not to destroy the detached object.
Collection::destroy is a variant that calls detach with DefDelete.

A related problem occurs if you destroy an object that resides in a
container without "notifying" the container. The safest approach
is to use the container's methods to detach and destroy its
contents.

Important! If you declare an automatic object (an object that's local to your
routine) and place that object in a global container, your local
object will be destroyed when the routine leaves the scope in
which it was declared. To prevent this, you must only add heap
objects (objects that aren't local to the current scope) to global
containers. Similarly, when you remove an object from a global
container, you are responsible for destroying it and freeing the
space in which it resides.

Container
iterators You saw earlier that Container, the base for all containers in the

Object-based library, supports iteration. Iteration means traversing
or scanning a container, accessing each stored object in turn to
perform some test or action. The separate Containerlterator-based
hierarchy provides this functionality. Iterator classes are derived
from this base to provide iterators for particular groups of
containers, so you'll find HashTablelterator, Listlterator,
Btreelterator, and so on.

Under Containerlferator on
page 263 in the reference

section, you see how the
pre- and post-increment

operators ++ are overloaded

There are two flavors of iterators: internal and external. Each
container inherits the three member functions: firstThat, lastThat,
and forEach, via the Object and Container classes. As the names
indicate, these let you scan through a container either testing each
element for a condition or performing an action on each of the
container's elements. When you invoke one of these three member
functions, the appropriate iterator object is created for you
internally to support the iteration. Most iterations can be
performed in this way since the three iterating functions are very
flexible. They take a pointer-to-function argument together with
an arbitrary parameter list, so you can do almost anything. For
even more flexibility, there are external iterators that you can build
via the initlterator member function. With these, you have to set
up your Ov\Tn loops and test for the end-af-container.

222

to simplify your iterator
programs.

Borland C++ Programmer's Guide

Sequence classes

Collections

Returning to the container class hierarchy, we look at three classes
derived directly from Container: Stack, Deque, and
PriorityQueue.

The instance classes Stack, Deque (and its offspring Queue), and
PriorityQueue are containers collectively known as sequence
classes. A sequence class is characterized by the following
properties:

1. Objects can be inserted and removed.

2. The order of insertions and deletions is significant.

3. Insertions and extractions can occur only at specific points, as
defined by the individual class. In other words, access is
nonrandom and restricted.

Sequences (like all containers) know how many elements they
have (using getltemslnContainer) and if they are empty or not
(using isEmpty). However, they ca:r:tnot usually determine if a
given object is a member or not (there is still no general
hasMember or find Member member function). Stacks, queues,
priority queues, and deques vary in their access methods as
explained in more detail in the reference section.

Sequence is not itself a class because sequences do not share
enough in common to warrant a separate base class. However,
you might find it helpful to consider the classes together when
reviewing the container hierarchy.

The next level of specialization is the abstract class Collection,
derived from Container, and poised to provide a slew of widely
used data structures. The key difference between collections and
containers is that we now have general has Member and
find Member member functions.

From Collection we derive the unordered collections Bag,
HashTable, List, DoubleList, and AbstractArray, and the ordered
collection Btree. In turn, AbstractArray spawns the unordered
Array and the ordered SortedArray. Bag serves as the base for Set
which in turn is the base for Dictionary. These collections all
refine the storage and retrieval methods in their own fashions.

Chapter 6, The container class libraries 223

Unordered collections With unordered collections, any objects derived from Object can
be stored, retrieved, and detached. The objects do not have to be
sortable because the access methods do not depend on the relative
"magnitude" of the elements. Classes that fall into this category
are

• HashTable
• Bag, Set, and Dictionary
• List and DoubleList
• Array

Ordered collections An ordered collection depends on relative "magnitude" when
adding or retrieving its elements. Hence these elements must be
objects for which the isLessThan member function is defined. In
other words, the elements in an ordered collection must be
derived from the class Sortable. The following are ordered
collections:

• Btree
• SortedArray

The BIDS template library

For a basic description of
C++ templates see page 745

in Chapter 3.

224

The BIDS container class library can be used as a springboard for
creating useful classes for your individual needs. Unlike the
Object container library, BIDS lets you fine-tune your applications
by varying the underlying data structures for different containers
with minimum reprogramming. This extends the power of
encapsulation: the implementor can change the internals of a class
with little recoding and the user can easily replace a class with
one that provides a more appropriate algorithm. The BIDS class
library achieves this flexibility by using the C++ template
mechanism.

With BIDS, the container is considered as an ADT (abstract data
type), and its underlying data structure is independently treated
as an FDS (fundamental data structure). BIDS also allows separate
selections of the type of objects to be stored, and whether to store
the objects themselves or pointers to objects.

Borland C++ Programmer's Guide

Templates,
classes, and

containers

Container
implementation

Computer science has devoted much attention to devising
suitable data structures for different applications. Recall Wirth's
equation, Programs = Algorithms + Data Structures, which
stresses the equal importance of data structures and their access
methods.

As used in current OOP terminology, a container is simply an
object that implements a particular data structure, offering
member functions for adding and accessing its data elements
(usually other objects) while hiding from the user as much of the
inner detail as possible. There are no simple rules to determine
the best data structure for a given program. Often, the choice is a
compromise between competing space (RAM) and time
(accessibility) considerations, and even here the balance can shift
suddenly if the number of elements or the frequency of access
grows or falls beyond a certain number.

Often, you can implement the desired container properties in
many ways using different underlying data structures. For
example, a stack, characterized by its Last-In-First-Out (LIFO)
access, can be implemented as a vector, a linked list, or perhaps
some other structure. The vector-based stack is appropriate when
the maximum number of elements to be stacked is known in
advance. A vector allocates space for all its elements when it is
created. The stack as a list is needed when there is no reasonable
upper bound to the size of the stack. The list is a slower imple­
mentation than the vector, but it doesn't use any more memory
than it needs for the current state of the stack.

The way objects are stored in the container also affects size and
performance: they can be stored directly by copying the object
into the data structure, or stored indirectly via pointers. The type
of data to be stored is a key factor. A stack of ints, for example,
would probably be stored directly, where large structs would call
for indirect storage to reduce copying time. For "in-between"
cases, however, choosing strategies is not always so easy.
Performance tuning requires the comparison of different
container implementations, yet traditionally this entails drastic
recoding.

Chapter 6, The container class libraries 225

The template
solution The template approach lets you develop a stack-based applica­

tion, say, using vectors as the underlying structure. You can
change this to a list implementation without major recoding (a
single typedef change, in fact). The BIDS library also lets you
experiment with object-storage strategies late in the development
cycle. Each container-data structure combination is implemented
with both direct and indirect object storage, and the template
approach allows a switch of strategy with minimal rewriting. The
data type of the stored elements is also easy to change using
template parameters, and you are free to use any data type you
want.

As you'll see, BIDS offers container / data structure combinations
that match those of the Object-based version. For example, the
Object library implements Stack using lists, so Stack can be
simulated exactly with the template class BL TCStackAsList. Let's
look at the template approach in more detail.

ADTs and FDSs We discussed earlier the stack and its possible implementations as
a linked list or as a vector. The potential for confusion is that
stacks, lists, and vectors are all commonly referred to as data
structures. However, there is a difference. We can define a stack
abstractly in terms of its LIFO accessibility, but it's difficult to
envision a list without thinking of specifics such as nodes and
pointers. Likewise, we picture a vector as a concrete sequence of
adjacent memory locations. So we call the stack an ADT (abstract
data type) and we call the list and vector FOSs (fundamental data
structures). The BIDS container library offers each of the standard
ADTs implemented with a choice of appropriate FOSs. Table 6.1
indicates the combinations provided:

Table 6.1
ADTs as fundamental data ADT Sorted

structures

226

FDS Stack Queue Deque Bag Set Array Array

Vector • • • • • • •
List •
DoubleList • •

The abstract data types involved are Stacks, Queues, Deques,
Bags, Sets, and Arrays. Each ADT can be implemented several
different ways using the fundamental data structures Vector, List,
and DoubleList as indicated by a bullet (•) in the table. Thus, all
ADTs are implemented as vectors. In addition, Stacks are

Borland C++ Programmer's Guide

implemented as a list; Queues and Oeques implemented as
doubly-linked lists. (Not shown in the table are the sorted and
counted FOSs from which various AOTs can be developed.)

There is nothing sacred about these combinations; you can use the
template classes to develop your own AOT /FOS
implementations.

Class templates AOTs are implemented in both direct and indirect versions. The
direct versions store the objects themselves, while the indirect
versions store pointers to objects. You can store whatever objects
you want as elements in these FOSs using the power of templates.
Here are the AOT and FOS templates we provide:

Table 6.2
FDS class templates

Class template

BI_ Vectorlmp<T>
BL Vectorlteratorlmp<T>
BI_CVectorlmp<T>
BI_SVectorlmp<T>
BLIVectorlmp<T>
B LIVectorlteratorl m p<T >
BI_ICVectorlmp<T>
BLISVectorlmp<T>
BI_Listlmp<T>
BI_SListlmp<T>
BI_IListlmp<T>
BLISListlmp<T>
BLDoubleListlmp<T>
BI_SDoubleListlmp<T>
BLIDoubleListlmp<T>
BLISDoubleListlmp<T>

Description

vector of Ts
iterator for a vector of Ts
counted vector of Ts
sorted vector of Ts
vector of pointers to T
iterator for a vector of pointers to T
counted vector of pointers to T
sorted vector of pointers to T
list of Ts
sorted list of Ts
list of pointers to T
sorted list of pointers to T
double-linked list of Ts
sorted double-linked list of Ts
double-linked list of pointers to T
sorted double-linked list of pointers to T

.. Each basic FOT has a direct and indirect iterator; to save space we
have shown only the Vector iterators.

The BI_ prefix stands for Borland International and the suffix Imp
for implementation. The indirect versions have the prefix BI_I
with the extra I for Indirect. The extra prefixes 5 and C mean
Sorted and Counted respectively. The template parameter Tin
<T> represents the data type of the objects to be stored. You
instantiate the template by supplying this data type. For example,
BI_ListImp<double> gives you a list of doubles, and
BI_IBtreeImp<Cust> gives you a B-tree of pointers to Cust (a user­
defined type). See Table 6.3 on page 228 for a summary of these
abbreviations. For direct object storage, the type Tmust have
meaningful copy semantics and a default constructor. Indirect
containers, however, hold pointers to T, and pointers always have

Chapter 6, The container class libraries 227

Table 6.3
Abbreviations in CLASSLIB

names

For details see the discussion
under Sortable on page 287.

Table 6.4
ADT class templates

There are also BC Oxxx and
BCTCxxx variants discussed

soon.

228

good copy semantics. This means that indirect containers can
contain objects of any type.

Abbreviation

BI
I
C
S
o
TC

Description

Borland International
Indirect
Counted
Sorted
Object-based, non-polymorphic
Object-based, polymorphic (compatible with
original Turbo C library)

For the sorted FDSs (BI_SVectorlmp, BI_ISVectorlmp, and so on),
Tmust have valid == and < operators to define the ordering of the
elements. It should be clear that the IS variants refer to the objects
being sorted, not that the pointers to the objects are sorted.

Each implementation of an ADT with an FDS is named using the
convention (ADT)As (FDS) <T>, as follows:

Class name

BI_StackAsVector<T>
BI_QueueAsVector<T>
BI_DequeAsVector<T>
BI_BagAsVector<T>
BI_SetAsVector<T>
BI_Array AsVector<T>
BI_SArray AsVector<T>

BI_IStackAsVector<T>
BI_IQueueAsVector<T>

BI_StackAsList<T>
BI_IStackAsList<T>

BI_QueueAsDoubleList<T>
BI_DequeAsDoubleList<T>
BI_IQueueAsDoubleLiskT>
BLIDequeAsDoubleList<T>

Description

Stack of Ts as a vector
Queue of Ts as a vector
Deque of Ts as a veCtor
Bag of Ts as a vector
Set of Ts as a vector
Array of Ts as a vector
Sorted array of Ts as a vector

Stack of pointers to T as a vector
Queue of pointers to T as a vector
and so on

Stack of Ts as a list
Stack of pointers to T as a list

Queue of Ts as a double list
Deque of Ts as a double list
Queue of pointers to T as a double list
Deque of pointers to T as a double list

Again, the <T> argument, either a class or predefined data type,
provides the data type for the contained elements. Each of the
bullets (•) in Table 6.1 can be mapped to two templates (direct
and indirect versions) with names following this convention.

Borland C++ Programmer's Guide

Container class
compatibility

Table 6.5
Object-based FDS classes

Each template must be instantiated with a particular data type as
the type of the element that it will hold. This allows the compiler
to generate the correct code for dealing with any possible type of
element without restricting the elements to just those derived
from Object.

Each ADT is also used to instantiate two classes that imitate the
behavior of the Object class libraries. Here is a list of them:

Class name

BLOStackAsVector
BLOQueueAsVector
BI_ODequeAsVector
BLOBagAsVector
BLOSetAsVector
BLOArrayAsVector
BI_OSArray AsVector

BLTCStackAsVector

BL TCQueueAsVector

BLTCDequeAsVector

BLTCBagAsVector

BLTCSetAsVector

BL TCArray AsVector

BI_ TCSArrayAsVector

BL OStackAsList
BI_ TCStackAsList

BLOQueueAsDoubleList
BLODequeAsDoubleList

BL TCQueueAsDoubleList

BI_ TCDequeAsDoubleList

Description

Stack of pointers to Object, as a vector
Queue of pointers to Object, as a vector
Deque of pointers to Object, as a vector
Bag of pointers to Object, as a vector
Set of pointers to Object, as a vector
Array of pointers to Object, as a vector
Sorted array of pointers to Object, as a
vector

Polymorphic stack of pointers to Object, as
a vector
Polymorphic queue of pointers to Object, as
a vector
Polymorphic deque of pointers to Object, as
a vector
Polymorphic bag of pointers to Object, as a
vector
Polymorphic set of pointers to Object, as a
vector
Polymorphic array of pointers to Object, as
a vector
Polymorphic sorted array of pointers to
Object, as a vector

Stack of pointers to Object, as a list
Polymorphic stack of pointers to Object, as
a list

Queue of pointers to Object, as a double list
Deque of pointers to Object, as a double list

Polymorphic queue of pointers to Object, as
a double list
Polymorphic deque of pointers to Object, as
a double list

Chapter 6, The container class libraries 229

The TCxxx versions offer the
same behavior and

interfaces as the Object
library.

Header files

230

Note that these versions have no explicit <T> parameters; they
use the fixed data types shown (pointers to Object). The BI_Oxxx
(0 for Object library) versions of these classes have no virtual
functions. This makes it easier for the compiler to generate inline
function expansions, which in turn makes the BI_Oxxx versions of
the containers somewhat faster than the corresponding
polymorphic Be TCxxx (TC for Turbo C) versions. The obverse of
the coin is that the BLOxxxversions do not share the
polymorphic behavior of the Object container library.

In the Object container library, Stack implements a stack as a
polymorphic list of pointers to Object. The BIDS class
BI_ TCStackAsList therefore mirrors the Object-based class Stack.
Even with BL TCStackAsVector, the public interface and
semantics are the same as for the Object-based Stack. The user
"sees" the ADT while the FDS is "hidden." For these reasons, we
will not repeat the alphabetic list of Object-based classes and
member functions for the BIDS library.

Consider your many choices when writing container code with
the BIDS model. You can gain speed over future flexibility by
using the non-polymorphic classes, such as BLOStackAsList or
BLOStackAsVector. Or you can retain the polymorphism of the
Object-based hierarchy by using the BL TCxxx classes.

Each group of FOSs is defined in its own header file, which
contains templates for both the direct and the indirect versions.
The names of the headers are as follows:

vectimp.h
listimp.h
dlistimp.h

In vectimp.h, for example, you'll find declarations for all the
vector, counted vector, and sorted vector templates, together those
for a direct and indirect vector iterator.

Note also the stdtempl.h file that defines the useful template
functions min, max, and range. If you are new to templates, this
file offers a useful, gentle introduction to the subject.

Each ADT family is defined in its own header file, named as
follows:

Borland C++ Programmer's Guide

Note the plural form that
distinguishes the BIDS include

files from the Object-based
include file

Tuning an

stacks.h
queues.h
deques.h
bags.h
sets.h
arrays.h

The file stacks.h, for example, defines the following templates:

BI_StackAsVector<T>
BI_IStackAsVector<T>
BI_OStackAsVector
BI_TCStackAsvector
BI_StackAsList<T>
BI_IStackAsList<T>
BI_OStackAsList
BI_TCStackAsList

application Consider the following example:

FDS

typedef BI_StackAsVector<int> intStack;

int main ()
{

intStack is;
for(int i = 0; i < 10; itt

is.push(i);
for(i = 0; i < 10; itt

cout « is.pop() « endl;
return(O);
}

Here we are implementing a stack of ints using a vector as the
underlying data structure. If you later determine that a list would
be a more suitable implementation for the stack, you can simply
replace the typedef with the following:

typedef BI_StackAsList<int> intStack;

After recompilation, the stack implementation is changed from
vector to list. Similarly, you can try a stack of pointers to int, with:

typedef BI_IStackAsList<int> intStack;

implementation Each FDS is implemented as two templates, one that provides the
direct version, and one that provides the indirect version. The
indirect version makes use of an Internallxxxlmp class. The

Chapter 6, The container class libraries 231

232

following simplified extract from listimp.h will give you an idea
how the different list FDSs are implemented. Note that
BI_ListElement<T> is an internal template class used to
implement the node (data of type T and pointer to next node) of a
list. The direct list of objects of type T is implemented by the
template class BI_Listlmp<T>, which also provides the base for
BI_SListlmp<T> (sorted lists). The example shows how the add
member function is implemented in the direct, indirect, sorted
and unsorted lists.

template <class T> class BI_ListElement
{

pUblic:
BI_ListElement(T t, BI_ListElement<T> *p

{ next = p->next; p->next = this; }
II constructor

data(t)

BI_ListElement<T> *next;
T data;

II pointer to next node
II object at node

};

template <class T> class BI_Listlmp
II linked list (unsorted) of type T objects; assumes T has meaningful
II copy semantics and a default constructor

{

pUblic:

void add(T t) { new BI_ListElement<T>(t, &head) i }

II adds objects at head of list (shown inline here to save space)
T peekHead() const { return head.next->datai }

}i

template <class T> class BI_SListlmp : public BI_Listlmp<T>
II sorted list; assumes T has meaningful copy semantics and a default
II constructor

pUblic:

void add(T t) { new BI_ListElement<T>(t, findPred(t)) i }

II adds object in sorted position

};

template <class T, class List> class BI_InternalIListlmp
public List {

void add(T *t) { List::add (t)i }

Bar/and C++ Programmer's Guide

};

II The work is done in this intermediate class used as base for
II BI_IListlmp; list is unsorted so we use List::add

template <class T> class BI_IListlmp :
public BI_InternalIListlmp<T, BI_Listlmp< void * > >
{ ... };

1* unsorted list of pointers to objects of type T; since pointers
* always have meaningful copy semantics, this class can handle any
* object type; add comes straight from BI_InternalIListlmp

*1
template <class T> class BI_ISListlmp :

public BI_InternalIListlmp<T>, BSListlmp< void * » { ... };
1* sorted list of pointers to objects of type T; since pointers
* always have meaningful copy semantics, this class can handle any

* object type;
*1

In addition to the template classes shown here, listimp.h also
declares BI_Listiteratorlmp<T> and BI_IListlteratorlmp<T>, the
iterators for direct and indirect lists.

In the next section on AOTs, you'll see how the different stack
implementations in stacks.h pull in the vector and list FOSs
declared in vectimp.h and listimp.h.

The double list templates, in dlistimp.h, follows the same pattern.
The sorted versions of list and double list provide exactly the
same interface as the non-sorted ones, except that the add
member function adds new elements in sorted order. This speeds
up subsequent access and also makes it easier to implement
priority queues.

vectimp.h also follows a similar pattern to listimp.h,
implementing BLVectorlmp<T> (direct) and BI_IVectorlmp<T>
(indirect). These are low-level vectors with no notion of add or
detach. To support more sophisticated AOTs, the counted vector,
BI_CVectorlmp<T>, derived from BI_Vectorlmp<T>, is provided.
This maintains a pointer to the last valid entry in the underlying
Vector. It has an add member function that inserts its argument at
the top (the next available slot), and a detach member function
that removes its argument and compresses the array.
BLCVectorlmp<T> provides the base for the sorted vector
template BI_SVectorlmp<T>. With a sorted vector, you can run
through the indices from 0 to the last valid entry, and the objects
will emerge in sort order. Here's a simplified extract from
vectimp.h:

Chapter 6, The container class libraries 233

234

II extract from vectimp.h

template <class. T> class BI_Vectorlmp ... };
II direct uncounted, unsorted vector

template <class T> class BI_CVectorlmp : public BI_Vectorlmp<T>
II direct counted, unsorted vector

{

public:

void add (T t);
II add at top of array; inc count; resize array if necessary

void detach(T t, int del = 0);
void detach(unsigned loc, int del = 0);

II detach given object or object at loc

};

template <class T> class BI_SVectorlmp public
BI_CVectorlmp<T>
II direct counted, sorted vector

{

pUblic:
void add (T t);

II add at position that maintains sort
};

template <class T, class Vect> class BI_InternalIVectorlmp
public Vect { ... };

II interdiate base for BI_IVectorlmp: no add

template <class T> class BI_IVectorlmp :
public BI_InternalIVectorlrnp<T, BI_Vectorlmp<void *> >

{ ... } ;

II indirect uncounted, unsorted vector: no add

template <class T, class Vect> class BI_InternalICVectorlmp
public BI_InternalIVectorlmp<T, Vect>

II intermediate base for BI_ICVector

public:
void add (T *tJ { Vect::add(t); }

};

template <class T> class BI_ICVectorlmp :
public BI_InternalICVectorlmp<T, BI_CVectorlmp<void *> >

{ '" };

II indirect counted vector; can contain any object type

template <class T> class BI_ISVectorlmp :
public BI_InternalICVectorlmp<T, BI_SVectorlmp<void *> >

Borland C++ Programmer's Guide

{ ... };

II indirect sorted vector

ADT
implementation Each ADT is implemented as several templates. For example, the

following provides an implementation of a stack of objects of type
T using vectors as the FDS:

II simplified extract from stacks.h

template <class Vect, class T> class BI_StackAsvectorlmp
{

public:

void push(T t) { data[current++l = t; }

protected:

};

Vect data;
unsigned current;

The first parameter, class Veet, is either a direct vector or an
indirect vector, depending on whether the stack being created is
direct or indirect, so Vect will be either BI_ Vectorlmp<TO> or
BI_IVectorlmp<TO>. The type Trepresents the type of objects to be
stored in the stack. For a direct Vect, T should be the same as TO;
for an indirect Vect, T must be of type pointer to TO. A direct stack
implemented as a vector looks like this:

template <class T> class BI_StackAsvector :
public BI_StackAsVectorlmp< BI_Vectorlmp<T>, T >

public:
friend class BI_StackAsVectorlterator<T>i

}i

template <class T> class BI_StackAsVectorlterator
public BI_Vectorlteratorlmp<T> { ... };

That is, a BLStackAsVector is implemented by using a
BI_StackAsVectorlmp, whose "implementation" is of type
BL Vectorlmp<T>, and whose elements are of type T.
BI_StackAsVector has its own iterator, derived from
underpinning FDS iterator with the contained~object type T as
parameter.

An indirect stack implemented as a vector looks like this:

template <class T> class BI_IStackAsvector :

Chapter 6, The container class libraries 235

public BI_StackAsVectorImp< BI_IVectorImp<T>, T* >,
public virtual TShouldDelete

{ ... };

That is, an BLIStackAsVector is implemented by using a
BI_StackAsVectorlmp, whose "implementation" is of type
BI_IVectorlmp<T>, and whose elements are of type pointer to T.
The TShouldDelete base provides the ownership control
discussed in the Object-based class reference section.
TShouldDelete also serves as a second base for the following
classes.

Figure 6.2: TShouldDelete hierarchy

236

TShoul dDel P,[f~----r---A

Instance classes
in bold type

Template classes
i nMa4,IAJi§ type

The BL05tackAsVector and BI_ TCStackAsVector versions
(stacks of pointers to Objects, emulating the Object container
library) now follow easily:

class BI_OStackAsVector
II non-polymorphic stack with vector of pointers to Objects

{

pUblic:

void push(Object *t) { ostack.push(t);
II ostack is type BI_IStackAsvector<Object>
II so we are pushing pointers to Object

private:
BI_IStackAsVector<Object> ostack;

};

class BI_TCStackAsVector : public Container
II polymorphic stack with vector of pointers to Objects
II inherits from the Object-based Container class
II Provides identical interface and functionality as Object-based
Stack II class but underlying data structure is Vector not List

{

public:

Borland C++ Programmer's Guide

Source
Uses the template facility to

pick a specific FDS for the
array ADT.

In the "sorted array" FDS, the
index of a particular array

element depends on its
value, not on the order in

which it was entered.

If the ADT used
BCArray AsVector<String>,

the elements would appear
in the order they were

added to the array.

Output

Source
Doubly-linked list with indirect

storage as FDS.

Pointers to String objects in
the deque container must

be dereferenced when
extracting from the deque.

void push(Object& 0 } { stk.push(&0 }; }
II stk is type BI_OStackAsVector
II so we are pushing Objects

private:
BI_OStackAsVector stk;

};

We end the section with some short examples using the BIDS
classes.

#include <iostream.h>
#include <strstream.h>
#include <arrays.h>
#include <strng.h>

int main ()
{

typedef BI_SArrayAsVector<String> lArray;
larray a (2) ;
for (int i = a.arraySize(); i; i--}
{

ostrstream os;
os « "string" « i « ends;
a.add(* (new String(os.str())));

cout « "array elements; \n" ;
for (i = 0; i < a.arraySize(); ++i}
{

cout« ali] « endl;

return(O);

string 1
string 2
string 3

#include <iostream.h>
#include <strstream.h>
#include <deques.h>
#include <strng.h>

typedef BI_IDequeAsDoubleList<String> lDeque;

int main ()
{

IDeque d;
for (int i 1; < 4; iff)

Chapter 6, The container class libraries 237

Output

ostrstream os;
os « "string" « i « ends;
II use alternating left, right insertions
if(i&l)

d.putLeft(new String(os.str()));
else

d.putRight(new String(os.str())) i

cout « "Deque Contents:" « endli
while (!d.isEmpty())
{

cout « *d.getLeft() « endli

return(O) i

Deque Contents:
string 3
string 1
string 2
string 4

The class library directory

The INCLUDE

The files in the class library are set up in the following directory
structure:

The CLASSLIB directory is under the BORLANDC directory. The
contents of the directories in the class library are discussed in
more detail in the following sections.

directory The INCLUDE directory contains the header files necessary to
compile a program that uses the class library. You must put this
directory on the include search path when you compile your
program. Modify Options I Directories I Include if you have
changed the default setup.

238 Borland C++ Programmer's Guide

The SOURCE

For each BIDS ADT (abstract data type), such as Stack, there is a
header file called stacks.h. The Object-based class Stack is
declared in stack.h. If the identifier TEMPLATES is #defined,
either in an.h file or via the command line _D option, then when
stack.h is preprocessed, the Object-based declarations for Stack
are bypassed and the template versions are included. In
particular, if TEMPLATES is #defined, Stack is #defined as
BL TCStackAsList, so any code written for the Object-based Stack
will be compiled with the BIDS version.

directory The SOURCE directory contains the source files that implement
many of the member functions of the classes in the library. These
source files are provided as a guide for implementing new classes.

You also need these source files if you want to build a library in a
different memory model than the one provided on the release
disk. The supplied makefile builds a class library of the specified
memory model and places that library in the LIB directory. To
build a library using the large memory model, type make - DMDL=x

(where x is s, c, m, d, or h) in the SOURCE directory. Use -DDBG for
the debug version. When you enter either command, the makefile
invokes the compiler to build all the files in the class library using
the large model. Then the library file archiver, TLIB, will create a
library TCLASSL.LIB in CLASSLIB \ LIB.

Important! When you take a library that you have built and use it in one of
the sample projects, you must update the project. See Chapter 4,
"Managing multi-file projects" in the User's Guide for more
information. You must also be sure to compile your project with
precisely the same switches and options you used to build the
library. If you don't have the same options, you will get warnings
from the linker when the executable file is built.

The LIB directory
The LIB directory contains the compiled source modules archived
into a library. You must put this directory on the library search
path when you link your program. For information about
modifying the library search path, see Chapter 3, "The Options
menu," or Chapter 5, "The command-line compiler" (for IDE or
command-line options) in the User's Guide.

The Object-based container classes are in TCLASSx.LIB, where x
is the memory-model designation (S for small, C for compact, M

Chapter 6, The container class libraries 239

The EXAMPLES

for medium, and L for large). For each of these there are
debugging versions TCLASDBx.LIB. For Windows applications,
you must link your code with TCLASDLL.LIB and TCLASS.DLL.

directory The EXAMPLES directory contains the example programs and
their project files. You can compile these programs to see how the
parts of the class library are put together to form an application.
Most of the examples use one or two of the classes in the
hierarchy; other examples are more complex. Here is a list of the
example programs and the classes that they use:

1. STRNGMAX: A very simple example using String.

2. REVERSE: An intermediate example using Stack and String.

3. LOOKUP: An intermediate example using Dictionary and
Association.

4. QUEUETST: An intermediate example using Queue and
introducing a non-hierarchical class, Time.

5. DIRECTRY: An advanced example illustrating derived user
classes with SortedArray.

Preconditions and checks

See the Library Reference for
a definition of the function

assert.

240

Version 3.0 offers some new debugging tools. The class libraries
TCLASDBx.LIB and BIDSDBx.LIB (where x represents the
memory model, S, C, L, etc) provide the debugging versions of
TCLASSx.LIB and BIDSx.LIB.

checks.h defines two macros, PRECONDITION(arg) and
CHECK(arg). Each macro takes an arbitrary expression as an
argument, just like assert. At runtime, if the expression evaluates
to 0, an error message is displayed and execution terminates. If
the expression evaluates to a nonzero value, execution continues
in the normal fashion.

Use PRECONDITION on entry to a function to check the validity
of the arguments and to do any other checking to determine that
the function has been invoked correctly.

Use CHECK for internal checking during the course of execution
of the function.

Borland C++ Programmer's Guide

Table 6.6
Class debugging modes

Compilation of PRECONDITION and CHECK is controlled by the
value of a manifest constant named _DEBUG. If _DEBUG has
the value 0, PRECONDITION and CHECK are set to empty
macros. In other words, setting _DEBUG to 0 removes all
debugging. If _DEBUG has the value 1, PRECONDITION
macros are expanded into the tests described above, but CHECK
macros are empty. So, setting _DEBUG to 1 enables
PRECONDITIONs and disables CHECKs. Setting _DEBUG to 2
or more, or not defining it at all, enables both forms of testing.
Table 6.6 summarizes the available debugging modes:

DEBUG PRECONDITION CHECK

0 Off Off
1 On Off
>1 On On
undefined On On

When developing a class, set _DEBUG to 2 or leave it undefined.
This gives you maximum checking when the code is still being
worked on. When the class works properly, but the application
that is going to use the class hasn't been completed, set _DEBUG
to 1, so that incorrect calls from the application can be caught,
without the additional overhead of the internal checking within
the class. Once everything is working, set _DEBUG to 0 to
remove all checking. Two versions of the .LIB file are provided
that contain the class library code: one with PRECONDITIONs
enabled, and one with no debugging. These are named
TCLASDBX.LIB and TCLASSX.LIB, where X is replaced with the
letter for the appropriate memory model: s, c, ill,!, or h. The .LIB
with DB in its name is the one with PRECONDITIONs enabled.

Container class reference

This section describes each class in the library as follows. We give
the include file where it is defined, a diagram showing the parent
of each class and immediate offspring, some introductory
remarks, data members and member functions (with protoypes)
listed alphabetically, what friendly relations exist, and, where
appropriate, an example of the class's use. The members listed in
the See also section belong to the class under discussion unless
scope-qualified. Thus in the section on class X, you could find See
also foo, Y::foo, and so on. The first foo refers to X::foo. Class

Chapter 6, The container class libraries 241

derivations and class members are public unless otherwise noted
as protected. We do not document destructors since they all
perform the usual way. Most container classes have virtual
destructors.

Some modifiers used for
Windows compatibility are
not shown in the reference

section

The modifiers _FAR, _CLASSDEF, and _CLASSTYPE, defined in
_defs.h, are used widely in prototypes and definitions to provide
Windows compatibility. To avoid clutter, we do not show them in
the following prototypes. For example, Obj ect _FAR & foobar () ; in
a header file would appear as Obj ect& foobar () ; in the reference
section.

Abstract Array

Data
members

delta

abstarry.h

The abstract class AbstractArray offers random access to the elements of
the collection via an indexing mechanism that maps a range of integers to
the array elements. Indexes can be positive or negative integers with
arbitrary lower and upper bounds (within the range of int). Arrays
derived from AbstractArray can be dynamically resized as elements are
added to them. The data member delta determines how many additional
elements are assigned to the array when overflow occurs. AbstractArray
exists because the derived classes SortedArray and Array have enough in
common to warrant combining the common properties into an abstract
base class. Since the derived classes differ only in the implementation of
the member functions detach and the subscript operator, the remaining
functions can be encapsulated in AbstractArray.

sizeType delta; protected

delta represents the additional number of elements that will be assigned to
the array if overflow occurs. If delta is zero, the array will not be resized
following overflow.

lastElementlndex int lastElementIndex; protected

242

The index value of the last element added to the array. For an empty array
this data member has the value (lowerbound -1).

Borland C++ Programmer's Guide

AbstractArray

lowerbound int lowerbound; protected

The lower bound of the array index, returned by the lowerBound member
function. lowerbound is the minimum legal value of the absolute index.

See also: lowerBound

upperbound int upperbound; protected

Member
functions

The current upper bound of the array index, returned by the upperBound
member function. upperbound is the maximum legal value of the absolute
index.

See also: upperBound

destroy void destroy (int atIndex);

Removes the object at the given index. Whether the object itself is
destroyed or not depends on the array's ownership status. If the array
currently owns the object, the object will be destroyed, otherwise the object
survives. destroy is implemented with detach (atIndex, DefDelete).

arraySize sizeType arraySize () const;

Returns the current number of cells allocated (upperbound -lowerbound +
1).

constructor AbstractArray (int anUpper, int aLower = 0, sizeType aDelta = 0);

Constructs and "zeroes" an array, given the upper and lower index
bounds. The default lower bound is 0, the traditional origin for C arrays.
The default delta is also zero, giving a fixed, nonresizable array. If delta is
nonzero, run-time array overflow invokes the reallocate member function
to provide more space (in increments of delta). A PRECONDITION is set
to test if the lower bound is greater than or equal to the lower bound.

detach virtual void detach(int atIndex, DeleteType dt = NODelete);
virtual void detach(Object& toDetach, DeleteType dt = NoDelete);

The first version removes the object at atIndex; the second version removes
the object toDetach. The value of dt and the current ownership setting
determine whether the object itself will be deleted. DeleteType is defined in
the base class TShouldDelete as enum { NoDelete, DefDelete,Delete }. The
default value of dt, NoDelete, means that the object will not be deleted
regardless of ownership. With dt set to Delete, the object will be deleted

Chapter 6, The container class libraries 243

AbstractArray

regardless of ownership. If dt is set to DefDelete, the object will only be
deleted if the array owns its elements.

See also: TShouldDelete::ownsElements

initlterator virtual ContainerIterator& initIterator() consti

Creates an external iterator for this array.

See also: Containerlterator class

isEqual int isEqual(const Object& testObject) consti

Returns 1 if the testObject array is equal to the calling array. Equal means
that the two arrays have the same object ID, the arrays' dimensions are
equal, and that their components are equal in each index position.
Otherwise, isEqual returns o.

lowerBound int lowerBound () const i

Returns the array's lowerbound.

objectAt Object& objectAt (int atIndex) consti

Returns a reference to the element at the given index.

See also: operator []

operator () Object& operator [J (int atIndex) consti

protected

Returns a reference to the object at the given array index.

printContentsOn void printContentsOn (ostream& outputStream) const i

244

Prints an array, with header and trailer, to the given stream.

ptrAt Obj ect *ptrAt (int atIndex) const i

Returns a pointer to the element at the given index.

reallocate void reallocate (sizeType newSize ') i

protected

protected

If delta is zero, reallocate gives an _EEXPANDFS error. Otherwise,
reallocate tries to create a new array of size newSize (adjusted upwards to
the nearest multiple of delta). The existing array is copied to the expanded
array and then deleted. Unused elements in the new array are zeroed. An
_ENOMEM error is invoked if there is insufficient memory for the
realloca tion.

removeEntry void removeEntry (int loc) i protected,

Reduces the array by one element. Elements from index (loc + 1) up'wards
are copied to positions lac, (loc + 1), and so on. The original element at loc
is lost.

Borland C++ Programmer's Guide

AbstroctArroy

setOata void setData(int loc, Object *data)i protected

The given data replaces the existing element at the index lac.

squeezeEntry void squeezeEntry (int squeezePoint) i protected

Reduces the array by one element. As for removeEntry but squeezePoint is
an index relative to the lower bound

upperBound int upperBound () const i

Friends

Array

Example
Source

Returns the array's current upperbound.

Arraylterator is a friend of AbstractArray

array.h

IAbstractArrayHI Array

The instance class Array is derived from class AbstractArray. An Array ob­
ject defines an array in which the ordering of the elements is arbitrary.
That is, the element at index i of the array need have no relationship to the
element at index i + 1.

Array adds the functions add and addAt. While add stores a given object
at the next free place in the array (expanding the array if necessary), addAt
stores the object at a specified index.

#include <iostream.h>
#include <array.h>
#include <strng.h>
#include <assoc.h>

int main ()
{

Array a(2) i

String *sl = new String("a string") i
String *s2 = new String("another string");
Association *a1 = new Association(*sl,*s2);

II Put some objects in the array
a.add(*sl);
a.add(*s2);

Chapter 6, The container class libraries 245

Array

246

output

Member
functions

a.add(*al) ;

II Print as a Container
cout « "As a container:\n" « a « endl « endl;

II Print as an Array
cout « "As an array:\n";
a.printContentsOn(cout);

II Print as elements
cout « "\nAs elements:\n";
for (int i = 0; i < a.arraySize(); ++i)

cout « ali] « endl;
return(O) ;

As a container:
Array { a string,

another atring,
Association { a string, another string}

As an array:
Array { a string,

another atring,
Association { a string, another string}

As elements:
a string
another string
Association { a string, another string}

add virtual void add (Obj ect& toAdd) i

Adds the given object at the next available index at the end of an array.
Adding an element beyond the upper bound leads to an overflow
condition. If overflow occurs and delta is nonzero, the array is expanded
(by sufficient multiples of delta bytes) to accommodate the addition. If
delta is zero, overflow gives an error.

addAt void addAt (Obj ect& toAdd, int atIndex);

Writes the given object at the specified index. If that index is occupied, the
previous object is deleted. If atIndex is beyond the upper bound, the array
is expanded if delta is nonzero. If delta is zero, attempting to addAt beyond
the upper bound gives an error.

Borland C++ Programmer's Guide

Array

constructor Array (int anUpper lint aLower = 0 I sizeType Delta = 0);

Constructs and "zeroes" an array by calling the base AbstractArray
constructor.

See also: AbstractArray::AbstractArray

isA virtual classType isA () const;

Returns arrayClass, the Arrays type ID.

nameOf virtual char *nameOf () const;

Returns" Array", the Array type ID string.

Arraylterator abstarry.h

I Contai nerIterator HI ArrayIterator

Provides iterator functions to traverse objects of the class AbstractArray
and its derived classes. Arraylterator is a friend class of AbstractArray

Member
functions

constructor ArrayIterator (const AbstractArray& toIterate);

Creates an iterator object for the given array.

See also: restart

current virtual Obj ect& current () ;

Returns the object at the current index of the iterator. If the current index
doesn't refer to a valid object, NOOBJECT is returned.

operator ++ virtual Obj ect& operator ++ ();

virtual Object& operator ++ (int);

See Containerlterator operator ++

operator int() virtual operator int () ;

Conversion operator to test for end of iterator position.

restart virtual void restart () ;

Sets the current index of the iterator to the first nonempty object in the
array.

Chapter 6, The container class libraries 247

Association

Association assoc.h

The Association class provides a simple mechanism for associating two
objects, known as the value object and the key object, in one Association
type object. These combined objects are typically stored in a Dictionary
type object, which provides member functions to retrieve the value when
given the key, providing the basic tools for many data-retrieval
applications.

Member
functions

constructor Association (Object& key I Object& value) i

Constructs an association object from the given key and value objects.

constructor Association (const Association& a) i

Copy constructor.

hashValue virtual hashValueType hashValue () const i

Returns the hash value of the association's key. See HashTable::hashValue
for more details.

isA virtual classType isA () const;

Returns associationClass, the Association type ID.

isAssociation virtual int iSAssociation () const i

Returns 1 for association objects (and 0 for other object types).

isEqual virtual int isEqual(const Object& toObject) const;

Returns 1 if toObject and the calling association have equal keys, otherwise
returns O.

key Obj ect& key () cons t i

Returns the key object of the association.

nameOf virtual char *nameOf () cons,t;

Returns "Association", the Association type ID string.

printOn virtual void printOn (ostream& outputStream) const;

248 Borland C++ Programmer's Guide

operator « is a
friend of Object.

See page 287.
value

Example
Source

Output

Association

Prints the association on the given output stream. printOn is really for
internal use by the overloaded operator «.

Object& value() canst;

Returns the value object of the association.

II File TASSOC.CPP: Illustrates the Association class

#include <string.h>
#include <strng.h>
#include <assoc.h>
#include <iostream.h>

I I For strlen ()

void identify(Object&);

main()
{

char sl [21], s2 [81];

II Read a key
cout « "Enter a key: ";
cin » sl;
cin.get() ;
String strl (sl);
identify(str1);

II Read a value

II Eat newline

cout « "Enter a value: ";
cin.getline(s2,81) ;
s2[strlen(s2) - 1] :: '\0';
String str2(s2);
identify(str2) ;

Association a1(str1,str2);
identify (al) ;
Association a2 :: a1;
identify(a2) ;

cout « "Equal: " « a1.isEqual(a2) « endl;

void identify(Object& 0)

{

II Echo an object and its type
cout « "Value: " « 0

« ", Object type: " « o.nameOf()
« endl « end 1 ;

Enter a key: class

Chapter 6, The container class libraries 249

Association

Bag

value: class, Object type: String

Enter a value: A group of related objects
Value: A group of related objects, Object type: String

Value: Association { class, A group of related objects
, Object type: Association

value: Association { class, A group of related objects
, Object type: Association

Equal: 1

I Collection HI Bag IH Set

bag.h

A Bag is an unordered collection that may contain more than one of the
same object. Bag also provides the base class for Set. Unlike Bags, Sets
can contain only one copy of a any given object.

Member
functions

add virtual void add (Obj ect& toAdd);

Adds the given object at the next available index at the end of an array.
Adding an element beyond the upper bound leads to an overflow
condition. If overflow occurs and delta is nonzero, the array is expanded
(by sufficient multiples of delta bytes) to accommodate the addition. If
delta is zero, overflow gives an error.

constructor Bag (sizeType bagSize = DEFAULT_BAG_SIZE);

Constructs an empty bag. bag Size represents the initial number of slots
allocated.

detach virtual void detach(Object& toDetach, DeleteType dt = NoDelete);

See Array::detach.

findMember virtual Object& findMember(Object& toFind) const;

Returns the given object if found, otherwise returns NOOBJECT.

firstThat virtual Object& firstThat (condFuncType testFuncPtr, void *paramList
const;

See also: Container: :firstThat, Object: :firstThat

flush void flush (DeleteType dt = DefDelete);

250 Borland C++ Programmer's Guide

Bag

Removes all the elements from the bag without destroying the bag. The
value of dt determines whether the elements themselves are destroyed. By
default, the ownership status of the bag determines their fate, as
explained in the detach member function. You can also set dt to Delete and
NoDelete.

See also: detach

forEach void forEach(void (*actionFuncPtr) (Object& 0, void *), void *args);

See also: Container: :forEach

getltemslnContainer countType getItemsInContainer () const;

Returns the number of items in the bag.

hasMember virtual int hasMember(const Object& obj) canst;

Returns 1 if the given object is found in the bag, otherwise returns O.

initlterator ContainerIterator& initIterator () const;

Creates and returns an iterator for this bag.

See also: Containerlterator class

isA virtual classType isA () canst;

Returns bagClass the Bag type ID.

isEmpty int isEmpty () canst;

Returns 1 if a container has no elements; otherwise returns O.

lastThat virtual Object& lastThat(condFuncType testFuncPtr, void *paramList
const;

Returns a reference to the last object in the container that satisfies a given
condition. You supply a testFuncPtr that returns true for a certain
condition. You can pass arbitrary arguments via the paramList argument.
NOOBJECT is returned if no object in the container meets the condition.
Note that you are not involved directly with iterators: firstThat and
lastThat create their own internal iterators, so you can simply treat them
as "search" functions.

See also: firstThat, Object::firstThat, Container::lastThat

nameOf virtual char *nameOf () const;

Returns "Bag", the Bag type ID string.

Chapter 6, The container class libraries 251

Bag

ownsElements int awnsElements () ;
vaid awnsElements(int del);

See TShouldDelete: :ownsElements

BaseOate Idate,h

252

I Sortable HI BaseDate IH Date

BaseDate is an abstract class derived from Sortable that provides basic
date manipulation functions.

Member
functions

constructor BaseDate () ;

Creates a BaseDate object with the current system date.

constructor BaseDate (unsigned char M, unsigned char D, unsigned Y);

Creates a BaseDate object with the given month, day, and year.

constructor BaseDate (canst BaseDate& BD);

Copy constructor.

