
USER'S GUIDE

• INTEGRATED ENVIRONMENT

• OPTIMIZATION

• COMMAND·lINE COMPILER

• INSTALLATION

BORLAND

BorlancP c++

Version 3.0

User's Guide

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

Rl

Copyright © 1991 by Borland International. All rights reseNed. All
Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.
Windows, as used in this manual, refers to Microsoft's
implementation of a windows system.

PRINTED IN THE USA.
10 9 8 7 6 5 4 3 2 1

c o N T

Introduction 1
What's in Borland C++ 1
Hardware and software requirements ... 4
The Borland C++ implementation 4
The Borland C++ package 5

The User's Guide. 5
Tools and Utilities Guide 6
The Programmer's Guide 7
The Library Reference 8

Using the manuals 8
Programmers learning C or C++ 9
Experienced C and C++ programmers . 9

Typefaces and icons used in these books . 9
How to contact Borland 10

Resources in your package 11
Borland resources 11

Chapter 1 Installing Borland C++ 13
Using INSTALL 14

Protected mode and memory 15
DPMIINST .. 15
DPMIMEM 16
DPMIRES 16
Extended and expanded memory .. 17

Running BC .. 18
Laptop systems 18

The README file 18
The HELPMELDOC file 19
Example programs 19
Customizing the IDE 19

Chapter 2 IDE basics 21
Starting and exiting 22

Command-line options 22
The Ib option 22
The I d option 22
The I e option 23

E N T s

The Ih option 23
The 11 option 23
The I m option 23
The I p option 24
The I r option. 24
The Is option. 24
The I x option 24

Exiting Borland C++ 24
The components 25

The menu bar and menus 25
Shortcuts 26
Command sets 26

Borland C++ windows. 30
Window management 32

The status line 33
Dialog boxes 33

Check boxes and radio buttons 34
Input boxes and lists 35

Configuration and project files 36
The configuration file 36
Project files. .. 37

The project directory 38
Desktop files 38
Changing project files 38
Default files 38

The Turbo C++ for Windows IDE 39
Starting Turbo C++ for Windows 39

Command-line options 40
Command sets 40
Configuration and project files 41
Using the SpeedBar 42

Chapter 3 Menus and options
reference 45

== (System) menu .. 46
Repaint Desktop 46

Transfer items 46
File menu .. 47

New 47
Open 47
Using the File list box 48
Save 49
Save As 49
Save All 49
Change Dir 50
Print 51
Printer Setup 51
DOS Shell .. 51
Exit 52
Closed File Listing 52

Edit menu 52
Undo 53
Redo 53
Cut 54
Copy 54
Paste 54
Clear 54
Copy Example .. 55
Show Clipboard 55

Search menu 56
Find 56
Replace 58
Search Again .. 58
Go to Line Number 59
Previous Error .. 59
N ext Error 59
Locate Function. 59

Runmenu 59
Run 59

Source code the same 60
Source code modified 60

Program Reset .. 61
Go to Cursor 61
Trace Into. .. 61
Step Over .. 62
Arguments 63
Debugger .. 63
Debugger Options 64

Compile menu. .. 64
Compile 64

Make 64
Link 65
Build : 65
Information
Remove Messages

Debug menu Borland C++ only
Inspect

Ordinal Inspector windows
Pointer Inspector windows
Array Inspector windows
Structure and union Inspector
windows
Function Inspector windows
Class Inspector windows
Constant Inspector window
Type Inspector window

Evaluate/Modify
Call Stack

65
66
66
66
67
68
68

69
69
69
69
70
70
71

Watches 73
Add Watch. .. 73
Delete Watch 73
Edit Watch 73
Remove All Watches

Toggle Breakpoint
Breakpoints

Project menu
Open Project
Close Project
Add Item

74
74
74
76
76
77
77

Delete Item 77
Local Options 77
Include Files 78

Browse menu Turbo C++ only 79
Classes 80
Functions
Variables
Symbols
Rewind

80
80
81
81

Overview 81
Inspect 81
Goto 81

Options menu 81
The Set Application Options dialog
box 82

Compiler 84
Code Generation 84
Advanced Code Generation 86
Entry /Exit Code 88
C++ Options 90
Advanced C++ Options 92
Optimizations (Turbo C++ for
Windows) .. 94
Optimizations (Borland C++) 96
Source 98
Messages 99
Names 100

Transfer 100
Transfer macros 102

Make 103
Linker " 104
Librarian 107
Debugger. " 108
Directories 110
Environment 111

Preferences .. 111
Editor " 113
Mouse 114
Desktop 116
Startup 116
Colors .. " 117

Save " 118
Window menu 118

Size/Move 119
Zoom 119
Tile 119
Cascade 119
Arrange Icons 119
Next 120
Close 120
Close All .. 120
Message 120
Output 120
Watch " 121
User Screen 121
Register 121
Project. .. 122
Project Notes 122
List All 122

iii

Help menu .. 122
Contents .. 123
Index 124
Topic Search 124
Previous Topic 124
Help on Help .. 124
Active File 125
About 125

Chapter 4 Managing multi-file
projects 127

Sampling the project manager 128
Error tracking 131

Stopping a make 131
Syntax errors in multiple source files . 132
Saving or deleting messages 133
Autodependency checking 133

Using different file translators 134
Overriding libraries 136
More Project Manager features 137

Looking at files in a project 139
Notes for your project 139

Chapter 5 The command-line com-
piler 141

Using the command-line compiler 141
DPMIINST .. 142
Running BCC 142
Using the options 142

Option precedence rules 143
Syntax and file names 146
Response files 147
Configuration files 147

Option precedence rules 148
Compiler options 148

Memory model 149
Macro definitions 150
Code-generation options 151

The -v and -vi options 155
Optimization options 156
Source code options 156
Error-reporting options 157

ANSI violations. 157
Frequenterrors 158

Portability warnings 158
C++ warnings 158

Segment-naming control 159
Compilation control options 161
EMS and expanded memory options . 163
C++ virtual tables. 164
C++ member pointers 165
Template generation options 166

Linker options .. 167
Environment options 167
Backward compatibility options 168

Searching for include and library
files 169
File-search algorithms 170

An annotated example 171

Appendix A The Optimizer 173
What is optimization? 173

When should you use the
optimizer? 173

Optimization options 174
Backward compatibility 175

A closer look at the Borland C++
Optimizer .. 176

Global register allocation. 176
Dead code elimination. 176
Common subexpression
elimination .. 177
Loop invariant code motion 177
Copy propagation. 178
Pointer aliasing 178

iv

Induction variable analysis and
strength reduction 180
Loop compaction 180
Code size versus speed
optimizations 181
Structure copy inlining 181
Code compaction 181
Redundant load suppresion 182
Intrinsic function inlining 182
Register parameter passing 183
_fastcall modifier 183
Parameter rules 184
Function naming 184

Appendix 8 Editor reference 185
Block commands 187
Other editing commands 189

Appendix C Using EasyWin 191
DOS to Windows made easy 191
_InitEasyWin() 192

Added functions 193

Appendix D Precompiled headers 195
How they work .. 195

Drawbacks .. 196
Using precompiled headers 196

Setting file names 197
Establishing identity 197
Optimizing precompiled headers 198

Index 201

T A B L E s

2.1: General hot keys 27 3.1: Information settings 66
2.2: Menu hot keys 27 3.2: Format specifiers recognized in
2.3: Editing hot keys 28 de bugger expressions " 72
2.4: Window management hot keys 28 5.1: Command-line options summary ... 143
2.5: Online Help hot keys 28 A.1: Optimization options summary 174
2.6: Debugging/Running hot keys 29 A.2: Parameter types and possible registers
2.7: Manipulating windows 32 used 184
2.8: General hot keys 40 B.1: Editing commands 185
2.9: Editing hot keys 40 B.2: Block commands in depth 188
2.10: Online Help hot keys41 B.3: Borland-style block commands 189
2.11: Compiling/Running hot keys 41 B.4: Other editor commands in depth ... 189

v

F G u

2.1: A typical window 31
2.2: A typical status line 33
2.3: A sample dialog box 34
3.1: The Open a File dialog box 47
3.2: The Save File As dialog box 49
3.3: The Change Directory dialog box 50
3.4: The Find Text dialog box 56
3.5: The Replace Text dialog box 58
3.6: The Breakpoints dialog box 74
3.7: The Breakpoint Modify/New dialog

box 75
3.8: The Override Options dialog box 77
3.9: The Include Files dialog box 78
3.10: Set Application Options 82
3.11: The Code Generation dialog box 84
3.12: The Advanced Code Generation dialog

box 86

vi

R E s

3.13: The Entry/Exit Code Generation dialog
box 88

3.14: The C++ options dialog box 90
3.15: Advanced C++ Options 92
3.16: The Turbo C++ for Windows

Optimization Options dialog box ... 95
3.17: The Borland C++ Optimization

Options dialog box 96
3.18: The Transfer dialog box 101
3.19: The Modify INew Transfer Item dialog

box 101
3.20: The Make dialog box 103
3.21: The Linker dialog box 104
3.22: The Libraries dialog box 106
3.23: The Librarian Options dialog box .. 107
3.24: The Debugger dialog box 108
3.25: The Startup Options dialog box ... 116
3.26: The Colors dialog box 118

N T R o D u c T o N

Borland C++ is a professional optimizing compiler for C++ and C
developers. With Borland C++, you get both C++ (AT&T v.2.1
compliant) and ANSI C. It is a powerful, fast, and efficient com
piler with which you can create practically any application,
including Microsoft Windows applications.

C++ is an object-oriented programming (OOP) language, and
allows you to take advantage of OOP's advanced design
methodology and labor-saving features. It's the next step in the
natural evolution of C. It is portable, so you can easily transfer
application programs written in C++ from one system to another.
You can use C++ for almost any programming task, anywhere.

What's in Borland C++

Chapter 1 tells you how to
install Borland C++. This

Introduction tells you where
you can find out more about

each of these features.

Introduction

Borland c++ includes the latest features programmers have asked
for:

• C and C++: Borland C++ offers you the full power of C and
C++ programming, with a complete implementation of the
AT&T v. 2.1 specification as well as a 100 % ANSI C compiler.
Borland C++ 3.0 also provides a number of useful C++ class
libraries, plus the first complete commercial implementation of
templates, which allow efficient collection classes to be built
using parameterized types.

• Global Optimization: a full suite of state-of-the-art optimization
options gives you complete control over code generation, so
you can program in the style you find most convenient, yet still
produce small, fast, highly efficient code.

• Faster compilation speed: Borland C++ 3.0 cuts compilation
time for C++ by up to half. Precompiled headers, a Borland
exclusive, significantly shorten recompilation time.

2

Optimizations are also performed at high speed, so you don't
have to wait for high quality code.

• DPMI Compiler: Compile huge programs limited only by the
memory on your system. Borland C++ 3.0 now uses the
industry-standard DPMI protected mode protocol that allows
the compiler (as well as the IDE, the linker, and other programs)
to be run in protected mode under DOS or Windows 386
enhanced mode.

• Microsoft Windows programming: Borland C++ 3.0 provides
complete support for developing Windows applications,
including dynamic link libraries (DLLs) and EXEs. Added
support for Windows programming includes the Resource
Compiler, the Help Compiler, and the Resource Workshop.
We've also included many sample C and C++ Windows
applications to help get you going.

• EasyWin: Automatic Windows-conversion feature lets you turn
standard DOS applications using printf, scanf, and other
standard I/O functions into Windows applications without
changing a single line of code. Just set a single compiler switch (or
select "Windows application" in the IDE), and your DOS
program runs in a window!

• Programmer's Platform: Borland C++ 3.0 comes with an
improved version of the Programmer's Platform, Borland's
open-architecture IDE that gives you access to a full range of
programming tools and utilities, including

• a multi-file editor, featuring both an industry-standard
Common User Access (CUA) interface and a familiar alternate
interface that is compatible with previous versions of Borland
C++

• advanced Turbo Editor Macro Language (TEML) and
compiler

• multiple overlapping windows with full mouse support

• integrated resource linking, making it easy to develop
Windows applications in a single environment

• fully integrated debugger running in DPMI, for debugging
large applications

• a built-in assembler and support for inline assembler code

• complete undo and redo capability with an extensive buffer

and much more.

Borland C++ User's Guide

Introduction

• Windows-hosted IDE: The included Turbo C++ for Windows
IDE lets you edit, compile, and run your programs under
Windows, so you don't have to task switch between Windows
and a DOS compatibility box to create Windows programs. This
greatly increases your productivity by allowing you to
program, compile, link, debug and execute completely within
the Windows environment.The Turbo C++ for Windows IDE
also includes

• built-in ObjectBrowser that lets you visually explore your
class hierarchies, functions and variables, locate inherited
function and data members, and instantly browse the source
code of any element you select

• visual SpeedBar for instant point-and-click access to
frequently-used menu selections

• WinSight: Windows message-tracing utility lets you see inside
your program's interaction with Windows.

• VROOMM: Borland C++'s Virtual Run-time Object-Oriented
Memory Manager lets you overlay your code without
complexity. You select the code segments for overlaying;
VROOMM takes care of the rest, doing the work needed to fit
your code into 640K.

• Help: Online context-sensitive hypertext help, with copy-and
paste program examples for practically every function.

• Streams: Borland C++ includes full support for C++ iostreams,
plus special Borland extensions to the streams library that allow
you to position text, set screen attributes, and perform other
manipulations to streams within the Windows environment.

• Container classes: Advanced container class libraries giving
you sets, bags, lists, arrays, B-trees and other reusable data
structures, implemented both as templates and as object-based
containers for maximum flexibility.

• Windows API: The complete Windows API documentation in
online help.

Other features:

• Over 200 new library functions for maximum flexibility and
compatibility.

• Complex and BCD math, fast huge arithmetic.

• Heap checking and memory management functions, with far
objects and huge arrays.

3

• Run-time library in a DLL for Windows applications.

• New BCI fonts and BCI support for the full ASCII character set.

II Shared project, configuration, and desktop files to let
programmers work with the same environment whether they
use the Programmer's Platform or the Windows-hosted IDE.

• Response files for the command-line compiler.

• NMAKE compatibility for easy transition from Microsoft C.

Hardware and software requirements

Borland C++ runs on the IBM PC compatible family of computers,
including the AT and PS/2, along with all true IBM compatible
286,386 or 486 computers. Borland C++ requires DOS 3.31 or
higher, a hard disk, a floppy drive, and at least 640K plus 1MB of
extended memory; it runs on any 80-column monitor. The Turbo
C++ for Windows IDE requires protected mode Windows 3.0 or
higher, at least 2MB of extended memory and a Windows
compatible monitor).

Borland C++ includes floating-point routines that let your pro
grams make use of an 80x87 math coprocessor chip. It emulates
the chip if it is not available. Though it is not required to run
Borland C++, the 80x87 chip can significantly enhance the
performance of your programs that use floating point math
operations.

Borland C++ also supports (but does not require) any Windows
compatible mouse. The Resource Workshop requires a mouse.

The Borland C++ implementation

4

Borland C++ is a full implementation of the AT&T C++ version
2.1. It also supports the American National Standards Institute
(ANSI) C standard. In addition, Borland C++ includes certain
extensions for mixed-language and mixed-model programming
that let you exploit your PC's capabilities. See Chapters 1 through
4 in the Programmer's Guide for a complete formal description of
Borland C++.

Borland C++ User's Guide

The Borland C++ package

The User's Guide tells you
how to use this product; the

Programmer's Guide and the
Library Reference focus on

programming in C and C++.
the Tools and Utilities Guide

describes and gives you
instructions for using

specialized programming
tools.

The User's Guide

Introduction

Your Borland C++ package consists of a set of disks and nine
manuals:

• Borland C++ User's Guide (this manual)

• Borland C++ Tools and Utilities Guide

• Borland C++ Programmer's Guide

• Borland C++ Library Reference

• Resource Workshop User's Guide

• Turbo Debugger User's Guide

• Turbo Profiler User's Guide

• Turbo Assembler User's Guide

• Turbo Assembler Quick Reference

In addition to these manuals, you'll find a convenient Quick
Reference card. The disks contain all the programs, files, and
libraries you need to create, compile, link, and run your Borland
C++ programs; they also contain sample programs, many
standalone utilities, a context-sensitive help file, an integrated
debugger, and additional C and C++ documentation not covered
in these guides.

The User's Guide introduces you to Borland C++ and shows you
how to create and run both C and C++ programs. It consists of in
formation you'll need to get up and running quickly, and
provides reference chapters on the features of Borland C++:
Borland's Programmer's Platform, including the editor and Project
Manager, as well as details on using the command-line compiler.
These are the chapters in this manual:

Introduction introduces you to Borland C++ and tells you where
to look for more information about each feature and option.

Chapter 1: Installing Borland C++ tells you how to install Borland
C++ on your system; it also tells you how to customize the colors,
defaults, and many other aspects of Borland C++.

Chapter 2: IDE Basics introduces the features of the
Programmer's Platform, giving information and examples of how

5

6

Tools and Utilities
Guide

to use the IDE to full advantage. It includes information on how
to start up and exit from the IDE.

Chapter 3: Menus and options reference provides a complete
reference to the menus and options in the Programmer's Platform.

Chapter 4: Managing multi-file projects introduces you to Borland
C++'s built-in project manager and shows you how to build and
update large projects from within the IDE.

Chapter 5: The command-line compiler tells how to use the
command-line compiler. It also explains configuration files.

Appendix A: The Optimizer introduces the concepts of compiler
optimization, and describes the specific optimization strategies
and techniques available in Borland C++.

Appendix B: Editor reference provides a convenient command
reference to using the editor with both the CVA command
interface and the Borland C++ alternate interface.

Appendix C: Using EasyWin provides a guide to using the
EasyWin functions to quickly and easily turn your DOS programs
into applications that run under Microsoft Windows.

Appendix D: Precompiled headers tells you how to use Borland
C++'s exclusive precompiled headers feature to save substantial
time when recompiling large projects, especially Windows
applications.

This volume introduces you to the many programming tools and
utility programs provided with Borland C++. It contains informa
tion you'll need to make full use of the Borland C++ program
ming environment, including the Make utility, the Turbo
Librarian and Linker, the WinSight program and special utilities
for Microsoft Windows programming.

Chapter 1: Import library tools tells you how to use the IMPDEF,
IMPLIB, and IMPLIBW utilities to define and specify import
libraries.

Chapter 2: Make: The program manager introduces the Borland
C++ MAKE utility, describes its features and syntax, and presents
some examples of usage.

Borland C++ User's Guide

The Programmer's
Guide

Introduction

Chapter 3: TUB: The Turbo librarian tells you how to use the
Borland C++ Turbo Librarian to combine object files into
integrated library (.LIB) files.

Chapter 4: TUNK: The Turbo linker is a complete reference to the
features and functions of the Turbo Linker (TLINK).

Chapter 5: Using WinSight provides instructions for using Win
Sight to inspect your programs running under Microsoft
Windows.

Chapter 6: RC: The Windows resource compiler tells you how to
use the Resource Compiler to compile .RC scripts into .RES
resource files for your Windows programs.

Chapter 7: HC: The Windows Help compiler contains instructions
for using the Help Compiler to create help systems for your
Microsoft Windows programs.

Chapter A: Error messages lists and explains run-time, compile
time, linker, librarian, and Help compiler errors and warnings,
with suggested solutions.

The Programmer's Guide provides useful material for the experi
enced C user: a complete language reference for C and C++,
writing Windows applications, a cross-reference to the run-time
library, C++ streams, memory models, mixed-model program
ming, video functions, floating-point issues, and overlays, plus
error messages.

Chapters 1 through 4: Lexical elements, Language structure, C++
specifics, and The preprocessor, describe the Borland C++
language.

Chapter 5: Using C++ streams tells you how to use the C++
iostreams library, as well as special Borland C++ extensions for
Windows.

Chapter 6: The container class library tells you how to use the
Borland C++ container class library in your programs.

Chapter 7: Converting from Microsoft C provides some
guidelines on converting your Microsoft C programs to Borland
C++.

7

The Library
Reference

Chapter 8: Building a Windows application introduces you to the
concepts and techniques of writing applications for Microsoft
Windows using Borland C++.

Chapter 9: DOS memory management covers memory models,
mixed-model programming, and overlays.

Chapter 10: Math covers floating-point and BCD math.

Chapter 11: Video functions is devoted to handling text and
graphics in Borland C++.

Chapter 12: BASM and inline assembly tells how to write inline
assembly language functions that can be assembled with the
built-in assembler (BASM) and used within your Borland C++
program.

Appendix A: ANSI implementation-specific standards describes
those aspects of the ANSI C standard that have been left loosely
defined or undefined by ANSI, and how Borland has chosen to
implement them.

The Library Reference contains a detailed list and explanation of
Borland C ++'s extensive library functions and global variables.

Chapter 1: The main function describes the main function.

Chapter 2: The run-time library is an alphabetically arranged
reference to all Borland C++ library functions.

Chapter 3: Global variables defines and discusses Borland C++'s
global variables.

Appendix A: Library cross-reference provides a complete
indexed locator reference to all Borland C++ library functions.

Using the manuals

8

The manuals are arranged so that you can pick and choose among
the books and chapters to find exactly what you need to know at
the time you need to know it. The User's Guide provides informa
tion on how to use Borland C++ as a product; the Programmer's
Guide and the Library Reference provide material on programming
issues in C and C++.

Borland C++ User's Guide

Programmers
learning C or C++

Experienced C
and C++

programmers

Chapter 1 of this manual (the User's Guide) tells you how to install
Borland C++ and how to customize Borland C++'s defaults. The
remaining chapters of the User's Guide are for use as reference
chapters to using Borland C++'s IDE, editor, project manager,
command-line compiler, precompiled headers, and online
utilities.

If you don't know C or C++, there are many good products on the
market that can get you going in these languages. You can use
Chapters 1 through 5 in the Programmer's Guide for reference on
specific technical aspects of Borland C++.

Your next step is to start programming in C and C++. You'll find
Chapter 2, "The run-time library" in the Library Reference to be a
valuable reference on how to use each function. Chapter 1, "The
main function," provides information on aspects of the main
function that is seldom found elsewhere. Or, you might prefer to
use the online help; it contains much of the same information as
the Library Reference, and includes programming examples that
you can copy into your own programs. Once you have grown
comfortable with programming, you may want to move into the
more advanced issues covered in the Programmer's Guide.

If you are an experienced C or C++ programmer and you've
already installed Borland C++, you'll probably want to jump
immediately to the Programmer's Guide and to the Library Reference.

The Programmer's Guide covers certain useful programming issues,
such as C++ streams, assembly language interface, memory
models, video functions, overlays, and far and huge pointers. If
you are interested in writing a Windows application in C++,
Chapter 8, "Building a Windows application," provides an
overview.

Typefaces and icons used in these books

Introduction

All typefaces and icons used in this manual were produced by
Borland's Sprint: The Professional Word Processor, on a PostScript
laser printer.

9

Monospace type

ALL CAPS

()

<>

Boldface

Italics

Keycaps

This typeface represents text as it appears onscreen or in a pro
gram. It is also used for anything you must type literally (such as
Be to start up Borland C++).

We use all capital letters for the names of constants and files.

Square brackets [] in text or DOS command lines enclose optional
items that depend on your system. Text of this sort should not be
typed verbatim.

Angle brackets in the function reference section enclose the names
of include files.

Borland C++ function names (such as printf), class, and structure
names are shown in boldface when they appear in text (but not in
program examples). This typeface is also used in text for Borland
C++ reserved words (such as char, switch, near, and cdecl), for
format specifiers and escape sequences (%d, \t), and for
command-line options (fA).

Italics indicate variable names (identifiers) that appear in text.
They can represent terms that you can use as is, or that you can
think up new names for (your choice, usually). They are also used
to emphasize certain words, such as new terms.

This typeface indicates a key on your keyboard. For example,
"Press Esc to exit a menu."

This icon indicates keyboard actions.

This icon indicates mouse actions.

~ This icon indicates language items that are specific to C++. It is
used primarily in the Programmer's Guide.

01 This icon indicates material that applies to Turbo C++ for
~ Windows, or which relates specifically to writing a Windows

program.

How to contact Borland

10

Borland offers a variety of services to answer your questions
about this product. Be sure to send in the registration card;

Borland C++ User's Guide

Resources in your

registered owners are entitled to technical support and may
receive information on upgrades and supplementary products.

package This product contains many resources to help you:

Borland resources

800-822-4269 (voice)
Tech fax

408-439-9096 (modem)
File Download BBS

2400 Baud

Online information services

408-438-5300 (voice)
Technical Support

6 a.m. to 5 p.m. PST

Introduction

• The manuals provide information on every aspect of the
program. Use them as your main information source .

• While using the program, you can press F1 for help.

II Many common questions are answered in the DOC files listed
in the README file located in the program directory.

Borland Technical Support publishes technical information sheets
on a variety of topics and is available to answer your questions.

TechFax is a 24-hour automated service that sends free technical
information to your fax machine. You can use your touch-tone
phone to request up to three documents per call.

The Borland File Download BBS has sample files, applications,
and technical information you can download with your modem.
No special setup is required.

Subscribers to the CompuServe, GEnie, or BIX information
services can receive technical support by modem. Use the
commands in the following table to contact Borland while
accessing an information service.

Service Command

CompuServe GO BORLAND
BIX JOIN BORLAND
GEnie BORLAND

Address electronic messages to Sysop or All. Don't include your
serial number; messages are in public view unless sent by a
service's private mail system. Include as much information on the
question as possible; the support staff will reply to the message
within one working day.

Borland Technical Support is available weekdays from 6:00 a.m.
to 5:00 p.m. Pacific time to answer any technical questions you
have about Borland products. Please call from a telephone near

11

12

408-438-5300 (voice)
Customer Service

7 a.m. to 5 p.m. PST

your computer, and have the program running. Keep the
following information handy to help process your call:

• Product name, serial number, and version number.

• The brand and model of any hardware in your system.

• Operating system and version number. (Use the DOS command
VER to find the version number.)

• Contents of your AUTOEXEC.BAT and CONFIG.SYS files
(located in the root directory (\) of your computer's boot disk).

• The contents of your WIN.lNI and SYSTEM.lNI files (located in
your Windows directory).

• A daytime phone number where you can be contacted.

• If the call concerns a problem, the steps to reproduce the
problem.

Borland Customer Service is available weekdays from 7:00 a.m. to
5:00 a.m. Pacific time to answer any non-technical questions you
have'about Borland products, including pricing information,
upgrades, and order status.

Borland C++ User's Guide

c H

Your Borland C++ package
includes two different

versions of Borland C++: the
IDE (Programmer's Platform)

the DOS command line
version. It also includes Turbo
C++ for Windows, which runs

as a true Windows
application.

If you don't already know
how to use DOS commands,
refer to your DOS reference

manual before setting up
Borland C++ on your system.

A p T E R

1

Installing Borland C++

Borland C++ comes with an automatic installation program called
INSTALL. Because we used file-compression techniques, you
must use this program; you can't just copy the Borland C++ files
onto your hard disk. Instead, INSTALL automatically copies and
uncompresses the Borland C++ and Turbo C++ for Windows files.
For reference, the README file on the installation disk includes a
list of the distribution files.

We assume you are already familiar with DOS commands. For
example, you'll need the DISKCOPY command to make backup
copies of your distribution disks. Make a complete working copy
of your distribution disks when you receive them, then store the
original disks away in a safe place.

None of Borland's products use copy protection schemes. If you
are not familiar with Borland's No-Nonsense License Statement,
read the agreement included with your Borland C++ package. Be
sure to mail us your filled-in product registration card; this guar
antees that you'll be among the first to hear about the hottest new
upgrades and versions of Borland C++.

This chapter contains the following information:

• installing Borland C++ and Turbo C++ for Windows on your
system

• accessing the README file
• accessing the HELPME! file
• a pointer to more information on Borland's example programs

Chapter 7, Installing Borland C++ 13

Using INSTALL

We recommend that you
read the README file before

installing.

• information about customizing Borland C++ (set or change
defaults, colors, and so on)

Once you have installed Borland C++, you'll be ready to start
digging into Borland C++. But certain chapters and manuals were
written with particular programming needs in mind. The
Introduction tells where to find out more about Borland C++'s
features in the documentation set.

Among other things, INSTALL detects what hardware you are
using and configures Borland C++ appropriately. It also creates
directories as needed and transfers files from your distribution
disks (the disks you bought) to your hard disk. Its actions are
self-explanatory; the following text tells you all you need to know.

To install Borland C++:

1. Insert the installation disk (disk 1) into drive A. Type the
following command, then press Enter.

A: INSTALL

2. Press Enter at the installation screen.

3. Follow the prompts.

4. At the end of installation, you may want to add this line to
your CONFIG.SYS file:

FILES = 20

and this line to your AUTOEXEC.BAT file (or modify your
existing PATH statement, if you already have one):

PATH = C:\BORLANDC\BIN

Important! When it is finished, INSTALL allows you to read the latest about
Borland C++ in the README file, which contains important, last
minute information about Borland C++. The HELPME!.DOC file
also answers many common technical support questions.

14

The next time you start Microsoft Windows (after you exit from
the README file viewer) a Borland C++ program group will be
created and installed in Program Manager. The program group
will contain icons for the following Borland C++ programs and
utilities:

• Borland C++

Borland C++ User's Guide

• Turbo Profiler

• Turbo Debugger for Windows

• Turbo C++ for Windows

• Resource Workshop
.WinSight

• 1m port Librarian

• Fconvert utility

Important! INSTALL assumes that Microsoft Windows is installed in the
directory you specified as your Windows directory during
installation. It also assumes that the Program Manager starts up
automatically as your Windows "shell" when you start Windows.
If you normally use a different command shell from Program
Manager, should edit the SYSTEM.INI file in your Windows
directory to include the line

Protected mode

SHELL=PROGMAN.EXE

otherwise you may get a message saying "cannot communicate
with Program Manager" when you first open Windows and
Borland C++ tries to create a new Program Manager group. Once
Turbo C++ for Windows and the other tools are installed in a
Program Manager group, you can examine their settings, then
reinstall them in your alternate command shell if you want.

and memory Borland C++ utilizes the DPMI (Dos Protected Mode Interface) to
run the compiler in protected mode, giving you access to all your
computer's memory without swapping. The protected mode
interface is completely transparent to the user, and you should
never have to even think about it, with a few possible exceptions.

DPMIINST Once such exception may be when you run Borland C++ for the
very first time. Borland C++ uses an internal database of various
machine characteristics to determine how to enable protected
mode on your machine, and configures itself accordingly. If your
machine is not recognized by Borland C++, you will receive an
error message saying

Machine not in database (RUN DPMIINST)

If you get this message, simply run the DPMIINST program by
typing (at the DOS prompt)

Chapter 7, Installing Borland C++ 15

16

DPMIINST

and following the program's instructions. DPMIINST runs your
machine through a series of tests to determine the best way of
enabling protected mode, and automatically configures Borland
C++ accordingly. Once you have run DPMIINST, you will not
have to run it again.

DPMIMEM By default, the Borland C++ DPMI interface will allocate all
available extended and expanded memory for its own use. If you
don't want all of the available memory to be taken by the DPMI
kernel, an environment variable must be set which specifies a
maximum amount of memory to use. This variable can be entered
directly at the DOS prompt or inserted as a line in your
AUTOEXEC.BAT file, using the syntax

DPMIMEM=MAXMEM nnnn

where nnnn is the amount of memory in kilobytes.

For example, if a user has a system with 4MB and wants the
DPMI kernel to use 2MB of it, leaving the other 2MB alone, the
DPMIMEM variable would be set as follows:

c:> set DPMIMEM=MAXMEM 2000

When running under Windows 3.0 in 386 enhanced mode, it is
not necessary to set the DPIMEM variable; instead, you should
use a Windows PIF file to configure the memory usage of Borland
C++.

Under Windows standard mode, we suggest that the Borland
DPMI kernel be pre-loaded prior to running windows. This is
done by running DPMIRES.EXE (see the discussion of DPMIRES
which follows). When using DPMIRES is conjunction with
Windows, you should always set the DPMIMEM variable to less
than the maximum available memory to insure that Windows will
have enough physical memory to operate.

DPMIRES DPMIRES is a Borland utility that can be used with BC 3.0 to
increase performance of some of the Borland language tools
under certain conditions. In particular, the performance of the
following tools can be enhanced through its use:

.BCC

.TASMX

Bor/and C++ User's Guide

Extended and
expanded memory

.TLINK

When run, DPMIRES will enable the Dos Protected Mode
interface and spawn a DOS command shell. The applications
mentioned above will load faster into this shell. Typing 'EXIT' to
the shell will remove it.

DPMIRES is especially useful if you are compiling with MAKER
(the real mode MAKE) or with batch files, instead of using the
protected mode MAKE. In this situation, it will be more efficient
to run DPMIRES and then run MAKER or the batch file, since the
compiler will load faster on each invocation.

NOTE: If you are running under DPMIRES, you may not run
Windows 3.0 in enhanced mode. You must first exit to DOS and
then run Windows 3.0.

Once the DPMI kernel is loaded (either by running BC or through
the DPMIRES utility), the Borland C++ integrated development
environment interacts directly with the DPMI server to allocate its
memory, both to load and while operating. By default, the IDE
will use all the extended memory reserved by the DPMI kernel
and all available EMS (expanded) memory, the EMS memory
being used as a swap device.

The Options I Environment I Startup ... dialog and the IX and IE
command line switches can be used to change this behavior.
These setting do not affect the memory reserved by the kernel
itself, only how much of it is used by the IDE.

The Use Extended Memory dialog item (and the IX command line
option) can be used to tell BC how much of the memory reserved
by the DPMI kernel to use. The main reason for limiting BC's use
of the kernel's memory is to allow running of other DPMI
applications from within the IDE's (using the Transfer capability),
or from a DOS shell opened from the IDE.

The Use EMS Memory dialog item (and the IE command line
option) are used to tell the IDE how many 16K EMS pages to use
as a swap device. Unless the kernel has been instructed to leave
aside some available memory, there will be no EMS pages
available to the IDE.

Chapter 1, Installing Borland C++ 17

Running Be

Laptop systems

The README file

18

Once you have installed Borland C++, and if you're anxious to get
up and running, change to the Borland C++ \BIN directory, type
Be and press Enter. Or, you may wish to run Turbo C++ for
Windows, by clicking on the Turbo C++ for Windows icon in the
Program Manager. Otherwise, continue reading this chapter and
the next for important start-up information.

After you have tried out the IDE, you may want to permanently
customize some of the options. The Options I Environment I
Startup and Options I Environment I Colors selections in the IDE
make this easy to do; see page 19 for more information.

If you have a laptop computer (one with an LCD or plasma
display), in addition to carrying out the procedures given in the
previous sections, you need to set your screen parameters before
using Borland C++. The IDE works best if you type MODE BW80 at
the DOS command line before running Borland C++.

Although you could create a batch file to take care of this for you,
you can also easily install Borland C++ for a black-and-white
screen from within the IDE, using the Options I Environment I
Startup option. Choose "Black and White / LCD" from the Video
options group.

The README file contains last-minute information that may not
be in the manuals.

Borland C++ automatically places you in the README file when
you run the INSTALL program. To access the README file at a
later time you can use the Borland C++ README program by
typing at the DOS command line:

README

Borland C++ User's Guide

The HELPME!.DOC file

Your installation disk also contains a file called FILELIST.DOC,
which lists every file on the distribution disks, with a brief
description of what each one contains, and HELPME!.DOC,
which contains answers to problems that users commonly run
into. Consult it if you find yourself having difficulties. You can
use the README program to look at HELPME!.DOC. Type this at
the command line:

README HELPME!.DOC

Example programs

Your Borland C++ package includes the source code for a large
number of example programs in C and C++ for both DOS and
Windows, including a complete spreadsheet program called
Turbo Calc. These programs are located in the .. \EXAMPLES
directory (and subdirectories) created by INSTALL. The .. \
EXAMPLES directory also contains subdirectories for examples of
the other tools and utilities that come with Borland C++ (like the
Turbo Assembler, Debugger and Resource Workshop). Before you
compile any of these example programs, you should read the
printed or online documentation for them.

Customizing the IDE

For detailed information on
the menus and options in the

IDE see Chapter 2, "IDE
Basics, " and Chapter 3,

"Menus and options
reference. "

Borland C++ version 3.0 allows you completely customize your
installation from within the IDE itself, using the various options
that appear under the Options I Environment menu. These options
allow you to specify the video mode, editing modes, menu colors,
and default directories, among others.

Chapter 7, Installing Borland C++ 19

20 Borland C++ User's Guide

c H

Chapter 2, IDE basics

A p T E R

2

IDE basics

Borland's Programmer's Platform, also known as the integrated
development environment or IDE, has everything you need to
write, edit, compile, link, and debug your programs. It provides

• multiple, movable, resizable windows

• mouse support

• dialog boxes
• cut, paste, and copy commands that use the Clipboard

• full editor undo and redo

• examples ready to copy and paste from Help

• a built-in assembler

• quick transfer to other programs (like Turbo Assembler) and
back again

• an editor macro language

This chapter explains how to start up and exit the Borland C++
IDE, discusses its generic components, and explains how
configuration and project files work. Since the Turbo C++ for
Windows IDE comes in this package, the last section describes its
environment. Most of the features of the Borland C++ IDE are in
the Turbo C++ for Windows IDE also.

21

Starting and exiting

Borland C++ runs only in
protected mode.

Command-line

To start the IDE, type BC at the DOS prompt. You can follow it
with one or more command-line options.

options The command-line options for Borland C++'s IDE are Ib,/d,/e,/h,
II, 1m, Ip, Irx, Is, and Ix which use this syntax:

BC [option [option ... J] [sourcename I projectname [sourcenameJ]

where option can be one or more of the options, sourcename is any
ASCII file (default extension assumed), and projectname is your
project file (it must have the .PRJ extension).

To turn an option off, follow the option with a minus sign. For
example,

Be le-

turns off the default swap to expanded memory option.

The /b option The Ib option causes Borland C++ to recompile and link all the
files in your project, print the compiler messages to the standard
output device, and then return to the operating system. This
option allows you to start Borland C++ from a batch file so you
can automate project builds. Borland C++ determines what .EXE
to build based on the project file you specified on the command
line or the file loaded in the active edit window if no project file is
found.

To specify a project file, enter the BC command followed by Ib and
then the project file name. For example,

Be Ib myproj.prj

This command loads a file in the editor and then compiles and
links it:

Be myprog Ib

The /d option The Id option causes Borland C++ to work in dual monitor mode
if it detects appropriate hardware (for example, a monochrome
card and a color card); otherwise, the Id option is ignored. Using
dual monitor mode makes it easier to watch a program's output
while you are debugging the program.

22 Borland C++ User's Guide

If your system has two monitors, DOS treats one monitor as the
active monitor. Use the DOS MODE command to switch between
the two monitors (MODE C080, for example, or MODE MONO). In dual
monitor mode, the normal Borland C++ screen appears on the
inactive monitor, and program output will go to the active
monitor. So when you type BC I d at the DOS prompt on one
monitor, Borland C++ comes up on the other monitor. When you
want to test your program on a particular monitor, exit Borland
C++, switch the active monitor to the one you want to test with,
and then issue the BC I d command again. Program output then
goes to the monitor where you typed the BC command.

Keep the following in mind when using the Id option:

• Don't change the active monitor (by using the DOS MODE
command, for example) while you are in a DOS shell (File I DOS
Shell) .

• User programs that directly access ports on the inactive moni
tor's video card are not supported, and can cause unpredictable
results.

iii When you run or debug programs that explicitly make use of
dual monitors, do not use the Borland C++ dual monitor option
(ld).

The /e option The Ie option tells Borland C++ to swap to expanded memory if
necessary; it is on by default. The syntax for this option is as
follows:

Ie[=n]

where n equals the number of pages of expanded memory that
you want the IDE to use for swapping. A page is 16K.

The /h option If you type BC/h on the command line, you get a list of all the
command-line options available. Their default values are also
shown.

The /1 option Use the /I option if you're running Borland C++ on an LCD
screen.

The /m option The 1m option lets you do a make rather than a build (that is, only
outdated source files in your project are recompiled and linked).
Follow the instructions for the Ib option, but use 1m instead.

Chapter 2, IDE basics 23

24

The Ip option If your program modifies the EGA palette registers, use the Ip
option, which controls palette swapping on EGA video adapters.
The EGA palette is restored each time the screen is swapped.

In general, you don't need to use this option unless your program
modifies the EGA palette registers or unless your program uses
BGI to change the palette.

The Ir option Irx specifies the swap drive. If all your virtual memory fills up,
you can have Borland C++ swap to a drive you specify, usually a
RAM disk. The x in Irxis the letter of the fast swap drive. For
example, Ird will use drive D as the swap drive.

The Is option Using the Is option, the compiler allows the majority of available
memory to be allocated for its internal tables while compiling. If it
is compiling large modules,little memory may remain for the
needed overlays; therefore, the compiler may spend a long time
"thrashing," that is, swapping overlays in and out of memory.

If you specify Is-, the compiler won't permit its internal tables to
severely restrict the overlay space in memory. As a result, if you
are compiling very large modules, the compilation may fail and
you'll get an out-of-memory error, but the compiler won't thrash
excessively.

The Ix option Use the Ix switch to tell Borland C++ how much of the available
extended memory to use for its heap space.

Exiting Borland
C++

Ix

uses all available memory.

Ix[=n]

where n equals the amount of memory in kilobytes, let's you
specify how much extended memory should be used.

There are three ways to leave the IDE .

• Choose File I Exit to leave the IDE completely; you have to type
Be again to reenter it. You'll be prompted to save your
programs before exiting, if you haven't already done so.

Borland C++ User's Guide

You return to the IDE after
you exit the program you

transferred to.

• Choose File I DOS Shell to shell out from the IDE to enter
commands at the DOS command line. When you're ready to
return to the IDE, type EXIT at the command line and press Enter.
The IDE reappears just as you left it.

• Choose a program from the System menu (=) to temporarily
transfer to another program without leaving the IDE. You can
add new Transfer programs with the Options I Transfer
command.

The components

The menu bar
and menus

To cancel an action,
press Esc.

Chapter 2, IDE basics

There are three visible components to the IDE: the menu bar at the
top, the window area in the middle, and the status line at the bot
tom. Many menu items also offer dialog boxes. Before we describe
each menu item in the IDE, we'll explain these more generic
components.

The menu bar is your primary access to all the menu commands.
The menu bar is always visible except when you're viewing your
program's output or transferring to another program.

If a menu command is followed by an ellipsis (...), choosing the
command displays a dialog box. If the command is followed by
an arrow (~), the command leads to another menu (a pop-up
menu). If the command has neither an ellipsis nor an arrow, the
action occurs as soon as you choose the command.

Here is how you choose menu commands using the keyboard:

1. Press F10. This makes the menu bar active; the next thing you
type will relate to the items on the menu bar.

2. Use the arrow keys to select the menu you want to display.
Then press Enter.

As a shortcut for this step, you can just press the highlighted
letter of the menu title. For example, from the menu bar, press
E to move to and display the Edit menu. From anywhere,
press Alt and the highlighted letter (such as Alt+E) to display the
menu you want.

3. Use the arrow keys again to select a command from the menu
you've opened. Then press Enter.

25

Borland C++ uses only the left
mouse button. You can,

however, customize the right
button and make other

mouse option changes, by
choosing Options I

Environment I Mouse.

At this point, Borland C++ either carries out the command,
displays a dialog box, or displays another menu.

There are two ways to choose commands with a mouse:

• Click the desired menu title to display the menu and click the
desired command.

• Or, drag straight from the menu title down to the menu
command. Release the mouse button on the command you
want. (If you change your mind, just drag off the menu; no
command will be chosen.)

Note that some menu commands are unavailable when it would
make no sense to choose them. However, you can always get
Online Help about currently unavailable commands.