Day uns i gned Day () cans t ;

Returns the day of the month.

hashValue virtual hashValueType hashValue () canst;

protected

protected

protected

Returns the hash value of the date object. See HashTable::hashValue for
more details.

isA virtual classType isA () canst = 0;

A pure virtual function to return a classtype ID (to be defined in derived
classes).

isEqual virtual int isEqual (canst Obj ect& testDate) canst;

Returns 1 if the object represents the same date as testDate. Otherwise
returns O.

isLessThan virtual int isLessThan(canst Object& testDate) canst;

Returns 1 if the object precedes testDate on the calendar.

Borland C++ Programmer's Guide

Month unsigned Month () const;

Returns the month.

nameOf virtual char *nameOf () const = 0;

BoseDote

Pure virtual function to be defined by derived classes to return their object
ID string.

printOn virtual void printOn(ostream& outputStream) const = 0;

operator « is a
friend of Object.

See page 281.

Pure virtual function to be defined in derived classes to print the date
object on the given stream. printOn is for internal use by the overloaded
operator «.

SetDay void SetDay(unsigned char D);

Sets the day to D.

SetMonth void SetMonth (unsigned char M);

Sets the month to M.

SetYear void Setyear (unsigned Y);

Sets the year to Y.

Year unsigned Year () const;

Returns the year.

BaseTime Itime.h

I Sortable HI BaseTime IH Time

BaseTime is an abstract class derived from Sortable that provides basic
time manipulation functions.

Member
functions

constructor BaseTime () ;

Creates a BaseTime object with the current system time.

constructor BaseTime (const BaseTirne& BT);

Copy constructor.

Chapter 6, The container class libraries

protected

protected

253

BoseTime

254

constructor BaseTime (unsigned char H, unsigned char M = 0 I unsigned char S = 0 I
unsigned char HD = 0); protected

Creates a BaseTime object with the given hour, minutes, seconds, and
hundredths of seconds.

hashValue virtual hashValueType hashValue () canst;

Returns the hash value of the BaseTime object. See HashTable::hashValue
for more details.

hour unsigned haur () canst;

Returns the hour.

hundredths unsigned hundredths () canst;

Returns the hundredths of a second.

isA virtual classType isA () canst = 0;

Pure virtual function for a derived class to return its class 10.

isEqual virtual int isEqual(canst Object& testTime) canst;

Returns 1 if this object equals testTime; otherwise returns o.
isLessThan virtual int isLessThan(canst Object& testTime) canst;

Returns 1 if this object is less than testTime; otherwise returns 0 .

minute unsigned minute () canst;

Returns the minute.

nameOf virtual char *nameOf () canst = 0;

printOn

operator « is a
friend of Object.

See page 287.

second

Pure virtual function to be defined by derived classes to return their object
10 string.

virtual vaid printOn(astream& autStream) canst = 0;

Pure virtual function to be defined in derived classes to print the time
object on the given stream. printOn is for internal use by the overloaded
operator «.

unsigned secand() canst;

Returns the seconds.

setHour vaid setHaur (unsigned char H);

Sets the hour to H.

Borland C++ Programmer's Guide

setHundredths void setHundredths (unsigned char HD) i

Sets the hundredths of a second to RD.

setMinute void setMinute (unsigned char M) i

Sets the minutes.

Btree

setSecond void setSecond (unsigned char S) i

Sets the seconds.

I Collection HI Btree

BoseTime

btree,h

The class Btree, derived from Collection, implements the B-tree, a popular
data structure offering efficient storage and retrieval with large, dynamic
volumes of data. (A detailed account of Borland C++ development of B­
tree theory is beyond the scope of this manual: see BTREE.CPP and D. E
Knuth's The Art of Computer Programming, Volume 3,6.2.3.). Btree makes
use of several auxiliary, noncontainer friend classes: Node, Item,
InnerNode, and Leaf Node (the last two being derived from Node). You
can study these in btree.h. Here, we will just outline the members of the
Btree class, which should suffice for most applications.

Member
functions

add void add (Obj ect&) i

Add the given object to the B-tree.

constructor Btree (int ordern = 3) i

Creates a B-tree of order ordern (default order is 3).

decrNofKeys void decrNofKeys () i

Decrements the itemslnContainer data member

detach void detach (Obj ect& toDetach, 'DeleteType dt = NoDelete) i

protected

Removes the given object from the B-tree. The fate of the removed object
depends on the argument dt. See TShouldDelete for details.

find Member virtual Obj ect& findMember (const Object& toFind) const i

Chapter 6, The container class libraries 255

Btree

256

Returns the given object if found, otherwise returns NOOB]ECT.

flush vaid flush(DeleteType dt = DefDelete);

Flushes (empties) the B-tree. The fate of the removed objects depends on
the argument dt. See TShouldDelete for details.

hasMember virtual int hasMernber (canst Obj ect& abj) canst;

Returns 1 if the given object is found in the B-tree, otherwise returns O.

hashValue virtual hashValueType hashValue () canst;

Returns the hash value of this B-tree. See HashTable::hashValue for more
details.

Ladd lang i_add (canst Obj ect& abj); protected

Adds the given object to the tree and returns the index in the tree at which
the object was inserted.

incrNofKeys vaid incrNafKeys () ;

Increments the itemsInContainer data member

initlterator virtual CantainerIteratar& ini tIteratar () canst;

Creates an iterator for this B-tree.

See also: Container::initlterator

isA virtual classType isA () canst;

Returns btreeClass, the Btree class ID

isEqual virtual int isEqual (canst Obj ect& testObj ect) canst;

Returns 1 if testObject is the same as this object.

nameOf virtual char *nameOf () canst;

Returns "Btree", the Btree class ID string

operator () Object& aperatar[] (lang i) canst;

Returns the root at index i

order int arder () ;

Returns the order of the B-tree.

printOn virtual vaid printOn(astream& autputStream) canst;

protected

operator « is a
friend of Object.

See page 287.

Sends the formatted B-tree data to the given output stream. printOn is for
internal use by the overloaded operator «.

Borland C++ Programmer's Guide

Btree

rank long rank (const abject& obj) const;

Returns the rank of the given object in the B-tree.

Friends
Node, InnerNode, and Leaf Node are friends of Btree.

Btreelterator btree.h

I Contai nerIteratorHI Btreelterator

The class Btreelterator is derived from Containerlterator. Its members
follow the same scheme as those for the other container iterators.

Member
functions

constructor BtreeIterator (const Btree& toIterate);

See Containerlterator constructor

current virtual abj ect& current () ;

See Containerlterator: :current

operator ++ virtual abj ect& operator ++ () ;

virtual abject& operator ++(int);

See Containerlterator::operator ++

operator int virtual operator int () ;

Conversion operator to test for end of iterator position.

restart virtual void restart () ;

See Containerlterator:: restart

Chapter 6, The container class libraries 257

Collection

Collection

258

collect.h

Collection is an abstract class derived from the abstract class Container.
This means that although Collection is more specialized than Container, it
still cannot be used directly for creating useful objects but exists only as a
further stepping stone towards usable, derived instance classes.

Collection inherits five pure virtual functions (flush, initlterator, isA,
nameOf and getltemslnContainer), that simply await definitions down the
road by derived instance classes.

Collection extends the functionality of Container in several areas by
adding both virtual and pure virtual member functions. The extra pure
virtual functions are add and detach. Instance classes ultimately derived
from Collection, therefore, will need to provide appropriate member
functions for adding and removing elements.

The other (non-pure) virtual member functions added by Collection are
destroy, hasMember, and find Member. The last two provide the key
difference between Collection and Container. A Collection-derived object
can determine if any given object is a member (with hasMember) and, by
using an iterator, can locate a member object within the collection (with
findMember).

The offspring of Collection refine these access methods in various ways,
and add other functions. In most applications, you will be dealing directly
with a particular derived class of Collection, chosen to match your needs:
sorted and unsorted arrays, hash tables, bags, sets, dictionaries, and single
and double lists. However, it is useful to have a feel for how these instance
classes build up from abstract classes, and why it is useful to have
intermediate abstract classes.

Borland c++ Programmer's Guide

Member
functions

Collection

add virtual void add (Obj ect& 0) = 0;

Pure virtual function to be defined in derived classes to add an object to a
collection.

constructor Uses the Container base constructor.

destroy void destroy (const Obj ect& 0);

Removes an object from a Collection. Whether the object itself is
destroyed or not depends on the ownership status of the collection. If the
collection currently owns the object, the object will be destroyed, otherwise
the object survives. destroy is implemented with detach (0, DefDelete);

See also: TShouldDelete::ownsElements

detach virtual void detach (Object& 0, DeleteType dt = NoDelete) = 0;

Pure virtual function to be defined in derived classes to remove an object
from a collection. The destruction of the object depends both on the
ownership status and the value (Delete, NoDelete, or DefDelete) passed via
the dt argument.

See also: destroy, TShouldDelete::ownsElements

findMember virtual Object& findMember(const Object& testObject) const;

Returns the test object if it is in the collection, otherwise returns
NOOBJECT.

hasMember virtual int hasMember (const Obj ect& 0) const;

Returns 1 if the collection contains the given object.

Container contain.h

Chapter 6, The container class libraries 259

Container

The abstract class Container, derived directly from Object, is the base for
all the container classes. Container has a second pure virtual base class
(not shown) called TShouldDelete. Container provides the following
functionality:

1. A container can store objects of other classes, known as elements or
items. (The objects in a container are sometimes called "members" of
the container, but this usage can lead to ambiguities in C++.) A
container can flush itself by removing all its elements.

2. A container can determine the number of objects it holds. Empty
containers are allowed.

3. Container is also derived from TShouldDelete (multiple inheritance),
which lets you control the ownership of a container's elements. By
default, a container owns its elements, meaning that it will destroy
them when its destructor is called or when it is flushed.

4. A container can create external iterators, objects of type
Containerlterator, which can be used to traverse the container, element
by element. With external iterators, you need to handle the scanning of
the elements yourself. Other iterators, known as internal iterators, are
generated automatically.by certain member functions. These do their
own loop tests and can perform arbitrary actions on each element
(forEach). Member functions are also available for scanning the
container until a certain condition is satisfied (firstThat, lastThat).

5. A container can test if it is equal to another container.

6. A container can display its elements on streams in a formatted way. A
printOn function is provided from which the usual overloaded «
output operator can be obtained.

Strictly speaking, some of the above member functions are pure virtual
functions that need to be defined in derived classes. See Collection class
for a more detailed discussion.

Specialized containers are derived to two ways: directly derived are the
classes Stack, PriorityQueue, and Deque (from which Queue is derived).
Derived indirectly via another abstract class, Collection, are
AbstractArray, HashTable, Bag, Btree, List, and DoubleList.

itemslnContainer countType i temsInContainer i protected

260

Holds the current number of elements in the container.

See also: getitemslnContainer

Borland C++ Programmer's Guide

Member
functions

Container

constructor Container () ;

Creates an empty container.

firstThat virtual Object& firstThat (condFuncType testFuncPtr, void *paramList)
const;

Returns a reference to the first object in the container that satisfies a given
condition. You supply a testFuncPtr that returns true for a certain
condition. You can pass arbitrary arguments via the paramList argument.
NOOBJECT is returned if no object in the container meets the condition.
Note that you are not involved directly with iterators: firstThat and
lastThat create their own internal iterators, so you can simply treat them
as "search" functions.

See also: lastThat, Object: :firstThat

flush virtual void flush(DeleteType dt = DefDelete) = 0;

A pure virtual function to be defined in derived classes. Flushing means
removing all the elements from the container without destroying it. The
value of dt determines whether the elements themselves are destroyed. By
default, the ownership status of the container determines their fate. You
can also set dt to Delete and NoDelete.

See also: TShouldDelete::ownsElements

forEach virtual void forEach(iterFuncType actionFuncPtr, void *args);

forEach creates an internal iterator to execute the given action function for
each element in the container. The args argument lets you pass arbitrary
data to the action function.

getltemslnContainer virtual countType getItemsInContainer () const = 0;

Pure virtual function to be defined by derived classes to return the
number of elements in a container.

hashValue virtual hashValueType hashValue () const = 0;

A pure virtual function to be defined by derived classes to return the hash
value of an object. See HashTable::hashValue for more details.

initlterator virtual ContainerIterator& initIterator () const = 0;

Pure virtual function to be defined in derived classes to initialize an
external container iterator.

Chapter 6, The container class libraries 261

Container

isA virtual classType isA () canst = 0;

Pure virtual function to be defined in derived classes to return their class
ID.

isEmpty virtual int isErnpty () canst = 0;

Pure virtual function to be defined in derived classes. Returns 1 if a
container has no elements; otherwise returns O.

isEqual virtual int isEqual(canst Object& testObject) canst;

Returns 1 if the testObject is a container of the same type and size as this
container, and with the same objects in the same order. Otherwise returns
o.

lastThat virtual Object& lastThat(candFuncType testFuncPtr, vaid *pararnList)
canst;

Returns a reference to the last object in the container that satisfies a given
condition. You supply a testFuncPtr that returns true for a certain
condition. You can pass arbitrary arguments via the paramList argument.
NOOBJECT is returned if no object in the container meets the condition.
Note that you are not involved directly with iterators: firstThat and
lastThat create their own internal iterators, so you can simply treat them
as "search" functions.

See also: firstThat, Object: :firstThat

nameOf virtual char *narneOf () canst = 0;

Pure virtual function to be defined by derived classes to return their object
type ID string (usually the unique class name).

printHeader virtual vaid print Header (astrearn& autputStrearn) canst;

printOn

operator « is a
friend of Object.

See page 287.

Sends a standard header for containers to the output stream (called by
printOn).

See also: printOn, printSeparator, printTrailer

virtual vaid print On (astrearn& autputStrearn) canst;

Sends a formatted representation of the container to the given output
stream. printOn is for internal use by the overloaded operator «.

See also: printHeader, printSeparator, printTrailer

printSeparator virtual vaid printSeparatar (astrearn& autputStrearn) canst;

262 Borland C++ Programmer's Guide

Container

Sends to the output stream a separator (comma) between elements in a
container (called by printOn).

See also: printOn, printHeader, printTrailer

printTrailer virtual void printTrailer (ostream& outputStream) const;

Friends

Sends to the output stream a standard trailer (a closing brace) for a
container (called by printOn).

See also: printOn, printHeader, printSeparator

Containerlterator is a friend of Container.

Containerlterator contain.h

Member
functions

HashTabl elterator

I Conta i ner I tera tori ListIterator

Doubl eLi stIterator

BtreeIterator

ArrayI terator

Containerlterator is an abstract class declared as a friend of Container.
Container classes have initlterator member functions that create
Containerlterator-derived objects. These provide the basic mechanisms for
traversing the elements in a container: incrementing through the
container; returning positional information; testing for conditions, and so
on. The member functions for ContainerIterator are all pure virtual and
are defined in derived classes. See page 222 for more on the
Containerlterator hierarchy.

current virtual Obj ect& current () = 0;

Pure virtual function to be defined in derived classes to return the current
element. If the current element is empty or invalid, NOOBJECT is
returned.

Chapter 6, The container class libraries 263

Containerlterator

operator int virtual operator int () = 0;

Pure virtual function to be defined by derived classes to provide a
conversion operator to test for end of iteration condition.

operator ++ virtual Obj ect& operator ++ () = 0;
virtual Object& operator ++(int) = 0;

Advances the iterator one position in the container. The first version
returns the object referred to before incrementing; the second version
returns the object referred to after incrementing. The int argument is a
dummy used to distinguish the two operators (see the section on Operator
Overloading in the Programmer's Guide).

restart virtual void restart () = 0;

Pure virtual function to be refined in derived classes to set the current
index of the iterator to the first nonempty element in the container.

Date /date.h

I BaseDate HI Date

The Date instance class is a direct descendant of the abstract class
BaseDate, defining a printOn function. You can vary Date for different
national conventions without disturbing BaseDate.

Member
functions

constructor Da t e () ;

Calls the BaseDate constructor to create a date object with today's date.

constructor Date (unsigned char M, unsigned char D, unsigned Y);

Calls the BaseDate constructor to create a date object with the given date.

constructor Date (const Date& aDate);

Copy constructor.

isA virtual classType isA () canst;

Returns dateClass, the Date class 10.

nameOf virtual char *narneOf () const;

264 Borland C++ Programmer's Guide

printOn

operator« is a
friend of Object.

See page 287.

Deque

Example
Source

Date

Returns "Date", the Date class ID string.

virtual void printOn(ostream& outputStream) const;

Sends a formatted date to the given output stream. The format is full
month name, day, year, for example January 1, 1990. printOn is really for
internal use by the overloaded operator «.

deque.h

I Contai ner HI Oeque IH Queue

The instance class Deque (pronounced "deck"), derived from Container,
implements a double-ended queue soit is one of the sequence classes.
Objects can be examined, inserted, and removed at both the left and the
right ends but nowhere else. You can use the member functions peekLeft
and peekRight to examine the objects currently at the left and the right
ends. putLeft and putRight insert objects at the ends. The get Left and
getRight members also access the end objects but detach them from the
deque. The fate of the objects removed from the deque is determined by
the same ownership and DeleteType considerations discussed in the
TShouldDelete class (recall that TShouldDelete is a virtual base class for
Container). Deque also acts as the base class for Queue.

#include <deque.h>
#include <strng.h>

main()
{

Deque d;
String *sl = new String("one");
String *s2 = new String("two");
String *s3 = new String("three");
String *s4 = new String("four");

II Populate the deque
d.putLeft (*sl);
d.putRight(*s2) ;
d.putLeft (*s3) ;
d.putRight(*s4) ;

II Print to cout
cout « "As a container:\n" « d « endl;

Chapter 6, The container class libraries 265

Deque

Output

Member
functions

II Empty to cout
cout « "As a Oeque:\n";
while (!d.isEmpty())
{

cout « d.getLeft() « endl;

II Should be empty
cout « "\nShould be empty: \n" « di

As a container:
Oeque { three,

one,
two,
four }

As a Oeque:
three
one
two
four

Should be empty:
Oeque { }

flush virtual void flush(DeleteType dt = DefDefault);

Flushes (empties) the deque without destroying it. The fate of any objects
thus removed depends on the current ownership status and the value of
the dt argument.

See also: TShouldDelete::ownsElements

getltemslnContaii'Ier virtual countType getItemsInContainer () const;

Returns the number of items in the deque.

266

get Left obj ect& getLeft () ;

Returns the object at the left end and removes it from the deque. Returns
NOOBJECT if the deque is empty.

See also: TShouldDelete class

getRight Obj ect& getRight () ;

As for getLeft; except that the right end of the deque is returned.

See also: getLeft

Borland C++ Programmer's Guide

initlterator virtual ContainerIterator& ini tIterator () const;

Initializes an iterator for the deque.

See also: Container::initlterator

isA virtual classType isA () const;

Returns dequeClass, the Deque class ID.

isEmpty virtual int isEmpty () const;

Returns 1 if a container has no elements; otherwise returns O.

nameOf virtual char *nameOf () const;

Returns "Deque", the Deque class ID string.

peekLeft Object& peekLeft() const;

Deque

Returns the object at the left end (head) of the deque. The object stays in
the deque.

peekRight Obj ect& peekRight ()

Returns the object at the right end (tail) of the deque. The object stays in
the deque.

putLeft void putLeft (Obj ect& obj);

Adds (pushes) the given object at the left end (head) of the deque.

putRight void putRight (Obj ect& obj)

Dictionary

Adds (pushes) the given object at the right end (tail) of the deque.

dict.h

~_se_t_~HI Dictionary II

A dictionary is a special collection of Association type objects. The
instance class Dictionary is derived from Collection via Bag and Set,
implying that no duplicate association objects are allowed ina dictionary.
Dictionary overrides the add function and adds a lookup function to the
members inherited from Set. lookup allows you to retrieve the value
object of an association stored in the dictionary if you supply the key.

Chapter 6, The container class libraries 267

Dictionary

Member
functions

add virtual void add (Obj ect& assoc);

Adds the given association (assoc) to the dictionary. If the given argument
is not of type Association, a runtime error occurs.

constructor Dictionary (unsigned sz = DEFAULT_HASH_TABLE_SIZE);

Invokes the base Set constructor to create an empty dictionary of size S2.

isA virtual classType isA () const;

Returns dictionaryClass, the Dictionary class 10.

lookup Association& lookup (const Object& toLookUp) const;

Returns the association matching the toLookUp key. If no match is found,
NOOB]ECT is returned.

nameOf virtual char *narneOf () const;

Returns "Dictionary", the Dictionary class 10 string.

DoubleList dbllist.h

268

Member
functions

I Collection HI DoubleList II

The instance class DoubleList, derived from Collection, implements the
classical doubly-linked list data structure (see D. E Knuth's The Art of
Computer Programming, Volume 1,2.2.5). Briefly, each node object of a
doubly-linked list has two links, one pointing to the next node and one
pointing to the previous node. The extreme nodes are called the head and
the tail. As with the Deque class, you can examine, add, and remove
objects at either end of the list.

add virtual void add (Obj ect& toAdd);

Add the given object at the beginning of the list.

addAtHead void addAtHead (Obj ect& toAdd);

Adds the given object at the beginning (head) of the list.

Borland C++ Programmer's Guide

DoubleList

addAtTail void addAtTail (Obj ect& toAdd);

Adds the given object at the end (tail) the list.

constructor DoubleList () ;

Creates a new, empty doubly-linked list.

destroyFromHead void destroyFromHead (const Obj ect& toDestroy);

Detaches the first occurrence of the given object encountered by searching
from the beginning of the list. The object is destroyed only if it is owned
by the list.

destroyFromTail void destroyFromTail (const Obj ect& toDestroy);

Detaches the first occurrence of the given object encountered by searching
from the tail of the list towards the head. The object is destroyed only if it
is owned by the list.

detach virtual void detach (Object& toDetach, DeleteType dt = NoDelete);

Calls detachFromHead (toDetach, dt);

detachFromHead void detachFromHead(const Object& toDetach, DeleteType dt = NoDelete);

Removes the first occurrence of the given object encountered by searching
from the beginning of the list. The dt argument determines if the detached
object is itself destroyed. See TShouldDelete for details.

detachFromTail void detachFromTail(const Object& toDetach, DeleteType dt = NoDelete);

Removes the first occurrence of the object starting at the tail of the list and
scanning towards the head. The dt argument determines if the detached
object is itself destroyed. See TShouldDelete for details.

flush virtual void flush(DeleteType dt = DefDelete);

Flushes (empties) the list without destroying it. The fate of the objects thus
removed is determined by the dt argument as explained at TShouldDelete.
The default value of dt means that the removed objects will be destroyed
only if the list owns these objects.

See also: TShouldDelete::ownsElements

initlterator virtual ContainerIterator& initIterator () const;

Creates and returns a forward (from head to tail) iterator for the list.

isA virtual classType isA () const;

Returns doubleListClass, the DoubleList class ID.

Chapter 6, The container class libraries 269

DoubleList

nameOf virtual char *nameOf () const;

Returns "DoubleList", the DoubleList class ID string.

peekAtHead Obj ect& peekAtHead () cons t ;

Returns the object at the head of the list (without removing it).

peekAtTaii Obj ect& peekAt Tai 1 () cons t;

Returns the object at the tail of the list (without removing it).

Friends
DoubleListlterator is a friend of DoubleList

DoubleListlterator dbllist.h

Member
functions

Contai nerIterator IOOUbl eLi stlteratorl

DoubleListlterator, derived from Containerlterator, implements the
special iterators for traversing doubly-linked lists in either direction. This
class adds overloading of the pre- and postdecrement operator - - to
allow reverse iteration. For more details on iterators, see
Containerlterator, and DoubleList::inititerator.

constructor DoubleListIterator (const DoubleList& toIterate, int atHead = 1);

Creates an iterator for the given list. The iterator will begin at the head of
the list if atHead is I, otherwise it starts at the tail.

current virtual Obj ect& current () i

Returns the object at the current index of the iterator. If the current index
exceeds the upper bound, NOOBJECT is returned.

operator ++ virtual Obj ect& operator ++ (int);
virtual Object& operator ++ ();

See Containerlterator operator ++

operator - - Object& operator - - (int);
Object& operator - - ();

270 Borland C++ Programmer's Guide

Error

DoubleListlterator

Moves the iterator back one position in the list. The object returned is
either the current object (postdecrement) or the object at the new position
(predecrement), or NOOBJECT if no valid object at the relevant position.
The first version gives postdecrement, the second gives pre decrement.
The int argument is a dummy serving only to distinguish the two
operators.

operator int virtual operator int () i

Conversion operator to test for the end of an iteration condition.

restart virtual void restart () i

Moves the iterator back to its starting position at the head of the list.

See also: DoubleListlterator constructor

object.h

Object HI Error

The class Error is a special instance class derived from Object. There is just
one instance of class Error, namely theErrorObject. Pointing to this global
object is the static object pointer Object::ZERO. NOOBJECT is defined as
*(Object::ZERO) in object.h. The operator Object::operator new returns a
pointer to theErrorObject if an attempt to allocate an object fails. You may
test the return value of the new operator against Object::ZERO to see
whether the allocation failed.
NOOBJECT is rather like a null pointer, but serves the vital function of
occupying empty slots in a container. For example, when an Array object
is created (not to be confused with a traditional C array), each of its
elements will initially contain NOOBJECT.

Member
functions

delete void operator delete (void *) i

Invokes a runtime error if an attempt to delete the Error object is detected.

isA virtual classtype isA () const;

Returns errorClass, the Error class ID.

isEqual virtual int isEqual(const Object& testObject const)i

Chapter 6, The container class libraries 271

Error

Returns 1 if the test object is the Error object.

nemeO' virtual char *narneOf () const;

printOn

operator « is a
friend of Object.

See page 287.

HashTable

272

Returns the Error class ID string.

virtual void printOn(ostrearn& outputStrearn) const;

Prints the string "Error \n" on the given stream. printOn is for internal use
by the overloaded operator «.

hashtbl.h

I Collection HI HashTable II

The instance class HashTable provides an implementation of an
unordered collection in which objects are added and retrieved via a
hashing function. A hash table provides a fixed array with size slots
(usually a prime number), one for each possible hash value modulo size. A
hashing function computes the hash value for each object (or a key part of
that object) to be added, and this determines the slot to which the new
object is assigned.

For each containable object of class X, the member function X::HashValue
returns a value (of type hashValueType) between 0 and 65535, which is as
"unique" as possible. This "raw" hash value is reduced modulo size. We'll
use the term hash value to refer to this reduced value in the range 0 to size -
1. This hash value serves as an index into the hash table. The internal
organization of the table is hidden, but it may help you to consider the
slots as pointers to lists.

It should be clear that if you want to store more than size objects, the hash
value cannot be unique for each object. So two cases arise when an object
is added: if the slot is empty, a new list is assigned to the slot and the
object is stored in the list; if the slot is already occupied by an object with
the same hash value (known as a collision), the new object is stored in the
existing list attached to the slot. When it comes to locating an object, the
hashing function computes its hash value to access the appropriate slot. If
the slot is empty, NOOB]ECT is returned, otherwise a List::findMember
call locates the object.

Choosing the best HashValue function and table size is a delicate
compromise between avoiding too many collisions and taking up too
much memory. (Other hashing techniques are available, but the modulo

Borland C++ Programmer's Guide

Member
functions

HashTable

prime method is the most common. For more on hash table theory, see D.
E. Knuth's The Art of Computer Programming, Volume 3,6.4.). Hashing is
widely used by compilers to maintain symbol tables.

add virtual void add (Object& objectToAdd)j

Adds the given object to the hash table.

constructor HashTable (sizeType aPrime = DEFAULT_HASH_TABLE_SIZE) j

Creates an empty table. The aPrime argument is a prime number used in
the hashing function (the default is defined in resource.h).

detach virtual void detach(Object& objectToDetach, DeleteType dt = NODelete)j

Removes the given object from the hash table. Whether the object itself is
destroyed or not depends on the dt argument, as explained in
TShouldDelete: :ownsElements.

findMember virtual Object& findMember(const Object& testObject) constj

Returns the target object if found, otherwise returns NOOBJECT.

flush virtual void flush(DeleteType dt = DefDelete)j

Removes all the elements from the table without destroying it. The value
of dt determines whether the elements themselves are destroyed. By
default (dt = DefDelete), the ownership status of the table determines the
fate of all its elements, as explained in TShouldDelete::ownsElements.
You can set dt to Delete to force destruction of the flushed elements
regardless of ownership. If dt is set to NoDelete, the flushed elements will
survive regardless of ownership. .

See also: TShouldDelete::ownsElements

hashValue virtual hashValueType hashValue () const j

Returns the raw hash value of this table. This must not be confused with
the hash values calculated by the hash table for each of the objects it
stores. When an object x of class X is added or retrieved from a hash table
h, the raw hash value used is x.hashValue (). The true hash value (usually
modulo size) is obtained from the hash table object via h. getHashVal ue (x
) . Only classes with a proper hashValue member function can provide
objects for storage in a hash table. All standard Object-derived classes in
the library have meaningful hashing functions provided. For example,
BaseDate::hashValue (unless overridden) returns the value YY + MM +

Chapter 6, The container class libraries 273

HashTabJe

DD from which the (private) member function HashTable::getHashValue
computes a hash value (using mod size). It is this value that governs the
hash table's add, findMember, and detach operations.

initlterator virtual ContainerIterator& initIterator () const i

Creates and returns an iterator for the hash table. See
Container::initlterator for more details.

isA virtual classType isA () const i

Returns hashTableClass, the HashTable class 10.

nameCf virtual char *nameOf () const i

Returns "Hash Table", the HashTable class 10 string.

Friends
HashTablelterator is a friend of HashTable

Hash T ablelterator hashtbl. h

Member
functions

Containeriterator IHashTablelterator I

HashTablelterator is an instance class providing iterator functions for
HashTable objects. Since hash values are stored in an array, hash table
iterators use the array iterator mechanism. See Containerlterator for a
detailed discussion of iterators.

constructor HashTableIterator (const Array& toIterate) i

See Containerlterator constructor

current virtual operator Obj ect& current () i

See Containerlterator: :current

operator int virtual operator int () i

Conversion operator to test for end of iterator position.

operator ++ virtual Obj ect& operator ++ (int) i
virtual Object& operator ++ () i

274 Borland C++ Programmer's Guide

HashTablelterator

See Containerlterator: :operator ++

restart virtual void restart ()

See Containerlterator:: restart

List list.h

Member
functions

I Collection HI List

The instance class List, derived from Collection, implements a linear,
linked list. Lists are unordered collections in which objects are linked in
one direction only to form a chain. You can usually add objects only at the
start of a list but any object can be removed from a list. You can traverse a
list (from head to tail) with an iterator to access the objects sequentially.
List has an internal private class ListElement providing memory
management and other functions for the pairs of pointers (to object and to
next element) that constitute the elements of a List object. (For more on list
theory, see Sedgwick's Algorithms and Knuth's The Art of Computer
Programming, Volume 1, 2.2).

add void add (Obj ect& toAdd);

Adds the given object at the head of the list. The added object becomes the
new head.

constructor List () ;

Creates an empty list.

detach virtual void detach(Object& toDetach, DeleteType dt = NoDelete);

Removes the given object from the list. Whether the object itself is
destroyed or not depends on the dt argument, as explained in
TShouldDelete::ownsElements.

flush virtual void flush (DeleteType dt = DefDelete);

Removes all the objects from the list without destroying it. The value of dt
determines whether the objects themselves are destroyed. By default (dt =
DefDelete), the ownership status of the list determines the fate of its
elements, as explained in TShouldDelete::ownsElements. You can set dt
to Delete to force destruction of the flushed objects regardless of

Chapter 6, The container class libraries 275

List

ownership. If dt is set to NoDelete, the flushed objects will survive
regardless of ownership.

See also: TShouldDelete::ownsElements

hashValue virtual hashValueType hashValue () canst;

Returns the hash value of this list. See HashTable::hashValue for more
details.

iniNterator virtual CantainerIteratar& initIteratar() canst;

See Container::initlterator

isA virtual classType isA () canst;

Returns listClass the List class 10.

nameOf virtual char *nameOf () canst;

Returns "List", the List class 10 string.

peekHead Obj ect& peekHead () canst;

Returns the object at the head of the list.

Friends
Listlterator is a friend of List and ListElement.

Listlterator list.h

276

Member
functions

I Contai nerIteratorHI Li stIterator

Listlterator is an instance class derived from Containerlterator providing
iterator functions for List objects. See Containerlterator for a discussion of
iterators.

constructor ListIteratar (canst List& taIterate);

Creates an iterator for the given list. The starting and current elements are
set to the first element of the list. See Containerlterator constructor for
details.

Borland C++ Programmer's Guide

Listlterator

current virtual Obj ect& current () i

See Containerlterator::current

, operator ++ virtual Obj ect& operator ++ (int) i
virtual Object& operator ++ () i

See Containerlterator: :operator ++

operator int virtual operator int () i

Conversion operator to test for end of iterator position.

restart virtual void restart ()

MemBlocks

See Contai nerlterator:: restart

memmgr.h

II MemBlocks

The classes MemBlocks and MemStack in memmgr.h offer specialized
memory management not only for the container classes but for other
applications. Detailed knowledge of their operations is not needed for
normal container applications. If you are planning your own advanced
memory management schemes, you should first study memmgr.h and
MEMMGR.CPP.

MemBlocks is a noncontainer, instance class, providing fixed-block
memory allocations. Large, dynamic lists and trees need to allocate and
free their node blocks as quickly as possible. MemBlocks offers more
efficient memory management than the standard heap manager for this
kind of operation. The MemBlock constructor takes two arguments: block
size and number of blocks. These determine the size of the internal blocks
that are allocated as needed using the normal run-time library allocation
functions. A free list of blocks is maintained and the internal blocks are
not released until the MemBlock object is destroyed. The following
example illustrates the use of MemBlocks with a simplified Node class:

class Node

Node *next;
Object *obj;
static MemBlocks memBlocksi

Chapter 6, The container class libraries 277

MemBlocks

};

void *operator new(size_t sz) { return memBlocks.allocate (sz);
void operator delete(void * blk) { memBlocks.free (blk); }

CAUTION: If you derive a class from a class that does its own memory
management as in the Node example above, then either the derived class
must be the same size as the base class or you must override the new and
delete operators.

See also: MemStack class.

allocate void allocate (size_t sz I unsigned blks 100) ;

Allocates blks blocks each of size S2

free void free (void * ptr);

MemStack

278

Frees the memory blocks at ptr.

memmgr,h

MemStack

MemStack is a noncontainer, instance class, providing fast mark-and­
release style memory management. Although used internally by various
container classes, MemStack is also available for general use. Memory
allocations and deallocations are extremely fast since they "popped" and
"pushed" on a stack of available blocks. Marking and releasing blocks is
handled by objects of a helper marker class. When a marker is created it
records the current location in the memory stack; when a marker is
destroyed, the stack is returned to its original state, freeing any allocations
made since the marker was created. For example:

MemStack symbols;

void handleLocals()
{

Marker locals (symbols); II marks current state of symbols
Sym * symbol 1 = new(symbols)Sym; II add a Sym to the table
Sym *symbo12 = new(symbols)Sym; II and another

Borland C++ Programmer's Guide

Object

MemStack

When the function exits, the Marker destructor releases the memory
allocated by the new (symbols) calls made in handleLocal and restores the
memory stack.

See also: MemBlocks

object.h

Object is an abstract class providing the primordial base for the whole
Object-based container hierarchy (with the exception of the iterator
classes). The member functions provide the basic essentials for all derived
classes and the objects they contain. Object has four immediate children:
Error, Sortable, Association, and Container.

Data
member

ZERC> static Object *ZERO;

A static pointer to the unique instance of class Error. ZERO is used to
define NOOBJECT.

See also:

Member
functions
constructors Obj ect () ;

Error class

Object (Object& obj);

Creates or copies an object.

firstThot virtual Object& firstThat (condFuncType testFuncPtr, void *paramList
const;

Returns *this if the object satisfies the condition specified by the
BOOLEAN testFunc function, otherwise NOOBJECT is returned. You can

Chapter 6, The container class libraries 279

Object

pass arbitrary arguments via the paramList argument. Note that firstThat,
lastThat, and forEach work for all Object-derived objects, both container
and non-container objects, whether they are in containers or not. With
container objects, you can get iteration through the contained objects.
When used with objects outside containers, the three functions act only on
the calling object, so firstThat and lastThat are equivalent. condFuncType is
defined in clstypes.h as

#typdef int (*condFuncType) (const class Object&, void *);

firstThat calls (*testFuncPtr) (*this, paramList). If 1 is returned,
firstThat returns (Object &) *this, otherwise NOOB]ECT is returned.

See also: Container: :firstThat

forEach virtual void forEach(iterFuncType actionFuncPtr, void *args);

forEach executes the given action function on *this. The args argument lets
you pass arbitrary data to the action function.

See also: firstThat

hashValue virtual hashValueType hashValue () const = 0;

A pure virtual function to be defined by derived classes to return the hash'
value of an object. See HashTable::hashValue for more details.

isA virtual classType isA () const = 0;

Pure virtual function for derived classes to return a class ID.

isAssociation virtual int isAssociation () const;

Returns 1 if the calling object is part of an Association object, otherwise
returns O. Must be overridden in classes providing associations.

See also: Association class.

isEqual virtual int isEqual (const Object& testObject) const = 0;

Pure virtual function to be defined in derived classes to test for equality
between testObject and the calling object (assumed to be of the same type).
is Equal is really for internal use by the operator == which first applies isA
to see if the compared objects are of the same type. If they are, == then
uses isEqual.

See also: operator ==
isSorttable virtual int isSortable () const;

280 Borland C++ Programmer's Guide

Object

Returns 1 if the calling object can be sorted; that is, if the class Sortable is
an ancestor. Otherwise returns O. Object::isSortable returns o. Sortable
classes must override isSortable to return true.

See also: Sortable class

lastThat virtual Object& lastThat(condFuncType testFuncPtr, void *paramList
const;

Returns *this if the object satisfies the condition specified by the
BOOLEAN testFuncPtr function, otherwise NOOBJECT is returned. You
can pass arbitrary arguments via the paramList argument. Note that
firstThat, lastThat, and forEach work for all Object-derived objects, both
container and non-container objects, whether they are in containers or not.
With container objects, you get iteration through the contained objects.
When used with objects outside containers, the three functions act only on
the calling object, so firstThat and lastThat are equivalent.

See also: firstThat, Container::lastThat

nameOf virtual char *nameOf () const = 0;

Pure virtual function to be defined by derived classes to return their object
ID string.

new void *operator new (size_t size);

Overrides the C++ operator new. Allocates size bytes for an object.
Returns ZERO if the allocation fails, otherwise returns a pointer to the
new object.

printOn virtual void printOn (ostream& outputStream) const = 0;

Pure virtual function to be defined in derived classes to provide formatted
output of objects on the given output stream. printOn is really for internal
use by the overloaded operator «.

See also: operator«

ptrToRef static Object ptrToRef (Object *p);

Returns *ZERO is p is 0, else returns *p

Friends
operator« ostream& operator «(ostream& output Stream, const Object& anObject);

Uses printOn to send a formatted representation of anObject to the given
output stream. The stream is returned, allowing the usual chaining of the
« operator.

operator « is a friend of Object.

Chapter 6, The container class libraries 281

Object

Related
functions The following overloaded operators are related to Object but are not

member functions:

operator== int operator ==(canst Object& testl, canst Object& test2);

Returns 1 if the two objects are equal, otherwise returns o. Equal means
that isA and isEqual each return the same values for the two objects.

Note that for sortable objects (derived from the class Sortable) there are
also overloaded nonmember operators <, >, <=, and >=.

See also: Object::isA, Object::isEqual, operator !=, Sortable class.

operator!= int operator !=(canst Object& testl, canst Object& test2);

Returns 1 if the two objects are unequal, otherwise returns o. Unequal
means that either isA or isEqual each return the different values for the
two objects.

See also: Object::isA, Object::isEqual, operator ==

PriorityQueue priortyq.h

282

I Container HI Pri orityQueue

The instance class Priority Queue, derived from Container, implements
the traditional priority queue data structure. The objects in a priority
queue must be sortable (see Sortable class for details). A priority queue is
either a GIFO (greatest-in-first-out) or SIFO (smallest-in-first-out)
container widely used in scheduling algorithms. The difference really
depends on your ordering definition. In explaining this implementation,
we'll assume a GIFO. You can picture sortable objects being added at the
right, but each extraction from the left gives the "greatest" object in the
queue. (For applications where you need to extract the smallest item, you
need to adjust your definition of "less than.") A detailed discussion of
priority queues can be found in Knuth's The Art of Computer Programming,
Volume 3, 5.2.3.

The member function put adds objects to the queue; peekLeft lets you
examine the largest element in the queue; get removes and returns the
largest element; you can also detach this item with detach Left without

Borland C++ Programmer's Guide

PriorityQueue

Member
functions

"getting" it. PriorityQueue is implemented internally using a private
Btree object called tree.

detachLeft void detachLeft (Container:: DeleteType dt = Container:: DefDelete) i

Removes the smallest object from the priority queue. Whether this object
is destroyed or not depends on the value of dt as explained in
TShouldDelete::ownsElements.

flush void flush (Container:: DeleteType dt = Container:: DefDelete) i

Flushes (empties) the priority queue. The fate of the removes objects
depends on the value of dt as explained in
TShould Delete: :ownsElements.

get Obj ect& get () i

Detaches the smallest object from the priority queue and returns it. The
detached object is not itself destroyed.

getltemslnContainer countType getItemsInContainer () const i

Returns the number of items in the priority queue.

hashValue virtual hashValueType hashValue () const i

Returns the hash value of the priority queue. See HashTable::hashValue
for more details.

has Member int hasMember (const Obj ect& obj) const i

Returns 1 if obj belongs to the priority queue, otherwise returns O.

initlterator virtual void ContainerIterator& initIterator () const;

Creates and returns an iterator for this queue.

See also: Containerlterator

isA virtualclassType isA () const i

Returns priorityQueueClass, the PriorityQueue type ID.

isEmpty int isEmpty () i

Returns 1 if the priority queue is empty, otherwise returns O.

nameOf virtual char *nameOf () const i

Returns "PriorityQueue", the PriorityQueue type ID string.

Chapter 6, The container class libraries 283

PriorityQueue

peek Left Object& peekLeft () ;

Returns the smallest object in the priority queue without removing it.

put void put (Obj ect& 0);

Add the given object to the priority queue.

Queue queue,h

284

Example
Source

I Deque HI Queue

The instance class Queue, derived from Deque, implements the traditional
queue data structure. A queue is a FIFO (first-in-first-out) container where
objects are inserted at the left (head) and removed from the right (tail). For
a detailed discussion of queues, see Knuth's The Art of Computer
Programming, Volume 1, 2.2.1.

The member functions put and get insert and remove objects.
Queue is implemented as a restricted-access version of Deque.

#include <queue.h>
#include <strng.h>
#include <assoc.h>

main()
{

Queue q;
String *sl = new String("a string");
String *s2 = new String("another string");
Association *a1 = new Association(*sl,*s2);

II Populate the queue
q.put(*sl);
q.put (*s2) ;
q.put(*a1);

II Print to cout as a Container
cout « "As a container:\n" « q « endl;

II Empty the queue to cout
cout « "As a queue: \n" ;
while (!q.isEmpty())

Borland C++ Programmer's Guide

Set

Output

Member
functions

cout « q « endl;

cout « endl;

II Queue should be empty
cout « "Should be empty: \n" « q;

As a container:
Queue { Association { a string, another a string }

another string,
a string }

As a queue:
a string
another string
Association { a string, another string}

Should be empty:
Queue { }

Queue

get Obj ect& get () ;

Removes the object from the end (tail) of the queue. By default the
removed object will not be destroyed. If the queue is empty, NOOBJECT
is returned. Otherwise the removed object is returned.

See also: TShouldDelete class

isA virtual classType isA () const i

Returns queueClass, the Queue type ID.

put void put (Object& 0);

Add an object to (the tail of) a queue.

L-..--_B_a9_....JHI Set IH Dictionary I

set.h

The instance class Set is a collection that allows only one instance of any
object. This restriction calls for a specialized add member function to trap

Chapter 6, The container class libraries 285

Set

Member
functions

any duplicates. Apart from this difference, the Set and Bag classes are
essentially the same.

add virtual void add (Obj ect& obj ectToAdd);

Adds the given object to the set only if it is not already a member. If
objectToAdd is found in the set, add does nothing.

See also: Collection::hasMember

constructor Set (sizeType setSize = DEFAULT_SET_SIZE);

Creates a set with the given size by calling the base Bag constructor.

See also: Bag::Bag

isA virtual classType isA () const;

Returns set Class, the Set class 10.

nameCf virtual char *nameOf () const;

Returns "Set", the Set class 10 string.

Sortable sortable.h

286

Sortable is an abstract class derived from Object. You can use it to build
classes of sortable objects. Objects are said to be sortable when they can be
placed in an order based on some useful and consistent definition of "less
than", "equal", and "greater than." Any two of these conditions will
suffice, in fact, since the remaining condition can be constructed with
logical operators. Sortable uses the two primitives "less than" and
"equal" via the pure virtual functions (pure virtual functions) isLessThan
and isEqual. Both of these member function~ are applicable only to objects
of the same type (see operators == and < for more details). The isEqual
member function is a pure virtual function inherited from Object (since
unordered objects also need a test for equality), whereas isLessThan is a

Borland C++ Programmer's Guide

Sortable

new pure virtual function for Sortable. Your derived classes must define
these two member functions to provide an appropriate ordering of their
objects.

Once isLessThan and isEqual are defined, you can use the overloaded
operators ==, !=, <, <=, >, >= in the obvious way (see Related Functions
section below). The < operator tests the objects' types first with isA and
returns 0 if the objects are of different types. Then if the objects are of the
same type, the isLessThan member is called, returning 0 or 1. If your
application calls for the ordering of objects of different types, you would
have to define your own comparison operators.

The elements stored in ordered containers must clearly be sortable. For
example, when adding elements to a SortedArray object, the add member
function must compare the "size" of the incoming object against that of
the existing elements. Similarly, Btree objects make use of magnitude for
storage and access methods. Note, however, that an unordered container
can hold either unsortable or sortable objects.