Shortcuts Borland C++ offers a number of quick ways to choose menu
commands. The click-drag method for mouse users is an example.
From the keyboard, you can use a number of keyboard shortcuts
(or hot keys) to access the menu bar and choose commands. Short
cuts for dialog boxes work just as they do in a menu. (But be
aware that you need to hold down Altwhile pressing the high
lighted letter when moving from an input box to a group of
buttons or boxes.) Here's a list of the shortcuts available:

Do this ...

Press Aft plus the highlighted
letter of the command (just
press the highlighted letter
in a dialog box). For the
:: menu, press Alt+Spacebar.

Type the keystrokes next to a
menu command.

To accomplish this ...

Display the menu or carry out the
command.

Carry out the command.

For example, to cut selected text, press Alt+E T (for Edit I Cut) or
you can just press Shift+Del, the shortcut displayed next to it.

Many menu items have corresponding hot keys; one- or two-key
shortcuts that immediately activate that command or dialog box.

Command sets Borland C++ has two command sets: the Common User Access
(CUA) command set, the standard used by most Windows
programs and the Alternate command set popularized in
previous Borland products. The shortcuts available to you differ
depending on which command set you use. You can select a

26 Borland C++ User's Guide

command set by choosing Options I Environment I Preferences
and then selecting the command set you prefer in the Preferences
dialog box.

If you are a long-time Borland language user, you may prefer the
Alternate command set.

The following tables list the most-used Borland C++ hot keys in
both command sets.

Table 2.1: General hot keys

CUA Alternate Menu item

F1

Ctrl+F6
F7

FB

F9
F10

F1
F2
F3
F4

F5
F6
F7

FB

F9
F10

Help
File I Save
File I Open
Run I Go to Cursor

Window I Zoom
Window I Next
Run I Trace Into

Run I Step Over

Compile I Make
(none)

Table 2.2: Menu hot keys

CUA

Alt+Spacebar
AIt+C
Alt+D
Alt+E
Alt+F
AIt+H
AIt+O
Alt+P
Alt+R
Alt+S
AIt+W
Alt+F4

Alternate

AIt+Spacebar
AIt+C
AIt+D
Alt+E
Alt+F
AIt+H
Alt+O
Alt+P
Alt+R
Alt+S
AIt+W
AIt+X

Chapter 2, IDE basics

Menu item

==menu
Compile menu
Debug menu
Edit menu
File menu
Help menu
Options menu
Project menu
Run menu
Search menu
Window menu
File I Exit

Function

Displays a help screen.
Saves the file that's in the active edit window.
Brings up a dialog box so you can open a file.
Runs your program to the line where the cursor is
positioned.
Zooms the active window.
Cycles through all open windows.
Runs your program in debug mode, tracing into
functions.
Runs your program in debug mode, stepping over
function calls.
Invokes the Project Manager to make an .EXE file.
Takes you to the menu bar.

Function

Takes you to the == (System) menu
Takes you to the Compile menu
Takes you to the Debug menu
Takes you to the Edit menu
Takes you to the File menu
Takes you to the Help menu
Takes you to the Options menu
Takes you to the Project menu
Takes you to the Run menu
Takes you to the Search menu
Takes you to the Window menu
Exits Borland C++ to DOS

27

Table 2.3: Editing hot keys

CUA Alternate Menu item

Ctrl+lns Ctrl+lns Edit I Copy
Shift+Del Shift+Del Edit I Cut

Shift+lns Shift+lns Edit I Paste

Ctrl+Del Ctrl+Del Edit I Clear

Alt+Bkspc Alt+Bkspc Edit I Undo

Alt+Shft+Bksp Alt+Shft+Bksp Edit I Redo
F3 Ctrl+L Search I Search Again

F2 File I Save
F3 File I Open

Table 2.4: Window management hot keys

CUA Alternate Menu item

Alt+# AIt+#

Alt+O Alt+O Window I List
Ctrl+F4 Alt+F3 Window I Close
Shift+F5 Window I Tile
Alt+F5 AIt+F4 Debug I Inspect
Shift+F5 Alt+F5 Window I User Screen

F5 Window I Zoom
Ctrl+F6 F6 Window I Next

Ctrl+F5

Table 2.5: Online Help hot keys

CUA Alternate Menu item

F1 F1 Help I Contents
F1 F1 F1 F1

Shift+F1 Shift+F1 Help I Index
Alt+F1 Alt+F1 Help I Previous Topic
Ctrl+F1 Ctrl+F1 Help I Topic Search

28

Function

Copies selected text to Clipboard
Places selected text in the Clipboard, deletes
selection
Pastes text from the Clipboard into the
active window
Removes selected text from the window
and doesn't put it in the Clipboard
Restores the text in the active window to a
previous state
"Undoes" the previous Undo.
Repeats last Find or Replace command
Saves the file in the active edit window
Lets you open a file

Function

Displays a window, where # is the number
of the window you want to view
Displays a list of open windows
Closes the active window
Tiles all open windows
Opens an Inspector window
Displays User Screen
Zooms/unzooms the active window
Switches the active window
Changes size or position of active window

Function

Opens a context-sensitive help screen
Brings up Help on Help. (Just press F1
when you're already in the help system.)
Brings up Help index
Displays previous Help screen
Calls up language-specific help in the active
edit window

Borland C++ User's Guide

Table 2.6: Debugging/Running hot keys

CUA

AIt+FS
Alt+F7
AIt+FB
Alt+F9
Ctrl+F2

Ctr/+FS
FS
Ctrl+F9

F7
FB
F9

Alternate

Alt+F4
Alt+F7
Alt+FB
Alt+F9
Ctr/+F2
Ctr/+F3
Ctrl+F4
Ctrl+F7
Ctr/+FB
Ctr/+F9
F4
F7
FB
F9

Menu item

Debug I Inspect
Search I Previous Error
Search I Next Error
Compile I Compile
Run I Program Reset
Debug I Call Stack
Debug I Evaluate/Modify
Debug I Add Watch
Debug I Toggle Breakpoint
Run I Run
Run I Go To Cursor
Run I Trace Into
Run I Step Over
Compile I Make

Function

Opens an Inspector window
Takes you to previous error
Takes you to next error
Compiles to .OB]
Resets running program
Brings up call stack
Evaluates an expression
Adds a watch expression
Sets or clears conditional breakpoint
Runs program
Runs program to cursor position
Executes tracing into functions
Executes skipping function calls
Makes (compiles/links) program

Native makes the Alternate
command set the default for
Borland C++, the DOS-hosted
IDE, and the CUA command
set the default for Turbo C++

for Windows.

If you choose Options I Preferences to display the Preferences
dialog box, you'll notice a third command set option: Native. This
is the default setting.

If you write applications for Windows, you may do some of your
development with Borland C++ and some with Turbo C++ for
Windows. Both IDEs use the same configuration file,
TCCONFIG.TC, which determines which command set is in
effect. Therefore, if you have selected the CUA command set for
Turbo C++, that will be the one in effect the next time you start up
the Borland C++.

Chapter 2, IDE basics

But maybe this is not what you want. When you are working with
the DOS product, Borland C++, you might prefer the Alternate
command set, and when you use Turbo C++ for Windows, you
might want to use the CUA command set. The Native option lets
this happen.

With Native selected, Borland C++ uses the Alternate command
set automatically, and Turbo C++ uses the CVA command set.

If you change the command set in either Borland C++ or Turbo
C++, you change it for both products.

While Native seems to imply that the default command set for
Borland C++ is Alternate, we recommend you choose the CUA
command set.

29

Borland C++
windows

If you exit Borland C++ with a
file open in a window, you

are returned to your desktop,
open file and all, when you

next use Borland C++.

30

Which command set you choose also determines which keys you
use within the editor, and, to some extent, how the editor works.
See more about using command sets in the editor in Appendix B.

Most of what you see and do in the IDE happens in a window. A
window is a screen area that you can open, close, move, resize,
zoom, tile, and overlap.

You can have many windows open in the IDE, but only one
window can be active at any time. The active window is the one
that you're currently working in. Any command you choose or
text you type generally applies only to the active window. (If you
have the same file open in several windows, the action will apply
to the file everywhere that it's open.)

You can spot the active window easily: It's the one with the
double-lined border around it. The active window always has a
close box, a zoom box, and scroll bars. If your windows are over
lapping, the active window is always the one on top of all the
others (the frontmost one).

There are several types of windows, but most of them have these
things in common:

• a title bar
• a close box
1:1 scroll bars
.a zoom box
• a window number (1 to 9)

A edit window also displays the current line and column num
bers in the lower left corner. If you've modified your file, an aste
risk (*) will appear to the left of the column and line numbers.

The following figure shows a typical window:

Borland C++ User's Guide

Figure 2.1
A typical window

Shortcut: Double-click the
title bar of a window to zoom

or restore it.

Alt+O gives you a list of 01/
windows you have open.

Chapter 2, IDE basics

Cl ick the
~to
quickly close
the window.

I
T

The mI!Imli contains
the name of the wi ndow.

T T

[1]======= Window Title ====== : =[t]~

I ...
The fi rst ni ne open

r--______ m_t:_n:_, ~_:~__,;:r:} ,~ I
:::::::::=::=:::=m=m:::,::::=:::=::~::::'::::::i=:l::':;:::::':'::::,:::.::::=::::::=:::=::=J

.6. .6.

L-I _________ I Drag any corner to make
wi ndows 1 arger or sma 11 er

The close box of a window is the box in the upper left corner. Click
this box to quickly close the window. (Or choose Window I Close.)
The Inspector and Help windows are considered temporary; you
can close them by pressing Esc.

The title bar, the topmost horizontal bar of a window, contains the
name of the window and the window number. Double-clicking
the title bar zooms the window. You can also drag the title bar to
move the window around.

The zoom box of a window appears in the upper right corner. If the
icon in that corner is an up arrow (t), you can click the arrow to
enlarge the window to the largest size possible. If the icon is a
doubleheaded arrow (0, the window is already at its maximum
size. In that case, clicking it returns the window to its previous
size. To zoom a window from the keyboard, choose Window I
Zoom.

The first nine windows you open in Borland C++ have a window
number in the upper right border. You can make a window active

31

Scroll bars also show you
where you are in your file.

N.

(and thereby bring it to the top of the heap) by pressing Alt in
combination with the window number. For example, if the Help
window is #5 but has gotten buried under the other windows,
AIt+5 brings it to the front.

Scroll bars are horizontal or vertical bars that look like this:

g"'III"'''III''''''III''''''III'''''III'''''''''''''III'''C'''III'''''''', .. , .. ,"""', .. " .. ,', , " .. ,", .. ' .. ' .. '111"' "", , .. "~
11111111111111111111 ... 111111111111111 .. 111111 ... 1111 11 11.111111.111111111111111111111111111.111111111111111111111111111111111 .. 1 .. 1111111111111111
111 ... 111 1111111 ... 1111 11.11 ... 11111111.11111 .. 111 11111111111111111.111 .. 11111111 ... 111111"

You use these bars with a mouse to scroll the contents of the
window. Click the arrow at either end to scroll one line at a time.
(Keep the mouse button pressed to scroll continuously.) You can
click the shaded area to either side of the scroll box to scroll a
page at a time. Finally, you can drag the scroll box to any spot on
the bar to quickly move to a spot in the window relative to the
position of the scroll box.

You can drag any corner to make a window larger or smaller. To
resize using the keyboard, choose Size/Move from the Window
menu.

Window management Table 2.7 gives you a quick rundown of how to handle windows
in Borland C++. Note that you don't need a mouse to perform
these actions-a keyboard works just fine.

32

Table 2.7
Manipulating windows To accomplish this:

Open an edit window

Open other windows

Close a window

Activate a window

Move the active window

Use one of these methods

Choose File I Open to open a file and
display it in a window.

Choose the desired window from the
Window menu

Choose Close from the Window menu or
click the close box of the window.

Click anywhere in the window, or

Press Altplus the window number (1 to 9,
in the upper right border of the window),
or

Choose Window I List or press Alt+O and
select the window from the list, or

Choose Window I Next to make the next
window active (next in the order you first
opened them).

Drag its title bar. Or choose Window I
Size/Move and use the arrow keys to place

Borland C++ User's Guide

The status line

Table 2.7: Manipulating windows (continued)

Resize the active window

Zoom the active window

the window where you want it, then press
Enter.

Drag any corner. Or choose Window I
Size/Move and press Shift while you use
the arrow keys to resize the window, then
press Enter.

Click the zoom box in the upper right
corner of the window, or

Double-click the window's title bar, or

Choose Window I Zoom.

The status line appears at the bottom of the screen; it

• reminds you of basic keystrokes and shortcuts (or hot keys)
applicable at that moment in the active window.

~ • lets you click the shortcuts to carry out the action instead of

Figure 2.2
A typical status line

Dialog boxes

Chapter 2, IDE basics

choosing the command from the menu or pressing the shortcut
keystroke.

• tells you what the program is doing. For example, it displays
Saving filename ... when an edit file is being saved.

• offers one-line hints on any selected menu command and dialog
box items.

The status line changes as you switch windows or activities. One
of the most common status lines is the one you see when you're
actually writing and editing programs in an edit window. Here is
what it looks like:

Fl Help F2 Save F3 Open F7 Trace Fa Step F9 Make FlO Menu

When you've selected a menu title or command, the status line
changes to display a one-line summary of the function of the
selected item.

A menu command with an ellipsis after it (. ..) leads to a dialog box.
Dialog boxes offer a convenient way to view and set multiple
options. When you're making settings in dialog boxes, you work
with five basic types of onscreen controls: radio buttons, check

33

Figure 2.3
A sample dialog box

If you have a color monitor,
Borland C++ uses different

colors for various elements of
the dialog box.

You can select another
button with Tab: press Enter to

choose that button.

34

Check boxes and
radio buttons

[X] Checked check box
[] Unchecked check box

boxes, action buttons, input boxes, and list boxes. Here's a sample
dialog box that illustrates some of these items:

This dialog box has three standard buttons: OK, Cancel, and Help.
If you choose OK, the choices in the dialog box are made; if you
choose Cancel, nothing changes and no action is made, but the
dialog box is put away. Choose Help to open a Help window
about this dialog box. Esc is always a keyboard shortcut for
Cancel (even if no Cancel button appears).

If you're using a mouse, click the button you want. When you're
using the keyboard, press Alt and the highlighted letter of an item
to activate it. For example, Alt+K selects the OK button. Press Tab or
Shift+ Tab to move forward or back from one item to another in a
dialog box. Each element is highlighted when it becomes active.

In this dialog box, OK is the default button, which means you need
only press Enter to choose that button. (On monochrome systems,
arrows indicate the default; on color monitors, default buttons are
highlighted.) Be aware that tabbing to a button makes that button
the default.

When you select a check box, an x appears in it to show you it's
on. An empty box indicates it's off. To change the status of a check
box, click it or its text, press Tab until the check box is highlighted
and then press Spacebar, or select Alt and the highlighted letter. You
can have any number of check boxes checked at any time.

If several check boxes apply to a topic, they appear as a group. In
that case, tabbing moves to the group. Once the group is selected,
use the arrow keys to select the item you want, and then press
Spacebar to check or uncheck it. On monochrome monitors, the
active check box or group of check boxes will have a chevron
symbol (») to the left and right. When you press Tab, the chevrons
move to the next group of checkboxes or radio buttons.

Borland C++ User's Guide

Radio buttons are so called
because they act just like the
buttons on a car radio. There

is always one-and only
one-button pushed in at a

time. Push one in, and the
one that was in pops out.

() None
(.) Emulation
() 8087
() 80287

Input boxes and lists

You can control whether
history lists are saved to the

desktop using Options I
Environment I Desktop.

Chapter 2, IDE basics

Radio buttons differ from check boxes in that they present
mutually exclusive choices. For this reason, radio buttons always
come in groups, and only one radio button can be on in anyone
group at anyone time. To choose a radio button, click it or its text.
From the keyboard, select Alt and the highlighted letter, or press
Tab until the group is highlighted and then use the arrow keys to
choose a particular radio button. Press Tab or Shift+ Tab again to
leave the group with the new radio button chosen. The column to
the left gives an example of a set of radio buttons.

Input boxes let you type in text. Most basic text-editing keys work
in the text box (for example, arrow keys, Home, End, and
insert/overwrite toggles by Ins). If you continue to type once you
reach the end of the box, the contents automatically scroll. If
there's more text than what shows in the box, arrowheads appear
at the end (~and ~). You can click the arrowheads to scroll or drag
the text. If you need to enter control characters (such as AL or AM)
in the input box, then prefix the character with a AP. So, for
example, to enter A L into the input box, hold down the etrl key
and press P L. (This capability is useful for search strings.)

If an input box has a down-arrow icon to its right, there is a
history list associated with that input box. Press Enter to select an
item from this list. In the list you'll find text you typed into this
box the last few times you used this dialog box. The Find box, for
example, has such a history list, which keeps track of the text you
searched for previously. If you want to reenter text that you
already entered, press J, or click the ~ icon. You can also edit an
entry in the history list. Press Esc to exit from the history list
without making a selection.

Here is what a history list for the Find text box might look like if
you had used it six times previously:

35

Text to find •••••••• 11

struct date
printf(
char buf[7]
/*
return(O
returnO

A final component of many dialog boxes is a list box, which lets
you scroll through and select from variable-length lists (often file
names) without leaving a dialog box. If a blinking cursor appears
in the list box and you know what you're looking for, you can
type the word (or the first few letters of the word) and Borland
C++ will search for it.

You make a list box active by clicking it or by choosing the high
lighted letter of the list title (or press Tab until it's highlighted).
Once a list box is displayed, you can use the scroll box to move
through the list or press t or J, from the keyboard.

Configuration and project files

The configuration
file

36

With configuration files, you can specify how you want to work
within the IDE. Project files contain all the information necessary
to build a project, but don't affect how you use the IDE.

The configuration file, TCCONFIG.TC, contains only
environmental (or global) information. The information stored in
TCCONFIG.TC file includes

• editor key binding and macros
• editor mode setting (such as autoindent, use tabs, etc.)
• mouse preferences
• auto-save flags

The configuration file is not required to build programs defined
by a project.

When you start a programming session, Borland C++ looks for
TCCONFIG.TC first in the current directory and then in the

Borland C++ User's Guide

Project files

Chapter 2, IDE basics

directory that contains BC.EXE. Turbo C++ also looks in the
current directory but, if it doesn't find TCCONFIG.TC, it looks in
the directory that contains TCW.EXE.

The IDE places all information needed to build a program into a
binary project file, a file with a .PRJ extension. Project files contain
information on all other settings and options including

• compiler, linker, make and librarian options

• directory paths
• list of all files that make up the project

• special translators (such as Turbo Assembler)

In addition, the project file contains other general information on
the project, such as compilation statistics (shown in the project
window), and cached autodependency information.

Project files for the IDE correspond to the .CFG configuration files
that you supply to the command-line compiler (the default
command-line compiler configuration file is TURBOC.CFG). The
PRJCFG utility can convert .PRJ files to .CFG files and .CFG files
to .PRJ files.

You can load project files in any of three ways:

1. When starting Borland C++, give the project name with the
.PRJ extension after the Be command; for example,

BC myproj.PRJ

2. You must use the .PRJ extension to differentiate it from source
files.

3. If there is only one .PRJ file in the current directory, the IDE
assumes that this directory is dedicated to this project and
automatically loads it. Thus, typing BC alone while the current
directory contains one project file causes that project file to be
loaded.

4. From within the IDE, you load a project file using the Project I
Open Project command.

37

The project directory

Desktop files

You can set some of these
options on or off using

Options I Environment I
Desktop.

When a project file is loaded from a directory other than the
current directory, the current DOS directory is set to where the
project is loaded from. This allows your project to be defined in
terms of relative paths in the Options I Directories dialog box and
also allows projects to move from one drive to another or from
one directory branch to another. Note, however, that changing
directories after loading a project may make the relative paths
incorrect and your project unbuildable. If this happens, change
the current directory back to where the project was loaded from.

Each project file has an associated desktop file (prjname.DSK) that
file contains state information about the associated project. While
none of its information is needed to build the project, all of the
information is directly related to the project. The desktop file
includes

• the context information for each file in the project (for example,
the position in the file)

• the history lists for various input boxes (for example, search
strings, file masks, and so on)

• the layout of the windows on the desktop

• the contents of the Clipboard

• watch expressions

• breakpoints

Changing project files Because each project file has its own desktop file, changing to
another project file causes the newly loaded project's desktop to
be used, which can change your entire window layout. When you
create a new project (by using Project I Open Project and typing in
a new .PRJ file), the new project's desktop inherits the previous
desktop. When you select Project I Close Project, the default
project is loaded and you get the default desktop and project
settings.

Default files When no project file is loaded, there are two default files that
serve as global place holders for project- and state-related infor
mation: TCDEF.DPR and TCDEF.DSK files, collectively referred
to as the default project.

38 Borland C++ User's Guide

In Turbo C++ for Windows,
the default files are

TCDEFWDPR and
TCDEFWDSK.

These files are usually stored in the same directory as BC.EXE,
and are created if they are not found. When you run the IDE from
a directory without loading a project file, you get the desktop and
settings from these files. These files are updated when you change
any project-related options (for example, compiler options) or
when your desktop changes (for example, the window layout).

When you start a new project, the options you set in your
previous project will be in effect.

The Turbo C++ for Windows IDE

Starting Turbo
C++ for Windows

Chapter 2, IDE basics

The Turbo C++ for Windows IDE has everything you need to
write, edit, compile, and link your programs in a Windows
hosted environment. You can even start up the powerful Turbo
Debugger for Windows without leaving the IDE.

The Turbo C++ IDE is based on Windows Multiple Document
Interface (MOl). If you are familiar with other Windows
programs, you'll feel right at home with the Turbo C++ IDE.

As you do with other Windows products, double-click the Turbo
C++ icon in the Program Manager to start Turbo C++.

If you have more than one project, you might want to create an
icon for each project. Here's how to create a project icon:

• Choose File I New.
• Select Program Item and the New Program Object dialog box

appears.

• Type in a description for your project, and, in the command
line text box, type TCW followed by the project file name
including the full path.

Now when you double-click the icon in the Program Manager,
your project will load into Turbo C++.

39

Command-line options You can specify two command-line options when you start Turbo
C++: /b for building a project or 1m for doing a make on a project.
To specify either of these options:

• Select the Turbo C++ icon in the Program Manager.

• Choose File I Run.
• Add the command-line option you want to the command line

in the command-line text box and choose OK.

When you use either of these options, your messages are
appended to a file named the same as your project file except it
carries the extension .MSG. For example, if your project file is
MYPROJ.PRJ, the message file is MYPROJ.MSG.

Command sets
Just as Borland C++ does, Turbo C++ has two command sets: the
Common User Access (CUA) command set used by most
Windows programs, and the Alternate command set. The menu
shortcuts available to you differ depending on which command
set you use. You can select a command set by choosing Options I
Preferences and then selecting the command set you prefer in the
Preferences dialog box.

Here are the menu shortcuts in the Turbo C++ IDE:

Table 2,8: General hot keys

CUA Alternate

F2
F3

Alt+F4 AIt+X
Alt+Space AIt+Space

Menu item

File I Save
File I Open
File I Exit
(none)

Table 2,9: Editing hot keys

CUA Alternate Menu item

Ctrl+lns Ctrl+lns Edit I Copy
Shift+Del Shift+Del Edit I Cut

Shift+lns Shift+lns Edit I Paste

Ctrl+Del Ctrl+Del Edit I Clear

40

Function

Saves the file that's in the active edit window
Brings up a dialog box so you can open a file
Exits Turbo C++
Takes you to the Control menu

Function

Copies selected text to Clipboard
Places selected text in the Clipboard, deletes
selection
Pastes text from the Clipboard into the active
window
Removes selected text from the window and
doesn't put it in the Clipboard

Borland C++ User's Guide

Table 2.9: Editing hot keys (continued)

AIt+Bkspc AIt+Bkspc Edit I Undo

Alt+Shft+BkspAlt+Shft+Bksp Edit I Redo
F3 Ctrl+L Search I Search Again

Table 2.10: Online Help hot keys

CUA

Shift+F1
Ctrl+F1

Alternate

Shift+F1
Ctrl+F1

Menu item

Help I Index
Help I Topic Search

Table 2.11: Compiling/Running hot keys

CUA

Alt+F?
Shift+F4
Ctrl+F9
F9

Alt+F9

Alternate

AIt+F?
AIt+FB
Ctri+F9
F9

Alt+F9

Menu item

Search I Previous Error
Search I Next Error
Run I Run
Compile I Make

Compile I Compile

Restores the text in the active window to a
previous state.
"Undoes" the previous Undo.
Repeats last Find or Replace command

Function

Brings up Help index
Calls up language-specific help in the active edit
window

Function

Takes you to previous error
Takes you to next error
Runs program
Invokes Project Manager to make an .EXE, .DLL,
or .LIB file
Compiles file in active edit window

Although there are only two command sets, there is a third
command set option: Native. It's purpose is to make switching
between the Borland C++ and the Turbo C++ IDEs easier. See
page 29 for information about the Native option.

Which command set you choose also determines which keys you
use within the editor, and, to some extent, how the editor works.
See more about using command sets in the editor in Appendix B.

Configuration
and project files

Chapter 2, IDE basics

Turbo C++ handles project management just as it does for
Borland C++. See page 36 for information about configuration,
project, and desktop files.

41

42

Using the
SpeedBar Turbo C++ for Windows has a SpeedBar you can use as a quick

way to choose menu commands and other actions with your
mouse. The first time you start Turbo C++ for Windows, the
SpeedBar will be a horizontal grouping of buttons just under the
menu bar. You can use it as it is, change it to be a vertical bar that
appears on the left side of the Turbo C++ desktop window, or
change it to be a pop-up palette you can move anywhere on your
screen. You can also turn it off. To reconfigure the SpeedBar,
choose Options I Environment I Desktop and select the option you
want.

The buttons on the SpeedBar represent menu commands. They
are shortcuts for your mouse, just as certain key combinations are
shortcuts when you use your keyboard. To choose a command,
click a button with your mouse. If you click the File I Open button,
for example, Turbo C++ responds just as if you chose the Open
command on the File menu.

The SpeedBar is context sensitive. Which buttons appear on it
depend on which is your active window: the Turbo C++ desktop
window, an edit window, the Project window, or the Message
window.

These are the buttons that appear on the SpeedBar:

Help Search again

Open a file Cut to Clipboard

Save file Copy to Clipboard

Search for text Paste from Clipboard

Borland C++ User's Guide

Chapter 2, IDE basics

Undo View include files

[~;I ~
Compile Add item to project

I!~f)
Make Delete item from project

Edit source file View file with error

Exit Turbo C++

Some of the buttons on the SpeedBar are occasionally dimmed,
just as some of the menu commands are. This means that, in the
current context, the command the button represents is not
available to you. For example, the Paste from Clipboard button
will be dimmed if there is nothing in your Clipboard.

43

44 Bor/and C++ User's Guide

c H A p T E R

3

Menus and options reference

This chapter provides a reference to each menu option in the IDE.
It is arranged in the order that the menus appear on the screen.
For information on starting and exiting the IDE, using the IDE
command-line options, and general information on how the IDE
works, see Chapter 2.

Next to some of the menu option descriptions in this reference
you'll see keyboard shortcuts, or hot keys. If a command set
appears above the hot key, the hot key is valid only in that
command set. If no command set appears, the hot key works in
both command sets. For example,

CUA this means Alt+F4 is a hot key in the CUA command set,
[ill[E)

Alternate this means Alt+X is a hot key in the Alternate command set,

[ill 0
[]!ill ~ and this means Ctrl+lns is a hot key in both command sets.

If you are also using Turbo C++ for Windows, you'll find the IDE
very similiar to the Borland C++ IDE. Throughout this menu
reference, we've noted the major differences between the two
IDEs:

Borland C++ only _ This note indicates the feature occurs only in Borland C++.

o -The Windows icon indicates the discussion is relevant only to
lEJl Turbo C++ for Windows.

Chapter 3, Menus and options reference 45

• If neither of these items appear next to the text, the text is
relevant to both IDEs.

- (System) menu

46

Borland C++ only

~ I Spacebar I

Repaint Desktop

The:: menu appears on the far left of the menu bar. Alt+Spacebaris
the fastest way to get there. When you pull down this menu, you
see the Repaint Desktop command and the names of programs
you've installed with the Options I Transfer command.

Turbo C++ for Windows has a Control menu on the far left of the
Title bar. Alt+Spacebar is the shortcut key. The Control menu
primarily lets you manage windows through menu commands
instead of using a mouse. It is the standard Windows Control
menu.

Borland C++ only Choose:: I Repaint Desktop to have Borland C++ redraw the
screen. You may need to do this, for example, if a memory
resident program has left stray characters on the screen, or
possibly if you have screen-swapping turned off (Options I
Debugger and you've selected None for the Display swapping
option) and you're stepping through a program.

Transfer items
Borland C++ only A program that appears here on the:: menu can be run directly

from the IDE. You install programs here with the Options I
Transfer command. To run one of these programs, choose its
name from the:: menu.

If you have more than one program installed with the same
shortcut letter on this menu, the first program listed with that
shortcut will be selected. You can select the second item by
clicking it or by using the arrow keys to move to it and then
pressing Enter.

Borland C++ User's Guide

File menu

New

Open

:: I Repaint Desktop

The File menu lets you open and create program files in edit
windows. The menu also lets you save your changes, perform
other file functions, and quit the IDE.

The File I New command lets you open a new edit window with
the default name NONAMExx.CPP (the xx stands for a number
from 00 to 31). These NONAME files are used as a temporary edit
buffer; the IDE prompts you to name a NONAME file when you
save it.

Alternate The File I Open command displays a file-selection dialog box for
[][J you to select a program file to open in an edit window. Here is

what the box looks like:

Figure 3.1
The Open a File dialog box

~ TODODLGS.CPP
TODOLIST .CPP
TODOWIN.CPP
VCIRC.CPP
VPOINT .CPP
WHELLO.CPP
STARTUP\

The dialog box contains an input box, a file list, buttons labeled
Open, Replace, Cancel, and Help, and an information panel that
describes the selected file. Now you can do any of these actions:

• Type in a full file name and choose Replace or Open. Open
loads the file into a new edit window. Replace saves the file in
the active window and replaces it with the contents of the
selected file. An edit window must be active if you choose
Replace .

• Type in a file name with wildcards, which filters the file list to
match your specifications.

Chapter 3, Menus and options reference 47

File I Open

If you choose Replace
instead of Open, the

selected file replaces the file
in the active edit window

instead of opening up a new
window.

Using the File list
box

In Borland C++, you can also
type a lowercase letter to

search for a file name or an
uppercase letter to search

for a directory name.

Borland C++ only

48

• Press.J, to choose a file specification from a history list of file
specifications you've entered earlier .

• View the contents of different directories by selecting a
directory name in the file list.

The input box lets you enter a file name explicitly or lets you enter
a file name with standard DOS wildcards (* and ?) to filter the
names appearing in the history list box. If you enter the entire
name and press Enter, Borland C++ opens it. (If you enter a file
name that Borland C++ can't find, it automatically creates and
opens a new file with that name.)

If you press.J, when the cursor is blinking in the input box, a
history list drops down below the box. This list displays the last
15 file names or file name masks you've entered. Choose a name
from the list by double-clicking it or selecting it with the arrow
keys and pressing Enter.

Once you've typed in or selected the file you want, choose the
Open button (choose Cancel if you change your mind). You can
also just press Enter once the file is selected, or you can double
click the file name in the file list.

The Turbo C++ File Open dialog box doesn't have the Replace
button; therefore, you can only open another edit window rather
than replace the contents of the file in the window with the
contents of another file.

The File list box displays all file names in the current directory
that match the specifications in the input box, displays the parent
directory, and displays all subdirectories. Click the list box or
press Tab until the list box name is highlighted. You can now
press.J, or t to select a file name, and then press Enter to open it.
You can also double-click any file name in the box to open it. You
might have to scroll the box to see all the names. If you have more
than one pane of names, you can also use ---7 and f- .

The file information panel at the bottom of the Open a File dialog
box displays path name, file name, date, time, and size of the file
you've selected in the list box. As you scroll through the list box,
the panel is updated for each file.

Borland C++ User's Guide

File I Save

Save
Alternate The File I Save command saves the file in the active edit window

IT[] to disk. (This menu item is disabled if there's no active edit
window.) If the file has a default name (NONAMEOO.CPP, or the
like), the IDE opens the Save File As dialog box to let you rename
and save it in a different directory or on a different drive. This
dialog box is identical to the one opened for the Save As
command, described next.

Save As

Figure 3.2
The Save File As dialog box

Save All

The File I Save As command lets you save the file in the active edit
window under a different name, in a different directory, or on a
different drive. When you choose this command, you see the Save
File As dialog box:

~ TODODLGS. CPP
TODOLIST.CPP
TODOWIN.CPP
VCIRC.CPP
VPOINT .CPP
WHELLO.CPP
STARTUP\

Enter the new name, optionally with drive and directory, and
click or choose OK. All windows containing this file are updated
with the new name.

The File I Save All command works just like the Save command
except that it saves the contents of all modified files, not just the
file in the active edit window. This command is disabled if no edit
windows are open.

Chapter 3, Menus and options reference 49

File I Change Dir

Change Dir
Borland C++ only The File I Change Dir command lets you specify a drive and a

directory to make current. The current directory is the one
Borland C++ uses to save files and to look for files. (When using
relative paths in Options I Directories, they are relative to this
current directory only.)

Here is what the Change Directory dialog box looks like:

Figure 3.3
The Change Directory dialog

box

"50

There are two ways to change directories:

• Type in the path of the new directory in the input box and press
Enter, or

• Choose the directory you want in the Directory tree (if you're
using the keyboard, press Enterto make it the current directory),
then choose OK or press Esc.

If you choose the OK button, your changes will be made and the
dialog box put away. If you choose the Chdir button, the
Directory Tree list box changes to the selected directory and
displays the subdirectories of the currently highlighted directory
(pressing Enter or double-clicking on that entry gives you the same
result). If you change your mind about the directory you've
picked and you want to go back to the previous one (and you've
yet to exit the dialog box), choose the Revert button.

Opening a project in another directory automatically changes
directories, so you don't have to change directories before you
open another project.

Borland C++ User's Guide

Print
/n Bor/and c++, you can a/so

print the contents of the
Output window.

Printer Setup

Use this option if you want to
change your printer setup

from its normal configuration.

DOS Shell

File I Print

The File I Print command lets you print the contents of the active
edit window or the Message window. This command is disabled
if the active window can't be printed.

The Printer Setup command displays a Windows dialog box you
can use to set up your printer. When you installed Windows on
your system, you probably also installed one or more printer
drivers so you could print from Windows. The Printer Setup
command lets you select which printer you want to use for
printing from Turbo C++.

If you choose Setup in the Printer Setup dialog box, another
dialog box appears allowing you to select a paper size, specify a
particular font, and so forth. The options available to you will
depend on the capabilities of your printer.

Borland C++ only The File I DOS Shell command lets you temporarily exit Borland
C++ to enter a DOS command or program. To return to Borland
C++, type EXIT and press Enter.

You may find that when you're debugging there's not enough
memory to execute this command. If that's the case, terminate the
debug session by choosing Run I Program Reset.

-.. Don't install any TSR programs (like SideKick) or print a file with
the DOS print command while you've shelled to DOS, because
memory may get misallocated.

Note: In dual monitor mode, the DOS command line appears on
the Borland C++ screen rather than the User Screen. This allows
you to switch to DOS without disturbing the output of your pro
gram.

You can also use the transfer items on the:: (System) menu to
quickly switch to another program without leaving Borland C++.

Chapter 3, Menus and options reference 51

File I DOS Shell

Exit
eUA

cmcm
Alternate

cmCKJ
Closed File Listing

0[
JEl

Edit menu

52

The File I Exit command exits the IDE and removes it from
memory. If you have made any changes that you haven't saved,
the IDE asks you if you want to save them before exiting.

If you have opened files and then closed them, you'll see the last
five files listed at the bottom of the File menu. If you select the file
name on the menu, the file will open. When you work with many
open files, you can close some, yet open them again quickly using
the list and reduce the clutter on your desktop.

The Edit menu lets you cut, copy, and paste text in edit windows.
If you make mistakes, you can undo changes and even reverse the
changes you've just undone. You can also open a Clipboard
window to view or edit its contents, and copy text from the
Message and Output windows.

Before you can use most of the commands on this menu, you need
to know about selecting text (because most editor actions apply to
selected text). Selecting text means highlighting it. You can select
text either with keyboard commands or with a mouse; the princi
ple is the same even though the actions are different.

From the keyboard:

• Press Shift while pressing any key that moves the cursor.

See page 187 in Appendix B for additional text selection
commands.

With a mouse:

• To select text with a mouse, drag the mouse pointer over the
desired text. If you need to continue the selection past a
window's edge, just drag off the side and the window will
automatically scroll.

Borland C++ User's Guide

Undo

~ I Backspace I

Undo can undo groups of
commands.

Redo

~ I Shift II Backspace I

Edit

• To select a single word, double-click it.

• To extend or reduce the selection, Shift-click anywhere in the
document (that is, hold Shift and click).

Once you have selected text, the Cut and Copy commands in the
Edit menu become available.

The Clipboard is the magic behind cutting and pasting. It's a
special window that holds text that you have cut or copied, so
you can paste it elsewhere. The Clipboard works in close concert
with the commands in the Edit menu.

Here's an explanation of each command in the Edit menu.

The Edit I Undo command restores the file in the current window
to the way it was before the most-recent edit or cursor movement.
If you continue to choose Undo, the editor continues to reverse
actions until your file returns to the state it was in when you
began your current editing session.

Undo inserts any characters you deleted, deletes any characters
you inserted, replaces any characters you overwrote, and moves
your cursor back to a prior position. If you undo a block
operation, your file appears as it did before you executed the
block operation.

Undo doesn't change an option setting that affects more than one
window. For example, if you use the Ins key to change from Insert
to Overwrite mode, then choose Undo, the editor won't change
back to Insert mode.

The Group Undo option in the Editor Options dialog box
(Options I Environment I Editor) affects Undo and Redo. See page
113 for information on Group Undo.

The Edit I Redo command reverses the effect of the most recent
Undo command. The Redo command only has an effect
immediately after an Undo command or after another Redo
command. A series of Redo commands reverses the effects of a
series of Undo commands.

Chapter 3, Menus and options reference 53

Edit I Cut

54

Cut

I Shift I []ill

Copy

@ill~

The Edit I Cut command removes the selected text from your
document and places the text in the Clipboard. You can then
paste that text into any other document (or somewhere else in the
same document) by choosing Paste. The text remains selected in
the Clipboard so that you can paste the same text many times.

The Edit I Copy command leaves the selected text intact but places
an exact copy of it in the Clipboard. You can then paste that text
into any other document by choosing Paste.

If the Output or Message window is the active window when you
select Edit I Copy, the entire contents of the window buffer
(including any nonvisible portion) is copied to the Clipboard.

Borland C++ only You can also copy text from a Help window: With the keyboard,
use Shift and the arrow keys; with the mouse, click and drag the
text you want to copy.

Paste

IShiftl~

Clear

@ill[]ill

To copy text from a Help window in Turbo C++, display the text
you want to copy, then select Edit I Copy. The entire contents of
the window is copied to the Clipboard.

The Edit I Paste command inserts text from the Clipboard into the
current edit window at the cursor position. The text that is
actually pasted is the currently marked block in the Clipboard
window.

The Edit I Clear command removes the selected text but does not
put it into the Clipboard. This means you cannot paste the text as
you could if you had chosen Cut or Copy. The cleared text is not
retrievable unless you use the Edit I Undo command. Clear is
useful if you want to delete text, but you don't want to overwrite
text being held in the Clipboard. You can clear the Clipboard itself
by selecting all the text in the Clipboard, then choosing Edit I
Clear.

Borland C++ User's Guide

Edit I Copy Example

Copy Example
Borland C++ only The Edit I Copy Example command copies the preselected

example text in the current Help window to the Clipboard. The
examples are already predefined as blocks you can paste, so you
don't need to bother marking the example.

Show Clipboard
Borland C++ only

You can save the Clipboard
contents across sessions in

Borland C++. Choose
Options I Environment I

Desktop command and
select the Clipboard option.

To copy a Help example in Turbo C++ for Windows, follow these
steps:

1. Display the example you want to copy in the Help window.

2. Choose Edit I Copy and all the text in the Help window is
copied to the Clipboard.

3. Make the window you want the example copied to the active
window.

4. Choose Edit I Paste.

The Edit I Show Clipboard command opens the Clipboard
window, which stores the text you cut and copy from other
windows. The text that's currently selected (highlighted) is the
text Borland C++ uses when you choose Paste.

You can think of the Clipboard window as a history list of your
cuts and copies. And you can edit the Clipboard so that the text
you paste is precisely the text you want. Borland C++ uses
whatever text is selected in the Clipboard when you choose Paste.

The Clipboard window is just like other edit windows; you can
move it, resize it, and scroll and edit its contents. The only
difference you'll find in the Clipboard window is when you
choose to cut or copy text. When you select text in the Clipboard
window and choose Cut or Copy, the selected text immediately
appears at the bottom of the window. (Remember, any text that
you cut or copy is appended to the end of the Clipboard and
highlighted-so you can paste it later.)

The Edit I Show Clipboard option doesn't appear in the Turbo
C++ IDE. Of course, you can display the Clipboard at any time
using the Program Manager.

Chapter 3, Menus and options reference 55

Search

Search menu

56

Find
[9ill [QJ [I)

Figure 3.4
The Find Text dialog box

You can set up your right
mouse button to Find Text.

Choose Options I
Environment I Mouse and
select the Search option.

! [X] Case sensitive!

! [] Whole words OnlY!

![] Regular expression!

The Search menu lets you search for text, function declarations,
and error locations in your files.

The Search I Find command displays the Find Text dialog box,
which lets you type in the text you want to search for and set
options that affect the search.

The Find Text dialog box contains several buttons and check
boxes:

Check the Case Sensitive box if you do want the IDE to
differentiate uppercase from lowercase.

Check the Whole Words Only box if you want the IDE to search
for words only (that is, the string must have punctuation or space
characters on both sides).

Check the Regular Expression box if you want the IDE to
recognize GREP-like wildcards in the search string. The wildcards
are /\, $, ., *, +, [], and \. Here's what they mean:

/\

$

*

A circumflex at the start of the string matches the start of a
line.

A dollar sign at the end of the expression matches the end
of a line.

A period matches any character.

A character followed by an asterisk matches any number of
occurrences (including zero) of that character. For example,
bo* matches bot, b, boo, and also be.

Borland C++ User's Guide

Scope

Direction
(e) Forward
() Backward

(e) Global
() Selected text

Origin
(e) From cursor
() Ent ire scope

Search I Find

+ A character followed by a plus sign matches any number of
occurrences (but not zero) of that character. For example,
bo+ matches bot and boo, but not be or b.

[] Characters in brackets match anyone character that
appears in the brackets but no others. For example [bot]
matches b, a, or t.

[A] A circumflex at the start of the string in brackets means not.
Hence, [Abot] matches any characters except b, a, or t.

[-] A hyphen within the brackets signifies a range of
characters. For example, [b-o] matches any character from b
through o.

\ A backslash before a wildcard character tells Borland C++
to treat that character literally, not as a wildcard. For
example, \ A matches A and does not look for the start of a
line.

Enter the string in the input box and choose OK to begin the
search, or choose Cancel to forget it. If you want to enter a string
that you searched for previously, press.J,. (or Altt.J,. in Turbo C++)
to show a history list to choose from.

You can also pick up the word that your cursor is currently on in
the edit window and use it in the Find Text box by simply
invoking Find from the Search menu. In Borland C++, you can
take additional characters from the text by pressing ~ .

Choose from the Direction radio buttons to decide which
direction you want the IDE to search-starting from the origin
(which you can set with the Origin radio buttons).

Choose from the Scope buttons to determine how much of the file
to search in. You can search the entire file (Global) or only the text
you've selected.