The type of sortable objects available differs between the Object-based
containers and the template-based containers. In the Object-based
hierarchy you must use objects ultimately derived from Sortable, whereas
the template containers let you store any object or predefined data type
for which == and < is defined. If you want to store ints in an Object-based
container, for example, you must invent a suitable class:

class Integer : public Sortable
{

int data;

public:

virtual char *nameOf() const { return "Integer"; }
virtual classType isA() const { return integerClass;
virtual int isLessThan(const Object& i) const

{ return data < ((Integer&)i) .data; }

The Object-based container library already provides three useful instance
classes derived from Sortable: String, Date, and Time with the natural
ordering you would expect. Remember, though, that you are free to define
your own orderings in derived classes to suit your application. You must
make sure that your comparisons are logically consistent. For instance, >
must be transitive: A > Band B > C must imply A > C.

Chapter 6, The container class libraries 287

Sortable

Member
functions

hashValue virtual hashValueType hashValue () const = 0;

A pure virtual function to be defined by derived classes to return the hash
value of a sortable object. See HashTable::hashValue for more details.

isA virtual classType isA () const = 0;

Pure virtual function to be defined in derived classes to return their class
10.

isEqual virtual int isEqual(const Object& testObject) const = 0;

Pure virtual function to be defined in derived classes to test for equality.
Equality means that the calling object is the same type as testObject and
that their values (as defined by this member function) are equal. Returns 1
for equality, otherwise O.

isLessThan virtual int isLessThan(const Object& testObject) const = 0;

Pure virtual function to be defined in derived classes to test for "less
than." Returns 1 for "less than", otherwise O.

isSortable virtual int isSortable () const;

Returns 1 for all objects derived from Sortable (overrides
Object: :isSortable).

nameOf virtual char *nameOf () const = 0;

prinfOn

operator « is a
friend of Object.

See page 281.

Related

Pure virtual function to be defined by derived classes to return their object
10 string.

virtual void printOn(ostream& outputStream) const = 0;

Pure virtual function to be defined in derived classes to output the object
on the given stream. printOn is for internal use by the overloaded operator
«.

functions The following overloaded operators are related to Sortable but are not
member functions:

operafor< int operator « const Sortable& testl, const Sortable& test2);

288 Borland C++ Programmer's Guide

Sortable

Returns 1 if the two objects are of the same type X, and testl is "less than"
test2 (as defined by X::isLessThan). Otherwise returns O.

See also: Sortable::isLessThan, Sortable::isA

operator <= int operator <= (const Sortable& testl, const Sortable& test2);

As for operator <, but also tests true for equality.

operator> int operator >(const Sartable& testl, canst Sartable& test2);

Returns 1 if the two objects are of the same type X, and testl is not "less
than" and not "equal" to test2 (as defined by X::isLessThan and
X::isEqual). Otherwise returns O.

operator>= int operator >=(const Sortable& testl, const Sortable& test2);

SortedArray

As for operator >, but also tests true for equality. Note that >= returns! (
testl< (test2)), so it returns 1 if testl and test2 are of different types.

sortarry.h

lAbS t ractArray HlsortedArray II

The instance class SortedArray, 'derived from AbstractArray, defines an
array that maintains its elements in ascending order (according to the
ordering defined for the elements). That is, the element at index n is less
than or equal to the element at index n + 1. Note that the operator <=,
used when adding new elements to the array, must be defined for
comparing any objects in the array. This will be the case for objects
ultimately derived from Sortable (see the Related Functions section of the
Sortable class reference) as well as for the standard C integral types.

Array and SortedArray are identical in many areas (they have the same
base, AbstractArray). One difference is that SortedArray::detach
"squeezes" the array to maintain ascending order, while Array::detach
leaves "holes" in the array.

Stack stack.h

I Container HI Stack

Chapter 6, The container class libraries 289

Stack

Example
Source

Output

290

The instance class Stack, derived from Container, is one of the sequence
classes like Queue and Oeque. A stack is a LIFO (last-in-first-out) linear
list for which all insertions (pushes) and removals (pops) take place at one
end (the top or head) of the list (see D. E Knuth's The Art of Computer
Programming, Volume 1,2.2). In addition to the traditional pop and push
member functions, Stack provides top, a member function for examining
the object at the top of the stack without affecting the stack's contents. top
must be used with care since it returns a reference to an object that may be
owned by the stack. Destroying the object returned by top can disrupt the
internal mechanism for storing the stack. The correct way to dispose of the
top element is to use pop followed by delete. Stack is implemented
internally as a List via a private data member theStack of type List.

See also: Stacks templates and classes

#include <stack.h>
#include <strng.h>
#include <assoc.h>

main ()
{

Stack s;
String *sl = new ~tring("a string");
String *s2 = new String("another string");
Association *al = new Association(*sl,*s2);

s.push(*sl) ;
s.push(*s2) ;
s .push (*al) ;

II Print the Stack
cout « "As a Container:\n" « s « endl;

II Empty the stack to cout
cout « "As a Stack:\n";
while (!s.isEmpty())
(

Object& obj = s.pop();
cout « obj « endl;
delete &obj;

As a Container:
Stack { Association { a string, another string}

another string,

Borland C++ Programmer's Guide

Member
functions

a string }

As a Stack:
Association { a string, another string}

another string
a string

flush virtual void flush (DeleteType dt = DefDelete);

Stack

Flushes (empties) the stack. The fate of the removed objects depends on
the argument dt. See TShouldDelete for details.

getltemslnContainer virtual countType getItemslnContainer () const;

Returns the number of items in the stack.

initlterator virtual Containerlterator& initIterator () const;

Creates and returns a stack iterator for the stack.

See also: Containerlterator class

isA virtual classType isA () const;

Returns stackClass, the Stack type ID.

isEmpty virtual int isEmpty () const;

Returns 1 if the stack is empty, otherwise returns O.

nameOf virtual char *nameOf () const;

Returns "Stack", the Stack type ID string.

pop Object& pop () ;

Removes the object from the top of the stack and returns the object. The
fate of the popped object is determined by ownership as explained in
TShouldDelete.

push void push(Object& toPush);

Adds (pushes) the object toPush to the top of the stack.

top Obj ect& top () ;

Returns but does not remove the object at the top of the stack.

Chapter 6, The container class libraries 291

String

String strng.h

Member
functions

I Sortable HI String

String is an instance class, derived from Sortable, to implement null­
terminated, character strings. String objects are ordered in the usual
lexicographic way using strcmp from the standard C string.h. Note that
the String class include file is spelled strng.h. See Sortable for a discussion
on ordered classes.

constructor String (canst char * aPtr = II II);

Constructs a String object from the given C string.

constructor String (canst String& saurceString);

Copy constructor.

hashValue virtual hashValueType hashValue () canst;

Returns the hash value of this string. See HashTable::hashValue for more
details.

isA virtual classType isA() canst;

Returns stringClass, the Stack type IO.

isEqual virtual int isEqual (canst Object& testString) canst;

Returns 1 if the calling string is equal to testString, otherwise returns O.
You can also use the overloaded operators == and != as explained in the
Related functions section of the Object class.

isLessThan virtual int isLessThan(canst Object& testString) canst;

Returns 1 if the calling string lexically precedes testString, otherwise
returns O. You can also use the overloaded operators <, <=, >, and >=, as
explained in the Related functions section of the Storable class.

nameOf virtual char *nameOf () canst;

Returns the Stack type IO string.

printOn virtual vaid printOn(astream& autputString) cansti

292 Borland C++ Programmer's Guide

operator « is a
friend of Object.

See page 281.
operator =

String

Prints this string on the given stream. printOn is really for internal use by
the overloaded operator «.

String& operator =(const String& sourceString);

Overloads the assignment operator for string objects.

operator char * operator const char * () const;

Example
Source

Output

Returns a pointer to this string.

II File TSTRNG.CPP: Test the String class

#include <strng.h>

void identify (String&) ;

main()
{

char sl [21], s2 [21];

cout « "Enter a string: ";
cin » sl;
String str1(sl);
identify (str1);

cout « "Enter another string: ";
cin » s2;
String str2(s2);
identify (str2) ;

II Do some relational tests:

II Read a string

II Read another

cout « "Equal: " « str1.isEqual(str2) « end I
« "Less than: " « str1.isLessThan(str2) « endl;

II String assignment:
str2 = str1;
cout « "After assignment:\n" « "Equal: "

« str1.isEqual(str2);

void identify(String& str)
{

II Echo a String's value and type
cout « "Value: " « str

« ", Obj ect type: " « str. nameOf () « endl « endl;

Enter a string: hello
Value: hello, Object type: String

Enter another string: goodbye

Chapter 6, The container class libraries 293

String

value: goodbye, Object type: String

Equal: 0
Less than: 0
After assignment:
Equal: 1

Time Itime.h

294

I BaseTime HI Time

Time is a sortable instance class derived from BaseTime. Time adds a
printOn member. You can override this in derived classes to cope with
international formatting variations.

Member
functions

constructor Time () ;

Calls the BaseTime constructor to create a Time object with the current
time.

See also: BaseTime constructor

constructor Time(canst Time& T);

Copy constructor.

constructor Time (unsigned char H, unsigned char M = 0 I unsigned char S = 0 I
unsigned char D = 0);

Creates a Time object with the given hour, minutes, seconds, and
hundredths of seconds.

isA virtual classType isA () canst;

Returns timeClass, the Time class 10.

nemeOf virtual char *nameOf () canst;

printOn

operator« is a
friend of Object.

See page 281.

Returns "Time", the Time class 10 string.

virtual void printOn(astream& autputStream) canst;

Sends a formatted Time object to the given output stream. The default
fOrlTlat is hh:rnrn: ss :dd a/pm with nonmilitary hours. printOn is for internal
use by the overloaded operator «.

Borland C++ Programmer's Guide

Timer

Timer

timer.h

Timer

Timer is an instance class implementing a stop watch. You can use Timer
objects to time program execution by calling the member functions start
and stop within your program, and then using time to return the elapsed
time. The reset member function resets the elapsed time to zero.
Successive starts and stops will accumulate elapsed time until a reset.

Member
functions

constructor Timer () i

Creates a Timer object.

reset void reset () ;

Clears the elapsed time accumulated from previous start/ stop sequences.

resolution static double resolution () i

Determines the timer resolution for all timer objects. This value is
hardware and as dependent. For example:

if(elapsedTime < timer.resolution())
cout « "Measured time not meaningful." « endl;

start void start () i

Ignored if the timer is running, otherwise starts the timer. The elapsed.
times from any previous start/stop sequences are accumulated until reset
is called.

status int status();

Returns 1 if the timer is running, otherwise O.

stop void stop () i

Stops the timer. The accumulated elapsed time is preserved until a reset
call.

time double time () i

Returns the elapsed time. The precision is given by the value returned by
the member function resolution.

Chapter 6, The container class libraries 295

TShouldDelete

TShouldDelete shddel.h

Figure 6.3: Class hierarchies in CLASSLIB

296

TShou 1 dOe 1 ete----,L-A.sSoC i at ion
Container

Member
functions

TShouldDelete maintains the ownership state of a container. The fate of
objects that are removed from a container can be made to depend on
whether the container owns its elements or not. Similarly, when a
container is destroyed, ownership can dictate the fate of contained objects
that are still in scope. As a virtual base class for Container and
Association, TShouldDelete provides ownership control for all containers
and associations. The member function owns Elements can be used either
to report or to change the ownership status of a container. delObj is used
to determine if objects in containers or associations should be deleted or
not.

constructor TShouldDelete (DeleteType dt = Delete);

Creates a TShouldDelete object. By default, containers and associations
own their elements. DeleteType is an enumeration declared within the
class as follows:

enum DeleteType { NoDelete, DefDelete, Delete };

ownsElements int ownsElements () ;

void ownsElements(int del);

The first form returns 1 if the container owns its elements, otherwise it
returns O. The second form changes the ownership status as follows: if del
is 0, ownership is turned off; otherwise ownership is turned on.

delObj int delObj (DeleteType dt);

Tests the state of ownership and returns 1 if the contained objects should
be deleted or 0 if the contained elements should not be deleted. The
factors determining this are (i) the current ownership state and (ii) the
value of dt, as shown in the following table.
delObj returns 1 if (dt is Delete) or (dt is DefDelete and the container
currently owns its elements). Thus a dt of No Delete returns 0 (don't delete)
regardless of ownership; a dt of Delete return 1 (do delete) regardless of

Borland C++ Programmer's Guide

TShouldDelete

ownership; and a dt of DefDelete returns 1 (do delete) if the elements are
owned, but a a (don't delete) if the objects are not owned.

delObj
owns Elements no yes

NoDelete no no
DefDelete no yes
Delete yes yes

Chapter 6, The container class libraries 297

298 Borland C++ Programmer's Guide

c H A p T E R

7

Converting from Microsoft C

If you're an experienced C or c++ programmer, but the Borland
C++ programming environment is new to you, then you should
read this appendix before you do anything else. We appreciate
that you want to be up and running fast with a new piece of soft­
ware, and we know that you want to spend as little time as
possible reading the manual. However, the time you spend
reading this chapter will probably save you a lot of time later.
Please read on.

Environment and tools

You can find out more about
configuration and project
files in Chapters 2 and 3 in

the User's Guide.

The Borland C++ IDE (integrated development environment) is
roughly the equivalent of the Programmer's Workbench, although
naturally we think you'll find the IDE much easier to use. Chapter
3 in the User's Guide provides a complete reference to the IDE. If
you're interested in building Windows applications, see Chapter 8
in the Programmer's Guide.

The IDE loads its settings from two files: TCCONFIG.TC, the
default configuration file, and a project file (.PRJ). TCCONFIG.TC
contains general environmental information. The current project
file contains information more specific to the application you're
building.

A project is the IDE's equivalent of a makefile.1t includes the list
of files to be built, as well as settings for the IDE options that

Chapter 7, Converting from Microsoft C 299

Paths for .h and
. LIB files

Remember that even if you
haven't opened a project,

Borland C++ will store the
paths in its default project

file.

300

control the compilation and linkage of that program. If you don't
specify a project file when you start the IDE, a nameless project is
opened and set with default compiler and linker options, but no
file name list.

Unlike Microsoft C, however, Borland C++ does not automatically
create and run a makefile based on settings and file names that
you give it in the project. If you want to use the IDE to set up a
project, but use MAKE to do the actual build, then you can use
the PR]2MAK utility to convert a project file to a makefile.

The following sections describe the significant differences be­
tween Borland C++'s MAKE, Project Manager, linker (TLINK),
and command-line compiler (BCC) and Microsoft C's NMAKE,
LINK, and CL.

Microsoft C works with two environment variables, LIB and
INCLUDE. The Microsoft linker uses the LIB variable to discover
the location of the run-time libraries; similarly, INCLUDE is used
to find standard header files. Borland C++ does not use environ­
ment variables to store the path for the library or include files.
Instead, you can easily set these paths in the IDE using the envi­
ronment options. If you are working with the command-line
compiler or the linker, you can use command-line options or
configuration files.

When you install Borland C++, you are asked to set paths for
include files and library files. Those paths are then the default
paths in the IDE. The include and library files paths are also
written to the default command-line compiler configuration file
TURBOC.CFG. The library path is written to the default stand­
alone linker configuration file TLINK.CFG.

In the IDE, reset default search paths for libraries and header files
with the Options.' Directories command. The settings in the
Directories dialog box become a part of the current project.

For the command-line compiler, you can reset the search path for
include and library files with the -I and -L options, respectively.
These options can also be reset in the configuration file for the
command -line compiler, TURBOC.CFG.

The linker can use the IL option to change search paths for
libraries and initialization code (like COS.OB], the startup code for
the small memory model). For instance, this option

Borland C++ Programmer's Guide

Borland licenses the
Resource Compiler from

Microsoft.

MAKE

/LC:\BORLANDC\LIBiC:\WINAPPS\LIB

tells the linker to look in the two paths named for library and
initialization files.

You can also create a TLINK.CFG file. TLINK.CFG is a regular
text file that contains a list of valid TLINK options.

For the Resource Compiler, the -x option tells it to ignore the
INCLUDE variable. In addition, you can specify an additional
search path with the -i option (-i all by itself does not imply -x).

When the Resource Compiler is invoked from the command line,
it looks for windows.h on the path specified by the INCLUDE en­
vironment variable, if there is one. If that INCLUDE variable is set
to some other path than the location of the windows.h supplied
by Borland C++, your module might not be compiled correctly.
(This does not occur in the IDE, because the IDE passes the correct
information to the Resource Compiler.)

For instance, if you have been using Microsoft C, then you prob­
ably have an INCLUDE environment variable set to the path of
the Microsoft C header files. If you have also been using the Mi­
crosoft Windows Software Development Kit, then the version of
windows.h included with the SDK is probably also in the
INCLUDE directory.

When you're building a Borland C++ application, the Resource
Compiler should include the windows.h shipped with Borland
C++. If you have a defined INCLUDE environment variable, then
you should tell the Resource Compiler to ignore it with the -x
option.

New! The version of MAKE supplied with Borland C++ 3.0 contains
many new features, some of which are designed to increase
compatibility with Microsoft's NMAKE. The new command-line
switch -N turns on full NMAKE compatibility. See Chapter 2 in
the Tools and Utilities Guide for more information on MAKE's
options. The following list summarizes the differences between
MAKE and NMAKE.

III NMAKE supports response files but MAKE doesn't.

II In NMAKE, you must surround strings to be compared with
quotes. MAKE doesn't have this requirement; as long as the

Chapter 7, Converting from Microsoft C 301

string to be compared doesn't contain spaces, you can compare
them without quotes .

• NMAKE predefines several implici,t rules; MAKE doesn't.
However, the BUlL TINS.MAK file contains several implicit
rules that you can use without specifying them in the makefile.

Command-line
compiler The following table lists comparable BCC and CL command-line

compiler options. Some of the CPP (standalone preprocessor)
options are listed. In many multi-pass compilers, a separate pass
performs the work of the preprocessor, and the results of the pass
can be examined. Since Borland c++ uses an integrated single­
pass compiler, we p,rovide the standalone utility CPP to supply
the first-pass functionality found in other compilers.

Note that most CL options that take arguments allow for a space
between the option and the argument. BCC options that take
arguments are usually immediately followed by the argument or
list.

Table 7.1: CL and BCC options compared

Microsoft C Borland C++
CL option BCC option

N/A @filename
N/A + filename

N/A -AK
N/A -AU
(See IZpn) -a
(See IZpn) -a-
IAw/Gw -WD

IAw/GW -WOE

lAx -mx

IBn N/A
N/A -B
N/A -b
N/A -b-
IC -C
Ic -c
IDid -Dname
IDicl=value -Dname=string
N/A -d
N/A -d-
N/A -Efilename

302

What it does

Gives the command-line compiler a response file name.
Tell the command-line compiler to use the alternate configuration
file filename.
Use only Kernighan and Ritchie keywords.
Use only UNIX keywords.
Align word.
Align byte (default).
Creates an .OB] for Windows to be linked as a .DLL with all
functions exportable.
Creates an .OB] for Windows to be linked as a .DLL with explicit
export functions.
Use memory model x. For BCC, following t, s, or m with! tells
compiler to assume DS != 55. .
Use alternate preprocessor CnL.
Compile and call the assembler to process inline assembly code.
Make enums word-sized by default.
Make enums signed or unsigned.
Nested comments on.
Compile to .OB] but do not link.
Define name to the string consisting of the null character.
Defines name to string.
Merge duplicate strings on.
Merge duplicate strings off (default).
Use filename as the assembler to use.

Borland C++ Programmer's Guide

Table 7.1: CL and BCC options compared (continued)

IE
IEP
N/A
N/A
N/A
N/A
N/A
IF hexnum
(By default)
N\A
(By default)
IFa [listfile]
IFbbound-exe
IFe [/istfile]

IFe exefile
IFI [listfile]
IFm [mapfile]

IFo objfile
IFPa
IFPe

IFPe87
IFPi

IFPi87

IFr [browsefile]
IFR [browsefile]
IFs [listfile]
IFx [xreffile]
GO
G1
G2
IGe

IGd
IGe
IGi
IGm
IGr

IGs
IGt [number]
IGw

IGW

N/A
N/A

CPP-P
CPP-P-
-f-
-ff
-ff-
-f87
-f287

-Fe
-Fm
-Fs
-5
N/A
-s

-eexefile
N/A
-M

-oobjfi/e
N/A
(default)

N/A
-f

-f87 or -f287

N/A
N/A
N/A
N/A
-1
-1-
-2
-p

-p-
-N
N/A
N/A
N\A

-N-
-Ff[=size]
-W

-WE

-H
-H-

Preprocess source to standard output, include line numbers.
Preprocess source to standard output, without line numbers.
Don't do floating point.
Fast floating point (default).
Strict ANSI floating point.
Use 8087 hardware instructions.
Use 80287 hardware instructions.
Sets stack size to hexllum bytes (hexnum must be hexadecimal).
Generates COMDEFs.
Enables the -Fe, -Ff, and -Fs options.
Make DS == SS for all memory models.
Create assembly listing. Name for list file defaults to Source.ASM.
Creates a bound executable file.
Produces a combined source and assembly code listing. Name for list
file defaults to Source.COD.
exefile names executable file.
Creates object code list. Name for list file defaults to Source.COD.
Creates map file. Name defaults to Source. MAP, where source is the
first source file specified.
objfile names object file.
Generate floating-point calls; select alternate math library.
Emulate floating point (default for Borland C++); coprocessor used
if present at run time).
Selects 80x87 library (80x87 coprocessor must be present at run time).
Inlines 80x87 instructions; selects emulator library (coprocessor used
if present at run time).
Inlines 80x87 instructions; chooses coprocessor library (coprocessor
must be present at run time).
Generates standard PWB Source Browser database.
Generates extended PWB Source Browser database.
Produce source list file. Source list file name defaults to Source.LST.
xreffile specifies a name for the MASM cross-reference file.
Generate 80186 instructions.
Generate 8088/8086 instructions.
Generate 80286 protected-mode compatible instructions.
Use Pascal calling convention. For CL, this is Pascal or FORTRAN,
but currently same calling convention.
Standard C calling conventions (default).
Check for stack overflow. (Default for CL, but not for BCC).
Compile incrementally (for use with quick compile option Iqe).
Store strings in CaNST segment.
Enables _fasteall to call conventions for functions (if possible,
passing value in registers).
Turn off checking for stack overflow. (Off by default for BCe.)
Creates far variables automatically; size or number is threshold.
Creates correct prolog/ epilog for Windows program (for Borland
C++, this creates an application with all functions exportable).
Generates prolog/ epilog for explicit functions (marked with _export)
in Windows program.
Causes the compiler to generate and use precompiled headers.
Turns off generation and use of precompiled headers (default).

Chapter 7, Converting from Microsoft C 303

Table 7.1: CL and BCC options compared (continued)

N/A
N/A
By default
IH number
IHELP
N/A
/I directory

N/A
IJ

N/A
N/A
ILc and/Lr
ILi [number]

ILp
ILr
/link options
N/A
N/A
IMAoption
IMD
IML
IMT
N/A
IN Ddataseg

INMmodule
Inologo
INTsegname

N/A
N/A
lOa
10c
10d
10e
10i
101
IOn
lOp
105
lOt
lOw
lOx

N/A
N/A

304

-Hu
-H=filename
-h
-inumber
Bee
-in
-Ipath

-jn
-K

-k
-Lpath
lTd
N/A

N/A

-I options
-I-option
-M
-Toption
N/A
N/A
N/A
-npath
-zRname

N/A
N/A
-zCname

-0
-0-
-Oa
-Oc
-Od
-Oe
-Oi
-01
N/A
-ft-
-Os
-Ot
N/A
-Ox

-P
-Pext

Tells the compiler to use but not generate precompiled headers.
Sets the name of the file for precompiled headers.
Use fast huge pointer arithmetic.
Restricts length of external names to number.
Calls QuickHelp. For help on BCC, simply invoke without options.
Make significant identifier length to be n.
Directories for include files. For CL, adds directory to the beginning
of include file search directory list. See page 300.
Errors: Stop after n messages.
Changes default for char. from signed to unsigned. For Borland C++,
-K- returns to signed.
Standard stack frame on (default).
Directories for libraries.
Tells linker to create a real mode executable.
Use incremental linker, instead of standard linker. Number specifies
byte boundary for padding near functions.
Create protected mode executable (OS/2).
See/Lc.
Pass options to linker when invoked.
Suppress option option for the linker.
Instruct the linker to create a map file.
Pass to assembler when invoked.
Creates a DLL for OS/2.
Statically links a library to a DLL (OS/2).
Provides support for multithread programs for OS/2.
Set the output directory.
Sets the data segment name. For BCC, this option changes the name
of the uninitialized data segment class to name. By default, the
uninitialized data segments are assigned to class BSS.
Sets the module name to module.
Don't print sign-on banner.
Sets code segment name. This option changes the name of the code
segment to name. By default, the code segment is named _TEXT,
except for the medium, large and huge models, where the name is
filename_TEXT. (filename here is the source file name.)
Optimize jumps.
No optimization (default).
Assume optimistic aliasing.
Local common subexpressions.
Disable all optimizations.
Enabled global register allocation.
Generate inline intrinsic functions.
Enable loop optimizations.
Disable unsafe optimizations.
Strict ANSI floating point.
Optimize for size (default).
Optimize for speed.
Somewhat optimistic aliasing.
Optimize for maximum speed.

Perform a C++ compile regardless of source file extension.
Perform a C++ compile and set the default extension to ext.

Borland C++ Programmer's Guide

Table 7.1: CL and BCC options compared (continued)

N/A -P-

N/A -P-ext

N/A -p-
IP CPP -0 filename

N/A -Qe
N/A -Qe-
N/A -Qx
N/A -Qx=nnnn

N/A -Qx-
N/A -r
N/A -r-
N/A -rd
Iqc N/A
ISx option N/A
N/A -T-
ITa asm_srcfile N/A
IT c c-srcfile N/A
N/A -u
N/A -u-
lu N/A
IU Ident -U/dent
N/A -v
N/A -Vs
N/A -VO,-V1
N/A -Vf
N/A -vi,-vi-
N string N/A
N/A -w
N/A -wxxx
N/A -w-xxx
Iw -w-
N/A -WS
IWn (See -w)
/WX -91

N/A -x
IX N/A
N/A -v
N/A -vo
N/A -z
N/A -zAname
N/A -zBname
N/A -zDname
N/A -zEname
N/A -zFname
N/A -zGname

Perform a C++ or C compile depending on source file extension
(default).
Perform a C++ or C compile depending on extension; set default
extension to ext.
Use C calling convention (default).
Preprocesses source file and sends output to filename (CPP), or to
Source.! (CL).
Instructs the compiler to use all available EMS memory (default).
Instructs the compiler to not use any EMS memory.
Instructs the compiler to use all available extended memory.
Instructs the compiler to reserve nnnn Kb of extended memory for
other programs, and to use the rest itself.
Instructs the compiler to not use any extended memory
Use register variables on (default).
Suppresses the use of register variables.
Only allow declared register variables to be kept in registers.
Invokes quick compile (default for Borland C++).
Set options for source listing. Where x is 1, p, s, or t.
Remove all previous assembler options.
Specifies that asm_srcfile be treated as an assembler source file.
Specifies that c_srcfile be treated as a c source file.
Generate underscores (default).
Disable underscores.
Undefines all predefined identifiers.
Un define any previous definitions of Ident.
Smart C++ virtual tables.
Local C++ virtual tables.
External and Public C++ virtual tables.
Far C++ virtual tables.
Controls expansion of inline functions.
Copies string to object file (for version control).
Display warnings on.
Enable xxx warning message.
Disable xxx warning message.
Display warnings off.
Creates an .OBI for Windows that uses smart callbacks.
Set warning level 0, 1, 2, 3, or 4.
Makes all warnings fatal. No object files are generated if warning
occurs. (The -g option takes the form -gn, where n is the limit to
number of warnings.)
Disable compiler autodependency output.
Ignore INCLUDE environment variable list of include search paths.
Enable overlay code generation.
Overlay the compiled files.
Enable register usage optimization.
Code class.
BSS class.
BSS segment.
Far segment.
Far class.
BSS group.

Chapter 7, Converting from Microsoft C 305

Table 7.1: CL and BCC options compared (continued)

N/A -zHname
N/A -zPname
N/A -zSname
N/A -zTname
N/A -zX*
lZa -A

IZc N/A
IZd /y
lZe -A-,-AT
IZg N/A
lZi N

IZI N/A
IZpn (See -a, -a-)
IZr N/A

/Zs sourcefiles N/A

Command-line
options and

libraries

Linker

306

Far group.
Code group.
Data group.
Data class.
Use default segment, class, or group name for X.
Enforces ANSI compatibility. Use only ANSI keywords. No vendor­
specific extension allowed.
Ignores case for functions declared as _pascal.
Generates line numbers for symbolic debugger.
Enable vendor-specific extensions.
Generates function prototypes; writes to standard output.
For Microsoft, generates debugger information for CodeView. For
Borland C++, generates information for IDE debugger and Turbo
Debugger.
Library search records not written to object file.
Packs structure members on the n byte boundary. n can be 1,2, or 4.
Generates checks for null pointers and far pointers that are out of
range.
Syntax check only.

The COFx.OB] modules are provided for compatibility with source
files intended for compilers from other vendors. The COFx.OB]
modules substitute for the COx.OB] modules; they are to be linked
with DOS applications only, not Windows applications or DLLs.
These initialization modules are written to alter the memory
model such that the stack segment is inside the data segment. The
appropriate COFx.OB] module will be used automatically if you
use either the -Fs or the -Fm command-line compiler option.

The -Fe (generate COMDEFs), -Ff (create far variables), -Fs
(assume DS == SS in all models), and -Fm (enable all-Fx options)
command-line compiler options are provided for compatibility.
These options are documented in full in Chapter 5 in the User's
Guide.

The Borland C++ linker, TLINK, is invoked automatically from
the command-line compiler unless the -e compiler option is used.
Options such as memory model and target (Windows or DOS),
are passed from the compiler to TLINK; TLINK links the appro­
priate libraries based on the COillpile options.

Borland C++ Programmer's Guide

TLINK can be used to build both DOS and Windows programs.
See Chapter 4 in the Tools and Utilities Guide for material on
module definition file statements.

The following table compares TLINK and LINK options. Note
that Borland C++ TLINK options are case-sensitive, while Micro­
soft TLINK options are not.

Table 7.2: LINK and TLINK options compared

Microsoft C 6.0
Link option

N/A
IA:size
IBA
N/A

ICO
ICP:bytes
N/A
IDOSSEG

IDS

IE
IF

IHE
IHI

N/A
IINC
IINF
N/A
III
1M
INOD[: filename]
INOE
INOF
INOI
INOL
INON

INOP
N/A

Borland C++
TLiNK option

13
IA=nnnn
N/A
IC

Iv
N/A
Id
(See comment)

N/A

N/A
By default

I?
N/A

Ii
N/A
N/A
ILpaths
II
1m
In
Ie
N/A
Ic
N/A
N/A

lP-
/0

What it does

Enable 32-bit processing.
Specify segment alignment for NewExe (Windows) images.
BATCH. Suppresses prompts for library or object files not found.
Treat EXPORTS and IMPORTS section of module definition file as
case sensitive.
Include full symbolic debug information.
Sets the program's maximum memory allocation to bytes.
Warn if duplicate symbols in libraries.
For assembly programs, forces a certain ordering of segments in
executable. To enable DOSSEG for an assembly program, include
DOSSEG in the source code.
For assembly programs, tells linker to load data starting at high end
of DS instead of low end.
Packs the executable by removing repeated series of bytes.
For LINK, tells linker to optimize far calls to procedures in same
segment as caller. (Used with MS /PACKCODE option.) TLINK
optimizes far calls automatically.
Provides help on command-line options.
For real-mode assembly programs, places executable as high in
memory as possible.
Initialize all segments.
Prepares for ILINK.
Tells LINK to display link information while in process.
Specify library search paths.
Include source line numbers and associated addresses in map file.
Create map file with public global symbols.
Don't use default libraries.
Ignore Extended Dictionary.
Turns off far call translation (see LINK /F option).
Treat case as significant in symbols.
Causes LINK to suppress banner (logo).
Arrange segments in executable in the same order as they are
arranged by /DOSSEG.
Turn off code packing.
Overlay following modules or libraries. Microsoft LINK uses
parentheses around files to be overlaid. (Note that the overlay
scheme is different between products.)

Chapter 7, Converting from Microsoft C 307

Table 7.2: LINK and TLiNK options compared (continued)

10: number N/A

IPACKC[:number] IP=n

IPACKD[:number] N/A

IPADC: padsize N/A
IPADD:padsize N/A
IPAU N/A
IPM:type N/A
IQ N/A
N/A Is
ISE:number N/A
1ST: number N/A
IT It

N/A lTd
N/A ITdc
N/A ITde
N/A ITw
N/A ITwe
N/A ITwd
IW N/A
N/A Ix
N/A lye
N/A Iyx

Set interrupt number for passing control to overlays (other than the
default 63).
Pack code segments. number or 11 specifies maximum size of groups
formed by /PACKC or /P.
Pack data segments. number specifies maximum size of groups
formed by /P ACKD.
Tells LINK to pad code module for ILINK.
Tells LINK to pad data segments by padsize bytes.
Pauses linking.
Sets window type for Presentation Manager.
Produces Quick library.
Create detailed map of segments.
Sets maximum number of segments allowed.
Sets stack size.
Produce .COM files.

Create target DOS executable.
Create target DOS .COM file.
Create target DOS .EXE file.
Create target Windows executable (.DLL or .EXE).
Create target Windows application (.EXE).
Create target Windows DLL (.DLL).
Warn fixups.
Don't create map file.
Use expanded memory for swapping.
Use extended memory for swapping.

Source-level compatibility

MSC macro

Header files

308

The following sections tell you how to make sure that your code
is compatible with Borland C++'s compiler and linker.

The Borland C++ libraries contain many functions to increase
compatibility with applications originally written in Microsoft C.
If you define the macro __ MSC before you include the dos.h
header file, the DOS ERROR structure will be defined to match
Microsoft's format.

Some nonstandard header files can be included by one of two
names, as follows.

Borland C++ Programmer's Guide

Memory models

Original name

alloc.h
dir.h
mem.h

Alias

malloc.h
direct.h
memory.h

If you are defining data in header files in your program, you
should use the-Fe command-line compiler option or Options I
Compiler I Advanced code generation I Generate COMDEFs IDE
option to generate COMDEFs. Otherwise you will get linker
errors. Chapter 5 of the User's Guide provides a complete reference
to the command-line compiler options.

Although the same names are used for the standard memory
models, there are fairly significant differences for the large data
models in the standard configuration.

In Microsoft C, all large data models have a default NEAR data
segment to which OS is maintained. Data is allocated in this data
segment if the data size falls below a certain threshold, or in a far
data segment otherwise. You can set the threshold value with the
IGtn option, where n is a byte value. The default threshold is
32,767. If/Gt is given but n is not specified, the default is 256.

In all other memory models under Microsoft C, both a near and a
far heap are maintained.

In Borland C++, the large and compact models (but not huge)
have a default NEAR data segment to which OS is maintained.
All static data is allocated to this segment by default, limiting the
total static data in the program to 64K, but making all external
data references near. In the huge model all data is far.

In Microsoft's version of the huge memory model, a default data
segment for the entire program is maintained which limits total
near data to 64K. No limit is imposed on array sizes since all
extern arrays are treated as huge Chuge).

In Borland C++'s huge memory model, each module has its own
data segment. The data segment is loaded on function entry. All
data defined in a module is referenced as near data and all extern
data references are far. The huge model is limited to 64K of near
data in each module.

Chapter 7, Converting from Microsoft C 309

Keywords

Floating-point
return values

Structures

Borland C++ supports the same set of keywords as Microsoft C
5.1 with the exception of fortran.

Borland C++ supports the same set of keywords as Microsoft C
6.0 with the exception of:

• _based, _self, and _segname, because Borland C++ does not
support based pointers

• _segment; Borland C++'s keyword _seg is the equivalent of
_segment

• _emit; Borland C++ uses the pseudofunction __ emit __ , be­
cause this style allows addresses of variables to be given as
arguments, and allows multiple bytes to be output; _emit, by
contrast, works like an assembly DB, allowing one immediate
byte to be output

• _fortran; use the _pascal calling convention instead

Borland C++ provides _cs, _ds, _es, and _ss pointer types. See
the section "Mixed model programming: Addressing modifiers"
in Chapter "9" for more information.

In Microsoft C, _cdecl causes float and double values to be re­
turned in the __ fac (floating point accumulator) global variable.
Long doubles are returned on the NDP stack. _fastcall causes
floating point types to be returned on the NDP stack. _pascal
causes the calling program to allocate space on the stack and pass
address to function. The function stores the return valu~ and
returns the address.

In Borland C++, floating point values are returned on the NDP
stack.

returned by value In a Microsoft C-compiled function declared with _cdecl, the
function returns a pointer to a static location. This static location is
created on a per-function basis. For a function declared with
_pascal, the calling program allocates space on the stack for the
return value. The calling program passes the address for the
return value in a hidden argument to the function.

310 Borland C++ Programmer's Guide

Borland C++ returns I-byte structures in AL, 2-byte structures in
AX and 4-byte structures in AX and OX. For 3-byte structures and
structures larger than 4 bytes, the compiler passes a hidden
argument (a far pointer) to the function that tells the function
where to return the structure.

Conversion hints

Write portable code. Portable code is compatible with many
different compilers and machines. Whenever possible, use only
functions from the ANSI standard library (for example, use time
instead of gettime). The portability bars in the Library Reference
will tell you if a function is ANSI standard.

If you must use a function that's not in the ANSI standard library,
use a Unix-compatible function, if possible (for example, use
chmod instead of _chmod, or signal instead of ctrlbrk). Again, the
portability bars in the Library Reference will tell you if a function is
available on Unix machines.

Avoid the use of bit fields and code that depends on word size,
structure alignment, or memory model. For example, Borland
C++ defines ints to be 16 bits wide, but a 32-bit C++ compiler
would define 32-bit wide ints.

Insert the preprocessor statement #define __ MSC in each module
before dos.h is included.

If you were using the link option ISTACK:n in your Microsoft
application, initialize the global variable _stklen with the
appropriate stack size.

Chapter 7, Converting from Microsoft C 311

312 Borland C++ Programmer's Guide

c H A p T E R

8

Building a Windows application

We don't explain the
intricacies of designing Win­

dows applications, nor teach
you how to program under
Windows-these topics go

beyond the scope of this
chapter or book.

This chapter explains how to use Borland C++ to build Windows
applications or dynamic link libraries (DLLs). Compiling and
linking a module for Windows is basically the same as it is for
DOS. The compiler first generates an object file which differs from
a DOS compilation primarily in the special Windows prolog and
epilog code that wraps each function. The prolog and epilog code
varies depending on which Windows compilation options are
used; these options are described later.

To create a Windows module for the memory model you are
compiling under, the linker links the object files with the
appropriate Borland C++ startup code, various libraries, and the
module definition file.

Finally, either the IDE, the makefile, or the programmer invokes
the Resource Compiler to bind the resources to the module.
Figure 8.1 illustrates the entire process.

Chapter 8, Building a Windows application 313

Figure 8.1
Compiling and linking

a Windows program

The next section, "Compiling and linking with the IDE," gives
you a quick example of how to compile, link, and run a Windows
program in the Borland C++ IDE. If you normally compile and
link from the command line or from a makefile, then you should
read "Compiling and linking from the command line/' starting on
page 318.

Compiling and linking within the IDE

You can find complete
descriptions of the various

IDE commands and options
in Chapter 2 of the User's

Guide.

314

By way of example, you'll be producing a simple Windows
application called WHELLO, which creates a window and writes
a text message to that window. WHELLO.EXE is produced by
compiling and linking the following three files:

Borland C++ Programmer's Guide

Understanding
resource files

Understanding
module definition

files

Module definition files are
described in detail in

Chapter 4 in the Tools and
Utilities Guide.

Compiling and
linking WHELLO

13 WHELLO.CPP, the c++ source file

E:I WHELLO.RC, the resource file

lJ WHELLO.DEF, the module definition file

Windows applications typically use resources, which can be icons,
menus, dialog boxes, fonts, cursors, bitmaps, or user-defined
resources. These resources are defined in a file called a resource
file. For this application, the resource file is WHELLO.RC .

. RC resource files are source files, also called resource script files.
Before an .RC file can be added to an executable, the .RC file must
first be compiled by the Resource Compiler into a binary format;
compilation creates a .RES file. For instance, compiling
WHELLO.RC with the Resource Compiler creates WHELLO.RES.
The Resource Compiler is also used to bind .RES resource files to
an executable file.

To build a final Windows application, complete with resources,
you need to invoke the Resource Compiler in order to bind the
.RES file to the .EXE file. The Resource Compiler does three
things: .

1. It compiles .RC files to .RES files.

2. It binds the .RES file to the compiled module (.EXE or .DLL).

3. It marks the .EXE or .DLL as Windows-compatible.

The module definition file WHELLO.DEF provides information to
the linker about the contents and system requirements of a Win-
dows application. Because TLINK and the IDE linker have other
ways of finding out the information contained in the module
definition, module definition files are not required for Borland
C++'s linker to create a Windows application, although one is
included here for the sake of example.

Here's how you turn these three files into a Windows application:

Chapter 8, Building a Windows application 315

You can also open the
WHELLOPRJ project file, and

skip the process of adding
files to the project.

1. Choose Project I Open Project. In the Project Name box, type
WHELLO.PRJ. Press Enter or click OK to open a new project
with the name WHELLO.

316

2. Choose Project I Add item and type whello. * in the Name box,
so that you'll get a list of all the WHELLO files. Press Enter or
click OK.

3. Add the three files WHELLO.CPP, WHELLO.RC, and
WHELLO.DEF for the application. Close the dialog box after
you've added the three files.

4. Choose Options I Application to open the Application Options
dialog box and select Windows App if it's not already selected.
The information pane at the top of the dialog box changes.
Each of the buttons at the bottom of the dialog box sets several
other options in the IDE.

5. Choose Compile I Build all to build the project.

6. Exit the IDE by pressing A/t-X or choosing File I Quit.

7. From the DOS command line, type

win whello

DOS will load Windows, which will itself run the WHELLO
application.

That's all there is to building and running a Windows application
with Borland C++. You can generalize this process into the
following checklist:

1. Create a project.

2. Add the source files, resource files, import libraries (if
necessary), and the module definition file (if necessary) to the
project.

3. Set up the compilation and link environment with the
Application Options dialog box, or with a combination of
other settings and options.

4. Build the project.

5. Run the application under Windows.

Using the project Specifying an .RC file is similar to specifying a source file in a
manager project. The Project Manager will invoke the Resource Compiler

once to compile it to a .RES file, and a second time to bind the
.RES to the module and to mark the module as Windows­
compatible.

Borland C++ Programmer's Guide

Setting compile and
link options

Specifying a .RES file is similar to specifying an object file. The
Project Manager will invoke the Resource Compiler only to bind
it to the module and to mark the module as Windows-compatible.

For example, if you enter HELLO.CPP, HELLO.RC, and
HELLO.DEF into a project, the Borland C++ Project Manager will

Ii3 create HELLO.OBJ by compiling HELLO.CPP with the C++
compiler

1:1 create HELLO.RES by compiling HELLO.RC with the Resource
Compiler

IJ create HELLO.EXE by linking HELLO.OBl with its appropriate
libraries, using information contained in HELLO.DEF

IJ create the final HELLO.EXE by using the Resource Compiler to
bind the resources contained in HELLO. RES to HELLO.EXE

The bulk of the setup in this example is accomplished by the
Application Options dialog box. The command buttons in this
dialog box check or set various other options in other dialog
boxes. Borland C++ makes it easy for you to change the settings
that control compilation and linking of your programs, so you'll
want to familiarize yourself with the following dialog boxes (all
described in full in Chapter 3 in the User's Guide):

IJ The Code Generation Options dialog box sets such things as the
memory model, tells the compiler to use precompiled headers,
and more. Choose Options I Compiler I Code Generation to see
this dialog box.

IJ The Entry /Exit Code Generation dialog box sets Borland C++
compiler options for prolog and epilog code generation, and
export options. Choose Options I Compiler I Entry /Exit Code
and browse through the contents of this dialog box.

IJ The Make dialog box (Options I Make). The Generate Import
Library options allow you to create an import library for a DLL.
An import library makes it possible to declare all the functions
in a DLL as imports to another module without using a module
definition file (see Chapter 1 in the Tools and Utilities Guide).

E.1 The Linker Settings dialog box (Options I Linker I Settings) sets
options for the type of output you want from the linker-such
as a standard DOS .EXE, an overlaid DOS .EXE, a Windows
.EXE, or a Windows DLL-as well as a number of other linker
options.

Chapter 8, Building a Windows application 317

WinMain

The HANDLE and LPSTR types
are defined in windows.h.

You must supply the WinMain function as the main entry point
for a Windows application;

The following parameters are passed to WinMain:

int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevlnstance,
LPSTR lpCmdLine, int nCmdShow)

• hlnstance is the instance handle of the application. Each instance
of a Windows application has a unique instance handle that's
used as an argument to several Windows functions and can be
used to distinguish between multiple instances of a given
application.

• hPrevlnstance is the handle of the previous instance of this
application. hPrevlnstance is NULL if this is the first instance .

• ZpCmdLine is a far pointer to a null-terminated command-line
string. This value can be specified when invoking the
application from the program manager or from a call to
WinExec.

• nCmdShow is an integer that specifies how to display the
application's window.

The return value from WinMain is not currently used by Win­
dows. However, it can be useful during debugging since Turbo
Debugger for Windows can display this value when your
program terminates.

Compiling and linking from the command line

318

If you know how to compile and link a C++ or C program for
DOS, then you already know almost all you need to do the same
thing for Windows. You'll need three files to compile and link the
example application:

.WHELLO.CPP, the C++ source code

• WHELLO.DEF, the module definition file

• WHELLO.RC, the resource file

Borland C++ Programmer's Guide

Compiling from
the command

line

You can find detailed
descriptions of all the

command-line options in
Chapter 5 in the User's

Guide.

To compile and link WHELLO.CPP for a Windows application,
type

BCC -w whello.cpp

Given this command line, Borland C++ compiles WHELLO.CPP
into WHELLO.OBJ, then links in the correct libraries and startup
code automatically. To suppress the link phase, add the -c option
to the command line. To include debugging information, add the
-v option.

The -W option tells the command-line compiler that you want a
Windows application. There are other Windows options (of the
form -Wxxx) that give the compiler more specific instructions
about the compilation and code generation of a Windows
application (for instance, -WD to create a DLL).

Once the WHELLO application is compiled and linked, the only
thing left to do is add the resources. First, compile the
WHELLO.RC file with the command

rc -r whello. rc

This produces a WHELLO.RES file (-r instructs the Resource
Compiler to not add the result to the executable of the same
name). Now, invoke the Resource Compiler again to add the
binary resource file to the executable:

rc whello.res whello.exe

Actually, the Resource Compiler makes it easier than we've
shown here, because it can compile an .RC file into a .RES file and
then add it to the executable all in one step. Furthermore, if the
executable file has the same first name as the resource file, then
you don't need to specify the executable file on the command line
at all. So, the previous two commands can be rewritten like this:

rc whello

To load Windows and run the application, type

win whello

Chapter 8, Building a Windows application 319

Linking from the
command line

For more details on how
TUNK knows whether you

want an .EXE or DLL see the
section "Linker options" on

page 329.

320

To link WHELLO.OBJ with the correct libraries and startup code,
invoke TLINK with the following command-line:

TLINK ITw Iv Ie ILC:\BORLANDC\LIB cOws whello, whello, , import mathws
cws, whello

The TLINK command line is composed of options and five file
names or groups of file names; each file or group of files is
separated by a comma.

The ITw option means to link for (target) Windows, Iv tells TLINK
to include debugging information, and Ie forces case to be
significant in public and external symbols. IL followed by a path
name, tells TLINK where to look for library files and for the
startup .OBJ code.

The object files to link are listed next in the command line.
COWS.OBJ is the initialization module for the small memory
model, and WHELLO.OBJ is the program module for this
application. The .OBJ extension is assumed for both these files.

The next file on the command line, WHELLO, is the name you
want TLINK to give the executable file. The .EXE extension is
assumed when you create a Windows application, and the .OLL
extension is assumed when you create a OLL.

The next file on the command line is the name you want to give
the map file. If no name is given, as in this example, TLINK gives
the map file the name of the executable and adds the .MAP
extension. After you run this command, you'll notice the file
WHELLO.MAP in the examples directory.

The library files to link are listed after the map file. CWINS.LIB is
the small memory model run-time library for Windows, CS.LIB is
the regular run-time library, and IMPORT. LIB is the library that
provides access to the built-in Windows functions. The .LIB
extension is assumed for all library files.

The last file name on the TLINK command line is the module
definition file, WHELLO.OEF (the .OEF extension is assumed).
Module definition files are described briefly on page 315, and in
detail in Chapter 4 in the Tools and Utilities Guide.

Borland C++ Programmer's Guide

Using a makefile
Since you probably won't want to type in the full command lines
for the command line compiler and TLINK every time you want
to build a Windows application, it's a good idea to create a
makefile for your application.

The makefile for the WHELLO application is WHELLO.MAK.
Note that for this example, the libraries are in C:\BORLANDC\
LIB, and the include files are in C:\BORLANDC\INCLUDE. The
following section explains each rule in the makefile.

To run MAKE on this makefile, type

make -f whello.mak

The first rule tells MAKE how to make the final executable from
WHELLO.EXE and a WHELLO.RES, and how to make the
intermediate executable from the object file and the module
definition file. (See the alternate makefile at the end of this section
for a more generalized approach to building a Windows
application.)

whello.exe: whello.obj whello.def whello.res
tlink ITw Iv In Ie C:\BORLANDC\LIB\eOws whello, \

whello, \
, \
C:\BORLANDC\LIB\ewins C:\BORLANDC\LIB\es

C:\BORLANDC\LIB\import, \
whello

re whello. res

The next rule tells MAKE how to make required .OBJ files from
.CPP files of the same name. The options are: make a Windows
application (-W), compile only (-c), use the small memory model
(-ms), and include debugging info (-v) .

. epp.obj:
BCC -e -ms -v -w $<

This last rule tells MAKE how to make required .RES files (final
resource files) from .RC files of the same name .

. re.res:
re -r -iC:\BORLANDC\INCLUDE $<

The -r option tells the Resource Compiler to compile the
resources only (instead of also adding them to the executable of

Chapter 8, Building a Windows application 321

Another makefile for
Windows

the same name). The -i options specifies the directory in which to
search for include files.

The following makefile is a more general-purpose makefile than
the one shown previously. It can be easily modified by redefining
the macros OBJS, INCP A TH, and FLAGS. TLINK is not invoked
in a separate rule; instead, BCC invokes TLINK automatically.

OBJS = whello.obj
INCPATH = C:\BORLANDC\INCLUDE
FLAGS = -W -v -I$(INCPATH)

test.exe: $ (OBJS) whello.def whello.res
BCC $ (FLAGS) -ewhello.exe @&&!

$ (OBJS)

re whello. res

.e.obj:
BCC -e $ (FLAGS) {$<

.epp.obj:
BCC -e $ (FLAGS) {$<

.re.res:
re -r -i$(INCPATH) $<

Prologs and epilogs

The need for prologs and
epilogs is not new to Win­

dows; they must be
generated for code

intended for DOS as wel/.
However, if the program is
intended for Windows, the

compiler generates a
different prolog and epilog

than it would for DOS.

322

When you compile a module for Windows, the compiler needs to
know which kind of prolog and epilog to create for each of a
module's functions. Settings in the IDE and options for the
command-line compiler control the creation of the prolog and
epilog. The prolog and epilog perform several functions,
including ensuring that the correct data segment is active during
callback functions, and marking near and far stack frames for the
Windows stack-crawling mechanism.

The prolog and epilog code is automatically generated by the
compiler, though various compiler options or IDE options dictate
the exact instructions contained in the code.

The following list describes the effects of the different
prolog/ epilog code generation options and their corresponding
command-line compiler options. To set these options in the IDE,
choose Options I Compiler I Entry /Exit Code.

Borland C++ Programmer's Guide

Windows All
Functions

Exportable (-W)

See page 52 for description
and usage of the _export

keyword.

Windows Explicit
Functions

Exported (-WE)

Windows Smart
Callbacks (-WS)

This option creates a Windows application object module with all
far functions exportable.

This is the most general kind of Windows application module,
although not necessarily the most efficient. The compiler
generates a prolog and epilog for every far function that makes
the function exportable. This does not mean that all far functions
actually will be exported, it only means that the function can be
exported. In order to actually export one of these functions, you
must either use the _export keyword or add an entry for the
function name in the EXPORTS section of the module definition
file.

This option creates an object module with only those functions
marked as _export exportable.

Since, in any given application module, many of the functions
won't be exported, it is not necessary for the compiler to include
the special prolog and epilog for exportable functions unless a
particular function is known to be exported. The _export keyword
in a function definition tells the compiler to use the special prolog
and epilog required for exported functions. All functions not
flagged with _export receive abbreviated prolog and epilog code,
resulting in a smaller object file and slightly faster execution.

Note that the Windows Explicit Functions Exported option only
works in conjunction with the _export keyword. This option does
not export those functions listed in the EXPORTS section of a
module definition file. In fact, you can't use this option and
provide the names of the exported functions in the EXPORTS
section. If you do, the compiler will generate prolog and epilog
code that is incompatible with exported functions; incorrect
behavior will result when these functions are called.

This option creates an object module with functions using smart
callbacks.

This form of prolog and epilog assumes that OS == SS; in other
words, that the default data segment is the same as the stack

Chapter 8, Building a Windows application 323

There are no smart callbacks
for OLLs since OLLs assume

OS !=SS.

Windows DLL All
Functions

Exportable (-WD)

Windows DLL
Explicit Functions
Exported (-WDE)

The _export
keyword

Note that exported functions
must be declared for; you

can use the FAR type,
defined in windows.h.

324

segment. This eliminates the need for the special Windows code
(called a thunk) created for exported functions. Using smart
callbacks can improve performance because calls to functions in
the module don't have to be redirected through the th.unks.

Exported functions here don't need the _export keyword or to be
listed in the EXPORTS section of the module definition file,
because the linker doesn't need to create an export entry for them
in the executable.

When you use functions compiled and linked with smart
callbacks, you don't need to precede them with a call to
MakeProclnstance (which rewrites the function's prolog in such a
way that it uses a smart callback).

Because of the assumption that OS == 55, you can only use this
option for applications, not OLLs. Furthermore, you must not
explicitly change OS in your program (a very unsafe practice
under Windows in any circumstance).

This option creates a OLL object module with all functions
exportable. This prolog and epilog code is used for functions that
will reside in a OLL. It also supports the exporting of these
functions. This is similar to the corresponding non-OLL option.

This prolog and epilog code is also used for functions that will
reside in a OLL. However, any functions that will be exported
must explicitly specify _export in the function definition. This is
similar to the corresponding non-OLL option.

The keyword _export in a function definition tells the compiler to
compile the function as exportable and tells the linker to export
the function. In a function declaration, _export immediately
precedes the function name; for example,

LONG FAR PASCAL _export MainWindowProc(HWND hWnd, unsigned iMessage,
WORD wParam, LONG IParam)

You can also use _export with a c++ class definition; see page
336.

Borland C++ Programmer's Guide

Prologs, epilogs,
and exports: a

summary
There are two steps to exporting a function. First, the compiler
must create the correct prolog and epilog for the function; if so,
the function is called exportable. Second, the linker must create an
entry for every export function in the header section of the
executable. All of this occurs so that the correct data segment can
be bound to the function at run time.

If a function is flagged with the _export keyword and any of the
Windows compiler options are used, it will be compiled as
exportable and linked as an export.

If a function is not flagged with the _export keyword, then
Borland c++ will take one of the following actions:

II If you compile with the -W or -WO option (or with the IDE
equivalent of either option), the function will be compiled as
exportable.

If the function is listed in the EXPORTS section of the module
definition file, then the function will be linked as an export. If it
is not listed in the module definition file, or if no module
definition file is linked, then it won't be linked as an export .

• If you compile with the -WE or -WOE option (or with the IDE
equivalent of either option), the function will not be compiled as
exportable. Including this function in the EXPORTS section of
the module definition will cause it be exported, but, because the
prolog is incorrect, the program will run incorrectly. You may
get the Windows error message, "Unrecoverable Application
Error."

Table 8.1 summarizes the effect of the combination of the Win­
dows compiler options and the _export keyword:

Table 8.1: Compiler options and the _export keyword

Function flagged
with _export and far? Yes Yes Yes

Function listed
in EXPORTS? Yes Yes No

And the compiler -Wor -WE or -Wor
option is: -WO -WOE -WO

Chapter 8, Building a Windows application

Yes No No

No Yes Yes

-WE or -Wor -WE or
-WOE -WO -WOE

No

No

-Wor
-WO

No

No

-WE or
-WOE

325

Table 8.1: Compiler options and the _export keyword (continued)

Will function
be exportable? Yes Yes Yes Yes Yes No Yes No

Will function
be exported? Yes Yes Yes Yes Yes Yes** No*** No

** The function will be exported in some sense, but, because the prolog and epilog won't be correct, the function
won't work as expected.

*** This combination also makes little sense. It's inefficient to compile all functions as exportable if you don't actually
export some of them.

Memory models

See the section "Linking. OBJ
and .LlB files for DLLs" on

page 337 for more
information.

You can use the small, medium, compact, or large memory
models with any kind of Windows executable, including DLLs.
Windows doesn't support the tiny or huge memory models.

Module definition files

326

The module definition file is not strictly necessary to produce a
Windows executable under Borland C++. If no module definition
file is specified, the following defaults are assumed.

CODE
DATA

HEAPSIZE
STACKSIZE

PRELOAD MOVEABLE DISCARDABLE
PRELOAD MOVEABLE MULTIPLE (for
applications) or PRELOAD MOVEABLE
SINGLE (for DLLs)
4096
5120

To replace the EXETYPE statement, the Borland C++ linker can
discover what kind of executable you want to produce by
checking settings in the IDE or options on the command line.

You can include an import library to substitute for the IMPORTS
section of the module definition.

You can use the _export keyword in the definitions of export
functions in your C and C++ source code to remove the need for
an EXPORTS section. Note, however, that if _export is used to
export a function, that function will be exported by name rather
than by ordinal (ordinal is usually more efficient).

Borland C++ Programmer's Guide

A quick example

If you want to change various attributes from the default, you'll
need to have a module definition file.

Here's the module definition from the WHELLO example:

NAME WHELLO
DESCRIPTION 'Ctt Windows Hello World'
EXETYPE WINDOWS
CODE MOVEABLE
DATA MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 5120
EXPORTS MainWindowProc

Let's take this file apart, statement by statement:

[J NAME specifies a name for an application. If you want to build
a DLL instead of an application, you would use the LIBRARY
statement instead. Every module definition file should have
either a NAME statement or a LIBRARY statement, but never
both. The name specified must be the same name as the
executable file.

e DESCRIPTION lets you specify a string that describes your
application or library.

11 EXETYPE can be either WINDOWS or OS2. Only WINDOWS is
supported in this version of Borland C++.

CI CODE defines the default attributes of code segments. The
MOVEABLE option means that the code segment can be moved
in memory at run-time.

13 DATA defines the default attributes of data segments.
MOVEABLE means that it can be moved in memory at run­
time. Windows lets you run more than one instance of an
application at the same time. In support of that, the MULTIPLE
options ensures that each instance of the application has its own
data segment.

1:1 HEAPSIZE specifies the size of the application's local heap.

£I STACKSIZE specifies the size of the application's local stack.
You can't use the STACKSIZE statement to create a stack for a
DLL.

13 EXPORTS lists those functions in the WHELLO application that
will be called by other applications or by Windows. Functions

Chapter 8, Building a Windows application 327

that are intended to be called by other modules are called
callbacks, callback functions, or export functions .

• To help you avoid the necessity of creating and maintaining
long EXPORTS sections, Borland C++ provides the _export
keyword. Functions flagged with _export will be identified by
the linker and entered into an export table for the module. If the
Smart Callbacks option is used at compile time (IWS on the
BCC command-line, or Options I Compiler I Entry/Exit Code),
then callback functions do not need to be listed either in the
EXPORTS statement or flagged with the _export keyword.
Borland C++ compiles them in such a way so that they can be
callback functions.

This application doesn't have an IMPORTS statement, because the
only functions it calls from other modules are those from the Win­
dows API; those functions are imported via the automatic
inclusion of the IMPORT. LIB import library. When an application
needs to call other external functions, these functions must be
listed in the IMPORTS statement, or included via an import
library (see page 333 for a discussion of import libraries).

This application doesn't include a STUB statement. Borland C++
uses a built-in stub for Windows applications. The built-in stub
simply checks to see if the application was loaded under Win­
dows, and, if not, terminates the application with a message that
Windows is required. If you want to write and include a custom
stub, specify the name of that stub with the STUB statement.

Linking for Windows

TUNK is discussed in detail in
Chapter 4, "TUNK: The Turbo

linker" in the Tools and Utilities
Guide

328

In general, Borland C++ needs to take object files compiled with
the .correct Windows options and then link them with the proper
Windows initialization code, run-time and math libraries, and a
module definition file. Settings in the Linker Settings dialog box
in the IDE do this for you automatically; if you use TLINK, you
must specify all the options and files.

Borland C++ Programmer's Guide

Linking in the IDE

Linking with TLiNK

With the Linker Settings dialog box in the IDE, you can set link
options for a Windows application or DL1. Options in the IDE
override settings in the module definition file. This means if you
check the Windows EXE box instead of the Windows DLL box,
and the module definition file has a LIBRARY statement instead
of a NAME statement, the file will be linked as a Windows
application, not a DL1.

The linker uses the COWx.OBJ initialization file for applications
and the CODx.OBJ initialization file for DLLs, where x depends on
the memory model set in the Code Generation dialog box. For
both Windows options, the linker uses the current project object
files and libraries, IMPORT.LIB, MATHWx.LIB, and CWx.LIB.
Borland C++ allows you to override the default setting for a
memory model.

The syntax of the TLINK command line is:
For a list of TUNK messages
(errors and warnings), see TLINK objfiles, exefile, mapfile, libfiles, deffile

Appendix A in the Tools and
Utilities Guide.

Linker options There are three options that you can pass to TLINK to control its
linkage of Windows executables and DLLs.

I:J Use the fTw option to create a Windows .EXE or .DLL according
to the settings in the module definition file. If you have a
NAME statement in the module definition file, TLINK will link
it as a Windows executable; if you have a LIBRARY statement
in the .DEF file, the files will be linked as a DL1.

If no module definition file is specified on the TLINK command
line, this option causes the files to be linked as a Windows .EXE.

You don't need this option if you are using a module definition
file in which the EXETYPE statement specifies WINDOWS.

II Use the fTwe option to specify a Windows executable. This
overrides settings in the module definition file. For instance,
even if you have a LIBRARY statement in the include .DEF file,
TLINK will link the files as an .EXE.

II Use the fTwd option to specify a Windows OL1. This overrides
settings in the module definition file.

Chapter 8, Building a Windows application 329

Linking .OBJ and .L1B
files

Important! Do not link in
EMU.LlB or FP87.LlB for a

Windows application.
Borland C++ takes care of

the floating-point math
automatically.

330

When you're linking a Windows executable, do not use the b
option to overlay files, or the It or fTde option to make a .COM
file.

The list of object files must begin with the file COWx.OBJ or
CODx.OBJ (for DLLs), followed by the names of the other object
files to link. User libraries and IMPORT. LIB can be included
anywhere on the list, although, by convention, they are usually
listed before the standard libraries. The other required libraries
must be in this order:

aMATHWx.LIB
mCWx.LIB

To create a Windows application executable, you might use this
response file, named WINRESP:

ITw Ie \BORLANDC\LIB\COWS winappl winapp2
winapp
winapp
\BORLANDC\LIB\IMPORT \BORLANDC\LIB\MATHWS \BORLANDC\LIB\CWS
winapp.def

where

• The fTw option tells TLINK to generate a Windows application
or DLL. If a module definition file were not included in the link,
TLINK would create a Windows application. If the module
definition file is included and it contains instructions to create a
DLL, then TLINK will create a DLL.

• The Ie option tells TLINK to be sensitive to case during linking.

• BORLANDC\LIB\COWS is the standard Windows
initialization file and WINAPPI and WINAPP2 are the
module's object files .

• WINAPP is the name of the target Windows executable.

II TLINK will name the map file WINAPP.MAP.

• BORLANDC\LIB\IMPORT is the library that provides access
to the built-in Windows functions, BORLANDC\LIB\
MATHWS is the small memory model floating point math
library for Windows and BORLANDC\LIB\CWS is the small
memory model run-time library for Windows.

• WINAPP.DEF is the Windows module definition file for the
object files named.

To use this response file on the TLINK command line, type

Borland C++ Programmer's Guide

Linking .OBJ and .LlB
files for DLLs

Table 8.2
Startup and library files for

DLLs

TLINK @winresp

After linking the application or DLL, you must invoke the
Resource Compiler to add resources to the image. The Windows
3.x Resource Compiler also marks the image as Windows 3.x
compatible. Even if you have no resources, you need to run the
Resource Compiler.

You need to link different .OBJ and .LIB files for a DLL than for a
Windows application. If the linker is invoked either frOln the IDE
or from the command-line compiler BCC, the correct .OBJ and
.LIB files will be linked in automatically. If you invoke TLINK
explicitly, then you need to know which files to link in for a DLL.
The following table summarizes the memory models, startup files,
and libraries:

Model

Small
Compact
Medium
Large

Startup file

CODS.OBJ
CODC.OBJ
CODM.OBJ
CODL.OBJ

Library

CWC.UB
CWC.LIB
CWL.LIB
CWL.LIB

The compact memory model library is used for both small and
compact because it creates far data pointers and near code
pointers. The large memory model library is used for both
medium and large because it creates far data pointers as well as
far code pointers. DLLs can only have far pointers to data; near
pointers are not allowed.

When you add an .RC file to a project, the Project Manager
automatically assigns the default translator to be the Resource
Compiler. In addition, the default output name is file.RES (not
file.OBD. Finally, "Exclude from Link" is selected because TLINK
should not link the resulting .RES file.

During a make, the Project Manager recompiles the .RC file if it is
newer than the .RES file, in the same way that it recompiles
HELLO.C if it is newer than HELLO.OBJ. No auto dependencies
are checked because that information is not available.

During a make, the Project Manager runs the Resource Compiler
after any relink because the Resource Compiler also marks the
image as Windows 3.x compatible. Even if you have no resources,
you need to run the Resource Compiler.

Chapter 8, Building a Windows application 331

Dynamic link libraries

Compiling and
linking a DLL

within the IDE

The _export keyword should
immediately precede the

function name.

Compiling and
linking a DLL from

the command
line

332

A dynamic link library (OLL) is a library of functions that a Win­
dows module can call to accomplish a task. If you've written a
Windows application, then you've already used OLLs. The fi~es
KERNEL.EXE, USER.EXE, and GOI.EXE are actually OLLs, not
applications (as the .EXE extension implies). The references to the
API functions that you call from these modules are resolved at
run time (dynamic linking), instead of at link time (static linking).

To compile and link a OLL from within the IDE, follow these
steps:

1. Create the OLL source files. Optionally, create the resource file
and the module definition file.

2. Choose Project I Open Project to start a new project.

3. Choose Project I Add Item, and add the source and resource
files for the OLL.

4. If you have created a module definition file for the OLL, add it
to the project. (Note that Borland C++ can link without one. To
link without a module definition file for the OLL, you must
have flagged every function to be exported in the DLL with
the keyword _export. In addition, choose Options I Compiler I
Entry /Exit Code I Windows OLL Explicit Functions
Exportable.)

5. Choose Options I Application I Windows OLL.

6. Choose Compile I Build all.

To compile and link a OLL composed of the source file
LIBXAMP.CPP, type

Bee -WD libxamp.cpp

The command-line compiler takes care of linking in the correct
startup code and libraries. The -WD option tells the compiler to
build a Windows OLL with all functions exportable. To compile
and link with explicit functions exportable, you would use the
-\IIJDE option and use the _export keyword for export functions.

Borland C++ Programmer's Guide

See page 331 for an
explanation of the library

and object files needed to
link a DLL.

Module definition files

See Chapter 4 in the Tools
and Utilities Guide for

information on default
module definition file

replacement settings.

To link a DLL with the command-line linker TLINK, you might
use this command line

TLINK ITwd Iv Ic ILC:\BORLANDC\LIB cOds 1 ibxamp , libxamp, , import
mathwc cwc,libxamp

The {fwd option indicates a Windows DLL, Iv tells TLINK to
include debugging information, and Ie forces case to be significant
in public and external symbols. The IL option specifies a library
and startup file search path.

A module definition file is not strictly necessary to link either a
DLL or a Windows application.

There are two ways to tell the linker about export functions:

e To link with a module definition file, create an EXPORTS
section in the module definition file that lists all the functions
that will be used by other applications. (IMPDEF can help you
do this, see Chapter 1 in the Tools and Utilities Guide.)

e To link without a module definition file, you must flag every
function to be exported in the DLL with the keyword _export.
In addition, when you build or link the DLL, you must choose
Options I Compiler I Entry /Exit Code I Windows DLL Explicit
Functions Exportable (or -WOE on the command line).

A function must be exported from a DLL before it can be
imported to another DLL or application.

Import libraries If a Windows application module or another DLL uses functions
from a DLL, you have two ways to tell the linker about them:

Creating DLLs

e You can add an IMPORTS section to the module definition file
and list every function from DLLs that the module will use.

e Or you can include the import library for the DLLs when you
link the module. (A utility called IMPLIB creates an import
library for one or more DLLs; see Chapter 1 in the Tools and
Utilities Guide for details.)

The following sections provide information on the specifics of
writing a DLL.

Chapter 8, Building a Windows application 333

LibMain and WEP You must supply the LibMain function as the main entry point for
a Windows DLL.

HANDLE WORD, and LPSTR
are defined in windows.h.

334

Windows calls LibMain once, when the library is first loaded.
LibMain performs initialization for the DLL. This initialization
depends almost entirely on the function of the particular DLL, but
might include the following tasks:

• Unlocking the data segment with UnlockData, if it has been
declared as MOVEABLE

• Setting up global variables for the DLL, if it uses any

The DLL startup code CODx.OBJ initializes the local heap
automatically; you do not need to include code in LibMain to do
this.

The following parameters are passed to LibMain:

int FAR PASCAL LibMain (HANDLE hlnstance, WORD wDataSeg,
WORD cbHeapSize, LPSTR IpCmdLine)

• hlnstance is the instance handle of the DLL.

I! wDataSeg is the value of the data segment (DS) register.

• cbHeapSize is the size of the local heap specified in the module
definition file for the DLL.

• IpCmdLine is a far pointer to the command line specified when
the DLL was loaded. This is almost always null since DLLs are
typically loaded automatically with no parameters. It is
possible, however, to supply a command line to a DLL when it
is loaded explicitly.

The return value for LibMain is either 1 (successful initialization)
or 0 (failure in inititalization). If 0, Windows will unload the DLL
from memory.

The exit point of a DLL is the function WEP (which stands for
Windows Exit Procedure). This function is not necessary in a DLL
(since the Borland C++ run-time libraries provide a default) but
can be supplied by the writer of a DLL to perform any cleanup of
the DLL before it is unloaded from memory. Windows will call
WEP just prior to unloading the DLL.

Under Borland C++, WEP does not need to be exported. Borland
C++ defines its own WEP that calls your WEP, and then performs
system cleanup. This is the prototype for WEP:

Borland C++ Programmer's Guide

int FAR PASCAL WEP (int nPararneter)

Ell nParameter is either WEP _SYSTEMEXIT or WEP _FREE_DLL.
The former means that all of Windows is shutting down and
the latter indicates that just this DLL is being unloaded.

WEP should return 1 to indicate success. Windows currently
doesn't do anything with this return value.

Pointers and memory Functions in a DLL are not linked directly into a Windows
application; they are called at run time. This means that calls to
DLL functions will be far calls, because the DLL will have a
different code segment than the application. The data used by
called DLL functions will need to be far as well.

Let's say you have a Windows application called APP1, a DLL
defined by LSOURCE1.C, and a header file for that DLL called
lsourcel.h. Function 11, which operates on a string, is called by the
a pplica tion.

If you want the function to work correctly regardless of the
memory model the DLL will be compiled under, you need to
explicitly make the function and its data far. In the header file, the
function prototype would take this form:

extern int _export FAR f(char FAR *dstring);

In the DLL, the implementation of the function would take this
form:

int FAR fl(char far *dstring)
{

For the function to be used by the application, the function would
also need to be compiled as exportable and then exported. To
accomplish this, you can either compile the DLL with all functions
exportable (-WO) and list 11 in the EXPORTS section ~f the
module definition file, or you can flag the function with the
_export keyword, like so:

int FAR _export fl(char far *dstring)
{

Chapter 8, Building a Windows application 335

Before an application could
use f1, it would have to be

imported into the
application, either by listing

f1 in the IMPORTS section of a
module definition file, or by

linking with an import library
for the DLL. See Chapter 7,
"Import library tools" in the
Tools and Utilities Guide for

336

more information about
import libraries.

c++ classes and
pointers

If you compile the DLL under the large model (far data, far code),
then you don't need to explicitly define the function or its data far
in the DLL. In the header file, the prototype would still take this
form

extern int FAR f(char FAR *dstring);

because the prototype would need to be correct for a module
compiled with a smaller memory model. But in the DLL, the
function could be defined like this:

int _export fl(char *dstring)
{

Static data in DLLs

Through a DLL's functions, all applications using the DLL have
access to that DLL's global data. A particular function will use the
same data, regardless of the application that called it. If you want
a DLL's global data to be protected for use by a single application,
you would need to write that protection yourself. The DLL itself
does not have a mechanism for making global data available to a
single application. If you need data to be private for a given caller
of a DLL, you will need to dynamically allocate the data and
manage the access to that data manually. Static data in a DLL is
global to all callers of a DLL.

A C++ class used only inside a DLL doesn't need to be declared
far. The class requires special handling if it will be used from
another DLL or a Windows application.

All the members of a shared class must be far. Do this by
declaring the class members as far or compiling the DLL under
the large memory model. The classes also must be exported,
which can be accomplished two ways:

• Include the names of all the class members in the EXPORTS
section of the module definition file, then compile the DLL with
the Options I Compiler I Entry/Exit code I Windows DLL All
Functions Exportable(-WD) option .

• Mark the entire class with the _export keyword and compile
the DLL with the Options I Compiler I Entry/Exit code I
Windows DLL Explicit Functions Exported(-WDE) option.

Borland C++ Programmer's Guide

Note that a huge class can
only inherit from other huge

classes.

c++ classes use virtual table pointers and include a hidden this
pointer. Both pointers must be far pointers as well. There are two
basic ways to accomplish this.

One way is to simply compile the OLL modules and the
application using the OLL with the Far Virtual Tables option
(Options I Compiler I C++ Options in the IDE or -Vf from the
command line). This causes all virtual table pointers and this
parameters to be full 32-bit pointers. The advantage of this
approach is that it does not require any source code changes;
however, all classes, shared or not, suffer the overhead of 32-bit
pointers.

A more efficient approach is to declare the shared classes huge
instead of far which tells the compiler to use full 32-bit pointers
for those classes only. Here is an example of a huge class
declaration:

class huge OLLclass
{

};

For a class that is defined in a OLL to be usable from a Windows
application, its non-inline member functions and static data
members must be made available by making them exported
names. You can do this by adding their public (mangled) names
to the EXPORTS section of the OLL module definition file, but this
can be rather tedious.

There's an easier alternative: Declare the classes to be exported as
_export. Whenever a class is declared as _export, Borland C++
treats it as huge (with 32-bit pointers), and automatically exports
all its non-inline member functions and static data members. If
you declare a class as _export, you can't also declare it as far or
huge Cexport implies huge, which implies far).

If you declare the class in an include file that is included both by
the OLL source files and by the source files of the application
using the OLL, such a class should be declared _export when
compiling the OLL, and merely huge when compiling the
application. To do this, you can use the __ OLL __ macro, which is
defined by the compiler when it's building a OL1. The following
code could be a part of an include file that defines a shared class:

#ifdef __ OLL __
define EXPORT _export

Chapter 8, Building a Windows application 337

338

#else
define EXPORT huge
#endif

class EXPORT DLLclass

};

Note that the compiler encodes (in the mangled name) the
information that a given class member is a member of a huge
class. This ensures that any mismatches are caught by the linker
when a program is using huge and non-huge classes.

Borland C++ Programmer's Guide

c H

See Chapter 8, "Building a .
Windows application," in this

bookfor information on
choosing a memory model

for Windows modules.

A p T E R

9

DOS memory management
This chapter covers

Il:I What to do when you receive "Out of memory" errors.

.. What memory models are: how to choose one, and why you
would (or wouldn't) want to use a particular memory model.

• How Overlays work, and how to use them.

Running out of memory

Memory models

Borland C++ does not generate any intermediate data structures
to disk when it is compiling (Borland C++ writes only .OBJ files to
disk); instead it uses RAM for intermediate data structures
between passes. Because of this, you might encounter the message
"Out of memory" if there is not enough memory available for the
compiler.

The solution to this problem is to make your functions smaller, or
to split up the file that has large functions.

Borland C++ gives you six memory models, each suited for
different program and code sizes. Each memory model uses
memory differently. What do you need to know to use memory

Chapter 9, DOS memory management 339

See page 346 for a summary
of each memory model.

The 8086 registers

340

Figure 9.1
8086 registers

General-purpose
registers

models? To answer that question, we have to take a look at the
computer system you're working on. Its central processing unit
(CPU) is a microprocessor belonging to the Intel iAPx86 family;
an 80286, 80386, or 80486. For now, we'll just refer to it as an 8086.

These are some of the registers found in the 8086 processor. There
are other registers-but they can't be accessed directly, so they're
not shown here.

General-purpose registers

accumulator (math operations)
AX AH I AL

base (indexing)
BX BH I BL

count (indexing)
ex CH I CL

data (holding data)
ox OH I OL

Segment address registers

es code segment pointer

OS data segment pointer

SS stack segment pointer

ES extra segment pointer

Special-purpose registers

SP stack pOinter

BP base pointer

SI source index

01 destination index

The general-purpose registers are the ones used most often to
hold and manipulate data. Each has some special functions that
only it can do. For example,

• Some math operations can only be done using AX.

ii BX can be used as an index register.

Borland C++ Programmer's Guide

Segment registers

Special-purpose
registers

• CX is used by LOOP and some string instructions.

II OX is implicitly used for some math operations.

But there are many operations that all these registers can do; in
many cases, you can freely exchange one for another.

The segment registers hold the starting address of each of the four
segments. As described in the next section, the 16-bit value in a
segment register is shifted left 4 bits (multiplied by 16) to get the
true 20-bit address of that segment.

The 8086 also has some special-purpose registers:

II The SI and 01 registers can do many of the things the general­
purpose registers can, plus they are used as index registers.
They're also used by Borland C++ for register variables .

.. The SP register points to the current top-of-stack and is an
offset into the stack segment.

.. The BP register is a secondary stack pointer, usually used to
index into the stack in order to retrieve arguments or automatic
variables.

Borland C++ functions use the base pointer (BP) register as a base
address for arguments and automatic variables. Parameters have
positive offsets from BP, which vary depending on the memory
model. BP points to the saved previous BP value if there is a stack
frame. Functions that have no arguments will not use or save BP
if the Standard Stack Frame option is Off.
Automatic variables are given negative offsets from BP. The
offsets depend on how much space has already been assigned to
local variables.

The flags register The 16-bit flags register contains all pertinent information about
the state of the 8086 and the results of recent instructions.

For example, if you wanted to know whether a subtraction pro­
duced a zero result, you would check the zero flag (the Z bit in the
flags register) immediately after the instruction; if it were set, you
would know the result was zero. Other flags, such as the carry and
overflow flags, similarly report the results of arithmetic and logical
operations.

Chapter 9, DOS memory management 341

342

Figure 9.2
Flags register of the 8086

Memory
segmentation

31 23

Virtual 8086 Mode
Resume

Nested Task
I/O Protection Level

Overflow
Direction

Interrupt Enable
Trap

15

Sign
Zero

Auxiliary Carry
Parity

Carry

I
o

I I II I I I III I J I llvIRlIN/lOPlolD/lITJslzl IAIIPI lei
'~----------~l------------~---------I~------~/

80386 only 80286 All 80x86 processors
80386

Other flags control modes of operatio,:l of the 8086. The direction
flag controls the direction in which the string instructions move,
and the interrupt flag controls whether external hardware, such as
a keyboard or modem, is allowed to halt the current code tempo­
rarily so that urgent needs can be serviced. The trap flag is used
only by software that debugs other software.

The flags register isn't usually modified or read directly. Instead,
the flags register is generally controlled through special assembler
instructions (such as CLO, STI, and CMC) and through arithmetic
and logical instructions that modify certain flags. Likewise, the
contents of certain bits of the flags register affect the operation of
instructions such as JZ, RCR, and MOVSB. The flags register is not
really used as a storage location, but rather holds the status and
control data for the 8086.

The Intel 8086 microprocessor has a segmented memory architecture.
It has a total address space of 1 MB, but it is designed to directly
address only 64K of memory at a time. A 64K chunk of memory is
known as a segment; hence the phrase, "segmented memory
architecture."

• The 8086 keeps track of four different segments: code, data, stack,
and extra. The code segment is where the machine instructions
are; the data segment, where information is; the stack is, of
course, the stack; and the extra segment is also used for extra
data .

• The 8086 has four 16-bit segment registers (one for each seg­
ment) named CS, DS, 55, and ES; these point to the code, data,
stack, and extra segments, respectively.

Borland C++ Programmer's Guide

Address calculation

This whole section is
applicable only to real mode

under DOS. You can safely
ignore it for Windows

development.

A chunk of 76 bytes is known
as a paragraph, so you

could say that a segment
always starts on a paragraph

boundary.

c A segment can be located anywhere in memory. In DOS real
mode, at least, almost anywhere. For reasons that will become
clear as you read on, a segment must start on an address that's
evenly divisible by 16 (in decimal).

A complete address on the 8086 is composed of two 16-bit values:
the segment address and the offset. Suppose the data segment
address-the value in the OS register-is 2F84 (base 16), and you
want to calculate the actual address of some data that has an
offset of 0532 (base 16) from the start of the data segment; how is
that done?

Address calculation is done as follows: Shift the value of the seg­
ment register 4 bits to the left (equivalent to one hex digit), then
add in the offset.

The resulting 20-bit value is the actual address of the data, as
illustrated here:

DS register (shifted): 0010 1111 1000 0100 0000 2F840
Offset: 0000 0101 0011 0010 00532

Address: 0010 1111 1101 0111 0010 = 2FD72

The starting address of a segment is always a 20-bit number, but a
segment register only holds 16 bits-so the bottom 4 bits are al­
ways assumed to be all zeros. This means-as we said-that seg­
ments can only start every 16 bytes through memory, at an
address where the last 4 bits (or last hex digit) are zero. So, if the
OS register is holding a value of 2F84, then the data segment
actually starts at address 2F840.

The standard notation for an address takes the form segment:offset;
for example, the previous address would be written as 2F84:0532.
Note that since offsets can overlap, a given segment:offset pair is
not unique; the following addresses all refer to the same memory
location:

0000:0123
0002:0103
0008:00A3
0010:0023
0012:0003

Segments can overlap (but don't have to). For example, all four
segments could start at the same address, which means that your

Chapter 9, DOS memory management 343

344

Pointers

entire program would take up no more than 64K-but that's all
the space you'd have for your code, your data, and your stack.

Although you can declare a pointer or function to be a specific
type regardless of the model used, by default the type of memory
model you choose determines the default type of pointers used
for code and data. Pointers come in four flavors: near (16 bits), far
(32 bits), huge (also 32 bits), and segment (16 bits).

Near pointers A near pointer (16-bits) relies on one of the segment registers to
finish calculating its address; for example, a pointer to a function
would add its 16-bit value to the left-shifted contents of the code
segment (CS) register. In a similar fashion, a near data pointer
contains an offset to the data segment (OS) register. Near pointers
are easy to manipulate, since any arithmetic (such as addition) can
be done without worrying about the segment.

For pointers A far pointer (32-bits) contains not only the offset within the seg­
ment, but also the segment address (as another 16-bit value),
which is then left-shifted and added to the offset. By using far
pointers, you can have multiple code segments; that, in turn,
allows you to have programs larger than 64K. You can also
address more than 64K of data.

When you use far pointers for data, you need to be aware of some
potential problems in pointer manipulation. As explained in the
section on address calculation, you can have many different
segment:offset pairs refer to the same address. For example, the
far pointers 0000:0120, 0010:0020, and 0012:0000 all resolve to the
same 20-bit address. However, if you had three different far
pointer variables-a, b, and c-containing those three values
respectively, then all the following expressions would be false:

if (a == b)
if (b == c) • • •.

if (a == c) • • •

A related problem occurs when you want to compare far pointers
using the >, >=, <, and <= operators. In those cases, only the offset
(as an unsigned) is used for comparison purposes; given that a, b,
and c still have the values previously listed, the following expres­
sions would all be true:

Borland C++ Programmer's Guide

if (a > b)
if (b > c)

if (a > c)

The equals (==) and not-equal (1=) operators use the 32-bit value
as an unsigned long (not as the full memory address). The com­
parison operators «=, >=, <, and » use just the offset.

The == and != operators need all 32 bits, so the computer can com­
pare to the NULL pointer (0000:0000). If you used only the offset
value for equality checking, any pointer with 0000 offset would be
equal to the NULL pointer, which is not what you want.

Important! If you add values to a far pointer, only the offset is changed. If
you add enough to cause the offset to exceed FFFF (its maximum
possible value), the pointer just wraps around back to the begin­
ning of the segment. For example, if you add 1 to 5031 :FFFF, the
result would be 5031:0000 (not 6031:0000). Likewise, if you sub­
tract 1 from 5031:0000, you would get 5031:FFFF (not 5030:000F).

If you want to do pointer comparisons, it's safest to use either near
pointers-which all use the same segment address-or huge
pointers, described next.

Huge pointers Huge pointers are also 32 bits long. Like far pointers, they contain
both a segment address and an offset. Unlike far pointers, they are
normalized to avoid the problems associated with far pointers.

What is a normalized pointer? It is a 32-bit pointer which has as
mucr. of its value in the segment address as possible. Since a seg­
ment can start every 16 bytes (10 in base 16), this means that the
offset will only have a value from 0 to 15 (0 to F in base 16).

To normalize a pointer, convert it to its 20-bit address, then use
the right 4 bits for your offset and the left 16 bits for your segment
address. For example, given the pointer 2F84:0532, you would
convert that to the absolute address 2FD72, which you would
then normalize to 2FD7:0002. Here are a few more pointers with
their normalized equivalents:

0000:0123
0040:0056
5000:9407
7418:003F

0012:0003
0045:0006
5940:0007
811B:000F

There are three reasons why it is important to always keep huge
pointers normalized.

Chapter 9, DOS memory management 345

The six memory
models

Use this model when memory
is at an absolute premium.

346

This is a good size for
average applications.

Best for large programs
without much data in

memory.

1. For any given memory address there is only one possible huge
address-segment:offset pair. That means that the == and !=
operators return correct answers for any huge pointers.

2. In addition, the >, >=, <, and <= operators are all used on the
full 32-bit value for huge pointers. Normalization guarantees
that the results of these comparisons will be correct also.

3. Finally, because of normalization, the offset in a huge pointer
automatically wraps around every 16 values, but-unlike far
pointers-the segment is adjusted as well. For example, if you
were to increment 811B:OOOF, the result would be 811C:OOOO;
likewise, if you decrement 811C:OOOO, you get 811B:OOOF. It is
this aspect of huge pointers that allows you to manipulate data
structures greater than 64K in size. This ensures that, for
example, if you have a huge array of structs that's larger than
64K, indexing into the array and selecting a struct field will
always work with structs of any size.

There is a price for using huge pointers: additional overhead.
Huge pointer arithmetic is done with calls to special subroutines.
Because of this, huge pointer arithmetic is significantly slower
than that of far or near pointers.

Borland C++ gives you six memory models: tiny, small, medium,
compact, large, and huge. Your program requirements determine
which one you pick. (See Chapter 8, "Building a Windows
application," in this book for information on choosing a memory
model for Windows modules.) Here's a brief summary of each:

Tiny. As you might guess, this is the smallest of the memory
models. All four segment registers (CS, DS, 55, ES) are set to the
same address, so you have a total of 64K for all of your code, data,
and stack. Near pointers are always used. Tiny model programs
can be converted to .COM format by linking with the It option.

Small. The code and data segments are different and don't over­
lap, so you have 64K of code and 64K of data and stack. Near
pointers are always used.

Medium. Far pointers are used for code, but not for data. As a
result, data plus stack are limited to 64K, but code can occupy up
to 1 MB.

Borland C++ Programmer's Guide

Best if code is small but
needs to address a lot of

data,

Large and huge are needed
only for very large

applications,

Figure 9,3
Tiny model memory

segmentation

Figure 9,4
Small model memory

segmentation

Compact. The inverse of medium: Far pointers are used for data,
but not for code. Code is then limited to 64K, while data has a 1
MB range.

Large. Far pointers are used for both code and data, giving both a
1 MB range.

Huge. Far pointers are used for both code and data. Borland C++
normally limits the size of all static data to 64K; the huge memory
model sets aside that limit, allowing data to occupy more than
64K.

Figures 9.3 through 9.8 show how memory in the 8086 is
apportioned for the Borland C++ memory models. To select these
memory models, you can either use menu selections from the
IDE, or you can type options invoking the command-line
compiler version of Borland C++.

Segment registers: low address Segment size:
CS, OS, 5S

(1\
_TEXT class 'CODE'

code

DATA class 'DATA' -
initialized data

o GROUP ~
BSS class 'BSS'

-uninitialized data up to 64K

HEAP !
FREE SPACE

----r.
STACK t

P i 1/
SP (lOS)

Starting S
high address

Segment registers: low address Segment size:
CS

TEXT class 'CODE'
- code

os, SS --/f'I-----DA-TA-cla-ss-'-DA-T-A'---.J1 '\

initialized data

OGROUP

SP (TOS)-i-o

BSS class 'BSS'
-uninitialized data

HEAP l
FREE SPACE

STACK f
Starting SP --"--+1--------1-----11/

FAR HEAP!

FREE SPACE

high address

up to 64K

up to 64K

up to rest of memory

Chapter 9, DOS memory management 347

Figure 9.5
Medium model memory

segmentation

CS points to only one sfile at
a time

Figure 9.6
Compact model memory

segmentation

Figure 9.7
Large model memory

segmentation

CS points to only one sfile at
a time

348

CS -t;~z====l
,.-__ -\-_=-===-____ -, Segment size:

XT class 'CODE'
code

os. ss---~-------------~_

SP (lOS)

_BSS class 'SSS'
uninltialized data

FREE SPACE

STACK
Starting SP --'*---------+------1 /

Segment registers:
CS

FAR HEAP

FREE SPACE

high address

low address

_TEXT class 'CODE'
code

each sfile
up to 64K

up to 64K

up to rest of memory

Segment size:

up to 64K

OS OGROUP {1-____ -_OA_T_A_c_Ia_ss_'O_AT_A_' ___ ---I} up to 64K
initialized data

_SSS class 'sss'
un initialized data

$----~+-------------~

FREE SPACE

SP (TOS)-

STACK up to 64K

Starting sP---+l-----------t------i
HEAP up to rest of memory

FREE SPACE

high address

Segment size:
r---~~--------------__,

each sfile
up to 64K

OS ----+l--------------------------t} up to 64K

_SSS class 'SSS'
uninitialized data

~----~~----------------------4
FREE SPACE

STACK up to 64K

Starting Sp--~--------_t_------I

HEAP up to rest of memory

FREE SPACE

high address

Borland C++ Programmer's Guide

Figure 9,8
Huge model memory

segmentation

CS and OS point to only one
sfile at a time

Table 9,1
Memory models

The models tiny, small, and
compact are small code

models because, by default,
code pointers are near;

likewise, compact, large,
and huge are large data

models because, by default,
data pointers are far.

low address Segment size:
r---~----------------,

OS

XT class 'CODE'
code

sflle_ ATA class 'FAR DATA'
initialized data

SS ________ ~--____ --__ ----------~

FREE SPACE

SP erOS) ------.!