Choose from the Origin buttons to determine where the search
begins. When Entire Scope is chosen, the Direction radio buttons
determine whether the search starts at the beginning or the end of
the scope. You choose the range of scope you want with the Scope
radio buttons.

Chapter 3, Menus and options reference 57

Search I Replace

Replace
Alternate The Search I Replace command displays a dialog box that lets you

[9ill[Q]~ type in text you want to search for and text you want to replace it
with.

Figure 3.5
The Replace Text dialog box

58

Search Again
eVA

[ill
Alternate

[9ill[IJ

The Replace Text dialog box contains several radio buttons and
check boxes-many of which are identical to the Find Text dialog
box, discussed previously. An additional checkbox, Prompt on
Replace, controls whether you're prompted for each change.

Enter the search string and the replacement string in the input
boxes and choose OK or Change All to begin the search, or choose
Cancel to forget it. If you want to enter a string you used
previously, press -l- (or Alt+-l- in Turbo C++) to show a history list
to choose from.

If the IDE finds the specified text and Prompt on Replace is on, it
asks you if you want to make the replacement. If you choose OK,
it will find and replace only the first instance of the search item. If
you choose Change All, it replaces all occurrences found, as
defined by Direction, Scope, and Origin.

The Search I Search Again command repeats the last Find or
Replace command. All settings you made in the last dialog box
used (Find or Replace) remain in effect when you choose Search
Again.

Borland C++ User's Guide

Go to Line
Number

Previous Error
[m[TI]

Next Error

[mCill

Locate Function

Search I Go to Line Number

The Search I Go to Line Number command prompts you for the
line number you want to find.

The IDE displays the current line number and column number in
the lower left corner of every edit window.

The Search I Previous Error command moves the cursor to the
location of the previous error or warning message. This command
is available only if there are messages in the Message window
that have associated line numbers.

The Search I Next Error command moves the cursor to the location
of the next error or warning message. This command is available
only if there are messages in the Message window that have
associated line numbers.

Borland C++ only The Search I Locate Function command displays a dialog box for
you to enter the name of a function to search for. This command is
available only during a debugging session.

Run menu

Run

@illCill

Enter the name of a function or press J. to choose a name from the
history list. As opposed to the Find command, this command
finds the declaration of the function, not instances of its use.

The Run menu's commands run your program, start and end
debugging sessions in Borland C++ and start Turbo Debugger for
Windows in the Turbo C++ IDE.

The Run I Run command runs your program, using any
arguments you pass to it with the Run I Arguments command. If
the source code has been modified since the last compilation, it

Chapter 3, Menus and options reference 59

RunlRun

Borland C++ only

If you want to have all
Borland C++ S features

available, keep Source
Debugging set to On.

Source code the same

will also invoke the Project Manager to recompile and link your
program. (The Project Manager is a program building tool
incorporated into the IDE; see Chapter 3, "The Project menu," for
more on this feature.)

If you're using Turbo C++ and aren't planning to debug your
program with Turbo Debugger for Windows, you can compile
and link it with the Source Debugging unchecked in the Options I
Linker dialog box. Your program will link faster.

The rest of this discussion about Run I Run applies only to
Borland C++.

If you don't want to debug your program in Borland C++, you
can compile and link it with the Source Debugging radio button
set to None (which makes your program link faster) in the
Options I Debugger dialog box. If you compile your program with
Source Debugging set to On, the resulting executable code will
contain debugging information that will affect the behavior of the
Run I Run command in the following ways:

If you have not modified your source code since the last
compilation,

• the Run I Run command causes your program to run to the next
breakpoint, or to the end if no breakpoints have been set.

Source code modified If you have modified your source code since the last cOlnpilation,

60

• and if you're already stepping through your program using the
Run I Step Over or Run I Trace Into commands, Run I Run
prompts you whether you want to rebuild your program:

• If you answer yes, the Project Manager recompiles and links
your program, and sets it to run from the beginning .

• If you answer no, your program runs to the next breakpoint
or to the end if no breakpoints are set.

• and if you are not in an active debugging session, the Project
Manager recompiles your program and sets it to run from the
beginning.

Pressing Ctrl+Break causes Borland C++ to stop execution on the
next source line in your program. If Borland C++ is unable to find
a source line, a second Ctrl+Break will terminate the program and
return you to the IDE.

Borland C++ User's Guide

RunlRun

¢ You can't run or debug Windows applications within the IDE. If
you try to do so, you'll get an error dialog box to that effect.

Program Reset
Borland C++ only

Go to Cursor
Borland C++ only

Trace Into
Borland C++ only

The Run I Program Reset command stops the current debugging
session, releases memory your program has allocated, and closes
any open files that your program was using. Use this command
when you want to cancel a debugging session or if there's not
enough memory to run transfer programs or invoke a DOS shell.

The Run I Go to Cursor command runs your program from the
beginning of the program (or the last executed statement if you're
in the middle of a debugging session) to the line the cursor is on
in the current edit window. If the cursor is at a line that does not
contain an executable statement, the command displays a
warning.

Go to Cursor does not set a permanent breakpoint, but it does
allow the program to stop at a permanent breakpoint if it
encounters one before the line the cursor is on. If this occurs, you
must move the cursor back and choose the Go to Cursor com
mand again.

Use Go to Cursor to advance the run bar (the highlighted line of
code that represents the next statement to be executed) to the part
of your program you want to debug. If you want your program to
stop at a certain statement every time it reaches that point, set a
breakpoint on that line.

Note that if you position the cursor on a line of code that is not
executed, your program will run to the next breakpoint or the end
if no breakpoints are encountered. You can always use Ctrl+Break
to stop a running program.

The Run I Trace Into command runs your program statement-by
statement. If you Trace Into a function call, the run bar stops on
the first line of the function instead of executing the function as a
single step (see Run I Step Over). If a statement contains no calls to
functions accessible to the debugger, Trace Into stops at the next
executable statement.

Chapter 3, Menus and options reference 61

Run I Trace Into

Step Over
Borland C++ only

62

Use the Trace Into command to enter a function called by the
function you are now debugging. The next section illustrates the
differences between the Trace Into and Step Over commands.

If the statement contains a call to a function accessible to the
debugger, Trace Into halts at the beginning of the function's
definition. Subsequent Trace Into or Step Over commands run the
statements in the function's definition. When the debugger leaves
the function, it resumes evaluating the statement that contains the
call; for example,

if (func1() && func2())
do_something() ;

With the run bar on the if statement, F7 will trace into func1;
when the run bar is on the return in func1, F7will trace into
func2. FB will step over func2 and stop on do_something.

Note: The Trace Into command recognizes only functions defined
in a source file compiled with these two options on:

• In the Advanced Code Generation dialog box (Options I
Compiler), the Debug Info in OBJs check box must be checked .

• The Source Debugging radio buttons must be set to On (in the
Options I Debugger dialog box).

The Run I Step Over command executes the next statement in the
current function. It does not trace into calls to lower-level
functions, even if they are accessible to the debugger.

Use Step Over to run the function you are now debugging, one
statement at a time without branching off into other functions.

Here is an example of the difference between Run I Trace Into and
Run I Step Over. These are the first 12 lines of a program loaded
into an edit window:

int findit (void)
{

return (2);

/* Line 1 */

Borland C++ User's Guide

Arguments

void rnain(void)
{

int i, j;

/* Line 6 */

i = findit(); /* Line 10 */
printf("%d\n", i); /* Line 11 */
j = 0; . . . /* Line 12 */

Run I Step Over

findit is a user-defined function in a module that has been
compiled with debugging information. Suppose the run bar is on
line 10 of your program. To position the run bar on line 10, place
the cursor on line 10 and either press F4 or select Run I Go to
Cursor .

• If you now choose Run I Trace Into, the run bar will move to the
first line of the findit function (line 1 of your program), allowing
you to step through the function .

• If you choose Run I Step Over, the find it function will execute
and the run bar will move to line 11.

If the run bar had been on line 11 of your program, it would have
made no difference which command you chose; Run I Trace Into
and Run I Step Over both would have executed the printf function
and moved the run bar to line 12. This is because the printf
function does not contain debug information.

The Run I Arguments command allows you to give your running
programs command-line arguments exactly as if you had typed
them on the DOS command line. DOS redirection commands will
be ignored.

When you choose this command, a dialog box appears with a
single input box. You only need to enter the arguments here, not
the program name. Arguments take effect when your program
starts.

Borland C++ only If you are already debugging and want to change the arguments,
select Program Reset and Run I Run to start the program with the
new arguments.

Debugger
The Run I Debugger command starts Turbo Debugger for
Windows so you can debug your program. Turbo C++ tells Turbo

Chapter 3, Menus and options reference 63

Run I Debugger

Debugger
Options

Compile menu

64

Compile

cmrnJ

Make

rnJ

Debugger which program to debug. Before you can use Turbo
Debugger for Windows to debug your program you must:

1. Choose Options I Compiler and in the Advanced Code
Generation dialog box check the Debug Info in OBJs option.

2. Choose Options I Linker and set Source Debugging to on.

The Run I Debugger Options command lets you pass arguments to
Turbo Debugger for Windows when you choose the Run I
Debugger command. See the Turbo Debugger for Windows manual
for a description of all options.

Use the commands on the Compile menu to compile the program
in the active window or to make or build your project. To use the
Compile, Make, Build, and Link commands, you must have a file
open in an active edit window or a project defined.

The Compile I Compile command compiles the file in the active
edit window. If the Project or Message Window is active,
Compile I Compile compiles the highlighted file.

When the compiler is compiling, a status box pops up to display
the compilation progress and results. When compiling is
complete, press any key to remove this box. In Turbo C++, press
Enter or choose OK. If any errors or warnings occurred, the
Message window becomes active and displays and highlights the
first error.

The Compile I Make command invokes the Project Manager to
compile and link your source code to the target executable or
library.

Compile I Make rebuilds only the files that aren't current.

The .EXE file name listed is derived from one of two names in the
following order:

Borland C++ User's Guide

Link

Build

Information

~

Compile I Make

• the project file (.PRJ) specified with the Project I Open Project
command

• the name of the file in the active edit window. If no project is
defined, you'll get the default project defined by the file
TCDEF.DPR, or, if you're using Turbo C++, the default project
defined by the file TCDEFW.DPR.

The Compile I Link command takes the files defined in the current
project file or the defaults and links them.

This command is similar to Compile I Make except that it rebuilds
all the files in the project whether or not they are current. It
performs the following steps:

1. It deletes the appropriate precompiled header (.SYM) file, if it
exists.

2. It deletes any cached auto dependency information in the
project.

3. It sets the date and time of all the project's .OBI files to zero.

4. Finally, it does a make.

If you abort a Build command by pressing Ctrl+Break in Borland
C++, pressing Esc or choosing Cancel in Turbo C++, or get errors
that stop the build, you can pick up where it left off simply by
choosing Compile I Make.

The Compile I Information command displays a dialog box with
information on the current file or project. The information is for
display only; you can't change it in the dialog box. The following
table tells you what each line in the File Information dialog box
means and where you can go to change the settings if you want
to.

Chapter 3, Menus and options reference 65

Compile I Information

Table 3.1
Information settings

You'll see only some of these
settings in Turbo C++.

Remove
Messages

Debug menu

66

Inspect

[]Oill]

Setting

Current directory
Current file
Expanded memory in use

Lines compiled
Total warnings
Total errors
Total time

Program loaded
Program exit code

Available memory

Meaning

The default directory.
File in the active window.
Amount of expanded memory reserved by
Borland C++.

Number of lines compiled.
Number of warnings issued.
Number of errors generated.
Amount of time your program has run
(debugger only).
Debugging status.
DOS termination code of last terminated
program.
Amount of memory available to Borland C++
in bytes.

The Compile I Remove Messages command removes all messages
from the Message window.

Borland C++ only

The Debug menu appears in Borland C++ only. The commands
on the Debug menu control all the features of the integrated
debugger. You specify whether or not debugging information is
generated in the Options I Debugger dialog box.

You can't run or debug Windows applications within the Borland
C++ IDE. If you try to do so, you'll get an error dialog box to that
effect. You must run them under Microsoft Windows and use
Turbo Debugger for Windows.

To debug applications in the Turbo C++ IDE, use Turbo Debugger
for Windows. Start Turbo Debugger with the Run I Debugger
command.

The Debug I Inspect command opens an Inspector window that
lets you examine and modify values in a data element. The type of
element you're inspecting determines the type of information

Borland C++ User's Guide

You can set up your right
mouse button to inspect.

Choose Options I
Environment I Mouse and
select the Inspect option.

Ordinal Inspector
windows

Debug I Inspect

presented in the window. There are two ways to open an
Inspector window:

II You can position the cursor on the data element you want to
inspect, then choose A/t+F4.

• You can also choose Debug I Inspect to bring up the Inspector
dialog box, and then type in the variable or expression you
want to inspect. Alternatively, you can position the cursor on an
expression, select Debug I Inspect, and, while in this dialog box,
press --7 to bring in more of the expression. Press Enter to
inspect it.

To close an Inspector window, make sure the window is active
(topmost) and press Esc or choose Window I Close.

Here are some additional inspection operations you can perform:

• Sub-inspecting: Once you're in an Inspector window, you can
inspect certain elements to isolate the view. When an inspector
item is inspectable, the status line displays the message".J
Inspect." To sub-inspect an item, you move the inspect bar to
the desired item and press Enter.

• Modifying inspector items: When an inspector item can be
modified, the status line displays" Alt+M Modify Field." Move
the cursor to the desired item and press A/t+M; a dialog box will
prompt you for the new value.

• Inspect range: When you are inspecting certain elements, you
can change the range of values that is displayed. For example,
you can range-inspect pointer variables to tell Borland C++
how many elements the pointer points to. You can range
inspect an inspector when the status line displays the message
"Set index range" and with the command A/tt/.

The following sections briefly describe the eight types of Inspector
windows possible.

Ordinal Inspector windows show you the value of simple data
items, such as

char x = 4;
unsigned long y = 123456L;

These Inspector windows only have a single line of information
following the top line (which usually displays the address of the
variable, though it may display the word "constant" or have other
information in it, depending on what you're inspecting). To the

Chapter 3, Menus and options reference 67

Debug I Inspect

68

Pointer Inspector
windows

Array Inspector
windows

left appears the type of the scalar variable (char, unsigned long,
and so forth), and to the right appears its present value. The value
can be displayed as decimal, hex, or both. It's usually displayed
first in decimal, with the hex values in parentheses (using the
standard C hex prefix of Ox).

If the variable being displayed is of type char, the character
equivalent is also displayed. If the present value does not have a
printing character equivalent, the backslash (\) followed by a hex
value displays the character value. This character value appears
before the decimal or hex values.

Pointer Inspector windows show you the value of data items that
point to other data items, such as

char *p = "abc";
int *ip = 0;
int **ipp = &ip;

Pointer Inspector windows usually have a top line that contains
the address of the pointer variable and the address being pointed
to, followed by a single line of information.

To the left appears [0], indicating the first member of an array. To
the right appears the value of the item being pointed to. If the
value is a complex data item such as a structure or an array, as
much of it as possible is displayed, with the values enclosed in
braces ({ and }).

If the pointer is of type char and appears to be pointing to a null
terminated character string, more information appears, showing
the value of each item in the character array. To the left in each
line appears the array index ([1], [2], and so on), and the value
appears to the right as it would in a scalar Inspector window. In
this case, the entire string is also displayed on the top line, along
with the address of the pointer variable and the address of the
string that it points to.

Array Inspector windows show you the value of arrays of data
items, such as

long thread[3J [4J [5J;
char message[J = "eat these words";

There is a line for each member of the array. To the left on each
line appears the array index of the item. To the right appears the
value of the item being pointed to. If the value is a complex data

Borland C++ User's Guide

Structure and union
Inspector windows

Function Inspector
windows

Class Inspector
windows

Debug I Inspect

item such as a structure or array, as much of it as possible is
displayed, with the values enclosed in braces ({ and n.

Structure and union Inspector windows show you the value of
the members in your structure, class, and union data items. For
example,

struct date {
int year;
char month;
char day;

} today;

union {
int small;
long large;

} holder;

Structures and unions appear the same in Inspector windows.
These Inspector windows have as many items after the address as
there are members in the structure or union. Each item shows the
name of the member on the left and its value on the right,
displayed in a format appropriate to its C data type.

Function Inspector windows show the return type of the function
at the bottom of the inspector. Each parameter that a function is
called with appears after the memory address at the top of the list.

Function Inspector windows give you information about the
calling parameters, return data type, and calling conventions for a
function.

The Class (or object) Inspector window lets you inspect the details
of a class variable. The window displays names and values for
members and methods defined by the class.

The window can be divided into two panes horizontally, with the
top pane listing the data fields or members of the class, and the
bottom pane listing the member function names and the function
addresses. Press Tab to move between the two panes of the Class
Inspector window.

If the highlighted data field is a class or a pointer to a class,
pressing Enter opens another Class Inspector window for the
highlighted type. In this way, you can quickly inspect complex
nested structures of classes with a minimum of keystrokes.

Chapter 3, Menus and options reference 69

Debug I Inspect

Constant Inspector
window

Type Inspector window

Evaluate/Modify

@illffiJ

The Evaluate button is the
default button; when you

tab to the New Value field,
the Modify button becomes

the default.

70

Constant Inspector windows are much like Ordinal Inspector
windows, but they have no address and can never be modified.

The Type Inspector window lets you examine a type. There is a
Type Inspector window for each kind of instance inspector
described here. The difference between them is that instance
inspectors display the value of a field and type inspectors display
the type of a field.

The Debug I Evaluate/Modify command evaluates a variable or
expression, displays its value, and, if appropriate, lets you modify
the value. The command opens a dialog box containing three
fields: the Expression field, the Result field, and the New Value
field.

The Expression field shows a default expression consisting of the
word at the cursor in the Edit window. You can evaluate the
default expression by pressing Enter, or you can edit or replace it
first. You can also press ~ to extend the default expression by
copying additional characters from the Edit window.

You can evaluate any valid C expression that doesn't contain

• function calls
• symbols or macros defined with #define

• local or static variables not in the scope of the function being
executed

If the debugger can evaluate the expression, it displays the value
in the Result field. If the expression refers to a variable or simple
data element, you can move the cursor to the New Value field and
enter an expression as the new value.

Press Esc to close the dialog box. If you've changed the contents of
the New Value field but do not select Modify, the debugger will
ignore the New Value field when you close the dialog box.

Use a repeat expression to display the values of consecutive data
elements. For example, for an array of integers named xarray,

• xarray [0 1 ,5 displays five consecutive integers in decimal.

• xarray [0 l, 5x displays five consecutive integers in hexadecimal.

Borland C++ User's Guide

Call Stack

@illffiJ

Compiling with Standard
Stack Frame unchecked (0 I

C I Entry/Exit Code) causes
some functions to be omitted
from the call stack. For more

details, see page 90.

Debug I Evaluate/Modify

An expression used with a repeat count must represent a single
data element. The debugger views the data element as the first
element of an array if it isn't a pointer, or as a pointer to an array
if it is.

The Debug I Evaluate/Modify command displays each type of
value in an appropriate format. For example, it displays an int as
an integer in base 10 (decimal), and an array as a pointer in base
16 (hexadecimal). To get a different display format, precede the
expression with a comma followed by one of the format specifiers
shown in Table 3.2 on page 72.

The Debug I Call Stack command opens a dialog box containing
the call stack. The Call Stack window shows the sequence of
functions your program called to reach the function now running.
At the bottom of the stack is main; at the top is the function that's
now running.

Each entry on the stack displays the name of the function called
and the values of the parameters passed to it.

Initially the entry at the top of the stack is highlighted. To display
the current line of any other function on the call stack, select that
function's name and press Enter. The cursor moves to the line
containing the call to the function next above it on the stack.

For example, suppose the call stack looked like this:

func2 ()

funcl ()

main()

This tells you that main called func1, and func1 called func2. If
you wanted to see the line of func1 that called func2, you could
select func1 in the call stack and press Enter. The code for func1
would appear in the Edit window, with the cursor positioned on
the call to func2.

To return to the current line of the function now being run (that
is, to the run position), select the topmost function in the call stack
and press Enter.

Chapter 3, Menus and options reference 71

Debug I Call Stack

Table 3.2: Format specifiers recognized in debugger expressions

Character Function

C Character. Shows special display characters for control characters (ASCII 0 through 31);
by default, such characters are shown using the appropriate C escape sequences (\n, \t,
and so on). Affects characters and strings.

S String. Shows control characters (ASCII 0 through 31) as ASCII values using the
appropriate C escape sequences. Since this is the default character and string display
format, the S specifier is only useful in conjunction with the M specifier.

D Decimal. Shows all integer values in decimal. Affects simple integer expressions as well as
arrays and structures containing integers.

H or X Hexadecimal. Shows all integer values in hexadecimal with the Ox prefix. Affects simple
integer expressions as well as arrays and structures containing integers.

Fn Floating pOint. Shows n significant digits (n is an integer between 2 and 18). The default
value is 7. Affects only floating-point values.

M Memory dump. Displays a memory dump, starting with the address of the indicated
expression. The expression must be a construct that would be valid on the left side of an
assignment statement, that is, a construct that denotes a memory address; otherwise, the
M specifier is ignored.

By default, each byte of the variable is shown as two hex digits. Adding a D specifier with
the M causes the bytes to be displayed in decimal. Adding an H or X specifier causes the
bytes to be displayed in hex. An S or a C specifier causes the variable to be displayed as a
string (with or without special characters). The default number of bytes displayed
corresponds to the size of the variable, but a repeat count can be used to specify an exact
number of bytes.

P Pointer. Displays pointers in seg:ofs format with additional information about the address
pointed to, rather than the default hardware-oriented seg:ofs format. Specifically, it tells
you the region of memory in which the segment is located, and the name of the variable at
the offset address, if appropriate. The memory regions are as follows:

R

72

Memory region

OOOO:OOOO-OOOO:03FF
OOOO:0400-0000:04FF
OOOO:0500-Borland C++

Borland C++-User Program PSP
User Program PSP

User Program-top of RAM

AOOO:OOOO-AFFF:FFFF
BOOO:OOOO-B7FF:FFFF
B800:0000-BFFF:FFFF
COOO:OOOO-EFFF:FFFF
FOOO:OOOO-FFFF:FFFF

Evaluate message

Interrupt vector table
BIOS data area
MS-DOS/TSRs

Borland C++
User Process PSP

Name of a static user variable if its address falls inside the
variable's allocated memory; otherwise nothing

EGA/VGA Video RAM
Monochrome Display RAM
Color Display RAM
EMS Pages/Adaptor BIOS ROMs
BIOS ROMs

Structure/Union. Displays field names as well as values, such as { X:l, Y:I0, Z:5}. Affects
only structures and unions.

Borland C++ User's Guide

Watches

Add Watch

eUA

[]illffiJ

Alternate

[]ill []I]

Debug I Watches

The Debug I Watches command opens a pop-up menu of
commands that control the use of watch expressions. Watch
expressions can be saved across sessions; see Options I
Environment I Desktop. The following sections describe the
commands in this pop-up menu.

The Add Watch command inserts a watch expression into the
Watch window.

When you choose this command, the debugger opens a dialog
box and prompts you to enter a watch expression. The default
expression is the word at the cursor in the current Edit window.
There's also a history list available if you want to quickly enter an
expression you've used before.

When you type a valid expression and press Enter or click OK, the
debugger adds the expression and its current value to the Watch
window. If the Watch window is the active window, you can
insert a new watch expression by pressing Ins.

Delete Watch The Delete Watch command deletes the current watch expression
from the Watch window. To delete a watch expression other than
the current one, select the desired watch expression by
highlighting it. Then choose Delete Watch. When the Watch
Window is active, you can press Del or Ctrl+ Y to delete a watch.

Edit Watch The Edit Watch command allows you to edit the current watch
expression in the Watch window. A history list is available to save
you time retyping.

When you choose this command, the debugger opens a dialog
box containing a copy of the current watch expression. Edit the
expression and press Enter. The debugger replaces the original
version of the expression with the edited one.

You can also edit a watch expression from inside the Watch
window by selecting the expression and pressing Enter.

Chapter 3, Menus and options reference 73

Debug I Watches I Remove All Watches

Remove All Watches The Remove All Watches command deletes all watch expressions
from the Watch window.

Toggle Breakpoint
eVA

[ill

Alternate

@illffiJ

Breakpoints

Figure 3.6
The Breakpoints dialog box

74

The Debug I Toggle Breakpoint command lets you set or clear an
unconditional breakpoint on the line where the cursor is
positioned. When a breakpoint is set, it is marked by a breakpoint
highlight. Breakpoints can be saved across sessions using
Options I Environment I Desktop.

The Debug I Breakpoints command opens a dialog box that lets
you control the use of breakpoints-both conditional and
unconditional ones. Here is what the dialog box looks like:

The dialog box shows you all set breakpoints, their line numbers,
and the conditions. The condition has a history list so you can
select a breakpoint condition that you've used before.

The row of buttons at the bottom of the dialog box give you
several options:

• Choose Delete to remove a highlighted breakpoint from your
program.

• Choose View to display the source code where the selected
breakpoint is set.

• Choose At to set a breakpoint at a particular function. You must
be debugging to choose At.

• Choose Edit to add a new breakpoint or modify an existing one
and the Breakpoint Modify /New dialog box appears:

Borland C++ User's Guide

Figure 3.7
The Breakpoint Modify/New

dialog box

Debug I Breakpoints

If you choose New, a breakpoint is set at the location of your
cursor in the active edit window. You can modify a breakpoint by
making changes in this dialog box.

The Condition text box accepts any expression that evaluates to
either true or false. When your program reaches that condition
while you're debugging, it stops executing.

You can specify when the debugger should stop on the
breakpoint. In the Pass Count text box, type in a number. If you
enter a 1, the debugger stops the first time the breakpoint is
reached. If you enter a 2, the debugger stops the second time the
breakpoint is reached, and so on.

Generally you will not change the file name, but you can if you
want. You can also specify a new line number. The primary
purpose of these two options is to identify a breakpoint you have
already set.

When you are done modifying your breakpoint, choose Modify
and the IDE accepts the new settings.

When a source file is edited, each breakpoint "sticks" to the line
where it is set. Breakpoints stay set until you

• delete the source line a breakpoint is set on

• clear a breakpoint with Toggle Breakpoint

Borland C++ will continue to track breakpoints until

• you edit a file containing breakpoints and then don't save the
edited version of the file.

• you edit a file containing breakpoints and then continue the
current debugging session without remaking the program.
(Borland C++ displays the warning prompt "Source modified,
rebuild?")

Chapter 3, Menus and options reference 75

Debug I Breakpoints

Before you compile a source file, you can set a breakpoint on any
line, even a blank line or a comment. When you compile and run
the file, Borland C++ validates any breakpoints that are set and
gives you a chance to remove, ignore, or change invalid
breakpoints. When you are debugging the file, Borland C++
knows which lines contain executable statements, and will warn
you if you try to set invalid breakpoints.

You can set an unconditional breakpoint without going through
the dialog box by choosing the Debug I Toggle Breakpoint
command.

Project menu

76

The Project menu contains all the project management commands
to

_ create a project

_ add or delete files from your project

Borland C++ only _ specify which program your source file should be translated
with

Borland C++ only _ set options for a file in the project

Borland C++ only _ specify which command-line override options to use for the
translator program

Borland C++ only _ specify what the resulting object module is to be called, where it

Open Project

should be placed, whether the module is an overlay, and
whether the module should contain debug information

_ view included files for a specific file in the project

The Open Project command displays the Open Project File dialog
box, which allows you to select and load a project or create a new
project by typing in a name.

This dialog box lets you select a file name similar to the File I Open
dialog box, discussed on page 47. The file you select will be used
as a project file, which is a file that contains all the information
needed to build your project's executable. Borland C++ uses the
project name when it creates the .EXE, .DLL, or .LIB file and .MAP
file. A typical project file has the extension .PRJ.

Borland C++ User's Guide

Close Project

Add Item

Delete Item

Local Options

Project I Close Project

Choose Project I Close Project when you want to remove your
project and return to the default project.

Choose Project I Add Item when you want to add a file to the
project's file list. This brings up the Add to Project List dialog box.

This dialog box is set up much like the Open a File dialog box
(File I Open). Choosing the Add button puts the currently
highlighted file in the Files list into the Project window. The
chosen file is added to the Project window File list immediately
after the highlight bar in the Project window. The highlight bar is
advanced each time a file is added. (When the Project Window is
active, you can press Ins to add a file.)

Choose Project I Delete Item when you want to delete the
highlighted file in the Project window. When the Project window
is active, you can press Del to delete a file.

Borland C++ only The Local Options command opens the following dialog box:

Figure 3.8
The Override Options dialog

box

Chapter 3, Menus and options reference 77

Project I Local Options

These command-line options
are not supported: c,

Efilename, e, Ipathname, L,
lx, M, Q, y.

I [] Overlay this module

I [] Exclude debug information

I[] Exclude from link

Include Files

Figure 3.9
The Include Files dialog box

78

The Override Options dialog box lets you include command-line
override options for a particular project-file module. It also lets
you give a specific path and name for the object file and lets you
choose a translator for the module.

Any program you installed in the Transfer dialog box with the
Translator option checked appears in the list of Project File
Translators (see page 100 for information on the Transfer dialog
box).

Check the Overlay this Module option if you want the selected
project item to be overlaid. This item is local to one file. It is
ignored if the Overlaid DOS EXE option is not selected in the
Output radio button in Options I Linker I Settings.

Check the Exclude Debug Information option to prevent debug
information included in the module you've selected from going
into the .EXE.

Use this switch on already debugged modules of large programs.
You can change which modules have debug information simply
by checking this box and then re-linking (no compiling is
required).

Check the Exclude from Link option if you don't want this
module linked in.

Choose Project I Include Files to display the Include Files dialog
box or, if you're in the Project window, press the Spacebar. If you
haven't built your project yet, the Project I Include Files command
will be disabled.

The Include Files dialog box looks like this:

Borland C++ User's Guide

Browse menu

See page 64 to find out how
to turn on debugging

information.

To browse with your mouse,
choose Options I

Environment I Mouse and
select the Browse Right

Mouse Button option.

Project I Include Files

You can scroll through the list of files displayed. Select the file
you want to view and press Enter.

Turbo C++ only

The Browse menu in the Turbo C++ for Windows IDE gives you
access to the ObjectBrowser so you can visually browse through
your class hierarchies, functions, and variables.

Before you can use the ObjectBrowser, you must compile your
program so that debugging information is included in your
executable file. If your executable is composed of more than one
source code file, open the related project file in the IDE before
using the ObjectBrowser.

You can access the ObjectBrowser either through the Browse
menu or directly from your source code by clicking the right
mouse button on the class, function or variable you wish to
inspect.

The ObjectBrowser has buttons on the title bar of the
ObjectBrowser window. Choose them by clicking them with your
mouse or using specific key combinations. By choosing one of
these buttons, you tell the ObjectBrowser to perform some action.
Not all of the buttons are available at all times. These are the
buttons you will see, their keyboard equivalents, and the action
they perform:

F1 Help.

1[B~1 Ctr/tG Go to the source code for the selected item.

Ctr/t/ Inspect (view the details oD the selected item.

'44 Ctr/tR Rewind the ObjectBrowser to the previous view.

1:11 Ctr/tO Show an overview of the class hierarchy.

Chapter 3, Menus and options reference 79

Browse I Classes

Classes

Functions

Variables

80

The Browse I Classes command opens an ObjectBrowser window
that displays all of the classes in your application, arranged as a
horizontal "tree" to show parent-child relationships. The window
is automatically sized to display as much of your class hierarchy
as possible. If the entire image does not fit within the window, use
the scroll bars to move the image to view hidden sections. You
can highlight any class in the display by using the arrow cursor
keys, or by clicking directly on the class name. Using the buttons
at the top of the ObjectBrowser window, you can

• exit the ObjectBrowser.

• go to the source code that defines the highlighted class.

• inspect the functions and data elements of the highlighted class.

The Functions command opens a window that lists every function
in your program, in alphabetical order. Class member functions
are listed together by class (for example, MyClass::MyFunc). In
addition, an incremental search field is provided at the bottom of
the dialog that allows you to quickly search through the function
list by typing the first few letters of the function name. As you
type, the selections in the list change to match the characters you
have typed in. Using the buttons at the top of the ObjectBrowser
window, you can

• exit the ObjectBrowser.

• go to the source code that defines the highlighted function.

• inspect the declaration of the highlighted function.

The Variables command opens a window that lists every global
variable in your program, in alphabetical order. This dialog box
also contains an incremental search field. Using the buttons at the
top of the ObjectBrowser window, you can

• exit the ObjectBrowser.

• open an edit window on the source code that defines the
highlighted variable.

• inspect the declaration of the highlighted variable.

Borland C++ User's Guide

Symbols
You can also inspect a

symbol by clicking it in your
source code with your right
mouse button. Set up your

mouse this way with
Options I Environment I

Mouse and select Browse.

Rewind

Overview

Inspect

Goto

Options menu

Browse I Symbol at cursor

The Symbol at Cursor command opens an ObjectBrowser window
for the symbol the cursor is on in the active edit window. The
symbol may be any class, function, or variable symbol that is
defined in your source code.

The Rewind command takes the ObjectBrowser back to the
previous view. Choosing the Rewind command is the same as
choosing the Rewind button.

The Overview command shows an overview. An overview of
classes is the class hierarchy. An overview of functions is a list of
all functions. An overview of variables is a list of all variables.
Choosing the Overview command is the same as choosing the
Overview button.

The Inspect command displays the detail of the selected item.
Choosing the Inspect command is the same as choosing the
Inspect button.

The Goto command takes you to the source code for the selected
item. Choosing the Goto command is the same as choosing the
Goto button.

The Options menu contains commands that let you view and
change various default settings in Borland C++. Most of the
commands in this menu lead to a dialog box.

When you first view the settings in any of the options dialog
boxes, you will see certain settings are already selected. These are

Chapter 3, Menus and options reference 81

Browse I Goto

The Set
Application

Options dialog
box

Figure 3.10
Set Application Options

the default settings, which Borland C++ will use if you do not
make any changes. These default settings are illustrated in the
screen diagrams in this chapter. You can change any of the default
settings by making the desired changes and selecting save project
on the Options I Save dialog box. Alternatively, if you check the
Project box in the Autosave group on the Options I Environment I
Preferences menu, your changes will be automatically saved
when you exit from Borland C++.

The Options I Application menu choice brings up the Set
Application Options dialog box. This dialog box provides the
easiest and safest way to set up compilation and linking for a DOS
or Windows executable. To use this dialog box, simply push one
of the buttons. Borland C++ will verify and, if necessary, change
some of the settings in the Code Generation, Entry/Exit Code
Generation, and Linker dialog boxes. See page 88 (Entry/Exit
Code) for detailed information on the code generated. Use this
dialog box for initial setup only.

In the Turbo C++ for Windows environment, only the Windows
App and Windows DLL options are available. Standard DOS and
DOS overlay applications must be compiled with the Borland
C++ IDE (or using the Borland C++ command line compiler).

/IiIIU===== Set Application Options =~~~~~=
Current Setti ngs

The standard options for applications and libraries each
accomplish a set of tasks. You can choose only one button at a
time. The current settings fields are updated when you press the
button.

DOS Standard:

Borland C++ only _ pushes the Small memory model radio button in the Code
Generation dialog box

82 Borland C++ User's Guide

Options I Application

_ sets Assume SS equals DS to Default for memory model in the
Code Generation dialog box

_ pushes the DOS Standard radio button in the Entry /Exit Code
Generation dialog box

_ pushes the Standard DOS .EXE radio button in the Linker I
Settings dialog box

DOS Overlay:

Borland C++ only _ pushes the Medium memory model button in the Code
Generation dialog box

_ sets Assume SS equals DS to Default for memory model in the
Code Generation dialog box

_ pushes the DOS Overlay button in the Entry /Exit Code
Generation dialog box

_ pushes the Overlaid DOS .EXE button in the Linker I Settings
dialog box

Windows App:

_ pushes the Small memory model button in the Code Generation
dialog box

_ sets Assume SS equals DS to Default for memory model in the
Code Generation dialog box

• pushes the Windows All Functions Exportable button in the
Entry /Exit Code Generation dialog box

_ pushes the Windows .EXE button in the Linker I Settings dialog
box

_ unchecks the Graphics Library option in the Libraries dialog
box

Windows Dll:

_ pushes the Compact memory model button in the Code
Generation dialog box

_ sets Assume SS equals DS to Never in the Code Generation
dialog box

a pushes the Windows DLL All Functions Exportable button in
the Entry/Exit Code Generation dialog box

_ pushes the Windows .DLL button in the Linker I Settings dialog
box

_ unchecks the Graphics Library option in the Libraries dialog
box

Chapter 3, Menus and options reference 83

Options I Compiler

Compiler
The Options I Compiler command displays a pop-up menu that
gives you several options to set that affect code compilation. The
following sections describe these commands.

Code Generation The Code Generation command displays a dialog box. The
settings in this box tell the compiler to prepare the object code in
certain ways. The dialog box looks like this:

Figure 3.11
The Code Generation dialog

box

84

Model
() Ti ny

lI(e) ~all
() Medi urn
() Compact
() Large
() Huge

Here are what the various buttons and check boxes mean:

The Model buttons determine which memory model you want to
use. The default memory model is Small. The memory model
chosen determines the normal method of memory addressing.
Refer to Chapter 9, "DOS memory management," in the
Programmer's Guide for more information about memory models in
general.

There are some restrictions about which memory models you can
use for Windows executables. The Turbo C++ for Windows IDE
allows you to select Small, Medium, Compact and Large memory
models. Tiny and Huge are not supported.

The options control various code generation defaults.

Borland C++ User's Guide

Options
[X] Treat enums as ints
[] Word ali gnment
[] Duplicate strings merged
[] Unsigned characters
[] Pre-compiled headers
[] Generate assembler source
[] Compile via assembler

See Appendix 0 for more on
precompiled headers.

Borland C++ only

Borland C++ only

Assume SS Equals OS
(e) Default for memory model
() Never
() Always

options I Compiler I Code Generation

• When checked, Treat enums as ints causes the compiler to
always allocate a whole word for variables of type enum.
Unchecked, this option tells the compiler to allocate an
unsigned or signed byte if the minimum and maximum values
of the enumeration are both within the range of 0 to 255 or -128
to 127, respectively.

• Word Alignment (when checked) tells Borland C++ to align
noncharacter data (within structures and unions only) at even
addresses. When this option is off (unchecked), Borland C++
uses byte-aligning, where data (again, within structures and
unions only) can be aligned at either odd or even addresses,
depending on which is the next available address.

Word Alignment increases the speed with which 80x86
processors fetch and store the data.

• Duplicate Strings Merged (when checked) tells Borland C++ to
merge two strings when one matches another. This produces
smaller programs, but can introduce bugs if you modify one
string.

III Unsigned Characters (when checked) tells Borland C++ to treat
all char declarations as if they were unsigned char type.

II Check Precompiled Headers when you want the IDE to
generate and use precompiled headers. Precompiled headers
can dramatically increase compilation speeds, though they
require a considerable amount of disk space. When this option
is off (the default), the IDE will neither generate nor use
precompiled headers. Precompiled headers are saved in
PRO]ECTNAME.SYM.

• Check Generate Assembler Source to tell Borland C++ to
produce an .ASM assembly language source file as its output,
rather than an .OBI object module.

• Compile Via Assembler allows you to specify that the compiler
should produce assembly language output, then invoke T ASM
to assemble the output.

If the Default for Memory Model radio button is pushed, whether
the stack segment (SS) is assumed to be equal to the data segment
(DS) is dependent on the memory model used. Usually, the
compiler assumes that SS is equal to DS in the small, tiny, and
medium memory models (except for DLLs).

When the Never radio button is pushed, the compiler will not
assume SS is equal to DS.

Chapter 3, Menus and options reference 85

Options I Compiler I Code Generation

86

IDefines

Advanced Code
Generation

Figure 3.12
The Advanced Code

Generation dialog box

Floating Point
() None

"Ce) jjnulation II

() 8087
() 80287

Instruction Set
(e) 8088/8086
() 80186
() 80286

The Always button tells the compiler to always assume that SS is
equal to DS. It causes the IDE to substitute the COFx.OB} startup
module for COx.OB} to place the stack in the data segment.

Use the Defines input box to enter macro definitions to the
preprocessor. You can separate multiple defines with semicolons
(;) and assign values with an equal sign (=); for example,

TESTCODE;PROGCONST=5

Leading and trailing spaces will be stripped, but embedded
spaces are left intact. If you want to include a semicolon in a
macro, you must place a backslash (\) in front of it.

The Advanced Code Generation menu choice takes you to the
Advanced Code Generation dialog box. Here's what that dialog
box looks like:

ons
Generate underbars
Line numbers debug info
Debug info in OBJs
Browser info in OBJs
Fast floating point
Fast huge poi nters
Generate COMDEFs
Automatic far data

The Floating Point buttons let you decide how you want Borland
C++ to generate floating-point code.

• Choose None if you're not using floating point. (If you choose
None and you use floating-point calculations in your program,
you get link errors.)

• Choose Emulation if you want your program to detect whether
your computer has an 80x87 coprocessor (and to use it if you
do). If it is not present, your program will emulate the 80x87.

• Choose 8087 (Borland C++ only) or 80287 to generate direct
8087 or 80287 inline code.

The Instruction Set (Borland C++ only) radio buttons let you
choose what instruction set to generate code for. The default
instruction set, 8088/8086, works with all PCs.

Borland C++ User's Guide

Options
[X] Generate underbars
[] Line numbers debug info
[X] Debug info in OBJs
[] Browser info in OBJs
[X] Fast floating point
[] Fast huge po;nters
[] Generate COMDEFs
[] Automatic far data

See page 753 for more
details on fast huge pointers.

Options I Compiler I Advanced Code Generation

• When checked, the Generate Underbars option automatically
adds an underbar, or underscore, character (_) in front of every
global identifier (that is, functions and global variables). If you
are linking with standard libraries, this box must be checked.

• Line Numbers Debug Info (when checked) includes line
numbers in the object and object map files (the latter for use by
a symbolic debugger). This increases the size of the object and
map files but does not affect the speed of the executable pro
gram.

Since the compiler might group together common code from
multiple lines of source text during jump optimization, or
might reorder lines (which makes line-number tracking
difficult), you might want to make sure the Jump Optimization
check box (Options I Compiler I Optimizations) is off
(unchecked) when this option is checked.

• Debug Info in OBJs controls whether debugging information is
included in object (.OBJ) files. The default for this check box is
on (checked), which you need in order to use either the
integrated debugger or the standalone Turbo Debugger.

Turning this option off allows you to link and create larger
object files. While this option doesn't affect execution speed, it
does affect compilation time.

• Browser Info in OBJs controls whether information needed by
the Turbo C++ for Windows ObjectBrowser is included in
object (.OBJ) files. The default for this check box is off
(unchecked). If you want to use ObjectBrowser to inspect your
program (from within the Turbo C++ for Windows IDE), you
must turn this option on.

Leaving this option off saves space in your object files.

• Fast Floating Point lets you optimize floating-point operations
without regard to explicit or implicit type conversions. When
this option is unchecked, the compiler follows strict ANSI rules
regarding floating-point conversions.

• The Fast Huge Pointers option normalizes huge pointers only
when a segment wrap-around occurs in the offset portion of the
segment. This greatly speeds up the computation of huge
pointer expressions, but must be used with caution, as it can
cause problems for huge arrays if array elements cross a
segment boundary.

• When checked, the Generate COMDEFs option allows a
communal definition of a variable to appear in header files as

Chapter 3, Menus and options reference 87

Options I Compiler I Advanced Code Generation

This option is ignored if you're
using the tiny, small, or

medium memory models.

Entry/Exit Code

See Chapter 8 in the Library
Reference for more on

prolog and epilog code.

88

Figure 3.13
The Entry/Exit Code

Generation dialog box

long as it is not initialized. Thus a definition such as int
SomeArray [256]; could appear in a header file that is then
included in many modules, and the compiler will generate it as
a communal variable rather than a public definition (a
COMDEF record rather than a PUBDEF record). The linker will
then only generate one instance of the variable so it will not be
a duplicate definition linker error.

• The Automatic Far Data option and the Far Data Threshold
type-in box work together. When checked, the Automatic Far
Data option tells the compiler to automatically place data
objects larger than a predefined size into far data segments; the
Far Data Threshold specifies the minimum size above which
data objects will be automatically made far.

When you compile a C or C++ program for Windows or DOS, the
compiler needs to know which kind of prolog and epilog to create
for each of a module's functions.

If the program is intended for Windows, the compiler generates a
different prolog and epilog than it would for DOS. Because of
this, you must use the Entry/Exit Code Generation dialog box to
set the appropriate application. If you use the Set Application
Options dialog box (described on page 82), the settings in the
Entry /Exit Code dialog box will already be correct for the type of
application you choose.

This dialog box also allows you to select the calling convention
and to set a couple of stack options. All options affect what code is
generated for function calls and returns.

If you want to set the prolog/ epilog code for a DOS application,
you need to select DOS Standard or DOS Overlay.

Borland C++ User's Guide

Options I Compiler I Entry/Exit Code

Borland C++ only _ Push the DOS Standard radio button to tell the compiler to

Calling Convention
(.) C
() Pascal
() Regi ster

generate code that may not be safe for overlays. If you don't
plan to create an overlaid application, use this option.

_ Push the DOS Overlay radio button to tell the compiler to
generate overlay safe code. Use this option when you're
creating an overlaid application.

If you want to set the prolog/ epilog code for a Windows applica
tion, you need to select one of five options.

_ Windows All Functions Exportable is the most general kind of
Windows executable, although not necessarily the most
efficient. It assumes that all functions are capable of being called
by the Windows kernel or by other modules, and generates the
necessary overhead information for every function, whether the
function needs it or not. The module definition file will control
which functions actually get exported.

_ Use Windows Explicit Functions Exported if you have
functions that will not be called by the Windows kernel; it isn't
necessary to generate export-compatible prolog/ epilog code
information for these functions. The _export keyword provides
a way to tell the compiler which specific functions will be
exported: Only those far functions with _export will be given
the special Windows prolog/ epilog code .

• Push the Windows Smart Callbacks button to select Borland
C++ smart callbacks. See Chapter 8, "Building a Windows
application," in the Programmer's Guide for details on smart
callbacks.

_ Push the Windows DLL All Functions Exportable button to
create an .OBJ file to be linked as a .DLL with all functions
exportable.

_ Push the Windows DLL Explicit Functions Exported button to
create an .OBJ file to be linked as a .DLL with certain functions
explicitly selected to be exported. Otherwise this is essentially
the same as Windows Explicit Functions Exported, see that
discussion for more.

The Calling Convention options cause the compiler to generate
either a C calling sequence or a Pascal calling sequence for
function calls. The differences between C and Pascal calling
conventions are in the way each handles stack cleanup, order of
parameters, case, and prefix (underbar) of global identifiers.

Chapter 3, Menus and options reference 89

Options I Compiler I Entry/Exit Code

Borland C++ only

Important!

Stack Options
[X] Standard stack frame
[] Test stack overflow

In the Borland c++ IDE, you can also select Register, to specify
the new fastcall parameter-passing convention. For more
information about the fastcall convention, see Appendix A,
"Optimization."

Do not change this option unless you're an expert and have read
Chapter 12, "BASM and inline assembly," in the Programmer's Guide .

• Standard Stack Frame (when checked) generates a standard
stack frame (standard function entry and exit code). This is
helpful when debugging-it simplifies the process of tracing
back through the stack of called subroutines.

If you compile a source file with this option off (unchecked),
any function that does not use local variables and has no
parameters is compiled with abbreviated entry and return code.
This makes the code shorter and faster, but prevents the
Debug I Call Stack command from "seeing" the function. Thus,
you should always check the option when you compile a source
file for debugging.

This option is automatically turned off when you turn
optimizations on; a duplicate of the Standards Stack Frame
option also appears on the Options I Compiler I Optimization
dialog box .

• When checked, the Test Stack Overflow generates code to check
for a stack overflow at run time. Even though this costs space
and time in a program, it can be a real lifesaver, since a stack
overflow bug can be difficult to track down.

c++ Options The C++ Options command displays a dialog box that contains
settings that tell the compiler to prepare the object code in certain
ways when using C++.

Figure 3.14
The C++ options dialog box

90 Borland C++ User's Guide

Use C++ Compiler
lI(e) CPP e!:!tension II
() C++ always

C++ Virtual Tables
(e) Smart
() Local
() External
() Pub 1 i c

Template Generation
(e) Smart
() Global
() External

Borland C++ only

Options I Compiler I C++ Options

The Use C++ Compiler radio buttons tell Borland C++ whether to
always compile your programs as C++ code, or to always compile
your code as C code except when the file extension is .CPP.

The C++ Virtual Tables radio buttons let you control C++ virtual
tables and the expansion of inline functions when debugging.

• The Smart option generates C++ virtual tables (and inline
functions not expanded inline) so that only one instance of a
given virtual table or inline function will be included in the
program. This produces the smallest and most efficient
executables, but uses .OB} (and .ASM) extensions only available
with TLINK 3.0 and TASM 2.0 (or newer).

• The Local option generates local virtual tables (and inline
functions not expanded inline) such that each module gets its
own private copy of each virtual table or inline function it uses;
this option uses only standard .OB} (and .ASM) constructs, but
produces larger executables.

• The External option generates external references to virtual
tables; one or more of the modules comprising the program
must be compiled with the Public option to supply the
definitions for the virtual tables.

• The Public option generates public definitions for virtual tables.

The Template Generation options allow you to specify how
Borland C++ generates template instances in C++. For more
information about templates, see Chapter 3 "C++ specifics," in the
Programmer's Guide.

• Smart generates public (global) definitions for all template
instances, but if more than one module generates the same
template instance the linker will automatically merge
duplicates to produce a single definition. This is the default
setting, and is normally the most convenient way of generating
template instances.

• Global,like Smart, generates public definitions for all template
instances. However, it does not merge duplicates, so if the same
template instance is generated more than once the linker will
report public symbol redefinition errors.

• External tells the compiler to generate external references to all
template instances. If you use this option, you must make
certain that the instances are publicly defined elsewhere in your
code.

Chapter 3, Menus and options reference 91

Options I Compiler I C++ Options

Advanced C++
Options

Figure 3.15
Advanced C++ Options

• Use Out-of-Line Inline Functions when you want to step
through or set breakpoints on inline functions.

Options
[Xl Out-of-line inline functions
[l Far virtual tables

• The Far Virtual Tables option causes virtual tables to be created
in the code segment instead of the data segment, and makes
virtual table pointers into full 32-bit pointers (the latter is done
automatically if you are using the huge memory model).

There are two primary reasons for using this option: to remove
the virtual tables from the data segment, which may be getting
full, and to be able to share objects (of classes with virtual
functions) between modules that use different data segments
(for example, a DLL and an executable using that DLL). You
must compile all modules that may share objects either entirely
with or entirely without this option. You can achieve the same
effect by using the huge or _export modifiers on a class-by-class
basis.

The Advanced C++ Options command displays a dialog box with
settings that control advanced code generation options for C++.
Since Borland C++ version 3.0 handles certain C++ features more
efficiently (but differently) than previous versions of Borland
C++, some of these options are intended primarily for backward
compatibility, where it is necessary to link with object modules or
libraries cOll1piled with older versions.

Borland C++ only Borland C++ supports three different kinds of member pointer
types, which you can control with these options.

92 Borland C++ User's Guide

Options I Compiler I Advanced C++ Options

C++ Member Po; nters
II (e) Support mll cases

() Support mu 1t i P 1 e i nheri tance
() Support si ngl e i nheri tance
() Smallest for class

• Support All Cases (the default) places no restrictions on what
members can be pointed to. Member pointers will use the most
general (but not always the most efficient) representation.

• Support Multiple Inheritance allows member pointers to point
to members of multiple inheritance classes, with the exception
of members of virtual base classes.

• Support Single Inheritance permits member pointers to point to
members of base classes that use single inheritance only.

• Smallest for Class specifies that member pointers will use the
smallest possible representation that allows member pointers to
point to all members of their particular class.

Vi rtua 1 Base Poi nters
(e) Always near
() Same size as 'this' pointer

When a class inherits virtually from a base class, the compiler
stores a hidden pointer in the class object to access the virtual base
class sub-object. Borland C++ 3.0 always makes this hidden
pointer a near pointer by default, to generate more efficient code.
Previous versions of Borland C++ matched the size of this pointer
to the size of the 'this' pointer used by the class itself.

• Always Near specifies that the hidden pointer should always be
near, for the smallest and most efficient code.

• Same Size as 'this' Pointer tells the compiler to match the size of
the hidden pointer to the size of the 'this' pointer in the instance
class, for backward compatibility.

Options
[] 'deep' vi rtua 1 bases
[] True 'pascal' member functions
[] Honor precision of member pointers
[] Disable constructor displacements
[] Pass cl ass values vi a reference
[] Vtab 1 e poi nter fo 11 ows data members

Borland C++ 3.0 sometimes handles pointers differently from
previous versions, in order to permit greater efficiency and
flexibility. In some cases, this results in behavior that is
incompatible with previous versions. To permit complete
compatibility, the following options are provided:

Chapter 3, Menus and options reference 93

Options I Compiler I Advanced C++ Options

94

Optimizations (Turbo
C++ for Windows)

• 'Deep' Virtual Bases directs the compiler not to change the
layout of any classes in order to relax the restrictions on
pointers to members of base classes through multiple levels of
virtual inheritance.

• True Pascal Member Functions directs the compiler to pass the
'this' pointer to 'pascal' member functions as the first parameter
on the stack. By default, Borland C++ 3.0 passes the 'this'
pointer as the last parameter, which permits smaller and faster
member function calls.

• Honor Precision of Member Pointers tells the compiler to honor
an explicit cast to a pointer to a member of a simpler base class,
even though it is actually pointing to a derived class member.

• Disable Constructor Displacements instructs the compiler not to
add hidden members and code to a derived class, which it does
by default to prevent an erroneous value for the 'this' pointer in
special cases where the constructor of a derived class containing
an inherited virtual function that it overrides, calls that function
using a pointer to the virtual base class. This option ensures
compatibility with the behavior of previous versions.

• Pass Class Values Via Reference tells the compiler to use a
reference to a temporary variable in order to pass arguments of
type class to a function. By default Borland C++ 3.0 copy
constructs the argument values directly to the stack.

• Vtable Pointer Follows Data Members instructs the compiler to
place virtual table pointers after any nonstatic data members of
the class, for compatibility with previous versions of Borland
C++. The default method for version 3.0 is to place these
pointer before any nonstatic data members, to make virtual
member function calls smaller and faster.

The Optimizations command displays a dialog box. The settings
in this box tell the compiler to prepare the object code in certain
ways to optimize for size or speed.

The Borland C++ IDE supports a full range of professional
optimization options, while the Turbo C++ for Windows
environment provides a more limited subset of optimizations.

For Turbo C++ for Windows, the Optimizations dialog box looks
like this:

Borland C++ User's Guide

Figure 3,16
The Turbo C++ for Windows

Optimization Options dialog
box

Optimization Options
[] Register optimization
[] Jump optimization

Important!

Register Variables
() None
() Register keyword
(e) Automatic

~I Optimization Op~ions

(9pti1!li~,5!!i9~IJJ::Ip!i9:!!!.
I .. J 'Ael#eIQPt.irnizalion
! . .i ,!ump optimization .
l

r!l~9:~~;V~!iabI~lL ...

Register keyword
Automatic

F~p~n!i~!~.£.~r..._. _______ ._,
I/t Si1.6

l > fumed

I~Ctancell

I '2H~'p I

Options I Compiler I Optimizations

The Optimizations Options affect how optimization of your code
occurs.

• Register Optimization suppresses the reloading of registers by
remembering the contents of registers and reusing them as
often as possible.

Exercise caution when using this option. The compiler can't
detect whether a value has been modified indirectly by a
pointer .

• Jump Optimization reduces the code size by eliminating
redundant jumps and reorganizing loops and switch
statements.

When this option is checked, the sequences of tracing and
stepping in the debugger can be confusing, since there might be
multiple lines of source code associated with a particular
generated code sequence. For best stepping results, turn this
option off (uncheck it) while you are debugging.

The Register Variables radio buttons suppress or enable the use of
register variables.

With Automatic chosen, register variables are automatically
assigned for you. With None chosen, the compiler does not use
register variables even if you've used the register keyword. With
Register keyword chosen, the compiler uses register variables
only if you use the register keyword and a register is available.
(See Chapter 9, "DOS memory management," in the Programmer's
Guide for more details.)

Generally, you can keep this option set to Automatic unless
you're interfacing with preexisting assembly code that does not
support register variables.

Chapter 3, Menus and options reference 95

Options I Compiler I Optimizations

Opt i mi ze For
(e) Size
() Speed

Optimizations (Borland
C++)

Figure 3.17
The Borland C++

Optimization Options dialog
box

Optimizations
[] Global register allocation
[] Invariant code motion

The Optimize For buttons let you change Borland C++'s code
generation strategy. Normally the compiler optimizes for size,
choosing the smallest code sequence possible. You can also have
the compiler optimize for speed, so that it chooses the fastest
sequence for a given task. If you are creating Windows
applications, normally you'll want to optimize for speed.

In the Borland c++ character-based IDE, you have full access to
the professional optimization features introduced in Borland C++
3.0. The dialog box presents you with three separate categories of
options, to let you fully customize the way the compiler optimizes
your code. These features are listed briefly below. For your
convenience, the command-line compiler switches corresponding
to each option are indicated. A more complete discussion of
optimization, including a description of the use and functionality
of each menu option, appears in Appendix A, "The Optimizer."

ons
~l oba 1 regi ster all ocat i on
Invari ant code moti on
Induction variables
Loop optimization
Supress redundant loads
Copy propagati on
Assume no pOinter aliasing
Dead code el imination
Jump optimization
Inline intrinsic functions
Standard stack frame

The Optimizations Options affect how optimization of your code
occurs.

[] Induction variables • Global Register Allocation corresponds to the -Oe switch on the
[] Loop Optimizations
[] Suppress redundant loads command line compiler. It enables global register allocation and
[] Copy propagati on . bl l' 1 .
[] Assume no poi nter ali as i ng vana e lve range ana YSIS.

[] Dead code el imination • Invariant Code Motion, corresponding to the -Om command
[] Jump optimization
[] Inl ine intrinsic functions line switch, moves invariant code out of loops.
[X] Standard stack frame

L-_________ ----1 • Induction Variables corresponds to the -Ov command line

96

switch. It enables loop induction variables and strength
reduction optimizations.

Borland C++ User's Guide

Register Variables
() None
() Register keyword
(e) Automatic

Common subexpressions
(e) No optimization
() Optimize globally
() Optimize locally

Options I Compiler I Optimizations

• Loop Optimizations corresponds to -01 option, and compacts
loops into REP /STOSx instructions.

• Suppress Redundant Loads corresponds to the -Z command
line switch. It suppresses reloads of values that are already in
registers.

• Copy Propagation, corresponding to the -Op command line
switch, propagates copies of constants, variables, and
expressions where possible.

• Assume no pointer aliasing corresponds to the -Oa command
line switch. It instructs the compiler to assume that pointer
expressions are not aliased in common subexpression
evaluation.

• Dead Code Elimination corresponds to the -Ob command line
switch, and eliminates stores into dead variables.

• Jump Optimization, corresponding to the -0 compiler switch,
removes jumps to jumps, unreachable code, and unnecessary
jumps.

• Inline Intrinsic Functions, corresponding to the -Oi compiler
switch, instructs the compiler to expand common functions like
strcpyO inline.

• Standard Stack Frame instructs the compiler to generate a
standard function entry/exit code. Corresponds to the -k
compiler option.

The Register Variables selections affect how the compiler handles
the use of register variables. For more information about register
variables see Chapter 9, "DOS memory management," in the
Programmer's Guide.

• None instructs the compiler not to use register variables even if
you have used the register keyword.

• Register Keyword specifies that register variables will be used
only if you use the register keyword and a register is available.

• Automatic directs the compiler to automatically assign register
variables for you.

The Common Subexpressions tells the compiler how to find and
eliminate duplicate expressions in your code, to avoid
reevaluating the same expression.

• No Optimization instructs the compiler not to eliminate
common subexpressions.

Chapter 3, Menus and options reference 97

Options I Compiler I Optimizations

98

Optimize For
(e) Size
() Speed

8
I Fastest cOdel

I Sma 11 est Code I

Source

Source Options
[] Nested comments

Keywords
(.) Borl and C++
() ANSI
() UNIX V
() Kernighan and Ritchie

• Optimize Globally corresponds to the -Og command line
switch, and instructs the compiler to eliminate common
subexpressions within an entire function.

• Optimize Locally corresponds to the -Oc command line switch,
and instructs the compiler to eliminate common subexpressions
within basic blocks only.

The Optimize For options let you change Borland C++'s code
generation strategy. For backward compatibility, these buttons
correspond to the same buttons in the Turbo C++ for Windows
environment, and in earlier versions of Borland C++. They are not
identical to the "Smallest Code" and "Fastest Code" buttons that
appear at the bottom of the Optimization dialog box.

The three buttons at the bottom of the Optimizations dialog box
allow you to specify "groups" of settings by making a single
selection.

• No Optimizing corresponds to the -Od command line switch. It
automatically disables all of the optimization options.

• Fastest Code corresponds to the -02 command line switch. It
automatically sets all of the optimization options to generate
the fastest possible code.

• Smallest Code corresponds to the -01 command line switch. It
automatically sets the optimization options to produce the
smallest possible code.

The Source command displays a dialog box. The settings in this
box tell the compiler to expect certain types of source code. The
dialog box presents the following options:

The Nested Comments check box allows you to nest comments in
Borland C++ source files. Nested comments are not allowed in
standard C implementations. They are not portable.

The Keywords radio buttons tell the compiler how to recognize
keywords in your programs.

• Choosing Borland C++ tells the compiler to recognize the
Borland C++ extension keywords, including near, far, huge,
asm, cdecl, pascal, interrupt, _es, _export, _ds, _cs, _55, and
the register pseudovariables CAX, _BX, and so on). For a
complete list, refer to Chapter 1, "Lexical elements," in the
Programmer's Guide.

Borland C++ User's Guide

IIdentifier Length 321

Messages

IDisPlay •• ·1

1 Portabi 1 ity •• ·1

Options I Compiler I Source

• Choosing ANSI tells the compiler to recognize only ANSI
keywords and treat any Borland C++ extension keywords as
normal identifiers.

• Choosing UNIX V tells the compiler to recognize only UNIX V
keywords and treat any Borland C++ extension keywords as
normal identifiers.

• Choosing Kernighan and Ritchie tells the compiler to recognize
only the K&R extension keywords and treat any Borland C++
extension keywords as normal identifiers.

Use the Identifier Length input box to specify the number (n) of
significant characters in an identifier. Except in C++, which
recognizes identifiers of unlimited length, all identifiers are
treated as distinct only if their first n characters are distinct. This
includes variables, preprocessor macro names, and structure
member names. The number can be from 1 to 32; the default is 32.

The Messages command displays a submenu that lets you set
several options that affect compiler error messages in the IDE.

Display presents a dialog box that allows you to specify how (and
if) you want error messages to be displayed.

• Errors: Stop After causes compilation to stop after the specified
number of errors have been detected. The default is 25, but you
can enter any number from 0 to 255.

• Warnings: Stop After causes compilation to stop after the
specified number of warnings have been detected. The default
is 100, but you can enter any number from 0 to 255. (Entering 0
causes compilation to continue until the end of the file or until
the error limit entered above been reached, whichever comes
first.)

• The Display Warnings options allow you to choose whether the
compiler will display all warnings, only the warnings selected
in the Messages submenu option, or to display no warnings.

When you choose Portability on the Messages submenu, a dialog
box appears that lets you specify which types of portability
problems you want to be warned about.

Check the warnings you want to be notified of and uncheck the
ones you don't. Choose OK to return to the Compiler Messages
dialog box.

Chapter 3, Menus and options reference 99

Options I Compiler I Messages I ANSI violations

IANSI violations···1

Ic++ warnings···1

I Frequent errors ••. I

ILess frequent errors ••• 1

Names

Transfer

When you choose ANSI Violations on the Messages submenu, a
dialog box appears that lets you specify which, if any, ANSI
violations you want to be warned about.

Check the warnings you want to be notified of and uncheck the
ones you don't. Choose OK to return to the Compiler Messages
dialog box.

When you choose the C++ Warnings button in the Messages
submenu, another dialog box appears that lets you determine
which specific C++ warnings you want to enable.

Check the warnings you want to be notified of and uncheck the
ones you don't. Choose OK to return to the Compiler Messages
dialog box.

When you choose the Frequent Errors button in the Compiler
Messages dialog box, another dialog box appears that lets you
specify which frequently-occurring errors you want to be warned
about.

Check the errors you want to be notified of and uncheck the ones
you don't. Choose OK to return to the Compiler Messages dialog
box.

Choosing Less frequent errors lets you make the same choice, to
be warned or not, about several less frequently occurring errors.

Check or uncheck these errors as in the previous dialog boxes,
and choose OK to return to the Messages dialog box.

The Names command brings up a dialog box which lets you
change the default segment, group, and class names for code,
data, and BSS sections. Do not change the settings in this command
unless you are an expert and have read Chapter 9, "DOS memory
management," in the Programmer's Guide.

Borland C++ only The Options I Transfer command (available in the Borland C++
IDE only) lets you add or delete programs in the = menu. Once
you've done so, you can run those programs without actually
leaving Borland C++. You return to Borland C++ after you exit
the program you transferred to. The Transfer command displays
this dialog box:

100 Borland C++ User's Guide

Figure 3.18
The Transfer dialog box

Options I Transfer

The Transfer dialog box has two sections:

• the Program Titles list

• the Transfer buttons

The Program Titles section lists short descriptions of programs
that have been installed and are ready to execute. You might need
to scroll the list box to see all the programs available.

The Transfer buttons let you edit and delete the names of
programs you can transfer to, as well as cancel any changes
you've made to the transfer list. There's also a Help button to get
more information about using the transfer dialog box.

The Edit button Choose Edit to add or change the Program Titles list that appears
in the:: menu. The Edit button displays the Modify INew Trans
fer Item dialog box.

Figure 3.19
The Modify/New Transfer

Item dialog box

If you're positioned on a transfer item when you select Edit, the
input boxes in the Modify INew dialog box are automatically
filled in; otherwise they're blank.

Unassi gned
Shift F2
Shift F3
Shift F4
Shift F5
Shift F6
Shift F7
Shift F8
Shift F9
Shift FlO

Using the Modify INew dialog box, you take these steps to add a
new file to the Transfer dialog box:

1. Type a short description of the program you're adding on the
Program Title input box.

Chapter 3, Menus and options reference 101

Options I Transfer

For a full description of these
powerful macros, see the

"Transfer macros" section in
UTlL.DOC

This step is optional.

I [] Trans' ator I

The Delete button

Transfer macros

102

Note that if you want your program to have a keyboard
shortcut (like the S in the Save command or the t in the Cut
command), you should include a tilde (-) in the name. What
ever character follows the tilde appears in bold or in a special
color in the == menu, indicating that you can press that key to
choose the program from the menu.

2. Tab to Program Path and enter the program name and
optionally include the full path to the program. (If you don't
enter an explicit path, only programs in the current directory
or programs in your regular DOS path will be found.)

3. Tab to Command Line and type any parameters or macro
commands you want passed to the program. Macro com
mands always start with a dollar sign ($) and are entered in
uppercase. For example, if you enter $CAP EDIT, all output from
the program will be redirected to a special Edit window in
Borland C++.

4. If you want to assign a hot key, tab to the Hot Key options and
assign a shortcut to this program. Transfer shortcuts must be
Shift plus a function key. Keystrokes already assigned appear
in the list but are unavailable.

5. Now click or choose the New button to add this program to
the list.

To modify an existing transfer program, cursor to it in the
Program Titles list of the Transfer dialog box and then choose
Edit. After making the changes in the Modify/New Transfer
dialog box, choose the Modify button.

The Translator check box lets you put the Transfer program into
the Project File Translators list (the list you see when you choose
Project I Local Options). Check this option when you add a
transfer program that is used to build part of your project.

The Delete button removes the currently selected program from
the list and the == menu.

The IDE recognizes certain strings of characters called transfer
macros in the parameter string of the Modify/New Transfer Item
dialog box. The transfer macros are fully documented in the
online file UTIL.DOC.

Borland C++ User's Guide

Make

Figure 3.1
The Make dialog box

Break Make On
() Warni ngs
(.) Errors
() Fatal errors
() All sources processed

IA~ter Complllng
() Stop
(.) Run 1 i nker
() Run librarian

Borland C++ only

Generate Import Li brary
() No
(•) Use DLL fi 1 e exports
() Use DEF fi 1 c exports

Options I Make

The Options I Make command displays a dialog box that lets you
set conditions for project management. Here's what the dialog box
looks like:

Note that the Turbo C++ for Windows version of the Make dialog
box is slightly different from the Borland C++ version. In Turbo
C++ for Windows, neither the "Run librarian" nor the "Generate
Import Library" options are available.

Use the Break Make On radio buttons to set the condition that will
stop the making of a project. The default is to stop after compiling
a file with errors.

Use the After Compiling radio buttons to specify what to do after
all the source code modules defined in your project have been
compiled. You can choose to Stop (leaving .OBJ files), Run linker
to generate an .EXE file, or Run librarian to combine your projects
.OBJ files into a .LlB (library) file. The default is to run the linker
to generate an executable application.

The Generate Import Library buttons are available in the Borland
C++ IDE only.

These buttons control when and how IMP LIB is executed during
the MAKE process. The Use DLL File Exports option generates an
import library that consists of the exports in the DLL. The Use
DEF File Exports generates an import library of exports in the
DEF file. If either of these options is checked, MAKE invokes
IMPLIB after the linker has created the DLL. This option controls
how the transfer macro $IMPLIB gets expanded.

Chapter 3, Menus and options reference 103

Options I Make

I [X] Check Auto-dependenci es I

104

See the $OEPO transfer
macro in UTlL.OOc.

Linker

Figure 3.21
The Linker dialog box

When the Check Auto-dependencies option is checked, the Project
Manager automatically checks dependencies for every .OBJ file on
disk that has a corresponding .C source file in the project list.

The Project Manager opens the .OBJ file and looks for information
about files included in the source code. This information is always
placed in the .OBJ file by both Borland C++ and Turbo C++ for
Windows, as well as the command-line version of Borland C++
when the source module is compiled. Then every file that was
used to build the .OBJ file is checked for time and date against the
time and date information in the .OBJ file. The source file is
recompiled if the dates are different. This is called an autodepen
dency check. If this option is off (unchecked), no such file checking
is done.

After the C source file is successfully compiled, the project file
contains valid dependency information for that file. Once that
information is in the project file, the Project Manager uses it to do
its autodependency check. This is much faster than reading each
.OBJ file.

The Options I Linker command lets you make several settings that
affect linking. The Linker command opens a submenu containing
the choices Settings and Libraries.

Note that the Borland C++ and Turbo C++ for Windows
environments provide slightly different linker options. This is
because Turbo C++ for Windows is a "Windows only"
programming environment; therefore, DOS-oriented options are
not supported.

For Borland C++ the Settings command opens up this dialog box:

Borland C++ User's Guide

Output

Map Fil e
(e) Off
() Segments
() Publ i cs
() Detailed

(e) Standard DOS EXE
() Overlaid DOS EXE
() Wi ndows EXE
() Windows DLL

![] Initialize segments!

! [X] Default libraries!

![] Pack code segments!

! [] Warn duplicate Symbols!

lEX] "No stack" warning

Borland C++ only

lEX] Case-sensitive Link!

![] Case-sensitive exports!

Options I Linker I Settings

This dialog box has several check boxes and radio buttons. The
following sections contain short descriptions of what each does.

Use the Map File radio buttons to choose the type of map file to be
produced. For settings other than Off, the map file is placed in the
output directory defined in the Options I Directories dialog box.
The default setting for the map file is Off.

Use these radio buttons to set your application type. Standard
DOS EXE produces a normal executable that runs under DOS.
Overlaid DOS EXE produces an executable that is capable of
being overlaid. Windows EXE produces a Windows application,
while Windows DLL produces a Windows dynamic link library.

If checked, Initialize Segments tells the linker to initialize
uninitialized segments. (This is normally not needed and will
make your .EXE files larger.)

Some compilers place lists of default libraries in the .OBJ files they
produce. If the Default Libraries option is checked, the linker tries
to find any undefined routines in these libraries as well as in the
default libraries supplied by Borland C++. When you're linking
with modules created by a compiler other than Borland C++, you
may wish to leave this option is off (unchecked).

This option applies only to Windows applications and DLLs.
When this option is checked, the linker tries to minimize the
number of code segments by packing multiple code segments
together; typically, this will improve performance. This option
will never create segments greater than 64K.

The Warn Duplicate Symbols option affects whether the linker
warns you of previously encountered symbols in .LIB files.

The "No Stack" Warning option affects whether the linker
generates the "No stack" message. It's normal for a program
generated under the tiny model to display this message if the
message is not turned off.

The "No Stack" Warning option does not appear in the Turbo
C++ for Windows IDE, since Windows does not support the tiny
model.

The Case-Sensitive Link option affects whether the linker is case
sensitive. Normally, this option should be checked, since C and
C++ are both case-sensitive languages.

By default, the linker ignores case with the names in the
IMPORTS and EXPORTS sections of the module definition file. If

Chapter 3, Menus and options reference 105

Options I Linker I Settings

106

I[] Compress debug infol

Code Pack Size 8192
Segment Alignment 512

Figure 3.22
The Libraries dialog box

I[] Graphics libraryl

Borland C++ only

you want the linker be case-sensitive in regard to these names,
check this option. This option is probably only useful when you
are trying to ~xport non-callback functions from DLLs-as in
exported c++ member functions. This option isn't necessary for
normal Windows callback functions (declared FAR PASCAL).

The Compress debug info option instructs the linker to compress
the debugging information in the output file. This option will
slow down the linker, and should only be checked in the event of
a "Debugger information overflow" error when linking.

You can change the default code packing size to anything
between 1 and 65,536 with Code Pack Size. See Chapter 4 in the
Tools and Utilities Guide for a more in-depth discussion of
desirable sizes.

With Segment Alignment, you can set the segment alignment.
Note that the alignment factor will be automatically rounded up
to the nearest power of two (meaning that if you enter 650, it will
be rounded up to 1,024). The possible numbers you can enter
must fall in the range of 2 to 65,535.

The Libraries dialog box has several radio buttons that allow you
to choose what libraries will automatically be linked into your
application.

The Graphics Library option controls the automatic searching of
the BGI graphics library. When this option is checked, it is
possible to build and run single-file graphics programs without
using a project file. Unchecking this option speeds up the link step
a bit because the linker doesn't have to search in the BGI graphics
library file.

The BGI Graphics library is not windows-compatible, so this
option does not appear in the Turbo C++ for Windows IDE.

Borland C++ User's Guide

I [] Turbo Vision

Borland C++ only

Container class library
ee) None
e) Static
e) Dynami c

ObjectWindows Library
ee) None
e) Static
e) Dynami c

Standard Run-time Libraries
e) None
ee) Static
e) Dynami c

Librarian

Figure 3.23
The Librarian Options dialog

box

Options I Linker I Libraries

Note: You can uncheck this option and still build programs that
use BGI graphics, provided you add the name of the BGI graphics
library (GRAPHICS. LIB) to your project list.

The Turbo Vision library option (Borland C++ only) instructs the
linker to automatically include the Turbo Vision application
framework library when linking your application.

Turbo Vision is a DOS character-mode application framework. It
is not windows-compatible, and this option does not appear in
the Turbo C++ for Windows IDE.

The Container class library option tells the linker to automatically
link in the Borland C++ container class library, which is available
in both static (.LIB) and dynamic (.OLL) form. These radio buttons
tell the linker which, if either, form of the Container class library
you want to automatically link in with your application.

The Borland C++ ObjectWindows library is a Windows
application framework that is available in both static (.LIB) and
dynamic (.OLL) form. These radio buttons tell the linker which, if
either, form of the ObjectWindows library you want to
automatically link in with your application.

In Borland C++ 3.0, the standard run-time libraries are available
in both static (.LIB) and dynamic (.OLL) form. Choosing the
dynamic form can help to reduce the size of your Windows
executable file, and can also reduce the overhead of loading these
libraries more than once if they will be called by more than one
application running simultaneously.

The Options I Librarian command lets you make several settings
affecting the use of the built-in Librarian. Like the command-line
librarian (TLIB), the built-in Librarian combines the .OB} files in
your project into a .LIB file.

Chapter 3, Menus and options reference 107

Options I Librarian

108

ILibrary Page sizel

Debugger

• The Generate list file check box determines whether the
Librarian will automatically produce a list file (.LST) listing the
contents of your library when it is created.

• The Case sensitive library check box tells the Librarian to treat
case as significant in all symbols in the library (this means that
CASE, Case, and case, for example, would all be treated as
different symbols).

!! The Purge comment records check box tells the Librarian to
remove all comment records from modules added to the
library.

• The Create extended dictionary check box determines whether
the Librarian will include in compact form, additional
information that will help the linker to process library files
faster.

The Library Page Size option allows you to set the number of
bytes in each library "page" (dictionary entry). The page size
determines the maximum size of the library: it cannot exceed
65,536 pages. The default page size, 16, allows a library of about 1
MB in size. To create a larger library, change the page size to the
next higher value (32).

Borland C++ only The Options I Debugger command lets you make several settings
affecting the integrated debugger. (Turbo C++ for Windows does
not contain an integrated debugger, so this option does not
appear in the Turbo C++ for Windows IDE.) This command opens
this dialog box:

Figure 3.24
The Debugger dialog box

The following sections describe the contents of this box.

Borland C++ User's Guide

Source Debugging
(e) On
() Standalone
() None

Display Swapping
() None
(e) Smart
() Always

Options I Debugger

The Source Debugging radio buttons determine whether
debugging information is included in the executable file and how
the .EXE is run under Borland C++.

Programs linked with this option set to On (the default) can be
debugged with either the integrated debugger or the standalone
Turbo Debugger. Set this to On when you want to debug in the
IDE.

If you set this option to Standalone, programs can be debugged
only with Turbo Debugger, although they can still be run in
Borland C++.

If you set this option to None, programs cannot be debugged with
either debugger, because no debugging information has been
placed in the .EXE file.

The Display Swapping radio buttons let you set when the
integrated debugger will change display windows while running
a program.

If you set Display Swapping to None, the debugger does not swap
the screen at all. You should only use this setting for debugging
sections of code that you're certain do not output to the screen.

When you run your program in debug mode with the default
setting of Smart, the debugger looks at the code being executed to
see whether it will generate output to the screen. If it does (or if it
calls a function), the screen is swapped from the IDE screen to the
User Screen long enough for output to be displayed, then is
swapped back. Otherwise, no swapping occurs.

Be aware of the following with smart swapping:

• It swaps on any function call, even if the function does no
screen output.

l!I In some situations, the IDE screen might be modified without
being swapped; for example, if a timer interrupt routine writes
to the screen.

If you set Display Swapping to Always, the debugger swaps
screens every time a statement executes. You should choose this
setting any time the IDE screen is likely to be overwritten by your
running program.

Note If you're debugging in dual monitor mode (that is, you used the
Borland C++ command-line /d option or specified Dual monitor
mode on the Options I Environment I Startup dialog box), you can

Chapter 3, Menus and options reference 109

Options I Debugger

Inspectors
[XJ Show inherited
[X] Show methods

e) Show decimal
e) Show hex
ee) Show both

Program Heap Size
64 Kbytes

Usually, It's only meaningful to
increase heap size when
working with large data

models.

Directories

110

see your program's output on one monitor and the Borland C++
screen on the other. In this case, Borland C++ never swaps screens
and the Display Swapping setting has no effect.

In the Inspectors check boxes, when Show Inherited is checked, it
tells the integrated debugger to display all member functions and
methods-whether they are defined within the inspected class or
inherited from a base class. When this option is not checked, only
those fields defined in the type of the inspected object are
displayed.

When checked, the Show Methods option tells the integrated
debugger to display member functions when you inspect a class.

Check the Show Decimal, Show Hex, or Show Both radio buttons
when you want to control how the values in inspectors are
displayed. Show both is on by default.

You can use the Program Heap Size input box to input how much
memory Borland C++ should assign a program when you debug
it. The actual amount of memory that Borland C++ tries to give to
the program is equal to the size of the executable image plus the
amount you specify here.

The default value for the program heap size is 64 Kbytes. You
may want to increase this value if your program uses dynamically
allocated objects.

The Options I Directories command lets you tell Borland C++
where to find the files it needs to compile, link, output, and
debug. This command opens the following dialog box containing
four input boxes:

• The Include Directories input box specifies the directory that
contains your include files. Standard include files are those
given in angle brackets «» in an #include statement (for
example, #include <myfile.h». These directories are also
searched for quoted Includes not found in the current directory.
Multiple directory names are allowed, separated by semicolons .

• The Library Directories input box specifies the directories that
contain your Borland C++ startup object files (CO?OBJ) and
run-time library files (.LIB files) and any other libraries that
your project may use. Multiple directory names are allowed,
separated by semicolons.

Borland C++ User's Guide

Options I Directories

• The Output Directory input box specifies the directory that
stores your .OBJ, .EXE, and .MAP files. Borland C++ looks for
and writes files to that directory when doing a make or run,
and to check dates and times of .OBJs and .EXEs. If the entry is
blank, the files are stored in the current directory.

Borland C++ only _ The Source Directories input box specifies the directories where

Environment

the Borland C++ integrated debugger will look for the source
code to libraries that do not belong to the open project (for
example, container class libraries). Multiple directories can be
entered, separated by semicolons. If the entry is blank, the
current directory is searched.

Use the following guidelines when entering directories in these
input boxes:

• You must separate multiple directory path names (if allowed)
with a semicolon (;). You can use up to a maximum of 127
characters (including whitespace).

I! Whitespace before and after the semicolon is allowed but not
required.

I! Relative and absolute path names are allowed, including path
names relative to the logged position in drives other than the
current one. For example,

C:\C\LIB;C:\C\MYLIBS;A:\BORLANDC\MATHLIBS;A: .. \VIDLIBS

The Options I Environment command lets you make
environment-wide settings. This command opens a menu that lets
you choose settings from Preferences, Editor, Mouse, Desktop,
Startup, and Colors.

o In the Turbo C++ for Windows environment, the Startup and
!Ell Colors options are not available. In addition, some of the other

selections are slightly different from their Borland C++
equivalents.

Preferences The Screen Size radio buttons let you specify whether your IDE
screen is displayed in 25 lines or 43/50 lines. One or both of these
buttons will be available, depending on the type of video adapter
in your PC.

Chapter 3, Menus and options reference 111

Options I Environment I Preferences

112

Screen Size
(e) 25 lines
() 43/50 lines

Borland C++ only

Source Tracking
(e) New window
() Current window

Command Set
() CUA
() Alternate
(e) Native

Auto Save
[] Edi tor Fil es
[X] Envi ronment
[X] Desktop
[X] Project

[] Save 01 d Messages

When set to 25 lines (the default), Borland C++ uses 25 lines and
80 columns. This is the only screen size available to systems with
a monochrome display or Color Graphics Adapter (CGA).

If your PC has EGA or VGA, you can set this option to 43/50
lines. The IDE is displayed in 43 lines by 80 columns if you have
an EGA, or 50 lines by 80 columns if you have a VGA.

When stepping source or viewing the source from the Message
window, the IDE opens a new window whenever it encounters a
file that is not already loaded. Selecting Current Window causes
the IDE to replace the contents of the topmost Edit window with
the new file instead of opening a new Edit window.

The Command Set options allow you to choose either the CVA or
the alternate command set as your editor interface. You can also
select "Native," which specifies that the CVA interface will be
used for the Turbo C++ for Windows IDE, and Alternate will be
used for the Borland C++ IDE. For more information about the
CVA and alternate editor command sets, see Chapter 2, "IDE
Basics."

If Editor Files is checked in the Auto Save options, and if the file
has been modified since the last time you saved it, Borland C++
automatically saves the source file in the Edit window whenever
you run your program.

When the Environment option is checked, all the settings you
made in this dialog box will be saved automatically when you exit
Borland C++.

When Desktop is checked, Borland C++ saves your desktop when
you close a project or exit, and restores when you reopen the
project or return to Borland C++.

When the Project option is checked, Borland C++ saves all your
project, autodependency, and module settings when you close
your project or exit, and restores them when you reopen the
project or return to Borland C++.

When Save Old Messages is checked, Borland C++ saves the error
messages currently in the Message window, appending any
messages from further compiles to the window. Messages are not
saved from one session to the next. By default, Borland C++ auto
matically clears messages before a compile, a make, or a transfer
that uses the Message window.

Borland C++ User's Guide

Editor

Editor Options
[X] Create backup files
[X] Insert mode
[X] Autoindent mode
[X] Use tab character
[X] Opti ma 1 fi 11
[X] Backspace unindents
[X] Cursor through tabs
[] Group undo
[X] Persistent blocks
[] Overwrite blocks

Options I Environment I Editor

If you choose Editor from the Environment menu, these are the
options you can pick from:

• When Create Backup Files is checked (the default), Borland
C++ automatically creates a backup of the source file in the Edit
window when you choose File I Save and gives the backup file
the extension. BAK.

• When Insert Mode is not checked, any text you type into Edit
windows overwrites existing text. When the option is checked,
text you type is inserted (pushed to the right). Pressing Ins
toggles Insert mode when you're working in an Edit window.

• When Autoindent Mode is checked, pressing Enter in an Edit
window positions the cursor under the first nonblank character
in the preceding nonblank line. This can be a great aid in typing
readable program code.

• When Use Tab Character is checked, Borland C++ inserts a true
tab character (ASCII 9) when you press Tab. When this option is
not checked, Borland C++ replaces tabs with spaces. If there are
any lines with characters on them prior to the current line, the
cursor is positioned at the first corresponding column of
characters following the next whitespace found. If there is no
"next" whitespace, the cursor is positioned at the end of the
line. After the end of the line, each Tab press is determined by
the Tab Size setting.

II When you check Optimal Fill, Borland C++ begins every
autoindented line with the minimum number of characters
possible, using tabs and spaces as necessary. This produces
lines with fewer characters than when Optimal Fill is not
checked.

• When Backspace Unindents is checked (which is the default)
and the cursor is on a blank line or the first non-blank character
of a line, the Backspace key aligns (outdents) the line to the
previous indentation level. This option is only effective when
Cursor Through Tabs is also selected.

• When you check Cursor Through Tabs, the arrow keys will
move the cursor space by space through tabs; otherwise the
cursor jumps over tabs.

• When Group Undo is unchecked, choosing Edit I Undo reverses
the effect of a single editor command or keystroke. For
example, if you type ABC, it will take three Undo commands to
delete C, then B, then A.

Chapter 3, Menus and options reference 113

Options I Environment I Editor

ITab Size 81

IDefault Extension CPP 1

114

If Group Undo is checked, Undo reverses the effects of the
previous command and all immediately preceding commands
of the same type. The types of commands that are grouped are
insertions, deletions, overwrites, and cursor movements. For
example, if you type ABC, one Undo command deletes ABC.