STACK

Starting Sp----+l-------------+--------l

HEAP

FREE SPACE

high address

each sfile
up to 64K

each sfile
up to 64K

up to 64K

up to rest of memory

Table 9.1 summarizes the different models and how they compare
to one another. The models are often grouped according to
whether their code or data models are small (64K) or large (16 MB);
these groups correspond to the rows and columns in Table 9.1,

Data size

64K

16MB

Code size

64K

Tiny (data, code overlap;
total size = 64K)

Small (no overlap;
total size = 128K)

Compact (large data,
small code)

16 MB

Medium (small data,
large code)

Large (large data, code)

Huge (same as large but
static data> 64K)

Important! When you compile a module (a given source file with some
number of routines in it), the resulting code for that module
cannot be greater than 64K, since it must all fit inside of one code
segment. This is true even if you're using one of the larger code

Chapter 9, DOS memory management 349

models (medium, large, or huge). If your module is too big to fit
into one (64K) code segment, you must break it up into different
source code files, compile each file separately, then link them
together. Similarly, even though the huge model permits static
data to total more than 64K, it still must be less than 64K in each
module.

Mixed-model programming: Addressing modifiers

350

Borland C++ introduces eight new keywords not found in
standard ANSI C (near, far, huge, _cs, _ds, _es, _55, and _seg)
that can be used as modifiers to pointers (and in some cases, to
functions), with certain limitations and warnings.

In Borland C++, you can modify the declarations of pointers,
objects, and functions with the keywords near, far, or huge. We
explained near, far, and huge data pointers earlier in this chapter.
You can declare far objects using the far keyword. near functions
are invoked with near calls and exit with near returns. Similarly,
far functions are called far and do far returns. huge functions are
like far functions, except that huge functions set DS to a new
value, while far functions do not.

There are also four special near data pointers: _cs, _ds, _es, and
_55. These are 16-bit pointers that are specifically associated with
the corresponding segment register. For example, if you were to
declare a pointer to be

char _88 *p;

then p would contain a 16-bit offset into the stack segment.

Functions and pointers within a given program default to near or
far, depending on the memory model you select. If the function or
pointer is near, it is automatically associated with either the CS or
DS register.

The next table shows just how this works. Note that the size of the
pointer corresponds to whether it is working within a 64K mem­
ory limit (near, within a segment) or inside the general 1 MB
memory space (far, has its own segment address).

Borland C++ Programmer's Guide

Table 9.2
Pointer results

Segment pointers

Memory model

Tiny
Small
Medium
Compact
Large
Huge

Function pointers

near,_cs
near,_cs
far
near,_cs
far
far

Data pointers

near,_ds
near,_ds
near,_ds
far
far
far

Use _seg in segment pointer type dec1arators. The resulting
pointers are 16-bit segment pointers. The syntax for _seg is:

datatype _seg *identifier;

For example,

int _seg *narne;

Any indirection through identifier has an assumed offset of O. In
arithmetic involving segment pointers the following rules hold
true:

1. You can't use the ++, - -, +=, or -= operators with segment
pointers.

2. You cannot subtract one segment pointer from another.

3. When adding a near pointer to a segment pointer, the result is
a far pointer that is formed by using the segment from the
segment pointer and the offset from the near pointer.
Therefore, the two pointers must either point to the same type,
or one must be a pointer to void. There is no multiplication of
the offset regardless of the type pointed to.

4. When a segment pointer is used in an indirection expression, it
is also implicitly converted to a far pointer.

5. When adding or subtracting an integer operand to or from a
segment pointer, the result is a far pointer, with the segment
taken from the segment pointer and the offset found by
multiplying the size of the object pointed to by the integer
operand. The arithmetic is performed as if the integer were
added to or subtracted from the far pointer.

6. Segment pointers can be assigned, initialized, passed into and
out of functions, compared and so forth. (Segment pointers are
compared as if their values were unsigned integers.) In other

Chapter 9, DOS memory management 351

352

Declaring far

words, other than the above restrictions, they are treated
exactly like any other pointer.

objects You can declare far objects in Borland C++. For example,

Declaring
functions to be

near or far

int far x = 5;
int far z;
extern int far y = 4;
static long j;

The command-line compiler options -zE,-zF, and -zH (which can
also be set using #pragma option) affect the far segment name,
class, and group, respectively. When you change them with
#pragma option, you can change them at any time and they apply
to any ensuing far object declarations. Thus you could use the
following sequence to create a far object in a specific segment:

#pragrna option -zErnysegrnent -zHrnygroup -zFrnyclass
. int far x;

#pragrna option -zE* -zH* -zF*

This will put X in segment MYSEGMENT 'MYCLASS' in the
group iMYGROUP', then reset all of the far object items to the
default values. Note that by using these options, several far
objects can be forced into a single segment:

#pragrna option -zEcornbined -zFrnyclass
int far x;
double far y;
#pragrna option -zE* -zF*

Both X and y will appear in the segment COMBINED 'MYCLASS'
with no group.

On occasion, you'll want (or need) to override the default func­
tion type of your memory model shown in Table 9.1 (page 349).

For example, suppose you're using the large memory model, but
you have a recursive (self-calling) function in your program, like
this:

double power(double x,int exp)
{

if (exp <= 0)
return(l) ;

Borland C++ Programmer's Guide

Declaring
painters to be

near, for, or huge

else
return(x * power(x, exp-l));

Every time power calls itself, it has to do a far call, which uses
more stack space and clock cycles. By declaring power as near,
you eliminate some of the overhead by forcing all calls to that
function to be near:

double near power(double x,int exp)

This guarantees that power is callable only within the code seg­
ment in which it was compiled, and that all calls to it are near
calls.

This means that if you are using a large code model (medium,
large, or huge), you can only call power from within the module
where it is defined. Other modules have their own code segment
and thus cannot call near functions in different modules. Further­
more, a near function must be either defined or declared before
the first time it is used, or the compiler won't know it needs to
generate a near call.

Conversely, declaring a function to be far means that a far return
is generated. In the small code models, the far function must be
declared or defined before its first use to ensure it is invoked with
a far call.

Look back at the power example. It is wise to also declare power
as static, since it should only be called from within the current
module. That way, being a static, its name will not be available to
any functions outside the module.

You've seen why you might want to declare functions to be of a
different model than the rest of the program. Why might you
want to do the same thing for pointers? For the same reasons
given in the preceding section: either to avoid unnecessary over­
head (declaring near when the default would be far) or to refer­
ence something outside of the default segment (declaring far or
huge when the default would be near).

There are, of course, potential pitfalls in declaring functions and
pointers to be of nondefault types. For example, say you have the
following small model program:

Chapter 9, DOS memory management 353

If you're going to explicitly
dec/are pointers to be of

type far or near, be sure to
use function prototypes for

any functions that might use
them.

354

void myputs(s)
char *Si

int ii
for (i = Oi s[iJ != Oi itt) putc(S[iJ)i

main()
{

char near *mystri

mystr = "Hello, world\n" i
myputs (mystr) i

This program works fine. In fact, the near declaration on mystr is
redundant, -since all pointers, both code and data, will be near.

But what if you recompile this program using the compact (or
large or huge) memory model? The pointer mystr in main is still
near (it's still a 16-bit pointer). However, the pointer sin myputs is
now far, since that's the default. This means that myputs will pull
two words out of the stack in an effort to create a far pointer, and
the address it ends up with will certainly not be that of mystr.

How do you avoid this problem? The solution is to define myputs
in modern C style, like this:

void myputs(char *s)
{

/* body of myputs */

Now when Borland C++ compiles your program, it knows that
myputs expects a pointer to char; and since you're compiling
under the large model, it knows that the pointer must be far.
Because of that, Borland C++ will push the data segment (DS)
register onto the stack along with the 16-bit value of mystr,
forming a far pointer.

How about the reverse case: Arguments to myputs declared as far
and compiling with a small data model? Again, without the func­
tion prototype, you will have problems, since main will push both
the offset and the segment address onto the stack, but myputs will
only expect the offset. With the prototype-style function defini­
tions, though, main will only push the offset onto the stack.

Borland C++ Programmer's Guide

Pointing to a given
segment:offset address

Using library files

Linking mixed
modules

How do you make a far pointer point to a given memory location
(a specific segment:offset address)? You can use the macro
MK_FP, which takes a segment and an offset and returns a far
pointer. For example,

Given a far pointer, fp, you can get the segment component with
FP _SEG(fp) and the offset component with FP _OFF(fp). For more
information about these three Borland C++ library routines, refer
to the Library Reference.

Borland C++ offers a version of the standard library routines for
each of the six memory models. Borland C++ is smart enough to
link in the appropriate libraries in the proper order, depending on
which model you've selected. However, if you're using the
Borland C++ linker, TLINK, directly (as a standalone linker), you
need to specify which libraries to use. See Chapter 4, "TLINK: The
Turbo linker" in the Tools and Utilities Guide for details on how to
do so.

What if you compiled one module using the small memory
model, and another module using the large model, then wanted
to link them together? What would happen?

The files would link together fine, but the problems you would
encounter would be similar to those described in the earlier
section, "Declaring functions to be near or far." If a function in the
small module called a function in the large module, it would do
so with a near call, which would probably be disastrous. Further­
more, you could face the same problems with pointers as de­
scribed in the earlier section, "Declaring pointers to be near, far, or
huge," since a function in the small module would expect to pass
and receive near pointers, while a function in the large module
would expect far pointers.

The solution, again, is to use function prototypes. Suppose that
you put myputs into its own module and compile it with the large
memory model. Then create a header file called myputs.h (or

Chapter 9, DOS memory management 355

356

some other name with a .h extension), which would have the
following function prototype in it:

void far myputs(char far *s);

Now, if you put main into its own module (called MYMAIN.C),
set things up like this:

#include <stdio.h>
#include "myputs. h"

main()
{

char near *mystr;

mystr = "Hello, world\n";
myputs (mystr) ;

When you compile this program, Borland C++ reads in the
function prototype from myputs.h and sees that it is a far function
that expects a far pointer. Because of that, it will generate the
proper calling code, even if it's compiled using the small memory
model.

What if, on top of all this, you need to link in library routines?
Your best bet is to use one of the large model libraries and declare
everything to be far. To do this, make a copy of each header file
you would normally include (such as stdio.h), and rename the
copy to something appropriate (such as fstdio.h).

Then edit each function prototype in the copy so that it is explicit­
ly far, like this:

int far cdecl printf(char far * format, ...);

That way, not only will far calls be made to the routines, but the
pointers passed will be far pointers as well. Modify your program
so that it includes the new header file:

#include <fstdio.h>

main()
{

char near *mystr;
mystr = "Hello, world\n";
printf (mystr) ;

Compile your program with the command -line compiler BCC
then link it with TLINK, specifying a large model library, such as

Borland C++ Programmer's Guide

CL. LIB. Mixing models is tricky, but it can be done; just be
prepared for some difficult bugs if you do things wrong.

Overlays (VROOMM) for DOS

Overlays are only used in
DOS; you can mark the code

segments of a Windows
application as discardable

to decrease memory
consumption. See Chapter 4,

"TLlNK: The Turbo linker" in
the Tools and Utilities Guide.

How overlays
work

Overlays are parts of a program's code that share a common
. memory area. Only the parts of the program that are required for
a given function reside in memory at the same time.

Overlays can significantly reduce a program's total run-time
memory requirements. With overlays, you can execute programs
that are much larger than the total available memory, since only
parts of the program reside in memory at any given time.

Borland C++'s overlay manager (called VROOMM for Virtual
Run-time Object-Oriented Memory Manager) is highly sophisti­
cated; it does much of the work for you. In a conventional overlay
system, modules are grouped together into a base and a set of
overlay units. Routines in a given overlay unit may call other
routines in the same unit and routines in the base, but not
routines in other units. The overlay units are overlaid against each
other; that is, only one overlay unit may be in memory at a time,
and they each occupy the same physical memory. The total
amount of memory needed to run the program is the size 9f the
base plus the size of the largest overlay.

This conventional scheme is quite inflexible. It requires complete
understanding of the possible calling dependencies in the pro­
gram, and requires you to have the overlays grouped accordingly.
It may be impossible to break your program into overlays if you
can't split it into separable calling dependencies.

VROOMM's scheme is quite different. It provides dynamic segment
swapping. The basic swapping unit is the segment. A segment can
be OIl:e or more modules. More importantly, any segment can call
any other segment.

Memory is divided into an area for the base plus a swap area.
Whenever a function is called in a segment that is neither in the
base nor in the swap area, the segment containing the called func­
tion is brought into the swap area, possibly displacing other
segments. This is a powerful approach-it is like software virtual

Chapter 9, DOS memory management 357

358

memory. You no longer have to break your code into static,
distinct, overlay units. You just let it run!

What happens when a segment needs to be brought into the swap
area? If there is room for the segment, execution just continues. If
there is not, then one or more segments in the swap area must be
thrown out to make room. How to decide which segment to
throw out? The actual algorithm is quite sophisticated. A simpli­
fied version: If there is an inactive segment, choose it for removal.
Inactive segments are those without executing functions. Other­
wise, pick an active segment and toss it out. Keep tossing out
segments until there is enough room available. This technique is
called dynamic swapping.

The more memory you provide for the swap area, the better the
program performs. The swap area acts like a cache; the bigger the
cache, the faster the program runs. The best setting for the size of
the swap area is the size of the program's working set.

Once an overlay is loaded into memory, it is placed in the overlay
buffer, which resides in memory between the stack segment and
the far heap. By default, the size of the overlay buffer is estimated
and set at startup, but you can change it using the global variable
_ovrbuffer (see page 362). If enough memory isn't available, an
error message will be displayed by DOS ("Program too big to fit
in memory") or by the C startup code ("Not enough memory to
run program").

One very important option of the overlay manager is the ability to
swap the modules to expanded or extended memory when they
are discarded from the overlay buffer. Next time the module is
needed, the overlay manager can copy it from where the module
was swapped to instead of reading from the file. This makes it
much faster.

When using overlays, memory is used as shown in the next
figure.

Borland C++ Programmer's Guide

Figure 9.9: Memory maps for overlays

MEDIUM MODEL LARGE MODEL HUGE MODEL

These segments {
are generated

automatically by
the linker

Near heap and
stack share

data segment

class CODE

class OVRINFO

class STUBSEG

1--------;

DATA
class-DATA

NEAR HEAP

STACK

Overlay buffer
(allocated
at startup)

FAR HEAP

Resident
code

Overlay
control data

One stub
segment for
each overlay

segment

Separate
stack segment

class CODE Resident
class CODE code

class OVRINFO
Overlay

control data class OVRINFO

One stub
class STUBSEG segment for class STUBSEG

each overlay
segment

DATA Multiple
class-DATA data segments

Separate
stack segment

STACK STACK

Overlay buffer Overlay buffer
(allocated (allocated
at startup) at startup)

FAR HEAP FAR HEAP

Getting the best out of
Borland C++ overlays

To get the best out of Borland C++ overlays,

m Minimize resident code (resident run-time library, interrupt
handlers, and device drivers is a good starting point).

See page 362 for more
information on setting the
size of the overlay buffer.

Requirements

Ell Set overlay buffer size to be a comfortable working set (start
with 128K and adjust up and down to see the speed/ size
tradeoff) .

.. Think versatility and variety: Take advantage of the overlay
system to provide support for special cases, interactive help,
and other end-user benefits you could not consider before.

In order to create overlays, you'll need to remember a few simple
rules,

.. The smallest part of a program that can be made into an overlay
is a segment.

II Overlaid applications must use the medium,large, or huge pro­
gramming models; the tiny, small, and compact models are not
supported.

Chapter 9, DOS memory management 359

Using overlays

• Normal segment merging rules govern overlaid segments. That
is, several .OBJ modules can contribute to the same overlaid
segment.

The link-time generation of overlays is completely separated from
the run-time overlay management; the linker does not automatic­
ally include code to manage the overlays. In fact, from the linker's
point of view, the overlay manager is just another piece of code
that gets linked in. The only assumption the linker makes is that
the overlay manager takes over an interrupt vector (typically INT
3FH) through which all dynamic loading is controlled.

To overlay a program, all of its modules must be compiled with
the -v compiler option enabled. To make a particular module into
an overlay, it needs to be compiled with the -Vo option. (-Vo
automatically enables -V.)

The -Vo option applies to all modules and libraries that follow it
on the command line; you can disable it with -Vo-. These are the
only command line options that are allowed to follow file names.
For example, to overlay the module OVL.C but not the library
GRAPHICS. LIB, either of the following command lines could be
used:

Bce -ml -Yo ovl.c -Yo- graphics. lib

or

Bce -ml graphics.lib -Yo ovl.c

If TLINK is invoked explicitly to link the .EXE file, the /0 linker
option must be specified on the linker command line or response
file. See Chapter 4, "TLINK: The Turbo linker," in the Tools and
Utilities Guide for details on how to use the /0 option.

Overlay example Suppose that you want to overlay a program consisting of three
modules: MAIN.C, 01.C, and 02.C. Only the modules 01.C and
02.C should be made into overlays. (MAIN.C contains time­
critical routines and interrupt handlers, so it should stay resident.)
Let's assume that the program uses the large memory model.

The following command accomplishes the task:

360 Bor/anc1 C++ Programmer's Guide

BCC -ml -Y main.c -Yo ol.c 02.c

The result will be an executable file MAIN.EXE, containing two
overlays.

Overlaying in the IDE To overlay modules in the IDE, you must take the following steps:

1. Select Options I Application I DOS Overlay

2. In the project manager, use project item Local options to
specify each module that needs to go into an overlay.

Selecting Options I Application I DOS Overlay will also select the
following options automatically for you:

.. Options I Compiler I Entry I Exit Code I DOS overlay

• Options Linker I Settings I Overlaid DOS Exe

• Project I Local Options I Overlay this module

II Options I Compiler I Code generation I Medium

II Options I Compiler I Code generation I Assume SS Equals DS I
Default for memory model

II Options I Linker I Libraries I Graphics library

'- If you are building an .EXE file containing overlays, compile all
modules after selecting DOS Overlay from the Options I
Application dialog box.

.. No module going into an overlay should ever change the default
Code Class name. The IDE lets you change the set of modules
residing in overlays without having to worry about recompiling.
This can only be accomplished (with current .OBJ information) if
overlays keep default code class names.

Overlaid
programs This section discusses issues vital to well-behaved overlaid

applications.

The far call Use a large code model (medium, large, or huge) when you want
requirement to compile an overlay module. At any call to an overlaid function

in another module, you must guarantee that all currently active
functions are far.

You must compile all overlaid modules with the -v option, which
makes the comp'iler generate code that can be overlaid.

Chapter 9, DOS memory management 361

Important! Failing to observe the far call requirement in an overlaid program
will cause unpredictable and possibly catastrophic results when
the program is executed.

Buffer size The default overlay buffer size is twice the size of the largest over­
lay. This is adequate for some applications. But imagine that a
particular function of a program is implemented through many
modules, each of which is overlaid. If the total size of those
modules is larger than the overlay buffer, a substantial amount of
swapping will occur if the modules make frequent calls to each
other.

The solution is to increase the size of the overlay buffer so that
enough memory is available at any given time to contain all

. overlays that make frequent calls to each other. You can do this by
setting the _ovrbuffer global variable to the required size in para­
graphs. For example, to set the overlay buffer to 128K, include the
following statement in your code:

unsigned _ovrbuffer = Ox2000;

There is no general formula for determining the ideal overlay
buffer size. Borland's Turbo Profiler can help provide a suitable
value.

What not to overlay Don't overlay modules that contain interrupt handlers, or small
and time-critical routines. Due to the non-reentrant nature of the
DOS operating system, modules that may be called by interrupt
functions should not be overlaid.

Borland C++'s overlay manager fully supports passing overlaid
functions as arguments, assigning and initializing function
pointer variables with addresses of overlaid functions, and calling
overlaid routines via function pointers.

Debugging overlays Most debuggers have very limited overlay debugging capabilities,
if any at all. Not so with Borland C++'s integrated debugger and
Turbo Debugger, the standalone debugger. Both debuggers fully
support single-stepping and breakpoinls in overlays in a manner
completely transparent to you. By using overlays, you can easily
engineer and debug huge applications-all from inside the IDE or
by using Turbo Debugger.

362 Borland C++ Programmer's Guide

External routines in
overlays

Like normal C functions, external assembly language routines
must observe certain programming rules to work correctly with
the overlay manager.

If an assembly language routine makes calls to any overlaid func­
tions, the assembly language routine must be declared FAR, and it
must set up a stack frame using the BP register. For example,
assuming that OtherFunc is an overlaid function in another mod­
ule, and that the assembly language routine ExternFunc calls it,
then ExternFunc must be FAR and set up a stack frame, as shown:

ExternFunc PROC FAR
push bp ;Save BP
mov bp, sp ;Set up stack frame
sub sp,LocalSize ;Allocate local variables

call OtherFunc ;Call another overlaid module

mov sp,bp ;Dispose local variables
pop bp ;Restore BP
RET ; Return

ExternFunc ENDP

where LocalSize is the size of the local variables. If LocalSize is zero,
you can omit the two lines to allocate and dispose local variables,
but you must not omit setting up the BP stack frame even if you
have no arguments or variables on the stack.

These requirements are the same if ExternFunc makes indirect
references to overlaid functions. For example, if OtherFunc makes
calls to overlaid functions, but is not itself overlaid, ExternFunc
must be FAR and still has to set up a stack frame.

In the case where an assembly language routine doesn't make any
direct or indirect references to overlaid functions, there are no
special requirements; the assembly language routine can be de­
clared NEAR. It does not have to set up a stack frame.

Overlaid assembly language routines should not create variables
in the code segment, since any modifications made to an overlaid
code segment are lost when the overlay is disposed. Likewise,
pointers to objects based in an overlaid code segment cannot be
expected to remain valid across calls to other overlays, since the
overlay manager freely moves around and disposes overlaid code
segments.

Chapter 9, DOS memory management 363

Swapping
If you have expanded or extended memory available, you can tell
the overlay manager to use it for swapping. If you do so, when
the overlay manager has to discard a module from the overlay
buffer (because it should load a new module and the buffer is
full), it can store the discarded module in this memory. Any later
loading of this module is reduced to in-memory transfer, which is
significantly faster than reading from a disk file.

In both cases there are two possibilities: The overlay manager can
either detect the presence of expanded or extended memory and
can take it over by itself, or it can use an already detected and
allocated portion of memory. For extended memory, the detection
of the memory use is not always successful because of the many
different cache and RAM disk programs that can take over
extended memory without any mark. To avoid this problem, you
can tell the overlay manager the starting address of the extended
memory and how much of it is safe to use.

Expanded memory The _OvrlnitEms function initializes expanded memory
swapping. Here's its prototype:

_OvrlnitEms and _OvrlnitExt
are defined in dos.h. extern int far _OvrlnitEms

364

)i

unsigned emsHandle,
unsigned emsFirst,
unsigned emsPages

If the emsHandle parameter is zero, the overlay manager checks for
the presence of expanded memory and allocates the amount (if it
can) that can contain all of the overlays minus the size of the
overlay buffer. Otherwise, emsHandle should be a legal EMS
handle, emsFirst is the first usable EMS page, and emsPages is the
number of pages usable by the overlay manager. This function
returns a if expanded memory is available.

Extended memory The _OvrlnitExt function initializes extended memory swapping.
Here's its prototype:

extern int far _OvrlnitExt

unsigned long extStart,

Borland C++ Programmer's Guide

unsigned long ext Length
)i

If the extStart parameter is zero, the overlay manager checks for
extended memory. If it can, the overlay manager uses the amount
of free memory that can contain all of the overlays minus the size
of the overlay buffer. Otherwise, extStart is the start of the usable
extended memory, with extLength bytes usable by the overlay
manager. If extlength is zero, the overlay manager will use all
available extended memory above extStart. This function returns 0
if extended memory is available. _OvrlnitExt is defined in dos.h.

Important! The use of extended memory is not standardized. Though the
overlay manager tries every known method to find out the
amount of extended memory which is already used, use this func­
tion carefully. For example, if you have a 2 MB hard disk cache
program installed (that uses extended memory), you could use
the following call to let the overlay manager use the remaining
extended memory:

if (_OvrlnitExt (l024L * (2048 + 1024) I OL))
puts ("No extended memory available for overlay swapping") i

Chapter 9, DOS memory management 365

366 Borland C++ Programmer's Guide

c H A p T E R

10

Math

This chapter covers the floating-point options and explains how
to use complex math.

Floating-point options

If you have an 80486
processor, the numeric

coprocessor is probably
already built in.

Chapter 70, Math

There are two types of numbers you work with in C: integer (int,
short, long, and so on) and floating point (float, double, and long
double). Your computer's processor is set up to easily handle inte­
ger values, but it takes more time and effort to handle floating­
point values.

However, the iAPx86 family of processors has a corresponding
family of math coprocessors, the 8087, the 80287, and the 80387.
We refer to this entire family of math coprocessors as the 80x87, or
"the coprocessor."

The 80x87 is a special hardware numeric processor that can be
installed in your PC. It executes floating-point instructions very
quickly. If you use floating point a lot, you'll probably want a
coprocessor. The CPU in your computer interfaces to the 80x87 via
special hard ware lines.

367

Emulating the
80x8? chip

Using 80x8? code

No floating-point
code

Fast floating-point
option

368

The default Borland C++ code generation option is emulation (the
-f command-line compiler option). This option is for programs
that mayor may not have floating point, and for machines that
mayor may not have an SOxS7 math coprocessor.

With the emulation option, the compiler will generate code as if
the SOxS7 were present, but will also link in the emulation library
(EMU.LIB). When the program runs, it will use the SOxS7 if it is
present; if no coprocessor is present at run time, it uses special
software that emulates the SOxS7.

If your program is only going to run on machines with an SOxS7
math coprocessor, you can save a small amount in your .EXE file
size by omitting the SOxS7 auto detection and emulation logic.
Simply choose the 80x87 floating-point code generation option
(the -f87 command-line compiler option). Borland C++ will then
link your programs with FPS7.LIB instead of EMU. LIB.

If there is no floating-point code in your program, you can save a
small amount of link time by choosing None for the floating-point
code generation option (the -f- command-line compiler option).
Then Borland C++ will not link with EMU. LIB, FPS7.LIB, or
MATHx.LIB.

Borland C++ has a fast floating-point option (the -ff command­
line compiler option). It can be turned off with -ff - on the com­
mand line. Its purpose is to allow certain optimizations that are
technically contrary to correct C semantics. For example,

double x;
x = (float) (3.5*x);

To execute this correctly, x is multiplied by 3.5 to give a double
that is truncated to float precision, then stored as a double in x.
Under the fast floating-point option, the long double product is
converted directly to a double. Since very few programs depend

Borland C++ Programmer's Guide

The 87 environ-

on the loss of precision in passing to a narrower floating-point
type, fast floating point is the default.

ment variable If you build your program with 80x87 emulation, which is the
default, your program will automatically check to see if an 80x87
is available, and will use it if it is.

Chapter 70, Math

There are some situations in which you might want to override
this default auto detection behavior. For example, your own run­
time system might have an 80x87, but you need to verify that
your program will work as intended on systems without a copro­
cessor. Or your program may need to run on a PC-compatible sys­
tem, but that particular system returns incorrect information to
the autodetection logic (saying that a nonexistent 80x87 is avail­
able, or vice versa).

Borland C++ provides an option for overriding the start-up code's
default autodetection logic; this option is the 87 environment
variable.

You set the 87 environment variable at the DOS prompt with the
SET command, like this:

C> SET 87=N

or like this:

C> SET 87=Y

Don't include spaces to either side of the =. Setting the 87 environ­
ment variable to N (for No) tells the start-up code that you do not
want to use the 80x87, even though it might be present in the
system.

Setting the 87 environment variable to Y (for Yes) means that the
coprocessor is there, and you want the'program to use it. Let the
programmer beware!! If you set 87 = Y when/in fact, there is no
80x87 available on that system, your system will hang.

If the 87 environment variable has been defined (to any value) but
you want to undefine it, enter the following at the DOS prompt:

C> SET 87=

Press Enter immediately after typing the equal sign.

369

Registers and the
80x87

370

Disabling
floating-point

exceptions

There are a couple of points concerning registers that you should
be aware of when using floating point.

1. In 80x87 emulation mode, register wraparound and certain
other 80x87 peculiarities are not supported.

2. If you are mixing floating point with inline assembly, you may
need to take special care when using 80x87 registers. You
might need to pop and save the 80x87 registers before calling
functions that use the coprocessor, unless you are sure that
enough free registers exist.

By default, Borland C++ programs abort if a floating-point
overflow or divide by zero error occurs. You can mask these
floating-point exceptions by a call to _control87 in main, before
any floating-point operations are performed. For example,

#include <float.h>
main () {

_contro187(MCW_EM,MCW_EMl;

You can determine whether a floating-point exception occurred
after the fact by calling _status87 or _clear87. See the entries for
these functions using 2 for details.

Certain math errors can also occur in library functions; for in­
stance, if you try to take the square root of a negative number. The
default behavior is to print an error message to the screen, and to
return a NAN (an IEEE not-a-number). Use of the NAN will likely
cause a floating-point exception later, which will abort the
program if unmasked. If you don't want the message to be
printed, insert the following version of matherr into your
program.

#include <math.h>
int cdecl matherr(struct exception *el
{

return 1; /* error has been handled */

Borland C++ Programmer's Guide

Any other use of matherr to intercept math errors is not encour­
aged, as it is considered obsolete and may not be supported in
future versions of Borland C++.

Using complex math

See the description of class
complex in the Library Refer­

ence for more information.

Chapter 10, Math

Complex numbers are numbers of the form x + yi, where x and y
are real numbers, and i is the square root of -1. Borland C++ has
always had a type

struct complex
{

double x, Yi
}i

defined in math.h. This type is convenient for holding complex
numbers, as they can be considered a pair of real numbers. How­
ever, the limitations of C make arithmetic with complex numbers
rather cumbersome. With the addition of C++; complex math is
much simpler.

To use complex numbers in C++, all you have to do is to include
complex.h. In complex.h, all the following have been overloaded
to handle complex numbers:

II all of the usual arithmetic operators

II the stream operators, » and «

II the usual math functions, such as sqrt and log

The complex library is invoked only if the argument is of type
complex. Thus, to get the complex square root of -1, use

sqrt(complex(-l))

and not

sqrt (-1)

As an example of the use of complex numbers, the following
function computes a complex Fourier transform.

#include <complex.h>

II calculate the discrete Fourier transform of a[O], ... , a[n-l].
void Fourier(int n, complex all, complex b[])
{

int j, ki
complex i(O,l) i II square root of -1

371

Using BCD math

372

for (j = 0; j < n; ++j)
{

b [j] = 0;
for (k = 0; k < n; ttk)

b[j] t= ark] * exp(2*M_PI*j*k*i/n);
b[j] /= sqrt(n);

Borland C++, along with almost every other computer and
compiler,does arithmetic on binary numbers (that is, base 2). This
is sometimes confusing to people who are used to decimal (base
10) representations. Many numbers that are exactly representable
in base 10, such as 0.01, can only be approximated in base 2.

Binary numbers are preferable for most applications, but in some
situations' the roundoff error involved in converting between base
2 and 10 is undesirable. The most common case is a financial or
accounting application, where the pennies are supposed to add
up. Consider the following program to add up 100 pennies and
subtract a dollar:

#inelude <stdio.h>
int i;
float x = 0.0;
for (i = 0; i < 100; ++i)

x t= 0.01;
x -= 1.0;
printf("100*.01 - 1 = %g\n",x);

The correct answer is 0.0, but the computed answer is a small
number close to 0.0. The computation magnifies the tiny roundoff
error that occurs when converting 0.01 to base 2. Changing the
type of x to double or long double reduces the error, but does not
eliminate it.

To solve this problem, Borland C++ offers the C++ type bcd,
which is declared in bcd.h. With bcd, the number 0.01 is
represented exactly, and the bed variable x will give an exact
penny c?unt.

#inelude <bed.h>
int i;
bed x = 0.0;
for (i = 0; i < 100; tti)

x t= 0.01;

Borland C++ Programmer's Guide

Converting BCD
numbers

Important!

Number of decimal
digits

Chapter 70, Math

x -= 1.0j
eout « "100*.01 - 1 = " « X « "\n"j

Here are some facts to keep in mind about bed.

Il bed does not eliminate all roundoff error: A computation like
1.0/3.0 will still have roundoff error.

E] The usual math functions, such as sqrt and log, have been
overloaded for bed arguments.

E3 BCD numbers have about 17 decimal digits precision, and a
range of about 1 x 10-125 to 1 X 10125•

bed is a defined type distinct from float, double, or long double;
decimal arithmetic is only performed when at least one operand is
of the type bed.

The bed member function real is available for converting a bed
number back to one the usual base 2 formats (float, double, or
long double), though the conversion is not done automatically.
real does the necessary conversion to long double, which can then
be converted to other types using the usual C conversions. For
example,

bed a = 12.1j

can be printed using any of the following four lines of code:

double x = aj printf("a = %g", x) j

printf("a = %Lg", real(a))j

printf("a = %g", (double)real(a))j

eout « "a = " « aj

Note that since printf does not do argument checking, the format
specifier must have the L if the long double value real(a) is
passed.

You can specify how many decimal digits after the decimal point
are to be carried in a conversion from a binary type to a bed. The
number of places is an optional second argument to the construc­
tor bed. For example, to convert $1000.00/7 to a bed variable
rounded to the nearest penny, use

bed a = bed(1000.00/7, 2)

where 2 indicates two digits following the decimal point. Thus,

373

374

1000.00/7
bcd(1000.00/7, 2)
bcd(1000.00/7, 1)
bcd(1000.00/7, 0)
bcd(1000.00/7, -1)
bcd(1000.00/7, -2)

142.85714 ...
142.860
142.900
143.000
140.000
100.000

This method of rounding is The number is rounded using banker's rounding, which means
specified by IEEE. round to the nearest whole number, with ties being rounded to an

even digit. For example,

bcd(12.335, 2)
bcd(12.345, 2)
bcd(12.355,2)

12.34
12.34
12.36

Borland C++ Programmer's Guide

c H A p T E R

1 1

Video functions

Borland C++ comes with a complete library of graphics functions,
so you can produce onscreen charts and diagrams. This chapter
briefly discusses video modes and windows, then explains how to
program in text mode and in graphics mode.

Borland C ++'s video functions are similar to corresponding
routines in Turbo Pascal. If you are already familiar with
controlling your PC's screen modes or creating and managing
windows and viewports, you can skip to page 377.

Some words about video modes

Chapter 11, Video functions

Your PC has some type of video adapter. This can be a Mono­
chrome Display Adapter (MDA) for text-only display, or it can be
a graphics adapter, such as a Color/Graphics Adapter (CGA), an
Enhanced Graphics Adapter (EGA), a Video Graphics Array
adapter (VGA), or a Hercules Monochrome Graphics Adapter.
Each adapter can operate in a variety of modes; the mode speci­
fies whether the screen displays 80 or 40 columns (text mode
only), the display resolution (graphics mode only), and the dis­
play type (color or black and white).

The screen's operating mode is defined when your program calls
one of the mode-defining functions textmode, initgraph, or
setgraphmode.

375

• In text mode, your PC's screen is divided into cells (80- or 40-
columns wide by 25, 43, or 50 lines high). Each cell consists of
an attribute and a character. The character is the displayed
ASCII character; the attribute specifies how the character is dis­
played (its color, intensity, and so on). Borland C++ provides a
full range of routines for manipulating the text screen, for writ­
ing text directly to the screen, and for controlling cell attributes .

• In graphics mode, your PC's screen is divided into pixels; each
pixel displays a single dot onscreen. The number of pixels (the
resolution) depends on the type of video adapter connected to
your system and the mode that adapter is in. You can use func­
tions from Borland C++'s graphics library to create graphic dis­
plays onscreen: You can draw lines and shapes, fill enclosed
areas with patterns, and control the color of each pixel.

In text modes, the upper left corner of the screen is position (1,1),
with x-coordinates increasing from left to right, and y-coordinates
increasing from screen-top to screen-bottom. In graphics modes,
the upper left corner is position (0,0), with the x- and y-coordinate
values increasing in the same manner.

Some words about windows and viewports

376

What is a

Borland C++ provides functions for creating and managing
windows on your screen in text mode (and viewports in graphics
mode). If you are not familiar with windows and viewports, you
should read this brief overview. Borland C++'s window- and
viewport-management functions are explained in "Programming
in text mode" and "Programming in graphics mode" later in this
chapter.

window? A window is a rectangular area defined on your PC's video screen
when it's in a text mode. When your program writes to the screen,
its output is restricted to the active window. The rest of the screen
(outside the window) remains untouched.

The default window is a full-screen text window. Your program
can change this default full-screen text window to a text window
smaller than the full screen (with a call to the window function).
This function specifies the window's position in terms of screen
coordinates.

Borland C++ Programmer's Guide

What is a
viewport? In graphics mode, you can also define a rectangular area on your

PC's video screen; this is a viewport. When your graphics pro­
gram outputs drawings and so on, the viewport acts as the virtual
screen. The rest of the screen (outside the viewport) remains un­
touched. You define a viewport in terms of screen coordinates
with a call to the setviewport function.

Coordinates
Except for these window- and viewport-defining functions, all
coordinates for text-mode and graphics-mode functions are given
in window- or viewport-relative terms, not in absolute screen co­
ordinates. The upper left corner of the text-mode window is the
coordinate origin, referred to as (1,1); in graphics modes, the
viewport coordinate origin is position (0,0).

Programming in text mode

This section briefly
summarizes the text mode

functions. For more
information about these

functions, see Chapter 2,
"The run-time library," of the

Library Reference.

The console I/O
functions

These five text mode function
groups are covered in the

following sections.

Chapter 7 7, Video functions

In Borland C++, the direct console I/O package (cprintf, cputs,
and so on) provides high-performance text output, window
management, cursor positioning, and attribute control functions.
These functions are all part of the standard Borland C++ libraries;
they are prototyped in the header file conio.h.

Borland C++'s text-mode fundions work in any of the six possible
video text modes. The modes available on your system depend on
the type of video adapter and monitor you have. You specify the
current text mode with a call to textmode. We explain how to use
this function later in this chapter and under the textmode entry in
Chapter 2 in the Library Reference.

The text mode functions are divided into five separate groups:

• text output and manipulation
• window and mode control
• attribute control
• state query
• cursor shape

377

Text output and
manipulation

Here's a quick summary of the text output and manipulation
functions:

Writing and reading text: cprintf
cputs
getche
putch

Sends formatted output to the screen.
Sends a string to the screen.
Reads a character and echoes it to the screen.
Sends a single character to the screen.

Manipulating text (and the clreol Clears from the cursor to the end of the line.
Clears the text window.

378

cursor) onscreen: clrscr

Moving blocks of text into
and out of memory:

delline
gotoxy
insline

movetext

gettext
puttext

Deletes the line where the cursor rests.
Positions the cursor.
Inserts a blank line below the line where the cursor
rests.
Copies text from one area onscreen'to another.

Copies text from an area onscreen to memory.
Copies text from memory to an area onscreen.

Your screen-output programs will corne up in a full-screen text
window by default, so you can immediately write, read, and ma­
nipulate text without any preliminary mode-setting. You write
text to the screen with the direct console output functions cprintf,
cputs, and putch, and echo input with the function getche. Text
wrapping is controlled by the global variable _wscroll. If _wscroll is
1, text wraps onto the next line, scrolling as necessary. If _wscroll
is 0, text wraps onto the same line, and there is no scrolling.
_wscroll is 1 by default.

Once your text is on the screen, you can erase the active window
with clrscr, erase part of a line with clreol, delete a whole line
with delline, and insert a blank line with insline. The latter three
functions operate relative to the cursor position; you move the
cursor to a specified location with gotoxy. You can also copy a
whole block of text from one rectangular location in the window
to another with movetext.

You can capture a rectangle of onscreen text to memory with
gettext, and put that text back on the screen (anywhere you want)
with puttext.

Borland C++ Programmer's Guide

Window and mode
control

There are two window- and mode-control functions:

textmode
window

Sets the screen to a text mode.
Defines a text-mode window.

You can set your screen to any of several video text modes with
textmode (depending on your system's monitor and adapter).
This initializes the screen as a full-screen text window, in the
particular mode specified, and clears any residual images or text.

When your screen is in a text mode, you can output to the full
screen, or you can set aside a portion of the screen-a window-to
which your program's output is confined. To create a text win­
dow, you call window, specifying the onscreen area it will occupy.

Attribute control Here's a quick summary of the text-mode attribute control func­
tions:

Setting foreground and textattr
background:

Sets the foreground and background colors
(attributes) at the same time.

textbackground
textcolor

Sets the background color (attribute).
Sets the foreground color (attribute).

Modifying intensity: highvideo
lowvideo
normvideo

Sets text to high intensity.
Sets text to low intensity.
Sets text to original intensity.

Chapter 7 7, Video functions

The attribute control functions set the current attribute, which is
represented by an 8-bit value: The four lowest bits represent the
foreground color, the next three bits give the background color,
and the high bit is the "blink enable" bit.

Subsequent text is displayed in the current attribute. With the at­
tribute control functions, you can set the background and fore­
ground (character) colors separately (with textbackground and
textcolor) or combine the color specifications in a single call to
te}(tattr. You can also specify that the character (the foreground)
will blink. Most color monitors in color modes will display the
true colors. Non-color monitors may convert some or all of the at­
tributes to various monochromatic shades or other visual effects,
such as bold, underscore, reverse video, and so on.

You can direct your system to map the high-intensity foreground
colors to low-intensity colors with lowvideo (which turns off the
high-intensity bit for the characters). Or you can map the low­
intensity colors to high intensity with highvideo (which turns on

379

380

the character high-intensity bit). When you're through playing
around with the character intensities, you can restore the settings
to their original values with normvideo.

State query Here's a quick summary of the state-query functions:

gettextinfo Fills in a text_info structure with information about
the current text window.

wherex

wherey

Gives the x-coordinate of the cell containing the
cursor.
Gives the y-coordinate of the cell containing the
cursor.

Borland C++'s console I/O functions include some designed for
state queries. With these functions, you can retrieve information
about your text-mode window and the current cursor position
within the window.

The gettextinfo function fills a text_info structure (defined in
conio.h) with several details about the text window, including:

l!I the current video mode

• the window's position in absolute screen coordinates

• the window's dimensions

• the current foreground and background colors

• the cursor's current position

Sometimes you might need only a few of these details. Instead of
retrieving all text window information, wherex and wherey return
just the cursor's (window-relative) position.

Cursor shape The function _setcursortype enables you to change the
appearance of your cursor. The values are _NOCURSOR, which
turns off the cursor; _SOLIDCURSOR, which gives you a solid
block (large) cursor; and _NORMALCURSOR, which gives you
the normal underscore cursor.

Text windows
The default text window is full screen; you can change this to a
smaller text window with a call to the window function. Text
windows can contain up to 50 lines and up to 40 or 80 columns.

The coordinate origin (point where the numbers start) of a
Borland C++ text window is the upper left corner of the window.

Borland C++ Programmer's Guide

The coordinates of the window's upper left corner are (1,1); the
coordinates of the bottom right corner of a full-screen 80-column,
25-line text window are (80,25).

An example Suppose your 100% PC-compatible system is in 80-column text
mode, and you want to create a window. The upper left corner of
the window will be at screen coordinates (10,8), and the lower
right corner of the window will be at screen coordinates (50, 21).
To do this, you call the window function, like this:

Figure 11.1
A window in 80x25 text mode

The text_modes
type

Chapter 7 7, Video functions

window(10, 8, 50, 21);

Now that you've created the text-mode window, you want to
move the cursor to the window position (5, 8) and write some text
in it, so you decide to use gotoxy and cputs. The following figure
illustrates the code.

gotoxy(5, 8);
cputs("Happy Birthday, Frank Borland");

Screen

Screen
Columnl

Line 1 -lfl-++++++++++H++H++H++H++Hfttt1Itt+Itt+I++tI++t++++++++++++++H++H++H++Hlft+H

Window
Columnl

Window
Column4l

Screen
Column 80

Screen
Line 25

You can put your monitor into one of seven PC text modes with a
call to the textmode function. The enumeration type text_modes,
defined in conio.h, enables you to use symbolic names for the
mode argument to the textmode function, instead of "raw" mode
numbers. However, with symbolic constants, you must put

381

Text colors

382

#include <conio.h>

in your source code.

The numeric and symbolic values defined by text _modes are as
follows:

Symbolic
constant

LASTMODE
BW40
C40
BW80
C80
MONO
C4350

Numeric
value

-1
a
1
2
3
7

64

Video text mode

Previous text mode enabled
Black and white, 40 columns
16-color, 40 columns
Black and white, 80 columns
16-color, 80 columns
Monochrome, 80 columns
EGA, 80x43; VGA, 80x50 lines

For example, the following calls to textmode put your color
monitor in the indicated operating mode:

textmode (0) Black and white, 40 column
textmode (BW80) Black and white, 80 column
textmode (C40) 16-color, 40 column
textmode (3) 16-color, 80 column
textmode (7) Monochrome, 80 columns
textmode (C4350) EGA, 80x43; VGA, 80x50 lines

Use settextinfo to determine the number of rows in the screen
after calling textmode in the mode C4350.

For a detailed description of how cell attributes are laid out, refer
to the textattr entry in Chapter 2 of the Library Reference.

When a character occupies a cell, the color of the character is the
foreground; the color of the cell's remaining area is the background.
Color monitors with color video adapters can display up to 16 dif­
ferent colors; monochrome monitors substitute different visual at­
tributes (highlighted, underscored, reverse video, and so on) for
the colors.

Borland C++ Programmer's Guide

High­
performance

output

Chapter 11, Video functions

Symbolic Numeric Foreground or
constant value background?