For the purpose of grouping, inserting a carriage return is
considered an insertion followed by a cursor movement. For
example, if you press Enter, then type ABC, choosing Undo once
will delete the ABC, and choosing Undo again will move the
cursor to the new carriage return. Choosing Edit I Redo at that
point would move the cursor to the following line. Another
Redo would insert ABC. (See page 53 for more information
about Undo and Redo.)

• When Persistent Blocks is checked (the default), marked blocks
behave as they always have in Borland's C and C++ products;
that is, they remain marked until deleted or unmarked (or until
another block is marked). With this option unchecked, moving
the cursor after a block is selected de-selects the entire block of
text.

• When Overwrite Blocks is checked and Persistent Blocks is
unchecked, marked blocks behave differently in these
instances:

1. Pressing the Del key or the Backspace key clears the entire
selected text.

2. Inserting text (pressing a character or pasting from
clipboard) replaces the entire selected text with the inserted
text.

If you check Use Tab Character in this dialog box and press Tab,
Borland C++ inserts a tab character in the file and the cursor
moves to the next tab stop. The Tab Size input box allows you to
dictate how many characters to move for each tab stop. Legal
values are 2 through 16; the default is 8.

To change the way tabs are displayed in a file, just change the tab
size value to the size you prefer. Borland C++ redisplays all tabs
in that file in the size you chose. You can save this new tab size in
your configuration file by choosing Options I Save Options.

The Default Extension input box lets you tell Borland C++ which
extension to use as the default when compiling and loading your
source code. Changing this extension doesn't affect the history
lists in the current desktop.

Borland C++ User's Guide

Mouse

Right Mouse Button
() Nothing
(0) Topic search
() Search
() Search again
() Replace
() Go to cursor
() Breakpoi nt
() Inspect
() Evaluate
() Add watch

Borland C++ only

Mouse Double Click
Fast Test Slow
~~_·atI._

[] Reverse Mouse Buttons

Options I Environment I Mouse

When you choose Mouse from the Environment menu, the Mouse
Options dialog box is displayed, which contains all the settings
for your mouse. These are the options available to you:

The Right Mouse Button radio buttons determine the effect of
pressing the right button of the mouse (or the left button, if the
reverse mouse buttons option is checked). Topic Search is the
default.

Here's a list of what the right button would do if you choose
something other than Nothing:

Topic Search Same as Help I Topic Search
Search Same as Search I Find
Search again Same as Search I Search Again
Replace Same as Search I Replace
Go to Cursor Same as Run I Go To Cursor
Breakpoint Same as Debug I Toggle Breakpoint
Inspect Same as Debug I Inspect
Evaluate Same as Debug I Evaluate
Add Watch Same as Debug I Watches I Add Watch

In the Turbo C++ for Windows IDE, which does not support
integrated debugging, the options from "Go to Cursor" and
below are not available. The Turbo C++ for Windows
environment, however, has an additional option, IIBrowse,"
which sets the right mouse button to have the same effect as
selecting Browse I Symbol at cursor from the menu.

The remaining mouse options, Mouse Double Click and Reverse
Mouse Buttons, are available in the Borland C++ IDE only.

In the Mouse Double Click box, you can change the slider control
bar to adjust the double-click speed of your mouse by using the
arrow keys or the mouse.

Moving the scroll box closer to Fast means Borland C++ requires
a shorter time between clicks to recognize a double click. Moving
the scroll box closer to Slow means Borland C++ will still
recognize a double click even if you wait longer between clicks.

If you want to experiment with different settings, you can
double-click the Test button above the scroll bar. When you
successfully double-click the bar it becomes highlighted.

When Reverse Mouse Buttons is checked, the active button on
your mouse is the rightmost one instead of the leftmost. Note,

Chapter 3, Menus and options reference 115

Options I Environment I Mouse

Desktop

Desktop Preferences
[X] History lists
[] Cl i pboard
[] Watch expressions
[] Breakpoi nts
[X] Open wi ndows
[X] Closed windows

v/

Startup

Figure 3.25
The Startup Options dialog

box

116

Video Startup Options
[] Save entire palette
[] Dual monitor mode
[] Snow checki ng

however, that the buttons won't actually be switched until you
choose the OK button.

Depending on how you hold your mouse and whether you're
right- or left-handed, the right mouse button might be more
comfortable to use than the left.

The Desktop dialog box lets you set whether history lists, the
contents of the Clipboard, watch expressions, breakpoints, open
and closed windows are saved across sessions. History lists and
open windows are saved by default; because watch expressions
and breakpoints may not be meaningful across sessions, they are
not saved by default, nor are windows that you have closed. You
can change these defaults by unchecking or checking the
respective options.

The Turbo C++ for Windows IDE does not offer the Watch
expressions and Breakpoints options. However, it provides an
additional set of radio buttons allowing you to control the
appearance of the SpeedBar. You may choose to turn the
SpeedBar off entirely, or to have it appear as a popup, a vertical
bar, or a horizontal bar. For more information about the SpeedBar,
see Chapter 2, "IDE Basics."

The Startup dialog box allows you to set various startup options
for the Borland C++ IDE.

• When Borland C++ switches between graphics and text mode
to (run or debug a graphics program), the video display may
become corrupted unless the entire EGA or VGA video palette
is saved in a separate buffer during the switch. Save entire
palette should be left unchecked if you will not be running or
debugging graphics programs, since saving the palette slows
down execution speed.

Borland C++ User's Guide

Video Mode
(e) Auto detect
() Color (80 column)
() Black & White / LCD
() Monochrome

swap~il e Dri ve
Use E tended Memory
Use S Memory

Colors

Options I Environment I Startup

• Dual monitor mode lets you run your program on one monitor
while debugging in the IDE on another monitor.

• Snow checking tells Borland C++ to check for video "snow."
This usually occurs only on older CGA video adapters. You
should disable this option if your display driver doesn't have a
"snow" problem.

• Auto detect (the default) tells Borland C++ to check your
hardware on startup and set its video mode automatically

• Color specifies that Borland C++ should always run
CGAjEGAjVGAjXGA monitors in color mode.

• Black & White j LCD tells Borland C++ to run
CGAjEGAjVGAjXGA monitors always in black and white
mode. This mode should be used for most laptop LCD
monitors.

• Monochrome tells Borland C++ to run always in monochrome
mode.

Swap File Drive lets you specify a disk drive use as a swap file in
the event that Borland C++ runs out of memory while compiling
or linking your project. If you have a RAM drive, you should
specify this as your swap drive, to improve speed.

Use Extended Memory allows you to tell Borland C++ how much
extended memory (in Kilobytes) to reserve for its use.

Use EMS Memory allows you to tell Borland C++ how many
expanded memory (EMS) pages to reserve for its use.

The Colors dialog box (Borland C++ ONLY) allows you to set
your color preferences for each component of the Borland C++
IDE. Simply select any Group and any Item within that Group,
and the available Foreground and Background colors will appear
in the respective sections of the dialog box. A sample of the
currently selected scheme will appear in the Item Color box. To
change the default color for that item, select your preferences
from the Foreground and Background palettes. When you have
modified all the items you wish to change, select OK to exit and
save your changes. To exit without recording any changes you
have made, select Cancel.

Chapter 3, Menus and options reference 117

Options I Environment I Colors

Figure 3.26
The Colors dialog box

Save

Window menu

118

Popup Menus
Edit Window
Output Wi ndow
Message Wi ndow
Watch Wi ndow
Modal Help
Help
Status Li ne
Proj ect Wi ndow
Inspector Wi ndow
Dialog Window
Dial Controls

The Options I Save command brings up a dialog box that lets you
save settings that you've made in both the Find and Replace
dialog boxes (off the Search menu) and in the Options menu
(which includes all the dialog boxes that are part of those
commands) for IDE, Desktop, and Project items. Options are
stored in three files, which represent each of these categories. If it
doesn't find the files, Borland C++ looks in the Executable direc
tory (from which BC.EXE is run) for the same file.

The Window menu contains window management commands.
Most of the windows you open from this menu have all the
standard window elements like scroll bars, a close box, and zoom
boxes. Refer to page 30 for information on these elements and
how to use them.

The Turbo C++ IDE Window menu differs somewhat from that of
Borland C++ IDE. Although not as many window management
commands are on the Turbo C++ Window menu, the same
functionality exists. If you know how to use Windows, you'll
know how to manage windows within the Turbo C++ IDE; just
use the same commands as you would in other Windows
applications.

Borland C++ User's Guide

Window I Size/Move

Size/Move
Borland C++ only Choose Window I Size/Move to change the size or position of the

Alternate active window.

[QED[£[) When you choose this command, the active window moves in
response to the arrow keys. When the window is where you want
it, press Enter. You can also move a window by dragging its title
bar.

Zoom
Borland C++ only

Alternate

[£[)

Tile

If you press Shift while you use the arrow keys, you can change
the size of the window. When it's the size you want it, press Enter.
If a window has a resize corner, you can drag that corner or any
other corner to resize it.

Choose Window I Zoom to resize the active window to the
maximum size. If the window is already zoomed, you can choose
this command again to restore it to its previous size. You can also
double-click anywhere on the top line (except where an icon
appears) of a window to zoom or unzoom it.

CUA Choose Window I Tile to tile all your open windows.
I Shift I[£[)

Cascade
CUA Choose Window I Cascade to stack all open windows.

I Shift IffiJ

Arrange Icons
Choosing Window I Arrange Icons will rearrange any icons on the
Turbo C++ desktop so they are evenly spaced, beginning at the
lower left corner of the desktop.

Chapter 3, Menus and options reference 119

Window I Next

Next
Borland C++ only

CVA

@illill]
Alternate

ill]

Close
Borland C++ only

CVA

@ill[E]
Alternate

[][)rnJ

Close All

Message
In Borland C++, you can
display transfer program

output in the Message
window.

Output

Choose Window I Next to make the next window active, which
makes it the topmost open window.

Choose Window I Close to close the active window. You can also
click the close box in the upper left corner to close a window.

In Borland C++, choose Close All to close all windows and clear
all history lists. This command is useful when you're starting a
new project. In Turbo C++, Close All simply closes all open
windows on the Turbo C++ desktop. History lists are not saved.

Choose Window I Message to open the Message window and
make it active. The Message window displays error and warning
messages, which you can use for reference, or you can select them
and have the corresponding location be highlighted in the edit
window. When a message refers to a file that is not currently
loaded, you can press the Spacebar to load that file. When an error
is selected in the Message window, press Enter to show the
location of the error in the edit window and make the edit
window active at the point of error.

To close the window, click its close box or choose Window I Close.

Borland C++ only Choose Window I Output to open the Output window and make
it active. The Output window displays text from any DOS
command-line text and any text generated from your program (no
graphics).

120 Borland C++ User's Guide

Watch

Window I Output

The Output window is handy while debugging because you can
view your source code, variables, and output all at once. This is
especially useful when you've set the Options I Environment
dialog box to a 43/50 line display and you are running a standard
25-line mode program. In that case, you can see almost all of the
program output and still have plenty of lines to view your source
code and variables.

If you would rather see your program's text on the full screen-or
if your program generates graphics-choose the Window I User
Screen command instead.

To close the window, click its close box or choose Window I Close.

Borland C++ only Choose Window I Watch to open the Watch window and make it
active. The Watch window displays expressions and their
changing values so you can keep an eye on how your program
evaluates key values.

User Screen
Borland C++ only

CUA

I Shift l[ill
Alternate

[]O[ill

Register

You use the commands in the Debug I Watches pop-up menu to
add or remove watches from this window. Refer to the section on
this menu for information on how to use the Watch window (page
73).

To close the window, click its close box or choose Window I Close.

Choose Window I User Screen to view your program's full-screen
output. If you would rather see your program output in a Borland
C++ window, choose the Window I Output command instead.

Clicking or pressing any key returns you to the IDE.

Borland C++ only Choose Window I Register to open the Register window and make
it active.

The Register window displays CPU registers and is used most
often when debugging inline ASM and T ASM modules in your
project.

Chapter 3, Menus and options reference 121

Window I Project

Project

Project Notes

To close the window, click its close box or choose Window I Close.

Choose Window I Project to open the Project window, which lets
you view the list of files you're using to create your program.

Borland C++ only Choose Window I Project Notes to write down any details, make
to-do lists, or list any other information about your project files.

List All
Borland C++ only

Help menu

Borland C++ only

122

Choose Window I List All to get a list of all the windows you've
opened. The list contains the names of all files that are currently
open as well as any of the last eight files you've opened in an edit
window but have since closed. A recently closed file appears in
the list prefixed with the word closed.

When you choose an already open file from the list, Borland C++
brings the window to the front and makes it active. When you
choose a closed file from the list, Borland C++ reopens the file in
an edit window the same size and location as when the window
was closed. The cursor is positioned at its last location.

In Turbo C++ for Windows, you can see a list of recently closed
files at the bottom of the File menu, and you can see a list of open
windows at the bottom of the Window menu. Choosing a closed
file name reopens the file in a new edit window. Choosing an
open window makes that window the active one.

The Help menu gives you access to online help in a special
window. There is help information on virtually all aspects of the
IDE and Borland C++. (Also, one-line menu and dialog box hints
appear on the status line whenever you select a command.)

To open the Help window in Borland C++, do one of these
actions:

• Press F1 at any time (including from any dialog box or when
any menu command is selected).

Borland C++ User's Guide

When getting help in a
dialog box or menu, you

cannot resize the window or
copy to the clipboard. In this

instance, Tab takes you to
dialog box controls, not the

next keyword.

Help

• When an edit window is active and the cursor is positioned on
a word, press CtrltF1 to get language help on that word .

• Click Help whenever it appears on the status line or in a dialog
box.

To close the Help window, press Esc, click the close box, or choose
Window I Close. You can keep the Help window onscreen while
you work in another window unless you opened the Help
window from a dialog box or pressed F1 when a menu command
was selected.

Help screens often contain keywords (highlighted text) that you
can choose to get more information. Press Tab to move to any
keyword; press Enter to get more detailed help. (As an alternative,
move the cursor to the highlighted keyword and press Enter.) With
a mouse, you can double-click any keyword to open the help text
for that item.

You can also cursor around the Help screen and press CtrltF1 on
any word to get help. If the word is not found, an incremental
search is done in the index and the closest match displayed.

When the Help window is active, you can copy from the window
and paste that text into an edit window. You do this just the same
as you would in an edit window: Select the text first, choose Edit I
Copy, move to an edit window, then choose Edit I Paste.

To select text in the Help window, drag across the desired text or,
when positioned at the start of the block, press Shiftt ---7,~, I, J, to
mark a block.

You can also copy preselected program examples from help
screens by choosing the Edit I Copy Example command.

lBf Turbo C++ for Windows uses the Windows Help system. If you
1EJ know how to use Help in other Windows applications, you'll

know how to get help in Turbo C++.

Contents
Borland C++ only The Help I Contents command opens the Help window with the

main table of contents displayed. From this window, you can
branch to any other part of the help system.

You can get help on Help by pressing F1 when the Help window
is active. You can also reach this screen by clicking on the status
line.

Chapter 3, Menus and options reference 123

Help I Index

124

Index

I Shift IffiJ

Borland C++ only

You can also tab to a
keyword to select it.

Topic Search

ITEOffiJ

Previous Topic

The Help I Index command displays a full list of help keywords
(the special highlighted text in help screens that let you quickly
move to a related screen).

You can scroll the list or you can incrementally search it by
pressing letters from the keyboard. For example, to see what's
available under "printing," you can type p r i. When you type p,
the cursor jumps to the first keyword that starts with p. When you
then type r, the cursor then moves to the first keyword that starts
with pro When you then type i, the cursor moves to the first
keyword that starts with pri, and so on.

When you find a keyword that interests you, choose it by
cursoring to it and pressing Enter. (You can also double-click it.)

The Help I Topic Search command displays language help on the
currently selected item.

To get language help, position the cursor on an item in an edit
window and choose Topic Search. You can get help on things like
function names (printf, for example), header files, reserved words,
and so on. If an item is not in the help system, the help index
displays the closest match.

Borland C++ only The Help I Previous Topic command opens the Help window and
[][)ffiJ redisplays the text you last viewed.

Help on Help
Borland C++ only

Borland C++ lets you back up through 20 previous help screens.
You can also click on the status line to view the last help screen
displayed.

The Help I Help on Help command opens up a text screen that
explains how to use the Borland C++ help system. If you're
already in help, you can bring up this screen by pressing Ft.

The Help I Using Help option in Turbo C++ for Windows is very
similar to the Help on Help command in Borland C++.

Borland C++ User's Guide

Active File

About

Help I Active File

The Help I Active Help command displays a dialog box that lets
you select the help file you want the IDE to use. Theses are the
topics you can get help on:

III IDE, C++ language, and Windows API
• ObjectWindows API
• Turbo Vision API

When you choose this command, a dialog box appears that shows
you copyright and version information for Borland C++ or Turbo
C++ for Windows. Press Esc or click OK (or press Enter) to close
the box.

Chapter 3, Menus and options reference 125

126 Borland C++ User's Guide

c H A p T E R

4

Managing multi-file projects

Since most programs consist of more than one file, having a way
to automatically identify those that need to be recompiled and
linked would be ideal. Borland C++'s built-in Project Manager
does just that and more.

The Project Manager allows you to specify the files belonging to
the project. Whenever you rebuild your project, the Project
Manager automatically updates the information kept in the
project file. This project file includes

• all the files in the project

• where to find them on the disk

• the header files for each source module

• which compilers and command-line options need to be used
when creating each part of the program

• where to put the resulting program

• code size, data size, and number of lines from the last compile

Using the Project Manager is easy. To build a project,

• pick a name for the project file (from Project I Open Project)

• add source files using the Project I Add Item dialog box

• tell Borland C++ to Compile I Make

Then, with the project-management commands available on the
Project menu, you can

• add or delete files from your project

Chapter 4, Managing multi-file projects 127

• set options for a file in the project

• view included files for a specific file in the project

All the files in this chapter are Let's look at an example of how the Project Manager works.
in the Examples directory.

Sampling the project manager

These names can be the
same (except for the exten

sions), but they don't have to
be. The name of your

executable file (and any
map file produced by the

linker) is based on the project
files name.

128

Suppose you have a program that consists of a main source file,
MYMAIN.CPP, a support file, MYFUNCS.CPP, that contains
functions and data referenced from the main file, and myfuncs.h.
MYMAIN.CPP looks like this:

#include <iostream.h>
#include "myfuncs.h"

main(int argc, char *argv[])
{

char *s;

if (argc > 1)
s=argv[l];

else
s="the universe";

cout « GetString() « s « "\n";

MYFUNCS.CPP looks like this:

char ss[] = "The restaurant at the end of ";

char *GetString(void)
{

return ss;

And myfuncs.h looks like this:

extern char *GetString(void) i

These files make up the program that we'll now describe to the
Project Manager.

The first step is to tell Borland C++ the name of the project file
that you're going to use: Call it MYPROG.PRJ. Notice that the
name of the project file is not the same as the name of the main
file (MYMAIN.CPP). And in this case, the executable file will be
MYPROG.EXE (and if you choose to generate it, the map file will
be MYPROG.MAP).

Borland C++ User's Guide

If the project file you load is
in another directory, the

current directory will be set
to where the project file is

loaded.

You can change the file
name specification to

whatever you want with the
Name input box; *. CPP is the

default.

If you copy the wrong file to
the Project window, press Esc

to return to the Project
window, then Del to remove

the currently selected file.

Go to the Project menu and choose Open Project. This brings up
the Open Project File dialog box, which contains a list of all the
files in the current directory with the extension .PRJ. Since you're
starting a new file, type in the name MYPROG in the Open Project
File input box.

Notice that once a project is opened, the Add Item, Delete Item,
Local Options, and Include Files options are enabled on the
Project menu.

You can keep your project file in any directory; to put it some
where other than the current directory, just specify the path as
part of the file name. (you must also specify the path for source
files if they're in different directories.) Note that all files and corre
sponding paths are relative to the directory where the project file
is loaded from. After you enter the project file name, you'll see a
Project window.

The Project window contains the current project file name
(MYPROG). Once you indicate which files make up your project,
you'll see the name of each file and its path. When the project file
is compiled, the Project window also shows the number of lines in
the file and the amount of code and data in bytes generated by the
compiler.

The status line at the bottom of the screen shows which actions
can be performed at this point: F1 gives you help, Ins adds files to
the Project, Del deletes a file from the Project, etrltO lets you select
options for a file, Spacebar lets you view information about the
include files required by a file in the Project, Enter opens an editor
window for the currently selected file, and F10 takes you to the
main menu. You can also click on any of these items with the
mouse to take the appropriate action. Press Ins now to add a file to
the project list.

The Add to Project List dialog box appears; this dialog box lets
you select and add source files to your project. The Files list box
shows all files with the .CPP extension in the current directory.
(MYMAIN.CPP and MYFUNCS.CPP both appear in this list.)
Three action buttons are available: Add, Done, and Help.

Since the Add button is the default, you can place a file in the
Project window by typing its name in the Name input box and
pressing Enter or by choosing it in the Files list box and choosing
OK. You can also search for a file in the Files list box by typing the
first few letters of the one you want. In this case, typing my should
take you right to MYFUNCS.CPP. Press Enter. You'll see that

Chapter 4, Managing multi-file projects 129

Note that the Add button
commits your change;

pressing Esc when you're in
the dialog box just puts the

dialog box away.

You can also view your
output by choosing

Window I Output.

For more information on . PRJ
and .DSK files, refer to the

section, "Project and
configuration files, " in

Chapter 2.

You can specify a project to
load on the DOS command
line like this: Be myprog.prj.

130

MYFUNCS gets added to the Project window and then you're
returned to the Add Item dialog box to add another file. Go ahead
and add MYMAIN.CPP. Borland c++ will compile files in the
exact order they appear in the project.

Close the dialog box and return to the Project window. Notice
that the Lines, Code, and Data fields in the Project window show
n/ a. This means the information is not available until the modules
are actually compiled.

After all compiler options and directories have been set, Borland
C++ will know everything it needs to know about how to build
the program called MYPROG.EXE using the source code in
MYMAIN.CPP, MYFUNCS.CPP, and myfuncs.h. Now you'll
actually build the project.

Choose Compile I Make to make your project and choose Run I
Run to run it. To view your output, choose Window I User Screen,
then press any key to return to the IDE.

When you leave the IDE, the project file you've been working on
is automatically saved on disk; you can disable this by uncheck
ing Project in the Preferences dialog box (Options I Environment).

The saved project consists of two files: the project file CPR]) and
the desktop file CDSK). The project file contains the information
required to build the project's related executable. The build
information consists of compiler options,
INCLUDE/LIB/OUTPUT paths, linker options, make options,
and transfer items. The desktop file contains the state of all
windows at the last time you were using the project.

The next time you use Borland C++, you can jump right into your
project by reloading the project file. Borland C++ automatically

Borland C++ User's Guide

Error tracking

Changing these files makes
them out of date with their

object files, so doing a make
will recompile them.

Stopping a make

loads a project file if it is the only .PRJ file in the current directory;
otherwise the default project and desktop (TCDEF. *) are loaded.
Since your program files and their corresponding paths are
relative to the project file's directory, you can work on any project
by moving to the project file's directory and bringing up Borland
C++. The correct file will be loaded for you automatically. If no
project file is found in the current directory, the default project file
is loaded.

Syntax errors that generate compiler warning and error messages
in multifile programs can be selected and viewed from the
Message window.

To see this, let's introduce some syntax errors into the two files,
MYMAIN.CPP and MYFUNCS.CPP. From MYMAIN.CPP,
remove the first angle bracket in the first line and remove the c in
char from the fifth line. These changes will generate five errors
and two warnings in MYMAIN.

In MYFUNCS.CPP, remove the first r from return in the fifth line.
This change will produce two errors and one warning.

Since you want to see the effect of tracking in multiple files, you
need to modify the criterion Borland C++ uses to decide when to
stop the make process. This is done by setting a radio button in
the Make dialog box (Options I Make).

You can choose the type of message you want the make to stop on
by setting one of the Break Make On options in the Make dialog
box (Options I Make). The default is Errors, which is normally the
setting you'd want to use. However, you can have a make stop
after compiling a file with warnings, with errors, or with fatal
errors, or have it stop after all out-of-date source modules have
been compiled.

The usefulness of each of these modes is really determined by the
way you like to fix errors and warnings. If you like to fix errors
and warnings as soon as you see them, you should set Break
Make On to Warnings or maybe to Errors. If you prefer to get an
entire list of errors in all the source files before fixing them up,

Chapter 4, Managing multi-file projects 131

132

Syntax errors in
multiple source

files

you should set the radio button to Fatal Errors or to Link. To de
monstrate errors in multiple files, choose Fatal Errors in the Make
dialog box.

Since you've already introduced syntax errors into MYMAIN.CPP
and MYFUNCS.CPP, go ahead and choose Compile I Make to
"make the project." The Compiling window shows the files being
compiled and the number of errors and warnings in each file and
the total for the make. Press any key when the Errors: Press any
key message flashes.

Your cursor is now positioned on the first error or warning in the
Message window. If the file that the message refers to is in the
editor, the highlight bar in the edit window shows you where the
compiler detected a problem. You can scroll up and down in the
Message window to view the different messages.

Note that there is a "Compiling" message for each source file that
was compiled. These messages serve as file boundaries, separat
ing the various messages generated by each module and its in
clude files. When you scroll to a message generated in a different
source file, the edit window will only track in files that are
currently loaded.

Thus, moving to a message that refers to an unloaded file causes
the edit window's highlight bar to turn off. Press Spacebar to load
that file and continue tracking; the highlight bar will reappear. If
you choose one of these messages (that is, press Enterwhen
positioned on it), Borland C++ loads the file it references into an
edit window and places the cursor on the error. If you then return
to the Message window, tracking resumes in that file.

The Source Tracking options in the Preferences dialog box
(Options I Environment) help you determine which window a file
is loaded into. You can use these settings when you're message
tracking and debug stepping.

Note that Previous message and Next message are affected by the
Source Tracking setting. These commands will always find the
next or previous error and will load the file using the method
specified by the Source Tracking setting.

Borland C++ User's Guide

Saving or deleting
messages Normally, whenever you start to make a project, the Message

window is cleared out to make room for new messages. Some
times, however, it is desirable to keep messages around between
makes.

Autodependency
checking

Consider the following example: You have a project that has
many source files and your program is set to stop on Errors. In
this case, after compiling many files with warnings, one error in
one file stops the make. You fix that error and want to find out if
the compiler will accept the fix. But if you do a make or compile
again, you lose your earlier warning messages. To avoid this,
check Save Old Messages in the Preferences dialog box (Options I
Environment). This way the only messages removed are the ones
that result from the files you recompile. Thus, the old messages
for a given file are replaced with any new messages that the com
piler generates.

You can always get rid of all your messages by choosing
Compile I Remove Messages, which deletes all the current
messages. Unchecking Save Old Messages and running another
make will also get rid of any old messages.

When you made your previous project, you dealt with the most
basic situation: a list of C++ source file names. The Project
Manager provides you with a lot of power to go beyond this
simple situation.

The Project Manager collects autodependency information at
compile time and caches these so that only files compiled outside
the IDE need to be processed. The Project Manager can automat
ically check dependencies between source files in the project list
(including files they themselves include) and their corresponding
object files. This is useful when a particular C++ source file
depends on other files. It is common for a C++ source to include
several header files (.h files) that define the interface to external
routines. If the interface to those routines changes, you'll want the
file that uses those routines to be recompiled.

If you've checked the Auto-Dependencies option (Options I Make),
Make obtains time-date stamps for all.CPP files and the files in
cluded by these. Then Make compares the date/time information

Chapter 4, Managing multi-file projects 133

of all these files with their date/time at last compile. If any
date/time is different, the source file is recompiled.

If the Auto-Dependencies option is unchecked, the .CPP files are
checked against .OB} files. If earlier .CPP files exist, the source file
is recompiled.

When a file is compiled, the IDE's compiler and the command-line
compiler put dependency information into the .OB} files. The
Project Manager uses this to verify that every file that was used to
build the .OB} file is checked for time and date against the time
and date information in the .OB} file. The .CPP source file is
recompiled if the dates are different.

That's all there is to dependencies. You get the power of more
traditional makes while avoiding long dependency lists.

Using different file translators

134

So far you've built projects that use Borland C++ as the only
language translator. Many projects consist of both C++ code and
assembler code, and possibly code written in other languages. It
would be nice to have some way to tell Borland C++ how to build
such modules using the same dependency checks that we've just
described. With the Project Manager, you don't need to worry
about forgetting to rebuild those files when you change some of
the source code, or about whether you've put them in the right
directory, and so on.

For every source file that you have included in the list in the
Project window, you can specify

• which program (Borland C++, TASM, and so on) to use as its
target file

• which command-line options to give that program

• whether the module is an overlay

• what to call the resulting module and where it will be placed
(this information is used by the project manager to locate files
needed for linking)

• whether the module contains debug information

• whether the module gets included in the link

By default, the IDE's compiler is chosen as the translator for each
module, using no command-line override options, using the

Bor/and C++ User's Guide

Output directory for output, assuming that the module is not an
overlay, and assuming that debug information is not to be
excluded.

Let's look at a simple example. Go to the Project window and
move to the file MYFUNCS.CPP. Now press Ctr/tO to bring up the
Override Options dialog box for this file:

Except for Borland C++, each of the names in the Project File
Translators list box is a reference to a program defined in the
Transfer dialog box (Options I Transfer).

Press Esc, then F10 to return to the main menu, then choose
Options I Transfer. The Transfer dialog box that appears contains a
list of all the transfer programs currently defined. Use the arrow
keys to select Turbo Assembler and press Enter. (Since the Edit
button is the default, pressing Enterbrings up the Modify /New
Transfer Item dialog box.) Here you see that Turbo Assembler is
defined as the program TASM in the current path. Notice that the
Translator check box is marked with an X; this translator item is
then displayed in the Override Options dialog box. Press Esc to
return to the Transfer dialog box.

Suppose you want to compile the MYFUNCS module using the
Borland C++ command-line compiler instead of the IDE's
compiler. To do so, you would perform the following steps:

1. First, you need to define BCC as one of the Project File
Translators in the Transfer dialog box. Cursor past the last
entry in the Program Titles list, then press Enter to bring up the
Modify /New Transfer Item dialog box. In the Program Title

Chapter 4, Managing multi-file projects 135

input box, type Borland ett command-line compiler; in the
Program Path input box, type Bee; and in the command line,
type $EDNAME.

2. Then check Translator by pressing Spacebar and press Enter
(New is the default action button). Back at the Transfer dialog
box, you see that Borland ett command-line compiler is now in
the Program Titles list box (the last part doesn't show). Choose
OK and press Enter.

3. Back in the Project window, press etr/+o to go to the Override
Options dialog box again. Notice that Borland C++ command
line compiler is now a choice on the Project File Translators list
for MYFUNCS.CPP (as well as for all of your other files).

Tab to the Project File Translators list box and highlight
Borland C++ command-line compiler (at this point, pressing Enter
or tabbing to another group will choose this entry). Use the
Command-line Options input box to add any command-line
options you want to give BCC when compiling MYFUNCS.

MYFUNCS.CPP now compiles using BCC.EXE, while all of your
other source modules compile with BC.EXE. The Project Manager
will apply the same criteria to MYFUNCS.CPP when deciding
whether to recompile the module during a make as it will to all
the modules that are compiled with BC.EXE.

Overriding libraries

136

In some cases, it's necessary to override the standard startup files
or libraries. You override the startup file by placing a file called
COx.OB] as the first name in your project file, where x stands for
any DOS name (for example, COMINE.OB]). It's critical that the
name start with CO and that it is the first file in your project.

To override the standard library, choose Options I Linker and, in
the Libraries dialog box, select None for the Standard Run-time
Library. Then add the library you want your project to use to the
project file just as you would any other item.

Borland C++ User's Guide

More Project Manager features

Let's take a look at some of the other features the Project Manager
has to offer. When you're working on a project that involves many
source files, you want to be able to easily view portions of those
files, and be able to record notes about what you're doing as
you're working. You'll also want to be able to quickly access files
that are included by others.

For example, expand MYMAIN.CPP to include a call to a function
named GetMyTime:

#include <iostream.h>
#include "myfuncs.h"
#include "mytime.h"

main(int argc, char *argv[])
{

char *s;

if (argc > 1)
s=argv[l];

else
s="the universe";

cout « GetString() « s « "\n";

This code adds one new include file to MYMAIN: mytime.h.
Together myfuncs.h and mytime.h contain the prototypes that
define the GetString and GetMyTime functions, which are called
from MYMAIN. The mytime.h file contains

#define HOUR 1
#define MINUTE 2
#define SECOND 3
extern int GetMyTime(int);

Go ahead and put the actual code for GetMyTime into a new
source file called MYTIME.CPP:

#include <time.h>
#include "mytime.h"

int GetMyTime(int which)
{

struct tm *timeptr;
time t secsnow;

time(&secsnow);
timeptr = localtime(&secsnow);

Chapter 4, Managing multi-file projects 137

138

switch (which) {
case HOUR:

return (timeptr -> tm_hour);
case MINUTE:

return (timeptr -> tm_min);
case SECOND:

return (timeptr -> tm_sec);

MYTIME includes the standard header file time.h, which contains
the prototype of the time and localtime functions, and the
definition of tm and time_t, among other things. It also includes
mytime.h in order to define HOUR, MINUTE, and SECOND.

Create these new files, then use Project I Open Project to open
MYPROG.PRJ. The files MYMAIN.CPP and MYFUNCS.CPP are
still in the Project window. Now to build your expanded project,
add the file name MYTIME.CPP to the Project window. Press Ins
(or choose Project I Add Item) to bring up the Add Item dialog
box. Use the dialog box to specify the name of the file you are
adding and choose Done.

Now choose Compile I Make to make the project. MYMAIN.CPP
will be recompiled because you've made changes to it since you
last compiled it. MYFUNCS.CPP won't be recompiled, because
you haven't made any changes to it since the make in the earlier
example. MYTIME.CPP will be compiled for the first time.

In the MYPROG project window, move to MYMAIN.CPP and
press Spacebar (or Project I Include Files) to display the Include
Files dialog box. This dialog box contains the name of the selected
file, several buttons, and a list of include files and locations
(paths). The first file in the Include Files list box is highlighted; the
list box lists all the files that were included by the file
MYMAIN.CPP. If any of the include files is located outside of the
current directory, the path to the file is shown in the Location field
of the list box.

As each source file is compiled, the information about which
include files are included by which source files is stored in the
source file's .OBJ file. If you access the Include Files dialog box
before you perform a make, it might contain no files or it might
have files left over from a previous compile (which may be out of
date). To load one of the include files into an edit window,
highlight the file you want and press Enter or click the View
button.

Borland c++ User's Guide

Looking at files in
a project

Notes for your
project

Let's take a look at MYMAIN.CPP, one of the files in the Project.
Simply choose the file using the arrow keys or the mouse, then
press Enter. This brings up an edit window with MYMAIN.CPP
loaded. Now you can make changes to the file, scroll through it,
search for text, or whatever else you need to do. When you are
finished with the file, save your changes if any, then close the edit
window.

Suppose that after browsing around in MYMAIN.CPP, you
realize that what you really wanted to do was look at mytime.h,
one of the files that MYMAIN.CPP includes. Highlight
MYMAIN.CPP in the Project window, then press Spacebar to bring
up the Include Files dialog box for MYMAIN. (Alternatively,
while MYMAIN.CPP is the active edit window, choose Project I
Include Items. Now choose mytime.h in the Include Files box and
press the View button. This brings up an edit window with
mytime.h loaded. When you're done, close the mytime.h edit
window.

Now that you've had a chance to see the code in MYMAIN.CPP
and mytime.h, you might decide to make some changes at a later
time. Choose Window I Project Notes to bring up a new edit
window that is kept as part of your project file. Type in any
comments you want to remember about your project.

Each project maintains its own notes file, so that you can keep
notes that go with the project you're currently working on; they're
available at the touch of a button when you select the project file.

Chapter 4, Managing multi-file projects 139

140 Borland C++ User's Guide

c H

The command-fine compiler
lets you invoke all the

functions of the IDE compiler
from the DOS command fine.

A p T E R

5

The command-line compiler

As an alternative to using the IDE, you can compile and run your
programs with the command-line compiler (BCC.EXE). Almost
anything you can do within the IDE can also be done using the
command-line compiler. You can set warnings on or off, invoke
TASM (or another assembler) to assemble .ASM source files,
invoke the linker to generate executable files, and so on. In fact, if
you only want to compile your C or c++ source file(s), you must
use the -c option at the command line.

This chapter is organized into two parts. The first describes how
to use the command-line compiler and provides a summary table
of all the options. The second part, starting on page 174, presents
the options organized functionally (with groups of related
options).

The summary table, Table 5.1 (starting on page 143), summarizes
the command-line compiler options and provides a page-number
cross-reference to where you can find more detailed information
about each option.

Using the command-line compiler

The command-line compiler uses DPMI (Dos Protected Mode
Interface) to run in protected mode on 286, 386, or i486 machines
with at least 640K conventional RAM and at least 1MB extended
memory.

Chapter 5, The command-line compiler 141

DPMIINST

For more information about
running DPMIINST, see

Chapter 1, Installing Borland
C++.

Running Bee

You can also use a configur
ation file. See page 147 for

details.

Using the options

Compiler options are further
divided into ten groups.

142

Note that, although Borland C++ runs in protected mode, it still
generates applications that run in real mode. The advantage to
using Borland C++ in protected mode is that the compiler has
much more room to run than if you were running it in real mode,
so it can compile larger projects faster and without extensive
disk-swapping.

The protected mode interface is completely transparent to the
user. Borland C++ uses an internal database of various machine
characteristics to determine how to enable protected mode on
your machine, and configures itself accordingly. The only time
you may need to be aware of it is when running the compiler for
the first time. If your machine is not recognized by Borland C++,
you will need to run the DPMIINST program by typing (at the
DOS prompt)

DPMIINST

and following the program's instructions. DPMIINST runs your
machine through a series of tests to determine the best way of
enabling protected mode.

To invoke Borland C++ from the command line, type BCC at the
DOS prompt and follow it with a set of command-line arguments.
Command-line arguments include compiler and linker options
and file names. The generic command-line format is

BCC [option [option ... n filename [filename ...]

Each command-line option may be preceded by either a hyphen
(-) or slash U), whichever you prefer. Each option must be
separated from the BCC command, other options, and following
file names by at least one space.

The options are divided into three general types:

• compiler options, described starting on page 148
• linker options, described starting on page 167
• environment options, described starting on page 167

Borland C++ User's Guide

Use this feature to override
settings in configuration files.

Option precedence
rules

To see an onscreen list of the options, type Bee (without any
options or file names) at the DOS prompt. Then press Enter.

In order to select command-line options, enter a hyphen (-) or
slash U) immediately followed by the option letter (for example,
-lor 11). To turn an option off, add a second hyphen after the
option letter. This is true for all toggle options (those that turn an
option on or off): A trailing hyphen (-) turns the option off, and a
trailing plus sign (+) or nothing turns it on. So, for example, -C
and -C+ both turn nested comments on, while -C- turns nested
comments off.

The option precedence rules are simple; command-line options
are evaluated from left to right, and the following rules apply:

• For any option that is not an -lor -L option, a duplication on
the right overrides the same option on the left. (Thus an off
option on the right cancels an on option to the left.)

~ The -I and -L options on the left, however, take precedence
over those on the right.

Table 5.1: Command-line options summary

Option

@filename
+filename
-1
-1-
-2
-A
-A-,-AT
-AK
-AU
-a
-a-
-B
-b
-b-
-C
-C-
-c
-Dname
-Dname=string
-d
-d-
-Efilename
-efilename
-Fc
-Ff

Page

147
147
151
151
151
156
156
156
156
151
151
161
151
151
156
156
161
150
150
151
151
161
167
151
151

Function

Read compiler options from the response file filename
Use the alternate configuration file filename
Generate 80186 instructions
Generate 8088/8086 instructions (default)
Generate 80286 protected-mode compatible instructions
Use only ANSI keywords
Use Borland C++ keywords (default)
Use only Kernighan and Ritchie keywords
Use only UNIX keywords
Align word
Align byte (default)
Compile and call the assembler to process inline assembly code
Make enums always word-sized (default)
Make enums byte-sized when possible
Nested comments on
Nested comments off (default)
Compile to .OBJ but do not link
Define name to the null string
Define name to string
Merge duplicate strings on
Merge duplicate strings off (default)
Use filename as the assembler to use
Link to produce filename.EXE
Generate COMDEFs
Create far variables automatically

Chapter 5, The command-line compiler 143

Table 5.1: Command-line options summary (continued)

-Ff=size
-Fm
-Fs
-f
-f-
-ff
-ff-
-f87
-f287
-G
-G-
-gn
-H
-H-
-Hu
-H=filename
-h
-Ipath
-in
-Jg

-Jgd

-Jgx
-jn
-K
-K-
-k
-Lpath
-Ix
-l-x
-M
-me
-mh
-ml
-mm
-mm!
-ms
-ms!
-mt
-mt!
-N
-npath
-01
-02
-Od
-On
-ofilename
-P
-Pext
-P-

144

151
151
151
152
152
152
152
153
153
175
175
157
161
161
161
161
153
168
156
166

166

166
157
153
153
153
168
167
167
167
149
149
149
149
149
149
149
149
149
154
168
174
174
174
174
161
161
161
161

Create far variables automatically; sets the threshold to size
Enables the -Fe, -Ff, and -Fs options
Assume DS = SS in all memory models
Emulate floating point (default)
Don't do floating point
Fast floating point (default)
Strict ANSI floating point
Use 8087 hardware instructions
Use 80287 hardware instructions
Select code for speed
Select code for size (default)
Warnings: stop after n messages
Causes the compiler to generate and use precompiled headers
Turns off generation and use of precompiled headers (default)
Tells the compiler to use but not generate precompiled headers
Sets the name of the file for precompiled headers
Use fast huge pointer arithmetic
Directories for include files
Make significant identifier length to be n
Generate definitions for all template instances and merge duplicates
(default)
Generate public definitions for all template instances; duplicates will result
in redefinition errors
Generate external references for all template instances
Errors: stop after n messages
Default character type unsigned
Default character type signed (default)
Standard stack frame on (default)
Directories for libraries
Pass option x to the linker (can use more than one x)
Suppress option x for the linker
Instruct the linker to create a map file
Compile using compact memory model
Compile using huge memory model
Compile using large memory model
Compile using medium memory model
Compile using medium model; assume DS!= SS
Compile using small memory model (default)
Compile using small model; assume DS != SS
Compile using tiny memory model
Compile using tiny model; assume DS != SS
Check for stack overflow
Set the output directory
Generate smallest possible code
Generate fastest possible code
Disable all optimizations
(Oa-Ox) Optimization options
Compile source file to filename.obj
Perform a C++ compile regardless of source file extension
Perform a C++ compile and set the default extension to ext
Perform a C++ or C compile depending on source file extension (default)

Borland C++ User's Guide

Table 5.1: Command-line options summary (continued)

-P-ext

-p
-pr
-p-
-Qe
-Qe-
-Qx
-r
-r-
-rd
-R
-S
-Tstring
-T-
-tDe
-tDc
-tW
-Una me
-u
-u-
-v,-v-
-vi,-vi-
-v
-Va
-Vb
-Vc

-Vf
-Vmv
-Vmm
-Vms
-Vmd
-Vmp
-Yo

-Vp

-Vs
-Vt
-Vv
-VO,-V1
-W
-WD

-WDE

-WE
-WS
-w
-wxxx

161

154
154
154
163
163
163
174
174
174
79
162
162
162
167
167
167
150
154
154
155
155
164
168
168
168

164
165
165
165
165
165
169

169

164
169
169
164
162
162

162

162
163
157
157

Perform a c++ or C compile depending on extension; set default extension
to ext
Use Pascal calling convention
Use fastcall calling convention for passing parameters in registers
Use C calling convention (default)
Instructs the compiler to use all available EMS memory (default)
Instructs the compiler to not use any EMS memory
Instructs the compiler to use extended memory
Use register variables on (default)
Suppresses the use of register variables.
Only allow declared register variables to be kept in registers
Generate ObjectBrowser information
Produce .ASM output file
Pass string as an option to T ASM or assembler specified with -E
Remove all previous assembler options
Make the target a DOS .EXE file
Make the target a DOS .COM file
Make the target a Windows module, using the same options as -W
Undefine any previous definitions of name
Generate underscores (default)
Disables underscores
Source debugging on
Controls expansion of inline functions
Smart C++ virtual tables
Pass class arguments by reference to a temporary variable
Make virtual base class pointer same size as 'this' pointer of the class
Do not add the hidden members and code to classes with pointers to virtual
base class members
Far C++ virtual tables
Member pointers have no restrictions (most general representation)
Member pointers support multiple inheritance
Member pointers support single inheritance
Use the smallest representation for member pointers
Honor the declared precision for all member pointer types
Enable all of the 'backward compatibility' -V switches (-Va,-Vb,-Vc,-Vp,
-Vt,-Vv)
Pass the 'this' parameter to 'pascal' member functions as the first parameter
on the stack
Local C++ virtual tables
Place the virtual table pointer after non-static data members
Do not change the layout of classes to relax restrictions on member pointers
External and Public C++ virtual tables
Creates an .OBJ for Windows with all functions exportable
Creates an .OBJ for Windows to be linked as a .DLL with all functions
exportable
Creates an .OBJ for Windows to be linked as a .DLL with explicit export
functions
Creates an .OBJ for Windows with explicit export functions
Creates an .OBJ for Windows that uses smart callbacks
Display warnings on
Enable xxx warning message

Chapter 5, The command-line compiler 145

Table 5.1: Command-line options summary (continued)

-w-xxx 157 Disable xxx warning message
-X 154 Disable compiler autodependency output
-Y 155 Enable overlay code generation
-Yo 155 Overlay the compiled files
-y 155 Line numbers on
-Z 182 Enable register load suppression optimization
-zAname 159 Code class
-zBname 159 BSS class
-zCname 159 Code segment
-zDname 159 BSS segment
-zEname 159 Far segment
-zFname 160 Far class
-zGname 160 BSS group
-zHname 160 Far group
-zPname 160 Code group
-zRname 160 Data segment
-zSname 160 Data group
-zTname 160 Data class
-zX* 160 Use default name for X. (default)

Syntax and file
names Borland c++ compiles files according to the following set of rules:

filename.asm Invoke TASM to assemble to .OBJ C++ files have the extension
.CPP; see page 161 for

information on changing the
default extension.

146

filename.obj Include as object at link time
filename.lib Include as library at link time
filename Compile FILEN AME.CPP
filename.cpp Compile FILENAME.CPP
filename.c Compile FILENAME.C
filename.xyz Compile FILENAME.XYZ

For example, given the following command line

BCC -a -f -C -01 -emyexe oldfile1 oldfile2 nextfile

Borland C++ compiles OLDFILE1.CPP, OLDFILE2.CPP, and
NEXTFILE.CPP to an .OBJ, linking them to produce an executable
program file named MYEXE.EXE with word alignment (-a),
floating-point emulation (-f), nested comments (-C), and generate
smallest code (-01) selected.

Borland C++ invokes TASM if you give it an .ASM file on the
command line or if a .C or .CPP file contains inline assembly.
Here are the options that the command-line compiler gives to
TASM:

ID __ MODEL __ ID __ LANG __ Iml IFLOATOPT

Borland C++ User's Guide

Response files
Response fifes allow you to

have longer command
strings than DOS normally

allows.

See page 143 for what those
rules are.

Configuration files
TURBOC. CFG is not the same

as TCCONFIG. TC, which is
the default IDE version of a

configuration fife.

where MODEL is one of: TINY, SMALL, MEDIUM, COMPACT,
LARGE, or HUGE. The Iml option tells TASM to assemble with
case sensitivity on. LANG is CDECL or PASCAL; FLOATOPT is r
when you've specified -f87 or -f287; e otherwise.

If you need to specify many options or files on the command line,
you can place them in an ASCII text file, called a response file
(you can of course name it anything you like). You can then tell
the command-line compiler to read its command line from this
file by including the appropriate file name prefixed with @. You
can specify any number of such files, and you can mix them freely
with other options and file names.

For example, suppose the file MOON.RSP contains ST ARS.C and
RAIN.C. This command

BCC SUN.C @MOON.RSP ANYONE.C

will cause Borland C++ to compile the files SUN.C, STARS.C,
RAIN.C, and ANYONE.C in real mode. It expands to

BCC SUN.C STARS.C RAIN.C ANYONE.C

Any options included in a response file are evaluated just as
though they had been typed in on the command line.

If you find you use a certain set of options over and over again,
you can list them in a configuration file, called TURBOC.CFG by
default. If you have a TURBOC.CFG configuration file, you don't
need to worry about using it. When you run BCC, it automatically
looks for TURBOC.CFG in the current directory. If it doesn't find
it there, Borland C++ then looks in the startup directory (where
BCC.EXE or BCCX.EXE resides).

You can create more than one configuration file; each must have a
unique name. To specify the alternate configuration file name, in
clude its file name, prefixed with +, anywhere on the BCC
command line. For example, to read the option settings from the
file D:\ALT.CFG, you could use the following command line:

BCC tD:\ALT.CFG

Your configuration file can be used in addition to or instead of
options entered on the command line. If you don't want to use

Chapter 5, The command-line compiler 147

option precedence
rules

certain options that are listed in your configuration file, you can
override them with options on the command line.

You can create the TURBOC.CFG file (or any alternate configura
tion file) using any standard ASCII editor or word processor, such
as Borland C++'s integrated editor. You can list options (separated
by spaces) on the same line or list them on separate lines.

In general, you should remember that command-line options
override configuration file options. If, for example, your configu
ration file contains several options, including the -a option (which
you want to turn ott>, you can still use the configuration file but
override the -a option by listing -a- in the command line.
However, the rules are a little more detailed than that. The option
precedence rules detailed on page 143 apply, with these
additional rules:

1. When the options from the configuration file are combined
with the command-line options, any -I and -L options in the
configuration file are appended to the right of the command
line options. This means that the include and library direc
tories specified in the command line are the first ones that
Borland C++ searches (thereby giving the command-line-I
and -L directories priority over those in the configuration file).

2. The remaining configuration file options are inserted imme
diately after the BCC command (to the left of any command
line options). This gives the command-line options priority
over the configuration file options.

Compiler options

Borland C++'s command-line compiler options fall into ten
groups; the page references to the left of each group tell where
you can find a discussion of each kind of option:

See page 749. 1. Memory model options let you tell Borland C++ which memory
model to use when compiling your program.

See page 750. 2. Macro definitions let you define and undefine macros on the
command line.

See page 757. 3. Code-generation options govern characteristics of the generated
code, such as the floating-point option, calling convention,
character type, or CPU instructions.

148 Borland C++ User's Guide

See Appendix A. 4. Optimization options let you specify how the object code is to
be optimized; a more detailed discussion of optimization
options appears in Appendix A, "The Optimizer."

See page 756. 5. Source code options cause the compiler to recognize (or ignore)
certain features of the source code; implementation-specific
(non-ANSI, non-Kernighan and Ritchie, and non-UNIX) key
words, nested comments, and identifier lengths.

See page 757. 6. Error-reporting options let you tailor which warning messages
the compiler will report, and the maximum number of warn
ings and errors that can occur before the compilation stops.

See page 759. 7. Segment-naming control options allow you to rename segments
and to reassign their groups and classes.

See page 767. 8. Compilation control options let you direct the compiler to

• compile to assembly code (rather than to an object module)
• compile a source file that contains inline assembly
• compile without linking
• compile for Windows applications
• use precompiled headers or not

See page 763. 9. EMS options let you control how much expanded or extended
memory Borland C++ uses.

See page 764. 10. C++ virtual table options let you control how virtual tables are
handled.

See page 765. 11. C++ member pointer options let you control how member
pointers are used.

See page 766. 12. Template generation options let you control how the compiler
generates definitions or external declarations for template
instances.

See page 768. 13. Backward compatibility options let you tell the compiler to use
particular code generation strategies to insure backward
compatibility with earlier versions of Borland C++.

Memory model

See Chapter 9 in the
Programmer's Guide for in

depth information on the
memory models (what they

are, how to use them).

Memory model options let you tell Borland C++ which memory
model to use when compiling your program. The memory models
are tiny, small, medium, compact, large, and huge.

-me Compile using compact memory model
-mh Compile using huge memory model
-ml Compile using large memory model
-mm Compile using medium memory model

Chapter 5, The command-line compiler 149

NOTE: You can't use the-N
option when using one of the

OS /= SS models.

Macro definitions

150

-mm! Compile using medium model; OS != SS
-m5 Compile using small memory model (the default)
-m5! Compile using small model; DS!= SS
-mt Compile using tiny memory model
-mt! Compile using tiny model; OS != SS

The net effect of the -mt!,-m5!, and -mm! options is actually very
small. If you take the address of a stack variable (auto or param
eter), the default (when OS == SS) is to make the resulting pointer
a near (OS relative) pointer. In this way one can simply assign the
address to a default sized pointer in those models without
problems. When OS != SS, the pointer type created when you take
the address of a stack variable is an _55 pointer. This means that
the pointer can be freely assigned or passed to a far pointer or to a
_55 pointer. But for the memory models affected, assigning the
address to a near or default-sized pointer will produce a "Suspi
cious pointer conversion" warning. Such warnings are usually
errors, and the warning defaults to on. You should regard this
kind of warning as a likely error.

Macro definitions let you define and undefine macros (also called
manifest or symbolic constants) on the command line. The default
definition is the null string. Macros defined on the command line
override those in your source file.

-Oname Defines the named identifier name to the null
string.

-Oname=string Defines the named identifier name to the string
string after the equal sign. string cannot contain
any spaces or tabs.

-Uname Undefines any previous definitions of the
named identifier name.

Borland C++ lets you make multiple #define entries on the
command line in any of the following ways:

• You can include multiple entries after a single -0 option, sepa
rating entries with a semicolon (this is known as "ganging"
options):

BCC -Dxxx;yyy=l;zzz=NO MYFILE.C

• You can place more than one -0 option on the command line:

BCC -Dxxx -Dyyy=l -Dzzz=NO MYFILE.C

Borland C++ User's Guide

Code-generation
options

• You can mix ganged and multiple -0 listings:

BCC -Dxxx -Dyyy=l;zzz=NO MYFILE.C

Code-generation options govern characteristics of the generated
code, such as the floating-point option, calling convention, charac
ter type, or CPU instructions.

-1 This option causes Borland C++ to generate extended
80186 instructions. It also generates 80286 programs
running in real mode, such as with the IBM PC/ AT
under D05.

-1- Tells the compiler to generate 8088/8086 instructions
(the default).

-2 This option causes Borland C++ to generate 80286
protected-mode compatible instructions.

-a This option forces integer size and larger items to be
aligned on a machine-word boundary. Extra bytes are
inserted in a structure to ensure member alignment.
Automatic and global variables are aligned properly.
char and unsigned char variables and fields can be
placed at any address; all others are placed at an even
numbered address. This option is off by default (-a-),
allowing bytewise alignment.

-b This option (which is on by default) tells the compiler to
always allocate a whole word for enumeration types.

-b- This option tells the compiler to allocate a signed or
unsigned byte if the minimum and maximum values of
the enumeration are both within the range of 0 to 255 or
-128 to 127, respectively.

-d This option tells the compiler to merge literal strings
when one string matches another, thereby producing
smaller programs. This option is off by default (-d-).

-Fc This generates communal variables (COMDEFs) for
global "C" variables that are not initialized and not
declared as static or extern. The advantage of using this
option is that header files that are included in several
source files can contain declarations of global variables.
50 long as a given variable doesn't need to be initialized

Chapter 5, The command-line compiler 151

152

to a nonzero value, you don't need to include a
definition for it in any of the source files. You can use
this option when porting code that takes advantage of a
similar feature with another implementation.

-Ff When you use this option, global variables greater than
or equal to the threshold size are automatically made far
by the compiler. The threshold size defaults to 32,767;
you can change it with the -Ff=size option. This option
is useful for code that doesn't use the huge memory
model but declares enough large global variables that
their total size exceeds (or is close to) 64K. For tiny,
small, and medium models this option has no effect.

If you use this option in conjunction with -Fc, the
generated COMDEFs will be far in the compact, large,
and huge models.

-Ff=size Use this option to change the threshold size used by the

-Fm

-Fs

-f

-f-

-ff

-Ff option.

This option enables all the other -F options (-Fc, -Ff and
-Fs). You can use it as a handy shortcut when porting
code from other compilers.

This option tells the compiler to assume that DS is equal
to SS in all memory models; you can use it when porting
code originally written for an implementation that
makes the stack part of the data segment. When you
specify this option, the compiler will link in an alternate
startup module (COFx.OBJ) that will place the stack in
the data segment.

This option tells the compiler to emulate 80x87 calls at
run time if the run-time system does not have an 80x87;
if it does have one, the compiler calls the 80x87 chip for
floating-point calculations (the default).

This option specifies that the program contains no
floating-point calculations, so no floating-point libraries
will be linked at the link step.

With this option, the compiler optimizes floating-point
operations without regard to explicit or implicit type
conversions. Answers can be faster than under ANSI
operating mode. See Chapter 10, "Math," in the
Programmer's Guide for details.

Borland C++ User's Guide

-ff- This option turns off the fast floating-point option. The
compiler follows strict ANSI rules regarding floating
point conversions.

-187 This option tells the compiler to generate floating-point
operations using inline 80x87 instructions rather than
using calls to 80x87 emulation library routines. It
specifies that a math coprocessor will be available at run
time; therefore, programs compiled with this option will
not run on a machine that does not have a math
coprocessor.

-1287 This option is similar to -187, but uses instructions that
are only available with an 80287 (or higher) chip.

-h This option offers an alternative way of calculating huge
pointer expressions; a way which is much faster but
must be used with caution. When you use this option,
huge pointers are normalized only when a segment
wraparound occurs in the offset part. This will cause
problems for huge arrays if any array elements cross a
segment boundary. This option is off by default.

Normally, Borland C++ normalizes a huge pointer
whenever adding to or subtracting from it. This ensures
that, for example, if you have a huge array of structs
that's larger than 64K, indexing into the array and
selecting a struct field will always work with structs of
any size. Borland C++ accomplishes this by always
normalizing the results of huge pointer operations, so
that the offset part contains a number that's no higher
than 15. That way, a segment wraparound never occurs
with huge pointers. The disadvantage of this approach
is that it tends to be quite expensive in terms of
execution speed. This option is automatically selected
when compiling for Windows.

-K This option tells the compiler to treat all char
declarations as if they were unsigned char type. This
allows for compatibility with other compilers that treat
char declarations as unsigned. By default, char
declarations are Signed (-K-).

-k This option generates a standard stack frame, which is
useful when using a debugger to trace back through the
stack of called subroutines. This option is on by default.

Chapter 5, The command-line compiler 153

Unless you are an expert,
don't use -u-. See Chapter

72, "BASM and inline
assembly," in the

Programmer's Guide for
details about underscores.

154

-N

-p

-pr

-u

-x

This option generates stack overflow logic at the entry of
each function, which causes a stack overflow message to
appear when a stack overflow is detected. This is costly
in terms of both program size and speed but is provided
as an option because stack overflows can be very
difficult to detect. If an overflow is detected, the message
"Stack overflow!" is printed and the program exits with
an exit code of 1.

This option forces the compiler to generate all
subroutine calls and all functions using the Pascal
parameter-passing sequence. The resulting function calls
are smaller and faster. Functions must pass the correct
number and type of arguments, unlike normal C use,
which permits a variable number of function arguments.
You can use the cdecl statement to override this option
and specifically declare functions to be C-type. This
option is off by default (-p-).

This option forces the compiler to generate all
subroutine calls and all functions using the new fastcall
parameter-passing convention. With this option
enabled, functions expect parameters to be passed in
registers. You can also individually override the cdecl or
pascal calling conventions by using the _fastcall
modifier in declaring a function. For more information
about _fastcall, see Appendix A, "The Optimizer."

With -u selected, when you declare an identifier,
Borland C++ automatically puts an underscore (_) in
front of the identifier before saving the identifier in the
object module.

Borland C++ treats Pascal-type identifiers (those
modified by the pascal keyword) differently-they are
uppercase and are not prefixed with an underscore.

Underscores for C and C++ identifiers are optional, but
on by default. You can turn them off with -u-. However,
if you are using the standard Borland C++ libraries, you
will encounter problems unless you rebuild the libraries.
(To do this, you will need the Borland C++ run-time
library source code; contact Borland for more
information.)

This option disables generation of autodependency in
formation in the output file. Modules compiled with this

Borland C++ User's Guide

option enabled will not be able to use the autodepen
dency feature of MAKE or of the IDE. Normally this
option is only used for files that are to be put into .LIB
files (to save disk space).

Note that you cannot use this -V
option if you are using any of

This option generates overlay-compatible code. Every
file in an overlaid program must be compiled with this
option; see Chapter 9, "DOS memory management," in
the Programmer's Guide for details on overlays.

the -W (Windows
applications) options (and

vice versa).

-Vo This option overlays the compiled file(s); see Chapter 9
in the Programmer's Guide for details.

-y This option includes line numbers in the object file for
use by a symbolic debugger, such as Turbo Debugger.
This increases the size of the object file but doesn't affect
size or speed of the executable program. This option is
useful only in concert with a symbolic debugger that can
use the information. In general, -v is more useful than
-y with Turbo Debugger.

The -v and -vi options -v This option tells the compiler to include debugging in
formation in the .OBI file so that the file(s) being com
piled can be debugged with either Borland C++'s inte
grated debugger or the standalone Turbo Debugger. The
compiler also passes this option on to the linker so it can
include the debugging information in the .EXE file.

Turbo Debugger is both a
source level (symbolic) and

assembly level debugger.

To facilitate debugging, this option also causes C++ in
line functions to be treated as normal functions. If you
want to avoid that, use -vi.

-vi With this option enabled, C++ inline functions will be
expanded inline.

In order to control the expansion of inline functions, the operation
of the -v option is slightly different for C++. When inline function
expansion is not enabled, the function will be generated and
called like any other function. Debugging in the presence of inline
expansion can be extremely difficult, so we provide the following
options:

-v This option turns debugging on and inline expansion
off.

-v- This option turns debugging off and inline expansion
on.

Chapter 5, The command-line compiler 155

Optimization
options

Source code
options

See Chapter 7, "Lexical
elements," in the

Programmer's Guide for a
complete list of the Borland

C++ keywords.

-vi This option turns inline expansion on.

-vi- This option turns inline expansion off.

So, for example, if you want to turn both debugging and inline
expansion on, you must use -v -vi.

Borland C++ is a professional optimizing compiler, featuring a
number of options that let you specify how the object code is to be
optimized; for size or speed, and utilizing (or not) a wide range of
specific optimization techniques. Appendix A, "The Optimizer,"
discusses these options in detail.

Source code options cause the compiler to recognize (or ignore)
certain features of the source code; implementation-specific (non
ANSI, non-Kernighan and Ritchie, and non-UNIX) keywords,
nested comments, and identifier lengths. These options are most
significant if you plan to port your code to other systems.

-A This option compiles ANSI-compatible code: Any of the
Borland C++ extension keywords are ignored and can be
used as normal identifiers. These keywords include

asm _es interrupt _ss
cdecl _export _Ioadds _saveregs
_cs far near _fastcall
_ds huge pascal _seg

and the register pseudovariables, such as _AX, _BX, _51,
and so on.

-A- This option tells the compiler to use Borland C++
keywords. -AT is an alternate version of this option.

-AK This option tells the compiler to use only Kernighan and
Ritchie keywords.

-AU This option tells the compiler to use only UNIX key
words.

-c This option allows you to nest comments. Comments may
not normally be nested.

-in This option causes the compiler to recognize only the first
n characters of identifiers. All identifiers, whether vari-

156 Borland C++ User's Guide

Error-reporting
options

For more information on
these warnings, see

Appendix A, "Error mes
sages," in the Tools and

Utilities Guide.

The asterisk (*) indicates that
the option is on by default.

All others are off by default.

ables, preprocessor macro names, or structure member
names, are treated as distinct only if their first n char
acters are distinct.

By default, Borland C++ uses 32 characters per identifier.
Other systems, including some UNIX compilers, ignore
characters beyond the first eight. If you are porting to
these other environments, you may wish to compile your
code with a smaller number of significant characters.
Compiling in this manner will help you see if there are
any name conflicts in long identifiers when they are
truncated to a shorter significant length.

Error-reporting options let you tailor which warning messages
the compiler will report, and the maximum number of warnings
and errors that can occur before the compilation stops.

-gn This option tells Borland C++ to stop compiling after n
warning messages.

-jn This option tells the compiler to stop compiling after n
error messages.

-w This option causes the compiler to display warning
messages. You can turn this off with -W-. You can
enable or disable specific warning messages with
-wxxx, described in the following paragraphs.

-wxxx This option enables the specific warning message
indicated by xxx. The option -w-xxx suppresses the
warning message indicated by xxx. The possible
options for -wxxx are listed here and divided into four
categories: ANSI violations, frequent errors (including
more frequent errors), portability warnings, and C++
warnings. You can also use the pragma warn in your
source code to control these options. See Chapter 4,
liThe preprocessor," in the Programmer's Guide.

ANSI violations

-wbbf
-wbig*
-wdpu*
-wdup*

Bit fields must be signed or unsigned int.
Hexadecimal value contains more than three digits.
Declare type prior to use in prototype.
Redefinition of macro is not identical.

Chapter 5, The command-line compiler 157

158

-weas
-wext*
-wpin
-wret*
-wstu*
-wsus*
-wvoi*
-wzdi*

Assigning type to enumeration.
Identifier is declared as both external and static.
Initialization is only partially bracketed.
Both return and return with a value used.
Undefined structure structure.
Suspicious pointer conversion.
Void functions may not return a value.
Division by zero.

Frequent errors

-wamb
-wamp
-wasm
-waus*
-wccc*
-wdef
-weff*
-wias*
-will *
-wnod
-wpar*
-wpia*
-wpro
-wrch*
-wrvl*
-wstv
-wuse

Ambiguous operators need parentheses.
Superfluous & with function or array.
Unknown assembler instruction.
Identifier is assigned a value that is never used.
Condition is always true/ false.
Possible use of identifier before definition.
Code has no effect.
Array variable identifier is near.
Ill-formed pragma.
No declaration for function function.
Parameter parameter is never used.
Possibly incorrect assignment.
Call to function with no prototype.
Unreachable code.
Function should return a value.
Structure passed by value.
Identifier is declared but never used.

Portability warnings

-wcln
-wcpt*
-wrng*
-wrpt*
-wsig
-wucp

Constant is long.
Nonportable pointer comparison.
Constant out of range in comparison.
Nonportable pointer conversion.
Conversion may lose significant digits.
Mixing pointers to signed and unsigned char.

c++ warnings

-wbei*
-wdsz*
-whid*

Initializing enumeration with type.
Array size for 'delete' ignored.
Functionl hides virtual function function2.

Borland C++ User's Guide

Segment-naming
control

Don 't use these options
unless you have a good

understanding of segmen
tation on the 8086 processor.
Under normal circumstances,

you will not need to specify
segment names.

-wibc*
-winl*
-wlin*
-wlvc*
-wmpc*

-wmpd*

-wncf*
-wnci*
-wnst*
-wnvf*
-wobi*

-wofp*
-wovl*
-wpre

Base class basel is inaccessible because also in base2.
Functions containing identifier are not expanded inline.
Temporary used to initialize identifier.
Temporary used for parameter in call to identifier.
Conversion to type will fail for members of virtual base
class base.
Maximum precision used for member pointer type
type.
Non-const function function called const object.
Constant member identifier is not initialized.
Use qualified name to access nested type type.
Non-volatile function function called for volatile object.
Base initialization without a class name is now
obsolete.
Style of function definition is now obsolete.
Overload is now unnecessary and obsolete.
Overloaded prefix operator ++ / - used as a postfix
operator.

Segment-naming control options allow you to rename segments
and to reassign their groups and classes.

-zAname This option changes the name of the code segment
class to name. By default, the code segment is
assigned to class CODE.

-zBname This option changes the name of the uninitialized
data segment class to name. By default, the
uninitialized data segments are assigned to class
BSS.

-zCname This option changes the name of the code segment
to name. By default, the code segment is named
_TEXT, except for the medium, large and huge
models, where the name is filename_TEXT. (filename
here is the source file name.)

-zDname This option changes the name of the uninitialized
data segment to name. By default, the uninitialized
data segment is named _BSS, except in the huge
model, where no uninitialized data segment is
generated.

Chapter 5, The command-line compiler 159

See Chapter 9, "DOS mem- -zEname
ory management," in the

Programmer's Guide for

This option changes the name of the segment where
far objects are put to name. By default, the segment
name is the name of the far object followed by
_FAR. A name beginning with an asterisk (*) indi
cates that the default string should be used.

more on far objects.

-zF name This option changes the name of the class for far
objects to name. By default, the name is FAR_DATA.
A name beginning with an asterisk (*) indicates that
the default string should be used.

-zGname This option changes the name of the uninitialized
data segment group to name. By default, the data
group is named DGROUP, except in the huge
model, where there is no data group.

-zHname This option causes far objects to be put into group
name. By default, far objects are not put into a group.
A name beginning with an asterisk (*) indicates that
the default string should be used.

-zPname This option causes any output files to be generated
with a code group for the code segment named
name.

-zRname This option sets the name of the initialized data
segment to name. By default, the initialized data
segment is named _DATA, except in the huge
model, where the segment is named filename_DATA.

-zSname This option changes the name of the initialized data
segment group to name. By default, the data group is
named DGROUP, except in the huge model, where
there is no data group.

-zTname This option sets the name of the initialized data
segment class to name. By default the initialized data
segment class is named DATA.

-zV name This option sets the name of the far virtual table
segment to name. By default far virtual tables are
generated in the code segment.

-zW name This option sets the name of the far virtual table
class segment to name. By default far virtual table
classes are generated in the CODE segment.

160 Borland C++ User's Guide

Compilation
control options

-zX* This option uses the default name for X. For
example, -zA* assigns the default class name CODE
to the code segment.

Compilation control options allow you to control compilation of
source files, such as whether your code is compiled as C or C++,
whether to use precompiled headers, and what kind of Windows
executable file is created. For more detailed information on how
to create an Windows application, see Chapter 8, "Building a
Windows application" in the Programmer's Guide.

-8 This option compiles and calls the assembler to
process inline assembly code.

-c

-Efilename

This option compiles and assembles the named
.C, .CPP, and .ASM files, but does not execute a
link command.

This option uses name as the name of the
assembler to use. By default, TASM is used.

See Appendix 0 for more on -H
precompiled headers.

This option causes the compiler to generate and
use precompiled headers, using the default
filename TCDEF.SYM.

-H- This option turns off generation and use of pre
compiled headers (this is the default).

-Hu This option tells the compiler to use but not gen
erate precompiled headers.

-H=filename This option sets the name of the file for precom
piled headers, if you wish to save this
information in a file other than TCDEF.sYM. This
option also turns on generation and use of pre
compiled headers; that is, it also has the effect of
-H.

-0 filename This option compiles the named file to the
specified filename.obj.

Note that this option _p
behaves differently from the

This option causes the compiler to compile your
code as C++ always, regardless of extension. The
compiler will assume that all files have .CPP
extensions unless a different extension is
specified with the code.

-p option in Turbo C++ l.x.

Chapter 5, The command-line compiler 161

-Pext

-P-

-P-ext

-s

-Tstring

-T-

These five options (-W, -WD, -W
-WDE, -WE, and -WS) relate
to creating Windows appli

cations. Note that you
cannot use any of these

options if you are using the
-Yoption (and vice versa).

162

-WD

-WOE

This option causes the compiler to compile all
files as C++; it changes the default extension to
whatever you specify with ext. This option is
available because some programmers use.C or
another extension as their default extension for
C++ code.

This option tells the compiler to compile a file as
either C or C++ I based on its extension. The
default extension is .CPP. This option is the
default.

This option also tells the compiler to compile
code based on the extension (.CPP as C++ code,
all other file-name extensions as C code). It
further specifies what the default extension is to
be.

This option compiles the named source files and
produces assembly language output files (.ASM),
but does not assemble. When you use this option,
Borland C++ will include the C or C++ source
lines as comments in the produced .ASM file.

This option passes string as an option to T ASM
(or as an option to the assembler defined with
-E).

This option removes all previously defined
assembler options.

This option creates the most general kind of Win
dows executable, although not necessarily the
most efficient. The compiler makes every far
function exportable. This does not mean that all
far functions actually will be exported, it only
means that each far function can be exported. In
order to actually export one of these functions,
you must either use the _export keyword or add
an entry for the function name in the EXPORTS
section of the module definition file.

This option creates a module for use in a .DLL
with all functions exportable.

This option creates a module for use in a .DLL
with only functions explicitly designated with
_export as exportable.

Borland C++ User's Guide

-WE This option creates an object module with only
functions explicitly designated with _export as
exportable.

Don't use this option for -WS
modules that will be

compiled under the huge
memory model.

This option creates an .OBJ with functions using
smart callbacks. This option is recommended if
you are writing Windows applications (not OLLs)
which can assume SS = OS (most can). This
option simplifies Windows programming; for
instance, using it, you no longer need
MakeProclnstance or FreeProclnstance, nor do
you need to export your WndProcs; instead, you
can directly call a WndProc. Enabling this option
results in faster Windows executables.

EMS and
expanded

memory options
If you have expanded (EMS) memory, you may want to make this
memory available to the compiler for "swap" space in the event
that your computer's extended (protected mode) memory is
exhausted during compilation. These options give you the ability
to control the compiler's use of EMS memory. You can also control
the amount of expanded (protected mode) memory Borland C++
uses.

-Qe

-Qe=yyyy

-Qe-

-Qx=nnnn

This option instructs the compiler to use all EMS
memory it can find. Tl)is is on by default for the
command-line compiler (BCC). It speeds up your
compilations, especially for large source files.

This option instructs the compiler to use yyyy
pages (in 16K page sizes) of EMS memory for
itself.

This option instructs the compiler not to use any
EMS memory.

This option instructs the compiler to use nnnn
bytes of extended memory.

Chapter 5, The command-line compiler 163

c++ virtual tables

164

The -v option controls the c++ virtual tables. There are five varia
tions of the -v option:

-V Use this option when you want to generate c++ virtual
tables (and inline functions not expanded in line) so
that only one instance of a given virtual table or inline
function will be included in the program. This
produces the smallest executables, but uses .OBJ and
.ASM extensions only available with TLINK 3.0 and
TASM 2.0 (or newer).

-Vs Use this option when you want Borland C++ to
generate local virtual tables (and inline functions not
expanded inline) such that each module gets its own
private copy of each virtual table (or inline function) it
uses. This option uses only standard .OBJ (and .ASM)
constructs, but produces larger executables.

-vo, -V1 These options work together to create global virtual
tables. If you don't want to use the Smart or Local
options (-V or -Vs), you can use -vo and -V1 to
produce and reference global virtual tables. -vo
generates external references to virtual tables; -V1
produces public definitions for virtual tables.

When using these two options, at least one of the
Inodules in the program must be compiled with the
-V1 option to supply the definitions for the virtual
tables. All other modules should be compiled with the
-vo option to refer to that Public copy of the virtual
tables.

-Vf You can use this option independently of or in
conjunction with any of the other virtual table options.
It causes virtual tables to be created in the code
segment instead of the data segment (unless changed
using the -zV and -zW options), and makes virtual
table pointers into full 32-bit pointers (the latter is done
automatically if you are using the huge memory
model).

There are two primary reasons for using this option: to
remove the virtual tables from the data segment, which
may be getting full, and to be able to share objects (of

Borland C++ User's Guide

c++ member

classes with virtual functions) between modules that
use different data segments (for example, a DLL and an
executable using that DLL). You must compile all
modules that may share objects either entirely with or
entirely without this option. You can achieve the same
effect by using the huge or _export modifiers on a
class-by-class basis.

pointers The -Vm options control C++ member pointer types. There are
five variations of the -Vm option:

The Borland C++ compiler supports three different kinds of
member pointer types, with varying degrees of complexity and
generality. By default, the compiler will use the most general (but
in some contexts also the least efficient) kind for all member
pointer types; this default behavior can be changed via the -Vm
family of switches.

-Vmv Member pointers declared while this option is in effect
will have no restriction on what members they can
point to; they will use the most general representation.

-Vmm Member pointers declared while this option is in effect
will be allowed to point to members of multiple
inheritance classes, except that members of virtual base
classes cannot be pointed to.

-Vms Member pointers declared while this option is in effect
will not be allowed to point to members of some base
classes of classes that use multiple inheritance (in
general, they can be used with single inheritance
classes only).

-Vmd Member pointers declared while this option is in effect
will use the smallest possible representation that
allows member pointers to point to all members of
their class. If the class is not fully defined at the point
where the member pointer type is declared, the most
general representation has to be chosen by the
compiler (and a warning is issued about this).

-Vmp Whenever a member pointer is dereferenced or called,
the compiler will treat the member pointer as if it were
of the least general case needed for that particular
pointer type. For example, a call through a pointer to

Chapter 5, The command-line compiler 165

Template
generation

options

member of a class that is declared without any base classes will
treat the member pointer as having the simplest representation,
regardless of how it's been declared. This will work correctly (and
produce the most efficient code) in all cases except for one: when
a pointer to a derived class is explicitly cast to a pointer to
member of a 'simpler' base class, when the pointer is actually
pointing to a derived class member. This is a non-portable (and
dubious) construct, but if you need to compile code that uses it,
use the -Vmp option. It will force the compiler to honor the
declared precision for all member pointer types.

The -Jg option controls the generation of template instances in
C++. There are three variations of the -Jg option:

-Jg Public definitions of all template instances encountered
when this switch value is in effect will be generated,
and if more than one module generates the same
template instance, the linker will merge them to
produce a single copy of the instance. This option (the
default) is the most convenient approach to generating
template instances. In order to generate the instances,
however, the compiler must have available the
function body (in the case of a template function) or
the bodies of member functions and definitions for
static data members (in the case of a template class).

-Jgd This option tells the compiler to generate public
definitions for all template instances encountered.
Unlike the -Jg option, however, duplicate instances
will not be merged, causing the linker to report public
symbol redefinition errors if more than one module
defines the same template instance.

For more information about -Jgx
templates, see Chapter 3,

This option instructs the compiler to generate external
references to template instances. If you use this option
you must make sure that the instances are publicly
defined in some other module (using the -Jgd option),
so that the external references will be satisfied.

166

"C++ specifics," in the
Programmer's Guide.

Borland C++ User's Guide

Linker options

See the section on TLINK in -efilename
the Tools and Utilities Guide

This option derives the executable program's name
from filename by adding the file extension .EXE (the
program name will then be filename.EXE). filename
must immediately follow the -e, with no inter
vening whitespace. Without this option, the linker
derives the .EXE file's name from the name of the
first source or object file in the file name list. The
default extension is .DLL when you are using -WO
or-WOE.

for a list of linker options.

-tOe

-tOe

-tW[nn]

-Ix

-M

This specifies that the target (output) file will be a
DOS .EXE file.

This specifies that the target (output) file will be a
DOS .COM file.

This specifies that the target (output) file will be a
Windows module. It is identical to the-W
option(s) described on 162: -W,-WD,-WOE, -WE,
-WS, where the optional nn may be equal to 0, DE,
EorS.

This option (which is a lowercase 1) passes option x
to the linker. The option -I-x suppresses option x.
More than one option can appear after the -I.

This option forces the linker to produce a full link
map. The default is to produce no link map.

Environment options

When working with environment options, bear in mind that
Borland C++ recognizes two types of library files: implicit and
user-specified (also known as explicit library files). These are
defined and discussed on page 170.

-Ipath This option (which is an uppercase I) causes the
compiler to search path (the drive specifier or path
name of a subdirectory) for include files (in
addition to searching the standard places). A
drive specifier is a single letter, either uppercase
or lowercase, followed by a colon (:). A directory

Chapter 5, The command-line compiler 167

-Lpath

-npath

is any valid directory or directory path. You can
use more than one -I directory option.

This option forces the linker to get the COx.OB]
start-up object file and the Borland C++ library
files (Cx.LIB, MATHx.LIB, EMU. LIB, and
FP87.LIB) from the named directory. By default,
the linker looks for them in the current directory.

This option places any .OB] or .ASM files created
by the compiler in the directory or drive named
by path.

Backward compatibility options

168

Borland C++ version 3.0 introduces a number of improvements in
the way some C++ operations are implemented, resulting in
smaller, faster code with fewer restrictions and less overhead. In
some cases, the new implementation is not fully compatible with
previous versions of Borland C++. Where such compatibility is
needed, the following options are provided:

-Va When an argument of type class with constructors is
passed by value to a function, this option instructs the
compiler to create a temporary variable at the calling site,
initialize this temporary with the argument value, and
pass a reference to this temporary to the function. This
behavior is compatible with previous versions of Borland
C++. By default, version 3.0 will copy-construct such
argument values directly to the stack, thus avoiding the
introduction of the temporary (and also making access to
the argument value faster).

-Vb

-Vc

When a class inherits virtually from a base class, the
compiler stores a hidden pointer in the class object to
access the virtual base class subobject. The Borland C++
3.0 compiler makes this pointer always 'near', which
allows it to generate more efficient code. For backward
compatibility, the -Vb option directs the BC++ 3.0
compiler to match the hidden pointer to the size of the
'this' pointer used by the class itself.

To correctly implement the case when a derived class
overrides a virtual function that it inherits from a virtual
base class, and a constructor or destructor for the derived

Borland C++ User's Guide

Searching for
include and

library files

class calls that virtual function using a pointer to the
virtual base class, the compiler may add hidden members
to the derived class, and add more code to its constructors
and destructors. This option directs the compiler not to
add the hidden members and code, so that class instance
layout is same as with previous versions of Borland C++.

-Vp This option directs the compiler to pass the 'this'
parameter to 'pascal' member functions as the first
parameter on the stack, for compatibility with previous
versions of Borland C++. By default, version 3.0 always
pushes 'this' as the last parameter regardless of calling
convention.

-Vt This option instructs the compiler to place the virtual
table pointer after any non-static data members of the
particular class, to ensure compatibility when class
instances are to be shared with non-C++ code and when
sharing classes with code compiled with previous
versions of Borland C++. By default, version 3.0 adds this
pointer before any non-static data members of the class,
thus making virtual member function calls smaller and
faster.

-Vv This option directs the compiler not to change the layout
of any classes (which it may need to do in order to allow
pointers to virtual base class members, which were not
supported in previous versions of Borland C++). If this
option is used, the compiler will not be able to create a
pointer to a member of a base class that can only be
reached from the derived class through two or more
levels of virtual inheritance.

-Vo This option is a "master switch" that turns on all of the
backward-compatibility options listed in this section. It
can be used as a handy shortcut when linking with
libraries built with older versions of Borland C++.

Borland C++ can search multiple directories for include and
library files. This means that the syntax for the library directories
(-L) and include directories (-I) command-line options, like that
of the #define option (-0), allows multiple listings of a given
option.

Chapter 5, The command-line compiler 169

170

Note

File-search
algorithms

Here is the syntax for these options:

Library directories: -Ldirname[;dirname; ... J
Include directories: -Idirname[;dirname; ... J

The parameter dirname used with -L and -I can be any directory
or directory path.

You can enter these multiple directories on the command line in
the following ways:

• You can "gang" multiple entries with a single -L or -I option,
separating ganged entries with a semicolon, like this:

Bee -Ldirnamel;dirname2;dirname3 -linel;ine2;ine3 myfile.e

• You can place more than one of each option on the command
line, like this:

Bee -Ldirnamel -Ldirname2 -Ldirname3 -linel -line2 -line3 myfile.e

• You can mix ganged and multiple listings, like this:

Bee -Ldirnamel;dirname2 -Ldirname3 -linel;ine2 -line3 myfile.e

If you list multiple -L or -I options on the command line, the
result is cumulative: The compiler searches all the directories
listed, in order from left to right.

The IDE also supports multiple library directories through the
"ganged entry" syntax.

The Borland C++ include-file search algorithms search for the
#include files listed in your source code in the following way:

• If you put an #include <somefile. h> statement in your source
code, Borland C++ searches for somefile.h only in the specified
include directories.

• If, on the other hand, you put an #include "somefile.h" state
ment in your code, Borland C++ searches for somefile.h first in
the current directory; if it does not find the header file there, it
then searches in the include directories specified in the
command line.

The library file search algorithms are similar to those for include
files:

Borland C++ User's Guide

Your code written under any
version of Turbo C or Turbo

C++ will work without
problems in Borland C++.

An annotated
example

• Implicit libraries: Borland C++ searches for implicit libraries
only in the specified library directories; this is similar to the
search algorithm for #include <somefile.h>. [Implicit library files
are the ones Borland C++ automatically links in. These are the
Cx.LIB and CWx.LIB files, EMU.LIB or FPB7.LIB, MATHx.LIB,
IMPORT. LIB, OVERLAY.LIB, and the start-up object files
(COx.OB}, COWx.OB}, or CODx.OBJ).]

• Explicit libraries: Where Borland C++ searches for explicit
(user-specified) libraries depends in part on how you list the
library file name. (Explicit library files are the ones you list on
the command line or in a project file; these are file names with a
.LIB extension.)

• If you list an explicit library file name with no drive or direc
tory (like this: mylib.lib), Borland C++ searches for that
library in the current directory first. Then (if the first search
was unsuccessful), it looks in the specified library directories.
This is similar to the search algorithm for #include
"somefile.h" .

• If you list a user-specified library with drive and/or directory
information (like this: c:mystuff\mylibl.lib), Borland C++
searches only in the location you explicitly listed as part of the
library path name and not in the specified library directories.

Here is an example of a Borland C++ command line that
incorporates multiple library and include directory options.

1. Your current drive is C:, and your current directory is
C: \ BORLANDC, where BCC.EXE resides. Your A drive's
current position is A: \ ASTROLIB.

2. Your include files (.h or "header" files) are located in
C:\BORLANDC\INCLUDE.

3. Your startup files (COT.OB}, COS.OB}, ... , COH.OBJ) are in
C:\BORLANDC.

4. Your standard Borland C++ library files (CS.LIB, CM.LIB, ... ,
MATHS.LIB, MATHM.LIB, ... , EMU.LIB, FPB7.LIB, and so
forth) are in C:\BORLANDC\LIB.

5. Your custom library files for star systems (which you created
and manage with TLIB) are in C:\BORLANDC\STARLIB.
One of these libraries is PARX.LIB.

Chapter 5, The command-line compiler 171

172

6. Your third-party-generated library files for quasars are in the
A drive in \ASTROLIB. One of these libraries is WARP.LIB.

Under this configuration, you enter the following command:

BCC -mm -Llibistarlib -linclude orion.c umaj.c parx.lib a:\astrolib\warp.l

Borland C++ compiles ORION.C and UMAJ.C to .OBJ files,
searching C:\BORLANDC\INCLUDE for any #include files in
your source code. It then links ORION.OBJ and UMAJ.OBJ with
the medium model start-up code (COM.OBD, the medium model
libraries (CM.LIB, MATHM.LIB), the standard floating-point
emulation library (EMU.LIB), and the user-specified libraries
(PARX.LIB and WARP.LIB), producing an executable file named
ORION.EXE.

It searches for the startup code in C:\BORLANDC (then stops
because they're there); it searches for the standard libraries in
C:\BORLANDC\LIB (and stops because they're there).

When it searches for the user-specified library P ARX.LIB, the
compiler first looks in the current directory, C: \ BORLANDC. Not
finding the library there, the compiler then searches the library
directories in order: first C:\BORLANDC\LIB, then C:\
BORLANDC\STARLIB (where it locates P ARX.LIB).