BLACK 0 Both
BLUE 1 Both
GREEN 2 Both·
CYAN 3 Both
RED 4 Both
MAGENTA 5 Both
BROWN 6 Both
LIGHTGRAY 7 Both
DARKGRAY 8 Foreground only
LIGHTBLUE 9 Foreground only
LIGHTGREEN 10 Foreground only
LIGHTCYAN 11 Foreground only
LIGHTRED 12 Foreground only
LIGHTMAGENTA 13 Foreground only
YELLOW 14 Foreground only
WHITE 15 Foreground only
BLINK 128 Foreground only

The include file conio.h defines symbolic names for the different
colors. If you use the symbolic constants, you must include
conio.h in your source code.

Table 11 lists these symbolic constants and their corresponding
numeric values. Note that only the first eight colors are available
for the foreground and background; the last eight (colors 8
through 15) are available for the foreground (the characters
themselves) only.

You can add the symbolic constant BLINK (numeric value 128) to
a foreground argument if you want the character to blink.

Borland C++'s console I/O package includes a variable called
directvideo. This variable controls whether your program's console
output goes directly to the video RAM (directvideo = 1) or goes via
BIOS calls (directvideo = 0).

The default value is directvideo = 1 (console output goes directly to
the video RAM). In general, going directly to video RAM gives.
very high performance (spelled f-a-s-t-e-r o-u-t-p-u-t), but doing
so requires your computer to be 100% IBM PC-compatible: Your
video hardware must be identical to IBM display adapters. Setting
directvideo = 0 will work on any machine that is IBM BIOS­
compatible, but the console output will be slower.

383

Programming in graphics mode

384

In this section, we give a brief summary of the functions you use
in graphics mode. For more detailed information about these
functions, refer to Chapter 2 of the Library Reference.

Borland C++ provides a separate library of over 70 graphics func­
tions, ranging from high-level calls (like setviewport, bar3d, and
drawpoly) to bit-oriented functions (like getimage and putimage).
The graphics library supports numerous fill and line styles, and
provides several text fonts that you can size, justify, and orient
horizontally or vertically.

These functions are in the library file GRAPHICS. LIB, and they
are prototyped in the header file graphics.h. In addition to these
two files, the graphics package includes graphics device drivers
(*.BGI files) and stroked character fonts (*.CHR files); we discuss
these additional files in following sections.

In order to use the graphics functions:

III If you're using the IDE, toggle Full Menus to On, then check
Options I Linker I Graphics Library. When you make your
program, the linker automatically links in the Borland C++
graphics library .

• If you're using the command-line compiler (BCC.EXE or
BCCX.EXE), you have to list GRAPHICS.LIB on the command
line. For example, if your program MYPROG.C uses graphics,
the BCC command line would be

BCC MYPROG GRAPHICS.LIB

Important! Because graphics functions use far pointers, graphics are not
supported in the tiny memory model.

There is only one graphics library, not separate versions for each
memory model (in contrast to the standard libraries CS.LIB,
CC.LIB, CM.LIB, and so on, which are memory-model specific).
Each function in GRAPHICS. LIB is a far function, and those
graphics functions that take pointers take far pointers. For these
functions to work correctly, it is important that you #include
graphics.h in every module that uses graphics.

Borland C++ Programmer's Guide

The graphics
library functions Borland C++'s graphics functions fall into seven categories:

Graphics system
control

Chapter 7 7, Video functions

II graphics system control
II drawing and filling
II mani pula ting screens and viewports
II text output
II color control
II error handling
• state query

Here's a quick summary of the graphics system control:

closegraph Shuts down the graphics system.
detectgraph Checks the hardware and determines which

graphdefaults

_graphfreemem

_graphgetmem

getgraphmode
getmoderange

initgraph

installuserdriver

installuserfont

registerbg id river

restorecrtmode

setgraphbufsize
setgraphmode

graphics driver to use; recommends a mode.
Resets all graphics system variables to their
default settings.
Deallocates graphics memory; hook for
defining your own routine.
Allocates graphics memory; hook for
defining your own routine.
Returns the current graphics mode.
Returns lowest and highest valid modes for
specified driver.
Initializes the graphics system and puts the
hardware into graphics mode.
Installs a vendor-added device driver to the
BGI device driver table.
Loads a vendor-added stroked font file to
the BGI character file table.
Registers a linked-in or user-loaded driver
file for inclusion at link time.
Restores the original (pre-initgraph) screen
mode.
Specifies size of the internal graphics buffer.
Selects the specified graphics mode, clears
the screen, and restores all defaults.

Borland C++'s graphics package provides graphics drivers for the
following graphics adapters (and true compatibles):

• Color / Graphics Adapter (CGA)

385

386

• Multi-Color Graphics Array (MCGA)
• Enhanced Graphics Adapter (EGA)
• Video Graphics Array (VGA)
• Hercules Graphics Adapter
• AT&T 400-line Graphics Adapter
.3270 PC Graphics Adapter
• IBM 8514 Graphics Adapter

To start the graphics system, you first call the initgraph function.
initgraph loads the graphics driver and puts the system into
graphics mode.

You can tell initgraph to use a particular graphics driver and
mode, or to autodetect the attached video adapter at run time and
pick the corresponding driver. If you tell initgraph to autodetect, it
calls detectgraph to select a graphics driver and mode. If you tell
initgraph to use a particular graphics driver and mode, you must
be sure that the hardware is present. If you force initgraph to use
hardware thaNs not present, the results will be unpredictable.

Once a graphics driver has been loaded, you can find out the
name of the driver by using the getdrivername function and how
many modes a driver supports with getmaxmode. getgraphmode
will tell you which graphics mode you are currently in. Once you
have a mode number, you can find out the name of the mode with
getmodename. You can change graphics modes with setgraph­
mode and return the video mode to its original state (before
graphics was initialized) with restorecrtmode. restorecrtmode
returns the screen to text mode, but it does not close the graphics
system (the fonts and drivers are still in memory).

graphdefaults resets the graphics state's settings (viewport size,
draw color, fill color and pattern, and so on) to their default
values.

installuserdriver and installuserfont let you add new device dri­
vers and fonts to your BGI.

Finally, when you're through using graphics, call closegraph to
shut down the graphics system. closegraph unloads the driver
from memory and restores the original video mode (via
restorecrtmode) . .

Borland C++ Programmer's Guide

A more detailed
discussion

The previous discussion provided an overview of how initgraph
operates. In the following paragraphs, we describe the behavior of
initgraph, _graphgetmem, and _graphfreemem in some detail.

Normally, the initgraph routine loads a graphics driver by allocat­
ing memory for the driver, then loading the appropriate .BGI file
from disk. As an alternative to this dynamic loading scheme, you
can link a graphics driver file (or several of them) directly into
your executable program file. You do this by first converting the
.BGI file to an .OBJ file (using the BGIOBJ utility-see UTIL.DOC,
included with your distribution disks), then placing calls to
registerbgidriver in your source code (before the call to initgraph)
to register the graphics driver(s). When you build your program,
you need to link the .OBJ files for the registered drivers.

After determining which graphics driver to use (via detectgraph),
initgraph checks to see if the desired driver has been registered. If
so, initgraph uses the registered driver directly from memory.
Otherwise, initgraph allocates memory for the driver and loads
the .BGI file from disk.

Note Using registerbgidriver is an advanced programming technique,
not recommended for novice programmers. This function is
described in more detail in Chapter 2 of the Library Reference.

If you provide your own
_graphgetmem or

_graphfreemem, you may
get a "duplicate symbols"

warning message. Just
ignore the warning.

Drawing and filling

During run time, the graphics system might need to allocate
memory for drivers, fonts, and internal buffers. If this is neces­
sary, it calls _graphgetmem to allocate memory, and calls
_graphfreemem to free it. By default, these routines simply call
malloc and free, respectively.

You can override this default behavior by defining your own
_graphgetmem and _graphfreemem functions. By doing this, you
can control graphics memory allocation yourself. You must, how­
ever, use the same names for your own versions of these
memory-allocation routines: They will override the default func­
tions with the same names that are in the standard C libraries.

Here's a quick summary of the drawing and filling functions:

Drawing: arc Draws a circular arc.
Draws a circle.

Chapter 7 7, Video functions

circle
drawpoly
ellipse

Draws the outline of a polygon.
Draws an elliptical arc.

387

Filling:

388

getarccoords

getaspectratio

getlinesettings

line
linerel

lineto

moveto
moverel

rectangle
setaspectratio

setlinestyle

bar
bar3d
fillellipse
fillpoly
floodfill
getfillpattern
getfillsettings

pieslice
sector
setfill pattern
setfi Iistyle

Returns the coordinates of the last call to arc
or ellipse.
Returns the aspect ratio of the current
graphics mode.
Returns the current line style, line pattern,
and line thickness.
Draws a line from (xO,yO) to (xl,yl).
Draws a line to a point some relative distance
from the current position (CP).
Draws a line from the current position (CP) to
(x,y).
Moves the current position (CP) to (x,y).
Moves the current position (CP) a relative
distance.
Draws a rectangle.
Changes the default aspect ratio-correction
factor.
Sets the current line width and style.

Draws and fills a bar.
Draws and fills a 3-D bar.
Draws and fills an ellipse.
Draws and fills a polygon.
Flood-fills a bounded region.
Returns the user-defined fill pattern.
Returns information about the current fill
pa ttern and color.
Draws and fills a pie slice.
Draws and fills an elliptical pie slice.
Selects a user-defined fill pattern.
Sets the fill pattern and fill color.

With Borland C ++'s drawing and painting functions, you can
draw colored lines, arcs, circles, ellipses, rectangles, pie slices,
two- and three-dimensional bars, polygons, and regular or
irregular shapes based on combinations of these. You can fill any
bounded shape (or any region surrounding such a shape) with
one of eleven predefined patterns, or your own user-defined
pattern. You can also control the thickness and style of the
drawing line, and the location of the current position (CP).

You draw lines and unfilled shapes with the functions arc, circle,
drawpoly, ellipse, line, linerel, lineto, and rectangle. You can fill
these shapes with floodfill, or combine drawing/filling into one

Borland C++ Programmer's Guide

Manipulating the
screen and viewport

step with bar, bar3d, fillellipse, fillpoly, pieslice, and sector. You
use setlinestyle to specify whether the drawing line (and border
line for filled shapes) is thick or thin, and whether its style is solid,
dotted, and so forth, or some other line pattern you've defined.
You can select a predefined fill pattern with setfillstyle, and de­
fine your own fill pattern with setfillpattern. You move the CP to
a specified location with moveto, and move it a specified
displacement with moverel.

To find out the current line style and thickness, you call getline­
settings. For information about the current fill pattern and fill
color, you call getfillsettings; you can get the user-defined fill
pattern with getfillpattern.

You can get the aspect ratio (the scaling factor used by the graph­
ics system to make sure circles come out round) with getaspect­
ratio, and get coordinates of the last drawn arc or ellipse by
calling getarccoords. If your circles are not perfectly round, use
setaspectratio to correct them.

Here's a quick summary of the screen-, viewport-, image-, and
pixel-manipulation functions:

Screen manipulation: cleardevice
setactivepage
setvisualpage

Clears the screen (active page).
Sets the active page for graphics output.
Sets the visual graphics page number.

Viewport manipulation: clearviewport
getviewsettings

setviewport

Image manipulation: getimage

imagesize

putimage

Pixel manipulation: getpixel
putpixel

Clears the current viewport.
Returns information about the current
viewport.
Sets the current output viewport for graphics
output.

Saves a bit image of the specified region to
memory.
Returns the number of bytes required to store a
rectangular region of the screen.
Puts a previously saved bit image onto the
screen.

Gets the pixel color at (x,y).
Plots a pixel at (x,y).

Besides drawing and painting, the graphics library offers several
functions for manipulating the screen, viewports, images, and
pixels. You can clear the whole screen in one fell swoop with a
call to cleardevice; this routine erases the entire screen and homes

Chapter 7 7, Video functions 389

Text output in graphics
mode

390

the CP in the viewport, but leaves all other graphics system set­
tings intact (the line, fill, and text styles; the palette; the viewport
settings; and so on). '

Depending on your graphics adapter, your system has between
one and four screen-page buffers, which are areas in memory
where individual whole-screen images are stored dot-by-dot. You
can specify the active screen page (where graphics functions place
their output) with setactivepage and the visual page (the one dis­
played onscreen) with setvisualpage.

Once your screen is in a graphics mode, you can define a
viewport (a rectangular "virtual screen") on your screen with a
call to setviewport. You define the viewport's position in terms of
absolute screen coordinates and specify whether clipping is on
(active) or off. You clear the viewport with clearviewport. To find
out the current viewport's absolute screen coordinates and clip­
ping status, call getviewsettings.

You can capture a portion of the onscreen image with getimage,
call imagesize to calculate the number of bytes required to store
that captured image in memory, then put the stored image back
on the screen (anywhere you want) with putimage.

The coordinates for all output functions (drawing, filling, text,
and so on) are viewport-relative.

You can also manipulate the color of individual pixels with the
functions getpixel (which returns the color of a given pixel) and
putpixel (which plots a specified pixel in a given color).

Here's a quick summary of the graphics-mode text output
functions:

gettextsettin gs

outtext

outtextxy

registerbgifont
settextjustify

settextstyle

setusercharsize

Returns the current text font, direction, size,
and justification.
Sends a string tb the screen at the current
position (CP).
Sends a string to the screen at the specified
position.
Registers a linked-in or user-loaded font.
Sets text jl1stification values used by outtext
and outtextxy.
Sets the current text font, style, and character
magnification factor.
Sets width and height ratios for stroked fonts.

Borland C++ Programmer's Guide

Chapter 7 7, Video functio(1s

textheight Returns the height of a string in pixels.
textwidth Returns the width of a string in pixels.

The graphics library includes an 8x8 bit-mapped font and several
stroked fonts for text output while in graphics mode.

1:1 In a bit-mapped font, each character is defined by a matrix of
pixels.

EJ In a stroked font, each character is defined by a series of vectors
that tell the graphics system how to draw that character.

The advantage of using a stroked font is apparent when you start
to draw large characters. Since a stroked font is defined by vec­
tors, it will still retain good resolution and quality when the font
is enlarged. On the other hand, when you enlarge a bit-mapped
font, the matrix is multiplied by a scaling factor; as the scaling
factor becomes larger, the characters' resolution becomes coarser.
For small characters, the bit-mapped font should be sufficient, but
for larger text you should select a stroked font.

You output graphics text by calling either outtext or outtextxy,
and control the justification of the output text (with respect to the
CP) with settextjustify. You choose the character font, direction
(horizontal or vertical), and size (scale) with settextstyle. You can
find out the current text settings by calling gettextsettings, which
returns the current text font, justification, magnification, and di­
rection in a textsettings structure. setusercharsize allows you to
modify the character width and height of stroked fonts.

If clipping is on, all text strings output by outtext and outtextxy
will be clipped at the viewport borders. If clipping is off, these
functions will throwaway bit-mapped font output if any part of
the text string would go off the screen edge; stroked font output is
truncated at the screen edges.

To determine the onscreen size of a given text string, call text­
height (which measures the string's height in pixels) and textwidth
(which measures its width in pixels).

The default 8x8 bit-mapped font is built into the graphics pack­
age, so it is always available at run time. The stroked fonts are
each kept in a separate .CHR file; they can be loaded at run time
or converted to .OBJ files (with the BGIOBJ utility) and linked into
your .EXE file.

Normally, the settextstyle routine loads a font file by allocating
memory for the font, then loading the appropriate .CHR file from

391

disk. As an alternative to this dynamic loading scheme, you can
link a character font file (or several of them) directly into your
executable program file. You do this by first converting the .CHR
file to an .OBI file (using the BGIOBI utility-read about it in
UTIL.DOC, the online documentation included with your
distribution disks), then placing calls to registerbgifont in your
source code (before the call to settextstyle) to register the character
font(s). When you build your program, you need to link in the
.OBI files for the stroked fonts you register.

Note Using registerbgifont is an advanced programming technique,
not recommended for novice programmers. This function is
described in more detail in UTIL.DOC, included with your
distribution disks.

Color control Here's a quick summary of the color control functions:

Get color information: getbkcolor Returns the current background color.
getcolor Returns the current drawing color.
getdefaultpalette Returns the palette definition structure.
getmaxcolor Returns the maximum color value available

getpalette
getpalettesize

Set one or more colors: setallpalette
setbkcolor
setcolor
setpalette

in the current graphics mode.
Returns the current palette and its size.
Returns the size of the palette look-up table.

Changes all palette colors as specified.
Sets the current background color.
Sets the current drawing color.
Changes one palette color as specified by its
arguments.

Before summarizing how these color control functions work, we
first present a basic description of how colors are actually pro­
duced on your graphics screen.

Pixels and palettes The graphics screen consists of an array of pixels; each pixel pro­
duces a single (colored) dot onscreen. The pixel's value does not
specify the precise color directly; it is an index into a color table
called a palette. The palette entry corresponding to a given pixel
value contains the exact color information for that pixel.

This indirection scheme has a number of implications. Though the
hardware might be capable of displaying many colors, only a sub­
set of those colors can be displayed at any given time. The num­
ber of colors that can be displayed at anyone time is equal to the

392 Borland C++ Programmer's Guide

Background and
drawing color

Color control on a
CGA

Chapter 7 7, Video functions

number of entries in the palette (the palette's size). For example,
on an EGA, the hardware can display 64 different colors, but only
16 of them at a time; the EGA palette's size is 16.

The size of the palette determines the range of values a pixel can
assume, from 0 to (size -1). getmaxcolor returns the highest valid
pixel value (size -1) for the current graphics driver and mode.

When we discuss the Borland C++ graphics functions, we often
use the term color, such as the current drawing color, fill color and
pixel color. In fact, this color is a pixel's value: it's an index into the
palette. Only the palette determines the true color on the screen.
By manipulating the palette, you can change the actual color dis­
played on the screen even though the pixel values (drawing color,
fill color, and so on) have not changed.

The background color always corresponds to pixel value o. When
an area is cleared to the background color, that area's pixels are
simply set to o.
The drawing color is the value to which pixels are set when lines
are drawn. You choose a drawing color with setcolor(n), where n
is a valid pixel value for the current palette.

Due to graphics hardware differences, how you actually control
color differs quite a bit between CGA and EGA, so we'll present
them separately. Color control on the AT&T driver, and the lower
resolutions of the MCGA driver is similar to CGA.

On the CGA, you can choose to display your graphics in low reso­
lution (320x200) I which allows you to use four colors, or high res­
olution (640x200), in which you can use two colors.

eGA low resolution

In the low resolution modes, you can choose from four predefined
four-color palettes. In any of these palettes, you can only set the
first palette entry; entries 1,2, and 3 are fixed. The first palette
entry (color 0) is the background color. This background color can
be anyone of the 16 available colors (see table of CGA back­
ground colors below).

You choose which palette you want by the mode you select
(CGACO, CGAC1, CGAC2, CGAC3); these modes use color pal­
ette 0 through color palette 3, as detailed in the following table.

393

The eGA s foreground colors
are the same as those listed

in this table.

394

The eGA drawing colors and the equivalent constants are defined
in graphics.h.

Constant assigned to color number (pixel value)
Palette
number 2 3

a CGA_LIGHTGREEN CGA_LIGHTRED CGA_ YELLOW
1 CGA_LIGHTCYAN CGA_LIGHTMAGENTA CGA_WHITE
2 CGA GREEN CGA_RED CGA_BROWN
3 CGA=CYAN CGA_MAGENTA CGA_LIGHTGRAY

To assign one of these colors as the eGA drawing color, call set­
color with either the color number or the corresponding constant
name as an argument; for example, if you are using palette 3 and
you want to use cyan as the drawing color:

setcolor(l) i

or

setcolor(CGA_CYAN)i

The available eGA background colors, defined in graphics.h, are
listed in the following table:

Numeric Symbolic Numeric Symbolic
value name value name

0 BLACK 8 DARKGRAY
1 BLUE 9 LIGHTBLUE
2 GREEN 10 LIGHTGREEN
3 CYAN 11 LIGHTCYAN
4 RED 12 LIGHTRED
5 MAGENTA 13 LIGHTMAGENTA
6 BROWN 14 YELLOW
7 LIGHTGRAY 15 WHITE

To assign one of these colors to the eGA background color, use
setbkcolor(color), where color is one of the entries in the preceding
table. For eGA, this color is not a pixel value (palette index); it
directly specifies the actual color to be put in the first palette entry.

eGA high resolution

In high resolution mode (640x200), the eGA displays two colors: a
black background and a colored foreground. Pixels can take on
values of either 0 or 1. Because of a quirk in the eGA itself, the
foreground color is actually what the hardware thinks of as its

Borland C++ Programmers Guide

Color control on the
EGAandVGA

Error handling in
graphics mode

background color; you set it with the setbkcolor routine. (Strange
but true.)

The colors available for the colored foreground are those listed in
the preceding table. The CGA uses this color to display all pixels
whose value equals l.

The modes that behave in this way are CGAHI, MCGAMED,
MCGAHI, ATT400MED, and ATT400HI.

eGA palette routines

Because the CGA palette is predetermined, you should not use
the setallpalette routine on a CGA. Also, you should not use
setpalette(index, actual_color), except for index = O. (This is an
alternate way to set the CGA background color to actuaCcolor.)

On the EGA, the palette contains 16 entries from a total of 64 pos­
sible colors, and each entry is user-settable. You can retrieve the
current palette with getpalette, which fills in a structure with the
palette's size (16) and an array of the actual palette entries (the
"hardware color numbers" stored in the palette). You can change
the palette entries individually with setpalette, or all at once with
setallpalette.

The default EGA palette corresponds to the 16 CGA colors, as
given in the previous color table: black is in entry 0, blue in entry
1, ... , white in entry 15. There are constants defined in graphics.h
that contain the corresponding hardware color values: these are
EGA_BLACK, EGA_WHITE, and so on. You can also get these
values with getpalette.

The setbkcolor(color) routine behaves differently on an EGA than
on a CGA. On an EGA, setbkcolor copies the actual color value
that's stored in entry #color into entry #0.

As far as colors are concerned, the VGA driver behaves like the
EGA driver; it just has higher resolution (and smaller pixels).

Here's a quick summary of the graphics-mode error-handling
functions:

grapherrormsg Returns an error message string for the
specified error code.

Chapter 11, Video functions 395

graphresult Returns an error code for the last graphics
operation that encountered a problem.

If an error occurs when a graphics library function is called (such
as a font requested with settextstyle not being found), an internal
error code is set. You retrieve the error code for the last graphics
operation that reported an error by calling graphresult. A call to
grapherrormsg(graphresultO) returns the error strings listed in
the following table.

The error return code accumulates, changing orily when a graph­
ics function reports an error. The error return code is reset to 0
only when initgraph executes successfully, or when you call
graphresult. Therefore, if you want to know which graphics func­
tion returned which error, you should store the value of
graph result into a temporary variable and then test it.

Error graphics_ errors Corresponding
code constant error message string

a grOk No error
-1 grNoInitGraph (BGI) graphics not installed (use

initgraph)
-2 grNotDetected Graphics hardware not detected
-3 gr FileN otFound Device driver file not found
-4 grIn validDri ver Invalid device driver file
-5 grNoLoadMem Not enough memory to load driver
-6 grNoScanMem Out of memory in scan fill
-7 grNoFloodMem Out of memory in flood fill
-8 gr FontN otFound Font file not found
-9 grNoFontMem Not enough memory to load font
-10 grInvalidMode Invalid graphics mode for selected

driver
-11 grError Graphics error
-12 grIOerror Graphics I/O error
-13 grInvalidFont Invalid font file
-14 gr InvalidFontN urn Invalid font number
-15 grInvalidDeviceNum Invalid device number
-18 gr InvalidVersion Invalid version of file

State query The following table summarizes the graphics mode state query
functions:

396 Borland C++ Programmer's Guide

Table 11.1
Graphics mode state query

functions

Chapter 7 7, Video functions

Function

getarccoords

getaspectratio
getbkcolor
getcolor
getdrivername
getfill pattern
getfillsettings
getgraphmode
getlinesettings
getmaxcolor
getmaxmode
getmaxx
getmaxy
getmodename
getmoderange
getpalette
getpixel
gettextsettings
getviewsettings
getx
gety

Returns

Information about the coordinates of the last call to
arc or ellipse.
Aspect ratio of the graphics screen.
Current background color.
Current drawing color.
Name of current graphics driver.
User-defined fill pattern.
Information about the current fill pattern and color.
Current graphics mode.
Current line style,line pattern, and line thickness.
Current highest valid pixel value.
Maximum mode number for current driver.
Current x resolution.
Current y resolution.
Name of a given driver mode.
Mode range for a given driver.
Current palette and its size.
Color of the pixel at x/yo
Current text font, direction, size, and justification.
Information about the current viewport.
x coordinate of the current position (CP).
y coordinate of the current position (CP).

In each of Borland C++'s graphics functions categories there is at
least one state query function. These functions are mentioned
under their respective categories and also covered here. Each of
the Borland C++ graphics state query functions is named
get something (except in the error-handling category). Some of
them take no argument and return a single value representing the
requested information; others take a pointer to a structure defined
in graphics.h, fill that structure with the appropriate information,
and return no value.

The state query functions for the graphics system control category
are getgraphmode, getmaxmode, and getmoderange: The first
returns an integer representing the current graphics driver and
mode, the second returns the maximum mode number for a given
driver, and the third returns the range of modes supported by a
given graphics driver. getmaxx and getmaxy return the maximum
x and y screen coordinates for the current graphics mode.

The drawing and filling state query functions are getarccoords,
getaspectratio, getfillpattern, getfillsettings, and getlinesettings.
getarccoords fills a structure with coordinates from the last call to
arc or ellipse; getaspectratio tells the current mode's aspect ratio,
which the graphics system uses to make circles come out round.

397

398

getfillpattern returns the current user-defined fill pattern. getfill­
settings fills a structure with the current fill pattern and fill color.
getlinesettings fills a structure ':\'ith the current line style (solid,
dashed, and so on),line width (normal or thick), and line pattern.

In the screen- and viewport-manipulation category, the state
query functions are getviewsettings, getx, gety, and getpixel.
When you have defined a viewport, you can find out its absolute
screen coordinates and whether clipping is active by calling get­
viewsettings, which fills a structure with the information. getx
and gety return the (viewport-relative) x- and y-coordinates of the
CPo getpixel returns the color of a specified pixel.

The graphics mode text-output function category contains one
all-inclusive state query function: gettextsettings. This function
fills a structure with information about the current character font,
the direction in which text will be displayed (horizontal or
bottom-to-top vertical), the character magnification factor, and the
text-string justification (both horizontal and vertical).

Borland C++'s color-control function category includes three state
query functions. getbkcolor returns the current background color,
and getcolor returns the current drawing color. getpalette fills a
structure with the size of the current drawing palette and the
palette's contents. getmaxcolor returns the highest valid pixel
value for the current graphics driver and mode (palette size -1).

Finally, getmodename and getdrivername return the name of a
given driver mode and the name of the current graphics driver,
respectively.

Borland C++ Programmer's Guide

c H

Inline assembly
language

A p T E R

12

BASM and inline assembly

This chapter tells you how to use the Borland C++ built-in inline
assembler (BASM) to include assembly language routines in your
C and C++ programs without any need for a separate assembler. . I

Such assembly language routines are called inline assembly, I

because they are compiled right along with your C routines,
rather than being assembled separately, then linked together with
modules produced by the C compiler.

Of course, Borland C++ also supports traditional mixed-language
programming in which your C program calls assembly language
routines (or vice-versa) that are separately assembled by T ASM
(Turbo Assembler). In order to interface C and assembly
language, you must know how to write 80x86 assembly language
routines and how to define segments, data constants, and so on.
You also need to be familiar with calling conventions (parameter
passing sequences) in C and assembly language, including the
pascal parameter passing sequence in C. If you are unfamiliar
with these concepts, read the Turbo Assembler manuals for more
information, especially "Interfacing Turbo Assembler with
Borland C++" in the Turbo Assembler User's Guide. Turbo
Assembler includes several features that make interfacing with
Borland C++ easy and transparent.

Borland C++ lets you write assembly language code right inside
your C and C++ programs. This is known as inline assembly.

Chapter 72, f3ASM and inline assembly 399

By default, -8 invokes TASM.
You can override it with

-Exxx, where xxx is another
assembler. See Chapter 5,
"The command-line com­

piler, " in the User's Guide for
details.

BASM

You can use the -8 compiler option for inline assembly in your C
program. If you use this option, the compiler first generates an
assembly file, then invokes T ASM on that file to produce the .OBJ
file.

You can invoke T ASM while omitting the -8 option if you
include the #pragrna inline statement in your source code. This
statement enables the -8 option for you when the compiler
encounters it.

Ifyau don't invoke TASM, Borland C++ can assemble your inline
assembly instructions using the built-in assembler (BASM). This
assembler can do everything T ASM can do with the following
restrictions:

• It cannot use assembler macros

.. It cannot handle 80386 or 80486 instructions

• It does not permit Ideal mode syntax

• It allows only a limited set of assembler directives (see page
404)

Inline syntax Of course, you also need to be familiar with the 80x86 instruction
set and architecture. Even though you're not writing complete
assembly language routines, you still need to know how the
instructions you're using work, how to use them, and how not to
use them.

400

Having done all that, you need only use the keyword a5m to in­
troduce an inline assembly language instruction. The format is

asm opcode operands; or newline

where

.. opcode is a valid 80x86 instruction (Table 12.1 lists all allowable
opcodes): For 80286 instructions, use the -2 command-line
compiler option or the 80286 instruction set option (0 I C I
Advanced Code Generation).

II operands contains the operand(s) acceptable to the opcode, and
can reference C constants, variables, and labels.

II; or newline is a semicolon or a new line, either of which signals
the end of the a5m statement.

A new a5m statement can be placed on the same line, following a
semicolon, but no a5m statement can continue to the next line.

Borland C++ Programmer's Guide

The initial brace must appear
on the same line as the asm

keyword.

To include a number of a5m statements, surround them with
braces:

asm {
pop ax; pop ds
iret

Semicolons are not used to start comments (as they are in T ASM).
When commenting a5m statements, use C-style comments, like
this:

asm mov ax,ds;
asm {pop ax; pop ds; iret;}
asm push ds

/* This comment is OK */
/* This is legal too */
;THIS COMMENT IS INVALID!!

The assembly language portion of the statement is copied straight
to the output, embedded in the assembly language that Borland
C++ is generating from your C or C++ instructions. Any C
symbols are replaced with appropriate assembly language
equivalents.

Because the inline assembly facility is not a complete assembler, it
may not accept some assembly language constructs. If this
happens, Borland C++ will issue an error message. You then have
two choices. You can simplify your inline assembly language code
so that the assembler will accept it, or you can use the -8 option
to invoke TASM. If you do, TASM will catch whatever errors
there might be. However, TASM might not identify the location of
errors, since the original C source line number is lost.

Each a5m statement counts as a C statement. For example,

myfunc ()
{

int i;
int x;

if (i > 0)
asm mov x,4

else
i ;;: 7;

This construct is a valid C if statement. Note that no semicolon
was needed after the mov x,4 instruction. a5m statements are the
only statements in C that depend on the occurrence of a new line.
This is not in keeping with the rest of the C language, but this is
the convention adopted by several UNIX-based compilers.

Chapter 72, BASM and inline assembly 401

An assembly statement can be used as an executable statement in­
side a function, or as an external declaration outside of a function.
Assembly statements located outside any function are placed in
the data segment, and assembly statements located inside func­
tions are placed in the code segment.

Opcodes You can include any of the 80x86 instruction opcodes as inline as­
sembly statements. There are four classes of instructions allowed
by the Borland C++ compiler:

Table 12.1
Opcode mnemonics

If you are using inline

• normal instructions-the regular 80x86 opcode set

• string instructions-special string-handling codes

• jump instructions-various jump opcodes

• assembly directives-data allocation and definition

Note that all operands are allowed by the compiler, even if they
are erroneous or disallowed by the assembler. The exact format of
the operands is not enforced by the compiler.

The following is a summary list of the opcode mnemonics that
can be used in inline assembler:

aaa felex fldenv fstenv
aad fcom fldl2e fstp
aam fcomp fldl2t fstsw
aas fcompp fldlg2 fsub

assembly in routines that use adc fdecstp** fldln2 fsubp
add fdisi fldpi fsubr floating-point emulation (the

command-line compiler and fdiv fldz fsubrp
option -f), the opcodes bound fdivp fmul ftst
marked with ** are not call fdivr fmulp fwait

supported. cbw fdivrp fnelex fxam
elc feni fndisi fxch
eld ffree** fneni fxtract
eli fiadd fninit fy12x
cmc ficom fnop fyl2xpl
cmp ficomp fnsave hIt
cwd fidiv fnstcw idiv
daa fidivr fnstenv imul
das fild fnstsw in
dec fimul fpatan inc
div fincstp** fprem int
enter finit fptan into
f2xml fist frndint iret
fabs fistp frstor lahf
fadd fisub fsave Ids
faddp fisubr fscale lea
fbld fld fsqrt leave
fbstp fldl fst les
fchs fldcw fstcw lsi

402 Borland C++ Programmer's Guide

Table 12.2
String instructions

Table 12.1: Opcode mnemonics (continued)

mov popf sahf sti
mul push sal sub
neg pusha sar test
nop pushf sbb verr
not rcl shl verw
or rer shr wait
out ret smsw xehg
pop rol ste xiat
popa ror std xor

When using 80186 instruction mnemonics in your inline assembly
statements, you must include the -1 command-line option. This
forces appropriate statements into the assembly language com­
piler output so that the assembler will expect the mnemonics. If
you are using an older assembler, these mnemonics may not be
supported.

String instructions

In addition to the listed opcodes, the string instructions given in
the following table can be used alone or with repeat prefixes.

crnps insw rnovsb outsw stos
crnpsb lods rnovsw scas stosb
crnpsw lodsb outs scasb stosw
ins lodsw outsb scasw
insb rnovs

Prefixes

The following prefixes can be used:

lock rep repe repne repnz repz

Jump instructions

Jump'instructions are treated specially. Since a label cannot be in­
cluded on the instruction itself, jumps must go to C labels (dis­
cussed in "Using jump instructions and labels" on page 406). The
allowed jump instructions are given in the next table.

Chapter 12, BASM and inline assembly 403

Table 12.3
Jump instructions

In line assembly
references to data and

functions

404

ja jge jnc jns loop
jae jl jne jnz loope
jb jle jng jo loopne
jbe jmp jnge jp loopnz
jc jna jnl jpe loopz
jcxz jnae jnle jpo
je jnb jno js
jg jnbe jnp jz

Assembly directives

The following assembly directives are allowed in Borland C++
inline assembly statements: .

db dd dw extrn

You can use C symbols in your asm statements; Borland C++
automatically converts them to appropriate assembly language
operands and appends underscores onto identifier names. You
can use any symbol, including automatic (local) variables, register
variables, and function parameters.

In general, you can use a C symbol in any position where an ad­
dress operand would be legal. Of course, you tan use a register
variable wherever a register would be a legal operand.

If the assembler encounters an identifier while parsing the oper­
ands of an inline assembly instruction, it searches for the identi­
fier in the C symbol table. The names of the 80x86 registers are
excluded from this search. Either uppercase or lowercase forms of
the register names can be used.

Inline assembly and register variables

Inline assembly code can freely u~e SI or DI as scratch registers. If
you use SI or DI in inline assembly code, the compiler won't use
these registers for register variables.

Inline asse~bly, offsets, and size overrides

When programming, you don't need to be concerned with the
exact offsets of local variables. Simply using the name will include
the correct offsets.

Borland C++ Programmer's Guide

Using C structure
members

However, it may be necessary to include appropriate WORD PTR,
BYTE PTR, or other size overrides on assembly instruction. A
DWORD PTR override is needed on LES or indirect far call
instructions.

You can reference structure members in an inline assembly state­
ment in the usual fashion (that is, variable.member). In such a case,
you are dealing with a variable, and you can store or retrieve val­
ues. However, you can also directly reference the member name
(without the variable name) as a form of numeric constant. In this
situation, the constant equals the offset (in bytes) from the start of
the structure containing that member. Consider the following
program fragment:

struct rnyStruct
int a3i
int a_bi
int a_Ci

} rnyA i

rnyfunc ()
{

asrn {rnov ax, rnyA.a_b
rnov bx, [diJ .a_c

We've declared a structure type named myStruct with three mem­
bers, a_a, a_b, and a_c; we've also declared a variable my A of type
myStruct. The first inline assembly statement moves the value
contained in myA.a_b into the register AX. The second moves the
value at the address [dij + offset(a_c) into the register BX (it takes
the address stored in DI and adds to it the offset of a_c from the
start of 111yStruct). In this sequence, these assembler statements
produce the following code:

rnov ax, DGROUP : rnyA+2
rnov bx, [di+4J

Why would you even want to do this? If you load a register (such
as DI) with the address of a structure of type 111yStruct, you can
use the member names to directly reference the members. The
member name actually can be used in any position where a nu­
meric constant is allowed in an assembly statement operand.

Chapter 72, BASM and inline assembly 405

Using jump instructions
and labels

Interrupt functions

406

The structure member must be preceded by a dot (.) to signal that
a member name, rather than a normal C symbol, is being used.
Member names are replaced in the assembly output by the nu­
meric offset of the structure member (the numeric offset of a_c is
4), but no type information is retained. Thus members can be used
as compile-time constants in assembly statements ..

However, there is one restriction. If two structures that you are
using in inline assembly have the same member name, you must
distinguish between them. Insert the structure type (in parenthe­
ses) between the dot and the member name, as if it were a cast.
For example,

asm mov bx, [diJ. (struct tm)tm_hour

You can use any of the conditional and unconditional jump in­
structions, plus the loop instructions, in inline assembly. They are
only valid inside a function. Since no labels can be defined in the
a5m statements, jump instructions must use C goto labels as the
object of the jump. If the label is too far away, the jump will be
automatically converted to a long-distance jump. Direct far jumps
cannot be generated.

In the following code, the jump goes to the C goto label a.

int x()

a: /* This is the goto label "a" */

asm jmp a /* Goes to label "a" */

Indirect jumps are also allowed. To use an indirect jump, you can
use a register name as the operand of the jump instruction.

The 80x86 reserves the first 1024 bytes of memory for a set of 256
far pointers-known as interrupt vectors-to special system rou­
tines known as interrupt handlers. These routines are called by exe­
cuting the 80x86 instruction

int int#

where int# goes from Oh to FFh. When this happens, the computer
saves the code segment (CS), instruction pointer (IP), and status
flags, disables the interrupts, then does a far jump to the location

Borland C++ Programmer's Guide

pointed to by the corresponding interrupt vector. For example,
one interrupt call you're likely to see is

int 21h

which calls most DOS routines. But many of the interrupt vectors
are unused, which means, of course, that you can write your own
interrupt handler and put a far pointer to it into one of the unused
interrupt vectors.

To write an interrupt handler in Borland C++, you must define
the function to be of type interrupt; more specifically, it should
look like this:

void interrupt rnyhandler(bp, di, si, ds, es, dx,

ex, bx, ax, ip, es, flags, ...);

As you can see, all the registers are passed as parameters, so you
can use and modify them in your code without using the pseudo­
variables discussed earlier in this chapter. You can also pass addi­
tional parameters (flags, ...) to the handler; those should be
defined appropriately.

A function of type interrupt will automatically save (in addition to
51,01, and BP) the registers AX through OX, ES, and OS. These
same registers are restored on exit from the interrupt handler.

Interrupt handlers may use floating-point arithmetic in all mem­
ory models. Any interrupt handler code that uses an 80x87 must
save the state of the chip on entry and restore it on exit from the
handler.

An interrupt function can modify its parameters. Changing the
declared parameters will modify the corresponding register when
the interrupt handler returns. This may be useful when you are
using an interrupt handler to act as a user service, much like the
DOS INT 21 services. Also, note that an interrupt function exits
with an IRET (return from interrupt) instruction.

So, why would you want to write your own interrupt handler?
For one thing, that's how most memory-resident routines work.
They install themselves as interrupt handlers. That way, when­
ever some special or periodic action takes place (clock tick, key­
board press, and so on), these routines can intercept the call to the
routine handling the interrupt and see what action needs to take
place. Having done that, they can then pass control on to the
routine that was there.

Chapter 72, BASM and inline assembly 407

408

Using low-level
practices You've already seen a few examples of how to use these different

low-level practices in your code; now it's time to look at a few
more. Let's start with an interrupt handler that does something
harmless but tangible (or, in this case, audible): It beeps whenever
it's called.

First, write th~ function itself. Here's what it might look like:

#include <dos.h>

void interrupt mybeep(unsigned bp, unsigned di, unsigned si,
unsigned ds, unsigned es, unsigned dx,
unsigned ex, unsigned bx, unsigned ax}

int i, j;
char originalbits, bits;
unsigned char bcount = ax » 8;

/* Get the current control port setting */
bits = originalbits = inportb(Ox61};

for (i = 0; i <= bcount; i++){

/* Turn off the speaker for awhile */
outportb(Ox61, bits & Oxfc};
for (j = 0; j <= 100; j++)

/* empty statement */

/* Now turn it on for some more time */
outportb(Ox61, bits I 2};
for (j = 0; j <= 100; j++)

/* another empty statement */

/* Restore the control port setting */
outportb(Ox61, originalbits};

Next, write a function to install your interrupt handler. Pass it the
address of the function and its interrupt number (0 to 255 or OxOO
to OxFF).

void install(void interrupt (*faddr) (), int inurn}
{

setvect(inum, faddr};

Finally, call your beep routine to test it out. Here's a function to do
just that:

Borland C++ Programmer's Guide

void testbeep(unsigned char bcount, int inurn)
{

_AH = bcounti
geninterrupt(inurn) i

Your main function might look like this:

rnain()
{

char Chi

install (rnybeep, 10) i

testbeep(3,lO)i
ch = getch () i

You might also want to preserve the original interrupt vector and
restore it when your main program is finished. Use the getvect
and setvect functions to do this.

Chapter 12, BASM and inline assembly 409

410 Borland C++ Programmer's Guide

A p p E N D x

A

ANSI implementation-specific
standards

Certain aspects of the ANSI C standard are not defined exactly by
ANSI. Instead, each implementor of a C compiler is free to define
these aspects individually. This chapter tells how Borland has
chosen to define these implementation-specific standards. The
section numbers refer to the February 1990 ANSI Standard.
Remember that there are differences between C and C++; this
appendix addresses Conly.

2.1.1.3 How to identify a diagnostic.

When the compiler runs with the correct combination of options,
any message it issues beginning with the words Fatal, Error, or
Warning are diagnostics in the sense that ANSI specifies. The
options needed to ensure this interpretation are as follows:

Table A.l
Identifying diagnostics in C++ Option Action

-A
-c-
-p-
-i32
-w-
-wbei
-wdcl

-wcpt
-wdup

-wsus

Enable only ANSI keywords.
No nested comments allowed.
Use C calling conventions.
At least 32 significant characters in identifiers.
Turn off all warnings except the following.
Turn on warning about inappropriate initializers.
Turn on warning about declarations without type or storage
class.
Turn on warning about nonportable pointer comparisons.
Turn on warning about duplicate nonidentical macro
definitions.
Turn on warning about suspicious pointer conversion.

Appendix A, ANSI implementation-specific standards 411

412

Table A.l: Identifying diagnostics in C++ (continued)

-wrpt
-wvrt
-wbig
-wucp

-wstu
-wext

-wfdt

Turn on warnil)g about nonportable pointer conversion.
Turn on warning about void functions returning a value.
Turn on warning about constants being too large:
Turn on warning about mixing pointers to signed and
unsigned char.
Turn on warning about undefined structures.
Turn on warning about variables declared both as external
and as static.
Turn on warning about function definitions using a typedef.

None of the following options can be used:

-ms!
-min!
-mt!
-zGxx
-zSxx

SS must be the same as OS for small data models.
SS must be the same as OS for small data models.
SS must be the same as OS for small data models.
The BSS group name may not be changed.
The data group name may not be changed.

Other options not specifically mentioned here can be set to
whatever you desire.

2.1.2.2.1 The semantics of the arguments to main.

The value of argv[O] is a pointer to a null byte when the program
is run on DOS versions prior to version 3.0. For DOS version 3.0
or later, argv[O] points to the program name.

The remaining argv strings point to each component of the DOS
command-line arguments. Whitespace separating arguments is
removed, and each sequence of contiguous nonwhitespace
characters is treated as a single argument. Quoted strings are
handled correctly (that is, as one string containing spaces).

2.1.2.3 What constitutes an interactive device.

An interactive device is any device that looks like the console.

2.2.1 The collation sequence of the execution character set.

The collation sequence for the execution character set uses the
signed value of the character in ASCII.

2.2.1 Members of the source and execution character sets .

. The source and execution character sets are the extended ASCII
set supported by the IBM PC. Any character other than /\ Z
(Control-Z) can appear in string literals, character constants, or
comments.

Borland C++ Programmer's Guide

2.2.1.2 Multibyte characters.

No multibyte characters are supported in Borland C++.

2.2.2 The direction of printing.

Printing is from left-to-right, the normal direction for the PC.

2.2.4.2 The number of bits in a character in the execution character set.

There are 8 bits per character in the execution character set.

3.1.2 The number of significant initial characters in identifiers.

The first 32 characters are significant, although you can use a
command-line option (-i) to change that number. Both internal
and external identifiers use the same number of significant digits.
(The number of significant characters in C++ identifiers is
unlimited.)

3.1.2 Whether case distinctions are significant in external identifiers.

The compiler will normally force the linker to distinguish
between uppercase and lowercase. You can use a command-line
option (-I-c) to suppress the distinction.

3.1.2.5 The representations and sets of values of the various types of
integers.

Type

signed char
unsigned char
signed short
unsigned short
signed int
unsigned int
signed long
unsigned long

Minimum value

-128
o

-32,768
o

-32,768
o

-2,147,483,648
o

All char types use one 8-bit byte for storage.

All short and int types use 2 bytes.

All long types use 4 bytes.

Maximum value

127
255

32,767
65,535
32,767
65,535

2,147,483,647
4,294,967,295

If alignment is requested (-a), all nonchar integer type objects will
be aligned to even byte boundaries. Character types are never
aligned.