Since an explicit path is given for the library WARP.LIB (A:\
ASTROLIB\ WARP.LIB), the compiler only looks there.

Borland C++ User's Guide

A p p E N D x

A

The Optimizer

What is optimization?

Borland C++ is a professional
optimizing compiler that

gives you complete control
over what kinds of

optimization you want the
compiler to perform.

When should you use
the optimizer?

Appendix A, The Optimizer

An optimizer is a tool for improving your application's speed or
shrinking down the application's size. It is not likely that the
optimizer will double or triple the speed of your application or
cut its size in half. It will allow you to program in the style which
you find most convenient, not in the style that your computer
finds most convenient.

There are several theories as to the best use of the optimizer. One
theory is that you should never develop a new program with the
optimizer. Instead, you should compile with optimizations when
your application is in its final stages of development. This theory
is based on the fact that most compilers, when performing full
optimizations, take two to three times longer to compile than
when they are not performing any optimizations. Borland C++'s
optimizer, however, takes only 50% longer to compile when
performing full speed optimizations and 20% longer when
performing full size optimizations, so you don't have to worry
about slow compilation times.

Another theory says that you should always use the optimizer,
even in the early stages of development, since the optimizer may
reveal bugs in your code that do not appear when it is not
optimized. Opponents of this theory argue that debugging such
optimized code is a horrendous task not easily undertaken.

173

Borland C++'s Turbo Debugger understands optimized code and
allows you to easily debug your optimized application, giving
you the best of both worlds.

Optimization options

The command-line compiler controls code most optimizations
through the -0 command line option. The -0 option may be
followed by one or more of the suboption letters given in the list
below. For example, -Oaxt would turn on all speed optimizations
and assume no pointer aliasing. You can turn off optimizations on
the command line by placing a minus before the optimization
letter. For example, -02-p would turn on all optimizations except
copy propagation. In addition, some optimizations are controlled
by means other than -0. For example, -Z controls redundant load
suppression.

The optimizations options follow the same rules for precedence as
all other Borland C++ options. For example, -ad appearing on
the command line after a -02 would disable all optimizations.

Table A.l: Optimization options summary

Command-line Function

-02 Options I Compiler I Optimizations I Full Speed
Generates the fastest code possible. This is the same as using the following command
line options: -0 -Ob -Oe -Og -Oi -Ol-Om -Op -Ot -Ov -k- -Z

-01 Options I Compiler I Optimizations I Full Size
Generates the smallest code possible. This is the same as using the following command
line options: -0 -Ob -Oe -Os -k- -Z

-0 Options I Compiler I Optimizations I Optimize Jumps
Removes jumps to jumps, unreachable code, and unnecessary jumps

-Oa Options I Compiler I Optimizations I Assume no pointer aliasing
Assume that pointer expressions are not aliased in common sub expression evaluation

-Ob Options I Compiler I Optimizations I Dead code elimination
Eliminates stores into dead variables

-Oc Options I Compiler I Optimizations I Common Subexpressions I Optimize locally
Enables common subexpression elimination within basic blocks only. The -Oc option
and the -Og option are mutually exclusive

-Od Options I Compiler I Optimizations I No Optimizing
Disables all optimizations. Note that this is not the same as -0-, which merely disables
jump optimizations.

-Oe Options I Compiler I Optimizations I Global register allocation

174 Borland C++ User's Guide

Table Al: Optimization options summary (continued)

Enables global register allocation and variable live range analysis

-Og Options I Compiler I Optimizations I Common Subexpressions I Optimize globally
Enables common subexpression elimination within an entire function. The -Og option
and the -Oc option are mutually exclusive

-Oi Options I Compiler I Optimizations I Inline intrinsics
Enables inlining of intrinsic functions such as memcpy, strlen, etc.

-01 Options I Compiler I Optimizations I Loop optimization
Compacts loops into REP /STOSx instructions

-Om Options I Compiler I Optimizations I Invariant code motion
Moves invariants code out of loops

-Op Options I Compiler I Optimizations I Copy propagation
Propagates copies of constants, variables, and expressions where possible

-Os Options I Compiler I Optimizations I Optimize for I Size
Makes code selection choices in favor of smaller code

-Ot Options I Compiler I Optimizations I Optimize for I Speed
Selects code in favor of executable speed

-Ov Options I Compiler I Optimizations I Induction Variables
Enables loop induction variable and strength reduction optimizations

-Ox None
Enables most speed optimizations. This is provided for compatibility with Microsoft
compilers.

-Z Options I Compiler I Optimizations I Suppress redundant loads
Suppresses reloads of values which are already in registers

-pr Options I Compiler I Entry /Exit Code I Calling Convention I Register
Enables the use of the _fastcall calling convention for passing parameters in registers

Backward
compatibility

In addition to these new options, all the old code generator
options are obeyed. Note, however, that there is some duplication
in the new and old options. In particular, -G and -G- are -Os and
-Ot. In previous revisions, -Z performed load suppression but
was documented as enabling aliasing. The optimizer detects when
one register contains two expressions and suppresses extraneous
loads of expressions "aliases." Note that this action is not the
same as the aliases controlled by -Oa.

Appendix A, The Optimizer

For completeness, the old -r (register optimization options) are
documented below.

-r This option enables the use of register variables (the
default).

175

Unless you are an expert, -r
don't use -r-.

This option suppresses the use of register variables. When
you are using this option, the compiler won't use register
variables, and it won't preserve and respect register vari
ables (SI,D!) from any caller. For that reason, you should
not have code that uses register variables call code which
has been compiled with -r-.

A closer look at
the Borland C++

Optimizer

Global register
allocation

Dead code elimination

176

On the other hand, if you are interfacing with existing
assembly-language code that does not preserve 51,01, the
-r- option allows you to call that code from Borland C++.

-rd This option only allows declared register variables to be
kept in registers.

Conventional wisdom says that there are three components to
generating good code on the 80x86 processors: register allocation,
register allocation, and register allocation.

Because memory references are so expensive on these processors,
it is extremely important to minimize those references through
the intelligent use of registers. Global register allocation both
increases the speed and and decrease the size of your application.
You should always use global register allocation when compiling
your application with optimizations on.

Although you may never intentionally write code to do things
which are unnecessary, the optimizer may reveal possibilities to
eliminate stores into variables which are not needed. In the
following example, the optimizer creates a new variable to take
the place of the expression a[j], thereby eliminating the need for
the variable j. Using -Ob will remove the code to store any result
into variable j.

int goo (void) , arlO];
int f (void) (

int i, j;
j = i = goo();
for (j = 0; j < 10; j+t)

a [j] = goo () ;
return i;

Borland C++ User's Guide

Common
subexpression

elimination

Loop invariant code
motion

Appendix A, The Optimizer

Since the optimizer must determine where variables are no longer
used and where their values are needed (live range analysis), you
must use -Oe before using -Ob. Use -Ob whenever you use -Oe,
since -Ob will always result in smaller and faster code.

Common subexpression elimination is the process of finding
duplicate expressions within the target scope and storing the
calculated value of those expressions once so as to avoid
recalculating the expression. Although in theory this optimization
could reduce code size, in practice, it is a speed optimization and
will only rarely result in size reductions. You should also use
global common subexpression analysis if you like to reuse
expressions rather than create explicit stack locations for them.
For example, rather than code

temp = t->n.o.left;
if(temp->op == O_ICON I I temp->op == O_FCON)

you could code

if(t->n.o.left->op == O_ICON I I t->n.o.left->op == O_FCON)

and let the optimizer take decide whether it is more efficient to
create the temporary.

If you find that global common subexpression elimination is
creating too many temporaries for you code size requirements,
you can force common subexpression elimination to be done
within groups of statements unbroken by jumps (basic blocks) by
turning on local common subexpression elimination via the -Oc
option on the command line.

Moving invariant code out of loops is a speed optimization. The
optimizer uses the information about all the expressions in the
function gathered during common subexpression elimination to
find expressions whose values do not change inside a loop. To
prevent the calculation from being done many times inside the
loop, the optimizer moves the code outside the loop so that it is
calculated only once. The optimizer then reuses the calculated
value inside the loop. For example, in the code below, x * y * z is
evaluated in every iteration of the loop.

177

178

int v [10];
void f(void) {

int i, x, y, Z;

for (i = 0; i < 10; itt)
v[i] = x * y * Z;

The optimizer rewrites the code for the loop so that it looks like:

int v [10] ;
void f(void) {

int i,x,y,z,tl;
tl = x * y * Z;
for (i = 0; i < 10; itt)

v[i] = tl;

You should use loop invariant code motion whenever you are
compiling for speed and you have used global common
subexpressions, since moving code out of loops can result in
enormous speed gains.

Copy propagation Propagating copies is primarily speed optimization, but since it
never increases the size of your code, it is safe to use it if you have
enabled -Og. Like loop invariant code motion, copy propagation
relies on the analysis performed during common subexpression
elimination. Copy propagation means that the optimizer remem
bers the values assigned to expressions and uses those values
instead of loading the value of the assigned expressions. Copies of
constants, expressions, and variables may be propagated. In the
following code, for example, the constant value 5 is used in the
second assignment instead of the expression on the right side.

PtrParln->IntCornp = 5;
(*(PtrParln->PtrCornp)) . IntCornp = PtrParln->IntCornp;

Pointer aliasing Pointer aliasing is not an optimization in itself, but it does affect
the way the optimizer performs common subexpression
elimination and copy propagation. When pointer aliasing is
turned on, it allows the optimizer to maintain copy propagation
information across function calls and to maintain common
subexpression information across some stores. O,therwise, the
optimizer must discard information about copies and subexpres
sions in these situations. Pointer aliasing might create bugs which
are hard to spot, so it is only applied when you use -Oa.

Borland C++ User's Guide

Appendix A, The Optimizer

-Oa controls how the optimizer treats expressions with pointers
in them. When compiling with global or local common
subexpressions and -Oa enabled, the optimizer will recognize

*p * x

as a common subexpression in function foo.

int g, y;

int foo(int *p) {
int x=5;
y = *p * x;
g = 3;
return (*p * x);

void goo (void) {
g=2;
foo(&g) ; /* This is incorrect, since the assignment g = 3

invalidates the expression *p * x */

-Oa also controls how the optimizer treats expressions involving
variables whose address has been taken. When compiling with
-Oa, the compiler assumes that assignments via pointers will only
affect those expressions involving variables whose addresses have
been taken and which are of the same type as the left hand side of
the assignment in question. To illustrate, consider the following
function.

int y, z;

int f(void) {

int x;
char *p = (char *)&x;

y = x * z;
*p = 'a';
return (x*z);

When compiled with -Oa, the assignment *p = la' will not prevent
the optimizer from treating x*z as a common subexpression, since
the destination of the assignment, *p, is a char, whereas the
addressed variable is an int. When compiled without -Oa, the
assignment to *p will prevent the optimizer from creating a
common subexpression out of x*z.

179

Induction variable
analysis and strength

reduction

Creating induction variables and performing strength reduction
are speed optimizations performed on loops. The optimizer uses a
mathematical technique called induction to create new variables
out of expressions used inside a loop. These variables are called
induction variables. The optimizer assures that the operations
performed on these new variables are computationally less
expensive (reduced in strength) than those used by the original
variables.

Opportunities for these optimizations are common if you use
array indexing inside loops, since a multiplication operation is
required to calculate the position in the array which is indicated
by the index. For example, the optimizer would create an
induction variable out of the operation v[i] in the code below,
since the v[i] operation would require a multiplication. This
induction variable also eliminates the need to preserve the value
of i.

int v[10];
void f(void) {

int i,x,y,z;
for (i = 0; i < 10; itt)

v[i] = x * y * z;

With -Ov enabled, the optimizer would change this code to the
following:

intv[10];
void f(void) {

int i,x,y,z, *p;
for (p = v; p < &v[10]; ptt)

*p = x * y * z;

You should use -Ov whenever you are compiling for speed and
you code contains loops.

Loop compaction Loop compaction takes advantage of the string move instructions
on the 80x86 processors by replacing the code for a loop with such
an instruction.

180

int v[100];
void t(void) {

int i;
for (i = 0; i < 100; itt)

Borland C++ User's Guide

Code size versus speed
optimizations

structure copy inlining

Code compaction

Appendix A, The Optimizer

v[il = 0;

The optimizer will reduce this to the machine instructions:

mov ex,lOO
mov di,offset DGROUP:_v
push ds
pop es
mov ax,O
rep stosw

You should use -01 to compact loops whenever you are
generating code for speed.

Depending on the complexity of the operands, the compacted
loop code may also be smaller than the corresponding non
compacted loop. You may wish to experiment with this
optimization if you are compiling for size and have loops of this
nature.

You can control the selection and compaction of instructions with
the -at and the -as options. These options work like -G and -G
in previous version of Borland C++ but they have been enhanced
to do more. Most notable are the structure copy inlining and code
compaction optimizations. Whether you use -at or -as depends
on what you are trying to achieve with your application.

The most visible optimization performed when compiling for
speed as opposed to size is that of inlining structure copies. When
you enable -at, the compiler determines whether it can safely
generate code to perform a rep movsw instruction instead of
calling a helper function to do the copy. For structures and unions
of over 8 bytes in length, performing this optimization produces
faster structure copies than the corresponding helper function
call.

The most visible optimization performed when compiling for size
is code compaction. In code compaction, the optimizer scans the
generated code for duplicate sequences. When such sequences
warrant, the optimizer replaces one sequence of code with a jump
to the other, thereby eliminating the first piece of code. SWITCH
statements contain the most opportunities code compaction.

181

Redundant load Load suppression is both a speed and size optimization. When-Z
suppresion is enabled, the optimizer keeps track of the values it loads into

registers and suppresses loads of values which it already has in a
register. For example, when compiling the following code with -Z
enabled (and with copy propagation turned off), the optimizer
would push the value of *x it loaded into ES:BX instead of
reloading the value *x.

void f(void) {
int *x = 5;
goo (*x) ;

You should always use this optimization whenever you are
compiling with the optimizer enabled.

Intrinsic function inlining There are times when you would like to use one of the common
string or memory functions, such as strcpyO or memcmpO , but
you do not want to incur the overhead of a function call. By using
-ai, the compiler will generate the code for these functions within
your function's scope, eliminating the need for a function call. The
resulting code will execute faster than a call to the same function,
but it will also be larger.

182

The following is a list of those functions which are inlined when
-Oi is enabled.

rnernchr
rnerncrnp
rnerncpy
rnernset
stpcpy
strcat
strchr
strcrnp
strcpy
strlen
strncat
strncrnp
strncpy
strnset
strrchr
rotl
rotr
fabs
alloca

Borland C++ User's Guide

Register parameter
passing

_fostcoll modifier

Appendix A, The Optimizer

You can control the inlining of each of these functions with the
#pragma intrinsic. For example,

#pragma intrinsic strcpy

would cause the compiler to generate code for strcpy in your
function.

#pragma intrinsc -strcpy

would prevent the compiler from inlining strcpy. Using these
pragmas in a file will override the command-line switches or IDE
options used to compile that file.

When inlining any intrinsic function, you must include a
prototype for that function before you use it. This is because when
inlining, the compiler actually creates a macro which renames the
inlined function to a function which the compiler internally
recognizes. In the above example, the compiler would create a
macro

#define strcpy __ strcpy __

The compiler recognizes calls to functions with two leading and
two trailing underscores and tries to match the prototype of that
function against its own internally stored prototype. If you did
not supply a prototype or the prototype you supplied does not
match the compiler's internal prototype, the compiler will reject
the attempt to inline that function and will generate an error.

The command line compiler included in the Borland C++ product
introduces a new calling convention, called _fastcall. Functions
declared using this modifier expect parameters to be passed in
registers.

The compiler treats this calling convention as a new language
specifier, along the lines of _cdecl and _pascal. Functions
declared with either of these two languages modifiers cannot also
have the _fastcall modifier since they use the stack to pass
parameters. Likewise, the _fastcall modifier cannot be used
together with _export, _loadds. The compiler generates a warning
if you try to mix functions of these types or if you use the _fastcall
modifier in a dangerous situation. You may, however, use
functions using the _fastcall convention in overlaid modules, i.e.
with modules that will use VROOMM.

183

184

Parameter rules The compiler uses the rules given in table A.2 when deciding
which parameters are to be passed in registers. A maximum of
three parameters may be passed in registers to anyone function.
You should not assume that the assignment of registers will
reflect the ordering of the parameters to a function.

Table A.2
Parameter types and

possible registers used

Parameter Type

character (signed and unsigned)

integer (signed and unsigned)

long (signed and unsigned)

near pointer

Registers

AL,DL,BL

AX, DX,BX

DX:AX

AX, DX,BX

Far pointer, union, structure, and floating point (float and double)
parameters are pushed on the stack.

Function naming Functions declared with the _fastcall modifier have different
names than their non-_fastcall counterparts. The compiler prefixes
the _fastcall function name with an I/@". This prefix applies to
both unmangled C function names and to mangled C++ function
names.

Borland C++ User's Guide

A p

Table B.1
Editing commands

A word is defined as a
sequence of characters
separated by one of the
fol/owing: space < > , ;
.()()/\'*+-/$
#=/~?!"%&':

@ \, and aI/ control and
graphic characters.

p

Appendix B, Editor reference

E N D x

B

Editor reference

The editor has two command sets: CVA and Alternate. The tables
in this appendix list all the available commands. You can use
some commands in both modes, while others are available in only
one mode. Choose Options I Environment I Preferences and select
the command set you want in the Preferences dialog box.

Most of these commands need no explanation. Those that do are
described in the text following Table B.l.

Command Both modes CUA Alternate

Cursor movement commands

Character left f- Ctrl+S
Character right --7 Ctrl+D
Word left Ctrl+ f- Ctrl+A
Word right Ctrl+ --7 Ctrl+F
Line up i Ctrl+E
Line down J, Ctrl+X
Scroll up one line Ctrl+W
Scroll down one line Ctrl+Z
Page up PgUp Ctrl+R
Page down PgDn Ctrl+C
Beginning of line Home

Ctrl+QS
End of line End

Ctrl+Q 0
Top of window Ctrl+Q E Ctrl+E Ctrl+Home
Bottom of window Ctrl+Q X Ctrl+X Ctrl+End
Top of file Ctrl+Q R Ctrl+Home Ctrl+PgUp
Bottom of file Ctrl+Q C Ctrl+End Ctrl+PgDn
Move to previous position Ctrl+P

185

Table B.1: Editing commands (continued)

Command Both modes CUA Alternate

Insert and delete commands

Delete character De/ Ctr/tG
Delete character to left Backspace Ctr/tH

ShifttTab
Delete line Ctrlt Y
Delete to end of line Ctr/tO Y Shift+Ctr/t Y
Delete word Ctr/tT
Insert line CtrltN
Insert mode on/off Ins CtrltV

Block commands

Move to beginning of block Ctr/tO B
Move to end of block Ctr/tO K
Set beginning of block CtrltK B
Set end of block CtrltK K
Exit to menu bar CtrltK D
Hide/Show block CtrltK H
Mark line Ctr/tK L
Print selected block CtrltK P
Mark word CtrltK T
Delete block CtrltK Y
Copy block Ctr/tK C
Move block CtrltK V
Copy to Clipboard Ctrlt/ns
Cut to Clipboard ShifttDe/
Delete block Ctr/tDe/
Indent block CtrltK / Shift+Ctr/t/
Paste from Clipboard Shiftt/ns
Read block from disk Ctrl+K R ShifttCtrltR
Unindent block CtrltK U ShifttCtrltU
Write block to disk CtrltK W ShifttCtrltW

Extending selected blocks

Left one character Shiftt ~
Right one character Shiftt --7

End of line ShifttEnd
Beginning of line ShifttHome
Same column on next line Shiftt J,
Same column on previous line Shiftt i
One page down ShifttPgDn
One page up ShifttPgUp
Left one word ShifttCtr/t ~
Right one word ShifttCtr/t --7

End of file ShifttCtrltEnd ShifttCtrltPgDn
Beginning of file ShifttCtr/tHome ShifttCtr/tPgUp

186 Borland C++ User's Guide

Block commands

Appendix 8, Editor reference

Table B.1: Editing commands (continued)

Command Both modes CUA Alternate

Other editing commands

Autoindent mode on/off Ctrl+O 1
Cursor through tabs on/off Ctrl+O R
Exit the IDE A It+ F4 Alt+X
Find place marker Ctrl+Q n * Ctrl n *
Help F1
Help index Shift+F1
Insert control character Ctrl+P**
Maximize window F5
Open file F3
Optimal fill mode on/off Ctrl+O F
Pair matching Ctrl+Q[, Alt+/,Alt+j

Ctrl+Q j
Save file Ctrl+K S F2
Search Ctrl+Q F
Search again F3 Ctrl+L
Search and replace Ctrl+QA
Set marker Ctrl+K n* Shift+Ctrl n *
Tabs mode on/off Ctrl+O T
Topic search help Ctrl+F1
Undo AIt+8ackspace
Unindent mode on/off Ctrl+O U

* n represents a number from 0 to 9.

** Enter control characters by first pressing Ctr/+P, then pressing the desired
control character.

A block of text is any amount of text, from a single character to
hundreds of lines, that is selected on your screen. There can be
only one block in a window at a time. Select a block with your
mouse or by holding down Shift while moving your cursor to the
end of the block with the arrow keys. Once selected, the block can
be copied, moved, deleted, or written to a file. You can use the
Edit menu commands to perform these operations or you can use
the keyboard commands listed in the following table.

When you choose Edit I Copy or press etr/+/ns, the selected block is
copied to the Clipboard. When you choose Edit I Paste or Shift+/ns,
the block held in the Clipboard is pasted at the current cursor
position. The selected text remains unchanged and is no longer
selected.

If you choose Edit I Cut or press Shift+De/, the selected block is
moved from its original position and held in the Clipboard. It is

187

pasted at the current cursor position when you choose the Paste
command.

The copying, cutting, and pasting commands are the same in both
the eVA and Alternate command sets.

Table B.2: Block commands in depth

Command

Copy block

Copy text

Cut text

Delete block

Move block

Paste from
Clipboard

Read block
from disk

Write block
to disk

188

CUA

Ctrl+lns,
Shift+lns

Ctrl+lns

Shift+Del

Ctrl+Del

Shift+Del,
Shift+lns

Shift+lns

Shift+Ctrl+R
Ctrl+K R

Shift+Ctrl+W
Ctrl+K W

Alternate

Ctrl+lns,
Shift+lns

Ctrl+lns

Shift+Del

Ctrl+Del

Shift+Del,
Shift+lns

Shift+lns

Ctrl+K R

Ctrl+KW

Function

Copies a previously selected block to the Clipboard
and, after you move your cursor to where you want the
text to appear, pastes it to the new cursor position. The
original block is unchanged. If no block is selected,
nothing happens.

Copies selected text to the Clipboard.

Cuts selected text to the Clipboard.

Deletes a selected block. You can "undelete" a
block with Undo.

Moves a previously selected block from its original
position to the Clipboard and, after you move your
cursor to where you want the text to appear, pastes it to
the new cursor position. The block disappears from its
original position. If no block is marked, nothing happens.

Pastes the contents of the Clipboard.

Reads a disk file into the current text at the cursor
position exactly as if it were a block. The text read is then
selected as a block. When this command is issued, you
are prompted for the name of the file to read. You can
use wildcards to select a file to read; a directory is
displayed. The file specified can be any legal file name.

Writes a selected block to a file. When you give this
command, you are prompted for the name of the file to
write to. The file can be given any legal name <the default
extension is CPP). If you prefer to use a file name without
an extension, append a period to the end of its name.

Borland C++ User's Guide

Table B.3
Borland-style block

commands

Selected text is highlighted
only if both the beginning

and end have been set and
the beginning comes before

the end.

Other editing
commands

If you have used Borland editors in the past, you may prefer to
use the block commands listed in this table; they work in both
command sets.

Command Keys Function

Set beginning of block Ctr/tK B Begin selection of text.

Set end of block Ctr/tK K End selection of text.

Hides/ shows selected Ctr/tK H Alternately displays and hides selected
text text.

Copy selected text
to the cursor.

Move selected text
to the cursor.

Ctr/tK C Copies the selected text to the position
of the cursor. Useful only with the
Persistent Block option.

Ctr/tK V Moves the selected text to the position
of the cursor. Useful only with the
Persistent Block option.

The next table describes certain editing commands in more detail.
The table is arranged alphabetically by command name.

Table B.4: Other editor commands in depth

Command

Autoindent

Cursor through
tabs

Find place
marker

Open file

Optimal fill

Save file

CUA

Ctr/tO /

Ctr/tO R

Ctr/tn*
Ctr/tO n*

Ctr/tO F

Appendix 8, Editor reference

Alternate

Ctr/tO /

Ctr/tO R

Ctr/tO n*

F3

Ctr/tO F

F2

Function

Toggles the automatic indenting of successive lines. You can
also use Options I Environment I Editor Autoindent in the
IDE to turn automatic indenting on and off.

The arrow keys will move the cursor to the middle of
tabs when this option is on; otherwise the cursor jumps
several columns when cursoring over multiple tabs. Ctr/tO R
is a toggle.

Finds up to ten place markers (n can be any number in
the range a to 9) in text. Move the cursor to any previously
set marker by pressing Ctr/tO and the marker number.

Lets you load an existing file into an edit window.

Toggles optimal fill. Optimal fill begins every line with the
minimum number of characters possible, using tabs and
spaces as necessary. This produces lines with fewer
characters.

Saves the file and returns to the editor.

189

Table B.4: Other editor commands in depth (continued)

Command CUA

Set place Shift+Ctri n*
Ctrl+K n*

Show previous AIt+F7
error

Show next Alt+FB
error

Tab mode Ctri+O T

Unindent Ctrl+O U

Alternate Function

Ctrl+K n* Mark up to ten places in text. After marking your location,
you can work elsewhere in the file and then easily return to
your marked location by using the Find Place Marker
command (being sure to use the same marker number). You
can have ten places marked in each window.

Alt+F7 Moves the cursor to the location of the previous error or
warning message. This command is available only if there
are messages in the Message window that have associated
line numbers.

Alt+FB Moves the cursor to the location of the next error or
warning message. This command is available only if there
are messages in the Message window that have associated
line numbers.

Ctrl+O T Toggles Tab mode. You can specify the use of true tab
characters in the IDE with the Options I Environment I
Editor Use Tab Character option.

Ctri+O U Toggles Unindent. You can turn Unindent on and off from
the IDE with the Options I Environment I Editor Backspace
Unindents option.

* n represents a number from 0 to 9.

190 Borland C++ User's Guide

A p p E N o x

c

Using EosyWin

EasyWin is an exciting new feature of Borland C++ that lets you
compile standard DOS applications that use traditional "TTY
style" input and output so that they will run as true Windows
programs. Best of all, you don't have to change a single line of code to
use EasyWin!

DOS to Windows made easy

Appendix C, Using EosyWin

To convert your DOS applications that use standard FILES or
IOSTREAM functions, simply compile your program with the
Windows compiler switch (-W), or select Windows .EXE from the
Options I Compiler I Application menu in the IDE. Borland C++
will note that your program does not contain a WinMain function
(normally required for Windows applications) and automatically
link in the EasyWin library. When you run your program in the
Windows environment, a standard window will be created, and
your program will take input and produce output for that
window exactly as if it were the standard screen.

Here's an example program:

#include <stdio.h>
main ()
(

printf("Hello, world\n");

191

_lnitEasyWinC)

192

return 0;

or, for C++, you could write

#include <iostream.h>

main ()
{

cout « "Hello, world\n";
return 0;

That's all there is to it. The EasyWin window is used anytime
input or output is requested from or to a TTY device. This means
that in addition to stdin and stdout, the stderr, stdaux, and cerr
"devices" are all connected to this window.

EasyWin's reason for being is to convert DOS applications to Win
dows programs, quickly and easily. However, there may be
reasons for using EasyWin from within a "true" Windows
program. For example, you may want to add printf functions to
your program code to help you debug your Windows program.

To use EasyWin from within a Windows program, simply make a
call to _lnitEasyWinO before doing any standard input or output.

For example:

#include <windows.h>
#include <stdio.h>

#pragma argsused
int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevlnstance,

LPSTR lpszCmdLine, int cmdShow)

_ InitEasyWin () ;

/* Normal windows setup */

printf("Hello, world\n");
return 0;

The prototype for _lnitEasyWinO can be found in stdio.h, io.h,
and iostream.h.

Bor/and c++ User's Guide

Added functions

Appendix C, Using EosyWin

For your convenience, EasyWin also includes five additional
functions that allow you to specify the X and Y window
coordinates for input and output, clear the window or clear to the
end of the current line. These functions are

gotoxy ()
wherex ()
wherey ()
clrscr ()
clreol ()

These functions have the same names (and uses) as functions in
conio.h (see the Library Reference). Classes in constrea.h provide
CONIO functionality for use with C++ streams (see Chapter 5,
"Using C++ streams," in the Programmer's Guide for a complete
discussion) .

193

194 Borland C++ User's Guide

A p p

How they work

E N D x

D

Precompiled headers

Borland C++ can generate and subsequently use precompiled
headers for your projects. Precompiled headers can greatly speed
up compilation times.

When compiling large C and C++ programs, the compiler can
spend up to half of its time parsing header files. When the
compiler parses a header file, it enters declarations and definitions
into its symbol table. If 10 of your source files include the same
header file, this header file is parsed 10 times, producing the same
symbol table every time.

Precompiled header files cut this process short. During one
compilation, the compiler stores an image of the symbol table on
disk in a file called TCDEF.SYM by default. (TCDEF.SYM is
stored in the same directory as the compiler.) Later, when the
same source file is compiled again (or another source file that
includes the same header files), the compiler reloads TCDEF.SYM
from disk instead of parsing all the header files again. Directly
loading the symbol table from disk is over 10 times faster than
parsing the text of the header files.

Precompiled headers will only be used if the second compilation
uses one or more of the same header files as the first one, and if a

Appendix D, Precompiled headers 195

Drawbacks

lot of other things, like compiler options, defined macros and so
on, are also identical.

If, while compiling a source file, Borland C++ discovers that the
first #includes are identical to those of a previous compilation (of
the same source or a different source), it will load the binary
image for those #includes, and parse the remaining #includes.

Use of precompiled headers for a given module is an all or
nothing deal: the precompiled header file is not updated for that
module if compilation of any included header file fails.

When using precompiled headers, TCDEF.SYM can become very
big, because it contains symbol table images for all sets of
includes encountered in your sources. You can reduce the size of
this file; see "Optimizing precompiled headers" on page 198.

If a header contains any code, then it can't be precompiled. For
example, while C++ class definitions may appear in header files,
you should take care that only member functions that are inline
are defined in the header; heed warnings such as "Functions
containing for are not expanded inline".

Using precompiled headers

196

You can control the use of precompiled headers in any of the
following ways:

• from within the IDE, using the Options I Compiler I Code
Generation dialog box (see page 85). The IDE bases the name of
the precompiled header file on the project name, creating
PROJECT.5YM

• from the command line using the -H, -H=filename, and-Hu
options (see page 161)

• or from within your code using the pragmas hdrfile and
hdrstop (see Chapter 4 in the Programmer's Guide)

Borland C++ User's Guide

Setting file names

Caution!

Establishing
identity

The compiler uses just one file to store all precompiled headers.
The default file name is TCDEF.SYM. You can explicitly set the
name with the -H=filename command-line option or the #pragma
hdrfile directive.

You may notice that your .5YM file is smaller than it should be. If
this happens, the compiler may have run out of disk space when
writing to the .SYM file. When this happens, the compiler deletes
the .SYM in order to make room for the .OBJ file, then starts
creating a new (and therefore shorter) .SYM file. If this happens,
just free up some disk space before compiling.

The following conditions need to be identical for a previously
generated precompiled header to be loaded for a subsequent
compilation.

The second or later source file must:

• have the same set of include files in the same order

• have the same macros defined to identical values

• use the same language (C or C++)

• use header files with identical time stamps; these header files
can be included either directly or indirectly

In addition, the subsequent source file must be compiled with the
same settings for the following options:

• memory model, including SS != DS (-mx)
• underscores on externs (-u)
• maximum identifier length (-iL)
• target DOS (default) or Windows (-War -Wx)
• generate word alignment (-a)
• Pascal calls (-p)
• treat enums as integers (-b)
• default char is unsigned (-K)
1:1 virtual table control (-Vx)

Appendix 0, Precompiled headers 197

198

Optimizing
precompiled

headers

ASOURCEC:

BSOURCEC:

Revised BSOURCE C:

PREFIX.C

For Borland C++ to most efficiently compile using precompiled
headers, follow these rules:

• Arrange your header files in the same sequence in all source
files.

• Put the largest header files first.
II Prime TCDEF.SYM with often-used initial sequences of header

files.

• Use #pragma hdrstop to terminate the list of header files at
well-chosen places. This lets you make the list of header files in
different sources look similar to the compiler. #pragma hdrstop
is described in more detail in Chapter 4 in the Programmer's
Guide.

For example, given the two source files ASOURCE.C and
BSOURCE.C, both of which include windows.h and myhdr.h,

#include <windows.h>
#include "myhdr. h"
#include "xxx.h"
< ... >

#include "zz .h"
#include <string.h>
#include "myhdr.h"
#include <windows.h>
< ... >

You would rearrange the beginning of BSOURCE.C to:

#include <windows.h>
#include "myhdr.h"
#include II ZZ .h"
#include <string.h>
< ... >

Note that windows.h and myhdr.h are in the same order in
BSOURCE.C as they are in ASOURCE.C. You could also make a
new source called PREFIX.C containing only the header files, like
this:

#include <windows.h>
#include "myhdr. h"

Borland C++ User's Guide

If you compile PREFIX.C first (or insert a #pragrna hdrstop in both
ASOURCE.C and BSOURCE.C after the #include "rnyhdr .h"
statement) the net effect is that after the initial compilation of
PREFIX.C, both ASOURCE.C and BSOURCE.C will be able to
load the symbol table produced by PREFIX.C. The compiler will
then only need to parse xxx.h for ASOURCE.C and zz.h and
string.h for BSOURCE.C.

Appendix 0, Precompiled headers 199

200 Borland C++ User's Guide

N

43/50-line display 111
<> (angle brackets) in #include directive 110
-2 BC~ option (80286 instructions) 151
-1 BCC option (extended 80186 instructions)

151
» (chevron) in dialog boxes 34
-1 option (extended 80186 instructions) See also

80186 processor, generating extended
instructions

25-line display 111
« operator

overloading See overloaded operators
» operator

overloading See overloaded operators
; (semicolons) in directory path names 111
:: (System) menu 25
~ (tilde) in transfer program names 101
$ editor macros See individual names of

macros; transfer macros
+ operator

overloading See overloaded operators,
addition (+)

l's complement See operators, l's complement
80x87 math coprocessors See numeric

coprocessors
80x86 processors

instruction set 86
instructions 151

extended 151
:: (System) menu 46
~ (arrows) in dialog boxes 34

A
-a BCC option (align integers) 151
-A BCC option (ANSI keywords) 156
About command 125
action symbols See TUB (librarian)

Index

D E

activating
menu bar 25

Active File command 125
active window See windows, active
Add button 77
Add Item command 77, 129
Add Watch command 73

hot key 29
addresses, memory See memory, addresses
Advanced C++ Options

command 92
Advanced Code Generation

command 86
dialog box 86

Advanced Code Generation dialog box 86
After Compiling

option 103
alignment

integers 151
word 85

Alternate command set 40
American National Standards Institute See

ANSI
ancestors See classes, base

x

angle brackets «» in #include directive 110
ANSI

Borland C++ keywords and 156
C standard 4
compatible code 156
floating point conversion rules 152
keywords

option 156
using only 98

violations 157
ANSI Violations 99
applications

Microsoft Windows See Microsoft Windows
applications
transferring to and from Borland C++ 100

201

Arguments
command 63

arguments
command-line compiler 141
passing to Turbo Debugger 64
variable list 154

Arrange Icons command 119
arrays

huge
fast huge pointer arithmetic and 87

arrays, inspecting values 68
arrows (?) in dialog boxes 34
.ASM files See assembly language
assembler

compile via 85
source option 85

assembly language
assembling from the command line 141
compiling 161
default assembler 161
directory 168
inline routines 161
options

passing 162
removing 162

output files 162
projects and 134

assembly level debugger See Turbo Debugger
Assume no pointer aliasing

option 97
Assume 55 equals DS option 85
-ATBCC option (Borland C++ keywords) 156
-AU option (UNIX keywords) 156
Auto Save option 112
auto variables See variables, automatic
autodependencies See also dependencies
autoindent mode 187, 189
Autoindent Mode option 113
automatic dependencies 103

checking 133
information

disabling 154
Automatic Far Objects option 88
automatic variables See variables, automatic

202

B
-b BCC option (allocate whole word for enums)

151
-B BCC option (process inline assembler code)

161
/b IDE option (build) 22
Backspace Unindents option 113
backup files (.BAK) 113
backward

searching 57
Backward compatibility options 168
.BAK files 113
bar

execution See run bar
run See run bar

bar, title 31
base classes See classes, base
BBS segment See also segments
BC and BCC See Borland C++; command-line

compiler; integrated environment
BC.EXE See integrated environment
BCC.EXE See command-line compiler
BCINST See also BCINST menu and command

names
BGI See Borland Graphics Interface
BGIOBJ See The online document UTIL.DOC
binding See C++, binding
block

copy 186, 188
Borland-style 189

cut 188
delete 186, 188
extending 186
hide and show 186
hide/show

Borland-style 189
indent 186
move 186, 188

Borland-style 189
move to beginning of 186
move to end of 186
print 186
read from disk 186, 188
set beginning of 186

Borland-style 189
set end of 186

Borland-style 189

Borland C++ User's Guide

unindent 186
write to disk 186, 188

block commands 187
block operations (editor) See editing, block

operations
blocks, text See editing, block operations
Borland

contacting 10
Borland C++ See also C++; integrated

environment
C and 154
calling convention 89
exiting 15
implementation data 4
installing 14-18

on laptops 18
keywords

as identifiers 98, 99, 156
Optimizations dialog box 96
project files and 134
quitting 24
starting 15
starting up 22
transferring from 100

Borland Graphics Interface (BGl) See also
graphics
EGA palettes and 24
library 106, 107

Borland c++ See also C++; C language;
keywords

boxes See check boxes; dialog boxes; list boxes;
text, boxes

branching See if statements; switch statements
Break Make On

Make dialog box 131
option 103

Breakpoints
command 74
dialog box 74

breakpoints See debugging; watch expressions
clearing 75
controlling 74
deleting 74
editing 75

Index

inline functions and 91
losing 75
saving across sessions 116
setting 74
viewing 74

Browse
menu 79

browser
information

storing 87
Browser Info in OBJs option 87
BSS names 100
bugs See also debugging, See debugging
Build command 65
build IDE option 22
buttons

Change All 58
choosing 34
in dialog boxes 34
mouse 115
ObjectBrowser 79
radio 34

c
C++ 91, See also Borland C++; C language

binding
late See also member functions, virtual

Borland C++ implementation 4
classes See classes
compiling 90
compiling files as 161
constructors See constructors
data members See data members
destructors See destructors
dynamic objects See also objects
formatting See formatting
functions See also member functions

inline
command-line option (-vi) 155
debugging and 91, 155
virtual tables and 164, 165

overloading See overloaded functions
help 124

203

hierarchies See classes
inheritance See inheritance
inline functions See C++, functions, inline
member functions See member functions
operators See operators, C++; overloaded

operators
polymorphism See polymorphism
streams See streams, C++
structures See structures
templates

generating 166
types

reference See reference types
virtual tables See virtual tables
warnings 100, 158

C++ Options
command 90
dialog box 90

-c BeC option (compile but don't link) 161
-C BeC option (nested comments) 156
C language See also C++

Borland C++ and 154
help 124

Call Stack command 71
hot key 29

callbacks
smart See smart callbacks

Windows applications and 89
calling

conventions 89
calling convention

_fastcall 183
Cancel button 34
$CAP EDIT macro 102
Cascade command 119
Case-Sensitive Exports option 105
case sensitive option

librarian 108
case sensitivity

in searches 56
linking with 105
module definition file and 105

case statements See switch statements
cdecl statement 154
.CFG files See configuration files
Change All button 58
Change Dir command 50

204

Change Directory dialog box 50
characters

char data type See data types, char
control

IDE and 35
data type char See data types, char
delete 186
tab

printing 51
charts See graphics, charts
Check Auto-dependencies option 103
check boxes 34
chevron symbol (») 34
class arguments

passing by value 168
class hierarchy

display of 80
Class Inspector window 69
classes See also structures

browsing 80
debugging 69
inspecting 69
names 100
sharing objects 92, 165

Clear command 54, 188
hot key 28, 40

click speed (mouse) 115
Clipboard 53, 187

clearing 54
copy to 186
cut to 186
editing text in 55
paste from 186, 188
saving across sessions 116
showing 55

Close All command 120
close boxes 31
Close command 120

hot key 28
Close Project

command 77
closed files listing 52
closing windows 120
Code Generation

Advanced
command 86

command 84

Borland C++ User's Guide

dialog box 84
code-generation

command-line compiler options 151
Code Pack Size option 106
code segment

group 160
names 100
naming and renaming 159
storing virtual tables in 92, 164

-WD option and 162
colors See graphics, colors
colors and palettes

EGA 24
Colors dialog box 11 7
columns

numbers 30
COMDEFs

generating 151
PUBDEFs versus 87

command line
Borland C++ See command-line compiler
options See command-line compiler, options;
integrated environment, command-line
options
viewing from IDE 120, 121

command-line
specify project file on 22

command-line compiler 142
arguments 141
compiling and linking with 141
configuration files See configuration files,
BCC
directives See directives
options 143, 148, 1 74

-2 (80286 instructions) 151
80286 instructions (-2) 151
-1 (extended 80186 instructions) 151
-A and -AT (Borland C++ keywords) 156
_fastcall

conventions (-pr) 154
-H (precompiled headers) 161
-P (C++ and C compilation) 161
-Wx (Windows applications) 162
-x (disable autodependency information)
154
- Y (overlays) 155
-Yo (overlays) 155

Index

-a (align integers) 151
-AK (Kernighan and Ritchie keywords)
156
allocate whole word for enum (-b) 151
ANSI

compatible code 156
keywords (-A) 156
violations 157

assembler code 161, 162
assembler to use (-E) 161
assume DS = SS (-Fs) 152
-AU (UNIX keywords) 156
autodependency information (-X) 154
-b (allocate whole word for enums) 151
-B (process inline assembler) 161
Borland C++ keywords (-A- and -AT)
156
C++ and C compilation (-P) 161
C++ inline functions (-vi) 155
-c (compile and assemble) 161
-C (nested comments) 156
code-generation 151
code segment

class name 159
group 160

.COM file names (-tDc) 167
comments, nesting (-C) 156
compilation control 161
compile and assemble (-c) 161
configuration files and 143
-D (macro definitions) 150
-d (merge literal strings) 151
data segment

class name 160
group 160
name 159, 160

debugging information (-v) 155
#defines 150

ganging 150
directory (-n) 168
.DLLs with all exportables (-WD) 162
.DLLs with explicit exports (-WDE) 162
-E (assembler to use) 161
-e (EXE program name) 167
emulate 80x87 (-f) 152
enable -F options (-Fm) 152
environment 167

205

206

error reporting 157
.EXE file names (-e) 167
.EXE file names (-tDe) 167
expanded memory 163
extended 80186 instructions (-1) 151
-f287 Online 80x87 code) 153
-f87 Online 80x87 code) 153
-f (emulate 80x87) 152
far global variables (-Ff) 152
far objects (-zE, -zF, and -zH) 159, 160
far virtual table segment

class name 160
fast floating point (-ff) 87, 152
fast huge pointers (-h) 153
-Fc (generate COMDEFs) 151
-Ff (far global variables) 152
-Fm (enable -F options) 152
frequent errors 158
Fs (assume D5 = 55) 152
functions, void 157
-G (speed optimization) 156
generate COMDEFs (-Fc) 151
generate underscores (-u) 154
gn (stop on n warnings) 157
-h (fast huge pointers) 153
identifiers,length (-i) 156
include files 170

directory (-I) 143, 167
inline 80x87 code (-f87) 153
integer alignment (-a) 151
-jn (stop on n errors) 157
-k (standard stack frame) 153
-K (unsigned characters) 153
Kernighan and Ritchie keywords (-AK)
156
-1 (linker options) 167
-L (object code and library directory) 143,
168
libraries 170

directory (-L) 143, 168
line numbers (-y) 155
link map (-M) 167
linker(-l) 167
-M Oink map) 167
macro definitions (-D) 150
memory model (-mx) 149
memver pointers (-V and -Vn) 165

merge literal strings (-d) 151
-n COBJ and .A5M directory) 168
-N (stack overflow logic) 154
nested comments (-C) 156
object code and library directory (-L) 143,
168
object files (-0) 161
.OBJs with explicit exports (-WE) 162
order of evaluation 148

response files and 147
overlays (-Y) 155
overlays (-Yo) 155
Pascal

conventions (-p) 154
identifiers 154

pass options to assembler (-Tstring) 162
pointer conversion, suspicious 157
portability warnings 158
precedence 148

response files and 147
precedence rules 143
precompiled headers (-H) 161
process inline assembler (-B) 161
produce .A5M but don't assemble (-5) 162
project files and 77
-Q (expanded memory) 163
-rd (register variables) 176
register variables 175, 176
remove assembler options (-T-) 162
-5 (produce .ASM but don't assemble) 162
segment-naming control 159
smart callbacks (-W5) 163
speed optimization (-G) 156
stack overflow error message (-N) 154
standard stack frame (-k) 153
stop on n errors(-jn) 157
stop on n warnings (-gn) 157
structures and 157
symbolic debugger 155
syntax 146
- T - (remove assembler options) 162
-Tstring (pass options to assembler) 162
template (-Jg) 166
toggling 143
undefine (-U) 150
underscores (-u) 154
UNIX keywords (-AU) 156

Borland C++ User's Guide

using 142
-v (debugging information) 155
-vi (C++ inline functions) 155
virtual tables (-V and -Vn) 164
warnings (-wxxx) 157-159
warnings (-wxxx) 157
Windows applications (-W) 162
Windows target files (-tW) 167
-y (line numbers) 155
-zV (far virtual table segments) 160
-zX (code and data segments) 159, 160

response files 147
option precedence 147

syntax 142
Turbo Assembler and 146
using 142

command-line options 22
build Ub) 22, 40
dual monitors U d) 22
EGA palette Up) 24
expanded Ue) 23
extended memory for heap space 24
help Uh) 23
laptops UI) 23
make Um) 23, 40
RAM disk Ur) 24
thrash control Us) 24
Turbo C++ IDE 40

command set
Alternate 26,40
Common User Access (CUA) 26, 40
selecting a 26

Command Set option 112
command sets 26, 40

Native option 29,41
commands See individual command names,

See also command-line compiler, options;
individual command names
choosing

with a mouse 26
with keyboard 25
with SpeedBar 42

editor
block operations 186, 187-188
cursor movement 185
insert and delete 186

Index

comments
nested 98, 156

Common subexpressions 97
optimize globally 97
optimize locally 98

Common User Access (CUA) command set 26,
40

communal variables 151
compilation 149, See also compilers

assembler source output 85
command-line compiler options 161
rules governing 146
speeding up 85
to .EXE file 64, 65
to .OBJ file 64

compilation via assembler 85
Compile

menu 64
Compile command 64

hot key 29, 41
Compiler

command 84
compiler directives See directives
Compiler Messages submenu 99
compilers See also compilation

C++ 90
code optimization 95,96
command line See command-line compiler
configuration files See configuration files
memory models See memory models
optimiza tions

for speed or size 95, 98
stopping after errors and warnings 99

compiling See also compilers
Compress debug info option 106
conditional breakpoints See breakpoints,

conditional
configuration files 36

command-line compiler 143, 147
creating 148
overriding 143, 148
priority rules 148

contents of 36
IDE 36-39

TCCONFIG.TC 36
saving 118
Turbo C++ for Windows 41

207

constants
debugging 69
hexadecimal

too large 157
manifest See macros
manifest or symbolic See macros
octal

too large 157
symbolic See macros

constructors See C++, constructors
Container class library 107
Contents command 123

hot key 28
control character

insert 187
control characters

entering in IDE 35
forma t specifier 72

Control menu 46
hot key 46

conventions
typographic 9

conversion specifications See format specifiers
conversions

floating point
ANSI rules 152

pointers
suspicious 157

specifications See format specifiers
coprocessors See numeric coprocessors
copy and paste See editing, copy and paste
copy block

Borland-style 189
Copy command 54

hot key 28, 40
Copy Example command 55, 123
Copy propagation

option 97
copy protection 13
copy to Clipboard 186
copying, and pasting See editing, copy and

paste
copyright information 125
CPP (preprocessor) See The online document

UTIL.DOC
.CPP files See C++
CPU registers 121

208

Create Backup Files option 113
creating new files See files, new
Ctrl+Break 59,60
CUA command set 26,40
CUA option 112
Current window option 112
cursor See also editor, cursor movement
Cursor through tabs 187, 189
Cursor Through Tabs option 113
customer assistance 10
customizing See also BCINST

IDE 111
Cut command 54

hot key 28,40
cut to Clipboard 186

D
-D BCC option (macro definitions) 150
-d BCC option (merge literal strings) 151
/ d IDE option (dual monitors) 22
data

aligning 85
hiding See access
structures See also arrays; structures

da ta members See C++, data members
data segment

group 160
names 100
naming and renaming 159, 160
removing virtual tables from 92, 164

- WD option and 162
data structures See also arrays; structures
data types See also data

char
default 85

changing 153
converting See conversions, See conversion
floating point See floating point
integers See integers

Dead code elimination
option 97

Debug Info in OBJs option 87
Trace into command and 62

Debug menu 66
Debugger

command 63
debugger, integrated See integrated debugger

Borland C++ User's Guide

Debugger command 108
Debugger Options

command 64
Debugger Options dialog box 108
debugging See also integrated debugger

arrays 68
breakpoints See breakpoints
Browser Info in OBJs 87
call stack 71
classes 69
constants 69
Debug Info in OBJs 87
dialog box choices 108
display swapping 109

dual monitors and 109
excluding information 78
expressions 70
format specifiers 71
functions 69
heap size 110
hot keys 29
information 60, 108

command-line compiler option 155
in .EXE or OBJ files 155
storing 87

inspecting values 66
line numbers information 87
pointers 68
stack overflow 90
starting a session 59
Step Over command 62
structures and unions 69
subroutines 90
Trace Into command 61
types 70
variables 70
watch expressions See watch expressions
Windows applications 66

declarations
data See data, declaring

.DEF files
import libraries and 103

default arguments See arguments, default
default assembler 161
default buttons 34
Default Extension option 114
Default Libraries option 105

Index

#define directive
command-line compiler options 150

ganging 150
Defines option 86
delete block 186
delete characters 186
Delete Item

command 77
Delete Item command 129
delete lines 186
Delete Watch command 73
delete words 186
deleting text

redoing 53
undoing 53

dependencies 103
automatic See autodependencies

derived classes See classes, derived
descendants See classes, derived
desktop

saving options in 116
desktop files

contents of 38
Turbo C++ for Windows 41

desktop files (. DSK)
default 38
projects and 38

Desktop option 112
Desktop Preferences dialog box 116
desktop window

arranging icons in 119
dialog boxes See also buttons; check boxes; list

boxes; radio buttons
arrows in 34
defined 33
entering text 35
Preferences 189

directional delimiters See delimiters
directives

MAKE See MAKE (program manager),
directives

Directories
command 110

directories
.ASM and .OBJ

command-line option 168
changing 50

209

defining 110
include files 143, 167, 169

example 171
libraries 170

command-line option 143, 168
example 171

output 110
project files 38
projects 130
semicolons in paths 111
source 111

disk space
running out of 197

disks
distribution

defined 14
display

formats
debugger 71

repainting 46
swapping 109

dual monitors and 109
Display Warnings

option 99
Display Warnings option 99
displays See screens
distribution disks 5

backing up 13
distributions disks, defined 14
division See floating point, division; integers,

division
DLLs See also import libraries

creating 89, 162
import libraries and 103
linker and 103
MAKE and 103
packing code segments 105
setting 105

do while loops See loops, do while
DOS

output
viewing from IDE 120, 121

shelling to
TSRs and 51

wildcards 48
DOS MODE command 22
DOS Overlay command 89

210

DOS Shell command 24, 51
DOS Standard command 89
double (floating point) See floating point,

double
double-click speed (mouse) 115
DPMI

use of extended and expanded memory 17
DPMIINST

protected mode and 15, 142
DPMIMEM environment variable 16
DPMIRES protected mode utility 16
DS register (data segment pointer) 85
.DSK files

default 38
projects and 38

dual monitor mode 22, 23
dual monitors 22

display swapping and 109
DOS command line and 51

duplicate, strings, merging 85
Duplicate Strings Merged option 85
duplicate symbols 105
dynamic binding See C++, binding, late
dynamic link libraries See DLLs
dynamic objects See objects, dynamic

E
-E BCC option (assembler to use) 161
-e BCe option (EXE program name) 167
Ie IDE option (expanded memory) 23
early binding See C++, binding
Edit See also editing

menu 52
windows

loading files into 132
Edit Watch command 73
Edit windows

option settings 113
edit windows

cursor
moving 185

editing See also Edit, See also editor; text
block operations 186, 187-188

deleting 188
deleting text 114
marking 114
overwrite 114

Borland C++ User's Guide

reading and writing 188
selecting blocks 52, 114

breakpoints 75
Clipboard text 55
commands

cursor movement 185
insert and delete 186

copy and paste See also Clipboard
hot key 28, 40

cut and paste 53, 54
hot keys 28, 40
insert mode

overwrite mode vs. 113
matching pairs See pair matching
miscellaneous commands 189-190
options

setting 113
pair matching See pair matching
pasting See editing, copy and paste
redoing undone text edits 53
selecting text 52, 187
setting defaults 113
undelete 53
undoing text edits 53
watchpoints 73

editor See also editing
macros See also MAKE (program manager),
macros
options

setting 113
redoing undone text edits 53
setting defaults 113
tabs in 113
undoing text edits 53

Editor Files option 112
Editor Options 113
EGA See Enhanced Graphics Adapter
ellipsis (. ..) 25, 33
else clauses See if statements
EMS See extended and expanded memory
emulation

80x87152
emulation, 80x87

floating point 86
encapsulation See also C++
Enhanced Graphics Adapter (EGA) 112

Index

palette
IDE option 24

Entry /Exit Code
command 88
dialog box 88

enumerations (enum)
assigning integers to 157
treating as integers 84, 151

Environment
command 111

environment See integrated environment
DOS See also integrated environment

Environment option
Auto Save 112

error
show next 190
show previous 190

Errors
Stop After 99

errors See also warnings
ANSI 157
Frequent 100
frequent 158
messages 7

compile time 131, 132
removing 133
saving 133
searching 59
setting 99

next
hot key 29,41, 132

previous
hot key 29,41, 132

reporting
command-line compiler options 157

stopping on n 99
syntax

project files 131, 132
tracking

project files 131, 132
Esc shortcut 34
Evaluate command

format specifiers and 71
Evaluate/Modify command 70

hot key 29
evaluation order

command-line compiler options 148

211

in response files 147
examples

copying from Help 55, 123
library and include directories 171

.EXE files
creating 29,64,65
directory 110
linking 65
making 27, 41
naming 64
user-selected name for 167

executable files See .EXE files
execution

bar See run bar
Exit

command 52
Exit command

hot key 40
exit the IDE 187
exiting Borland C++ 24
expanded memory 17, See extended and

expanded memory
controlling use of 163
IDE option 23

explicit
library files 167

_export (keyvvord)
Windovvs applications and 89, 163

exports
case sensitive 105

expressions
debugging 70
evaluating

restrictions on 70
values

displaying 70
extended 80186 instructions 151
extended and expanded memory

RAM disk and 24
extended dictionary option

librarian 108
extended memory 17, 18

IDE and 24
extensibility See also C++
extension keyvvords

ANSI and 156

212

External option
C++ Virtual Tables

command-line option 164
C++ Virtual tables 91

extraction operator (») See overloaded
operators

F
-f287 option (inline 80x87 code) 153
-f87 option (inline 80x87 code) 153
-f BCC option (emulate 80x87) 152
_fastcall

calling convention 183
command-line option 154

far
variables 152

Far Data Threshold type-in box 88
far objects See objects, far
Far option

C++ Virtual tables 92
far virtual table segment

naming and renaming 160
Fast Floating Point option 87
fast huge pointers 153
Fast Huge Pointers option 87
Fastest Code option 98
fatal errors See errors
-Fc BCC option (generate COMDEFs) 151
features

IDE 21
features of Borland C++ 1
-Ff BCC option (far global variables) 152
-ff option (fast floating point) 87, 152
file

open 187, 189
save 187, 189

File menu 47
files See also individual file-name extensions

assembly language See assembly language
backup (.BAK) 113
batch See batch files
C++ See C++
.CCP See C++
closed

reopening 122
compiling as C++ or C 161
configuration 36, See configuration files

Borland C++ User's Guide

·CPP See C++
desktop (.DSK)

default 38
projects and 38

editing See editing
executable See .EXE files
header See header files
HELPME!.DOC 14, 19
include See include files
information in dependency checks 133
information on 65
library See libraries, files
library CUB) See libraries
loading into editor 132
make See MAKE (program manager)
map See map files
modifying 19
multiple See projects
new 47
NONAME47
open

choosing from List window 122
opening 47

hot key 27
out of date, recompiled 133
printing 51
project 36
project CPRJ) See projects
README 18
README.DOC 14
response See response files
saving 49

all 49
automatically 112
hot key 27
with new name or path 49

source
.ASM

command-line compiler and 141
.TC See configuration files, integrated

environment
filling lines with tabs and spaces 113
Find command 56, See Search menu, See also

searching
Find dialog box

settings
saving 118

Index

Find Text dialog box 56
flags

format state See formatting, C++, format
state flags

floating point See also integers; numbers, See
also integers; numbers; numeric coprocessors
ANSI conversion rules 152
code generation 86
double

long See floating point, long double
fast 87, 152
format specifier 72
inline 80x87 operations 153
libraries 152
math coprocessor and 153

-Fm BCC option (enable -F options) 152
forloops Seeloops,for
format specifiers See also formatting

debugging and 71
table 72

format state flags See formatting, C++, format
state flags

formatting See also format specifiers
43/50-line display 111
forward

forward searching 57
Frequent Errors

warnings 100
frequent errors 100, 158
friend functions See C++, friend functions
-Fs BCC option (assume DS = SS) 152
full link map 167
function

inspect a 80
functions See also individual function names;

member functions; scope, See also scope
C-type 154
call stack and 71
calling conventions 89
export

Windows applications and 89, 162
. exporting 162
friend See C++, functions, friend
help 124
inline

C++
precompiled headers and 196

213

inspecting 69
listing of 80
locating 59
member See member functions
ordinary member See member functions,

ordinary
overloaded See overloaded functions
parameters See parameters, See arguments
searching for 59
stepping over 62
tracing into 61
virtual See member functions, virtual
void

returning a value 157
Windows 162

G
-G BCC option (speed optimization) 156
ganging

command-line compiler options
#define 150
macro definition 150

defined 150, 170
IDE 170
library and include files 170

Generate COMDEFs option 87
Generate Underbars option 87
get from (») See overloaded operators
global declarations See declarations, global
global menus See menus
Global register allocation

option 96
global variables

word-aligning 151
-gn BCC option (stop on n warnings) 157
Go Cursor command 61
Go to Cursor command

hot key 27, 29
Go to Line Number

command 59
Go to source

ObjectBrowser
hot key 79

Goto
ObjectBrowser 81

graphics See also graphics drivers
graphics drivers See also graphics

214

Graphics Library option 106, 107
GREP See The online document UTIL.DOC
GREP (file searcher)

wildcards in the IDE 56
group names 100
Group Undo option 113

Undo and Redo commands and 53

H
-h BCC option (fast huge pointers) 153
-H BCC option (precompiled headers) 161
/h IDE option (list options) 23
hardware

requirements
mouse 4

requirements to run Borland C++ 4
hdrfile pragma 196, 197
hdrstop pragma 196, 198
header files See also include files

help 124
precompiled See also precompiled headers
searching for 1 70
variables and 87
windows.h See windows.h

heap
size 110

heap space
extended memory for 24

Help
button 34
menu 122
ObjectBrowser

hot key 79
topic search 187
windows

closing 123
copying from 55, 123
keywords in 123
opening 122
selecting text in 123

help 187
accessing 122
active file 125
C and C++ 124
help on help 124
hot keys 27, 28, 41
IDE 23

Borland C++ User's Guide

index 124
keywords 123
language 124
previous topic 124
status line 33
table of contents 123

help index 187
Help on Help command 124
HELPMELDOC file 14, 19
hexadecimal numbers See numbers,

hexadecimal
hierarchies See classes
history lists 35

closing 120
saving across sessions 116
wildcards and 48

hot keys 45
debugging 29
editing 28, 40
help 27, 28, 41
make project 132
menus 26,27
next error 132
previous error 132
transfer macros 102
transfer program names 101
using 26

huge pointers 153

-i BCC option (identifier length) 156
-I BCC option (include files directory) 143, 167
icons

arranging 119
icons used in books 9
IDE 21, See integrated environment

command -line options 22
dual monitors (ld) 22
EGA palette (I p) 24
expanded memory (I e) 23
help (lh) 23
laptops (11) 23
make (1m) 23
I p EGA palette 24
RAM disk (lr) 24
syntax 22
thrash control (I s) 24

Index

control characters and 35
starting up 22

IDE features 21
identifiers

Borland C++ keywords as 98, 99, 156
duplicate 105
length 99
Pascal-type 154
significant length of 151, 156
undefining 150
underscore for 154

$IMPLIB See also import libraries
IMPLIB program See import libraries
implicit

library files 167
import libraries See also DLLs

DLLs and 103
generating 103

#include directive See also include files
angled brackets and 170
directories 110
quotes and 170

Include Directories
input box 110

Include Files
command 78

include files See also header files
command-line compiler options 170
directories 143, 167, 169

multiple 171
help 124
projects 129
searching for 170
user-specified 143, 167

Include Files command 129
Include Files dialog box 78
incremental search 36
indent block 186
indenting automatically 113
Index command

hot key 28, 41
Index command (help) 124
indexes See arrays
Induction variables

option 96
Information command 65
information hiding See access

215

initialization See specific type of initialization
initialized data segment See data segment
inline assembly code 161
inline code See assembly language, inline

routines; 80x87 math coprocessor
inline functions, C++ See C++, functions, inline
Inline intrinsic functions

option 97
input boxes 35
insert lines 186
insert mode 186
Insert Mode option 113
insertion operator «<) See overloaded

operators
Inspect

command 66
ObjectBrowser 81

hot key 79
Inspect command

hot key 28, 29
inspecting symbols

with ObjectBrowser 81
Inspector windows 66

arrays 68
class 69
classes 69
constant 69
function 69
ordinal 67
pointers 68
structures and unions 69
Type 70

installa tion 14-18
on a laptop system 18

instances See classes, instantiation and
instantiation See classes, instantiation and
Instruction Set radio buttons 86
integers See also floating point; numbers

aligned on word boundary 151
assigning to enumeration 157

integrated debugger See debugging, See also
debugging
breakpoints See breakpoints
debugging information for 155

integrated development environment See
integrated environment

216

integrated environment
command-line arguments and 63
configuration files See configuration files,
integrated environment
customizing 19, 111
debugging See debugging
editing See editing
ganging 170
makes 133
menus See menus
multiple library directories 170
settings

saving 118
intrinsic functions

inline
option 97

Invariant code motion
option 96

I/O
C++ See C++, I/O

J
-jn BCC option (stop on n errors) 157
Jump Optimization

option 95
Jump optimization

option 97

K
-k BCC option (standard stack frame) 153
-K BCC option (unsigned characters) 153
K&R See Kernighan and Ritchie
Keep Messages command

toggle 133
Kernighan and Ritchie

keywords 99, 156
keyboard

choosing buttons with 34
choosing commands with 25
selecting text with 52

keys, hot See hot keys
keywords

ANSI
command 156

Borland C++ 98
using, as identifiers 156

Borland C++ User's Guide

L

help 124
Help windows 123
Kernighan and Ritchie

using 156
options 98
register

Register Variables option and 95
UNIX

using 156

-1 BCC option (linker options) 167
-L BCC option (object code and library

directory) 143, 168
/1 IDE option (LCD screen) 23
language help 124
laptop computers

installing Borland C++ onto 18
laptops

IDE option U1) 23
late binding See C++, binding
LCD displays

installing Borland C++ for 18
LCD screens 23
left-handed

mouse support for 115
Less Frequent Errors dialog box 100
.LIB files See libraries
librarian See TUB

case sensitive option 108
dialog box choices 107
extended dictionary option 108
list file option 107
purge comments option 108

Librarian command 107
Librarian Options dialog box 107
libraries

command-line compiler options 170
container class 107
default 105
directories 110, 169

command-line option 143, 168
multiple 171

dynamic link (DLL) See DLLs
explicit and implicit 167
files 110, 143, 168
floating point 152

Index

graphics 106, 107
import See import libraries
linking 65
overriding in projects 136
rebuilding 154
routines

80x87 floating-point emulation 153
searching for 1 70
user-specified 167
utility See TLIB

library
ObjectWindows 107

Library Directories
input box 110

library files See libraries
license statement 13
line

mark a 186
li~e numbers See lines, numbering
Lme Numbers Debug Info option 87
lines

delete 186
filling with tabs and spaces 113
insert 186
moving cursor to 59
numbering 30

in object files 155
information for debugging 87

restoring (in editor) 53
Link command 65
link map, fu11167
Linker

command 104
dialog box 104, 106

linker See also TLINK
case sensitive linking 105
command-line compiler options 167
DLLs and 103
link map

creating 167
options

from command-line compiler 167
Linker option

container class library 107
linking

excluding from 78
list boxes 36

217

file names 48
searching incrementally 124

List command
hot key 28

list file option
librarian 107

List window 122
literal strings See strings, literal
local menus See menus
Local option

C++ Virtual tables 91
Local Options

C++ Virtual Tables
command-line option 164

command 77, 129
Locate Function

command 59
long double (floating point) See floating point,

long double
long integers See integers, long
Loop Optimizations

option 96
.LST files See files; listfile (TUB option)

M
-M BeC option (link map) 167
/ m IDE option (make) 23
macros See also editor, macros; MAKE

(program manager), macros
command-line compiler 150
ganging 150
MAKE See MAKE (program manager),
macros
preprocessor 86
transfer See transfer macros
Turbo editor See The online document
UTIL.DOC

make
IDE option 23

MAKE (program manager)
After compiling 103
DLLs and 103
explicit rules See MAKE (program manager),
rules
implicit rules See MAKE (program manager),
rules
integrated environment makes and 133

218

stopping makes 103, 131
Make command 64, 103

hot key 27, 29
makefiles See MAKE (program manager)
manifest constants See macros
manipulators See also formatting, C++;

individual manipulator names
manuals

using 8
map files 167

directory 110
options 105

marker
find 187, 189
set 187, 190

math coprocessors See numeric coprocessors
maximize See zooming, See Zoom command
member functions See also C++, functions; data

members
virtual See also C++, binding, late

member pointers
controlling 165

members
data See data members
functions See member functions

memory
dump

format specifier 72
expanded 17

controlling 163
IDE and 23

extended 17
extended and expanded See extended and

expanded memory
RAM disk and 24

heap size 110
protected mode and 15

memory models
automatic far data and 88
changing 84
command-line options 85, 149
smart callbacks and 163

menu bar See also menus
activating 25

menu commands
choosing 26

with SpeedBar 42

Borland C++ User's Guide

dimmed 26
grayed 26
unavailable 26

menus See also individual menu names
accessing 25
commands See individual command names
hot keys 26, 27
opening 25
reference 45
with an ellipsis C ..) 25, 33
with arrows (~) 25

Message Tracking
toggle 132

Message window 120, 133
copying text from 54
removing messages 66

messages See errors; warnings, See also errors;
warnings
appending 112
removing 66

Messages command 99
methods See member functions
mice See mouse
Microsoft Windows See also Microsoft Win

dows applications
resources See resources

Microsoft Windows All Functions Exportable
command 89

Microsoft Windows applications See also
Microsoft Windows
code segments 105
command-line compiler options 162, 163
debugging 66
export functions and 89, 162
IDE options 89
optimizing for 96, 98
prolog and epilog code 88
setting application type 105
setting options for 82, 88
smart callbacks and 89, 163

Microsoft Windows DLL All Functions
Exportable command 89

Microsoft Windows DLL Explicit Functions
Exported command 89

Microsoft Windows Explicit Functions
Exported command 89

Index

Microsoft Windows Smart Callbacks command
89

MODE command (DOS) 22
models, memory See memory models
modularity See encapsulation
module definition files

exported functions and 89
EXPORTS section

case-sensitive 105
IMPORTS section

case-sensitive 105
monitors See also screens

dual 22, 51, 109
number of lines 111

mouse
buttons

switching 115
choosing commands with 26, 34
compatibility 4
double-click speed 115
left-handed

support for 115
options 114
reversing buttons 115
right button

browse with 79
right button action 115
selecting text with 52
support for 21

mouse buttons
right and left 26

Mouse Double Click option 115
Mouse Options dialog box 114
moving text See editing, moving text; editing,

block operations
multi-source programs See projects
Multiple Document Interface (MDI) 39
multiple files See projects
multiple inheritance See inheritance
multiple listings

command-line compiler options
#define 150
include and library 170
macro definition 150

-fiX options (memory models) 149

219

N
-n BCC option (.OB] and .ASM directory) 168
-N BCC option (stack overflow logic) 154
Names

command 100
names See identifiers
Native command set option 29, 41
nested

comments 156
delimiters See delimiters

Nested Comments option 98
New command 47
New Value field 70
New Window option 112
Next command 120

hot key 27, 28
next error

show 190
Next Error command 59

hot key 29, 41
No-Nonsense License Statement 13
NONAME file name 47
nondirectional delimiters See delimiters
nonfatal errors See errors
null character See characters, null
numbers See also floating point; integers

decimal 110
format specifier 72

hexadecimal 110
constants

too large 157
format specifier 72

octal
constants

too large 157
real See floating point

numeric coprocessors See also floating point
emulating 152
generating code for 152, 153
inline instructions 86, 153

o
-0 BCC option (object files) 161
.OB] files

browser information 87
compiling 161

220

creating 64
debugging information 87
dependencies 103
directories 110, 168
line numbers in 155

object files See .OB] files
object-oriented programming See C++
ObjectBrowser

choosing commands in 79
ObjectBrowser buttons 79
objects See also C++

far
class names 160
generating 88
group names 160
segment names 159

ObjectWindows library option 107
OB]XREF See The online document UTIL.DOC
octal numbers See numbers, octal
OK button 34
one's complement See operators, l's

complement
online help See help
OOP SeeC++
Open a File dialog box 47, 189
Open command 47, 189

hot key 27, 28, 40
open file 187, 189
Open Project

command 76
opening a file 47
operators

associativity See associativity
C++ See also overloaded operators

delete See delete (operator)
get from (») See overloaded operators
new See new (operator)
put to «<) See overloaded operators

one's complement See operators, l's
complement

overloading See overloaded operators
precedence See precedence

Optimal Fill option 113, 187, 189
Optimization

what is 173
Optimizations

command 94

Borland C++ User's Guide

optimizations 95, 96
command-line compiler options 156
Common subexpressions 97
fast floating point 87
Fastest Code 98
for speed or size 95, 98
No Optimizing 98
precompiled headers 198
register variables 97
registers

usage 175
Smallest Code 98
Windows applications and 95, 98

Optimizations dialog box
Turbo C++ for Windows 95
Turbo C++ for Windows 96

option
Compress debug info 106

Options
backward compatibility 168
C++ template generation

command-line option 166
options See integrated environment, See

specific entries (such as command-line
compiler, options)

Options menu 81
settings

saving 118
ordinals, inspecting 67
ordinary member functions See member

functions, ordinary
Out-Line Inline Functions option 91
output

to DOS
viewing from IDE 120, 121

User Screen 121
Output command 120
Output Directory

input box 110
Output window

copying text from 54
overlays

generating 155
projects and 78
supporting 89

Override Options dialog box 77

Index

Overview
ObjectBrowser 81

hot key 79
overview

in ObjectBrowser 79
Overwrite Blocks option 114
Overwrite Mode 113

p
-P BCC option (C++ and C compilation) 161
-p BCC option (Pascal conventions) 154
/ P IDE option (EGA palette) 24
-pr BCC option (fastcall calling convention) 154
Pack Code Segments option 105
pair matching 187
parameter-passing sequence

_fastcall 154
parameter-passing sequence, Pascal 154
parameter types

register usage and 184
parameters See arguments
Pascal

calling convention 89
identifiers of type 154
parameter-passing sequence 154

Paste command 54
hot key 28, 40

paste from Clipboard 186, 188
pasting See editing, copy and paste
path names in Directories dialog box 111
Persistent Blocks option 114
place marker

find 187, 189
set 187, 190

plasma displays
installing Borland C++ for 18

pointers
fast huge 87, 153
format specifier 72
inspecting values 68
memory regions 72
to self See this (keyword)
suspicious conversion 157
virtual table

32-bit 92, 164
- WD option and 162

polymorphism See C++

221

pop-up menus See also menus
portability warnings 99, 158
#pragma hdrfile 196, 197
#pragma hdrstop 196, 198
precedence

command-line compiler options 143, 148
response files and 147

precompiled headers 195-199
command-line options 161
controlling 196
drawbacks 196
how they work 195
inline member functions and 196
optimizing use of 198
rules for 197
using

IDE 85
Preferences dialog box 189
preprocessor directives See directives
previous error

show 190
Previous Error command 59

hot key 29, 41
Previous Topic command 124

hot key 28
Print command 51
printer

setting up 51
printer drivers 51
Printer Setup command 51
PRJ2MAK See The online document UTIL.DOC
.PRJ files See projects
PRJCFG See The online document UTIL.DOC
PRJCNVT See The online document UTIL.DOC
procedures See functions
program manager (MAKE) See MAKE

(program manager)
Program Reset command 61

hot key 29
Programmer's Platform See integrated

environment
programming

with classes See C++
programs

c++ See c++
ending 59
heap size 110

222

multi-source See projects
rebuilding 60, 65
resetting 61
running 59

arguments for 63
to cursor 61
Trace Into 61

transfer
list 135

transferring to external from Borland C++
100

Project
command 122
menu 76

project files 36
contents of 37
Turbo C++ for Windows 41

Project Manager 59, See also projects
closing projects 77
Include files and 78

Project Name
command 102

Project Notes command 122
Project Notes window 139
Project option 112
projects See also Project Manager

autodependency checking 103
speeding up 104

automatic dependency checking and 133
building 127
changing 38
closing 77
default 38
desktop files and 38, 36-39
directories 130
directory 38
error tracking 131, 132
excluding from 78
.EXE file names and 64
files

adding 129
command-line options and 77
deleting 129
include 129
information 134
list 129
options 129

Borland C++ User's Guide

out of date 133
viewing 139

IDE configuration files and 37
include files 129
information in 127
libraries and

overriding 136
loading 37
makes and 133
making

hot key for 132
managing 122
meaning of 76
naming 128
new 129
notes 122, 139
opening 37
overlays and 78
saving 130
translator option 78
translators See also Transfer

default 134
example 135
multiple 134
specifying 135

prolog and epilog code
genera ting 88

protected mode 15
command-line compiler 142
DPMIMEM variable 16
DPMIRE5 utility 16

pseudovariables, register
using as identifiers 156

PUBDEFs
COMDEFs versus 87

Public option
C++ Virtual Tables

command-line option 164
C++ Virtual tables 91

pull-down menus See menus
purge comments option

librarian 108
put to «<) See overloaded operators
put to operator «<) See overloaded operators

Q
-Q BCC options (expanded memory) 163

Index

Quit
command 24

quitting Borland C++ 52
quitting Turbo C++ 52

R
-r BCC option (register variables) 175
/ rx IDE option (RAM disk) 24
radio buttons 34
RAM disk

IDE and 24
random numbers See numbers, random
.RC files See also Resource Compiler
-rd option (register variables) 176
read block 186
README 18
README. DOC 14
real numbers See floating point
rebuilding libraries 154
Redo command 53

Group Undo and 53, 113
hot key 28, 41

register (keyword)
Register Variables option and 95

Register command 121
Register keyword

option 97
Register Optimization option 95
register usage and parameter types 184
register variable optimization 97
Register Variables option 95
registers

allocating 96
Automatic

option 97
05 (data segment pointer) 85
None

option 97
pseudovariables

using as identifiers 156
reusing 95
55 (stack segment pointer) 85
variables

suppressed 175
toggle 175

windows 121
relational operators See operators, relational

223

Remove All Watches command 74
Remove Messages command 66, 133
Repaint Desktop command 46
Replace

command 58
Replace dialog box

settings
saving 118

Replace Text
dialog box 58

replacing a file 47
.RES files See also resources
resetting programs 61
resize corner 31
Resource Compiler See also .RC files
resources See also .RES files
response files

defined 147
'option precedence 147

Result field 70
Reverse Mouse Buttons option 115
Rewind

ObjectBrowser 81
hot key 79

Right Mouse Button option 115
Ritchie, Dennis See Kernighan and Ritchie
Run

command 59
menu 59

Run command
hot key 29, 41

running programs 59

s
-S Bee option (produce .ASM but don't

assemble) 162
/ s IDE option (thrash control) 24
sample programs

copying from Help window 55
Save All command 49
Save As

command 49
Save command 49, 118

hot key 27, 28, 40
save file 187, 189
Save File As dialog box 49
Save Old Messages option 112

224

scope See also variables
Screen Size

option 111
screens

LCD
IDE option 23
installing Borland e ++ for 18

number of lines 111
plasma

installing Borland e ++ for 18
repainting 46
two

using 22
scroll bars 31, 32
scrolling windows 32
Search Again command 58

hot key 28, 41
search and replace See also searching
search for text 187
Search menu 56
searching

direction 57
error and warning messages 59
functions 59
in list boxes 124
include files 170
libraries 170
origin 57
regular expressions 56
repeating 58
and replacing text 58
scope of 57
search and replace 58

Segment Alignment option 106
segment-naming control

command-line compiler options 159
segments

aligning 106
code

minimizing 105
packing 105

controlling 159
initializing 105
names 100

selecting text 187
self See this (keyword)
semicolons (;) in directory path names 111

Borland C++ User's Guide

Set Application Options dialog box 82
shortcuts See hot keys

keyboard 45
Show Clipboard command 55
Size/Move command 119
Smallest Code option 98
smart callbacks

memory models and 163
Windows applications and 163

Smart option
C++ Virtual Tables

command-line option 164, 165
C++ Virtual tables 91

software See programs
software license agreement 13
software requirements to run Borland C++ 4
Source

command 98
Source Debugging command 60

and Trace Into command 62
Source Directory

input box 111
source files

.ASM
command-line compiler and 141

directory 111
multiple See projects

source-level debugger See Turbo Debugger
Source Options dialog box 98
Source Tracking option 112
Source Tracking options 132
spaces vs. tabs 113
speed

optimization 156
SpeedBar 42

configuring the 42
spreadsheets See Turbo Calc
SS register (stack segment pointer) 85
stack

Call Stack command 71
overflow 90, 154
standard frame

generating 153
warnings 105

standalone debugging information 108
standalone librarian

case sensitive 108

Index

extended dictionary 108
list file 107
purge comments 108

standalone utilities See also MAKE (program
manager); TUB (librarian); TUNK (linker);
TOUCH

standard library files See libraries
Standard stack frame

option 97
standard stack frame

generating 153
Standard Stack Frame command 90
Standard Stack Frame option 71
start-up and exit

command-line compiler 142
IDE 22

Startup Preferences dialog box 116
statements See break statements; if statements;

switch statements
static binding See C++, binding, early
status line 33
staux, functions of See streams
stdin, functions of See streams
stdout, functions of See streams
Step Over command 62

hot key 27, 29
sterr, functions of See streams
stprn, functions of See streams
streams

C++
manipulators and See manipulators

strings
duplicate

merging 85
format specifier 72
literal

merging 151
structures

ANSI violations 157
C++ See also classes
format specifier 72
inspecting 69
undefined 157
zero length 157

Suppress redundant loads
option 97

225

swapping
displays 109

switch statements
break See break statements

switch to another program 51
switches See command-line compiler, options;

integrated environment, options
.5YM files 195, 196

default names 196
disk space and 197
smaller than expected 197

symbolic
constants See macros
debugger See Turbo Debugger

symbolic constants See macros
symbols

action See TUB
duplicate 105

syntax
errors

project files 131, 132
IDE command line 22

System menu
hot key 46

System menu:: 25
system requirements 4

T
- T - BCC option (remove assembler options)

162
'this' pointer in 'pascal' member functions 169
Tab mode 190
Tab Size option 114
tables, virtual See virtual tables
tabs

characters
printing 51

size of 114
spaces vs. 113
using in the editor 113

Tabs mode 187
TASM See Turbo Assembler
TCCONFIG.TC See configuration files,

integrated environment
TCDEF.DPR files 38
TCDEF.DSK files 38
TCDEF.5YM 161, 195, 196, See also .5YM files

226

Turbo C++ for Windows
Optimizations dialog box 95

technical support 10
TEML See The online document UTIL.DOC
Template Generation option 91
templates

generation 166
terminate and stay resident See TSR programs
Test Stack Overflow command 90
text See also editing

blocks See editing, block operations
copy and paste 54
cutting 54
deleting 54
entering

in dialog boxes 35
inserting vs. overwriting 113
pasting 54
restoring (in editor) 53
screen display of 111
selecting 52

Help window 123
text files See also editing
THELP See The online document UTIL.DOC
thrash control

IDE and 24
threshold size

far global variables
setting 152

thunks See smart callbacks
tilde (-) in transfer program names 101
Tile command 119

hot key 28
title bars 31
Toggle Breakpoint command 74

hot key 29
Topic Search command 124

hot key 28, 41
Topic search in Help 187
Trace Into command 61

Debug Info in OBJs option and 62
hot key 27, 29
Source Debugging command and 62

Transfer See also projects, translators
command 25, 100
dialog box 101

projects and 135

Borland C++ User's Guide

programs 46
editing 101

transfer macros 102
defined 102
hot keys for 102
how expanded 102

transfer programs
list 135

transfer to another program 51
Translator option 78, 102
translators See projects, translators
Treat enums as ints option 84
TRIGRAPH See The online document

UTIL.DOC
TSR programs

shelling to DOS and 51
- Tstring BCC option (pass string to assembler)

162
Turbo Assembler

Borland C++ command-line compiler and
146
command-line compiler and 141
default 161
invoking 146

Turbo C++ for Windows IDE 39
Turbo Debugger

described 155
Turbo Debugger for Windows 63

Windows applications and 66
Turbo Editor Macro Language compiler See

The online document UTIL.DOC
TURBOC.CFG 147
25-line display 111
typefaces used in these books 9
types See da ta types

debugging 70
typographic conventions 9

u
-U BCC option (undefine) 150
-u BCC option (underscores) 154
unary operators See operators, unary
unconditional breakpoints See breakpoints
underbars See underscores
underscores 154

generating automatically 87, 154
undo 187

Index

Undo command 53
Group Undo and 53, 113
hot key 28, 40

unindent
block 186
mode 187, 190

uninitialized data segment See data segment
unions

format specifier 72
inspecting 69

UNIX
keywords 99

using 156
porting Borland C++ files to 157

Unsigned Characters option 85
Use Tab Character option 113
User Screen

hot key 28
User Screen command 121
user-specified library files 167
utiliities See also The online document

UTIL.DOC

v
-v and -Vn BCC options (C++ virtual tables)

164
-v BCC option (debugging information) 155
-Va BCC option (class argument compatibility)

168
-Vb BCC option (virtual base class pointer

compatibility) 168
-Vc BCC option (derived class with pointer to

inherited virtual base class member function)
168

-Vm BCC options (C++ member pointers) 165
-Vp BCC option ('this' pointer in 'pascal'

member functions compatibility) 169
-Vt BCC option (virtual table pointers) 169
-Vv BCC option (pointers to virtual base class

members) 169
variable

inspecting a 80
variable argument list 154
variables See also scope

automatic
word-aligning 151

communal 151

227

debugging 70
global

far 152
header files and 87
inspecting values of 67
list of 80
register 95, 175

version number information 125
-vi option (C++ inline functions) 155
Video Graphics Array Adapter (VGA) 112
virtual access See also C++
virtual base class

hidden pointer to 168
virtual base class members

pointers to 169
virtual functions See member functions, virtual

hidden members in derived classes with
pointers to 168

virtual table pointers
compatibility 169

virtual tables 91
32-bit pointers and 92, 164

-WD option and 162
controlling 164
storing in the code segment 92, 164

-WD option and 162
visibility See scope

w
-W Bee options (Windows applications) 162
-wxxx BeC options (warnings) 157
Warnings

Stop After 99
warnings See also errors

ANSI Violations 99
e++ 100, 158
command-line options 157-159
enabling and disabling 157
frequent errors 1 ~O, 158
messages 7
options 157-159
portability 99, 158

watch expressions See also debugging
adding 73
controlling 73
deleting 73, 74

228

editing 73
saving across sessions 116
watch window 121

Watches command 73
-WD Bee options (.DLLs with all exportables)

162
-WDE BeC options (.DLLs with explicit

exports) 162
-WE Bee options (.OBls with explicit exports)

162
while loop See loops, while
whole-word searching 56
wildcards 56

DOS 48
GREP56

Window menu 118
window number See windows, window

number
windows

active 32
defined 30

cascading 119
Clipboard 55
closed 122

listing 122
closing 31, 32, 120
Edit See Edit, window
elements of 30
Help See Help, windows
Inspector 66
List All 122
menu 118
Message 66, 120
moving 32, 119
next 120
open 122

listing 122
opening 32
Output 120
position

hot key 28
Project 122
Project Notes 122
Register 121
resizing 32, 33, 119
saving across sessions 116
scrolling 31, 32

Borland C++ User's Guide

size
hot key 28

source tracking 112
swapping in debug mode 109

dual monitors and 109
tiling 119
title bar 31
User Screen 121
Watch 121
window number 31
zooming 31, 33, 119

Windows (Microsoft) See Microsoft Windows
word

delete 186
mark 186

word aligning
integers 151

Word Alignment option 85
write block 186
-WS Bee options (smart callbacks) 163

Index

-wxxx Bee option (warnings) 157
-wxxx Bee options (warnings) 157-159

x
-x Bee option (disable autodependency

information) 154
Ix IDE option (extended memory) 24

v
-y Bee option (line numbers) 155
-Y Bee option (overlays) 155
-Yo Bee option (overlays) 155

z
zoom box 31
Zoom command 119

hot key 27, 28
-zV options (far virtual table segments) 160
-zX options (code and data segments) 159, 160

229

B o R L A N D
CORPORATE HEAOOUARTERS 1800 GREEN HILLS ROAO POBOX 660001 . scons VALLEY. CA 9506J.(XlOl (4081 438·S300 OfFICES IN AUSTRALIA
OENMARK. FRANCE. GERMANY ITALY. JAPAN NEW ZEAlAND SINGAPORE. SwtOEN AND THE UNITED KINGDOM · PART 114MN·BCP01·30 · BOR 2880