Appendix A, ANSI implementation-specific standards 413

414

3.1.2.5 The representations and sets of values of the various types of
floating-point numbers.

The IEEE floating-point formats as used by the Intel 8087 are used
for all Borland C++ floating-point types. The float type uses 32-bit
IEEE real format. The double type uses 64-bit IEEE real format.
The long double type uses 80-bit IEEE extended real format:

3.1.3.4 The mapping between source and execution character sets.

Any characters in string literals or character constants will remain
unchanged in the executing program. The source and execution
character sets are the same.

3.1.3.4 The value of an integer character constant that contains a char­
acter or escape sequence not represented in the basic execution
character set or the extended character set for a wide character
constant.

Wide characters are not supported. They are treated as normal
characters. All legal escape sequences map onto one or another
character. If a hex or octal escape sequence is used that exceeds
the range of a character, the compiler issues a message.

3.1.3.4 The current locale used to convert mUltibyte characters into
corresponding wide characters for a wide character constant.

Wide character constants are recognized, but treated in all ways
like normal character constants. In that sense, the locale is the "C"
locale.

3.1.3.4 The value of an integer constant that contains more than one
.character, or a wide character constant that contains more than
one mUltibyte character.

Character constants can contain one or two characters. If two
characters are included, the first character occupies the low-order
byte of the constant, and the second character occupies the high­
order byte.

3.2.1.2 The result of converting an integer to a shorter signed integer, or
the result of converting an unsigned integer to a signed integer
of equal length, if the value cannot be represented.

These conversions are performed by simply truncating the high­
order bits. Signed integers are stored as 2's-complement values, so
the resulting number is interpreted as such a value. If the high-

Borland C++ Programmer's Guide

order bit of the smaller integer is nonzero, the value is interpreted
as a negative value; otherwise, it is positive.

3.2.7.3 The direction of truncation when an integral number is converted
to a floating-point number that cannot exactly represent the
original value.

The integer value is rounded to the nearest representable value.
Thus, for example, the long value (231 -1) is converted to the float
value 231. Ties are broken according to the rules of IEEE standard
arithmetic.

3.2.7.4 The direction of truncation or rounding when a floating-point
number is converted to a narrower floating-point number.

The value is rounded to the nearest representable value. Ties are
broken according to the rules of IEEE standard arithmetic.

3.3 The results of bitwise operations on signed integers.

The bitwise operators apply to signed integers as if they were
their corresponding unsigned types. The sign bit is treated as a
normal data bit. The result is then interpreted as a normal2's
complement signed integer.

3.3.2.3 What happens when a member of a union object is accessed
using a member of a different type.

The access is all~wed and will simply access the bits stored there.
You'll need a detailed understanding of the bit encodings of
floating-point values in order to understand how to access a
floating-type member using a different member. If the member
stored is shorter than the member used to access the value, the
excess bits have the value they had before the short member was
stored.

3.3.3.4 The type of integer required to hold the maximum size of an
array.

For a normal array, the type is unsigned int, and for huge arrays
the type is signed long.

3.3.4 The result of casting a pointer to an integer or vice versa.

When converting between integers and pointers of the same size,
no bits are changed. When converting from a longer type to a
shorter, the high-order bits are truncated. When converting from a
shorter integer type to a longer pointer type, the integer is first
widened to an integer type that is the same size as the pointer
type. Thus signed integers will sign-extend to fill the new bytes.

Appendix A, ANSI implementation-specific standards 415

Similarly, smaller pointer types being converted to larger integer
types will first be widened to a pointer type that is as wide as the
integer type.

3.3.5 The sign of the remainder on integer division.

The sign of the remainder is negative when only one of the
operands is negative. If neither or both operands are negative, the
remainder is positive.

3.3.6 The type of integer required to hold the difference between two
pointers to elements of the same array, ptrdiff_t.

The type is signed int when the pointers are near, or signed long
when the pointers are far or huge. The type of ptrdiff_t depends on
the memory model in use. In small data models, the type is into In
large data models, the type is long.

3.3.7 The result of a right shift of a negative signed integral type.

A negative signed value is sign-extended when right shifted.

3.5.1 The extent to which objects can actually be placed in registers
by using the register storage-class specifier.

Objects declared with any two-byte integer or pointer types can
be placed in registers. The compiler will place any small auto
objects into registers, but objects explicitly declared as register will
take precedence. At least two and as many as six registers are
available. The number of registers actually used depends on what
registers are needed for temporary values in the function.

3.5.2.1 Whether a plain int bit-field is treated as a signed int or as an un­
signed int bit field.

Plain int bit fields are treated as signed int bit fields.

3.5.2.1 The order of allocation of bit fields within an into

Bit fields are allocated from the low-order bit position to the
high-order.

3.5.2.1 The padding and alignment of members of structures.

By default, no padding is used in structures. If you use the
alignment option (-a), structures are padded to even size, and any
members that do not have character or character array type will
be aligned to an even offset.

416 Borland C++ Programmer's Guide

3.5.2.1 Whether a bit-field can straddle a storage-unit boundary.

When alignment (-a) is not requested, bit fields can straddle word
boundaries, but are never stored in more than two adjacent bytes.

3.5.2.2 The integer type chosen to represent the values of an enumer­
ation type.

If all enumerators can fit in an unsigned char, that is the type
chosen. Otherwise, the type is signed into

3.5.3 What constitutes an access to an object that has volatile­
qualified type.

Any reference to a volatile object will access the object. Whether
accessing adjacent memory locations will also access an object
depends on how the memory is constructed in the hardware. For
special device memory, like video display memory, it depends on
how the device is constructed. For normal PC memory, volatile
objects are only used for memory that might be accessed by
asynchronous interrupts, so accessing adjacent objects has no
effect.

3.5.4 The maximum number of declarators that can modify an arith­
metic, structure, or union type.

There is no specific limit on the number of declarators. The num­
ber of de clara tors allowed is fairly large, but when nested deeply
within a set of blocks in a function, the number of declarators will
be reduced. The number allowed at file level is at least 50.

3.6.4.2 The maximum number of case values in a switch statement.

There is no specific limit on the number of cases in a switch. As
long as there is enough memory to hold the case information, the
compiler will accept them.

3.8.1 Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion matches
the value of the same character constant in the execution
character set. Whether such a character constant can have a
negative value.

All character constants, even constants in conditional directives
use the same character set (execution). Single-character character
constants will be negative if the character type is signed (default
and -K not requested).

Appendix A, ANSI implementation-specific standards 417

418

3.8.2 The method for locating includable source files.

For include file names given with angle brackets, if include
directories are given in the command line, then the file is searched
for in each of the include directories. Include directories are
searched in this order: First, using directories specified on the
command line, then using directories specified in TURBOC.CFG.
If no include directories are specified, then only the current
directory is searched.

3.8.2 The support for quoted names for includable source files.

For quoted file names, the file is first searched for in the current
directory. If not found, Borland c++ searches for the file as if it
were in angle brackets.

3.8.2 The mapping of source file name character sequences.

Backslashes in include file names are treated as distinct
characters, not as escape characters. Case differences are ignored
for letters.

3.8.8 The definitions for __ DATE __ and __ TIME __ when they are
unavailable.

The date and time are always available, and will use the DOS date
and time.

4.1.1 The decimal point character.

The decimal point character is a period (.).

4.1.5 The type of the sizeof operator, size_to

The type size_t is unsigned int.

4.1.5 The null pointer constant to which the macro NULL expands.

An integer or a long 0, depending upon the memory model.
,

4.2 The diagnostic printed by and the termination behavior of the
assert function.

The diagnostic message printed is "Assertion failed: expression,
file filename, line nn", where expression is the asserted expression
which failed, filename is the source file name, and nn is the line
number where the assertion took place.

abort is called immediately after the assertion message is
displayed.

Borland C++ Programmer's Guide

4.3 The implementation-defined aspects of character testing and
case mapping functions.

None, other than what is mentioned in 4.3.1.

4.3.1 The sets of characters tested for by the isalnum, isalpha, iscntrl,
islower, isprint and isupper functions.

First 128 ASCII characters.

4.5.1 The values ret~~rned by the mathematics functions on domain
errors.

An IEEE NAN (not a number).

4.5.7 Whether the mathematics functions set the integer expression
errno to the value of the macro ERANGE on underflow range
errors.

No, only for the other errors-domain, singularity, overflow, and
total loss of precision.

4.5.6.4 Whether a domain error occurs or zero is returned when the
fmod function has a second argument of zero.

No. fmod(x, 0) returns O.

4.7.7.1 The set of signals for the signal function.

SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTERM.

4.7.1.1 The semantics for each signal recognized by the signal function.

See the description of signal in the Library Reference.

4.7.7.1 The default handling and the handling at program startup for
each signal recognized by the signal function.

See the description of signal in the Library Reference.

4.7.7.1 If the equivalent of signal(sig, SIG_DFL); is not executed prior to
the call of a signal handler, the blocking of the signal that is
performed.

The equivalent of signal (sig, SIG_OFL) is always executed.

4.7.1.1 Whether the default handling is reset if the SIGILL signal is
received by a handler specified to the signal function.

No, it is not.

Appendix A, ANSI implementation-specific standards 419

420

4.9.2 Whether the last line of a text stream requires a terminating
newline character.

No, none is required.

4.9.2 Whether space characters that are written out to a text stream
immediately before a newline character appear when read in.

Yes, they do.

4.9.2 The number of null characters that may be appended to data
written to a binary stream.

None.

4.9.3 Whether the file position indicator of an append mode stream is
initially positioned at the beginning or end of the file.

The file position indicator of an append-mode stream is initially
placed at the beginning of the file. It is reset to the end of the file
before each write.

4.9.3 Whether a write on a text stream causes the associated file to be
truncated beyond that point.

A write of a bytes mayor may not truncate the file, depending
upon how the file is buffered. It is safest to classify a zero-length
write as having indeterminate behavior.

4.9.3 The characteristics of file buffering.

Files can be fully buffered, line buffered, or unbuffered. If a file is
buffered, a default buffer of 512 bytes is created upon opening the
file.

4.9.3 Whether a zero-length file actually exists.

Yes, it does.

4.9.3 Whether the same file can be open multiple times.

Yes, it can.

4.9.4.1 The effect of the remove function on an open file.

No special checking for an already open file is performed; the
responsibility is left up to the programmer.

4.9.4.2 The effect if a file with the new name exists prior to a call to
rename.

rename vvill return a -1 and ernlO will be set io EEXIST.

Borland C++ Programmer's Guide

4.9.6.1 The output for %p conversion in fprintf.

In near data models, four hex digits (XXXX). In far data models,
four hex digits, colon, four hex digits (XXXX:XXXX).

4.9.6.2 The input for %p conversion in fscanf.

See 4.9.6.1.

4.9.6.2 The interpretation of an - (hyphen) character that is neither the
first nor the last character in the scan list for a %[conversion in
fscanf.

See the description of scanf in the Library Reference.

4.9.9.1 The value to which the macro errno is set by the fgetpos or ftell
function on failure.

EBADF Bad file number.

4.9.10.4 The messages generated by perror.

Error 0
Invalid function number
No such file or directory

Path not found
Too many open files
Permission denied
Bad file number
Memory arena trashed
Not enough memory
Invalid memory block address
Invalid environment
Invalid format
Invalid access code

Invalid data
No such device
Attempted to remove current
directory
Not same device
No more files
Invalid argument
Arg list too big
Exec format error
Cross-device link
Math argument
Result too large
File already exists

See perror in the Library Reference for details.

4.10.3 The behavior of calloc, malloc, or realloc if the size requested is
zero.

calloc and malloc will ignore the request. realloc will free the
block.

4.10.4.1 The behavior of the abort function with regard to open and
temporary files.

The file buffers are not flushed and the files are not closed.

Appendix A, ANSI implementation-specific standards 421

422

4.10.4.3 The status returned by exit if the value of the argument is other
than zero, EXIT_SUCCESS, or EXIT_FAILURE.

Nothing special. The status is returned exactly as it is passed. The
status is a represented as a signed char.

4.10.4.4 The set of environment names and the method for altering the
environment list used by getenv.

The environment strings are those defined in DOS with the SET
command. putenv can be used to change the strings for the
duration of the current program, but the DOS SET command
must be used to change an environment string permanently.

4.10.4.5 The contents and mode of execution of the string by the system
function.

The string is interpreted as a DOS command. COMMAND.COM
is executed and the argument string is passed as a command to
execute. Any DOS built-in command, as well as batch files and
executable programs, can be executed.

4.11.6.2 The contents of the error message strings returned by strerror.

See 4.9.10.4.

4.12.1 The local time zone and Daylight Saving Time.

Defined as local PC time and date.

4.12.2.1 The era for clock.

Represented as clock ticks, with the origin being the beginning of
the program execution.

4.12.3.5 The formats for date and time.

Borland C++ implements ANSI formats.

Borland C++ Programmer's Guide

N

null statement 22, 99
statement terminator 22,99

1* * / (comments) 7
/** / (token pasting) 7
/ / (comments) 8
- - operator

decrement 81, 84
? : operator

conditional expression 82, 94
:: (scope resolution operator) 82, 108
.* and ->* operators (dereference pointers) 82,

97
-1 command-line compiler option 403
87 environment variable 369
\ \ escape sequence (display backslash

character) 15
\" escape sequence (display double quote) 15
\? escape sequence (display question mark) 15
\' escape sequence (display single quote) 15
: (labeled statement) 23
!= operator

huge pointer comparison and 345
not equal to 82, 92

&& operator
logical AND 81, 93

++ operator
increment 81, 84

« operator
put to See overloaded operators, » (put to)
shift bits left 81, 89

<= operator
less than or equal to 82, 91

== operator
equal to 91
huge pointer comparison and 345

>= operator
grea ter than or equal to 82, 91

Index

D E x

» operator
get from See overloaded operators, « (get
from)
shift bits right 81, 89

I I operator
logical OR 81,94

-> operator (selection) 82
overloading 140
structure member access 67, 83
union member access 83

* (pointer declarator) 23
\ (string continuation character) 19
symbol

overloading and 135
preprocessor directives 80
token pasting 7, 163

! operator
logical negation 81, 86

% operator
modulus 81, 88
remainder 81, 88

& operator
address 81, 85
bitwise AND 81, 92

truth table 93
position in reference declarations 39, 106

* operator
indirection 81, 86

pointers and 58
multiplication 81, 88

+ operator
addition 81, 88
unary plus 81, 86

, operator
evaluation 82, 96
function argument lists and 22

- operator
subtraction 81, 89
unary minus 81, 86

423

/ operator
division 81, 88

rounding 88
< operator

less than 82, 90
= operator

assignment 81, 95
compound 96
overloading 139

equal to 82
initializer 23

> operator
greater than 82, 91

1\ operator
bitwise XOR 81,93

truth table 93
I operator

bitwise inclusive OR 81,93
truth table 93

- operator
bitwise complement 81, 86

. operator (selection) 82
structure member access 67, 83

l's complement (-) 81,86
symbol

conditional compilation and 166
converting strings and 164
null directive 159
overloading and 135
preprocessor directives 24,80, 158

80x87 coprocessors See numeric coprocessors
80x86 processors

address segment:offset notation 343
inline assembly language and 403
registers 340-342

_OvrInitEms (function) 364
_ OvrInitExt (function) 364

A
-A BCC option (ANSI keywords) 178
-a BCC option (word alignment) 416,417
-a command-line option (word alignment) 69
\a escape sequence (audible bell) 15
abbreviations

CLASSLIB names and 228
abort (function)

destructors and 133

424

open and temporary files and 421
abstract classes 182,216, See classes, abstract
abstract data types

BIDS class names 228
class library and 224

AbstractArray class 242
access

classes 120-122
base 120
default 120
derived 120
qualified names and 121

data members and member functions 118
friend classes 121
friend functions 118
overriding 119
structure members 67, 83, 119
unions

members 83, 119
objects 415

volatile objects 417
accounting applications 372
active page

defined 390
setting 389

adapters, video See video adapters
add

Array member function 246
Bag member function 250
Btree member function 255
Collection member function 259
Dictionary member function 268
DoubleList member function 268
HashTable member function 273
List member function 275
Sets member function 286

addAt
Array member function 246

addAtHead
DoubleList member function 268

addAtTail
DoubleList member function 268

addition operator (+) 81,88
address operator (&) 81,85
addresses, memory See memory addresses
adjusifield, ios data member 199

Borland C++ Programmer's Guide

ADT
header files 230

ADT (abstract data types) 224
aggregate data types See data types
alert (\a) 15
algorithms

#include directive 165
aliases See referencing and dereferencing
alignment

bit fields and 417
structure members 416
word 69,416,417

alloc.h (header file)
malloc.h and 309

allocate, streambuf member function 207
allocation, memory See memory, allocation
ancestors See classes, base
AND operator (&) 81, 92

truth table 93
AND operator (&&) 81, 93
angle brackets 165
anonymous unions

member functions and 72
ANSI

C standard
Borland C++ and 3

date and time formats 422
diagnostics 411
extended character sets 412
implementation-specific items 411-422
integer values 413
keywords 9

predefined macro 178
main function

semantics of arguments to 412
multibyte characters 413

argsused pragma 171
arguments See also parameters

actual
calling sequence 64

command line See command-line compiler
conversions 64
converting to strings 164
default

constructors and 124, 126
to #define directive 162
fmod function and 419

Index

function calls and 64
functions taking none 62
matching number of 65
parameters vs. 3
passing

C-Ianguage style 48
type checking 61
variable number of 23

Pascal and 50
arithmetic, pointers See pointers, arithmetic
arithmetic types 40
Array class 245
ArrayInterator, AbstractArray friend 245
ArrayIterator class 247
arrays 59

classes for 242, 245
classes for sorted 289
of classes

initializing 110
cons tructors for

. order of calling 129
delete operator and 109
elements

comparing 90
indeterminate 59

structures and 60
initialization 43, 44
integer types for 415

pointers to 416
multidimensional 59
new operator and 109
sizeof and 87
subscripts 21,82

overloading 140
array Size, AbstractArray member function 243
ascending sort 289
ASCII codes

extended character sets 412
asm (keyword) 400

braces and 401
how to use 98

.ASM files See assembly language
asm statement

inline pragma and -B BCC option and 173
aspect ratio

determining current 397
setting 389

425

assembler
built in 399

assembly language See also opcades
built-in assembler See built-in assembler
huge functions and 52, 175
inline 399

80186 instructions 403
braces and 401
C structure members and 405

restrictions 406
calling functions 404
commenting 401
directives 404
floating point in 370
go to in 406
inline pragma and 173
jump instructions 403, 406
option (-B) 173,399
referencing data in 404
register variables in 404
semicolons and 401
size overrides in 404
syntax 400
variable offsets in 404

routines
overlays and 363

statement syntax 98
assert (function)

message and behavior 418
assertion macros 240
assignment operator

overloading 139
assignment operator (=) 81, 95

compound 96
Association class 219, 248

example program 240
associativity 78, See also precedence

expressions 76
asterisk (*) 23
atexit (function)

destructors and 133
attach

filebuf member function 196
fstreambase member function 198

attributes
cell

blink 383

426

colors 382
control functions 379
screen cells 375, 382

auto (keyword) 45
class members and 113
external declarations and 36
register keyword and 30

automatic objects 3D, See objects, automatic
auxiliary carry flag 342
AX register 340

B
-B BCe option (inline assembler code) 399

inline pragma and 173
-b command-line option (enumerations) 73
\ b escape sequence (backspace) 15
background color See graphics, colors,

background
backslash character

hexadecimal and octal numbers and 14
line continuation 164

backslash character (\ \) 15
backspace character (\b) 15
bad, ios member function 200
Bag class 250
banker's rounding 374
base, streambuf member function 207
base address register 341
base classes See classes
_based (keyword) 310
BaseDate class 252
basefield, ios data member 199
BaseTime class 253
BASM (built-in assembler) See built-in

assembler
BCD 372

converting 373
number of decimal digits 373
range 373
rounding errors and 373

__ BCPLUSPLUS __ macro 175
bell (\a) 15
BGIOBJ (graphics converter)

initgraph function and 387
BCprefix

class names 228
BIDS See Borland International Data Structures

Borland C++ Programmer's Guide

BIDS template library 224
binary coded decimal See BCD
binary operators See operators
binary streams

null characters and 420
BIOS

video output and 383
bit fields

alignment and 417
hardware registers and 71
how treated 416
integer 71
order of allocation 416
portable code and 71
structures and 70
unions and 73

bit images
functions for 389

bit-mapped fonts See fonts
bitalloc, ios member function 200
bits

blink enable 379
color 379
shifting 81, 89

bitwise
AND operator (&) 81, 92

truth table 93
complement operator (-) 81,86
operators

signed integers and 415
OR operator (I) 81,93

truth table 93
XOR operator(l\) 81, 93

truth table 93
bIen, streambuf member function 207
blink enable bit 379
block

scope 28
statements 98

Boolean data type 99
Borland C++

ANSI implementation-specific items 411-422
converting to from Microsoft C 299-311
extensions 9

Borland International Data Structures (BIDS)
224

__ BORLANDC __ macro 176

Index

bp, ios data member 199
BP register 341

overlays and 363
braces 21

asm keyword and 401
brackets 21, 82

overloading 140
break statements 103

loops and 103
Btree class 255
BtreeIterator class 257
buffered files 420
buffers

C++ streams and 196, 197
overlays

default size 362
built-in assembler 399, 400
BX register 340

c
C++ 105-145

C code and 176
classes See classes
comments 8
complex numbers See complex numbers
constants See constants
constructors See also constructors

conbuf 194
constream 195
filebuf 196
fstream 197
fstreambase 197, 198
ifstream 189, 198, 199
ios 199
iostream 202
iostream_ withassign 202
istream 203
istream _ withassign 204
istrstream 204
of stream 189, 205
of stream_ withassign 206
ostrstream 206, 207
streambuf 207
strstream 211
strstreambase 210
strstreambuf 210

427

conversions See conversions, C++
data members See data members
declarations See declarations
destructors See destructors
DLLs and 336
enumerations See enumerations
file operations See files
fill characters 186
floating-point precision 186
for loops See loops, for, C++
formatting See formatting, C++
Fourier transforms example 371
functions

C functions and 32
friend 113

access 118
inline See functions, inline
name mangling and 32
pointers to 55
taking no arguments 62
virtual 140

pure keyword and 142
inheritance See inheritance
initializers 45
iterators See iterators
keywords 9
member functions See member functions
members See data members; member

functions
name spaces 69
operators See operators, C++; overloaded

operators
output See output, C++
parameters See parameters
referencing and dereferencing See

referencing and dereferencing
scope See scope
streams See streams, C++
structures See structures
this

nonstatic member functions and 113
static member functions and 115

unions See unions
visibility See visibility

C language
argument passing 48
C++ code and 176

428

calling conventions 176, 178
C prefix

class names 228
calling conventions See also parameters,

passing; Pascal
calloc (function)

zero-size memory allocation and 421
calls

far, functions using 52
near, functions using 52

carriage return character 15
carry flag 342
case

preserving 50
sensitivity

external identifiers and 413
forcing 48
global variables and 48
identifiers and 10
pascal identifiers and 11

statements See switch statements
cast expressions

syntax 85
__ CDECL __ macro 176
cdecl (keyword) 48, 50

function modifiers and 52
_cdecl (keyword)

Microsoft C 310
cells, screen See screens, cells
characters

blinking 383
colors 382, 383
constants See constants, character
data type char See data types, char
decimal point 418
fill

setting 186
in screen cells 375
intensity

setting 379
multibyte 413
newline

inserting 186
text streams and 420

null
binary stream and 420

Borland C++ Programmer's Guide

sets
execution 412

collation sequence 412
number of bits in 413
source and 414

extended 412
for character constants 417
testing for 419

unsigned char data type
range 19

whitespace
extracting 186

wide 414
CHECK macro 240
.CHR files See fonts, files
circles

roundness of 389
CL options

command-line compiler options and 302
class templates 227
_CLASSDEF (Windows DLL compatibility) 242
classes 111-124, See also C++; individual class

names; inheritance
abstract 142, 182 ,
abstract vs instance 216
access 120-122

default 120
qualified names and 121

arrays
sorted 289

arrays of
initialization 110

auto keyword and 113
base

calling constructor from derived class 130
constructors 131
pointers to

destructors and 134
private

friend keyword and 121
protected keyword and 120
unions and 120
virtual 122

constructors and 128
class names and 112
collections 223

Index

container See container class library
data types and 38
date and time 264, 294
debugging modes 241
declarations

incomplete 112
derived

base class access and 120
calling base class constructor from 130
constructors 131

DLLs and 336
extern keyword and 113
friends 122-124

access 121
hierarchies 216

ios family 183
object-based 218
streambuf 182
traversing 247

initialization See initialization, classes
lists 268
member functions See member functions
members, defined 113
naming See identifiers
objects 111, 113

initialization See initialization, classes,
objects

priority queues 282
queue 284
queues

double-ended 265
register keyword and 113
scope See scope, classes
sequence 223, 265, 284, 289

rules for 223
sizeof operator and 87
sortable objects 286
stack 289
streams and 181

files 181
formatted I/O 182
memory buffers 181, 182
strings 181

string 292
syntax 111
unions and 73

CLASSLIB naming conventions 228

429

_CLASSTYPE (Windows DLL compatibility)
242

_ clear87 (function)
floating point exceptions and 370

clear, ios member function 200
clipping, defined 391
clock (function)

era 422
close

filebuf member function 196
fstreambase member function 198

clreol, conbuf member function 194
clrscr

conbuf member function 194
constream member function 195

Code Generation dialog box 69
code models See memory models
code segment 342

storing virtual tables in, -WD option and 324
Collection class 223, 258
collections

ordered 224
random access to 242
unordered 224

Bag class 250
Dictionary class 267
DoubleList class 268
HashTable class 272
List class 275
Set class 285

colons 23
color See graphics, colors
Color/Graphics Adapter (CGA) See also

graphics; graphics drivers; video adapters
background and foreground colors 394
color palettes 393, 394
resolution 393

high 394
colors See graphics, colors
.COM files

memory models and 346
COMDEFs

generating 309
comma

operator 82,96
separator 22

430

command-line compiler
compiling and linking with

Windowsapplications 320
DLLs and 332
INCLUDE environment variable and 300
LIB environment variable and 300
nested comments 8
options

±1 (80186 instructions) 403
-b (enumerations) 73
-Wx (Windows applications) 322
alignment (-a) 69

bit fields and 417
ANSI diagnostics and 411
ANSI keywords (±A) 178
assembly language and 399
-B (inline assembler code) 399

inline pragma and 173
changing from within programs 173
CL options versus 302
compatibility 306
data segment

name 352
define identifiers (-D) 161
.DLLs with all exportables (-WD) 324
DLLs with explicit exports (-WDE) 324
enumerations (-b) 73
far objects (-zE

-zF
and -zH) 352

floating point
code generation (-f87) 368
emulation (-f) 368
fast (-ff) 368

inline assembler code (±B)
inline pragma and 173

inline assembler code (-B) 399
.OBJs with explicit exports (-WN) 323
overlays (-Y) 178,361
overlays (-Yo) 360
Pascal calling conventions (-p) 50,51, 176,
178
pragmas for 173
smart callbacks (-WS) 323
undefine (-U) 161
-\AIDE (DLLs with explicit exports) 324
Windows applications (-W) 319, 322, 325

Borland C++ Programmer's Guide

word alignment (-a) 69
-y (overlays) 178,361
-zX (code and data segments) 352

Windows and 318
commas

nested
macros and 163

comments 7
/ /8
/* */ 7
as whitespace 6
inline assembly language code 401
nested 7
token pasting and 7
whites pace and 8

__ COMPACT __ macro 176
compact memory model See memory models,

compact
compatibility

command-line options 306
with Microsoft C 299-311

compilation
speeding up 172, 173
Windows applications 320

compiling
conditional

symbol and 166
complement

bitwise 81, 86
complex declarations See declarations
complex.h (header file)

complex numbers and 371
complex numbers

« and » operators and 371
C++ operator overloading and 371
example 371
header file 371
using 371

component selection See operators, selection
(. and -»

compound assignment operators 96
conbuf (class) 194
concatenating strings See strings, concatenating
condFuncType definition 279
conditional compilation

symbol and 166
__ cplusplus macro and 176

Index

conditional operator (? :) 94
conforming extensions 3
conio.h (header file)

console control and 377
constream and 192

console
I/O

functions 377
Console stream manipulators 192
const (keyword) 47

C++ and 47
formal parameters and 64
pointe IS and 47, 57

constant expressions 20
constants 11,47, See also numbers

Borland C++ 15
C++ 47
case statement

duplicate 100
character 12, 14

character set 417
extending 15
integer and 42
two-character 15
values 414
wide 16,414

da ta types 13
decimal 11, 12

data types 13
suffixes 13

enumerations See enumerations
expressions See constant expressions
floating point 12, 16

da ta types 16
negative 16
ranges 17

fractional 12
hexadecimal 12, 13
integer 11, 12
internal representations of 19
manifest 175
null pointer

NULL macro and 418
octal 12
pointers and 57
string See strings, literal
suffixes and 13

431

syntax 12
ULONG_MAXand UINT_MAX 89

constrea.h 192
constrea.h: 193
constream (class) 195
constructors 124-129, See also initialization

AbstractArray member function 243
Array member function 246
ArrayIterator member function 247
arrays

order of calling 129
Association member function 248
Bag member function 250
base class

calling
from derived class 130
order 131

Basedate member function 252
Basetime member function 253
Btree member function 255
BtreeIterator member function 257
calling 125
class initialization and 129
classes

virtual base 128
Collection member function 259
Container member function 261
copy 127

class object initialization and 129
Date member function 264
default arguments and 124, 126
default parameters 126
defaults 126
delete operator and 125
derived class

order of calling 131
Dictionary Flember function 268
DoubleList member function 269
DoubleListIterator member function 270
HashTable member function 273
HashTableIterator member function 274
inheritance and 124
invoking 125
List member function 275
ListIterator member function 276
ne,,,, operator and 125

432

non-inline
placement of 132

Object member function 279
order of calling 128
overloaded 127
Sets member function 286
String member function 292
Time member function 294
Timer member function 295
TShouldDelete member function 296
unions and 125
virtual 124

consumer (streams) 181
container class library

directories 238
examples 240
INCLUDE 238
lib 239
source 239

example programs 240
makefile and 239
memory models and 239
reference section 241

container classes 218, 219, 259
functions of 260

container hierarchy
object-based 216

ContainerIterator class 263
containers and 263
hierarchy 222

containers
basics 216
ContainerIterator class and 263
direct 228
elements of 260
equality testing 260
flushing 221,260
implementation 225
indirect 228

continue statements 103
. loops and 103

continuing lines 6, 19, 164
_control87 (function)

floating point exceptions and 370
control lines See directives
conversions 41

Borland C++ Programmer's Guide

argument See arguments, conversions
arguments to strings 164
arrays 60
BCD 373
C++ 186

setting base for 186
character

integers and 42
decimal 186
floating point

to smaller floating point 415
hexadecimal 186
integers

character and 42
to floating point 415
to pointers 415

octal 186
pointers 59

to integers 415
sign extension and 42
special 42
standard 42
when value can't be represented 414

coordinates
origin 377
returning 380
starting positions 376, 380

coprocessors See numeric coprocessors
copy constructors See constructors, copy
__ cplusplus macro 176
CPP.EXE (preprocessor) 157
CPU (central processing unit) See 80x86

processors
_ cs (keyword) 48, 350
CS register 342, 344
current

ArrayIterator member function 247
BtreeIterator member function 257
ContainerIterator member function 263
DoubleListIterator member function 270
HashTableIterator member function 274
ListIterator member function 277

current position, files See file-position indicator
cursor

changing 380
control

header file 377

Index

manipulating onscreen 378
position

setting 378
CX register 341

D
-D BCC option (define identifier) 161
\D escape sequence (display a string of octal

digits) 15
data

static, DLLs and 336
data members See also member functions

access 118
dereference pointers 82, 97
private 118
protected 118
public 118
scope 116-119
static 115

declaration 116
definition 116
uses 116

data models See memory models
data segment

naming and renaming 352
removing virtual tables from, -WD option
and 324

data segments 342
data structures See structures
data type

template argument 147
da~a types 25, See also constants; floating point;

mtegers; numbers
aggregate 38
arithmetic 40
BCD See BCD
Boolean 99
C++ streams and 184, 188
char 40

range 19
signed and unsigned 15, 40

classes and 38
conversions See conversions
declarations 39
declaring 38
default 38
derived 38

433

enumerations See enumerations
range 19

function return typ~s 61
fundamental 38, 39

creating 40
identifiers and 26, 27
integers See integers
integral 40
internal representations 40
memory use 87
new, defining 46
parameterized See templates
ranges 19
scalar 38

initializing 43
size_t 87, 137, 138
sizeof operator 418
table of 19
taxonomy 38
text_modes 381
types of 38
unsigned char

range 19
void 39
wchar_t 16

date See also time
formats 422
local

how defined 422
macro 177

__ DATE __ macro 177
availability 418
#define and #Undef directives and 162

Date class 264
dates

class 264
Day

Basedate member function 252
deallocation, memory See memory, allocation
_DEBUG macro 240, 241
debugging

overlays 362
dec (manipulator) 186
decimal constants See constants, decimal
decimal point

how displayed 418
declarations 25

434

arrays 59
c++ 38

incomplete 112
complex 53

examples 53, 54
data types 38

default 38
defining 26, 31, 33, 44

extern keyword and 45
examples 39
external 31, 36

storage class specifiers and 36
function See functions, declaring
incomplete class 112
with ini tializers

bypassing 103
mixed languages 50
modifiers and 47
objects 34-
Pascal 50
point of 143
pointers 56
referencing 26, 33

extern keyword and 45
simple 44
static data members 116
structures See structures, declaring
syntax 33, 34
tentative definitions and 33
unions 73

de clara tors
number of 417
pointers (*) 23
syntax 54

decrement operator (- -) 81,84
decrNofKeys

Btree member function 255
default (label)

switch statements and 100
default constructors See constructors, default
#define directive 159

argument lists 162
global identifiers and 162
keywords and 162
redefining macros with 160
with no parameters 159
with parameters 162

Borland C++ Programmer's Guide

defined operator 167
defining declarations See declarations, defining
definitions See declarations, defining

function See functions, definitions
tentative 33

delete
Error member function 271

delete (operator) 108
arrays and 109
constructors and destructors and 125
destructors and 132, 133
dynamic duration objects and 30
overloading 137
pointers and 132

delline, conbuf member function 194
delObj

TShouldDelete member function 296
delta

AbstractArray data member 242
Deque class 265
dereferencing See referencing and

dereferencing
derived classes See classes
derived data types See data types
descendants See classes, derived
destroy

AbstractArray member function 243
Collection member function 259

destroy FromHead
DoubleList member function 269

destroyFromTail
DoubleList member function 269

destructors 124, 132-135, See also initialization
abort function and 133
atexit function and 133
base class pointers and 134
calling 125
class initialization and 129
delete operator and 125, 132, 133
exit function and 133
global variables and 133
inheritance and 124
invoking 125, 132

. explicitly 133
new operator and 125, 133
pointers and 132
#pragma exit and 133

Index

unions and 125
virtual 124, 134

detach
AbstractArray member function 243
Bag member function 250
Btree member function 255
Collection member function 259
DoubleList member function 269
HashTable member function 273
List member function 275
Sorted Array member function 289

detachFromHead
DoubleList member function 269

detachFromTail
DoubleList member function 269

detachLeft
PriorityQueue member function 283

DI register 341
diagnostic messages

ANSI 411
Dictionary class 267

example program 240
digits

hexadecimal 12
nonzero 12
octal 12

dir.h (header file)
direct.h and 309

direct and indirect data structures 225
direct.h (header file)

dir.h and 309
direct member selector See operators, selection

(. and ±»
direct video output 383
direction flag 342
directives 167, 157-179, See also individual

directive names; macros
##symbol

overloading and 135
symbol 24

overloading and 135
conditional 167

nesting 167
conditional compilation and 166
error messages 170
keywords and 162
line control 169

435

Microsoft compatibility 308
pragmas See pragmas
sizeof and 87
syntax 158
usefulness of 157

directories
container class library 238
include files

how searched 418
DIRECTRY (container class library example

program) 240
division operator U) 81, 88

rounding 88
__ DLL __ macro 177
DLLs

building 313-338
C++ and

classes 336
mangled names 338

compiler options and 336
compiling and linking 332
creating 324, 333
defined 332
exit point 334
initialization functions 334
LibMain function and 334
libraries 330, 331
linking

Resource Compiler and 331
macro 177
memory models· 331
memory models and 326
pointers and 335
smart callbacks and 324
startup files 331
static data 336
virtual tables and 336
WEP function 334

do while loops See loops, do while
doallocate, strstreambuf member function 211
domain errors

mathematics functions and 419
DOS

environment

436

87 variable 369
strings

changing permanently 422

dot operator (selection) See operators, selection
(. and ±»

double quote character
displaying 15

DoubleList class 268
DoubleListIterator class 270
drawing color See graphics, colors
drawing functions 387
_ ds (keyword) 48, 350
DS register 342, 344
duplicate case constants 100
duration 29

dynamic
memory allocation and 30

local
scope and 30

pointers 56
static 29

DX register 341
dynamic duration

memory allocation and 30
dynamic memory allocation See memory,

allocation

E
eback, streambuf member function 207
ebuf, streambuf member function 208
egptr, streambuf member function 208
elaborated type specifier 112
elements

ordering definition 228
parsing 6

#elif directive 167
ellipsis (. ..) 23

prototypes and 62, 65
#else directive 167

emit __ 0310
_emit (keyword) 310
empty statements 99
empty strings 18
emulating the 80x87 math coprocessor See

floating point, emulating
enclosing block 28
#endif directive 167
endl (manipulator) 186
ends (manipulator) 186

Borland C++ Programmer's Guide

Enhanced Graphics Adapter (EGA) See also
graphics drivers; video adapters
color control on 395

enum (keyword) See enumerations
enumerations 73

C++ 74
class names and 112
command-line option (-b) 73
constants 12, 17, 74

default values 17
conversions 42
default type 73
name space 28
range 19
scope, C++ 75
structures and

name space in C++ 69
tags 74

name spaces 75
values 417

environment
DOS

87 variable 369
variables 300

Resource Compiler and 301
eof, ios member function 200
epptr, streambuf member function 208
equal to opera tor (=) 82
equal-to operator (==) 91
equality operators See operators, equality
era, clock function and 422
Error class 218, 271
#error directive 170
errors

domain
mathematics functions and 419

expressions 79
floating point

disabling 370
graphics, functions for handling 395
math, masking 370
messages

assert function 418
graphics 396
perror function 421
strerror function 422

out of memory 339

Index

preprocessor directive for 170
underflow range

mathematics functions and 419
_es (keyword) 48, 350
ES register 342
escape sequences 12, 14

length 14
number of digits in 14
octal

non-octal digits and 15
source files and 418
table of 15

evaluation order See precedence
examples directory

container class library 240
exclusive OR operator (/\) 81, 93

truth table 93
execution character sets See characters, sets,

execution
exit (functions) 422

destructors and 133
exit pragma 171
exit procedure, Windows 334
expanded memory See extended and expanded

memory
exponents 12
_export (keyword) 48, 52

Windows applications and 323, 324
expressions

associativity 76
cast, syntax 85
constant 20
conversions and 41
decrementing 84
empty (null statement) 22, 99
errors and overflows 79
floating point

precedence 79
function

sizeof and 87
grouping 21
incrementing 84
precedence 76, 78
statements 22, 99
syntax 77
table 77

437

extended and expanded memory
_ OvrInitEms and 364
_ OvrInitExt and 364
overlays and 364
swapping 364

extensions 9
,extent See duration
extern (keyword) 45, See also identifiers,

external
arrays and 59
class members and 113
const keyword and 47
linkage and 31
name mangling and 32

external
declarations 31
identifiers See identifiers, external
linkage See linkage

extra segment 342
extraction operator «<) See overloaded

operators, « (get from)
extractors See input, C++

F
-f87 command-line compiler option (generate

floating-point code) 368
-f command-line compiler option (emulate

floating point) 368
\f escape sequence (formfeed) 15
fail, ios member function 200
far

calls
memory model and 361
requirement 361

functions See functions, far
objects See objects, far
pointers See pointers, far

far (keyword) 48, 344, 350, 356
_FAR (Windows DLL compatibility) 242
_fastcall (keyword) 48, 52
fd, filebuf member functionint fd () 196
FDS

header files 230
FDS (fundamental data structures) 224
-ff command-line compiler option (fast floating

point) 368

438

fgetpos (function)
errno value on failure of 421

field width See formatting, width (C++)
__ FILE __ macro 177

#define and #Undef directives and 162
file descriptor 196
file-position indicator

initial position 420
file scope See scope
filebuf (class) 196
files See also individual file-name extensions

appending
file-position indicator and 420

.ASM See assembly language
buffering 420
buffers

C++ 196, 197
current

macro 177
font See fonts
graphics driver, linking 387
header See header files
include See include files
including 165
names

searching for 418
open

abort function and 421
remove function and 420

opening
default mode 190
multiple times 420

project
graphics library listed in 384

renaming
preexisting file name and 420

scope See scope
source

escape sequences and 418
startup

DLLs and 331
streams

C++ operations 197
temporary

abort function and 421
truncation while writing to 420
zero-length 420

Borland C++ Programmer's Guide

fill, ios member function 200
fill characters

C++ 186, 187
filling functions 387
financial applications 372
findmember

Bag member function 250
Btree member function 255
Collection member function 259
HashTable member function 273

firstThat
Bag member function 250
Container member function 261
Object member function 279

flags
format state See formatting, format state
flags (C++)
ios (class)

setting 186
ios member function 200
register 340, 341

floatfield, ios data member 199
floating point See also data types; integers;

numbers
arithmetic

interrupt functions and 407
constants See constants
conversions See conversions
decimal point character 418
double

range 19
emulating 368
exceptions

disabling 370
expressions

precedence 79
fast 368
formats 414
libraries 367
long double

range 19
Microsoft C and 310
precision

setting 186
ranges 19
registers and 370
using 367

Index

flow-control statements See if statements;
switch statements

flush
Bag member function 250
Btree member function 256
Container member function 261
Deque member function 266
DoubleList member function 269
HashTable member function 273
List member function 275
ostream member function 206
PriorityQueue member function 283
Stacks member function 291

flush (manipulator) 186
fmod (function)

second argument of zero 419
fonts

bit-mapped
stroked vs. 391
when to use 391

clipping 391
files

loading and registering 391
height and width 391
information on current settings 398
registering 392
setting size 391
stroked

advantages of 391
for loops See loops, for
forEach

Bag member function 251
Container member function 261
Object member function 280

foreground color See graphics, colors,
foreground

formal parameters See parameters, formal
format state flags See formatting, C++, format

state flags
formatting

C++
classes for 182
fill character 186, 187
format state flags 184
I/O 186, See also manipulators
output 184
padding 187

439

width functions See also manipulators
setting 186

streams and
clearing 186

formatting flags 199
formfeed character 15
fortran (keyword) 310

_pascal keyword and 310
forward references 26
Fourier transforms

complex number example 371
FP_OFF 355
FP_SEG 355
fprintf (function)

%p conversion output 421
free

MemBlocks member function 278
free (function)

delete operator and 108
dynamic duration objects and 30

freeze, strstreambuf member function 211
friend (keyword) 113, 122-124

base class access and 121
functions and See C++, functions, friend

fscanf (function)
%p conversion input 421

fstream (class) 197
fstreambase (class) 197
ftell (function)

errno value on failure of 421
function call operator See parentheses
function operators See overloaded operators
function template 148
functions 60-65

arguments
no 62

attribute control 379
calling 64, See also parentheses

in inline assembly code 404
operators () 83
overloading operator for 140
rules 64

cdecl and 51
class names and 112
color control 392
comparing 92

440

console
I/O 377

declaring 60, 61
as near or far 352

default types for memory models 52
definitions 60, 63
drawing 387
duration 30
error-handling, graphics 395
exit 171
export

Windows applications and 322, 323
exporting 324
external 45

declarations 31
far 52

declaring 353
memory model size and 352

filling 387
friend See C++, functions, friend
graphics See also graphics

drawing operations 387
fill operations 388
using 384-398

graphics system control 385
huge 52

assembly language and 52
_loadds and 52
saving registers 175

image manipulation 389
inline

assembly language See assembly language,
inline
C++ 114

linkage 115
internal linkage 46
interrupt See interrupts, functions
linking C and C++ 32
main 60
mathematical

domain errors 419
underflow range errors 419

member See member functions
memory

models and 48
mode control 379
name mangling and 32

Borland C++ Programmer's Guide

near 52
declaring 353
memory models and 352

no arguments 39
not returning values 39
operators See overloaded operators
overloaded See overloaded functions
Pascal

calling 50
pixel manipulation 389
pointers 55

calling overlaid routines 362
object pointers vs. 54

pointers to
void 55

prototypes See prototypes
recursive

memory models an~ 352
return statements and 104
return types 61
scope See scope
screen manipulation 389
sizeof and 87
startup 171
state queries 380, 396
static 31
stdarg.h header file and 62
storage class specifiers and 32
structures and 67
text

manipulation 377
output

graphics mode 390
type

modifying 52
viewport manipulation 389
Windows 324
windows 379

fundamental data structure
class templates 227

fundamental data structures
class library and 224
Object-based classes 229

fundamental data types See data types

G
gbump, streambuf member function 208

Index

gcount, istream member function 203
generic pointers 39, 56
get

istream member function 203
Priority Queue member function 283
Queue member function 285

get from operator (») See overloaded
operators, » (get from)

getenv (function)
environment names and methods 422

get! temsIn Con tainer
Bag member function 251
Container member function 261
Deques member function 266
PriorityQueue member function 283
Stacks member function 291

getLeft
Deque member function 266

getline, istream member function 203
getRight

Deque member function 266
global identifiers See identifiers, global
global variables 28, See also variables

case sensitivity and 48
destructors and 133
_ovrbuffer 358, 362
underscores and 48
_wscroll 378

good, ios member function 200
goto statements 103

assembly language and 406
labels

name space 28
gotoxy, conbuf member function 194
gptr, streambuf member function 208
grammar

tokens See tokens
graphics See also graphics drivers

buffers 390
circles

aspect ratio 389
col,?rs See also graphics, palettes

background 379
CGA 394
defined 382, 393
list 383
setting 379

441

CGA 393, 394
drawing 393
EGA/VGA 395
foreground 379

CGA 394
defined 382
list 383
setting 379

functions 392
information on current settings 398

coordinates See coordinates
default settings

restoring 386
displaying 393
drawing functions 387
errors

functions to handle 395
fill

operations 388
patterns 388

using 397
functions

using 384-398
header file 384
library 384
line style 388
memory for 387
page

active
defined 390
setting 389

visual
defined 390
setting 389

palettes See also graphics, colors
defined 392
functions 392
information on current 398

pixels See also screens, resolution
colors

current 398
functions for 389
setting color of 392

setting
clearing screen and 390

. state queries 396

442

system
control functions 385
shutting down 386
state queries 397

text and 390
viewports

defined 377
functions 389
information on current 398

graphics drivers See also Color/Graphics
Adapter (CGA); Enhanced Graphics Adapter
(EGA); graphics; video adapters; Video
Graphics Array Adapter (VGA)
current 386, 397

returning information on 398
linking 387
loading and selecting 386, 387
new

adding 386
registering 387
returning information on 397, 398
supported by Borland C++ 385

graphics.h (header file) 384
greater-than operator (» 82,91
greater-than or equal-to operator (>=) 82, 91

H
hash table

iterators 274
HashTable class 272
HashTableIterator class 274
hashValue

Association member function 248
Basedate member function 252
Basetime member function 254
Btree member function 256
Container member function 261
HashTable member function 273
List member function 276
Object member function 280
PriorityQueue member function 283
Sortable member function 288
String member function 292

hasMember
Bag member function 251
Btree member function 256
Collection member function 259

Borland C++ Programmer's Guide

PriorityQueue member function 283
hdrfile

pragma 172
hdrstop

pragma 173
header files See also include files

Borland C++ versus Microsoft C 309
complex numbers 371
extern keyword and 33
function prototypes and 62
graphics 384
#include directive and 165
Microsoft C 308
name mangling and 33
precompiled 172, 173
prototypes and 60
variable parameters 62

heap 30
objects See objects, heap

Help compiler See also errors
Hercules card See graphics drivers; video

adapters
hex (manipulator) 186
hexadecimal

constants See constants, hexadecimal
digit 12

hidden objects 29
hiding See scope, C++
hierachy See classes, hierarchies
highvideo, conbuf member function 194
horizontal tab 15
hour

Basetime member function 254
huge

functions
saving registers and 175

memory model See memory models
pointers See pointers, huge

__ HUGE __ macro 176
huge (keyword) 48, 344, 350

assembly language and 52
hundredths

Basetime member function 254

i_add
Btree member function 256

Index

I prefix
class names 228

IDE See Integrated Development Environment
overlays and 361

identifiers 10
Borland C++ keywords as 3
case 50

sensitivity and 10
classes 111
data types and 26, 27
declarations and 26
declaring 44
defined operator and 167
defining 161
duplicate 29
duration 29
enumeration constants 17
external See also extern (keyword)

case sensitivity and 413
name mangling and 32

global 175
#define and #Undef directives and 162

length 413
linkage 31

attributes 31
mixed languages 50
name spaces See name spaces
no linkage attributes 32
Pascal 50
pascal (keyword)

case sensitivity and 11
rules for creating 10
scope See scope
significant characters in 413
storage class and 27
testing for definition 168
undefining 161
unique 31

IEEE
floating-point formats 41, 414
rounding 374, 415

#if directive 167
if statements 99

nested 99
#ifdef directive 168
#ifndef directive 168
ifstream (class) 198

443

constructor 189
insertion operations 189

ignore, istream member function 203
Imp suffix

class names 228
implementation-specific ANSI items 411-422
import libraries

module definition files and 333
in_avail, streambuf member function 208
INCLUDE directory

container class library 238
INCLUDE environment variable 300

Resource Compiler and 301
windows.h and 301

include files See also header files
#include directive and 165
paths 300
search algorithm for 165
searching for 418

#include directive 165
search algorithm 165

inclusive OR operator (I) 81, 93
truth table 93

incomplete declarations
classes 112
structures 70

increment operator (++) 81,84
incrNofKeys

Btree member function 256
indeterminate arrays 59

structures and 60
indirect member selector See operators,

selection
indirection operator (*) 81, 86

pointers and 58
inequality operator (!=) 82, 92
inheritance See also classes

constructors and destructors 124
multiple

base classes and 122
overloaded assignment operator and 139
overloaded operators and 136

init, ios member function 200
initialization 42, See also constructors;

destructors
arrays 43
classes 129

444

objects 129
copy constructor and 129

operator 23
pointers 56
static member definitions and 116
structures 43
unions 43, 73
variables 44

initialization modules 306
ini tializers

automatic objects 45
C++ 45
new operator and 110

initIterator
AbstractArray member function 244
Bag member function 251
Btree member function 256
Container member function 261
Deque member function 266
DoubleList member function 269
HashTable member function 274
List member function 276
PriorityQueue member function 283
Stacks member function 291

inline
assembly language code See assembly
language, inline
expansion 114
functions See functions, inline
keyword 114
pragma 173, 400

InnerNode
Btree friend class 255

input
C++

user-defined types 188
inserter types 184
inserters See output, C++
insertion operator See overloaded operators, «

(put to)
insline, conbuf member function 194
instance classes 216
instances See classes, objects
INT instruction 406
integers 40, See also data types; floating point;

numbers
arrays and 415

Borland C++ Programmer's Guide

C++ streams and 184
casting to pointer 415
constants See constants
conversions See conversions
division

sign of remainder 416
enumerations and 417
expressions

precedence 79
long 40

range 19
memory use 40
pointers and 416
range 19
right shifted 416
short 40
signed

bitwise operators and 415
sizes 40
suffix 12
unsigned

range 19
values 413

integral data types See characters; integers
integrated development environment

DLLsand 332
module definition files and 329
nested comments command 8
Windows and 317

linking 329
integrated environment

INCLUDE environment variable and 300
LIB environment variable and 300
Programmer's Workbench and 299

intensity
setting 379

interface dependencies See dependencies,
interface

internal linkage See linkage
internal representations of data types 40
interrupt (keyword) 48, 49, 407
interrupts

beep
example 408

flag 342
functions

example of 408

Index

floating-point arithmetic in 407
memory models and 49
void 49

handlers 48
calling 408
installing 408
modules and 362
programming 407

registers and 49
intrinsic pragma 173
I/O

C++
formatting 186
precision 186

iomanip.h (header file)
manipulators in 185

ios (class) 182, 199
flags

format state 184
setting 186

ios data members 199
iosteram.h (header file)

manipulators in 186
iostream (class) 202
iostream library 182
iostream_withassign (class) 202
IP (instruction pointer) register 340
is_open, filebuf member function 196
isA

Array member function 247
Association member function 248
Bag member function 251
Basedate member function 252
Basetime member function 254
Btree member function 256
Container member function 261
Date member function 264
Deque member function 267
Dictionary member function 268
DoubleList member function 269
Error member function 271
HashTable member function 274
List member function 276
Object member function 280
PriorityQueue member function 283
Queue member function 285
Set member function 286

445

Sortable member function 288
Stack member function 291
String member function 292
Time member function 294

isalnum (function) 419
isalpha (function) 419
isAssocia tion

Association member function 248
Object member function 280

iscntrl (function) 419
isEmpty

Bag member function 251
Container member function 262
Deques member function 267
PriorityQueue member function 283
Stack member function 291

isEqual
AbstractArray member function 244
Association member function 248
Basedate member function 252
Basetime member function 254
Btree member function 256
Container member function 262
Error member function 271
Object member function 280
Sortable member function 288
String member function 292

isLessThan
Basedate member function 252
Basetime member function 254
Sortable member function 288
String member function 292

islower (function) 419
isprint (function) 419
isS or table

Object member function 280
Sortable member function 288

istream (class) 202
derived classes of 189

istream_ withassign (class) 204
istrstream (class) 204
isupper (function) 419
Item

Btree friend class 255
itemsInContainer

Container data member 260
iteration statements See loops

446

iterators
DoubleList 270
internal and external 222

iterFuncType definition 261

J
-Jg family of template switches 152
jump instructions, inline assembly language

table 403
using 406

jump statements See break statements; continue
statements; go to statements; return
statements

K
key

Association class 248
Association member function 248

keywords 9, See also individual keyword names
ANSI

L

predefined macro 178
Borland C++

using as identifiers 3
C++ 9
combining 40
macros and 162
Microsoft C 310

labeled statements 98
labels

creating 23
default 100
function scope and 28
goto statement and 103
in inline assembly code 406

language extensions
conforming 3

__ LARGE __ macro 176
large code

data
and memory models See memory models

Last-In-First-Out (LIFO) 225
lastElenlentlndex

AbstractArray data member 242

Borland C++ Programmer's Guide

lastThat
Bag member function 251
Container member function 262
Object member function 281

LeafNode
Btree friend class 255

less-than operator «) 82, 90
less-than or equal-to operator «=) 82,91
lexical grammar See elements
lib directory

container class library 239
LIB environment variable 300
Lib Main (function) 334

return values 334
libraries

C
linking to C++ code 32

container class See container class library
DLLs and 330, 331
floating point

using 367
graphics 384
iostream 182
paths 300
prototypes and 65
stream class 181

__ LINE __ macro 177
#define and #Undef directives and 162

#line directive 169
lines

continuing 6, 19, 164
numbers 169

macro 177
LINK (Microsoft)

TLINK versus 307
linkage 31

C and C++ programs 32
external 31

C++ constants and 47
name mangling and 32

internal 31
no 31, 32
rules 31
static member functions 115
storage class specifiers and 31

Index

Linker
dialog box

Windows and 329
linker

mixed modules and 355
using directly 355

List class 275
iterators 276

ListElement class 275
ListIterator class 276
lists

classes for 268
linked

traversing 276
literal strings See strings, literal
_loadds (keyword) 48

huge functions and 52
uses for 52

local duration 30
logical AND operator (&&) 81, 93
logical negation operator (!) 81,86
logical OR operator (I I) 81, 94
long integers See integers, long
lookup

Dictionary member function 268
LOOKUP {container class library example

program) 240
loops 101

break statement and 103
continue statement and 103
do while 101
for 102

C++ 102
while 101

string scanning and 101
lowerbound, AbstractArray data member 242
lower Bound, AbstractArray member function

244
lowvideo, conbuf member function 194
lvalues 26, See also rvalues

examples 53
modifiable 26

M
macros See also directives

argument lists 162
calling 162

447

commas and
nested 163

defining 159
conflicts 160
global identifiers and 162

expansion 159
far pointer creation 355
keywords and 162
MK_FP 355
NULL

expansion 418
parameters and 162

none 159
parentheses and

nested 163
precedence in

controlling 21
predefined 175, See also individual macro

names
ANSI keywords 178
C and C++ compilation 175, 176, 178, 179
C calling conventions 176
conditional compilation 176
current file 177
current line number 177
date 177
DLLs 177
DOS 177
memory models 176
overlays 178
Pascal calling conventions 178
templates 178
time 178
Windows applications 179

redefining 160
side effects and 164
undefining 160

global identifiers and 162
main (function) 60

pascal keyword and 50
semantics of arguments to 412

MAKE (program manager)
makefiles

Windows applications and 321
Microsoft C and 301
Windows applications and 321

makefile 239

448

malloc (function)
dynamic duration objects and 30
new operator and 108
zero-size memory allocation and 421

malloc.h (header file)
alloc.h and 309

mangled names 32
DLLs and 337

manifest constants 175
manipulators 185, See also C++, formatting,

width; individual manipulator names
parameterized 185
syntax 186

math
BCD See BCD
coprocessors See numeric coprocessors
errors

masking 370
functions

domain errors and 419
underflow range errors and 419

matherr (function)
proper use of 370

__ MEDIUM __ macro 176
medium memory model See memory models
mem.h (header file)

memory.h and 309
member functions 113, See also data members

access 118
constructors See constructors
defined 113
destructors See destructors
friend 113
inline See functions, inline, C++
nonstatic 113
private 118
protected 118
public 118
scope 116-119
static 115

linkage 115
this keyword and 115

structures and 67
this keyword and 113, 115
unions and 72
virtual

pure 216

Borland C++ Programmer's Guide

members, classes See data members; member
functions

members, structures See structures, members
MemBlocks class 277
memory See also memory addresses

allocation 30
assembly language code and huge
functions and 52
graphics system 387
new and delete operators and 108
structures 69

Borland C ++'s usage of 339
data types 87
extended and expanded See extended and

expanded memory
heap 30
memory models and 347
overlays and 358
paragraphs 343

boundary 343
segments in 342
word alignment and

structures 69
memory addresses See also memory

calculating 341, 343-344
constructors and destructors 124
far pointers and 344
near pointers and 344
pointing to 355
segment:offset notation 343
standard notation for 343

memory.h (header file)
mem.h and 309

memory models 349, 339-357
changing 354
compact 346

default function type 52
comparison 349
container class library and 239
default

overriding 52
defined 346
DLLs 331
function pointers and 55
functions

default type
overriding 48

Index

graphics library 384
huge 347

default function type 52
illustrations 347-349
interrupt functions and 49
large 347

default function type 52
macros and 176
medium 346

default function type 52
memory apportionment and 347
Microsoft C and 309
mixing 355

function prototypes and 355
overlays and 359, 361
pointers

modifiers and 51
pointers and 344, 351
predefined macros and 176
small 346

default function type 52
smart callbacks and 323
tiny 346

default function type 52
Windows and 346
Windows applications and 326

memory-resident routines 407
MemStack class 278
methods See member functions
Microsoft C

Borland C++ projects and 299
_ cdecl keyword 310
CL options

BCC options versus 302
COMDEFs and 309
converting from 299-311
environment variables and 300
floating-point return values 310
header files 308

Borland C++ header files versus 309
keywords 310
MAKE and 301
memory models and 309
structures 310
TLINK and 306

Microsoft Windows applications
preprocessor macro 179

449

minute
Basetime member function 254

mixed modules
linking 355

MK_FP (run-time library macro) 355
modifiable lvalues See lvalues
modifiable objects See objects
modifiers 47

~nction type 52
pointers 51, 351
table 47

Modula-2
variant record types 71

module definition files 315
defined 333
IDE options and 329
import libraries and 333
LibMain function and 334
TLINK and 329
/Tw TUNK option and 329

modules
linking mixed 355
size limit 349

modulus operator (%) 81,88
Monochrome Display Adapter See graphics

drivers; video adapters
Month

Basedate member function 252
__ MSC macro 308
__ MSDOS __ macro 177
multibyte c~aracters 413
multidimensional arrays See arrays
multiple inheritance See inheritance
multiplication operator (*) 81, 88

N
\n (newline character) 15
name mangling 32
name spaces

scope and 28
structures 69

C++ 69
nameOf

Arrays member function 247
Association member function 248
Bag member function 251
Basedate member function 253

450

Basetime member function 254
Btree member function 256
Container member function 262
Date member function 264
Deque member function 267
Dictionary member function 268
DoublE~List member function 269
Error member function 272
HashTable member function 274
List member function 276
Object member function 281
PriorityQueue member function 283
Set member function 286
Sortable member function 288
Stacks member function 291
String member function 292
Time member function 294

names See identifiers
mangled

DLLs and 338
qualified 117

near (keyword) 48, 344, 350
near functions See functions, near
near pointers See pointers, near
negation

logical (!) 81, 86
negative offsets 341
nested

classes 117
comments 7, 8
conditional directives 167
declarators 417
types 117

new
Object member function 281

new (operator) 108
arrays and 109
constructors and destructors and 125
destructors and 133
dynamic duration objects and 30
handling return errors 109
initializers and 110
overloading 110, 137
prototypes and 109

_new_handler (for new operator) 109
newline characters

creating in output 15

Borland C++ Programmer's Guide

inserting 186
NMAKE (Microsoft's MAKE utility) 301
no linkage See linkage
Node

Btree friend 257
Btree friend class 255

non-container classes 218
nondefining declarations See declarations,

referencing
nonzero digit 12
normalized pointers See pointers, normalized
normvideo, conbuf member function 194
not equal to operator (!=) 82, 92
not operator (!) 81,86
NuLL

macro 418
pointers and 56
using 56

null
characters

binary stream and 420
directive (#) 159
inserting in string 186
pointer constant 418
pointers 56
statement 22,99
strings 18

number of arguments 23
numbers See also constants; data types; floating

point; integers
base

setting for conversion 186
BCD See BCD
converting See conversions
decimal

conversions 186
hexadecimal 12

backslash and 14
conversions 186
displaying 15

lines See lines, numbers
octal 12

backslash and 14
conversions 186
displaying 15
escape sequence 15

Index

numeric coprocessors See also 80x86 processors
autodetecting 369
built in 367
floating-point emulation 368
floating-point format 414
registers and 370

o
a prefix 229

class names 228
.OB} files

converting .BCI files to 387
DLLs and 330
Windows and 330

Object class 216, 279
Object container class library

version 3.0 changes to 214
objectAt, AbstractArraymember function 244
ObjectBrowser

container class library and 216
objects 25, See also C++

aliases 105
automatic 30, 222

initializers 45
class names and 112
detaching 221
duration 29
far

class names 352
combining into one segment 352
declaring 352
option pragma and 352

heap 222
hidden 29
in containers

counting 260
displaying 260
iterating 260
ownership 260

initializers 45
list of declarable 34
modifiable 49
ownership 220
pointers 55

function pointers vs. 54
sortable 286

451

static
initializers 45

temporary 107
volatile 49

accessing 417
oct (manipulator) 186
octal constants See constants, octal
octal digit 12
offsets 344

component of a pointer 355
of stream (class) 205

base class 189
constructor 189
insertion operations 189

opcodes 402, See also assembly language
defined 400
mnemonics

command-line compiler option (-1) 403
table 402

repeat prefixes 403
open

filebuf member function 196
fstream member function 197
fstreambase member function 198
ifstream member function 199
of stream member function 205

open mode See files, opening, C++
operands (assembly language) 400
operating mode of screen See screens, modes
operator <

overloaded 288
operator =

String member function 293
operator>

overloaded 289
operator !=

overloaded 282
operator ++

ArrayIterator member function 247
BtreeIterator member function 257
ContainerIterator member function 264
DoubleListIterator member function 270
HashTableIterator member function 274
ListIterator member function 277

operator «
Object friends 281

452

operator <=
overloaded 289

operator ==
overloaded 282

operator >=
overloaded 289·

operator []
AbstractArray member function 244
Btree member function 256

operator --
DoubleListIterator member function 270

operator (keyword)
overloading and 135

operator char *
String member function 293

operator functions See overioaded operators
operator int

BtreeIterator member function 257
ContainerIterator member function 263
DoubleListIterator member function 271
HashTableIterator member function 274
ListIterator member function 277

operator int, ArrayIterator member function
247

operators 79, 79-82
l's complement (~) 81,86
addition (+) 81,88
address (&) 81, 85
AND (&) 81, 92

truth table 93
AND (&&) 81, 93
assignment (=) 81,95

compound 96
overloading 139

binary 81
overloading 139

bitwise
AND (&) 81, 92

truth table 93
complement (~) 81, 86
inclusive OR (I) 81, 93

truth table 93
signed integers and 415
truth table 93
XOR (A) 81, 93

truth table 93
C++ 80

Borland C++ Programmer's Guide

delete 108, See delete (operator)
dereference pointers 82, 97
new See new (operator)
pointer to member See operators, C++,
dereference pointers
scope (::) 82, 108

conditional (? :) 82, 94
context and meaning 80
decrement (- -) 81,84
defined operator 167
division U) 81,88

rounding 88
equality 82, 91
evaluation (comma) 82, 96
exclusive OR (A) 81, 93

truth table 93
function call () 83
inclusive OR (I) 81,93

truth table 93
increment (++) 81,84
indirection (*) 81,86

pointers and 58
inequality (!=) 82, 92
list 80
logical

AND (&&) 81, 93
negation (!) 81,86
OR (I I) 81,94

manipulators See manipulators
modulus (%) 81,88
multiplication (*) 81, 88
OR (A) 81, 93

truth table 93
OR (I) 81, 93

truth table 93
OR(II)81,94
overloading See overloaded operators
postfix 82
prefix 82
relational82,90
remainder (%) 81, 88
selection (. and -» 82, 83

overloading 140
structure member access and 67, 83

shift bits «< and ») 81,89
sizeof 87

data type 418

Index

subtraction (-) 81,89
unary

overloading 138
unary minus (-) 81,86
unary plus (+) 81, 86

option pragma 173
far objects and 352

OR operator
bitwise inclusive (I) 81, 93

truth table 93
logical (I I) 81, 94

order
Btree member function 256

ordered collections 218, 224
ostream (class) 205

derived classes of 189
flushing 186

ostream_ withassign (class) 206
ostrstream (class) 206
out of memory error 339
out_waiting, streambuf member function 208
output

C++
user-defined types 188

directing 383
functions 377

overflow
conbuf member function 194
filebuf member function 196
strstreambuf member function 211

overflows
expressions and 79
flag 342

__ OVERLAY __ macro 178
overlays 357-365

assembly language routines and 363
BP register and 363
buffers

default size 362
cautions 362
command-line options (-Yo) 360
debugging 362
designing programs for 361
extended and expanded memory and 364
how they work 357
large programs 357
memory map 358

453

memory models and 359, 361
predefined macro 178
routines, calling via function pointers 362

overloaded constructors See constructors,
overloaded

overloaded functions
defined 113
templates and 147

overloaded operators 78, 80, 135-140
» (getfrom) 187

complex numbers and 371
« (put to) 183

complex numbers and 371
assignment (=) 139
binary 139
brackets 140
complex numbers and 371
creating 114
defined 113
delete 137
functions and 78
inheritance and 136
new 110, 137
operator functions and 135, 136
operator keyword and 135
parentheses 140
precedence and 78
selection (-» 140
unary 138

_ovrbuffer (global variable) 358,362
owns Elements 220

p

Bag member function 252
TShouldDelete member function 296

-p command-line option (Pascal calling
convention) 50, 176, 178
cdecl and 51

padding (C++) 187
pages

active
defined 390
setting 389

buffers 390
visual

454

defined 390
setting 389

painting See graphics, fill, operations
palettes See graphics, palettes
paragraphs See memory, paragraphs
parameterized

manipulators See manipulators
types See templates

parameters See also arguments
arguments vs. 3
default

constructors 126
ellipsis and 23
empty lists 39
fixed 62
formal 64

C++ 64
scope 64

function calls and 64
passing

C 48, 50
Pascal 48, 50

variable 62
parentheses 21

as function call operators 83
macros and 21
nested

macros and 163
overloading 140

parity flag 342
parsing 6
Pascal

calling conventions
compiler option (-p) 50

functions 50
identifiers 50

case sensitivity and 11
parameter-passing sequence 48
variant record types 71

__ P ASCAL __ macro 178
pascal (keyword) 48, 50

function modifiers and 52
preserving case while using 50

_pascal (keyword)
fortran keyword and 310

pass-by-address, pass-by-value, and pass-by-var
See parameters; referencing and
dereferencing

pbase, streambuf member function 208

Borland C++ Programmer's Guide

pbump, streambuf member function 208
pcount, ostrstream member function 207
peek, istream member function 203
peekAtHead

DoubleList member function 270
peekAtTail

DoubleList member function 270
peekHead

List member function 276
peekLeft

Deque member function 267
PriorityQueue member function 283

peekRight
Deque member function 267

period as an operator See operators, selection
(. and -»

perror (function)
messages generated by 421

phrase structure grammar See elements
pointer-to-member operators See operators,

C++, dereference pointers
pointers 54, See also referencing and

dereferencing
ad vancing 58
arithmetic 58, 345
assignments 56
base class

destructors and 134
C++ 105

reference declarations 59
casting to integer 415
changing memory models and 354
to class members 82, 97
comparing 90, 92, 99, 345

while loops 101
const 47
constants and 57
conversions See conversions
declarations 56
declarator (*) 23, 58
default data 349
delete operator and 132
dereference 82, 97
DLLs and 331, 335
far 48

adding values to 345
comparing 344

Index

declaring 353-354
function prototypes and 354
memory model size and 353
registers and 344

far memory model and 344
function 55

C++ 55
modifying 52
object pointers vs. 54
void 55

generic 39, 56
huge 48, 345

comparing
!= operator 345
== operator 345

declaring 353-354
overhead of 346

huge memory model and 344
initializing 56
integer type for 416
keywords for 48
manipulating 344
memory models and 344, 351
to memory addresses 355
modifiers 51, 350
near 48, See also segments, pointers

declaring 353-354
function prototypes and 354
memory model size and 353
registers and 344

near memory model and 344
normalized 345
null 56

NULL macro and 418
NULL and 56
operator (-»

overloading 140
structure and union access 67, 82, 83

overlays and 362
pointers to 55
range 19
reassigning 56
referencing and dereferencing 85
segment 48,350,351
stack 341
structure members as 67
typecasting 59

455

virtual table
32-bit, -WD option and 336

void 56
pop

Stacks member function 291
portable code

bit fields and 71
positive offsets 341
postdecrement operator (- -) 81,84
postfix operators 82
postincrement operator (++) 81,84
pptr, streambuf member function 208
pragma directives

templates and 153
#pragma exit

destructors and 133
#pragma directives 171

argsused 171
exit 171
hdrfile 172
hdrstop 173
inline 173, 400
intrinsic 173
option pragma 173

far objects and 352
saveregs 175
startup 171
warn 175

precedence 78, See also associativity
controlling 21

, expressions 76
floating point 79
integer 79

overloading and
operators 78

precision, ios member function 201
precompiled headers

storage file 172
PRECONDITION macro 240
predecrement operator (- -) 81, 84
predefined macros See macros, predefined
prefix opcodes, repeat 403
prefix operators 82
preincrement operator (++) 81, 84
preprocessor directives See directives
"I""\'r;n4-rnnf-o",,4-cof"\.,.... .t'.I. .I..&. I.L,-,"V.I.l'o.'-J. U . .;:)'-'.I.l

AbstractArray member function 244

456

printers
printing direction 413

printHeader
Container ·member function 262

printOn
Association member function 248
Basedate member function 253
Basetime member function 254
Btree member function 256
Container member function 262
Date member function 265
Error member function 272
Object member function 281
Sortable member function 288
String member function 292
Time member function 294

printSeparator
Container member function 262

printTrailer
Container member function 263

priority queues 282
PriorityQueue class 282
private (keyword)

data members and member functions 118
derived classes and 120
unions and 73

procedures See functions
producer (streams) 181
pro filers 362
Programmer's Platform See Integrated

Development Environment
Programmer's Workbench

integrated environment and 299
programs

creating 5
performance

improving 45
size

reducing 45
terminate and stay resident

interrupt handlers and 407
very large

overlaying 357
Project Manager

Resource Compiler and 331
resources and 331

Borland C++ Programmer's Guide

projects
files

graphics library listed in 384
Microsoft C and 299

prolog and epilog code
generating 322

promotions See conversions
protected (keyword)

data members and member functions 118
derived classes and 120
unions and 73

prototypes 61-63
arguments and

matching number of 65
C++ 60
ellipsis and 62, 65
examples 61, 62
far and near pointers and 354
function calls and 64
function definitions and

not matching 65
header files and 62
libraries and 65
mixing modules and 355
new operator and 109
scope See scope

pseudovariables
register 10

ptrAt, AbstractArray member function 244
ptrToRef

Object member function 281
public (keyword)

data members and member functions 118
derived classes and 120
unions and 73

punctuators 21, 21-24
pure (keyword)

virtual functions and 142
pure specifier 37
push

Stacks member function 291
put

ostream member function 206
PriorityQueue member function 284
Queue member function 285

put to operator «<) See overloaded operators,
» (put to)

Index

putback, istream member function 203
putenv (function)

environment names and methods 422
putLeft

Deque member function 267
putRight

Deque member function 267

Q
qualified names 117
question mark

colon conditional operator 82, 94
displaying 15

Queue class 284
example program 240

queues 284
double-ended 265

QUEUETST (container class library example
program) 240

quotes, displaying 15

R
\r (carriage return character) 15
RAM

Borland C ++'s use of 339
ranges

floating-point constants 17
rank

Btree member function 256
rdbuf

constream member function 195
fstream member function 197
fstreambase member function 198
ifstream member function 199
ios member function 201
of stream member function 205
strstreambase member function 210

rdstate, ios member function 201
read, istream member function 203
realloc (function)

zero-size memory allocation and 421
reallocate

MemBlocks member function 278
reallocate, AbstractArray member function 244
records See structures

407

recursive functions
memory models and 352

reference declarations 59
position of & 39, 106

references
forward 26

referencing and dereferencing 85, See also
pointers
asterisk and 23
C++ 105

functions 106
simple 106

pointers 82, 97
referencing data in inline assembly code 404
referencing declarations See declarations
register (keyword) 45

class members and 113
external declarations and 36
formal parameters and 64
local duration and 30

registers
8086 340-342
AX 340
base point 341
BP341

overlays and 363
BX340
C5342,344
CX341
D1341

assembly language and 404
D5342, 344

_loadds and 52
DX341
E5342
flags 340, 341
hardware

bit fields and 71
index 340, 341
interrupts and 49
1P (instruction pointer) 340
LOOP and string instruction 341
math operations 340, 341
numeric coprocessors and 370
objects and 416
pseudovariables 10
saving with huge functions 175

458

segment 341, 342
51341

assembly language and 404
5P341
special-purpose 341
55342
values

preserving 52
variable declarations and 45
variables 45

in inline assembly code 404
relational operators See operators, relational
remainder operator (%) 81, 88
remove (function)

open files and 420
removeEntry, AbstractArray member function

244
rename (function)

preexisting file name and 420
repeat prefix opcodes 403
reset

Timer member function 295
resetiosflags (manipulator) 185, 186
resolution See screens, resolution

Timer member function 295
Resource Compiler

environment variables and 301
functionality 315
invoking 319
linking and 331
Project Manager and 331
Windows and 313
Windows applications and 315

resources
adding 319, 331
defined 315
Project Manager and 331

restart
ArrayIterator member function 247
BtreeIterator member function 257
ContainerIterator member function 264
DoubleListIterator member function 271
HashTableIterator member function 275
ListIterator member function 277

return
statements

functions and 104

Borland c++ Programmer's Guide

types 61
REVERSE (container class library example

program) 240
rounding

banker's 374
direction

division 88
errors 372
rules 415

routines, assembly language See assembly
language

rvalues 27, See also Iva lues

5
S prefix

class names 228
saveregs pragma 175
_saveregs (keyword) 48,52

uses for 52
sbumpc, streambuf member function 208
scalar data types See data types
scaling factor

graphics 389
scanf (function)

»operator and 187
scope 27-29, See also visibility

block 28
block statements and 98
c++ 29, 143-145

hiding 144
operator (::) 82, 108
rules 144

classes 28
names 112

enclosing 143
enumerations 28

C++ 75
file 28

static storage class specifier and 31
formal parameters 64
function 28

prototype 28
global 28
goto and 28
identifiers and 11
local

duration and 30

Index

members 116-119
name spaces and 28
pointers 56
storage class specifiers and 45-47
structures 28
unions 28
variables 28
visibility and 29

screens See also graphics; text; windows
aspect ratio 389
attributes, controlling 379
cells

attributes 382
blinking 383

characters in 375
colors 382

clearing 389
colors 382, 392
coordinates 377

starting positions 376
cursor

changing 380
manipulating 378

modes
controlling 379
defining 375
graphics 376, 384, 386
selecting 386
text 375,381,386

f(~solution 376, See also graphics, pixels
vlewports See graphics

search.h (header file) 309
searches

#include directive algorithm 165
second

Basetime member function 254
seekg, istream member function 204
seekoff

filebuf member function 196
streambuf member function 208
strstreambuf member function 211

seekp, ostream member function 206
seekpos, streambuf member function 209
_seg (keyword) 48, 350, 351

_segment keyword and 310
segment:offset address notation 343

making far pointers from 355

459

_segment (keyword) 310
segmented memory architecture 342
segments 343, 346

component of a pointer 355
memory 342
pointers 48, 350, 351
registers 341, 342

_segname (keyword) 310
selection

operators See operators, selection
statements See if statements; switch
statements

_self (keyword) 310
semicolons 22, 99
sequence

classes See classes, sequence
Set class 285
setb, streambuf member function 209
setbase (manipulator) 185, 186
setbkcolor (function)

eGA vs. EGA 395
setbuf

filebuf member function 196
fstreambase member function 198
streambuf member function 209

. strstreambuf member function 211
setcursortype, conbuf member function 194
_setcursortype (function) 380
setData, AbstractArray member function 244
SetDay

Basedate member function 253
setf (function) 187
setf, ios member function 201
setfill (manipulator) 185, 186
setg, streambuf member function 209
setHour

Basetime member function 254
setHundred ths

Basetime member function 255
setlosflags (manipulator) 185, 186
setMinute

Basetime member function 255
SetMonth

Basedate member function 253
set_new_handler (for new operator) 109
setp, streambuf member function 209
setprecision (manipulator) 185, 186

460

setSecond
Basetime member function 255

setstate, ios member function 201
setw (manipulator) 185, 186
SetYear

Basedate member functiori 253
sgetc, streambuf member function 209
sgetn, streambuf member function 209
shapes See graphics
shift bits operators «< and ») 81, 89
short integers See integers, short
SI register 341
side effects

macro calls and 164
sign 12

extending 15
conversions and 42

flag 342
signal (function) 419

signal set 419
signals 419

signed (keyword) 40
single quote character

displaying 15
sink (streams) 181
size overrides in inline assembly code 404
size_t (data type) 87, 137, 138
sizeof (operator) 87

arrays and 87
classes and 87
data type 418
example 27
function-type expressions and 87
functions and 87
preprocessor directives and 87
unions and 72

__ SMALL __ macro 176
small code

data
and memory models See memory models

smart callbacks
DLLsand 324
memory models and 323
Windows applications and 323

snextc, streambuf member function 209
software interrupt instruction 406
Sortable class 218, 286

Borland C++ Programmer's Guide

ordered collections 224
SortedArray class 289

example program 240
sorts

ascending 289
sounds

beep 408
source (streams) 181
source code 5
source directory

container class library 239
SP register 341
special-purpose registers (8086) 341
specifiers See type specifiers
splicing lines 6, 19
sputbackc, streambuf member function 209
sputc, streambuf member function 209
sputn, streambuf member function 209
squeezeEntry

AbstractArray member function 245
SS register 342
_ss (keyword) 48, 350
stack

pointers 341
segment 342

Stack class 289
example program 240 .

standard conversions See conversions
start

Timer member function 295
startup files

DLLs and 331
startup pragma 171
state, ios data member 199
state queries 396-398
statements 97-104, See also individual

statement names
assembly language 98
block 98 .

marking start and end 21
default 100
do while See loops, do while
expression 22, 99
for See loops, for
if See if statements
iteration See loops
jump See break statements; continue

Index

statements; goto statements; return
statements

labeled 98
null 99
syntax 98
while See loops, while

static
data

DLLs and 336
duration 29
functions 31
members See data members, static; member

functions, static
objects See objects, static
variables See variables, static

static (keyword) 46
linkage and 31

status
Timer member function 295

_status87 (function)
floating point exceptions and 370

stdarg.h (header file)
user-defined functions and 62

__ STDC __ macro 178
#define and #Undef directives and 162

stdtempl.h 230
stop

Timer member function 295
storage class

identifiers and 27
specifiers 45

functions and 32
linkage and 31
register

objects and 416
static

file scope and 31
stossc, streambuf member function 209
str

ostrstream member function 207
strstream member function 212
strstreambuf member function 211

streambuf (class) 182, 207
derived classes of 182

streams
binary

null characters and 420

461

c++
classes and 181
clearing 186
data types 184
defined 181
errors 189
file class 181
flushing 186
formatted I/O 182
manipulators and See manipulators
memory buffer class 181, 182
output 183
string class 181
tied 201

text
newline character and 420

strerror (function)
messages generated by 422

String class 292
example program 240

strings
classes for 292
clipping 391
concatenating 18
continuing across line boundaries 19
converting arguments to 164
empty 18
inserting terminal null into 186
instructions

registers 341
literal 6, 18
null 18
scanning

while loops and 101
streams

C++ 190
streams and 181

STRNGMAX (container class library example
program) 240

stroked fonts See fonts
strstrea.h (header file)

string streams and 190
strstream (class) 211
strstreambase (class) 210
strstreambuf (class) 210
stru.ct (key,vord) 66, See also structtlres

C++ and 67, 112

462

structures 65-71
access

C++ 120
bit fields See bit fields
Borland C++ versus Microsoft C 310
C++ 111

C vs. 112
complex 371
declaring 66
functions and 67
incomplete declarations of 70
indeterminate arrays and 60
initializing 43
member functions and 67
members

access 67, 83, 119
as pointers 67
C++ 67
comparing 90
declaring 66
in inline assembly code 405

restrictions 406
names 69
padding and alignment 416

memory allocation 69
name spaces 28, 69
tags 66

typedefs and 66
typedefs and 66
unions vs. 71
untagged 66

typedefs and 66
within structures 67
word alignment

memory and 69
subscripting operator See brackets
subscripts for arrays 21,82

overloading 140
subtraction operator (-) 81, 89
switch statements 100

case statement and
duplicate case constants 100

case values
number of allowed 417

default label and 100
symbolic constants See constants, symbolic
sync, filebuf member function 196

Borland C++ Programmer's Guide

sync_with_stdio, ios member function 201
syntax

assembly language statements 98
classes 111
declarations 33, 34
declarator 54
directives 158
expressions 77
inline assembly language 400
manipulators 186
notation 3
statements 98
templates 145

system (function) 422
system control, graphics 385

T
\t (horizontal tab character) 15
tags

enumerations 74
name spaces 75

structure See structures, tags
TASM See Turbo Assembler
taxonomy

types 38
TC prefix 229

class names 228
TCDEF.5YM 172
__ TCPLUSPLUS macro 178
lTd and ITw TLINK options (target file) 329
tellg, istream member function 204
tellp, ostream member function 206
template-based container library 224
template function 148
TEMPLATES

conditional compilation 239
Templates

Arrays example 237
Deques example 237

templates 145, See also syntax
angle brackets 150
approach to class library 215, 226
arguments 150
class 149
compiler switches 152
container classes and 225
eliminating pointers 152

Index

function 146
implicit and explicit 148
overriding 148

instantiating 228
macro 178
type-safe

generic lists 151
using switches 153

__ TEMPLATES __ macro 178
temporary objects 107
tentative

definitions 33
ter~inate and stay resident programs

mterrupt handlers and 407
text

blocks
moving in and out of memory 378

capturing to memory 378
colors 382
in graphics mode 390
information on current settings 398
justifying 391
manipulation

functions 377
onscreen 378
output and 377

mode types 381
output

header file 377
reading and writing 378
scrolling 378
streams

writing
truncation and 420

strings
clipping 391
size 391

writing to screen 378
textattr, conbuf member function 194
textbackground, conbuf member function 194
textcolor, conbuf member function 195
textmode

conbuf member function 195
constream member function 195

textmode (function) 377
this (keyword)

nonstatic member functions and 113

463

static member functions and 115
tie, ios member function 201
tied streams 201
time See also date

formats 422
local

how defined 422
macro 178
Timer member function 295

__ TIME __ macro 178
availability 418
#define and #Undef directives and 162

Time class 294
example program 240

Timer class 295
__ TINY __ macro 176
tiny memory model See memory models
TLINK (linker)

LIB environment variable and 300
LINK (Microsoft) versus 307
Microsoft C and 306
module definition files and 329
options

.COM files (lTd and ITw) 329
DLLs (lTwe) 329
executable files (lTd and ITw) 329
target files 329
lTd and ITw (target files) 329
Windows executable (lTd and ITw) 329

target file options (lTd and ITw) 329
using directly 355
Windows applications and 320

tokens
continuing long lines of 164
kinds of 8
parsing 6
pasting 7, 163
replacement 159
replacing and merging 24

top
Stacks member function 291

translation units 31
trap flag 342
truth table

bitwise operators 93
TShouldDelete class 296
Turbo Assembler 399

464

Turbo C++
keywords

using as identifiers 3
Turbo Profiler 362
__ TURBOC __ macro 179
type-safe

lists 152
type-safe linkage See linkage, type-safe
type specifiers

elaborated 112
pure 37

type taxonomy 38
typecasting

pointers 59
typed constants See constants
typedef (keyword) 46

name space 28
structure tags and 66
structures and 66

typedefs
untagged structures and 66

types See data types

u
-U BCC option (undefine) 161
UINT_MAX (constant) 89.
ULONG_MAX (constant) 89
unary operators 81

minus (-) 81,86
plus (+) 81, 86
syntax 85

unbuffered, streambuf member function 209
#Undef directive 160

global identifiers and 162
underbars See underscores
underflow

filebuf member function 196
strstreambuf member function 211

underflow range errors
mathematics functions and 419

underscores
generating 48
ignoring 48

union (keyword)
C++ 112

unions 71
accessing 415

Borland C++ Programmer's Guide

anonymous
member functions and 72

base classes and 120
bit fields and See bit fields
C++ 73,111

Cvs.112
classes and 73
constructors and destructors and 125
declarations 73
initialization 43, 73
members

access 83, 119
name space 28
sizeof and 72
structures vs. 71

units, translation See translation units
unordered collections 224

Bag class 250
Dictionary class 267
DoubleList class 268
HashTable class 272
List class 275
Set class 285

unsetf (function) 187
unsetf, ios member function 201
unsigned (keyword) 40
untagged structures See structures, untagged
upperbound, AbstractArray data member 243
upperBound, AbstractArray member function

245
user-defined formatting flags 202
UTIL.DOC 392

v
\ v (vertical tab character) 15
value

Association class 248
Association member function 249

value, passing by See parameters
values

comparing 90
var, passing by See parameters
varargs.h (header file) 309
variable number of arguments 23
variables

automatic See auto (keyword)
declaring 44

Index

external 45
global See global variables
ini tializing 44
internal linkage 46
name space 28
offsets in inline assembly code 404
pseudo See pseudovariables
register See registers, variables
volatile 49

variant record types See unions
vectors, interrupt See interrupts
vertical tab 15
video

adapters
graphics, compatible with Borland C++
385

video, adapters
graphics, compatible with Borland C++ 385

video adapters See also Color/Graphics
Adapter (CGA); Enhanced Graphics Adapter
(EGA); graphics drivers; Video Graphics
Array Adapter (VGA)
modes 375
output

directing 383
using 375-398

Video Graphics Array Adapter (VGA) See also
graphics drivers; video adapters
color control 395

viewports See graphics
virtual

base classes See classes, base, virtual
destructors See destructors, virtual
functions See member functions, virtual
tables

32-bit pointers and, -WD option and 336
DLLs and 336
storing in the code segment,-WD option
and 336

virtual (keyword)
constructors and destructors and 124
functions and 140

visibility 29, See also scope
C++ 29
pointers 56
scope and 29

465

visual page
defined 390
setting 389

void (keyword) 39
function pointers and 55
functions and 62
interrupt functions and 49
pointers 56
typecasting expressions and 39

volatile (keyword) 47,49
formal parameters and 64

VROOMM 357, See overlays

w
-W BeC options (Windows applications) 322
warn pragma 175
warnings

disabling 171
overriding 175
pragma warn and 175

wchar_t (wide character constants) 16,414
arrays and 44

-WD Bee options (.DLLs with all exports) 324
-WDE Bee options (DLLs with explicit

exports) 324
WEP (function) 334

return values 335
WHELLO (Windows program) 314

compiling and linking 315
wherex, conbuf member function 195
wherey, conbuf member function 195
while loops See loops, while
whitespace 6

comments and 8
comments as 6
extracting 186

wide character constants (wchar_t) 16,414
width, ios member function 202
window

conbuf member function 195
constream member function 195

window (function)
default window and 376
example 381

Windows
_export and 325
libraries 330

466

modules
compiiing and linking 313

object files 330
prolog and epilog code 322

windows
active

erasing 378
controlling 379
creating 379
default type 376
defined 376
managing

header file 377
output in 379
scrolling 378
text

creating 381
default size 380

Windows (Microsoft) See Microsoft Windows
and Windows

Windows All Functions Exportable command
322

Windows applications 313-338
command-line compiler and 318
command-line compiler options 319,322,
323,324
_export and 324
export functions and 322, 323
IDE and 317
linking 329
memory models and 326
prolog and epilog code 322 .
Resource Compiler and 313, 315, 331
smart callbacks and 323
WHELL0314
WinMain function and 318

Windows DLL All Functions Exportable
command 324

Windows DLL Explicit Functions Exported
command 324

Windows Explicit Functions Exported
command 323

windows.h (header file)
INCLUDE environment variable and 301

Windows Smart Callbacks command 323
Windows macro 179

WinMain (function) 318

Borland c++ Programmer's Guide

return value 318
-WN Bee options (.OBJs with explicit exports)

323
word alignment 69, 416, 417

memory and
structures 69

write, ostream member function 206
ws (manipulator) 186
-WS Bee options (smart callbacks) 323
_ wscroll (global variable) 378
-wxxx options (warnings)

warn pragma and 175

x
xjill, ios data member 199
x_flags, ios data member 199
x_precision, ios data member 199
x_tie, ios data member 20b
x_width, ios data member 200

Index

xalloc, ios member function 202
\xH (display a string of hexadecimal digits) 15
XOR operator (/\) 81, 93

truth table 93

v
- Y Bee option (overlays) 178
- Y command-line compiler option (compiler

generated code for overlays) 361
Year

Basedate member function 253
-Yo option (overlays) 360

Z
ZERO

Object data member 279
zero flag 342
zero-length files 420
-zX options (code and data segments) 352

467

3.1

B 0 R L A N D
Corporate Headquarters: 1800 Green Hills Road, P.O. Box 660001, Scotts Valley, CA 95067-0001 , (408) 438-5300. Offices in: Australia,
Belgium, Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Mataysia, Netherlands, New Zealand, Singapore, Spain,
Sweden, Taiwan and Untted Kingdom . Part'14MN-BCP03-31 • BOR 3858

